Sample records for void formation due

  1. Void formation in INCONEL MA-754 by high temperature oxidation

    NASA Astrophysics Data System (ADS)

    Rosenstein, Alan H.; Tien, John K.; Nix, William D.

    1986-01-01

    Subsurface void formation in oxide dispersion strengthened MA-754 caused by high temperature oxidation was investigated at temperatures of 1100, 1150, and 1200 °C for times of 1, 10, 50, and 100 hours. Material exposed at 1200 °C was examined using microprobe, SEM, and optical microscopy techniques. After exposure in air at 1200 °C for 100 hours, chromium depletion by as much as 10 wt pct was observed near the surface, and voids of various sizes up to 15 µm in diameter were found to depths of 300 µm. The fraction of voids increases with exposure time and, with the exception of anomalous values near the surface, decreases with depth. The maximum area fraction of voids observed was approximately 8 pct. Correlation of the void area fraction profile with the measured chromium depletion through a diffusion analysis shows that void formation is due to vacancy injection. Similar void formation in Ni-Cr alloys without oxide dispersions suggests that void formation is not dependent upon the presence of oxide dispersions. The diffusion coefficient for chromium in MA-754 at 1200 °C was computed from microprobe data to be 4 × 10-10 cm2 per second.

  2. An initial study of void formation during solidification of aluminum in normal and reduced-gravity

    NASA Technical Reports Server (NTRS)

    Chiaramonte, Francis P.; Foerster, George; Gotti, Daniel J.; Neumann, Eric S.; Johnston, J. C.; De Witt, Kenneth J.

    1992-01-01

    Void formation due to volumetric shrinkage during aluminum solidification was observed in real time using a radiographic viewing system in normal and reduced gravity. An end chill directional solidification furnace with water quench was developed to solidify aluminum samples during the approximately 16 seconds of reduced gravity (+/- 0.02g) achieved by flying an aircraft through a parabolic trajectory. Void formation was recorded for two cases: first a nonwetting system; and second, a wetting system where wetting occurs between the aluminum and crucible lid. The void formation in the nonwetting case is similar in normal and reduced gravity, with a single vapor cavity forming at the top of the crucible. In the wetting case in reduced gravity, surface tension causes two voids to form in the top corners of the crucible, but in normal gravity only one large voids forms across the top.

  3. Hot spot formation and chemical reaction initiation in shocked HMX crystals with nanovoids: a large-scale reactive molecular dynamics study.

    PubMed

    Zhou, Tingting; Lou, Jianfeng; Zhang, Yangeng; Song, Huajie; Huang, Fenglei

    2016-07-14

    We report million-atom reactive molecular dynamic simulations of shock initiation of β-cyclotetramethylene tetranitramine (β-HMX) single crystals containing nanometer-scale spherical voids. Shock induced void collapse and subsequent hot spot formation as well as chemical reaction initiation are observed which depend on the void size and impact strength. For an impact velocity of 1 km s(-1) and a void radius of 4 nm, the void collapse process includes three stages; the dominant mechanism is the convergence of upstream molecules toward the centerline and the downstream surface of the void forming flowing molecules. Hot spot formation also undergoes three stages, and the principal mechanism is kinetic energy transforming to thermal energy due to the collision of flowing molecules on the downstream surface. The high temperature of the hot spot initiates a local chemical reaction, and the breakage of the N-NO2 bond plays the key role in the initial reaction mechanism. The impact strength and void size have noticeable effects on the shock dynamical process, resulting in a variation of the predominant mechanisms leading to void collapse and hot spot formation. Larger voids or stronger shocks result in more intense hot spots and, thus, more violent chemical reactions, promoting more reaction channels and generating more reaction products in a shorter duration. The reaction products are mainly concentrated in the developed hot spot, indicating that the chemical reactivity of the hmx crystal is greatly enhanced by void collapse. The detailed information derived from this study can aid a thorough understanding of the role of void collapse in hot spot formation and the chemical reaction initiation of explosives.

  4. Thermal modeling using enthalpy methods to aid in the study of microstructural changes of multilayered phase change optical memories

    NASA Astrophysics Data System (ADS)

    Nagpal, Swati; Aurora, Aradhna

    1999-11-01

    In DOW type of phase change optical memories the focus has been mainly on gestate based systems due to their good overwriting capability and very high order cyclability. To avoid the material deterioration problems such as material flow, high melting point, high viscosity or high-density components such as CrTe, (which have the same refractive index) can be added to the active layer. This has led to an improved performance of overwrite cycles from 105 to 106. Material flow occurs due to void formation. Voids and sinks are formed due to porosity of the active layer because the active layer has a density lower than that of the bulk material. One of the reasons for the formation and coalescence of voids is the way in which the film is deposited viz. Sputtering which makes Ar atoms accumulate in the films during deposition. Also the mechanical strength of the protective layer effects the repeatability of the active layer. All the above mentioned processes occur during melting and re- solidification of the nano-sized spots which are laser irradiated. Since the structure of the protective layers is very important in controlling the void formation, it is very important to study the thermal modeling of the full layer structure.

  5. Spectra of galaxies in the Case Low-Dispersion Sky Survey in the direction of the Bootes void

    NASA Technical Reports Server (NTRS)

    Weistrop, Donna; Downes, Ronald A.

    1988-01-01

    A sample of 34 galaxies selected from the Case Low-Dispersion Northern Sky Survey in the direction of the Bootes void. Emission-line redshifts were obtained for 33 objects; the spectrum of the thirty-fourth galaxy contains no obvious features. Three of the emission-line galaxies are lcoated within the boundaries of the Bootes void, including one not previously reported. To date, all the galaxies discovered in the void have emission-line spectra. Although more than half the galaxies in the sample are fainter than M(B) = -21.0 mag, all five of the galaxies that were detected by IRAS are brighter than M(B) = 21.5 mag. The relative strengths of the emission lines in most of the galaxies, including those in the void, indicate the lines are excited by photoionization due to young, hot O and B stars. Possible causes for the star formation occurring in these galaxies include interaction with nearby galaxies, star formation induced by nuclear activity, and/or recent development of physical conditions required for star formation.

  6. Defect and void evolution in oxide dispersion strengthened ferritic steels under 3.2 MeV Fe + ion irradiation with simultaneous helium injection

    NASA Astrophysics Data System (ADS)

    Kim, I.-S.; Hunn, J. D.; Hashimoto, N.; Larson^1, D. L.; Maziasz, P. J.; Miyahara, K.; Lee, E. H.

    2000-08-01

    In an attempt to explore the potential of oxide dispersion strengthened (ODS) ferritic steels for fission and fusion structural materials applications, a set of ODS steels with varying oxide particle dispersion were irradiated at 650°C, using 3.2 MeV Fe + and 330 keV He + ions simultaneously. The void formation mechanisms in these ODS steels were studied by juxtaposing the response of a 9Cr-2WVTa ferritic/martensitic steel and solution annealed AISI 316LN austenitic stainless steel under the same irradiation conditions. The results showed that void formation was suppressed progressively by introducing and retaining a higher dislocation density and finer precipitate particles. Theoretical analyses suggest that the delayed onset of void formation in ODS steels stems from the enhanced point defect recombination in the high density dislocation microstructure, lower dislocation bias due to oxide particle pinning, and a very fine dispersion of helium bubbles caused by trapping helium atoms at the particle-matrix interfaces.

  7. An investigation of voids formation mechanisms and their effects on freeze and thaw processes of lithium and lithium fluoride

    NASA Technical Reports Server (NTRS)

    El-Genk, Mohamed S.; Yang, Jae-Young

    1991-01-01

    The mechanisms of void formation during the cooldown and freezing of lithium coolant within the primary loop of SP-100 type systems are investigated. These mechanisms are: (1) homogeneous nucleation; (2) heterogeneous nucleation; (3) normal segregation of helium gas dissolved in liquid lithium; and (4) shrinkage of lithium during freezing. To evaluate the void formation potential due to segregation, a numerical scheme that couples the freezing and mass diffusion processes in both the solid and liquid regions is developed. The results indicated that the formation of He bubbles is unlikely by either homogeneous or heterogeneous nucleation during the cooldown process. However, homogeneous nucleation of He bubbles following the segregation of dissolved He in liquid lithium ahead of the solid-liquid interface is likely to occur. Results also show that total volume of He void is insignificant when compared to that of shrinkage voids. In viewing this, the subsequent research focuses on the effects of shrinkage void forming during freezing of lithium on subsequent thaw processes are investigated using a numerical scheme that is based on a single (solid/liquid) cell approach. The cases of lithium-fluoride are also investigated to show the effect of larger volume shrinkage upon freezing on the freeze and thaw processes. Results show that a void forming at the wall appreciably reduces the solid-liquid interface velocity, during both freeze and thaw, and causes a substantial rise in the wall temperature during thaw. However, in the case of Li, the maximum wall temperature was much lower than the melting temperature of PWC-11, which is used as the structure material in the SP-100 system. Hence, it is included that a formation of hot spots is unlikely during the startup or restart of the SP-100 system.

  8. Experimental study of void formation during aluminum solidification in reduced gravity. Ph.D. Thesis - Toledo Univ.

    NASA Technical Reports Server (NTRS)

    Chiaramonte, Francis Paul, III

    1993-01-01

    Void formation due to volumetric shrinkage and liquid/vapor reorientation during aluminum solidification was observed in real time by using a radiographic viewing system in normal and reduced gravity. An end-chill directional solidification furnace with water quench was designed and constructed to solidify aluminum samples during the approximately 16 sec of reduced gravity (+/-0.02g) achieved by flying an aircraft through a parabolic trajectory. In the first series of tests the aluminum was contained in a vacuum sealed, pyrolytic boron nitride crucible. An ullage space was present during each test. Void formation was recorded for two cases: a nonwetting system, and a wetting system where wetting occurred between the aluminum and the crucible lid. The void formation in the nonwetting case was similar in normal and reduced gravity, with a single vapor cavity forming at the top of the crucible. In the wetting case during reduced gravity surface tension caused two voids to form in the top corners of the crucible, but during normal gravity only one large void formed across the top. In the second series of tests the aluminum was contained in a pyrolytic boron nitride crucible that was placed in a stainless steel container and sealed in an environment of argon plus 4 percent hydrogen. An ullage space was present during each test. Void formation was recorded for two cases: a nonwetting system, and a wetting system where wetting occurred between the aluminum and one side wall and the lid. The void for nation in the nonwetting case was similar in normal and reduced gravity, with a single vapor cavity forming at the top of the crucible, although the meniscus became more convex in reduced gravity. In the wetting case the aluminum did not climb up the corners in 1g, and one large symmetric void resulted at the top when the aluminum had solidified. In the wetting case during reduced gravity the molten aluminum was drawn up the wetted wall and partially across the lid by a capillary underpressure; however, on the nonwetting wall the aluminum moved down. One void resulted along the nonwetting side of the container continuing to the top on the same side.

  9. Fluid outlet at the bottom of an in situ oil shale retort

    DOEpatents

    Hutchins, Ned M.

    1984-01-01

    Formation is excavated from within the boundaries of a retort site in formation containing oil shale for forming at least one retort level void extending horizontally across the retort site, leaving at least one remaining zone of unfragmented formation within the retort site. A production level drift is excavated below the retort level void, leaving a lower zone of unfragmented formation between the retort level void and the production level drift. A plurality of raises are formed between the production level drift and the retort level void for providing product withdrawal passages distributed generally uniformly across the horizontal cross section of the retort level void. The product withdrawal passages are backfilled with a permeable mass of particles. Explosive placed within the remaining zone of unfragmented formation above the retort level void is detonated for explosively expanding formation within the retort site toward at least the retort level void for forming a fragmented permeable mass of formation particles containing oil shale within the boundaries of the retort site. During retorting operations products of retorting are conducted from the fragmented mass in the retort through the product withdrawal passages to the production level void. The products are withdrawn from the production level void.

  10. Method for explosive expansion toward horizontal free faces for forming an in situ oil shale retort

    DOEpatents

    Ricketts, Thomas E.

    1980-01-01

    Formation is excavated from within a retort site in formation containing oil shale for forming a plurality of vertically spaced apart voids extending horizontally across different levels of the retort site, leaving a separate zone of unfragmented formation between each pair of adjacent voids. Explosive is placed in each zone, and such explosive is detonated in a single round for forming an in situ retort containing a fragmented permeable mass of formation particles containing oil shale. The same amount of formation is explosively expanded upwardly and downwardly toward each void. A horizontal void excavated at a production level has a smaller horizontal cross-sectional area than a void excavated at a lower level of the retort site immediately above the production level void. Explosive in a first group of vertical blast holes is detonated for explosively expanding formation downwardly toward the lower void, and explosive in a second group of vertical blast holes is detonated in the same round for explosively expanding formation upwardly toward the lower void and downwardly toward the production level void for forming a generally T-shaped bottom of the fragmented mass.

  11. Extended asymmetric hot region formation due to shockwave interactions following void collapse in shocked high explosive

    NASA Astrophysics Data System (ADS)

    Shan, Tzu-Ray; Wixom, Ryan R.; Thompson, Aidan P.

    2016-08-01

    In both continuum hydrodynamics simulations and also multimillion atom reactive molecular dynamics simulations of shockwave propagation in single crystal pentaerythritol tetranitrate (PETN) containing a cylindrical void, we observed the formation of an initial radially symmetric hot spot. By extending the simulation time to the nanosecond scale, however, we observed the transformation of the small symmetric hot spot into a longitudinally asymmetric hot region extending over a much larger volume. Performing reactive molecular dynamics shock simulations using the reactive force field (ReaxFF) as implemented in the LAMMPS molecular dynamics package, we showed that the longitudinally asymmetric hot region was formed by coalescence of the primary radially symmetric hot spot with a secondary triangular hot zone. We showed that the triangular hot zone coincided with a double-shocked region where the primary planar shockwave was overtaken by a secondary cylindrical shockwave. The secondary cylindrical shockwave originated in void collapse after the primary planar shockwave had passed over the void. A similar phenomenon was observed in continuum hydrodynamics shock simulations using the CTH hydrodynamics package. The formation and growth of extended asymmetric hot regions on nanosecond timescales has important implications for shock initiation thresholds in energetic materials.

  12. Three-dimensional simulations of void collapse in energetic materials

    NASA Astrophysics Data System (ADS)

    Rai, Nirmal Kumar; Udaykumar, H. S.

    2018-03-01

    The collapse of voids in porous energetic materials leads to hot-spot formation and reaction initiation. This work advances the current knowledge of the dynamics of void collapse and hot-spot formation using 3D reactive void collapse simulations in HMX. Four different void shapes, i.e., sphere, cylinder, plate, and ellipsoid, are studied. For all four shapes, collapse generates complex three-dimensional (3D) baroclinic vortical structures. The hot spots are collocated with regions of intense vorticity. The differences in the vortical structures for the different void shapes are shown to significantly impact the relative sensitivity of the voids. Voids of high surface area generate hot spots of greater intensity; intricate, highly contorted vortical structures lead to hot spots of corresponding tortuosity and therefore enhanced growth rates of reaction fronts. In addition, all 3D voids are shown to be more sensitive than their two-dimensional (2D) counterparts. The results provide physical insights into hot-spot formation and growth and point to the limitations of 2D analyses of hot-spot formation.

  13. Quantitative correlation between the void morphology of niobium-tin wires and their irreversible critical current degradation upon mechanical loading

    DOE PAGES

    Barth, Christian; Seeber, B.; Rack, A.; ...

    2018-04-26

    Understanding the critical current performance variation of Nb 3Sn superconducting wires under mechanical loading is a crucial issue for the design of next generation accelerator and fusion magnets. In these applications, the mechanical properties of the conductors may become a limiting factor due to the strong electro-magnetic forces resulting from the combination of large magnets and intense magnetic fields. In particular, the presence of voids in the superconducting filament structure, which are formed during the fabrication and the reaction heat treatment, determines localized stress concentrations and possibly the formation of cracks. In this work, we demonstrate a quantitative correlation betweenmore » the void morphology and the electro-mechanical limits measured on different Bronze route Nb 3Sn wires. Hot Isostatic Pressing (HIP) prior to the reaction heat treatment is utilized to partially eliminate the voids. The wires’ void distributions - with and without HIP treatment - are detected and statistically analyzed using high energy X-ray micro tomography. The stress concentration due to the shape and distribution of the voids as well as their impact on the electro-mechanical properties are determined through finite element method modeling. Lastly, the results are quantitatively correlated with the experimentally determined limits of the irreversible critical current degradation upon mechanical loading.« less

  14. Quantitative correlation between the void morphology of niobium-tin wires and their irreversible critical current degradation upon mechanical loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barth, Christian; Seeber, B.; Rack, A.

    Understanding the critical current performance variation of Nb 3Sn superconducting wires under mechanical loading is a crucial issue for the design of next generation accelerator and fusion magnets. In these applications, the mechanical properties of the conductors may become a limiting factor due to the strong electro-magnetic forces resulting from the combination of large magnets and intense magnetic fields. In particular, the presence of voids in the superconducting filament structure, which are formed during the fabrication and the reaction heat treatment, determines localized stress concentrations and possibly the formation of cracks. In this work, we demonstrate a quantitative correlation betweenmore » the void morphology and the electro-mechanical limits measured on different Bronze route Nb 3Sn wires. Hot Isostatic Pressing (HIP) prior to the reaction heat treatment is utilized to partially eliminate the voids. The wires’ void distributions - with and without HIP treatment - are detected and statistically analyzed using high energy X-ray micro tomography. The stress concentration due to the shape and distribution of the voids as well as their impact on the electro-mechanical properties are determined through finite element method modeling. Lastly, the results are quantitatively correlated with the experimentally determined limits of the irreversible critical current degradation upon mechanical loading.« less

  15. Quantitative correlation between the void morphology of niobium-tin wires and their irreversible critical current degradation upon mechanical loading.

    PubMed

    Barth, C; Seeber, B; Rack, A; Calzolaio, C; Zhai, Y; Matera, D; Senatore, C

    2018-04-26

    Understanding the critical current performance variation of Nb 3 Sn superconducting wires under mechanical loading is a crucial issue for the design of next generation accelerator and fusion magnets. In these applications, the mechanical properties of the conductors may become a limiting factor due to the strong electro-magnetic forces resulting from the combination of large magnets and intense magnetic fields. In particular, the presence of voids in the superconducting filament structure, which are formed during the fabrication and the reaction heat treatment, determines localized stress concentrations and possibly the formation of cracks. In this work, we demonstrate a quantitative correlation between the void morphology and the electro-mechanical limits measured on different Bronze route Nb 3 Sn wires. Hot Isostatic Pressing (HIP) prior to the reaction heat treatment is utilized to partially eliminate the voids. The wires' void distributions - with and without HIP treatment - are detected and statistically analyzed using high energy X-ray micro tomography. The stress concentration due to the shape and distribution of the voids as well as their impact on the electro-mechanical properties are determined through finite element method modeling. Finally, the results are quantitatively correlated with the experimentally determined limits of the irreversible critical current degradation upon mechanical loading.

  16. Extended asymmetric hot region formation due to shockwave interactions following void collapse in shocked high explosive

    DOE PAGES

    Shan, Tzu -Ray; Wixom, Ryan R.; Thompson, Aidan P.

    2016-08-01

    In both continuum hydrodynamics simulations and also multimillion atom reactive molecular dynamics simulations of shockwave propagation in single crystal pentaerythritol tetranitrate (PETN) containing a cylindrical void, we observed the formation of an initial radially symmetric hot spot. By extending the simulation time to the nanosecond scale, however, we observed the transformation of the small symmetric hot spot into a longitudinally asymmetric hot region extending over a much larger volume. Performing reactive molecular dynamics shock simulations using the reactive force field (ReaxFF) as implemented in the LAMMPS molecular dynamics package, we showed that the longitudinally asymmetric hot region was formed bymore » coalescence of the primary radially symmetric hot spot with a secondary triangular hot zone. We showed that the triangular hot zone coincided with a double-shocked region where the primary planar shockwave was overtaken by a secondary cylindrical shockwave. The secondary cylindrical shockwave originated in void collapse after the primary planar shockwave had passed over the void. A similar phenomenon was observed in continuum hydrodynamics shock simulations using the CTH hydrodynamics package. Furthermore, the formation and growth of extended asymmetric hot regions on nanosecond timescales has important implications for shock initiation thresholds in energetic materials.« less

  17. Extended asymmetric hot region formation due to shockwave interactions following void collapse in shocked high explosive

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shan, Tzu -Ray; Wixom, Ryan R.; Thompson, Aidan P.

    In both continuum hydrodynamics simulations and also multimillion atom reactive molecular dynamics simulations of shockwave propagation in single crystal pentaerythritol tetranitrate (PETN) containing a cylindrical void, we observed the formation of an initial radially symmetric hot spot. By extending the simulation time to the nanosecond scale, however, we observed the transformation of the small symmetric hot spot into a longitudinally asymmetric hot region extending over a much larger volume. Performing reactive molecular dynamics shock simulations using the reactive force field (ReaxFF) as implemented in the LAMMPS molecular dynamics package, we showed that the longitudinally asymmetric hot region was formed bymore » coalescence of the primary radially symmetric hot spot with a secondary triangular hot zone. We showed that the triangular hot zone coincided with a double-shocked region where the primary planar shockwave was overtaken by a secondary cylindrical shockwave. The secondary cylindrical shockwave originated in void collapse after the primary planar shockwave had passed over the void. A similar phenomenon was observed in continuum hydrodynamics shock simulations using the CTH hydrodynamics package. Furthermore, the formation and growth of extended asymmetric hot regions on nanosecond timescales has important implications for shock initiation thresholds in energetic materials.« less

  18. Electromigration Mechanism of Failure in Flip-Chip Solder Joints Based on Discrete Void Formation.

    PubMed

    Chang, Yuan-Wei; Cheng, Yin; Helfen, Lukas; Xu, Feng; Tian, Tian; Scheel, Mario; Di Michiel, Marco; Chen, Chih; Tu, King-Ning; Baumbach, Tilo

    2017-12-20

    In this investigation, SnAgCu and SN100C solders were electromigration (EM) tested, and the 3D laminography imaging technique was employed for in-situ observation of the microstructure evolution during testing. We found that discrete voids nucleate, grow and coalesce along the intermetallic compound/solder interface during EM testing. A systematic analysis yields quantitative information on the number, volume, and growth rate of voids, and the EM parameter of DZ*. We observe that fast intrinsic diffusion in SnAgCu solder causes void growth and coalescence, while in the SN100C solder this coalescence was not significant. To deduce the current density distribution, finite-element models were constructed on the basis of the laminography images. The discrete voids do not change the global current density distribution, but they induce the local current crowding around the voids: this local current crowding enhances the lateral void growth and coalescence. The correlation between the current density and the probability of void formation indicates that a threshold current density exists for the activation of void formation. There is a significant increase in the probability of void formation when the current density exceeds half of the maximum value.

  19. High-resolution simulations of cylindrical void collapse in energetic materials: Effect of primary and secondary collapse on initiation thresholds

    NASA Astrophysics Data System (ADS)

    Rai, Nirmal Kumar; Schmidt, Martin J.; Udaykumar, H. S.

    2017-04-01

    Void collapse in energetic materials leads to hot spot formation and enhanced sensitivity. Much recent work has been directed towards simulation of collapse-generated reactive hot spots. The resolution of voids in calculations to date has varied as have the resulting predictions of hot spot intensity. Here we determine the required resolution for reliable cylindrical void collapse calculations leading to initiation of chemical reactions. High-resolution simulations of collapse provide new insights into the mechanism of hot spot generation. It is found that initiation can occur in two different modes depending on the loading intensity: Either the initiation occurs due to jet impact at the first collapse instant or it can occur at secondary lobes at the periphery of the collapsed void. A key observation is that secondary lobe collapse leads to large local temperatures that initiate reactions. This is due to a combination of a strong blast wave from the site of primary void collapse and strong colliding jets and vortical flows generated during the collapse of the secondary lobes. The secondary lobe collapse results in a significant lowering of the predicted threshold for ignition of the energetic material. The results suggest that mesoscale simulations of void fields may suffer from significant uncertainty in threshold predictions because unresolved calculations cannot capture the secondary lobe collapse phenomenon. The implications of this uncertainty for mesoscale simulations are discussed in this paper.

  20. Void Management in MEPHISTO and Other Space Experiments

    NASA Technical Reports Server (NTRS)

    deGroh, Henry C., III; Johnston, J. Christopher; Wei, Bingbo

    1998-01-01

    The second flight of NASA's Shuttle Flight experiment program known as MEPHISTO suffered from a void in the liquid portion of the sample, even though a piston arrangement was in place to keep the ampoule filled. In preparations for the next flight of the MEPHISTO furnace an animated computer program, called MEPHISTO Volume Visualizer (MVV), was written to help avoid the formation of unwanted voids. A piston system on MEPHISTO has the ability to move approximately 5 mm in compression, to accommodate expansion of the solid during heating; then from the completely compressed position, the piston can move up to 25 mm in towards the sample, effectively making the ampoule smaller and hopefully eliminating any voids. Due to the nature of the piston design and ampoule and sample arrangement, the piston has gotten stuck during normal directional solidification; this creates the risk of a void. To eliminate such a void, the liquid in the hot zones of the furnace can be heated, thereby expanding the liquid and consuming any void. The problem with this approach is that if the liquid is heated too much an overpressure could result, breaking the ampoule and ending the experiment catastrophically. The MVV has been found to be a useful tool in the assessment of the risks associated with the formation of a void and the additional heating of the liquid in the hot zone of this Bridgman type furnace. The MVV software will be discussed and copies available; it is written in the Delphi 2 programming language and runs under Windows 95 and NT. The strategies used in other flight experiments, such as the Isothermal Dendritic Growth Experiment, will also be presented.

  1. Theory of void formation in dusty plasmas

    NASA Astrophysics Data System (ADS)

    Hu, Zuquan; Chen, Yinhua; Zheng, Xiang; Huang, Feng; Shi, Gei-fen; Yu, M. Y.

    2009-06-01

    A fluid theory of void formation in dusty plasmas taking into account ionization is proposed. It is shown that if the ionization rate is larger than a threshold, an initial steady-state dust-density distribution can evolve into a stable distribution containing a void. As the ionization rate is further increased, the time required for void formation decreases. The void size first increases, but then decreases. However, for still larger ionization rates, the dusty region of the plasma becomes ringlike, including the convection term in dust momentum equation. The results are in agreement with existing experiments and theories.

  2. Probabilistic immortality of Cu damascene interconnects

    NASA Astrophysics Data System (ADS)

    Hau-Riege, Stefan P.

