Sample records for vlf radio wave

  1. Detection of acoustic-gravity waves in lower ionosphere by VLF radio waves

    NASA Astrophysics Data System (ADS)

    Nina, A.; Čadež, V. M.

    2013-09-01

    We present a new method to study harmonic waves in the low ionosphere (60 - 90 km) by detecting their effects on reflection of very low frequency (VLF) radio waves. Our procedure is based on amplitude analysis of reflected VLF radio waves recorded in real time, which yields an insight into the dynamics of the ionosphere at heights where VLF radio waves are being reflected. The method was applied to perturbations induced by the solar terminator motions at sunrises and sunsets. The obtained results show that typical perturbation frequencies found to exist in higher regions of the atmosphere are also present in the lower ionosphere, which indicates a global nature of the considered oscillations. In our model atmosphere, they turn out to be the acoustic and gravity waves with comparatively short and long periods, respectively.

  2. VLF Radio Wave Propagation Across the Day/Night Terminator

    NASA Astrophysics Data System (ADS)

    Burch, H.; Moore, R. C.

    2016-12-01

    In May 2016, a new array of VLF radio receivers was deployed spanning the East Coast of the United States. We present preliminary observations from the array, which was designed in part to track the propagation of the narrowband VLF transmitter signal, NAA (24.0 kHz), down the coast from Cutler, Maine. Amplitude, phase, and polarization observations are compared over multiple days and at different times of year to investigate the dependence of VLF propagation characteristics on solar zenith angle. Measurements are compared to simulations using the Long Wave Propagation Capability code (LWPC) in order to evaluate the accuracy of LWPC's built-in ionosphere model. Efforts to improve the ionosphere model based on observations are discussed.

  3. INSPIRE: A VLF Radio Project for High School Students

    ERIC Educational Resources Information Center

    Marshall, Jill A.; Pine, Bill; Taylor, William W. L.

    2007-01-01

    Since 1988 the Interactive NASA Space Physics Ionospheric Radio Experiment, or INSPIRE, has given students the opportunity to build research-quality VLF radio receivers and make observations of both natural and stimulated radio waves in the atmosphere. Any high school science class is eligible to join the INSPIRE volunteer observing network and…

  4. Remote sensing and modeling of lightning caused long recovery events within the lower ionosphere using VLF/LF radio wave propagation

    NASA Astrophysics Data System (ADS)

    Schmitter, E. D.

    2014-11-01

    On the 4 November 2012 at 3:04:27 UT a strong lightning in the midst of the North Sea affected the propagation conditions of VLF/LF transmitter radio signals from NRK (Iceland, 37.5 kHz) and GBZ (UK, 19.58 kHz) received at 5246° N 8° E (NW Germany). The amplitude and phase dips show a recovery time of 6-12 min pointing to a LOng Recovery Early VLF (LORE) event. Clear assignment of the causative return stroke in space and time was possible with data from the WWLLN (Worldwide Lightning Location Network). Based on a return stroke current model the electric field is calculated and an excess electron density distribution which decays over time in the lower ionosphere is derived. Ionization, attachment and recombination processes are modeled in detail. Entering the electron density distribution in VLF/LF radio wave propagation calculations using the LWPC (Long Wavelength Propagation Capability) code allows to model the VLF/LF amplitude and phase behavior by adjusting the return stroke current moment. The results endorse and quantify the conception of lower ionosphere EMP heating by strong - but not necessarily extremely strong - return strokes of both polarities.

  5. ELF/VLF Wave Generation via HF Modulation of the Equatorial Electrojet at Arecibo Observatory

    NASA Astrophysics Data System (ADS)

    Flint, Q. A.; Moore, R. C.; Burch, H.; Erdman, A.; Wilkes, R.

    2017-12-01

    In this work we generate ELF/VLF waves by modulating the conductivity of the lower ionosphere using the HF heater at Arecibo. For many years, researchers have generated ELF/VLF waves using the powerful HF transmitters at HAARP, but few have attempted to do the same in the mid- to low- latitude region. While HAARP users have benefitted from the auroral electrojet, we attempt to exploit the equatorial electrojet to generate radio waves. On 31 July 2017, we transmitted at an HF frequency of 5.1 MHz (X-Mode) applying sinusoidal amplitude modulation in a step-like fashion from 0-5 kHz in 200 Hz steps over 10 seconds at 100% peak power to approximate a linear frequency ramp. We also transmitted 10-second-long fixed frequency tones spaced from 1 to 5 kHz. The frequency sweep is a helpful visual tool to identify generated waves, but is also used to determine optimal modulation frequencies for future campaigns. The tones allow us to perform higher SNR analysis. Ground-based B-field VLF receivers recorded the amplitude and phase of the generated radio waves. We employ time-of-arrival techniques to determine the altitude of the ELF/VLF signal source. In this paper, we present the initial analysis of these experimental results.

  6. Subionospheric VLF/LF radio waves propagation characteristics before, during and after the Sofia, Bulgaria Mw=5.6 earthquake occurred on 22 May 2012

    NASA Astrophysics Data System (ADS)

    Moldovan, Iren Adelina; Emilian Toader, Victorin; Nenovski, Petko; Biagi, Pier Francesco; Maggipinto, Tommaso; Septimiu Moldovan, Adrian; Ionescu, Constantin

    2013-04-01

    In 2009, INFREP, a network of VLF (20-60 kHz) and LF (150-300 kHz) radio receivers, was put into operation in Europe having as principal goal, the study of disturbances produced by the earthquakes on the propagation properties of these signals. On May 22nd, 2012 an earthquake with Mw=567 occurred in Bulgaria, near Sofia, inside the "sensitive" area of the INFREP VLF/LF electromagnetic network. The data collected on different frequencies, during April-May 2012 were studied using different methods of analysis: daily correlation methods, spectral approaches and terminator time techniques, in order to find out possible connections between the seismic activity and the subionospheric propagation properties of radio waves. The studies were performed with the help of a specially designed LabVIEW application, which accesses the VLF/LF receiver through internet. This program opens the receiver's web-page and automatically retrieves the list of data files to synchronize the user-side data with the receiver's data. Missing zipped files are also automatically downloaded. The application performs primary, statistical correlation and spectral analysis, appends daily files into monthly and annual files and performs 3D colour-coded maps with graphic representations of VLF and LF signals' intensities versus the minute-of-the-day and the day-of-the-month, facilitating a near real-time observation of VLF and LF electromagnetic waves' propagation. Another feature of the software is the correlation of the daily recorded files for the studied frequencies by overlaying the 24 hours radio activity and taking into account the sunrise and sunset. Data are individually processed (spectral power, correlations, differentiation, filtered using bandpass, lowpass, highpass). JTFA spectrograms (Cone-Shaped Distribution CSD, Gabor, Wavelet, short-time Fourier transform STFT, Wigner-Ville Distribution WVD, Choi-Williams Distribution CWD) are used, too.

  7. Ionosphere-magnetosphere studies using ground based VLF radio propagation technique: an Indian example

    NASA Astrophysics Data System (ADS)

    Chakravarty, Subhas

    Since IGY period (1957-58), natural and artificially produced Very Low Frequency (VLF) elec-tromagnetic radiations are being recorded at large number of ground stations all over the world and on-board satellites to study various radio wave-thermal/energetic plasma interactive pro-cesses related to earth's ionosphere-plasmasphere-magnetosphere environment. The terrestrial propagation of these VLF radio waves are primarily enabled through the earth ionosphere wave guide (EIWG) mode to long horizontal distances around the globe and ducted along the ge-omagnetic field lines into the conjugate hemisphere through the plasmasphere-magnetosphere regions. The time frequency spectra of the received signals indicate presence of dispersion (wave/group velocities changing with frequency) and various cut-off frequencies based on the width of the EIWG, electron gyro and plasma frequencies etc., providing several types of received signals like whistlers, chorus, tweeks, hiss and hisslers which can be heard on loud-speakers/earphones with distinguishing audio structures. While the VLF technique has been a very effective tool for studying middle and high latitude phenomena, the importance of the similar and anomalous observations over the Indian low latitude stations provide potentially new challenges for their scientific interpretation and modelling. The ducted and non-ducted magnetospheric propagation, pro-longitudinal (PL) mode, low latitude TRIMPI/TLE (Tran-sient Luminous Emissions) or other effects of wave-particle/wave-wave interactions, effects due to ionospheric irregularities and electric fields, full wave solutions to D-region ionisation per-turbations due to solar and stellar energetic X-and γ ray emissions during normal and flaring conditions are a few problems which have been addressed in these low latitude studies over India. Since the conjugate points of Indian stations lie over the Indian oceanic region, the VLF propagation effects would be relatively free from

  8. Beating HF waves to generate VLF waves in the ionosphere

    NASA Astrophysics Data System (ADS)

    Kuo, Spencer; Snyder, Arnold; Kossey, Paul; Chang, Chia-Lie; Labenski, John

    2012-03-01

    Beat-wave generation of very low frequency (VLF) waves by two HF heaters in the ionosphere is formulated theoretically and demonstrated experimentally. The heater-induced differential thermal pressure force and ponderomotive force, which dominate separately in the D and F regions of the ionosphere, drive an electron current for the VLF emission. A comparison, applying appropriate ionospheric parameters shows that the ponderomotive force dominates in beat-wave generation of VLF waves. Three experiments, one in the nighttime in the absence of D and E layers and two in the daytime in the presence of D and E layers, were performed. X mode HF heaters of slightly different frequencies were transmitted at CW full power. VLF waves at 10 frequencies ranging from 3.5 to 21.5 kHz were generated. The frequency dependencies of the daytime and nighttime radiation intensities are quite similar, but the nighttime radiation is much stronger than the daytime one at the same radiation frequency. The intensity ratio is as large as 9 dB at 11.5 kHz. An experiment directly comparing VLF waves generated by the beat-wave approach and by the amplitude modulation (AM) approach was also conducted. The results rule out the likely contribution of the AM mechanism acting on the electrojet and indicate that beat-wave in the VLF range prefers to be generated in the F region of the ionosphere through the ponderomotive nonlinearity, consistent with the theory. In the nighttime experiment, the ionosphere was underdense to the HF heaters, suggesting a likely setting for effective beat-wave generation of VLF waves by the HF heaters.

  9. ELF/VLF wave disturbances detected by the DEMETER satellite over the HAARP transmitter

    NASA Astrophysics Data System (ADS)

    Titova, Elena; Demekhov, Andrei; Parrot, Michel; Mogilevsky, Mikhail; Mochalov, Alexey; Pashin, Anatoly

    We report observations of electromagnetic the ELF/VLF wave disturbances by the DEMETER satellite (670 km altitude) overflying the HAARP heating facility (62.39(°) N, 145.15(°) W, L = 4.9). The HAARP HF transmitter operated at the maximum available power of 3.6 MW, O-mode polarization, and the beam directed towards the magnetic zenith. ELF/VLF waves caused by the HAARP heating are detected by the DEMETER satellite when the HF radio wave frequency was close to the critical frequency (foF2) of the ionospheric F2 layer but below it. ELF/VLF wave disturbances observed above the HAARP transmitter were detected by electrical antennas in an area with characteristic size 10 (2) km. We analyze amplitude and polarization spectra of the ELF disturbances and compare them with the characteristics of natural ELF hiss above HAARP. The VLF wave disturbances in the topside ionosphere above the HAARP transmitter were detected in the frequency ranges 8-17 kHz and 15-18 kHz which are close to the lower hybrid resonance frequency f _LHR in the heating region and its second harmonic (2f _LHR), respectively. In the case where the HAARP HF power was modulated, the detected VLF waves were also modulated with the same frequency whereas in the ELF frequency range the modulation period of the HAARP power was not observed. Possible mechanisms of generation of the ELF/VLF disturbances produced by the HAARP transmitter in the topside ionosphere are discussed.

  10. VLF Wave Properties During Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Blancarte, J.; Artemyev, A.; Mozer, F.; Agapitov, O. V.

    2017-12-01

    Whistler-mode chorus is important for the global dynamics of the inner magnetosphere electron population due to its ability to scatter and accelerate electrons of a wide energy range in the outer radiation belt. The parameters of these VLF emissions change dynamically during geomagnetic storms. Presented is an analysis of four years of Van Allen probe data, utilizing electric and magnetic field in the VLF range focused on the dynamics of chorus wave properties during the enhancement of geomagnetic activity. It is found that VLF emissions respond to geomagnetic storms in more complicated ways than just by affecting the waves' amplitude growth or depletion. Oblique wave amplitudes grow together with parallel waves during periods of intermediate geomagnetic activity, while the occurrence rate of oblique waves decreases during larger geomagnetic storms.

  11. Coincident bursts of auroral kilometric radiation and VLF emissions associted with a type 3 solar radio noise event

    NASA Technical Reports Server (NTRS)

    Rosenberg, T. J.; Singh, S.; Wu, C. S.; Labelle, J.; Treumann, R. A.; Inan, U. S.; Lanzerotti, L. J.

    1995-01-01

    This paper examines an isolated magnetospheric VLF/radio noise event that is highly suggestive of the triggering of terrestrial auroral kilometric radiation (AKR) bu solar type III radio emission and of a close relation between AKR and broadband hiss. The solar type III burst was measured on polar HF riometers and was coincident with local dayside VLF/LF noise emission bursts at South Pole station. It was also coincident with AKR bursts detected onthe AMPTE/IRM satellite, at the same magnetic local time as South Pole. On the basis of the close association of AKR and VLF bursts, and from geometric considerations relating to wave propagation, it is likely that the AKR source was on the dayside and on field lines near South Pole station. The general level of geomagnetic activity was very low. However, an isolated magnetic impulse event (MIE) accompanied by a riometer absorption pulse was in progress when all of the VLF/radio noise bursts occurred. The very close association of the typew III burst at HF with the AKR is consistent with external stimulation of the AKR, is different, more immediate,triggering process than that implied by Calvert (1981) is invoked. It is suggested here that some of the HF solar radiant energy may decay into waves with frequences comparable to those of the AKR by paraetric excitation or some other process, thus providing the few background photons required for the generation of AKR by the WU and Lee (1979) cyclotron maser instability. The AKR, perhaps by modifying the magnetospheric electron velocity distribution, might have produced the observed VLF emissions. Alternatively, the VLF emissions may have arisen from the same anisotropic and unstable electron distribution function responsible for the AKR.

  12. VLF wave-wave interaction experiments in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Chang, D. C. D.

    1978-01-01

    VLF wave-wave interaction experiments were carried out by injecting various forms of VLF pulses into the magnetosphere from a 21.2 km dipole antenna at Siple, Antarctica. The injected signals propagate along a geomagnetic field line and often interact strongly with energetic electrons trapped in the radiation belts near the equator. Signals may be amplified and trigger emissions. These signals may then interact with one another through these energetic electrons. This report is divided into three parts. In the first part, simulations of VLF pulses propagating in the magnetosphere are carried out. In the second part, it is found for the first time that a 10 ms gap in a triggering wave can induce emission, which may then interact with the post-gap signals. In the third part, sideband triggering is reported for the first time.

  13. Full wave description of VLF wave penetration through the ionosphere

    NASA Astrophysics Data System (ADS)

    Kuzichev, Ilya; Shklyar, David

    2010-05-01

    . Then, every researcher, in order to get quantitative characteristics of the process, such as transmission and reflection coefficients, needs to go through the whole problem. That is why the number of publications dealing with VLF wave transmission through the ionosphere does not run short. In this work, we develop a new approach to the problem, such that its intrinsic difficulty is resolved analytically, while numerical calculations are reduced to stable equations solvable with the help of a routine program. Using this approach, the field of VLF wave incident on the ionosphere from above is calculated as a function of height, and reflection coefficients for different frequencies and angles of incidence are obtained. In particular, for small angles of incidence, for which incident waves reach the ground, the reflection coefficient appears to be an oscillating function of frequency. Another goal of the work is to present all equations and related formulae in an undisguised form, in order that the problem may be solved in a straightforward way, once the ionospheric plasma parameters are given. References Budden, K.G. (1985), The Propagation of Radio Waves, Cambridge Univ. Press, Cambridge, U.K. Ginzburg, V.L., and Rukhadze, A.A. (1972), Waves in Magnetoactive Plasma. In Handbuch der Physik (ed. S. Flügge). Vol. 49, Part IV, p. 395, Springer Verlag, Berlin. Helliwell, R. A. (1965), Whistlers and Related Ionospheric Phenomena, Stanford University Press, Stanford, California.

  14. Modeling of very low frequency (VLF) radio wave signal profile due to solar flares using the GEANT4 Monte Carlo simulation coupled with ionospheric chemistry

    NASA Astrophysics Data System (ADS)

    Palit, S.; Basak, T.; Mondal, S. K.; Pal, S.; Chakrabarti, S. K.

    2013-09-01

    X-ray photons emitted during solar flares cause ionization in the lower ionosphere (~60 to 100 km) in excess of what is expected to occur due to a quiet sun. Very low frequency (VLF) radio wave signals reflected from the D-region of the ionosphere are affected by this excess ionization. In this paper, we reproduce the deviation in VLF signal strength during solar flares by numerical modeling. We use GEANT4 Monte Carlo simulation code to compute the rate of ionization due to a M-class flare and a X-class flare. The output of the simulation is then used in a simplified ionospheric chemistry model to calculate the time variation of electron density at different altitudes in the D-region of the ionosphere. The resulting electron density variation profile is then self-consistently used in the LWPC code to obtain the time variation of the change in VLF signal. We did the modeling of the VLF signal along the NWC (Australia) to IERC/ICSP (India) propagation path and compared the results with observations. The agreement is found to be very satisfactory.

  15. VLF wave generation by beating of two HF waves in the ionosphere

    NASA Astrophysics Data System (ADS)

    Kuo, Spencer; Snyder, Arnold; Kossey, Paul; Chang, Chia-Lie; Labenski, John

    2011-05-01

    Theory of a beat-wave mechanism for very low frequency (VLF) wave generation in the ionosphere is presented. The VLF current is produced by beating two high power HF waves of slightly different frequencies through the nonlinearity and inhomogeneity of the ionospheric plasma. Theory also shows that the density irregularities can enhance the beat-wave generation. An experiment was conducted by transmitting two high power HF waves of 3.2 MHz and 3.2 MHz + f, where f = 5, 8, 13, and 2.02 kHz, from the HAARP transmitter. In the experiment, the ionosphere was underdense to the O-mode heater, i.e., the heater frequency f0 > foF2, and overdense or slightly underdense to the X-mode heater, i.e., f0 < fxF2 or f0 ≥ fxF2. The radiation intensity increased with the VLF wave frequency, was much stronger with the X-mode heaters, and was not sensitive to the electrojet. The strongest VLF radiation of 13 kHz was generated when the reflection layer of the X-mode heater was just slightly below the foF2 layer and the spread of the O-mode sounding echoes had the largest enhancement, suggesting an optimal setting for beat-wave generation of VLF waves by the HF heaters.

  16. Modeling of the Very Low Frequency (VLF) radio wave signal profile due to solar flares using the GEANT4 Monte Carlo simulation coupled with ionospheric chemistry

    NASA Astrophysics Data System (ADS)

    Palit, S.; Basak, T.; Mondal, S. K.; Pal, S.; Chakrabarti, S. K.

    2013-03-01

    X-ray photons emitted during solar flares cause ionization in the lower ionosphere (~ 60 to 100 km) in excess of what is expected from a quiet sun. Very Low Frequency (VLF) radio wave signals reflected from the D region are affected by this excess ionization. In this paper, we reproduce the deviation in VLF signal strength during solar flares by numerical modeling. We use GEANT4 Monte Carlo simulation code to compute the rate of ionization due to a M-class and a X-class flare. The output of the simulation is then used in a simplified ionospheric chemistry model to calculate the time variation of electron density at different altitudes in the lower ionosphere. The resulting electron density variation profile is then self-consistently used in the LWPC code to obtain the time variation of the VLF signal change. We did the modeling of the VLF signal along the NWC (Australia) to IERC/ICSP (India) propagation path and compared the results with observations. The agreement is found to be very satisfactory.

  17. An Artificial Particle Precipitation Technique Using HAARP-Generated VLF Waves

    DTIC Science & Technology

    2006-11-02

    AFRL-VS-HA-TR-2007-1021 An Artificial Particle Precipitation Technique Using HAARP -Generated VLF Waves O o o r- Q M. J. Kosch T. Pedersen J...Artificial Particle Precipitation Technique Using HAARP Generated VLF Waves. 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62101F...model. The frequency-time modulated VLF wave patterns have been successfully implemented at the HAARP ionospheric modification facility in Alaska

  18. Subionospheric VLF Propagation Modelling During a solar flares

    NASA Astrophysics Data System (ADS)

    Akel, A. F.

    2013-05-01

    This work aims to present a preliminary study of the behavior of the lower ionosphere under transient regimes of ionization through the technique of wave propagation of VLF (Very Low Frequency). For this, we characterized the lower ionosphere by two traditional (wait) parameters H' and β which are found by VLF radio modelling using the computational code of subionospheric radio propagation LWPC(Long Wave Propagation Capability). The main effects and behaviors investigated in this study was due to a solar flare 2M class near solar minimum at 03/25/2008. We changed Solar zenith angle dependence of the ionospheric parameters H' and β for diurnal time by a polynomial equation. For this study we used the available data the South America VLF Network (SAVNET) and show the results between modeling and data

  19. Variance of transionospheric VLF wave power absorption

    NASA Astrophysics Data System (ADS)

    Tao, X.; Bortnik, J.; Friedrich, M.

    2010-07-01

    To investigate the effects of D-region electron-density variance on wave power absorption, we calculate the power reduction of very low frequency (VLF) waves propagating through the ionosphere with a full wave method using the standard ionospheric model IRI and in situ observational data. We first verify the classic absorption curves of Helliwell's using our full wave code. Then we show that the IRI model gives overall smaller wave absorption compared with Helliwell's. Using D-region electron densities measured by rockets during the past 60 years, we demonstrate that the power absorption of VLF waves is subject to large variance, even though Helliwell's absorption curves are within ±1 standard deviation of absorption values calculated from data. Finally, we use a subset of the rocket data that are more representative of the D region of middle- and low-latitude VLF wave transmitters and show that the average quiet time wave absorption is smaller than that of Helliwell's by up to 100 dB at 20 kHz and 60 dB at 2 kHz, which would make the model-observation discrepancy shown by previous work even larger. This result suggests that additional processes may be needed to explain the discrepancy.

  20. Nonlinear Scattering of VLF Waves in the Radiation Belts

    NASA Astrophysics Data System (ADS)

    Crabtree, Chris; Rudakov, Leonid; Ganguli, Guru; Mithaiwala, Manish

    2014-10-01

    Electromagnetic VLF waves, such as whistler mode waves, control the lifetime of trapped electrons in the radiation belts by pitch-angle scattering. Since the pitch-angle scattering rate is a strong function of the wave properties, a solid understanding of VLF wave sources and propagation in the magnetosphere is critical to accurately calculate electron lifetimes. Nonlinear scattering (Nonlinear Landau Damping) is a mechanism that can strongly alter VLF wave propagation [Ganguli et al. 2010], primarily by altering the direction of propagation, and has not been accounted for in previous models of radiation belt dynamics. Laboratory results have confirmed the dramatic change in propagation direction when the pump wave has sufficient amplitude to exceed the nonlinear threshold [Tejero et al. 2014]. Recent results show that the threshold for nonlinear scattering can often be met by naturally occurring VLF waves in the magnetosphere, with wave magnetic fields of the order of 50-100 pT inside the plasmapause. Nonlinear scattering can then dramatically alter the macroscopic dynamics of waves in the radiation belts leading to the formation of a long-lasting wave-cavity [Crabtree et al. 2012] and, when amplification is present, a multi-pass amplifier [Ganguli et al. 2012]. By considering these effects, the lifetimes of electrons can be dramatically reduced. This work is supported by the Naval Research Laboratory base program.

  1. VLF/LF Radio Sounding of Ionospheric Perturbations Associated with Earthquakes

    PubMed Central

    Hayakawa, Masashi

    2007-01-01

    It is recently recognized that the ionosphere is very sensitive to seismic effects, and the detection of ionospheric perturbations associated with earthquakes, seems to be very promising for short-term earthquake prediction. We have proposed a possible use of VLF/LF (very low frequency (3-30 kHz) /low frequency (30-300 kHz)) radio sounding of the seismo-ionospheric perturbations. A brief history of the use of subionospheric VLF/LF propagation for the short-term earthquake prediction is given, followed by a significant finding of ionospheric perturbation for the Kobe earthquake in 1995. After showing previous VLF/LF results, we present the latest VLF/LF findings; One is the statistical correlation of the ionospheric perturbation with earthquakes and the second is a case study for the Sumatra earthquake in December, 2004, indicating the spatical scale and dynamics of ionospheric perturbation for this earthquake.

  2. Polarization analysis of VLF/ELF waves observed at subauroral latitudes during the VLF-CHAIN campaign

    NASA Astrophysics Data System (ADS)

    Martinez-Calderon, Claudia; Shiokawa, Kazuo; Miyoshi, Yoshizumi; Ozaki, Mitsunori; Schofield, Ian; Connors, Martin

    2015-02-01

    Chorus wave emissions are one of the most intense naturally occurring phenomena in the very low (VLF) and extremely low frequency (ELF) ranges. They are believed to be one of the major contributors to acceleration and loss of electrons in the radiation belts. During the VLF Campaign observation with High-resolution Aurora Imaging Network (VLF-CHAIN) from 17 to 25 February 2012, several types of VLF/ELF emissions, including chorus, were observed at subauroral latitudes in Athabasca, Canada. To our knowledge, there has not been any comprehensive study of the physical properties of such emissions at these latitudes. In this study, we calculate spectral and polarization parameters of VLF/ELF waves with high temporal resolution. We found that the polarization angle of several emissions depended on both frequency and time. We suggest that the frequency-dependent events, which usually last several tens of minutes, might be the consequence of the broadening of the ray path that the waves follow from their generation region to the ground. Furthermore, time-dependent events, also lasting tens of minutes, have a polarization angle that changes from negative to positive values (or vice versa) every few minutes. We suggest that this could be due to variations of the wave duct, either near the generation region or along the wave propagation path. Using another ground station in Fort Vermillion, Canada, about 450 km northwest of Athabasca, we tracked the movements of the ionospheric exit point of three chorus emissions observed simultaneously at both stations. Although we found that movement of the ionospheric exit point does not follow a general direction, it is subject to hovering motion, suggesting that the exit point can be affected by small-scale plasma processes.

  3. The correlation of VLF propagation variations with atmospheric planetary-scale waves

    NASA Technical Reports Server (NTRS)

    Cavalieri, D. J.; Deland, R. J.; Potemra, T. A.; Gavin, R. F.

    1973-01-01

    Variations in the received daytime phase of long distance, cesium-controlled, VLF transmission were compared to the height variations of the 10-mb isobaric surface during the first three months of 1965 and 1969. The VLF phase values are also compared to height variations of constant electron densities in the E-region and to variations of f-min which have been shown to be well correlated with planetary-scale variations in the stratosphere by Deland and Cavalieri (1973). The VLF phase variations show good correlation with these previous ionospheric measurements and with the 10-mb surfaces. The planetary scale waves in the stratosphere are shown to be travelling on the average eastward in 1965 and westward in 1969. These correlations are interpreted as due to the propagation of travelling planetary scale waves with westward tilted wave fronts. Upward energy transport due to the vertical structure of those waves is also discussed. These correlations provide further evidence for the coupling between the lower ionosphere at about 70 km altitude (the daytime VLF reflection height and the stratosphere, and they demonstrate the importance of planetary wave phenomena to VLF propagation.

  4. Propagation of beam-driven VLF waves from the ionosphere toward the ground

    NASA Technical Reports Server (NTRS)

    Schriver, David; Sotnikov, Vladimir I.; Ashour-Abdalla, Maha; Ernstmeyer, James

    1995-01-01

    As part of the Cooperative High Altitude Rocket Gun Experiment (CHARGE-2B) rocket mission, an electron beam was injected into the ionosphere with a modulated beam current in an effort to generate very low frequency (VLF) waves. The propagation of the beam-driven VLF waves through the ionosphere is examined here to determine whether it is possible to detect these wave emissions with ground receivers. The paths of the VLF waves from where they were generated near the rocket were followed to the bottom of the ionosphere and the decrease in wave amplitude due to wave-particle resonance and collisional damping was calculated. It was found that due to collisional damping, which for these VLF waves becomes large at altitudes below about 150 km, wave amplitudes were decreased below the background atmospheric noise level. A number of different beam injection events have been examined and in all of these cases studied the waves were sufficiently damped such that detection on the ground would not be possible. This is in agreement with observations on the ground in which no wave emissions were observed during the CHARGE-2B mission. Control parameters that would be more favorable for beam-generated VLF propagation to the ground are discussed for future experiments of this type.

  5. The VLF Wave and Particle Precipitation Mapper (VPM) Cubesat Payload Suite

    NASA Astrophysics Data System (ADS)

    Inan, U.; Linscott, I.; Marshall, R. A.; Lauben, D.; Starks, M. J.; Doolittle, J. H.

    2012-12-01

    The VLF Wave and Particle Precipitation Mapper (VPM) payload is under development at Stanford University for a Cubesat mission that is planned to fly in low-earth-orbit in 2015. The VPM payload suite includes a 2-meter electric-field dipole antenna; a single-axis magnetic search coil; and a two-channel relativistic electron detector, measuring both trapped and loss-cone electrons. VPM will measure waves and relativistic electrons with the following primary goals: i) develop an improved climatology of plasmaspheric hiss in the L-shell range 1 < L < 3 at all local times; ii) detect VLF waves launched by space-based VLF transmitters, as well as energetic electrons scattered by those in-situ injected waves; iii) develop an improved climatology of lightning-generated whistlers and lightning-induced electron precipitation; iv)measure waves and electron precipitation produced by ground-based VLF transmitters; and v) validate propagation and wave-particle interaction models. In this paper we outline these science objectives of the VPM payload instrument suite, and describe the payload instruments and data products that will meet these science goals.

  6. Very low frequency (VLF) waves as diagnostic tool in remote sensing of D-region Ionosphere

    NASA Astrophysics Data System (ADS)

    Singh, Ashok; Verma, Uday Prakash

    Large currents along the magnetic field transmit stresses between ionosphere and magnetosphere. If the electrons carrying such currents have high enough drift velocity, waves are generated. A wave is a disturbance that propagates through space and time, usually with transference of energy. Waves play major part in the Earth’s ionospheric dynamics. Since both the Earth and the ionosphere are good reflectors at very low frequencies (3 kHz 30 kHz), the lightning radiated impulses commonly known as radio atmospheric or sferics or tweeks travel thousands of kilometers in the Earth Ionosphere Wave Guide (EIWG) with low attenuation of ~ 2-3 dB/1000km. Since vlf waves are reflected by ionosphere, they can be used as potential tool to study the D-region ionosphere which plays a key role in the radio wave propagation. Since the year 2010, vlf waves are continuously being recorded at low latitude ground based Indian station Lucknow (Geomag. Lat. 17.60 N; Geomag. Long. 154.50 E) using Automatic Whistler Detector (AWD). More than 100 tweeks of multimode harmonics (n ≥ 3) observed during the year 2010-2011 are analyzed. Using these multimode tweeks as remote sensing tool to explore D-region ionosphere we have estimated various medium parameters such as electron density, ionospheric reflection height and the propagation distance etc. Electron density in the D-region ionosphere varies from 40-160 cm-3 for various modes, ionospheric reflection height varies in the range 70 - 85 km, and the propagation distance was found to vary from 2 km - 6 km in the waveguide to the receiving site.

  7. Optimization of VLf/ELF Wave Generation using Beam Painting

    NASA Astrophysics Data System (ADS)

    Robinson, A.; Moore, R. C.

    2017-12-01

    A novel optimized beam painting algorithm (OBP) is used to generate high amplitude very low frequency (VLF) and extremely low frequency (ELF) waves in the D-region of the ionosphere above the High-frequency Active Auroral Research Program (HAARP) observatory. The OBP method creates a phased array of sources in the ionosphere by varying the azimuth and zenith angles of the high frequency (HF) transmitter to capitalize on the constructive interference of propagating VLF/ELF waves. OBP generates higher amplitude VLF/ELF signals than any other previously proposed method. From April through June during 2014, OBP was performed at HAARP over 1200 times. We compare the BP generated signals against vertical amplitude modulated transmissions at 50 % duty cycle (V), oblique amplitude modulated transmissions at 15 degrees zenith and 81 degrees azimuth at 50 % duty cycle (O), and geometric (circle-sweep) modulation at 15 degrees off-zenith angle at 1562.5 Hz, 3125 Hz, and 5000 Hz. We present an analysis of the directional dependence of each signal, its polarization, and its dependence on the properties of the different source region elements. We find that BP increases the received signal amplitudes of VLF and ELF waves when compared to V, O, and GM methods over a statistically significant number of trials.

  8. Seasonal variations of mesopause temperature and the amplitude of the VLF signals of the Novosibirsk radio station during 2009-2016

    NASA Astrophysics Data System (ADS)

    Korsakov, Alexey; Kozlov, Vladimir; Ammosova, Anastasia; Ammosov, Petr; Gavrilyeva, Galina; Koltovskoi, Igor; Pavlov, Yegor

    2017-10-01

    Dynamics of seasonal variations of the amplitude of the VLF radio signal received in Yakutsk from the navigation station near Novosibirsk and the P-branches of the OH band (6-2) radiation intensity in the wavelength range 835 - 853 nm are considered. The radiation variations give information about mesopause region measured at the Maimaga station (130 km from Yakutsk). The observation from 2009 to 2016 covers period with minimum and maximum solar activity. The mesopause temperature and the VLF signal increase with increasing solar flux F10.7 in winter. The mesopause temperature seasonal variations and the VLF signal strength for the Novosibirsk-Yakutsk path are regularly inverted from year to year. By decade data averaging the VLF radio signal strength dependence on the temperature of the atmosphere at the OH excitation height can be expressed by a linear function. The coefficient of determination: R2 = 0.59, the anticorrelation coefficient: r10 = - 0.77. The variations of the VLF radio noise and the radio station signal for the eight-year interval are similar to solar activity (F10.7 index). The signal level of the radio station and radio noise registered in the winter is more sensitive to variations of F10.7 index in 24th solar cycle activity.

  9. Programme of Indian Centre for Space Physics using Very Low Frequency Radio Waves

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Sandip Kumar; Sasmal, Sudipta; Pal, Sujay; Kanta Maji, Surya; Ray, Suman

    Indian Centre for Space Physics conducted two major VLF campaigns all over Indian Sub-continent to study the propagation effects of VLF radio waves. It made multi-receiver observations during solar eclipse. ICSP not only recorded multitudes of solar flares, it also reproduced VLF observation from ab initio calculation. ICSP extended its study to the field of earthquake predictions using signal anomalies and using case by case studies as well as statistical analysis, showed that anomalies are real and more studies are required to understand them. Using earth as a gigantic detector, it detected ionospheric perturbations due to soft gamma-ray repeaters and gamma-ray bursts.

  10. New Generation of ELF/VLF Wave Injection Experiments for HAARP

    NASA Astrophysics Data System (ADS)

    Sonwalkar, V. S.; Reddy, A.; Watkins, B. J.

    2016-12-01

    We present a ray tracing study to investigate the feasibility of a new generation of wave injection experiments from HAARP transmitter (L 4.9). Highly successful whistler mode wave injection experiments from SIPLE station, Antarctica, have established the importance of such experiments to study magnetospheric wave-particle interactions, and for cold and hot plasma diagnostics [Helliwell and Katsufrakis, 1974; Carpenter and Miller, 1976; Sonwalkar et al., 1997]. Modulated heating experiments from HAARP have shown that it is possible to launch ELF/VLF waves into the magnetosphere that can be observed on the ground after one-, two-, and multi-hop ducted propagation [Inan et al., 2004]. Recent research has also shown that ionospheric heating experiments using HAARP can lead to the formation of magnetospheric ducts [e.g. Milikh et al., 2010; Fallen et al., 2011]. Collectively, these results indicate that the HAARP (or similar) transmitter can be used first to form ducts on nearby L shells, and then to inject and trap transmitter generated ELF/VLF waves in those ducts. Ray tracing studies using a model magnetosphere shows that ELF/VLF waves in a few kilohertz range can be trapped in ducts with L shells near the HAARP transmitter. For example, 1.5 kHz waves injected from L shell = 4.9 and altitude = 200 km can be trapped in ducts located within 0.3 L of the transmitter L-shell. The duct parameters needed for ray-trapping are typically duct width dL 0.1-0.3 and duct enhancement factor dNe/Ne 10-20% or more. The location of plasmapause with respect to transmitter plays a role in the nature of trapping. The duct locations and parameters required for trapping ELF/VLF waves inside the ducts are consistent with past observations of ducts generated by the HAARP transmitter. Ray tracing calculations provide trapped wave normal angles, time delays, resonant energetic electron energy, estimates of wave intensity inside the duct, on the ground, and on satellites such DEMETER, Van

  11. Trapped electron losses by interactions with coherent VLF waves

    NASA Astrophysics Data System (ADS)

    Walt, M.; Inan, U. S.; Voss, H. D.

    1996-07-01

    VLF whistler waves from lightning enter the magnetosphere and cause the precipitation of energetic trapped electrons by pitch angle scattering. These events, known as Lightning-induced Electron Precipitation (LEP) have been detected by satellite and rocket instruments and by perturbations of VLF waves traveling in the earth-ionosphere waveguide. Detailed comparison of precipitating electron energy spectra and time dependence are in general agreement with calculations of trapped electron interactions with ducted whistler waves. In particular the temporal structure of the precipitation and the dynamic energy spectra of the electrons confirm this interpretation of the phenomena. There are discrepancies between observed and measured electron flux intensities and pitch angle distributions, but these quantities are sensitive to unknown wave intensities and trapped particle fluxes near the loss cone angle. The overall effect of lightning generated VLF waves on the lifetime of trapped electrons is still uncertain. The flux of electrons deflected into the bounce loss cone by a discrete whistler wave has been measured in a few cases. However, the area of the precipitation region is not known, and thus the total number of electrons lost in an LEP event can only be estimated. While the LEP events are dramatic, more important effects on trapped electrons may arise from the small but numerous deflections which increase the pitch angle diffusion rate of the electron population.

  12. Possibility of magnetospheric VLF response to atmospheric infrasonic waves

    NASA Astrophysics Data System (ADS)

    Bespalov, P. A.; Savina, O. N.

    2012-06-01

    In this paper, we consider a model of the influence of atmospheric infrasonic waves on VLF magnetospheric whistler wave excitation. This excitation occurs as a result of a succession of processes: a modulation of the plasma density by acoustic-gravity waves in the ionosphere, a reflection of the whistlers by ionosphere modulation, and a modification of whistler wave generation in the magnetospheric resonator. A variation of the magnetospheric resonator Q-factor has an influence on the operation of the plasma magnetospheric maser, where the active substances are radiation belt particles, and the working modes are electromagnetic whistler waves. The magnetospheric maser is an oscillating system which can be responsible for the excitation of self-oscillations. These self-oscillations are frequently characterized by alternating stages of accumulation and precipitation of energetic particles into the ionosphere during a pulse of whistler emissions. Numerical and analytical investigations of the response of self-oscillations to harmonic oscillations of the whistler reflection coefficient shows that even a small modulation rate can significantly change magnetospheric VLF emissions. Our results can explain the causes of the modulation of energetic electron fluxes and whistler wave intensity with a time scale from 10 to 150 s in the day-side magnetosphere. Such quasi-periodic VLF emissions are often observed in the sub-auroral and auroral magnetosphere and have a noticeable effect on the formation of space weather phenomena.

  13. Nonlinear VLF Wave Physics in the Radiation Belts

    NASA Astrophysics Data System (ADS)

    Crabtree, C. E.; Tejero, E. M.; Ganguli, G.; Mithaiwala, M.; Rudakov, L.; Hospodarsky, G. B.; Kletzing, C.

    2014-12-01

    Electromagnetic VLF waves, such as whistler mode waves, both control the lifetime of trapped electrons in the radiation belts by pitch-angle scattering and are responsible for the energization of electrons during storms. Traditional approaches to understanding the influence of waves on trapped electrons have assumed that the wave characteristics (frequency spectrum, wave-normal angle distribution, etc.) were both stationary in time and amplitude independent from event to event. In situ data from modern satellite missions, such as the Van Allen probes, are showing that this assumption may not be justified. In addition, recent theoretical results [Crabtree et al. 2012] show that the threshold for nonlinear wave scattering can often be met by naturally occurring VLF waves in the magnetosphere, with wave magnetic fields of the order of 50-100 pT inside the plasmapause. Nonlinear wave scattering (Nonlinear Landau Damping) is an amplitude dependent mechanism that can strongly alter VLF wave propagation [Ganguli et al. 2010], primarily by altering the direction of propagation. Laboratory results have confirmed the dramatic change in propagation direction when the pump wave has sufficient amplitude to exceed the nonlinear threshold [Tejero et al. 2014]. Nonlinear scattering can alter the macroscopic dynamics of waves in the radiation belts leading to the formation of a long-lasting wave-cavity [Crabtree et al. 2012] and, when amplification is present, a multi-pass amplifier [Ganguli et al., 2012]. Such nonlinear wave effects can dramatically reduce electron lifetimes. Nonlinear wave dynamics such as these occur when there are more than one wave present, such a condition necessarily violates the assumption of traditional wave-normal analysis [Santolik et al., 2003] which rely on the plane wave assumption. To investigate nonlinear wave dynamics using modern in situ data we apply the maximum entropy method [Skilling and Bryan, 1984] to solve for the wave distribution function

  14. Resonant scattering of energetic electrons in the outer radiation belt by HAARP-induced ELF/VLF waves

    NASA Astrophysics Data System (ADS)

    Chang, Shanshan; Zhu, Zhengping; Ni, Binbin; Cao, Xing; Luo, Weihua

    2016-10-01

    Several extremely low-frequency (ELF)/very low-frequency (VLF) wave generation experiments have been performed successfully at High-Frequency Active Auroral Research Program (HAARP) heating facility and the artificial ELF/VLF signals can leak into the outer radiation belt and contribute to resonant interactions with energetic electrons. Based on the artificial wave properties revealed by many of in situ observations, we implement test particle simulations to evaluate the effects of energetic electron resonant scattering driven by the HAARP-induced ELF/VLF waves. The results indicate that for both single-frequency/monotonic wave and multi-frequency/broadband waves, the behavior of each electron is stochastic while the averaged diffusion effect exhibits temporal linearity in the wave-particle interaction process. The computed local diffusion coefficients show that, the local pitch-angle scattering due to HARRP-induced single-frequency ELF/VLF whistlers with an amplitude of ∼10 pT can be intense near the loss cone with a rate of ∼10-2 rad2 s-1, suggesting the feasibility of HAARP-induced ELF/VLF waves for removal of outer radiation belt energetic electrons. In contrast, the energy diffusion of energetic electrons is relatively weak, which confirms that pitch-angle scattering by artificial ELF/VLF waves can dominantly lead to the precipitation of energetic electrons. Moreover, diffusion rates of the discrete, broadband waves, with the same amplitude of each discrete frequency as the monotonic waves, can be much larger, which suggests that it is feasible to trigger a reasonable broadband wave instead of the monotonic wave to achieve better performance of controlled precipitation of energetic electrons. Moreover, our test particle scattering simulation show good agreement with the predictions of the quasi-linear theory, confirming that both methods are applied to evaluate the effects of resonant interactions between radiation belt electrons and artificially generated

  15. Spectral characteristics of VLF sferics associated with TGFs

    NASA Astrophysics Data System (ADS)

    Mezentsev, Andrew; Lehtinen, Nikolai; Ostgaard, Nikolai; Perez-Invernon, Javier; Cummer, Steven

    2017-04-01

    between the satellite measurements and radio recordings of TGFs. Distances from the analyzed TGF sources to the Duke VLF receiver range from 2000 to 4000 km. This involves the consideration of the propagation effects in the Earth-ionosphere wave guide (EIWG). The EIWG transfer function was calculated for each event using the full wave propagation method. Thus, the modeled energy spectrum of the TGF source current moment can be transformed into how it would look like for the Duke VLF receiver. Comparative analysis of the energy spectra of modeled TGF radio emission and associated VLF sferics for 20 events with WWLLN confirmed location and 15 events without WWLLN detection shows that 31 of these 35 events exhibit a good fit between the modeled and observed spectra, with only 4 exceptions, that look inconsistent with the proposed model. The second cutoff frequency fB with the number of avalanches Np define the shape of the observed energy spectrum of the sferic emitted by a TGF. Multiplicity of the TGF serves as another important discriminative factor that shows the consistency between the modeled and observed spectra. The results show that the number of avalanches Np should be relatively small, of the order of 30-300, to make the modeled TGF radio emission consistent with the observed VLF sferics. These small values of Np give an argument in favor of the leader model of the TGF production, and also might refer to streamers in the streamer zone of the leader tip, as candidates, producing initial seeding pulses that develop into RREAs, generating a TGF. [1]. Mezentsev, A., Østgaard, N., Gjesteland, T., Albrechtsen, K., Lehtinen, N., Marisaldi, M., Smith, D., and Cummer, S. (2016), Radio emissions from double RHESSI TGFs, J. Geophys. Res., 121, doi:10.1002/2016JD025111 [2]. Dwyer, J. R., and S. A. Cummer (2013), Radio emissions from terrestrial gamma ray flashes, J. Geophys. Res., 118, doi:10.1002/jgra.50188.

  16. Terrestrial VLF transmitter injection into the magnetosphere

    NASA Astrophysics Data System (ADS)

    Cohen, M. B.; Inan, U. S.

    2012-08-01

    Very Low Frequency (VLF, 3-30 kHz) radio waves emitted from ground sources (transmitters and lightning) strongly impact the radiation belts, driving electron precipitation via whistler-electron gyroresonance, and contributing to the formation of the slot region. However, calculations of the global impacts of VLF waves are based on models of trans-ionospheric propagation to calculate the VLF energy reaching the magnetosphere. Limited comparisons of these models to individual satellite passes have found that the models may significantly (by >20 dB) overestimate amplitudes of ground based VLF transmitters in the magnetosphere. To form a much more complete empirical picture of VLF transmitter energy reaching the magnetosphere, we present observations of the radiation pattern from a number of ground-based VLF transmitters by averaging six years of data from the DEMETER satellite. We divide the slice at ˜700 km altitude above a transmitter into pixels and calculate the average field for all satellite passes through each pixel. There are enough data to see 25 km features in the radiation pattern, including the modal interference of the subionospheric signal mapped upwards. Using these data, we deduce the first empirical measure of the radiated power into the magnetosphere from these transmitters, for both daytime and nighttime, and at both the overhead and geomagnetically conjugate region. We find no detectable variation of signal intensity with geomagnetic conditions at low and mid latitudes (L < 2.6). We also present evidence of ionospheric heating by one VLF transmitter which modifies the trans-ionospheric absorption of signals from other transmitters passing through the heated region.

  17. VLF Technique and Science in India

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakravarty, S. C.

    2010-10-20

    Since IGY period (1957-58), natural and artificially produced Very Low Frequency (VLF) electromagnetic radiations are being recorded at large number of ground stations and on board satellites to study various wave-plasma interactive phenomena. The terrestrial propagation of these VLF radio waves are primarily enabled through the earth ionosphere wave guide (EIWG) system to long horizontal distances around the globe and ducted along the geomagnetic field lines into the conjugate hemisphere through the ionosphere-plasmasphere-magnetosphere routes. The time frequency spectra indicate presence of dispersion and various cut-off frequencies providing several types of received signals like whistlers, chorus, tweeks, hiss, hisslers etc., whichmore » can be heard on an earphone with distinguishing audio structures. While the VLF technique has been a very effective tool for studying middle and high latitude phenomena, the importance of various anomalous characteristics over the Indian low latitude stations provide potentially new challenges for their scientific interpretation and modelling. The ducted and non-ducted propagation, low latitude TRIMPI/TLE effects, D-region ionisation perturbations due to solar and stellar x- and {gamma} ray emissions and detecting precursors of seismic activities are a few problems which will gain from low latitude studies. Since the conjugate points of Indian stations lie over the Indian oceanic region, the VLF propagation effects would be relatively noise free to observe rare and new phenomena requiring better SNR to detect such changes. The VLF signals emanating from the active seismic zones would require high sensitivity of the system and suitable network of transmitting and receiving stations. Results obtained on whistlers and related studies from a number of Indian stations covering geomagnetic latitude range between 13-24 deg. N are mentioned and reviewed in the background of theoretical understanding of the lightning return stroke

  18. VLF Technique and Science in India

    NASA Astrophysics Data System (ADS)

    Chakravarty, S. C.

    2010-10-01

    Since IGY period (1957-58), natural and artificially produced Very Low Frequency (VLF) electromagnetic radiations are being recorded at large number of ground stations and on board satellites to study various wave-plasma interactive phenomena. The terrestrial propagation of these VLF radio waves are primarily enabled through the earth ionosphere wave guide (EIWG) system to long horizontal distances around the globe and ducted along the geomagnetic field lines into the conjugate hemisphere through the ionosphere-plasmasphere-magnetosphere routes. The time frequency spectra indicate presence of dispersion and various cut-off frequencies providing several types of received signals like whistlers, chorus, tweeks, hiss, hisslers etc., which can be heard on an earphone with distinguishing audio structures. While the VLF technique has been a very effective tool for studying middle and high latitude phenomena, the importance of various anomalous characteristics over the Indian low latitude stations provide potentially new challenges for their scientific interpretation and modelling. The ducted and non-ducted propagation, low latitude TRIMPI/TLE effects, D-region ionisation perturbations due to solar and stellar x- and γ ray emissions and detecting precursors of seismic activities are a few problems which will gain from low latitude studies. Since the conjugate points of Indian stations lie over the Indian oceanic region, the VLF propagation effects would be relatively noise free to observe rare and new phenomena requiring better SNR to detect such changes. The VLF signals emanating from the active seismic zones would require high sensitivity of the system and suitable network of transmitting and receiving stations. Results obtained on whistlers and related studies from a number of Indian stations covering geomagnetic latitude range between 13-24 °N are mentioned and reviewed in the background of theoretical understanding of the lightning return stroke signal elements

  19. Development of ground-based ELF/VLF receiver system in Wuhan and its first results

    NASA Astrophysics Data System (ADS)

    Chen, Yanping; Yang, Guobin; Ni, Binbin; Zhao, Zhengyu; Gu, Xudong; Zhou, Chen; Wang, Feng

    2016-05-01

    A new digital low-frequency receiver system has been developed at Wuhan University for sensitive reception of low-latitude broadband Extremely Low Frequency (ELF) and Very Low Frequency (VLF) radio waves originating from either natural or artificial sources. These low-frequency radio waves are useful for ionospheric remote sensing, geospace environment monitoring, and submarine communications. This paper presents the principle and architecture of the system framework, including magnetic loop antenna design, low-noise analog front-end and digital receiver with data sampling and transmission. A new structure is adopted in the analog front end to provide high common-mode rejection and to reduce interference. On basis of field programmable gate array (FPGA) device and Universal Serial Bus (USB) architecture, the digital receiver is developed along with time keeping and synchronization module. The validity and feasibility of the self-developed ground-based ELF/VLF receiver system is evaluated by first results of experimental data that show the temporal variation of broadband ELF/VLF wave spectral intensity in Wuhan (30.54 °N, 114.37 °E). In addition to the acquisition of VLF transmitter signals at various frequencies, tweek atmospherics are also clearly captured to occur at multiple modes up to n = 6.

  20. D-region Ionospheric Imaging Using VLF/LF Broadband Sferics, Forward Modeling, and Tomography

    NASA Astrophysics Data System (ADS)

    McCormick, J.; Cohen, M.

    2017-12-01

    The D-region of the ionosphere (60-90 km altitude) is highly variable on timescales from fractions of a second to many hours, and on spatial scales from 10 km to many hundreds of km. VLF and LF (3-30kHz, 30-300kHz) radio waves are guided to global distances by reflecting off of the ground and the D-region, making the Earth-ionosphere waveguide (EIWG). Therefore, information about the current state of the ionosphere is encoded in received VLF/LF radio waves since they act like probes of the D-region. The return stroke of lightning is an impulsive event that radiates powerful broadband radio emissions in VLF/LF bands known as `radio atmospherics' or `sferics'. Lightning flashes occur about 40-50 times per second throughout the Earth. An average of 2000 lightning storms occur each day with a mean duration of 30 minutes creating a broad spatial and temporal distribution of lightning VLF/LF sources. With careful processing, we can recover high fidelity measurements of amplitude and phase of both the radial and azimuthal magnetic field sferic components. By comparison to a theoretical EIWG propagation model such as the Long Wave Propagation Capability (LWPC) developed by the US Navy, with a standard forward modeling approach, we can infer information about the current state of the D-region. Typically, the ionosphere is parametrized to reduce the dimensionality of the problem which usually results in an electron density vs altitude profile. For large distances (Greater than 1000 km), these results can be interpreted as path-averaged information. In contrast to studies using navy transmitters to study the D-region, the full spectral information allows for more complete information and less ambiguous inferred ionospheric parameters. With the spatial breadth of lightning sources taken together with a broadly distributed VLF/LF receiver network, a dense set of measurements are acquired in a tomographic sense. Using the wealth of linear algebra and imaging techniques it is

  1. ELF/VLF Wave Generation and Scattering from Modulated Heating of the Ionosphere at Arecibo Observatory

    NASA Astrophysics Data System (ADS)

    Maxworth, A. S.; Golkowski, M.; McCormick, J.; Cohen, M.; Hosseini, P.; Bittle, J.

    2017-12-01

    The recently completed ionospheric heater at Arecibo Observatory is used for modulated HF (5 or 8 MHz) heating of the ionosphere, to generate ELF/VLF (3 Hz - 30 kHz) waves. Observation of ramp and tone signals at frequencies from hundreds of Hz to several kHz at multiple receivers confirms the ability of the heater to modulate D region currents and create an ELF/VLF antenna in the ionosphere. Observed ELF/VLF signal amplitudes are lower than for similar experiments performed at high latitudes at the HAARP and Tromso facilities, for a variety of reasons including the reduced natural currents at mid latitudes, and the lower HF power of the Arecibo heater. The heating of the overhead ionosphere is also observed to change the Earth-ionosphere waveguide propagation characteristics as is evident from simultaneous observations of lightning induced sferics and VLF transmitter signals that propagate under the heated region. The active heating of the ionosphere modifies the reflection of incident VLF (3-30 kHz) waves. We present initial observations of HF heating of the D-region and resulting ELF/VLF wave generation.

  2. VLF waves in the foreshock

    NASA Technical Reports Server (NTRS)

    Strangeway, R. J.; Crawford, G. K.

    1995-01-01

    Plasma waves observed in the VLF range upstream of planetary bow shocks not only modify the particle distributions, but also provide important information about the acceleration processes that occur at the bow shock. Electron plasma oscillations observed near the tangent field line in the electron foreshock are generated by electrons reflected at the bow shock through a process that has been referred to as Fast Fermi acceleration. Fast Fermi acceleration is the same as shock-drift acceleration, which is one of the mechanisms by which ions are energized at the shock. We have generated maps of the VLF emissions upstream of the Venus bow shock, using these maps to infer properties of the shock energization processes. We find that the plasma oscillations extend along the field line up to a distance that appears to be controlled by the shock scale size, implying that shock curvature restricsts the flux and energy of reflected electrons. We also find that the ion acoustic waves are observed in the ion foreshock, but at Venus these emissions are not detected near the ULF forshock boundary. Through analogy with terrestrial ion observations, this implies that the ion acoustic waves are not generated by ion beams, but are instead generated by diffuse ion distributions found deep within the ion foreshock. However, since the shock is much smaller at Venus, and there is no magnetosphere, we might expect ion distributions within the ion foreshock to be different than at the Earth. Mapping studies of the terrestrial foreshock similar to those carried out at Venus appear to be necessary to determine if the inferences drawn from Venus data are applicable to other foreshocks.

  3. ELF/VLF Waves Generated by an Artificially-Modulated Auroral Electrojet Above the HAARP HF Transmitter

    NASA Astrophysics Data System (ADS)

    Moore, R. C.; Inan, U. S.; Bell, T. F.

    2004-12-01

    Naturally-forming, global-scale currents, such as the polar electrojet current and the mid-latitude dynamo, have been used as current sources to generate electromagnetic waves in the Extremely Low Frequency (ELF) and Very Low Frequency (VLF) bands since the 1970's. While many short-duration experiments have been performed, no continuous multi-week campaign data sets have been published providing reliable statistics for ELF/VLF wave generation. In this paper, we summarize the experimental data resulting from multiple ELF/VLF wave generation campaigns conducted at the High-frequency Active Auroral Research Project (HAARP) HF transmitter in Gakona, Alaska. For one 14-day period in March, 2002, and one 24-day period in November, 2002, the HAARP HF transmitter broadcast ELF/VLF wave generation sequences for 10 hours per day, between 0400 and 1400 UT. Five different modulation frequencies broadcast separately using two HF carrier frequencies are examined at receivers located 36, 44, 147, and 155 km from the HAARP facility. Additionally, a continuous 24-hour transmission period is analyzed to compare day-time wave generation to night-time wave generation. Lastly, a power-ramping scheme was employed to investigate possible thresholding effects at the wave-generating altitude. Wave generation statistics are presented along with source-region property calculations performed using a simple model.

  4. Seasonal dynamics of VLF signals amplitude Novosibirsk radio station and mesopause region temperature in 2009-2015

    NASA Astrophysics Data System (ADS)

    Kozlov, V. I.; Korsakov, A. A.; Ammosov, P. P.; Ammosova, A. M.; Gavrilyeva, G. A.; Koltovskoi, I. I.

    2017-11-01

    Dynamics of seasonal variations in the amplitude of the VLF radio signal received in Yakutsk from the navigation station near Novosibirsk and the radiation intensity in the wavelength range from 835 to 853 nm, where the P-branches of the OH band (6-2) are located, is present. The radiation variations give information about mesopause region measured at the Maimaga station (130 km from Yakutsk). Observation period from 2009 to 2015 covers period with minimum and maximum solar activity (solar flux F10.7). In the seasonal dynamics of the VLF amplitude signals and the mesopause temperature are observed annual, semiannual and third-annual variations, increasing during nighttime for VLF signals. The mesopause temperature and the VLF signal increase with increasing solar flux F10.7 in winter.

  5. Results of Computing Amplitude and Phase of the VLF Wave Using Wave Hop Theory

    NASA Astrophysics Data System (ADS)

    Pal, Sujay; Basak, Tamal; Chakrabarti, Sandip K.

    2011-07-01

    We present the basics of the wave hop theory to compute the amplitude and phase of the VLF signals. We use the Indian Navy VTX transmitter at 18.2 kHz as an example of the source and compute the VLF propagation characteristics for several propagation paths using the wave-hop theory. We find the signal amplitudes as a function of distance from the transmitter using wave hop theory in different bearing angles and compare with the same obtained from the Long Wave Propagation Capability (LWPC) code which uses the mode theory. We repeat a similar exercise for the diurnal and seasonal behavior. We note that the signal variation by wave hop theory gives more detailed information in the day time. We further present the spatial variation of the signal amplitude over whole of India at a given time including the effect of sunrise and sunset terminator and also compare the same with that from the mode theory. We point out that the terminator effect is clearly understood in wave hop results than that from the mode theory.

  6. Investigation of ELF/VLF waves created by a "beat-wave" HF ionospheric heating at high latitudes

    NASA Astrophysics Data System (ADS)

    Shumilov, Oleg; Tereshchenko, Evgeniy; Kasatkina, Elena; Gomonov, Alexandr

    2015-04-01

    The generation of extremely low frequency (ELF, 3-3000 Hz) and very low frequency (VLF, 3-30 kHz) electromagnetic waves by modulated ionospheric high frequency (HF, 2-30 MHz) heating is one of the main directions of ionospheric modification experiments. In this work, we present observations of ELF waves generated during a "beat-wave" heating experiments at the EISCAT heating facility. ELF waves were registered with the ELF receiver located at Lovozero (68 N, 35 E), 660 km east from the EISCAT Tromso heating facility (69.6 N, 19.2 E). Frequency shifts between the generated beat-wave and received ELF waves were detected in all sessions. It is shown that the amplitudes of ELF waves depend on the auroral electrojet current strength. Our results showing a strong dependence of ELF signal intensities on the substorm development seem to support the conclusion that electrojet currents may affect the BW generation of ELF/VLF waves.

  7. Possibility of Earthquake-prediction by analyzing VLF signals

    NASA Astrophysics Data System (ADS)

    Ray, Suman; Chakrabarti, Sandip Kumar; Sasmal, Sudipta

    2016-07-01

    Prediction of seismic events is one of the most challenging jobs for the scientific community. Conventional ways for prediction of earthquakes are to monitor crustal structure movements, though this method has not yet yield satisfactory results. Furthermore, this method fails to give any short-term prediction. Recently, it is noticed that prior to any seismic event a huge amount of energy is released which may create disturbances in the lower part of D-layer/E-layer of the ionosphere. This ionospheric disturbance may be used as a precursor of earthquakes. Since VLF radio waves propagate inside the wave-guide formed by lower ionosphere and Earth's surface, this signal may be used to identify ionospheric disturbances due to seismic activity. We have analyzed VLF signals to find out the correlations, if any, between the VLF signal anomalies and seismic activities. We have done both the case by case study and also the statistical analysis using a whole year data. In both the methods we found that the night time amplitude of VLF signals fluctuated anomalously three days before the seismic events. Also we found that the terminator time of the VLF signals shifted anomalously towards night time before few days of any major seismic events. We calculate the D-layer preparation time and D-layer disappearance time from the VLF signals. We have observed that this D-layer preparation time and D-layer disappearance time become anomalously high 1-2 days before seismic events. Also we found some strong evidences which indicate that it may possible to predict the location of epicenters of earthquakes in future by analyzing VLF signals for multiple propagation paths.

  8. VLF wave injections from the ground

    NASA Technical Reports Server (NTRS)

    Helliwell, R. A.

    1983-01-01

    Experiments on wave-particle interactions using VLF whistler-mode waves injected into the magnetosphere from Antartica are described. The injected signals are single-frequency coherent waves whose amplitudes and frequencies may be changed slowly with time, or else two or more coherent wave trains transmitted simultaneously to determine the nature of the response to multifrequency excitation. The waves may be amplified 30 dB or more and may trigger intense emissions having bandwidths that vary from a few to several hundred Hertz. In most cases significant growth and triggering occur only when the driving signal is essentially monochromatic (bandwidth 10 Hz). If two frequencies are transmitted simultaneously the signal at the lower frequency tends to be suppressed by 20 dB or more. These results are interpreted in terms of a feedback interaction between the waves and counter-streaming cyclotron resonant electrons in a region several hundred wavelengths long, centered on the magnetic equator.

  9. Perturbations of ionosphere-magnetosphere coupling by powerful VLF emissions from ground-based transmitters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belov, A. S., E-mail: alexis-belov@yandex.ru; Markov, G. A.; Ryabov, A. O.

    The characteristics of the plasma-wave disturbances stimulated in the near-Earth plasma by powerful VLF radiation from ground-based transmitters are investigated. Radio communication VLF transmitters of about 1 MW in power are shown to produce artificial plasma-wave channels (density ducts) in the near-Earth space that originate in the lower ionosphere above the disturbing emission source and extend through the entire ionosphere and magnetosphere of the Earth along the magnetic field lines. Measurements with the onboard equipment of the DEMETER satellite have revealed that under the action of emission from the NWC transmitter, which is one of the most powerful VLF radiomore » transmitters, the generation of quasi-electrostatic (plasma) waves is observed on most of the satellite trajectory along the disturbed magnetic flux tube. This may probably be indicative of stimulated emission of a magnetospheric maser.« less

  10. Ionospheric modification by radio waves: An overview and novel applications

    NASA Astrophysics Data System (ADS)

    Kosch, M. J.

    2008-12-01

    High-power high-frequency radio waves, when beamed into the Earth's ionosphere, can heat the plasma by particle collisions in the D-layer or generate wave-plasma resonances in the F-layer. These basic phenomena have been used in many research applications. In the D-layer, ionospheric currents can be modulated through conductance modification to produce artificial ULF and VLF waves, which propagate allowing magnetospheric research. In the mesopause, PMSE can be modified allowing dusty plasma research. In the F-layer, wave-plasma interactions generate a variety of artificially stimulated phenomena, such as (1) magnetic field-aligned plasma irregularities linked to anomalous radio wave absorption, (2) stimulated electromagnetic emissions linked to upper-hybrid resonance, (3) optical emissions linked to electron acceleration and collisions with neutrals, and (4) Langmuir turbulence linked to enhanced radar backscatter. These phenomena are reviewed. In addition, some novel applications of ionospheric heaters will be presented, including HF radar sounding of the magnetosphere, the production of E-region optical emissions, and measurements of D-region electron temperature for controlled PMSE research.

  11. Radio Wave Propagation: A Handbook of Practical Techniques for Computing Basic Transmission Loss and Field Strength

    DTIC Science & Technology

    1982-09-01

    MARK A. WEISSBEGU KALLE R. XONTSON Project Msnaqer, IUTRZ Assistant Director Contractor Operations Approved by CRARLES L. FLYNN, 001, us A. M. MESSE...34 BSTJ, 1946. 2-4priis, H.T., "Introduction to Radio and Antennas," IEEE Spectrum, April, 1971 . RADIO WAVE PROPAGATION: A HANDBOOK OF PRACTICAL...Propagation Tests, TR-0177-71.01, Gautney & Jones Communications, Inc., Falls Church, VA, June 1971 . 3 -7 Comparison of Predicted VLF/LF Signal

  12. Characteristics of VLF wave propagation in the Earth's magnetosphere in the presence of an artificial density duct

    NASA Astrophysics Data System (ADS)

    Pasmanik, Dmitry; Demekhov, Andrei

    We study the propagation of VLF waves in the Earth's ionosphere and magnetosphere in the presence of large-scale artificial plasma inhomogeneities which can be created by HF heating facilities like HAARP and ``Sura''. A region with enhanced cold plasma density can be formed due to the action of HF heating. This region is extended along geomagnetic field (up to altitudes of several thousand km) and has rather small size across magnetic field (about 1 degree). The geometric-optical approximation is used to study wave propagation. The plasma density and ion composition are calculated with the use of SAMI2 model, which was modified to take the effect of HF heating into account. We calculate ray trajectories of waves with different initial frequency and wave-normal angles and originating at altitudes of about 100 km in the region near the heating area. The source of such waves could be the lightning discharges, modulated HF heating of the ionosphere, or VLF transmitters. Variation of the wave amplitude along the ray trajectories due to refraction is considered and spatial distribution of wave intensity in the magnetosphere is analyzed. We show that the presence of such a density disturbances can lead to significant changes of wave propagation trajectories, in particular, to efficient guiding of VLF waves in this region. This can result in a drastic increase of the VLF-wave intensity in the density duct. The dependence of wave propagation properties on parameters of heating facility operation regime is considered. We study the variation of the spatial distribution of VLF wave intensity related to the slow evolution of the artificial inhomogeneity during the heating.

  13. High Power Radio Wave Interactions within the D-Region Ionosphere

    NASA Astrophysics Data System (ADS)

    Moore, R. C.

    2014-12-01

    This paper highlights the best results obtained during D-region modification experiments performed by the University of Florida at the High-frequency Active Auroral Research Program (HAARP) observatory between 2007 and 2014. Over this period, we have seen a tremendous improvement in ELF/VLF wave generation efficiency. We have identified methods to characterize ambient and modified ionospheric properties and to discern and quantify specific types of interactions. We have demonstrated several important implications of HF cross-modulation effects, including "Doppler Spoofing" on HF radio waves. Throughout this talk, observations are compared with the predictions of an ionospheric HF heating model to provide context and guidance for future D-region modification experiments.

  14. Study of the solar flares effect on VLF radio signal propagating along NRK-ALG path using LWPC code

    NASA Astrophysics Data System (ADS)

    Bouderba, Y.; NaitAmor, S.; Tribeche, M.

    2016-07-01

    The X-ray solar flare emissions penetrate down into the D region of the ionosphere (60-90 km of altitude) and affect the propagating very low frequency (VLF) radio signal. In this paper, we will present the effect of the solar flares on the signal mode composition of the NRK-ALG path during the period from 2007 to 2013. In the Long Wave Propagating Capability (LWPC) code theory, the VLF signal is a sum of discrete modes that propagate to the receiver with different attenuation coefficients. Therefore, an interest is given to the behavior of these coefficients under solar flares. Effectively, from the simulation, we give more explanations about the role of the signal mode composition on the fading displacement since this later is a consequence of the destructive modes interferences. Thus, the sign (positive or negative) of the perturbed signal parameters (amplitude and phase) is found to be depending on the distance between the transmitter and the receiver. Finally, we give the Wait parameters and the electron density variations as a function of solar flares.

  15. Study of long term effect of Solar UV and X-ray radiation on the VLF signals

    NASA Astrophysics Data System (ADS)

    Ray, Suman; Chakrabarti, Sandip Kumar; Sanki, Dipak

    2016-07-01

    Very Low Frequency (VLF) is one of the bands of Radio waves having frequencies lying between 3-30 KHz, with wavelengths 100-10 Km. It propagates through the Earth-ionosphere wave-guide which is formed by lower part of the ionosphere and upper part of Earth's surface. Ionosphere is the ionized component of upper atmosphere. In the present work, we have studied the long term effect of the high energy solar UV and X-ray radiation on the VLF signals. We have analyzed the VLF signal transmitted at 24 KHz from NAA (Cutler, Maine) and received at Moore Observatory in Brownsboro, Kentucky. Also we have collected X-ray and UV data to study the long term effect of UV and X-ray radiation on the VLF signal. We have analyzed the VLF signal for 2007 to 2015. We calculate the average diurnal peak amplitude of the VLF signal for each day and compare it with the UV and X-ray solar radiation. We found that the correlation coefficient of diurnal peak VLF signal amplitude with both solar X-ray and UV radiation is 0.7 indicating a strong correlation between these two phenomena.

  16. Study of the effect of solar flares on VLF signals during D-layer preparation or disappearance time

    NASA Astrophysics Data System (ADS)

    Ray, Suman; Chakrabarti, Sandip Kumar; Palit, Sourav

    2016-07-01

    "Very Low Frequency" (VLF) is one of the bands of the Radio waves having frequency 3-30 KHz, which propagates through the Earth-ionosphere wave-guide. In relation to propagation of radio waves through ionosphere, low mass and high mobility cause electrons to play a vital role. Electrons are not distributed uniformly in the ionosphere and depending on this factor, ionosphere has different layers namely D, E and F. Different ionospheric layers generally exist during day and night time. During day-time when the main source of the ionization of the ionosphere is Sun, the lower most layer of ionosphere is D-layer. But during the night-time when Sun is absent and cosmic ray is the main source of the ionization of the ionosphere, this D-layer disappears and E-layer becomes the lower most region of the ionosphere. Normally, patterns of VLF signal depend on regular solar flux variations. However, during solar flares extra energetic particles are released from Sun, which makes the changes in the ionization of the ionosphere and these changes can perturb VLF signal amplitude. Usually if a solar flare occurs during any time of day, it only affects the amplitude and phase of the VLF signals. But in the present work, we found the if the flare occurs during D-layer preparation / disappearance time, then it will not only affect to amplitude and phase of the VLF signals but also to terminator times of VLF signals. We have observed that the sun set terminator time of the VLF signals shifted towards night time due to the effect of a M-class solar flare which occurred during the D-layer disappearance time. The shift is so high that it crossed 5σ level. We are now trying to a make model using the ion-chemistry and LWPC code to explain this observed effect.

  17. 100 Days of ELF/VLF Generation via HF Heating with HAARP (Invited)

    NASA Astrophysics Data System (ADS)

    Cohen, M.; Golkowski, M.

    2013-12-01

    ELF/VLF radio waves are difficult to generate with conventional antennas. Ionospheric HF heating facilities generate ELF/VLF waves via modulated heating of the lower ionosphere. HF heating of the ionosphere changes the lower ionospheric conductivity, which in the presence of natural currents such as the auroral electrojet, creates an antenna in the sky when heating is modulated at ELF/VLF frequencies. We present a summary of nearly 100 days of ELF/VLF wave generation experiments at the 3.6 MW HAARP facility near Gakona, Alaska, and provide a baseline reference of ELF/VLF generation capabilities with HF heating. Between February 2007 and August 2008, HAARP was operated on close to 100 days for ELF/VLF wave generation experiments, at a variety of ELF/VLF frequencies, seasons and times of day. We present comprehensive statistics of generated ELF/VLF magnetic fields observed at a nearby site, in the 500-3500 Hz band. Transmissions with a specific HF beam configuration (3.25 MHz, vertical beam, amplitude modulation) are isolated so the data comparison is self-consistent, across nearly 5 million individual measurements of either a tone or a piece of a frequency-time ramp. There is a minimum in the average generation close to local midnight. It is found that generation during local nighttime is on average weaker, but more highly variable, with a small number of very strong generation periods. Signal amplitudes from day to day may vary by as much as 20-30 dB. Generation strengthens by ~5 dB during the first ~30 minutes of transmission, which may be a signature of slow electron density changes from sustained HF heating. Theoretical calculations are made to relate the amplitude observed to the power injected into the waveguide and reaching 250 km. The median power generated by HAARP and injected into the waveguide is ~0.05-0.1 W in this base-line configuration (vertical beam, 3.25 MHz, amplitude modulation), but may have generated hundreds of Watts for brief durations

  18. Ground-based ELF/VLF chorus observations at subauroral latitudes—VLF-CHAIN Campaign

    NASA Astrophysics Data System (ADS)

    Shiokawa, Kazuo; Yokoyama, Yu; Ieda, Akimasa; Miyoshi, Yoshizumi; Nomura, Reiko; Lee, Sungeun; Sunagawa, Naoki; Miyashita, Yukinaga; Ozaki, Mitsunori; Ishizaka, Kazumasa; Yagitani, Satoshi; Kataoka, Ryuho; Tsuchiya, Fuminori; Schofield, Ian; Connors, Martin

    2014-09-01

    We report observations of very low frequency (VLF) and extremely low frequency (ELF) chorus waves taken during the ELF/VLF Campaign observation with High-resolution Aurora Imaging Network (VLF-CHAIN) of 17-25 February 2012 at subauroral latitudes at Athabasca (L=4.3), Canada. ELF/VLF waves were measured continuously with a sampling rate of 100 kHz to monitor daily variations in ELF/VLF emissions and derive their detailed structures. We found quasiperiodic (QP) emissions whose repetition period changes rapidly within a period of 1 h without corresponding magnetic pulsations. QP emissions showed positive correlation between amplitude and frequency sweep rate, similarly to rising-tone elements. We found an event of nearly simultaneous enhancements of QP emissions and Pc1/electromagnetic ion cyclotron wave intensities, suggesting that the temperature anisotropy of electrons and ions developed simultaneously at the equatorial plane of the magnetosphere. We also found QP emissions whose intensity suddenly increased in association with storm sudden commencement without changing their frequency. Falling-tone ELF/VLF emissions were observed with their rate of frequency change varying from 0.7 to 0.05 kHz/s over 10 min. Bursty-patch emissions in the lower and upper frequency bands are often observed during magnetically disturbed periods. Clear systematic correlation between these various ELF/VLF emissions and cosmic noise absorption was not obtained throughout the campaign period. These observations indicate several previously unknown features of ELF/VLF emissions in subauroral latitudes and demonstrate the importance of continuous measurements for monitoring temporal variations in these emissions.

  19. Unusually high frequency natural VLF radio emissions observed during daytime in Northern Finland

    NASA Astrophysics Data System (ADS)

    Manninen, Jyrki; Turunen, Tauno; Kleimenova, Natalia; Rycroft, Michael; Gromova, Liudmila; Sirviö, Iina

    2016-12-01

    Geomagnetic field variations and electromagnetic waves of different frequencies are ever present in the Earth’s environment in which the Earth’s fauna and flora have evolved and live. These waves are a very useful tool for studying and exploring the physics of plasma processes occurring in the magnetosphere and ionosphere. Here we present ground-based observations of natural electromagnetic emissions of magnetospheric origin at very low frequency (VLF, 3-30 kHz), which are neither heard nor seen in their spectrograms because they are hidden by strong impulsive signals (sferics) originating in lightning discharges. After filtering out the sferics, peculiar emissions are revealed in these digital recordings, made in Northern Finland, at unusually high frequencies in the VLF band. These recently revealed emissions, which are observed for several hours almost every day in winter, contain short (˜1-3 min) burst-like structures at frequencies above 4-6 kHz, even up to 15 kHz; fine structure on the 1 s time scale is also prevalent. It seems that these whistler mode emissions are generated deep inside the magnetosphere, but the detailed nature, generation region and propagation behaviour of these newly discovered high latitude VLF emissions remain unknown; however, further research on them may shed new light on wave-particle interactions occurring in the Earth’s radiation belts.

  20. Nonlinear wave-wave interactions in the subauroral ionosphere on the basis of ISIS-2 satellite observations of Siple station VLF signals

    NASA Technical Reports Server (NTRS)

    Ohnami, S.; Hayakawa, M.; Bell, T. F.; Ondoh, T.

    1993-01-01

    Nonlinear wave-wave interaction between signals from a ground-based VLF transmitter and narrow-band ELF emissions in the subauroral ionosphere is studied by means of the bispectrum and bicoherence analysis. A bicoherence analysis has indicated that the sideband structures around the Siple transmitter signal received onboard the ISIS satellite are due to the nonlinear interaction between the Siple VLF signal and the pre-existing ELF emission.

  1. Sunsat-2004 satellite and synoptic VLF payload

    NASA Astrophysics Data System (ADS)

    Milne, Gw; Hughes, A.; Mostert, S.; Steyn, Wh

    Sunsat 2004 is a second satellite from the University of Stellenbosch, with intended suns-synchronous launch in late 2005. The first satellite, Sunsat, was launched in February 1999, and was Africa's first satellite The three-axis stabilised bus will normally point its main solar panel at the sun, but will rotate for imaging. The attitude determination and control system will use coarse sun sensors, magnetometers, rate gyros, and a star mapper, and use reaction wheels and torquer rods for actuation. The payloads include a multispectral pushbroom imager with less than 5m GSD, TV cameras, an Amateur Radio communications payload, and science experiments. The main South African science experiment is a VLF receiver. In the magnetosphere VLF waves play an important role in energy exchange processes with energetic particles. The wave-particle interactions can lead to particle precipitation into the atmosphere or introduce additional energy into particle populations in the magnetosphere. The former is important due to its effect on terrestrial communications while the latter is of interest, as it affects the environment in which satellites operate. A full understanding, of the magnetosphere and phenomena such as the aurora, airglow and particle precipitation, depends on comprehensive wave and particle models together with models of the background plasma density The energetic particle populations and background plasma densities have been extensively modelled using data from a large number of satellite, rocket and ground-based experiments but no comprehensive model of the wave environment exist. The proposed synoptic VLF experiment will start to address this need by locating and tracking the morphology of regions in the magnetosphere where waves are generated. The experiment would consist of a nine channel VLF receiver with a loop antenna. The data would be recorded on board and transmitted to ground stations at appropriate times. A number of additional science payloads are

  2. Rocket investigations of electron precipitation and VLF waves in the Antarctic upper atmosphere

    NASA Technical Reports Server (NTRS)

    Sheldon, W. R.; Benbrook, J. R.; Bering, E. A.

    1988-01-01

    The results of two Antarctic rocket campaigns, primarily initiated to investigate electron precipitation stimulated by signals from the Siple-Station ground-based VLF transmitter, are presented. While the primary objective of the campaigns was not achieved, the Siple VLF transmitter facilitated a study of the wave environment in the ionosphere. Standing wave patterns in the ionosphere were observed for the first time by detectors flown aboard the Nike-Tomahawk rockets; the same detectors monitored a continuous signal from the transmitter through the neutral atmosphere and into the ionosphere, providing unique data for comparison with theoretical studies of wave propagation. The measurements of penetrating electron precipitation were interpreted in terms of a model of energetic electron precipitation from the trapped radiational belts.

  3. Transionospheric Propagation of VLF Transmitter Signals

    NASA Astrophysics Data System (ADS)

    Cohen, M.; Inan, U. S.; Lehtinen, N. G.

    2012-12-01

    Ground based Very Low Frequency (VLF, 3-30 kHz) radio transmitters may play a significant role in precipitation of inner belt (L<2.5) energetic Van Allen electrons. Initial analyses of the total contribution of VLF transmitters utilized models of transionospheric propagation, but some recent studies have suggested that those models may overestimate (by 20-100 dB) the VLF energy reaching the magnetosphere. One possible cause of this discrepancy was suggested to be conversion of wave energy into electrostatic modes in the D, E, and F regions, from ionospheric density irregularities, either natural or generated by the transmitter heating itself. The DEMETER satellite built a six year history of continuous and global survey mode data which, when combined, yields detailed pictures of the radiation pattern from many transmitters into space at 680 km, with 25 km resolution, and clear features like the interference pattern on the ground mapped upwards. With both E and B survey mode data, we can also directly approximate the total power injected into the magnetosphere from each transmitter, separately for day and night, as well as the power arriving at the conjugate region. We find no detectable variation of signal intensity with geomagnetic conditions. We find evidence of transmitter heating affecting the transionospheric propagation of other transmitters. We find that the power reaching the conjugate region is a large fraction of the power injected above the transmitter. We then employ a full wave model to simulate VLF transmitter transionospheric propagation, calculating the electromagnetic fields and power flux injected into the magnetosphere. Although the model does not include ionospheric irregularities, the radiation pattern largely matches the observed one, and the total power calculated is within 6 dB of observations for every transmitter, both day and night, and across a range of low to middle latitudes and transmitter powers. We thus conclude that the effect of

  4. Building and Testing a Portable VLF Receiver

    NASA Technical Reports Server (NTRS)

    McLaughlin, Robert; Krause, L.

    2014-01-01

    Unwanted emissions or signal noise is a major problem for VLF radio receivers. These can occur from man made sources such as power line hum, which can be prevalent for many harmonics after the fundamental 50 or 60 Hz AC source or from VLF radio transmissions such as LORAN, used for navigation and communications. Natural emissions can also be detrimental to the quality of recordings as some of the more interesting natural emissions such as whistlers or auroral chorus may be drowned out by the more common sferic emissions. VLF receivers must selectively filter out unwanted emissions and amplify the filtered signal to a record-able level without degrading the quality.

  5. Parametric excitation of very low frequency (VLF) electromagnetic whistler waves and interaction with energetic electrons in radiation belt

    NASA Astrophysics Data System (ADS)

    Sotnikov, V.; Kim, T.; Caplinger, J.; Main, D.; Mishin, E.; Gershenzon, N.; Genoni, T.; Paraschiv, I.; Rose, D.

    2018-04-01

    The concept of a parametric antenna in ionospheric plasma is analyzed. Such antennas are capable of exciting electromagnetic radiation fields, specifically the creation of whistler waves generated at the very low frequency (VLF) range, which are also capable of propagating large distances away from the source region. The mechanism of whistler wave generation is considered a parametric interaction of quasi-electrostatic whistler waves (also known as low oblique resonance (LOR) oscillations) excited by a conventional loop antenna. The interaction of LOR waves with quasi-neutral density perturbations in the near field of an antenna gives rise to electromagnetic whistler waves on combination frequencies. It is shown in this work that the amplitude of these waves can considerably exceed the amplitude of whistler waves directly excited by a loop. Additionally, particle-in-cell simulations, which demonstrate the excitation and spatial structure of VLF waves excited by a loop antenna, are presented. Possible applications including the wave-particle interactions to mitigate performance anomalies of low Earth orbit satellites, active space experiments, communication via VLF waves, and modification experiments in the ionosphere will be discussed.

  6. VLF Transmitter Signal Power Loss to Quasi-Electrostatic Whistler Mode Waves in Regions Containing Plasma Density Irregularities

    NASA Astrophysics Data System (ADS)

    Bell, T. F.; Foust, F.; Inan, U. S.; Lehtinen, N. G.

    2010-12-01

    The energetic particles comprising the Earth’s radiation belts are an important component of Space Weather. The commonly accepted model of the quasi-steady radiation belts developed by Abel and Thorne [1998] proposes that VLF signals from powerful ground based transmitters determine the lifetimes of energetic radiation belt electrons (100 keV-1.5 MeV) on L shells in the range 1.3-2.8. The primary mechanism of interaction is pitch angle scattering during gyro-resonance. Recent observations [Starks et al., 2008] from multiple spacecraft suggest that the actual night time intensity of VLF transmitter signals in the radiation belts is approximately 20 dB below the level assumed in the Abel and Thorne model and approximately 10 dB below model values during the day. In this work we discuss one mechanism which might be responsible for a large portion of this intensity discrepancy. The mechanism is linear mode coupling between electromagnetic whistler mode waves and quasi-electrostatic whistler mode waves. As VLF electromagnetic whistler mode waves propagate through regions containing small scale (2-100 m) magnetic-field-aligned plasma density irregularities, they excite quasi-electrostatic whistler mode waves, and this excitation represents a power loss for the input waves. We construct plausible models of the irregularities in order to use numerical simulations to determine the characteristics of the mode coupling mechanism and the conditions under which the input VLF waves can lose significant power to the excited quasi-electrostatic whistler mode waves.

  7. Training School Pupils in the Scientific Method: Student Participation in an International VLF Radio Experiment

    ERIC Educational Resources Information Center

    Denton, J. J.; Denton, M. H.; Kavanagh, A. J.; Harron, H.; Ulich, T.; Denton, J. S.

    2012-01-01

    We report on a school-university collaboration to involve students in the deployment, testing, and operation of a very low frequency (VLF) radio receiver as part of an international network of such experiments. A background to the collaboration is presented, along with a summary of planning and development, and the ultimate deployment of the…

  8. The development of the International Network for Frontier Research on Earthquake Precursors (INFREP) by designing new analysing software and by setting up new recording locations of radio VLF/LF signals in Romania

    NASA Astrophysics Data System (ADS)

    Moldovan, Iren-Adelina; Petruta Constantin, Angela; Emilian Toader, Victorin; Toma-Danila, Dragos; Biagi, Pier Francesco; Maggipinto, Tommaso; Dolea, Paul; Septimiu Moldovan, Adrian

    2014-05-01

    Based on scientific evidences supporting the causality between earthquake preparatory stages, space weather and solar activity and different types of electromagnetic (EM) disturbances together with the benefit of having full access at ground and space based EM data, INFREP proposes a complex and cross correlated investigation of phenomena that occur in the coupled system Lithosphere-Atmosphere-Ionsophere in order to identify possible causes responsible for anomalous effects observed in the propagation characteristics of radio waves, especially at low (LF) and very low frequency (VLF). INFREP, a network of VLF (20-60 kHz) and LF (150-300 kHz) radio receivers, was put into operation in Europe in 2009, having as principal goal, the study of disturbances produced by the earthquakes on the propagation properties of these signals. The Romanian NIEP VLF / LF monitoring system consisting in a radio receiver -made by Elettronika S.R.L. (Italy) and provided by the Bari University- and the infrastructure that is necessary to record and transmit the collected data, is a part of the international initiative INFREP. The NIEP VLF / LF receiver installed in Romania was put into operation in February 2009 in Bucharest and relocated to the Black-Sea shore (Dobruja Seismologic Observatory) in December 2009. The first development of the Romanian EM monitoring system was needed because after changing the receiving site from Bucharest to Eforie we obtained unsatisfactory monitoring data, characterized by large fluctuations of the received signals' intensities. Trying to understand this behavior has led to the conclusion that the electric component of the electromagnetic field was possibly influenced by the local conditions. Starting from this observation we have run some tests and changed the vertical antenna with a loop-type antenna that is more appropriate in highly electric-field polluted environments. Since the amount of recorded data is huge, for streamlining the research process

  9. The spatial distribution of VLF transmitters at topside ionosphere and the VLF-induced heating phenomena

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Zhao, S.; Zhou, C.

    2016-12-01

    Based on the electric field observation at VLF frequency band onboard DEMETER satellite, the spatial distribution was studied about some VLF transmitters at different latitudes on ground, as while the maximal intensity, the attenuation rate and affected areas, including NWC and GBZ with high power, and some transmitters with low radiated power. As while the full wave propagation model is used to simulate the theoretical results at topside ionosphere. The results show that, (1) the intensity of electromagnetic waves at topside ionosphere with 1000kW radiated power is higher as one or two orders of magnitude than those with 500 kW power; (2) at same station, the amplitudes in electric field are larger with high frequency signals than those lower ones at the same station; (3) at same frequency points, the ionospheric background affected strongly the waves penetrating into the ionosphere, for the intensity of same frequency signals differed apparently at different transmitters. Due to the high energy of VLF transmitters, the heating phenomena were also observed extensively at DEMETER satellite. Here the VLF-induced ionospheric heating perturbations were selected and analyzed during the solar minimum years of 2008-2009. There are three main features in VLF heating, (1) the temperature of electron and ion increased, while the electron density and O+ density at topside ionosphere decreased; (2) the low hybrid waves were excited at 10-20kHz; (3) the plasma frequency was emitted at some points around 1.92MHz; (4) the VLF induced heating phenomena were associated closely with the radiated power of transmitters, while the transmitters with power <500kW are hard to cause the ionospheric disturbances directly. Considering the propagation and heating process of VLF electromagnetic wave, these features above were discussed and compared with HF heating processes. By learning for the man-made signals propagating from ground into ionosphere, it is helpful to further understand the

  10. VLF wave growth and discrete emission triggering in the magnetosphere - A feedback model

    NASA Technical Reports Server (NTRS)

    Helliwell, R. A.; Inan, U. S.

    1982-01-01

    A simple nonlinear feedback model is presented to explain VLF wave growth and emission triggering observed in VLF transmission experiments. The model is formulated in terms of the interaction of electrons with a slowly varying wave in an inhomogeneous medium as in an unstable feedback amplifier with a delay line; constant frequency oscillations are generated on the magnetic equator, while risers and fallers are generated on the downstream and upstream sides of the equator, respectively. Quantitative expressions are obtained for the stimulated radiation produced by energy exchanged between energetic electrons and waves by Doppler-shifted cyclotron resonance, and feedback between the stimulated radiation and the phase bunched currents is incorporated in terms of a two-port discrete time model. The resulting model is capable of explaining the observed temporal growth and saturation effects, phase advance, retardation or frequency shift during growth in the context of a single parameter depending on the energetic particle distribution function, as well as pretermination triggering.

  11. Looking for radio waves with a simple radio wave detector

    NASA Astrophysics Data System (ADS)

    Sugimoto (Stray Cats), Norihiro

    2011-11-01

    I created a simple device that can detect radio waves in a classroom. In physics classes I tell students that we live in a sea of radio waves. They come from TV, radio, and cell phone signals as well as other sources. Students don't realize this because those electromagnetic waves are invisible. So, I wondered if I could come up with a way to detect the waves and help students to understand them better. Electromagnetic wave meters, which measure intensity of radio waves quantitatively, are commercially available. However, to students most of these are black boxes, and at the introductory level it is more effective to detect radio waves in a simpler way. This paper describes my device and how I have used it in my classes.

  12. Spectral Characteristics of VLF Sferics Associated With RHESSI TGFs.

    PubMed

    Mezentsev, Andrew; Lehtinen, Nikolai; Østgaard, Nikolai; Pérez-Invernón, F J; Cummer, Steven A

    2018-01-16

    We compared the modeled energy spectral density of very low frequency (VLF) radio emissions from terrestrial gamma ray flashes (TGFs) with the energy spectral density of VLF radio sferics recorded by Duke VLF receiver simultaneously with those TGFs. In total, six events with world wide lightning location network (WWLLN) defined locations were analyzed to exhibit a good fit between the modeled and observed energy spectral densities. In VLF range the energy spectral density of the TGF source current moment is found to be dominated by the contribution of secondary low-energy electrons and independent of the relativistic electrons which play their role in low-frequency (LF) range. Additional spectral modulation by the multiplicity of TGF peaks was found and demonstrated a good fit for two TGFs whose VLF sferics consist of two overlapping pulses each. The number of seeding pulses in TGF defines the spectral shape in VLF range, which allows to retrieve this number from VLF sferics, assuming they were radiated by TGFs. For two events it was found that the number of seeding pulses is small, of the order of 10. For the rest of the events the lower boundary of the number of seeding pulses was found to be between 10 to 10 3 .

  13. Spectral Characteristics of VLF Sferics Associated With RHESSI TGFs

    NASA Astrophysics Data System (ADS)

    Mezentsev, Andrew; Lehtinen, Nikolai; Østgaard, Nikolai; Pérez-Invernón, F. J.; Cummer, Steven A.

    2018-01-01

    We compared the modeled energy spectral density of very low frequency (VLF) radio emissions from terrestrial gamma ray flashes (TGFs) with the energy spectral density of VLF radio sferics recorded by Duke VLF receiver simultaneously with those TGFs. In total, six events with world wide lightning location network (WWLLN) defined locations were analyzed to exhibit a good fit between the modeled and observed energy spectral densities. In VLF range the energy spectral density of the TGF source current moment is found to be dominated by the contribution of secondary low-energy electrons and independent of the relativistic electrons which play their role in low-frequency (LF) range. Additional spectral modulation by the multiplicity of TGF peaks was found and demonstrated a good fit for two TGFs whose VLF sferics consist of two overlapping pulses each. The number of seeding pulses in TGF defines the spectral shape in VLF range, which allows to retrieve this number from VLF sferics, assuming they were radiated by TGFs. For two events it was found that the number of seeding pulses is small, of the order of 10. For the rest of the events the lower boundary of the number of seeding pulses was found to be between 10 to 103.

  14. ELF/VLF propagation measurements in the Atlantic during 1989

    NASA Astrophysics Data System (ADS)

    Nickolaenko, A. P.

    1995-06-01

    The vertical electric field component was measured by a group of the Ukrainian Insitute of Radio Astronomy on board the Professor Zubov scientific vessel during April 1989 at latitudes from 30 deg S to 50 deg N. Results of the amplitude measurements in the Atlantic of natural ELF radio signals and those from the VLF navigation system 'Omega' at its lowest frequency of 10.2 kHz are given. Characteristics were obtained of the moving ship as the field-site for the ELF observations. Variations in the ELF radio noise amplitude recorded at tropical latitudes agree with the computed data for the model of three continental centers of lightning activity. The VLF results were obtained by the 'beat' technique providing the simplest narrow-band amplitude registration. Range dependencies of the field amplitudes from A (Norway), B (Liberia) and F (Argentina) stations have been analyzed. The VLF attentuation factor was estimated for the ambient day conditions along the four cardinal directions. This allowed the detection of a statistically significant attenuation difference between the east-west and west-east propagation paths. The VLF radio signal was also used as a probe to evaluate the effective height of the vertical electric antenna and to calibrate the ELF noise amplitudes.

  15. The nonlinear gyroresonance interaction between energetic electrons and coherent VLF waves propagating at an arbitrary angle with respect to the earth's magnetic field

    NASA Technical Reports Server (NTRS)

    Bell, T. F.

    1984-01-01

    A theory is presented of the nonlinear gyroresonance interaction that takes place in the magnetosphere between energetic electrons and coherent VLF waves propagating in the whistler mode at an arbitrary angle psi with respect to the earth's magnetic field B-sub-0. Particularly examined is the phase trapping (PT) mechanism believed to be responsible for the generation of VLF emissions. It is concluded that near the magnetic equatorial plane gradients of psi may play a very important part in the PT process for nonducted waves. Predictions of a higher threshold value for PT for nonducted waves generally agree with experimental data concerning VLF emission triggering by nonducted waves.

  16. Long-term determination of energetic electron precipitation into the atmosphere from AARDDVARK subionospheric VLF observations

    NASA Astrophysics Data System (ADS)

    Neal, Jason J.; Rodger, Craig J.; Clilverd, Mark A.; Thomson, Neil R.; Raita, Tero; Ulich, Thomas

    2015-03-01

    We analyze observations of subionospherically propagating very low frequency (VLF) radio waves to determine outer radiation belt energetic electron precipitation (EEP) flux magnitudes. The radio wave receiver in Sodankylä, Finland (Sodankylä Geophysical Observatory) observes signals from the transmitter with call sign NAA (Cutler, Maine). The receiver is part of the Antarctic-Arctic Radiation-belt Dynamic Deposition VLF Atmospheric Research Konsortia (AARDDVARK). We use a near-continuous data set spanning November 2004 until December 2013 to determine the long time period EEP variations. We determine quiet day curves over the entire period and use these to identify propagation disturbances caused by EEP. Long Wave Propagation Code radio wave propagation modeling is used to estimate the precipitating electron flux magnitudes from the observed amplitude disturbances, allowing for solar cycle changes in the ambient D region and dynamic variations in the EEP energy spectra. Our method performs well during the summer months when the daylit ionosphere is most stable but fails during the winter. From the summer observations, we have obtained 693 days worth of hourly EEP flux magnitudes over the 2004-2013 period. These AARDDVARK-based fluxes agree well with independent satellite precipitation measurements during high-intensity events. However, our method of EEP detection is 10-50 times more sensitive to low flux levels than the satellite measurements. Our EEP variations also show good agreement with the variation in lower band chorus wave powers, providing some confidence that chorus is the primary driver for the outer belt precipitation we are monitoring.

  17. Comparative statistical and spectral studies of seismic and non-seismic sub-ionospheric VLF anomalies

    NASA Astrophysics Data System (ADS)

    Wolbang, Daniel; Biernat, Helfried; Schwingenschuh, Konrad; Eichelberger, Hans; Prattes, Gustav; Besser, Bruno; Boudjada, Mohammed Y.; Rozhnoi, Alexander; Solovieva, Maria; Biagi, Pier Francesco; Friedrich, Martin

    2013-04-01

    We present a comparative study of seismic and non-seismic sub-ionospheric VLF anomalies. Our method is based on parameter variations of the sub-ionospheric VLF waveguide formed by the surface and the lower ionosphere. The used radio links working in the frequency range between 10 and 50 kHz, the receivers are part of the European and Russian networks. Various authors investigated the lithopsheric-atmospheric-ionospheric coupling and predicted the lowering of the ionosphere over earthquake preparation zones [1]. The received nighttime signal of a sub-ionospheric waveguide depends strongly on the height of the ionospheric E-layer, typically 80 to 85 km. This height is characterized by a typical gradient of the electron density near the atmospheric-ionospheric boundary [2]. In the last years it has been turned out that one of the major issues of sub-ionospheric seismo-electromagnetic VLF studies are the non-seismic influences on the links, which have to be carefully characterized. Among others this could be traveling ionospheric disturbances, geomagnetic storms as well as electron precipitation. Our emphasis is on the analysis of daily, monthly and annual variations of the VLF amplitude. To improve the statistics we investigate the behavior and typical variations of the VLF amplitude and phase over a period of more than 2 years. One important parameter considered is the rate how often the fluctuations are falling below a significant level derived from a mean value. The temporal variations and the amplitudes of these depressions are studied for several years for sub-ionospheric VLF radio links with the receivers in Graz and Kamchatka. In order to study the difference between seismic and non-seismic turbulences in the lower ionosphere a power spectrum analysis of the received signal is performed too. We are especially interested in variations T>6 min which are typical for atmospheric gravity waves causing the lithospheric-atmospheric-ionospheric coupling [3]. All

  18. VLF Remote Sensing of the Lower Ionosphere: Solar Flares, Electron Precipitation, Sudden Ionospheric Disturbances, Sprites, Gravity Waves and Gamma-ray Flares

    NASA Astrophysics Data System (ADS)

    Tan, J. H.; Cohen, M.; Inan, U. S.; Scherrer, P. H.; Scherrer, D.

    2005-12-01

    Stanford University Very Low Frequency (VLF) and Extremely Low Frequency (ELF) radio receivers have been used extensively for remote sensing of the ionosphere and the magnetosphere. Among the phenomena that can be uniquely measured via ELF/VLF receivers are radio atmospherics, whistlers, electron precipitation, solar flares, sudden ionospheric disturbances, gravity waves, sprites, and cosmic gamma-ray flares. With the use of simple square air-core magnetic loop antennas of a couple of meters in size, the sensitivity of these instruments allows the measurement of magnetic fields as low as several tens of femtoTesla per root-Hz, in the frequency range of ~30 Hz to 50 kHz. This sensitivity well exceeds that required to detect any event above the ambient atmospheric noise floor, determined by the totality of lightning activity on the planet. In recent years, as cost of production, timing accuracy (due to low cost GPS clocks), and data handling flexibility of the systems has improved, it has become possible to distribute many of these instruments in the form of arrays, to perform interferometric and holographic imaging of the lower ionosphere. In the context of the IHY in 2007, the ELF/VLF receiver can used extensively as part of the United Nations initiative to place scientific instruments in developing countries. Stanford University's past experiences setting up arrays of ELF/VLF receivers include an interferometer in Alaska, the Holographic Array for Ionospheric and Lightning research (HAIL) consisting of instruments at 13 different high schools in mid-western United States, a broader set of ELF/VLF receivers in Alaska, and various receivers abroad, including in France, Japan, Greece, Turkey, Ireland, and India. A global network of ELF/VLF receivers offer possibilities for a wide range of scientific topics, as well as serving as a means for educational outreach. These goals will be achieved using the newest version of the Stanford VLF receiver, known as AWESOME

  19. Optimizing an ELF/VLF Phased Array at HAARP

    NASA Astrophysics Data System (ADS)

    Fujimaru, S.; Moore, R. C.

    2013-12-01

    The goal of this study is to maximize the amplitude of 1-5 kHz ELF/VLF waves generated by ionospheric HF heating and measured at a ground-based ELF/VLF receiver. The optimization makes use of experimental observations performed during ELF/VLF wave generation experiments at the High-frequency Active Auroral Research Program (HAARP) Observatory in Gakona, Alaska. During these experiments, the amplitude, phase, and propagation delay of the ELF/VLF waves were carefully measured. The HF beam was aimed at 15 degrees zenith angle in 8 different azimuthal directions, equally spaced in a circle, while broadcasting a 3.25 MHz (X-mode) signal that was amplitude modulated (square wave) with a linear frequency-time chirp between 1 and 5 kHz. The experimental observations are used to provide reference amplitudes, phases, and propagation delays for ELF/VLF waves generated at these specific locations. The presented optimization accounts for the trade-off between duty cycle, heated area, and the distributed nature of the source region in order to construct a "most efficient" phased array. The amplitudes and phases generated by modulated heating at each location are combined in post-processing to find an optimal combination of duty cycle, heating location, and heating order.

  20. The ionosphere and the Latin America VLF Network Mexico (LAVNet-Mex) station

    NASA Astrophysics Data System (ADS)

    Borgazzi, A.; Lara, A.; Paz, G.; Raulin, J. P.

    2014-08-01

    In order to detect and study the ionospheric response to solar flares (transient high energy solar radiation), we have constructed a radio receiver station at Mexico City, which is part of the “Latin American Very low frequency Network” (LAVNet-Mex). This station extends to the northern hemisphere the so called “South American VLF Network”. LAVNet is able to detect small changes in the amplitude and phase of VLF electromagnetic waves (generated by strong transmitters located all around the world) which are affected by changes of the lowest layer of the ionosphere, where these waves are “reflected”. In this way, LAVNet is an excellent tool to study the dynamics of the lower ionospheric layers. In this work we present a technical description and show the capabilities of the new LAVNet-Mex station. Moreover, as an example of its performance, we present the analysis of the ionospheric effects of two solar flares detected on October 16, 2010 and June 7, 2011.

  1. Studies of VLF radio waves for sudden ionospheric disturbances (SID) in Kashmir region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wani, M. R.; Iqbal, Naseer; Sasmal, Sudipta

    2010-10-20

    It is recognized that the ionosphere may be sensitive to seismic effects, and the detection of ionospheric perturbations associated with seismicity would be useful for short term prediction of seismic events. To observe this effect, Indian Centre for Space Physics has installed an antenna and receiver system at Kashmir University to monitor the variation of the VLF signal transmitted from VTX. We present the preliminary results from this station.

  2. Comparisons of Measurements and Modeling of Solar Eclipse Effects on VLF Transmissions

    NASA Astrophysics Data System (ADS)

    Eccles, J. V.; Rice, D. D.; Sojka, J. J.; Marshall, R. A.; Drob, D. P.; Decena, J. C.

    2017-12-01

    The solar eclipse of 2017 August 21 provides an excellent opportunity to examine Very Low Frequency (VLF) radio signal propagation through the path of the solar eclipse between Navy VLF transmitters and several VLF receivers. The VLF transmitters available for this study radio signal propagation study are NLK in Jim Creek, Washington (24.8 kHz, 192 kW, 48.20N, 121.90W), NML in LaMour, North Dakota (25.2 kHz, 500 kW 46.37N, 93.34W), and NAA in Cutler, Maine (24.0 kHz, 1000 kW, 44.65N, 67.29W). These VLF transmitters provide propagation paths to three VLF receivers at Utah State University (41.75N, 111.76W), Bear Lake Observatory (41.95N, 111.39W), Salt Lake City (40.76N, 111.89W) and one receiver in Boulder, Colorado (40.02N, 105.27W). The solar eclipse shadow will cross all propagations paths during the day and will modify the D region electron density within the solar shadow. The week prior to the solar eclipse will be used to generate a diurnal baseline of VLF single strength for each transmitter-receiver pair. These will be compared to the day of the solar eclipse to identify VLF propagation differences through the solar eclipse shawdow. Additionally, the electron density effects of the week prior and of the solar eclipse day will be modeled using the Data-Driven D Region (DDDR) model [Eccles et al., 2005] with a detailed eclipse solar flux mask. The Long-Wave Propagation Code and the HASEL RF ray-tracing code will be used to generate VLF signal strength for each measured propagation path through the days prior and the solar eclipse day. Model-measurement comparisons will be presented and the D region electron density effects of the solar eclipse will be examined. The DDDR is a time-dependent D region model, which makes it very suitable for the solar eclipse effects on the electron density for the altitude range of 36 to 130 km. Eccles J. V., R. D. Hunsucker, D. Rice, J. J. Sojka (2005), Space weather effects on midlatitude HF propagation paths: Observations and

  3. Effects of Earth's curvature in full-wave modeling of VLF propagation

    NASA Astrophysics Data System (ADS)

    Qiu, L.; Lehtinen, N. G.; Inan, U. S.; Stanford VLF Group

    2011-12-01

    We show how to include curvature in the full-wave finite element approach to calculate ELF/VLF wave propagation in horizontally stratified earth-ionosphere waveguide. A general curvilinear stratified system is considered, and the numerical solutions of full-wave method in curvilinear system are compared with the analytic solutions in the cylindrical and spherical waveguides filled with an isotropic medium. We calculate the attenuation and height gain for modes in the Earth-ionosphere waveguide, taking into account the anisotropicity of ionospheric plasma, for different assumptions about the Earth's curvature, and quantify the corrections due to the curvature. The results are compared with the results of previous models, such as LWPC, as well as with ground and satellite observations, and show improved accuracy compared with full-wave method without including the curvature effect.

  4. Interplanetary Radio Transmission Through Serial Ionospheric and Material Barriers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fields, David; Kennedy, Robert G; Roy, Kenneth I

    2013-01-01

    A usual first principle in planning radio astronomy observations from the earth is that monitoring must be carried out well above the ionospheric plasma cutoff frequency (~5 MHz). Before space probes existed, radio astronomy was almost entirely done above 6 MHz, and this value is considered a practical lower limit by most radio astronomers. Furthermore, daytime ionization (especially D-layer formation) places additional constraints on wave propagation, and waves of frequency below 10-20 MHz suffer significant attenuation. More careful calculations of wave propagation through the earth s ionosphere suggest that for certain conditions (primarily the presence of a magnetic field) theremore » may be a transmission window well below this assumed limit. Indeed, for receiving extraterrestrial radiation below the ionospheric plasma cutoff frequency, a choice of VLF frequency appears optimal to minimize loss. The calculation, experimental validation, and conclusions are presented here. This work demonstrates the possibility of VLF transmission through the ionosphere and various subsequent material barriers. Implications include development of a new robust communications channel, communications with submerged or subterranean receivers / instruments on or offworld, and a new approach to SETI.« less

  5. A theoretical study of diurnal shift in reflection height of VLF waves using IRI electron density model

    NASA Astrophysics Data System (ADS)

    Madhavi Latha, T.; Peddi Naidu, P.; Madhusudhana Rao, D. N.; Indira Devi, M.

    2012-11-01

    Electron density profiles for the International Reference Ionosphere (IRI) 2001 and 2007 models have been utilized in evaluating the D-region conductivity parameter in earth ionosphere wave guide calculations. The day to night shift in reflection height of very low frequency (VLF) waves has been calculated using D-region conductivities derived from IRI models and the results are compared with those obtained from phase variation measurements of VLF transmissions from Rugby (England) made at Visakhapatnam (India). The values derived from the models are found to be much lower than those obtained from the experimental measurements. The values derived from the IRI models are in good agreement with those obtained from exponential conductivity model.

  6. Daytime midlatitude D region parameters at solar minimum from short-path VLF phase and amplitude

    NASA Astrophysics Data System (ADS)

    Thomson, Neil R.; Clilverd, Mark A.; Rodger, Craig J.

    2011-03-01

    Observed phases and amplitudes of VLF radio signals propagating on a short (˜360 km) path are used to find improved parameters for the lowest edge of the (D region of the) Earth's ionosphere at a geomagnetic latitude of ˜53.5° in midsummer near solar minimum. The phases, relative to GPS 1 s pulses, and the amplitudes were measured both near (˜110 km from) the transmitter, where the direct ground wave is very dominant, and at distances of ˜360 km near where the ionospherically reflected waves form a (modal) minimum with the (direct) ground wave. The signals came from the 24.0 kHz transmitter, NAA, on the coast of Maine near the U.S.-Canada border, propagating ˜360 km E-NE, mainly over the sea, to Saint John and Prince Edward Island. The bottom edge of the midday, midsummer, ionosphere at ˜53.5° geomagnetic latitude was thus found to be well modeled by H' = 71.8 ± 0.6 km and β = 0.335 ± 0.025 km-1 where H' and β are Wait's traditional height and sharpness parameters used by the U.S. Navy in their Earth-ionosphere VLF radio waveguide programs. The variation of β with latitude is also estimated with the aid of interpolation using measured galactic cosmic ray fluxes.

  7. Daytime tropical D region parameters from short path VLF phase and amplitude

    NASA Astrophysics Data System (ADS)

    Thomson, Neil R.

    2010-09-01

    Observed phases and amplitudes of VLF radio signals, propagating on a short (˜300-km) path, are used to find improved parameters for the lowest edge of the (D region of the) Earth's ionosphere. The phases, relative to GPS 1-s pulses, and the amplitudes were measured both near (˜100 km from) the transmitter, where the direct ground wave is very dominant, and at distances of ˜300 km near where the ionospherically reflected waves form a (modal) minimum with the (direct) ground wave. The signals came from the 19.8 kHz, 1 MW transmitter, NWC, on the North West Cape of Australia, propagating ˜300 km ENE, mainly over the sea, to the vicinity of Karratha/Dampier on the N.W. coast of Australia. The bottom edge of the mid-day tropical/equatorial ionosphere was thus found to be well-modeled by H‧ = 70.5 ± 0.5 km and β = 0.47 ± 0.03 km-1 where H‧ and β are the traditional height and sharpness parameters as used by Wait and by the U.S. Navy in their Earth-ionosphere VLF radio waveguide programs. U.S. Navy modal waveguide code calculations are also compared with those from the wave hop code of Berry and Herman (1971). At least for the vertical electric fields on the path studied here, the resulting phase and amplitude differences (between the ˜100-km and ˜300-km sites) agree very well after just a small adjustment of ˜0.2 km in H‧ between the two codes. Such short paths also allow more localization than the usual long paths; here this localization is to low latitudes.

  8. VLF and HF Plasma Waves Associated with Spread-F Plasma Depletions Observed on the C/NOFS Satellite

    NASA Technical Reports Server (NTRS)

    Pfaff, Robert; Freudenreich, H.; Schuck, P.; Klenzing, J.

    2011-01-01

    The C/NOFS spacecraft frequently encounters structured plasma depletions associated with equatorial spread-F along its trajectory that varies between 401 km perigee and 867 km apogee in the low latitude ionosphere. We report two classes of plasma waves detected with the Vector Electric Field Investigation (VEFI) that appear when the plasma frequency is less than the electron gyro frequency, as is common in spread-F depletions where the plasma number density typically decreases below 10(exp 4)/cu cm. In these conditions, both broadband VLF waves with a clear cutoff at the lower hybrid frequency and broadband HF waves with a clear cutoff at the plasma frequency are observed. We interpret these waves as "hiss-type" emissions possibly associated with the flow of suprathermal electrons within the inter-hemispherical magnetic flux tubes. We also report evidence of enhanced wave "transients" sometimes embedded in the broader band emissions that are associated with lightning sferics detected within the depleted plasma regions that appear in both the VLF and HF data. Theoretical implications of these observations are discussed.

  9. The Outer Heliosphere: Solar Wind, Cosmic Ray and VLF Radio Emission Variations

    NASA Technical Reports Server (NTRS)

    McNutt, Ralph L., Jr.

    1995-01-01

    The Voyager 1 and 2 spacecraft now 45 astronomical units (AU) from Earth continue to monitor the outer heliosphere field and particles environment on a daily basis during their journey to the termination shock of the solar wind. Strong transient shocks continue to be detected in the solar wind plasma. The largest of these are associated with Global Merged Interaction Regions (GMIR's) which, in turn, block cosmic ray entry into the inner heliosphere and are apparently responsible for triggering the two major episodes of VLF radio emissions now thought to come from the heliopause. Distance estimates to the termination shock are consistent with those determined from observations of anomalous cosmic rays. Current observations and implications for heliospheric structure are discussed.

  10. Solution uniquity of an inverse VLF problem: A case-study of the polar, ground-based, VLF radio signal disturbances caused by the ultra-energetic relativistic electron precipitations and of their southern boundaries

    NASA Astrophysics Data System (ADS)

    Remenets, G. F.; Astafiev, A. M.

    2016-09-01

    Here we present the results of a case study of the rare, abnormal, qualitatively specific behavior of Aldra (northern Norway) and GBR (UK) VLF transmitter signals (10-16 kHz) received at Kola Peninsula. The abnormal amplitude and the phase disturbances of signals were used as a proxy for ultra-energetic relativistic (solar?) electron precipitation (URE, ∼100 MeV) into the middle polar atmosphere. The disturbances have been observed under quiet or moderately disturbed geomagnetic activity. Based on bearing results, it was established that the abnormal variations of the electric conductivity of ionized middle atmosphere (of a sporadic Ds layer under the regular ionosphere D layer) were characterized by the following: (i) the time function of height h(t) of an effective spherical waveguide between the Earth surface and the sporadic Ds layer shows a minimum value equal to ∼30 km and (ii) the reflection coefficient R(t) of radio wave with a grazing angle of incidence from a virtual boundary with height h(t) has a minimum value equal to ∼0.4. The southern boundaries of the ultra-energetic relativistic electron precipitations have been found as well. They turned out to be not southerly than 61 degree of magnetic latitude and similar to the ones obtained in our previous study of the events for other dates under the similar geophysical conditions although we do not know anything definite about the rigidity and density of the electron fluxes. A used calculation method of analysis is based on a necessary condition that a number n of input data should be greater than a number m of output parameter-functions. We have stated by numerical testing that a decrease of n from 6 to 4 generates a lack of uniqueness of an inverse VLF problem solution for m = 2. It is important for future VLF ground-based monitoring of the URE precipitation events.

  11. Modeling the variations of reflection coefficient of Earth's lower ionosphere using very low frequency radio wave data by artificial neural network

    NASA Astrophysics Data System (ADS)

    Ghanbari, Keyvan; Khakian Ghomi, Mehdi; Mohammadi, Mohammad; Marbouti, Marjan; Tan, Le Minh

    2016-08-01

    The ionized atmosphere lying from 50 to 600 km above surface, known as ionosphere, contains high amount of electrons and ions. Very Low Frequency (VLF) radio waves with frequencies between 3 and 30 kHz are reflected from the lower ionosphere specifically D-region. A lot of applications in long range communications and navigation systems have been inspired by this characteristic of ionosphere. There are several factors which affect the ionization rate in this region, such as: time of day (presence of sun in the sky), solar zenith angle (seasons) and solar activities. Due to nonlinear response of ionospheric reflection coefficient to these factors, finding an accurate relation between these parameters and reflection coefficient is an arduous task. In order to model these kinds of nonlinear functionalities, some numerical methods are employed. One of these methods is artificial neural network (ANN). In this paper, the VLF radio wave data of 4 sudden ionospheric disturbance (SID) stations are given to a multi-layer perceptron ANN in order to simulate the variations of reflection coefficient of D region ionosphere. After training, validation and testing the ANN, outputs of ANN and observed values are plotted together for 2 random cases of each station. By evaluating the results using 2 parameters of pearson correlation coefficient and root mean square error, a satisfying agreement was found between ANN outputs and real observed data.

  12. VLF Remote -Sensing of the Lower Ionosphere with AWESOME Receivers: Solar Flares, Lightning-induced Electron Precipitation, Sudden Ionospheric Disturbances, Sprites, Gravity Waves and Gamma-ray Flares

    NASA Astrophysics Data System (ADS)

    Inan, U. S.; Cohen, M.; Scherrer, P.; Scherrer, D.

    2006-11-01

    Stanford University Very Low Frequency (VLF) radio receivers have been used extensively for remote sensing of the ionosphere and the magnetosphere. Among the phenomena that can be uniquely measured via VLF receivers are radio atmospherics, whistlers, electron precipitation, solar flares, sudden ionospheric disturbances, gravity waves, sprites, and cosmic gamma-ray flares. With the use of simple square air-core magnetic loop antennas of a couple of meters in size, the sensitivity of these instruments allows the measurement of magnetic fields as low as several tens of femtoTesla per root Hz, in the frequency range of ~300 Hz to 50 kHz. This sensitivity well exceeds that required to detect any event above the ambient atmospheric noise floor, determined by the totality of lightning activity on this planet. In recent years, as cost of production, timing accuracy (due to low cost GPS cards), and data handling flexibility of the systems has improved, it has become possible to distribute many of these instruments in the form of arrays, to perform interferometric and holographic imaging of the lower ionosphere. These goals can be achieved using the newest version of the Stanford VLF receiver, known as AWESOME: Atmospheric Weather Educational System for Observation and Modeling of Electromagnetics. In the context of the IHY/UNBSS program for 2007, the AWESOME receivers can be used extensively as part of the United Nations initiative to place scientific instruments in developing countries. Drawing on the Stanford experiences from setting up arrays of VLF receivers, including an interferometer in Alaska, the Holographic Array for Ionospheric and Lightning research (HAIL) consisting of instruments at 13 different high schools in mid-western United States, a broader set of ELF/VLF receivers in Alaska, and various receivers abroad, including in France, Japan, Greece, Turkey, and India, a global network of ELF/VLF receivers offer possibilities for a wide range of scientific topics

  13. VLF remote sensing of the ambient and modified lower ionosphere

    NASA Astrophysics Data System (ADS)

    Demirkol, Mehmet Kursad

    2000-08-01

    Electron density and temperature changes in the D region are sensitively manifested as changes in the amplitude and phase of subionospheric Very Low Frequency (VLF) signals propagating beneath the perturbed region. Both localized and large scale disturbances (either in electron density or temperature) in the D region cause significant scattering of VLF waves propagating in the earth- ionosphere waveguide, leading to measurable changes in the amplitude and phase of the VLF waves. Large scale auroral disturbances, associated with intensification of the auroral electrojet, as well as ionospheric disturbances produced during relativistic electron enhancements, cause characteristic changes over relatively long time scales that allow the assessment of the `ambient' ionosphere. Localized ionospheric disturbances are also produced by powerful VLF transmitting facilities such as the High Power Auroral Stimulation (HIPAS) facility, the High frequency Active Auroral Research Program (HAARP), and also by lightning discharges. Amplitude and phase changes of VLF waveguide signals scattered from such artificially heated ionospheric patches are known to be detectable. In this study, we describe a new inversion algorithm to determine altitude profiles of electron density and collision frequency within such a localized disturbance by using the measured amplitude and phase of three different VLF signals at three separate receiving sites. For this purpose a new optimization algorithm is developed which is primarily based on the recursive usage of the three dimensional version of the Long Wave Propagation, Capability (LWPC) code used to model the subionospheric propagation and scattering of VLF signals in the earth- ionosphere waveguide in the presence of ionospheric disturbances.

  14. VLF phase and amplitude: daytime ionospheric parameters

    NASA Astrophysics Data System (ADS)

    McRae, W. M.; Thomson, N. R.

    2000-05-01

    Experimental observations of the daytime variations of VLF phase and amplitude over a variety of long subionospheric paths have been found to be satisfactorily modelled with a D-region ionosphere, described by the two traditional parameters, H' and /β (being measures of the ionospheric height and the rate of increase of electron density with height, respectively). This VLF radio modelling uses the NOSC Earth-ionosphere waveguide programs but with an experimentally deduced dependence of these two ionospheric parameters on solar zenith angle. Phase and amplitude measurements from several VLF Omega and MSK stations were compared with calculations from the programs LWPC and Modefinder using values of H' and /β determined previously from amplitude only data. This led to refined curves for the diurnal variations of H' and /β which, when used in these programs, give not only calculated amplitudes but also, for the first time, calculated phase variations that agree well with a series of observations at Dunedin, New Zealand, of VLF signals from Omega Japan, Omega Hawaii, NPM (Hawaii) and NLK (Seattle) covering a frequency range of 10-25 kHz.

  15. Multi Station Frequency Response and Polarization of ELF/VLF Signals Generated via Ionospheric Modification

    NASA Astrophysics Data System (ADS)

    Maxworth, Ashanthi; Golkowski, Mark; University of Colorado Denver Team

    2013-10-01

    ELF/VLF wave generation via HF modulated ionospheric heating has been practiced for many years as a unique way to generate waves in the ELF/VLF band (3 Hz - 30 kHz). This paper presents experimental results and associated theoretical modeling from work performed at the High Frequency Active Auroral Research Program (HAARP) facility in Alaska, USA. An experiment was designed to investigate the modulation frequency dependence of the generated ELF/VLF signal amplitudes and polarization at multiple sites at distances of 37 km, 50 km and 99 km from the facility. While no difference is observed for X mode versus O mode modulation of the heating wave, it is found that ELF/VLF amplitude and polarization as a function of modulated ELF/VLF frequency is different for each site. An ionospheric heating code is used to determine the primary current sources leading to the observations.

  16. The use of subionospheric VLF/LF propagation for the study of lower ionospheric perturbations associated with earthquakes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayakawa, M.

    It is recently recognized that the ionosphere is very sensitive to seismic effects, and the detection of ionospheric perturbations associated with earthquakes (EQs), attracts a lot of attention as a very promising candidate for short-term EQ prediction. In this review we propose a possible use of VLF/LF (very low frequency (3-30 kHz)/low frequency (30-300 kHz)) radio sounding of seismo-ionospheric perturbations. We first present the first convincing evidence on the presence of ionospheric perturbations for the disastrous Kobe EQ in 1995. The significant shift in terminator times in the VLF/LF diurnal variation, is successfully interpreted in terms of lowering of themore » lower ionosphere prior to the EQ, which is the confirmation of seismo-ionospheric perturbations. In order to avoid the overlapping with my own previous reviews [1, 2], we try to present the latest results including the statistical evidence on the correlation between the VLF/LF propagation anomalies (ionospheric perturbations) and EQs (especially with large magnitude and with shallow depth), a case study on the Indonesia Sumatra EQ (wavelike structures in the VLF/LF data), medium-distance (6{approx}8 Mm) propagation anomalies, the fluctuation spectra of subionospheric VLF/LF data (atmospheric gravity waves effect, the effect of Earth's tides etc.), and the mechanism of lithosphere - atmosphere - ionosphere coupling. Finally, we indicate the present situation of this kind of VLF/LF activities going on in different parts of the globe and we suggest the importance of international collaboration in this seismo-electromagnetics study.« less

  17. Numerical Simulations Of The Effect Of Localised Ionospheric Perturbations On Subionospheric VLF Propagation

    NASA Astrophysics Data System (ADS)

    Šulic, D.; Nina, A.; Sreckovic, V.

    2010-07-01

    Electron density and temperature changes in the D-region of the ionosphere are sensitively manifested as changes in the amplitude and phase of subionospheric Very Low Frequency (VLF) signals propagating beneath the perturbed region. Disturbances (either in electron density or temperature) in the D region cause significant scattering of VLF waves propagating in the earth-ionosphere waveguide, leading to measurable changes in the amplitude and phase of the VLF waves. We analyze Lightning-induced electron precipitation (LEP) events during period 2008 - 2009 at Belgrade station on subionospheric VLF signals from four transmitters (DHO/23.4 kHz, Germany; GQD/22.1 kHz, UK; NAA/24.0 kHz USA and ICV/20.9 kHz Italy).

  18. Theoretical models for Computing VLF wave amplitude and phase and their applications

    NASA Astrophysics Data System (ADS)

    Pal, Sujay; Chakrabarti, S. K.

    2010-10-01

    We present a review of the present theoretical models for computing the amplitude and phase of the VLF signal at any given point on earth. We present the basics of the wave hop theory and the Mode theory. We compute the signal amplitudes as a function of distance from a transmitter using both the theories and compare them. We also repeat a similar exercise for the diurnal signal. We note that the signal variation by wave hop theory gives more detailed information in the day time. As an example of using LWPC code, we compute the variation of the effective height h' and steepness β parameters for a solar flare and obtain the time dependence of the electron number density along both VTX-Kolkata and NWC-Kolkata propagation paths.

  19. VLF imaging of the Venus foreshock

    NASA Technical Reports Server (NTRS)

    Crawford, G. K.; Strangeway, R. J.; Russell, C. T.

    1993-01-01

    VLF plasma wave measurements obtained from the Pioneer Venus Orbiter Electric Field Detector (OEFD) have been used to construct statistical images of the Venus foreshock. Our data set contains all upstream measurements from an entire Venus year (approximately 200 orbits). Since the foreshock VLF characteristics vary with Interplanetary Magnetic Field (IMF) orientation we restrict the study to IMF orientations near the nominal Parker spiral angle (25 to 45). Our results show a strong decrease in 30 kHz wave intensity with both foreshock depth and distance. There is also an asymmetry in the 30 kHz emissions from the upstream and downstream foreshocks. The ion foreshock is characterized by strong emissions in the 5.4 kHz OEFD channel which are positioned much deeper in the foreshock than expected from terrestrial observations. No activity is observed in the region where field aligned ion distributions are expected. ULF wave activity, while weaker than at Earth, shows similar behavior and may indicate the presence of similar ion distributions.

  20. Generation of VLF saucer emissions observed by the Viking satellite

    NASA Astrophysics Data System (ADS)

    Lonnqvist, H.; Andre, M.; Matson, L.; Bahnsen, A.; Blomberg, L. G.; Erlandson, R. E.

    1993-08-01

    Simultaneous observations by the Viking satellite of electric and magnetic fields as well as charged particles have been used to investigate V-shaped wave phenomena. The intensity of these VLF and ELF emissions is V-shaped when shown in a frequency versus time plot. Simultaneous observations of V-shaped so-called VLF saucer emissions, particles and field-aligned currents strongly suggest, for the first time, that upgoing electrons with energies less than a few hundred electron volts can generate these waves. Broadband waves observed inside the saucer generation region, from frequencies much less than the ion cyclotron frequency up to the plasma frequency, may also be generated by these electrons. Viking observations of VLF saucers at altitudes between 4000 km and 13,500 km show that these emissions occur at higher altitudes than discussed in previous reports. The generation regions seem to be more extended at these higher altitudes than what has been reported at lower altitudes by other observers.

  1. Wave-Kinetic Simulations of the Nonlinear Generation of Electromagnetic VLF Waves through Velocity Ring Instabilities

    NASA Astrophysics Data System (ADS)

    Ganguli, G.; Crabtree, C. E.; Rudakov, L.; Mithaiwala, M.

    2014-12-01

    Velocity ring instabilities are a common naturally occuring magnetospheric phenomenon that can also be generated by man made ionospheric experiments. These instabilities are known to generate lower-hybrid waves, which generally cannot propagte out of the source region. However, nonlinear wave physics can convert these linearly driven electrostatic lower-hybrid waves into electromagnetic waves that can escape the source region. These nonlinearly generated waves can be an important source of VLF turbulence that controls the trapped electron lifetime in the radiation belts. We develop numerical solutions to the wave-kinetic equation in a periodic box including the effects of nonlinear (NL) scattering (nonlinear Landau damping) of Lower-hybrid waves giving the evolution of the wave-spectra in wavenumber space. Simultaneously we solve the particle diffusion equation of both the background plasma particles and the ring ions, due to both linear and nonlinear Landau resonances. At initial times for cold ring ions, an electrostatic beam mode is excited, while the kinetic mode is stable. As the instability progresses the ring ions heat, the beam mode is stabilized, and the kinetic mode destabilizes. When the amplitude of the waves becomes sufficient the lower-hybrid waves are scattered (by either nearly unmagnetized ions or magnetized electrons) into electromagnetic magnetosonic waves [Ganguli et al 2010]. The effect of NL scattering is to limit the amplitude of the waves, slowing down the quasilinear relaxation time and ultimately allowing more energy from the ring to be liberated into waves [Mithaiwala et al. 2011]. The effects of convection out of the instability region are modeled, additionally limiting the amplitude of the waves, allowing further energy to be liberated from the ring [Scales et al., 2012]. Results are compared to recent 3D PIC simulations [Winske and Duaghton 2012].

  2. Effect of solar flares flux on the propagation and modal composition of VLF signal in the lower ionosphere

    NASA Astrophysics Data System (ADS)

    Bouderba, Yasmina; Nait Amor, Samir; Tribeche, Mouloud

    2015-04-01

    The VLF radio waves propagating in the Earth-Ionosphere waveguide are sensitive to the ionospheric disturbances due to X rays solar flux. In order to understand the VLF signal response to the solar flares, the LWPC code is used to simulate the signal perturbation parameters (amplitude and phase) at fixed solar zenith angle. In this work, we used the NRK-Algiers signal data and the study was done for different flares classes. The results show that the perturbed parameters increase with the increasing solar flares flux. This increases is due to the growth of the electron density resulting from the changes of the Wait's parameters. However, the behavior of the perturbation parameters as function of distance shows different forms of signal perturbations. It was also observed that the null points move towards the transmitter location when the flare flux increases which is related to the modal composition of the propagating signal. Effectively, for a given mode, the plot of the attenuation coefficient as function of the flare flux shows a decreases when the flux increases which is more significant for high modes. Thus, the solar flares effect is to amplify the VLF signal by reducing the attenuation coefficient.

  3. ELF/VLF/LF Radio Propagation and Systems Aspects (La Propagation des Ondes Radio ELF/VLF/LF et les Aspects Systemes)

    DTIC Science & Technology

    1993-05-01

    limitation of the software package would not allow DATE/I’ME FREQUENCY (kHz) the program to run over 2359 to 0001 UT. This was 18.1 19.0 21.4 24.0...Capability (LWPC), software package devel- oped at NOSC (FERGUSON et al 1989) and adapted by us to the Macintosh personal computer. We find that this... software works very well. Our investigations are to I evaluate and devise geophysical models to be used with . LWPC in assessing VLF communications and

  4. Characteristics of lightning associated transient perturbations in low latitude VLF path

    NASA Astrophysics Data System (ADS)

    Chakraborty, Suman; Chakrabarti, Sandip Kumar; Pal, Sujay

    Lightning can perturb the sub-ionospheric VLF propagation directly or indirectly. Direct perturbations in the sub-ionospheric VLF signals occur within 20 ms of the associated lightning discharges while the indirect perturbations occur through the lighting generated whistler mode waves in the magnetosphere. These whistler mode waves undergo cyclotron resonance with the trapped electrons in the magnetosphere. The electrons which are pitch angle scattered into the loss cone, precipitate into the ionosphere producing secondary ionization in the lower ionosphere. This process produce indirect VLF perturbations known as lightning induced electron precipitation (LEP) events. We have analyzed such events for the VTX-Kolkata and NWC-Kolkata path. We observed too many events. Some of them have positive shifts while others have negative shifts. We are trying to find the reasons behind such variations in amplitude shifts. We have fitted the events with FRED (Fast Rise Exponential Decay) function to characterize the onset and recovery time. We try to explain the positive and negative VLF amplitude deviation due to lightning events using the most well-known LWPC (Long Wavelength Propagation Capability) code.

  5. A BATSE investigation of radiation belt electrons precipitated by VLF waves

    NASA Technical Reports Server (NTRS)

    Datlowe, Dayton W.

    1995-01-01

    The Compton Observatory commonly encounters fluxes of energetic electrons which have been scattered from the inner radiation belt to the path of the satellite by resonant interactions with VLF waves from powerful man-made transmitters. The present investigation was motivated by the fact that in the Fall of 1993, the Gamma Ray Observatory was boosted from a 650 km altitude circular orbit to a 750 km altitude circular orbit. This was an opportunity, for the first time, to make observations at two different altitudes using the same instrument. We have examined DISCLA data from the Burst & Transient Source Experiment (BATSE) experiment from 1 Sep. 1993 to 29 Jan. 1994. During the period of study we identified 48 instances of the satellite encountering a cloud of energetic electrons which had been scattered by VLF transmitters. We find that boosting the altitude of the circular orbit from 650 km to 750 km increased the intensity of cyclotron resonance scattered electrons by a factor of two. To search for long term changes in the cyclotron resonance precipitation, we have compared the approx. 750 km altitude data from 106 days at the end of 1993 with data at the same altitudes and time of year in 1991. The cyclotron resonance events in 1991 were three times more frequent and 25% of those cases were more intense than any seen in the 1993 data. We attribute this difference to increased level of geomagnetic activity in 1991 near the Solar Maximum.

  6. Estimating Parameters for the Earth-Ionosphere Waveguide Using VLF Narrowband Transmitters

    NASA Astrophysics Data System (ADS)

    Gross, N. C.; Cohen, M.

    2017-12-01

    Estimating the D-region (60 to 90 km altitude) ionospheric electron density profile has always been a challenge. The D-region's altitude is too high for aircraft and balloons to reach but is too low for satellites to orbit at. Sounding rocket measurements have been a useful tool for directly measuring the ionosphere, however, these types of measurements are infrequent and costly. A more sustainable type of measurement, for characterizing the D-region, is remote sensing with very low frequency (VLF) waves. Both the lower ionosphere and Earth's ground strongly reflect VLF waves. These two spherical reflectors form what is known as the Earth-ionosphere waveguide. As VLF waves propagate within the waveguide, they interact with the D-region ionosphere, causing amplitude and phase changes that are polarization dependent. These changes can be monitored with a spatially distributed array of receivers and D-region properties can be inferred from these measurements. Researchers have previously used VLF remote sensing techniques, from either narrowband transmitters or sferics, to estimate the density profile, but these estimations are typically during a short time frame and over a narrow propagation region. We report on an effort to improve the understanding of VLF wave propagation by estimating the commonly known h' and beta two parameter exponential electron density profile. Measurements from multiple narrowband transmitters at multiple receivers are taken, concurrently, and input into an algorithm. The cornerstone of the algorithm is an artificial neural network (ANN), where input values are the received narrowband amplitude and phase and the outputs are the estimated h' and beta parameters. Training data for the ANN is generated using the Navy's Long-Wavelength Propagation Capability (LWPC) model. Emphasis is placed on profiling the daytime ionosphere, which has a more stable and predictable profile than the nighttime. Daytime ionospheric disturbances, from high solar

  7. An Undergraduate Designed VLF Receiver: Findings from an Auroral Flight in Fairbanks, Alaska

    NASA Astrophysics Data System (ADS)

    Hernandez, E.; Behrend, C. C.; Fenton, A.; Mathur, S.; Greer, M.; Bering, E., III

    2017-12-01

    The fluctuating state of the D-region ionosphere creates electromagnetic oscillations in the very low frequency (VLF) range. These naturally occurring VLF waves, or sferics, can have distinct features and intensities which can be measured to describe state of the plasma in the D-region. These features are more prominent during geomagnetic events—such as the aurora. To investigate these waves, this team redesigned and fabricated a VLF receiver with an air-core loop antenna. The receiver was attached to a 1500-gram latex balloon and flown during a moderate auroral event on the 15th of March, 217 in Fairbanks, Alaska. Using MATLAB to make different graphs of the data, such as spectrograms, the sferics received on that night can be visualized and interpreted. Through the VLF spectrum, this poster will provide an interpretation of the D-region and describe the events of the flight (natural and manmade).

  8. Crowd-Sourced Radio Science at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Fry, C. D.; McTernan, J. K.; Suggs, R. M.; Rawlins, L.; Krause, L. H.; Gallagher, D. L.; Adams, M. L.

    2018-01-01

    August 21, 2017 provided a unique opportunity to investigate the effects of the total solar eclipse on high frequency (HF) radio propagation and ionospheric variability. In Marshall Space Flight Center's partnership with the US Space and Rocket Center (USSRC) and Austin Peay State University (APSU), we engaged citizen scientists and students in an investigation of the effects of an eclipse on the mid-latitude ionosphere. Activities included fieldwork and station-based data collection of HF Amateur Radio frequency bands and VLF radio waves before, during, and after the eclipse to build a continuous record of changing propagation conditions as the moon's shadow marched across the United States. Post-eclipse radio propagation analysis provided insights into ionospheric variability due to the eclipse.

  9. Strong Magnetic Field Fluctuations within Filamentary Auroral Density Cavities Interpreted as VLF Saucer Sources

    NASA Technical Reports Server (NTRS)

    Knudsen, D. L.; Kabirzadeh, R.; Burchill, J. K.; Pfaff, Robert F.; Wallis, D. D.; Bounds, S. R.; Clemmons, J. H.; Pincon, J.-L.

    2012-01-01

    The Geoelectrodynamics and Electro-Optical Detection of Electron and SuprathermalIon Currents (GEODESIC) sounding rocket encountered more than 100 filamentary densitycavities associated with enhanced plasma waves at ELF (3 kHz) and VLF (310 kHz)frequencies and at altitudes of 800990 km during an auroral substorm. These cavities weresimilar in size (20 m diameter in most cases) to so-called lower-hybrid cavities (LHCs)observed by previous sounding rockets and satellites; however, in contrast, many of theGEODESIC cavities exhibited up to tenfold enhancements in magnetic wave powerthroughout the VLF band. GEODESIC also observed enhancements of ELF and VLFelectric fields both parallel and perpendicular to the geomagnetic field B0 within cavities,though the VLF E field increases were often not as large proportionally as seen in themagnetic fields. This behavior is opposite to that predicted by previously published theoriesof LHCs based on passive scattering of externally incident auroral hiss. We argue thatthe GEODESIC cavities are active wave generation sites capable of radiating VLF wavesinto the surrounding plasma and producing VLF saucers, with energy supplied by cold,upward flowing electron beams composing the auroral return current. This interpretation issupported by the observation that the most intense waves, both inside and outside cavities,occurred in regions where energetic electron precipitation was largely inhibited orabsent altogether. We suggest that the wave-enhanced cavities encountered by GEODESICwere qualitatively different from those observed by earlier spacecraft because of thefortuitous timing of the GEODESIC launch, which placed the payload at apogee within asubstorm-related return current during its most intense phase, lasting only a few minutes.

  10. Effects of the major sudden stratospheric warming event of 2009 on the subionospheric very low frequency/low frequency radio signals

    NASA Astrophysics Data System (ADS)

    Pal, S.; Hobara, Y.; Chakrabarti, S. K.; Schnoor, P. W.

    2017-07-01

    This paper presents effects of the major sudden stratospheric warming (SSW) event of 2009 on the subionospheric very low frequency/low frequency (VLF/LF) radio signals propagating in the Earth-ionosphere waveguide. Signal amplitudes from four transmitters received by VLF/LF radio networks of Germany and Japan corresponding to the major SSW event are investigated for possible anomalies and atmospheric influence on the high- to middle-latitude ionosphere. Significant anomalous increase or decrease of nighttime and daytime amplitudes of VLF/LF signals by ˜3-5 dB during the SSW event have been found for all propagation paths associated with stratospheric temperature rise at 10 hPa level. Increase or decrease in VLF/LF amplitudes during daytime and nighttime is actually due to the modification of the lower ionospheric boundary conditions in terms of electron density and electron-neutral collision frequency profiles and associated modal interference effects between the different propagating waveguide modes during the SSW period. TIMED/SABER mission data are also used to investigate the upper mesospheric conditions over the VLF/LF propagation path during the same time period. We observe a decrease in neutral temperature and an increase in pressure at the height of 75-80 km around the peak time of the event. VLF/LF anomalies are correlated and in phase with the stratospheric temperature and mesospheric pressure variation, while minimum of mesospheric cooling shows a 2-3 day delay with maximum VLF/LF anomalies. Simulations of VLF/LF diurnal variation are performed using the well-known Long Wave Propagating Capability (LWPC) code within the Earth-ionosphere waveguide to explain the VLF/LF anomalies qualitatively.

  11. Optimizing ELF/VLF generation via HF heating utilizing beam motion

    NASA Astrophysics Data System (ADS)

    Cohen, M. B.; Inan, U. S.; Lehtinen, N. G.; Golkowski, M. A.

    2008-12-01

    ELF/VLF (300 Hz - 30 kHz) waves are difficult to generate with conventional antennae due to their extraordinary long wavelengths, and the good conductance of the Earth at these frequencies. Recently, ELF and VLF waves have been generated using HF (3-10 MHz) heating of the lower ionosphere, in the presence of natural currents such as the auroral electrojet, which modulates the ionospheric conductivity and therefore turns the lower ionosphere into a large radiating element. The recently upgraded HAARP facility, near Gakona Alaska, utilizes 3.6 MW of HF power, along with an unprecedented ability to steer the HF heating beam over a large area extremely rapidly. Since the completion of the upgrade in 2007, the first successful implementation of techniques such as geometric modulation [Cohen et al. 2008, Borisov et al. 1998], and beam painting [Papadopoulos et al. 1989] have occurred. These results have shown as much as 7-11 dB improvement in the signal strengths, as well as the first ability to direct ELF/VLF signals via an unprecedented ELF/VLF phased array. Here, we use a combination of experimental and theoretical investigations to discuss the optimization of ELF/VLF generation via HF heating, including the effect of HF and ELF frequency on the amplitude and the directional pattern for various generation techniques. The experimental observations occur over an array of receivers across Alaska. The theoretical formulation utilizes a 3D model of the HF heating and subsequent electron cooling processes, leading to spatial structure of modulated ionospheric conductivities, the results of which are input into a model of ELF/VLF propagation in the Earth-ionosphere waveguide.

  12. Investigations of equatorial ionosphere nighttime mode conversion at VLF

    NASA Astrophysics Data System (ADS)

    Hildebrand, Verne

    1993-05-01

    VLF Radiowave propagation provides one of the few viable tools for exploring the properties of the lower D-region ionosphere. Conversely, VLF communications coverage analysis and prediction is directly dependent on the quality of models for the D-region ionosphere. The VLF Omega navigation signals are an excellent and under-utilized resource for conducting D-region research in direct support of VLF communications. Stations are well placed for investigating polar, mid latitude, and equatorial phenomena. Much can be learned by fully utilizing the very stable signals radiated at five frequencies, available from each of the eight transmitters, and taking full advantage of modal structure. While the Omega signals, 10.2 to 13.6 kHz, are well below the VLF communications band, we contend that much of the knowledge gained on D-region characteristics can be directly applied at the higher frequencies. The opportunity offered by Omega needs to be exploited. With the Global Positioning System (GPS) coming onboard as the prime means for global navigation, pressure is mounting to phase out Omega. In this paper we describe how we are using Omega along with computer codes of full wave VLF propagation, provided to us by the U.S. Naval Ocean Systems Center (NOSC), for ionosphere research and by example illustrate the potential for other investigations.

  13. ELF/VLF wave propagation at subauroral latitudes: Conjugate observation between the ground and Van Allen Probes A

    NASA Astrophysics Data System (ADS)

    Martinez-Calderon, Claudia; Shiokawa, Kazuo; Miyoshi, Yoshizumi; Keika, Kunihiro; Ozaki, Mitsunori; Schofield, Ian; Connors, Martin; Kletzing, Craig; Hanzelka, Miroslav; Santolik, Ondrej; Kurth, William S.

    2016-06-01

    We report simultaneous observation of ELF/VLF emissions, showing similar spectral and frequency features, between a VLF receiver at Athabasca (ATH), Canada, (L = 4.3) and Van Allen Probes A (Radiation Belt Storm Probes (RBSP) A). Using a statistical database from 1 November 2012 to 31 October 2013, we compared a total of 347 emissions observed on the ground with observations made by RBSP in the magnetosphere. On 25 February 2013, from 12:46 to 13:39 UT in the dawn sector (04-06 magnetic local time (MLT)), we observed a quasiperiodic (QP) emission centered at 4 kHz, and an accompanying short pulse lasting less than a second at 4.8 kHz in the dawn sector (04-06 MLT). RBSP A wave data showed both emissions as right-hand polarized with their Poynting vector earthward to the Northern Hemisphere. Using cross-correlation analysis, we did, for the first time, time delay analysis of a conjugate ELF/VLF event between ground and space, finding +2 to +4 s (ATH first) for the QP and -3 s (RBSP A first) for the pulse. Using backward tracing from ATH to the geomagnetic equator and forward tracing from the equator to RBSP A, based on plasmaspheric density observed by the spacecraft, we validate a possible propagation path for the QP emission which is consistent with the observed time delay.

  14. Determination of Spatio-Temporal Characteristics of D-region Electron Density during Annular Solar Eclipse from VLF Network Observations

    NASA Astrophysics Data System (ADS)

    Basak, T.; Hobara, Y.

    2015-12-01

    A major part of the path of the annular solar eclipse of May 20, 2012 (magnitude 0.9439) was over southern Japan. The D-region ionospheric changes associated with that eclipse, led to several degree of observable perturbations of sub-ionospheric very low frequency (VLF) radio signal. The University of Electro-Communications (UEC) operates VLF observation network over Japan. The solar eclipse associated signal changes were recorded in several receiving stations (Rx) simultaneously for the VLF signals coming from NWC/19.8kHz, JJI/22.2kHz, JJY/40.0kHz, NLK/24.8kHz and other VLF transmitters (Tx). These temporal dependences of VLF signal perturbation have been analyzed and the spatio-temporal characteristics of respective sub-ionospheric perturbations has already been studied by earlier workers using 2D-Finite Difference Time Domain method of simulation. In this work, we determine the spatial scale, depth and temporal dependence of lower ionospheric perturbation in consistence with umbral and penumbral motion. We considered the 2-parameter D-region ionospheric model with exponential electron density profile. To model the solar obscuration effect over it, we assumed a generalized space-time dependent 2-dimensional elliptical Gaussian distribution for ionospheric parameters, such as, effective reflection height (h') and sharpness factor (β). The depth (△hmax, △βmax), center of shadow (lato(t), lono(t)) and spatial scale (σlat,lon) of that Gaussian distribution are used as model parameters. In the vicinity of the eclipse zone, we compute the VLF signal perturbations using Long Wave Propagation Capability (LWPC) code for several signal propagation paths. The propagation path characteristics, such as, ground and water conductivity and geomagnetic effect on ionosphere are considered from standard LWPC prescriptions. The model parameters are tuned to set an optimum agreement between our computation and observed positive and negative type of VLF perturbations. Thus

  15. Direct multiple path magnetospheric propagation - A fundamental property of nonducted VLF waves

    NASA Technical Reports Server (NTRS)

    Sonwalkar, V. S.; Bell, T. F.; Helliwell, R. A.; Inan, U. S.

    1984-01-01

    An elongation of 20-200 ms, attributed to closely spaced multiple propagation paths between the satellite and the ground, is noted in well defined pulses observed by the ISEE 1 satellite in nonducted whistler mode signals from the Siple Station VLF transmitter. Electric field measurements show a 2 to 10 dB amplitude variation in the observed amplitude fading pattern which is also consistent with direct multiple path propagation. The results obtained for two cases, one outside and one inside the plasmapause, establish that the direct signals transmitted from the ground arrive almost simultaneously at any point in the magnetosphere along two or more closely spaced direct ray paths. It is also shown that multiple paths can be explained by assuming field-aligned irregularities, and the implications of these results for nonducted wave-particle interaction in the magnetosphere are discussed. For reasonable parameters of nonducted, multiple path propagation, a cyclotron-resonant electron will experience a wave Doppler broadening of a few tens to a few hundreds of Hz.

  16. Physics based model of D-region variability related to VLF propagation effects

    NASA Astrophysics Data System (ADS)

    Chakravarty, S. C.

    2012-07-01

    D-region (~60-85 km) electron density profiles measured using large number of sounding rocket experiments carried out from two Indian low latitude stations show large variations with solar zenith angle, season and solar activity. Similarly the ground based multi frequency radio wave absorption technique has provided continuous data on the morphology of the hourly electron density variations. However suitable models of the D-region electron density profile variations both during quiet and disturbed solar conditions over the Indian region are lacking. The renewed interest in the study of the VLF/LF propagation anomalies taking place through perturbations in the D-region electron densities due to various geophysical phenomena requires the availability of a baseline D-region model over low latitudes. The purpose of this paper is to critically review the physical processes of D-region production and loss of free electrons, dynamical coupling due to variety of vertically propagating atmospheric waves, sudden changes brought about by the solar energetic events like CMEs and different categories of X-ray flares. Low latitude region is not likely to be affected by the PMSE or PCA type of events but the changes due to lightning induced mesospheric red sprites and LEPs need to be considered. Based on this analysis, a preliminary low latitude D-region electron density profile model development is proposed. Sample results would illustrate key requirements from such a model in terms of its effectiveness to simulate the low latitude observations of VLF/LF amplitude and phase variations using waveguide propagation models like LWPC.

  17. Polarization of Narrowband VLF Transmitter Signals as an Ionospheric Diagnostic

    NASA Astrophysics Data System (ADS)

    Gross, N. C.; Cohen, M. B.; Said, R. K.; Gołkowski, M.

    2018-01-01

    Very low frequency (VLF, 3-30 kHz) transmitter remote sensing has long been used as a simple yet useful diagnostic for the D region ionosphere (60-90 km). All it requires is a VLF radio receiver that records the amplitude and/or phase of a beacon signal as a function of time. During both ambient and disturbed conditions, the received signal can be compared to predictions from a theoretical model to infer ionospheric waveguide properties like electron density. Amplitude and phase have in most cases been analyzed each as individual data streams, often only the amplitude is used. Scattered field formulation combines amplitude and phase effectively, but does not address how to combine two magnetic field components. We present polarization ellipse analysis of VLF transmitter signals using two horizontal components of the magnetic field. The shape of the polarization ellipse is unchanged as the source phase varies, which circumvents a significant problem where VLF transmitters have an unknown source phase. A synchronized two-channel MSK demodulation algorithm is introduced to mitigate 90° ambiguity in the phase difference between the horizontal magnetic field components. Additionally, the synchronized demodulation improves phase measurements during low-SNR conditions. Using the polarization ellipse formulation, we take a new look at diurnal VLF transmitter variations, ambient conditions, and ionospheric disturbances from solar flares, lightning-ionospheric heating, and lightning-induced electron precipitation, and find differing signatures in the polarization ellipse.

  18. Magnetospheric radio and plasma wave research - 1987-1990

    NASA Technical Reports Server (NTRS)

    Kurth, W. S.

    1991-01-01

    This review covers research performed in the area of magnetospheric plasma waves and wave-particle interactions as well as magnetospheric radio emissions. The report focuses on the near-completion of the discovery phase of radio and plasma wave phenomena in the planetary magnetospheres with the successful completion of the Voyager 2 encounters of Neptune and Uranus. Consideration is given to the advances made in detailed studies and theoretical investigations of radio and plasma wave phenomena in the terrestrial magnetosphere or in magnetospheric plasmas in general.

  19. Nighttime sensitivity of ionospheric VLF measurements to X-ray bursts from a remote cosmic source

    NASA Astrophysics Data System (ADS)

    Raulin, Jean-Pierre; Trottet, Gérard; Giménez de Castro, C. Guillermo; Correia, Emilia; Macotela, E. Liliana

    2014-06-01

    On 22 January 2009, a series of X-ray bursts were emitted by the soft gamma ray repeater SGR J1550-5418. Some of these bursts produced enhanced ionization in the nighttime lower ionosphere. These ionospheric disturbances were studied using X-ray measurements from the Anti-Coincidence Shield of the Spectrometer for Integral onboard the International Gamma-Ray Astrophysics Laboratory and simultaneous phase and amplitude records from two VLF propagation paths between the transmitter Naval Radio Station, Pearl Harbor (Hawaii) and the receivers Radio Observatorio do Itapetinga (Brazil) and Estação Antarctica Commandante Ferraz (Antarctic Peninsula). The VLF measurements have been obtained with an unprecedented high time resolution of 20 ms. We find that the illumination factor I (illuminated path length times the cosine of the zenith angle), which characterizes the propagation paths underlying the flaring object, is a key parameter which determines the sensitivity threshold of the VLF detection of X-ray bursts from nonsolar transients. For the present VLF measurements of bursts from SGR J1550-5418, it is found that for I ≥ 1.8 Mm, all X-ray bursts with fluence in the 25 keV to 2 MeV range larger than F25_min 1.0 × 10-6 erg/cm2 produce a measurable ionospheric disturbance. Such a lower limit of the X-ray fluence value indicates that moderate X-ray bursts, as opposed to giant X-ray bursts, do produce ionospheric disturbances larger than the sensitivity limit of the VLF technique. Therefore, the frequency of detection of such events could be improved, for example by increasing the coverage of existing VLF receiving networks. The VLF detection of high-energy astrophysical bursts then appears as an important observational diagnostic to complement their detection in space. This would be especially important when space observations suffer from adverse conditions, like saturation, occultation from the Earth, or the passage of the spacecraft through the South Atlantic

  20. Study of long path VLF signal propagation characteristics as observed from Indian Antarctic station, Maitri

    NASA Astrophysics Data System (ADS)

    Sasmal, Sudipta; Pal, Sujay; Chakrabarti, Sandip K.

    2014-10-01

    To examine the quality and propagation characteristics of the Very Low Frequency (VLF) radio waves in a very long propagation path, Indian Centre for Space Physics, Kolkata, participated in the 27th Indian scientific expedition to Antarctica during 2007-2008. One Stanford University made AWESOME VLF receiving system was installed at the Indian Antarctic station Maitri and about five weeks of data were recorded successfully from the Indian transmitter VTX and several other transmitting stations worldwide. The quality of the signal from the VTX transmitter was found to be very good, consistent and highly stable in day and night. The signal shows the evidences of the presence of the 24 h solar radiation in the Antarctic region during local summer. Here we report the both narrow band and broadband VLF observations from this site. The diurnal variations of VTX signal (18.2 kHz) are presented systematically for Antarctica path and also compared the same with the variations for a short propagation path (VTX-Kolkata). We compute the spatial distribution of the VTX signal along the VTX-Antarctica path using the most well-known LWPC model for an all-day and all-night propagation conditions. The calculated signal amplitudes corresponding to those conditions relatively corroborate the observations. We also present the attenuation rate of the dominant waveguide modes corresponding to those propagation conditions where the effects of the Antarctic polar ice on the attenuation of different propagating waveguide modes are visible.

  1. Possible Detection of GEMINID 2007 Meteor Shower During Day-Time from VLF Radiation Spectra

    NASA Astrophysics Data System (ADS)

    Guha, Anirban; de, Barin Kumar; Roy, Rakesh

    2009-06-01

    The results of day-time detection of GEMINID 2007 meteor shower from dynamic VLF radiation spectra in Tripura (23.50° N, 91.25° E), India, is presented here. The field experiments were performed during 12-17th December, 2007 inside Tripura University campus located at a hilly place in the North-Eastern part of India. A well calibrated software VLF receiver was used to perform the field experiments. Analyses of data reveal an hourly average rate of the shower around 50. The VLF emissions lie in the range from 8 kHz to 13 kHz which is 10 to 15 times higher than previous reports. The mean duration of each VLF emission calculated from dynamic spectra is found to be 6 s and the mean bandwidth is 3.6 kHz. The temporal variation of VLF emission duration and bandwidth of VLF radiation is also studied. The results strongly support the fact that VLF electromagnetic waves are produced during the passage of meteors in the atmosphere. The experiment also makes the study of dynamic VLF spectra as a strong tool to detect low intensity meteor shower during daytime.

  2. The Unified Radio and Plasma wave investigation

    NASA Technical Reports Server (NTRS)

    Stone, R. G.; Bougeret, J. L.; Caldwell, J.; Canu, P.; De Conchy, Y.; Cornilleau-Wehrlin, N.; Desch, M. D.; Fainberg, J.; Goetz, K.; Goldstein, M. L.

    1992-01-01

    The scientific objectives of the Ulysses Unified Radio and Plasma wave (URAP) experiment are twofold: (1) the determination of the direction, angular size, and polarization of radio sources for remote sensing of the heliosphere and the Jovian magnetosphere and (2) the detailed study of local wave phenomena, which determine the transport coefficients of the ambient plasma. A brief discussion of the scientific goals of the experiment is followed by a comprehensive description of the instrument. The URAP sensors consist of a 72.5 m electric field antenna in the spin plane, a 7.5-m electric field monopole along the spin axis of a pair of orthogonal search coil magnetic antennas. The various receivers, designed to encompass specific needs of the investigation, cover the frequency range from dc to 1 MHz. A relaxation sounder provides very accurate electron density measurements. Radio and plasma wave observations are shown to demonstrate the capabilities and limitations of the URAP instruments: radio observations include solar bursts, auroral kilometric radiation, and Jovian bursts; plasma waves include Langmuir waves, ion acousticlike noise, and whistlers.