    2002-02-01

    We have studied electromigration short-line effects in Cu damascene interconnects through experiments on lines of various lengths L, stressed at a variety of current densities j, and embedded in different dielectric materials. We observed two modes of resistance evolution: Either the resistance of the lines remains constant for the duration of the test, so that the lines are considered immortal, or the lines fail due to abrupt open-circuit failure. The resistance was not observed to gradually increase and then saturate, as commonly observed in Al-based interconnects, because the barrier is too thin and resistive to serve as a redundant current path should voiding occur. The critical stress for void nucleation was found to be smaller than 41 MPa, since voiding occurred even under the mildest test conditions of j=2 MA/cm2 and L=10.5 μm at 300 °C. A small fraction of short Cu lines failed even at low current densities, which deems necessary a concept of probabilistic immortality rather than deterministic immortality. Experiments and modeling suggest that the probability of immortality is described by (jL2/B), where B is the effective elastic modulus of the metallization scheme. By contrast, the immortality of Al-based interconnects with shunt layers is described by (jL) if no voids nucleate, and (jL/B) if voids do nucleate. Even though the phenomenology of short-line effects differs for Al- and Cu-based interconnects, the immortality of interconnects of either materials system can be explained by the phenomena of nucleation barriers for void formation and void-growth saturation. The differences are due solely to the absence of a shunt layer and the low critical stress for void nucleation in the case of Cu.

  3. Galaxy evolution in extreme environments: Molecular gas content star formation and AGN in isolated void galaxies

    NASA Astrophysics Data System (ADS)

    Das, Mousumi; Iono, Daisuke; Saito, Toshiki; Subramanian, Smitha

    Since the early redshift surveys of the large scale structure of our universe, it has become clear that galaxies cluster along walls, sheet and filaments leaving large, empty regions called voids between them. Although voids represent the most under dense parts of our universe, they do contain a sparse but significant population of isolated galaxies that are generally low luminosity, late type disk galaxies. Recent studies show that most void galaxies have ongoing star formation and are in an early stage of evolution. We present radio, optical studies of the molecular gas content and star formation in a sample of void galaxies. Using SDSS data, we find that AGN are rare in these systems and are found only in the Bootes void; their black hole masses and radio properties are similar to bright spirals galaxies. Our studies suggest that close galaxy interactions and gas accretion are the main drivers of galaxy evolution in these systems despite their location in the underdense environment of the voids.

  4. Shock wave induced damage of a protein by void collapse

    DOE PAGES

    Lau, Edmond Y.; Berkowitz, Max L.; Schwegler, Eric R.

    2016-01-05

    In this study, we report on a series of molecular dynamics simulations that were used to examine the effects of shockwaves on a membrane bound ion channel. A planar shockwave was found to compress the ion channel upon impact but the protein geometry resembles the initial structure as soon as the solvent density begins to dissipate. When a void was placed in close proximity to the membrane, the shockwave proved to be much more destructive to the protein due to formation of a nanojet that results from the asymmetric collapse of the void. The nanojet was able to cause significantmore » structural changes to the protein even at low particle velocities that are not able to directly cause poration of the membrane.« less

  5. ON THE STAR FORMATION PROPERTIES OF VOID GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moorman, Crystal M.; Moreno, Jackeline; White, Amanda

    2016-11-10

    We measure the star formation properties of two large samples of galaxies from the SDSS in large-scale cosmic voids on timescales of 10 and 100 Myr, using H α emission line strengths and GALEX FUV fluxes, respectively. The first sample consists of 109,818 optically selected galaxies. We find that void galaxies in this sample have higher specific star formation rates (SSFRs; star formation rates per unit stellar mass) than similar stellar mass galaxies in denser regions. The second sample is a subset of the optically selected sample containing 8070 galaxies with reliable H i detections from ALFALFA. For the fullmore » H i detected sample, SSFRs do not vary systematically with large-scale environment. However, investigating only the H i detected dwarf galaxies reveals a trend toward higher SSFRs in voids. Furthermore, we estimate the star formation rate per unit H i mass (known as the star formation efficiency; SFE) of a galaxy, as a function of environment. For the overall H i detected population, we notice no environmental dependence. Limiting the sample to dwarf galaxies still does not reveal a statistically significant difference between SFEs in voids versus walls. These results suggest that void environments, on average, provide a nurturing environment for dwarf galaxy evolution allowing for higher specific star formation rates while forming stars with similar efficiencies to those in walls.« less

  6. Method for forming an in situ oil shale retort with horizontal free faces

    DOEpatents

    Ricketts, Thomas E.; Fernandes, Robert J.

    1983-01-01

    A method for forming a fragmented permeable mass of formation particles in an in situ oil shale retort is provided. A horizontally extending void is excavated in unfragmented formation containing oil shale and a zone of unfragmented formation is left adjacent the void. An array of explosive charges is formed in the zone of unfragmented formation. The array of explosive charges comprises rows of central explosive charges surrounded by a band of outer explosive charges which are adjacent side boundaries of the retort being formed. The powder factor of each outer explosive charge is made about equal to the powder factor of each central explosive charge. The explosive charges are detonated for explosively expanding the zone of unfragmented formation toward the void for forming the fragmented permeable mass of formation particles having a reasonably uniformly distributed void fraction in the in situ oil shale retort.

  7. Distribution, formation mechanisms, and significance of lunar pits

    NASA Astrophysics Data System (ADS)

    Wagner, Robert V.; Robinson, Mark S.

    2014-07-01

    Lunar Reconnaissance Orbiter Camera images reveal the presence of steep-walled pits in mare basalt (n = 8), impact melt deposits (n = 221), and highland terrain (n = 2). Pits represent evidence of subsurface voids of unknown extents. By analogy with terrestrial counterparts, the voids associated with mare pits may extend for hundreds of meters to kilometers in length, thereby providing extensive potential habitats and access to subsurface geology. Because of their small sizes relative to the local equilibrium crater diameters, the mare pits are likely to be post-flow features rather than volcanic skylights. The impact melt pits are indirect evidence both of extensive subsurface movement of impact melt and of exploitable sublunarean voids. Due to the small sizes of pits (mare, highland, and impact melt) and the absolute ages of their host materials, it is likely that most pits formed as secondary features.

  8. Effect of Moisture Exchange on Interface Formation in the Repair System Studied by X-ray Absorption

    PubMed Central

    Lukovic, Mladena; Ye, Guang

    2015-01-01

    In concrete repair systems, material properties of the repair material and the interface are greatly influenced by the moisture exchange between the repair material and the substrate. If the substrate is dry, it can absorb water from the repair material and reduce its effective water-to-cement ratio (w/c). This further affects the hydration rate of cement based material. In addition to the change in hydration rate, void content at the interface between the two materials is also affected. In this research, the influence of moisture exchange on the void content in the repair system as a function of initial saturation level of the substrate is investigated. Repair systems with varying level of substrate saturation are made. Moisture exchange in these repair systems as a function of time is monitored by the X-ray absorption technique. After a specified curing age (3 d), the internal microstructure of the repair systems was captured by micro-computed X-ray tomography (CT-scanning). From reconstructed images, different phases in the repair system (repair material, substrate, voids) can be distinguished. In order to quantify the void content, voids were thresholded and their percentage was calculated. It was found that significantly more voids form when the substrate is dry prior to application of the repair material. Air, initially filling voids and pores of the dry substrate, is being released due to the moisture exchange. As a result, air voids remain entrapped in the repair material close to the interface. These voids are found to form as a continuation of pre-existing surface voids in the substrate. Knowledge about moisture exchange and its effects provides engineers with the basis for recommendations about substrate preconditioning in practice. PMID:28787801

  9. Numerical modelling of impact crater formation associated with isolated lunar skylight candidates on lava tubes

    NASA Astrophysics Data System (ADS)

    Martellato, E.; Foing, B. H.; Benkhoff, J.

    2013-09-01

    Skylights are openings on subsurface voids as lava tubes and caves. Recently deep hole structures, possibly skylights, were discovered on lunar photo images by the JAXA SELenological and ENgineering Explorer (SELENE)-Kaguya mission, and successively confirmed by the NASA Lunar Reconnaissance Orbiter (LRO) mission. Vertical hole structures and possibly underlying subsurface voids have high potential as resources for scientific study, and future unmanned and manned activities on the Moon. One mechanism proposed for their formation is impact cratering. The collapse of craters is due to the back spallation phenomena on the rear surface of the lava tube roofs. Previous analysis in this topic was based on small-scales laboratory experiments. These have pointed out that (i) the target thickness-to-crater diameter ratio is 0.7, and (ii) the projectile diameter-to-target thickness ratio is 0.16, at the ballistic limit once extrapolated to planetary conditions.

  10. Off-stoichiometric defect clustering in irradiated oxides

    NASA Astrophysics Data System (ADS)

    Khalil, Sarah; Allen, Todd; EL-Azab, Anter

    2017-04-01

    A cluster dynamics model describing the formation of vacancy and interstitial clusters in irradiated oxides has been developed. The model, which tracks the composition of the oxide matrix and the defect clusters, was applied to the early stage formation of voids and dislocation loops in UO2, and the effects of irradiation temperature and dose rate on the evolution of their densities and composition was investigated. The results show that Frenkel defects dominate the nucleation process in irradiated UO2. The results also show that oxygen vacancies drive vacancy clustering while the migration energy of uranium vacancies is a rate-limiting factor for the nucleation and growth of voids. In a stoichiometric UO2 under irradiation, off-stoichiometric vacancy clusters exist with a higher concentration of hyper-stoichiometric clusters. Similarly, off-stoichiometric interstitial clusters form with a higher concentration of hyper-stoichiometric clusters. The UO2 matrix was found to be hyper-stoichiometric due to the accumulation of uranium vacancies.

  11. Thermal conductivity of tungsten: Effects of plasma-related structural defects from molecular-dynamics simulations

    NASA Astrophysics Data System (ADS)

    Hu, Lin; Wirth, Brian D.; Maroudas, Dimitrios

    2017-08-01

    We report results on the lattice thermal conductivities of tungsten single crystals containing nanoscale-sized pores or voids and helium (He) nanobubbles as a function of void/bubble size and gas pressure in the He bubbles based on molecular-dynamics simulations. For reference, we calculated lattice thermal conductivities of perfect tungsten single crystals along different crystallographic directions at room temperature and found them to be about 10% of the overall thermal conductivity of tungsten with a weak dependence on the heat flux direction. The presence of nanoscale voids in the crystal causes a significant reduction in its lattice thermal conductivity, which decreases with increasing void size. Filling the voids with He to form He nanobubbles and increasing the bubble pressure leads to further significant reduction of the tungsten lattice thermal conductivity, down to ˜20% of that of the perfect crystal. The anisotropy in heat conduction remains weak for tungsten single crystals containing nanoscale-sized voids and He nanobubbles throughout the pressure range examined. Analysis of the pressure and atomic displacement fields in the crystalline region that surrounds the He nanobubbles reveals that the significant reduction of tungsten lattice thermal conductivity in this region is due to phonon scattering from the nanobubbles, as well as lattice deformation around the nanobubbles and formation of lattice imperfections at higher bubble pressure.

  12. Molecular dynamics simulations of void defects in the energetic material HMX.

    PubMed

    Duan, Xiao Hui; Li, Wen Peng; Pei, Chong Hua; Zhou, Xiao Qing

    2013-09-01

    A molecular dynamics (MD) simulation was carried out to characterize the dynamic evolution of void defects in crystalline octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine (HMX). Different models were constructed with the same concentration of vacancies (10 %) to discuss the size effects of void. Energetic ground state properties were determined by annealing simulations. The void formation energy per molecule removed was found to be 55-63 kcal/mol(-1), and the average binding energy per molecule was between 32 and 34 kcal/mol(-1) according to the change in void size. Voids with larger size had lower formation energy. Local binding energies for molecules directly on the void surface decreased greatly compared to those in defect-free lattice, and then gradually increased until the distance away from the void surface was around 10 Å. Analysis of 1 ns MD simulations revealed that the larger the void size, the easier is void collapse. Mean square displacements (MSDs) showed that HMX molecules that had collapsed into void present liquid structure characteristics. Four unique low-energy conformers were found for HMX molecules in void: two whose conformational geometries corresponded closely to those found in HMX polymorphs and two, additional, lower energy conformers that were not seen in the crystalline phases. The ratio of different conformers changed with the simulated temperature, in that the ratio of α conformer increased with the increase in temperature.

  13. Evaluation of a mobile voiding diary for pediatric patients with voiding dysfunction: a prospective comparative study.

    PubMed

    Johnson, Emilie K; Estrada, Carlos R; Johnson, Kathryn L; Nguyen, Hiep T; Rosoklija, Ilina; Nelson, Caleb P

    2014-09-01

    One potential strategy for improving voiding diary completion rates and data quality is use of a mobile electronic format. We evaluated the acceptability and feasibility of mobile voiding diaries for patients with nonneurogenic lower urinary tract dysfunction, and compared mobile and paper voiding diaries. We prospectively enrolled children presenting with daytime symptoms of lower urinary tract dysfunction between July 2012 and April 2013. We enrolled an initial cohort of patients who were provided a paper voiding diary and a subsequent cohort who were provided a mobile voiding diary. We conducted in person interviews and assessed completion rates and quality, comparing paper and mobile voiding diary groups. We enrolled 45 patients who received a paper voiding diary and 38 who received a mobile voiding diary. Completion rates were 78% for paper voiding diaries and 61% for mobile voiding diaries (p = 0.10). Data quality measures for patients completing paper vs mobile voiding diaries revealed a larger proportion (63% vs 52%) providing a full 5 days of data and a smaller proportion (20% vs 65%) with data gaps. However, the paper voiding diary also demonstrated a lower proportion (80% vs 100%) that was completely legible and a lower proportion (40% vs 65%) with completely prospective data entry. The use of a mobile voiding diary was acceptable and feasible for our patients with lower urinary tract dysfunction, although completion rates were somewhat lower compared to paper voiding diaries. Data quality was not clearly better for either version. The mobile voiding diary format may offer data quality advantages for select groups but it did not display significant superiority when provided universally. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  14. Cause Analysis on the Void under Slabs of Cement Concrete Pavement

    NASA Astrophysics Data System (ADS)

    Wen, Li; Zhu, Guo Xin; Baozhu

    2017-06-01

    This paper made a systematic analysis on the influence of the construction, environment, water and loads on the void beneath road slabs, and also introduced the formation process of structural void and pumping void, and summarizes the deep reasons for the bottom of the cement concrete pavement. Based on the analysis above, this paper has found out the evolution law of the void under slabs which claimed that the void usually appeared in the slab corners and then the cross joint, resulting void in the four sides with the void area under the front slab larger than the rear one.

  15. Simulation of void formation in interconnect lines

    NASA Astrophysics Data System (ADS)

    Sheikholeslami, Alireza; Heitzinger, Clemens; Puchner, Helmut; Badrieh, Fuad; Selberherr, Siegfried

    2003-04-01

    The predictive simulation of the formation of voids in interconnect lines is important for improving capacitance and timing in current memory cells. The cells considered are used in wireless applications such as cell phones, pagers, radios, handheld games, and GPS systems. In backend processes for memory cells, ILD (interlayer dielectric) materials and processes result in void formation during gap fill. This approach lowers the overall k-value of a given metal layer and is economically advantageous. The effect of the voids on the overall capacitive load is tremendous. In order to simulate the shape and positions of the voids and thus the overall capacitance, the topography simulator ELSA (Enhanced Level Set Applications) has been developed which consists of three modules, a level set module, a radiosity module, and a surface reaction module. The deposition process considered is deposition of silicon nitride. Test structures of interconnect lines of memory cells were fabricated and several SEM images thereof were used to validate the corresponding simulations.

  16. Rayleigh-wave diffractions due to a void in the layered half space

    USGS Publications Warehouse

    Xia, J.; Xu, Y.; Miller, R.D.; Nyquist, Jonathan E.

    2006-01-01

    Void detection is challenging due to the complexity of near-surface materials and the limited resolution of geophysical methods. Although multichannel, high-frequency, surface-wave techniques can provide reliable shear (S)-wave velocities in different geological settings, they are not suitable for detecting voids directly based on anomalies of the S-wave velocity because of limitations on the resolution of S-wave velocity profiles inverted from surface-wave phase velocities. Xia et al. (2006a) derived a Rayleigh-wave diffraction traveltime equation due to a void in the homogeneous half space. Encouraging results of directly detecting a void from Rayleigh-wave diffractions were presented (Xia et al., 2006a). In this paper we used four two-dimensional square voids in the layered half space to demonstrate the feasibility of detecting a void with Rayleigh-wave diffractions. Rayleigh-wave diffractions were recognizable for all these models after removing direct surface waves by F-K filtering. We evaluate the feasibility of applying the Rayleigh-wave diffraction traveltime equation to a void in the layered earth model. The phase velocity of diffracted Rayleigh waves is predominately determined by surrounding materials of a void. The modeling results demonstrate that the Rayleigh-wave diffraction traveltime equation due to a void in the homogeneous half space can be applied to the case of a void in the layered half space. In practice, only two diffraction times are necessary to define the depth to the top of a void and the average velocity of diffracted Rayleigh waves. ?? 2005 Society of Exploration Geophysicists.

  17. Phase-field study on geometry-dependent migration behavior of voids under temperature gradient in UO2 crystal matrix

    NASA Astrophysics Data System (ADS)

    Chen, Weijin; Peng, Yuyi; Li, Xu'an; Chen, Kelang; Ma, Jun; Wei, Lingfeng; Wang, Biao; Zheng, Yue

    2017-10-01

    In this work, a phase-field model is established to capture the void migration behavior under a temperature gradient within a crystal matrix, with an appropriate consideration of the surface diffusion mechanism and the vapor transport mechanism. The interfacial energy and the coupling between the vacancy concentration field and the crystal order parameter field are carefully modeled. Simulations are performed on UO2. The result shows that for small voids (with an area ≤ πμm2), the well-known characteristics of void migration, in consistence with the analytical model, can be recovered. The migration is manifested by a constant velocity and a minor change of the void shape. In contrast, for large voids (with an area of ˜10 μm2) initially in circular shapes, significant deformation of the void from a circular to cashew-like shape is observed. After long-time migration, the deformed void would split into smaller voids. The size-dependent behavior of void migration is due to the combined effect of the interfacial energy (which tends to keep the void in circular shape) and the surface diffusion flow (which tends to deform the void due to the nonuniform diffusion along the surface). Moreover, the initial shape of the void modifies the migration velocity and the time point when splitting occurs (for large voids) at the beginning of migration due to the shape relaxation of the void. However, it has a minor effect on the long-time migration. Our work reveals novel void migration behaviors in conditions where the surface-diffusion mechanism is dominant over the vapor transport mechanism; meanwhile, the size of the void lies at a mediate size range.

  18. Application of 3D Electrical Resistivity Tomography As A Tool for Mapping Subsurface Cavities in a Kaolin Mining Site at Kankara in North Central Nigeria.

    NASA Astrophysics Data System (ADS)

    Eshimiakhe, D.; Jimoh, R.

    2017-12-01

    A Kaolin mining site at Dajin Gwanma in north central Nigeria was investigated to determine the possibility of using 3D ERT to detect subsurface voids created due to mining of kaolin deposit and to perhaps suggest areas prone to subsidence. This study was undertaken on conceptual resistivity model that subsurface voids characterized by higher or lower resistivity than the host, depending on weather the void is in-filled water or not. The data collection was carried out with Terrameter SAS 4000 and ES 464 electrode selector equipment. Dipole-dipole configuration at electrode spacing of 5m was used to acquire the data along parallel profiles laid at equal interval in the study area. While the acquired data along each profile were inverted with 2D algorithm, a script file was created to collate the 2D data set into a 3D format and subsequently inverted using 3D algorithm. A volumetric resistivity model block of the study area was also created using the voxler 4 software. The results show that the voids are characterized by high resistivity (950Ωm-2500Ωm) at depth of between 0-4m and low resistivity (10Ωm-100Ωm) at a depth of 5-30m indicating both air-filled and water-filled voids respectively. The study shows that the voids increase in dimension with depth in NW-SE direction, suggesting that the voids are trending most probably along vertical bedrock joints. It also suggest that voids may overtime grow large enough that the overlying top soil can no longer bridge it, leading to its collapse.

  19. Prevalence and characteristics of voiding difficulties in women: are subjective symptoms substantiated by objective urodynamic data?

    PubMed

    Groutz, A; Gordon, D; Lessing, J B; Wolman, I; Jaffa, A; David, M P

    1999-08-01

    To examine the prevalence and characteristics of voiding difficulties in women. Two hundred six consecutive female patients who attended a urogynecology clinic were recruited. Patients were interviewed regarding the presence and severity of symptoms that would suggest voiding difficulties (ie, hesitancy, straining to void, weak or prolonged stream, intermittent stream, double voiding, incomplete emptying, reduction, and positional changes to start or complete voiding). Urodynamic evidence of voiding difficulty was considered as a peak flow rate less than 12 mL/s (voided volume greater than 100 mL), or residual urine volume greater than 150 mL, on two or more readings. Residual urinary volume, flow patterns, and pressure-flow parameters were analyzed and compared between symptomatic and asymptomatic patients who had urodynamic parameters of voiding difficulties. One hundred twenty-seven (61.7%) women reported having voiding difficulty symptoms; 79 others (38.3%) were free of such symptoms. Urodynamic diagnosis of voiding difficulty was made in 40 women (19.4% of the study population): 27 in the symptomatic group and 13 in the asymptomatic group (21.2% and 16.5%, respectively). Only 1 patient had voiding difficulty due to bladder outlet obstruction. All other cases of low flow rate were due to impaired detrusor contractility. Objective evidence of voiding difficulty may be found in both symptomatic and asymptomatic patients and is usually due to impaired detrusor contractility. The clinical significance of the abnormal flow parameters in asymptomatic patients is unclear.

  20. Cross-sectional characterization of the dewetting of a Au/Ni bilayer film.

    PubMed

    Cen, Xi; Thron, Andrew M; Zhang, Xinming; van Benthem, Klaus

    2017-07-01

    The solid state dewetting of Au/Ni bilayer films was investigated by cross-sectional transmission electron microscopy techniques, including energy-dispersive X-ray spectroscopy, electron energy-loss spectroscopy and precession electron diffraction. After annealing under high vacuum conditions the early stage of film agglomeration revealed significant changes in film morphology and chemical distribution. Both Au and Ni showed texturing. Despite the initial deposition sequence of the as-deposited Au/Ni/SiO 2 /Si interface structure, the majority of the metal/SiO 2 interface was Au/SiO 2 after annealing at 675°C for 1h. Void nucleation was predominantly observed at Au/Ni/SiO 2 triple junctions, rather than grain boundary grooving at free surface of the metal film. Detailed cross-sectional characterization reveals that the Au/Ni interface in addition to small amounts of metal alloying strongly affects film break-up and agglomeration kinetics. The formation of Au/SiO 2 interface sections is found to be energetically preferred over Ni/SiO 2 due to compressive stress in the as-deposited Ni layer. Void nucleation is observed at the film/substrate interface, while the formation of voids at Ni/Au phase boundaries inside the metal film is caused by the Kirkendall effect. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Towards the damage evaluation using Gurson-Tvergaard-Needleman (GTN) model for hot forming processes

    NASA Astrophysics Data System (ADS)

    Imran, Muhammad; Bambach, Markus

    2018-05-01

    In the production of semi-finished metal products, hot forming is used to eliminate the pores and voids from the casting process under compressive stresses and to modify the microstructure for further processing. In the case of caliber and flat rolling processes, tensile stresses occur at certain roll gap ratios which promote pore formation on nonmetallic inclusion. The formation of new pores contributes to ductile damage and reduces the load carrying capacity of the material. In the literature, the damage nucleation and growth during the hot forming process are not comprehensively described. The aim of this study is to understand the damage initiation and growth mechanism during hot forming processes. Hot tensile tests are performed at different temperatures and strain rates for 16MnCrS5 steel. To investigate the influence of geometrical variations on the damage mechanism, specimens with different stress triaxiality ratios are used. Finite element simulations using the Gurson-Tvergaard-Needleman (GTN) damage model are performed to estimate the critical void fraction for the damage initiation and the evolution of the void volume fraction. The results showed that the GTN model underestimates the softening of the material due to the independence of the temperature and the strain rate.

  2. Microstructural Evolution of Ni-Sn Transient Liquid Phase Sintering Bond during High-Temperature Aging

    NASA Astrophysics Data System (ADS)

    Feng, Hongliang; Huang, Jihua; Peng, Xianwen; Lv, Zhiwei; Wang, Yue; Yang, Jian; Chen, Shuhai; Zhao, Xingke

    2018-05-01

    For high-temperature-resistant packaging of new generation power chip, a chip packaging simulation structure of Ni/Ni-Sn/Ni was bonded by a transient liquid-phase sintering process. High-temperature aging experiments were carried out to investigate joint heat stability. The microstructural evolution and mechanism during aging, and mechanical properties after aging were analyzed. The results show that the 30Ni-70Sn bonding layer as-bonded at 340°C for 240 min is mainly composed of Ni3Sn4 and residual Ni particles. When aged at 350°C, because of the difficulty of nucleation for Ni3Sn and quite slow growth of Ni3Sn2, the bonding layer is stable and the strength of that doesn't change obviously with aging time. When aging temperature increased to 500°C, however, the residual Ni particles were gradually dissolved and the bonding layer formed a stable structure with dominated Ni3Sn2 after 36 h. Meanwhile, due to the volume shrinkage (4.43%) from Ni3Sn2 formation, a number of voids were formed. The shear strength shows an increase, resulting from Ni3Sn2 formation, but then it decreases slightly caused by voids. After aging at 500°C for 100 h, shear strength is still maintained at 29.6 MPa. In addition, the mechanism of void formation was analyzed and microstructural evolution model was also established.

  3. Tailoring galvanic replacement reaction for the preparation of Pt/Ag bimetallic hollow nanostructures with controlled number of voids.

    PubMed

    Zhang, Weiqing; Yang, Jizheng; Lu, Xianmao

    2012-08-28

    Here we report the synthesis of Pt/Ag bimetallic nanostructures with controlled number of void spaces via a tailored galvanic replacement reaction (GRR). Ag nanocubes (NCs) were employed as the template to react with Pt ions in the presence of HCl. The use of HCl in the GRR caused rapid precipitation of AgCl, which grew on the surface of Ag NCs and acted as a removable secondary template for the deposition of Pt. The number of nucleation sites for AgCl was tailored by controlling the amount of HCl added to the Ag NCs or by introducing PVP to the reaction. This strategy led to the formation of Pt/Ag hollow nanoboxes, dimers, multimers, or popcorn-shaped nanostructures consisting of one, two, or multiple hollow domains. Due to the presence of large void space and porous walls, these nanostructures exhibited high surface area and improved catalytic activity for methanol oxidation reaction.