  3. A New Observation Technique Applied to Early/Fast VLF Scattering Events

    NASA Astrophysics Data System (ADS)

    Kotovsky, D. A.; Moore, R. C.

    2012-12-01

    Early/fast very low frequency (VLF, 3-30 kHz) events are understood to result from ionospheric conductivity changes associated with lightning. Early/fast amplitude and phase perturbations have been observed coincidentally with various optical observations of transient luminous events (TLEs), including elves, sprites, and sprite halos, each of which can have temporal characteristics consistent with those of early/fast VLF events. It is yet unresolved, however, whether a specific type of TLE is directly related to the ionospheric conductivity changes responsible for the typical early/fast event. In this paper, we present spread spectrum VLF scattering observations of early/fast events. The spread spectrum analysis technique determines the amplitude and phase of a subionospherically propagating VLF signal as a function of time during the early/fast event and as a function of frequency across the 200 Hz bandwidth of the VLF transmission. VLF scattering observations, each identified with causative lightning logged by the National Lightning Detection Network (NLDN), are compared with the predictions of the Long-Wave Propagation Capability (LWPC) code, a three-dimensional earth-ionosphere waveguide propagation and scattering model. Theoretical predictions for VLF scattering from ionization changes associated with elves are compared with those associated with sprite halos, and each are compared with experimental observations. Results indicate that the observed frequency dependence of VLF scattering during early/fast events results from the combination of scattering source properties and Earth-ionosphere waveguide propagation effects. Observations are more consistent with the modeled amplitude perturbations associated with sprite halos than those with elves.

  4. Speckles in interstellar radio-wave scattering

    NASA Technical Reports Server (NTRS)

    Desai, K. M.; Gwinn, C. R.; Reynolds, J.; King, E. A.; Jauncey, D.; Nicholson, G.; Flanagan, C.; Preston, R. A.; Jones, D. L.

    1991-01-01

    Observations of speckles in the scattering disk of the Vela pulsar are presented and speckle techniques for studying and circumventing scattering of radio waves by the turbulent interstellar plasma are discussed. The speckle pattern contains, in a hologrammatic fashion, complete information on the structure of the radio source as well as the distribution of the scattering material. Speckle observations of interstellar scattering of radio waves are difficult because of their characteristically short timescales and narrow bandwidths. Here, first observations are presented, taken at 13 cm wavelength with elements of the SHEVE VLBI network, of speckles in interstellar scattering.

  5. Information Content in Radio Waves: Student Investigations in Radio Science

    NASA Astrophysics Data System (ADS)

    Jacobs, K.; Scaduto, T.

    2013-12-01

    We describe an inquiry-based instructional unit on information content in radio waves, created in the summer of 2013 as part of a MIT Haystack Observatory (Westford, MA) NSF Research Experiences for Teachers (RET) program. This topic is current and highly relevant, addressing science and technical aspects from radio astronomy, geodesy, and atmospheric research areas as well as Next Generation Science Standards (NGSS). Projects and activities range from simple classroom demonstrations and group investigations, to long term research projects incorporating data acquisition from both student-built instrumentation as well as online databases. Each of the core lessons is applied to one of the primary research centers at Haystack through an inquiry project that builds on previously developed units through the MIT Haystack RET program. In radio astronomy, students investigate the application of a simple and inexpensive software defined radio chip (RTL-SDR) for use in systems implementing a small and very small radio telescope (SRT and VSRT). Both of these systems allow students to explore fundamental principles of radio waves and interferometry as applied to radio astronomy. In ionospheric research, students track solar storms from the initial coronal mass ejection (using Solar Dynamics Observatory images) to the resulting variability in total electron density concentrations using data from the community standard Madrigal distributed database system maintained by MIT Haystack. Finally, students get to explore very long-baseline interferometry as it is used in geodetic studies by measuring crustal plate displacements over time. Alignment to NextGen standards is provided for each lesson and activity with emphasis on HS-PS4 'Waves and Their Applications in Technologies for Information Transfer'.

  6. Modeling solar flare induced lower ionosphere changes using VLF/LF transmitter amplitude and phase observations at a midlatitude site

    NASA Astrophysics Data System (ADS)

    Schmitter, E. D.

    2013-04-01

    Remote sensing of the ionosphere bottom using long wave radio signal propagation is a still going strong and inexpensive method for continuous monitoring purposes. We present a propagation model describing the time development of solar flare effects. Based on monitored amplitude and phase data from VLF/LF transmitters gained at a mid-latitude site during the currently increasing solar cycle no. 24 a parameterized electron density profile is calculated as a function of time and fed into propagation calculations using the LWPC (Long Wave Propagation Capability). The model allows to include lower ionosphere recombination and attachment coefficients, as well as to identify the relevant forcing X-ray wavelength band, and is intended to be a small step forward to a better understanding of the solar-lower ionosphere interaction mechanisms within a consistent framework.

  7. Full-Wave Radio Characterization of Ionospheric Modification at HAARP

    DTIC Science & Technology

    2015-07-26

    Full-Wave Radio Characterization of Ionospheric Modification at HAARP We have studied electrostatic and electromagnetic turbulence stimulated by...radio receivers at HAARP in Alaska, and ground-based radio receivers, incoherent scatter radars, and in-situ measurements from Canadian, ESA, and Polish...363255 San Juan, PR 00936 -3255 31-May-2015 ABSTRACT Final Report: Full-Wave Radio Characterization of Ionospheric Modification at HAARP Report Title We

  8. Type II Radio Bursts Observed by STEREO/Waves and Wind/Waves instruments

    NASA Astrophysics Data System (ADS)

    Krupar, V.; Magdalenic, J.; Zhukov, A.; Rodriguez, L.; Mierla, M.; Maksimovic, M.; Cecconi, B.; Santolik, O.

    2013-12-01

    Type II radio bursts are slow-drift emissions triggered by suprathermal electrons accelerated on shock fronts of propagating CMEs. We present several events at kilometric wavelengths observed by radio instruments onboard the STEREO and Wind spacecraft. The STEREO/Waves and Wind/Waves have goniopolarimetric (GP, also referred to as direction finding) capabilities that allow us to triangulate radio sources when an emission is observed by two or more spacecraft. As the GP inversion has high requirements on the signal-to-noise ratio we only have a few type II radio bursts with sufficient intensity for this analysis. We have compared obtained radio sources with white-light observations of STEREO/COR and STEREO/HI instruments. Our preliminary results indicate that radio sources are located at flanks of propagating CMEs.

  9. Nighttime ionospheric D region parameters from VLF phase and amplitude

    NASA Astrophysics Data System (ADS)

    Thomson, Neil R.; Clilverd, Mark A.; McRae, Wayne M.

    2007-07-01

    Nighttime ionospheric D region heights and electron densities are determined from an extensive set of VLF radio phase and amplitude observations. The D region parameters are characterized by the traditional H' (height in kilometers) and β (sharpness in km-1) as used by Wait and by the U. S. Navy in their Earth-ionosphere waveguide programs. The VLF measurements were made with several frequencies in the range 10 kHz to 41 kHz on long, mainly all-sea paths, including Omega La Reunion and Omega Argentina to Dunedin, New Zealand, NAU (Puerto Rico) and NAA (Maine, USA) to Cambridge, UK, and NPM (Hawaii) to San Francisco. Because daytime VLF propagation on such paths is readily measured and predicted, the differences between night and day amplitudes and phases were measured and compared with calculations for a range of nighttime ionospheric parameters. This avoided the problem of uncertainties in the transmitter powers. In this way the height, H', and the sharpness, β, when averaged over periods of several days, at least for the midlatitude D region near solar minimum, were found to be 85.1 ± 0.4 km and 0.63 ± 0.04 km-1, respectively.

  10. On the observations of unique low latitude whistler-triggered VLF/ELF emissions

    NASA Astrophysics Data System (ADS)

    Altaf, M.; Singh, K. K.; Singh, A. K.; Lalmani

    A detailed analysis of the VLF/ELF wave data obtained during a whistler campaign under All India Coordinated Program of Ionosphere Thermosphere Studies (AICPITS) at our low latitude Indian ground station Jammu (geomag. lat. = 22° 26‧ N, L = 1.17) has yielded two types of unusual and unique whistler-triggered VLF/ELF emissions. These include (1) whistler-triggered hook emissions and (2) whistler-triggered long enduring discrete chorus riser emissions in VLF/ELF frequency range during night time. Such types of whistler-triggered emissions have not been reported earlier from any of the ground observations at low latitudes. In the present study, the observed characteristics of these emissions are described and interpreted. Dispersion analysis of these emissions show that the whistlers as well as emissions have propagated along a higher geomagnetic field line path with L-values lying ∼L = 4, suggesting that these triggered emissions are to be regarded as mid-latitude emissions. These waves could have propagated along the geomagnetic field lines either in a ducted mode or in a pro-longitudinal (PL) mode. The measured intensity of the triggered emissions is almost equal to that of the source waves and does not vary throughout the period of observation on that day. It is speculated that these emissions may have been generated through a process of resonant interaction of the whistler waves with energetic electrons. Parameters related to this interaction are computed for different values of L and wave amplitude. The proposed mechanism explains some aspects of the dynamic spectra.

  11. VLF modal interference distance and nighttime D region VLF reflection height for west-east and east-west propagation paths to Fiji

    NASA Astrophysics Data System (ADS)

    Chand, Atishnal Elvin; Kumar, Sushil

    2017-08-01

    Very low frequency (VLF) signals from navigational transmitters propagate through the Earth-ionosphere waveguide formed by the Earth and the lower conducting ionosphere and show the pronounced minima during solar terminator transition between transmitter and receiver. Pronounced amplitude minima observed on 19.8 kHz (NWC transmitter) and 24.8 kHz (NLK transmitter) signals recorded at Suva (18.149°S, 178.446°E), Fiji, during 2013-2014, have been used to estimate the VLF modal interference distance (DMS) and nighttime D region VLF reflection height (hN). The NWC transmitter signal propagates mostly in west-east direction, and the NLK transmitter follows a transequatorial path propagating significantly in the east-west direction. The values of DMS calculated using midpath terminator speed are 2103 ± 172 km and 2507 ± 373 km for these paths having west-east and east-west components of VLF subionospheric propagation, respectively, which agree with previously published results and within 10% with theoretical values. We have also compared the DMS estimated using a terminator time method with that calculated using terminator speed for a particular day and found both the values to be consistent. The hN values were found to be maximum during winter of Southern Hemisphere for NWC signal and winter of Northern Hemisphere for NLK signal VLF propagation paths to Suva. The hN also shows significant day-to-day and seasonal variabilities with a maximum of about 10 km and 23 km for NWC and NLK signal propagation paths, respectively, which could be due to the atmospheric gravity waves associated with solar terminator transition, as well as meteorological factors such as strong lightnings.

  12. Detection of Transionospheric SuperDARN HF Waves by the Radio Receiver Instrument on the enhanced Polar Outflow Probe Satellite

    NASA Astrophysics Data System (ADS)

    Gillies, R. G.; Yau, A. W.; James, H. G.; Hussey, G. C.; McWilliams, K. A.

    2014-12-01

    The enhanced Polar Outflow Probe (ePOP) Canadian small-satellite was launched in September 2013. Included in this suite of eight scientific instruments is the Radio Receiver Instrument (RRI). The RRI has been used to measure VLF and HF radio waves from various ground and spontaneous ionospheric sources. The first dedicated ground transmission that was detected by RRI was from the Saskatoon Super Dual Auroral Radar Network (SuperDARN) radar on Nov. 7, 2013 at 14 MHz. Several other passes over the Saskatoon SuperDARN radar have been recorded since then. Ground transmissions have also been observed from other radars, such as the SPEAR, HAARP, and SURA ionospheric heaters. However, the focus of this study will be on the results obtained from the SuperDARN passes. An analysis of the signal recorded by the RRI provides estimates of signal power, Doppler shift, polarization, absolute time delay, differential mode delay, and angle of arrival. By comparing these parameters to similar parameters derived from ray tracing simulations, ionospheric electron density structures may be detected and measured. Further analysis of the results from the other ground transmitters and future SuperDARN passes will be used to refine these results.

  13. On the Use of VLF Narrowband Measurements to Study the Lower Ionosphere and the Mesosphere-Lower Thermosphere

    NASA Astrophysics Data System (ADS)

    Silber, Israel; Price, Colin

    2017-03-01

    The ionospheric D-region ( 60 km up to 95 km) and the corresponding neutral atmosphere, often referred to as the mesosphere-lower thermosphere (MLT), are challenging and costly to probe in situ. Therefore, remote sensing techniques have been developed over the years. One of these is based on very low frequency (VLF, 3-30 kHz) electromagnetic waves generated by various natural and man-made sources. VLF waves propagate within the Earth-ionosphere waveguide and are extremely sensitive to perturbations occurring in the D-region along their propagation path. Hence, measurements of these signals serve as an inexpensive remote sensing technique for probing the lower ionosphere and the MLT region. This paper reviews the use of VLF narrowband (NB) signals (generated by man-made transmitters) in the study of the D-region and the MLT for over 90 years. The fields of research span time scales from microseconds to decadal variability and incorporate lightning-induced short-term perturbations; extraterrestrial radiation bursts; energetic particle precipitation events; solar eclipses; lower atmospheric waves penetrating into the D-region; sudden stratospheric warming events; the annual oscillation; the solar cycle; and, finally, the potential use of VLF NB measurements as an anthropogenic climate change monitoring technique.

  14. Identification and classification of very low frequency waves on a coral reef flat

    USGS Publications Warehouse

    Gawehn, Matthijs; van Dongeran, Ap; van Rooijen, Arnold; Storlazzi, Curt; Cheriton, Olivia; Reniers, Ad

    2016-01-01

    Very low frequency (VLF, 0.001–0.005 Hz) waves are important drivers of flooding of low-lying coral reef-islands. In particular, VLF wave resonance is known to drive large wave runup and subsequent overwash. Using a 5 month data set of water levels and waves collected along a cross-reef transect on Roi-Namur Island in the Republic of the Marshall Islands, the observed VLF motions were categorized into four different classes: (1) resonant, (2) (nonresonant) standing, (3) progressive-growing, and (4) progressive-dissipative waves. Each VLF class is set by the reef flat water depth and, in the case of resonance, the incident-band offshore wave period. Using an improved method to identify VLF wave resonance, we find that VLF wave resonance caused prolonged (∼0.5–6.0 h), large-amplitude water surface oscillations at the inner reef flat ranging in wave height from 0.14 to 0.83 m. It was induced by relatively long-period, grouped, incident-band waves, and occurred under both storm and nonstorm conditions. Moreover, observed resonant VLF waves had nonlinear, bore-like wave shapes, which likely have a larger impact on the shoreline than regular, sinusoidal waveforms. As an alternative technique to the commonly used Fast Fourier Transformation, we propose the Hilbert-Huang Transformation that is more computationally expensive but can capture the wave shape more accurately. This research demonstrates that understanding VLF waves on reef flats is important for evaluating coastal flooding hazards.

  15. Identification and classification of very low frequency waves on a coral reef flat

    NASA Astrophysics Data System (ADS)

    Gawehn, Matthijs; van Dongeren, Ap; van Rooijen, Arnold; Storlazzi, Curt D.; Cheriton, Olivia M.; Reniers, Ad

    2016-10-01

    Very low frequency (VLF, 0.001-0.005 Hz) waves are important drivers of flooding of low-lying coral reef-islands. In particular, VLF wave resonance is known to drive large wave runup and subsequent overwash. Using a 5 month data set of water levels and waves collected along a cross-reef transect on Roi-Namur Island in the Republic of the Marshall Islands, the observed VLF motions were categorized into four different classes: (1) resonant, (2) (nonresonant) standing, (3) progressive-growing, and (4) progressive-dissipative waves. Each VLF class is set by the reef flat water depth and, in the case of resonance, the incident-band offshore wave period. Using an improved method to identify VLF wave resonance, we find that VLF wave resonance caused prolonged (˜0.5-6.0 h), large-amplitude water surface oscillations at the inner reef flat ranging in wave height from 0.14 to 0.83 m. It was induced by relatively long-period, grouped, incident-band waves, and occurred under both storm and nonstorm conditions. Moreover, observed resonant VLF waves had nonlinear, bore-like wave shapes, which likely have a larger impact on the shoreline than regular, sinusoidal waveforms. As an alternative technique to the commonly used Fast Fourier Transformation, we propose the Hilbert-Huang Transformation that is more computationally expensive but can capture the wave shape more accurately. This research demonstrates that understanding VLF waves on reef flats is important for evaluating coastal flooding hazards.

  16. Characteristics of coronal shock waves and solar type 2 radio bursts

    NASA Technical Reports Server (NTRS)

    Mann, G.; Classen, H.-T.

    1995-01-01

    In the solar corona shock waves generated by flares and/or coronal mass ejections can be observed by radio astronomical methods in terms of solar type 2 radio bursts. In dynamic radio spectra they appear as emission stripes slowly drifting from high to low frequencies. A sample of 25 solar type 2 radio bursts observed in the range of 40 - 170 MHz with a time resolution of 0.1 s by the new radiospectrograph of the Astrophvsikalisches Institut Potsdam in Tremsdorf is statistically investigated concerning their spectral features, i.e, drift rate, instantaneous bandwidth, and fundamental harmonic ratio. In-situ plasma wave measurements at interplanetary shocks provide the assumption that type 2 radio radiation is emitted in the vicinity of the transition region of shock waves. Thus, the instantaneous bandwidth of a solar type 2 radio burst would reflect the density jump across the associated shock wave. Comparing the inspection of the Rankine-Hugoniot relations of shock waves under coronal circumstances with those obtained from the observational study, solar type 2 radio bursts should be regarded to be generated by weak supercritical, quasi-parallel, fast magnetosonic shock waves in the corona.

  17. The Lower Ionospheric VLF/LF Response to the 2017 Great American Solar Eclipse Observed Across the Continent

    NASA Astrophysics Data System (ADS)

    Cohen, M. B.; Gross, N. C.; Higginson-Rollins, M. A.; Marshall, R. A.; Gołkowski, M.; Liles, W.; Rodriguez, D.; Rockway, J.

    2018-04-01

    We present observations from 11 very low frequency (VLF)/low-frequency (LF) receivers across the continental United States during the 21 August 2017 "Great American Solar Eclipse." All receivers detected transmissions from VLF/LF beacons below 50 kHz, while seven also recorded LF beacons above 50 kHz, yielding dozens of individual transmitter-receiver radio links. Our observations show two separable superimposed signatures: (1) a gradual rise and fall in signal levels visible on almost all paths as the eclipse advances and then declines, as VLF attenuation is reduced by the changing ionosphere under an eclipsed Sun, and (2) direct reflective scattering off the narrow 100-km-wide totality spot, observed more uniquely when the transmitter or receiver, if not both, are relatively close to the totality spot.

  18. Cone structure and focusing of VLF and LF electromagnetic waves at high altitudes in the ionosphere

    NASA Technical Reports Server (NTRS)

    Alpert, Ya. L.; Green, J. L.

    1994-01-01

    The frequency and angle dependencies of the electric field radiated by an electric dipole E = E(sub 0) cos omega(t) are studied through numerical calculations of absolute value of E in the VLF and LF frequency bands where F is less than or equal 0.02 to 0.05 f(sub b) in a model ionosphere over an altitude region of 800-6000 km where the wave frequency and electron gyrofrequency varies between F approximately 4-500 kHz and f(sub b) is approximately equal (1.1 to 0.2) MHz respectively. It is found that the amplitudes of the electric field have large maxima in four regions: close to the direction of the Earth magnetic field line B(sub 0) (it is called the axis field E(sub 0), in the Storey E(sub St), reversed Storey E(sub RevSt), and resonance E(sub Res) cones. The maximal values of E(sub 0), E(sub Res), and E(sub RevSt) are the most pronounced close to the lower hybrid frequency, F approximately F(sub L). The flux of the electric field is concentrated in very narrow regions, with the apex angles of the cones Delta-B is approximately (0.1-1) deg. The enhancement and focusing of the electric field increases with altitude starting at Z greater than 800 km. At Z greater than or equal to 1000 up to 6000 km, the relative value of absolute value of E, in comparison with its value at Z = 800 km is about (10(exp 2) to 10(exp 4)) times larger. Thus the flux of VLF and LF electromagnetic waves generated at high altitudes in the Earth's ionosphere are trapped into very narrow conical beams similar to laser beams.

  19. Initial Results from Awesome VLF Receiver Installed in Ecuador

    NASA Astrophysics Data System (ADS)

    Lopez, Ericson

    2012-07-01

    In this work we present the first results that we have derived from analysis of data obtained using the Atmospheric Weather Electromagnetic System for Observation Modeling and Education (Awesome) VLF receiver, designed and developed by Stanford University, USA. The receiver was installed under inter-institutional cooperation in the emerging Space Science division of the Quito Astronomical Observatory, and it is working properly since 2010. We have describe the performance characteristic of the Awesome system and the importance of having receivers at equator for monitoring the ionosphere and magnetosphere, recepting extremely low frequencies (ELF;30-3000 Hz) and very low frequencies (VLF; 3-30 KHz) electromagnetic waves, in order to better understanding the physical processes which take place in these media.

  20. VLF nighttime data analysis

    NASA Astrophysics Data System (ADS)

    1991-03-01

    This paper documents a very low frequency/low frequency (VLF/LF) Data Analysis task by the Naval Ocean Systems Center to improve the modeling of the nighttime ionosphere when making propagation predictions with the Long Wave Propagation Capability (LWPC) computer program. The task utilizes an extensive database of VLF measured data recorded during the 1985 to 1986 trips of the merchant ship GTS Callaghan in the North Atlantic area. By constraining the Callaghan data to those periods when both the ship and the distant transmitters were in time zones consistent with all-nighttime propagation, and by eliminating data from trips outside the principal area of interest, an aggregated set of recorded data was assembled for each frequency of concern. Four frequencies were examined: 16.0, 19.0, 21.4 and 24.0 kHz. Recorded data sets were graphed as signal vs. distance plots, computing distance from the transmitter for each ship's location. The LWPC program was then utilized to compute signal vs. distance along a typical path in the same ocean area, and the predicted and recorded data were compared. By changing the LWPC parameters different propagation predictions were compared with the recorded data until a best fit was obtained.

  1. Comparative Analysis of VLF Signal Variation along Trajectory Induced by X-ray Solar Flares

    NASA Astrophysics Data System (ADS)

    Kolarski, A.; Grubor, D.

    2015-12-01

    Comparative qualitative analysis of amplitude and phase delay variations was carried out along the trajectory of GQD/22.1 kHz and NAA/24.0 kHz VLF signal traces, propagating from Skelton (UK) and Maine (USA) toward Belgrade, induced by four isolated solar X-ray flare events occurred during the period from September 2005 to December 2006. For monitoring, recording and for storage of VLF data at the Institute of Physics in Belgrade, Serbia, the AbsPAL system was used. For modeling purposes of propagating conditions along GQD and NAA signal propagation paths, LWPCv21 program code was used. Occurred solar flare events induced lower ionosphere electron density height profile changes, causing perturbations in VLF wave propagation within Earth-ionosphere waveguides. As analyzed VLF signals characterize by different propagation parameters along trajectories from their transmitters to the Belgrade receiver site, their propagation is affected in different ways for different solar flare events and also for the same solar flare events.

  2. Lower Ionosphere Sensitivity to Solar X-ray Flares Over a Complete Solar Cycle Evaluated From VLF Signal Measurements

    NASA Astrophysics Data System (ADS)

    Macotela, Edith L.; Raulin, Jean-Pierre; Manninen, Jyrki; Correia, Emília; Turunen, Tauno; Magalhães, Antonio

    2017-12-01

    The daytime lower ionosphere behaves as a solar X-ray flare detector, which can be monitored using very low frequency (VLF) radio waves that propagate inside the Earth-ionosphere waveguide. In this paper, we infer the lower ionosphere sensitivity variation over a complete solar cycle by using the minimum X-ray fluence (FXmin) necessary to produce a disturbance of the quiescent ionospheric conductivity. FXmin is the photon energy flux integrated over the time interval from the start of a solar X-ray flare to the beginning of the ionospheric disturbance recorded as amplitude deviation of the VLF signal. FXmin is computed for ionospheric disturbances that occurred in the time interval of December-January from 2007 to 2016 (solar cycle 24). The computation of FXmin uses the X-ray flux in the wavelength band below 0.2 nm and the amplitude of VLF signals transmitted from France (HWU), Turkey (TBB), and U.S. (NAA), which were recorded in Brazil, Finland, and Peru. The main result of this study is that the long-term variation of FXmin is correlated with the level of solar activity, having FXmin values in the range (1 - 12) × 10-7 J/m2. Our result suggests that FXmin is anticorrelated with the lower ionosphere sensitivity, confirming that the long-term variation of the ionospheric sensitivity is anticorrelated with the level of solar activity. This result is important to identify the minimum X-ray fluence that an external source of ionization must overcome in order to produce a measurable ionospheric disturbance during daytime.

  3. Simple simulation training system for short-wave radio station

    NASA Astrophysics Data System (ADS)

    Tan, Xianglin; Shao, Zhichao; Tu, Jianhua; Qu, Fuqi

    2018-04-01

    The short-wave radio station is a most important transmission equipment of our signal corps, but in the actual teaching process, which exist the phenomenon of fewer equipment and more students, making the students' short-wave radio operation and practice time is very limited. In order to solve the above problems, to carry out shortwave radio simple simulation training system development is very necessary. This project is developed by combining hardware and software to simulate the voice communication operation and signal principle of shortwave radio station, and can test the signal flow of shortwave radio station. The test results indicate that this system is simple operation, human-machine interface friendly and can improve teaching more efficiency.

  4. The ISPM unified radio and plasma wave experiment

    NASA Technical Reports Server (NTRS)

    Stone, R. G.; Caldwell, J.; Deconchy, Y.; Deschanciaux, C.; Ebbett, R.; Epstein, G.; Groetz, K.; Harvey, C. C.; Hoang, S.; Howard, R.

    1983-01-01

    Hardware for the International Solar Polar Mission (ISPM) Unified Radio and Plasma (URAP) wave experiment is presented. The URAP determines direction and polarization of distant radio sources for remote sensing of the heliosphere, and studies local wave phenomena which determine the transport coefficients of the ambient plasma. Electric and magnetic field antennas and preamplifiers; the electromagnetic compatibility plan and grounding; radio astronomy and plasma frequency receivers; a fast Fourier transformation data processing unit waveform analyzer; dc voltage measurements; a fast envelope sampler for the solar wind, and plasmas near Jupiter; a sounder; and a power converter are described.

  5. A survey of ELF and VLF research on lightning-ionosphere interactions and causative discharges

    NASA Astrophysics Data System (ADS)

    Inan, U. S.; Cummer, S. A.; Marshall, R. A.

    2010-06-01

    Extremely low frequency (ELF) and very low frequency (VLF) observations have formed the cornerstone of measurement and interpretation of effects of lightning discharges on the overlying upper atmospheric regions, as well as near-Earth space. ELF (0.3-3 kHz) and VLF (3-30 kHz) wave energy released by lightning discharges is often the agent of modification of the lower ionospheric medium that results in the conductivity changes and the excitation of optical emissions that constitute transient luminous events (TLEs). In addition, the resultant ionospheric changes are best (and often uniquely) observable as perturbations of subionospherically propagating VLF signals. In fact, some of the earliest evidence for direct disturbances of the lower ionosphere in association with lightning discharges was obtained in the course of the study of such VLF perturbations. Measurements of the detailed ELF and VLF waveforms of parent lightning discharges that produce TLEs and terrestrial gamma ray flashes (TGFs) have also been very fruitful, often revealing properties of such discharges that maximize ionospheric effects, such as generation of intense electromagnetic pulses (EMPs) or removal of large quantities of charge. In this paper, we provide a review of the development of ELF and VLF measurements, both from a historical point of view and from the point of view of their relationship to optical and other observations of ionospheric effects of lightning discharges.

  6. The combined study of the middle atmosphere meteorological parameters and lower ionosphere dynamics over Europe by means of remote VLF-LF measurements

    NASA Astrophysics Data System (ADS)

    Zetzer, J. I.; Lyakhov, A.; Yakymenko, K.

    2012-12-01

    The results of comprehensive analysis of long-term records of VLF-LF European transmitters by means of Mikhnevo geophysical observatory (Institute of Geospheres Dynamics), SID station A118 (France) and a number of AWESOM receivers are presented. In the previous study (A.A.Egoshin et al., Izvestiya, Physics of the Solid Earth, 2012, Vol. 48, No. 3, pp. 275-286) the results obtained under the minimum solar activity were presented that have shown the link between the lower ionosphere parameters and meteorological fields of the middle atmosphere. The current study expands the evidence to the increased solar activity level as well as the number of receivers, thus allowing more dense coverage of the Europe by the radio paths. Middle atmosphere data under study were provided by the EOS Aura Microwave Limb Sounder. These asynoptic data, in turn, were processed by the space-time spectral analysis on various pressure levels for various window lengths. The results are presented for the spatial structure of wave-like perturbations in the VLF-LF signal strength, which result from the lower ionosphere disturbances on various radio paths. Special short-windowed space-time study was evaluated for the periods of anomalous temporal behavior of the VLF-LF signals and the results of the altitude-latitude mode structures of the geopotential height, neutral temperature, water and ozone constituents are presented. It is shown that the spatial properties of the lower ionosphere can vary significantly at relatively small scale. Moreover, the altitude-latitude mode structures do not coincide in space as well as in time, thus, complicating the lower ionosphere response to the meteorological variations of the middle atmosphere. The analysis of all assembled data proves two main points. At first, it is possible to evaluate synoptic long-term monitoring of the middle atmosphere via the lower ionosphere perturbations as seen by VLF-LF receivers. At second, the theoretical models of the lower

  7. Antenna Construction and Propagation of Radio Waves.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    Developed as part of the Marine Corps Institute (MCI) correspondence training program, this course on antenna construction and propagation of radio waves is designed to provide communicators with instructions in the selection and/or construction of the proper antenna(s) for use with current field radio equipment. Introductory materials include…

  8. Indian Nuclear Command and Control Dilemma

    DTIC Science & Technology

    2006-09-01

    Submarine Communications .............................................................53 a. ELF Communications ...system is activated and deployed. The crews of submarines are informed through this system and other long wave ( ELF and VLF) radio communication ...through connectivity links of ELF , VLF and TACAMO airborne VLF communication systems. a. ELF Communications The U.S. Navy’s ELF Communication

  9. Plasma and radio waves from Neptune: Source mechanisms and propagation

    NASA Astrophysics Data System (ADS)

    Wong, H. K.

    1994-03-01

    This report summarizes results obtained through the support of NASA Grant NAGW-2412. The objective of this project is to conduct a comprehensive investigation of the radio wave emission observed by the planetary radio astronomy (PRA) instrument on board Voyager 2 as if flew by Neptune. This study has included data analysis, theoretical and numerical calculations, ray tracing, and modeling to determine the possible source mechanism(s) and locations of the Neptune radio emissions. We have completed four papers, which are included in the appendix. The paper 'Modeling of Whistler Ray Paths in the Magnetosphere of Neptune' investigated the propagation and dispersion of lighting-generated whistler in the magnetosphere of Neptune by using three dimensional ray tracing. The two papers 'Numerical Simulations of Bursty Radio Emissions from Planetary Magnetospheres' and 'Numerical Simulations of Bursty Planetary Radio Emissions' employed numerical simulations to investigate an alternate source mechanism of bursty radio emissions in addition to the cyclotron maser instability. We have also studied the possible generation of Z and whistler mode waves by the temperature anisotropic beam instability and the result was published in 'Electron Cyclotron Wave Generation by Relativistic Electrons.' Besides the aforementioned studies, we have also collaborated with members of the PRA team to investigate various aspects of the radio wave data. Two papers have been submitted for publication and the abstracts of these papers are also listed in the appendix.

  10. Plasma and radio waves from Neptune: Source mechanisms and propagation

    NASA Technical Reports Server (NTRS)

    Wong, H. K.

    1994-01-01

    This report summarizes results obtained through the support of NASA Grant NAGW-2412. The objective of this project is to conduct a comprehensive investigation of the radio wave emission observed by the planetary radio astronomy (PRA) instrument on board Voyager 2 as if flew by Neptune. This study has included data analysis, theoretical and numerical calculations, ray tracing, and modeling to determine the possible source mechanism(s) and locations of the Neptune radio emissions. We have completed four papers, which are included in the appendix. The paper 'Modeling of Whistler Ray Paths in the Magnetosphere of Neptune' investigated the propagation and dispersion of lighting-generated whistler in the magnetosphere of Neptune by using three dimensional ray tracing. The two papers 'Numerical Simulations of Bursty Radio Emissions from Planetary Magnetospheres' and 'Numerical Simulations of Bursty Planetary Radio Emissions' employed numerical simulations to investigate an alternate source mechanism of bursty radio emissions in addition to the cyclotron maser instability. We have also studied the possible generation of Z and whistler mode waves by the temperature anisotropic beam instability and the result was published in 'Electron Cyclotron Wave Generation by Relativistic Electrons.' Besides the aforementioned studies, we have also collaborated with members of the PRA team to investigate various aspects of the radio wave data. Two papers have been submitted for publication and the abstracts of these papers are also listed in the appendix.

  11. ELF and VLF signatures of sprites registered onboard the low altitude satellite DEMETER

    NASA Astrophysics Data System (ADS)

    Błecki, J.; Parrot, M.; Wronowski, R.

    2009-06-01

    We report the observation of ELF and VLF signature of sprites recorded on the low altitude satellite DEMETER during thunderstorm activity. At an altitude of ~700 km, waves observed on the E-field spectrograms at mid-to-low latitudes during night time are mainly dominated by up-going 0+ whistlers. During the night of 20 July 2007 two sprites have been observed around 20:10:08 UT from the observatory located on the top of the mountain Śnieżka in Poland (50°44'09" N, 15°44'21" E, 1603 m) and, ELF and VLF data have been recorded by the satellite at about 1200 km from the region of thunderstorm activity. During this event, the DEMETER instruments were switched in the burst mode and it was possible to register the wave forms. It is shown that the two sprites have been triggered by two intense +CG lightning strokes (100 kA) occurring during the same millisecond but not at the same location. Despite the distance DEMETER has recorded at the same time intense and unusual ELF and VLF emissions. It is shown that the whistler wave propagates from the thunderstorm regions in the Earth-ionosphere guide and enters in the ionosphere below the satellite. They last several tens of milliseconds and the intensity of the ELF waveform is close to 1 mV/m. A particularly intense proton whistler is also associated with these emissions.

  12. Numerical simulation of whistler-triggered VLF emissions observed in Antartica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nunn, D.; Smith, A.J.

    1996-03-01

    The authors have extracted from VLF databases from British Antarctica Survey data taken at Halley and Faraday stations, examples of whistler-triggered emissions (WTE). The WTE are relatively narrow band emissions triggered by natural background whistlers undergoing nonlinear wave particle interactions generally in the equatorial regions. They occur with either rising or falling frequency relative to the triggering waves. Using a Vlasov type code the authors are able to simulate the types of emissions which are observed. 24 refs., 8 figs., 3 tabs.

  13. Grating formation by a high power radio wave in near-equator ionosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Rohtash; Sharma, A. K.; Tripathi, V. K.

    2011-11-15

    The formation of a volume grating in the near-equator regions of ionosphere due to a high power radio wave is investigated. The radio wave, launched from a ground based transmitter, forms a standing wave pattern below the critical layer, heating the electrons in a space periodic manner. The thermal conduction along the magnetic lines of force inhibits the rise in electron temperature, limiting the efficacy of heating to within a latitude of few degrees around the equator. The space periodic electron partial pressure leads to ambipolar diffusion creating a space periodic density ripple with wave vector along the vertical. Suchmore » a volume grating is effective to cause strong reflection of radio waves at a frequency one order of magnitude higher than the maximum plasma frequency in the ionosphere. Linearly mode converted plasma wave could scatter even higher frequency radio waves.« less

  14. One day prediction of nighttime VLF amplitudes using nonlinear autoregression and neural network modeling

    NASA Astrophysics Data System (ADS)

    Santosa, H.; Hobara, Y.

    2017-01-01

    The electric field amplitude of very low frequency (VLF) transmitter from Hawaii (NPM) has been continuously recorded at Chofu (CHF), Tokyo, Japan. The VLF amplitude variability indicates lower ionospheric perturbation in the D region (60-90 km altitude range) around the NPM-CHF propagation path. We carried out the prediction of daily nighttime mean VLF amplitude by using Nonlinear Autoregressive with Exogenous Input Neural Network (NARX NN). The NARX NN model, which was built based on the daily input variables of various physical parameters such as stratospheric temperature, total column ozone, cosmic rays, Dst, and Kp indices possess good accuracy during the model building. The fitted model was constructed within the training period from 1 January 2011 to 4 February 2013 by using three algorithms, namely, Bayesian Neural Network (BRANN), Levenberg Marquardt Neural Network (LMANN), and Scaled Conjugate Gradient (SCG). The LMANN has the largest Pearson correlation coefficient (r) of 0.94 and smallest root-mean-square error (RMSE) of 1.19 dB. The constructed models by using LMANN were applied to predict the VLF amplitude from 5 February 2013 to 31 December 2013. As a result the one step (1 day) ahead predicted nighttime VLF amplitude has the r of 0.93 and RMSE of 2.25 dB. We conclude that the model built according to the proposed methodology provides good predictions of the electric field amplitude of VLF waves for NPM-CHF (midlatitude) propagation path.

  15. In-Band and Out-of-Band VLF Scattering by Modulated D-region Heating at the Arecibo Observatory

    NASA Astrophysics Data System (ADS)

    Burch, H.; Moore, R. C.

    2017-12-01

    The HF heating facility at the Arecibo Observatory is able to create an artificial disturbance in the D-region ionosphere through HF heating, a phenomenon which has been well documented at HAARP. Very Low Frequency (VLF, 3-30 kHz) waves radiated by Navy transmitters propagate around the globe in the Earth-Ionosphere waveguide and scatter from this artificially disturbed region. We investigated this effect at the Arecibo Observatory during the July 2017 HF heating campaign using an amplitude-modulated HF signal at modulation frequencies from below 1 Hz to approximately 5 kHz. VLF receivers stationed in Puerto Rico measured the amplitude and phase of propagating VLF transmitter signals under HF-heated and ambient ionospheric conditions. We interpret the scattered VLF signals in the context of an ionospheric HF heating model that has been successfully used to interpret the results of HAARP experiments for a number of years. We present initial results regarding the generation and detection of nonlinear mixing components at the VLF transmitter frequency +/- the HF modulation frequency.

  16. Determining the VLF/ULF source height using phase measurements

    NASA Astrophysics Data System (ADS)

    Ryabov, A.; Kotik, D. S.

    2012-12-01

    Generation of ULF/VLF waves in the ionosphere using powerful RF facilities has been studied for the last 40 years, both theoretically and experimentally. During this time, it was proposed several mechanisms for explaining the experimental results: modulation of ionospheric currents based on thermal nonlinearity, ponderomotive mechanisms for generation both VLF and ULF signals, cubic nonlinearity, etc. According mentioned above mechanisms the VLF/ULF signal source could be located in the lower or upper ionosphere. The group velocity of signal propagation in the ionosphere is significantly smaller than speed of light. As a result the appreciable time delay of the received signals will occur at the earth surface. This time delay could be determine by measuring the phase difference between received and reference signals, which are GPS synchronized. The experiment on determining the time delay of ULF signal propagation from the ionospheric source was carried out at SURA facility in 2012 and the results are presented in this paper. The comparison with numerical simulation of the time delay using the adjusted IRI model and ionosonde data shows well agreement with the experimental observations. The work was supported by RFBR grant 11-02-00419-a and RF Ministry of education and science by state contract 16.518.11.7066.

  17. Wave optics-based LEO-LEO radio occultation retrieval

    NASA Astrophysics Data System (ADS)

    Benzon, Hans-Henrik; Høeg, Per

    2016-06-01

    This paper describes the theory for performing retrieval of radio occultations that use probing frequencies in the XK and KM band. Normally, radio occultations use frequencies in the L band, and GPS satellites are used as the transmitting source, and the occultation signals are received by a GPS receiver on board a Low Earth Orbit (LEO) satellite. The technique is based on the Doppler shift imposed, by the atmosphere, on the signal emitted from the GPS satellite. Two LEO satellites are assumed in the occultations discussed in this paper, and the retrieval is also dependent on the decrease in the signal amplitude caused by atmospheric absorption. The radio wave transmitter is placed on one of these satellites, while the receiver is placed on the other LEO satellite. One of the drawbacks of normal GPS-based radio occultations is that external information is needed to calculate some of the atmospheric products such as the correct water vapor content in the atmosphere. These limitations can be overcome when a proper selected range of high-frequency waves are used to probe the atmosphere. Probing frequencies close to the absorption line of water vapor have been included, thus allowing the retrieval of the water vapor content. Selecting the correct probing frequencies would make it possible to retrieve other information such as the content of ozone. The retrieval is performed through a number of processing steps which are based on the Full Spectrum Inversion (FSI) technique. The retrieval chain is therefore a wave optics-based retrieval chain, and it is therefore possible to process measurements that include multipath. In this paper simulated LEO to LEO radio occultations based on five different frequencies are used. The five frequencies are placed in the XK or KM frequency band. This new wave optics-based retrieval chain is used on a number of examples, and the retrieved atmospheric parameters are compared to the parameters from a global European Centre for Medium

  18. Sprites and Early ionospheric VLF perturbations

    NASA Astrophysics Data System (ADS)

    Haldoupis, Christos; Amvrosiadi, Nino; Cotts, Ben; van der Velde, Oscar; Chanrion, Olivier; Neubert, Torsten

    2010-05-01

    Past studies have shown a correlation between sprites and early VLF perturbations, but the reported correlation varies widely from ~ 50% to 100%. The present study resolves these large discrepancies by analyzing several case studies of sprite and narrowband VLF observations, in which multiple transmitter-receiver VLF links with great circle paths (GCPs) passing near a sprite-producing thunderstorm were available. In this setup, the multiple links act in a complementary way that makes the detection of early VLF perturbations much more probable compared to a single VLF link that can miss several of them, a fact that was overlooked in past studies. The evidence shows that sprites are accompanied by early VLF perturbations in a one-to-one correspondence. This implies that the sprite generation mechanism may cause also sub-ionospheric conductivity disturbances that produce early VLF events. However, the one-to-one "sprite to early" event relationship, if viewed conversely as "early to sprite", appears not to be always reciprocal. This is because the number of early events detected in some cases was considerably larger than the number of sprites. Since the great majority of the early events not accompanied by sprites was caused by positive cloud to ground (+CG) lightning discharges, it is possible that sprites or sprite halos were concurrently present in these events as well but were missed by the sprite-watch detection system. In order for this option to be resolved we need more studies using highly sensitive optical systems capable of detecting weaker sprites, sprite halos and elves.

  19. Effectiveness of radio waves application in modern general dental procedures: An update.

    PubMed

    Qureshi, Arslan; Kellesarian, Sergio Varela; Pikos, Michael A; Javed, Fawad; Romanos, Georgios E

    2017-01-01

    The purpose of the present study was to review indexed literature and provide an update on the effectiveness of high-frequency radio waves (HRW) application in modern general dentistry procedures. Indexed databases were searched to identify articles that assessed the efficacy of radio waves in dental procedures. Radiosurgery is a refined form of electrosurgery that uses waves of electrons at a radiofrequency ranging between 2 and 4 MHz. Radio waves have also been reported to cause much less thermal damage to peripheral tissues compared with electrosurgery or carbon dioxide laser-assisted surgery. Formation of reparative dentin in direct pulp capping procedures is also significantly higher when HRW are used to achieve hemostasis in teeth with minimally exposed dental pulps compared with traditional techniques for achieving hemostasis. A few case reports have reported that radiosurgery is useful for procedures such as gingivectomy and gingivoplasty, stage-two surgery for implant exposure, operculectomy, oral biopsy, and frenectomy. Radiosurgery is a relatively modern therapeutic methodology for the treatment of trigeminal neuralgia; however, its long-term efficacy is unclear. Radio waves can also be used for periodontal procedures, such as gingivectomies, coronal flap advancement, harvesting palatal grafts for periodontal soft tissue grafting, and crown lengthening. Although there are a limited number of studies in indexed literature regarding the efficacy of radio waves in modern dentistry, the available evidence shows that use of radio waves is a modernization in clinical dentistry that might be a contemporary substitute for traditional clinical dental procedures.

  20. Rocket observations of the precipitation of electrons by ground VLF transmitters

    NASA Technical Reports Server (NTRS)

    Arnoldy, Roger L.; Kintner, Paul M.

    1989-01-01

    Recent results obtained with electric and magnetic receivers aboard a NASA sounding rocket launched on July 31, 1987 are presented which relate multiple electron spectral peaks observed in the bounce loss cone fluxes to the resonant interaction of electrons with VLF waves from ground transmitters. The correlation of transmitter signals passing through the ionosphere with the precipitated electrons was investigated. The analysis of these in situ wave and particle data addresses the propagation of waves through the ionosphere, and, through an application of the resonant theory, enables an estimation of the cold plasma density in the interaction region.

  1. Radio Follow-Up of Gravitational-Wave Triggers during Advanced LIGO 01

    DOE PAGES

    Palliyaguru, N. T.; Corsi, Alessandra; Kasliwal, M. M.; ...

    2016-09-28

    We present radio follow-up observations carried out with the Karl G. Jansky Very Large Array during the first observing run (O1) of the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO). A total of three gravitational-wave triggers were followed-up during the ≈4 months of O1, from 2015 September to 2016 January. Two of these triggers, GW150914 and GW151226, are binary black hole (BH) merger events of high significance. A third trigger, G194575, was subsequently declared as an event of no interest (i.e., a false alarm). Our observations targeted selected optical transients identified by the intermediate Palomar Transient Factory in the Advanced LIGOmore » error regions of the three triggers, and a limited region of the gravitational-wave localization area of G194575 not accessible to optical telescopes due to Sun constraints, where a possible high-energy transient was identified. No plausible radio counterparts to GW150914 and GW151226 were found, in agreement with expectations for binary BH mergers. We show that combining optical and radio observations is key to identifying contaminating radio sources that may be found in the follow-up of gravitational-wave triggers, such as emission associated with star formation and active galactic nuclei. We discuss our results in the context of the theoretical predictions for radio counterparts to gravitational-wave transients, and describe our future plans for the radio follow-up of Advanced LIGO (and Virgo) triggers.« less

  2. VLF Observation of Long Ionospheric Recovery Events

    NASA Astrophysics Data System (ADS)

    Cotts, B. R.; Inan, U. S.

    2006-12-01

    On the evening of 20 November 1992, three early/fast events were observed on the great circle path (GCP) from the NAU transmitter in Puerto Rico to Gander (GA), Newfoundland. These events were found to have significantly longer recovery times (up to 20 minutes) than any previously documented events. Typical early/fast events and Lightning-induced Electron Precipitation (LEP) events affect the D-region ionosphere near the night-time VLF-reflection height of ~85 km and exhibit recovery to pre-event levels of < 180 seconds [e.g., Sampath et al., 2000]. These lightning-associated long recovery VLF events resemble the observed long ionospheric recovery of the VLF signature of the 27 December 2004 galactic gamma-ray flare event [Inan et al., 2006], which was interpreted to be due to the unusually high electron detachment rates at low (below 40 km) altitudes, The region of the ionosphere affected in these long recovery VLF events may thus also include the altitude range < 40 km, and may possibly be related to gigantic jets. In this context, preliminary results indicate that the lightning-associated VLF long recovery events appear to be more common in oceanic thunderstorms. In this paper, we present occurrence statistics and other measured properties of VLF long recovery events, observed on all-sea based and land based VLF great circle paths.

  3. Generation of whistler waves by continuous HF heating of the upper ionosphere

    NASA Astrophysics Data System (ADS)

    Vartanyan, A.; Milikh, G. M.; Eliasson, B.; Najmi, A. C.; Parrot, M.; Papadopoulos, K.

    2016-07-01

    Broadband VLF waves in the frequency range 7-10 kkHz and 15-19 kHz, generated by F region CW HF ionospheric heating in the absence of electrojet currents, were detected by the DEMETER satellite overflying the High Frequency Active Auroral Research Program (HAARP) transmitter during HAARP/BRIOCHE campaigns. The VLF waves are in a frequency range corresponding to the F region lower lybrid (LH) frequency and its harmonic. This paper aims to show that the VLF observations are whistler waves generated by mode conversion of LH waves that were parametrically excited by HF-pump-plasma interaction at the upper hybrid layer. The paper discusses the basic physics and presents a model that conjectures (1) the VLF waves observed at the LH frequency are due to the interaction of the LH waves with meter-scale field-aligned striations—generating whistler waves near the LH frequency; and (2) the VLF waves at twice the LH frequency are due to the interaction of two counterpropagating LH waves—generating whistler waves near the LH frequency harmonic. The model is supported by numerical simulations that show good agreement with the observations. The (Detection of Electromagnetic Emissions Transmitted from Earthquake Regions results and model discussions are complemented by the Kodiak radar, ionograms, and stimulated electromagnetic emission observations.

  4. Dependence of Whistler-mode Wave Induced Electron Precipitation on k-vector Direction.

    NASA Astrophysics Data System (ADS)

    Kulkarni, P.; Inan, U. S.; Bell, T. F.; Bortnik, J.

    2007-12-01

    Whistler-mode waves that are either spontaneously generated in-situ (i.e., chorus), or externally injected (lightning, VLF transmitters) are known to be responsible for the loss of radiation belt electrons. An important determinant in the quantification of this loss is the dependence of the cyclotron resonant pitch angle scattering on the initial wave normal angles of the driving waves. Inan et al. (U.S. Inan et al., Controlled precipitation of radiation belt electrons, Journal of Geophysical Research-Space Physics, 108 (A5), 1186, doi: 10.1029/2002JA009580, 2003.) suggested that the lifetime of > 1 MeV electrons in the inner radiation belts might be moderated by in situ injection of VLF whistler mode waves at frequencies of a few kHz. The formulation of Wang and Bell (T.N.C. Wang and T.F. Bell, Radiation resisitance of a short dipole immersed in a cold magnetoionic medium, Radio Science, 4(2), 167-177, February 1969) for an electric dipole antenna located in the inner magnetosphere established that most of the radiated power is concentrated in waves whose wave normal angles lie near the local resonance cone. Such waves, compared to those injected at less oblique initial wave normal angles, undergo several more magnetospheric reflections, persist in the magnetospheric cavity for longer periods of time, and resonate with electrons of higher energies. Accordingly, such waves may be highly effective in contributing to the loss of electrons from the inner belt and slot regions [Inan et al., 2006]. Nevertheless, it has been noted (Inan et al. [2006], Inan and Bell [1991] and Albert [1999]) that > 1 MeV electrons may not be effectively scattered by waves propagating with very high wave normal angles, due to the generally reduced gyroresonant diffusion coefficients for wave normals near the resonance cone. We use the Stanford 2D VLF raytracing program to determine the energetic electron pitch angle scattering and the precipitated flux signatures that would be detected for

  5. Synopsis of Mid-latitude Radio Wave Absorption in Europe

    NASA Technical Reports Server (NTRS)

    Torkar, K. M.; Friedrich, M.

    1984-01-01

    Radio wave absorption data covering almost two years from Europe to Central Asia are presented. They are normalized by relating them to a reference absorption. Every day these normalized data are fitted to a mathematical function of geographical location in order to obtain a daily synopsis of radio wave absorption. A film of these absorption charts was made which is intended to reveal movements of absorption or absorption anomaly. In addition, radiance (temperature) data from the lower D-region are also plotted onto these charts.

  6. Ulysses radio and plasma wave observations in the Jupiter environment

    NASA Technical Reports Server (NTRS)

    Stone, R. G.; Pedersen, B. M.; Harvey, C. C.; Canu, P.; Cornilleau-Wehrlin, N.; Desch, M. D.; De Villedary, C.; Fainberg, J.; Farrell, W. M.; Goetz, K.

    1992-01-01

    The Unified Radio and Plasma Wave (URAP) experiment has produced new observations of the Jupiter environment, owing to the unique capabilities of the instrument and the traversal of high Jovian latitudes. Broad-band continuum radio emission from Jupiter and in situ plasma waves have proved valuable in delineating the magnetospheric boundaries. Simultaneous measurements of electric and magnetic wave fields have yielded new evidence of whistler-mode radiation within the magnetosphere. Observations of auroral-like hiss provided evidence of a Jovian cusp. The source direction and polarization capabilities of URAP have demonstrated that the outer region of the Io plasma torus supported at least five separate radio sources that reoccurred during successive rotations with a measurable corotation lag. Thermal noise measurements of the Io torus densities yielded values in the densest portion that are similar to models suggested on the basis of Voyager observations of 13 years ago. The URAP measurements also suggest complex beaming and polarization characteristics of Jovian radio components. In addition, a new class of kilometer-wavelength striated Jovian bursts has been observed.

  7. Walkie-Talkie Measurements for the Speed of Radio Waves in Air

    ERIC Educational Resources Information Center

    Dombi, Andra; Tunyagi, Arthur; Neda, Zoltan

    2013-01-01

    A handheld emitter-receiver device suitable for the direct estimation of the velocity of radio waves in air is presented. The velocity of radio waves is measured using the direct time-of-flight method, without the need for any tedious and precise settings. The results for two measurement series are reported. Both sets of results give an estimate…

  8. Solar flare induced ionospheric D-region enhancements from VLF amplitude observations

    NASA Astrophysics Data System (ADS)

    Thomson, N. R.; Clilverd, M. A.

    2001-11-01

    Enhancements of D-region electron densities caused by solar flares are determined from observations of VLF subionospheric amplitude changes and these enhancements are then related to the magnitudes of the X-ray fluxes measured by the GOES satellites. The electron densities are characterised by the two traditional parameters, /H' and /β (being measures of the ionospheric height and the rate of increase of electron density with height, respectively), which are found by VLF radio modelling of the observed amplitudes using the NOSC Earth-ionosphere waveguide programs (LWPC and Modefinder) mainly on two paths, one short and one long. The short path measurements were made near Cambridge, UK, on the 18.3kHz signals from the French transmitter 617km to the south while the long path measurements were made near Dunedin, NZ, on the 24.8kHz signals from NLK in Seattle, USA, 12.3Mm across the Pacific Ocean. The observations include flares up to a magnitude of about M5 (5×10-5Wm-2 at 0.1-0.8nm) which gave VLF amplitude enhancements up to about 8dB; these corresponded, under near solar maximum conditions (1992), to a reduction in /H' from about 71km down to about 63km and an increase in /β from 0.43km-1 up to about 0.49km-1. The increased values of /β during a flare are caused by the solar X-rays dominating all sources of ionisation during the flare in contrast with the normal unperturbed daytime values of /β which are significantly lower than for a single solar UV or X-ray source due to the extra electrons from the normal galactic cosmic ray ionisation in the lowest parts of the D-region. This steady, normal (unperturbed) cosmic ray influence on /β, and hence unperturbed VLF attenuation, is more marked at times of reduced solar Lyman-/α flux in the D-region such as at solar minimum, high latitudes or early or late in the day, thus explaining the normal (unperturbed) higher VLF attenuation rates previously reported in these conditions.

  9. Radio Wave Generation by a Collision or Contact between Various Materials

    NASA Astrophysics Data System (ADS)

    Takano, T.; Hanawa, R.; Saegusa, K.; Ikeda, H.

    2014-12-01

    In fracture of rock, radio wave emission was found experimentally [1]. This phenomenon could be used to detect a rock fracture during an earthquake or a volcanic activity [2]. The cause of the radio wave is expected to be micro-discharges, which are generated by an inhomogeneous potential distribution around micro-cracks. In order to better understand the phenomena and clarify the cause of radio wave emission, we carried out experiments to detect the emission in the cases of a collision or contact between various materials. We used receiving systems with great sensitivities and sufficient frequency bandwidths at 1 MHz-, 300 MHz-, 2 GHz-, and 18 GHz-bands. The specimen materials are as follows: Steel (2) Brass (3) Copper (4)Small coin (5)Celluloid. We obtained the following results: The signal was detected for the specimen of (1) to (4), but not for (5). The signal is composed of intermittent spikes which include waves with a frequency close to the center frequency of each frequency band. The power is strongest at the lower frequencies among all frequency bands. The more details will be given in the presentation. The origin of radio wave emission from the metal is supposed to be discharges between materials in these experiments. It is surprising that even a small coin can generate a significant amount of radio wave. Accordingly, it is inferred that all amount of charges are discharged through a conductive metal. On the other hand, celluloid did not generate radio wave, though the specimen was sufficiently charged by brushing. It is inferred that a quite localized charge was discharged but the remaining charges were blocked due to poor conductivity. Extending this hypothesis, large-scale contact should have occurred between broken fragments for the radio wave generation in the aforementioned rock fracture experiments. Turbulence of the fragments is a candidate for the explanation. [1] K. Maki et al., "An experimental study of microwave emission from compression

  10. Modeling of the lower ionospheric response and VLF signal modulation during a total solar eclipse using ionospheric chemistry and LWPC

    NASA Astrophysics Data System (ADS)

    Chakraborty, Suman; Palit, Sourav; Ray, Suman; Chakrabarti, Sandip K.

    2016-02-01

    The variation in the solar Extreme Ultraviolet (EUV) radiation flux by any measure is the most dominant natural source to produce perturbations or modulations in the ionospheric chemical and plasma properties. A solar eclipse, though a very rare phenomenon, is similarly bound to produce a significant short time effect on the local ionospheric properties. The influence of the ionizing solar flux reduction during a solar eclipse on the lower ionosphere or, more precisely, the D-region, can be studied with the observation of Very Low Frequency (VLF) radio wave signal modulation. The interpretation of such an effect on VLF signals requires a knowledge of the D-region ion chemistry, which is not well studied till date. Dominant parameters which govern the ion chemistry, such as the recombination coefficients, are poorly known. The occurrence of events such as a solar eclipse provides us with an excellent opportunity to investigate the accuracy of our knowledge of the chemical condition in this part of Earth's atmosphere and the properties which control the ionospheric stability under such disturbances. In this paper, using existing knowledge of the lower ionospheric chemical and physical properties we carry out an interpretation of the effects obtained during the total solar eclipse of 22 of July 2009 on the VLF signal. Data obtained from a week long campaign conducted by the Indian Centre for Space Physics (ICSP) over the Indian subcontinent has been used for this purpose. Both positive and negative amplitude changes during the eclipse were observed along various receiver locations. In this paper, data for a propagation path between a Indian Navy VLF transmitter named VTX3 and a pair of receivers in India are used. We start from the observed solar flux during the eclipse and calculate the ionization during the whole time span over most of the influenced region in a range of height. We incorporate a D-region ion-chemistry model to find the equilibrium ion density over

  11. The VLF fingerprint of elves: Step-like and long-recovery early VLF perturbations caused by powerful ±CG lightning EM pulses

    NASA Astrophysics Data System (ADS)

    Haldoupis, Christos; Cohen, Morris; Arnone, Enrico; Cotts, Benjamin; Dietrich, Stefano

    2013-08-01

    Subionospheric VLF recordings are investigated in relation with intense cloud-to-ground (CG) lightning data. Lightning impacts the lower ionosphere via heating and ionization changes which produce VLF signal perturbations known as early VLF events. Typically, early events recover in about 100 s, but a small subclass does not recover for many minutes, known as long-recovery early events (LORE). In this study, we identify LORE as a distinct category of early VLF events, whose signature may occur either on its own or alongside the short-lived typical early VLF event. Since LORE onsets coincide with powerful lightning strokes of either polarity (±), we infer that they are due to long-lasting ionization changes in the uppermost D region ionosphere caused by electromagnetic pulses emitted by strong ± CG lightning peak currents of typically > 250 kA, which are also known to generate elves. The LORE perturbations are detected when the discharge is located within ~250 km from the great circle path of a VLF transmitter-receiver link. The probability of occurrence increases with stroke intensity and approaches unity for discharges with peak currents ≥ ~300 kA. LOREs are nighttime phenomena that occur preferentially, at least in the present regional data set, during winter when strong ± CG discharges are more frequent and intense. The evidence suggests LORE as a distinct signature representing the VLF fingerprint of elves, a fact which, although was predicted by theory, it escaped identification in the long-going VLF research of lightning effects in the lower ionosphere.

  12. An Alternative Explanation for "Step-Like" Early VLF Event

    NASA Astrophysics Data System (ADS)

    Moore, R. C.

    2016-12-01

    A newly-deployed array of VLF receivers along the East Coast of the United States is ideally suited for detecting VLF scattering from lightning-induced disturbances to the lower ionosphere. The array was deployed in May 2016, and one VLF receiver was deployed only 20 km from the NAA transmitter (24.0 kHz) in Cutler, Maine. The phase of the NAA signal at this closest site varies significantly with time, due simply to the impedance match of the transmitter varying with time. Additionally, both the amplitude and phase exhibit periods of rapid shifts that could possibly explain at least some "step-like" VLF scattering events. Here, we distinguish between "step-like" VLF scattering events and other events in that "step-like" events are typically not closely associated with a detected causative lightning flash and also tend to exhibit little or no recovery to ambient conditions after the event onset. We present an analysis of VLF observations from the East Coast array that demonstrates interesting examples of step-like VLF events far from the transmitter that are associated with step-like events very close to the transmitter. We conclude that step-like VLF events should be treated with caution, unless definitively associated with a causative lightning flash and/or detected using observations of multiple transmitter signals.

  13. Amplitude and phase perturbations on VLF/LF signals at Belgrade due to X-ray flare intensity

    NASA Astrophysics Data System (ADS)

    Sulic, Desanka

    2016-07-01

    Narrowband very low frequency (VLF, 3-30 kHz) and low frequency (LF, 30-300 kHz) radio signals are powerful tool for long-range remote sensing of the ionospheric D-region electron density. Propagation of VLF/LF signals emitted by man-made transmitters takes place in the Earth-ionosphere waveguide and strongly depends on the electrical properties of the ionosphere. Changes in the D-region electron density cause changes in the received amplitude and phase on VLF/LF signals. Comparing the measured VLF/LF perturbations with LWPC simulations based on the predicted changes to the D-region, so as to infer the average D-region electron density profiles along the waveguide. The data were recorded at a Belgrade (44.85 ^{0} N, 20.38 ^{0} E) Serbia by AbsPAL and AWESOME receivers since 2003 and 2008 up to 2015, respectively. The first purpose of this paper is to give an account on the dropping amplitude phenomena on one long and three short VLF paths. The NAA-BEL path is sufficiently long, D = 6540 km and oriented west-east to show well-developed sunrise and sunset effects on amplitude and phase. Measured NAA/24.00 kHz signal at Belgrade shows three amplitude minima in time interval when sunrise reaches Belgrade and Maine, USA. Similar but less evident changes occur in time interval defined by sunsets at receiver and transmitter sites. The results show that at the times of amplitude minima the rate of change of phase becomes quite large. GQD/22.10 kHz, DHO/23.40 kHz and NSC/45.90 kHz signals propagate over short paths, D < 2000 km to Belgrade and reflect once on the middle of the paths. When an ionization process starts in the middle of the propagation path, the consequence is development of the first amplitude minimum and transition from phase level during night to phase level during daytime. On the basis of changing reflection characteristics of the D-region our numerical results show that a VLF propagation is a superposition of n _{n} ˜17 and n _{d} ˜7 discrete modes

  14. Sensory illusions: Common mistakes in physics regarding sound, light and radio waves

    NASA Astrophysics Data System (ADS)

    Briles, T. M.; Tabor-Morris, A. E.

    2013-03-01

    Optical illusions are well known as effects that we see that are not representative of reality. Sensory illusions are similar but can involve other senses than sight, such as hearing or touch. One mistake commonly noted among instructors is that students often mis-identify radio signals as sound waves and not as part of the electromagnetic spectrum. A survey of physics students from multiple high schools highlights the frequency of this common misconception, as well as other nuances on this misunderstanding. Many students appear to conclude that, since they experience radio broadcasts as sound, then sound waves are the actual transmission of radio signals and not, as is actually true, a representation of those waves as produced by the translator box, the radio. Steps to help students identify and correct sensory illusion misconceptions are discussed. School of Education

  15. Generation of whistler waves by continuous HF heating of the upper ionosphere

    NASA Astrophysics Data System (ADS)

    Vartanyan, A.; Milikh, G. M.; Eliasson, B. E.; Sharma, A.; Chang, C.; Parrot, M.; Papadopoulos, K.

    2013-12-01

    We report observations of VLF waves by the DEMETER satellite overflying the HAARP facility during ionospheric heating experiments. The detected VLF waves were in the range 8-17 kHz and coincided with times of continuous heating. The experiments indicate whistler generation due to conversion of artificial lower hybrid waves to whistlers on small scale field-aligned plasma density striations. The observations are compared with theoretical models, taking into account both linear and nonlinear processes. Implications of the mode conversion technique on VLF generation with subsequent injection into the radiation belts to trigger particle precipitation are discussed.

  16. Density Waves in Saturn's Rings from Cassini Radio Occultations

    NASA Astrophysics Data System (ADS)

    French, R. G.; Rappaport, N. J.; Marouf, E. A.; McGhee, C. A.

    2005-12-01

    The Cassini Radio Science Team conducted a set of optimized diametric occultations by Saturn and its rings from May to September 2005, providing 11 separate probes of Saturn's ionosphere and atmosphere, and 12 optical depth profiles of the complete ring system. Each event was observed by the stations of the Deep Space Net (DSN) at three radio frequencies (S, X, Ka bands, with corresponding wavelengths of ? = 13, 3.6, and 0.9 cm). Very accurate pointing by the spacecraft and ground antennas resulted in stable baseline signal levels, and the relatively large ring opening angle (B=19-25°) permitted us to probe even quite dense ring regions with excellent SNR. The RSS occultation technique enables us to recover very fine detailed radial structure by correcting for diffraction effects. Multiple occultation chords, covering a variety of ring longitudes and ring opening angles, reveal the structure of the rings in remarkable detail, including density and bending waves, satellite wakes, and subtle variations at the 100-m radius scale. Janus and Epimetheus are responsible for a particularly rich set of density waves, and their coorbital interactions result in a complex interplay of time-variable ring structure over the 8-year libration period of the two satellites. We compare the first-order 2:1, 4:3, 5:4, and 6:5 coorbital density waves from multiple occultation chords to linear density wave models based on a dynamical model of the orbital exchange between the moons. From the observed dispersion relation of the wave crests, we infer the surface mass density and eccentricity gradient of particle streamlines, and match the detailed shapes of the wave crests using a non-linear analysis. Second-order coorbital features are also evident, and there are even hints of third-order density waves in the high SNR radio occultation data.

  17. Study of long path VLF signal propagation characteristics as observed from Indian Antarctic station, Maitri

    NASA Astrophysics Data System (ADS)

    Sasmal, Sudipta; Chakrabarti, Sandip Kumar; Pal, Sujay

    To examine quality and propagation characteristics of radio waves in a very long propagation path, Indian Centre for Space Physics participated in the 27th Indian scientific expedition to Antarctica during 2007-2008. One Stanford University made AWESOME (Atmospheric Weather Educational System for Observation and Modeling of Effects) Very Low Frequency (VLF) receiving system was installed at the Indian Antarctic station Maitri and about five weeks of data was recorded successfully from the Indian transmitter VTX and several other transmitting stations worldwide. Signal quality of VTX was found to be very good and signal amplitude was highly stable. The signal showed evidences of round the clock solar radiation in Antarctic region during local summer. We compute elevation angle of the Sun theoretically during this period. We compute the spatial distribution of the signal by using the LWPC model during the all-day and all-night propagation conditions. We compute the attenuation coefficient of the different propagation modes and observe that different modes are dominating in different propagation conditions. We also observe effects of the Antarctic polar ice in the propagation modes.

  18. VLF/LF Amplitude Perturbations before Tuscany Earthquakes, 2013

    NASA Astrophysics Data System (ADS)

    Khadka, Balaram; Kandel, Keshav Prasad; Pant, Sudikshya; Bhatta, Karan; Ghimire, Basu Dev

    2017-12-01

    The US Navy VLF/LF Transmitter's NSY signal (45.9 kHz) transmitted from Niscemi, Sicily, Italy, and received at the Kiel Long Wave Monitor, Germany, was analyzed for the period of two months, May and June (EQ-month) of 2013. There were 12 earthquakes of magnitude greater than 4 that hit Italy in these two months, of which the earthquake of 21st June having magnitude of 5.2 and a shallow focal depth of 5 km was the major one. We studied the earthquake of 21st of June 2013, which struck Tuscany, Central Italy, (44.1713°N and 10.2082°E) at 10:33 UT, and also analyzed the effects of this earthquake on the sub-ionos- pheric VLF/LF signals. In addition, we also studied another earthquake, of magnitude 4.9, which hit the same place at 14:40 UT on 30th of June and had shallow focal depth of 10 km. We assessed the data using terminator time (TT) method and night time fluctuation method and found unusual changes in VLF/LF amplitudes/phases. Analysis of trend, night time dispers! ion, and night time fluctuation was also carried and several anomalies were detected. Most ionospheric perturbations in these parameters were found in the month of June, from few days to few weeks prior to the earthquakes. Moreover, we filtered the possible effects due to geomagnetic storms, auroras, and solar activities using parameters like Dst index, AE index, and Kp index for analyzing the geomagnetic effects, and Bz (sigma) index, sunspot numbers, and solar index F10.7 for analyzing the solar activities for the confirmation of anomalies as precursors.

  19. Moreton wave, "EIT wave", and type II radio burst as manifestations of a single wave front

    NASA Astrophysics Data System (ADS)

    Kuzmenko, I. V.; Grechnev, V. V.; Uralov, A. M.

    2011-12-01

    We show that a Moreton wave, an "EIT wave," and a type II radio burst observed during a solar flare of July 13, 2004, might have been a manifestation of a single front of a decelerating shock wave, which appeared in an active region (AR) during a filament eruption. We propose describing a quasi-spheroidal wave propagating upward and along the solar surface by using relations known from a theory of a point-like explosion in a gas whose density changes along the radius according to a power law. By applying this law to fit the drop in density of the coronal plasma enveloping the solar active region, we first managed to bring the measured positions and velocities of surface Moreton wave and "EIT wave" into correspondence with the observed frequency drift rate of the meter type II radio burst. The exponent of the vertical coronal density falloff is selected by fitting the power law to the Newkirk and Saito empirical distributions in the height range of interest. Formal use of such a dependence in the horizontal direction with a different exponent appears to be reasonable up to distances of less than 200 Mm around the eruption center. It is possible to assume that the near-surface shock wave weakens when leaving this radius and finally the active region, entering the region of the quiet Sun where the coronal plasma density and the fast-mode speed are almost constant along the horizontal.

  20. Plasma and radio waves from Neptune: Source mechamisms and propagation

    NASA Technical Reports Server (NTRS)

    Menietti, J. Douglas

    1994-01-01

    The purpose of this project was to conduct a comprehensive investigation of the radio wave emission observed by the planetary radio astronomy (PRA) instrument on board Voyager 2 as it flew by Neptune. The study has included data analysis, theoretical and numerical calculations, and ray tracing to determine the possible source mechanisms and locations of the radiation, including the narrowband bursty and smooth components of the Neptune radio emission.

  1. Estimation of Electron Density profile Using the Propagation Characteristics of Radio Waves by S-520-29 Sounding Rocket

    NASA Astrophysics Data System (ADS)

    Itaya, K.; Ishisaka, K.; Ashihara, Y.; Abe, T.; Kumamoto, A.; Kurihara, J.

    2015-12-01

    S-520-29 sounding rocket experiment was carried out at Uchinoura Space Center (USC) at 19:10 JST on 17 August, 2014. The purpose of this sounding rocket experiments is observation of sporadic E layer that appears in the lower ionosphere at near 100km. Three methods were used in order to observe the sporadic E layer. The first method is an optical method that observe the light of metal ion emitted by the resonance scattering in sporadic E layer using the imager. The second method is observation of characteristic of radio wave propagation that the LF/MF band radio waves transmitted from the ground. The third method is measuring the electron density in the vicinity of sounding rocket using the fast Langmuir probe and the impedance probe. We analyze the propagation characteristics of radio wave in sporadic E layer appeared from the results of the second method observation. This rocket was equipped with LF/MF band radio receiver for observe the LF/MF band radio waves in rocket flight. Antenna of LF/MF band radio receiver is composed of three axis loop antenna. LF/MF band radio receiver receives three radio waves of 873kHz (JOGB), 666kHz (JOBK), 60kHz (JJY) from the ground. 873kHz and 60kHz radio waves are transmitting from north side, and 666kHz radio waves are transmitting from the east side to the trajectory of the rocket. In the sounding rocket experiment, LF/MF band radio receiver was working properly. We have completed the observation of radio wave intensity. We analyze the observation results using a Doppler shift calculations by frequency analysis. Radio waves received by the sounding rocket include the influences of Doppler shift by polarization and the direction of rocket spin and the magnetic field of the Earth. So received radio waves that are separate into characteristics waves using frequency analysis. Then we calculate the Doppler shift from the separated data. As a result, 873kHz, 666kHz radio waves are reflected by the ionosphere. 60kHz wave was able to

  2. Observation of quasi-periodic solar radio bursts associated with propagating fast-mode waves

    NASA Astrophysics Data System (ADS)

    Goddard, C. R.; Nisticò, G.; Nakariakov, V. M.; Zimovets, I. V.; White, S. M.

    2016-10-01

    Aims: Radio emission observations from the Learmonth and Bruny Island radio spectrographs are analysed to determine the nature of a train of discrete, periodic radio "sparks" (finite-bandwidth, short-duration isolated radio features) which precede a type II burst. We analyse extreme ultraviolet (EUV) imaging from SDO/AIA at multiple wavelengths and identify a series of quasi-periodic rapidly-propagating enhancements, which we interpret as a fast wave train, and link these to the detected radio features. Methods: The speeds and positions of the periodic rapidly propagating fast waves and the coronal mass ejection (CME) were recorded using running-difference images and time-distance analysis. From the frequency of the radio sparks the local electron density at the emission location was estimated for each. Using an empirical model for the scaling of density in the corona, the calculated electron density was used to obtain the height above the surface at which the emission occurs, and the propagation velocity of the emission location. Results: The period of the radio sparks, δtr = 1.78 ± 0.04 min, matches the period of the fast wave train observed at 171 Å, δtEUV = 1.7 ± 0.2 min. The inferred speed of the emission location of the radio sparks, 630 km s-1, is comparable to the measured speed of the CME leading edge, 500 km s-1, and the speeds derived from the drifting of the type II lanes. The calculated height of the radio emission (obtained from the density) matches the observed location of the CME leading edge. From the above evidence we propose that the radio sparks are caused by the quasi-periodic fast waves, and the emission is generated as they catch up and interact with the leading edge of the CME. The movie associated to Fig. 2 is available at http://www.aanda.org

  3. Ship-borne Radio and GLD360 Measurements of Intense Oceanic Lightning

    NASA Astrophysics Data System (ADS)

    Zoghzoghy, F. G.; Cohen, M.; Said, R.; Lehtinen, N. G.; Inan, U.

    2013-12-01

    Recent studies with the GLD360 lightning geo-location network have shown that the peak current intensity of cloud-to-ground (CG) lightning is more powerful over the ocean than over land. This remains a poorly understood phenomenon. The Stanford VLF group has recently deployed a Very Low Frequency (1 MHz sampling rate) radio receiver system aboard the NOAA Ronald W. Brown research vessel. The goal of this transatlantic experiment is to improve our understanding of oceanic lightning and to investigate the physical difference between oceanic and land lightning. When positioned reasonably close to deep oceanic thunderstorms, the LF-VLF receiver aboard the Ronald W. Brown detects the impulsive radio emissions from the return stroke, up to 1 MHz, which enables us to estimate the return-stroke waveform shapes generated by the lightning channel. In this presentation, we present our experimental setup and a summary of the data collected during the transatlantic voyages of the NOAA ship. We process lightning-generated waveforms, compare them to LF-VLF data from land lightning over Oklahoma, extract statistical patterns, and compare the data to numerical and analytical models.

  4. Short-Term Perturbations Within the D-Region Detected Above the Mediterranean

    NASA Astrophysics Data System (ADS)

    Silber, Israel; Price, Colin

    2016-04-01

    The ionospheric D-region lies in the altitude range of ~60-95 km. This part of the atmosphere is highly sensitive to waves propagating upwards from the troposphere, either as pressure perturbations (gravity and acoustic waves) or electromagnetic (EM) perturbations from lightning discharges (resulting in EMPs, sprites, elves, etc.). These perturbations can affect the temperature, wind, species concentration, conductivity, and ionization in the upper atmosphere. Very low frequencies (VLF) radio signals, generated by man-made communication transmitters, have been recorded using ground-based VLF receivers in Israel. These radio waves propagate over long distances within the Earth-ionosphere waveguide, reflected off the Earth's surface and the D-region. The characteristics of the received signals depend on several parameters along the path, but are fairly constant over short periods of time. In this study we present analysis of VLF narrowband data transmitted from Sicily, Italy, spanning one year, and detected in Tel Aviv, Israel. We show observations of the interaction between both pressure and EM perturbations from thunderstorms with the narrowband VLF signals aloft. We clearly observe short period (~2-4 minutes) acoustic waves, longer period gravity waves (~5-7 minutes periods), while also many transient events related to heating and ionization of the D-region. Comparisons with WWLLN lightning data show the potential link between tropospheric thunderstorms and D-region variability.

  5. Short-Term Perturbations Within the D-Region Detected Above the Mediterranean

    NASA Astrophysics Data System (ADS)

    Price, Colin; Silber, Israel

    2016-07-01

    The ionospheric D-region lies in the altitude range of ~60-95 km. This part of the atmosphere is highly sensitive to waves propagating upwards from the troposphere, either as pressure perturbations (gravity and acoustic waves) or electromagnetic (EM) perturbations from lightning discharges (resulting in EMPs, sprites, elves, etc.). These perturbations can affect the temperature, wind, species concentration, conductivity, and ionization in the upper atmosphere. Very low frequencies (VLF) radio signals, generated by man-made communication transmitters, have been recorded using ground-based VLF receivers in Israel. These radio waves propagate over long distances within the Earth-ionosphere waveguide, reflected off the Earth's surface and the D-region. The characteristics of the received signals depend on several parameters along the path, but are fairly constant over short periods of time. In this study we present analysis of VLF narrowband data transmitted from Sicily, Italy, spanning one year, and detected in Tel Aviv, Israel. We show observations of the interaction between both pressure and EM perturbations from thunderstorms with the narrowband VLF signals aloft. We clearly observe short period (~2-4 minutes) acoustic waves, longer period gravity waves (~5-7 minutes periods), while also many transient events related to heating and ionization of the D-region. Comparisons with WWLLN lightning data show the potential link between tropospheric thunderstorms and D-region variability.

  6. Short-Term Perturbations Within the D-Region Detected Above the Mediterranean

    NASA Astrophysics Data System (ADS)

    Silber, I.; Price, C. G.

    2015-12-01

    The ionospheric D-region lies in the altitude range of ~65-95 km. This part of the atmosphere is highly sensitive to waves propagating upwards from the troposphere, either as pressure perturbations (gravity and acoustic waves) or electromagnetic perturbations from lightning discharges (resulting in EMPs, sprites, elves, etc.). These perturbations can affect the temperature, wind, species concentration, and even ionization in the upper atmosphere. Very low frequencies (VLF) radio signals, generated by man-made communication transmitters, have been recorded using ground-based VLF receivers in Israel. These radio waves propagate over long distances within the Earth-ionosphere waveguide, reflected off the Earth's surface and the D-region. The characteristics of the received signals depend on several parameters along the path, but are fairly constant over short periods of time. In this study we present analysis of VLF narrowband data transmitted from Sicily, Italy, spanning one year, and detected in Tel Aviv, Israel. We show observations of the interaction between both pressure and EM perturbations from thunderstorms with the narrowband VLF data aloft. We clearly observe short period (~2-4 minutes) acoustic waves, longer period gravity waves (~5-7 minutes periods), while also many transient events related to heating and ionization of the D-region. Comparisons with WWLLN lightning data show the link between tropospheric thunderstorms and D-region variability.

  7. Multiple-Station Observation of Frequency Dependence and Polarization Characteristics of ELF/VLF waves generated via Ionospheric Modification

    NASA Astrophysics Data System (ADS)

    Maxworth, A. S.; Golkowski, M.; Cohen, M.; Moore, R. C.

    2014-12-01

    Generation of Extremely Low Frequency (ELF) and Very Low Frequency (VLF) signals through ionospheric modification has been practiced for many years. Heating the lower ionosphere with high power HF waves allows for modulation of natural current systems. Our experiments were carried out at the High Frequency Active Auroral Research Program (HAARP) facility in Alaska, USA. In this experiment, the ionosphere was heated with a vertical amplitude modulating signal and the modulation frequency was changed sequentially within an array of 40 frequencies followed by a frequency ramp. The observed magnetic field amplitude and polarization of the generated ELF/VLF signals were analyzed for multiple sites and as a function of modulation frequency. Our three observation sites: Chistochina, Paxson and Paradise are located within 36km (azimuth 47.7°), 50.2km (azimuth -20°) and 99km (azimuth 80.3°) respectively. We show that the peak amplitudes observed as a function of frequency result from vertical resonance in the Earth-ionosphere waveguide and can be used to diagnose the D-region profile. Polarization analysis showed that out of the three sites Paxson shows the highest circularity in the magnetic field polarization, compared to Chistochina and Paradise which show highly linear polarizations. The experimental results were compared with a theoretical simulation model results and it was clear that in both cases, the modulated Hall current dominates the observed signals at Chistochina and Paradise sites and at Paxson there is an equal contribution from Hall and Pedersen currents. The Chistochina site shows the highest magnetic field amplitudes in both experimental and simulation environments. Depending upon the experimental and simulation observations at the three sites, a radiation pattern for the HAARP ionospheric heater can be mapped

  8. Generation and propagation of electromagnetic waves in the magnetosphere. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Taylor, W. W. L.

    1973-01-01

    Characteristics of broadband ELF, VLF, and LF emissions in the magnetosphere were calculated assuming incoherent Cerenkov radiation from magnetospheric electrons with energies from 50 eV to 50 keV. Calculations were included to determine the ray paths of the emitted waves. A diffusive equilibrium model of the magnetosphere with an ionosphere, plasmapause, and a centered dipole magnetic field was used. Ray path calculations were done in three dimensions. Using simultaneous energetic electron and VLF data, comparisons were made between calculated and observed VLF hiss. Assuming a wave normal angle six degrees from the resonance cone angle, the calculated spectral densities are both two orders of magnitude below the observed spectral densities. It seems unlikely that VLF hiss is produced by incoherent Cerenkov radiation. The observed spectral shape of V-shaped VLF hiss is similar to that calculated from incoherent Cerenkov radiation.

  9. Simple surgical approach with high-frequency radio-wave electrosurgery for conjunctivochalasis.

    PubMed

    Youm, Dong Ju; Kim, Joon Mo; Choi, Chul Young

    2010-11-01

    To introduce a new simple surgical approach with high-frequency radio-wave electrosurgery to reduce conjunctivochalasis (CCh). Prospective, noncomparative, interventional case series analysis. Twelve patients (20 eyes) with CCh were recruited from the outpatient service of the Department of Ophthalmology, Kangbuk Samsung Hospital, Seoul, Korea. On the inferior bulbar conjunctiva, subconjunctival coagulation was performed with a fine-needle electrode using a high-frequency radio-wave electrosurgical unit (Ellman Surgitron; Ellman International, Inc., Hewlett, NY) in coagulation mode. Conjunctivochalasis grade; epiphora and dry eye symptoms (the Ocular Surface Disease Index [OSDI]; Allergan Inc., Irvine, CA, holds the copyright); and intraoperative and postoperative complications. Eighteen eyes (90%) recovered a smooth, wet, and noninflamed conjunctival surface within 1 month and remained stable for a follow-up period of 3 months. At 3 months postoperatively, 18 eyes (90%) had grade 0 CCh. There was a statistically significant decrease of the OSDI score at 3 months postoperatively (P < 0.001). A surgical approach with high-frequency radio-wave electrosurgery produced a significant reduction in CCh and an improvement in symptoms. Radio-wave surgical techniques represent a favorable alternative to surgical treatment of CCh. The author(s) have no proprietary or commercial interest in any materials discussed in this article. Copyright © 2010 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  10. Precursory Anomaly in VLF/LF Recordings Prior to the July 30th, 2009

    NASA Astrophysics Data System (ADS)

    Buyuksarac, Aydin; Pınar, Ali; Kosaroglu, Sinan

    2010-05-01

    An international project network consisting of five receivers for sampling LF and VLF radio signals has been going on to record the data in Europe from different transmission stations around the World. One of them was established in Resadiye, Turkey, located just on the North Anatolian Fault Zone. The receiver works in VLF (16.4, 21.75, 37.5 and 45.9 kHz) and LF (153, 180, 183, 216 and 270 kHz) bands monitoring ten frequencies with one minute sampling interval. An earthquake of Mw = 4.9 took place 225 km away from the VLF/LF station at the eastern tip of the Erzincan basin at 4 km depth on July 30, 2009. We observed some anomalies on the radio signals (37.5 and 153 kHz) that initiated about 7 days before the earthquake and disappeared soon after the earthquake. We attribute this anomaly to the Mw=4.9 earthquake as a seismo-electromagnetic precursor. The radio anomaly that appeared 7 days before the occurrence of the 2009 Erzincan earthquake is in good agreement with other results indicating precursory anomalies in the project network mostly observed in seismically active countries such as Italy and Greece. Several data processing stages were applied to the data. Firstly, we processed the time series of the radio signals to understand how the frequency content of the anomaly differs from that of the normal trend. For this purpose we selected two time windows; one covering the anomaly period and the other spanning a normal period. The selected time window length was a 6 day. The sampling interval and the length of the time window limit the observed spectra from 120 seconds to six days. We identified a significant bias (drop) for the signal energy of the anomaly period at the whole frequency band. Secondly, in order to clearly depict the anomaly we estimated the daily Rayleigh Energy of the calculated spectra following the Parseval's theorem. We initiated the estimations well before the anomaly period. Such calculations gave an obvious sign for the impending event

  11. VLF emissions in the Venus foreshock - Comparison with terrestrial observations

    NASA Technical Reports Server (NTRS)

    Crawford, G. K.; Strangeway, R. J.; Russell, C. T.

    1993-01-01

    An examination is conducted of ELF/VLF emissions observed in the solar wind upstream of the Venus shock, for the 100 Hz-30 kHz range, using data from the Pioneer Venus Orbiter's electric field detector and magnetometer instruments. Detailed comparisons are made with terrestrial measurements for both the electron and ion foreshocks. The results obtained support the Crawford et al. (1990) identification of the Venus electron foreshock emissions as electron plasma oscillations, whose waves are generated in situ and act to isotropize the electron distributions.

  12. Analysis of Fluctuations of Electron Density in the D-region During the 2017 Solar Eclipse using a Very Low Frequency Receiver

    NASA Astrophysics Data System (ADS)

    Hernandez, E.; Mathur, S.; Fenton, A.; Behrend, C. C.; Bering, E., III

    2017-12-01

    As part of the Undergraduate Student Instrumentation Project (USIP) at the University of Houston, multiple Very Low Frequency (VLF) Radio Receivers will be set up during the 2017 solar eclipse. They will be taking data from Omaha, Nebraska and Casper, Wyoming. The receiver, using an air loop antenna, will record magnetic field fluctuations caused by VLF waves. The purpose of this experiment is to study the effects of the sudden change in electromagnetic radiation from the sun on the D-region of the ionosphere. VLF waves were chosen for measurement because naturally occurring VLF waves propagate through the Earth-ionosphere waveguide, which can be used to remotely observe the ionosphere. The D-region reduces the energy in propagating waves due to absorption. This means that any fluctuations in the D-region are inversely correlated to the strength of VLF waves being received. The experiment will focus on receiving waves transmitted from specific stations that are on the other side of totality. The amplitude and phase of the received waves will be measured and analyzed. It is hoped that this experiment will help us gain a better understanding of VLFs from the D-region during the solar eclipse, as well as increasing the overall data available for use by the community.

  13. 10 GHz Standing-Wave Coplanar Stripline on LiNbO3 Crystal for Radio to Optical-Wave Conversion

    NASA Astrophysics Data System (ADS)

    Darwis, F.; Wijayanto, Y. N.; Setiawan, A.; Mahmudin, D.; Rahman, A. N.; Daud, P.

    2018-04-01

    Recently, X-band radar systems are used widely for surveillance and navigation applications. Especially in archipelago or maritime country, the surveillance/navigation radar systems are required to monitoring critical areas and managing marine traffic. Accurate detection and fast analysis should be improved furthermore to provide security and safety condition. Therefore, several radar systems should be installed in many places to coverage the critical areas within radar networks. The radar network can be connected using optical fibers since it has extremely low propagation loss with optical-wave to carry-out the radar-wave. One important component in the scenario is a radio to optical-wave conversion component. In this paper, we report a 10 GHz radio to optical-wave conversion component using standing-wave coplanar stripline (CPS) on LiNbO3 optical crystal as the substrate. The standing-wave CPS electrodes with narrow slot are arranged in an array structure. An optical waveguide is located close to the narrow slot. The CPS electrodes were analysed using electromagnetic analysis software for 10 GHz operational frequency. Responses for slot width and electrode length variation are reported. As results, return loss of -14.580 dB and -19.517 dB are obtained for single and array CPS electrodes respectively. Optimization of the designed radio to optical-wave conversion devices was also done.

  14. Cassini Radio and Plasma Wave Observations at Saturn

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Kurth, W. S.; Hospodarsky, G. B.; Persoon, A. M.; Averkamp, T. F.; Ceccni, B.; Lecacheux, A.; Zarka, P.; Canu, P.; Cornilleau-Wehrlin, N.

    2005-01-01

    Results are presented from the Cassini radio and plasma wave instrument during the approach and first few orbits around Saturn. During the approach the intensity modulation of Saturn Kilometric Radiation (SKR) showed that the radio rotation period of Saturn has increased to 10 hr 45 min plus or minus 36 sec, about 6 min longer than measured by Voyager in 1980-81. Also, many intense impulsive radio signals called Saturn Electrostatic Discharges (SEDs) were detected from saturnian lightning, starting as far as 1.08 AU from Saturn, much farther than terrestrial lightning can be detected from Earth. Some of the SED episodes have been linked to cloud systems observed in Saturn s atmosphere by the Cassini imaging system. Within the magnetosphere plasma wave emissions have been used to construct an electron density profile through the inner region of the magnetosphere. With decreasing radial distance the electron density increases gradually to a peak of about 100 per cubic centimeter near the outer edge of the A ring, and then drops precipitously to values as low as .03 per cubic centimeter over the rings. Numerous nearly monochromatic whistler-mode emissions were observed as the spacecraft passed over the rings that are believed to be produced by meteoroid impacts on the rings. Whistlermode emissions, similar to terrestrial auroral hiss were also observed over the rings, indicating that an electrodynamic interaction, similar to auroral particle acceleration, may be occurring in or near the rings. During the Titan flybys Langmuir probe and plasma wave measurements provided observations of the density and temperature in Titan's ionosphere.

  15. VLF Science at Indian Centre for Space Physics

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Sandip Kumar

    2016-07-01

    Indian Centre for Space Physics has been monitoring VLF signals from stations around the world at its laboratories at Kolkata and Sitapur (Ionospheric and Earthquake Research Centre) as well as at several places throughout India when in a campaign mode. We have been interested to study high energy events from space, such as solar flares and gamma ray bursts. We have made studies during multiple solar eclipses and most importantly made substantial progress in the problem of lithosphere-ionosphere coupling while understanding various types of anomalies prior to major earthquakes. Other effects such as AGWs and LEPs are being studied. We have experience of two antarctic expedition and obtained VLF data from both Maitri and Bharati stations of India, which revealed, among other things, how the signal attenuation can indicate the extent of ice mass in Antarctica. We have been able to reproduce various VLF perturbation events using Atmospheric Chemical evolution model coupled with LWPC code. For instance we have reproduced solar flare induced VLF amplitude perturbation pattern by completely ab initio calculation. We also targeted the inverse problem, namely, deduction of the injected radiation spectra from space from the VLF signal alone, thereby establishing that the Earth can be used as a gigantic detector. These interesting results would be presented in my review talk.

  16. Ionospheric modification with a VLF transmitter

    NASA Technical Reports Server (NTRS)

    Inan, Umran S.; Rodriguez, Juan V.; Lev-Tov, S.; Oh, J.

    1992-01-01

    Detectable heating of the nightime D region by a 28.5 kHz signal is observed in 16 out of 144 cases with events occurring under conditions of moderate to low D region electron densities as represented by the unperturbed VLF signal levels. Three dimensional modeling of the effects of NAU heating on a probe VLF signal predicts values in general agreement with observations and suggests that maximum effects should occur under tenuous D region conditions.

  17. The VLF Scattering Pattern of Lightning-Induced Ionospheric Disturbances

    NASA Astrophysics Data System (ADS)

    Cohen, M.; Golkowski, M.

    2016-12-01

    Very Low Frequency (VLF) transmitter remote sensing is a well-employed technique to diagnose the impact of lightning on the D-region ionosphere, from the EMP, quasi-static charge, and radiation belt electron precipitation. When lightning disturbs the ionosphere, propagation of VLF (3-30 kHz) narrow-frequency signals through that region are subsequently scattered, which can be detected as transient changes in amplitude and phase at distant receivers. In principle it is possible to then infer the ionospheric disturbance but in practice this is difficult to do reliably. One of the challenges of this process is that VLF perturbations are like snowflakes - no two events are the same. The transmitter-receiver geometry, lightning properties, and ionospheric condition before the event, all impact the VLF scattering. This makes it very difficult, based on case studies which observe only one or two slivers at a time, to infer the scattering pattern of VLF events, and therefore, to infer what happened to the ionosphere. Our aim is to get around that by looking at a huge database of lightning-induced ionospheric disturbances, taken over several years of recordings. We utilize an automatic extraction algorithm to find, identify, and characterize VLF perturbations on a massive scale. From there, we can investigate how the VLF perturbations change as a function of the parameters of the event. If it turns out that there is exists a "canonical" lightning-induced disturbance as a function of geometry and lightning parameters, it will go a long way toward identifying the causative mechanisms and being able to accurately simulate and reproduce any lightning-induced ionospheric disturbance. We present results of our efforts to do just that.

  18. Interpretation of VLF-EM & VLF-R data using tipper and impedance analyses: A case study from Candi Umbul-Telomoyo, Magelang, Indonesia

    NASA Astrophysics Data System (ADS)

    Prastyani, Erina; Niasari, Sintia Windhi

    2017-07-01

    The goal of all geophysical survey techniques is to image the properties of the Earth's subsurface. Very Low Frequency (VLF) is one of the geophysical survey technique that has been commonly used for ore exploration and mapping faults or fracture zones. Faults or fracture zones are necessary components in providing the fluid pathway in geothermal systems. The Candi Umbul-Telomoyo is one of the geothermal prospect sites in Indonesia, which is located in Magelang, Central Java. Recent studies hypothesized that this site was an outflow area of Telomoyo volcano geothermal complex. We used the VLF-EM and VLF-R techniques to infer faults or fracture zones that might be a path for geothermal fluids in the Candi Umbul-Telomoyo. From the measurements, we got tilt angle, ellipticity, primary and secondary magnetic fieldfor VLF-EM data; and apparent resistivity, phase angle, electric and magnetic field for VLF-R data. To interpret the data, we used tipper and impedance analyses. The result of both analyses show similarities in the directions and positions of anomalous current concentrations. We conclude these anomalous current concentrations as faults. Our interpretation is agreeing with the Geologic Map of the Semarang and Magelang Quadrangles that shows the expected fault beneath the Mt. Telomoyo.

  19. Modifying the ionosphere with intense radio waves.

    PubMed

    Utlaut, W F; Cohen, R

    1971-10-15

    The ionospheric modification experiments provide an opportunity to better understand the aeronomy of the natural ionosphere and also afford the control of a naturally occurring plasma, which will make possible further progress in plasma physics. The ionospheric modification by powerful radio waves is analogous to studies of laser and microwave heating of laboratory plasmas (20). " Anomalous" reflectivity effects similar to the observed ionospheric attenuation have already been noted in plasmas modulated by microwaves, and anomalous heating may have been observed in plasmas irradiated by lasers. Contacts have now been established between the workers in these diverse areas, which span a wide range of the electromagnetic spectrum. Perhaps ionospheric modification will also be a valuable technique in radio communications.

  20. Relations among low ionosphere parameters and high frequency radio wave absorption

    NASA Technical Reports Server (NTRS)

    Cipriano, J. P.

    1973-01-01

    Charged particle conductivities measured in the very low ionosphere at White Sands Missile Range, New Mexico, and Wallops Island, Virginia, are compared with atmospheric parameters and high frequency radio wave absorption measurements. Charged particle densities are derived from the conductivity data. Between 33 and 58 km, positive conductivity correlated well with neutral atmospheric temperature, with temperature coefficients as large as 4.6%/deg K. Good correlations were also found between HF radio wave absorption and negative conductivity at altitudes as low as 53 km, indicating that the day-to-day absorption variations were principally due to variations in electron loss rate.

  1. Strange VLF bursts in northern Scandinavia: case study of the afternoon "mushroom-like" hiss on 8 December 2013

    NASA Astrophysics Data System (ADS)

    Manninen, J.; Kleimenova, N. G.; Kozlovsky, A.; Kornilov, I. A.; Gromova, L. I.; Fedorenko, Y. V.; Turunen, T.

    2015-08-01

    We investigate a non-typical very low frequency (VLF) 1-4 kHz hiss representing a sequence of separated noise bursts with a strange "mushroom-like" shape in the frequency-time domain, each one lasting several minutes. These strange afternoon VLF emissions were recorded at Kannuslehto (KAN, ϕ = 67.74° N, λ = 26.27° E; L ∼ 5.5) in northern Finland during the late recovery phase of the small magnetic storm on 8 December 2013. The left-hand (LH) polarized 2-3 kHz "mushroom caps" were clearly separated from the right-hand (RH) polarized "mushroom stems" at the frequency of about 1.8-1.9 kHz, which could match the lower ionosphere waveguide cutoff (the first transverse resonance of the Earth-ionosphere cavity). We hypothesize that this VLF burst sequence could be a result of the modulation of the VLF hiss electron-cyclotron instability from the strong Pc5 geomagnetic pulsations observed simultaneously at ground-based stations as well as in the inner magnetosphere by the Time History of Events and Macroscale Interactions during Substorms mission probe (THEMIS-E; ThE). This assumption is confirmed by a similar modulation of the intensity of the energetic (1-10 keV) electrons simultaneously observed by the same ThE spacecraft. In addition, the data of the European Incoherent Scatter Scientific Association (EISCAT) radar at Tromsø show a similar quasi-periodicity in the ratio of the Hall-to-Pedersen conductance, which may be used as a proxy for the energetic particle precipitation enhancement. Our findings suggest that this strange mushroom-like shape of the considered VLF hiss could be a combined mutual effect of the magnetospheric ULF-VLF (ultra low frequency-very low frequency) wave interaction and the ionosphere waveguide propagation.

  2. Internal gravity waves in Titan's atmosphere observed by Voyager radio occultation

    NASA Technical Reports Server (NTRS)

    Hinson, D. P.; Tyler, G. L.

    1983-01-01

    The radio scintillations caused by scattering from small-scale irregularities in Titan's neutral atmosphere during a radio occultation of Voyager 1 by Titan are investigated. Intensity and frequency fluctuations occurred on time scales from about 0.1 to 1.0 sec at 3.6 and 13 cm wavelengths whenever the radio path passed within 90 km of the surface, indicating the presence of variations in refractivity on length scales from a few hundred meters to a few kilometers. Above 25 km, the altitude profile of intensity scintillations closely agrees with the predictions of a simple theory based on the characteristics of internal gravity waves propagating with little or no attenuation through the vertical stratification in Titan's atmosphere. These observations support a hypothesis of stratospheric gravity waves, possibly driven by a cloud-free convective region in the lowest few kilometers of the stratosphere.

  3. Search for transient gravitational waves in coincidence with short-duration radio transients during 2007-2013

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, K. N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Pereira, R.; Perreca, A.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stiles, D.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; Archibald, A. M.; Banaszak, S.; Berndsen, A.; Boyles, J.; Cardoso, R. F.; Chawla, P.; Cherry, A.; Dartez, L. P.; Day, D.; Epstein, C. R.; Ford, A. J.; Flanigan, J.; Garcia, A.; Hessels, J. W. T.; Hinojosa, J.; Jenet, F. A.; Karako-Argaman, C.; Kaspi, V. M.; Keane, E. F.; Kondratiev, V. I.; Kramer, M.; Leake, S.; Lorimer, D.; Lunsford, G.; Lynch, R. S.; Martinez, J. G.; Mata, A.; McLaughlin, M. A.; McPhee, C. A.; Penucci, T.; Ransom, S.; Roberts, M. S. E.; Rohr, M. D. W.; Stairs, I. H.; Stovall, K.; van Leeuwen, J.; Walker, A. N.; Wells, B. L.; LIGO Scientific Collaboration; Virgo Collaboration

    2016-06-01

    We present an archival search for transient gravitational-wave bursts in coincidence with 27 single-pulse triggers from Green Bank Telescope pulsar surveys, using the LIGO, Virgo, and GEO interferometer network. We also discuss a check for gravitational-wave signals in coincidence with Parkes fast radio bursts using similar methods. Data analyzed in these searches were collected between 2007 and 2013. Possible sources of emission of both short-duration radio signals and transient gravitational-wave emission include starquakes on neutron stars, binary coalescence of neutron stars, and cosmic string cusps. While no evidence for gravitational-wave emission in coincidence with these radio transients was found, the current analysis serves as a prototype for similar future searches using more sensitive second-generation interferometers.

  4. Search for Transient Gravitational Waves in Coincidence with Short-Duration Radio Transients During 2007-2013

    NASA Technical Reports Server (NTRS)

    Abbott, B. P.; Hughey, Brennan; Zanolin, Michele; Szczepanczyk, Marek; Gill, Kiranjyot; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; hide

    2016-01-01

    We present an archival search for transient gravitational-wave bursts in coincidence with 27 single-pulse triggers from Green Bank Telescope pulsar surveys, using the LIGO (Laser Interferometer Gravitational Wave Observatory), Virgo (Variability of Solar Irradiance and Gravity Oscillations) and GEO (German-UK Interferometric Detector) interferometer network. We also discuss a check for gravitational-wave signals in coincidence with Parkes fast radio bursts using similar methods. Data analyzed in these searches were collected between 2007 and 2013. Possible sources of emission of both short-duration radio signals and transient gravitational-wave emission include star quakes on neutron stars, binary coalescence of neutron stars, and cosmic string cusps. While no evidence for gravitational-wave emission in coincidence with these radio transients was found, the current analysis serves as a prototype for similar future searches using more sensitive second-generation interferometers.

  5. The Fading Behavior of the Propagating VLF Signal during the Recovery Time of Solar Flares

    NASA Astrophysics Data System (ADS)

    Yasmina, B.

    2016-12-01

    The VLF radio signal propagating in the waveguide delimited by the Earth's surface and the D-layer of the ionosphere undergoes important modifications due to solar flares. In this work we focus on the NRK (37.5 kHz) VLF transmitter signal that propagates along the medium path to Algiers receiver (distance=3495 km). The signal analysis of two different flare classes shows that the perturbation due to a week flare of C2.1 (Imax=2.1 x 10-6 W/m2) class are less important than the medium one of M3.2 (Imax=3.2 x 10-5 W/m2) class. This leads to the fast recovery to the normal ionospheric condition after the weak solar flare while the medium solar flare takes more time. Additionally, the study of the signal amplitude behaviors by means of the LWPC code shows that the fading displacement toward the transmitter is more significant in the case of M3.2 flare than C2.1 class.

  6. The fading behavior of the propagating VLF signal during the recovery time of solar flares.

    NASA Astrophysics Data System (ADS)

    Bouderba, Yasmina; Tribeche, Mouloud; Nait Amor, Samir

    2016-07-01

    The VLF radio signal propagating in the waveguide delimited by the Earth's surface and the D-layer of the ionosphere undergoes important modifications due to solar flares. In this work we focus on the NRK (37.5 kHz) VLF transmitter signal that propagates along the medium path to Algiers receiver (distance=3495 km). The signal analysis of two different flare classes shows that the perturbation due to a week flare of C2.1 (I _{max}=2.1 x 10 ^{-6} W/m ^{2}) class are less important than the medium one of M3.2 (I _{max}=3.2 x 10 ^{-5} W/m ^{2}) class. This leads to the fast recovery to the normal ionospheric condition after the weak solar flare while the medium solar flare takes more time. Additionally, the study of the signal amplitude behaviors by means of the LWPC code shows that the fading displacement toward the transmitter is more significant in the case of M3.2 flare than C2.1 class.

  7. Oceanic Lightning versus Continental Lightning: VLF Peak Current Discrepancies

    NASA Astrophysics Data System (ADS)

    Dupree, N. A., Jr.; Moore, R. C.

    2015-12-01

    Recent analysis of the Vaisala global lightning data set GLD360 suggests that oceanic lightning tends to exhibit larger peak currents than continental lightning (lightning occurring over land). The GLD360 peak current measurement is derived from distant measurements of the electromagnetic fields emanated during the lightning flash. Because the GLD360 peak current measurement is a derived quantity, it is not clear whether the actual peak currents of oceanic lightning tend to be larger, or whether the resulting electromagnetic field strengths tend to be larger. In this paper, we present simulations of VLF signal propagation in the Earth-ionosphere waveguide to demonstrate that the peak field values for oceanic lightning can be significantly stronger than for continental lightning. Modeling simulations are performed using the Long Wave Propagation Capability (LWPC) code to directly evaluate the effect of ground conductivity on VLF signal propagation in the 5-15 kHz band. LWPC is an inherently narrowband propagation code that has been modified to predict the broadband response of the Earth-Ionosphere waveguide to an impulsive lightning flash while preserving the ability of LWPC to account for an inhomogeneous waveguide. Furthermore, we evaluate the effect of return stroke speed on these results.

  8. Solar flare induced D-region ionospheric perturbations evaluated from VLF measurements

    NASA Astrophysics Data System (ADS)

    Singh, Ashutosh K.; Singh, A. K.; Singh, Rajesh; Singh, R. P.

    2014-03-01

    The results of very low frequency (VLF) wave amplitude measurements carried out at the low latitude station Varanasi (geom. lat. 14∘55'N, long. 154∘E), India during solar flares are presented for the first time. The VLF waves (19.8 kHz) transmitted from the NWC-transmitter, Australia propagated in the Earth-ionosphere waveguide to long distances and were recorded at Varanasi. Data are analyzed and the reflection height H' and the sharpness factor β are evaluated. It is found that the reflection height decreases whereas sharpness factor increases with the increase of solar flare power. The H' is found to be higher and β smaller at low latitudes than the corresponding values at mid and high latitudes. The sunspot numbers were low during the considered period 2011-2012, being the rising phase of solar cycle 24 and as a result cosmic rays may impact the D-region ionosphere. The increased ionization from the flare lowers the effective reflecting height, H', of the D-region roughly in proportion to the logarithm of the X-ray flare intensity from a typical mid-day unperturbed value of about 71-72 km down to about 65 km for an X class flare. The sharpness ( β) of the lower edge of the D-region is also significantly increased by the flare but reaches a clear saturation value of about 0.48 km-1 for flares of magnitude greater than about X1 class.

  9. A case study of lightning, whistlers, and associated ionospheric effects during a substorm particle injection event

    NASA Technical Reports Server (NTRS)

    Rodriguez, J. V.; Inan, U. S.; Li, Y. Q.; Holzworth, R. H.; Smith, A. J.; Orville, R. E.; Rosenberg, T. J.

    1992-01-01

    The relationships among cloud-to-ground (CG) lightning, sferics, whistlers, VLF amplitude perturbations, and other ionospheric phenomena occurring during substorm events were investigated using data from simultaneous ground-based observations of narrow-band and broad-band VLF radio waves and of CG lightning made during the 1987 Wave-Induced Particle Precipitation campaign conducted from Wallops Island (Virginia). Results suggest that the data collected on ionospheric phenomena during this event may represent new evidence of direct coupling of lightning energy to the lower ionosphere, either in conjunction with or in the absence of gyroresonant interactions between whistler mode waves and electrons in the magnetosphere.

  10. Roles Played by Electrostatic Waves in Producing Radio Emissions

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.

    2000-01-01

    Processes in which electromagnetic radiation is produced directly or indirectly via intermediate waves are reviewed. It is shown that strict theoretical constraints exist for electrons to produce nonthermal levels of radiation directly by the Cerenkov or cyclotron resonances. In contrast, indirect emission processes in which intermediary plasma waves are converted into radiation are often favored on general and specific grounds. Four classes of mechanisms involving the conversion of electrostatic waves into radiation are linear mode conversion, hybrid linear/nonlinear mechanisms, nonlinear wave-wave and wave-particle processes, and radiation from localized wave packets. These processes are reviewed theoretically and observational evidence summarized for their occurrence. Strong evidence exists that specific nonlinear wave processes and mode conversion can explain quantitatively phenomena involving type III solar radio bursts and ionospheric emissions. On the other hand, no convincing evidence exists that magnetospheric continuum radiation is produced by mode conversion instead of nonlinear wave processes. Further research on these processes is needed.

  11. Put a Short-Wave Radio in Your Foreign Language Classroom

    ERIC Educational Resources Information Center

    Oksenholt, Svein

    1977-01-01

    Advantages of the short-wave radio as a supplement to foreign language instruction as well as practical hints on wavelength, antenna, and techniques for use are provided. Selective annotated bibliography. (STS)

  12. Assessing D-Region Ionospheric Electron Densities with Transionospheric VLF Signals

    NASA Astrophysics Data System (ADS)

    Worthington, E. R.; Cohen, M.

    2016-12-01

    Very Low Frequency (VLF, 3-30 kHz) electromagnetic radiation emitted from ground-based sources, such as VLF transmitters or lightning strokes, is generally confined between the Earth's surface and the base of the ionosphere. These boundaries result in waveguide-like propagation modes that travel away from the source, often over great distances. In the vicinity of the source, a unique interference pattern exists that is largely determined by the D-region of the ionosphere which forms the upper boundary. A small portion of this VLF radiation escapes the ionosphere allowing the waveguide interference pattern to be observable to satellites in low-earth orbit (LEO). Techniques for estimating D-region electron densities using VLF satellite measurements are presented. These techniques are then validated using measurements taken by the satellite DEMETER. During its six-year mission, DEMETER completed hundreds of passes above well-characterized VLF transmitters while taking measurements of electric and magnetic field strengths. The waveguide interference pattern described above is clearly visible in these measurements, and features from the interference pattern are used to derive D-region electron density profiles.

  13. Thunderstorm monitoring with VLF network and super dense meteorological observation system

    NASA Astrophysics Data System (ADS)

    Takahashi, Yukihiro; Sato, Mitsuteru

    2015-04-01

    It's not easy to understand the inside structure and developing process of thunderstorm only with existing meteorological instruments since its horizontal extent of the storm cell is sometimes smaller than an order of 10 km while one of the densest ground network in Japan, AMEDAS, consists of sites located every 17 km in average and the resolution of meteorological radar is 1-2 km in general. Even the X-band radar realizes the resolution of 250 m or larger. Here we suggest a thunderstorm monitoring system consisting of the network of VLF radio wave receivers and the super dense meteorological observation system with simple and low cost plate-type sensors that can be used for measurement both of raindrop and vertical electric field change caused by cloud-to-ground lightning discharge, adding to basic equipments for meteorological measurements. The plate-type sensor consists of two aluminum plates with a diameter of 10-20 cm. We carried out an observation campaign in summer of 2013 in the foothills of Mt. Yastugatake, Yamanashi and Nagano prefectures in Japan, installing 6 plate-type sensors at a distance of about 4 km. Horizontal location, height and charge amount of each lightning discharge are estimated successfully based on the information of electric field changes at several observing sites. Moreover, it was found that the thunderstorm has a very narrow structure smaller than 300 m that cannot be measured by any other ways, counting the positive and negative pulses caused by attachment of raindrop to the sensor plate, respectively. We plan to construct a new super dense observation network in the north Kanto region, Japan, where the lightning activity is most prominent in summer Japan and surrounded by our VLF systems developed for detecting sferics from lightning discharge, distributing more than several tens of sensors at every 4 km or shorter, such as an order of 100 m at minimum. This kind of new type network will reveal the unknown fine structures of

  14. Multi-Band (K- Q- and E-Band) Multi-Tone Millimeter-Wave Frequency Synthesizer for Radio Wave Propagation Studies

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Wintucky, Edwin G.

    2014-01-01

    This paper presents the design and test results of a multi-band multi-tone millimeter-wave frequency synthesizer, based on a solid-state frequency comb generator. The intended application of the synthesizer is in a space-borne transmitter for radio wave atmospheric studies at K-band (18 to 26.5 GHz), Q-band (37 to 42 GHz), and E-band (71 to 76 GHz). These studies would enable the design of robust multi-Gbps data rate space-to-ground satellite communication links. Lastly, the architecture for a compact multi-tone beacon transmitter, which includes a high frequency synthesizer, a polarizer, and a conical horn antenna, has been investigated for a notional CubeSat based space-to-ground radio wave propagation experiment.

  15. Prospects of using medium-wave band for radio communication with rescue mobile teams of EMERCOM of Russia

    NASA Astrophysics Data System (ADS)

    Bazhukov, I. F.; Dulkejt, I. V.; Zavyalov, S. A.; Lvova, Yu V.; Lyashuk, A. N.; Puzyrev, P. I.; Rekunov, S. G.; Chaschin, E. A.; Sharapov, S. V.

    2018-01-01

    The results of tests in-situ of the prototype of medium-wave mobile radio station «Noema-SV» in Western Siberia, Omsk region and Vorkuta Arctic Integrated Emergency and Rescue Center of EMERCOM of Russia are presented. Radio paths tests in-situ in the Far North show the possibility of radio communication with rescue mobile teams of EMERCOM of Russia in the medium-wave band within distances of several tens of kilometers of rugged topography. The radio range on a flat terrain increases to several hundreds of kilometers. Shortened medium-wave band antennas developed at OmSTU and employed by rescue mobile teams of EMERCOM of Russia were used in.

  16. Massive Statistics of VLF-Induced Ionospheric Disturbances

    NASA Astrophysics Data System (ADS)

    Pailoor, N.; Cohen, M.; Golkowski, M.

    2017-12-01

    The impact of lightning of the D-region of the ionosphere has been measured by Very Low Frequency (VLF) remote sensing, and can be seen through the observance of Early-Fast events. Previous research has indicated that several factors control the behavior and occurrence of these events, including the transmitter-receiver geometry, as well as the peak current and polarity of the strike. Unfortunately, since each event is unique due to the wide variety of impacting factors, it is difficult to make broad inferences about the interactions between the lightning and ionosphere. By investigating a large database of lightning-induced disturbances over a span of several years and over a continental-scale region, we seek to quantify the relationship between geometry, lightning parameters, and the apparent disturbance of the ionosphere as measured with VLF transmitters. We began with a set of 860,000 cases where an intense lightning stroke above 150 kA occurred within 300 km of a transmiter-receiver path. To then detect ionospheric disturbances from the large volume of VLF data and lightning incidents, we applied a number of classification methods to the actual VLF amplitude data, and find that the most accurate is a convolutional neural network, which yielded a detection efficiency of 95-98%, and a false positive rate less than 25%. Using this model, we were able to assemble a database of more than 97,000 events, with each event stored with its corresponding time, date, receiver, transmitter, and lightning parameters. Estimates for the peak and slope of each disruption were also calculated. From this data, we were able to chart the relationships between geometry and lightning parameters (peak current and polarity) towards the occurrence probability, perturbation intensity, and recovery time, of the VLF perturbation. The results of this analysis are presented here.

  17. ELF/VLF Perturbations Above the Haarp Transmitter Recorded by the Demeter Satellite in the Upper Ionosphere

    NASA Astrophysics Data System (ADS)

    Titova, E. E.; Demekhov, A. G.; Mochalov, A. A.; Gvozdevsky, B. B.; Mogilevsky, M. M.; Parrot, M.

    2015-08-01

    In the studies of the data received from DEMETER (orbit altitude above the Earth is about 700 km), we detected for the first time electromagnetic perturbations, which are due to the ionospheric modification by HAARP, a high-power high-frequency transmitter, simultaneously in the extremely low-frequency (ELF, below 1200 Hz) and very low-frequency (VLF, below 20 kHz) ranges. Of the thirteen analyzed flybys of the satellite above the heated area, the ELF/VLF signals were detected in three cases in the daytime (LT = 11-12 h), when the minimum distance between the geomagnetic projections of the satellite and the heated area center on the Earth's surface did not exceed 31 km. During the nighttime flybys, the ELF/VLF perturbations were not detected. The size of the perturbed region was about 100 km. The amplitude, spectrum, and polarization of the ELF perturbations were analyzed, and their comparison with the characteristics of natural ELF noise above the HAARP transmitter was performed. In particular, it was shown that in the daytime the ELF perturbation amplitude above the heated area can exceed by a factor of 3 to 8 the amplitude of natural ELF noise. The absence of the nighttime records of artificial ELF/VLF perturbations above the heated area can be due to both the lower frequency of the heating signal, at which the heating occurs in the lower ionosphere, and the higher level of natural noise. The spectrum of the VLF signals related to the HAARP transmitter operation had two peaks at frequencies of 8 to 10 kHz and 15 to 18 kHz, which are close to the first and second harmonics of the lower-hybrid resonance in the heated area. The effect of the whistler wave propagation near the lower-hybrid resonance region on the perturbation spectrum recorded in the upper ionosphere for these signals has been demonstrated. In particular, some of the spectrum features can be explained by assuming that the VLF signals propagate in quasiresonance, rather than quasilongitudinal, regime

  18. Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain

    NASA Astrophysics Data System (ADS)

    Yu, Shixing; Li, Long; Shi, Guangming; Zhu, Cheng; Zhou, Xiaoxiao; Shi, Yan

    2016-03-01

    In this paper, a reflective metasurface is designed, fabricated, and experimentally demonstrated to generate an orbital angular momentum (OAM) vortex wave in radio frequency domain. Theoretical formula of phase-shift distribution is deduced and used to design the metasurface producing vortex radio waves. The prototype of a practical configuration is designed, fabricated, and measured to validate the theoretical analysis at 5.8 GHz. The simulated and experimental results verify that the vortex waves with different OAM mode numbers can be flexibly generated by using sub-wavelength reflective metasurfaces. The proposed method and metasurface pave a way to generate the OAM vortex waves for radio and microwave wireless communication applications.

  19. Resonant scattering of energetic electrons in the plasmasphere by monotonic whistler-mode waves artificially generated by ionospheric modification

    NASA Astrophysics Data System (ADS)

    Chang, S. S.; Ni, B. B.; Bortnik, J.; Zhou, C.; Zhao, Z. Y.; Li, J. X.; Gu, X. D.

    2014-05-01

    Modulated high-frequency (HF) heating of the ionosphere provides a feasible means of artificially generating extremely low-frequency (ELF)/very low-frequency (VLF) whistler waves, which can leak into the inner magnetosphere and contribute to resonant interactions with high-energy electrons in the plasmasphere. By ray tracing the magnetospheric propagation of ELF/VLF emissions artificially generated at low-invariant latitudes, we evaluate the relativistic electron resonant energies along the ray paths and show that propagating artificial ELF/VLF waves can resonate with electrons from ~ 100 keV to ~ 10 MeV. We further implement test particle simulations to investigate the effects of resonant scattering of energetic electrons due to triggered monotonic/single-frequency ELF/VLF waves. The results indicate that within the period of a resonance timescale, changes in electron pitch angle and kinetic energy are stochastic, and the overall effect is cumulative, that is, the changes averaged over all test electrons increase monotonically with time. The localized rates of wave-induced pitch-angle scattering and momentum diffusion in the plasmasphere are analyzed in detail for artificially generated ELF/VLF whistlers with an observable in situ amplitude of ~ 10 pT. While the local momentum diffusion of relativistic electrons is small, with a rate of < 10-7 s-1, the local pitch-angle scattering can be intense near the loss cone with a rate of ~ 10-4 s-1. Our investigation further supports the feasibility of artificial triggering of ELF/VLF whistler waves for removal of high-energy electrons at lower L shells within the plasmasphere. Moreover, our test particle simulation results show quantitatively good agreement with quasi-linear diffusion coefficients, confirming the applicability of both methods to evaluate the resonant diffusion effect of artificial generated ELF/VLF whistlers.

  20. Influence of January 2009 stratospheric warming on HF radio wave propagation in the low-latitude ionosphere

    NASA Astrophysics Data System (ADS)

    Kotova, Darya; Klimenko, Maksim; Klimenko, Vladimir; Zaharov, Veniamin; Bessarab, Fedor; Korenkov, Yuriy

    2016-12-01

    We have considered the influence of the January 23-27, 2009 sudden stratospheric warming (SSW) event on HF radio wave propagation in the equatorial ionosphere. This event took place during extremely low solar and geomagnetic activity. We use the simulation results obtained with the Global Self-consistent Model of the Thermosphere, Ionosphere and Protonosphere (GSM TIP) for simulating environmental changes during the SSW event. We both qualitatively and quantitatively reproduced total electron content disturbances obtained from global ground network receiver observations of GPS navigation satellite signals, by setting an additional electric potential and TIME-GCM model output at a height of 80 km. In order to study the influence of this SSW event on HF radio wave propagation and attenuation, we used the numerical model of radio wave propagation based on geometrical optics approximation. It is shown that the sudden stratospheric warming leads to radio signal attenuation and deterioration of radio communication in the daytime equatorial ionosphere.

  1. VLF Wave Local Acceleration & ULF Wave Radial Diffusion: The Importance of K-Dependent PSD Analysis for Diagnosing the cause of Radiation Belt Acceleration.

    NASA Astrophysics Data System (ADS)

    Ozeke, L.; Mann, I. R.; Claudepierre, S. G.; Morley, S.; Henderson, M. G.; Baker, D. N.; Kletzing, C.; Spence, H. E.

    2017-12-01

    We present results showing the temporal evolution of electron Phase Space Density (PSD) in the outer radiation belt during the most intense geomagnetic storm of the last decade which occurred on March 17th 2015. Based on observations of growing local PSD peaks at fixed first and second adiabatic invariants of M=1000 MeV/G and K=0.18 G1/2Re respectively, previous studies argued that the outer radiation belt flux enhancement that occurred during this storm resulted from local acceleration driven by VLF waves. Here we show that the vast majority of the outer radiation belt consisted of electrons with much lower K-values than 0.18 G1/2Re, and that at these lower K-values there is no clear evidence of growing local PSD peaks consistent with that expected from local acceleration. Contrary to prior studies we show that the outer radiation belt flux enhancement is consistent with inward radial diffusion driven by ULF waves and present evidence that the growing local PSD peaks at K=0.18 G1/2Re and M=1000 MeV/G result from pitch-angle scattering of lower-K electrons to K=0.18 G1/2Re. In addition, we also show that the observed outer radiation belt flux enhancement during this geomagnetic storm can be reproduced using a radial diffusion model driven by measured ULF waves without including any local acceleration. These results highlight the importance of careful analysis of the electron PSD profiles as a function of L* over a range of fixed first, M and second K, adiabatic invariants to correctly determine the mechanism responsible for the electron flux enhancements observed in the outer radiation belt.

  2. Characteristics of worst hour rainfall rate for radio wave propagation modelling in Nigeria

    NASA Astrophysics Data System (ADS)

    Osita, Ibe; Nymphas, E. F.

    2017-10-01

    Radio waves especially at the millimeter-wave band are known to be attenuated by rain. Radio engineers and designers need to be able to predict the time of the day when radio signal will be attenuated so as to provide measures to mitigate this effect. This is achieved by characterizing the rainfall intensity for a particular region of interest into worst month and worst hour of the day. This paper characterized rainfall in Nigeria into worst year, worst month, and worst hour. It is shown that for the period of study, 2008 and 2009 are the worst years, while September is the most frequent worst month in most of the stations. The evening time (LT) is the worst hours of the day in virtually all the stations.

  3. Radio observations of atmospheric gravity waves with Callisto

    NASA Astrophysics Data System (ADS)

    Monstein, C.

    2013-12-01

    On December 12th 2013 NOAA reported between 08:04 and 12:08 only radio noise at 245 MHz observed in San Vito. But some European observatories of the e-Callisto network (Germany, UK and Ireland) observed very strange reverse drifting and v-type bursts which was never recognized by the author before. Private communication with P. Zucca from TCD showed that these strange structures are due to focusing effects in the ionosphere. Interestingly it is possible to observe complex ionospheric behavior with cheap and simple radio-telescopes like Callisto. People who are interested in such kind of observations to study ionospheric gravity waves should generate observing programs for frequencies below 100 MHz, ideally with an additional up-converter for frequencies from 15 MHz - 100 MHz. Callisto again proved to be a powerful tool for solar science and radio-monitoring. Below are shown recent observations from Bir castle in Ireland, Essen in Germany and Glasgow in Scotland. For comparison I added an observation from a LOFAR node from Chibolton in UK which was provided by Richard Fallows from Astron NL. And finally a plot from Nançay radio heliograph, provided by Karl-Heinz Gansel, Dingden Amateur Radio- Astronomy Observatory DARO, Germany. Although Callisto instruments are almost identical, the spectra look completely different, depending on their geographical longitude and latitude.

  4. Observation of radio-wave-induced red hydroxyl emission at low altitude in the ionosphere.

    PubMed

    Kagan, L M; Nicolls, M J; Kelley, M C; Carlson, H C; Belikovich, V V; Bakhmet'eva, N V; Komrakov, G P; Trondsen, T S; Donovan, E

    2005-03-11

    We report the discovery of radio-wave-induced red emission of OH Meinel rotation-vibrational bands at 629.79 nm. These are the first measurements of artificial aurora below 100 km. We believe that the 629.79-nm OH emission was due to radio-wave focusing by sporadic ionization clouds near 80-85 km altitude, thus giving a technique to visualize the low-altitude sporadic ionization and providing insight into ionospheric interactions at these low altitudes.

  5. Measuring ionospheric movements using totally reflected radio waves

    NASA Astrophysics Data System (ADS)

    Sadler, Elaine M.; Whitehead, J. D.; From, W. R.

    1988-02-01

    It is shown that for radio waves of a particular frequency reflected totally from the ionosphere the effect of refraction as well as reflection can be simulated by an effective reflecting surface. This mirror-like surface will give the correct angle of arrival and Doppler shift for all radars operating at this frequency. It is theoretically possible for the effective reflecting surface to be folded back on itself, but this is unlikely except for F-region echoes refracted by sporadic E-clouds. If the surface is not folded and exists everywhere, it is always possible to describe its motion and change in terms of wave undulations. Experimental data for F-region echoes show that these wave undulations are very dispersive. However, the matching between the best fitting model and the experimental data is worse than expected for reasons we do not understand.

  6. Measuring ionospheric movements using totally reflected radio waves

    NASA Astrophysics Data System (ADS)

    From, W. R.; Sadler, Elaine M.; Whitehead, J. D.

    1988-02-01

    It is shown that for radio waves of a particular frequency reflected totally from the ionosphere the effect of refraction as well as reflection can be simulated by an effective reflecting surface. This mirrorlike surface will give the correct angle of arrival and Doppler shift for all radars operating at this frequency. It is theoretically possible for the effective reflecting surface to be folded back on itself, but this is unlikely except for F-region echoes refracted by sporadic E-clouds. If the surface is not folded and exists everywhere, it is always possible to describe its motion and change in terms of wave undulations. Experimental data for F-region echoes show that these wave undulations are very dispersive. However, the matching between the best fitting model and the experimental data is worse than expected for reasons we do not understand.

  7. Atmospheric Waves and Dynamics Beneath Jupiters Clouds from Radio Wavelength Observations

    NASA Technical Reports Server (NTRS)

    Cosentino, Richard G.; Butler, Bryan; Sault, Bob; Morales-Juberias, Raul; Simon, Amy; De Pater, Imke

    2017-01-01

    We observed Jupiter at wavelengths near 2 cm with the Karl G. Jansky Very Large Array (VLA) in February 2015. These frequencies are mostly sensitive to variations in ammonia abundance and probe between approx. 0.5- 2.0 bars of pressure in Jupiters atmosphere; within and below the visible cloud deck which has its base near 0.7 bars. The resultant observed data were projected into a cylindrical map of the planet with spatial resolution of approx. 1500 km at the equator. We have examined the data for atmospheric waves and observed a prominent bright belt of radio hotspot features near 10 N, likely connected to the same equatorial wave associated with the 5-m hotspots. We conducted a passive tracer power spectral wave analysis for the entire map and latitude regions corresponding to eastward and westward jets and compare our results to previous studies. The power spectra analysis revealed that the atmosphere sampled in our observation (excluding the NEB region) is in a 2-D turbulent regime and its dynamics are predominately governed by the shallow water equations. The Great Red Spot (GRS) is also very prominent and has a noticeable meridional asymmetry and we compare it, and nearby storms, with optical images. We find that the meridional radio profile has a global north-south hemisphere distinction and find correlations of it to optical intensity banding and to shear zones of the zonal wind profile over select regions of latitude. Amateur optical images taken before and after our observation complemented the radio wave- length map to investigate dynamics of the equatorial region in Jupiters atmosphere. We find that two radio hotspots at 2 cm are well correlated with optical plumes in the NEB, additionally revealing they are not the same 5 m hotspot features correlated with optical dark patches between adjacent plumes. This analysis exploits the VLAs upgraded sensitivity and explores the opportunities now possible when studying gas giants, especially atmospheric

  8. Excitation of small-scale waves in the F region of the ionosphere by powerful HF radio waves

    NASA Astrophysics Data System (ADS)

    Blagoveshchenskaya, N. F.; Chernyshev, M. Y.; Kornienko, V. A.

    1998-01-01

    Ionospheric small-scale waves in the F region, initiated by heating facilities in Nizhniy Novgorod, have been studied by the method of field-aligned scattering of diagnostic HF radio signals. Experimental data have been obtained on the radio path Kiev-N. Novgorod-St. Petersburg during heating campaigns with heater radiated power ERP = 20 MW and 100 MW. Observations of scattered HF signals have been made by a Doppler spectrum device with high temporal resolution. Analysis of the experimental data shows a relation between the heater power level and the parameters of ionospheric small-scale oscillations falling within the range of Pc 3-4 magnetic pulsations. It is found that the periods of wave processes in the F region of the ionosphere, induced by the heating facility, decrease with increasing heating power. The level of heating power also has an impact on the horizontal east-west component of the electric field E, the vertical component of the Doppler velocity Vd and the amplitude of the vertical displacements M of the heated region. Typical magnitudes of these parameters are the following: E = 1.25 mVm, Vd = 6 ms, M = 600-1500 m for ERP = 20 MW and E = 2.5-4.5 mVm, Vd = 11-25 ms, M = 1000-5000 m for ERP = 100 MW. The results obtained confirm the hypothesis of excitation of the Alfvén resonator by powerful HF radio waves which leads to the generation of magnetic field oscillations in the heated region giving rise to artificial Pc 3-4 magnetic pulsations and ionospheric small-scale wave processes. In this situation an increase of the heater power would lead to a growth of the electric field of hydromagnetic waves propagating in the ionosphere as well as the amplitude of the vertical displacements of the heated region.

  9. Architectural Considerations of Fiber-Radio Millimeter-Wave Wireless Access Systems

    NASA Astrophysics Data System (ADS)

    Kitayama, Ken-Ichi

    The architecture of fiber-radio mm-wave wireless access systems critically depends upon the optical mm-wave generation and transport techniques. Four optical mm-wave generation and transport techniques: 1) optical self-heterodyning, 2) external modulation, 3) up- and downconversion, and 4) optical transceiver, will be assessed. From the technical viewpoints, their advantages and disadvantages are discussed. The economical assessment, focusing on the cost of a base station BS ( ), will suggest that the optical transceiver looks the most promising in the long run, but in the near future, however, the external modulation will be cost-effective. The experimental results of 60 GHz testbeds using the external modulation will support the conclusion.

  10. Radio Spectral Imaging of Reflective MHD Waves during the Impulsive Phase of a Solar Flare

    NASA Astrophysics Data System (ADS)

    Yu, S.; Chen, B.; Reeves, K.

    2017-12-01

    We report a new type of coherent radio bursts observed by the Karl G. Jansky Very Large Array (VLA) in 1-2 GHz during the impulsive phase of a two-ribbon flare on 2014 November 1, which we interpret as MHD waves reflected near the footpoint of flaring loops. In the dynamic spectrum, this burst starts with a positive frequency drift toward higher frequencies until it slows down near its highest-frequency boundary. Then it turns over and drifts toward lower frequencies. The frequency drift rate in its descending and ascending branch is between 50-150 MHz/s, which is much slower than type III radio bursts associated with fast electron beams but close to the well-known intermediate drift bursts, or fiber bursts, which are usually attributed to propagating whistler or Alfvenic waves. Thanks to VLA's unique capability of imaging with spectrometer-like temporal and spectral resolution (50 ms and 2 MHz), we are able to obtain an image of the radio source at every time and frequency in the dynamic spectrum where the burst is present and trace its spatial evolution. From the imaging results, we find that the radio source firstly moves downward toward one of the flaring ribbons before it "bounces off" at the lowest height (corresponding to the turnover frequency in the dynamic spectrum) and moves upward again. The measured speed in projection is at the order of 1-2 Mm/s, which is characteristic of Alfvenic or fast-mode MHD waves in the low corona. We conclude that the radio burst is emitted by trapped nonthermal electrons in the flaring loop carried along by a large-scale MHD wave. The waves are probably launched during the eruption of a magnetic flux rope in the flare impulsive phase.

  11. VLF Perturbations Associated with Solar Eclipses of November 2012 and may 2013 IN the South Pacific Region

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Kumar, A.

    2015-12-01

    Sub-ionospheric VLF signals from the NWC (19.8 kHz), NPM (21.4 kHz) and NLK (24.8 kHz) MSK VLF transmitters are monitored at Suva, Fiji, with a time resolution of 0.1s using GPS based timing and SoftPAL VLF system. Here one minute averaged amplitude and phase data have been used for analysis. We present perturbations in VLF propagation and D-region changes associated with 13 November 2012 total solar eclipse (SE) and 9-10 May 2013 annular SE using VLF observations at Suva, Fiji. During 13-14 November 2012 total SE, the totality shadow intercepted NWC-Suva path and NWC signal amplitude and phase decreased by about 0.70 dB and 23°, respectively. NPM signal amplitude during 9-10 May 2013 SE decreased by about 2.0 dB. The amplitude perturbation of ~1.8 dB on NLK signal was measured from the unperturbed level associated with 9-10 May 2013 SE. The decrease in the amplitude at the site can be understood in terms of destructive interference of modes converted at the discontinuity created by the eclipse intercepting the different Transmitter-receiver great circle paths (TRGCPs) and changes in the propagation conditions along TRGCPs. The decrease in the amplitude and phase of NWC signal for 13-14 November 2012 SE has been modeled using Long Wave Propagation Capability code to estimate the changes in D-region reflection height (H') and sharpness factor (β) which shows that H' and β were increased by 0.95 km and 0.01 km-1, respectively. The phase changes on NWC signal associated with 9-10 May 2013 SE have been used to estimate the recombination coefficient value, for 75 km height where electron density reduction due to SE was about 40%. The changes in the D-region parameters and the electron density are due to sudden decrease of the photo-ionization creating nighttime like conditions in the D-region ionosphere.

  12. Conjugate Ground-Spacecraft Observations of VLF Chorus Elements

    NASA Astrophysics Data System (ADS)

    Demekhov, A. G.; Manninen, J.; Santolík, O.; Titova, E. E.

    2017-12-01

    We present results of simultaneous observations of VLF chorus elements at the ground-based station Kannuslehto in Northern Finland and on board Van Allen Probe A. Visual inspection and correlation analysis of the data reveal one-to-one correspondence of several (at least 12) chorus elements following each other in a sequence. Poynting flux calculated from electromagnetic fields measured by the Electric and Magnetic Field Instrument Suite and Integrated Science instrument on board Van Allen Probe A shows that the waves propagate at small angles to the geomagnetic field and oppositely to its direction, that is, from northern to southern geographic hemisphere. The spacecraft was located at L≃4.1 at a geomagnetic latitude of -12.4∘ close to the plasmapause and inside a localized density inhomogeneity with about 30% density increase and a transverse size of about 600 km. The time delay between the waves detected on the ground and on the spacecraft is about 1.3 s, with ground-based detection leading spacecraft detection. The measured time delay is consistent with the wave travel time of quasi-parallel whistler-mode waves for a realistic profile of the plasma density distribution along the field line. The results suggest that chorus discrete elements can preserve their spectral shape during a hop from the generation region to the ground followed by reflection from the ionosphere and return to the near-equatorial region.

  13. VLF signal modulations during the total solar eclipse of 22nd July, 2009: model using D region ion chemistry and LWPC

    NASA Astrophysics Data System (ADS)

    Chakraborty, Suman; Chakrabarti, Sandip Kumar; Palit, Sourav; Ray, Suman

    2016-07-01

    One of the major sources of ionospheric perturbations is variations in solar Extreme Ultraviolet (EUV) radiation flux. Solar eclipse is a phenomenon which is capable of producing significant effects on the physical and chemical properties of the ionospheric plasma. During a solar eclipse, the solar radiation flux reduces considerably for a limited period of time over specific locations on the Earth. This induces certain changes within the ionosphere or more precisely, in the D-region which can be studied with the observation of Very Low Frequency (VLF) radio signal modulations. The parameters which mainly govern the ion-chemistry, such as the recombination coefficients are poorly known till date. Solar eclipse provides us with an excellent opportunity to study these parameters as its time of occurrence is known beforehand and thus we can equip ourselves accordingly. In the present study we considered the Total Solar Eclipse (TSE) that occurred on 22nd July, 2009 within the Indian subcontinent. Indian Centre for Space Physics (ICSP) conducted a week long campaign during the eclipse and data were recorded from dozens of places within India and abroad. Both positive and negative changes in VLF signal amplitude were observed. In this paper, data for a propagation path between Indian Navy VLF transmitter named VTX3 and a pair of receivers in India, namely Malda and Kolkata are used. We start with calculating the obscuration function for these two places to find the variations in ionization flux within the period of the eclipse. After this, we incorporated the D region ion chemistry model to find the equilibrium ion density over the region and employ the LWPC code to find the VLF signal amplitude. We varied the values of recombination coefficients to achieve desired accuracy in our results. In doing so, we achieved two goals: First, we have been able to reproduce the trend of variation in VLF signal amplitude (both positive and negative) at both the receiving locations

  14. Detectable radio flares following gravitational waves from mergers of binary neutron stars.

    PubMed

    Nakar, Ehud; Piran, Tsvi

    2011-09-28

    Mergers of neutron-star/neutron-star binaries are strong sources of gravitational waves. They can also launch subrelativistic and mildly relativistic outflows and are often assumed to be the sources of short γ-ray bursts. An electromagnetic signature that persisted for weeks to months after the event would strengthen any future claim of a detection of gravitational waves. Here we present results of calculations showing that the interaction of mildly relativistic outflows with the surrounding medium produces radio flares with peak emission at 1.4 gigahertz that persist at detectable (submillijansky) levels for weeks, out to a redshift of 0.1. Slower subrelativistic outflows produce flares detectable for years at 150 megahertz, as well as at 1.4 gigahertz, from slightly shorter distances. The radio transient RT 19870422 (ref. 11) has the properties predicted by our model, and its most probable origin is the merger of a compact neutron-star/neutron-star binary. The lack of radio detections usually associated with short γ-ray bursts does not constrain the radio transients that we discuss here (from mildly relativistic and subrelativistic outflows) because short γ-ray burst redshifts are typically >0.1 and the appropriate timescales (longer than weeks) have not been sampled.

  15. Detection of fundamental and harmonic type III radio emission and the associated Langmuir waves at the source region

    NASA Technical Reports Server (NTRS)

    Reiner, M. J.; Stone, R. G.; Fainberg, J.

    1992-01-01

    Type III radio emission generated in the vicinity of the Ulysses spacecraft has been detected at both the fundamental and harmonic of the local plasma frequency. The observations represent the first clear evidence of locally generated type III radio emission. This local emission shows no evidence of frequency drift, exhibits a relatively short rise time, is less intense than the observed remotely generated radio emission, and is temporally correlated with observed in situ Langmuir waves. The observations were made with the unified radio astronomy and wave (URAP) experiment on the Ulysses spacecraft between 1990 November 4 and 1991 April 30, as it traveled from 1 to 3 AU from the sun. During this time period many thousands of bursts were observed. However, only three examples of local emission and associated Langmuir waves were identified. This supports previous suggestions that type III radio emission is generated in localized regions of the interplanetary medium, rather than uniformly along the extent of the electron exciter beam.

  16. Finite Difference modeling of VLF Propagation in the Earth-Ionosphere Waveguide

    NASA Astrophysics Data System (ADS)

    Marshall, R. A.; Wallace, T.; Turbe, M.

    2016-12-01

    Very-low-frequency (VLF, 3—30 kHz) waves can propagate efficiently in the waveguide formed by the Earth and the D-region ionosphere. vVariation in the signals monitored by a stationary receiver can be attributed to variations in the lower ionosphere. As such, these signals are used to monitor the D-region ionosphere in daytime and nighttime. However, the use of VLF transmitter signals to quantitatively diagnose the D-region ionosphere is complicated by i) the propagation of many modes in the waveguide, and their interference, and ii) the effect of the ionosphere along the entire path on the receiver signal at a single location. In this paper, we compare the modeled phase and amplitude of VLF signals using three methods: a Finite-Difference Time-Domain (FDTD) model, a Finite-Difference Frequency-Domain (FDFD) model, and the Long-Wave Prediction Capability (LWPC) model, which has been the method de rigueur since the 1970s. While LWPC solves mode propagation and coupling in the anisotropic waveguide, the FD methods directly solve for electric and magnetic fields from Maxwell's equations on a finite-difference grid. Thus, FD methods provide greater freedom to vary the physical inputs of the model, limited only by the spatial resolution, but at the expense of computation time. We compare the simulated amplitude and phase of these models by running them with identical physical inputs. In this work we compare both i) the absolute amplitude and phase trends as a function of distance, and ii) the magnitude of amplitude and phase variations for given ionosphere changes. Modeling results show that FDTD and FDFD simulations track the amplitude and phase as a function of distance very closely when compared to LWPC. Phase drift due to numerical dispersion is observed at large distances, of a few tens of degrees per 1000 km. These phase drifts increase quadratically with frequency, as expected from numerical dispersion in FD methods. In fact, the phase drift can be mostly

  17. An improved ELF/VLF method for globally geolocating sprite-producing lightning

    NASA Astrophysics Data System (ADS)

    Price, Colin; Asfur, Mustafa; Lyons, Walter; Nelson, Thomas

    2002-02-01

    The majority of sprites, the most common of transient luminous events (TLEs) in the upper atmosphere, are associated with a sub-class of positive cloud-to-ground lightning flashes (+CGs) whose characteristics are slowly being revealed. These +CGs produce extremely low frequency (ELF) and very low frequency (VLF) radiation detectable at great distances from the parent thunderstorm. During the STEPS field program in the United States, ELF/VLF transients associated with sprites were detected in the Negev Desert, Israel, some 11,000 km away. Within a two-hour period on 4 July 2000, all of the sprites detected optically in the United States produced detectable ELF/VLF transients in Israel. All of these transients were of positive polarity (representing positive lightning). Using the VLF data to obtain the azimuth of the transients, and the ELF data to calculate the distance between the source and receiver, we remotely determined the position of the sprite-forming lightning with an average locational error of 184 km (error of 1.6%).

  18. More evidence for a one-to-one correlation between Sprites and Early VLF perturbations

    NASA Astrophysics Data System (ADS)

    Haldoupis, C.; Amvrosiadi, N.; Cotts, B. R. T.; van der Velde, O. A.; Chanrion, O.; Neubert, T.

    2010-07-01

    Past studies have shown a correlation between sprites and early VLF perturbations, but the reported correlation varies widely from ˜50% to 100%. The present study resolves these large discrepancies by analyzing several case studies of sprite and narrowband VLF observations, in which multiple transmitter-receiver VLF pairs with great circle paths (GCPs) passing near a sprite-producing thunderstorm were available. In this setup, the multiple paths act in a complementary way that makes the detection of early VLF perturbations much more probable compared to a single VLF path that can miss several of them, a fact that was overlooked in past studies. The evidence shows that visible sprite occurrences are accompanied by early VLF perturbations in a one-to-one correspondence. This implies that the sprite generation mechanism may cause also sub-ionospheric conductivity disturbances that produce early VLF events. However, the one-to-one visible sprite to early VLF event correspondence, if viewed conversely, appears not to be always reciprocal. This is because the number of early events detected in some case studies was considerably larger than the number of visible sprites. Since the great majority of the early events not accompanied by visible sprites appeared to be caused by positive cloud to ground (+CG) lightning discharges, it is possible that sprites or sprite halos were concurrently present in these events as well but were missed by the sprite-watch camera detection system. In order for this option to be resolved we need more studies using highly sensitive optical systems capable of detecting weaker sprites, sprite halos and elves.

  19. An Evaluation of a Numerical Prediction Method for Electric Field Strength of Low Frequency Radio Waves based on Wave-Hop Ionospheric Propagation

    NASA Astrophysics Data System (ADS)

    Kitauchi, H.; Nozaki, K.; Ito, H.; Kondo, T.; Tsuchiya, S.; Imamura, K.; Nagatsuma, T.; Ishii, M.

    2014-12-01

    We present our recent efforts on an evaluation of the numerical prediction method of electric field strength for ionospheric propagation of low frequency (LF) radio waves based on a wave-hop propagation theory described in Section 2.4 of Recommendation ITU-R P.684-6 (2012), "Prediction of field strength at frequencies below about 150 kHz," made by International Telecommunication Union Radiocommunication Sector (ITU-R). As part of the Japanese Antarctic Research Expedition (JARE), we conduct on-board measurements of the electric field strengths and phases of LF 40 kHz and 60 kHz of radio signals (call sign JJY) continuously along both the ways between Tokyo, Japan and Syowa Station, the Japanese Antarctic station, at 69° 00' S, 39° 35' E on East Ongul Island, Lützow-Holm Bay, East Antarctica. The measurements are made by a newly developed, highly sensitive receiving system installed on board the Japanese Antarctic research vessel (RV) Shirase. We obtained new data sets of the electric field strength up to approximately 13,000-14,000 km propagation of LF JJY 40 kHz and 60 kHz radio waves by utilizing a newly developed, highly sensitive receiving system, comprised of an orthogonally crossed double-loop antenna and digital-signal-processing lock-in amplifiers, on board RV Shirase during the 55th JARE from November 2013 to April 2014. We have made comparisons between those on-board measurements and the numerical predictions of field strength for long-range propagation of low frequency radio waves based on a wave-hop propagation theory described in Section 2.4 of Recommendation ITU-R P.684-6 (2012) to show that our results qualitatively support the recommended wave-hop theory for the great-circle paths approximately 7,000-8,000 km and 13,000-14,000 km propagations.

  20. Measurement of electromagnetic waves in ELF and VLF bands to monitor lightning activity in the Maritime Continent

    NASA Astrophysics Data System (ADS)

    Yamashita, Kozo; Takahashi, Yukihiro; Ohya, Hiroyo; Tsuchiya, Fuminori; Sato, Mitsuteru; Matsumoto, Jun

    2013-04-01

    Data of lightning discharge has been focused on as an effective way for monitoring and nowcasting of thunderstorm activity which causes extreme weather. Spatial distribution of lightning discharge has been used as a proxy of the presence or absence of deep convection. Latest observation shows that there is extremely huge lightning whose scale is more than hundreds times bigger than that of averaged event. This result indicates that lightning observation should be carried out to estimate not only existence but also scale for quantitative evaluation of atmospheric convection. In this study, lightning observation network in the Maritime Continent is introduced. This network is consisted of the sensors which make possible to measure electromagnetic wave radiated from lightning discharges. Observation frequency is 0.1 - 40 kHz for the measurement of magnetic field and 1 - 40 kHz for that of electric field. Sampling frequency is 100 kHz. Waveform of electromagnetic wave is recorded by personal computer. We have already constructed observation stations at Tainan in Taiwan (23.1N, 121.1E), Saraburi in Thailand (14.5N, 101.0E), and Pontianak in Indonesia (0.0N, 109.4E). Furthermore, we plan to install the monitoring system at Los Banos in Philippines (14.18, 121.25E) and Hanoi in Viet Nam. Data obtained by multipoint observation is synchronized by GPS receiver installed at each station. By using data obtained by this network, location and scale of lightning discharge can be estimated. Location of lightning is determined based on time of arrival method. Accuracy of geolocation could be less than 10km. Furthermore, charge moment is evaluated as a scale of each lightning discharge. It is calculated from electromagnetic waveform in ELF range (3-30 kHz). At the presentation, we will show the initial result about geolocation for source of electromagnetic wave and derivation of charge moment value based on the measurement of ELF and VLF sferics.

  1. Radio-wave detection of ultra-high-energy neutrinos and cosmic rays

    NASA Astrophysics Data System (ADS)

    Huege, Tim; Besson, Dave

    2017-12-01

    Radio waves, perhaps because our terrestrial atmosphere and the cosmos beyond are uniquely transparent to them, or perhaps because they are macroscopic, so the basic instruments of detection (antennas) are easily constructible, arguably occupy a privileged position within the electromagnetic spectrum, and, correspondingly, receive disproportionate attention experimentally. Detection of radio-frequency radiation, at macroscopic wavelengths, has blossomed within the last decade as a competitive method for the measurement of cosmic particles, particularly charged cosmic rays and neutrinos. Cosmic-ray detection via radio emission from extensive air showers has been demonstrated to be a reliable technique that has reached a reconstruction quality of the cosmic-ray parameters competitive with more traditional approaches. Radio detection of neutrinos in dense media seems to be the most promising technique to achieve the gigantic detection volumes required to measure neutrinos at energies beyond the PeV-scale flux established by IceCube. In this article, we review radio detection both of cosmic rays in the atmosphere, as well as neutrinos in dense media.

  2. The influence of polarization on millimeter wave propagation through rain. [radio signals

    NASA Technical Reports Server (NTRS)

    Bostian, C. W.; Stutzman, W. L.; Wiley, P. H.; Marshall, R. E.

    1973-01-01

    The measurement and analysis of the depolarization and attenuation that occur when millimeter wave radio signals propagate through rain are described. Progress was made in three major areas: the processing of recorded 1972 data, acquisition and processing of a large amount of 1973 data, and the development of a new theoretical model to predict rain cross polarization and attenuation. Each of these topics is described in detail along with radio frequency system design for cross polarization measurements.

  3. Radio and Plasma Wave Observations at Saturn from Cassini's Approach and First Orbit

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Kurth, W. S.; Haspodarsky, G. B.; Persoon, A. M.; Averkamp, T. F.; Cecconi, B.; Lecacheux, A.; Zarka, P.; Canu, P.; Cornilleau-Wehrlin, N.

    2005-01-01

    We report data from the Cassini radio and plasma wave instrument during the approach and first orbit at Saturn. During the approach, radio emissions from Saturn showed that the radio rotation period is now 10 hours 45 minutes 45 k 36 seconds, about 6 minutes longer than measured by Voyager in 1980 to 1981. In addition, many intense impulsive radio signals were detected from Saturn lightning during the approach and first orbit. Some of these have been linked to storm systems observed by the Cassini imaging instrument. Within the magnetosphere, whistler-mode auroral hiss emissions were observed near the rings, suggesting that a strong electrodynamic interaction is occurring in or near the rings.

  4. Stationary Planetary Waves in the Mars Winter Atmosphere as seen by the Radio Science Experiment MaRS on Mars Express

    NASA Astrophysics Data System (ADS)

    Tellmann, Silvia; Pätzold, Martin; Häusler, Bernd; Tyler, Leonard G.; Hinson, David P.

    2015-11-01

    Stationary (Rossby) Waves are excited by the interaction of the zonally varying topography with the strong eastward winter jets. They lead to distinctive longitudinal temperature variations which contribute significantly to the asymmetry of the seasonal polar CO2 ice caps and are also important for the dust redistribution in the planetary atmosphere.Radio Science profiles from the Mars Express Radio Science Experiment MaRS at northern and southern high latitudes are used to gain insight into winter stationary wave structures on both hemispheres.Mars Global Surveyor (MGS) radio occultation measurements from the same season and year with their exceptionally good longitudinal and temporal coverage can be used to estimate the influence of transient eddies. Transient waves are especially important in the northern winter hemisphere.Wave number 2 stationary waves, driven by topography, are dominant in the northern winter latitudes while the wave number 1 wave is the most significant wave number during southern winter. The wave amplitudes peak around winter solstice on both hemispheres.Radio occultation measurements provide the unique opportunity to determine simultaneous measurements of temperature and geopotential height structures. Assuming geostrophic balance, these measurements can be used to determine meridional winds and eddy heat fluxes which provide further insight into the contribution of stationary waves to the heat exchange between the poles and the lower latitudes.

  5. The Radio & Plasma Wave Investigation (RPWI) for JUICE

    NASA Astrophysics Data System (ADS)

    Wahlund, J.-E.

    2013-09-01

    We present the Radio & Plasma Waves Investigation (RPWI) selected for implementation on the JUICE mission. RPWI consists of a highly integrated instrument package that provides a whole set of plasma and fields measurements. The RPWI instrument has outstanding new capabilities not previously available to outer planet missions, and that would address many fundamental planetary science objectives. Specifically, RPWI would be able to study the electro-dynamic influence of the Jovian magnetosphere on the exospheres, surfaces and conducting oceans of Ganymede, Europa and Callisto. RPWI would also be able to monitor the sources of radio emissions from auroral regions of Ganymede and Jupiter, and possibly also from lightning activity in Jupiter's clouds. Moreover, RPWI will search for exhaust plumes from cracks on the icy moons, as well as μm-sized dust and related dust-plasmasurface interaction processes occurring near the icy moons of Jupiter.

  6. Unprecedentedly Strong and Narrow Electromagnetic Emissions Stimulated by High-Frequency Radio Waves in the Ionosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norin, L.; Leyser, T. B.; Nordblad, E.

    2009-02-13

    Experimental results of secondary electromagnetic radiation, stimulated by high-frequency radio waves irradiating the ionosphere, are reported. We have observed emission peaks, shifted in frequency up to a few tens of Hertz from radio waves transmitted at several megahertz. These emission peaks are by far the strongest spectral features of secondary radiation that have been reported. The emissions are attributed to stimulated Brillouin scattering, long predicted but hitherto never unambiguously identified in high-frequency ionospheric interaction experiments. The experiments were performed at the High-Frequency Active Auroral Research Program (HAARP), Alaska, USA.

  7. Unprecedentedly strong and narrow electromagnetic emissions stimulated by high-frequency radio waves in the ionosphere.

    PubMed

    Norin, L; Leyser, T B; Nordblad, E; Thidé, B; McCarrick, M

    2009-02-13

    Experimental results of secondary electromagnetic radiation, stimulated by high-frequency radio waves irradiating the ionosphere, are reported. We have observed emission peaks, shifted in frequency up to a few tens of Hertz from radio waves transmitted at several megahertz. These emission peaks are by far the strongest spectral features of secondary radiation that have been reported. The emissions are attributed to stimulated Brillouin scattering, long predicted but hitherto never unambiguously identified in high-frequency ionospheric interaction experiments. The experiments were performed at the High-Frequency Active Auroral Research Program (HAARP), Alaska, USA.

  8. Antenna Construction & Propagation of Radio Waves, 5-1. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Marine Corps, Washington, DC.

    These military-developed curriculum materials consist of five individualized, self-paced chapters dealing with antenna construction and propagation of radio waves. Covered in the individual lessons are the following topics: basic electricity; antenna transmission-line fundamentals; quarter-wave antennas, half-wave antennas, and associated radio…

  9. Atmospheric waves and dynamics beneath Jupiter's clouds from radio wavelength observations

    NASA Astrophysics Data System (ADS)

    Cosentino, Richard G.; Butler, Bryan; Sault, Bob; Morales-Juberías, Raúl; Simon, Amy; de Pater, Imke

    2017-08-01

    We observed Jupiter at wavelengths near 2 cm with the Karl G. Jansky Very Large Array (VLA) in February 2015. These frequencies are mostly sensitive to variations in ammonia abundance and probe between ∼ 0.5 - 2.0 bars of pressure in Jupiter's atmosphere; within and below the visible cloud deck which has its base near 0.7 bars. The resultant observed data were projected into a cylindrical map of the planet with spatial resolution of ∼1500 km at the equator. We have examined the data for atmospheric waves and observed a prominent bright belt of radio hotspot features near 10°N, likely connected to the same equatorial wave associated with the 5-μm hotspots. We conducted a passive tracer power spectral wave analysis for the entire map and latitude regions corresponding to eastward and westward jets and compare our results to previous studies. The power spectra analysis revealed that the atmosphere sampled in our observation (excluding the NEB region) is in a 2-D turbulent regime and its dynamics are predominately governed by the shallow water equations. The Great Red Spot (GRS) is also very prominent and has a noticeable meridional asymmetry and we compare it, and nearby storms, with optical images. We find that the meridional radio profile has a global north-south hemisphere distinction and find correlations of it to optical intensity banding and to shear zones of the zonal wind profile over select regions of latitude. Amateur optical images taken before and after our observation complemented the radio wavelength map to investigate dynamics of the equatorial region in Jupiter's atmosphere. We find that two radio hotspots at 2 cm are well correlated with optical plumes in the NEB, additionally revealing they are not the same 5 μm hotspot features correlated with optical dark patches between adjacent plumes. This analysis exploits the VLA's upgraded sensitivity and explores the opportunities now possible when studying gas giants, especially atmospheric dynamics

  10. Features of HF Radio Wave Attenuation in the Midlatitude Ionosphere Near the Skip Zone Boundary

    NASA Astrophysics Data System (ADS)

    Denisenko, P. F.; Skazik, A. I.