  4. Trpm7 Protein Contributes to Intercellular Junction Formation in Mouse Urothelium*

    PubMed Central

    Watanabe, Masaki; Suzuki, Yoshiro; Uchida, Kunitoshi; Miyazaki, Naoyuki; Murata, Kazuyoshi; Matsumoto, Seiji; Kakizaki, Hidehiro; Tominaga, Makoto

    2015-01-01

    Trpm7 is a divalent cation-permeable channel that has been reported to be involved in magnesium homeostasis as well as cellular adhesion and migration. We generated urothelium-specific Trpm7 knock-out (KO) mice to reveal the function of Trpm7 in vivo. A Trpm7 KO was induced by tamoxifen and was confirmed by genomic PCR and immunohistochemistry. By using patch clamp recordings in primary urothelial cells, we observed that Mg2+-inhibitable cation currents as well as acid-inducible currents were significantly smaller in Trpm7 KO urothelial cells than in cells from control mice. Assessment of voiding behavior indicated a significantly smaller voided volume in Trpm7 KO mice (mean voided volume 0.28 ± 0.08 g in KO mice and 0.36 ± 0.04 g in control mice, p < 0.05, n = 6–8). Histological analysis showed partial but substantial edema in the submucosal layer of Trpm7 KO mice, most likely due to inflammation. The expression of proinflammatory cytokines TNF-α and IL-1β was significantly higher in Trpm7 KO bladders than in controls. In transmission electron microscopic analysis, immature intercellular junctions were observed in Trpm7 KO urothelium but not in control mice. These results suggest that Trpm7 is involved in the formation of intercellular junctions in mouse urothelium. Immature intercellular junctions in Trpm7 knock-out mice might lead to a disruption of barrier function resulting in inflammation and hypersensitive bladder afferent nerves that may affect voiding behavior in vivo. PMID:26504086

  5. Trpm7 Protein Contributes to Intercellular Junction Formation in Mouse Urothelium.

    PubMed

    Watanabe, Masaki; Suzuki, Yoshiro; Uchida, Kunitoshi; Miyazaki, Naoyuki; Murata, Kazuyoshi; Matsumoto, Seiji; Kakizaki, Hidehiro; Tominaga, Makoto

    2015-12-11

    Trpm7 is a divalent cation-permeable channel that has been reported to be involved in magnesium homeostasis as well as cellular adhesion and migration. We generated urothelium-specific Trpm7 knock-out (KO) mice to reveal the function of Trpm7 in vivo. A Trpm7 KO was induced by tamoxifen and was confirmed by genomic PCR and immunohistochemistry. By using patch clamp recordings in primary urothelial cells, we observed that Mg(2+)-inhibitable cation currents as well as acid-inducible currents were significantly smaller in Trpm7 KO urothelial cells than in cells from control mice. Assessment of voiding behavior indicated a significantly smaller voided volume in Trpm7 KO mice (mean voided volume 0.28 ± 0.08 g in KO mice and 0.36 ± 0.04 g in control mice, p < 0.05, n = 6-8). Histological analysis showed partial but substantial edema in the submucosal layer of Trpm7 KO mice, most likely due to inflammation. The expression of proinflammatory cytokines TNF-α and IL-1β was significantly higher in Trpm7 KO bladders than in controls. In transmission electron microscopic analysis, immature intercellular junctions were observed in Trpm7 KO urothelium but not in control mice. These results suggest that Trpm7 is involved in the formation of intercellular junctions in mouse urothelium. Immature intercellular junctions in Trpm7 knock-out mice might lead to a disruption of barrier function resulting in inflammation and hypersensitive bladder afferent nerves that may affect voiding behavior in vivo. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Conclusive evidence of abrupt coagulation inside the void during cyclic nanoparticle formation in reactive plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wetering, F. M. J. H. van de; Nijdam, S.; Beckers, J.

    2016-07-25

    In this letter, we present scanning electron microscopy (SEM) results that confirm in a direct way our earlier explanation of an abrupt coagulation event as the cause for the void hiccup. In a recent paper, we reported on the fast and interrupted expansion of voids in a reactive dusty argon–acetylene plasma. The voids appeared one after the other, each showing a peculiar, though reproducible, behavior of successive periods of fast expansion, abrupt contraction, and continued expansion. The abrupt contraction was termed “hiccup” and was related to collective coagulation of a new generation of nanoparticles growing in the void using relativelymore » indirect methods: electron density measurements and optical emission spectroscopy. In this letter, we present conclusive evidence using SEM of particles collected at different moments in time spanning several growth cycles, which enables us to follow the nanoparticle formation process in great detail.« less

  7. Kirkendall void formation in reverse step graded Si1-xGex/Ge/Si(001) virtual substrates

    NASA Astrophysics Data System (ADS)

    Sivadasan, Vineet; Rhead, Stephen; Leadley, David; Myronov, Maksym

    2018-02-01

    Formation of Kirkendall voids is demonstrated in the Ge underlayer of reverse step graded Si1-xGex/Ge buffer layers grown on Si(001) using reduced pressure chemical vapour deposition (RP-CVD). This phenomenon is seen when the constant composition Si1-xGex layer is grown at high temperatures and for x ≤ 0.7. The density and size of the spherical voids can be tuned by changing Ge content in the Si1-xGex and other growth parameters.

  8. The evolution of voids in the adhesion approximation

    NASA Astrophysics Data System (ADS)

    Sahni, Varun; Sathyaprakah, B. S.; Shandarin, Sergei F.

    1994-08-01

    We apply the adhesion approximation to study the formation and evolution of voids in the universe. Our simulations-carried out using 1283 particles in a cubical box with side 128 Mpc-indicate that the void spectrum evolves with time and that the mean void size in the standard Cosmic Background Explorer Satellite (COBE)-normalized cold dark matter (CDM) model with H50 = 1 scals approximately as bar D(z) = bar Dzero/(1+2)1/2, where bar Dzero approximately = 10.5 Mpc. Interestingly, we find a strong correlation between the sizes of voids and the value of the primordial gravitational potential at void centers. This observation could in principle, pave the way toward reconstructing the form of the primordial potential from a knowledge of the observed void spectrum. Studying the void spectrum at different cosmological epochs, for spectra with a built in k-space cutoff we find that the number of voids in a representative volume evolves with time. The mean number of voids first increases until a maximum value is reached (indicating that the formation of cellular structure is complete), and then begins to decrease as clumps and filaments erge leading to hierarchical clustering and the subsequent elimination of small voids. The cosmological epoch characterizing the completion of cellular structure occurs when the length scale going nonlinear approaches the mean distance between peaks of the gravitaional potential. A central result of this paper is that voids can be populated by substructure such as mini-sheets and filaments, which run through voids. The number of such mini-pancakes that pass through a given void can be measured by the genus characteristic of an individual void which is an indicator of the topology of a given void in intial (Lagrangian) space. Large voids have on an average a larger measure than smaller voids indicating more substructure within larger voids relative to smaller ones. We find that the topology of individual voids is strongly epoch dependent, with void topologies generally simplifying with time. This means that as voids grow older they become progressively more empty and have less structure within them. We evaluate the genus measure both for individual voids as well as for the entire ensemble of voids predicted by CDM model. As a result we find that the topology of voids when taken together with the void spectrum is a very useful statistical indicator of the evolution of the structure of the universe on large scales.

  9. The evolution of voids in the adhesion approximation

    NASA Technical Reports Server (NTRS)

    Sahni, Varun; Sathyaprakah, B. S.; Shandarin, Sergei F.

    1994-01-01

    We apply the adhesion approximation to study the formation and evolution of voids in the universe. Our simulations-carried out using 128(exp 3) particles in a cubical box with side 128 Mpc-indicate that the void spectrum evolves with time and that the mean void size in the standard Cosmic Background Explorer Satellite (COBE)-normalized cold dark matter (CDM) model with H(sub 50) = 1 scals approximately as bar D(z) = bar D(sub zero)/(1+2)(exp 1/2), where bar D(sub zero) approximately = 10.5 Mpc. Interestingly, we find a strong correlation between the sizes of voids and the value of the primordial gravitational potential at void centers. This observation could in principle, pave the way toward reconstructing the form of the primordialpotential from a knowledge of the observed void spectrum. Studying the void spectrum at different cosmological epochs, for spectra with a built in k-space cutoff we find that the number of voids in a representative volume evolves with time. The mean number of voids first increases until a maximum value is reached (indicating that the formation of cellular structure is complete), and then begins to decrease as clumps and filaments erge leading to hierarchical clustering and the subsequent elimination of small voids. The cosmological epoch characterizing the completion of cellular structure occurs when the length scale going nonlinear approaches the mean distance between peaks of the gravitaional potential. A central result of this paper is that voids can be populated by substructure such as mini-sheets and filaments, which run through voids. The number of such mini-pancakes that pass through a given void can be measured by the genus characteristic of an individual void which is an indicator of the topology of a given void in intial (Lagrangian) space. Large voids have on an average a larger measure than smaller voids indicating more substructure within larger voids relative to smaller ones. We find that the topology of individual voids is strongly epoch dependent, with void topologies generally simplifying with time. This means that as voids grow older they become progressively more empty and have less structure within them. We evaluate the genus measure both for individual voids as well as for the entire ensemble of voids predicted by CDM model. As a result we find that the topology of voids when taken together with the void spectrum is a very useful statistical indicator of the evolution of the structure of the universe on large scales.

  10. Method for attenuating seismic shock from detonating explosive in an in situ oil shale retort

    DOEpatents

    Studebaker, Irving G.; Hefelfinger, Richard

    1980-01-01

    In situ oil shale retorts are formed in formation containing oil shale by excavating at least one void in each retort site. Explosive is placed in a remaining portion of unfragmented formation within each retort site adjacent such a void, and such explosive is detonated in a single round for explosively expanding formation within the retort site toward such a void for forming a fragmented permeable mass of formation particles containing oil shale in each retort. This produces a large explosion which generates seismic shock waves traveling outwardly from the blast site through the underground formation. Sensitive equipment which could be damaged by seismic shock traveling to it straight through unfragmented formation is shielded from such an explosion by placing such equipment in the shadow of a fragmented mass in an in situ retort formed prior to the explosion. The fragmented mass attenuates the velocity and magnitude of seismic shock waves traveling toward such sensitive equipment prior to the shock wave reaching the vicinity of such equipment.

  11. Luminosity distance in ``Swiss cheese'' cosmology with randomized voids. II. Magnification probability distributions

    NASA Astrophysics Data System (ADS)

    Flanagan, Éanna É.; Kumar, Naresh; Wasserman, Ira; Vanderveld, R. Ali

    2012-01-01

    We study the fluctuations in luminosity distances due to gravitational lensing by large scale (≳35Mpc) structures, specifically voids and sheets. We use a simplified “Swiss cheese” model consisting of a ΛCDM Friedman-Robertson-Walker background in which a number of randomly distributed nonoverlapping spherical regions are replaced by mass-compensating comoving voids, each with a uniform density interior and a thin shell of matter on the surface. We compute the distribution of magnitude shifts using a variant of the method of Holz and Wald , which includes the effect of lensing shear. The standard deviation of this distribution is ˜0.027 magnitudes and the mean is ˜0.003 magnitudes for voids of radius 35 Mpc, sources at redshift zs=1.0, with the voids chosen so that 90% of the mass is on the shell today. The standard deviation varies from 0.005 to 0.06 magnitudes as we vary the void size, source redshift, and fraction of mass on the shells today. If the shell walls are given a finite thickness of ˜1Mpc, the standard deviation is reduced to ˜0.013 magnitudes. This standard deviation due to voids is a factor ˜3 smaller than that due to galaxy scale structures. We summarize our results in terms of a fitting formula that is accurate to ˜20%, and also build a simplified analytic model that reproduces our results to within ˜30%. Our model also allows us to explore the domain of validity of weak-lensing theory for voids. We find that for 35 Mpc voids, corrections to the dispersion due to lens-lens coupling are of order ˜4%, and corrections due to shear are ˜3%. Finally, we estimate the bias due to source-lens clustering in our model to be negligible.

  12. Hydrogen-vacancy-dislocation interactions in α-Fe

    NASA Astrophysics Data System (ADS)

    Tehranchi, A.; Zhang, X.; Lu, G.; Curtin, W. A.

    2017-02-01

    Atomistic simulations of the interactions between dislocations, hydrogen atoms, and vacancies are studied to assess the viability of a recently proposed mechanism for the formation of nanoscale voids in Fe-based steels in the presence of hydrogen. Quantum-mechanics/molecular-mechanics method calculations confirm molecular statics simulations based on embedded atom method (EAM) potential showing that individual vacancies on the compressive side of an edge dislocation can be transported with the dislocation as it glides. Molecular dynamics simulations based on EAM potential then show, however, that vacancy clusters in the glide plane of an approaching dislocation are annihilated or reduced in size by the creation of a double-jog/climb process that is driven by the huge reduction in energy accompanying vacancy annihilation. The effectiveness of annihilation/reduction processes is not reduced by the presence of hydrogen in the vacancy clusters because typical V-H cluster binding energies are much lower than the vacancy formation energy, except at very high hydrogen content in the cluster. Analysis of a range of configurations indicates that hydrogen plays no special role in stabilizing nanovoids against jog formation processes that shrink voids. Experimental observations of nanovoids on the fracture surfaces of steels must be due to as-yet undetermined processes.

  13. In situ imaging of the soldering reactions in nanoscale Cu/Sn/Cu and Sn/Cu/Sn diffusion couples

    NASA Astrophysics Data System (ADS)

    Yin, Qiyue; Gao, Fan; Gu, Zhiyong; Wang, Jirui; Stach, Eric A.; Zhou, Guangwen

    2018-01-01

    The soldering reactions of three-segmented Sn/Cu/Sn and Cu/Sn/Cu diffusion couples are monitored by in-situ transmission electron microscopy to reveal the metallurgical reaction mechanism and the associated phase transformation pathway. For Sn/Cu/Sn diffusion couples, there is no ɛ-Cu3Sn formation due to the relatively insufficient Cu as compared to Sn. Kirkendall voids form initially in the Cu segment and then disappear due to the volume expansion associated with the continued intermetallic compound (IMC) formation as the reaction progresses. The incoming Sn atoms react with Cu to form η-Cu6Sn5, and the continuous reaction then transforms the entire nanowire to η-Cu6Sn5 grains with remaining Sn. With continued heating slightly above the melting point of Sn, an Sn-rich liquid phase forms between η-Cu6Sn5 grains. By contrast, the reaction in the Cu/Sn/Cu diffusion couples results in the intermetallic phases of both Cu3Sn and Cu6Sn5 and the development of Cu6Sn5 bulges on Cu3Sn grains. Kirkendall voids form in the two Cu segments, which grow and eventually break the nanowire into multiple segments.

  14. Thermal Effects on a Low Cr Modification of PS304 Solid Lubricant Coating

    NASA Technical Reports Server (NTRS)

    Stanford, Malcolm K.; Yanke, Anne M.; DellaCorte, Christopher

    2004-01-01

    PS304 is a high temperature composite solid lubricant coating composed of Ni-Cr, Cr2O3, BaF2-CaF2 and Ag. The effect of reducing chromium content on the formation of voids in the Ni-Cr particles after heat treatment in PS304 coating was investigated. Coatings were prepared with Ni-20Cr or Ni-10Cr powder and in various combinations with the other constituents of PS304 (i.e., chromia, silver and eutectic BaF2-CaF2 powders) and deposited on metal substrates by plasma spray. Specimens were exposed to 650 C for 24 hr or 1090 C for 15 hr and then examined for changes in thickness, coating microstructure and adhesion strength. Specimens with Ni-10Cr generally had less thickness increase than specimens with Ni-20Cr, but there was great variance in the data. Reduction of chromium concentration in Ni-Cr powder tended to reduce the appearance of voids in the Ni-Cr phase after heat exposure. The presence of BaF2-CaF2 resulted in a significant increase in coating adhesion strength after heat treatment, while coatings without BaF2-CaF2 had no significant change. Chemical composition analysis suggested that the void formation was due to oxidation of chromium in the Ni-Cr constituent.

  15. Mean-time-to-failure study of flip chip solder joints on Cu/Ni(V)/Al thin-film under-bump-metallization

    NASA Astrophysics Data System (ADS)

    Choi, W. J.; Yeh, E. C. C.; Tu, K. N.

    2003-11-01

    Electromigration of eutectic SnPb flip chip solder joints and their mean-time-to-failure (MTTF) have been studied in the temperature range of 100 to 140 °C with current densities of 1.9 to 2.75×104 A/cm2. In these joints, the under-bump-metallization (UBM) on the chip side is a multilayer thin film of Al/Ni(V)/Cu, and the metallic bond-pad on the substrate side is a very thick, electroless Ni layer covered with 30 nm of Au. When stressed at the higher current densities, the MTTF was found to decrease much faster than what is expected from the published Black's equation. The failure occurred by interfacial void propagation at the cathode side, and it is due to current crowding near the contact interface between the solder bump and the thin-film UBM. The current crowding is confirmed by a simulation of current distribution in the solder joint. Besides the interfacial void formation, the intermetallic compounds formed on the UBM as well as the Ni(V) film in the UBM have been found to dissolve completely into the solder bump during electromigration. Therefore, the electromigation failure is a combination of the interfacial void formation and the loss of UBM. Similar findings in eutectic SnAgCu flip chip solder joints have also been obtained and compared.

  16. Effect of Dark Energy Perturbation on Cosmic Voids Formation

    NASA Astrophysics Data System (ADS)

    Endo, Takao; Nishizawa, Atsushi J.; Ichiki, Kiyotomo

    2018-05-01

    In this paper, we present the effects of dark energy perturbation on the formation and abundance of cosmic voids. We consider dark energy to be a fluid with a negative pressure characterised by a constant equation of state w and speed of sound c_s^2. By solving fluid equations for two components, namely, dark matter and dark energy fluids, we quantify the effects of dark energy perturbation on the sizes of top-hat voids. We also explore the effects on the size distribution of voids based on the excursion set theory. We confirm that dark energy perturbation negligibly affects the size evolution of voids; c_s^2=0 varies the size only by 0.1% as compared to the homogeneous dark energy model. We also confirm that dark energy perturbation suppresses the void size when w < -1 and enhances the void size when w > -1 (Basse et al. 2011). In contrast to the negligible impact on the size, we find that the size distribution function on scales larger than 10 Mpc/h highly depends on dark energy perturbation; compared to the homogeneous dark energy model, the number of large voids of radius 30Mpc is 25% larger for the model with w = -0.9 and c_s^2=0 while they are 20% less abundant for the model with w = -1.3 and c_s^2=0.

  17. Ductile Damage and Fatigue Behavior of Semi-Finished Tailored Blanks for Sheet-Bulk Metal Forming Processes

    NASA Astrophysics Data System (ADS)

    Besserer, Hans-Bernward; Hildenbrand, Philipp; Gerstein, Gregory; Rodman, Dmytro; Nürnberger, Florian; Merklein, Marion; Maier, Hans Jürgen

    2016-03-01

    To produce parts from sheet metal with thickened functional elements, bulk forming operations can be employed. For this new process class, the term sheet-bulk metal forming has been established recently. Since sheet-bulk metal forming processes such as orbital forming generates triaxial stress and strain states, ductile damage is induced in the form of voids in the microstructure. Typical parts will experience cyclic loads during service, and thus, the influence of ductile damage on the fatigue life of parts manufactured by orbital forming is of interest. Both the formation and growth of voids were characterized following this forming process and then compared to the as-received condition of the ferritic deep drawing steel DC04 chosen for this study. Subsequent to the forming operation, the specimens were fatigued and the evolution of ductile damage and the rearrangement of the dislocation networks occurring during cyclic loading were determined. It was shown, that despite an increased ductile damage due to the forming process, the induced strain hardening has a positive effect on the fatigue life of the material. However, by analyzing the fatigued specimens a development of the ductile damage by an increasing number of voids and a change in the void shape were detected.

  18. Cast Reinforced Metal Composites: Proceedings of the International Symposium on Advances in Cast Reinforced Metal Composites Held in Conjunction with the 1988 World Materials Congress, Chicago, Illinois, USA, 24-30 September 1988

    DTIC Science & Technology

    1988-01-01

    to l0- mm of Hg and the boundaries, and the absorption of vibrational deflection was of the order of 10-6. energy during the microplastic deformation...matrix inter- 377 face due to void formation or microplastic de- This plot confirms that for all composite sys- formation than within the mica itself...dispersed Al alloys correlates with of energy in microplastic deformation of mica wt.% graphite by the following linear equation itself (Fig. 4

  19. Effect of laminate edge conditions on the formation of microvoids in composite laminates

    NASA Astrophysics Data System (ADS)

    Anderson, J. P.; Altan, M. C.

    2015-05-01

    Manufacturing defects such as microvoids are common in thermoset composite components and are known to negatively affect their strength. The resin pressure developed in and the resin flow out from the laminates during cure have been reported to be the primary factors influencing the final void content of a composite component. In this work, the effect of laminate edge conditions during the cure process on the formation of microvoids was experimentally investigated. This was achieved by fabricating eight-ply laminates from TenCate® BT250/7781 prepreg in a hot-press at a constant cure pressure of 170 kPa while limiting the laminate perimeter available for resin flow by 0%, 25%, 50%, 75%, and 100%. The individual plies of these five laminates were conditioned at 99% relative humidity before curing to maximize the moisture present in the lay-up before fabrication. The presence of moisture in the lay-ups was expected to promote void formation and allow the effect of restricting flow at the edges of a laminate to be better identified. The restriction of resin outflow was found to cause the average characteristic void diameter to decrease by 17% and void content to rise by 33%. This phenomenon was identified to be a result of the outflow restriction increasing the number of voids trapped within the laminate and indicates that for laminates cured at low pressures resin outflow is the dominant mechanism for void reduction.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jakubowicz, J., E-mail: jaroslaw.jakubowicz@put.poznan.pl; Adamek, G.; Pałka, K.

    The paper describes the formation, morphology and mechanical properties of Ti void composites. The Ti void composites were made using 100 and 325 mesh Ti powder for solid scaffold formation. The spherical and polyhedral voids (pores) were formed using saccharose particles (table sugar) of different shapes. The Ti void composite morphology was investigated by microcomputed tomography and scanning electron microscopy. The Ti void composites of designed porosity of 50–70% were made. Compression test was applied for mechanical properties estimation. It has been found, that Ti void composites made from 100 mesh Ti and those having spherical pores have a highermore » strength and elastic modulus, i.e. for the designed porosity of 50% for 100 and 325 mesh Ti void composites, a compressive strength was 32.32 and 20.13 MPa, respectively. It has been shown that this is related to better sintering of the 100 mesh Ti powders compared with the 325 mesh Ti powders. A correlation between microcomputed tomography data and mechanical properties has also been shown. The Ti void composites, made with the use of saccharose as a space holder, described in this work should be a promising material for biomedical applications, where interconnected pores and good mechanical properties are required. - Highlights: • Ti scaffolds of the porosity of 50–70% were made. • Saccharose particles as space holder were applied. • The voids in the scaffolds were designed with spherical and polyhedral shape. • The scaffold structure was investigated by SEM and micro-CT. • Micro-CT data and mechanical properties of the Ti scaffold have been correlated.« less

  1. Understanding and Shaping the Morphology of the Barrier Layer of Supported Porous Anodized Alumina on Gold Underlayers.

    PubMed

    Berger, Nele; Es-Souni, Mohammed

    2016-07-12

    Large-area ordered nanorod (NR) arrays of various functional materials can be easily and cost-effectively processed using on-substrate anodized porous aluminum oxide (PAO) films as templates. However, reproducibility in the processing of PAO films is still an issue because they are prone to delamination, and control of fabrication parameters such as electrolyte type and concentration and anodizing time is critical for making robust templates and subsequently mechanically reliable NR arrays. In the present work, we systematically investigate the effects of the fabrication parameters on pore base morphology, devise a method to avoid delamination, and control void formation under the barrier layer of PAO films on gold underlayers. Via systematic control of the anodization parameters, particularly the anodization current density and time, we follow the different stages of void development and discuss their formation mechanisms. The practical aspect of this work demonstrates how void size can be controlled and how void formation can be utilized to control the shape of NR bases for improving the mechanical stability of the NRs.

  2. Void Formation during Diffusion - Two-Dimensional Approach

    NASA Astrophysics Data System (ADS)

    Wierzba, Bartek

    2016-06-01

    The final set of equations defining the interdiffusion process in solid state is presented. The model is supplemented by vacancy evolution equation. The competition between the Kirkendall shift, backstress effect and vacancy migration is considered. The proper diffusion flux based on the Nernst-Planck formula is proposed. As a result, the comparison of the experimental and calculated evolution of the void formation in the Fe-Pd diffusion couple is shown.

  3. Comprehensive Understanding of Ductility Loss Mechanisms in Various Steels with External and Internal Hydrogen

    NASA Astrophysics Data System (ADS)

    Takakuwa, Osamu; Yamabe, Junichiro; Matsunaga, Hisao; Furuya, Yoshiyuki; Matsuoka, Saburo

    2017-11-01

    Hydrogen-induced ductility loss and related fracture morphologies are comprehensively discussed in consideration of the hydrogen distribution in a specimen with external and internal hydrogen by using 300-series austenitic stainless steels (Types 304, 316, 316L), high-strength austenitic stainless steels (HP160, XM-19), precipitation-hardened iron-based super alloy (A286), low-alloy Cr-Mo steel (JIS-SCM435), and low-carbon steel (JIS-SM490B). External hydrogen is realized by a non-charged specimen tested in high-pressure gaseous hydrogen, and internal hydrogen is realized by a hydrogen-charged specimen tested in air or inert gas. Fracture morphologies obtained by slow-strain-rate tensile tests (SSRT) of the materials with external or internal hydrogen could be comprehensively categorized into five types: hydrogen-induced successive crack growth, ordinary void formation, small-sized void formation related to the void sheet, large-sized void formation, and facet formation. The mechanisms of hydrogen embrittlement are broadly classified into hydrogen-enhanced decohesion (HEDE) and hydrogen-enhanced localized plasticity (HELP). In the HEDE model, hydrogen weakens interatomic bonds, whereas in the HELP model, hydrogen enhances localized slip deformations. Although various fracture morphologies are produced by external or internal hydrogen, these morphologies can be explained by the HELP model rather than by the HEDE model.

  4. An investigation of the plastic fracture of AISI 4340 and 18 nickel - 200 grade maraging steels

    NASA Technical Reports Server (NTRS)

    Cox, T. B.; Low, J. R., Jr.

    1974-01-01

    The mechanisms of plastic fracture (dimpled rupture) in high-purity and commercial 18 Ni, 200 grade maraging steels and quenched and tempered AISI 4340 steels have been studied. Plastic fracture takes place in the maraging alloys through void initiation by fracture of titanium carbo-nitride inclusions and the growth of these voids until impingement results in coalescence and final fracture. The fracture of AISI 4340 steel at a yield strength of 200 ksi occurs by nucleation and subsequent growth of voids formed by fracture of the interface between manganese sulfide inclusions and the matrix. The growth of these inclusion-nucleated voids is interrupted long before coalescence by impingement, by the formation of void sheets which connect neighboring sulfide-nucleated voids.

  5. Direct observation of void evolution during cement hydration

    DOE PAGES

    Moradian, Masoud; Hu, Qinang; Aboustait, Mohammed; ...

    2017-09-28

    This study follows the hydration of both portland cement and tricalcium silicate pastes between 30 min and 16 h of hydration. In-situ fast X-ray Computed Tomography (fCT) was used to make direct observations of the air-filled void formation in w/s of 0.40 to 0.70 with a micron resolution. The results show that over the first hour of the acceleration period the volume of air-filled voids reaches a maximum value and then decreases during the acceleration period and stays constant. The void distribution changes from a few coarse voids to a large number of smaller and more uniformly distributed voids. Thismore » behavior is suggested to be controlled by changes in the ionic strength that cause exsolution of dissolved air from the pore solution.« less

  6. Direct observation of void evolution during cement hydration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moradian, Masoud; Hu, Qinang; Aboustait, Mohammed

    This study follows the hydration of both portland cement and tricalcium silicate pastes between 30 min and 16 h of hydration. In-situ fast X-ray Computed Tomography (fCT) was used to make direct observations of the air-filled void formation in w/s of 0.40 to 0.70 with a micron resolution. The results show that over the first hour of the acceleration period the volume of air-filled voids reaches a maximum value and then decreases during the acceleration period and stays constant. The void distribution changes from a few coarse voids to a large number of smaller and more uniformly distributed voids. Thismore » behavior is suggested to be controlled by changes in the ionic strength that cause exsolution of dissolved air from the pore solution.« less

  7. Voids and the Cosmic Web: cosmic depression & spatial complexity

    NASA Astrophysics Data System (ADS)

    van de Weygaert, Rien

    2016-10-01

    Voids form a prominent aspect of the Megaparsec distribution of galaxies and matter. Not only do theyrepresent a key constituent of the Cosmic Web, they also are one of the cleanest probesand measures of global cosmological parameters. The shape and evolution of voids are highly sensitive tothe nature of dark energy, while their substructure and galaxy population provides a direct key to thenature of dark matter. Also, the pristine environment of void interiors is an important testing groundfor our understanding of environmental influences on galaxy formation and evolution. In this paper, we reviewthe key aspects of the structure and dynamics ofvoids, with a particular focus on the hierarchical evolution of the void population. We demonstratehow the rich structural pattern of the Cosmic Web is related to the complex evolution and buildupof voids.

  8. The cosmic web in CosmoGrid void regions

    NASA Astrophysics Data System (ADS)

    Rieder, Steven; van de Weygaert, Rien; Cautun, Marius; Beygu, Burcu; Portegies Zwart, Simon

    2016-10-01

    We study the formation and evolution of the cosmic web, using the high-resolution CosmoGrid ΛCDM simulation. In particular, we investigate the evolution of the large-scale structure around void halo groups, and compare this to observations of the VGS-31 galaxy group, which consists of three interacting galaxies inside a large void. The structure around such haloes shows a great deal of tenuous structure, with most of such systems being embedded in intra-void filaments and walls. We use the Nexus+} algorithm to detect walls and filaments in CosmoGrid, and find them to be present and detectable at every scale. The void regions embed tenuous walls, which in turn embed tenuous filaments. We hypothesize that the void galaxy group of VGS-31 formed in such an environment.

  9. Radiation-induced swelling of stainless steel.

    PubMed

    Shewmon, P G

    1971-09-10

    Significant swelling (1 to 10 percent due to small voids have been found in stainless steel when it is exposed to fast neutron doses less than expected in commercial fast breeder reactors. The main features of this new effect are: (i) the voids are formed by the precipitation of a small fraction of the radiation-produced vacancies; (ii) the voids form primarily in the temperature range 400 degrees to 600 degrees C (750 degrees to 1100 degrees F); and (iii) the volume increases with dose (fluence) at a rate between linear and parabolic. The limited temperature range of void formation can be explained, but the effects of fluence, microstructure, and composition are determined by a competition between several kinetic processes that are not well understood. This swelling does not affect the feasibility or safety of the breeder reactor,but will have a significant impact on the core design and economics of the breeder.Preliminary results indicate that one cannot eliminate the effect,but cold-working,heat treatment, or small changes in composition can reduce the swelling by a factor of 2 or more. Testing is hampered by the fact that several years in EBR-II are required to accumulate the fluence expected in demonstration plants. Heavyion accelerators,which allow damage rates corresponding to much higher fluxes than those found in EBR-II,hold great promise for short-term tests that will indicate the relative effect of the important variables.

  10. Shock response of nanoporous Cu--A molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Zhao, Fengpeng

    2015-06-01

    Shock response of porous materials can be of crucial significance for shock physics and bears many practical applications in materials synthesis and engineering. Molecular dynamics simulations are carried out to investigate shock response of nanoporous metal materials, including elastic-plastic deformation, Hugoniot states, shock-induced melting, partial or complete void collapse, hotspot formation, nanojetting, and vaporization. A model nanoporous Cu with cylindrical voids and a high porosity under shocking is established to investigate such physical properties as velocity, temperature, density, stress and von Mises stress at different stages of compression and release. The elastic-plastic and overtaking shocks are observed at different shock strengths. A modified power-law P- α model is proposed to describe the Hugoniot states. The Grüneisen equation of state is validated. Shock-induced melting shows no clear signs of bulk premelting or superheating. Void collapse via plastic flow nucleated from voids, and the exact processes are shock strength dependent. With increasing shock strengths, void collapse transits from the ``geometrical'' mode (collapse of a void is dominated by crystallography and void geometry and can be different from that of one another) to ``hydrodynamic'' mode (collapse of a void is similar to one another). The collapse may be achieved predominantly by plastic flows along the {111} slip planes, by way of alternating compression and tension zones, by means of transverse flows, via forward and transverse flows, or through forward nano-jetting. The internal jetting induces pronounced shock front roughening, leading to internal hotspot formation and sizable high speed jets on atomically flat free surfaces. P. O. Box 919-401, Mianyang, 621900, Sichuan, PRC.

  11. Sonar imaging of flooded subsurface voids phase I : proof of concept.

    DOT National Transportation Integrated Search

    2011-04-15

    Damage to Ohio highways due to subsidence or collapse of subsurface voids is a serious problem : for the Office of Geotechnical Engineering (OGE) at the Ohio Department of Transportation : (ODOT). These voids have often resulted from past underground...

  12. Sonar imaging of flooded subsurface voids phase I : proof of concept : executive summary report.

    DOT National Transportation Integrated Search

    2011-04-15

    Damage to Ohio highways due to subsidence : or collapse of subsurface voids is a serious : problem for the Ohio Department of : Transportation (ODOT). These voids have : often resulted from past underground mining : activities for coal, clay, limesto...

  13. An observation of prominence condensation out of a coronal void

    NASA Astrophysics Data System (ADS)

    Wagner, W. J.; Newkirk, G., Jr.; Schmidt, H. U.

    1983-02-01

    Photographic averaging of cine-camera data-frames from the 7 March 1970 eclipse provided a record of the inner white light corona with unusually high resolution for low-contrast features. The authors report that a coronal void, similar to high corona structures associated with prominence formation (MacQueen et al., 1983), extended low into the corona. During eclipse totality, a coronal rain prominence condensed from the base of the void.

  14. Fluxless eutectic bonding of GaAs-on-Si by using Ag/Sn solder

    NASA Astrophysics Data System (ADS)

    Eo, Sung-Hwa; Kim, Dae-Seon; Jeong, Ho-Jung; Jang, Jae-Hyung

    2013-11-01

    Fluxless GaAs-on-Si wafer bonding using Ag/Sn solder was investigated to realize uniform and void-free heterogeneous material integration. The effects of the diffusion barrier, Ag/Sn thickness, and Ar plasma treatment were studied to achieve the optimal fluxless bonding process. Pt on a GaAs wafer and Mo on a Si wafer act as diffusion barriers by preventing the flow of Ag/Sn solder into both the wafers. The bonding strength is closely related to the Ag/Sn thickness and Ar plasma treatment. A shear strength test was carried out to investigate the bonding strength. Under identical bonding conditions, the Ag/Sn thickness was optimized to achieve higher bonding strength and to avoid the formation of voids due to thermal stress. An Ar plasma pretreatment process improved the bonding strength because the Ar plasma removed carbon contaminants and metal-oxide bonds from the metal surface.

  15. Force field inside the void in complex plasmas under microgravity conditions

    NASA Astrophysics Data System (ADS)

    Kretschmer, M.; Khrapak, S. A.; Zhdanov, S. K.; Thomas, H. M.; Morfill, G. E.; Fortov, V. E.; Lipaev, A. M.; Molotkov, V. I.; Ivanov, A. I.; Turin, M. V.

    2005-05-01

    Observations of complex plasmas under microgravity conditions onboard the International Space Station performed with the Plasma-Kristall experiment-Nefedov facility are reported. A weak instability of the boundary between the central void (region free of microparticles) and the microparticle cloud is observed at low gas pressures. The instability leads to periodic injections of a relatively small number of particles into the void region (by analogy this effect is called the “trampoline effect”). The trajectories of injected particles are analyzed providing information on the force field inside the void. The experimental results are compared with theory which assumes that the most important forces inside the void are the electric and the ion drag forces. Good agreement is found clearly indicating that under conditions investigated the void formation is caused by the ion drag force.

  16. Suppression of interfacial voids formation during silane (SiH4)-based silicon oxide bonding with a thin silicon nitride capping layer

    NASA Astrophysics Data System (ADS)

    Lee, Kwang Hong; Bao, Shuyu; Wang, Yue; Fitzgerald, Eugene A.; Seng Tan, Chuan

    2018-01-01

    The material properties and bonding behavior of silane-based silicon oxide layers deposited by plasma-enhanced chemical vapor deposition were investigated. Fourier transform infrared spectroscopy was employed to determine the chemical composition of the silicon oxide films. The incorporation of hydroxyl (-OH) groups and moisture absorption demonstrates a strong correlation with the storage duration for both as-deposited and annealed silicon oxide films. It is observed that moisture absorption is prevalent in the silane-based silicon oxide film due to its porous nature. The incorporation of -OH groups and moisture absorption in the silicon oxide films increase with the storage time (even in clean-room environments) for both as-deposited and annealed silicon oxide films. Due to silanol condensation and silicon oxidation reactions that take place at the bonding interface and in the bulk silicon, hydrogen (a byproduct of these reactions) is released and diffused towards the bonding interface. The trapped hydrogen forms voids over time. Additionally, the absorbed moisture could evaporate during the post-bond annealing of the bonded wafer pair. As a consequence, defects, such as voids, form at the bonding interface. To address the problem, a thin silicon nitride capping film was deposited on the silicon oxide layer before bonding to serve as a diffusion barrier to prevent moisture absorption and incorporation of -OH groups from the ambient. This process results in defect-free bonded wafers.

  17. Voiding dysfunction in patients with nasal congestion treated with pseudoephedrine: a prospective study.

    PubMed

    Shao, I-Hung; Wu, Chia-Chen; Tseng, Hsiao-Jung; Lee, Ta-Jen; Lin, Yu-Hsiang; Tam, Yuan-Yun

    2016-01-01

    Pseudoephedrine is a sympathomimetic drug widely used as a nasal decongestant. However, it can cause adverse effects, such as voiding dysfunction. The risk of voiding dysfunction remains uncertain in patients without subjective voiding problems. We prospectively enrolled patients with nasal congestion who required treatment with pseudoephedrine from May to August 2015. All patients denied concomitant subjective voiding problem. The International Prostate Symptom Score (IPSS) questionnaire was used to evaluate voiding function before and 1 week after the pseudoephedrine treatment. The results of the IPSS questionnaire were analyzed as the total (IPSS-T), voiding (IPSS-V), storage (IPSS-S), and quality of life due to urinary symptom scores. We enrolled 131 males with a mean age of 42.0±14.3 years. The IPSS-T, IPSS-V, and IPSS-S scores slightly increased after the medication (IPSS-T increased from 6.49 to 6.77, IPSS-V from 3.33 to 3.53, and IPSS-S from 3.17 to 3.24). The quality of life due to urinary symptom score nonsignificantly decreased from 2.02 to 1.87. We observed that older age and a higher premedication IPSS-V score yielded significant differences (P<0.05) for subclinical voiding dysfunction and unchanged voiding function. In patients aged ≥50 years, the IPSS-T, IPSS-V, and IPSS-S scores significantly increased after the pseudoephedrine treatment (IPSS-T increased from 9.95 to 11.45, IPSS-V from 5.38 to 6.07, and IPSS-S 4.57 to 5.38), whereas the quality of life due to urinary symptom score nonsignificantly decreased from 2.71 to 2.48 (P=0.057). In patients aged <50 years, all scores did not significantly differ. Pseudoephedrine treatment for nasal congestion requires extra precautions in males >50 years, even without subjective voiding symptoms.

  18. Voiding dysfunction in patients with nasal congestion treated with pseudoephedrine: a prospective study

    PubMed Central

    Shao, I-Hung; Wu, Chia-Chen; Tseng, Hsiao-Jung; Lee, Ta-Jen; Lin, Yu-Hsiang; Tam, Yuan-Yun

    2016-01-01

    Background Pseudoephedrine is a sympathomimetic drug widely used as a nasal decongestant. However, it can cause adverse effects, such as voiding dysfunction. The risk of voiding dysfunction remains uncertain in patients without subjective voiding problems. Methodology We prospectively enrolled patients with nasal congestion who required treatment with pseudoephedrine from May to August 2015. All patients denied concomitant subjective voiding problem. The International Prostate Symptom Score (IPSS) questionnaire was used to evaluate voiding function before and 1 week after the pseudoephedrine treatment. The results of the IPSS questionnaire were analyzed as the total (IPSS-T), voiding (IPSS-V), storage (IPSS-S), and quality of life due to urinary symptom scores. Results We enrolled 131 males with a mean age of 42.0±14.3 years. The IPSS-T, IPSS-V, and IPSS-S scores slightly increased after the medication (IPSS-T increased from 6.49 to 6.77, IPSS-V from 3.33 to 3.53, and IPSS-S from 3.17 to 3.24). The quality of life due to urinary symptom score nonsignificantly decreased from 2.02 to 1.87. We observed that older age and a higher premedication IPSS-V score yielded significant differences (P<0.05) for subclinical voiding dysfunction and unchanged voiding function. In patients aged ≥50 years, the IPSS-T, IPSS-V, and IPSS-S scores significantly increased after the pseudoephedrine treatment (IPSS-T increased from 9.95 to 11.45, IPSS-V from 5.38 to 6.07, and IPSS-S 4.57 to 5.38), whereas the quality of life due to urinary symptom score nonsignificantly decreased from 2.71 to 2.48 (P=0.057). In patients aged <50 years, all scores did not significantly differ. Conclusion Pseudoephedrine treatment for nasal congestion requires extra precautions in males >50 years, even without subjective voiding symptoms. PMID:27486310

  19. Shrinkage void formation and its effect on freeze and thaw processes of lithium and lithium-fluoride for space applications

    NASA Astrophysics Data System (ADS)

    Yang, Jae-Young; El-Genk, M. S.

    1991-07-01

    The effects of shrinkage void forming during freezing of lithium and lithium-fluoride on subsequent thaw processes are investigated using a numerical scheme that is based on a single (solid/liquid) cell approach. Results show that a void forming at the wall appreciably reduces the solid-liquid interface velocity, during both freeze and thaw, and causes a substantial rise in the wall temperature during thaw. However, in the case of Li, the maximum wall temperature was much lower than the melting temperature of PWC-11, which is used as the structure material in the SP-100 system. Hence, it is concluded that a formation of hot spots is unlikely during the startup or restart of the SP-100 system.

  20. Shrinkage void formation and its effect on freeze and thaw processes of lithium and lithium-fluoride for space applications

    NASA Technical Reports Server (NTRS)

    Yang, Jae Y.; El-Genk, Mohamed S.

    1991-01-01

    The effects of shrinkage void forming during freezing of lithium and lithium fluoride on subsequent thaw processes are investigated using a numerical scheme that is based on a single (solid/liquid) cell approach. Results show that a void forming at the wall appreciably reduces the solid-liquid interface velocity, during both freeze and thaw, and causes a substantial rise in the wall temperature during thaw. However, in the case of Li, the maximum wall temperature was much lower than the melting temperature of PWC-11, which is used as the structure material in the SP-100 system. Hence, it is concluded that a formation of hot spots is unlikely during the startup or restart of the SP-100 system.

  1. The study of voids in the AuAl thin-film system using the nuclear microprobe

    NASA Astrophysics Data System (ADS)

    de Waal, H. S.; Pretorius, R.; Prozesky, V. M.; Churms, C. L.

    1997-07-01

    A Nuclear Microprobe (NMP) was used to study void formation in thin film gold-aluminium systems. Microprobe Rutherford Backscattering Spectrometry (μRBS) was utilised to effectively obtain a three-dimensional picture of the void structure on the scale of a few nanometers in the depth dimension and a few microns in the in-plane dimension. This study illustrates the usefulness of the NMP in the study of materials and specifically thin-film structures.

  2. Method for loading explosive laterally from a borehole

    DOEpatents

    Ricketts, Thomas E.

    1981-01-01

    There is provided a method for forming an in situ oil shale retort in a subterranean formation containing oil shale. At least one void is excavated in the formation, leaving zones of unfragmented formation adjacent the void. An array of main blastholes is formed in the zone of unfragmented formation and at least one explosive charge which is shaped for forming a high velocity gas jet is placed into a main blasthole with the axis of the gas jet extending transverse to the blasthole. The shaped charge is detonated for forming an auxiliary blasthole in the unfragmented formation adjacent a side wall of the main blasthole. The auxiliary blasthole extends laterally away from the main blasthole. Explosive is placed into the main blasthole and into the auxiliary blasthole and is detonated for explosively expanding formation towards the free face for forming a fragmented permeable mass of formation particles in the in situ oil shale retort.

  3. Note: Void effects on eddy current distortion in two-phase liquid metal.

    PubMed

    Kumar, M; Tordjeman, Ph; Bergez, W; Cavaro, M

    2015-10-01

    A model based on the first order perturbation expansion of magnetic flux in a two-phase liquid metal flow has been developed for low magnetic Reynolds number Rem. This model takes into account the distortion of the induced eddy currents due to the presence of void in the conducting medium. Specific experiments with an eddy current flow meter have been realized for two periodic void distributions. The results have shown, in agreement with the model, that the effects of velocity and void on the emf modulation are decoupled. The magnitude of the void fraction and the void spatial frequency can be determined from the spectral density of the demodulated emf.

  4. Relationship between water status in dentin and interfacial morphology in all-in-one adhesives.

    PubMed

    Yoshida, Eiji; Uno, Sigeru; Nodasaka, Yoshinobu; Kaga, Msayuki; Hirano, Susumu

    2007-05-01

    All-in-one adhesive systems have been recently developed to simplify bonding procedures. The adhesives containing acidic resin monomers generate a relatively thin bonding zone between dentin and composite. This zone may be left acidic and permeable when polymerization is poor. In this study, the effect of water contained in dentin on the quality of the bonding interface was morphologically investigated for all-in-one adhesives. Intact coronal dentin (hydrated dentin), desiccated coronal dentin (dehydrated dentin), caries-affected dentin (CAD) and resin composites were used for adherends to assess the effects of water contained in dentin on the ultra-structures of bonding interfaces created with two all-in-one adhesives and a resin composite. The bonding interfaces were observed under TEM without demineralization. Voids of various sizes were found at the bottom of the adhesive resin layers along the bonding interface of hydrated dentin, while dehydrated dentin, CAD and resin composites did not generate voids. The results showed that the voids were possibly formed by water that had penetrated from the underlying dentin. When the adherend contains little water, the formation of voids will not occur. It was verified that a phenomenon of void formation would not occur in a clinical situation in which caries-affected dentin is mainly subjected to adhesive practices.

  5. High energy X-ray CT study on the central void formations and the fuel pin deformations of FBR fuel assemblies

    NASA Astrophysics Data System (ADS)

    Katsuyama, Kozo; Nagamine, Tsuyoshi; Matsumoto, Shin-ichiro; Sato, Seichi

    2007-02-01

    The central void formations and deformations of fuel pins were investigated in fuel assemblies irradiated to high burn-up, using a non-destructive X-ray CT (computer tomography) technique. In this X-ray CT, the effect of strong gamma ray activity could be reduced to a negligible degree by using the pulse of a high energy X-ray source and detecting the intensity of the transmitted X-rays in synchronization with the generated X-rays. Clear cross-sectional images of fuel assemblies irradiated to high burn-up in a fast breeder reactor were successively obtained, in which the wrapping wires, cladding, pellets and central voids could be distinctly seen. The diameter of a typical central void measured by X-ray CT agreed with the one obtained by ceramography within an error of 0.1 mm. Based on this result, the dependence of the central void diameter on the linear heating rate was analyzed. In addition, the deformation behavior of a fuel pin along its axial direction could be analyzed from 20 stepwise X-ray cross-sectional images obtained in a small interval, and the results obtained showed a good agreement with the predictions calculated by two computer codes.

  6. Influence of hydrophobization of fumed oxides on interactions with polar and nonpolar adsorbates

    NASA Astrophysics Data System (ADS)

    Gun'ko, V. M.; Pakhlov, E. M.; Goncharuk, O. V.; Andriyko, L. S.; Marynin, A. I.; Ukrainets, A. I.; Charmas, B.; Skubiszewska-Zięba, J.; Blitz, J. P.

    2017-11-01

    A variety of unmodified and modified fumed silica A-300 and silica/titania (ST20 and ST76 at 20 and 76 wt.% of titania, respectively) was prepared to analyze features of their interactions with polar and nonpolar adsorbates. The materials were studied using nitrogen adsorption-desorption, ethanol evaporation kinetics, infrared (IR) spectroscopy, thermogravimetry (TG), photon correlation spectroscopy, differential scanning calorimetry (DSC), DSC and TG thermoporometry, and quantum chemistry. Changes in surface structure of modified nanooxides with increasing hydrophobization degree (ΘMS) from 20% to 100% have a strong affect on the textural characteristics of the materials and adsorption-desorption of various adsorbates. Confined space effects enhanced due to the location of adsorbates in narrow voids between nanoparticles lead to freezing-melting point depression for bound polar and nonpolar adsorbates. The behavior of particles of modified nanooxides in aqueous and water/ethanol media is strongly altered due to enhanced aggregations with increasing value of ΘMS. All of these change are non-monotonic functions of ΘMS which affects (i) rearrangement of nanoparticles, (ii) interactions with polar and nonpolar adsorbates, (iii) location of adsorbates in voids of different sizes, (iv) the clustering of adsorbates and formation of nearly bulk structures.

  7. Interconnect mechanisms in microelectronic packaging

    NASA Astrophysics Data System (ADS)

    Roma, Maria Penafrancia C.

    Global economic, environmental and market developments caused major impact in the microelectronics industry. Astronomical rise of gold metal prices over the last decade shifted the use of copper and silver alloys as bonding wires. Environmental legislation on the restriction of the use of Pb launched worldwide search for lead-free solders and platings. Finally, electrical and digital uses demanded smaller, faster and cheaper devices. Ultra-fine pitch bonding, decreasing bond wire sizes and hard to bond substrates have put the once-robust stitch bond in the center of reliability issues due to stitch bond lift or open wires .Unlike the ball bond, stitch bonding does not lead to intermetallic compound formation but adhesion is dependent on mechanical deformation, interdiffusion, solid solution formation, void formation and mechanical interlocking depending on the wire material, bond configuration, substrate type , thickness and surface condition. Using Au standoff stitch bonds on NiPdAu plated substrates eliminated stitch bond lift even when the Au and Pd layers are reduced. Using the Matano-Boltzmann analysis on a STEM (Scanning Transmission Analysis) concentration profile the interdiffusion coefficient is measured to be 10-16 cm 2/s. Wire pull strength data showed that the wire pull strength is 0.062N and increases upon stress testing. Meanwhile, coating the Cu wire with Pd, not only increases oxidation resistance but also improved adhesion due to the formation of a unique interfacial adhesion layers. Adhesion strength as measured by pull showed the Cu wire bonded to Ag plated Cu substrate (0.132N) to be stronger than the Au wire bonded on the same substrate (0.124N). Ag stitch bonded to Au is predicted to be strong but surface modification made the adhesion stronger. However, on the Ag ball bonded to Al showed multiple IMC formation with unique morphology exposed by ion milling and backscattered scanning electron microscopy. Adding alloying elements in the Ag wire alloy showed differences in adhesion strength and IMC formation. Bond strength by wire pull testing showed the 95Ag alloy with higher values while shear bond testing showed the 88Ag higher bond strength. Use of Cu pillars in flip chips and eutectic bonding in wafer level chip scale packages are direct consequences of diminishing interconnect dimension as a result of the drive for miniaturization. The combination of Cu-Sn interdiffusion, Kirkendall mechanism and heterogeneous vacancy precipitation are the main causes of IMC and void formation in Cu pillar - Sn solder - Cu lead frame sandwich structure. However, adding a Ni barrier agent showed less porous IMC layer as well as void formation as a result of the modified Cu and Sn movement well as the void formation. Direct die to die bonding using Al-Ge eutectic bonds is necessary when 3D integration is needed to reduce the footprint of a package. Hermeticity and adhesion strength are a function of the Al/Ge thickness ratio, bonding pressure, temperature and time. Scanning Electron Microscope (SEM) and Focused Ion Beam (FIB) allowed imaging of interfacial microstructures, porosity, grain morphology while Scanning Transmission Electron microscope (STEM) provided diffusion profile and confirmed interdiffusion. Ion polishing technique provided information on porosity and when imaged using backscattered mode, grain structure confirmed mechanical deformation of the bonds. Measurements of the interfacial bond strength are made by wire pull tests and ball shear tests based on existing industry standard tests. However, for the Al-Ge eutectic bonds, no standard strength is available so a test is developed using the stud pull test method using the Dage 4000 Plus to yield consistent results. Adhesion strengths of 30-40 MPa are found for eutectic bonded packages however, as low as 20MPa was measured in low temperature bonded areas.