    2017-06-01

    We briefly describe the history of studying the decameter radio wave attenuation by different methods in the midlatitude ionosphere. A new method of estimating the attenuation of HF radio waves in the ionospheric F region near the skip zone boundary is presented. This method is based on an analysis of the time structure of the interference field generated by highly stable monochromatic X-mode radio waves at the observation point. The main parameter is the effective electron collision frequency νeff, which allows for all energy losses in the form of equivalent heat loss. The frequency νeff is estimated by matching the assumed (model) and the experimentally observed structures. Model calculations are performed using the geometrical-optics approximation. The spatial attenuation caused by the influence of the medium-scale traveling ionospheric disturbances is taken into account. Spherical shape of the ionosphere and the Earth's magnetic field are roughly allowed for. The results of recording of the level of signals from the RWM (Moscow) station at a frequency of 9.996 MHz at point Rostov are used.

  11. SDN based millimetre wave radio over fiber (RoF) network

    NASA Astrophysics Data System (ADS)

    Amate, Ahmed; Milosavljevic, Milos; Kourtessis, Pandelis; Robinson, Matthew; Senior, John M.

    2015-01-01

    This paper introduces software-defined, millimeter Wave (mm-Wave) networks with Radio over Fiber (RoF) for the delivery of gigabit connectivity required to develop fifth generation (5G) mobile. This network will enable an effective open access system allowing providers to manage and lease the infrastructure to service providers through unbundling new business models. Exploiting the inherited benefits of RoF, complete base station functionalities are centralized at the edges of the metro and aggregation network, leaving remote radio heads (RRHs) with only tunable filtering and amplification. A Software Defined Network (SDN) Central Controller (SCC) is responsible for managing the resource across several mm-Wave Radio Access Networks (RANs) providing a global view of the several network segments. This ensures flexible resource allocation for reduced overall latency and increased throughput. The SDN based mm-Wave RAN also allows for inter edge node communication. Therefore, certain packets can be routed between different RANs supported by the same edge node, reducing latency. System level simulations of the complete network have shown significant improvement of the overall throughput and SINR for wireless users by providing effective resource allocation and coordination among interfering cells. A new Coordinated Multipoint (CoMP) algorithm exploiting the benefits of the SCC global network view for reduced delay in control message exchange is presented, accounting for a minimum packet delay and limited Channel State Information (CSI) in a Long Term Evolution-Advanced (LTE-A), Cloud RAN (CRAN) configuration. The algorithm does not require detailed CSI feedback from UEs but it rather considers UE location (determined by the eNB) as the required parameter. UE throughput in the target sector is represented using a Cumulative Distributive Function (CDF). The drawn characteristics suggest that there is a significant 60% improvement in UE cell edge throughput following the

  12. Very low frequency radio signatures of transient luminous events above thunderstorms

    NASA Astrophysics Data System (ADS)

    Marshall, Robert Andrew

    Lightning discharges emit intense optical and acoustic energy, in the form of lightning and thunder, respectively, but a large amount of energy is emitted as radio-frequency electromagnetic pulses (EMP). These pulses can be detected thousands of kilometers away, thanks to efficient propagation in the waveguide formed by the conducting Earth and the overlying ionosphere. In addition, intense discharges interact with the overlying ionosphere at 80-100 km altitude. The EMP-ionosphere interaction is directly observed in one manifestation as the bright transient optical emissions known as "elves", but in addition, the interaction can directly modify the free electron density in the nighttime lower ionosphere. Modifications of the ionospheric electron density can be detected via subionospheric Very Low Frequency (VLF) remote sensing. In this method, coherent signals from powerful VLF transmitters, built for submarine communication and operated by the Navy, are monitored and their amplitude and phase are tracked in time. The variations of these signais are used to sense ionospheric modifications through rapid changes in the received amplitude and/or phase when the transmitted signal propagates through an ionospheric perturbation. When these perturbations are caused by lightning, they are known as "Early VLF" perturbations, due to the negligible delay between the lightning discharge and the appearance of the VLF signal change, whereas lightning-induced electron precipitation (LEP) events have a delay of 1--2 seconds. In this work, correlations between VLF signatures and optical events are used to show that these Early VLF events may be the signature of ionospheric modification by in-cloud (IC) lightning discharges. While the more impressive cloud-to-ground (CG) lightning discharges are more commonly observed and better understood, they are outnumbered in occurrence 3:1 by IC discharges, whose effects may be relatively stronger in the overlying ionosphere. We use a 3D time

  13. Propagation of radio frequency waves through density fluctuations

    NASA Astrophysics Data System (ADS)

    Valvis, S. I.; Papagiannis, P.; Papadopoulos, A.; Hizanidis, K.; Glytsis, E.; Bairaktaris, F.; Zisis, A.; Tigelis, I.; Ram, A. K.

    2017-10-01

    On their way to the core of a tokamak plasma, radio frequency (RF) waves, excited in the vacuum region, have to propagate through a variety of density fluctuations in the edge region. These fluctuations include coherent structures, like blobs that can be field aligned or not, as well as turbulent and filamentary structures. We have been studying the effect of fluctuations on RF propagation using both theoretical (analytical) and computational models. The theoretical results are being compared with those obtained by two different numerical codes ``a Finite Difference Frequency Domain code and the commercial COMSOL package. For plasmas with arbitrary distribution of coherent and turbulent fluctuations, we have formulated an effective dielectric permittivity of the edge plasma. This permittivity tensor is then used in numerical simulations to study the effect of multi-scale turbulence on RF waves. We not only consider plane waves but also Gaussian beams in the electron cyclotron and lower hybrid range of frequencies. The analytical theory and results from simulations on the propagation of RF waves will be presented. Supported in part by the Hellenic National Programme on Controlled Thermonuclear Fusion associated with the EUROfusion Consortium and by DoE Grant DE-FG02-91ER-54109.

  14. Searching for Fast Radio Bursts with the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO)

    NASA Astrophysics Data System (ADS)

    Fisher, Ryan Patrick; Hughey, Brennan; Howell, Eric; LIGO Collaboration

    2018-01-01

    Although Fast Radio Bursts (FRB) are being detected with increasing frequency, their progenitor systems are still mostly a mystery. We present the plan to conduct targeted searches for gravitational-wave counterparts to these FRB events in the data from the first and second observing runs of the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO).

  15. Radio Wave Propagation Handbook for Communication on and Around Mars

    NASA Technical Reports Server (NTRS)

    Ho, Christian; Golshan, Nasser; Kliore, Arvydas

    2002-01-01

    This handbook examines the effects of the Martian environment on radio wave propagation on Mars and in the space near the planet. The environmental effects include these from the Martian atmosphere, ionosphere, global dust storms, aerosols, clouds, and geomorphologic features. Relevant Martian environmental parameters were extracted from the measurements of Mars missions during the past 30 years, especially from Mars Pathfinder and Mars Global Surveyor. The results derived from measurements and analyses have been reviewed through an extensive literature search. The updated parameters have been theoretically analyzed to study their effects on radio propagation. This handbook also provides basic information about the entire telecommunications environment on and around Mars for propagation researchers, system engineers, and link analysts. Based on these original analyses, some important recommendations have been made, including the use of the Martian ionosphere as a reflector for Mars global or trans-horizon communication between future Martian colonies, reducing dust storm scattering effects, etc. These results have extended our wave propagation knowledge to a planet other than Earth; and the tables, models, and graphics included in this handbook will benefit telecommunication system engineers and scientific researchers.

  16. Generation and Upper Atmospheric Propagation of Acoustic Gravity Waves according to Numerical Modeling and Radio Tomography

    NASA Astrophysics Data System (ADS)

    Vorontsov, Artem; Andreeva, Elena; Nesterov, Ivan; Padokhin, Artem; Kurbatov, Grigory

    2016-04-01

    The acoustic-gravity waves (AGW) in the upper atmosphere and ionosphere can be generated by a variety of the phenomena in the near-Earth environment and atmosphere as well as by some perturbations of the Earth's ground or ocean surface. For instance, the role of the AGW sources can be played by the earthquakes, explosions, thermal heating, seisches, tsunami waves. We present the examples of AGWs excited by the tsunami waves traveling in the ocean, by seisches, and by ionospheric heating by the high-power radio wave. In the last case, the gravity waves are caused by the pulsed modulation of the heating wave. The AGW propagation in the upper atmosphere induces the variations and irregularities in the electron density distribution of the ionosphere, whose structure can be efficiently reconstructed by the method of the ionospheric radio tomography (RT) based on the data from the global navigational satellite systems (GNSS). The input data for RT diagnostics are composed of the 150/400 MHz radio signals from the low-orbiting (LO) satellites and 1.2-1.5 GHz radio signals from the high-orbiting (HO) satellites with their orbits at ~1000 and ~20000 km above the ground, respectively. These data enable ionospheric imaging on different spatiotemporal scales with different spatiotemporal resolution and coverage, which is suitable, inter alia, for tracking the waves and wave-like features in the ionosphere. In particular, we demonstrate the maps of the ionospheric responses to the tornado at Moore (Oklahoma, USA) of May 20, 2013, which are reconstructed from the HO data. We present the examples of LORT images containing the waves and wavelike disturbances associated with various sources (e.g., auroral precipitation and high-power heating of the ionosphere). We also discuss the results of modeling the AGW generation by the surface and volumetric sources. The millihertz AGW from these sources initiate the ionospheric perturbation with a typical scale of a few hundred km at the

  17. Ultra-low-frequency wave-driven diffusion of radiation belt relativistic electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang

    The Van Allen radiation belts are typically two zones of energetic particles encircling the Earth separated by the slot region. How the outer radiation belt electrons are accelerated to relativistic energies remains an unanswered question. Recent studies have presented compelling evidence for the local acceleration by very-low-frequency (VLF) chorus waves. However, there has been a competing theory to the local acceleration, radial diffusion by ultra-low-frequency (ULF) waves, whose importance has not yet been determined definitively. Here we report a unique radiation belt event with intense ULF waves but no detectable VLF chorus waves. So, our results demonstrate that the ULFmore » waves moved the inner edge of the outer radiation belt earthward 0.3 Earth radii and enhanced the relativistic electron fluxes by up to one order of magnitude near the slot region within about 10 h, providing strong evidence for the radial diffusion of radiation belt relativistic electrons.« less

  18. Ultra-low-frequency wave-driven diffusion of radiation belt relativistic electrons

    DOE PAGES

    Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang; ...

    2015-12-22

    The Van Allen radiation belts are typically two zones of energetic particles encircling the Earth separated by the slot region. How the outer radiation belt electrons are accelerated to relativistic energies remains an unanswered question. Recent studies have presented compelling evidence for the local acceleration by very-low-frequency (VLF) chorus waves. However, there has been a competing theory to the local acceleration, radial diffusion by ultra-low-frequency (ULF) waves, whose importance has not yet been determined definitively. Here we report a unique radiation belt event with intense ULF waves but no detectable VLF chorus waves. So, our results demonstrate that the ULFmore » waves moved the inner edge of the outer radiation belt earthward 0.3 Earth radii and enhanced the relativistic electron fluxes by up to one order of magnitude near the slot region within about 10 h, providing strong evidence for the radial diffusion of radiation belt relativistic electrons.« less

  19. Generation of Artificial Ionospheric Irregularities in the Midlatitude Ionosphere Modified by High-Power High-Frequency X-Mode Radio Waves

    NASA Astrophysics Data System (ADS)

    Frolov, V. L.; Bolotin, I. A.; Komrakov, G. P.; Pershin, A. V.; Vertogradov, G. G.; Vertogradov, V. G.; Vertogradova, E. G.; Kunitsyn, V. E.; Padokhin, A. M.; Kurbatov, G. A.; Akchurin, A. D.; Zykov, E. Yu.

    2014-11-01

    We consider the properties of the artificial ionospheric irregularities excited in the ionospheric F 2 region modified by high-power high-frequency X-mode radio waves. It is shown that small-scale (decameter) irregularities are not generated in the midlatitude ionosphere. The intensity of irregularities with the scales l ⊥ ≈50 m to 3 km is severalfold weaker compared with the case where the irregularities are excited by high-power O-mode radio waves. The intensity of the larger-scale irregularities is even stronger attenuated. It is found that the generation of large-scale ( l ⊥ ≈5-10 km) artificial ionospheric irregularities is enhanced at the edge of the directivity pattern of a beam of high-power radio waves.

  20. Searching for Correlated Radio Transients & Gravitational Wave Bursts

    NASA Astrophysics Data System (ADS)

    Kavic, Michael; Shawhan, P. S.; Yancey, C.; Cutchin, S.; Simonetti, J. H.; Bear, B.; Tsai, J.

    2013-01-01

    We will discuss an ongoing multi-messenger search for transient radio pulses and gravitational wave bursts. This work is being conducted jointly by the Long Wavelength Array (LWA) and the LIGO Scientific Collaboration (LSC). A variety of astrophysical sources can produce simultaneous emission of gravitational waves and coherent low-frequency electromagnetic radiation. The primary common source motivating this work is the merger of neutron star binaries for which the LWA and LSC instruments have comparable sensitivity. Additional common sources include supernovae, long timescale GRBs and cosmic string cusp events. Data taken by both instruments can be compared to search for correlated signals. Identification of correlated signals can be used to increase the sensitivity of both instruments. We will summarize the coincident observations which have already been conducted and outline plans for future work. We will describe the process being used for synthesizing these data set and present preliminary results.

  1. Involuntary human hand movements due to FM radio waves in a moving van.

    PubMed

    Huttunen, P; Savinainen, A; Hänninen, Osmo; Myllylä, R

    2011-06-01

    Finland TRACT Involuntary movements of hands in a moving van on a public road were studied to clarify the possible role of frequency modulated radio waves on driving. The signals were measured in a direct 2 km test segment of an international road during repeated drives to both directions. Test subjects (n=4) had an ability to sense radio frequency field intensity variations of the environment. They were sitting in a minivan with arm movement detectors in their hands. A potentiometer was used to register the hand movements to a computer which simultaneously collected data on the amplitude of the RF signal of the local FM tower 30 km distance at a frequency of about 100 MHz. Involuntary hand movements of the test subjects correlated with electromagnetic field, i.e. FM radio wave intensity measured. They reacted also on the place of a geomagnetic anomaly crossing the road, which was found on the basis of these recordings and confirmed by the public geological maps of the area.In conclusion, RF irradiation seems to affect the human hand reflexes of sensitive persons in a moving van along a normal public road which may have significance in traffic safety.

  2. Physics of the Geospace Response to Powerful HF Radio Waves

    DTIC Science & Technology

    2012-10-31

    studies of the response of the Earth’s space plasma to high-power HF radio waves from the High-frequency Active Auroral Research Program ( HAARP ...of HF heating and explored to simulate artificial ducts. DMSP- HAARP experiments revealed that HF-created ion outflows and artificial density ducts...in the topside ionosphere appeared faster than predicted by the models, pointing to kinetic (suprathermal) effects. CHAMP/GRACE- HAARP experiments

  3. Refraction of Radio Waves on the Radio-Occultation Satellite-to-Satellite Paths as a Characteristic of the Atmospheric State

    NASA Astrophysics Data System (ADS)

    Matyugov, S. S.; Yakovlev, O. I.; Pavelyev, A. G.; Pavelyev, A. A.; Anufriev, V. A.

    2017-10-01

    We present the results of analyzing the radio-wave refractive characteristics measured on the radio-occultation paths between the GPS navigation satellites and the FORMOSAT-3 research satellites in the central region of the European territory of Russia in 2007-2013. The diurnal, seasonal, and annual variations in the refraction angle at altitudes of 2 to 25 km are discussed. It is shown that the refraction angle can be used as an independent characteristic of the atmospheric state and its long-term variation trends. Diurnal and nocturnal variations in the refraction angle in the winter and summer seasons are analyzed. Trends in the atmospheric refraction variations over seven years are discussed.

  4. A Minimal Radio and Plasma Wave Investigation For a Mercury Orbiter Mission

    NASA Technical Reports Server (NTRS)

    Kurth, W. S.

    2001-01-01

    The primary thrust of the effort at The University of Iowa for the definition of an orbiter mission to Mercury is a minimum viable radio and plasma wave investigation. While it is simple to add sensors and capability to any payload, the challenge is to do reasonable science within limited resources; and viable missions to Mercury are especially limited in payload mass. For a wave investigation, this is a serious concern, as the sensor mass often makes up a significant fraction of the instrumentation mass.

  5. Aspects regarding the use of the INFREP network for identifying possible seismic precursors

    NASA Astrophysics Data System (ADS)

    Dolea, Paul; Cristea, Octavian; Dascal, Paul Vladut; Moldovan, Iren-Adelina; Biagi, Pier Francesco

    In the last decades, one of the main research directions in identifying seismic precursors involved monitoring VLF (Very Low Frequency) and LF (Low Frequency) radio waves and analysing their propagation characteristics. Essentially this method consists of monitoring different available VLF and LF transmitters from long distance reception points. The received signal has two major components: the ground wave and the sky wave, where the sky wave propagates by reflection on the lower layers of the ionosphere. It is assumed that before and during major earthquakes, unusual changes may occur in the lower layers of the ionosphere, such as the modification of the charged particles number density and the altitude of the reflection zone. Therefore, these unusual changes in the ionosphere may generate unusual variations in the received signal level. The International Network for Frontier Research on Earthquake Precursors (INFREP) was developed starting with 2009 and consists of several dedicated VLF and LF radio receivers used for monitoring various radio transmitters located throughout Europe. The receivers' locations were chosen so that the propagation path from these VLF/LF stations would pass over high seismicity regions while others were chosen to obtain different control paths. The monitoring receivers are capable of continuously measuring the received signal amplitude from the VLF/LF stations of interest. The recorded data is then stored and sent to an INFREP database, which is available on the Internet for scientific researchers. By processing and analysing VLF and LF data samples, collected at different reception points and at different periods of the year, one may be able to identify some distinct patterns in the envelope of the received signal level over time. Significant deviations from these patterns may have local causes such as the electromagnetic pollution at the monitoring point, regional causes like existing electrical storms over the propagation path or

  6. Comment on "An Analysis of VLF Electric Field Spectra Measured in Titan's Atmosphere by The Huygens Probe" By J. A. Morente et al.

    NASA Technical Reports Server (NTRS)

    Grard, Rejean; Berthelin, Stephanie; Beghin, Christian; Hamelin, Michel; Berthelier, Jean-Jacques; Lopez-Moreno, Jose J.; Simoes, Fernando

    2011-01-01

    Morente et al. have recently revisited the VLF electric field measurements made with the Permittivity, Wave and Altimetry (PWA) instrument during the descent of the Huygens Probe through the atmosphere of Titan. They assert that they have identified several harmonics of the transverse resonance mode of the surface?]ionosphere cavity, which would prove the existence of an electrical activity in the atmosphere of the largest satellite of Saturn. We refute this finding on the basis that it results from an artifact due to an improper analysis of the data set. [2] The investigators of the Permittivity, Wave and Altimetry (PWA) experiment on the Huygens Probe have reported the extremely low frequency (ELF) and very low frequency (VLF) electric signals recorded during the descent through the atmosphere of Titan. The PWA data are archived in the Planetary Science Archive (PSA) of ESA, and an extensive description of the instrument is at the disposal of the scientific community. Morente and his coworkers have revisited this data set and reported the results of their investigations in two papers. In a first paper, they claim that they have detected in the ELF range (0.100 Hz) several harmonics of a global resonance allegedly generated by lightning activity in the spherical cavity guide formed by the surface of Titan and the inner boundary of the ionosphere, a phenomenon similar to the Schumann resonance observed at EartH In the second paper dedicated to the VLF electric signal recorded by PWA, in the range 0.10 kHz, they argue that they can also bring out the transverse resonance and its harmonics, a more local phenomenon that develops around the excitation source and whose frequency is controlled by the separation between Titan?fs surface and the inner ionospheric boundary. [3] The PWA investigators have analyzed the narrowband ELF signal at about 36 Hz effectively observed during the entire descent. They have not endorsed, however, the alternative approach of Morente et al

  7. THE ABUNDANCE OF X-SHAPED RADIO SOURCES: IMPLICATIONS FOR THE GRAVITATIONAL WAVE BACKGROUND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, David H.; Saripalli, Lakshmi; Subrahmanyan, Ravi, E-mail: roberts@brandeis.edu

    Coalescence of supermassive black holes (SMBHs) in galaxy mergers is potentially the dominant contributor to the low frequency gravitational wave background (GWB). It was proposed by Merritt and Ekers that X-shaped radio galaxies are signposts of such coalescences and that their abundance might be used to predict the magnitude of the GWB. In Roberts et al. we presented radio images of all 52 X-shaped radio source candidates out of the sample of 100 selected by Cheung for which archival VLA data were available. These images indicate that at most 21% of the candidates might be genuine X-shaped radio sources thatmore » were formed by a restarting of beams in a new direction following a major merger. This suggests that fewer than 1.3% of extended radio sources appear to be candidates for genuine axis reorientations (“spin flips”), much smaller than the 7% suggested by Leahy and Parma. Thus, the associated GWB may be substantially smaller than previous estimates. These results can be used to normalize detailed calculations of the SMBH coalescence rate and the GWB.« less

  8. Radio triangulation - mapping the 3D position of the solar radio emission

    NASA Astrophysics Data System (ADS)

    Magdalenic, Jasmina

    2016-04-01

    Understanding the relative position of the sources of the radio emission and the associated solar eruptive phenomena (CME and the associated shock wave) has always been a challenge. While ground-based radio interferometer observations provide us with the 2D position information for the radio emission originating from the low corona (up to 2.5 Ro), this is not the case for the radio emission originating at larger heights. The radio triangulation measurements (also referred to as direction-finding or goniopolarimetric measurements) from two or more widely separated spacecraft can provide information on the 3D positions of the sources of the radio emission. This type of interplanetary radio observations are currently performed by STEREO WAVES and WIND WAVES instruments, providing a unique possibility for up to three simultaneous radio triangulations (using up to three different pairs of spacecraft). The recent results of the radio triangulation studies bring new insight into the causal relationship of the solar radio emission and CMEs. In this presentation I will discuss some of the most intriguing results on the source positions of: a) type III radio bursts indicating propagation of the fast electrons accelerated along the open field lines, b) type II radio bursts indicating interaction of the CME-driven shocks and other coronal structures e.g. streamers and c) type IV-like radio bursts possibly associated with CME-CME interaction.

  9. Effect exerted by a radio wave electromagnetic field on the rheological properties of water and portland-cement systems

    NASA Astrophysics Data System (ADS)

    Azharonok, V. V.; Belous, N. Kh.; Rodtsevich, S. P.; Koshevar, V. D.; Shkadretsova, V. G.; Goncharik, S. V.; Chubrik, N. I.; Orlovich, A. I.

    2013-09-01

    We have studied the effect of the regimes of high-frequency (radio wave) electromagnetic treatment of gauging water on the process of structurization and on the technological characteristics of portland-cement systems. It has been established that the radio wave electromagnetic activation of water leads to a reduction in its surface tension, dynamic viscosity, and shear stress, as well as intensifies the formation of coagulation structures in a portlandcement slurry and aids in increasing the mobility of cement-sand mixtures.

  10. Early/fast VLF events produced by the quiescent heating of the lower ionosphere by thunderstorms

    NASA Astrophysics Data System (ADS)

    Kabirzadeh, R.; Marshall, R. A.; Inan, U. S.

    2017-06-01

    Large and easily distinguishable perturbations of the VLF transmitter signals due to interactions with thundercloud-driven ionospheric modifications have been observed and studied for about three decades. These events are called "early/fast VLF" or "early VLF" events due to their immediate detection (˜20 ms) after the causative lightning flash on the ground and the fast rise time of the perturbed signal. Despite many years of study, the physical mechanisms responsible for these perturbations are still under investigation. Modifications of the sustained heating level of the ionosphere due to a lightning flash has been previously proposed as the causative mechanism of early/fast VLF events. The perturbations predicted by this mechanism, however, have been much smaller than experimental observations of 0.2-1 dB or higher. In this study, by using an improved 3-D thundercloud electrostatic upward coupling model which uses a realistic geomagnetic field, we find that the sustained heating model can predict perturbations that are consistent with reported experimental observations. Modifications in the quiescent heating of the lower ionosphere by thundercloud fields by individual lightning flashes may thus account for some observations of early/fast VLF events.

  11. Statistical Analysis of Bursty Langmuir Waves, Alfvén and Whistler Waves, and Precipitating Electrons Seen by the CHARM II Nightside Sounding Rocket

    NASA Astrophysics Data System (ADS)

    Dombrowski, M. P.; Labelle, J. W.; Kletzing, C.; Bounds, S. R.; Kaeppler, S. R.

    2013-12-01

    Bursty Langmuir waves have been interpreted as the result of the superposition of multiple Langmuir normal-mode waves, with the resultant modulation being the beat pattern between waves with e.g. 10 kHz frequency differences. The normal-mode waves could be generated either through wave-wave interactions with VLF waves, or through independent linear processes. The CHARM II sounding rocket was launched into a substorm at 9:49 UT on 15 February 2010, from the Poker Flat Research Range in Alaska. The primary instruments included the Dartmouth High-Frequency Experiment (HFE), a receiver system which effectively yields continuous (100% duty cycle) E-field waveform measurements up to 5 MHz, as well as a number of charged particle detectors, including a wave-particle correlator. The payload also included a magnetometer and several low-frequency wave instruments. CHARM II encountered several regions of strong Langmuir wave activity throughout its 15-minute flight, including several hundred discrete Langmuir-wave bursts. We show results of a statistical analysis of CHARM II data for the entire flight, comparing HFE data with the other payload instruments, specifically looking at timings and correlations between bursty Langmuir waves, Alfvén and whistler-mode waves, and electrons precipitating parallel to the magnetic field. Following a similar analysis on TRICE dayside sounding rocket data, we also calculate the fraction of correlated waves with VLF waves at appropriate frequencies to support the wave-wave interaction bursty Langmuir wave generation mechanism, and compare to results from CHARM II nightside data.

  12. Verification of nonlinear particle simulation of radio frequency waves in fusion plasmas

    NASA Astrophysics Data System (ADS)

    Kuley, Animesh; Bao, Jian; Lin, Zhihong

    2015-11-01

    Nonlinear global particle simulation model has been developed in GTC to study the nonlinear interactions of radio frequency (RF) waves with plasmas in tokamak. In this model, ions are considered as fully kinetic particles using the Vlasov equation and electrons are treated as guiding centers using the drift kinetic. Boris push scheme for the ion motion has been implemented in the toroidal geometry using magnetic coordinates and successfully verified for the ion cyclotron, ion Bernstein and lower hybrid waves. The nonlinear GTC simulation of the lower hybrid wave shows that the amplitude of the electrostatic potential is oscillatory due to the trapping of resonant electrons by the electric field of the lower hybrid wave. The nonresonant parametric decay is observed an IBW sideband and an ion cyclotron quasimode (ICQM). The ICQM induces an ion perpendicular heating with a heating rate proportional to the pump wave intensity. This work is supported by PPPL subcontract number S013849-F and US Department of Energy (DOE) SciDAC GSEP Program.

  13. VLF/LF High-Voltage Design and Testing

    DTIC Science & Technology

    2003-09-01

    much of the pioneering work in VLF/LF corona . He did much of the work during the 1985 tests. Some of these results are included in the material...5-44 Corona Onset/Extinction...5D-1 CHAPTER 6 CORONA ON WIRES, PIPES, AND CABLES .............................................6-1 INTRODUCTION

  14. A computational and theoretical analysis of falling frequency VLF emissions

    NASA Astrophysics Data System (ADS)

    Nunn, David; Omura, Yoshiharu

    2012-08-01

    Recently much progress has been made in the simulation and theoretical understanding of rising frequency triggered emissions and rising chorus. Both PIC and Vlasov VHS codes produce risers in the region downstream from the equator toward which the VLF waves are traveling. The VHS code only produces fallers or downward hooks with difficulty due to the coherent nature of wave particle interaction across the equator. With the VHS code we now confine the interaction region to be the region upstream from the equator, where inhomogeneity factor S is positive. This suppresses correlated wave particle interaction effects across the equator and the tendency of the code to trigger risers, and permits the formation of a proper falling tone generation region. The VHS code now easily and reproducibly triggers falling tones. The evolution of resonant particle current JE in space and time shows a generation point at -5224 km and the wavefield undergoes amplification of some 25 dB in traversing the nonlinear generation region. The current component parallel to wave magnetic field (JB) is positive, whereas it is negative for risers. The resonant particle trap shows an enhanced distribution function or `hill', whereas risers have a `hole'. According to recent theory (Omura et al., 2008, 2009) sweeping frequency is due primarily to the advective term. The nonlinear frequency shift term is now negative (˜-12 Hz) and the sweep rate of -800 Hz/s is approximately nonlinear frequency shift divided by TN, the transition time, of the order of a trapping time.

  15. SELF and VLF electromagnetic emissions that preceded the M6.2 Central Italy earthquake occurred on August 24, 2016

    NASA Astrophysics Data System (ADS)

    Cataldi, Daniele; Cataldi, Gabriele; Straser, Valentino

    2017-04-01

    On August 24, 2016 at 01:36:32 UTC a destructive earthquake hit Central Italy with a magnitude of M6.2. The authors of this study have recorded some electromagnetic signals that have preceded this strong earthquake. These signals were recorded through two electromagnetic monitoring stations realized by Gabriele Cataldi and Daniele Cataldi, located near the town of Albano Laziale (Rome, Italy) and near the city of Lariano (Rome, Italy) and can monitor the radio spectrum 24h7 between 0.001 Hz and 96 kHz (SELF-LF band). The electromagnetic monitoring allowed to identify two interesting types of electromagnetic anomalies: the first electromagnetic anomaly was recorded on August 18, 2016 between 02:47 UTC and 06:21 UTC, in the VLF band prevalently between 18kHz and 26kHz; the second electromagnetic anomaly was registered between 08:00 UTC on August 23, 2016 and 05:00 UTC on August 24, 2016, prevalently between 0.01 and 0.7Hz: the most intense signals were recorded at 08:50 UTC on August 23, 2016 and approximately 1 hour before the strong earthquake. The Earth's electromagnetic background monitoring in the SELF-VLF band (0Hzradio emissions: 1) radio emissions identified as Earth's geomagnetic field disturbances related to "near Earth" solar wind proton density increase variations, and for this reason it can be seen from any point on the Earth (this is "no local" type emissions); 2) radio signals are not connected directly to the solar and geomagnetic activity: these radio signals are probably generated by piezoelectricity phenomena occurring near the focal area of the earthquake and are detectable near earthquake epicenter (this is a "local

  16. The lower ionosphere response to its disturbances by powerful radio waves

    NASA Astrophysics Data System (ADS)

    Bakhmetieva, N. V.; Frolov, V. L.; Vyakhirev, V. D.; Kalinina, E. E.; Akchurin, A. D.; Zykov, E. Yu.

    2018-04-01

    The paper presents data from some campaigns at Sura heating facility in 2011-1016. The experiments on probing of the artificial disturbed region of the lower ionosphere were carried out at two observation sites. One of them was located near Vasil'sursk 1 km from Sura facility (56.1°N; 46.1°E) and the other site was located at the Observatory (55.85°N; 48.8°E) of Kazan State University, 170 km to the East. Investigation of the features of the disturbed region of the lower ionosphere based on its diagnostics by the methods of the vertical sounding and oblique backscattering is the main goal of this paper. Ionosphere disturbance was fulfilled by the effect of the powerful radio wave of the ordinary or extraordinary polarization emitted by transmitters of the Sura facility with effective radiated power ERP = 50-120 MW at the frequency of 4.3, 4.7 and 5.6 MHz. Pumping waves were emitted with period from 30 s to 15 min. The disturbed region of the ionosphere in Vasil'sursk was probed by the vertical sounding technique using the partial reflexion radar at the frequency of 2.95 and 4.7 MHz. For the oblique sounding of the disturbed region the modified ionosonde Cyclon-M, operating at ten frequencies from 2.01 to 6.51 MHz was used at the Observatory site. On many heating sessions simultaneous variations of the probing partial reflection signals in Vasil'sursk and backscattered signals in Observatory were observed at the height at 40-100 km below the reflection height of the pumping wave. These observations were correlated with the pumping periods of the Sura facility. Possible mechanisms of the appearance of the disturbance in the lower ionosphere and its effect on the probing radio waves are discussed.

  17. Reflected ray retrieval from radio occultation data using radio holographic filtering of wave fields in ray space

    NASA Astrophysics Data System (ADS)

    Gorbunov, Michael E.; Cardellach, Estel; Lauritsen, Kent B.

    2018-03-01

    Linear and non-linear representations of wave fields constitute the basis of modern algorithms for analysis of radio occultation (RO) data. Linear representations are implemented by Fourier Integral Operators, which allow for high-resolution retrieval of bending angles. Non-linear representations include Wigner Distribution Function (WDF), which equals the pseudo-density of energy in the ray space. Representations allow for filtering wave fields by suppressing some areas of the ray space and mapping the field back from the transformed space to the initial one. We apply this technique to the retrieval of reflected rays from RO observations. The use of reflected rays may increase the accuracy of the retrieval of the atmospheric refractivity. Reflected rays can be identified by the visual inspection of WDF or spectrogram plots. Numerous examples from COSMIC data indicate that reflections are mostly observed over oceans or snow, in particular over Antarctica. We introduce the reflection index that characterizes the relative intensity of the reflected ray with respect to the direct ray. The index allows for the automatic identification of events with reflections. We use the radio holographic estimate of the errors of the retrieved bending angle profiles of reflected rays. A comparison of indices evaluated for a large base of events including the visual identification of reflections indicated a good agreement with our definition of reflection index.

  18. Waves in the middle and upper atmosphere of Mars as seen by the Radio Science Experiment MaRS on Mars Express

    NASA Astrophysics Data System (ADS)

    Tellmann, S.; Paetzold, M.; Häusler, B.; Hinson, D. P.; Peter, K.; Tyler, G. L.

    2017-12-01

    Atmospheric waves play a crucial role in the Martian atmosphere. They are responsible for the redistribution of momentum, energy and dust and for the coupling of the different atmospheric regions on Mars. Almost all kinds of waves have been observed in the lower atmosphere (e.g. stationary and transient waves, baroclinic waves as well as migrating and non-migrating thermal tides, gravity waves, etc...). Atmospheric waves are also known to exist in the middle atmosphere of Mars ( 70-120 km, e.g. by the SPICAM instrument on Mars Express). In the thermosphere, thermal tides have been observed e.g. by radio occultation or accelerometer measurements on MGS. Recently, the NGIMS instrument on MAVEN reported gravity waves in the thermosphere of Mars. Radio Science profiles from the Mars Express Radio Science experiment MaRS on Mars Express can analyse the temperature, pressure and neutral number density profiles in the lower atmosphere (from a few hundred metres above the surface up to 40-50 km) and electron density profiles in the ionosphere of Mars. Wavelike structures have been detected below the main ionospheric layers (M1 & M2) and in the topside of the ionosphere. The two coherent frequencies of the MaRS experiment allow to discriminate between plasma density fluctuations in the ionosphere and Doppler related frequency shifts caused by spacecraft movement. A careful analysis of the observed electron density fluctuations in combination with sensitivity studies of the radio occultation technique will be used to classify the observed fluctuations. The MaRS experiment is funded by DLR under grant 50QM1401.

  19. Waves in the middle and upper atmosphere of Mars as seen by the Radio Science Experiment MaRS on Mars Express

    NASA Astrophysics Data System (ADS)

    Tellmann, Silvia Anna; Paetzold, Martin; Häusler, Bernd; Hinson, David P.; Peter, Kerstin; Tyler, G. Leonard

    2017-10-01

    Atmospheric waves play a crucial role for the dynamics in the Martian atmosphere. They are responsible for the redistribution of momentum, energy and dust and the coupling of the different atmospheric regions on Mars.Almost all kinds of waves have been observed in the lower atmosphere (e.g. stationary and transient waves, baroclinic waves as well as migrating and non-migrating thermal tides, and gravity waves). Atmospheric waves are also known to exist in the middle atmosphere of Mars (~70-120 km, e.g. by the SPICAM instrument on Mars Express). In the thermosphere, thermal tides have been observed e.g. by radio occultation or accelerometer measurements on MGS. Recently, the NGIMS instrument on MAVEN reported gravity waves in the thermosphere of Mars.Radio Science profiles from the Mars Express Radio Science experiment MaRS on Mars Express can analyse the temperature, pressure and neutral number density profiles in the lower atmosphere (from a few hundred metres above the surface up to ~ 40-50 km) and electron density profiles in the ionosphere of Mars.Wavelike structures have been detected below the main ionospheric layers (M1 & M2) and in the topside of the ionosphere. The two coherent frequencies of the MaRS experiment allow to discriminate between plasma density fluctuations in the ionosphere and Doppler related frequency shifts caused by spacecraft movement.A careful analysis of the observed electron density fluctuations in combination with sensitivity studies of the radio occultation technique will be used to classify the observed fluctuations.The MaRS experiment is funded by DLR under grant 50QM1401.

  20. Observational signatures of unusual outgoing longwave radiation (OLR) and atmospheric gravity waves (AGW) as precursory effects of May 2015 Nepal earthquakes

    NASA Astrophysics Data System (ADS)

    Chakraborty, Suman; Sasmal, Sudipta; Chakrabarti, Sandip K.; Bhattacharya, Arnab

    2018-01-01

    Earthquake preparation processes may start 1-30 days before its actual occurrence. Measurements of outgoing longwave radiation (OLR) and detection of the presence of atmospheric gravity waves (AGW) in very low frequency (VLF) radio signals can be used as tools to identify such processes. We studied these signals monitored prior to a recent major earthquake that occurred in Nepal at southeast of Kodari on May 12, 2015 at 12:50 pm local time (07:05 UTC) with Richter scale magnitude of M = 7.3 and depth 10 km (6.21 miles). It was preceded by another major earthquake on April 25, 2015 with magnitude M = 7.9. First, to study the effects of seismic events on OLR, we used NOAA/IR daily (two degree gridded) data from April 16 to May 30, 2015 and followed the method of Eddy field calculation mean to find pre-seismic anomalies. We found singularities in Eddy field OLR curves around the earthquake epicenter starting 3 days prior to the earthquake days and disappearance of such singularities after the events. Such singularities can be associated with a large amount of energy released by the earthquakes. Second, we analyzed very low frequency (VLF) data recorded at Ionospheric and Earthquake Research Centre (IERC) of Indian Centre for Space Physics transmitted from JJI (22.2 kHz) station of Japan. We looked for the presence of atmospheric gravity waves in the ionosphere which can be considered as an important factor in finding seismo-ionospheric correlations. We performed both fast Fourier transform (FFT) and wavelet analysis on the signal and found significant presence of such waves (periods of almost 1 h) four days before the earthquake.

  1. Study of the effect of solar flares on the VLF signal during D layer disappearance time

    NASA Astrophysics Data System (ADS)

    Palit, Sourav; Chakrabarti, Sandip Kumar; Ray, Suman

    We have modeled the effect of solar flare on the VLF signal during D layer disappearance time of the lower ionosphere by using the Monte Carlo simulation and a simple chemical scheme We have calculated the electron density profile during the flare using GEANT4 and the chemical model and put it as input to the LWPC to find the VLF amplitude variation due to the flare during the time when the D-layer is disappearing. We have compared the effect on the observed VLF signals with this model. We found that the long decay phase of a solar flare specially during the D-layer disappearance time causes the shifting of the sunset terminator times of VLF signals towards the nighttime. For observation we have taken the data for NWC-IERC propagation path. We have investigated the effect for different classes of flares.

  2. Nonlinear interaction of an intense radio wave with ionospheric D/E layer plasma

    NASA Astrophysics Data System (ADS)

    Sodha, Mahendra Singh; Agarwal, Sujeet Kumar

    2018-05-01

    This paper considers the nonlinear interaction of an intense electromagnetic wave with the D/E layer plasma in the ionosphere. A simultaneous solution of the electromagnetic wave equation and the equations describing the kinetics of D/E layer plasma is obtained; the phenomenon of ohmic heating of electrons by the electric field of the wave causes enhanced collision frequency and ionization of neutral species. Electron temperature dependent recombination of electrons with ions, electron attachment to O 2 molecules, and detachment of electrons from O2 - ions has also been taken into account. The dependence of the plasma parameters on the square of the electric vector of the wave E0 2 has been evaluated for three ionospheric heights (viz., 90, 100, and 110 km) corresponding to the mid-latitude mid-day ionosphere and discussed; these results are used to investigate the horizontal propagation of an intense radio wave at these heights.

  3. High power water load for microwave and millimeter-wave radio frequency sources

    DOEpatents

    Ives, R. Lawrence; Mizuhara, Yosuke M.; Schumacher, Richard V.; Pendleton, Rand P.

    1999-01-01

    A high power water load for microwave and millimeter wave radio frequency sources has a front wall including an input port for the application of RF power, a cylindrical dissipation cavity lined with a dissipating material having a thickness which varies with depth, and a rear wall including a rotating reflector for the reflection of wave energy inside the cylindrical cavity. The dissipation cavity includes a water jacket for removal of heat generated by the absorptive material coating the dissipation cavity, and this absorptive material has a thickness which is greater near the front wall than near the rear wall. Waves entering the cavity reflect from the rotating reflector, impinging and reflecting multiple times on the absorptive coating of the dissipation cavity, dissipating equal amounts of power on each internal reflection.

  4. Correlation between core ion energization, suprathermal electron bursts, and broadband ELF plasma waves

    NASA Astrophysics Data System (ADS)

    Knudsen, David J.; Clemmons, James H.; Wahlund, Jan-Erik

    1998-03-01

    Observations of the lowest energy or core ions provide a particularly sensitive measure of the early stages of auroral ion energization. Freja satellite observations of 0-20 eV core ions in the topside auroral ionosphere and cusp/cleft show signs of heating within both regions of VLF hiss and broadband ELF plasma waves. However, heating to several eV or more is associated predominantly with the ELF waves. A correlation analysis of wave and core ion data formed from orbital segments shows that, on average, correlations are highest for wave frequencies below several hundred Hz, and less at VLF hiss frequencies. A similar analysis shows a higher correlation between electron precipitation and ion heating for electron energies below several hundred eV (i.e., the energies associated with suprathermal electron bursts) and a lower correlation above the 1 keV energies associated with auroral inverted-V's. Signs of core ion heating begin to appear when wave power at the O+ gyrofrequency exceeds about 10-3(mVm-1)2/Hz, and when the integrated field-aligned electron flux exceeds a few times 107cm-2s-1sr-1. This electron energy flux threshold is at least an order of magnitude lower than previously inferred from earlier studies comparing suprathermal electron fluxes and energetic ions. Almost all observed heating events occur during enhanced or active geomagnetic conditions; i.e., Kp>=4. While the most intense core ion heating is correlated with broadband ELF waves, we also present one example of weak ion heating of a few eV in a region of VLF auroral hiss.

  5. Frequency correlation of probe waves backscattered from small scale ionospheric irregularities generated by high power HF radio waves

    NASA Astrophysics Data System (ADS)

    Puchkov, V. A.

    2016-09-01

    Aspect sensitive scattering of multi-frequency probe signals by artificial, magnetic field aligned density irregularities (with transverse size ∼ 1- 10 m) generated in the ionosphere by powerful radio waves is considered. Fluctuations of received signals depending on stochastic properties of the irregularities are calculated. It is shown that in the case of HF probe waves two mechanisms may contribute to the scattered signal fluctuations. The first one is due to the propagation of probe waves in the ionospheric plasma as in a randomly inhomogeneous medium. The second one lies in non-stationary stochastic behavior of irregularities which satisfy the Bragg conditions for the scattering geometry and therefore constitute centers of scattering. In the probe wave frequency band of the order of 10-100 MHz the second mechanism dominates which delivers opportunity to recover some properties of artificial irregularities from received signals. Correlation function of backscattered probe waves with close frequencies is calculated, and it is shown that detailed spatial distribution of irregularities along the scattering vector can be found experimentally from observations of this correlation function.

  6. Phase Coupling in Langmuir Wave Packets: Evidence for Four Wave Interactions in Solar Type III Radio Bursts

    NASA Technical Reports Server (NTRS)

    Thejappa, G.; MacDowall, R. J.; Bergamo, M.

    2012-01-01

    The four wave interaction process, known as the oscillating two stream instability (OTSI) is considered as one of the mechanisms responsible for stabilizing the electron beams associated with solar type III radio bursts. It has been reported that (1) an intense localized Langmuir wave packet associated with a type III burst contains the spectral characteristics of the OTSI: (a) a resonant peak at the local electron plasma frequency, f(sub pe), (b) a Stokes peak at a frequency slightly lower than f(sub pe), (c) anti-Stokes peak at a frequency slightly higher than f(sub pe), and (d) a low frequency enhancement below a few hundred Hz, (2) the frequencies and wave numbers of these spectral components satisfy the resonance conditions of the OTSI, and (3) the peak intensity of the wave packet is well above the thresholds for the OTSI as well as spatial collapse of envelope solitons. Here, for the first time, applying the trispectral analysis on this wave packet, we show that the tricoherence, which measures the degree of coherent four-wave coupling amongst the observed spectral components exhibits a peak. This provides an additional evidence for the OTSI and related spatial collapse of Langmuir envelope solitons in type III burst sources.

  7. Estimating the D-Region Ionospheric Electron Density Profile Using VLF Narrowband Transmitters

    NASA Astrophysics Data System (ADS)

    Gross, N. C.; Cohen, M.

    2016-12-01

    The D-region ionospheric electron density profile plays an important role in many applications, including long-range and transionospheric communications, and coupling between the lower atmosphere and the upper ionosphere occurs, and estimation of very low frequency (VLF) wave propagation within the earth-ionosphere waveguide. However, measuring the D-region ionospheric density profile has been a challenge. The D-region is about 60 to 90 [km] in altitude, which is higher than planes and balloons can fly but lower than satellites can orbit. Researchers have previously used VLF remote sensing techniques, from either narrowband transmitters or sferics, to estimate the density profile, but these estimations are typically during a short time frame and over a single propagation path.We report on an effort to construct estimates of the D-region ionospheric electron density profile over multiple narrowband transmission paths for long periods of time. Measurements from multiple transmitters at multiple receivers are analyzed concurrently to minimize false solutions and improve accuracy. Likewise, time averaging is used to remove short transient noise at the receivers. The cornerstone of the algorithm is an artificial neural network (ANN), where input values are the received amplitude and phase for the narrowband transmitters and the outputs are the commonly known h' and beta two parameter exponential electron density profile. Training data for the ANN is generated using the Navy's Long-Wavelength Propagation Capability (LWPC) model. Results show the algorithm performs well under smooth ionospheric conditions and when proper geometries for the transmitters and receivers are used.

  8. Oscillations and Waves in Radio Source of Drifting Pulsation Structures

    NASA Astrophysics Data System (ADS)

    Karlický, Marian; Rybák, Ján; Bárta, Miroslav

    2018-04-01

    Drifting pulsation structures (DPSs) are considered to be radio signatures of the plasmoids formed during magnetic reconnection in the impulsive phase of solar flares. In the present paper we analyze oscillations and waves in seven examples of drifting pulsation structures, observed by the 800 - 2000 MHz Ondřejov Radiospectrograph. For their analysis we use a new type of oscillation maps, which give us much more information as regards processes in DPSs than that in previous analyses. Based on these oscillation maps, made from radio spectra by the wavelet technique, we recognized quasi-periodic oscillations with periods ranging from about 1 to 108 s in all studied DPSs. This strongly supports the idea that DPSs are generated during a fragmented magnetic reconnection. Phases of most the oscillations in DPSs, especially for the period around 1 s, are synchronized ("infinite" frequency drift) in the whole frequency range of DPSs. For longer periods in some DPSs we found that the phases of the oscillations drift with the frequency drift in the interval from -17 to +287 MHz s^{-1}. We propose that these drifting phases can be caused (a) by the fast or slow magnetosonic waves generated during the magnetic reconnection and propagating through the plasmoid, (b) by a quasi-periodic structure in the plasma inflowing to the reconnection forming a plasmoid, and (c) by a quasi-periodically varying reconnection rate in the X-point of the reconnection close to the plasmoid.

  9. Ion Acoustic Wave Frequencies and Onset Times During Type 3 Solar Radio Bursts

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.; Robinson, P. A.

    1995-01-01

    Conflicting interpretations exist for the low-frequency ion acoustic (S) waves often observed by ISEE 3 in association with intense Langmuir (L) waves in the source regions of type III solar radio bursts near 1 AU. Two indirect lines of observational evidence, as well as plasma theory, suggest they are produced by the electrostatic (ES) decay L yields L(PRIME) + S. However, contrary to theoretical predictions, an existing analysis of the wave frequencies instead favors the electromagnetic (EM) decays L yields T + S, where T denotes an EM wave near the plasma frequency. This conflict is addressed here by comparing the observed wave frequencies and onset times with theoretical predictions for the ES and EM decays, calculated using the time-variable electron beam and magnetic field orientation data, rather than the nominal values used previously. Field orientation effects and beam speed variations are shown analytically to produce factor-of-three effects, greater than the difference in wave frequencies predicted for the ES and EM decays; effects of similar magnitude occur in the events analyzed here. The S-wave signals are extracted by hand from a sawtooth noise background, greatly improving the association between S waves and intense L waves. Very good agreement exists between the time-varying predictions for the ES decay and the frequencies of most (but not all) wave bursts. The waves occur only after the ES decay becomes kinematically allowed, which is consistent with the ES decay proceeding and producing most of the observed signals. Good agreement exists between the EM decay's predictions and a significant fraction of the S-wave observations while the EM decay is kinematically allowed. The wave data are not consistent, however, with the EM decay being the dominant nonlinear process. Often the observed waves are sufficiently broadband to overlap simultaneously the frequency ranges predicted for the ES and EM decays. Coupling the dominance of the ES decay with this

  10. Simulation of VLF chorus emissions in the magnetosphere and comparison with THEMIS spacecraft data

    NASA Astrophysics Data System (ADS)

    Demekhov, A. G.; Taubenschuss, U.; Santolík, O.

    2017-01-01

    We present results of numerical simulations of VLF chorus emissions based on the backward wave oscillator model and compare them with Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft data from the equatorial chorus source region on the early morning side at a radial distance of 6 Earth radii. Specific attention is paid to the choice of simulation parameters based on experimental data. We show that with known parameters of the geomagnetic field, plasma density, and the initial wave frequency, one can successfully reproduce individual chorus elements in the simulation. In particular, the measured growth rate, wave amplitude, and frequency drift rate are in agreement with observed values. The characteristic interval between the elements has a mismatch of factor 2. The agreement becomes perfect if we assume that the inhomogeneity scale of the magnetic field along the field line is half of that obtained from the T96 model. Such an assumption can be justified since the T96 model does not fit well for the time of chorus observations, and there is a shear in the observed field which indicates the presence of local currents.

  11. Combined VLF and VHF lightning observations of Hurricane Rita landfall

    NASA Astrophysics Data System (ADS)

    Henderson, B. G.; Suszcynsky, D. M.; Wiens, K. C.; Hamlin, T.; Jeffery, C. A.; Orville, R. E.

    2009-12-01

    Hurricane Rita displayed abundant lightning in its northern eyewall as it made landfall at 0740 UTC 24 Sep 2005 near the Texas/Louisiana border. For this work, we combined VHF and VLF lightning data from Hurricane Rita, along with radar observations from Gulf Coast WSR-88D stations, for the purpose of demonstrating the combined utility of these two spectral regions for hurricane lightning monitoring. Lightning is a direct consequence of the electrification and breakdown processes that take place during the convective stages of thunderstorm development. As Rita approached the Gulf coast, the VHF lightning emissions were distinctly periodic with a period of 1.5 to 2 hours, which is consistent with the rotational period of hurricanes. VLF lightning emissions, measured by LASA and NLDN, were present in some of these VHF bursts but not all of them. At landfall, there was a significant increase in lightning emissions, accompanied by a significant convective surge observed in radar. Furthermore, VLF and VHF lightning source heights clearly increase as a function of time. The evolution of the IC/CG ratio is consistent with that seen in thunderstorms, showing a dominance of IC activity during storm development, followed by an increase in CG activity at the storm’s peak. The periodic VHF lightning events are correlated with increases in convective growth (quantified by the volume of radar echo >40 dB) above 7 km altitude. VLF can discriminate between lightning types, and in the LASA data, Rita landfall lightning activity was dominated by Narrow Bi-polar Events (NBEs)—high-energy, high-altitude, compact intra-cloud discharges. The opportunity to locate NBE lightning sources in altitude may be particularly useful in quantifying the vertical extent (strength) of the convective development and in possibly deducing vertical charge distributions.

  12. Magellan radio occultation measurements of atmospheric waves on Venus

    NASA Technical Reports Server (NTRS)

    Hinson, David P.; Jenkins, J. M.

    1995-01-01

    Radio occultation experiments were conducted at Venus on three consecutive orbits of the Magellan spacecraft in October 1991. Each occultation occurred over the same topography (67 deg N, 127 deg E) and at the same local time (22 hr 5 min), but the data are sensitive to zonal variations because the atmosphere rotates significantly during one orbit. Through comparisons between observations and predictions of standard wave theory, we have demonstrated that small-scale oscillations in retrieved temperature profiles as well as scintillations in received signal intensity are caused by a spectrum of vertically propagating internal gravity waves. There is a strong similarity between the intensity scintillations observed here and previous measurements, which pertain to a wide range of locations and experiment dates. This implies that the same basic phenomenon underlies all the observations and hence that gravity waves are a persistent, global feature of Venus' atmosphere. We obtained a fairly complete characterization of a gravity wave that appears above the middle cloud in temperature measurements on all three orbits. The amplitude and vertical wavelength are about 4 K and 2.5 km respectively, at 65 km. A model for radiative damping implies that the wave intrinsic frequency is approximately 2 x 10(exp 4) rad/sec, the corresponding ratio between horizontal and vertical wavelengths is approximately 100. The wave is nearly stationary relative to the surface or the Sun. Radiative attenuation limits the wave amplitude at altitudes above approximately 65 km, leading to wave drag on the mean zonal winds of about +0.4 m/sec per day (eastward). The sign, magnitude, and location of this forcing suggest a possible role in explaining the decrease with height in the zonal wind speed that is believed to occur above the cloud tops. Temperature oscillations with larger vertical wavelengths (5-10 km) were also observed on all three orbits, but we are able unable to interpret these

  13. Characteristics of long recovery early VLF events observed by the North African AWESOME Network

    NASA Astrophysics Data System (ADS)

    Naitamor, S.; Cohen, M. B.; Cotts, B. R. T.; Ghalila, H.; Alabdoadaim, M. A.; Graf, K.

    2013-08-01

    Lightning strokes are capable of initiating disturbances in the lower ionosphere, whose recoveries persist for many minutes. These events are remotely sensed via monitoring subionospherically propagating very low frequency (VLF) transmitter signals, which are perturbed as they pass through the region above the lightning stroke. In this paper we describe the properties and characteristics of the early VLF signal perturbations, which exhibit long recovery times using subionospheric VLF transmitter data from three identical receivers located at Algiers (Algeria), Tunis (Tunisia), and Sebha (Libya). The results indicate that the observation of long recovery events depends strongly on the modal structure of the signal electromagnetic field and the distance from the disturbed region and the receiver or transmitter locations. Comparison of simultaneously collected data at the three sites indicates that the role of the causative lightning stroke properties (e.g., peak current and polarity), or that of transient luminous events may be much less important. The dominant parameter which determines the duration of the recovery time and amplitude appears to be the modal structure of the subionospheric VLF probe signal at the ionospheric disturbance, where scattering occurs, and the subsequent modal structure that propagates to the receiver location.

  14. Evidence for four- and three-wave interactions in solar type III radio emissions

    NASA Astrophysics Data System (ADS)

    Thejappa, G.; MacDowall, R. J.; Bergamo, M.

    2013-08-01

    The high time resolution observations obtained by the STEREO/WAVES experiment show that in the source regions of solar type III radio bursts, Langmuir waves often occur as intense localized wave packets with short durations of only few ms. One of these wave packets shows that it is a three-dimensional field structure with WLneTe ~ 10-3, where WL is the peak energy density, and ne and Te are the electron density and temperature, respectively. For this wave packet, the conditions of the oscillating two-stream instability (OTSI) and supersonic collapse are satisfied within the error range of determination of main parameters. The density cavity, observed during this wave packet indicates that its depth, width and temporal coincidence are consistent with those of a caviton, generated by the ponderomotive force of the collapsing wave packet. The spectrum of each of the parallel and perpendicular components of the wave packet contains a primary peak at fpe, two secondary peaks at fpe ± fS and a low-frequency enhancement below fS, which, as indicated by the frequency and wave number resonance conditions, and the fast Fourier transform (FFT)-based tricoherence spectral peak at (fpe, fpe, fpe + fS, fpe - fS), are coupled to each other by the OTSI type of four-wave interaction (fpe is the local electron plasma frequency and fS is the frequency of ion sound waves). In addition to the primary peak at fpe, each of these spectra also contains a peak at 2fpe, which as indicated by the frequency and wave number resonance conditions, and the wavelet-based bicoherence spectral peak at (fpe, fpe), appears to correspond to the second harmonic electromagnetic waves generated as a result of coalescence of oppositely propagating sidebands excited by the OTSI. Thus, these observations for

  15. MULTI-MESSENGER ASTRONOMY OF GRAVITATIONAL-WAVE SOURCES WITH FLEXIBLE WIDE-AREA RADIO TRANSIENT SURVEYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yancey, Cregg C.; Shawhan, Peter; Bear, Brandon E.

    We explore opportunities for multi-messenger astronomy using gravitational waves (GWs) and prompt, transient low-frequency radio emission to study highly energetic astrophysical events. We review the literature on possible sources of correlated emission of GWs and radio transients, highlighting proposed mechanisms that lead to a short-duration, high-flux radio pulse originating from the merger of two neutron stars or from a superconducting cosmic string cusp. We discuss the detection prospects for each of these mechanisms by low-frequency dipole array instruments such as LWA1, the Low Frequency Array and the Murchison Widefield Array. We find that a broad range of models may bemore » tested by searching for radio pulses that, when de-dispersed, are temporally and spatially coincident with a LIGO/Virgo GW trigger within a ∼30 s time window and ∼200–500 deg{sup 2} sky region. We consider various possible observing strategies and discuss their advantages and disadvantages. Uniquely, for low-frequency radio arrays, dispersion can delay the radio pulse until after low-latency GW data analysis has identified and reported an event candidate, enabling a prompt radio signal to be captured by a deliberately targeted beam. If neutron star mergers do have detectable prompt radio emissions, a coincident search with the GW detector network and low-frequency radio arrays could increase the LIGO/Virgo effective search volume by up to a factor of ∼2. For some models, we also map the parameter space that may be constrained by non-detections.« less

  16. Multi-messenger astronomy of gravitational-wave sources with flexible wide-area radio transient surveys

    NASA Astrophysics Data System (ADS)

    Kavic, Michael; Cregg C. Yancey, Brandon E. Bear, Bernadine Akukwe, Kevin Chen, Jayce Dowell, Jonathan D. Gough, Jonah Kanner, Kenneth Obenberger, Peter Shawhan, John H. Simonetti , Gregory B. Taylor , Jr-Wei Tsai

    2016-01-01

    We explore opportunities for multi-messenger astronomy using gravitational waves (GWs) and prompt, transient low-frequency radio emission to study highly energetic astrophysical events. We review the literature on possible sources of correlated emission of GWs and radio transients, highlighting proposed mechanisms that lead to a short-duration, high-flux radio pulse originating from the merger of two neutron stars or from a superconducting cosmic string cusp. We discuss the detection prospects for each of these mechanisms by low-frequency dipole array instruments such as LWA1, the Low Frequency Array and the Murchison Widefield Array. We find that a broad range of models may be tested by searching for radio pulses that, when de-dispersed, are temporally and spatially coincident with a LIGO/Virgo GW trigger within a ˜30 s time window and ˜200-500 deg(2) sky region. We consider various possible observing strategies and discuss their advantages and disadvantages. Uniquely, for low-frequency radio arrays, dispersion can delay the radio pulse until after low-latency GW data analysis has identified and reported an event candidate, enabling a prompt radio signal to be captured by a deliberately targeted beam. If neutron star mergers do have detectable prompt radio emissions, a coincident search with the GW detector network and low-frequency radio arrays could increase the LIGO/Virgo effective search volume by up to a factor of ˜2. For some models, we also map the parameter space that may be constrained by non-detections.

  17. Multi-messenger Astronomy of Gravitational-wave Sources with Flexible Wide-area Radio Transient Surveys

    NASA Astrophysics Data System (ADS)

    Yancey, Cregg C.; Bear, Brandon E.; Akukwe, Bernadine; Chen, Kevin; Dowell, Jayce; Gough, Jonathan D.; Kanner, Jonah; Kavic, Michael; Obenberger, Kenneth; Shawhan, Peter; Simonetti, John H.; -Wei Tsai, Gregory B. Taylor, Jr.

    2015-10-01

    We explore opportunities for multi-messenger astronomy using gravitational waves (GWs) and prompt, transient low-frequency radio emission to study highly energetic astrophysical events. We review the literature on possible sources of correlated emission of GWs and radio transients, highlighting proposed mechanisms that lead to a short-duration, high-flux radio pulse originating from the merger of two neutron stars or from a superconducting cosmic string cusp. We discuss the detection prospects for each of these mechanisms by low-frequency dipole array instruments such as LWA1, the Low Frequency Array and the Murchison Widefield Array. We find that a broad range of models may be tested by searching for radio pulses that, when de-dispersed, are temporally and spatially coincident with a LIGO/Virgo GW trigger within a ˜30 s time window and ˜200-500 deg2 sky region. We consider various possible observing strategies and discuss their advantages and disadvantages. Uniquely, for low-frequency radio arrays, dispersion can delay the radio pulse until after low-latency GW data analysis has identified and reported an event candidate, enabling a prompt radio signal to be captured by a deliberately targeted beam. If neutron star mergers do have detectable prompt radio emissions, a coincident search with the GW detector network and low-frequency radio arrays could increase the LIGO/Virgo effective search volume by up to a factor of ˜2. For some models, we also map the parameter space that may be constrained by non-detections.

  18. Experimental Observations and Theoretical Modeling of VLF Scattering During LEP Events

    NASA Astrophysics Data System (ADS)

    Mitchell, M. F.; Moore, R. C.

    2012-12-01

    Recent experimental observations of very low frequency (VLF) scattering during lightning-induced election precipitation (LEP) events are presented. A spread spectrum analysis technique is applied to these observations, demonstrating a significant dependence on frequency. For LEP events, the scattered field amplitude and phase both exhibit strong frequency dependence, as do the event onset delays (relative to the causative lightning flash) and the event onset durations. The experimental observations are compared with the predictions of an Earth-ionosphere waveguide propagation and scattering model. The Long-Wave Propagation Capability (LWPC) code is used to demonstrate that the scattered field amplitude and phase depend sensitively on the electrical properties of the scattering body and the ionosphere between the scatterer and the receiver. The observed frequency-dependent onset times and durations, on the other hand, are attributed to the scattering source characteristics. These measurements can also be used to study radiation belt dynamics.

  19. A Simple Demonstration for Exploring the Radio Waves Generated by a Mobile Phone

    ERIC Educational Resources Information Center

    Hare, Jonathan

    2010-01-01

    Described is a simple low cost home-made device that converts the radio wave energy from a mobile phone signal into electricity for lighting an LED. No battery or complex circuitry is required. The device can form the basis of a range of interesting experiments on the physics and technology of mobile phones. (Contains 5 figures.)

  20. Diagnostics of plasma in the ionospheric D-region: detection and study of different ionospheric disturbance types

    NASA Astrophysics Data System (ADS)

    Nina, Aleksandra; Čadež, Vladimir M.; Popović, Luka Č.; Srećković, Vladimir A.

    2017-07-01

    Here we discuss our recent investigations of the ionospheric plasma by using very low and low frequency (VLF/LF) radio waves. We give a review of how to detect different low ionospheric reactions (sudden ionospheric disturbances) to various terrestrial and extra-terrestrial events, show their classification according to intensity and time duration, and present some methods for their detections in time and frequency domains. Investigations of detection in time domain are carried out for intensive long-lasting perturbations induced by solar X-ray flares and for short-lasting perturbations caused by gamma ray bursts. We also analyze time variations of signals used in the low ionospheric monitoring after earthquake events. In addition, we describe a procedure for the detection of acoustic and gravity waves from the VLF/LF signal analysis in frequency domain. The research of the low ionospheric plasma is based on data collected by the VLF/LF receivers located in Belgrade, Serbia. Contribution to the Topical Issue "Physics of Ionized Gases (SPIG 2016)", edited by Goran Poparic, Bratislav Obradovic, Dragana Maric and Aleksandar Milosavljevic.

  1. Plasma Pancakes and Deep Cavities Generated by High Power Radio Waves from the Arecibo Observatory

    NASA Astrophysics Data System (ADS)

    Bernhardt, P. A.; Briczinski, S. J., Jr.; Zawdie, K.; Huba, J.; Siefring, C. L.; Sulzer, M. P.; Nossa, E.; Aponte, N.; Perillat, P.; Jackson-Booth, N.

    2017-12-01

    Breakdown of the neutral atmosphere at ionospheric altitudes can be achieved with high power HF waves that reflect on the bottomside of the ionosphere. For overdense heating (i.e., wave frequency < maximum plasma frequency in the F-layer), the largest electric fields in the plasma are found just below the reflection altitude. There, electromagnetic waves are converted into electron plasma (Langmir) waves and ion acoustic waves. These waves are measured by scattering of the 430 MHz radar at Arecibo to from an enhanced plasma line. The photo-electron excitation of Langmuir waves yields a weaker plasma-line profile that shows the complete electron profile with the radar. Once HF enhanced Langmuir waves are formed, they can accelerate the photo-electron population to sufficient energies for neutral breakdown and enhanced ionization inside the HF Radio Beam. Plasma pancakes are produced because the breakdown process continues to build up plasma on bottom of the breakdown clouds and recombination occurs on the older breakdown plasma at the top of these clouds. Thus, the plasma pancake falls with altitude from the initial HF wave reflection altitude near 250 km to about 160 km where ion-electron recombination prevents the plasma cloud from being sustained by the high power HF. Experiments in March 2017 have produced plasma pancakes with about 100 Mega-Watts effective radiated power 5.1 MHz with the Arecibo HF Facility. Observations using the 430 MHz radar show falling plasma pancakes that disappear at low altitudes and reform at the F-layer critical reflection altitude. Sometimes the periodic and regular falling motion of the plasma pancakes is influenced by Acoustic Gravity Waves (AGW) propagating through the modified HF region. A rising AGW can cause the plasma pancake to reside at nearly constant altitude for 10 to 20 minutes. Dense cavities are also produced by high power radio waves interacting with the F-Layer. These structures are observed with the Arecibo 430 MHz

  2. Modeling of the Dynamics of Radio Wave Reflection and Absorption in a Smoothly Ionomogeneous Plasma with Electromagnetically Driven Strong Langmuir Turbulence

    NASA Astrophysics Data System (ADS)

    Kochetov, A. V.

    2018-05-01

    This work was initiated by experiments on studying the self-action of radio waves incident on the ionosphere from a ground-based transmitter at the stage of electromagnetic excitation of Langmuir turbulence (Langmuir effect). The emphasis is on the impact of "self-consistent" collisionless absorption of radio waves by the Langmuir turbulence, which develops when the incident-wave field swells in the resonant region of a smoothly inhomogeneous plasma, on the dynamics of the radio wave reflection. Electrodynamic characteristics of the nonlinear-plasma layer, which has a linear unperturbed profile of the plasma density, with different features of the absorption development are obtained for a high intensity of the incident radiation. Calculations of "soft" and "hard" regimes of the absorption occurrence, as well as hysteresis modes in which the damping switch-on and off thresholds differ several times, are carried out. The algorithms we devised and the results of the study can serve as the basis for a more adequate and more detailed numerical simulation for interpretation of the experimental data obtained at the stage of the Langmuir effect in the ionosphere.

  3. EFFECTS OF ALFVEN WAVES ON ELECTRON CYCLOTRON MASER EMISSION IN CORONAL LOOPS AND SOLAR TYPE I RADIO STORMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, G. Q.; Chen, L.; Wu, D. J.

    Solar type I radio storms are long-lived radio emissions from the solar atmosphere. It is believed that these type I storms are produced by energetic electrons trapped within a closed magnetic structure and are characterized by a high ordinary (O) mode polarization. However, the microphysical nature of these emissions is still an open problem. Recently, Wu et al. found that Alfven waves (AWs) can significantly influence the basic physics of wave-particle interactions by modifying the resonant condition. Taking the effects of AWs into account, this work investigates electron cyclotron maser emission driven by power-law energetic electrons with a low-energy cutoffmore » distribution, which are trapped in coronal loops by closed solar magnetic fields. The results show that the emission is dominated by the O mode. It is proposed that this O mode emission may possibly be responsible for solar type I radio storms.« less

  4. Observation of beat oscillation generation by coupled waves associated with parametric decay during radio frequency wave heating of a spherical tokamak plasma.

    PubMed

    Nagashima, Yoshihiko; Oosako, Takuya; Takase, Yuichi; Ejiri, Akira; Watanabe, Osamu; Kobayashi, Hiroaki; Adachi, Yuuki; Tojo, Hiroshi; Yamaguchi, Takashi; Kurashina, Hiroki; Yamada, Kotaro; An, Byung Il; Kasahara, Hiroshi; Shimpo, Fujio; Kumazawa, Ryuhei; Hayashi, Hiroyuki; Matsuzawa, Haduki; Hiratsuka, Junichi; Hanashima, Kentaro; Kakuda, Hidetoshi; Sakamoto, Takuya; Wakatsuki, Takuma

    2010-06-18

    We present an observation of beat oscillation generation by coupled modes associated with parametric decay instability (PDI) during radio frequency (rf) wave heating experiments on the Tokyo Spherical Tokamak-2. Nearly identical PDI spectra, which are characterized by the coexistence of the rf pump wave, the lower-sideband wave, and the low-frequency oscillation in the ion-cyclotron range of frequency, are observed at various locations in the edge plasma. A bispectral power analysis was used to experimentally discriminate beat oscillation from the resonant mode for the first time. The pump and lower-sideband waves have resonant mode components, while the low-frequency oscillation is exclusively excited by nonlinear coupling of the pump and lower-sideband waves. Newly discovered nonlocal transport channels in spectral space and in real space via PDI are described.

  5. The Distance to the Heliospheric VLF Emission Region

    NASA Technical Reports Server (NTRS)

    McNutt, R. L., Jr.; Lazarus, A. J.; Belcher, J. W.; Lyon, J.; Goodrich, C. C.; Kulkarni, R.

    1995-01-01

    Two major episodes of heliospheric VLF emissions near 3 kHz have been observed by the Voyager spacecraft in 1983-1984 and 1992-1993. This higher-frequency component is apparently triggered by solar wind transients with sufficiently large spatial extents and energies to continue to propagate as shocks in the heliosheath. Entrainment of previously unshocked material and changed flow conditions in the heliosheath both tend to slow the shock propagation. The shock evolution is not self-similar. Rather, it is intermediate to two blast-wave similarity solutions in the moving solar wind frame. In one solution the shock moves as time to the 2/3 power and in the other as time to the 4/5 power. Using these models, the shock/Forbush decrease observed at Voyager 2 in September, 1991 and the turn-on of the 1992 emission is consistent with an emission region distance of approx. 130 AU (assuming no additional slowing of the shock in the heliosheath). If the termination shock was at approx. 70 AU when the transient shock collided with it, the true distance to the source region was probably closer to approx. 115 AU.

  6. The distance to the heliospheric VLF emission region

    NASA Technical Reports Server (NTRS)

    Mcnutt, R. L., Jr.; Lazarus, A. J.; Belcher, J. W.; Lyon, J.; Goodrich, C. C.; Kulkarni, R.

    1995-01-01

    Two major episodes of heliospheric VLF emissions near 3 kHz have been observed by the Voyager spacecraft in 1983/84 and 1992/3. This higher-frequency component is apparently triggered by solar wind transients with sufficiently large spatial extents and energies to continue to propagate as shocks in the heliosheath. Entrainment of previously unshocked material and changed flow conditions in the heliosheath both tend to slow the shock propagation. The shock evolution is not self-similar. Rather, it is intermediate to two blast-wave similarity solutions in the moving solar wind frame. In one solution the shock moves as time to the 2/3 power and in the other as time to the 4/5 power. Using these models, the shock/Forbush decrease observed at Voyager 2 in September, 1991 and the turn-on of the 1992 emission is consistent with an emission region distance of approximately 130 AU (assuming no additional slowing of the shock in the heliosheath). If the termination shock was at approximately 70 AU when the transient shock collided with it, the true distance to the source region was probably closer to approximately 115 AU.

  7. Waves in the Martian Atmosphere: Results from MGS Radio Occultations

    NASA Technical Reports Server (NTRS)

    Flasar, F. M.; Hinson, D. P.; Tyler, G. L.

    1999-01-01

    Temperatures retrieved from Mars Global Surveyor radio occultations have been searched for evidence of waves. Emphasis has been on the initial series of occultations between 29 deg N and 64 deg S, obtained during the early martian southern summer, L(sub s) = 264 deg - 308 deg. The profiles exhibit an undulatory behavior that is suggestive of vertically propagating waves. wavelengths approximately 10 km are often dominant, but structure on smaller scales is evident. The undulatory structure is most pronounced between latitudes 29 deg N and 10 deg S, usually in regions of "interesting" topography, e.g., in the Tharsis region and near the edge of Syrtis Major. Several temperature profiles, particularly within 30 deg of the equator, exhibit lapse rates that locally become superadiabatic near the 0.4-mbar level or at higher altitudes. This implies that the waves are "breaking" and depositing horizontal momentum into the atmosphere. Such a deposition may play an important role in modulating the atmospheric winds, and characterizing the spatial and temporal distribution of these momentum transfers can provide important clues to understanding how the global circulation is maintained.

  8. Radio and Plasma Wave Observations During Cassini's Grand Finale

    NASA Astrophysics Data System (ADS)

    Kurth, W. S.; Bostrom, R.; Canu, P.; Cecconi, B.; Cornilleau-Wehrlin, N.; Farrell, W. M.; Fischer, G.; Galopeau, P. H. M.; Gurnett, D. A.; Gustafsson, G.; Hospodarsky, G. B.; Lamy, L.; Lecacheux, A.; Louarn, P.; MacDowall, R. J.; Menietti, J. D.; Modolo, R.; Morooka, M.; Pedersen, A.; Persoon, A. M.; Sulaiman, A. H.; Wahlund, J. E.; Ye, S.; Zarka, P. M.

    2017-12-01

    Cassini ends its 13-year exploration of the Saturnian system in 22 high inclination Grand Finale orbits with perikrones falling between the inner edge of the D ring and the upper limits of Saturn's atmosphere. The Cassini Radio and Plasma Wave Science (RPWS) instrument makes a variety of observations in these unique orbits including Saturn kilometric radiation, plasma waves such as auroral hiss associated with Saturn's auroras, dust via impacts with Cassini, and the upper reaches of Saturn's ionosphere. This paper will provide an overview of the RPWS results from this final phase of the Cassini mission with the unique opportunities afforded by the orbit. Based on early Grand Finale orbits, we can already say that the spacecraft has passed through cyclotron maser source regions of the Saturn kilometric radiation a number of times, found only small amounts of micron-sized dust in the equatorial region, and observed highly variable densities of cold plasma of order 1000 cm-3 in the ionosphere at altitudes of a few thousand km.

  9. Quasi-periodic Radio Bursts Associated with Fast-mode Waves near a Magnetic Null Point

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Pankaj; Nakariakov, Valery M.; Cho, Kyung-Suk, E-mail: pankaj.kumar@nasa.gov

    This paper presents an observation of quasi-periodic rapidly propagating waves observed in the Atmospheric Image Assembly (AIA) 171/193 Å channels during the impulsive phase of an M1.9 flare that occurred on 2012 May 7. The instant period was found to decrease from 240 to 120 s, and the speed of the wavefronts was in the range of ∼664–1416 km s{sup −1}. Almost simultaneously, quasi-periodic bursts with similar instant periods, ∼70 and ∼140 s, occur in the microwave emission and in decimetric type IV and type III radio bursts, and in the soft X-ray emission. The magnetic field configuration of themore » flare site was consistent with a breakout topology, i.e., a quadrupolar field along with a magnetic null point. The quasi-periodic rapidly propagating wavefronts of the EUV emission are interpreted as a fast magnetoacoustic wave train. The observations suggest that the fast-mode waves are generated during the quasi-periodic magnetic reconnection in the cusp region above the flare arcade loops. For the first time, we provide evidence of a tadpole wavelet signature at about 70–140 s in decimetric (245/610 MHz) radio bursts, along with the direct observation of a coronal fast-mode wave train in EUV. In addition, at AIA 131/193 Å we observed quasi-periodic EUV disturbances with periods of 95 and 240 s propagating downward at apparent speeds of 172–273 km s{sup −1}. The nature of these downward propagating disturbances is not revealed, but they could be connected to magnetoacoustic waves or periodically shrinking loops.« less

  10. Precipitated Fluxes of Radiation Belt Electrons via Injection of Whistler-Mode Waves

    NASA Astrophysics Data System (ADS)

    Kulkarni, P.; Inan, U. S.; Bell, T. F.

    2005-12-01

    Inan et al. (U.S. Inan et al., Controlled precipitation of radiation belt electrons, Journal of Geophysical Research-Space Physics, 108 (A5), 1186, doi: 10.1029/2002JA009580, 2003.) suggested that the lifetime of energetic (a few MeV) electrons in the inner radiation belts may be moderated by in situ injection of whistler mode waves at frequencies of a few kHz. We use the Stanford 2D VLF raytracing program (along with an accurate estimation of the path-integrated Landau damping based on data from the HYDRA instrument on the POLAR spacecraft) to determine the distribution of wave energy throughout the inner radiation belts as a function of injection point, wave frequency and injection wave normal angle. To determine the total wave power injected and its initial distribution in k-space (i.e., wave-normal angle), we apply the formulation of Wang and Bell ( T.N.C. Wang and T.F. Bell, Radiation resistance of a short dipole immersed in a cold magnetoionic medium, Radio Science, 4 (2), 167-177, February 1969) for an electric dipole antenna placed at a variety of locations throughout the inner radiation belts. For many wave frequencies and wave normal angles the results establish that most of the radiated power is concentrated in waves whose wave normals are located near the resonance cone. The combined use of the radiation pattern and ray-tracing including Landau damping allows us to make quantitative estimates of the magnetospheric distribution of wave power density for different source injection points. We use these results to estimate the number of individual space-based transmitters needed to significantly impact the lifetimes of energetic electrons in the inner radiation belts. Using the wave power distribution, we finally determine the energetic electron pitch angle scattering and the precipitated flux signatures that would be detected.