  8. Application of X-Ray Computer Tomography for Observing the Central Void Formations and the Fuel Pin Deformations of Irradiated FBR Fuel Assemblies

    NASA Astrophysics Data System (ADS)

    Katsuyama, Kozo; Nagamine, Tsuyoshi; Furuya, Hirotaka

    2010-10-01

    In order to observe the structural change in the interior of irradiated fuel assemblies, a non-destructive post-irradiation examination (PIE) technique using X-ray computer tomography (X-ray CT) was developed. This X-ray CT technique was applied to observe the central void formations and fuel pin deformations of fuel assemblies which had been irradiated at high linear heat rating. The central void sizes in all fuel pins were measured on five cross sections of the core fuel column as a parameter for evaluating fuel thermal performance. In addition, the fuel pin deformations were analyzed from X-ray CT images obtained along the axial direction of a fuel assembly at the same separation interval. A dependence of void size on the linear heat rating was seen in the fuel assembly irradiated at high linear heat rating. In addition, significant undulations of the fuel pin were observed along the axial direction, coinciding with the wrapping wire pitch in the core fuel column. Application of the developed technique should provide enhanced resolution of measurements and simplify fuel PIEs.

  9. Float zone growth and spectroscopic properties of Yb:CaYAlO4 single crystal for ultra-short pulse lasers

    NASA Astrophysics Data System (ADS)

    Narita, Moe; Higuchi, Mikio; Ogawa, Takayo; Wada, Satoshi; Miura, Akira; Tadanaga, Kiyoharu

    2018-06-01

    Yb:CaYAlO4 single crystals were grown by the floating zone method and their spectral properties were investigated. Void formation was effectively suppressed by using a feed rod of Y-rich composition with the aid of a double zone-pass technique. For the oxygen excess composition of Yb:Ca0.9925Y1.0075AlO4.00375, a void-free crystal was obtained by performing only the double zone-pass. On the other hand, for cation-deficient type of Yb:Ca0.9925Y1.005AlO4, void-free crystal could not be obtained by performing the double zone-pass. The void formation is attributable to the constitutional supercooling caused by segregation of main constituents of Y and Ca, and the congruent composition may exist in the Y-rich region with existence of interstitial excess oxide ions. The absorption cross section for σ-polarization was slightly larger than that for π-polarization, which is reasonable on the basis of the crystal structure of CaYAlO4.

  10. ONLY THE LONELY: H I IMAGING OF VOID GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kreckel, K.; Van Gorkom, J. H.; Platen, E.

    2011-01-15

    Void galaxies, residing within the deepest underdensities of the Cosmic Web, present an ideal population for the study of galaxy formation and evolution in an environment undisturbed by the complex processes modifying galaxies in clusters and groups, as well as provide an observational test for theories of cosmological structure formation. We have completed a pilot survey for the H I imaging aspects of a new Void Galaxy Survey (VGS), imaging 15 void galaxies in H I in local (d < 100 Mpc) voids. H I masses range from 3.5 x 10{sup 8} to 3.8 x 10{sup 9} M{sub sun}, withmore » one nondetection with an upper limit of 2.1 x 10{sup 8} M{sub sun}. Our galaxies were selected using a structural and geometric technique to produce a sample that is purely environmentally selected and uniformly represents the void galaxy population. In addition, we use a powerful new backend of the Westerbork Synthesis Radio Telescope that allows us to probe a large volume around each targeted galaxy, simultaneously providing an environmentally constrained sample of fore- and background control samples of galaxies while still resolving individual galaxy kinematics and detecting faint companions in H I. This small sample makes up a surprisingly interesting collection of perturbed and interacting galaxies, all with small stellar disks. Four galaxies have significantly perturbed H I disks, five have previously unidentified companions at distances ranging from 50 to 200 kpc, two are in interacting systems, and one was found to have a polar H I disk. Our initial findings suggest void galaxies are a gas-rich, dynamic population which present evidence of ongoing gas accretion, major and minor interactions, and filamentary alignment despite the surrounding underdense environment.« less

  11. In situ X-ray micro-CT characterization of chemo-mechanical relaxations during Sn lithiation

    NASA Astrophysics Data System (ADS)

    Gonzalez, Joseph F.; Antartis, Dimitrios A.; Chasiotis, Ioannis; Dillon, Shen J.; Lambros, John

    2018-03-01

    Sn has been proposed for use as a high capacity anode material. Because of its ductile metallic nature, Sn may exhibit unique stress evolution during lithiation. Here, 2D radiography and 3D tomography are employed to visualize the evolution of geometry, internal structure, alloying, and damage during lithiation, delithiation, and rest of Sn wires with micron scale diameters. Lithiation proceeds isotropically, resulting in geometric and dimensional changes after 25% of total lithiation when the tensile stresses are sufficiently high to exceed the flow stress of the unlithiated Sn core and cause elongation and diameter increase. Damage occurs at later stages in the form of cracks terminating at the wire surface and voids forming in the unlithiated core. Notably, significant fragmentation occurs during delithiation which, due to void formation that accommodates the resulting stresses, does not measurably alter the wire cross-section and length. The distinguishing feature of the chemo-mechanics of Sn compared to Si or Ge is the pronounced creep rate at applied strain rates as high as 10-6 s-1, which promotes large strains in the core, eventually leading to void nucleation in the unlithiated core during lithiation, and more importantly, continues driving the deformation of the anode while at rest.

  12. Adhesion of voids to bimetal interfaces with non-uniform energies

    DOE PAGES

    Zheng, Shijian; Shao, Shuai; Zhang, Jian; ...

    2015-10-21

    Interface engineering has become an important strategy for designing radiation-resistant materials. Critical to its success is fundamental understanding of the interactions between interfaces and radiation-induced defects, such as voids. Using transmission electron microscopy, here we report an interesting phenomenon in their interaction, wherein voids adhere to only one side of the bimetal interfaces rather than overlapping them. We show that this asymmetrical void-interface interaction is a consequence of differing surface energies of the two metals and non-uniformity in their interface formation energy. Specifically, voids grow within the phase of lower surface energy and wet only the high-interface energy regions. Furthermore,more » because this outcome cannot be accounted for by wetting of interfaces with uniform internal energy, our report provides experimental evidence that bimetal interfaces contain non-uniform internal energy distributions. Ultimately, this work also indicates that to design irradiation-resistant materials, we can avoid void-interface overlap via tuning the configurations of interfaces.« less

  13. Void Formation/Elimination and Viscoelastic Response of Polyphenylsilsesquioxane Monolith.

    PubMed

    Daiko, Yusuke; Oda, Yuki; Honda, Sawao; Iwamoto, Yuji

    2018-05-19

    Polyphenylsilsesquioxane (PhSiO 3/2 ) particles as an organic-inorganic hybrid were prepared using sol-gel method, and monolithic samples were obtained via a warm-pressing. The reaction mechanism of particles' polymerization and transformation to the monolith under the warm-press were investigated using solid state 29 Si nuclear magnetic resonance (NMR) spectrometer, thermal gravimetric-differential thermal analyzer (TG-DTA), mass spectrometer (MS) and scanning electron microscope (SEM). Transparent and void-free monoliths are successfully obtained by warm-pressing above 180 °C. Both the terminal ⁻OH groups on particles' surface and warm-pressing are necessary for preparation of void-free PhSiO 3/2 monolith. From the load-displacement measurement at various temperatures, a viscoelastic deformation is seen for PhSiO 3/2 monolith with voids. On the other hand, an elastic deformation is seen for void-free PhSiO 3/2 monolith, and the void-free monolith shows much higher breakdown voltage.

  14. Voids as alternatives to dark energy and the propagation of γ rays through the universe.

    PubMed

    DeLavallaz, Arnaud; Fairbairn, Malcolm

    2012-04-27

    We test the opacity of a void universe to TeV energy γ rays having obtained the extragalactic background light in that universe using a simple model and the observed constraints on the star formation rate history. We find that the void universe has significantly more opacity than a Λ cold dark matter universe, putting it at odds with observations of BL-Lac objects. We argue that while this method of distinguishing between the two cosmologies contains uncertainties, it circumvents any debates over fine-tuning.

  15. Method for improving the performance of oxidizable ceramic materials in oxidizing environments

    NASA Technical Reports Server (NTRS)

    Nagaraj, Bangalore A. (Inventor)

    2002-01-01

    Improved adhesion of thermal barrier coatings to nonmetallic substrates using a dense layer of ceramic on an underlying nonmetallic substrate that includes at least one oxidizable component. The improved adhesion occurs because the application of the dense ceramic layer forms a diffusion barrier for oxygen. This diffusion barrier prevents the oxidizable component of the substrate from decomposing. The present invention applies ceramic by a process that deposits a relatively thick and dense ceramic layer on the underlying substrate. The formation of the dense layer of ceramic avoids the problem of void formation associated with ceramic formation by most prior art thermal decomposition processes. The formation of voids has been associated with premature spalling of thermal barrier layers and other protective layers applied to substrates.

  16. Influence of Strain Rate, Microstructure and Chemical and Phase Composition on Mechanical Behavior of Different Titanium Alloys

    NASA Astrophysics Data System (ADS)

    Markovsky, P. E.; Bondarchuk, V. I.

    2017-07-01

    Taking three titanium commercial alloys: commercial purity titanium (c.p.Ti), Ti-6-4 (Ti-6(wt.%)Al-4V) and TIMETAL-LCB (Ti-1.5Al-4.5Fe-6.8Mo) as program materials, the influence of phase composition, microstructure and strain rate (varied from 8 × 10-4 to 1.81 × 10-1) on the mechanical behavior was studied. The size of the matrix phase ( α- or β-grains) and size of α + β intragranular mixture were varied. Such parameter such as tensile toughness (TT) was used for analysis of the mechanical behavior of the materials on tension with different rates. It was found that the TT values monotonically decreased with strain rate, except Ti-6-4 alloy with a globular type of microstructure. In single-phase α-material (c.p.Ti), tensile deformation led to the formation of voids at the intragranular cell substructure, and merging of these voids caused the formation of main crack. In two-phase α + β materials, the deformation defects were localized upon tension predominantly near the α/ β interphase boundaries, and subsequent fracture had different characters: In Ti-6-4 globular condition fracture started by formation of voids at the α/ β interphase boundaries, whereas in all other conditions the voids nucleated at the tips of α-lamellae/needles.

  17. Void and pore formation inside the hair cortex by a denaturation and super-contraction process occurring during hair setting with hot irons.

    PubMed

    Gamez-Garcia, Manuel

    2011-01-01

    An analysis of hair fibers from donors that frequently use hot irons for hair straightening showed the presence of multiple pores and voids (φ approximately 0.1-1.5 μm) that extend from the cuticle sheath to regions inside the hair cortex. Pore formation in the cortex was found to be confined at its periphery and could be reproduced in the laboratory with virgin hair fibers after the application of various hot-iron straightening cycles. The appearance of pores and voids in the cortex was found to be associated to the production of hot water vapor while the fiber is undergoing mechanical elongation or contraction. The number of pores was seen to rapidly increase with temperature in the range from 190 to 220°C and also with the number of straightening cycles. Larger hair voids (φ approximately 2-5 μm) were also detected in the cortex. The small pores found at the cortex periphery appear to occur by the simultaneous occurrence of rearrangement of hair proteins, fiber mechanical contraction/expansion, and the flow of super-heated steam. Hot irons create, thus, the conditions for the onset of pore formation as the high temperatures produce superheated steam and soften the native state of hair proteins by a process involving denaturation and changes in the crystalline regions.

  18. The Kirkendall and Frenkel effects during 2D diffusion process

    NASA Astrophysics Data System (ADS)

    Wierzba, Bartek

    2014-11-01

    The two-dimensional approach for inter-diffusion and voids generation is presented. The voids evolution and growth is discussed. This approach is based on the bi-velocity (Darken) method which combines the Darken and Brenner concepts that the volume velocity is essential in defining the local material velocity in multi-component mixture at non-equilibrium. The model is formulated for arbitrary multi-component two-dimensional systems. It is shown that the voids growth is due to the drift velocity and vacancy migration. The radius of the void can be easily estimated. The distributions of (1) components, (2) vacancy and (3) voids radius over the distance is presented.

  19. Void Growth and Coalescence in Dynamic Fracture of FCC and BCC Metals - Molecular Dynamics Study

    NASA Astrophysics Data System (ADS)

    Seppälä, Eira

    2004-03-01

    In dynamic fracture of ductile metals, the state of tension causes the nucleation of voids, typically from inclusions or grain boundary junctions, which grow and ultimately coalesce to form the fracture surface. Significant plastic deformation occurs in the process, including dislocations emitted to accommodate the growing voids. We have studied at the atomistic scale growth and coalescence processes of voids with concomitant dislocation formation. Classical molecular dynamics (MD) simulations of one and two pre-existing spherical voids initially a few nanometers in radius have been performed in single-crystal face-centered-cubic (FCC) and body-centered-cubic (BCC) lattices under dilational strain with high strain-rates. Million atom simulations of single void growth have been done to study the effect of stress triaxiality,^1 along with strain rate and lattice-structure dependence. An interesting prolate-to-oblate transition in the void shape in uniaxial expansion has been observed and quantitatively analyzed. The simulations also confirm that the plastic strain results directly from the void growth. Interaction and coalescence between two voids have been studied utilizing a parallel MD code in a seven million atom system. In particular, the movement of centers of the voids, linking of the voids, and the shape changes in vicinity of the other void are studied. Also the critical intervoid ligament distance after which the voids can be treated independently has been searched. ^1 E. T. Seppälä, J. Belak, and R. E. Rudd, cond-mat/0310541, submitted to Phys. Rev. B. Acknowledgment: This work was done in collaboration with Dr. James Belak and Dr. Robert E. Rudd, LLNL. It was performed under the auspices of the US Dept. of Energy at the Univ. of Cal./Lawrence Livermore National Laboratory under contract no. W-7405-Eng-48.

  20. Three-Dimensional Analysis of Voids in AM60B Magnesium Tensile Bars Using Computed Tomography Imagery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waters, A M

    2001-05-01

    In an effort to increase automobile fuel efficiency as well as decrease the output of harmful greenhouse gases, the automotive industry has recently shown increased interest in cast light metals such as magnesium alloys in an effort to increase weight savings. Currently several magnesium alloys such as AZ91 and AM60B are being used in structural applications for automobiles. However, these magnesium alloys are not as well characterized as other commonly used structural metals such as aluminum. This dissertation presents a methodology to nondestructively quantify damage accumulation due to void behavior in three dimensions in die-cast magnesium AM60B tensile bars asmore » a function of mechanical load. Computed tomography data was acquired after tensile bars were loaded up to and including failure, and analyzed to characterize void behavior as it relates to damage accumulation. Signal and image processing techniques were used along with a cluster labeling routine to nondestructively quantify damage parameters in three dimensions. Void analyses were performed including void volume distribution characterization, nearest neighbor distance calculations, shape parameters, and volumetric renderings of voids in the alloy. The processed CT data was used to generate input files for use in finite element simulations, both two- and three-dimensional. The void analyses revealed that the overwhelming source of failure in each tensile bar was a ring of porosity within each bar, possibly due to a solidification front inherent to the casting process. The measured damage parameters related to void nucleation, growth, and coalescence were shown to contribute significantly to total damage accumulation. Void volume distributions were characterized using a Weibull function, and the spatial distributions of voids were shown to be clustered. Two-dimensional finite element analyses of the tensile bars were used to fine-tune material damage models and a three-dimensional mesh of an extracted portion of one tensile bar including voids was generated from CT data and used as input to a finite element analysis.« less

  1. Thermal analysis of heat storage canisters for a solar dynamic, space power system

    NASA Technical Reports Server (NTRS)

    Wichner, R. P.; Solomon, A. D.; Drake, J. B.; Williams, P. T.

    1988-01-01

    A thermal analysis was performed of a thermal energy storage canister of a type suggested for use in a solar receiver for an orbiting Brayton cycle power system. Energy storage for the eclipse portion of the cycle is provided by the latent heat of a eutectic mixture of LiF and CaF2 contained in the canister. The chief motivation for the study is the prediction of vapor void effects on temperature profiles and the identification of possible differences between ground test data and projected behavior in microgravity. The first phase of this study is based on a two-dimensional, cylindrical coordinates model using an interim procedure for describing void behavor in 1-g and microgravity. The thermal analysis includes the effects of solidification front behavior, conduction in liquid/solid salt and canister materials, void growth and shrinkage, radiant heat transfer across the void, and convection in the melt due to Marangoni-induced flow and, in 1-g, flow due to density gradients. A number of significant differences between 1-g and o-g behavior were found. This resulted from differences in void location relative to the maximum heat flux and a significantly smaller effective conductance in 0-g due to the absence of gravity-induced convection.

  2. Application of Dst Interpretation Results by Log - Log Method in the Pore Space Type Estimation for the Upper Jurassic Carbonate Reservoir Rocks of the Carpathian Foredeep Basement / Interpretacja Testów Wykonywanych Rurowymi Próbnikami Złoża - Rpz w Skałach Węglanowych Górnej Jury Podłoża Zapadliska Przedkarpackiego

    NASA Astrophysics Data System (ADS)

    Dubiel, Stanisław; Zubrzycki, Adam; Rybicki, Czesław; Maruta, Michał

    2012-11-01

    In the south part of the Carpathian Foredeep basement, between Bochnia and Ropczyce, the Upper Jurassic (Oxfordian, Kimmeridian and Tithonian) carbonate complex plays important role as a hydrocarbon bearing formation. It consists of shallow marine carbonates deposited in environments of the outer carbonate ramp as reef limestones (dolomites), microbial - sponge or coral biostromes and marly or micrite limestones as well. The inner pore space system of these rocks was affected by different diagenetic processes as calcite cementation, dissolution, dolomitization and most probably by tectonic fracturing as well. These phenomena have modified pore space systems within limestone / dolomite series forming more or less developed reservoir zones (horizons). According to the interpretation of DST results (analysis of pressure build up curves by log - log method) for 11 intervals (marked out previously by well logging due to porosity increase readings) within the Upper Jurassic formation 3 types of pore/fracture space systems were distinguished: - type I - fracture - vuggy porosity system in which fractures connecting voids and vugs within organogenic carbonates are of great importance for medium flow; - type II - vuggy - fracture porosity system where a pore space consists of weak connected voids and intergranular/intercrystalline pores with minor influence of fractures; - type III - cavern porosity system in which a secondary porosity is developed due to dolomitization and cement/grain dissolution processes.

  3. Simulation of Initiation in Hexanitrostilbene

    NASA Astrophysics Data System (ADS)

    Thompson, Aidan; Shan, Tzu-Ray; Yarrington, Cole; Wixom, Ryan

    We report on the effect of isolated voids and pairs of nearby voids on hot spot formation, growth and chemical reaction initiation in hexanitrostilbene (HNS) crystals subjected to shock loading. Large-scale, reactive molecular dynamics simulations are performed using the reactive force field (ReaxFF) as implemented in the LAMMPS software. The ReaxFF force field description for HNS has been validated previously by comparing the isothermal equation of state to available diamond anvil cell (DAC) measurements and density function theory (DFT) calculations. Micron-scale molecular dynamics simulations of a supported shockwave propagating in HNS crystal along the [010] orientation are performed (up = 1.25 km/s, Us =4.0 km/s, P = 11GPa.) We compare the effect on hot spot formation and growth rate of isolated cylindrical voids up to 0.1 µm in size with that of two 50nm voids set 100nm apart. Results from the micron-scale atomistic simulations are compared with hydrodynamics simulations. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lock- heed Martin Corporation, for the U.S. DOE National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  4. Large-Scale Reactive Atomistic Simulation of Shock-induced Initiation Processes in Energetic Materials

    NASA Astrophysics Data System (ADS)

    Thompson, Aidan

    2013-06-01

    Initiation in energetic materials is fundamentally dependent on the interaction between a host of complex chemical and mechanical processes, occurring on scales ranging from intramolecular vibrations through molecular crystal plasticity up to hydrodynamic phenomena at the mesoscale. A variety of methods (e.g. quantum electronic structure methods (QM), non-reactive classical molecular dynamics (MD), mesoscopic continuum mechanics) exist to study processes occurring on each of these scales in isolation, but cannot describe how these processes interact with each other. In contrast, the ReaxFF reactive force field, implemented in the LAMMPS parallel MD code, allows us to routinely perform multimillion-atom reactive MD simulations of shock-induced initiation in a variety of energetic materials. This is done either by explicitly driving a shock-wave through the structure (NEMD) or by imposing thermodynamic constraints on the collective dynamics of the simulation cell e.g. using the Multiscale Shock Technique (MSST). These MD simulations allow us to directly observe how energy is transferred from the shockwave into other processes, including intramolecular vibrational modes, plastic deformation of the crystal, and hydrodynamic jetting at interfaces. These processes in turn cause thermal excitation of chemical bonds leading to initial chemical reactions, and ultimately to exothermic formation of product species. Results will be presented on the application of this approach to several important energetic materials, including pentaerythritol tetranitrate (PETN) and ammonium nitrate/fuel oil (ANFO). In both cases, we validate the ReaxFF parameterizations against QM and experimental data. For PETN, we observe initiation occurring via different chemical pathways, depending on the shock direction. For PETN containing spherical voids, we observe enhanced sensitivity due to jetting, void collapse, and hotspot formation, with sensitivity increasing with void size. For ANFO, we examine the effect of reaction rates on shock direction, fuel oil fraction, and crystal/fuel oil/void microstructural arrangement. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Dept. of Energy's National Nuclear Security Admin. under contract DEAC0494AL85000.

  5. Electromigration induced high fraction of compound formation in SnAgCu flip chip solder joints with copper column

    NASA Astrophysics Data System (ADS)

    Xu, Luhua; Han, Jung-Kyu; Liang, Jarrett Jun; Tu, K. N.; Lai, Yi-Shao

    2008-06-01

    To overcome the effect of current crowding on electromigration-induced pancake-type void formation in flip chip solder joints, two types of Cu column in 90μm flip chip SnAgCu solder joints have been studied. They were (1) the solder contacts the Cu column at bottom and side walls and (2) the solder wets only the bottom surface of the copper column. With a current density of 1.6×104A/cm2 at 135°C, no failure was detected after 1290h. However, the resistance increased by about 10% due to the formation of a large fraction of intermetallic compounds. We found that electromigration has accelerated the consumption rate of copper column and converted almost the entire solder joint into intermetallic compound. Mechanically, drop impact test indicates a brittle fracture failure in the intermetallic. The electromigration critical product for the intermetallic is discussed.

  6. Loss of urinary voiding sensation due to herpes zoster.

    PubMed

    Hiraga, Akiyuki; Nagumo, Kiyomi; Sakakibara, Ryuji; Kojima, Shigeyuki; Fujinawa, Naoto; Hashimoto, Tasuku

    2003-01-01

    A case of sacral herpes zoster infection in a 56-year-old man with the complication of loss of urinary voiding sensation is presented. He had typical herpes zoster eruption on the left S2 dermatome, hypalgesia of the S1-S4 dermatomes, and absence of urinary voiding sensation. There was no other urinary symptom at the first medical examination. Urinary complications associated with herpes zoster are uncommon, but two types, acute cystitis and acute retention, have been recognized. No cases of loss of urinary voiding sensation due to herpes zoster have been reported. In this case, hypalgesia of the sacral dermatomes was mild compared to the marked loss of urethral sensation. This inconsistency is explained by the hypothesis that the number of urethral fibers is very small as compared to that of cutaneous fibers, therefore, urethral sensation would be more severely disturbed than cutaneous sensation. Copyright 2003 Wiley-Liss, Inc.

  7. Galaxy and Mass Assembly (GAMA): halo formation times and halo assembly bias on the cosmic web

    NASA Astrophysics Data System (ADS)

    Tojeiro, Rita; Eardley, Elizabeth; Peacock, John A.; Norberg, Peder; Alpaslan, Mehmet; Driver, Simon P.; Henriques, Bruno; Hopkins, Andrew M.; Kafle, Prajwal R.; Robotham, Aaron S. G.; Thomas, Peter; Tonini, Chiara; Wild, Vivienne

    2017-09-01

    We present evidence for halo assembly bias as a function of geometric environment (GE). By classifying Galaxy and Mass Assembly (GAMA) galaxy groups as residing in voids, sheets, filaments or knots using a tidal tensor method, we find that low-mass haloes that reside in knots are older than haloes of the same mass that reside in voids. This result provides direct support to theories that link strong halo tidal interactions with halo assembly times. The trend with GE is reversed at large halo mass, with haloes in knots being younger than haloes of the same mass in voids. We find a clear signal of halo downsizing - more massive haloes host galaxies that assembled their stars earlier. This overall trend holds independently of GE. We support our analysis with an in-depth exploration of the L-Galaxies semi-analytic model, used here to correlate several galaxy properties with three different definitions of halo formation time. We find a complex relationship between halo formation time and galaxy properties, with significant scatter. We confirm that stellar mass to halo mass ratio, specific star formation rate (SFR) and mass-weighed age are reasonable proxies of halo formation time, especially at low halo masses. Instantaneous SFR is a poor indicator at all halo masses. Using the same semi-analytic model, we create mock spectral observations using complex star formation and chemical enrichment histories, which approximately mimic GAMA's typical signal-to-noise ratio and wavelength range. We use these mocks to assert how well potential proxies of halo formation time may be recovered from GAMA-like spectroscopic data.

  8. Via fill properties of organic BARCs in dual-damascene application

    NASA Astrophysics Data System (ADS)

    Huang, Runhui

    2004-05-01

    With the introduction of copper as the interconnect metal, the Dual Damascene (DD) process has been integrated into integrated circuit (IC) device fabrication. The DD process utilizes organic bottom anti-reflective coatings (BARCs) not only to eliminate the thin film interference effects but also to act as via fill materials. However, three serious processing problems are encountered with organic BARCs. One is the formation of voids, which are trapped gas bubbles (evaporating solvent, byproduct of the curing reaction and air) inside the vias. Another problem is non-uniform BARC layer thickness in different via pitch areas. The third problem is the formation of fences during plasma etch. Fences are formed from materials that are removed by plasma and subsequently deposited on the sidewall surrounding the via openings during the etching process. Voids can cause variations in BARC top thickness, optical properties, via fill percentage, and plasma etch rate. This study focuses on the factors that influence the formation of voids and addresses the ways to eliminate them by optimizing the compositions of formulations and the processing conditions. Effects of molecular weight of the polymer, nature of the crosslinker, additives, and bake temperature were examined. The molecular weight of the polymer is one of the important factors that needs to be controlled carefully. Polymers with high molecular weights tend to trap voids inside the vias. Low molecular weight polymers have low Tg and low viscosity, which enables good thermal flow so that the BARC can fill vias easily without voids. Several kinds of crosslinkers were investigated in this study. When used with the same polymer system, formulations with different crosslinkers show varying results that affect planar fill, sidewall coverage, and, in some cases, voids. Additives also can change via fill behavior dramatically, and choosing the right additive will improve the via fill property. Processing conditions such as bake temperature also greatly affect via fill. Depending on the polymer thermal property and crosslinking reaction, varying the bake temperature can change the via fill behavior of the BARC. By understanding the nature of the polymer, the crosslinking reaction, and the processing conditions, we are able to design BARCs with better flow property to provide planar topography without voids inside the vias.

  9. Effects of the spaces available for cations in strongly acidic cation-exchange resins on the exchange equilibria by quaternary ammonium ions and on the hydration states of metal ions.

    PubMed

    Watanabe, Yuuya; Ohnaka, Kenji; Fujita, Saki; Kishi, Midori; Yuchi, Akio

    2011-10-01

    The spaces (voids) available for cations in the five exchange resins with varying exchange capacities and cross-linking degrees were estimated, on the basis of the additivity of molar volumes of the constituents. Tetraalkylammonium ions (NR(4)(+); R: Me, Et, Pr) may completely exchange potassium ion on the resin having a larger void radius. In contrast, the ratio of saturated adsorption capacity to exchange capacity of the resin having a smaller void radius decreased with an increase in size of NR(4)(+) ions, due to the interionic contacts. Alkali metal ions could be exchanged quantitatively. While the hydration numbers of K(+), Rb(+), and Cs(+) were independent of the void radius, those of Li(+) and Na(+), especially Na(+), decreased with a decrease in void radius. Interionic contacts between the hydrated ions enhance the dehydration. Multivalent metal ions have the hydration numbers, comparable to or rather greater than those in water. A greater void volume available due to exchange stoichiometry released the interionic contacts and occasionally promoted the involvement of water molecules other than directly bound molecules. The close proximity between ions in the conventional ion-exchange resins having higher exchange capacities may induce varying interactions.

  10. Interaction of nanosecond ultraviolet laser pulses with reactive dusty plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wetering, F. M. J. H. van de; Oosterbeek, W.; Beckers, J.

    2016-05-23

    Even though UV laser pulses that irradiate a gas discharge are small compared to the plasma volume (≲3%) and plasma-on time (≲6 × 10{sup −6}%), they are found to dramatically change the discharge characteristics on a global scale. The reactive argon–acetylene plasma allows the growth of nanoparticles with diameters up to 1 μm, which are formed inside the discharge volume due to spontaneous polymerization reactions. It is found that the laser pulses predominantly accelerate and enhance the coagulation phase and are able to suppress the formation of a dust void.

  11. Toughening mechanism in elastometer-modified epoxy resins: Part 1

    NASA Technical Reports Server (NTRS)

    Yee, A. F.; Pearson, R. A.

    1983-01-01

    Several plaques of Epon 828, cured with piperidine, modified with hycar(r) CTBN 1300X8, Hycar(R) CTBN 1300X13, and Hycar(R) CTBN 1300x15, and in some cases modified with biphenol A (BPA), yielded properly toughened epoxies with rubber particle diameters ranging from 0.1 to 10 microns. Fracture toughness experiments indicate that toughness was more a function of rubber content than the rubber particle size. Tensile volumetric behavior of the near resin exhibits two regions: an initial region where the increase in volume strain was due to the Poisson's effect, and a second region where a slower rate of increase in volume strain was due to shear deformation. Tensile volumetric deformation of an elastomer-modified epoxy exhibits the same type of behavior to that of the neat resin at low rates ( 3.2x0.01 sec(-1)). But at very high strain rates, which correspond more closely to the strain rates at the crack tip, there exists an increase in volume strain beyond the Poisson's effect. TEM, SEM and OM studies indicate that the rubber particles had voided. When a thin section from the deformed region is viewed under crossed-polarized light, shear bands are seen connecting voided rubber particles. From this information cavitation and enhanced shear band formation is proposed as the toughening mechanism.

  12. Formation of austenite in high Cr ferritic/martensitic steels by high fluence neutron irradiation

    NASA Astrophysics Data System (ADS)

    Lu, Z.; Faulkner, R. G.; Morgan, T. S.

    2008-12-01

    High Cr ferritic/martensitic steels are leading candidates for structural components of future fusion reactors and new generation fission reactors due to their excellent swelling resistance and thermal properties. A commercial grade 12%CrMoVNb ferritic/martensitic stainless steel in the form of parent plate and off-normal weld materials was fast neutron irradiated up to 33 dpa (1.1 × 10 -6 dpa/s) at 400 °C and 28 dpa (1.7 × 10 -6 dpa/s) at 465 °C, respectively. TEM investigation shows that the fully martensitic weld metal transformed to a duplex austenite/ferrite structure due to high fluence neutron irradiation, the austenite was heavily voided (˜15 vol.%) and the ferrite was relatively void-free; whilst no austenite phases were detected in plate steel. Thermodynamic and phase equilibria software MTDATA has been employed for the first time to investigate neutron irradiation-induced phase transformations. The neutron irradiation effect is introduced by adding additional Gibbs free energy into the system. This additional energy is produced by high energy neutron irradiation and can be estimated from the increased dislocation loop density caused by irradiation. Modelling results show that neutron irradiation reduces the ferrite/austenite transformation temperature, especially for high Ni weld metal. The calculated results exhibit good agreement with experimental observation.

  13. Irradiation Induced Microstructure Evolution in Nanostructured Materials: A Review

    PubMed Central

    Liu, Wenbo; Ji, Yanzhou; Tan, Pengkang; Zang, Hang; He, Chaohui; Yun, Di; Zhang, Chi; Yang, Zhigang

    2016-01-01

    Nanostructured (NS) materials may have different irradiation resistance from their coarse-grained (CG) counterparts. In this review, we focus on the effect of grain boundaries (GBs)/interfaces on irradiation induced microstructure evolution and the irradiation tolerance of NS materials under irradiation. The features of void denuded zones (VDZs) and the unusual behavior of void formation near GBs/interfaces in metals due to the interactions between GBs/interfaces and irradiation-produced point defects are systematically reviewed. Some experimental results and calculation results show that NS materials have enhanced irradiation resistance, due to their extremely small grain sizes and large volume fractions of GBs/interfaces, which could absorb and annihilate the mobile defects produced during irradiation. However, there is also literature reporting reduced irradiation resistance or even amorphization of NS materials at a lower irradiation dose compared with their bulk counterparts, since the GBs are also characterized by excess energy (compared to that of single crystal materials) which could provide a shift in the total free energy that will lead to the amorphization process. The competition of these two effects leads to the different irradiation tolerance of NS materials. The irradiation-induced grain growth is dominated by irradiation temperature, dose, ion flux, character of GBs/interface and nanoprecipitates, although the decrease of grain sizes under irradiation is also observed in some experiments. PMID:28787902

  14. Intergalactic Hydrogen Clouds at Low Redshift: Connections to Voids and Dwarf Galaxies

    NASA Technical Reports Server (NTRS)

    Shull, J. Michael; Stocke, John T.; Penton, Steve

    1996-01-01

    We provide new post-COSTAR data on one sightline (Mrk 421) and updated data from another (I Zw 1) from our Hubble Space Telescope (HST) survey of intergalactic Ly(alpha) clouds located along sightlines to four bright quasars passing through well-mapped galaxy voids (16000 km/s pathlength) and superclusters (18000 km/s). We report two more definite detections of low-redshift Ly(alpha) clouds in voids: one at 3047 km/s (heliocentric) toward Mrk 421 and a second just beyond the Local Supercluster at 2861 km/s toward I Zw 1, confirming our earlier discovery of Ly(alpha) absorption clouds in voids (Stocke et al., ApJ, 451, 24). We have now identified ten definite and one probable low-redshift neutral hydrogen absorption clouds toward four targets, a frequency of approximately one absorber every 3400 km/s above 10(exp 12.7/sq cm column density. Of these ten absorption systems, three lie within voids; the probable absorber also lies in a void. Thus, the tendency of Ly(alpha) absorbers to 'avoid the voids' is not as clear as we found previously. If the Ly(alpha) clouds are approximated as homogeneous spheres of 100 kpc radius, their masses are approximately 10(exp 9)solar mass (about 0.01 times that of bright L* galaxies) and they are 40 times more numerous, comparable to the density of dwarf galaxies and of low-mass halos in numerical CDM simulations. The Ly(alpha) clouds contribute a fraction Omega(sub cl)approximately equals 0.003/h(sub 75) to the closure density of the universe, comparable to that of luminous matter. These clouds probably require a substantial amount of nonbaryonic dark matter for gravitational binding. They may represent extended haloes of low-mass protogalaxies which have not experienced significant star formation or low-mass dwarf galaxies whose star formation ceased long ago, but blew out significant gaseous material.

  15. Three-dimensional gas exchange pathways in pome fruit characterized by synchrotron x-ray computed tomography.

    PubMed

    Verboven, Pieter; Kerckhofs, Greet; Mebatsion, Hibru Kelemu; Ho, Quang Tri; Temst, Kristiaan; Wevers, Martine; Cloetens, Peter; Nicolaï, Bart M

    2008-06-01

    Our understanding of the gas exchange mechanisms in plant organs critically depends on insights in the three-dimensional (3-D) structural arrangement of cells and voids. Using synchrotron radiation x-ray tomography, we obtained for the first time high-contrast 3-D absorption images of in vivo fruit tissues of high moisture content at 1.4-microm resolution and 3-D phase contrast images of cell assemblies at a resolution as low as 0.7 microm, enabling visualization of individual cell morphology, cell walls, and entire void networks that were previously unknown. Intercellular spaces were always clear of water. The apple (Malus domestica) cortex contains considerably larger parenchyma cells and voids than pear (Pyrus communis) parenchyma. Voids in apple often are larger than the surrounding cells and some cells are not connected to void spaces. The main voids in apple stretch hundreds of micrometers but are disconnected. Voids in pear cortex tissue are always smaller than parenchyma cells, but each cell is surrounded by a tight and continuous network of voids, except near brachyssclereid groups. Vascular and dermal tissues were also measured. The visualized network architecture was consistent over different picking dates and shelf life. The differences in void fraction (5.1% for pear cortex and 23.0% for apple cortex) and in gas network architecture helps explain the ability of tissues to facilitate or impede gas exchange. Structural changes and anisotropy of tissues may eventually lead to physiological disorders. A combined tomography and internal gas analysis during growth are needed to make progress on the understanding of void formation in fruit.

  16. Morphological Segregation in the Surroundings of Cosmic Voids

    NASA Astrophysics Data System (ADS)

    Ricciardelli, Elena; Cava, Antonio; Varela, Jesus; Tamone, Amelie

    2017-09-01

    We explore the morphology of galaxies living in the proximity of cosmic voids, using a sample of voids identified in the Sloan Digital Sky Survey Data Release 7. At all stellar masses, void galaxies exhibit morphologies of a later type than galaxies in a control sample, which represent galaxies in an average density environment. We interpret this trend as a pure environmental effect, independent of the mass bias, due to a slower galaxy build-up in the rarefied regions of voids. We confirm previous findings about a clear segregation in galaxy morphology, with galaxies of a later type being found at smaller void-centric distances with respect to the early-type galaxies. We also show, for the first time, that the radius of the void has an impact on the evolutionary history of the galaxies that live within it or in its surroundings. In fact, an enhanced fraction of late-type galaxies is found in the proximity of voids larger than the median void radius. Likewise, an excess of early-type galaxies is observed within or around voids of a smaller size. A significant difference in galaxy properties in voids of different sizes is observed up to 2 R void, which we define as the region of influence of voids. The significance of this difference is greater than 3σ for all the volume-complete samples considered here. The fraction of star-forming galaxies shows the same behavior as the late-type galaxies, but no significant difference in stellar mass is observed in the proximity of voids of different sizes.

  17. Microstructural characterization and simulation of damage for geared sheet components

    NASA Astrophysics Data System (ADS)

    Gerstein, G.; Isik, K.; Gutknecht, F.; Sieczkarek, P.; Ewert, J.; Tekkaya, A. E.; Clausmeyer, T.; Nürnberger, F.

    2017-09-01

    The evolution of damage in geared components manufactured from steel sheets was investigated, to analyse the influence of damage caused by the sheet-bulk-metal forming. Due to the inhomogeneous and multi-axial deformation in the investigated parts, different aspects such as the location-dependent shape and size of voids are analysed by means of various microscopic methods. In particular, a method to characterize the state of damage evolution, i. e. void nucleation, growth and coalescence using scanning electron microscopy (SEM) is applied. The investigations reveal a strong dependence of the void area fraction, shape of voids and thus damage evolution on the loading mode. The microstructural analysis is complemented with FEM simulations using material models which consider the characteristics of the void evolution.

  18. Autonomous selection of PDE inpainting techniques vs. exemplar inpainting techniques for void fill of high resolution digital surface models

    NASA Astrophysics Data System (ADS)

    Rahmes, Mark; Yates, J. Harlan; Allen, Josef DeVaughn; Kelley, Patrick

    2007-04-01

    High resolution Digital Surface Models (DSMs) may contain voids (missing data) due to the data collection process used to obtain the DSM, inclement weather conditions, low returns, system errors/malfunctions for various collection platforms, and other factors. DSM voids are also created during bare earth processing where culture and vegetation features have been extracted. The Harris LiteSite TM Toolkit handles these void regions in DSMs via two novel techniques. We use both partial differential equations (PDEs) and exemplar based inpainting techniques to accurately fill voids. The PDE technique has its origin in fluid dynamics and heat equations (a particular subset of partial differential equations). The exemplar technique has its origin in texture analysis and image processing. Each technique is optimally suited for different input conditions. The PDE technique works better where the area to be void filled does not have disproportionately high frequency data in the neighborhood of the boundary of the void. Conversely, the exemplar based technique is better suited for high frequency areas. Both are autonomous with respect to detecting and repairing void regions. We describe a cohesive autonomous solution that dynamically selects the best technique as each void is being repaired.

  19. The void in the Sculptor group spiral galaxy NGC 247

    NASA Astrophysics Data System (ADS)

    Wagner-Kaiser, R.; De Maio, T.; Sarajedini, A.; Chakrabarti, S.

    2014-10-01

    The dwarf galaxy NGC 247, located in the Sculptor Filament, displays an apparent void on the north side of its spiral disc. The existence of the void in the disc of this dwarf galaxy has been known for some time, but the exact nature and cause of this strange feature has remained unclear. We investigate the properties of the void in the disc of NGC 247 using photometry of archival Hubble Space Telescope data to analyse the stars in and around this region. Based on a grid of isochrones from log(t) = 6.8 to 10.0, we assign ages using nearest-neighbour interpolation. Examination of the spatial variation of these ages across the galaxy reveals an age difference between stars located inside the void region and stars located outside this region. We speculate that the void in NGC 247 's stellar disc may be due to a recent interaction with a nearly dark subhalo that collided with the disc and could account for the long-lived nature of the void.

  20. Diffusional creep and creep degradation in the dispersion-strengthened alloy TD-NiCr

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.

    1972-01-01

    Dispersoid-free regions were observed in TD-NiCr (Ni-20Cr-2ThO2) after slow strain rate testing in air from 1145 to 1590 K. Formation of the dispersoid-free regions appears to be the result of diffusional creep. The net effect of this creep is the degradation of TD-NiCr to a duplex microstructure. Degradation is further enhanced by the formation of voids and integranular oxidation in the thoria-free regions. These regions apparently provided sites for void formation and oxide growth since the strength and oxidation resistance of Ni-20Cr is much less than Ni-20Cr-2ThO2. This localized oxidation does not appear to reduce the static load bearing capacity of TD-NiCr since long stress rupture lives were observed even with heavily oxidized microstructures. But this oxidation does significantly reduce the ductility and impact resistance of the material. Dispersoid-free bands and voids were also observed for two other dispersion strengthened alloys, TD-NiCrAl and IN-853. Thus, it appears that diffusional creep is charactertistic of dispersion-strengthened alloys and can play a major role in the creep degradation of these materials.

  1. Snapshot Survey of the Globular Cluster Populations of Isolated Early Type Galaxies

    NASA Astrophysics Data System (ADS)

    Gregg, Michael

    2017-08-01

    We propose WFC3/UVIS snapshot observations of a sample of 75 isolated early type galaxiesresiding in cosmic voids or extremely low density regions. The primary aim is to usetheir globular cluster populations to reconstruct their evolutionary history, revealingif, how, and why void ellipticals differ from cluster ellipticals. The galaxies span arange of luminosities, providing a varied sample for comparison with the well-documentedglobular cluster populations in denser environments. This proposed WFC3 study of isolatedearly type galaxies breaks new ground by targeting a sample which has thus far receivedlittle attention, and, significantly, this will be the first such study with HST.Characterizing early type galaxies in voids and their GC systems promises to increase ourunderstanding of galaxy formation and evolution of galaxies in general because isolatedobjects are the best approximation to a control sample that we have for understanding theinfluence of environment on formation and evolution. Whether these isolated objects turnout to be identical to or distinct from counterparts in other regions of the Universe,they will supply insight into the formation and evolution of all galaxies. Parallel ACSimaging will help to characterize the near field environments of the sample.

  2. Density of Asphalt Concrete - How Much is Needed?

    DOT National Transportation Integrated Search

    1990-01-01

    Density is one of the most important parameters in construction of asphalt : mixtures. A mixture that is properly designed and compacted will contain enough : air voids to prevent rutting due to plastic flow but low enough air voids to : prevent perm...

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ricciardelli, Elena; Tamone, Amelie; Cava, Antonio

    We explore the morphology of galaxies living in the proximity of cosmic voids, using a sample of voids identified in the Sloan Digital Sky Survey Data Release 7. At all stellar masses, void galaxies exhibit morphologies of a later type than galaxies in a control sample, which represent galaxies in an average density environment. We interpret this trend as a pure environmental effect, independent of the mass bias, due to a slower galaxy build-up in the rarefied regions of voids. We confirm previous findings about a clear segregation in galaxy morphology, with galaxies of a later type being found atmore » smaller void-centric distances with respect to the early-type galaxies. We also show, for the first time, that the radius of the void has an impact on the evolutionary history of the galaxies that live within it or in its surroundings. In fact, an enhanced fraction of late-type galaxies is found in the proximity of voids larger than the median void radius. Likewise, an excess of early-type galaxies is observed within or around voids of a smaller size. A significant difference in galaxy properties in voids of different sizes is observed up to 2 R {sub void}, which we define as the region of influence of voids. The significance of this difference is greater than 3 σ for all the volume-complete samples considered here. The fraction of star-forming galaxies shows the same behavior as the late-type galaxies, but no significant difference in stellar mass is observed in the proximity of voids of different sizes.« less

  4. A review: applications of the phase field method in predicting microstructure and property evolution of irradiated nuclear materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yulan; Hu, Shenyang; Sun, Xin

    Here, complex microstructure changes occur in nuclear fuel and structural materials due to the extreme environments of intense irradiation and high temperature. This paper evaluates the role of the phase field method in predicting the microstructure evolution of irradiated nuclear materials and the impact on their mechanical, thermal, and magnetic properties. The paper starts with an overview of the important physical mechanisms of defect evolution and the significant gaps in simulating microstructure evolution in irradiated nuclear materials. Then, the phase field method is introduced as a powerful and predictive tool and its applications to microstructure and property evolution in irradiatedmore » nuclear materials are reviewed. The review shows that (1) Phase field models can correctly describe important phenomena such as spatial-dependent generation, migration, and recombination of defects, radiation-induced dissolution, the Soret effect, strong interfacial energy anisotropy, and elastic interaction; (2) The phase field method can qualitatively and quantitatively simulate two-dimensional and three-dimensional microstructure evolution, including radiation-induced segregation, second phase nucleation, void migration, void and gas bubble superlattice formation, interstitial loop evolution, hydrate formation, and grain growth, and (3) The Phase field method correctly predicts the relationships between microstructures and properties. The final section is dedicated to a discussion of the strengths and limitations of the phase field method, as applied to irradiation effects in nuclear materials.« less

  5. A review: applications of the phase field method in predicting microstructure and property evolution of irradiated nuclear materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yulan; Hu, Shenyang; Sun, Xin

    Complex microstructure changes occur in nuclear fuel and structural materials due to the extreme environments of intense irradiation and high temperature. This paper evaluates the role of the phase field (PF) method in predicting the microstructure evolution of irradiated nuclear materials and the impact on their mechanical, thermal, and magnetic properties. The paper starts with an overview of the important physical mechanisms of defect evolution and the significant gaps in simulating microstructure evolution in irradiated nuclear materials. Then, the PF method is introduced as a powerful and predictive tool and its applications to microstructure and property evolution in irradiated nuclearmore » materials are reviewed. The review shows that 1) FP models can correctly describe important phenomena such as spatial dependent generation, migration, and recombination of defects, radiation-induced dissolution, the Soret effect, strong interfacial energy anisotropy, and elastic interaction; 2) The PF method can qualitatively and quantitatively simulate 2-D and 3-D microstructure evolution, including radiation-induced segregation, second phase nucleation, void migration, void and gas bubble superlattice formation, interstitial loop evolution, hydrate formation, and grain growth, and 3) The FP method correctly predicts the relationships between microstructures and properties. The final section is dedicated to a discussion of the strengths and limitations of the PF method, as applied to irradiation effects in nuclear materials.« less

  6. A review: applications of the phase field method in predicting microstructure and property evolution of irradiated nuclear materials

    DOE PAGES

    Li, Yulan; Hu, Shenyang; Sun, Xin; ...

    2017-04-14

    Here, complex microstructure changes occur in nuclear fuel and structural materials due to the extreme environments of intense irradiation and high temperature. This paper evaluates the role of the phase field method in predicting the microstructure evolution of irradiated nuclear materials and the impact on their mechanical, thermal, and magnetic properties. The paper starts with an overview of the important physical mechanisms of defect evolution and the significant gaps in simulating microstructure evolution in irradiated nuclear materials. Then, the phase field method is introduced as a powerful and predictive tool and its applications to microstructure and property evolution in irradiatedmore » nuclear materials are reviewed. The review shows that (1) Phase field models can correctly describe important phenomena such as spatial-dependent generation, migration, and recombination of defects, radiation-induced dissolution, the Soret effect, strong interfacial energy anisotropy, and elastic interaction; (2) The phase field method can qualitatively and quantitatively simulate two-dimensional and three-dimensional microstructure evolution, including radiation-induced segregation, second phase nucleation, void migration, void and gas bubble superlattice formation, interstitial loop evolution, hydrate formation, and grain growth, and (3) The Phase field method correctly predicts the relationships between microstructures and properties. The final section is dedicated to a discussion of the strengths and limitations of the phase field method, as applied to irradiation effects in nuclear materials.« less

  7. Imprints of the large-scale structure on AGN formation and evolution

    NASA Astrophysics Data System (ADS)

    Porqueres, Natàlia; Jasche, Jens; Enßlin, Torsten A.; Lavaux, Guilhem

    2018-04-01

    Black hole masses are found to correlate with several global properties of their host galaxies, suggesting that black holes and galaxies have an intertwined evolution and that active galactic nuclei (AGN) have a significant impact on galaxy evolution. Since the large-scale environment can also affect AGN, this work studies how their formation and properties depend on the environment. We have used a reconstructed three-dimensional high-resolution density field obtained from a Bayesian large-scale structure reconstruction method applied to the 2M++ galaxy sample. A web-type classification relying on the shear tensor is used to identify different structures on the cosmic web, defining voids, sheets, filaments, and clusters. We confirm that the environmental density affects the AGN formation and their properties. We found that the AGN abundance is equivalent to the galaxy abundance, indicating that active and inactive galaxies reside in similar dark matter halos. However, occurrence rates are different for each spectral type and accretion rate. These differences are consistent with the AGN evolutionary sequence suggested by previous authors, Seyferts and Transition objects transforming into low-ionization nuclear emission line regions (LINERs), the weaker counterpart of Seyferts. We conclude that AGN properties depend on the environmental density more than on the web-type. More powerful starbursts and younger stellar populations are found in high densities, where interactions and mergers are more likely. AGN hosts show smaller masses in clusters for Seyferts and Transition objects, which might be due to gas stripping. In voids, the AGN population is dominated by the most massive galaxy hosts.

  8. The formation of microvoids in MgO by helium ion implantation and thermal annealing

    NASA Astrophysics Data System (ADS)

    van Veen, A.; Schut, H.; Fedorov, A. V.; Labohm, F.; Neeft, E. A. C.; Konings, R. J. M.

    1999-01-01

    The formation of microvoids in metal oxides by helium implantation and thermal annealing is observed under similar conditions as has been shown earlier for silicon. Cleaved MgO (1 0 0) single crystals were implanted with 30 keV 3He ions with doses varying from 10 15 to 10 16 cm -2 and subsequently thermally annealed from RT to 1500 K. Monitoring of the defect depth profile and the retained amount of helium was performed by positron beam analysis and neutron depth profiling, respectively. For a dose larger than 2 × 10 15 cm -2 annealing of the defects was observed in two stages: at 1000 K helium filled monovacancies dissociated, and other defects still retaining the helium were formed, and at 1300 K all helium left the sample while an increase of positron-valence-electron annihilations was observed, indicating an increase of the volume available in the defects. The voids of nm size were located at shallower depth than the implanted helium. At lower dose no voids were left after high temperature annealing. Voids can also be created, and even more effectively, by hydrogen or deuterium implantation. The voids are stable to temperatures of 1500 K. The use of the nanovoids as a precursor state for nanoprecipitates of metals or other species is discussed.

  9. Influence of thermal and radiation effects on microstructural and mechanical properties of Nb-1Zr

    NASA Astrophysics Data System (ADS)

    Leonard, Keith J.; Busby, Jeremy T.; Zinkle, Steven J.