  11. Modeling of temporal variation of very low frequency radio waves over long paths as observed from Indian Antarctic stations

    NASA Astrophysics Data System (ADS)

    Sasmal, Sudipta; Basak, Tamal; Chakraborty, Suman; Palit, Sourav; Chakrabarti, Sandip K.

    2017-07-01

    Characteristics of very low frequency (VLF) signal depends on solar illumination across the propagation path. For a long path, solar zenith angle varies widely over the path and this has a significant influence on the propagation characteristics. To study the effect, Indian Centre for Space Physics participated in the 27th and 35th Scientific Expedition to Antarctica. VLF signals transmitted from the transmitters, namely, VTX (18.2 kHz), Vijayanarayanam, India, and NWC (19.8 kHz), North West Cape, Australia, were recorded simultaneously at Indian permanent stations Maitri and Bharati having respective geographic coordinates 70.75°S, 11.67°E, and 69.4°S, 76.17°E. A very stable diurnal variation of the signal has been obtained from both the stations. We reproduced the signal variations of VLF signal using solar zenith angle model coupled with long wavelength propagation capability (LWPC) code. We divided the whole path into several segments and computed the solar zenith angle (χ) profile. We assumed a linear relationship between the Wait's exponential model parameters effective reflection height (h'), steepness parameter (β), and solar zenith angle. The h' and β values were later used in the LWPC code to obtain the VLF signal amplitude at a particular time. The same procedure was repeated to obtain the whole day signal. Nature of the whole day signal variation from the theoretical modeling is also found to match with our observation to some extent.

  12. A lunar far-side very low frequency array

    NASA Technical Reports Server (NTRS)

    Burns, Jack O. (Editor); Duric, Nebojsa (Editor); Johnson, Stewart (Editor); Taylor, G. Jeffrey (Editor)

    1989-01-01

    Papers were presented to consider very low frequency (VLF) radio astronomical observations from the moon. In part 1, the environment in which a lunar VLF radio array would function is described. Part 2 is a review of previous and proposed low-frequency observatories. The science that could be conducted with a lunar VLF array is described in part 3. The design of a lunar VLF array and site selection criteria are considered, respectively, in parts 4 and 5. Part 6 is a proposal for precursor lunar VLF observations. Finally, part 7 is a summary and statement of conclusions, with suggestions for future science and engineering studies. The workshop concluded with a general consensus on the scientific goals and preliminary design for a lunar VLF array.

  13. Application of gamma ray spectrometric measurements and VLF-EM data for tracing vein type uranium mineralization

    NASA Astrophysics Data System (ADS)

    Gaafar, Ibrahim

    2015-12-01

    This study is an attempt to use the gamma ray spectrometric measurements and VLF-EM data to identify the subsurface structure and map uranium mineralization along El Sela shear zone, South Eastern Desert of Egypt. Many injections more or less mineralized with uranium and associated with alteration processes were recorded in El Sela shear zone. As results from previous works, the emplacement of these injections is structurally controlled and well defined by large shear zones striking in an ENE-WSW direction and crosscut by NW-SE to NNW-SSE fault sets. VLF method has been applied to map the structure and the presence of radioactive minerals that have been delineated by the detection of high uranium mineralization. The electromagnetic survey was carried out to detect the presence of shallow and deep conductive zones that cross the granites along ENE-WSW fracturing directions and to map its spatial distribution. The survey comprised seventy N-S spectrometry and VLF-EM profiles with 20 m separation. The resulted data were displayed as composite maps for K, eU and eTh as well as VLF-Fraser map. Twelve profiles with 100 m separation were selected for detailed description. The VLF-EM data were interpreted qualitatively as well as quantitatively using the Fraser and the Karous-Hjelt filters. Fraser filtered data and relative current density pseudo-sections indicate the presence of shallow and deep conductive zones that cross the granites along ENE-WSW shearing directions. High uranium concentrations found just above the higher apparent current-density zones that coincide with El-Sela shear zone indicate a positive relation between conductivity and uranium minerals occurrence. This enables to infer that the anomalies detected by VLF-EM data are due to the highly conductive shear zone enriched with uranium mineralization extending for more than 80 m.

  14. High-latitude distributions of plasma waves and spatial irregularities from DE 2 alternating current electric field observations

    NASA Technical Reports Server (NTRS)

    Heppner, J. P.; Liebrecht, M. C.; Maynard, N. C.; Pfaff, R. F.

    1993-01-01

    The high-latitude spatial distributions of average signal intensities in 12 frequency channels between 4 Hz and 512 kHz as measured by the ac electric field spectrometers on the DE-2 spacecraft are analyzed for 18 mo of measurements. In MLT-INL (magnetic local time-invariant latitude) there are three distinct distributions that can be identified with 4-512 Hz signals from spatial irregularities and Alfven waves, 256-Hz to 4.1-kHz signals from ELF hiss, and 4.1-64 kHz signals from VLF auroral hiss, respectively. Overlap between ELF hiss and spatial irregularity signals occurs in the 256-512 Hz band. VLF hiss signals extend downward in frequency into the 1.0-4.1 kHz band and upward into the frequency range 128-512 kHz. The distinctly different spatial distribution patterns for the three bands, 4-256 Hz, 512-1204 Hz, and 4.1-64 kHz, indicate a lack of any causal relationships between VLF hiss, ELF hiss, and lower-frequency signals from spatial irregularities and Alfven waves.

  15. LEP Events, TLE's, and Q-bursts observed from the Antarctic

    NASA Astrophysics Data System (ADS)

    Moore, R. C.; Kim, D.; Flint, Q. A.

    2017-12-01

    ELF/VLF measurements at Palmer Station, McMurdo Station, and South Pole Station, Antarctica are used to detect lightning-generated ELF/VLF radio atmospherics from around the globe and to remote sense ionospheric disturbances in the Southern hemisphere. The Antarctic ELF/VLF receivers complement a Northern hemisphere ELF/VLF monitoring array. In this paper, we present our latest observational results, including a full statistical analysis of conjugate observations of lightning-induced electron precipitation and radio atmospherics associated specifically with the transient luminous events known as gigantic jets and sprites.

  16. Planning for coordinated space and ground-based ionospheric modification experiments

    NASA Technical Reports Server (NTRS)

    Lee, M. C.; Burke, William J.; Carlson, Herbert C.; Heckscher, John L.; Kossey, Paul A.; Weber, E. J.; Kuo, S. P.

    1990-01-01

    The planning and conduction of coordinated space and ground-based ionospheric modification experiments are discussed. The purpose of these experiments is to discuss: (1) the nonlinear VLF wave interaction with the ionospheric plasmas; and (2) the nonlinear propagation of VLF waves in the HF-modified ionosphere. It is expected that the HF-induced ionospheric density striations can render the nonlinear mode conversion of VLF waved into lower hybrid waves. Lower hybrid waves can also be excited parametrically by the VLF waves in the absence of the density striations if the VLF waves are intense enough. Laboratory experiments are planned for crosschecking the results obtained from the field experiments.

  17. Imaging spectroscopy of solar radio burst fine structures.

    PubMed

    Kontar, E P; Yu, S; Kuznetsov, A A; Emslie, A G; Alcock, B; Jeffrey, N L S; Melnik, V N; Bian, N H; Subramanian, P

    2017-11-15

    Solar radio observations provide a unique diagnostic of the outer solar atmosphere. However, the inhomogeneous turbulent corona strongly affects the propagation of the emitted radio waves, so decoupling the intrinsic properties of the emitting source from the effects of radio wave propagation has long been a major challenge in solar physics. Here we report quantitative spatial and frequency characterization of solar radio burst fine structures observed with the Low Frequency Array, an instrument with high-time resolution that also permits imaging at scales much shorter than those corresponding to radio wave propagation in the corona. The observations demonstrate that radio wave propagation effects, and not the properties of the intrinsic emission source, dominate the observed spatial characteristics of radio burst images. These results permit more accurate estimates of source brightness temperatures, and open opportunities for quantitative study of the mechanisms that create the turbulent coronal medium through which the emitted radiation propagates.

  18. Spectral broadening of VLF transmitter signals observed on DE 1 - A quasi-electrostatic phenomenon?

    NASA Technical Reports Server (NTRS)

    Inan, U. S.; Bell, T. F.

    1985-01-01

    Spectrally broadened VLF transmitter signals are observed on the DE 1 satellite using alternatively both electric and magnetic field sensors. It is found that at times when the electric field component undergoes significant bandwidth expansion (up to about 110 Hz) the magnetic field component has a bandwidth of less than 10 Hz. The results support the theory that the off-carrier components are quasi-electrostatic in nature. Measurement of the absolute E and B field magnitudes of the broadened signals are used to determine the wave Poynting vector. It is found that the observed power levels can be understood without invoking any strong amplification process that operates in conjunction with the spectral broadening. The implications of this finding in distinguishing among the various possible mechanisms for spectral broadening are discussed.

  19. On the interactions between energetic electrons and lightning whistler waves observed at high L-shells on Van Allen Probes

    NASA Astrophysics Data System (ADS)

    Zheng, H.; Holzworth, R. H., II; Brundell, J. B.; Hospodarsky, G. B.; Jacobson, A. R.; Fennell, J. F.; Li, J.

    2017-12-01

    Lightning produces strong broadband radio waves, called "sferics", which propagate in the Earth-ionosphere waveguide and are detected thousands of kilometers away from their source. Global real-time detection of lightning strokes including their time, location and energy, is conducted with the World Wide Lightning Location Network (WWLLN). In the ionosphere, these sferics couple into very low frequency (VLF) whistler waves which propagate obliquely to the Earth's magnetic field. A good match has previously been shown between WWLLN sferics and Van Allen Probes lightning whistler waves. It is well known that lightning whistler waves can modify the distribution of energetic electrons in the Van Allen belts by pitch angle scattering into the loss cone, especially at low L-Shells (referred to as LEP - Lightning-induced Electron Precipitation). It is an open question whether lightning whistler waves play an important role at high L-shells. The possible interactions between energetic electrons and lightning whistler waves at high L-shells are considered to be weak in the past. However, lightning is copious, and weak pitch angle scattering into the drift or bounce loss cone would have a significant influence on the radiation belt populations. In this work, we will analyze the continuous burst mode EMFISIS data from September 2012 to 2016, to find out lightning whistler waves above L = 3. Based on that, MAGEIS data are used to study the related possible wave-particle interactions. In this talk, both case study and statistical analysis results will be presented.

  20. Long recovery VLF perturbations associated with lightning discharges

    NASA Astrophysics Data System (ADS)

    Salut, M. M.; Abdullah, M.; Graf, K. L.; Cohen, M. B.; Cotts, B. R. T.; Kumar, Sushil

    2012-08-01

    Long D-region ionospheric recovery perturbations are a recently discovered and poorly understood subcategory of early VLF events, distinguished by exceptionally long ionospheric recovery times of up to 20 min (compared to more typical ˜1 min recovery times). Characteristics and occurrence rates of long ionospheric recovery events on the NWC transmitter signal recorded at Malaysia are presented. 48 long recovery events were observed. The location of the causative lightning discharge for each event is determined from GLD360 and WWLLN data, and each discharge is categorized as being over land or sea. Results provide strong evidence that long recovery events are attributed predominately to lightning discharges occurring over the sea, despite the fact that lightning activity in the region is more prevalent over land. Of the 48 long recovery events, 42 were attributed to lightning activity over water. Analysis of the causative lightning of long recovery events in comparison to all early VLF events reveals that these long recovery events are detectable for lighting discharges at larger distances from the signal path, indicating a different scattering pattern for long recovery events.

  1. Radio Wave Propagation for Communication on and around Mars. Part 1; Highlights: Propagation Through Mars Environment

    NASA Technical Reports Server (NTRS)

    Ho, Christian; Golshan, Nasser

    1999-01-01

    We recommend to use the dayside Martian ionosphere as a reflector for global communication, because the dayside ionosphere has stable density peak and usable critic frequency. This is very crucial for the future Mars ground to around communication. The dayside ionosphere has been well modeled as a Chapman layer. We suggest to perform the Martian nightside ionospheric modeling study. Because the nightside ionosphere has very little measurements available, we propose to drop a digital ionosond instrument into the Mars surface for data collection. Even though the Martian tropospheric radio refractivity has small value, it still can cause the ray bending and multipath effects. We recommend to perform an accurate calculation on excess phase and group delays (range and time delays). Other effects, such as range rate errors, appearance angle deviation, defocusing loss on Mars, etc. are also needed to be estimated. Ice depolarization effects due to Martian clouds on radio waves is unknown yet, which is expected to be small, because lower optical depth and thinner layer of cloud: Total Martian atmospheric gaseous attenuation is expected to be less than 1 dB on microwaves band, because the Martian atmosphere has very low concentration in uncondensed H2O and O2. An accurate calculation for zenith opacity requires the information about scale heights of H2O and O2 distribution. An accurate water vapor altitude profile at Mars is not available yet. Under the normal condition, CO2 and N2 gases do not have electric or magnetic dipoles and do not absorb electromagnetic energy from the waves. However, they may generate the dipoles through a collision and interact with waves under a high density condition and absorb electromagnetic waves in the infrared and visible band. Dust storm is most dominant factor to the radio wave attenuation. Large Martian dust storm can cause at least 3 dB or higher loss to Ka band wave. For a normal dust storm, the attenuation is about 1 dB. The

  2. Storm-Time VLF Emissions Caused by The Solar Wind Disturbances: A Case Study on 8 December 2013

    NASA Astrophysics Data System (ADS)

    Manninen, J.; Kleimenova, N. G.; Turunen, T.; Gromova, L. I.

    2017-08-01

    This study is made of temporal variations of the daytime VLF emissions (1-6 kHz) occurred during the moderate magnetic storm (Kp = 6) on 8 December 2013. The storm was associated with the Coronal Mass Ejection (CME). VLF emissions were recorded in the frequency band of 0.2-39 kHz during the dark winter at Kannuslehto (KAN, L 5.5) in Northern Finland. The results were compared with simultaneous variations in the solar wind and Interplanetary Magnetic Field (IMF). It was found that intense VLF chorus started after the pressure jump in solar wind (from 7 to 12 nPa) under the positive IMF Bz. The VLF emissions occurred in two separate frequency bands. The lower frequency (below 2 kHz) band represents the intense long lasting hiss with right-hand polarization, and in the upper frequency band (above 2 kHz) the left-hand polarized hiss bursts occurred during about 1 hour. The plasmasphere was strongly compressed, and due to that KAN was mapped outside of the plasmapause. We suppose that VLF chorus exited in the magnetosphere by the cyclotron instability of the radiation belt electrons. The low frequency chorus was generated outside of the plasmapause and arrived to KAN along the direction of N-S meridian. The high-frequency band was generated inside of the plasmasphere arrived to KAN almost along the meridian.

  3. Comparison of the effects induced by the ordinary (O-mode) and extraordinary (X-mode) polarized powerful HF radio waves in the high-latitude ionospheric F region

    NASA Astrophysics Data System (ADS)

    Blagoveshchenskaya, N. F.; Borisova, T. D.; Kalishin, A. S.; Kayatkin, V. N.; Yeoman, T. K.; Häggström, I.

    2018-01-01

    Using the results of coordinated experiments on the modification of the high-latitude ionosphere by powerful HF radio emission of the EISCAT/Heating facility, effects of the impact of powerful HF radio waves of the ordinary (O-mode) and extraordinary (X-mode) polarization on the high-latitude ionospheric F region have been compared. During the experiments, a powerful HF radio wave was emitted in the magnetic zenith direction at frequencies within the 4.5-7.9 MHz range. The effective power of the emission was 150-650 MW. The behavior and characteristics of small-scale artificial ionospheric irregularities (SAIIs) during O- and X-heating at low and high frequencies are considered in detail. A principal difference has been found in the development of the Langmuir and ion-acoustic turbulence (intensified by the heating of the plasma and ion-acoustic lines in the spectrum of the EISCAT radar of incoherent scatter of radio waves) in the O- and X-heating cycles after switching on the heating facility. It has been shown that, under the influence on the ionospheric plasma of a powerful HF radio wave of the X-polarization, intense spectral components in the spectrum of the narrow-band artificial ionospheric radio emission (ARI) were registered at distances on the order of 1200 km from the heating facility.

  4. Planning for coordinated space and ground-based ionospheric modification experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, M.C.

    1990-10-01

    The planning and conducting of coordinated space and ground-based ionospheric modification experiments are discussed. The purpose of these experiments is to investigate (1) the nonlinear VLF wave interaction with the ionospheric plasmas, and (2) the nonlinear propagation of VLF waves in the HF-modified ionosphere. It is expected that the HY-induced ionospheric density striations can render the nonlinear mode conversion of VLF waves into lower hybrid waves. Lower hybrid waves can also be excited parametrically by the VLF waves in the absence of the density striations if the VLF waves are intense enough. Laboratory experiments are planned for crosschecking the resultsmore » obtained from the field experiments.« less

  5. Diffuse Interplanetary Radio Emission (DIRE) Accompanying Type II Radio Bursts

    NASA Astrophysics Data System (ADS)

    Teklu, T. B.; Gopalswamy, N.; Makela, P. A.; Yashiro, S.; Akiyama, S.; Xie, H.

    2015-12-01

    We report on an unusual drifting feature in the radio dynamic spectra at frequencies below 14 MHz observed by the Radio and Plasma Wave (WAVES) experiment on board the Wind spacecraft. We call this feature as "Diffuse Interplanetary Radio Emission (DIRE)". The DIRE events are generally associated with intense interplanetary type II radio bursts produced by shocks driven by coronal mass ejections (CMEs). DIREs drift like type II bursts in the dynamic spectra, but the drifting feature consist of a series of short-duration spikes (similar to a type I chain). DIREs occur at higher frequencies than the associated type II bursts, with no harmonic relationship with the type II burst. The onset of DIREs is delayed by several hours from the onset of the eruption. Comparing the radio dynamic spectra with white-light observations from the Solar and Heliospheric Observatory (SOHO) mission, we find that the CMEs are generally very energetic (fast and mostly halos). We suggest that the DIRE source is typically located at the flanks of the CME-driven shock that is still at lower heliocentric distances.

  6. Estimation of Existence Geothermal Manifestation Using Very Low Frequency (VLF) Method in the PagerkandangVulcanic, Dieng, Central Java

    NASA Astrophysics Data System (ADS)

    Wulandari, Asri; Asti Anggari, Ega; Dwiasih, Novi; Suyanto, Imam

    2018-03-01

    Very Low Frequency (VLF) measurement has been done at Pagerkandang Volcanic, Dieng Volcanic Complex (DVC) to examine the possible existence of conductive zones that related with geothermal manifestation. VLF – EM survey used tilt mode with T-VLF BRGM Iris Instrument operated with two frequencies, they are 22200 Hz from Japan (JJI) and 19800 Hz from Australia (NWC). There are five lines with distance between lines is 50 m, and distance between measure points is 20 m. The parameters measured from VLF method are tilt angle (%) and elliptisity (%). Data processed by tilt angle value with fraser and Karous – Hjelt filter used WinVLF program. Karous – Hjelt filter resulted current density contour to estimate lateral location from conductive and resistive zones. The conductive zone is interpreted as the area which have high current density value. This area located at eastern dan western of Pagerkandang Volcanic. The conductive zone related to geothermal manifestation as like as fumarol that appeared because presenced of normal fault. Whereas the resistive zone is interpreted as the area which have low current density value. This area spread almost in the middle of the Pagerkandang Volcanic. The resistive zone was caused by the high weathering in claystone.

  7. Electro-opto-mechanical radio-frequency oscillator driven by guided acoustic waves in standard single-mode fiber

    NASA Astrophysics Data System (ADS)

    London, Yosef; Diamandi, Hilel Hagai; Zadok, Avi

    2017-04-01

    An opto-electronic radio-frequency oscillator that is based on forward scattering by the guided acoustic modes of a standard single-mode optical fiber is proposed and demonstrated. An optical pump wave is used to stimulate narrowband, resonant guided acoustic modes, which introduce phase modulation to a co-propagating optical probe wave. The phase modulation is converted to an intensity signal at the output of a Sagnac interferometer loop. The intensity waveform is detected, amplified, and driven back to modulate the optical pump. Oscillations are achieved at a frequency of 319 MHz, which matches the resonance of the acoustic mode that provides the largest phase modulation of the probe wave. Oscillations at the frequencies of competing acoustic modes are suppressed by at least 40 dB. The linewidth of the acoustic resonance is sufficiently narrow to provide oscillations at a single longitudinal mode of the hybrid cavity. Competing longitudinal modes are suppressed by at least 38 dB as well. Unlike other opto-electronic oscillators, no radio-frequency filtering is required within the hybrid cavity. The frequency of oscillations is entirely determined by the fiber opto-mechanics.

  8. First tsunami gravity wave detection in ionospheric radio occultation data

    DOE PAGES

    Coïsson, Pierdavide; Lognonné, Philippe; Walwer, Damian; ...

    2015-05-09

    After the 11 March 2011 earthquake and tsunami off the coast of Tohoku, the ionospheric signature of the displacements induced in the overlying atmosphere has been observed by ground stations in various regions of the Pacific Ocean. We analyze here the data of radio occultation satellites, detecting the tsunami-driven gravity wave for the first time using a fully space-based ionospheric observation system. One satellite of the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) recorded an occultation in the region above the tsunami 2.5 h after the earthquake. The ionosphere was sounded from top to bottom, thus providing themore » vertical structure of the gravity wave excited by the tsunami propagation, observed as oscillations of the ionospheric Total Electron Content (TEC). The observed vertical wavelength was about 50 km, with maximum amplitude exceeding 1 total electron content unit when the occultation reached 200 km height. We compared the observations with synthetic data obtained by summation of the tsunami-coupled gravity normal modes of the Earth/Ocean/atmosphere system, which models the associated motion of the ionosphere plasma. These results provide experimental constraints on the attenuation of the gravity wave with altitude due to atmosphere viscosity, improving the understanding of the propagation of tsunami-driven gravity waves in the upper atmosphere. They demonstrate that the amplitude of the tsunami can be estimated to within 20% by the recorded ionospheric data.« less

  9. Large scale atmospheric waves in the Venus mesosphere as seen by the VeRa Radio Science instrument on Venus Express

    NASA Astrophysics Data System (ADS)

    Tellmann, Silvia; Häusler, Bernd; Hinson, David P.; Tyler, G. Leonard; Andert, Thomas P.; Bird, Michael K.; Imamura, Takeshi; Pätzold, Martin; Remus, Stefan

    2015-04-01

    Atmospheric waves on all spatial scales play a crucial role in the redistribution of energy, momentum, and atmospheric constituent in planetary atmosphere and are thought to be involved in the development and maintenance of the atmospheric superrotation on Venus. The Venus Express Radio-Science Experiment VeRa sounded the Venus neutral atmosphere and ionosphere in Earth occultation geometry using the spacecraft radio subsystem at two coherent frequencies. Radial profiles of neutral number density, covering the altitude range 40-90 km, are then converted to vertical profiles of temperature and pressure, assuming hydrostatic equilibrium. The extensive VeRa data set enables us to study global scale atmospheric wave phenomena like thermal tides in the mesosphere and troposphere. A pronounced local time dependency of the temperature is found in the mesosphere at different altitude levels. Wave-2 structures dominate the low latitude range in the upper mesosphere while the higher latitudes show a strong wave-1 structure at the top of the cloud layer. The investigation of these wave structures provides valuable information about the energy transport in the atmosphere.

  10. Radio Counterparts of Compact Binary Mergers Detectable in Gravitational Waves: A Simulation for an Optimized Survey

    NASA Astrophysics Data System (ADS)

    Hotokezaka, K.; Nissanke, S.; Hallinan, G.; Lazio, T. J. W.; Nakar, E.; Piran, T.

    2016-11-01

    Mergers of binary neutron stars and black hole-neutron star binaries produce gravitational-wave (GW) emission and outflows with significant kinetic energies. These outflows result in radio emissions through synchrotron radiation. We explore the detectability of these synchrotron-generated radio signals by follow-up observations of GW merger events lacking a detection of electromagnetic counterparts in other wavelengths. We model radio light curves arising from (I) sub-relativistic merger ejecta and (II) ultra-relativistic jets. The former produce radio remnants on timescales of a few years and the latter produce γ-ray bursts in the direction of the jet and orphan-radio afterglows extending over wider angles on timescales of weeks. Based on the derived light curves, we suggest an optimized survey at 1.4 GHz with five epochs separated by a logarithmic time interval. We estimate the detectability of the radio counterparts of simulated GW-merger events to be detected by advanced LIGO and Virgo by current and future radio facilities. The detectable distances for these GW merger events could be as high as 1 Gpc. Around 20%-60% of the long-lasting radio remnants will be detectable in the case of the moderate kinetic energy of 3\\cdot {10}50 erg and a circum-merger density of 0.1 {{cm}}-3 or larger, while 5%-20% of the orphan-radio afterglows with kinetic energy of 1048 erg will be detectable. The detection likelihood increases if one focuses on the well-localizable GW events. We discuss the background noise due to radio fluxes of host galaxies and false positives arising from extragalactic radio transients and variable active galactic nuclei, and we show that the quiet radio transient sky is of great advantage when searching for the radio counterparts.

  11. Initial Results from SQUID Sensor: Analysis and Modeling for the ELF/VLF Atmospheric Noise

    PubMed Central

    Hao, Huan; Wang, Huali; Chen, Liang; Wu, Jun; Qiu, Longqing; Rong, Liangliang

    2017-01-01

    In this paper, the amplitude probability density (APD) of the wideband extremely low frequency (ELF) and very low frequency (VLF) atmospheric noise is studied. The electromagnetic signals from the atmosphere, referred to herein as atmospheric noise, was recorded by a mobile low-temperature superconducting quantum interference device (SQUID) receiver under magnetically unshielded conditions. In order to eliminate the adverse effect brought by the geomagnetic activities and powerline, the measured field data was preprocessed to suppress the baseline wandering and harmonics by symmetric wavelet transform and least square methods firstly. Then statistical analysis was performed for the atmospheric noise on different time and frequency scales. Finally, the wideband ELF/VLF atmospheric noise was analyzed and modeled separately. Experimental results show that, Gaussian model is appropriate to depict preprocessed ELF atmospheric noise by a hole puncher operator. While for VLF atmospheric noise, symmetric α-stable (SαS) distribution is more accurate to fit the heavy-tail of the envelope probability density function (pdf). PMID:28216590

  12. Initial Results from SQUID Sensor: Analysis and Modeling for the ELF/VLF Atmospheric Noise.

    PubMed

    Hao, Huan; Wang, Huali; Chen, Liang; Wu, Jun; Qiu, Longqing; Rong, Liangliang

    2017-02-14

    In this paper, the amplitude probability density (APD) of the wideband extremely low frequency (ELF) and very low frequency (VLF) atmospheric noise is studied. The electromagnetic signals from the atmosphere, referred to herein as atmospheric noise, was recorded by a mobile low-temperature superconducting quantum interference device (SQUID) receiver under magnetically unshielded conditions. In order to eliminate the adverse effect brought by the geomagnetic activities and powerline, the measured field data was preprocessed to suppress the baseline wandering and harmonics by symmetric wavelet transform and least square methods firstly. Then statistical analysis was performed for the atmospheric noise on different time and frequency scales. Finally, the wideband ELF/VLF atmospheric noise was analyzed and modeled separately. Experimental results show that, Gaussian model is appropriate to depict preprocessed ELF atmospheric noise by a hole puncher operator. While for VLF atmospheric noise, symmetric α -stable (S α S) distribution is more accurate to fit the heavy-tail of the envelope probability density function (pdf).

  13. Whistler Observations on DEMETER Compared with Full Electromagnetic Wave Simulations

    NASA Astrophysics Data System (ADS)

    Compston, A. J.; Cohen, M.; Lehtinen, N. G.; Inan, U.; Linscott, I.; Said, R.; Parrot, M.

    2014-12-01

    Terrestrial Very Low Frequency (VLF) electromagnetic radiation, which strongly impacts the Van Allen radiation belt electron dynamics, is injected across the ionosphere into the Earth's plasmasphere from two primary sources: man-made VLF transmitters and lightning discharges. Numerical models of trans-ionospheric propagation of such waves remain unvalidated, and early models may have overestimated the absorption, hindering a comprehensive understanding of the global impact of VLF waves in the loss of radiation belt electrons. In an attempt to remedy the problem of a lack of accurate trans-ionospheric propagation models, we have used a full electromagnetic wave method (FWM) numerical code to simulate the propagation of lightning-generated whistlers into the magnetosphere and compared the results with whistlers observed on the DEMETER satellite and paired with lightning stroke data from the National Lightning Detection Network (NLDN). We have identified over 20,000 whistlers occuring in 14 different passes of DEMETER over the central United States during the summer of 2009, and 14,000 of those occured within the 2000 km x 2000 km simulation grid we used. As shown in the attached figure, which shows a histogram of the ratio of the simulated whistler energy to the measured whistler energy for the 14,000 whistlers we compared, the simulation tends to slightly underestimate the total whistler energy injected by about 5 dB. However, the simulation underestimates the DEMETER measurements more as one gets further from the source lightning stroke, so since the signal to noise ratio of more distant whistlers will be smaller, possibly additive noise in the DEMETER measurements (which of course is not accounted for in the model) may explain some of the observed discrepancy.

  14. Making Waves: Pirate Radio and Popular Music.

    ERIC Educational Resources Information Center

    Jones, Steve

    The history of pirate radio--radio broadcasts offered by unlicensed broadcasters as alternatives to licensed, commercial radio programming--is difficult to trace, both in America and the United Kingdom (UK) since mention of pirate broadcasts of a less-then-thrilling nature are rarely found. Also, until 1927, the U.S. government did not formally…

  15. DEMETER observations of manmade waves that propagate in the ionosphere

    NASA Astrophysics Data System (ADS)

    Parrot, Michel

    2018-01-01

    This paper is a review of manmade waves observed by the ionospheric satellite DEMETER. It concerns waves emitted by the ground-based VLF and ELF transmitters, by broadcasting stations, by the power line harmonic radiation, by industrial noise, and by active experiments. Examples are shown including, for the first time, the record of a wave coming from an ELF transmitter. These waves propagate upwards in the magnetosphere and they can be observed in the magnetically conjugated region of emission. Depending on their frequencies, they perturb the ionosphere and the particles in the radiation belts, and additional emissions are triggered. xml:lang="fr"

  16. Radial distribution of compressive waves in the solar corona revealed by Akatsuki radio occultation observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyamoto, Mayu; Imamura, Takeshi; Ando, Hiroki

    Radial variations of the amplitude and the energy flux of compressive waves in the solar corona were explored for the first time using a spacecraft radio occultation technique. By applying wavelet analysis to the frequency time series taken at heliocentric distances of 1.5-20.5 R{sub S} (solar radii), quasi-periodic density disturbances were detected at almost all distances. The period ranges from 100 to 2000 s. The amplitude of the fractional density fluctuation increases with distance and reaches ∼30% around 5 R{sub S} , implying that nonlinearity of the wave field is potentially important. We further estimate the wave energy flux onmore » the assumption that the observed periodical fluctuations are manifestations of acoustic waves. The energy flux increases with distance below ∼6 R{sub S} and seems to saturate above this height, suggesting that the acoustic waves do not propagate from the low corona but are generated in the extended corona, probably through nonlinear dissipation of Alfvén waves. The compressive waves should eventually dissipate through shock generation to heat the corona.« less

  17. Low Frequency Radio-wave System for subsurface investigation

    NASA Astrophysics Data System (ADS)

    Soldovieri, Francesco; Gennarelli, Gianluca; Kudelya, Anatoliy; Denisov, Alexander

    2015-04-01

    Low frequency radio-wave methods (RWM) allow subsurface investigations in terms of lithological structure characterization, detection of filtration flows of ground water, anthropogenic and natural cavities. In this contribution, we present a RWM that exploits two coils working at frequencies of few MHz as transmitting and receiving antennas. The basic principle of this inductive method is as follows. The primary alternating electromagnetic field radiated by the transmitting coil induces eddy currents in the subsurface mainly due to the conductivity anomalies. These eddy currents generate a secondary (scattered) magnetic field which overlaps to the incident magnetic field and is detected by the receiving coil. Despite the simple operation of the system, the complexity of the electromagnetic scattering phenomenon at hand must be properly modeled to achieve adequate performance. Therefore, an advanced data processing technique, belonging to the class of the inverse scattering approaches, has been developed by the authors in a full 3D geometry. The proposed method allows to deal with data collected on a scanning surface under a dipole inductive profiling (DIP) modality, where the transmitting/receiving coils are moved simultaneously with fixed offset (multi-bistatic configuration). The hardware, called Dipole Inductive Radio-wave System (DIRS), is composed by an electronic unit and transmitting and receiving loop antennas radiating at frequencies of few MHz (2-4 MHz), which are installed on theodolite supports. The compactness of DIRS and its robustness to external electromagnetic interference offers the possibility to perform geophysical research up to the depth of some tens of meters and under several types of ground and water surfaces, vegetation, and weather conditions. The light weight and small size of system (the single antenna with support weights about 5 kg and has a diameter of 0.5m) allows two operators to perform geophysical research without disturbing the

  18. A theory for narrow-banded radio bursts at Uranus - MHD surface waves as an energy driver

    NASA Technical Reports Server (NTRS)

    Farrell, W. M.; Curtis, S. A.; Desch, M. D.; Lepping, R. P.

    1992-01-01

    A possible scenario for the generation of the narrow-banded radio bursts detected at Uranus by the Voyager 2 planetary radio astronomy experiment is described. In order to account for the emission burstiness which occurs on time scales of hundreds of milliseconds, it is proposed that ULF magnetic surface turbulence generated at the frontside magnetopause propagates down the open/closed field line boundary and mode-converts to kinetic Alfven waves (KAW) deep within the polar cusp. The oscillating KAW potentials then drive a transient electron stream that creates the bursty radio emission. To substantiate these ideas, Voyager 2 magnetometer measurements of enhanced ULF magnetic activity at the frontside magnetopause are shown. It is demonstrated analytically that such magnetic turbulence should mode-convert deep in the cusp at a radial distance of 3 RU.

  19. On Spatial Structuring of the F2 Layer Studied by the Satellite Radio Sounding of the Ionosphere Disturbed by High-Power HF Radio Waves

    NASA Astrophysics Data System (ADS)

    Tereshchenko, E. D.; Turyansky, V. A.; Khudukon, B. Z.; Yurik, R. Yu.; Frolov, V. L.

    2018-01-01

    We present the results of studying the characteristics of the artificial plasma structures excited in the ionospheric F2 region modified by high-power HF radio waves. The experiments were carried out at the Sura heating facility using satellite radio sounding of the ionosphere. The plasma density profile was reconstructed with the highest possible spatial resolution for today, about 4 km. In a direction close to the magnetic zenith of the pump wave, the following phenomena were observed: the formation of a cavity with a 15% lower plasma density at the altitudes of the F2 layer and below; the formation of an area with plasma density increased by 12% at altitudes greater than 400 km. With a long-term quasiperiodic impact of the pump wave on the ionosphere, wavy large-scale electron-density perturbations (the meridional scale λx ≈ 130 km and the vertical scale λz ≈ 440 km) are also formed above the Sura facility. These perturbations can be due to the plasma density modulation by an artificial acoustic-gravity wave with a period of 10.6 m, which was formed by the heat source inside a large-scale cavity with low plasma density; there is generation of the electron density irregularities for the electrons with ΔNe/Ne ≈ 3% in the form of layers having the sizes 10-12 km along and about 24 km across the geomagnetic field, which are found both below and above the F2-layer maximum. The mechanisms of the formation of these plasma structures are discussed.

  20. Satellite radio occultation investigations of internal gravity waves in the planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Kirillovich, Ivan; Gubenko, Vladimir; Pavelyev, Alexander

    Internal gravity waves (IGWs) modulate the structure and circulation of the Earth’s atmosphere, producing quasi-periodic variations in the wind velocity, temperature and density. Similar effects are anticipated for the Venus and Mars since IGWs are a characteristic of stably stratified atmosphere. In this context, an original method for the determination of IGW parameters from a vertical temperature profile measurement in a planetary atmosphere has been developed [Gubenko et al., 2008, 2011, 2012]. This method does not require any additional information not contained in the profile and may be used for the analysis of profiles measured by various techniques. The criterion for the IGW identification has been formulated and argued. In the case when this criterion is satisfied, the analyzed temperature fluctuations can be considered as wave-induced. The method is based on the analysis of relative amplitudes of the wave field and on the linear IGW saturation theory in which these amplitudes are restricted by dynamical (shear) instability processes in the atmosphere. When the amplitude of an internal wave reaches the shear instability threshold, energy is assumed to be dissipated in such a way that the IGW amplitude is maintained at the instability threshold level as the wave propagates upwards. We have extended the developed technique [Gubenko et al., 2008] in order to reconstruct the complete set of wave characteristics including such important parameters as the wave kinetic and potential energy per unit mass and IGW fluxes of the energy and horizontal momentum [Gubenko et al., 2011]. We propose also an alternative method to estimate the relative amplitudes and to extract IGW parameters from an analysis of perturbations of the Brunt-Vaislala frequency squared [Gubenko et al., 2011]. An application of the developed method to the radio occultation (RO) temperature data has given the possibility to identify the IGWs in the Earth's, Martian and Venusian atmospheres and

  1. Remote sensing of ELF/VLF radiation induced in experiments on artificial modification of the ionosphere

    NASA Astrophysics Data System (ADS)

    Gavrilov, B. G.; Zetser, Yu. I.; Ryakhovskii, I. A.; Poklad, Yu. V.; Ermak, V. M.

    2015-07-01

    In 2012, remote measurements of electromagnetic signals in the ELF/VLF band were taken at different points in Russia during experiments on artificial ionospheric modification with the powerful HF wave at the EISCAT heating facility (Tromsø, Norway). The use of the new, highly sensitive magnetometric equipment allowed signals with an amplitude of a few femtoteslas to be recorded at a distance of up to 2000 km from the source. Analysis of the measurement results discovered substantial differences in the amplitude-phase characteristics of the signals, which were caused by a change in helio-geophysical conditions in the region of heating and along the signal passage route, and features of signal propagation, which are related to their mode of guided propagation, the directivity of the source, and angles of reception.

  2. Occurrence statistics and ray tracing study of Jovian quasiperiodic radio bursts observed from low latitudes

    NASA Astrophysics Data System (ADS)

    Kimura, Tomoki; Tsuchiya, Fuminori; Misawa, Hiroaki; Morioka, Akira; Nozawa, Hiromasa

    2010-05-01

    The occurrence characteristics of Jovian quasiperiodic (QP) bursts at a VLF range (<10 kHz) were statistically investigated using data from the Galileo spacecraft at low latitudes in the Jovian magnetosphere. The results confirmed that the occurrence of QP bursts is significantly dependent on the phase of planetary rotation rather than the central meridian longitude of the observer seen from Jupiter. It was revealed that the meridional distribution of QP bursts forms a shadow zone in the equatorial region of <30 Jovian radii from Jupiter, similar to that of hectometric radio emissions, where QP bursts are quenched. Based on the ray tracing method, we surveyed the source parameters, which can reproduce the observed shadow zone. It was suggested that the wave mode, source location, and directivity of the radio emissions are as follows: the extraordinary mode is reasonable for QP bursts observed at low latitudes, the source is located around an altitude of ˜10-20 Jovian radii above the polar region, the L value of the source field line is in a range of L > ˜20, and QP bursts could have beaming angles like “filled cone” in a restricted L value range or have a large source L value range with beaming angles like “hollow cones.” These results imply that QP bursts observed at low latitudes are generated at fRX surfaces in the polar region and propagate to the equatorial region.

  3. DE-1 and COSMOS 1809 observations of lower hybrid waves excited by VLF whistler mode waves

    NASA Technical Reports Server (NTRS)

    Bell, T. F; Inan, U. S.; Lauben, D.; Sonwalkar, V. S.; Helliwell, R. A.; Sobolev, Ya. P.; Chmyrev, V. M.; Gonzalez, S.

    1994-01-01

    Past work demostrates that strong lower hybrid (LH) waves can be excited by electromagnetic whistler mode waves throughout large regions of the topside ionosphere and magnetosphere. The effects of the excited LH waves upon the suprathermal ion population in the topside ionosphere and magnetosphere depend upon the distribution of LH wave amplitude with wavelength lambda. The present work reports plasma wave data from the DE-1 and COSMOS 1809 spacecraft which suggests that the excited LH wave spectrum has components for which lambda less than or equal to 3.5 m when excitation occurs at a frequency roughly equal to the local lower hybrid resonance frequency. This wavelength limit is a factor of approximately 3 below that reported in past work and suggests that the excited LH waves can interact with suprathermal H(+) ions with energy less than or equal to 6 eV. This finding supports recent work concerning the heating of suprathermal ions above thunderstorm cells.

  4. Juno Detects a Ham Radio HI from Earth

    NASA Image and Video Library

    2013-12-10

    During its close flyby of Earth, NASA Jupiter-bound Juno spacecraft listened for a coordinated, global transmission from amateur radio operators using its radio and plasma wave science instrument, known as Waves.

  5. New Ecuadorian VLF and ELF receiver for study the ionosphere

    NASA Astrophysics Data System (ADS)

    Lopez, Ericson; Montenegro, Jefferson; Vasconez, Michael; Vicente, Klever

    Crucial physical phenomena occur in the equatorial atmosphere and ionosphere, which are currently understudied and poorly understood. Thus, scientific campaigns for monitoring the equatorial region are required in order to provide the necessary data for the physical models. Ecuador is located in strategic geographical position where these studies can be performed, providing quality data for the scientific community working in understanding the nature of these physical systems. The Quito Astronomical Observatory (QAO) of National Polytechnic School is moving in this direction by promoting research in space sciences for the study of the equatorial zone. With the participation and the valuable collaboration of international initiatives such us AWESOME, MAGDAS, SAVNET and CALLISTO, the Quito Observatory is establishing a new space physics division on the basis of the International Space Weather Initiative. As part of this project, in the QAO has been designed a new system for acquisition and processing VLF and ELF signals propagating in the ionosphere. The Labview Software is used to filtering, processing and conditioning the received signals, avoiding in this way 60 percent of the analog components present in a common receiver. The same software have been programmed to create the spectrograms and the amplitude and phase diagrams of the radio signals. The data is stored neatly in files that can be processed even with other applications.

  6. Global effects on Ionospheric Weather over the Indian subcontinent at Sunrise and Sunset

    NASA Astrophysics Data System (ADS)

    Basak, Tamal; Chakrabarti, S. K.; Pal, S.

    2010-10-01

    Study of Very Low Frequency (VLF) electromagnetic wave is very important for knowing the behavior of the Ionospheric layers due to Sunrise-Sunset, Earthquakes, Solar flares, Solar eclipses and other terrestrial and extra terrestrial radiations. We study the properties of the variation of the VLF signal strength theoretically all over Indian sub-continent. As an example, we concentrate on the VLF signal transmitted by Indian Naval Transmitter VTX at Vijayanarayanam (Latitude 08°23', Longitude 77°45') near the southern tip of Indian subcontinent. As has been noticed, several receiving stations placed during the VLF campaign in all over India, the VLF signal strength varies significantly with place and time. To understand the diurnal and seasonal variation of the received signal, a complete knowledge of physics of intensity distribution of the VLF signal is essential. The spatial variation of VLF signal plays an important role in selecting future VLF stations. In the wave-hop theoretical model presented here, horizontally stratified ionospheric layers have been considered. The VLF wave emitted by the transmitter has both the ground wave and the sky wave components. The ground wave attenuates during propagation. The sky wave component experiences reflections by the ionosphere on its way to the receiver and its attenuation depends on the degree of ionization. Intensity variation occurs at a given receiver location for interference among singly and multiply reflected waves. This has been simulated considering some simplified and justifiable assumptions. This spatial variation wave-hop theoretical model developed here has been compared with LWPC code generated results.

  7. Global effects on Ionospheric Weather over the Indian subcontinent at Sunrise and Sunset

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basak, Tamal; Pal, S.; Chakrabarti, S. K.

    2010-10-20

    Study of Very Low Frequency (VLF) electromagnetic wave is very important for knowing the behavior of the Ionospheric layers due to Sunrise-Sunset, Earthquakes, Solar flares, Solar eclipses and other terrestrial and extra terrestrial radiations. We study the properties of the variation of the VLF signal strength theoretically all over Indian sub-continent. As an example, we concentrate on the VLF signal transmitted by Indian Naval Transmitter VTX at Vijayanarayanam (Latitude 08 deg. 23', Longitude 77 deg. 45') near the southern tip of Indian subcontinent. As has been noticed, several receiving stations placed during the VLF campaign in all over India, themore » VLF signal strength varies significantly with place and time. To understand the diurnal and seasonal variation of the received signal, a complete knowledge of physics of intensity distribution of the VLF signal is essential. The spatial variation of VLF signal plays an important role in selecting future VLF stations. In the wave-hop theoretical model presented here, horizontally stratified ionospheric layers have been considered. The VLF wave emitted by the transmitter has both the ground wave and the sky wave components. The ground wave attenuates during propagation. The sky wave component experiences reflections by the ionosphere on its way to the receiver and its attenuation depends on the degree of ionization. Intensity variation occurs at a given receiver location for interference among singly and multiply reflected waves. This has been simulated considering some simplified and justifiable assumptions. This spatial variation wave-hop theoretical model developed here has been compared with LWPC code generated results.« less

  8. Application of the nudged elastic band method to the point-to-point radio wave ray tracing in IRI modeled ionosphere

    NASA Astrophysics Data System (ADS)

    Nosikov, I. A.; Klimenko, M. V.; Bessarab, P. F.; Zhbankov, G. A.

    2017-07-01

    Point-to-point ray tracing is an important problem in many fields of science. While direct variational methods where some trajectory is transformed to an optimal one are routinely used in calculations of pathways of seismic waves, chemical reactions, diffusion processes, etc., this approach is not widely known in ionospheric point-to-point ray tracing. We apply the Nudged Elastic Band (NEB) method to a radio wave propagation problem. In the NEB method, a chain of points which gives a discrete representation of the radio wave ray is adjusted iteratively to an optimal configuration satisfying the Fermat's principle, while the endpoints of the trajectory are kept fixed according to the boundary conditions. Transverse displacements define the radio ray trajectory, while springs between the points control their distribution along the ray. The method is applied to a study of point-to-point ionospheric ray tracing, where the propagation medium is obtained with the International Reference Ionosphere model taking into account traveling ionospheric disturbances. A 2-dimensional representation of the optical path functional is developed and used to gain insight into the fundamental difference between high and low rays. We conclude that high and low rays are minima and saddle points of the optical path functional, respectively.

  9. Conversion of Radio-Frequency Pulses to Continuous-Wave Sinusoids by Fast Switching and Narrowband Filtering

    DTIC Science & Technology

    2016-09-01

    Switching and Narrowband Filtering by Gregory J Mazzaro, Andrew J Sherbondy, Kenneth I Ranney, and Kelly D Sherbondy...Switching and Narrowband Filtering by Gregory J Mazzaro, Andrew J Sherbondy, Kenneth I Ranney, and Kelly D Sherbondy Sensors and Electron Devices...08/2016 4. TITLE AND SUBTITLE Conversion of Radio-Frequency Pulses to Continuous-Wave Sinusoids by Fast Switching and Narrowband Filtering 5a

  10. Developments in photonic and mm-wave component technology for fiber radio

    NASA Astrophysics Data System (ADS)

    Iezekiel, Stavros

    2013-01-01

    A review of photonic component technology for fiber radio applications at 60 GHz will be given. We will focus on two architectures: (i) baseband-over-fiber and (ii) RF-over-fiber. In the first approach, up-conversion to 60 GHz is performed at the picocell base stations, with data being transported over fiber, while in the second both the data and rum­ wave carrier are transported over fiber. For the baseband-over-fiber scheme, we examine techniques to improve the modulation efficiency of directly­ modulated fiber links. These are based on traveling-wave structures applied to series cascades of lasers. This approach combines the improvement in differential quantum efficiency with the ability to tailor impedance matching as required. In addition, we report on various base station transceiver architectures based on optically-controlled :tvfMIC self­ oscillating mixers, and their application to 60 GHz fiber radio. This approach allows low cost optoelectronic transceivers to be used for the baseband fiber link, whilst minimizing the impact of dispersion. For the RF-over-fiber scheme, we report on schemes for optical generation of 100 GHz. These use modulation of a Mach-Zehnder modulator at Vπ bias in cascade with a Mach-Zehnder driven by 1.25 Gb/s data. One of the issues in RF-over-fiber is dispersion, while reduced modulation efficiency due to the presence of the optical carrier is also problematic. We examine the use of silicon nitride micro-ring resonators for the production of optical single sideband modulation in order to combat dispersion, and for the reduction of optical carrier power in order to improve link modulation efficiency.

  11. Nighttime lower ionosphere height estimation from the VLF modal interference distance

    NASA Astrophysics Data System (ADS)

    Samanes, Jorge; Raulin, Jean-Pierre; Cao, Jinbin; Magalhães, Antonio

    2018-01-01

    We have studied the dynamics of the nighttime lower ionosphere height through continuous monitoring of the VLF modal interference distance (so-called distance D). Since the distance D is related to the nighttime propagation modes within the Earth-Ionosphere waveguide, it provides information of the nighttime reflection height (hN). We have used a long-term VLF narrowband database of almost 8 years (2006-2014) from a long transequatorial VLF propagation path between the transmitter NPM (Hawaii, 21.4 kHz) and the receiver ATI (Atibaia, Brazil). Our results show that hN assumes lower values during northern hemisphere wintertime as compared with summertime. By using the Lomb-Scargle periodogram, periodicities around 180 (SAO), 365 (AO) and 800 (QBO) days have been found, being the periodicity around 180 days stronger than all other oscillations. Since these large-scale oscillations are commonly observed in several measurable parameters of the mesosphere-lower thermosphere (MLT) region, our results suggest that the nighttime lower ionosphere can be strongly influenced by the dynamics of the MLT region. The effect of the long-term solar activity on hN is also studied, resulting in high negative correlation (R = -0.91). This effect makes hN decrease around 1.2 km from low to high solar activity. This result suggests a control of the solar radiation on the nighttime lower ionosphere, and hence, on the electron density at night.

  12. The Ionosphere and the Latin America Very Low Frequency Network Mexico (LAVNet-Mex)

    NASA Astrophysics Data System (ADS)

    Borgazzi, A.; Lara, A.; Santiago, A.

    2013-05-01

    The radiation emitted by the most energetic transient events in the solar system, solar flares, covers a wide range of wavelengths, from radio waves to gamma rays. When the transient excess of high energy radiation produced by solar flares reach the Earth environment, the upper layers of the Earth atmosphere are affected and highly disturbed. The dynamics (particularly the conductivity) of the ionosphere, is altered during solar explosive events. In order to detect and study the ionospheric response to the transient solar radiative input, we have constructed a VLF receiver station: the `Latin American Very low frequency Network at Mexico' (LAVNet-Mex), which extends to the northern hemisphere the South American VLF Network. LAVNet-Mex detects electromagnetic waves generated by strong transmitters located around the world. These waves travel inside the Earth-Ionosphere waveguide, along the Great Circle Path formed between the emitter and the observer. By observing changes in the phase and amplitude of these waves, it is possible to study the dynamics of the lower layer of the ionosphere during solar eruptive events. In this work we present preliminary results of the analysis of the effects of solar flares (class M and X) occurred in 2012 and that were observed by LAVNet-Mex. We explore the relationship between VLF signals coming from different paths during these solar burst to infer the degree of correlation that can exist between different sectors of the ionosphere.

  13. Pulsation phenomena observed in long-duration vlf whistler-mode signals.

    NASA Technical Reports Server (NTRS)

    Bell, T. F.; Helliwell, R. A.

    1971-01-01

    Whistler-mode signals from station NAA (14.7 and 17.8 kHz), Cutler, Maine, show periodic fluctuations (?pulsations') in amplitude and bandwidth. The data were recorded at Eights station, Antarctica, during unmodulated (?key-down') transmissions from NAA lasting up to 2 min. In three of four instances, the pulsations consist of a series of moderate enhancements of the amplitude and bandwidth of the signal, each pulsation lasting about 50 msec. The fourth instance, however, was unusual in that the key-down signal exhibited remarkably regular and intense amplitude variations. In all four occurrences, the period of the pulsation was in the range from 0.3 to 0.6 sec. In three occurrences, this period was roughly the same as the one-hop whistler-mode delay along the field-line path; however, no demonstrable mechanism to explain this association could be found. An explanation of pulsations in terms of multipath fading effects could not be supported by the data. More likely explanations include intrinsic oscillation in the emission generation mechanism, natural oscillation in the energetic-particle population, or modulation of the VLF growth rate by Pc 1 micropulsations in the region of wave growth.

  14. Global ionospheric effects of geomagnetic storm on May 2-3, 2010 and their influence on HF radio wave propagation

    NASA Astrophysics Data System (ADS)

    Kotova, Daria; Klimenko, Maxim; Klimenko, Vladimir; Zakharov, Veniamin

    2013-04-01

    In this work we have investigated the global ionospheric response to geomagnetic storm on May 2-3, 2010 using GSM TIP (Global Self-consistent Model of the Thermosphere, Ionosphere and Protonosphere) simulation results. In the GSM TIP storm time model runs, several input parameters such as cross-polar cap potential difference and R2 FAC (Region 2 Field-Aligned Currents) varied as a function of the geomagnetic activity AE-index. Current simulation also uses the empirical model of high-energy particle precipitation by Zhang and Paxton. In this model, the energy and energy flux of precipitating electrons depend on a 3 hour Kp-index. We also have included the 30 min time delay of R2 FAC variations with respect to the variations of cross-polar cap potential difference. In addition, we use the ground-based ionosonde data for comparison our model results with observations. We present an analysis of the physical mechanisms responsible for the ionospheric effects of geomagnetic storms. The obtained simulation results are used by us as a medium for HF radio wave propagation at different latitudes in quiet conditions, and during main and recovery phase of a geomagnetic storm. To solve the problem of the radio wave propagation we used Zakharov's (I. Kant BFU) model based on geometric optics. In this model the solution of the eikonal equation for each of the two normal modes is reduced using the method of characteristics to the integration of the six ray equation system for the coordinates and momentum. All model equations of this system are solved in spherical geomagnetic coordinate system by the Runge-Kutta method. This model was tested for a plane wave in a parabolic layer. In this study, the complex refractive indices of the ordinary and extraordinary waves at ionospheric heights was calculated for the first time using the global first-principal model of the thermosphere-ionosphere system that describes the parameters of an inhomogeneous anisotropic medium during a

  15. Solar flare induced ionospheric D-region enhancements from VLF phase and amplitude observations

    NASA Astrophysics Data System (ADS)

    McRae, Wayne M.; Thomson, Neil R.

    2004-01-01

    Ionospheric perturbations due to solar flares, measured at VLF in both phase and amplitude on long subionospheric paths, are used to determine the accompanying D-region electron density enhancements as a function of the flare X-ray fluxes measured by the GOES satellites. The electron densities are characterised by the two traditional parameters, H' and β (being measures of the ionospheric height and the rate of increase of electron density with height, respectively), found by computational modelling of the observed phases and amplitudes using the NOSC Earth-ionosphere waveguide programs (LWPC and ModeFinder) over a wide range of VLF frequencies, 10.2-24.8kHz, along a number of transequatorial paths across the Pacific Ocean to Dunedin, New Zealand. The transmitters monitored include Omega Japan, Omega Hawaii, NPM in Hawaii, and NLK near Seattle, USA, for which the paths range in length from 8.1 to 12.3Mm. The observations include flares up to a magnitude of about X5(5×10-4Wm-2 at 0.1-0.8nm). These gave VLF phase delay reductions of up to about 52μs and amplitude enhancements up to nearly 10dB for the 12.3Mm NLK to Dunedin path on 24.8kHz which corresponded, under low to medium solar cycle conditions (1994-1998), to a reduction in H' from about 71km down to about 58km and an increase in β from about 0.39km-1 up to a definite `saturation' level of about 0.52km-1. These experimentally determined values of H' and β were then used in LWPC to predict flare-induced VLF phase and amplitude perturbations over a wider range of frequencies than were actually available for observation.

  16. Variability of Kelvin wave momentum flux from high-resolution radiosonde and radio occultation data

    NASA Astrophysics Data System (ADS)

    Sjoberg, J. P.; Zeng, Z.; Ho, S. P.; Birner, T.; Anthes, R. A.; Johnson, R. H.

    2017-12-01

    Direct measurement of momentum flux from Kelvin waves in the stratosphere remains challenging. Constraining this flux from observations is an important step towards constraining the flux from models. Here we present results from analyses using linear theory to estimate the Kelvin wave amplitudes and momentum fluxes from both high-resolution radiosondes and from radio occultation (RO) data. These radiosonde data are from a contiguous 11-year span of soundings performed at two Department of Energy Atmospheric Radiation Measurement sites, while the RO data span 14 years from multiple satellite missions. Daily time series of the flux from both sources are found to be in quantitative agreement with previous studies. Climatological analyses of these data reveal the expected seasonal cycle and variability associated with the quasi-biennial oscillation. Though both data sets provide measurements on distinct spatial and temporal scales, the estimated flux from each provides insight into separate but complimentary aspects of how the Kelvin waves affect the stratosphere. Namely, flux derived from radiosonde sites provide details on the regional Kelvin wave variability, while the flux from RO data are zonal mean estimates.

  17. Ionospheric very low frequency transmitter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuo, Spencer P.

    2015-02-15

    The theme of this paper is to establish a reliable ionospheric very low frequency (VLF) transmitter, which is also broad band. Two approaches are studied that generate VLF waves in the ionosphere. The first, classic approach employs a ground-based HF heater to directly modulate the high latitude ionospheric, or auroral electrojet. In the classic approach, the intensity-modulated HF heater induces an alternating current in the electrojet, which serves as a virtual antenna to transmit VLF waves. The spatial and temporal variations of the electrojet impact the reliability of the classic approach. The second, beat-wave approach also employs a ground-based HFmore » heater; however, in this approach, the heater operates in a continuous wave mode at two HF frequencies separated by the desired VLF frequency. Theories for both approaches are formulated, calculations performed with numerical model simulations, and the calculations are compared to experimental results. Theory for the classic approach shows that an HF heater wave, intensity-modulated at VLF, modulates the electron temperature dependent electrical conductivity of the ionospheric electrojet, which, in turn, induces an ac electrojet current. Thus, the electrojet becomes a virtual VLF antenna. The numerical results show that the radiation intensity of the modulated electrojet decreases with an increase in VLF radiation frequency. Theory for the beat wave approach shows that the VLF radiation intensity depends upon the HF heater intensity rather than the electrojet strength, and yet this approach can also modulate the electrojet when present. HF heater experiments were conducted for both the intensity modulated and beat wave approaches. VLF radiations were generated and the experimental results confirm the numerical simulations. Theory and experimental results both show that in the absence of the electrojet, VLF radiation from the F-region is generated via the beat wave approach. Additionally, the beat wave

  18. Development of data communication system with ultra high frequency radio wave for implantable artificial hearts.

    PubMed

    Tsujimura, Shinichi; Yamagishi, Hiroto; Sankai, Yoshiyuki

    2009-01-01

    In order to minimize infection risks of patients with artificial hearts, wireless data transmission methods with electromagnetic induction or light have been developed. However, these methods tend to become difficult to transmit data if the external data transmission unit moves from its proper position. To resolve this serious problem, the purpose of this study is to develop a prototype wireless data communication system with ultra high frequency radio wave and confirm its performance. Due to its high-speed communication rate, low power consumption, high tolerance to electromagnetic disturbances, and secure wireless communication, we adopted Bluetooth radio wave technology for our system. The system consists of an internal data transmission unit and an external data transmission unit (53 by 64 by 16 mm, each), and each has a Bluetooth module (radio field intensity: 4 dBm, receiver sensitivity: -80 dBm). The internal unit also has a micro controller with an 8-channel 10-bit A/D converter, and the external unit also has a RS-232C converter. We experimented with the internal unit implanted into pig meat, and carried out data transmission tests to evaluate the performance of this system in tissue thickness of up to 3 mm. As a result, data transfer speeds of about 20 kbps were achieved within the communication distance of 10 m. In conclusion, we confirmed that the system can wirelessly transmit the data from the inside of the body to the outside, and it promises to resolve unstable data transmission due to accidental movements of an external data transmission unit.

  19. Turbulence of electrostatic electron cyclotron harmonic waves observed by Ogo 5.

    NASA Technical Reports Server (NTRS)

    Oya, H.

    1972-01-01

    Analysis of VLF emissions that have been observed near 3/2, 5/2, and 7/2 f sub H by Ogo 5 in the magnetosphere (f sub H is the electron cyclotron frequency) in the light of the mechanism used for the diffuse plasma resonance f sub Dn observed by Alouette 2 and Isis 1. The VLF emission is considered to be generated by nonlinear coupling mechanisms in certain portions of the observation as the f sub Dn is enhanced by its association with nonlinear wave-particle interaction of the electrostatic electron cyclotron harmonic wave, including the instability due to the nonlinear inverse Landau damping mechanism in the turbulence. The difference between the two observations is in the excitation mechanism of the turbulence; the turbulence in the plasma trough detected by Ogo 5 is due to natural origins, whereas the ionospheric topside sounder makes the plasma wave turbulence artificially by submitting strong stimulation pulses. Electron density values in the plasma trough are deduced by applying the f sub Dn-f sub N/f sub H relationship obtained from the Alouette 2 experiment as well as by applying the condition for the wave-particle nonlinear interactions. The electron density values reveal good agreement with the ion density values observed simultaneously by the highly sensitive ion mass spectrometer.

  20. VLF and X-ray Instruments for Stratospheric Balloons: ABOVE2 and EPEx

    NASA Astrophysics Data System (ADS)

    Cully, C. M.; Galts, D.; Patrick, M.; Duffin, C.; Jang, A. C.; Pitzel, J.; Trumpour, T.; McCarthy, M.; Milling, D. K.

    2017-12-01

    The ABOVE2 (2016) and EPEx (2018) stratospheric balloon missions are designed to study energetic electrons precipitating from the radiation belts into the atmosphere. The payloads include instruments that measure Very Low Frequency (VLF) magnetic and electric fields, and bremsstrahlung X-rays. The ABOVE2 VLF instrument is an FPGA-based design with >200 kHz sampling rates, sub-microsecond timing accuracy and onboard spectral processing, designed in a Cubesat-friendly format. The EPEx X-ray instrument is a hard X-ray imaging system, also in a Cubesat-friendly format, incorporating a commercially-available Cadmium-Zinc-Telluride module. The imager is sufficiently lightweight that we can launch it on-demand with low-volume latex balloons. I will discuss the design and performance of both instruments, and present data from the ABOVE2 flights.

  1. Ionospheric Caustics in Solar Radio Observations

    NASA Astrophysics Data System (ADS)

    Koval, A.; Chen, Y.; Stanislavsky, A.

    2016-12-01

    The Earth ionosphere possesses by natural focusing and defocusing effects on radio waves due to presence of variable ionospheric irregularities which could act like convergent and divergent lenses on incident radiation. In particular, the focusing of emission from the Sun was firstly detected on the Nançay Decameter Array dynamic spectra in the 1980s. On time-frequency spectrograms the intensity variations form specific structures different from well-known solar radio bursts and clearly distinguishing on a background of solar radiation. Such structures have been identified as ionospheric caustics (ICs) and considered to be the result of radio waves refraction on medium scale travelling ionospheric disturbances (MSTIDs). Although nowadays the ICs are registered by different radio observatories due to augmentation of low-frequency radio telescopes, the most recent papers devoted to ICs in solar radio records date back to the 1980s. In this study, we revisit the ICs issue with some new results by conducting a statistical analysis of occurrence rate of ICs in solar dynamic spectra in meter-decameter wavelength range for long continuous period (15 years). The seasonal variations in ICs appearance have been found for the first time. Besides, we report the possible solar cycle dependence of ICs emergence. The radio waves propagation in the ionosphere comprising MSTIDs will be considered. The present research renews the subject of ICs in the low-frequency solar radio astronomy after about 35-year letup.

  2. Radio Jove: Citizen Science for Jupiter Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Higgins, C. A.; Thieman, J.; Reyes, F. J.; Typinski, D.; Flagg, R. F.; Greenman, W.; Brown, J.; Ashcraft, T.; Sky, J.; Cecconi, B.; Garcia, L. N.

    2016-12-01

    The Radio Jove Project (http://radiojove.gsfc.nasa.gov) has been operating as an educational activity for 18 years to introduce radio astronomy activities to students, teachers, and the general public. Participants may build a simple radio telescope kit, make scientific observations, and interact with radio observatories in real-time over the Internet. Recently some of our dedicated citizen science observers have upgraded their systems to better study radio emission from Jupiter and the Sun by adding dual-polarization spectrographs and wide-band antennas in the frequency range of 15-30 MHz. Some of these observations are being used in conjunction with professional telescopes such as the Long Wavelength Array (LWA), the Nancay Decametric Array, and the Ukrainian URAN2 Radio Telescope. In particular, there is an effort to support the Juno Mission radio waves instrument at Jupiter by using citizen science ground-based data for comparison and polarization verification. These data will be archived through a Virtual European Solar and Planetary Access (VESPA) archive (https://voparis-radiojove.obspm.fr/radiojove/welcome) for use by the amateur and professional radio science community. We overview the program and display recent observations that will be of interest to the science community.

  3. Ionospheric electron heating, optical emissions, and striations induced by powerful HF radio waves at high latitudes: Aspect angle dependence

    NASA Astrophysics Data System (ADS)

    Rietveld, M. T.; Kosch, M. J.; Blagoveshchenskaya, N. F.; Kornienko, V. A.; Leyser, T. B.; Yeoman, T. K.

    2003-04-01

    In recent years, large electron temperature increases of 300% (3000 K above background) caused by powerful HF-radio wave injection have been observed during nighttime using the EISCAT incoherent scatter radar near Tromsø in northern Norway. In a case study we examine the spatial structure of the modified region. The electron heating is accompanied by ion heating of about 100 degrees and magnetic field-aligned measurements show ion outflows increasing with height up to 300 m s-1 at 582 km. The electron density decreases by up to 20%. When the radar antenna was scanned between three elevations from near field-aligned to vertical, the strongest heating effects were always obtained in the field-aligned position. When the HF-pump beam was scanned between the same three positions, the heating was still almost always strongest in the field-aligned direction. Simultaneous images of the 630 nm O(1D) line in the radio-induced aurora showed that the enhancement caused by the HF radio waves also remained localized near the field-aligned position. Coherent HF radar backscatter also appeared strongest when the pump beam was pointed field-aligned. These results are similar to some Langmuir turbulence phenomena which also show a strong preference for excitation by HF rays launched in the field-aligned direction. The correlation of the position of largest temperature enhancement with the position of the radio-induced aurora suggests that a common mechanism, upper-hybrid wave turbulence, is responsible for both effects. Why the strongest heating effects occur for HF rays directed along the magnetic field is still unclear, but self-focusing on field-aligned striations is a candidate mechanism, and possibly ionospheric tilts may be important.

  4. Non-contact radio frequency shielding and wave guiding by multi-folded transformation optics method

    PubMed Central

    Madni, Hamza Ahmad; Zheng, Bin; Yang, Yihao; Wang, Huaping; Zhang, Xianmin; Yin, Wenyan; Li, Erping; Chen, Hongsheng

    2016-01-01

    Compared with conventional radio frequency (RF) shielding methods in which the conductive coating material encloses the circuits design and the leakage problem occurs due to the gap in such conductive material, non-contact RF shielding at a distance is very promising but still impossible to achieve so far. In this paper, a multi-folded transformation optics method is proposed to design a non-contact device for RF shielding. This “open-shielded” device can shield any object at a distance from the electromagnetic waves at the operating frequency, while the object is still physically open to the outer space. Based on this, an open-carpet cloak is proposed and the functionality of the open-carpet cloak is demonstrated. Furthermore, we investigate a scheme of non-contact wave guiding to remotely control the propagation of surface waves over any obstacles. The flexibilities of such multi-folded transformation optics method demonstrate the powerfulness of the method in the design of novel remote devices with impressive new functionalities. PMID:27841358

  5. Verification of Bwo Model of Vlf Chorus Generation Using Magion 5 Data

    NASA Astrophysics Data System (ADS)

    Titova, E. E.; Kozelov, B. V.; Jiricek, F.; Smilauer, J.; Demekhov, A. G.; Trakhtengerts, V. Yu.

    We present a detailed study of chorus emissions in the magnetosphere detected on- board the Magion 5, when the satellite was at low magnetic latitudes. We determine the frequency sweep rate and the periods of electromagnetic VLF chorus emissions. These results are considered within the concept of the backward wave oscillator (BWO) regime of chorus generation. Comparison of the frequency sweep rate of chorus el- ements shows: (i) There is a correlation between the frequency sweep rates and the chorus amplitudes. The frequency sweep rate increases with chorus amplitude in ac- cord with expectations from the BWO model. (ii) The chorus growth rate, estimated from the frequency sweep rate, is in accord with that inferred from the BWO gener- ation mechanism. (iii) The BWO regime of chorus generation ensures the observed decrease in the frequency sweep rate of the chorus elements with increasing L shell. We also discuss the relationship between the observed periods of chorus elements with the predictions following from the BWO model of chorus generation.

  6. ON THE BRIGHTNESS AND WAITING-TIME DISTRIBUTIONS OF A TYPE III RADIO STORM OBSERVED BY STEREO/WAVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eastwood, J. P.; Hudson, H. S.; Krucker, S.

    2010-01-10

    Type III solar radio storms, observed at frequencies below {approx}16 MHz by space-borne radio experiments, correspond to the quasi-continuous, bursty emission of electron beams onto open field lines above active regions. The mechanisms by which a storm can persist in some cases for more than a solar rotation whilst exhibiting considerable radio activity are poorly understood. To address this issue, the statistical properties of a type III storm observed by the STEREO/WAVES radio experiment are presented, examining both the brightness distribution and (for the first time) the waiting-time distribution (WTD). Single power-law behavior is observed in the number distribution asmore » a function of brightness; the power-law index is {approx}2.1 and is largely independent of frequency. The WTD is found to be consistent with a piecewise-constant Poisson process. This indicates that during the storm individual type III bursts occur independently and suggests that the storm dynamics are consistent with avalanche-type behavior in the underlying active region.« less

  7. Study of the Effect of Solar Flares and the Solar Position on the NRK - Algiers VLF Signal Path

    NASA Astrophysics Data System (ADS)

    Bouderba, Yasmina; Tribeche, Mouloud; Amor Samir, Nait

    X-ray and UV radiations emitted from the sun during solar flares, may cause enhancement of the ionization in the lower ionosphere. To study the effect of solar flares and their occurrence in the daytime on the D layer of the ionosphere (60-90 Km), we used Very Low Frequency (VLF) data of the NRK-ALG GCP (NRK: 63.85 N, 22.45 W, 37.5 KHz; Algiers: 36.16 N, 3.13 E; Distance: 3495 Km). Since any ionospheric electron density change, VLF signal perturbations in both of amplitude (ΔA) and phase (Δϕ) are measured. However, from the measured ΔA and Δϕ, the ionospheric parameters: H’ (the reflecting height in Km) and β (the increasing conductivity in Km-1) are then deduced using the Long wave probability code (LWPC). The results show that the signal perturbations parameters (ΔA and Δϕ) increased with the X-ray flux. Thus, as a function of the solar flux, H’ decreases to lower altitudes, but B increases up to a saturation value. From the H’ and β parameters, the electron density enhancement is then deduced. In addition to the experimental results, a numerical simulation of the D region disturbances due to solar flares was developed. Therefore, a comparison between the experimentally measured electron density and numerically determined is done as function of the solar flux and the solar zenith angle.

  8. Blood-brain barrier disruption by continuous-wave radio frequency radiation.

    PubMed

    Sirav, Bahriye; Seyhan, Nesrin

    2009-01-01

    The increasing use of cellular phones and the increasing number of associated base stations are becoming a widespread source of non ionizing electromagnetic radiation. Some biological effects are likely to occur even at low-level EM fields. This study was designed to investigate the effects of 900 and 1,800 MHz Continuous Wave Radio Frequency Radiation (CW RFR) on the permeability of Blood Brain Barrier (BBB) of rats. Results have shown that 20 min RFR exposure of 900 and 1,800 MHz induces an effect and increases the permeability of BBB of male rats. There was no change in female rats. The scientific evidence on RFR safety or harm remains inconclusive. More studies are needed to demonstrate the effects of RFR on the permeability of BBB and the mechanisms of that breakdown.

  9. Second-Order Electromagnetic and Hydrodynamic Effects in High-Frequency Radio-Wave Scattering from the Sea

    DTIC Science & Technology

    1975-03-01

    tions, are consistent with the available experimental data. ;;A4 - 4 -sc iii ~ C CONTENTS Page I. INTRODUCTION ................ o....... 1 A. Motivation ...the research presented here. A. Motivation Measurements at a single radio frequency [Tyler et al, 1973, 1974] have indicated that radar techniques can...where C is the wave phase velocity and 8 is the resonance angle (Fig. 24). Some motivation and justification for this assumption can be found in

  10. Vlf/elf radiation patterns of arbitrarily oriented electric and magnetic dipoles in a cold lossless multicomponent magnetoplasma.

    NASA Technical Reports Server (NTRS)

    Wang, T. N. C.; Bell, T. F.

    1972-01-01

    With the use of a power integral formulation, a study is made of the vlf/elf radiation patterns of arbitrarily oriented electric and magnetic dipoles in a cold lossless multicomponent magnetoplasma. Expressions for the ray patterns are initially developed that apply for arbitrary values of driving frequency, static magnetic-field strength, plasma density, and composition. These expressions are subsequently specialized to vlf/elf radiation in a plasma modeled on the magnetosphere. A series of representative pattern plots are presented for frequencies between the proton and electron gyrofrequencies. These patterns illustrate the fact that focusing effects that arise from the geometrical properties of the refractive index surface tend to dominate the radiation distribution over the entire range from the electron gyrofrequency to 4.6 times the proton gyrofrequency. It is concluded that focusing effects should be of significant importance in the design of a vlf/elf satellite transmitting system in the magnetosphere.

  11. Analytical study of nighttime scintillations using GPS at low latitude station Bhopal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maski, Kalpana, E-mail: k-maski@rediffmail.com; Vijay, S. K.

    2015-07-31

    Sporadically structured ionosphere (i.e. in-homogeneities in refractive index) can cause fluctuations (due to refraction effects) on the radio signal that is passing through it. These fluctuations are called ionospheric scintillations. Low latitude region is suitable for studying these scintillations. The influence of the ionosphere on the propagation of the radio wave becomes very marked with reference to communication or navigational radio system at very low frequency (VLF) to a high frequency (HF), which operate over the distances of 1000 km or more. Radio wave communication at different frequencies depends on structure of the ionosphere. With the advent of the artificialmore » satellites, they are used as a prime mode of radio wave communication. Some natural perturbation termed as irregularities, are present in the form of electron density of the ionosphere that cause disruption in the radio and satellite communications. Therefore the study of the ionospheric irregularities is of practical importance, if one wishes to understand the upper atmosphere completely. In order to make these communications uninterrupted the knowledge of irregularities, which are present in the ionosphere are very important. These irregularities can be located and estimated with the help of Ionospheric TEC and Scintillation. Scintillation is generally confined to nighttime hours, particularly around equatorial and low latitudes.« less

  12. Modeling VLF signal modulation during solar flares with GEANT4 Monte Carlo simulation, a simple chemical model and LWPC

    NASA Astrophysics Data System (ADS)

    Palit, Sourav; Chakrabarti, Sandip Kumar; Pal, Sujay; Basak, Tamal

    Extra ionization by X-rays during solar flares affects VLF signal propagation through D-region ionosphere. Ionization produced in the lower ionosphere due to X-ray spectra of solar flares are simulated with an efficient detector simulation program, GEANT4. The balancing between the ionization and loss processes, causing the lower ionosphere to settle back to its undisturbed state is handled with a simple chemical model consisting of four broad species of ion densities. Using the electron densities, modified VLF signal amplitude is then computed with LWPC code. VLF signal along NWC (Australia) to IERC/ICSP (India) propagation path is examined during a M and a X-type solar flares and observational deviations are compared with simulated results. The agreement is found to be excellent.

  13. Modeling long recovery early events (LOREs) produced by lightning-induced ionization of the nighttime upper mesosphere

    NASA Astrophysics Data System (ADS)

    Kotovsky, D. A.; Moore, R. C.

    2017-07-01

    We present results of a cylindrically symmetric, coupled electrodynamic, and photochemical model which simulates diffuse ionization of the middle atmosphere induced by strong lightning discharges (peak currents >150 kA). Scattering of subionospherically propagating, very low frequency radio waves is then evaluated using the Long-Wave Propagation Capability code. Some modeled sprite halos exhibit continued electron density growth up to timescales of seconds due to O- detachment, though it is not yet clear how this might relate to the slower onset durations (>20 ms) of some early VLF events. Modeled electron density enhancements in sprite halos, capable of strong VLF scattering, can persist for long periods of time (greater than hundreds of seconds) even at lower altitudes where their recovery is initially controlled by fast attachment processes. Consequently, our modeling results indicate that both typical recovery (20 to 240 s) and long recovery (LOREs, >300 s) VLF scattering events can be explained by scattering from conductivity changes associated with sprite halos. In contrast, modeled scattered fields resulting from elve-associated conductivity changes, though exhibiting long recovery times, are too weak to sufficiently explain typical LORE observations. Theoretical scattering from structured ionization events (e.g., sprites columns and gigantic jets) is not considered in this work.

  14. Very low frequency radio events with a reduced intensity observed by the low-altitude DEMETER spacecraft

    NASA Astrophysics Data System (ADS)

    Záhlava, J.; Němec, F.; Santolík, O.; Kolmašová, I.; Parrot, M.; Rodger, C. J.

    2015-11-01

    We present results of a systematic study of unusual very low frequency (VLF) radio events with a reduced intensity observed in the frequency-time spectrograms measured by the low-orbiting Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions (DEMETER) spacecraft. They occur exclusively on the nightside. During these events, the intensity of fractional hop whistlers at specific frequencies is significantly reduced. These frequencies are usually above about 3.4 kHz (second Earth-ionosphere waveguide cutoff frequency), but about 20% of events extend down to about 1.7 kHz (first Earth-ionosphere waveguide cutoff frequency). The frequencies of a reduced intensity vary smoothly with time. We have inspected 6.5 years of DEMETER data, and we identified in total 1601 such events. We present a simple model of the event formation based on the wave propagation in the Earth-ionosphere waveguide. We apply the model to two selected events, and we demonstrate that the model is able to reproduce both the minimum frequencies of the events and their approximate frequency-time shapes. The overall geographic distribution of the events is shifted by about 3000 km westward and slightly southward with respect to the areas with high long-term average lightning activity. We demonstrate that this shift is related to the specific DEMETER orbit, and we suggest its qualitative explanation by the east-west asymmetry of the wave propagation in the Earth-ionosphere waveguide.

  15. Coronal mass ejection kinematics deduced from white light (Solar Mass Ejection Imager) and radio (Wind/WAVES) observations

    NASA Astrophysics Data System (ADS)

    Reiner, M. J.; Jackson, B. V.; Webb, D. F.; Mizuno, D. R.; Kaiser, M. L.; Bougeret, J.-L.

    2005-09-01

    White-light and radio observations are combined to deduce the coronal and interplanetary kinematics of a fast coronal mass ejection (CME) that was ejected from the Sun at about 1700 UT on 2 November 2003. The CME, which was associated with an X8.3 solar flare from W56°, was observed by the Mauna Loa and Solar and Heliospheric Observatory (SOHO) Large-Angle Spectrometric Coronograph (LASCO) coronagraphs to 14 R⊙. The measured plane-of-sky speed of the LASCO CME was 2600 km s-1. To deduce the kinematics of this CME, we use the plane-of-sky white light observations from both the Solar Mass Ejection Imager (SMEI) all-sky camera on board the Coriolis spacecraft and the SOHO/LASCO coronagraph, as well as the frequency drift rate of the low-frequency radio data and the results of the radio direction-finding analysis from the WAVES experiment on the Wind spacecraft. In agreement with the in situ observations for this event, we find that both the white light and radio observations indicate that the CME must have decelerated significantly beginning near the Sun and continuing well into the interplanetary medium. More specifically, by requiring self-consistency of all the available remote and in situ data, together with a simple, but not unreasonable, assumption about the general characteristic of the CME deceleration, we were able to deduce the radial speed and distance time profiles for this CME as it propagated from the Sun to 1 AU. The technique presented here, which is applicable to mutual SMEI/WAVES CME events, is expected to provide a more complete description and better quantitative understanding of how CMEs propagate through interplanetary space, as well as how the radio emissions, generated by propagating CME/shocks, relate to the shock and CME. This understanding can potentially lead to more accurate predictions for the onset times of space weather events, such as those that were observed during this unique period of intense solar activity.

  16. A multidisciplinary study of planetary, solar and astrophysical radio emissions

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Calvert, W.; Fielder, R.; Goertz, C.; Grabbe, C.; Kurth, W.; Mutel, R.; Sheerin, J.; Mellott, M.; Spangler, S.

    1986-01-01

    Combination of the related fields of planetary, solar, and astrophysical radio emissions was attempted in order to more fully understand the radio emission processes. Topics addressed include: remote sensing of astrophysical plasma turbulence; Alfven waves; astrophysical shock waves; surface waves; very long base interferometry results; very large array observations; solar magnetic flux; and magnetohydrodynamic waves as a tool for solar corona diagnostics.

  17. VLF propagation measurements in the Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Lauber, Wilfred R.; Bertrand, Jean M.

    1993-05-01

    For the past three years, during a period of high sun spot numbers, propagation measurements were made on the reception of VLF signals in the Canadian Arctic. Between Aug. and Dec. 1989, the received signal strengths were measured on the Canadian Coast Guard icebreaker, John A. MacDonald in the Eastern Canadian Arctic. Between Jul. 1991 and Jun. 1992, the received signal strengths were measured at Nanisivik, Baffin Island. The purposes of this work were to check the accuracy and estimate variances of the Naval Ocean Systems Center's (NOSC) Long Wave Propagation Capability (LWPC) predictions in the Canadian Arctic and to gather ionospheric storm data. In addition, the NOSC data taken at Fort Smith and our data at Nanisivik were used to test the newly developed Longwave Noise Prediction (LNP) program and the CCIR noise predictions, at 21.4 and 24.0 kHz. The results of the work presented and discussed in this paper show that in general the LWPC predicts accurate values of received signal strength in the Canadian Arctic with standard deviations of 1 to 2 dB over several months. Ionospheric storms can gauge the received signal strengths to decrease some 10 dB for a period of several hours or days. However, the effects of these storms are highly dependent on the propagation path. Finally the new LNP atmospheric noise model predicts lower values of noise in the Arctic than the CCIR model and our limited measurements tend to support these lower values.

  18. Spatial distribution and temporal variations of occurrence frequency of lightning whistlers observed by VLF/WBA onboard Akebono

    NASA Astrophysics Data System (ADS)

    Oike, Yuta; Kasahara, Yoshiya; Goto, Yoshitaka

    2014-09-01

    We statistically analyzed lightning whistlers detected from the analog waveform data below 15 kHz observed by the VLF instruments onboard Akebono. We examined the large amount of data obtained at Uchinoura Space Center in Japan for 22 years from 1989 to 2010. The lightning whistlers were mainly observed inside the L shell region below 2. Seasonal dependence of the occurrence frequency of lightning whistlers has two peaks around July to August and December to January. As lightning is most active in summer, in general, these two peaks correspond to summer in the Northern and Southern Hemispheres, respectively. Diurnal variation of the occurrence frequency showed that lightning whistlers begin to increase in the early evening and remain at a high-occurrence level through the night with a peak around 21 in magnetic local time (MLT). This peak shifts toward nightside compared with lightning activity, which begins to rise around noon and peaks in the late afternoon. This trend is supposed to be caused by attenuation of VLF wave in the ionosphere in the daytime. Comparison study with the ground-based observation revealed consistent results, except that the peak of the ground-based observation appeared after midnight while our measurements obtained by Akebono was around 21 in MLT. This difference is explained qualitatively in terms that lightning whistlers measured at the ground station passed through the ionosphere twice above both source region and the ground station. These facts provide an important clue to evaluate quantitatively the absorption effect of lightning whistler in the ionosphere.

  19. Radio-wave propagation for space communications systems

    NASA Technical Reports Server (NTRS)

    Ippolito, L. J.

    1981-01-01

    The most recent information on the effects of Earth's atmosphere on space communications systems is reviewed. The design and reliable operation of satellite systems that provide the many applications in space which rely on the transmission of radio waves for communications and scientific purposes are dependent on the propagation characteristics of the transmission path. The presence of atmospheric gases, clouds, fog, precipitation, and turbulence causes uncontrolled variations in the signal characteristics. These variations can result in a reduction of the quality and reliability of the transmitted information. Models and other techniques are used in the prediction of atmospheric effects as influenced by frequency, geography, elevation angle, and type of transmission. Recent data on performance characteristics obtained from direct measurements on satellite links operating to above 30 GHz have been reviewed. Particular emphasis has been placed on the effects of precipitation on the Earth/space path, including rain attenuation, and ice particle depolarization. Other factors are sky noise, antenna gain degradation, scintillations, and bandwidth coherence. Each of the various propagation factors has an effect on design criteria for communications systems. These criteria include link reliability, power margins, noise contribution, modulation and polarization factors, channel cross talk, error rate, and bandwidth limitations.

  20. BioRadioTransmitter: a self-powered wireless glucose-sensing system.

    PubMed

    Hanashi, Takuya; Yamazaki, Tomohiko; Tsugawa, Wakako; Ikebukuro, Kazunori; Sode, Koji

    2011-09-01

    Although an enzyme fuel cell can be utilized as a glucose sensor, the output power generated is too low to power a device such as a currently available transmitter and operating system, and an external power source is required for operating an enzyme-fuel-cell-based biosensing system. We proposed a novel biosensor that we named BioCapacitor, in which a capacitor serves as a transducer. In this study, we constructed a new BioCapacitor-based system with an added radio-transmitter circuit and a miniaturized enzyme fuel cell. A miniaturized direct-electron-transfer-type compartmentless enzyme fuel cell was constructed with flavin adenine dinucleotide-dependent glucose dehydrogenase complex-based anode and a bilirubin-oxidase-based cathode. For construction of a BioRadioTransmitter wireless sensing system, a capacitor, an ultra-low-voltage charge-pump-integrated circuit, and Hartley oscillator circuit were connected to the miniaturized enzyme fuel cell. A radio-receiver circuit, comprising two field-effect transistors and a coil as an antenna, was used to amplify the signal generated from the biofuel cells. Radio wave signals generated by the BioRadioTransmitter were received, amplified, and converted from alternate to direct current by the radio receiver. When the capacitor discharges in the presence of glucose, the BioRadioTransmitter generates a radio wave, which is monitored by a radio receiver connected wirelessly to the sensing device. Magnitude of the radio wave transmission frequency change observed at the radio receiver was correlated to glucose concentration in the fuel cells. We constructed a stand-alone, self-powered, wireless glucose-sensing system called a BioRadioTransmitter by using a radio transmitter in which the radio wave transmission frequency changes with the glucose concentration in the fuel cell. The BioRadioTransmitter is a significant advance toward construction of an implantable continuous glucose monitor. © 2011 Diabetes Technology Society.

  1. Programming an Artificial Neural Network Tool for Spatial Interpolation in GIS - A Case Study for Indoor Radio Wave Propagation of WLAN.

    PubMed

    Sen, Alper; Gümüsay, M Umit; Kavas, Aktül; Bulucu, Umut

    2008-09-25

    Wireless communication networks offer subscribers the possibilities of free mobility and access to information anywhere at any time. Therefore, electromagnetic coverage calculations are important for wireless mobile communication systems, especially in Wireless Local Area Networks (WLANs). Before any propagation computation is performed, modeling of indoor radio wave propagation needs accurate geographical information in order to avoid the interruption of data transmissions. Geographic Information Systems (GIS) and spatial interpolation techniques are very efficient for performing indoor radio wave propagation modeling. This paper describes the spatial interpolation of electromagnetic field measurements using a feed-forward back-propagation neural network programmed as a tool in GIS. The accuracy of Artificial Neural Networks (ANN) and geostatistical Kriging were compared by adjusting procedures. The feedforward back-propagation ANN provides adequate accuracy for spatial interpolation, but the predictions of Kriging interpolation are more accurate than the selected ANN. The proposed GIS ensures indoor radio wave propagation model and electromagnetic coverage, the number, position and transmitter power of access points and electromagnetic radiation level. Pollution analysis in a given propagation environment was done and it was demonstrated that WLAN (2.4 GHz) electromagnetic coverage does not lead to any electromagnetic pollution due to the low power levels used. Example interpolated electromagnetic field values for WLAN system in a building of Yildiz Technical University, Turkey, were generated using the selected network architectures to illustrate the results with an ANN.

  2. Jupiter radio bursts and particle acceleration

    NASA Technical Reports Server (NTRS)

    Desch, Michael D.

    1994-01-01

    Particle acceleration processes are important in understanding many of the Jovian radio and plasma wave emissions. However, except for the high-energy electrons that generate synchrotron emission following inward diffusion from the outer magnetosphere, acceleration processes in Jupiter's magnetosphere and between Jupiter and Io are poorly understood. We discuss very recent observations from the Ulysses spacecraft of two new Jovian radio and plamas wave emissions in which particle acceleration processes are important and have been addressed directly by complementary investigations. First, radio bursts known as quasi-periodic bursts have been observed in close association with a population of highly energetic electrons. Second, a population of much lower energy (keV range) electrons on auroral field lines can be shown to be responsible for the first observation of a Jovian plasma wave emission known as auroral hiss.

  3. Wavelength dependence in radio-wave scattering and specular-point theory

    NASA Technical Reports Server (NTRS)

    Tyler, G. L.

    1976-01-01

    Radio-wave scattering from natural surfaces contains a strong quasispecular component that at fixed wavelengths is consistent with specular-point theory, but often has a strong wavelength dependence that is not predicted by physical optics calculations under the usual limitations of specular-point models. Wavelength dependence can be introduced by a physical approximation that preserves the specular-point assumptions with respect to the radii of curvature of a fictitious, effective scattering surface obtained by smoothing the actual surface. A uniform low-pass filter model of the scattering process yields explicit results for the effective surface roughness versus wavelength. Interpretation of experimental results from planetary surfaces indicates that the asymptotic surface height spectral densities fall at least as fast as an inverse cube of spatial frequency. Asymptotic spectral densities for Mars and portions of the lunar surface evidently decrease more rapidly.

  4. Long-Range Transhorizon Lunar Surface Radio Wave Propagation in the Presence of a Regolith and a Sparse Exospheric Plasma

    NASA Technical Reports Server (NTRS)

    Manning, Robert M.

    2008-01-01

    Long-range, over-the-horizon (transhorizon) radio wave propagation is considered for the case of the Moon. In the event that relay satellites are not available or otherwise unwarranted for use, transhorizon communication provides for a contingency or backup option for non line-of-sight lunar surface exploration scenarios. Two potential low-frequency propagation mechanisms characteristic of the lunar landscape are the lunar regolith and the photoelectron induced plasma exosphere enveloping the Moon. Although it was hoped that the regolith would provide for a spherical waveguide which could support a trapped surface wave phenomena, it is found that, in most cases, the regolith is deleterious to long range radio wave propagation. However, the presence of the plasma of the lunar exosphere supports wave propagation and, in fact, surpasses the attenuation of the regolith. Given the models of the regolith and exosphere adopted here, it is recommended that a frequency of 1 MHz be considered for low rate data transmission along the lunar surface. It is also recommended that further research be done to capture the descriptive physics of the regolith and the exospheric plasma so that a more complete model can be obtained. This comprehensive theoretical study is based entirely on first principles and the mathematical techniques needed are developed as required; it is self-contained and should not require the use of outside resources for its understanding.

  5. Full-Scale Model of Subionospheric VLF Signal Propagation Based on First-Principles Charged Particle Transport Calculations

    NASA Astrophysics Data System (ADS)

    Kouznetsov, A.; Cully, C. M.; Knudsen, D. J.

    2016-12-01

    Changes in D-Region ionization caused by energetic particle precipitation are monitored by the Array for Broadband Observations of VLF/ELF Emissions (ABOVE) - a network of receivers deployed across Western Canada. The observed amplitudes and phases of subionospheric-propagating VLF signals from distant artificial transmitters depend sensitively on the free electron population created by precipitation of energetic charged particles. Those include both primary (electrons, protons and heavier ions) and secondary (cascades of ionized particles and electromagnetic radiation) components. We have designed and implemented a full-scale model to predict the received VLF signals based on first-principle charged particle transport calculations coupled to the Long Wavelength Propagation Capability (LWPC) software. Calculations of ionization rates and free electron densities are based on MCNP-6 (a general-purpose Monte Carlo N- Particle) software taking advantage of its capability of coupled neutron/photon/electron transport and novel library of cross-sections for low-energetic electron and photon interactions with matter. Cosmic ray calculations of background ionization are based on source spectra obtained both from PAMELA direct Cosmic Rays spectra measurements and based on the recently-implemented MCNP 6 galactic cosmic-ray source, scaled using our (Calgary) neutron monitor measurement results. Conversion from calculated fluxes (MCNP F4 tallies) to ionization rates for low-energy electrons are based on the total ionization cross-sections for oxygen and nitrogen molecules from the National Institute of Standard and Technology. We use our model to explore the complexity of the physical processes affecting VLF propagation.

  6. Unmanned airborne vehicle (UAV): Flight testing and evaluation of two-channel E-field very low frequency (VLF) instrument

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-12-01

    Using VLF frequencies, transmitted by the Navy`s network, for airborne remote sensing of the earth`s electrical, magnetic characteristics was first considered by the United States Geological Survey (USGS) around the mid 1970s. The first VLF system was designed and developed by the USGS for installation and operation on a single engine, fixed wing aircraft used by the Branch of Geophysics for geophysical surveying. The system consisted of five channels. Two E-field channels with sensors consisting of a fixed vertical loaded dipole antenna with pre-amp mounted on top of the fuselage and a gyro stabilized horizontal loaded dipole antenna with pre-ampmore » mounted on a tail boom. The three channel magnetic sensor consisted of three orthogonal coils mounted on the same gyro stabilized platform as the horizontal E-field antenna. The main features of the VLF receiver were: narrow band-width frequency selection using crystal filters, phase shifters for zeroing out system phase variances, phase-lock loops for generating real and quadrature gates, and synchronous detectors for generating real and quadrature outputs. In the mid 1990s the Branch of Geophysics designed and developed a two-channel E-field ground portable VLF system. The system was built using state-of-the-art circuit components and new concepts in circuit architecture. Small size, light weight, low power, durability, and reliability were key considerations in the design of the instrument. The primary purpose of the instrument was for collecting VLF data during ground surveys over small grid areas. Later the system was modified for installation on a Unmanned Airborne Vehicle (UAV). A series of three field trips were made to Easton, Maryland for testing and evaluating the system performance.« less

  7. Electron production by solar Ly-α line radiation in the ionospheric D-region

    NASA Astrophysics Data System (ADS)

    Nina, Aleksandra; Čadež, Vladimir M.

    2014-10-01

    The hydrogen Ly-α line has a dominant influence in photo-ionization processes in the unperturbed terrestrial ionospheric D region. In this paper, we present a procedure of calculating the rate of photo-ionization induced by Ly-α photons based on relaxation of electron density after intensive perturbations like those caused by solar X flares. This theory is applied to the ends of relaxation periods following three cases of solar X flares from May 5, 2010, February 18, 2011 and March 24, 2011. The necessary data on low ionospheric plasma parameters were collected by the very low frequency (VLF) radio-wave techniques. The electron concentration is calculated from the amplitude and phase of the VLF signal emitted by the DHO transmitter in Germany and recorded by a receiver located in Serbia.

  8. VLF Harold E. Holt RADHAZ measurements

    NASA Astrophysics Data System (ADS)

    Hansen, P. M.; Chavez, J.

    1993-09-01

    This document details the radiation hazard (RADHAZ) measurements made at the very-low-frequency (VLF) Harold E. Holt (HEH) transmitting facility by personnel from U.S. Naval Command, Control and Ocean Surveillance Center (NCCOSC), Research, Development, Test and Evaluation Division (RDT&E Div.), the U.S. Naval Aerospace Medical Research Laboratory (NAMRL), the Australian Defence Force (ADF), and the Royal Australian Navy (RAN). The measurements were made to determine if hazardous levels of electromagnetic fields existed in locations normally accessed by personnel. NAMRL and ADF personnel were primarily responsible for the measurements on the ground and in and around the transmitter building; NRaD personnel were primarily responsible for measurements on the towers.

  9. Radio emissions from pulsar companions: a refutable explanation for galactic transients and fast radio bursts

    NASA Astrophysics Data System (ADS)

    Mottez, F.; Zarka, P.

    2014-09-01

    Context. The six known highly dispersed fast radio bursts are attributed to extragalactic radio sources that are of unknown origin but extremely energetic. We propose here a new explanation that does not require an extreme release of energy and involves a body (planet, asteroid, white dwarf) orbiting an extragalactic pulsar. Aims: We investigate a theory of radio waves associated with such pulsar-orbiting bodies. We focus our analysis on the waves emitted from the magnetic wake of the body in the pulsar wind. After deriving their properties, we compare them with the observations of various transient radio signals to determine whether they could originate from pulsar-orbiting bodies. Methods: The analysis is based on the theory of Alfvén wings: for a body immersed in a pulsar wind, a system of two stationary Alfvén waves is attached to the body, provided that the wind is highly magnetised. When they are destabilised through plasma instabilities, Alfvén wings can be the locus of strong radio sources that are convected with the pulsar wind. By assuming a cyclotron maser instability operating in the Alfvén wings, we make predictions about the shape, frequencies, and brightness of the resulting radio emissions. Results: Because of the beaming by relativistic aberration, the signal is seen only when the companion is perfectly aligned between its parent pulsar and the observer, as is the case for occultations. For pulsar winds with a high Lorentz factor (≥104), the whole duration of the radio event does not exceed a few seconds, and it is composed of one to four peaks that last a few milliseconds each and are detectable up to distances of several Mpc. The Lorimer burst, the three isolated pulses of PSR J1928+15, and the recently detected fast radio bursts are all compatible with our model. According to it, these transient signals should repeat periodically with the companion's orbital period. Conclusions: The search of pulsar-orbiting bodies could be an exploration

  10. The Radio & Plasma Wave Investigation (RPWI) for JUICE - Instrument Concept and Capabilities

    NASA Astrophysics Data System (ADS)

    Bergman, J. E. S.

    2013-09-01

    We present the concept and capabilities of the Radio & Plasma Waves Investigation (RPWI) instrument for the JUICE mission. The RPWI instrument provides measurements of plasma, electric- and magnetic field fluctuations from near DC up to 45 MHz. The RPWI sensors are four Langmuir probes for low temperature plasma diagnostics and electric field measurements, a three-axis searchcoil magnetometer for low-frequency magnetic field measurements, and a three-axial radio antenna, which operates from 80 kHz up to 45 MHz and thus gives RPWI remote sensing capabilities.. In addition, active mutual impedance measurements are used to diagnose the in situ plasma. The RPWI instrument is unique as it provides vector field measurements in the whole frequency range. This makes it possible to employ advanced diagnostics techniques, which are unavailable for scalar measurements. The RPWI instrument has thus outstanding new capabilities not previously available to outer planet missions, which and enables RPWI to address many fundamental planetary science objectives, such as the electrodynamic influence of the Jovian magnetosphere on the exospheres, surfaces and conducting oceans of Ganymede, Europa, and Callisto. RPWI will also be able to investigate the sources of radio emissions from auroral regions of Ganymede and Jupiter, in detail and with unprecedented sensitivity, and possibly also lightning. Moreover, RPWI can search for exhaust plumes from cracks on the icy moons, as well as μm-sized dust and related dust-plasmasurface interaction processes occurring near the icy moons of Jupiter. The top-level blockdiagram of the RPWI instrument is shown here. A detailed technical description of the RPWI instrument will be given.

  11. Wave Phenomena Associated with Interplanetary Shocks

    NASA Astrophysics Data System (ADS)

    Golla, T.; MacDowall, R. J.

    2016-12-01

    Although laboratory and space-based experiments were used for the last several decades to study the collisionless shocks, several questions remain less than fully understood. These include: (1) what type of wave-particle energy dissipation is responsible for the shock formation, (2) what type of in-situ waves occur in the upstream, transition and downstream regions, and (3) which physical processes are responsible for the excitation of the fundamental and second harmonic solar type II radio emissions. In this study, we will address these issues using (1) the in situ and radio wave data obtained by the WAVES experiments of the STEREO A and B, and WIND spacecraft, especially the high time resolution data from the time domain samplers (TDS) of these WAVES experiments and (2) the Fourier, wavelet and higher order spectral analysis techniques. Using the in situ wave data, especially the high time resolution data observed during the local type II bursts, we will identify the nonlinear processes associated with these solar radio emissions. Comparing the estimated radio intensities by the known emission mechanisms for the observed peak Langmuir wave intensities with the observed peak radio intensities of type II bursts, we will identify the emission mechanisms.

  12. Spacecraft Radio Scintillation and Solar System Exploration

    NASA Technical Reports Server (NTRS)

    Woo, Richard

    1993-01-01

    When a wave propagates through a turbulent medium, scattering by the random refractive index inhomogeneities can lead to a wide variety of phenomena that have been the subject of extensive study. The observed scattering effects include amplitude or intensity scintillation, phase scintillation, angular broadening, and spectral broadening, among others. In this paper, I will refer to these scattering effects collectively as scintillation. Although the most familiar example is probably the twinkling of stars (light wave intensity scintillation by turbulence in the Earth's atmosphere), scintillation has been encountered and investigated in such diverse fields as ionospheric physics, oceanography, radio astronomy, and radio and optical communications. Ever since planetary spacecraft began exploring the solar system, scintillation has appeared during the propagation of spacecraft radio signals through planetary atmospheres, planetary ionospheres, and the solar wind. Early studies of these phenomena were motivated by the potential adverse effects on communications and navigation, and on experiments that use the radio link to conduct scientific investigations. Examples of the latter are radio occultation measurements (described below) of planetary atmospheres to deduce temperature profiles, and the search for gravitational waves. However,these concerns soon gave way to the emergence of spacecraft radio scintillation as a new scientific tool for exploring small-scale dynamics in planetary atmospheres and structure in the solar wind, complementing in situ and other remote sensing spacecraft measurements, as well as scintillation measurements using natural (celestial) radio sources. The purpose of this paper is to briefly describe and review the solar system spacecraft radio scintillation observations, to summarize the salient features of wave propagation analyses employed in interpreting them, to underscore the unique remote sensing capabilities and scientific relevance of

  13. Artificial Aurora and Ionospheric Heating by HAARP

    NASA Astrophysics Data System (ADS)

    Hadavandkhani, S.; Nikouravan, Bijan; Ghazimaghrebi, F.

    2016-08-01

    A recent experiment was achieved at HAARP to study the scaling of the ionospherically generated ELF signal with power transmitted from the high frequency (HF) array. The results were in excellent agreement with computer simulations. The outcomes approving that the ELF power increases with the square of the incident HF power. This paper present a review on the situation of the ionized particles in Ionospheric layer when stimulated by artificial an ELF and VLF external high energy radio waves.

  14. Conference on the Ionosphere and Radio Wave Propagation, 3rd, University of Sydney, Australia, February 11-15, 1985, Proceedings

    NASA Astrophysics Data System (ADS)

    Cole, D. G.; McNamara, L. F.

    1985-12-01

    Various papers on the ionosphere and radio wave propagation are presented. The subjects discussed include: day-to-day variability in foF2 at low latitudes over a solar cycle; semiempirical, low-latitude ionospheric model; remote sensing with the Jindalee skywave radar; photographic approach to irregularities in the 80-100 km region; interference of radio waves in a CW system; study of the F-region characteristics at Waltair; recent developments in the international reference ionosphere; research-oriented ionosonde with directional capabilities; and ionospheric forecasting for specific applications. Also addressed are: experimental and theoretical techniques for the equatorial F region; empirical models of ionospheric electron concentration; the Jindalee ionospheric sounding system; a semiempirical midlatitude ionospheric model; Es structure using an HF radar; short-term variations in f0F2 and IEC; nonreciprocity in Omega propagation observed at middle latitudes; propagation management for no acknowledge HF links; new techniques in ionospheric sounding and studies; and lunar effects in the ionospheric F region.

  15. VLF Source Localization with a Freely Drifting Sensor Array

    DTIC Science & Technology

    1992-09-01

    Simultaneous Measurement of Infra - sonic Acoustic Particle Velocity and Acoustic Pressure in the Ocean by F-ely Drifting Swallow Floats," IEEEJ. Ocean. Eng., vol...Pacific. Marine Physical Laboratory’s set of nine freely drifting, infrasonic sensors, capable of recording ocean ambient noise in the 1- to 25-Hz range...Terms. 15. Number of Pages, Swallow float, matched-field processing, infrasonic sensor, vlf source localization 153 16. Price Code. 17. Seorlity

  16. A Case Study of On-the-fly Wide-field Radio Imaging Applied to the Gravitational Wave Event GW151226

    NASA Astrophysics Data System (ADS)

    Mooley, K. P.; Frail, D. A.; Myers, S. T.; Kulkarni, S. R.; Hotokezaka, K.; Singer, L. P.; Horesh, A.; Kasliwal, M. M.; Cenko, S. B.; Hallinan, G.

    2018-04-01

    We apply a newly developed on-the-fly mosaicing technique on the Jansky Very Large Array (VLA) at 3 GHz in order to carry out a sensitive search for an afterglow from the Advanced LIGO binary black hole merger event GW151226. In three epochs between 1.5 and 6 months post-merger, we observed a 100 deg2 region, with more than 80% of the survey region having an rms sensitivity of better than 150 μJy/beam, in the northern hemisphere with a merger containment probability of 10%. The data were processed in near real time and analyzed to search for transients and variables. No transients were found but we have demonstrated the ability to conduct blind searches in a time-frequency phase space where the predicted afterglow signals are strongest. If the gravitational wave event is contained within our survey region, the upper limit on any late-time radio afterglow from the merger event at an assumed mean distance of 440 Mpc is about 1029 erg s‑1 Hz‑1. Approximately 1.5% of the radio sources in the field showed variability at a level of 30%, and can be attributed to normal activity from active galactic nuclei. The low rate of false positives in the radio sky suggests that wide-field imaging searches at a few Gigahertz can be an efficient and competitive search strategy. We discuss our search method in the context of the recent afterglow detection from GW170817 and radio follow-up in future gravitational wave observing runs.

  17. Coherent coupling between radio frequency, optical, and acoustic waves in piezo-optomechanical circuits

    PubMed Central

    Balram, Krishna C.; Davanço, Marcelo I.; Song, Jin Dong; Srinivasan, Kartik

    2016-01-01

    Optomechanical cavities have been studied for applications ranging from sensing to quantum information science. Here, we develop a platform for nanoscale cavity optomechanical circuits in which optomechanical cavities supporting co-localized 1550 nm photons and 2.4 GHz phonons are combined with photonic and phononic waveguides. Working in GaAs facilitates manipulation of the localized mechanical mode either with a radio frequency (RF) field through the piezo-electric effect, which produces acoustic waves that are routed and coupled to the optomechanical cavity by phononic crystal waveguides, or optically through the strong photoelastic effect. Along with mechanical state preparation and sensitive readout, we use this to demonstrate an acoustic wave interference effect, similar to atomic coherent population trapping, in which RF-driven coherent mechanical motion is cancelled by optically-driven motion. Manipulating cavity optomechanical systems with equal facility through both photonic and phononic channels enables new architectures for signal transduction between the optical, electrical, and mechanical domains. PMID:27446234

  18. Wave propagation and earth satellite radio emission studies

    NASA Technical Reports Server (NTRS)

    Yeh, K. C.; Liu, C. H.; Flaherty, B. J.

    1974-01-01

    Radio propagation studies of the ionosphere using satellite radio beacons are described. The ionosphere is known as a dispersive, inhomogeneous, irregular and sometimes even nonlinear medium. After traversing through the ionosphere the radio signal bears signatures of these characteristics. A study of these signatures will be helpful in two areas: (1) It will assist in learning the behavior of the medium, in this case the ionosphere. (2) It will provide information of the kind of signal characteristics and statistics to be expected for communication and navigational satellite systems that use the similar geometry.

  19. Chorus Whistler Wave Source Scales As Determined From Multipoint Van Allen Probe Measurements

    NASA Technical Reports Server (NTRS)

    Agapitov, O.; Blum, L. W.; Mozer, F. S.; Bonnell, J. W.; Wygant, J.

    2017-01-01

    Whistler mode chorus waves are particularly important in outer radiation belt dynamics due to their key role in controlling the acceleration and scattering of electrons over a very wide energy range. The key parameters for both nonlinear and quasi-linear treatment of wave-particle interactions are the temporal and spatial scales of the wave source region and coherence of the wave field perturbations. Neither the source scale nor the coherence scale is well established experimentally, mostly because of a lack of multipoint VLF waveform measurements. We present an unprecedentedly long interval of coordinated VLF waveform measurements (sampled at 16384 s(exp -1)) aboard the two Van Allen Probes spacecraft-9 h (0800-1200 UT and 1700-2200 UT) during two consecutive apogees on 15 July 2014. The spacecraft separations varied from about 100 to 5000 km (mostly radially); measurements covered an L shell range from 3 to 6; magnetic local time 0430-0900, and magnetic latitudes were approximately 15 and approximately 5 deg during the two orbits. Using time-domain correlation techniques, the single chorus source spatial extent transverse to the background magnetic field has been determined to be about 550-650 km for upper band chorus waves with amplitudes less than 100 pT and up to 800 km for larger amplitude, lower band chorus waves. The ratio between wave amplitudes measured on the two spacecraft is also examined to reveal that the wave amplitude distribution within a single chorus element generation area can be well approximated by a Gaussian exp(-0.5 x r (exp 2)/r(sub 0)(exp 2)), with the characteristic scale r(sub 0) around 300 km. Waves detected by the two spacecraft were found to be coherent in phase at distances up to 400 km.

  20. Spatial and Temporal Ionospheric Monitoring Using Broadband Sferic Measurements

    NASA Astrophysics Data System (ADS)

    McCormick, J. C.; Cohen, M. B.; Gross, N. C.; Said, R. K.

    2018-04-01

    The D region of the ionosphere (60-90 km altitude) is highly variable on timescales from fractions of a second to many hours, and on spatial scales up to many hundreds of kilometers. Very low frequency (VLF) and low-frequency (LF) (3-30 kHz and 30-300 kHz) radio waves are guided to global distances by reflections from the ground and the D region. Therefore, information about its current state is encoded in received VLF/LF signals. VLF transmitters have been used in the past for D region studies, with ionospheric disturbances manifesting as perturbations in amplitude and/or phase. The return stroke of lightning is an impulsive VLF radiator, but unlike VLF transmitters, lightning events are distributed broadly in space allowing for much greater spatial coverage of the D region compared to VLF transmitter-based remote sensing in addition to the broadband spectral advantage over the narrowband transmitters. The challenge is that individual lightning-generated waveforms, or "sferics," vary due to the lightning current parameters and uncertainty in the time/location information, in addition to D region ionospheric variability. These factors make it difficult to utilize the VLF/LF emissions from lightning in a straightforward manner. We describe a technique to recover the time domain and amplitude/phase spectra for both Bϕ and Br with high fidelity and consider the utility of our technique with ambient and varied ionospheric conditions. We demonstrate a technique to simulate sferics and infer a parameterized ionosphere with the Wait and Spies parameters (h' and β) offering all of the tools needed for a global measurement.

  1. The effect of plasma inhomogeneities on (i) radio emission generation by non-gyrotropic electron beams and (ii) particle acceleration by Langmuir waves

    NASA Astrophysics Data System (ADS)

    Tsiklauri, D.

    2014-12-01

    Extensive particle-in-cell simulations of fast electron beams injected in a background magnetised plasma with a decreasing density profile were carried out. These simulations were intended to further shed light on a newly proposed mechanism for the generation of electromagnetic waves in type III solar radio bursts [1]. Here recent progress in an alternative to the plasma emission model using Particle-In-Cell, self-consistent electromagnetic wave emission simulations of solar type III radio bursts will be presented. In particular, (i) Fourier space drift (refraction) of non-gyrotropic electron beam-generated wave packets, caused by the density gradient [1,2], (ii) parameter space investigation of numerical runs [3], (iii) concurrent generation of whistler waves [4] and a separate problem of (iv) electron acceleration by Langmuir waves in a background magnetised plasma with an increasing density profile [5] will be discussed. In all considered cases the density inhomogeneity-induced wave refraction plays a crucial role. In the case of non-gyrotropic electron beam, the wave refaction transforms the generated wave packets from standing into freely escaping EM radiation. In the case of electron acceleration by Langmuir waves, a positive density gradient in the direction of wave propagation causes a decrease in the wavenumber, and hence a higher phase velocity vph=ω/k. The k-shifted wave is then subject to absorption by a faster electron by wave-particle interaction. The overall effect is an increased number of high energy electrons in the energy spectrum. [1] D. Tsiklauri, Phys. Plasmas 18, 052903 (2011) [2] H. Schmitz, D. Tsiklauri, Phys. Plasmas 20, 062903 (2013) [3] R. Pechhacker, D. Tsiklauri, Phys. Plasmas 19, 112903 (2012) [4] M. Skender, D. Tsiklauri, Phys. Plasmas 21, 042904 (2014) [5] R. Pechhacker, D. Tsiklauri, Phys. Plasmas 21, 012903 (2014)

  2. Cosmology with Gravitational Wave/Fast Radio Burst Associations

    NASA Astrophysics Data System (ADS)

    Wei, Jun-Jie; Wu, Xue-Feng; Gao, He

    2018-06-01

    Recently, some theoretical models predicted that a small fraction of fast radio bursts (FRBs) could be associated with gravitational waves (GWs). In this Letter, we discuss the possibility of using GW/FRB association systems, if they are commonly detected in the future, as a complementary cosmic probe. We propose that upgraded standard sirens can be constructed from the joint measurements of luminosity distances D L derived from GWs and dispersion measures DMIGM derived from FRBs (i.e., the combination D L · DMIGM). Moreover, unlike the traditional standard-siren approach (i.e., the D L method) and the DMIGM method that rely on the optimization of the Hubble constant H 0, this D L · DMIGM method has the advantage of being independent of H 0. Through Monte Carlo simulations, we prove that the D L · DMIGM method is more effective for constraining cosmological parameters than D L or DMIGM separately, and that it enables us to achieve accurate multimessenger cosmology from approximately 100 GW/FRB systems. Additionally, even if GW/FRB associations do not exist, the methodology developed here can still be applied to those GWs and FRBs that occur at the same redshifts.

  3. Applications of the VLF induction method for studying some volcanic processes of Kilauea volcano, Hawaii

    USGS Publications Warehouse

    Zablocki, C.J.

    1978-01-01

    The very low-frequency (VLF) induction method has found exceptional utility in studying various volcanic processes of Kilauea volcano, Hawaii because: (1) significant anomalies result exclusively from ionically conductive magma or still-hot intrusions (> 800??C) and the attendant electrolytically conductive hot groundwater; (2) basalt flows forming the bulk of Kilauea have very high resistivities at shallow depths that result in low geologic noise levels and relatively deep depths of investigation (???100 m); and (3) the azimuths to two of the usable transmitters (NLK and NPM) are aligned favorably with most of the principal geologic features. Measurements of the tilt angle and ellipticity of the polarization ellipse of the magnetic field, using a simple, hand-held receiver, have been used to: (1) delineate the lateral extent of shallow, partially solidified lava lakes, active lava tubes, and recent intrusive dikes; (2) obtain an indication of the attitude of some recent dikes; (3) show that many eruptive fissures cool faster than their intrusive counterparts; (4) show that some fumarolic areas are underlain by shallow, highly altered, and conductive zones; and (5) provide control information for interpreting data obtained with other electrical techniques. Complementary measurements of scalar apparent resistivity and surface impedance phase, using a new attachment for the VLF receiver, have substantially increased the utility of VLF studies in Kilauea. They provide better lateral resolution of conductors and reduce the ambiguity in interpretation. Notwithstanding recent advances in theoretical modeling techniques, the excellent quality of some of the data warrants extension of interpretive techniques, particularly for quantitatively characterizing the configuration and conductivity of small-dimension bodies. These VLF induction methods should have wide application to studies of active volcanic regions in other parts of the world and could provide some insights into

  4. Programming an Artificial Neural Network Tool for Spatial Interpolation in GIS - A Case Study for Indoor Radio Wave Propagation of WLAN

    PubMed Central

    Şen, Alper; Gümüşay, M. Ümit; Kavas, Aktül; Bulucu, Umut

    2008-01-01

    Wireless communication networks offer subscribers the possibilities of free mobility and access to information anywhere at any time. Therefore, electromagnetic coverage calculations are important for wireless mobile communication systems, especially in Wireless Local Area Networks (WLANs). Before any propagation computation is performed, modeling of indoor radio wave propagation needs accurate geographical information in order to avoid the interruption of data transmissions. Geographic Information Systems (GIS) and spatial interpolation techniques are very efficient for performing indoor radio wave propagation modeling. This paper describes the spatial interpolation of electromagnetic field measurements using a feed-forward back-propagation neural network programmed as a tool in GIS. The accuracy of Artificial Neural Networks (ANN) and geostatistical Kriging were compared by adjusting procedures. The feedforward back-propagation ANN provides adequate accuracy for spatial interpolation, but the predictions of Kriging interpolation are more accurate than the selected ANN. The proposed GIS ensures indoor radio wave propagation model and electromagnetic coverage, the number, position and transmitter power of access points and electromagnetic radiation level. Pollution analysis in a given propagation environment was done and it was demonstrated that WLAN (2.4 GHz) electromagnetic coverage does not lead to any electromagnetic pollution due to the low power levels used. Example interpolated electromagnetic field values for WLAN system in a building of Yildiz Technical University, Turkey, were generated using the selected network architectures to illustrate the results with an ANN. PMID:27873854

  5. An Initial Critical Summary of Models for Predicting the Attenuation of Radio Waves by Trees

    DTIC Science & Technology

    1982-07-01

    International Telecommunication Union, Geneva, Switzerland, 1978. 1 1Krevsky, S., "HF and VHF Radio Wave Attenuation Through Jungle and Woods ," IEEE...see Reference 7) summarized groups of measurements taken by Saxton, Trevor,𔃻 3 and IHoPetrie 1 4 in nontropical deciduous woods . In TABLE 1, the subset...a 0. 26 F0.77 (5) I ŕ 3Trevor, B., "Ultra-High-Frequency Propagation Through Woods and Underbrush," RCA Review, July 1940. 14%cPstrie, J.S. and

  6. Investigation of radio astronomy image processing techniques for use in the passive millimetre-wave security screening environment

    NASA Astrophysics Data System (ADS)

    Taylor, Christopher T.; Hutchinson, Simon; Salmon, Neil A.; Wilkinson, Peter N.; Cameron, Colin D.

    2014-06-01

    Image processing techniques can be used to improve the cost-effectiveness of future interferometric Passive MilliMetre Wave (PMMW) imagers. The implementation of such techniques will allow for a reduction in the number of collecting elements whilst ensuring adequate image fidelity is maintained. Various techniques have been developed by the radio astronomy community to enhance the imaging capability of sparse interferometric arrays. The most prominent are Multi- Frequency Synthesis (MFS) and non-linear deconvolution algorithms, such as the Maximum Entropy Method (MEM) and variations of the CLEAN algorithm. This investigation focuses on the implementation of these methods in the defacto standard for radio astronomy image processing, the Common Astronomy Software Applications (CASA) package, building upon the discussion presented in Taylor et al., SPIE 8362-0F. We describe the image conversion process into a CASA suitable format, followed by a series of simulations that exploit the highlighted deconvolution and MFS algorithms assuming far-field imagery. The primary target application used for this investigation is an outdoor security scanner for soft-sided Heavy Goods Vehicles. A quantitative analysis of the effectiveness of the aforementioned image processing techniques is presented, with thoughts on the potential cost-savings such an approach could yield. Consideration is also given to how the implementation of these techniques in CASA might be adapted to operate in a near-field target environment. This may enable a much wider usability by the imaging community outside of radio astronomy and thus would be directly relevant to portal screening security systems in the microwave and millimetre wave bands.

  7. Waves in the Mesosphere of Venus as seen by the Venus Express Radio Science Experiment VeRa

    NASA Astrophysics Data System (ADS)

    Tellmann, Silvia; Häusler, B.; Hinson, D. P.; Tyler, G.; Andert, T. P.; Bird, M. K.; Imamura, T.; Pätzold, M.; Remus, S.

    2013-10-01

    The Venus Express Radio Science Experiment (VeRa) has retrieved more than 700 profiles of the mesosphere and troposphere of Venus. These profiles cover a wide range of latitudes and local times, enabling study of atmospheric wave phenomena over a range spatial scales at altitudes of 40-90 km. In addition to quasi-horizontal waves and eddies on near planetary scales, diurnally forced eddies and thermal tides, small-scale gravity waves, and turbulence play a significant role in the development and maintenance of atmospheric super-rotation. Small-scale temperature variations with vertical wavelengths of 4 km or less have wave amplitudes reaching TBD km in the stable atmosphere above the tropopause, in contrast with much weaker temperature perturbations observed in the middle cloud layer below. The strength of gravity waves increases with latitude in both hemispheres. The results suggest that convection at low latitudes and topographical forcing at high northern latitudes—possibly in combination with convection and/or Kelvin-Helmholtz instabilities—play key roles in the genesis of gravity waves. Further, thermal tides also play an important role in the mesosphere. Diurnal and semi-diurnal wave modes are observed at different latitudes and altitudes. The latitudinal and height dependence of the thermal tide modes will be investigated.

  8. Fast Radio Bursts

    NASA Astrophysics Data System (ADS)

    Kaspi, Victoria M.

    2017-01-01

    Fast Radio Bursts (FRBs) are a recently discovered phenomenon consisting of short (few ms) bursts of radio waves that have dispersion measures that strongly suggest an extragalactic and possibly cosmological origin. Current best estimates for the rate of FRBs is several thousand per sky per day at radio frequencies near 1.4 GHz. Even with so high a rate, to date, fewer than 20 FRBs have been reported, with one source showing repeated bursts. In this talk I will describe known FRB properties including what is known about the lone repeating source, as well as models for the origin of these mysterious events. I will also describe the CHIME radio telescope, currently under construction in Canada. Thanks to its great sensitivity and unprecedented field-of-view, CHIME promises major progress on FRBs.

  9. Sferic propagation perturbations caused by energetic particle events as seen in global lightning data

    NASA Astrophysics Data System (ADS)

    Anderson, T.; Holzworth, R. H., II; Brundell, J. B.

    2017-12-01

    Energetic particle precipitation associated with solar events have been known to cause changes in the Earth-ionosphere waveguide. Previous studies of solar proton events (SPEs) have shown that high-energy protons can ionize lower-altitude layers of the ionosphere, leading to changes in Schumann resonance parameters (Schlegel and Fullekrug, 1999) and absorption of radio waves over the polar cap (Kundu and Haddock, 1960). We use the World-Wide Lightning Location Network (WWLLN) to study propagation of VLF waves during SPEs. WWLLN detects lightning-generated sferics in the VLF band using 80 stations distributed around the world. By comparing received power at individual stations from specific lightning source regions during SPEs, we can infer changes in the lower ionosphere conductivity profile caused by high-energy proton precipitation. In particular, we find that some WWLLN stations see different distributions of sferic power and range during SPEs. We also use the power/propagation analysis to improve WWLLN's lightning detection accuracy, by developing a better model for ionosphere parameters and speed of light in the waveguide than we have previously used.

  10. A Transportable VLF/LF Repeater Terminal - A Design Study,

    DTIC Science & Technology

    1986-07-01

    Corporation and marketed commercially as the ROLM 1602B, is expected to be used on the Airborne Command Post (ABNCP) fleet for MMPM processing. The basic...A suitable keyboard/printer for this application is a solid state teletype, the AN/ UGC -120. This device can also function as an AFSATCOM terminal...and as the VLF output device in the event of CPU failure. The AN/ UGC -120 is an Air Force inventory item. 20 INTERSITE COW4UNICATIONS SUBSYSTEM A single

  11. Initial Results from CASSIOPE/ePOP Satellite Overpasses above HAARP in 2014

    NASA Astrophysics Data System (ADS)

    Siefring, C. L.; Bernhardt, P. A.; Briczinski, S. J., Jr.; James, H. G.; Yau, A. W.; Knudsen, D. J.

    2015-12-01

    The High Frequency Active Auroral Research Program (HAARP) facility was operated in conjunction with overpasses of the enhanced Polar Outflow Probe (ePOP) instruments on the Canadian CASSIOPE satellite. During these overpasses HAARP was operated in several different heating modes and regimes as diagnosed by the characteristics of Stimulated Electromagnetic Emissions (SEE) using ground-based receivers while simultaneously ePOP monitored in-situ HF and VLF signals, looked for ion and electron heating, and provided VHF and UHF signals for propagation effects studies. The e-POP suite of instruments and particularly the ePOP Radio Receiver Instrument (RRI) offer a unique combination diagnostics appropriate for studying the non-linear plasma effects generated high-power HF waves in the ionosphere. In this presentation, the initial results from ePOP observations from two separate 2014 measurement campaigns at HAARP (April 16 to April 29 and May 25 to June 9) will be discussed. Several innovative experiments were performed during the campaign. Experiments explored a wide range of ionospheric effects. These include: 1) Penetration of HF pump waves into the ionosphere via large and small scale irregularities, 2) effects of gyro-harmonic heating and artificial ionization layers, 3) effects of HAARP beam shape with O- and X-mode transmissions, 4) coupling of Lower Hybrid modes into Whistler waves, 5) D/E-region VLF generation in the ionosphere using VLF modulation of the HF pump 6) scattering of VHF and UHF signals and 7) scattering and non-linear modulation of a 9.5 MHz probe wave propagating through the region of the ionosphere modified by HAARP. This work supported by the Naval Research Laboratory Base Program.

  12. Characteristics of atmospheric gravity waves observed using the MU (Middle and Upper atmosphere) radar and GPS (Global Positioning System) radio occultation.

    PubMed

    Tsuda, Toshitaka

    2014-01-01

    The wind velocity and temperature profiles observed in the middle atmosphere (altitude: 10-100 km) show perturbations resulting from superposition of various atmospheric waves, including atmospheric gravity waves. Atmospheric gravity waves are known to play an important role in determining the general circulation in the middle atmosphere by dynamical stresses caused by gravity wave breaking. In this paper, we summarize the characteristics of atmospheric gravity waves observed using the middle and upper atmosphere (MU) radar in Japan, as well as novel satellite data obtained from global positioning system radio occultation (GPS RO) measurements. In particular, we focus on the behavior of gravity waves in the mesosphere (50-90 km), where considerable gravity wave attenuation occurs. We also report on the global distribution of gravity wave activity in the stratosphere (10-50 km), highlighting various excitation mechanisms such as orographic effects, convection in the tropics, meteorological disturbances, the subtropical jet and the polar night jet.

  13. Characteristics of atmospheric gravity waves observed using the MU (Middle and Upper atmosphere) radar and GPS (Global Positioning System) radio occultation

    PubMed Central

    TSUDA, Toshitaka

    2014-01-01

    The wind velocity and temperature profiles observed in the middle atmosphere (altitude: 10–100 km) show perturbations resulting from superposition of various atmospheric waves, including atmospheric gravity waves. Atmospheric gravity waves are known to play an important role in determining the general circulation in the middle atmosphere by dynamical stresses caused by gravity wave breaking. In this paper, we summarize the characteristics of atmospheric gravity waves observed using the middle and upper atmosphere (MU) radar in Japan, as well as novel satellite data obtained from global positioning system radio occultation (GPS RO) measurements. In particular, we focus on the behavior of gravity waves in the mesosphere (50–90 km), where considerable gravity wave attenuation occurs. We also report on the global distribution of gravity wave activity in the stratosphere (10–50 km), highlighting various excitation mechanisms such as orographic effects, convection in the tropics, meteorological disturbances, the subtropical jet and the polar night jet. PMID:24492645

  14. N V Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences (IZMIRAN) yesterday, today, tomorrow

    NASA Astrophysics Data System (ADS)

    Kuznetsov, V. D.

    2015-06-01

    This paper describes the basic and applied research rationale for the organization of IZMIRAN and provides insight into the 75 years of the Institute's activities and development. Historically, early magnetic measurements in Russia were developed largely to meet the Navy's navigation needs and were, more generally, stimulated by the Peter the Great decrees and by the foundation of the St. Petersburg Academy of Sciences in 1724. The paper examines the roles of the early Academicians in developing geomagnetism and making magnetic measurements a common practice in Russia. The need for stable radio communications prompted ionospheric and radio wave propagation research. The advent of the space era and the 1957-1958 International Geophysical Year Project greatly impacted the development of IZMIRAN and spurred the creation of a number of geophysical research institutes throughout the country. Currently, the research topics at IZMIRAN range widely from geomagnetism to solar-terrestrial physics to the ionosphere and radio wave propagation, and its primary application areas are the study and forecast of space weather, an increasingly important determining factor in ever-expanding ground- and space-based technologies (space navigation and communications, space activities, etc.).

  15. Geothermal evolution of an intruded dike in the rift zone of Kilauea volcano, Hawaii from VLF and self-potential measurements

    NASA Astrophysics Data System (ADS)

    Davis, Paul M.

    2015-09-01

    Self-potential (SP) and VLF measurements were made in 1973, 1975, 1995, 1997 and 2012 across a basaltic dike that intruded into the Koae fault zone of Kilauea volcano, Hawaii in May 1973. The SP anomaly remained strong throughout. In 2012 it was at about 60% of the strength it had in 1973. In contrast, the VLF anomaly, though diminished, was still observable in 1995/1997, but by 2012 it had disappeared. A hydrothermal dike model, with parameters calibrated by modeling the solidification of Kilauea Iki lava lake, is used to calculate temperatures and conductivity variation. Following Jaeger's (1957) method, we find that the time in years for a dike of width W (m) to solidify is 0.0075W2. Thus, a 1 m dike solidifies within the first few days, and after 39 years is only tens of degrees above ambient. Given the orders of magnitude difference between the conductivities of wet and dry basalt, we infer, that after solidification, the VLF anomalies were caused by induction in a localized veil of wet, hot basalt enveloping the dike, that was generated initially by condensation of steam, and subsequently by condensation of evaporated water as temperatures reduced. The conductivity anomaly persisted until the mid-nineties. By 2012, temperatures and condensation were too small for a VLF signal. The persistent SP anomaly is attributed to localized fluid disruption, with evaporation mainly at the water table and in the vadose zone. Streaming potentials are associated with evaporative circulation in the vadose zone. Next to the dike a positive potential is generated by upward flow of moisture-laden air, with a smaller negative potential on its flanks from downward infiltrating rainwater. The analysis indicates that the combination of SP and VLF measurements can characterize the evolving geothermal regime of intrusions above the water table.

  16. Full-duplex radio-over-fiber system with tunable millimeter-wave signal generation and wavelength reuse for upstream signal.

    PubMed

    Wang, Yiqun; Pei, Li; Li, Jing; Li, Yueqin

    2017-06-10

    A full-duplex radio-over-fiber system is proposed, which provides both the generation of a millimeter-wave (mm-wave) signal with tunable frequency multiplication factors (FMFs) and wavelength reuse for uplink data. A dual-driving Mach-Zehnder modulator and a phase modulator are cascaded to form an optical frequency comb. An acousto-optic tunable filter based on a uniform fiber Bragg grating (FBG-AOTF) is employed to select three target optical sidebands. Two symmetrical sidebands are chosen to generate mm waves with tunable FMFs up to 16, which can be adjusted by changing the frequency of the applied acoustic wave. The optical carrier is reused at the base station for uplink connection. FBG-AOTFs driven by two acoustic wave signals are experimentally fabricated and further applied in the proposed scheme. Results of the research indicate that the 2-Gbit/s data can be successfully transmitted over a 25-km single-mode fiber for bidirectional full-duplex channels with power penalty of less than 2.6 dB. The feasibility of the proposed scheme is verified by detailed simulations and partial experiments.

  17. Publication of Papers Presented at URSI 23RD General Assembly as a Special Section of Radio Science

    DTIC Science & Technology

    1992-05-15

    1968: Angerami . 1970; Koons, 1989 1. Rays were started with field-aligned wave normals at 1000 km alti- The maximum frequency of propagation in a...RFRNE still occur for I --= 10- 2 . We conclude that the possibility Angerami , J. I., A whistler study of the distribution of the- of an anti-Lorentz...magnetospheric ducts (in the equatorial region), Angerami , J. J. Whistler duct properties deduced from VLF Planet. Space Sci., 32. 1505 - 1511. 1984

  18. Nonlinear Interactions within the D-Region Ionosphere

    NASA Astrophysics Data System (ADS)

    Moore, Robert

    2016-07-01

    This paper highlights the best results obtained during D-region modification experiments performed by the University of Florida at the High-frequency Active Auroral Research Program (HAARP) observatory between 2007 and 2014. Over this period, we saw a tremendous improvement in ELF/VLF wave generation efficiency. We identified methods to characterize ambient and modified ionospheric properties and to discern and quantify specific types of interactions. We have demonstrated several important implications of HF cross-modulation effects, including "Doppler Spoofing" on HF radio waves. Throughout this talk, observations are compared with the predictions of an ionospheric HF heating model to provide context and guidance for future D-region modification experiments.

  19. Using IRI and GSM TIP model results as environment for HF radio wave propagation model during the geomagnetic storm occurred on September 26-29, 2011

    NASA Astrophysics Data System (ADS)

    Kotova, D. S.; Klimenko, M. V.; Klimenko, V. V.; Zakharov, V. E.; Ratovsky, K. G.; Nosikov, I. A.; Zhao, B.

    2015-11-01

    This paper analyses the geomagnetic storm on September 26-29, 2011. We compare the calculation results obtained using the Global Self-consistent Model of the Thermosphere, Ionosphere and Protonosphere (GSM TIP) and IRI-2012 (Bilitza et al., 2014) model with ground-based ionosonde data of stations at different latitudes and longitudes. We examined physical mechanisms responsible for the formation of ionospheric effects during the main phase of geomagnetic storm that occurred at the rising phase of the 24th solar cycle. We used numerical results obtained from IRI-2012 and GSM TIP models as propagation environment for HF signals from an equatorial transmitter during quiet and disturbed conditions. We used the model of HF radio wave propagation developed in I. Kant Baltic Federal University (BFU) that is based on the geometrical optics approximation. We compared the obtained radio paths in quiet conditions and during the main and recovery storm phases and evaluated radio wave attenuation in different media models.

  20. Radial plasma drifts deduced from VLF whistler mode signals - A modelling study

    NASA Astrophysics Data System (ADS)

    Poulter, E. M.; Andrews, M. K.; Bailey, G. J.; Moffett, R. J.

    1984-05-01

    VLF whistler mode signals have previously been used to infer radial plasma drifts in the equatorial plane of the plasmasphere and the field-aligned ionosphere-protonosphere coupling fluxes. Physical models of the plasmasphere consisting of O(+) adn H(+) ions along dipole magnetic field lines, and including radial E x B drifts, are applied to a mid-latitude flux tube appropriate to whistler mode signals received at Wellington, New Zealand, from the fixed frequency VLF transmitter NLK (18.6 kHz) in Seattle, U.S.A. These models are first shown to provide a good representation of the recorded Doppler shift and group delay data. They are then used to simulate the process of deducing the drifts and fluxes from the recorded data. Provided the initial whistler mode duct latitude and the ionospheric contributions are known, the drifts at the equatorial plane can be estimated to about + or - 20 m/s (approximately 10-15 percent), and the two hemisphere ionosphere-protonosphere coupling fluxes to about + or - 10 to the 12th/sq m-sec (approximately 40 percent).

  1. Nonlinear longitudinal resonance interaction of energetic charged particles and VLF waves in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Tkalcevic, S.

    1982-01-01

    The longitudinal resonance of waves and energetic electrons in the Earth's magnetosphere, and the possible role this resonance may play in generating various magnetospheric phenomena are studied. The derivation of time-averaged nonlinear equations of motion for energetic particles longitudinally resonant with a whistler mode wave propagating with nonzero wave normal is considered. It is shown that the wave magnetic forces can be neglected at lower particle pitch angles, while they become equal to or larger than the wave electric forces for alpha 20 deg. The time-averaged equations of motion were used in test particle simulation which were done for a wide range of wave amplitudes, wave normals, particle pitch angles, particle parallel velocities, and in an inhomogeneous medium such as the magnetosphere. It was found that there are two classes of particles, trapped and untrapped, and that the scattering and energy exchange for those two groups exhibit significantly different behavior.

  2. FLARE-GENERATED SHOCK WAVE PROPAGATION THROUGH SOLAR CORONAL ARCADE LOOPS AND AN ASSOCIATED TYPE II RADIO BURST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Pankaj; Cho, Kyung-Suk; Innes, D. E., E-mail: pankaj@kasi.re.kr

    2016-09-01

    This paper presents multiwavelength observations of a flare-generated type II radio burst. The kinematics of the shock derived from the type II burst closely match a fast extreme ultraviolet (EUV) wave seen propagating through coronal arcade loops. The EUV wave was closely associated with an impulsive M1.0 flare without a related coronal mass ejection, and was triggered at one of the footpoints of the arcade loops in active region NOAA 12035. It was initially observed in the 335 Å images from the Atmospheric Image Assembly with a speed of ∼800 km s{sup −1} and it accelerated to ∼1490 km s{supmore » −1} after passing through the arcade loops. A fan–spine magnetic topology was revealed at the flare site. A small, confined filament eruption (∼340 km s{sup −1}) was also observed moving in the opposite direction to the EUV wave. We suggest that breakout reconnection in the fan–spine topology triggered the flare and associated EUV wave that propagated as a fast shock through the arcade loops.« less

  3. GPS radio occultation simulation experiments for the upcoming Strateole-2 superpressure balloon campaign investigating equatorial waves

    NASA Astrophysics Data System (ADS)

    Haase, J. S.; Cao, B.; Alexander, M. J.; Zhang, W.

    2017-12-01

    Deep tropical convection influences the transport of mass and momentum from the equatorial upper troposphere into the lower stratosphere through the generation and interaction of waves at a broad range of scales. The France-US collaborative Stratéole-2 project will explore equatorial waves in the tropopause region with super-pressure balloons, designed to drift on quasi-Lagrangian trajectories in the lower stratosphere. The Stratéole-2 program will launch 5 balloons from the Seychelles in the Indian Ocean in 2018-2019, and 20 balloons in 2020-2021, each with a flight duration of about 80 days. Five balloons will carry the Radio OCcultation (ROC2) instrument at 20 km altitude to execute a continuous sequence of temperature profiles on either side of the balloon trajectory to sample the equatorial wave field in three dimensions. It will also carry a micro-lidar for detecting cirrus and convective cloud tops. The goals are to describe the horizontal and vertical structure of tropical waves and their impact on cirrus formation and to investigate the relationships of waves to convective clouds. The GPS measurements quantify wave activity by providing precise estimates of balloon velocity and height perturbations due to waves and by providing refractivity profiles that are sensitive to vertical temperature fluctuations caused by waves. We present ray-tracing simulations of the propagation of GPS signals through the Earth's atmosphere, where they will be bent and delayed due to the gradient of atmospheric refractive index. European Centre for Medium-Range Weather Forecasts (ECMWF) analyses are used to construct the refractive index of the equatorial atmosphere, in which abundant atmospheric waves are present. With the known GPS signal geometry, the excess phase/Doppler are simulated that reflect the wave signatures. The resulting refractivity retrievals provide guidance for interpreting the spectral range of waves that the ROC2 instruments are most likely to reveal.

  4. The effect of solar radio bursts on the GNSS radio occultation signals

    NASA Astrophysics Data System (ADS)

    Yue, Xinan; Schreiner, William S.; Kuo, Ying-Hwa; Zhao, Biqiang; Wan, Weixing; Ren, Zhipeng; Liu, Libo; Wei, Yong; Lei, Jiuhou; Solomon, Stan; Rocken, Christian

    2013-09-01

    radio burst (SRB) is the radio wave emission after a solar flare, covering a broad frequency range, originated from the Sun's atmosphere. During the SRB occurrence, some specific frequency radio wave could interfere with the Global Navigation Satellite System (GNSS) signals and therefore disturb the received signals. In this study, the low Earth orbit- (LEO-) based high-resolution GNSS radio occultation (RO) signals from multiple satellites (COSMIC, CHAMP, GRACE, SAC-C, Metop-A, and TerraSAR-X) processed in University Corporation for Atmospheric Research (UCAR) were first used to evaluate the effect of SRB on the RO technique. The radio solar telescope network (RSTN) observed radio flux was used to represent SRB occurrence. An extreme case during 6 December 2006 and statistical analysis during April 2006 to September 2012 were studied. The LEO RO signals show frequent loss of lock (LOL), simultaneous decrease on L1 and L2 signal-to-noise ratio (SNR) globally during daytime, small-scale perturbations of SNR, and decreased successful retrieval percentage (SRP) for both ionospheric and atmospheric occultations during SRB occurrence. A potential harmonic band interference was identified. Either decreased data volume or data quality will influence weather prediction, climate study, and space weather monitoring by using RO data during SRB time. Statistically, the SRP of ionospheric and atmospheric occultation retrieval shows ~4% and ~13% decrease, respectively, while the SNR of L1 and L2 show ~5.7% and ~11.7% decrease, respectively. A threshold value of ~1807 SFU of 1415 MHz frequency, which can result in observable GNSS SNR decrease, was derived based on our statistical analysis.

  5. STEREO/Waves Education and Public Outreach

    NASA Astrophysics Data System (ADS)

    MacDowall, R. J.; Bougeret, J.; Bale, S. D.; Goetz, K.; Kaiser, M. L.

    2005-05-01

    We present the education and public outreach plan and activities of the STEREO Waves (aka SWAVES) investigation. SWAVES measures radio emissions from the solar corona, interplanetary medium, and terrestrial magnetosphere, as well as in situ waves in the solar wind. In addition to the web site components that display stereo/multi-spacecraft data in a graphical form and explain the science and instruments, we will focus on the following three areas of EPO: class-room demonstrations using models of the STEREO spacecraft with battery powered radio receivers (and speakers) to illustrate spacecraft radio direction finding, teacher developed and tested class-room activities using SWAVES solar radio observations to motivate geometry and trigonometry, and sound-based delivery of characteristic radio and plasma wave events from the SWAVES web site for accessibility and esthetic reasons. Examples of each element will be demonstrated.

  6. Lightning impact on micro-second long ionospheric variability

    NASA Astrophysics Data System (ADS)

    Koh, Kuang Liang; Liu, Zhongjian; Fullekrug, Martin

    2017-04-01

    LORE relaxation times: KINETIC MODEL OF LORE RELAXATION TIMES. Journal of Geophysical Research: Space Physics 121, 3525-3544. doi:10.1002/2015JA021408 Füllekrug, M., Smith, N., Mezentsev, A., Watson, R., Astin, I., Gaffet, S., Evans, A., Rycroft, M., 2015. Multipath propagation of low-frequency radio waves inferred from high-resolution array analysis. Radio Sci. 50, 2015RS005781. doi:10.1002/2015RS005781

  7. Kinetic Simulations of Type II Radio Burst Emission Processes

    NASA Astrophysics Data System (ADS)

    Ganse, U.; Spanier, F. A.; Vainio, R. O.

    2011-12-01

    The fundamental emission process of Type II Radio Bursts has been under discussion for many decades. While analytic deliberations point to three wave interaction as the source for fundamental and harmonic radio emissions, sparse in-situ observational data and high computational demands for kinetic simulations have not allowed for a definite conclusion to be reached. A popular model puts the radio emission into the foreshock region of a coronal mass ejection's shock front, where shock drift acceleration can create eletrcon beam populations in the otherwise quiescent foreshock plasma. Beam-driven instabilities are then assumed to create waves, forming the starting point of three wave interaction processes. Using our kinetic particle-in-cell code, we have studied a number of emission scenarios based on electron beam populations in a CME foreshock, with focus on wave-interaction microphysics on kinetic scales. The self-consistent, fully kinetic simulations with completely physical mass-ratio show fundamental and harmonic emission of transverse electromagnetic waves and allow for detailled statistical analysis of all contributing wavemodes and their couplings.

  8. Ionospheric turbulence from TEC variations and VLF/LF transmitter signal observations before and during the destructive seismic activity of August and October 2016 in Central Italy

    NASA Astrophysics Data System (ADS)

    Contadakis, Michael E.; Arabelos, Demetrios N.; Vergos, George; Spatala, Spyrous; Skeberis, Christos; Xenos, Tomas D.; Biagi, Pierfrancesco; Scordilis, Emmanuel M.

    2017-04-01

    In this paper we investigate the ionospheric turbulence from TEC variations and VLF/LF transmitter signal observations before and during the disastrous seismic activity of August and October 2016 in Central Italy . The Total Electron Content (TEC) data of 8 Global Positioning System (GPS) stations of the EUREF network, which are being provided by IONOLAB (Turkey), were analysed using Discrete Fourier Analysis in order to investigate the TEC variations (Contadakis et al. 2009, Contadakis et al. 2012, Contadakis et al. 2015). The data acquired for VLF/LF signal observations are from the receiver of Thessaloniki(40.59N, 22,78E), Greece (Skeberis et al. 2015) which monitor the VLF/LF transmitters of the International Network for Frontier Research on Earthquake Precursors (INFREP). A method of normalization according to the distance between the receiver and the transmitter is applied on the above data and then they are processed by the Hilbert Huang Transform (HHT) to produce the corresponding spectra for visual analysis. The results of this investigation indicate that the High- Frequency limit fo, of the ionospheric turbulence content, increases as the site and the moment of the earthquake occurrence is approaching, pointing to the earthquake locus. In accordence ,the analyzed data from the receiver of INFREP network in Thessaloniki, Greece show that the signals from the two VLF European transmitters, Tavolara ( Italy) and Le Blanc (France), for wich the transmission path crosses the epicentral zones, indicate enhanced high frequency variations, the last ten days before the moment of the earthquake occurrence. We conclude that the LAIC mechanism through acoustic or gravity wave could explain this phenomenology. Reference Contadakis, M.E., Arabelos, D.N., Asteriadis, G., Spatalas, S.D., Pikridas, C. TEC variations over the Mediterranean during the seismic activity period of the last quarter of 2005 in the area of Greece, Nat. Hazards and Earth Syst. Sci., 8, 1267

  9. Studying the evolution of a type III radio from the Sun up to 1 AU

    NASA Astrophysics Data System (ADS)

    Mann, Gottfried; Breitling, Frank; Vocks, Christian; Fallows, Richard; Melnik, Valentin; Konovalenko, Alexander

    2017-04-01

    On March 16, 2016, a type III burst was observed with the ground-based radio telescopes LOFAR and URAN-2 as well as with the radiospectrometer aboard the spacecraft WIND.It started at 80 MHz at 06:37 UT and reached 50 kHz after 23 minutes. A type III burst are considered as the radio signature of an electron beam travelling from the corona into the interplanetary space. The energetic electrons carrying the beam excites Langmuir waves, which convert into radio waves by wave-particle interaction. The relationship between the drift rate and the frequency as derived from the dynamic radio spectra reveals that the velocity of the electrons generating the radio waves of the type III burst is increasing with increasing distance from the center of the Sun.

  10. A study of electron density profiles in relation to ionization sources and ground-based radio wave absorption measurements, part 1

    NASA Technical Reports Server (NTRS)

    Gnanalingam, S.; Kane, J. A.

    1973-01-01

    An extensive set of ground-based measurements of the diurnal variation of medium frequency radio wave adsorption and virtual height is analyzed in terms of current understanding of the D- and lower E-region ion production and loss process. When this is done a gross discrepancy arises, the source of which is not known.

  11. Solar radio continuum storms

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Radio noise continuum emission observed in metric and decametric wave frequencies is discussed. The radio noise is associated with actively varying sunspot groups accompanied by the S-component of microwave radio emissions. It is shown that the S-component emission in microwave frequencies generally occurs several days before the emission of the noise continuum storms of lower frequencies. It is likely that energetic electrons, 10 to 100 Kev, accelerated in association with the variation of sunspot magnetic fields, are the sources of the radio emissions. A model is considered to explain the relation of burst storms on radio noise. An analysis of the role of energetic electrons on the emissions of both noise continuum and type III burst storms is presented. It is shown that instabilities associated with the electrons and their relation to their own stabilizing effects are important in interpreting both of these storms.

  12. VLF Radio Field Strength Measurement of power line carrier system in San Diego, California

    NASA Technical Reports Server (NTRS)

    Mertel, H. K.

    1981-01-01

    The radio frequency interference (RFI) potential was evaluated for a Powerline Carriet (PLC) installed in San Diego which monitors the performance of an electrical power system. The PLC system generated 30 amperes at 5.79 kHz. The RF radiations were measured to be (typically) 120 dBuV/m at the beginning of the 12 kV powerline and 60 dBuV/m at the end of the powerline. The RF fields varied inversely as the distance squared. Measurements were also performed with a 45 kHz PLC system. The RF fields were of similar amplitude.

  13. Characteristics of VLF/LF Sferics from Elve-producing Lightning Discharges

    NASA Astrophysics Data System (ADS)

    Blaes, P.; Zoghzoghy, F. G.; Marshall, R. A.

    2013-12-01

    Lightning return strokes radiate an electromagnetic pulse (EMP) which interacts with the D-region ionosphere; the largest EMPs produce new ionization, heating, and optical emissions known as elves. Elves are at least six times more common than sprites and other transient luminous events. Though the probability that a lightning return stroke will produce an elve is correlated with the return stroke peak current, many large peak current strokes do not produce visible elves. Apart from the lightning peak current, elve production may depend on the return stroke speed, lightning altitude, and ionospheric conditions. In this work we investigate the detailed structure of lightning that gives rise to elves by analyzing the characteristics of VLF/LF lightning sferics in conjunction with optical elve observations. Lightning sferics were observed using an array of six VLF/LF receivers (1 MHz sample-rate) in Oklahoma, and elves were observed using two high-speed photometers pointed over the Oklahoma region: one located at Langmuir Laboratory, NM and the other at McDonald Observatory, TX. Hundreds of elves with coincident LF sferics were observed during the summer months of 2013. We present data comparing the characteristics of elve-producing and non-elve producing lightning as measured by LF sferics. In addition, we compare these sferic and elve observations with FDTD simulations to determine key properties of elve-producing lightning.

  14. Investigation of VLF and LF transmitter signals prior to earthquakes in Italy and in Greece recorded in the year 2016

    NASA Astrophysics Data System (ADS)

    Boudjada, Mohammed Y.; Schwingenschuh, Konrad; Eichelberger, Hans; Rozhnoi, Alexander; Besser, Bruno; Biagi, Pier F.; Magnes, Werner; Lammer, Helmut; Stachel, Manfred

    2017-04-01

    We analyze the VLF and LF transmitter signals recorded in the year 2016 by the Graz seismo-electromagnetic facility (15.43 E, 47.06 N), as part of the European VLF receiver network. The regular VLF/LF signals received at Graz are from: Germany (DHO, 23.4 kHz), Great Britain (GBS, 19.58 kHz), Island (NRK, 37.5 kHz), Italy (ICV, 20.27 kHz; ITS, 45.9 kHz), Turkey (TBB, 26.7 kHz) and USA (NPM, 21.4; NAA, 24.0 kHz). A first part of our contribution will emphasize on the signal reception conditions and the geomagnetic and solar effects. The amplitude and the phase of the transmitter signals are considered and separated in day- and night-time observations. A second part will be devoted to the investigation of earthquakes events which principally occurred in the Southern Europe, i.e. in Greece and in Italy. In this context the propagation paths between the transmitter and the receiver are taken into consideration. Particular attention is given to the transmitters localized in the surrounding regions where the earthquakes occurred. It is the case of three stations, two in Italy (ICV and ITS) and one in Turkey (TBB). We show that attenuations and/or absences of the VLF/LF intensity signals may be considered. Our main outcomes are discussed and combined to previous investigations in particular those which referred to the L'Aquila earthquakes of April 2009.

  15. A passive low frequency instrument for radio wave sounding the subsurface oceans of the Jovian icy moons: An instrument concept

    NASA Astrophysics Data System (ADS)

    Hartogh, P.; Ilyushin, Ya. A.

    2016-10-01

    Exploration of subsurface oceans on Jovian icy moons is a key issue of the icy moons' geology. Electromagnetic wave propagation is the only way to probe their icy mantles from the orbit. In the present paper, a principal concept of a passive interferometric instrument for deep sounding of the icy moons' crust is proposed. Its working principle is measuring and correlating Jupiter's radio wave emissions with reflections from the deep sub-surface of the icy moons. A number of the functional aspects of the proposed experiment are studied, in particular, impact of the wave scattering on the surface terrain on the instrument performance and digital sampling of the noisy signal. Results of the test of the laboratory prototype of the instrument are also presented in the paper.

  16. The effect of plasma inhomogeneities on (i) radio emission generation by non-gyrotropic electron beams and (ii) particle acceleration by Langmuir waves

    NASA Astrophysics Data System (ADS)

    Tsiklauri, David

    2015-04-01

    Extensive particle-in-cell simulations of fast electron beams injected in a background magnetised plasma with a decreasing density profile were carried out. These simulations were intended to further shed light on a newly proposed mechanism for the generation of electromagnetic waves in type III solar radio bursts [1]. Here recent progress in an alternative to the plasma emission model using Particle-In-Cell, self-consistent electromagnetic wave emission simulations of solar type III radio bursts will be presented. In particular, (i) Fourier space drift (refraction) of non-gyrotropic electron beam-generated wave packets, caused by the density gradient [1,2], (ii) parameter space investigation of numerical runs [3], (iii) concurrent generation of whistler waves [4] and a separate problem of (iv) electron acceleration by Langmuir waves in a background magnetised plasma with an increasing density profile [5] will be discussed. In all considered cases the density inhomogeneity-induced wave refraction plays a crucial role. In the case of non-gyrotropic electron beam, the wave refraction transforms the generated wave packets from standing into freely escaping EM radiation. In the case of electron acceleration by Langmuir waves, a positive density gradient in the direction of wave propagation causes a decrease in the wavenumber, and hence a higher phase velocity vph = ω/k. The k-shifted wave is then subject to absorption by a faster electron by wave-particle interaction. The overall effect is an increased number of high energy electrons in the energy spectrum. [1] D. Tsiklauri, Phys. Plasmas 18, 052903 (2011); http://dx.doi.org/10.1063/1.3590928 [2] H. Schmitz, D. Tsiklauri, Phys. Plasmas 20, 062903 (2013); http://dx.doi.org/10.1063/1.4812453 [3] R. Pechhacker, D. Tsiklauri, Phys. Plasmas 19, 112903 (2012); http://dx.doi.org/10.1063/1.4768429 [4] M. Skender, D. Tsiklauri, Phys. Plasmas 21, 042904 (2014); http://dx.doi.org/10.1063/1.4871723 [5] R. Pechhacker, D. Tsiklauri

  17. Experimental demonstration of 24-Gb/s CAP-64QAM radio-over-fiber system over 40-GHz mm-wave fiber-wireless transmission.

    PubMed

    Zhang, Junwen; Yu, Jianjun; Chi, Nan; Li, Fan; Li, Xinying

    2013-11-04

    We propose and demonstrate a novel CAP-ROF system based on multi-level carrier-less amplitude and phase modulation (CAP) 64QAM with high spectrum efficiency for mm-wave fiber-wireless transmission. The performance of novel CAP modulation with high order QAM, for the first time, is investigated in the mm-wave fiber-wireless transmission system. One I/Q modulator is used for mm-wave generation and base-band signal modulation based on optical carrier suppression (OCS) and intensity modulation. Finally, we demonstrated a 24-Gb/s CAP-64QAM radio-over-fiber (ROF) system over 40-km stand single-mode-fiber (SMMF) and 1.5-m 38-GHz wireless transmission. The system operation factors are also experimentally investigated.

  18. Thermal electrostatic noise and radio waves spectroscopy (SORBET) on BepiColombo/MMO/PWI

    NASA Astrophysics Data System (ADS)

    Moncuquet, M.; Matsumoto, H.; Bougeret, J.-L.; Blomberg, L.; Issautier, K.; Kasaba, Y.; Maksimovic, M.; Meyer-Vernet, N.; Yagitani, S.; Zarka, P.