    2011-07-01

    The microstructural changes and corresponding effects on mechanical properties, electrical resistivity and density of Nb-1Zr were examined following neutron irradiation up to 1.8 dpa at temperatures of 1073, 1223 and 1373 K and compared with material thermally aged for similar exposure times of ˜1100 h. Thermally driven changes in the development of intragranular and grain boundary precipitate phases showed a greater influence on mechanical and physical properties compared to irradiation-induced defects for the examined conditions. Initial formation of the zirconium oxide precipitates was identified as cubic structured plates following a Baker-Nutting orientation relationship to the β-Nb matrix, with particles developing a monoclinic structure on further growth. Tensile properties of the Nb-1Zr samples showed increased strength and reduced elongation following aging and irradiation below 1373 K, with the largest tensile and hardness increases following aging at 1098 K. Tensile properties at 1373 K for the aged and irradiated samples were similar to that of the as-annealed material. Total elongation was lower in the aged material due to a strain hardening response, rather than a weak strain softening observed in the irradiated materials due in part to an irregular distribution of the precipitates in the irradiated materials. Though intergranular fracture surfaces were observed on the 1248 K aged tensile specimens, the aged and irradiated material showed uniform elongations >3% and total elongation >12% for all conditions tested. Cavity formation was observed in material irradiated to 0.9 dpa at 1073 and 1223 K. However, since void densities were estimated to be below 3 × 10 17 m -3 these voids contributed little to either mechanical strengthening of the material or measured density changes.

  10. The effects of the distribution pattern of multiple voids within LDPE on partial discharge characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, D.S.; Han, M.K.; Lee, J.H.

    1996-12-31

    In this paper, the authors have investigated effects of the arrangement of the voids in LDPE samples on PD characteristics, such as phase-related magnitude of PD, number of discharges. The differences of the PD patterns may be attributed to the arrangements of the voids. They have also employed available statistical operators, such as discharge factor and cross correlation factor in order to analyze the PD characteristics. The authors could conclude that partial discharge characteristics show quite different patterns due to the arrangements of voids in spite of the same size. The experimental results suggest that it is important to knowmore » the arrangements of the multiple voids as well as to obtain the information about the number of defects in the insulators.« less

  11. Three-Dimensional Gas Exchange Pathways in Pome Fruit Characterized by Synchrotron X-Ray Computed Tomography1[C][W][OA

    PubMed Central

    Verboven, Pieter; Kerckhofs, Greet; Mebatsion, Hibru Kelemu; Ho, Quang Tri; Temst, Kristiaan; Wevers, Martine; Cloetens, Peter; Nicolaï, Bart M.

    2008-01-01

    Our understanding of the gas exchange mechanisms in plant organs critically depends on insights in the three-dimensional (3-D) structural arrangement of cells and voids. Using synchrotron radiation x-ray tomography, we obtained for the first time high-contrast 3-D absorption images of in vivo fruit tissues of high moisture content at 1.4-μm resolution and 3-D phase contrast images of cell assemblies at a resolution as low as 0.7 μm, enabling visualization of individual cell morphology, cell walls, and entire void networks that were previously unknown. Intercellular spaces were always clear of water. The apple (Malus domestica) cortex contains considerably larger parenchyma cells and voids than pear (Pyrus communis) parenchyma. Voids in apple often are larger than the surrounding cells and some cells are not connected to void spaces. The main voids in apple stretch hundreds of micrometers but are disconnected. Voids in pear cortex tissue are always smaller than parenchyma cells, but each cell is surrounded by a tight and continuous network of voids, except near brachyssclereid groups. Vascular and dermal tissues were also measured. The visualized network architecture was consistent over different picking dates and shelf life. The differences in void fraction (5.1% for pear cortex and 23.0% for apple cortex) and in gas network architecture helps explain the ability of tissues to facilitate or impede gas exchange. Structural changes and anisotropy of tissues may eventually lead to physiological disorders. A combined tomography and internal gas analysis during growth are needed to make progress on the understanding of void formation in fruit. PMID:18417636

  12. Near‐surface void detection using a seismic landstreamer and horizontal velocity and attenuation tomography

    USGS Publications Warehouse

    Buckley, Sean F.; Lane, John W.

    2012-01-01

    The detection and characterization of subsurface voids plays an important role in the study of karst formations and clandestine tunnels. Horizontal velocity and attenuation tomography (HVAT) using offset‐fan shooting and a towed seismic land streamer is a simple, rapid, minimally invasive method that shows promise for detecting near‐surface voids and providing information on the orientation of linear voids. HVAT surveys were conducted over a known subsurface steam tunnel on the University of Connecticut Depot Campus, Storrs, Connecticut. First‐arrival travel‐time and amplitude data were used to produce two‐dimensional (2D) horizontal (map view) velocity and attenuation tomograms. In addition, attenuation tomograms were produced based on normalized total trace energy (TTE). Both the velocity and TTE attenuation tomograms depict an anomaly consistent with the location and orientation of the known tunnel; the TTE method, however, requires significantly less processing time, and therefore may provide a path forward to semi‐automated, near real‐time detection of near‐surface voids. Further study is needed to assess the utility of the HVAT method to detect deeper voids and the effects of a more complex geology on HVAT results.

  13. On the origin of the angular momentum of galaxies: cosmological tidal torques supplemented by the Coriolis force

    NASA Astrophysics Data System (ADS)

    Casuso, E.; Beckman, J. E.

    2015-05-01

    We present here a theoretical model which can at least contribute to the observed relation between the specific angular momenta of galaxies and their masses. This study offers prima facie evidence that the origin of an angular momentum of galaxies could be somewhat more complex than previously proposed. The most recent observations point to a scenario in which, after recombination, matter was organized around bubbles (commonly termed voids), which acquired rotation by tidal torque interaction. Subsequently, a combination of the effects of the gravitational collapse of gas in protogalaxies and the Coriolis force due to the rotation of the voids could produce the rotation of spiral galaxies. Thereafter, the tidal interaction between the objects populating the quasi-spherical voids, in which the galaxies far away from the rotation axes (populating the sheet forming the surface of a void) interact with higher probability with others similarly situated in a neighbouring void, offers a mechanism for transforming some of the galaxies into ellipticals, breaking their spin and yielding galaxies with low net angular momentum, as observed. This model gives an explanation for those observations which suggest a tendency of galactic spins to align along the radius vectors pointing towards the centres of the voids for ellipticals/SO and parallel to filaments and sheets for the spirals. Furthermore, while in simple tidal torque theory the angular momentum supplied to galaxies diminishes drastically with the cosmic expansion, in our approximation for which the Coriolis force acts in addition to tidal torques, the Coriolis force due to void rotation ensures almost continuous angular momentum supply.

  14. Modeling the mechanical response of PBX 9501

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ragaswamy, Partha; Lewis, Matthew W; Liu, Cheng

    2010-01-01

    An engineering overview of the mechanical response of Plastic-Bonded eXplosives (PBXs), specifically PBX 9501, will be provided with emphasis on observed mechanisms associated with different types of mechanical testing. Mechanical tests in the form of uniaxial tension, compression, cyclic loading, creep (compression and tension), and Hopkinson bar show strain rate and temperature dependence. A range of mechanical behavior is observed which includes small strain recoverable response in the form of viscoelasticity; change in stiffness and softening beyond peak strength due to damage in the form microcracks, debonding, void formation and the growth of existing voids; inelastic response in the formmore » of irrecoverable strain as shown in cyclic tests, and viscoelastic creep combined with plastic response as demonstrated in creep and recovery tests. The main focus of this paper is to elucidate the challenges and issues involved in modeling the mechanical behavior of PBXs for simulating thermo-mechanical responses in engineering components. Examples of validation of a constitutive material model based on a few of the observed mechanisms will be demonstrated against three point bending, split Hopkinson pressure bar and Brazilian disk geometry.« less

  15. Electrochemical properties of Sn/C nanoparticles fabricated by redox treatment and pulsed wire evaporation method

    NASA Astrophysics Data System (ADS)

    Song, Ju-Seok; Cho, Gyu-Bong; Ahn, Jou-Hyeon; Cho, Kwon-Koo

    2017-09-01

    Tin (Sn) based anode materials are the most promising anode materials for lithium-ion batteries due to their high theoretical capacity corresponding to the formation of Li4.4Sn composition (Li4.4Sn, 994 mAh/g). However, the applications of tin based anodes to lithium-ion battery system are generally limited by a large volume change (>260%) during lithiation and delithiation cycle, which causes pulverize and poor cycling stability. In order to overcome this shortcoming, we fabricate a Sn/C nanoparticle with a yolk-shell structure (Sn/void/C) by using pulsed wire evaporation process and oxidation/reduction heat treatment. Sn nanoparticles are encapsulated by a conductive carbon layer with structural buffer that leaves enough room for expansion and contraction during lithium insertion/desertion. We expect that the yolk-shell structure has the ability to accommodate the volume changes of tin and leading to an improved cycle performance. The Sn/Void/C anode with yolk-shell structure shows a high specific capacity of 760 mAh/g after 50 cycles.

  16. Computing the complex : Dusty plasmas in the presence of magnetic fields and UV radiation

    NASA Astrophysics Data System (ADS)

    Land, V.

    2007-12-01

    About 90% of the visible universe is plasma. Interstellar clouds, stellar cores and atmospheres, the Solar wind, the Earth's ionosphere, polar lights, and lightning are all plasma; ionized gases, consisting of electrons, ions, and neutrals. Not only many industries, like the microchip and solar cell industry, but also future fusion power stations, rely heavily on the use of plasma. More and more, home appliances include plasma technologies, like compact fluorescent light sources, and plasma screens. Dust particles, which can disrupt plasma processes, enter these plasmas, through chemical reactions in the plasma, or through interactions between plasma and walls. For instance, during microchip fabrication, dust particles can destroy the tiny, nanometre-sized structures on the surface of these chips. On the other hand, dust particles orbiting Young Stellar Objects coagulate and form the seeds of planets. In order to understand fundamental processes, such as planet formation, or to optimize industrial plasma processes, a thorough description of dusty plasma is necessary. Dust particles immersed in plasma collect ions and electrons from the plasma and charge up electrically. Therefore, the presence of dust changes plasma, while at the same time many forces start acting on the dust. Therefore, the dust and plasma become coupled, making dusty plasma a very complex medium to describe, in which many length and time scales play a role, from the Debye length to the length of the electrodes, and from the inverse plasma frequencies to the dust transport times. Using a self-consistent fluid model, we simulate these multi-scale dusty plasmas in radio frequency discharges under micro-gravity. We show that moderate non-linear scattering of ions by the dust particles is the most important aspect in the calculation of the ion drag force. This force is also responsible for the formation of a dust-free 'void' in dusty plasma under micro-gravity, caused by ions moving from the centre of the void towards the outside of the discharge. The void thus requires electron-impact ionizations inside the void. The electrons gain the energy for these ionizations inside the dust cloud surrounding the void, however. We show that a growing electron temperature gradient is responsible for the transport of electron energy from the surrounding dust cloud into the void. An axial magnetic field in the discharge magnetizes the electrons. This changes the ambipolar flux of ions through the bulk of the discharge. The ion drag force changes, resulting in a differently shaped void and faster void formation. Experiments in a direct current discharge, show a response of both dust and plasma in the E?B direction, when a magnetic field is applied. The dust response consists of two phases: an initial fast phase, and a later, slow phase. Using a Particle-In-Cell plus Monte Carlo model, we show that the dust charge can be reduced by adding a flux of ultraviolet radiation. A source of ultraviolet light can thus serve as a tool to manipulate dusty plasmas, but might also be important for the coagulation of dust particles around young stars and planet formation in general.

  17. Feasibility of detecting near-surface feature with Rayleigh-wave diffraction

    USGS Publications Warehouse

    Xia, J.; Nyquist, Jonathan E.; Xu, Y.; Roth, M.J.S.; Miller, R.D.

    2007-01-01

    Detection of near-surfaces features such as voids and faults is challenging due to the complexity of near-surface materials and the limited resolution of geophysical methods. Although multichannel, high-frequency, surface-wave techniques can provide reliable shear (S)-wave velocities in different geological settings, they are not suitable for detecting voids directly based on anomalies of the S-wave velocity because of limitations on the resolution of S-wave velocity profiles inverted from surface-wave phase velocities. Therefore, we studied the feasibility of directly detecting near-surfaces features with surface-wave diffractions. Based on the properties of surface waves, we have derived a Rayleigh-wave diffraction traveltime equation. We also have solved the equation for the depth to the top of a void and an average velocity of Rayleigh waves. Using these equations, the depth to the top of a void/fault can be determined based on traveltime data from a diffraction curve. In practice, only two diffraction times are necessary to define the depth to the top of a void/fault and the average Rayleigh-wave velocity that generates the diffraction curve. We used four two-dimensional square voids to demonstrate the feasibility of detecting a void with Rayleigh-wave diffractions: a 2??m by 2??m with a depth to the top of the void of 2??m, 4??m by 4??m with a depth to the top of the void of 7??m, and 6??m by 6??m with depths to the top of the void 12??m and 17??m. We also modeled surface waves due to a vertical fault. Rayleigh-wave diffractions were recognizable for all these models after FK filtering was applied to the synthetic data. The Rayleigh-wave diffraction traveltime equation was verified by the modeled data. Modeling results suggested that FK filtering is critical to enhance diffracted surface waves. A real-world example is presented to show how to utilize the derived equation of surface-wave diffractions. ?? 2006 Elsevier B.V. All rights reserved.

  18. Effects of void anisotropy on the ignition and growth rates of energetic materials

    NASA Astrophysics Data System (ADS)

    Rai, Nirmal Kumar; Sen, Oishik; Udaykumar, H. S.

    2017-06-01

    Initiation of heterogeneous energetic materials is thought to occur at hot spots; reaction fronts propagate from sites of such hot spots into the surrounding material resulting in complete consumption of the material. Heterogeneous materials, such as plastic bonded explosives (PBXs) and pressed materials contain numerous voids, defects and interfaces at which hot spots can occur. Amongst the various mechanisms of hot spot formation, void collapse is considered to be the predominant one in the high strain rate loading conditions. It is established in the past the shape of the voids has a significant effect on the initiation behavior of energetic materials. In particular, void aspect ratio and orientations play an important role in this regard. This work aims to quantify the effects of void aspect ratio and orientation on the ignition and growth rates of chemical reaction from the hot spot. A wide range of aspect ratio and orientations is considered to establish a correlation between the ignition and growth rates and the void morphology. The ignition and growth rates are obtained from high fidelity reactive meso-scale simulations. The energetic material considered in this work is HMX and Tarver McGuire HMX decomposition model is considered to capture the reaction mechanism of HMX. The meso-scale simulations are performed using a Cartesian grid based Eulerian solver SCIMITAR3D. The void morphology is shown to have a significant effect on the ignition and growth rates of HMX.

  19. Fast growth of n-type 4H-SiC bulk crystal by gas-source method

    NASA Astrophysics Data System (ADS)

    Hoshino, Norihiro; Kamata, Isaho; Tokuda, Yuichiro; Makino, Emi; Kanda, Takahiro; Sugiyama, Naohiro; Kuno, Hironari; Kojima, Jun; Tsuchida, Hidekazu

    2017-11-01

    Fast growth of n-type 4H-SiC crystals was attempted using a high-temperature gas-source method. High growth rates exceeding 9 mm/h were archived at a seed temperature of 2550 °C, although the formation of macro-step bunching caused doping fluctuation and voids in the grown crystal. We investigated a trade-off between growth-rate enhancement and macro-step formation and how to improve the trade-off. By controlling the growth conditions, the growth of highly nitrogen-doped 4H-SiC crystals without the doping fluctuation and void formation were accomplished under a high growth rate exceeding 3 mm/h, maintaining the density of threading screw dislocations in the same level with the seed crystal. The influence of growth parameters on nitrogen incorporations into grown crystals was also surveyed.

  20. Fatigue and Impact Strength of Diffusion Bonded Titanium Alloy Joints

    DTIC Science & Technology

    1989-02-01

    likely to be due to the void level being such that the chance of a pore cluster being present at or near the test piece surface was less probable...in sub-surface crack initiation and reduced fatigue strength; it was concluded that small single voids were insignificant but clusters of voids...strength is reduced when clusters of pores are present, and is, in turn, a much more sensitive test than the tensile test. In the current work the

  1. The Packing of Helical and Zigzag Chains and Distribution of Interstitial Voids in Expanded Liquid Se near the Semiconductor to Metal Transition

    NASA Astrophysics Data System (ADS)

    Maruyama, Kenji; Hiroi (Sato), Satoshi; Endo, Hirohisa; Hoshino, Hideoki; Odagaki, Takashi; Hensel, Friedrich

    2017-08-01

    The reverse Monte Carlo (RMC) and Voronoi-Delaunay (VD) void analyses were applied to study the modification of chain geometries near the semiconductor (SC) to metal (M) transition in expanded liquid Se along the isochore of d = 3.4 g/cm3. Fluctuations of dihedral angles with increasing temperature and pressure cause modification of the helical (H) chain to the planar zigzag (Z) chain conformations. The distribution of voids size (rV ) supported by chain segments and distances to the 4th 6th neighbor atoms on the chain segments provide information on the stacking of planar zigzag chains compensated by empty space (L-voids, rV 3.6 Å) which leads to the formation of metallic domains. Near SC-M transition region the number fraction NZ/NH for Z and H chain segments increases.

  2. The effect of injected interstitials on void formation in self-ion irradiated nickel containing concentrated solid solution alloys

    DOE PAGES

    Yang, Tai-ni; Lu, Chenyang; Jin, Ke; ...

    2017-02-21

    Pure nickel and three nickel containing single-phase concentrated solid solution alloys (SP-CSAs) have been irradiated using 3 MeV Ni 2+ ions at 500 C to fluences of 1.5 x 10 16 and 5.0 x 10 16 cm 2. We characterized the radiation-induced voids using cross sectional transmission electron microscopy that distributions of voids and dislocation loops were presented as a function of depth. We also observed a various degree of void suppression on the tested samples and a defect clusters migration mechanism was proposed for NiCo. Furthermore, in order to sufficiently understand the defect dynamics in these SP-CSAs, the injectedmore » interstitial effect has been taken into account along with the 1-dimentional (1-D) and 3-dimentional (3-D) interstitial movement mechanisms.« less

  3. Nanographene reinforced carbon/carbon composites

    NASA Astrophysics Data System (ADS)

    Bansal, Dhruv

    Carbon/Carbon Composites (CCC) are made of carbon reinforcement in carbon matrix and have high thermal stability and fatigue resistance. CCC are used in nose cones, heat shields and disc brakes of aircrafts due to their exceptional mechanical properties at high temperature. The manufacturing process of CCC involves a carbonization stage in which unwanted elements, except carbon, are eliminated from the polymer precursor. Carbonization results in the formation of voids and cracks due to the thermal mismatch between the reinforcement and the matrix and expulsion of volatiles from the polymer matrix. Thermal cracks and voids decrease the density and mechanical properties of the manufactured CCC. In this work, Nanographene Platelets (NGP) were explored as nanofillers to fill the voids/cracks and reduce thermal shrinkage in CCC. They were first compared with Vapor Grown Carbon Nanofibers (VGCNF) by dispersion of different concentrations (0.5wt%, 1.5wt%, 3wt%) in resole-type phenolic resin and were characterized to explore their effect on rheology, heat of reaction and wetting behavior. The dispersions were then cured to form nanocomposites and were characterized for morphology, flexure and thermal properties. Finally, NGP were introduced into the carbon/carboncomposites in two stages, first by spraying in different concentrations (0.5wt%, 1.5wt%, 3wt%, 5wt %) during the prepreg formation and later during densification by directly mixing in the corresponding densification mix. The manufactured NGP reinforced CCC were characterized for microstructure, porosity, bulk density and mechanical properties (Flexure and ILSS) which were further cross-checked by non-destructive techniques (vibration and ultrasonic). In this study, it was further found that at low concentration (≤ 1.5 wt%) NGP were more effective in increasing the heat of reaction and in decreasing the viscosity of the phenolic resin. The decrease in viscosity led to better wetting properties of NGP / phenolic dispersions compared to VGCNF/phenolic dispersions. In nanocomposites, at low concentration (≤ 1.5 wt%), NGP were effective in increasing the flexure strength, char content and lowering the porosity and coefficient of thermal expansion of neat phenolic resin. At higher concentration (>1.5wt%), NGP had a tendency to agglomerate and lost their effectiveness. The behavior observed in nanocomposites continued in manufactured CCC. The highest Inter Laminar Shear Strength (ILSS), flexure strength/modulus, stiffness and density was observed at 1.5 wt% NGP. In CCC at concentrations > 1.5 wt%, the properties (ILSS, flexure, stiffness, density) decreased due to agglomeration but they were still higher compared to that of neat CCC (without NGP).

  4. Dramatic reduction of void swelling by helium in ion-irradiated high purity α-iron

    DOE PAGES

    Bhattacharya, Arunodaya; Meslin, Estelle; Henry, Jean; ...

    2018-04-11

    Effect of helium on void swelling was studied in high-purity α-iron, irradiated using energetic self-ions to 157 displacements per atom (dpa) at 773 K, with and without helium co-implantation up to 17 atomic parts-per-million (appm) He/dpa. Helium is known to enhance cavity formation in metals in irradiation environments, leading to early void swelling onset. In this study, microstructure characterization by transmission electron microscopy revealed compelling evidence of dramatic swelling reduction by helium co-implantation, achieved primarily by cavity size reduction. In conclusion, a comprehensive understanding of helium induced cavity microstructure development is discussed using sink strength ratios of dislocations and cavities.

  5. Motion-sensitized SPRITE measurements of hydrodynamic cavitation in fast pipe flow.

    PubMed

    Adair, Alexander; Mastikhin, Igor V; Newling, Benedict

    2018-06-01

    The pressure variations experienced by a liquid flowing through a pipe constriction can, in some cases, result in the formation of a bubble cloud (i.e., hydrodynamic cavitation). Due to the nature of the bubble cloud, it is ideally measured through the use of non-optical and non-invasive techniques; therefore, it is well-suited for study by magnetic resonance imaging. This paper demonstrates the use of Conical SPRITE (a 3D, centric-scan, pure phase-encoding pulse sequence) to acquire time-averaged void fraction and velocity information about hydrodynamic cavitation for water flowing through a pipe constriction. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Voxel based parallel post processor for void nucleation and growth analysis of atomistic simulations of material fracture.

    PubMed

    Hemani, H; Warrier, M; Sakthivel, N; Chaturvedi, S

    2014-05-01

    Molecular dynamics (MD) simulations are used in the study of void nucleation and growth in crystals that are subjected to tensile deformation. These simulations are run for typically several hundred thousand time steps depending on the problem. We output the atom positions at a required frequency for post processing to determine the void nucleation, growth and coalescence due to tensile deformation. The simulation volume is broken up into voxels of size equal to the unit cell size of crystal. In this paper, we present the algorithm to identify the empty unit cells (voids), their connections (void size) and dynamic changes (growth and coalescence of voids) for MD simulations of large atomic systems (multi-million atoms). We discuss the parallel algorithms that were implemented and discuss their relative applicability in terms of their speedup and scalability. We also present the results on scalability of our algorithm when it is incorporated into MD software LAMMPS. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. In-situ TEM observation of nano-void formation in UO2 under irradiation

    NASA Astrophysics Data System (ADS)

    Sabathier, C.; Martin, G.; Michel, A.; Carlot, G.; Maillard, S.; Bachelet, C.; Fortuna, F.; Kaitasov, O.; Oliviero, E.; Garcia, P.

    2014-05-01

    Transmission electron microscopy (TEM) observations of UO2 polycrystals irradiated in situ with 4 MeV Au ions were performed at room temperature (RT) to better understand the mechanisms of cavity and ultimately fission products nucleation in UO2. Experiments were carried out at the JANNuS Orsay facility that enables in situ ion irradiations inside the microscope to be carried out. The majority of 4 MeV gold ions were transmitted through the thin foil, and the induced radiation defects were investigated by TEM. Observations showed that nano-void formation occurs at ambient temperature in UO2 thin foils irradiated with energetic heavy ions under an essentially nuclear energy loss regime. The diameter and density of nano-objects were measured as a function of the gold irradiation dose at RT. A previous paper has also revealed a similar nano-object population after a Xe implantation performed at 390 keV at 870 K. The nano-object density was modelled using simple concepts derived from Classical Molecular Dynamics simulations. The results are in good agreement, which suggests a mechanism of heterogeneous nucleation induced by energetic cascade overlaps. This indicates that nano-void formation mechanism is controlled by radiation damage. Such nanovoids are likely to act as sinks for mobile fission products during reactor operation.

  8. Effect of Marangoni Convection Generated by Voids on Segregation During Low-G and 1-G Solidification

    NASA Technical Reports Server (NTRS)

    Kassemi, M.; Fripp, A.; Rashidnia, N.; deGroh, H.

    2001-01-01

    Solidification experiments, especially microgravity solidification experiments, are often compromised by the evolution of unwanted voids or bubbles in the melt. Although these voids and/or bubbles are highly undesirable, there is currently no effective means of preventing their formation or of eliminating their adverse effects, particularly during microgravity experiments. Marangoni convection caused by these voids can drastically change the transport processes in the melt. Recent microgravity experiments by Matthiesen (1) Andrews (2) and Fripp (3) are perfect examples of how voids and bubbles can affect the outcome of costly space experiments and significantly increase the level of difficulty in interpreting their results. Formation of bubbles have caused problems in microgravity experiments for a long time. Even in the early Skylab mission an unexpectedly large number of bubbles were detected in the four materials processing experiments reported by Papazian and Wilcox (4). They demonstrated that while during ground-based tests bubbles were seen to detach from the interface easily and float to the top of the melt, in low-gravity tests no detachment from the interface occurred and large voids were grown in the crystal. More recently, the lead-tin-telluride crystal growth experiment of Fripp et al.(3) flown aboard the USMP-3 mission has provided very interesting results. The purpose of the study was to investigate the effect of natural convection on the solidification process by growing the samples at different orientations with respect to the gravitational field. Large pores and voids were found in the three solid crystal samples processed in space. Post-growth characterization of the compositional profiles of the cells indicated considerable levels of mixing even in the sample grown in the hot-on-top stable configuration. The mixing was attributed to thermocapillary convection caused by the voids and bubbles which evolved during growth. Since the thermocapillary convection is orientation-independent, diffusion-controlled growth was not possible in any of the samples, even the top-heated one. These results are consistent with recent studies of thermocapillary convection generated by a bubble on a heated surface undertaken by Kassemi and Rashidnia (5-7) where it is numerically and experimentally shown that the thermocapillary flow generated by a bubble in a model fluid (silicone oil) can drastically modify the temperature field through vigorous mixing of the fluid around it, especially under microgravity conditions.

  9. Is the far border of the Local Void expanding?

    NASA Astrophysics Data System (ADS)

    Iwata, I.; Chamaraux, P.