    2003-04-01

    The SORBET experiment is a part of the radio and Plasma Waves Instrument (PWI) onboard BepiColombo/Mercury Magnetospheric Orbiter (MMO), which include remote and in-situ measurements of wave (electromagnetic and electrostatic), for studying the structure and dynamics (regions, boundaries, acceleration, dissipation processes...) of the Hermean magnetosphere/exo-ionosphere system and its interaction with the solar wind. More specific SORBET goals are: - Mapping of (cold) electron density and temperature in the solar wind and Hermean magnetosphere and exo-ionosphere, via the technique of Quasi-Thermal Noise (QTN) spectroscopy (and also analysis of Bernstein modes and upper-hybrid emissions). The quasi-thermal noise is due to the thermal motions of the particles, which produce electrostatic fluctuations. This noise is detected by any sensitive receiver at the ports of an electric antenna immersed in a plasma and can be used to measure in-situ the plasma density, temperature and bulk velocity. The basic reason is that this noise can be formally calculated as a function of both the particle velocity distributions and the antenna geometry. So, conversely, the "spectroscopy" of this noise reveals the local plasma properties. This method is routinely used on Ulysses and Wind spacecrafts in the solar wind or in planetary magnetospheres/ionospheres (Ulysses at Jupiter, Cassini at Venus, Earth and soon at Saturn). This method has the advantage of being relatively immune to spacecraft potential and photoelectrons perturbations. These measurements will provide a fundamental input for the chemistry of cold ionized species (Na...) in Mercury's environment and for the dynamic modelling of the magnetosphere. Corresponding plasma frequencies are expected to be up to 200-300 kHz. Hence the QTN spectrum should be measured up to at least ~2 max(fpe) ~ 600 kHz. -Detection and study of Hermean radio emissions, including possible cyclotron emissions (up to ~10-20 kHz) from mildly energetic

  19. DEMONSTRATION BULLETIN: RADIO FREQUENCY HEATING - IIT RESEARCH INSTITUTE

    EPA Science Inventory

    Radio frequency heating (RFH) is a process that uses electromagnetic energy generated by radio waves to heat soil in situ, thereby potentially enhancing the performance of standard soil vapor extraction (SVE) technologies. An RFH system developed by the IIT Research Institute ...

  20. Radio signature of magnetic reconnection and bi-directional shock waves in a flare-CME event on April 15, 1998

    NASA Astrophysics Data System (ADS)

    Huang, Guang-Li

    2003-03-01

    A flare-CME event on April 15, 1998 is studied with data of Nobeyama Radio Polarimeters (NoRP) and Heliograph (NoRH), the radio spectrometers of Chinese National Astronomical Observatories (1.0-2.0 GHz and 2.6-2.8 GHz), and the Astrophysical Institute of Postdam (200-800 MHz), as well as the data of YOHKOH, SOHO, BATSE, and GOES. There were strong fluctuations superposed on the initial phase of the BATSE hard X-ray burst, and the radio burst at 1.0-2.0 GHz with a group of type III-like positive and negative frequency drift pairs, which may be interpreted as the process of magnetic reconnection or particle acceleration in corona. A type II-like burst with a series of pulsations at 200-800 MHz followed the maximum phase of the radio and hard X-ray burst, and slowly drifted to lower frequencies with typical zebra feature. After 10 min of that, a similar dynamic spectrum was recorded at 2.6-3.8 GHz, where the type II-like signal drifted to higher frequencies with a series of pulsations and zebra structures. The polarization sense was strongly RCP at 2.6-3.8 GHz, and weakly LCP at 1.0-2.0 GHz, which was confirmed by the observations of NoRP. The radiation mechanism of these pulsations may be caused by the electron cyclotron maser instability. The local magnetic field strength and source height are estimated based on the gyro-synchrotron second harmonic emission. The ambient plasma density is calculated from the YOHKOH/SXT data. The ratio between the electron plasma frequency and gyro-frequency is around 1.3, which corresponds to the reversal value from extraordinary mode (LCP) to ordinary mode (RCP). Moreover, both the time scale and the modularity of an individual pulse increase statistically with the increase in the burst flux, which may be explained by the acceleration process of non-thermal electrons in the shock wave-fronts propagated upward and downward. Therefore, the radio observations may provide an important signature that flare and CME are triggered

  1. Association of corotating magnetic sector structure with Jupiters decameter-wave radio emissions

    NASA Technical Reports Server (NTRS)

    Barrow, C. H.

    1979-01-01

    Chree (superposed epoch) analyses of Jupiter's decameter-wave radio emission taken from the new Thieman (1979) catalog show highly significant correlation with solar activity indicated by the geomagnetic Ap index. The correlation effects can be explained in terms of corotating interplanetary magnetic sector features. At times when the solar wind velocity is relatively low, about 300 to 350 km/s, a sector boundary can encounter the Earth and Jupiter almost simultaneously during the period immediately before opposition. After opposition this will not normally occur as the solar wind velocities necessary are too low. The correlation effects are much enhanced for the three apparitions of 1962-1964 during which a relatively stable and long-lived sector pattern was present. Chree analyses for this period indicate periodicities, approximately equal to half the solar rotation period, in the Jupiter data.

  2. Fluctuations of radio occultation signals in sounding the Earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Kan, Valery; Gorbunov, Michael E.; Sofieva, Viktoria F.

    2018-02-01

    We discuss the relationships that link the observed fluctuation spectra of the amplitude and phase of signals used for the radio occultation sounding of the Earth's atmosphere, with the spectra of atmospheric inhomogeneities. Our analysis employs the approximation of the phase screen and of weak fluctuations. We make our estimates for the following characteristic inhomogeneity types: (1) the isotropic Kolmogorov turbulence and (2) the anisotropic saturated internal gravity waves. We obtain the expressions for the variances of the amplitude and phase fluctuations of radio occultation signals as well as their estimates for the typical parameters of inhomogeneity models. From the GPS/MET observations, we evaluate the spectra of the amplitude and phase fluctuations in the altitude interval from 4 to 25 km in the middle and polar latitudes. As indicated by theoretical and experimental estimates, the main contribution into the radio signal fluctuations comes from the internal gravity waves. The influence of the Kolmogorov turbulence is negligible. We derive simple relationships that link the parameters of internal gravity waves and the statistical characteristics of the radio signal fluctuations. These results may serve as the basis for the global monitoring of the wave activity in the stratosphere and upper troposphere.

  3. Survey of localized solar flare signatures in the ionosphere with GNSS, VLF, and GOES observations

    NASA Astrophysics Data System (ADS)

    Blevins, S. M.; Hayes, L.; Collado-Vega, Y. M.; Michael, B. P.; Noll, C. E.

    2017-12-01

    Global navigation satellite system (GNSS) phase measurements of the total electron content (TEC) and ionospheric delay are sensitive to sudden increases in electron density in the layers of the Earth's ionosphere. These sudden ionospheric disruptions, or SIDs, are due to enhanced X-ray and extreme ultraviolet radiation from a solar flare that drastically increases the electron density in localized regions. SIDs are solar flare signatures in the Earth's ionosphere and can be observed with very low frequency (VLF 3-30 kHz) monitors and dual-frequency GNSS (L1 = 1575.42 MHz, L2 = 1227.60 MHz) receivers that probe lower (D-region) to upper (F-region) ionospheric layers, respectively. Data from over 500 solar flare events, spanning April 2010 to July 2017, including GOES C-, M-, and X-class solar flares at various intensities, were collected from the Space Weather Database Of Notifications, Knowledge, Information (DONKI) developed at the NASA Goddard Space Flight Center (GSFC) Community Coordinated Modeling Center (CCMC). Historical GOES satellite (NOAA) X-ray flux (NASA GSFC CCMC integrated Space Weather Analysis system (iSWA)), and VLF SID (Stanford University Solar SID Space Weather Monitor program) time series data are available for all solar flare events of the sample set. We use GNSS data archived at the NASA GSFC Crustal Dynamics Data Information System (CDDIS) to characterize the F-region reactions to the increased ionization, complementing the ground-based D-region (VLF), and space-based X-ray observations (GOES). CDDIS provides GNSS data with 24-hour coverage at a temporal resolution of 30 seconds from over 500 stations. In our study we choose 63 stations, spanning 23 countries at a variety of geographic locations to provide continuous coverage for all solar flare events in the sample. This geographic distribution enables us to explore the effects of different solar flare intensities at localized regions in the Earths ionosphere around the globe. The GNSS

  4. Latest Observations of Interstellar Plasma Waves, Radio Emissions, and Dust Impacts from the Voyager 1 Plasma Wave Instrument

    NASA Astrophysics Data System (ADS)

    Gurnett, D. A.

    2017-12-01

    Voyager 1, which is now 140 AU (Astronomical Units) from the Sun, crossed the heliopause into interstellar space in 2012 at a heliospheric radial distance of 121 AU. Since crossing the heliopause the plasma wave instrument has on several occasions detected plasma oscillations and radio emissions at or near the electron plasma frequency. The most notable of these events occurred in Oct.-Nov. 2012, April-May 2013, Feb.-Nov. 2014, and Sept.-Nov. 2015. Most recently, a very weak emission has been observed at or near the electron plasma frequency through most of 2016. These emissions are all believed to be produced by shock waves propagating into the interstellar medium from energetic solar events. The oscillation frequency of the plasma indicates that the electron density in the interstellar plasma has gradually increased from about 0.06 cm-3 near the heliopause to about 0.12 cm-3 in the most recent data. The plasma wave instrument also continues to detect impacts of what are believed to be interstellar dust grains at an impact rate of a few per year. Comparisons with Ulysses observations of similar interstellar dust near 5 AU suggest that the dust grains have sizes in the range from about 0.1 to 1 micrometer. Although the statistics are poor due to the low count rate, the dust flux observed in the outer heliosphere appears to be as much as a factor of two greater than that observed in the interstellar medium. Since the dust particles are likely to be charged, this increase in the heliosphere suggests that there may be a significant electrodynamic interaction of the dust particles with the heliospheric magnetic field.

  5. Very low frequency waves stimulated by an electron accelerator in the auroral ionosphere

    NASA Technical Reports Server (NTRS)

    Holtet, J. A.; Pran, B. K.; Egeland, A.; Grandal, B.; Jacobsen, T. A.; Maehlum, B. N.; Troim, J.

    1981-01-01

    The sounding rocket, Polar 5, carrying a 10 keV electron accelerator in a mother-daughter configuration and other diagnostic instruments, was launched into a slightly disturbed ionosphere with weak auroral activity on February 1, 1976 from Northern Norway to study VLF wave phenomena. The rocket trajectory crossed two auroral regions: one, between 86 and 111 s flight time, and a secondary region between 230 and 330 s. The daughter, carrying the accelerator, was separated axially from the mother in a forward direction at an altitude of 90 km. The VLF experiment, carried by the mother payload, recorded both electromagnetic and electrostatic waves. The receiving antenna was an electric dipole, 0.3 m tip-to-tip, oriented 90 degrees to the rocket spin axis. The onboard particle detector recorded increased electron fluxes in the two auroral regions. A double peaked structure was observed in the fluxes of 4-5 and 12-27 keV electrons within the northern auroral form. The number density of thermal plasma varied during the flight, with maximum density within the main auroral region. To the north of this aurora a slow, steady decrease in the density was observed, with no enhancement in the region of the second aurora.

  6. Array analysis of electromagnetic radiation from radio transmitters for submarine communication

    NASA Astrophysics Data System (ADS)

    Füllekrug, Martin; Mezentsev, Andrew; Watson, Robert; Gaffet, Stéphane; Astin, Ivan; Evans, Adrian

    2014-12-01

    The array analyses used for seismic and infrasound research are adapted and applied here to the electromagnetic radiation from radio transmitters for submarine communication. It is found that the array analysis enables a determination of the slowness and the arrival azimuth of the wave number vectors associated with the electromagnetic radiation. The array analysis is applied to measurements of ˜20-24 kHz radio waves from transmitters for submarine communication with an array of 10 radio receivers distributed over an area of ˜1 km ×1 km. The observed slowness of the observed wave number vectors range from ˜2.7 ns/m to ˜4.1 ns/m, and the deviations between the expected arrival azimuths and the observed arrival azimuths range from ˜-9.7° to ˜14.5°. The experimental results suggest that it is possible to determine the locations of radio sources from transient luminous events above thunderclouds with an array of radio receivers toward detailed investigations of the electromagnetic radiation from sprites.

  7. A study of electron density profiles in relation to ionization sources and ground-based radio wave absorption measurements, part 2

    NASA Technical Reports Server (NTRS)

    Gnanalingam, S.; Kane, J. A.

    1975-01-01

    The D-region ion production functions are used to calculate the relationship between radio wave absorption and the flux level of X-rays in the 1-8A wavelength band. In order to bring this calculation into agreement with the empirically established relationship, it was found necessary to reduce by, a factor of about 5, the Meira nitric oxide densities below 90 km.

  8. VLF campaign during the total eclipse of July 22nd, 2009: Observational results and interpretations

    NASA Astrophysics Data System (ADS)

    Chakrabarti, S. K.; Pal, S.; Sasmal, S.; Mondal, S. K.; Ray, S.; Basak, T.; Maji, S. K.; Khadka, B.; Bhowmick, D.; Chowdhury, A. K.

    2012-09-01

    A Total Solar Eclipse (TSE) provides us with an exciting opportunity to study the VLF propagation effects under a controlled experimental condition where the extreme ultraviolet and the X-rays from the sun are totally blocked by the moon. During the total eclipse of July 22nd, 2009, the Indian Centre for Space Physics conducted a VLF campaign to obtain the signal from a dozen of places in the Indian sub-continent. Six of these locations gave very good and noise-free data. In some of these data, the signal amplitude is found to be higher than that at non-eclipse condition, while in some other places, it is lower. We present the results of our campaign and give an interpretation of the results using the Long Wavelength Propagation Capability (LWPC) code in a perturbed waveguide both for the easterly and westerly propagation paths.

  9. A Simple Radio Receiver Aids Understanding of Wireless Communication

    ERIC Educational Resources Information Center

    Straulino, S.; Orlando, A.

    2012-01-01

    The basic theory of radio broadcasting is discussed from an experimental point of view. First, concepts like wave modulation and tuning are explained with the use of instruments in the physics laboratory. Then, a very basic radio receiver is described and assembled, whose most important feature, like in the old "crystal radios", is the absence of…

  10. Ultra wideband surface wave communications

    NASA Astrophysics Data System (ADS)

    Lacomb, Julie Anne

    Ultra Wideband (UWB), an impulse carrier waveform, was applied at HF-VHF frequencies to utilize surface wave propagation. UWB involves the propagation of transient pulses rather than continuous waves which makes the system easier to implement, inexpensive, low power and small. Commercial UWB for wireless personal area networks is 3.1 to 10.6 GHz band as approved by the FCC with ranges up to 12 ft. The use of surface wave propagation (instead of commercial SHF UWB) extends the communication range. Surface wave is a means of propagation where the wave is guided by the surface of the Earth. Surface wave is efficient at low frequencies, VLF to HF. The UWB HF channel was modeled and also experimentally characterized. The Federal Communications Commission (FCC) defines UWB as a signal with either a fractional bandwidth of 20% of the center frequency or a bandwidth of 500MHz. Designing an antenna to operate over the 20% bandwidth requirement of UWB is one of the greatest challenges. Two different antenna designs are presented, a spoke top antenna and a traveling wave antenna with photonic bandgap. These designs were implemented at the commercial UWB frequencies (3.1--10.6 GHz) due to availability of modeling tools for the higher frequencies, the reduced antenna size and the availability of measurement facilities. The spoke top was optimum for replication of the time domain input signal. The traveling wave antenna with photonic bandgap demonstrated increased impedance bandwidth of the antenna.

  11. VLF Signal Anomalies during the Earthquacke preparation phase

    NASA Astrophysics Data System (ADS)

    NAIT Amor, S.; Omari, T.

    2016-12-01

    In this contribution we will present a new results on the VLF signal anomalies related to the earthquacke. The technic of the Sun Rise Terminator (SRT) effect is adopted. The importance of this study is that the earthquack center was at 50 km from the receiver allowing the analysis of many Transmitters to receiver paths. Our resullts show that the SRT moved toward nightimte a days before the earthquacke. We also examined the time difference between two successive SRT observed on NAA-Algiers path where one correspond to the terminator passage through the receiver region and the second far from it which can be used as a reference. The SRT time difference results confirmed the SRT displacement.

  12. Project Radio JOVE: Hands-On Radio Astronomy for the Classroom

    NASA Astrophysics Data System (ADS)

    Thieman, J. R.; Higgins, C. A.

    2000-10-01

    Radio Jove is a relatively new educational project to involve secondary school students in collecting and analyzing observations of the natural radio emissions of the planet Jupiter and the Sun. Participating students get hands-on experience in gathering and working with space science data. They obtain the data by either building a radio receiver and antenna and making observations with their equipment, or by remotely using professional radio telescopes through the web. They can then compare their results with other schools who had also observed and come to conclusions concerning the nature of the radio sources and how the radio waves propagate to Earth. Thus, they fully follow the method of scientific inquiry used by radio astronomers to study our solar system. (National Science Content Standard A: Science as Inquiry) More than 200 kits have been distributed thus far to schools and individuals as a result of the project. With the coming Cassini flyby of Jupiter we will be advocating a campaign in which many of the schools involved in the project will be observing at times of scientific interest. While Galileo and Cassini are monitoring Jovian radio emissions at lower frequencies, the schools will be observing at frequencies of 20.1 MHz (kit-based observations) or the frequencies available through the professional radio telescopes connected on-line. The aim will be to get a thorough picture of the levels of activity at Jupiter during the flyby period and how the radio signals are received at different observing stations around the world. An archive of observations submitted by the schools will be maintained at Goddard Space Flight Center and there will also be an archive of the professional telescopes data at the University of Florida. We hope that many students will have the feeling of being a part of the planetary exploration program as a result.

  13. Very exceptional cases of VLF/LF ionospheric perturbations for deep oceanic earthquakes offshore the Japan island

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Hiroki; Hayakawa, Masashi

    2015-12-01

    It is so far believed that ionospheric perturbations as detected by subionospheric VLF/LF (very low frequency/low frequency) propagation, are generated above and around the earthquake (EQ) epicenter. This paper presents very rare cases, which are in complete contrast to the above fact. We have found that in extremely rare cases when EQs happened (i) in the Pacific Ocean or (ii) offshore the Soya cape (Hokkaido) both with very large depths (300-400 km), corresponding ionospheric perturbations take place far away from the EQ epicenter and above the regions with considerable seismic intensity at the time of each EQ. Two EQs happened in the Torishima area of Izu islands (magnitude ∼7 and depth ∼400 km), and corresponding seismic intensity was observed in the Tokyo and Ibaraki districts. Our VLF data have indicated that the ionospheric perturbation takes place over such regions with high seismic intensity. Another group is two EQs (magnitude ∼5) offshore the Soya cape of Hokkaido, and the spatial distribution of seismic intensity at the time of each EQ is just around Aomori prefecture. VLF data have indicated the ionospheric perturbations taken place over the same Aomori area, which is in complete coincidence with the spatial distribution of seismic intensity. As a conclusion, these exceptional examples are, in principle, very similar to the concept of 'selectivity' (or sensitive zone) of geoelectric measurement by the Greek group, and we try to interpret these cases in the context of lithosphere-atmosphere-ionosphere coupling.

  14. Need a Classroom Stimulus? Introduce Radio Astronomy

    ERIC Educational Resources Information Center

    Derman, Samuel

    2010-01-01

    Silently, invisibly, ceaselessly, our planet Earth is showered by radio waves from every direction and from every region of space. This radio energy originates in our solar system, throughout the Milky Way galaxy, and far beyond, out to the remotest reaches of the universe. Detecting and unraveling the origins of these invisible signals is what…

  15. Wideband spectrum analysis of ultra-high frequency radio-wave signals due to advanced one-phonon non-collinear anomalous light scattering.

    PubMed

    Shcherbakov, Alexandre S; Arellanes, Adan Omar

    2017-04-20

    We present a principally new acousto-optical cell providing an advanced wideband spectrum analysis of ultra-high frequency radio-wave signals. For the first time, we apply a recently developed approach with the tilt angle to a one-phonon non-collinear anomalous light scattering. In contrast to earlier cases, now one can exploit a regime with the fixed optical wavelength for processing a great number of acoustic frequencies simultaneously in the linear regime. The chosen rutile-crystal combines a moderate acoustic velocity with low acoustic attenuation and allows us wide-band data processing within GHz-frequency acoustic waves. We have created and experimentally tested a 6-cm aperture rutile-made acousto-optical cell providing the central frequency 2.0 GHz, frequency bandwidth ∼0.52  GHz with the frequency resolution about 68.3 kHz, and ∼7620 resolvable spots. A similar cell permits designing an advanced ultra-high-frequency arm within a recently developed multi-band radio-wave acousto-optical spectrometer for astrophysical studies. This spectrometer is intended to operate with a few parallel optical arms for processing the multi-frequency data flows within astrophysical observations. Keeping all the instrument's advantages of the previous schematic arrangement, now one can create the highest-frequency arm using the developed rutile-based acousto-optical cell. It permits optimizing the performances inherent in that arm via regulation of both the central frequency and the frequency bandwidth for spectrum analysis.

  16. Charcateristics of Plasma Waves Excited During Gas Release and Plasma Injection Into The Ionosphere

    NASA Astrophysics Data System (ADS)

    Klos, Z.; Gdalevich, G. L.; Mikhailov, I.

    Waves in broad frequency range are generated during the injection of fast plasma as well as release of neutral gas into ionosphere from the spacecraft. The excited wave modes depend on the environmental plasma parameters, geometry of injection as well as on the rate of ionisation of plasma in the stream. The neutral xenon gas was released from the board of the ACTIVE satellite (in 1989) and parallel with the release process the VLF as well as HF waves were diagnosed. On the other hand the xenon plasma from gun generator was injected into the ionosphere from the board of APEX satellite (in 1991) and also broad frequency range of emission was registered. In the present paper are compared the plasma waves characteristics observed in these two types of experiments.

  17. From Radio to X-rays--Some 'Real' Electrical Applications.

    ERIC Educational Resources Information Center

    Freeman, J. C.

    1986-01-01

    Describes practical applications related to X-rays, ultra-violet radiation, light radiation, short-wave infra-red radiation, medium-wave infra-red radiation, long-wave infra-red radiation, microwave radiation, and radio frequency radiation. Suggests that these applications be used during instruction on electricity. (JN)

  18. World War II Radar and Early Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Smith, G.

    2005-08-01

    The pattern of radio astronomy which developed in Europe and Australia followed closely the development of metre wave radar in World War II. The leading pioneers, Ryle, Lovell, Hey and Pawsey, were all in radar research establishments in the UK and Australia. They returned to universities, recruited their colleagues into research groups and immediately started on some basic observations of solar radio waves, meteor echoes, and the galactic background. There was at first little contact with conventional astronomers. This paper traces the influence of the radar scientists and of several types of radar equipment developed during WW II, notably the German Wurzburg, which was adapted for radio research in several countries. The techniques of phased arrays and antenna switching were used in radar and aircraft installations. The influence of WW II radar can be traced at least up to 10 years after the War, when radio astronomy became accepted as a natural discipline within astronomy.

  19. A Study of Solar Flare Effects on Mid and High Latitude Radio Wave Propagation using SuperDARN.

    NASA Astrophysics Data System (ADS)

    Ruohoniemi, J. M.; Chakraborty, S.; Baker, J. B.

    2017-12-01

    Over the Horizon (OTH) communication is strongly dependent on the state of the ionosphere, which is sensitive to solar X-ray flares. The Super Dual Auroral Radar Network (SuperDARN), whose working principle is dependent on trans-ionospheric radio communication, uses HF radio waves to remotely sense the ionosphere. The backscatter returns from the terrestrial surface (also known as ground-scatter) transit the ionosphere four times and simulate the operation of an HF communications link. SuperDARN backscatter signal properties are altered (strongly attenuated and changes apparent phase) during a sudden ionospheric disturbance following a solar flare, commonly known as Short-Wave Fadeout or SWF. During an SWF the number of SuperDARN backscatter echoes drops suddenly (≈1 min) and sharply, often to near zero, and recovers within 30 minutes to an hour. In this study HF propagation data (SuperDARN backscatter) obtained during SWF events are analyzed for the purpose of validating and improving the performance of HF absorption models, such as, Space Weather Prediction Center (SWPC) D-region Absorption model (DRAP) and CCMC physics based AbbyNormal model. We will also present preliminary results from a physics based model for the mid and high latitude ionospheric response to flare-driven space weather anomalies, which can be used to estimate different physical parameters of the ionosphere such as electron density, collision frequency, absorption coefficients, response time of D-region etc.

  20. ELF-VLF communications through-the-Earth

    NASA Astrophysics Data System (ADS)

    Buettner, H. M.; Burke, G. J.; Didwall, E. M.; Holladay, G.; Lytle, R. J.

    1985-06-01

    We use computer models and experiments to explore the feasibility of communication between points underground and on the Earth's surface. Emphasis is placed on ELF-VLF electromagnetic propagation through the Earth; nominally, we investigated propagation in the 200 Hz-30 kHz frequency range. The computer modeling included calculations of the fields of a point electric or magnetic source in a homogeneous half space or a stratified Earth. Initial results for an insulated antenna of finite length are also considered. The experiments involved through-the-Earth transmissions at two locations in Pennsylvania, both of which had large formations of limestone. Initial results indicate that information rates as high as kbits/s may be possible for subsurface depths of 300 m or less. Accuracy of these estimates depends on the electromagnetic propagation constants of the rock, the noise characteristics, and modulation scheme. Although a nuisance for evaluating through-the-Earth propagation, the existence of subsurface metal conductors can improve the transmission character of the site.

  1. Source Regions of the Type II Radio Burst Observed During a CME-CME Interaction on 2013 May 22

    NASA Technical Reports Server (NTRS)

    Makela, P.; Gopalswamy, N.; Reiner, M. J.; Akiyama, S.; Krupar, V.

    2016-01-01

    We report on our study of radio source regions during the type II radio burst on 2013 May 22 based on direction finding analysis of the Wind/WAVES and STEREO/WAVES (SWAVES) radio observations at decameter-hectometric wavelengths. The type II emission showed an enhancement that coincided with the interaction of two coronal mass ejections (CMEs) launched in sequence along closely spaced trajectories. The triangulation of the SWAVES source directions posited the ecliptic projections of the radio sources near the line connecting the Sun and the STEREO-A spacecraft. The WAVES and SWAVES source directions revealed shifts in the latitude of the radio source, indicating that the spatial location of the dominant source of the type II emission varies during the CME-CME interaction. The WAVES source directions close to 1MHz frequencies matched the location of the leading edge of the primary CME seen in the images of the LASCO/C3 coronagraph. This correspondence of spatial locations at both wavelengths confirms that the CME-CME interaction region is the source of the type II enhancement. Comparison of radio and white-light observations also showed that at lower frequencies scattering significantly affects radio wave propagation.

  2. Astronomers Win Protection for Key Part of Radio Spectrum

    NASA Astrophysics Data System (ADS)

    2000-06-01

    Astronomers using the millimeter-wave region of the radio spectrum have won crucial protection for their science. Dedicated allocations for radio astronomy have been given final approval by the 2,500 delegates to the World Radiocommunication Conference (WRC-00), which recently concluded a month of deliberations in Istanbul, Turkey. Radio services can transmit in these parts of the spectrum as long as they don't hinder astronomers' attempts to catch faint signals from the cosmos. The new allocations represent the culmination of more than three years of cooperative planning by radio astronomers in many countries. Millimeter waves -- high-frequency radio waves -- have come of age as an astronomical tool in the last ten years. They are one of the last technological frontiers for astronomers. WRC-00 has protected for science all the frequencies between 71 and 275 Gigahertz (GHz) that radio astronomers currently use, adding more than 90 GHz of spectrum to the 44 GHz already set aside in this frequency range. As a result, radio astronomy is now allocated most of the frequencies between 71 and 275 GHz that can get through the Earth's atmosphere. "We have formal access to all three atmospheric 'windows', apart from their very edges," said Dr. Tom Gergely of the National Science Foundation, one of the U.S. delegates to WRC-00. The WRC also changed most of the frequencies allocated to satellite downlinks within the 71-275 GHz range to frequencies not used for science. Since no satellites yet operate at these high frequencies, no equipment needs to be altered. "Commercial technologies are just starting to develop above 50 GHz," said Dr. Klaus Ruf, Chairman of the Inter-Union Commission for the Allocation of Frequencies. "The WRC's actions mean that, when they are, radio astronomers should be able to share this part of the spectrum with most terrestrial services." The World Radiocommunication Conference is held every two or three years. Here member countries of the

  3. ULF radio monitoring network in a seismic area

    NASA Astrophysics Data System (ADS)

    Toader, Victorin; Moldovan, Iren-Adelina; Ionescu, Constantin; Marmureanu, Alexandru

    2017-04-01

    ULF monitoring is a part of a multidisciplinary network (AeroSolSys) located in Vrancea (Curvature Carpathian Mountains). Four radio receivers (100 kHz - microwave) placed on faults in a high seismic area characterized by deep earthquakes detect fairly weak radio waves. The radio power is recorded in correlation with many other parameters related to near surface low atmosphere phenomena (seismicity, solar radiation, air ionization, electromagnetic activity, radon, CO2 concentration, atmospheric pressure, telluric currents, infrasound, seismo-acoustic emission, meteorological information). We follow variations in the earth's surface propagate radio waves avoiding reflection on ionosphere. For this reason the distance between stations is less than 60 km and the main source of emission is near (Bod broadcasting transmitter for long- and medium-wave radio, next to Brasov city). In the same time tectonic stress affects the radio propagation in air and it could generates ULF waves in ground (LAI coupling). To reduce the uncertainty is necessary to monitor a location for extended periods of time to outline local and seasonal fluctuations. Solar flares do not affect seismic activity but they produce disturbances in telecommunications networks and power grids. Our ULF monitoring correlated with two local magnetometers does not indicate this so far with our receivers. Our analysis was made during magnetic storms with Kp 7 and 8 according to NOAA satellites. To correlate the results we implemented an application that monitors the satellite EUTELSAT latency compared to WiMAX land communication in the same place. ULF band radio monitoring showed that our receiver is dependent on temperature and that it is necessary to introduce a band pass filter in data analysis. ULF data acquisition is performed by Kinemetrics and National Instruments digitizers with a sampling rate of 100 Hz in Miniseed format and then converted into text files with 1 Hz rate for analysis in very low

  4. Inversion of airborne tensor VLF data using integral equations

    NASA Astrophysics Data System (ADS)

    Kamm, Jochen; Pedersen, Laust B.

    2014-08-01

    The Geological Survey of Sweden has been collecting airborne tensor very low frequency data (VLF) over several decades, covering large parts of the country. The data has been an invaluable source of information for identifying conductive structures that can among other things be related to water-filled fault zones, wet sediments that fill valleys or ore mineralizations. Because the method only uses two differently polarized plane waves of very similar frequency, vertical resolution is low and interpretation is in most cases limited to maps that are directly derived from the data. Occasionally, 2-D inversion is carried out along selected profiles. In this paper, we present for the first time a 3-D inversion for tensor VLF data in order to further increase the usefulness of the data set. The inversion is performed using a non-linear conjugate gradient scheme (Polak-Ribière) with an inexact line-search. The gradient is obtained by an algebraic adjoint method that requires one additional forward calculation involving the adjoint system matrix. The forward modelling is based on integral equations with an analytic formulation of the half-space Green's tensor. It avoids typically required Hankel transforms and is particularly amenable to singularity removal prior to the numerical integration over the volume elements. The system is solved iteratively, thus avoiding construction and storage of the dense system matrix. By using fast 3-D Fourier transforms on nested grids, subsequently farther away interactions are represented with less detail and therefore with less computational effort, enabling us to bridge the gap between the relatively short wavelengths of the fields (tens of metres) and the large model dimensions (several square kilometres). We find that the approximation of the fields can be off by several per cent, yet the transfer functions in the air are practically unaffected. We verify our code using synthetic calculations from well-established 2-D methods, and

  5. System and method for phase retrieval for radio telescope and antenna control

    NASA Technical Reports Server (NTRS)

    Dean, Bruce H. (Inventor)

    2013-01-01

    Disclosed herein are systems, methods, and non-transitory computer-readable storage media for radio phase retrieval. A system practicing the method gathers first data from radio waves associated with an object observed via a first aperture, gathers second data from radio waves associated with the object observed via an introduced second aperture associated with the first aperture, generates reduced noise data by incoherently subtracting the second data from the first data, and performs phase retrieval for the radio waves by modeling the reduced noise data using a single Fourier transform. The first and second apertures are at different positions, such as side by side. This approach can include determining a value Q which represents a ratio of wavelength times a focal ratio divided by pixel spacing. This information can be used to accurately measure and correct alignment errors or other optical system flaws in the apertures.

  6. Amateur Planetary Radio Data Archived for Science and Education: Radio Jove

    NASA Astrophysics Data System (ADS)

    Thieman, J.; Cecconi, B.; Sky, J.; Garcia, L. N.; King, T. A.; Higgins, C. A.; Fung, S. F.

    2015-12-01

    The Radio Jove Project is a hands-on educational activity in which students, teachers, and the general public build simple radio telescopes, usually from a kit, to observe single frequency decameter wavelength radio emissions from Jupiter, the Sun, the galaxy, and the Earth usually with simple dipole antennas. Some of the amateur observers have upgraded their receivers to spectrographs and their antennas have become more sophisticated as well. The data records compare favorably to more sophisticated professional radio telescopes such as the Long Wavelength Array (LWA) and the Nancay Decametric Array. Since these data are often carefully calibrated and recorded around the clock in widely scattered locations they represent a valuable database useful not only to amateur radio astronomers but to the professional science community as well. Some interesting phenomena have been noted in the data that are of interest to the professionals familiar with such records. The continuous monitoring of radio emissions from Jupiter could serve as useful "ground truth" data during the coming Juno mission's radio observations of Jupiter. Radio Jove has long maintained an archive for thousands of Radio Jove observations, but the database was intended for use by the Radio Jove participants only. Now, increased scientific interest in the use of these data has resulted in several proposals to translate the data into a science community data format standard and store the data in professional archives. Progress is being made in translating Radio Jove data to the Common Data Format (CDF) and also in generating new observations in that format as well. Metadata describing the Radio Jove data would follow the Space Physics Archive Search and Extract (SPASE) standard. The proposed archive to be used for long term preservation would be the Planetary Data System (PDS). Data sharing would be achieved through the PDS and the Paris Astronomical Data Centre (PADC) and the Virtual Wave Observatory (VWO

  7. Radio Frequency Interference: Radio Astronomy's Biggest Enemy

    NASA Astrophysics Data System (ADS)

    Acevedo, F.; Ghosh, Tapasi

    1997-12-01

    As technology progresses, the demand for the usage of the electromagnetic spectrum increases with it. The development is so fast and prolific that clean band space for passive users such as Radio Astronomy is becoming ever so scarce. Even though, several spectral bands have been protected for Radio Astronomy by Federal Communication Commission (in the USA) under the recommendations of the International Telecommunication Union (ITU), pressure for making more spectral space commercially usable is extreme. Although these commercial usages make our modern living at all possible, often the extreme vulnerability of passive users are are not fully appreciated, resulting in unwanted emissions (RFI) in the Radio Astronomy Bands. Another source of RFI is the fact that many of the electronic devices used in the observatories themselves generate radio waves. If proper precautions are not taken, these can be received back through the Radio Telescope itself. This problem is referred to as internal RFI. The focus of this paper is the search and diminution of internal RFI in the Arecibo Observatory in Arecibo, Puerto Rico. Using a simple setup of a log-periodic antenna and a Spectrum Analyzer, spectra spanning a frequency range of 100 - 1800 MHZ were recorded in some areas of the Observatory and the new Visitor Center (AOVEF). The measurements disclosed sources of radio emission among some of the digital electronic equipment in the Equipment room and a few displays in the AOVEF. Most prominent of these was a 2.5 MHz comb spanning the entire range of the measurements emitted from the SRENDIP and AOFTM machines. The respective groups were informed and corrective shielding & isolations were implemented immediately. In AOVEF, three displays, some audio-visual equipment, and video/digital cameras used by the visitors were found to be "leaky". In future, the use of such cameras will be prohibited and the exhibits will be screened appropriately.

  8. Response of the mid-latitude D-region ionosphere to the total solar eclipse of 22 July 2009 studied using VLF signals in South Korean peninsula

    NASA Astrophysics Data System (ADS)

    Phanikumar, D. V.; Kwak, Y.-S.; Patra, A. K.; Maurya, A. K.; Singh, Rajesh; Park, S.-M.

    2014-09-01

    In this paper, we analyze VLF signals received at Busan to study the the D-region changes linked with the solar eclipse event of 22 July 2009 for very short (∼390 km) transmitter-receiver great circle path (TRGCP) during local noon time 00:36-03:13 UT (09:36-12:13 KST). The eclipse crossed south of Busan with a maximum obscuration of ∼84%. Observations clearly show a reduction of ∼6.2 dB in the VLF signal strength at the time of maximum solar obscuration (84% at 01:53 UT) as compared to those observed on the control days. Estimated values of change in Wait ionospheric parameters: reflection height (h‧) in km and inverse scale height parameter (β) in km-1 from Long Wave Propagation Capability (LWPC) model during the maximum eclipse phase as compared to unperturbed ionosphere are 7 km and 0.055 km-1, respectively. Moreover, the D-region electron density estimated from model computation shows 95% depletion in electron density at the height of ∼71 km. The reflection height is found to increase by ∼7 km in the D-region during the eclipse as compared to those on the control days, implying a depletion in the Lyman-α flux by a factor of ∼7. The present observations are discussed in the light of current understanding on the solar eclipse induced D-region dynamics.

  9. Radio polarisation measurements of meteor trail echoes with BRAMS

    NASA Astrophysics Data System (ADS)

    Lamy, H.; Ranvier, S.; Anciaux, M.; Calders, S.; De Keyser, J.; Gamby, E.

    2012-04-01

    BRAMS, the Belgian RAdio Meteor Stations, is a network of radio receiving stations using forward scatter techniques to detect and characterize meteors. The transmitter is a dedicated beacon located in Dourbes in the south-west of Belgium. It emits towards the zenith a purely sinusoidal wave circularly polarised, at a frequency of 49.97 MHz and with a power of 150 watts. The main goals of the project are to compute meteoroid flux rates and trajectories. Most receiving stations are using a 3 element Yagi antenna and are therefore only sensitive to one polarisation. The station located in Uccle has also a crossed 3 element Yagi antenna and therefore allows measurements of horizontal and vertical polarisations. We present the preliminary radio polarisation measurements of meteor trail echoes and compare them with the theoretical predictions of Jones & Jones (1991) for oblique scattering of radio waves from meteor trails.

  10. Electron density increases due to Lightning activity as deduced from LWPC code and VLF signal perturbations.

    NASA Astrophysics Data System (ADS)

    Samir, Nait Amor; Bouderba, Yasmina

    VLF signal perturbations in association with thunderstorm activity appear as changes in the signal amplitude and phase. Several papers reported on the characteristics of thus perturbations and their connection to the lightning strokes amplitude and polarity. In this contribution, we quantified the electrons density increases due to lightning activity by the use of the LWPC code and VLF signal perturbations parameters. The method is similar to what people did in studying the solar eruptions effect. the results showed that the reference height (h') decreased to lower altitudes (between 70 and 80 km). From the LWPC code results the maximum of the electron density was then deduced. Therefore, a numerical simulation of the atmospheric species times dependences was performed to study the recovery times of the electrons density at different heights. The results showed that the recovery time last for several minutes and explain the observation of long recovery Early signal perturbations.

  11. Air shower measurements with the LOPES radio antenna array

    NASA Astrophysics Data System (ADS)

    Lopes Collaboration; Haungs, A.; Apel, W. D.; Arteaga, J. C.; Asch, T.; Auffenberg, J.; Badea, F.; Bähren, L.; Bekk, K.; Bertaina, M.; Biermann, P. L.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Brüggemann, M.; Buchholz, P.; Buitink, S.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; di Pierro, F.; Doll, P.; Engel, R.; Falcke, H.; Finger, M.; Fuhrmann, D.; Gemmeke, H.; Ghia, P. L.; Glasstetter, R.; Grupen, C.; Heck, D.; Hörandel, J. R.; Horneffer, A.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Kickelbick, D.; Kolotaev, Y.; Krömer, O.; Kuijpers, J.; Lafebre, S.; Łuczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Navarra, G.; Nehls, S.; Nigl, A.; Oehlschläger, J.; Over, S.; Petcu, M.; Pierog, T.; Rautenberg, J.; Rebel, H.; Roth, M.; Saftoiu, A.; Schieler, H.; Schmidt, A.; Schröder, F.; Sima, O.; Singh, K.; Stümpert, M.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Walkowiak, W.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.; Zensus, J. A.; LOPES Collaboration

    2009-06-01

    LOPES is set up at the location of the KASCADE-Grande extensive air shower experiment in Karlsruhe, Germany and aims to measure and investigate radio pulses from extensive air showers. Since radio waves suffer very little attenuation, radio measurements allow the detection of very distant or highly inclined showers. These waves can be recorded day and night, and provide a bolometric measure of the leptonic shower component. LOPES is designed as a digital radio interferometer using high bandwidths and fast data processing and profits from the reconstructed air shower observables of KASCADE-Grande. The LOPES antennas are absolutely amplitude calibrated allowing to reconstruct the electric field strength which can be compared with predictions from detailed Monte-Carlo simulations. We report about the analysis of correlations present in the radio signals measured by the LOPES 30 antenna array. Additionally, LOPES operates antennas of a different type (LOPESSTAR) which are optimized for an application at the Pierre Auger Observatory. Status, recent results of the data analysis and further perspectives of LOPES and the possible large scale application of this new detection technique are discussed.

  12. Groundwater resources evaluation in calcareous limestone using geoelectrical and VLF-EM surveys (El Salloum Basin, Egypt)

    NASA Astrophysics Data System (ADS)

    Zarif, Fardous; Slater, Lee; Mabrouk, Mohamed; Youssef, Ahmed; Al-Temamy, Ayman; Mousa, Salah; Farag, Karam; Robinson, Judy

    2018-01-01

    Understanding and developing groundwater resources in arid regions such as El Salloum basin, along the northwestern coast of Egypt, remains a challenging issue. One-dimensional (1D) electrical sounding (ES), two-dimensional (2D) electrical resistivity imaging (ERI), and very low frequency electromagnetic (VLF-EM) measurements were used to investigate the hydrogeological framework of El Salloum basin with the aim of determining the potential for extraction of potable water. 1D resistivity sounding models were used to delineate geoelectric sections and water-bearing layers. 2D ERI highlighted decreases in resistivity with depth, attributed to clay-rich limestone combined with seawater intrusion towards the coast. A depth of investigation (DOI) index was used to constrain the information content of the images at depths up to 100 m. The VLF-EM survey identified likely faults/fractured zones across the study area. A combined analysis of the datasets of the 1D ES, 2D ERI, and VLF-EM methods identified potential zones of groundwater, the extent of seawater intrusion, and major hydrogeological structures (fracture zones) in El Salloum basin. The equivalent geologic layers suggest that the main aquifer in the basin is the fractured chalky limestone middle Miocene) south of the coastal plain of the study area. Sites likely to provide significant volumes of potable water were identified based on relatively high resistivity and thickness of laterally extensive layers. The most promising locations for drilling productive wells are in the south and southeastern parts of the region, where the potential for potable groundwater increases substantially.

  13. Groundwater resources evaluation in calcareous limestone using geoelectrical and VLF-EM surveys (El Salloum Basin, Egypt)

    NASA Astrophysics Data System (ADS)

    Zarif, Fardous; Slater, Lee; Mabrouk, Mohamed; Youssef, Ahmed; Al-Temamy, Ayman; Mousa, Salah; Farag, Karam; Robinson, Judy

    2018-06-01

    Understanding and developing groundwater resources in arid regions such as El Salloum basin, along the northwestern coast of Egypt, remains a challenging issue. One-dimensional (1D) electrical sounding (ES), two-dimensional (2D) electrical resistivity imaging (ERI), and very low frequency electromagnetic (VLF-EM) measurements were used to investigate the hydrogeological framework of El Salloum basin with the aim of determining the potential for extraction of potable water. 1D resistivity sounding models were used to delineate geoelectric sections and water-bearing layers. 2D ERI highlighted decreases in resistivity with depth, attributed to clay-rich limestone combined with seawater intrusion towards the coast. A depth of investigation (DOI) index was used to constrain the information content of the images at depths up to 100 m. The VLF-EM survey identified likely faults/fractured zones across the study area. A combined analysis of the datasets of the 1D ES, 2D ERI, and VLF-EM methods identified potential zones of groundwater, the extent of seawater intrusion, and major hydrogeological structures (fracture zones) in El Salloum basin. The equivalent geologic layers suggest that the main aquifer in the basin is the fractured chalky limestone middle Miocene) south of the coastal plain of the study area. Sites likely to provide significant volumes of potable water were identified based on relatively high resistivity and thickness of laterally extensive layers. The most promising locations for drilling productive wells are in the south and southeastern parts of the region, where the potential for potable groundwater increases substantially.

  14. Numerical simulations of particle acceleration and low frequency radio emission in stellar environments

    NASA Astrophysics Data System (ADS)

    Paraskevi Moschou, Sofia; Sokolov, Igor; Cohen, Ofer; Drake, Jeremy J.; Borovikov, Dmitry; Alvarado-Gomez, Julian D.; Garraffo, Cecilia

    2018-06-01

    Due to their favorable atmospheric window radio waves are a useful tool for ground-based observations of astrophysical systems throughout a plethora of scales, from cosmological down to planetary ones. A wide range of physical mechanisms, from thermal processes to eruptive events linked to magnetic reconnection, can generate emission in radio frequencies. Radio waves have the distinct characteristic that they follow curved paths as they propagate in stratified environments, such as the solar corona, due to their dependence on the refraction index. Low frequency radio rays in particular are affected the most by refraction.Solar radio observations are of particular importance, since it is possible to spatially resolve the Sun and its corona and gain insights on highly dynamic and complex radio-emitting phenomena. The multi-scale problem of particle acceleration and energy partition between CMEs, flares and SEPs requires both MHD and kinetic considerations to account for the emission and mass propagation through the interplanetary space.Radio observations can play a significant role in the rapidly developing area of exoplanetary research and provide insights on the stellar environments of those systems. Even though a large number of flares has been observed for different stellar types, nevertheless there is a lack of stellar CME observations. Currently, the most promising method to incontrovertibly observe stellar CMEs is through Type II radio bursts. Low frequency radio emission can also be produced by the interaction of a magnetized planet with the stellar wind of the host star.The above mentioned characteristics of radio-waves make their integration into numerical simulations imperative for capturing and disentangling the complex radio emitting processes along the actual radio paths and provide the observers with detection limits for future Earth- and space-based missions. Radio synthetic imaging tools incorporated in realistic computational codes are already

  15. Zero-Power Radio Device.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brocato, Robert W.

    This report describes an unpowered radio receiver capable of detecting and responding to weak signals transmit ted from comparatively long distances . This radio receiver offers key advantages over a short range zero - power radio receiver previously described in SAND2004 - 4610, A Zero - Power Radio Receiver . The device described here can be fabricated as an integrated circuit for use in portable wireless devices, as a wake - up circuit, or a s a stand - alone receiver operating in conjunction with identification decoders or other electroni cs. It builds on key sub - components developed atmore » Sandia National Laboratories over many years. It uses surface acoustic wave (SAW) filter technology. It uses custom component design to enable the efficient use of small aperture antennas. This device uses a key component, the pyroelectric demodulator , covered by Sandia owned U.S. Patent 7397301, Pyroelectric Demodulating Detector [1] . This device is also described in Sandia owned U.S. Patent 97266446, Zero Power Receiver [2].« less

  16. Peering through Jupiter’s clouds with radio spectral imaging

    NASA Astrophysics Data System (ADS)

    de Pater, Imke; Sault, R. J.; Butler, Bryan; DeBoer, David; Wong, Michael H.

    2016-06-01

    Radio wavelengths can probe altitudes in Jupiter’s atmosphere below its visible cloud layers. We used the Very Large Array to map this unexplored region down to ~8 bar, ~100 kilometers below the visible clouds. Our maps reveal a dynamically active planet at pressures less than 2 to 3 bar. A radio-hot belt exists, consisting of relatively transparent regions (a low ammonia concentration, NH3 being the dominant source of opacity) probing depths to over ~8 bar; these regions probably coincide with 5-micrometer hot spots. Just to the south we distinguish an equatorial wave, bringing up ammonia gas from Jupiter’s deep atmosphere. This wave has been theorized to produce the 5-micrometer hot spots; we observed the predicted radio counterpart of such hot spots.

  17. Nonlinear plasma experiments in geospace with gigawatts of RF power at HAARP

    NASA Astrophysics Data System (ADS)

    Sheerin, J. P.; Cohen, Morris B.

    2015-12-01

    The ionosphere is the ionized uppermost layer of our atmosphere (from 70 - 500 km altitude) where free electron densities yield peak critical frequencies in the HF (3 - 30 MHz) range. The ionosphere thus provides a quiescent plasma target, stable on timescales of minutes, for a whole host of active plasma experiments. High power RF experiments on ionospheric plasma conducted in the U.S. have been reported since 1970. The largest HF transmitter built to date is the HAARP phased-array HF transmitter near Gakona, Alaska which can deliver up to 3.6 Gigawatts (ERP) of CW RF power in the range of 2.8 - 10 MHz to the ionosphere with microsecond pointing, power modulation, and frequency agility. With an ionospheric background thermal energy in the range of only 0.1 eV, this amount of power gives access to the highest regimes of the nonlinearity (RF intensity to thermal pressure) ratio. HAARP's unique features have enabled the conduct of a number of unique nonlinear plasma experiments in the interaction region of overdense ionospheric plasma including generation of artificial aurorae, artificial ionization layers, VLF wave-particle interactions in the magnetosphere, parametric instabilities, stimulated electromagnetic emissions (SEE), strong Langmuir turbulence (SLT) and suprathermal electron acceleration. Diagnostics include the Modular UHF Ionospheric Radar (MUIR) sited at HAARP, the SuperDARN-Kodiak HF radar, spacecraft radio beacons, HF receivers to record stimulated electromagnetic emissions (SEE) and telescopes and cameras for optical emissions. We report on short timescale ponderomotive overshoot effects, artificial field-aligned irregularities (AFAI), the aspect angle dependence of the intensity of the HF-enhanced plasma line, and production of suprathermal electrons. One of the primary missions of HAARP, has been the generation of ELF (300 - 3000 Hz) and VLF (3 - 30 kHz) radio waves which are guided to global distances in the Earth-ionosphere waveguide. We review

  18. Wide Field Radio Transient Surveys

    NASA Astrophysics Data System (ADS)

    Bower, Geoffrey

    2011-04-01

    The time domain of the radio wavelength sky has been only sparsely explored. Nevertheless, serendipitous discovery and results from limited surveys indicate that there is much to be found on timescales from nanoseconds to years and at wavelengths from meters to millimeters. These observations have revealed unexpected phenomena such as rotating radio transients and coherent pulses from brown dwarfs. Additionally, archival studies have revealed an unknown class of radio transients without radio, optical, or high-energy hosts. The new generation of centimeter-wave radio telescopes such as the Allen Telescope Array (ATA) will exploit wide fields of view and flexible digital signal processing to systematically explore radio transient parameter space, as well as lay the scientific and technical foundation for the Square Kilometer Array. Known unknowns that will be the target of future transient surveys include orphan gamma-ray burst afterglows, radio supernovae, tidally-disrupted stars, flare stars, and magnetars. While probing the variable sky, these surveys will also provide unprecedented information on the static radio sky. I will present results from three large ATA surveys (the Fly's Eye survey, the ATA Twenty CM Survey (ATATS), and the Pi GHz Survey (PiGSS)) and several small ATA transient searches. Finally, I will discuss the landscape and opportunities for future instruments at centimeter wavelengths.

  19. A Millimeter-Wave Digital Link for Wireless MRI

    PubMed Central

    Aggarwal, Kamal; Joshi, Kiran R.; Rajavi, Yashar; Taghivand, Mazhareddin; Pauly, John M.; Poon, Ada S. Y.; Scott, Greig

    2017-01-01

    A millimeter (mm) wave radio is presented in this work to support wireless MRI data transmission. High path loss and availability of wide bandwidth make mm-waves an ideal candidate for short range, high data rata communication required for wireless MRI. The proposed system uses a custom designed integrated chip (IC) mm-wave radio with 60 GHz as radio frequency carrier. In this work, we assess performance in a 1.5 T MRI field, with the addition of optical links between the console room and magnet. The system uses ON-OFF keying (OOK) modulation for data transmission and supports data rates from 200 Mb/s to 2.5 Gb/s for distances up-to 65 cm. The presence of highly directional, linearly polarized, on-chip dipole antennas on the mm-wave radio along with the time division multiplexing (TDM) circuitry allows multiple wireless links to be created simultaneously with minimal inter-channel interference. This leads to a highly scalable solution for wireless MRI. PMID:27810803

  20. A Millimeter-Wave Digital Link for Wireless MRI.

    PubMed

    Aggarwal, Kamal; Joshi, Kiran R; Rajavi, Yashar; Taghivand, Mazhareddin; Pauly, John M; Poon, Ada S Y; Scott, Greig

    2017-02-01

    A millimeter (mm) wave radio is presented in this work to support wireless MRI data transmission. High path loss and availability of wide bandwidth make mm-waves an ideal candidate for short range, high data rata communication required for wireless MRI. The proposed system uses a custom designed integrated chip (IC) mm-wave radio with 60 GHz as radio frequency carrier. In this work, we assess performance in a 1.5 T MRI field, with the addition of optical links between the console room and magnet. The system uses ON-OFF keying (OOK) modulation for data transmission and supports data rates from 200 Mb/s to 2.5 Gb/s for distances up-to 65 cm. The presence of highly directional, linearly polarized, on-chip dipole antennas on the mm-wave radio along with the time division multiplexing (TDM) circuitry allows multiple wireless links to be created simultaneously with minimal inter-channel interference. This leads to a highly scalable solution for wireless MRI.

  1. Electron beam injection during active experiments. I - Electromagnetic wave emissions

    NASA Technical Reports Server (NTRS)

    Winglee, R. M.; Kellogg, P. J.

    1990-01-01

    The wave emissions produced in Echo 7 experiment by active injections of electron beams were investigated to determine the properties of the electromagnetic and electrostatic fields for both the field-aligned and cross-field injection in such experiments and to evaluate the sources of free energy and relative efficiencies for the generation of the VLF and HF emissions. It is shown that, for typical beam energies in active experiments, electromagnetic effects do not substantially change the bulk properties of the beam, spacecraft charging, and plasma particle acceleration. Through simulations, beam-generated whistlers; fundamental z-mode and harmonic x-mode radiation; and electrostatic electron-cyclotron, upper-hybrid, Langmuir, and lower-hybrid waves were identified. The characteristics of the observed wave spectra were found to be sensitive to both the ratio of the electron plasma frequency to the cyclotron frequency and the angle of injection relative to the magnetic field.

  2. 47 CFR 32.2231 - Radio systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... costs. This account shall also include the original cost of earth stations and spare parts, material or..., amplification, propagation, reception, modulation, and demodulation of radio waves in free space over which...

  3. The February 15 2011 CME-CME interaction and possibly associated radio emission

    NASA Astrophysics Data System (ADS)

    Magdalenic, Jasmina; Temmer, Manuela; Krupar, Vratislav; Marque, Christophe; Veronig, Astrid; Eastwood, Jonathan

    2017-04-01

    On February 15, 2011 a particular, continuum-like radio emission was observed by STEREO WAVES and WIND WAVES spacecraft. The radio event appeared to be associated with the complex interaction of two coronal mass ejections (CMEs) successively launched (February 14 and February 15) from the same active region. Although the CME-CME interaction was widely studied (e.g. Temmer et al., 2014, Maricic et al., 2014, Mishra & Srivastava, 2014) none of the analyses confirmed an association with the continuum-like radio emission. The usual method of establishing temporal coincidence of radio continuum and a CME-CME interaction is not applicable in this event due to a complex and long-lasting interaction of the CMEs. Therefore, we performed radio triangulation studies (see also Magdalenic et al., 2014) which provided us with the 3D source positions of the radio emission. Comparison of the positions of radio sources and the reconstructed positions of the interacting CMEs, shows that the source position of the continuum-like radio emission is about 0.5 AU away from the interacting CMEs. We can therefore concluded that, in this event, the continuum-like emission is not the radio signature of the CME-CME interaction.

  4. Coordinated Radio, Electron, and Waves Experiment (CREWE) for the NASA Comet Rendezvous and Asteroid Flyby (CRAF) instrument

    NASA Technical Reports Server (NTRS)

    Scudder, Jack D.

    1992-01-01

    The Coordinated Radio, Electron, and Waves Experiment (CREWE) was designed to determine density, bulk velocity and temperature of the electrons for the NASA Comet Rendezvous and Asteroid Flyby Spacecraft, to define the MHD-SW IMF flow configuration; to clarify the role of impact ionization processes, to comment on the importance of anomalous ionization phenomena (via wave particle processes), to quantify the importance of wave turbulence in the cometary interaction, to establish the importance of photoionization via the presence of characteristic lines in a structured energy spectrum, to infer the presence and grain size of significant ambient dust column density, to search for the theoretically suggested 'impenetrable' contact surface, and to quantify the flow of heat (in the likelihood that no surface exists) that will penetrate very deep into the atmosphere supplying a good deal of heat via impact and charge exchange ionization. This final report provides an instrument description, instrument test plans, list of deliverables/schedule, flight and support equipment and software schedule, CREWE accommodation issues, resource requirements, status of major contracts, an explanation of the non-NASA funded efforts, status of EIP and IM plan, descope options, and Brinton questions.

  5. Atmospheric Gravity Waves (AGWs) as the driver of seismo-ionospheric coupling: recent major earthquakes of Nepal and Imphal - case study

    NASA Astrophysics Data System (ADS)

    Chakraborty, Suman; Chakrabarti, Sandip Kumar; Sasmal, Sudipta

    2016-07-01

    An important channel of the lithosphere-atmosphere-ionosphere coupling (LAIC) is the acoustic and gravity wave channel where the atmospheric gravity waves (AGW) play the most important part. Atmospheric waves are excited due to seismic gravitational vibrations before earthquakes and their effects on the atmosphere are the sources for seismo-ionospheric coupling which are manifested as perturbations in Very Low Frequency (VLF)/Low Frequency (LF) signal (amplitude/phase). For our study, we chose the recent major earthquakes that took place in Nepal and Imphal. The Nepal earthquake occurred on 12th May, 2015 at 12:50 pm local time (07:05 UTC) with Richter scale magnitude of M = 7.3 and depth 10 km (6.21 miles) at southeast of Kodari. The Imphal earthquake occurred on 4th January, 2016 at 4:35 am local time (23:05 UTC , 3rd January, UTC) with Richter scale magnitude of M = 6.7 and depth 55 km (34.2 miles). The data has been collected from Ionospheric and Earthquake Research Centre (IERC) of Indian Centre for Space Physics (ICSP) transmitted from JJI station of Japan. We performed both Fast Fourier Transform (FFT) and wavelet analysis on the VLF data for a couple of days before and after the major earthquakes. For both earthquakes, we observed wave like structures with periods of almost an hour before and after the earthquake day. The wave like oscillations after the earthquake may be due to the aftershock effects. We also observed that the amplitude of the wave like structures depends on the location of the epicenter between the transmitting and the receiving points and also on the depth of the earthquake.

  6. Overview of Solar Radio Bursts and their Sources

    NASA Astrophysics Data System (ADS)

    Golla, Thejappa; MacDowall, Robert J.

    2018-06-01

    Properties of radio bursts emitted by the Sun at frequencies below tens of MHz are reviewed. In this frequency range, the most prominent radio emissions are those of solar type II, complex type III and solar type IV radio bursts, excited probably by the energetic electron populations accelerated in completely different environments: (1) type II bursts are due to non-relativistic electrons accelerated by the CME driven interplanetary shocks, (2) complex type III bursts are due to near-relativistic electrons accelerated either by the solar flare reconnection process or by the SEP shocks, and (3) type IV bursts are due to relativistic electrons, trapped in the post-eruption arcades behind CMEs; these relativistic electrons probably are accelerated by the continued reconnection processes occurring beneath the CME. These radio bursts, which can serve as the natural plasma probes traversing the heliosphere by providing information about various crucial space plasma parameters, are also an ideal instrument for investigating acceleration mechanisms responsible for the high energy particles. The rich collection of valuable high quality radio and high time resolution in situ wave data from the WAVES experiments of the STEREO A, STEREO B and WIND spacecraft has provided an unique opportunity to study these different radio phenomena and understand the complex physics behind their excitation. We have developed Monte Carlo simulation techniques to estimate the propagation effects on the observed characteristics of these low frequency radio bursts. We will present some of the new results and describe how one can use these radio burst observations for space weather studies. We will also describe some of the non-linear plasma processes detected in the source regions of both solar type III and type II radio bursts. The analysis and simulation techniques used in these studies will be of immense use for future space based radio observations.

  7. Harmonization based on regulatory science between scientific and commercial radio uses in a case of ultrawideband radio

    NASA Astrophysics Data System (ADS)

    Kohno, Ryuji; Iinatti, Jari; Sameshima, Keiko

    2016-12-01

    Harmonization for scientific and commercial radio uses is one of the unsolved problems in academia, industry, and regulatory bodies. The demands for commercial radio, mobile communications, and broadcasting have significantly increased over the past few decades; therefore, interference has become a major concern. There is an increasing need to prevent such interferences, for example, between commercial radio systems and other potentially sensitive radio systems such as those used for radio astronomy or studies. When discussing the fairness in resolving such conflicts, regulatory science may be a useful multidisciplinary approach as it scientifically investigates the advantages and disadvantages of a new application or technology for conflicts between different stakeholders through a mathematical analysis of risks versus benefits of the given technology. Such an analysis enables fair rules or regulations to be made. In this study, we apply the above-mentioned concept to harmonize the scientific and commercial uses of radio. After a brief introduction to regulatory science, a case study about the coexistence between ultrawideband commercial radio systems and radio astronomy is considered. Finally, a proposal by International Union of Radio Science, Japan, to the Science Council of Japan in the Cabinet Office to establish a "Center for Coexistence and Harmonization of Scientific and Commercial Uses of Radio Waves" is explained.

  8. Accurate Modeling of Ionospheric Electromagnetic Fields Generated by a Low Altitude VLF Transmitter

    DTIC Science & Technology

    2009-03-31

    AFRL-RV-HA-TR-2009-1055 Accurate Modeling of Ionospheric Electromagnetic Fields Generated by a Low Altitude VLF Transmitter ...m (or even 500 m) at mid to high latitudes . At low latitudes , the FDTD model exhibits variations that make it difficult to determine a reliable...Scientific, Final 3. DATES COVERED (From - To) 02-08-2006 – 31-12-2008 4. TITLE AND SUBTITLE Accurate Modeling of Ionospheric Electromagnetic Fields

  9. Full PIC simulations of solar radio emission

    NASA Astrophysics Data System (ADS)

    Sgattoni, A.; Henri, P.; Briand, C.; Amiranoff, F.; Riconda, C.

    2017-12-01

    Solar radio emissions are electromagnetic (EM) waves emitted in the solar wind plasma as a consequence of electron beams accelerated during solar flares or interplanetary shocks such as ICMEs. To describe their origin, a multi-stage model has been proposed in the 60s which considers a succession of non-linear three-wave interaction processes. A good understanding of the process would allow to infer the kinetic energy transfered from the electron beam to EM waves, so that the radio waves recorded by spacecraft can be used as a diagnostic for the electron beam.Even if the electrostatic problem has been extensively studied, full electromagnetic simulations were attempted only recently. Our large scale 2D-3V electromagnetic PIC simulations allow to identify the generation of both electrostatic and EM waves originated by the succession of plasma instabilities. We tested several configurations varying the electron beam density and velocity considering a background plasma of uniform density. For all the tested configurations approximately 105 of the electron-beam kinetic energy is transfered into EM waves emitted in all direction nearly isotropically. With this work we aim to design experiments of laboratory astrophysics to reproduce the electromagnetic emission process and test its efficiency.

  10. Radio-over-fiber system with octuple frequency optical millimeter-wave signal generation using dual-parallel Mach-Zehnder modulator based on four-wave mixing in semiconductor optical amplifier

    NASA Astrophysics Data System (ADS)

    Zhou, Hui; Zeng, Yuting; Chen, Ming; Shen, Yunlong

    2018-03-01

    We have proposed a scheme of radio-over-fiber (RoF) system employing a dual-parallel Mach-Zehnder modulator (DP-MZM) based on four-wave mixing (FWM) in a semiconductor optical amplifier (SOA). In this scheme, the pump and the signal are generated by properly adjusting the direct current bias, modulation index of the DP-MZM, and the phase difference between the sub-MZMs. Because of the pump and the signal deriving from the same optical wave, the polarization states of the two lightwaves are copolarized. The single-pump FWM is polarization insensitive. After FWM and optical filtering, the optical millimeter-wave with octuple frequency is generated. About 40-GHz RoF system with a 2.5-Gbit / s signal is implemented by numerical simulation; the result shows that it has a good performance after the signal is transmitted over 40-km single-mode fiber. Then, the effects of the SOA's injection current and the carrier-to-sideband ratio on the system performance are discussed by simulation, and the optimum value for the system is obtained.

  11. Types of propagation of radio waves of the decameter range, according to observations by the OBS method on Cuba--Soviet Union paths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berdeyans, D.; Bocharov, V.I.; Lobachevskii, L.A.

    Ionosphere observations by the OBS method were performed to study ionospheric conditions under which radio waves in the decameter range propagate on Cuba--Soviet Union paths. The results of observations in the summer of 1973 are reported. The distance--frequency and distance--time characteristics of back-scattered signals in the sounding direction for each day of observation are discussed. (JFP)

  12. The D-Region Ionospheric Response to the 2017 Solar Eclipse

    NASA Astrophysics Data System (ADS)

    Cohen, M.; McCormick, J.; Gross, N. C.; Higginson-Rollins, M. A.

    2017-12-01

    VLF/LF radio remote sensing (0.5-500 kHz) is an effective means for quantifying the D-region ionosphere (60-90 km altitude). Disturbances in the ionospheric electron density induce changes in the propagation of VLF/LF signals, so a network of transmitters and receivers can effectively "image" a disturbed region. VLF/LF signals can all be detected from 100s-1000s of km away. We utilize Georgia Tech's network of highly-sensitive VLF/LF receivers to quantify the lower ionospheric response to the "Great American Eclipse". Nine of these were deployed and operational across the Continental US, Alaska and Puerto Rico all operated successfully. Each receiver synchronously recorded the full radio spectrum between 0.5-470 kHz. The included figure shows the eclipse track at 80 km altitude with a green swath. The nine operational receivers are shown with blue stars, and operational VLF/LF transmitters in dark red. Gray lines are shown for each great-circle path linking a VLF/LF transmitter to a receiver. This constellation forms a dense spider's-web grid of radio links, with which we can effectively image the disturbed patch of the D-region ionosphere as it moves across the country. In addition, shown in yellow are NDGPS transmitters which lie between 285-325 kHz. The red dots are the 230,000 geolocated lightning strokes during the 90-mintue eclipse pass, each of which emitted an intense VLF/LF impulse. These are also detected by our receivers. We present our observations and comparison with a theoretical model, using a combination of three techniques established by a series of three 2017 journal papers: (1) Polarization measurements of VLF/LF transmitter signals, (2) Lightning-generated VLF sferics detected 1000s of km away, and (3) NDGPS beacons near 300 kHz for shorter-range sounding of a small patch of the ionosphere. We find evidence of large scale ionospheric changes which affect the D-region over the entire continental region with a slowly-varying signal perturbation

  13. VLF emissions and whistlers observed during geomagnetic storms

    NASA Technical Reports Server (NTRS)

    Ondoh, T.; Tanaka, Y.; Nishizaki, R.; Nagayama, M.

    1974-01-01

    Whistler-triggered emissions and a narrowband hiss are described which were observed over Japan by ISIS 2 during the main phase of the geomagnetic storm of August 9, 1972. The characteristics of the narrowband hiss and increases in the whistler rate during the storm are discussed, and the ISIS-2 data are compared with data on whistler cutoffs and VLF noise breakups obtained by OGO 4 and Alouette I. Since the whistlers and narrowband hiss are usually observed inside and outside the plasmapause, it is thought that the plasmapause may have been located near the low-latitude end of the narrowband hiss during the main phase of the storm. It is suggested that the increases in the whistler rate may have been caused by the formation of whistler ducts in the disturbed plasmapause.

  14. The Darmstadt VLF/LF radiophysical station VADar. First observations of terminator times

    NASA Astrophysics Data System (ADS)

    Maurer, Ch.; Meister, C.-V.; Dziendziel, P.; Endres, M.; Hoffmann, D. H. H.

    2012-04-01

    Since 2011, based on the knowledge of the Bari, Graz, and Moscow members of the International Network for Frontier Research on Earthquake Precursors INFREP, a new VLF/LF radiophysical receiver called VADar (VLF Antenna Darmstadt), is being under construction at the Darmstadt University of Technology. VADar uses the UltraMSK software for measuring phases and amplitudes of MSK-modulated signals with carrier frequencies up to 96 kHz. This is the double frequency range in comparison with usual UltraMSK-facilities. The time signals are taken from a GPS receiver with precision of one puls per second. It is foreseen to store the data on a FTP-server available to all INFREP members. Since December 2011, first reliable observations of phases and amplitudes of signals sent by the transmitters NRK, ICV, ITS, HWU, and FTA are made using VADar. The first analysis of the dependence of the yet small amount of data on the daytime was initiated. As the terminator times are clearly to be seen in the data blocks, it is supposed that, in future, the VADar station will be useful for the general geophysical system of earthquake prediction. It is planned to compare modifications of signals propagating at the same time above seismo-active and non-seismic regions. Numerical programmes for the data analysis are under development.

  15. Space weather effects on lower ionosphere: First investigation from Bharati station during 34th Indian scientific expedition to Antarctica

    NASA Astrophysics Data System (ADS)

    Guha, Anirban; Saha, Kumarjit; De, Barin Kumar; Subrahmanyam, Kandula Venkata; Shreedevi, P. R.

    2017-04-01

    We investigate the solar flare effects on the D-region of the ionosphere with the help of VLF (Very Low Frequency) radio waves using a portable E-field system from Antarctica during the summer period of 34th Indian scientific expedition. Two GPS time synchronized VLF receivers, one located at Bharati, Antarctica (geographical latitude 69.40°S, longitude 76.18°E) and another located at Tripura, India (geographical latitude 23.84°N, longitude 91.28°E) were operated simultaneously to infer common mode changes in the lower ionosphere for a number of solar flares events. The two systems constantly monitored the carrier amplitude and phase of the MSK (Minimum Shift Keying) modulated navy transmitter located in Australia (Callsign: NWC, 19.8 kHz, geographical latitude 21.88°S, longitude 114.13°E), around 5.6 Mm great circle distance from the two receivers. The results are interpreted in terms of Earth-ionosphere wave-guide characteristics. A Long Wave Propagation Capability (LWPC) model study is also performed to infer the changes in the daytime electron density in polar D-region ionosphere during the solar flares. The exponential fit of the modeled electron density change with average X-ray flux change shows an excellent correlation (R2 value 0.95). The exponential fit is utilized to infer the daytime electron density change in the polar ionosphere during solar flare events. The analyses indicate that small solar flares of class 'C' can be very effectively detected with the portable antenna system even if the receiver is located in polar coastal region compared to equatorial region. The expedition results also demonstrate the feasibility of using portable VLF receivers from the coastal stations for monitoring the polar lower ionosphere from Antarctica and open up new opportunities for long term exploration.

  16. Quasi-relativistic electron precipitation due to interactions with coherent VLF waves in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Chang, H. C.; Inan, U. S.

    1983-01-01

    The equations of motion for the cyclotron resonance interaction between coherent whistler mode waves and energetic particles are rederived with the inclusion of relativistic effects. The pitch angle scattering of the near-loss-cone quasi-relativistic electrons trapped in the magnetosphere is studied using a test particle method employing these relativistic equations, and the precipitated energy spectrum due to the wave-induced perturbations of a full distribution of particles is computed. Results show that the full width at half maximum peak width of the rms scattering pattern of the near-loss-cone particles would give an upper bound to the peak width of the associated precipitated energy spectrum under the conditions of moderate wave intensities in the low L shell region. In addition, it is found that the peak widths are within the upper limit values measured by recent satellite experiments. It is concluded that interactions of inner radiation belt particles with monochromatic waves could produce precipitated fluxes with relatively sharp spectral widths, and that therefore the L-dependent narrow peaks observed by low altitude satellite particle detectors could be caused by such interactions.

  17. Variations of the VLF/LF signals during seismic activity in Japan in November 2016

    NASA Astrophysics Data System (ADS)

    Rozhnoi, Alexander; Solovieva, Maria; Levin, Boris; Chebrov, Danila; Hayakawa, Masashi; Fedun, Viktor

    2017-04-01

    The measurements of the very low and low frequency (VLF/LF) signals at the Petropavlovsk-Kamchatsky and Yuzhno-Sakhalinsk stations were used for the analysis in connection with two underwater earthquakes which occurred near Japan in November 2016. The first earthquake with M=6.1 (depth 42 km) happened on 11 November. The second earthquake was recorded on 21 November with M=6.9 (depth 11 km) and had series of aftershocks with M up to 5.6 (USGS/NEIC). The significant negative nighttime amplitude anomalies were found for two sub-ionospheric paths: NWC-Petropavlovsk-Kamchatsky and JJY-Yuzhno-Sakhalinsk during about a week in case of the first earthquake. The anomalies of signal in the path JJY-Petropavlovsk-Kamchatsky were observed during 4-5 days before the second earthquake and during 3 days after it. Taking into account the possible influence of other factors which can produce perturbations in VLF/LF signals (geomagnetic storm, proton burst and the relativistic electron fluxes, as well as atmospheric parameters), also using control paths, we may conclude that observed anomalies very likely were caused by impending earthquakes.

  18. Enabling technologies for millimeter-wave radio-over-fiber systems in next generation heterogeneous mobile access networks

    NASA Astrophysics Data System (ADS)

    Zhang, Junwen; Yu, Jianjun; Wang, Jing; Xu, Mu; Cheng, Lin; Lu, Feng; Shen, Shuyi; Yan, Yan; Cho, Hyunwoo; Guidotti, Daniel; Chang, Gee-kung

    2017-01-01

    Fifth-generation (5G) wireless access network promises to support higher access data rate with more than 1,000 times capacity with respect to current long-term evolution (LTE) systems. New radio-access-technologies (RATs) based on higher carrier frequencies to millimeter-wave (MMW) radio-over-fiber, and carrier-aggregation (CA) using multi-band resources are intensively studied to support the high data rate access and effectively use of frequency resources in heterogeneous mobile network (Het-Net). In this paper, we investigate several enabling technologies for MMW RoF systems in 5G Het-Net. Efficient mobile fronthaul (MFH) solutions for 5G centralized radio access network (C-RAN) and beyond are proposed, analyzed and experimentally demonstrated based on the analog scheme. Digital predistortion based on memory polynomial for analog MFH linearization are presented with improved EVM performances and receiver sensitivity. We also propose and experimentally demonstrate a novel inter-/intra- RAT CA scheme for 5G Het- Net. The real-time standard 4G-LTE signal is carrier-aggregated with three broadband 60GHz MMW signals based on proposed optical-domain band-mapping method. RATs based on new waveforms have also been studied here to achieve higher spectral-efficiency (SE) in asynchronous environments. Full-duplex asynchronous quasi-gapless carrier aggregation scheme for MMW ROF inter-/intra-RAT based on the FBMC is also presented with 4G-LTE signals. Compared with OFDM-based signals with large guard-bands, FBMC achieves higher spectral-efficiency with better EVM performance at less received power and smaller guard-bands.

  19. Theory of Type 3 and Type 2 Solar Radio Emissions

    NASA Technical Reports Server (NTRS)

    Robinson, P. A.; Cairns, I. H.

    2000-01-01

    The main features of some current theories of type III and type II bursts are outlined. Among the most common solar radio bursts, type III bursts are produced at frequencies of 10 kHz to a few GHz when electron beams are ejected from solar active regions, entering the corona and solar wind at typical speeds of 0.1c. These beams provide energy to generate Langmuir waves via a streaming instability. In the current stochastic-growth theory, Langmuir waves grow in clumps associated with random low-frequency density fluctuations, leading to the observed spiky waves. Nonlinear wave-wave interactions then lead to secondary emission of observable radio waves near the fundamental and harmonic of the plasma frequency. Subsequent scattering processes modify the dynamic radio spectra, while back-reaction of Langmuir waves on the beam causes it to fluctuate about a state of marginal stability. Theories based on these ideas can account for the observed properties of type III bursts, including the in situ waves and the dynamic spectra of the radiation. Type 11 bursts are associated with shock waves propagating through the corona and interplanetary space and radiating from roughly 30 kHz to 1 GHz. Their basic emission mechanisms are believed to be similar to those of type III events and radiation from Earth's foreshock. However, several sub-classes of type II bursts may exist with different source regions and detailed characteristics. Theoretical models for type II bursts are briefly reviewed, focusing on a model with emission from a foreshock region upstream of the shock for which observational evidence has just been reported.

  20. Four Decades of Space-Borne Radio Sounding

    NASA Technical Reports Server (NTRS)

    Benson, Robert F.

    2010-01-01

    A review is given of the 38 rocket, satellite, and planetary payloads dedicated to ionospheric/magnetospheric radio sounding since 1961. Between 1961 and 1995, eleven sounding-rocket payloads from four countries evolved from proof-of-concept flights to sophisticated instruments. Some involved dual payloads, with the sounder transmitter on one and the sounder receiver on the other. The rocket sounders addressed specific space-plasma-wave questions, and provided improved measurements of ionospheric electron-density (N(sub e)) field-aligned irregularities (FAI). Four countries launched 12 ionospheric topside-sounder satellites between 1962 and 1994, and an ionospheric sounder was placed on the Mir Space Station in 1998. Eleven magnetospheric radio sounders, most of the relaxation type, were launched from 1977 to 2000. The relaxation sounders used low-power transmitters, designed to stimulate plasma resonances for accurate local Ne determinations. The latest magnetospheric sounder designed for remote sensing incorporated long antennas and digital signal processing techniques to overcome the challenges posed by low Ne values and large propagation distances. Three radio sounders from three countries were included on payloads to extraterrestrial destinations from 1990 to 2003. The scientific accomplishments of space-borne radio sounders included (1) a wealth of global N(sub e) information on the topside ionosphere and magnetosphere, based on vertical and magnetic-field-aligned N(sub e) profiles; (2) accurate in-situ N(sub e) values, even under low-density conditions; and (3) fundamental advances in our understanding of the excitation and propagation of plasma waves, which have even led to the prediction of a new plasma-wave mode.