    2011-07-01

    Context. According to models of evolution in the hierarchical structure formation scenarios, voids of galaxies are expected to expand. The Local Void (LV) is the closest large void, and it provides a unique opportunity to test observationally such an expansion. It has been found that the Local Group, which is on the border of the LV, is running away from the void center at ~260 km s-1. Aims: In this study we investigate the motion of the galaxies at the far-side border of the LV to examine the presence of a possible expansion. Methods: We selected late-type, edge-on spiral galaxies with radial velocities between 3000 km s-1 and 5000 km s-1, and carried out HI 21 cm line and H-band imaging observations. The near-infrared Tully-Fisher relation was calibrated with a large sample of galaxies and carefully corrected for Malmquist bias. It was used to compute the distances and the peculiar velocities of the LV sample galaxies. Among the 36 sample LV galaxies with good quality HI line width measurements, only 15 galaxies were selected for measuring their distances and peculiar velocities, in order to avoid the effect of Malmquist bias. Results: The average peculiar velocity of these 15 galaxies is found to be -419+208-251 km s-1, which is not significantly different from zero. Conclusions: Due to the intrinsically large scatter of Tully-Fisher relation, we cannot conclude whether there is a systematic motion against the center of the LV for the galaxies at the far-side boundary of the void. However, our result is consistent with the hypothesis that those galaxies at the far-side boundary have an average velocity of ~260 km s-1 equivalent to what is found at the position of the Local Group. Based on data taken at Nançay radiotelescope operated by Observatoire de Paris, CNRS and Université d'Orléans, Infrared Survey Facility (IRSF) which is operated by Nagoya university under the cooperation of South African Astronomical Observatory, Kyoto University, and National Astronomical Observatory of Japan.This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/ California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation.

  10. Effect of Marangoni Convection Generated by Voids on Segregation During Low-G and 1-G Solidification

    NASA Technical Reports Server (NTRS)

    Kassemi, M.; Fripp, A.; Rashidnia, N.; deGroh, H.

    1999-01-01

    Solidification experiments, especially microgravity solidification experiments are often hampered by the evolution of unwanted voids or bubbles in the melt. Although these voids and/or bubbles are highly undesirable, there are currently no effective means of preventing their formation or eliminating their adverse effects, particularly, during low-g experiments. Marangoni Convection caused by these voids can drastically change the transport processes in the melt and, therefore, introduce enormous difficulties in interpreting the results of the space investigations. Recent microgravity experiments by Matthiesen, Andrews, and Fripp are all good examples of how the presence of voids and bubbles affect the outcome of costly space experiments and significantly increase the level of difficulty in interpreting their results. In this work we examine mixing caused by Marangoni convection generated by voids and bubbles in the melt during both 1-g and low-g solidification experiments. The objective of the research is to perform a detailed and comprehensive combined numerical-experimental study of Marangoni convection caused by voids during the solidification process and to show how it can affect segregation and growth conditions by modifying the flow, temperature, and species concentration fields in the melt. While Marangoni convection generated by bubbles and voids in the melt can lead to rapid mixing that would negate the benefits of microgravity processing, it could be exploited in some terrestrial processing to ensure effective communication between a melt/solid interface and a gas phase stoichiometry control zone. Thus we hope that this study will not only aid us in interpreting the results of microgravity solidification experiments hampered by voids and bubbles but to guide us in devising possible means of minimizing the adverse effects of Marangoni convection in future space experiments or of exploiting its beneficial mixing features in ground-based solidification.

  11. Factors causing PAC cake fouling in PAC-MF (powdered activated carbon-microfiltration) water treatment systems.

    PubMed

    Zhao, P; Takizawa, S; Katayama, H; Ohgaki, S

    2005-01-01

    Two pilot-scale powdered activated carbon-microfiltration (PAC-MF) reactors were operated using river water pretreated by a biofilter. A high permeate flux (4 m/d) was maintained in two reactors with different particle sizes of PAC. High concentration (20 g/L) in the PAC adsorption zone demonstrated 60-80% of organic removal rates. Analysis on the PAC cake fouling demonstrated that attached metal ions play more important role than organic matter attached on PAC to the increase of PAC cake resistance. Effects of factors which may cause PAC cake fouling in PAC-MF process were investigated and evaluated by batch experiments, further revealing that small particulates and metal ions in raw water impose prominent influence on the PAC cake layer formation. Fe (II) precipitates after being oxidized to Fe (III) during PAC adsorption and thus Fe(ll) colloids display more significant effect than other metal ions. At a high flux, PAC cake layer demonstrated a higher resistance with larger PAC due to association among colloids, metals and PAC particles, and easy migration of small particles in raw water into the void space in the PAC cake layer. Larger PAC possesses much more non-uniform particle size distribution and larger void space, making it easier for small colloids to migrate into the voids and for metal ions to associate with PAC particles by bridge effect, hence speeding up and intensifying the of PAC cake fouling on membrane surface.

  12. Diagnosis of a Poorly Performing Liquid Hydrogen Bulk Storage Sphere

    NASA Technical Reports Server (NTRS)

    Krenn, Angela G.

    2011-01-01

    There are two 850,000 gallon Liquid Hydrogen (LH2) storage spheres used to support the Space Shuttle Program; one residing at Launch Pad A and the other at Launch Pad B. The LH2 Sphere at Pad B has had a high boiloff rate since being brought into service in the 1960's. The daily commodity loss was estimated to be approximately double that of the Pad A sphere, and well above the minimum required by the sphere's specification. Additionally, after being re-painted in the late 1990's a "cold spot" appeared on the outer sphere which resulted in a poor paint bond, and mold formation. Thermography was used to characterize the area, and the boiloff rate was continually evaluated. All evidence suggested that the high boiloff rate was caused by an excessive heat leak into the inner sphere due to an insulation void in the annulus. Pad B was recently taken out of Space Shuttle program service which provided a unique opportunity to diagnose the sphere's poor performance. The sphere was drained and inerted, and then opened from the annular relief device on the top where a series of boroscoping operations were accomplished. Boroscoping revealed a large Perlite insulation void in the region of the sphere where the cold spot was apparent. Perlite was then trucked in and off-loaded into the annular void region until the annulus was full. The sphere has not yet been brought back into service.

  13. Effect of bipolar electric fatigue on polarization switching in lead-zirconate-titanate ceramics

    NASA Astrophysics Data System (ADS)

    Zhukov, Sergey; Fedosov, Sergey; Glaum, Julia; Granzow, Torsten; Genenko, Yuri A.; von Seggern, Heinz

    2010-07-01

    From comparison of experimental results on polarization switching in fresh and electrically fatigued lead-zirconate-titanate (PZT) over a wide range of applied fields and switching times it is concluded that fatigue alters the local field distribution inside the sample due to the generation of discrete defects, such as voids and cracks. Such defects have a strong influence on the overall electric field distribution by their shape and dielectric permittivity. On this hypothesis, a new phenomenological model of polarization switching in fatigued PZT is proposed. The model assumes that the fatigued sample can be composed of different local regions which exhibit different field strengths but otherwise can be considered as unfatigued. Consequently the temporal response of a fatigued sample is assumed to be the superposition of the field-dependent temporal responses of unfatigued samples weighted by their respective volume fraction. A certain part of the volume is excluded from the overall switching process due to the domain pinning even at earlier stages of fatigue, which can be recovered by annealing. Suitability of the proposed model is demonstrated by a good correlation between experimental and calculated data for differently fatigued samples. Plausible cause of the formation of such regions is the generation of defects such as microcracks and the change in electrical properties at imperfections such as pores or voids.

  14. Luminosity distance in Swiss-cheese cosmology with randomized voids and galaxy halos

    NASA Astrophysics Data System (ADS)

    Flanagan, Éanna É.; Kumar, Naresh; Wasserman, Ira

    2013-08-01

    We study the fluctuations in luminosity distance due to gravitational lensing produced both by galaxy halos and large-scale voids. Voids are represented via a “Swiss-cheese” model consisting of a ΛCDM Friedmann-Robertson-Walker background from which a number of randomly distributed, spherical regions of comoving radius 35 Mpc are removed. A fraction of the removed mass is then placed on the shells of the spheres, in the form of randomly located halos. The halos are assumed to be nonevolving and are modeled with Navarro-Frenk-White profiles of a fixed mass. The remaining mass is placed in the interior of the spheres, either smoothly distributed or as randomly located halos. We compute the distribution of magnitude shifts using a variant of the method of Holz and Wald [Phys. Rev. D 58, 063501 (1998)], which includes the effect of lensing shear. In the two models we consider, the standard deviation of this distribution is 0.065 and 0.072 magnitudes and the mean is -0.0010 and -0.0013 magnitudes, for voids of radius 35 Mpc and the sources at redshift 1.5, with the voids chosen so that 90% of the mass is on the shell today. The standard deviation due to voids and halos is a factor ˜3 larger than that due to 35 Mpc voids alone with a 1 Mpc shell thickness, which we studied in our previous work. We also study the effect of the existence of evacuated voids, by comparing to a model where all the halos are randomly distributed in the interior of the sphere with none on its surface. This does not significantly change the variance but does significantly change the demagnification tail. To a good approximation, the variance of the distribution depends only on the mean column density of halos (halo mass divided by its projected area), the concentration parameter of the halos, and the fraction of the mass density that is in the form of halos (as opposed to smoothly distributed); it is independent of how the halos are distributed in space. We derive an approximate analytic formula for the variance that agrees with our numerical results to ≲20% out to z≃1.5, and that can be used to study the dependence on halo parameters.

  15. Can recording only the day-time voided volumes predict bladder capacity?

    PubMed

    Cho, Won Yeol; Kim, Seong Cheol; Kim, Sun-Ouck; Park, Sungchan; Lee, Sang Don; Chung, Jae Min; Kim, Kyung Do; Moon, Du Geon; Kim, Young Sig; Kim, Jun Mo

    2018-05-01

    This study aimed to demonstrate a method to easily assess bladder capacity using knowledge of day-time voided volumes, which can be obtained even from patients with nocturnal enuresis where the first morning void cannot accurately predict the bladder capacity due to bladder emptying overnight. We evaluated 177 healthy children from 7 Korean medical centres entered the study between January 2008 and January 2009. Voided volumes measured for more than 48 hours were recorded in the frequency volume chart (FVC). Most voided volumes during day-time were showed between 30% and 80% of the maximal voided volume (MVV). The maximal voided volume during day-time (MVVDT) was significantly less than the MVV (179.5±71.1 mL vs. 227.0±79.2 mL, p<0.001). The correlation coefficients with the MVV were 0.801 for the estimated MVV using the MVVDT (MVVDT×1.25), which suggested a fairly strong relationship between the MVVDT×1.25 and the MVV. The MVV derived from the FVC excluding the FMV was less than if the FMV had been included. When an accurate first morning voided volume cannot be obtained, as in patients with nocturnal enuresis, calculating MVVDT×1.25 allows estimation of the bladder capacity in place of the MVV.

  16. Experimental study on the void fraction of air-water two-phase flow in a horizontal circular minichannel

    NASA Astrophysics Data System (ADS)

    Sudarja, Indarto, Deendarlianto, Haq, Aqli

    2016-06-01

    Void fraction is an important parameter in two-phase flow. In the present work, the adiabatic two-phase air-water flow void fraction in a horizontal minichannel has been studied experimentally. A transparent circular channel with 1.6 mm inner diameter was employed as the test section. Superficial gas and liquid velocities were varied in the range of 1.25 - 66.3 m/s and 0.033 - 4.935 m/s, respectively. Void fraction data were obtained by analyzing the flow images being captured by using a high-speed camera. Here, the homogeneous (β) and the measured void fractions (ɛ), respectively, were compared to the existing correlations. It was found that: (1) for the bubbly and slug flows, the void fractions increases with the increase of JG, (2) for churn, slug-annular, and annular flow patterns, there is no specific correlation between JG and void fraction was observed due to effect of the slip between gas and liquid, and (3) whilst for bubbly and slug flows the void fractions are close to homogeneous line, for churn, annular, and slug-annular flows are far below the homogeneous line. It indicates that the slip ratios for the second group of flow patterns are higher than unity.

  17. Formation of Voids from Negative Density Perturbations

    NASA Astrophysics Data System (ADS)

    de Araujo, J. C. N.; Opher, R.

    1990-11-01

    RESUMEN. Se estudia la formaci6n de huecos a partir de un espectro negativo de perturbaciones, tomando en cuenta la expansi6n del Universo, arrastre por fotones, enfriamiento por fotones, fotoionizaci6n, ioniza- ci6n colisional, enfriamiento Lyman a y la formaci6n y enfriamiento de moleculas H2. Nuestros resultados predicen la existencia de regiones 1/10 de Ia densidad promedio para regiones de masa lO - 1O10M . ABSTRACT. In the present paer we study the formation of voids from a negative spectrum of perturbations taking into account the expansion of the Universe, photon-drag, photon-cooling, photoionization, collisional ionization, Lyman a cooling and the formation and cooling of 112 molecules. Our results predict the existence of regions 1/10 the average density for regions of mass 1O - 1O10M@ : CLUSTERS-GALAXIES - COSMOLOGY

  18. Specimen preparation by ion beam slope cutting for characterization of ductile damage by scanning electron microscopy.

    PubMed

    Besserer, Hans-Bernward; Gerstein, Gregory; Maier, Hans Jürgen; Nürnberger, Florian

    2016-04-01

    To investigate ductile damage in parts made by cold sheet-bulk metal forming a suited specimen preparation is required to observe the microstructure and defects such as voids by electron microscopy. By means of ion beam slope cutting both a targeted material removal can be applied and mechanical or thermal influences during preparation avoided. In combination with scanning electron microscopy this method allows to examine voids in the submicron range and thus to analyze early stages of ductile damage. In addition, a relief structure is formed by the selectivity of the ion bombardment, which depends on grain orientation and microstructural defects. The formation of these relief structures is studied using scanning electron microscopy and electron backscatter diffraction and the use of this side effect to interpret the microstructural mechanisms of voids formation by plastic deformation is discussed. A comprehensive investigation of the suitability of ion beam milling to analyze ductile damage is given at the examples of a ferritic deep drawing steel and a dual phase steel. © 2016 Wiley Periodicals, Inc.

  19. Inverted initial conditions: Exploring the growth of cosmic structure and voids

    DOE PAGES

    Pontzen, Andrew; Roth, Nina; Peiris, Hiranya V.; ...

    2016-05-18

    We introduce and explore “paired” cosmological simulations. A pair consists of an A and B simulation with initial conditions related by the inversion δ A(x,t initial) = –δ B(x,t initial) (underdensities substituted for overdensities and vice versa). We argue that the technique is valuable for improving our understanding of cosmic structure formation. The A and B fields are by definition equally likely draws from ΛCDM initial conditions, and in the linear regime evolve identically up to the overall sign. As nonlinear evolution takes hold, a region that collapses to form a halo in simulation A will tend to expand tomore » create a void in simulation B. Applications include (i) contrasting the growth of A-halos and B-voids to test excursion-set theories of structure formation, (ii) cross-correlating the density field of the A and B universes as a novel test for perturbation theory, and (iii) canceling error terms by averaging power spectra between the two boxes. Furthermore, generalizations of the method to more elaborate field transformations are suggested.« less

  20. An Efficient Modelling Approach for Prediction of Porosity Severity in Composite Structures

    NASA Technical Reports Server (NTRS)

    Bedayat, Houman; Forghani, Alireza; Hickmott, Curtis; Roy, Martin; Palmieri, Frank; Grimsley, Brian; Coxon, Brian; Fernlund, Goran

    2017-01-01

    Porosity, as a manufacturing process-induced defect, highly affects the mechanical properties of cured composites. Multiple phenomena affect the formation of porosity during the cure process. Porosity sources include entrapped air, volatiles and off-gassing as well as bag and tool leaks. Porosity sinks are the mechanisms that contribute to reducing porosity, including gas transport, void shrinkage and collapse as well as resin flow into void space. Despite the significant progress in porosity research, the fundamentals of porosity in composites are not yet fully understood. The highly coupled multi-physics and multi-scale nature of porosity make it a complicated problem to predict. Experimental evidence shows that resin pressure history throughout the cure cycle plays an important role in the porosity of the cured part. Maintaining high resin pressure results in void shrinkage and collapse keeps volatiles in solution thus preventing off-gassing and bubble formation. This study summarizes the latest development of an efficient FE modeling framework to simulate the gas and resin transport mechanisms that are among the major phenomena contributing to porosity.

  1. Prolonged irritative voiding symptoms due to Enterobius vermicularis bladder infestation in an adult patient.

    PubMed

    Sammour, Zein Mohamed; Gomes, Cristiano Mendes; Tome, Andre Luiz Farinhas; Bruschini, Homero; Srougi, Miguel

    2008-08-01

    Enterobius vermicularis (pinworm) is one of the most prevalent intestinal parasites in the world. The urinary tract is rarely affected and few cases have been reported. We report a case of bladder infestation by mature female worms of E. vermicularis in a woman presenting with irritative voiding symptoms.

  2. EBL Inhomogeneity and Hard-Spectrum Gamma-Ray Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdalla, Hassan; Böttcher, Markus

    2017-02-01

    The unexpectedly hard very-high-energy (VHE; E > 100 GeV) γ -ray spectra of a few distant blazars have been interpreted as evidence of a reduction of the γγ opacity of the universe due to the interaction of VHE γ -rays with the extragalactic background light (EBL) compared to the expectation from current knowledge of the density and cosmological evolution of the EBL. One of the suggested solutions to this problem involves the inhomogeneity of the EBL. In this paper, we study the effects of such inhomogeneity on the energy density of the EBL (which then also becomes anisotropic) and themore » resulting γγ opacity. Specifically, we investigate the effects of cosmic voids along the line of sight to a distant blazar. We find that the effect of such voids on the γγ opacity, for any realistic void size, is only of the order of ≲1% and much smaller than expected from a simple linear scaling of the γγ opacity with the line-of-sight galaxy underdensity due to a cosmic void.« less

  3. Sandwich-like C@SnO2/Sn/void@C hollow spheres as improved anode materials for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Huijun; Jiang, Xinya; Chai, Yaqin; Yang, Xia; Yuan, Ruo

    2018-03-01

    As lithium ion batteries (LIBs) anode, SnO2 suffers fast capacity fading due to its large volume expansion during discharge/charge process. To overcome the problem, sandwich-like C@SnO2/Sn/void@C hollow spheres (referred as C@SnO2/Sn/void@C HSs) are prepared by in-situ polymerization and carbonization, using hollow SnO2 as self-template and dopamine as carbon source. The C@SnO2/Sn/void@C HSs possesses the merits of hollow and core/void/shell structure, so that they can accommodate the volume change under discharge/charge process, shorten the transmission distance of Li ions, own more contact area for the electrolyte. Thanks to these advantages, C@SnO2/Sn/void@C HSs display excellent electrochemical performance as anode materials for LIBs, which deliver a high capacity of 786.7 mAh g-1 at the current density of 0.5 A g-1 after 60 cycles. The simple synthesis method for C@SnO2/Sn/void@C HSs with special structure will provide a promising method for preparing other anode materials for LIBs.

  4. Emergence of Yalom's therapeutic factors in a peer-led, asynchronous, online support group for family caregivers.

    PubMed

    Diefenbeck, Cynthia A; Klemm, Paula R; Hayes, Evelyn R

    2014-01-01

    Support groups fill a critical void in the health care system, harnessing the power of shared experiences to provide support to group members. Likewise, family caregivers fill a void in the health care system, providing billions in unpaid care to the chronically ill. Caregiver support groups offer an opportunity for alleviating the psychological burden of caregiving. The power of any group, including a support group, to foster psychological well-being lies in its ability to cultivate Yalom's therapeutic factors. Gaps in the literature remain regarding the ability of non-prototypical groups to promote therapeutic mechanisms of change. The purpose of this study was to determine if and when Yalom's therapeutic group factors emerged in a peer-led support group delivered in an asynchronous, online format. Qualitative content analysis utilizing deductive category application was employed. Participants' responses were coded and frequency counts were conducted. Results revealed that 9 of 11 therapeutic factors emerged over the course of the group, with Group Cohesiveness, Catharsis, Imparting of Information, and Universality occurring most often. Several factors, including Interpersonal Learning, Corrective Recapitulation of the Primary Family Group, Imitative Behavior, and Development of Socializing Techniques were absent or virtually absent, likely due to the peer-led format of the group. Progression of therapeutic factors over the course of the group is presented. Findings demonstrate the presence of a variety of Yalom's therapeutic factors in an asynchronous, peer-led online support group.

  5. Mechanical and microstructural changes in tungsten due to irradiation damage

    NASA Astrophysics Data System (ADS)

    Uytdenhouwen, I.; Schwarz-Selinger, T.; Coenen, J. W.; Wirtz, M.

    2016-02-01

    Stress-relieved pure tungsten received three damage levels (0.10, 0.25 and 0.50 dpa) by self-tungsten ion beam irradiation at room temperature. Positron annihilation spectroscopy showed the formation of mono-vacancies and vacancy clusters after ion beam exposure. In the first irradiation step (0-0.10 dpa) some splitting up of large vacancy clusters occurred which became more numerous. For increasing dose to 0.25 dpa, growth of the vacancy clusters was seen. At 0.50 dpa a change in the defect formation seems to occur leading to a saturation in the lifetime signal obtained from the positrons. Nano-indentation on the cross-sections showed a flat damage depth distribution profile. The nano-indentation hardness increased for increasing damage dose without any saturation up to 0.50 dpa. This means that other defects such as dislocation loops and large sized voids seem to contribute.

  6. A pentacene monolayer trapped between graphene and a substrate.

    PubMed

    Zhang, Qicheng; Peng, Boyu; Chan, Paddy Kwok Leung; Luo, Zhengtang

    2015-09-21

    A self-assembled pentacene monolayer can be fabricated between the solid-solid interface of few-layered graphene (FLG) and the mica substrate, through a diffusion-spreading method. By utilizing a transfer method that allows us to sandwich pentacene between graphene and mica, followed by controlled annealing, we enabled the diffused pentacene to be trapped in the interfaces and led to the formation of a stable monolayer. We found that the formation of a monolayer is kinetically favored by using a 2D Ising lattice gas model for pentacene trapped between the graphene-substrate interfaces. This kinetic Monte Carlo simulation results indicate that, due to the graphene substrate enclosure, the spreading of the first layer proceeds faster than the second layer, as the kinetics favors the filling of voids by molecules from the second layer. This graphene assisted monolayer assembly method provides a new avenue for the fabrication of two-dimensional monolayer structures.

  7. Galaxy Clustering Topology in the Sloan Digital Sky Survey Main Galaxy Sample: A Test for Galaxy Formation Models

    NASA Astrophysics Data System (ADS)

    Choi, Yun-Young; Park, Changbom; Kim, Juhan; Gott, J. Richard, III; Weinberg, David H.; Vogeley, Michael S.; Kim, Sungsoo S.; SDSS Collaboration

    2010-09-01

    We measure the topology of the main galaxy distribution using the Seventh Data Release of the Sloan Digital Sky Survey, examining the dependence of galaxy clustering topology on galaxy properties. The observational results are used to test galaxy formation models. A volume-limited sample defined by Mr < -20.19 enables us to measure the genus curve with an amplitude of G = 378 at 6 h -1 Mpc smoothing scale, with 4.8% uncertainty including all systematics and cosmic variance. The clustering topology over the smoothing length interval from 6 to 10 h -1 Mpc reveals a mild scale dependence for the shift (Δν) and void abundance (AV ) parameters of the genus curve. We find substantial bias in the topology of galaxy clustering with respect to the predicted topology of the matter distribution, which varies with luminosity, morphology, color, and the smoothing scale of the density field. The distribution of relatively brighter galaxies shows a greater prevalence of isolated clusters and more percolated voids. Even though early (late)-type galaxies show topology similar to that of red (blue) galaxies, the morphology dependence of topology is not identical to the color dependence. In particular, the void abundance parameter AV depends on morphology more strongly than on color. We test five galaxy assignment schemes applied to cosmological N-body simulations of a ΛCDM universe to generate mock galaxies: the halo-galaxy one-to-one correspondence model, the halo occupation distribution model, and three implementations of semi-analytic models (SAMs). None of the models reproduces all aspects of the observed clustering topology; the deviations vary from one model to another but include statistically significant discrepancies in the abundance of isolated voids or isolated clusters and the amplitude and overall shift of the genus curve. SAM predictions of the topology color dependence are usually correct in sign but incorrect in magnitude. Our topology tests indicate that, in these models, voids should be emptier and more connected and the threshold for galaxy formation should be at lower densities.

  8. Analysis of Dislocation Emission during Microvoid Growth in Ductile Metals

    NASA Astrophysics Data System (ADS)

    Belak, James; Rudd, Robert E.

    2001-03-01

    Fracture in ductile metals occurs through the nucleation and growth of microscopic voids. This talk focuses on the initial stage when dislocations are first emitted from the void surface. The model system consists of a spherical void in an otherwise perfect crystal under triaxial tension. The stress field is calculated using continuum techniques, both finite element and analytic forms due to Eshelby, and compared with large-scale molecular dynamics (MD) simulation. The stress field is used to derive a criterion for dislocation nucleation on the glide planes intersecting the void surface. The critical resolved shear stress and the unstable stacking fault energy for the strain at the surface are used to compare to the critical stress for void growth in the MD simulations. Acknowledgement: This work was performed under the auspices of the US Dept. of Energy at the University of California/Lawrence Livermore National Laboratory under contract no. W-7405-Eng-48. [1] J. Belak, "On the nucleation and growth of voids at high strain-rates," J. Comp.-Aided Mater. Design 5, 193 (1998).

  9. Volume change associated with formation and dissociation of hydrate in sediment

    USGS Publications Warehouse

    Ruppel, Carolyn D.; Lee, J.Y.; Santamarina, J. Carlos

    2017-01-01

    Gas hydrate formation and dissociation in sediments are accompanied by changes in the bulk volume of the sediment and can lead to changes in sediment properties, loss of integrity for boreholes, and possibly regional subsidence of the ground surface over areas where methane might be produced from gas hydrate in the future. Experiments on sand, silts, and clay subject to different effective stress and containing different saturations of hydrate formed from dissolved phase tetrahydrofuran are used to systematically investigate the impact of gas hydrate formation and dissociation on bulk sediment volume. Volume changes in low specific surface sediments (i.e., having a rigid sediment skeleton like sand) are much lower than those measured in high specific surface sediments (e.g., clay). Early hydrate formation is accompanied by contraction for all soils and most stress states in part because growing gas hydrate crystals buckle skeletal force chains. Dilation can occur at high hydrate saturations. Hydrate dissociation under drained, zero lateral strain conditions is always associated with some contraction, regardless of soil type, effective stress level, or hydrate saturation. Changes in void ratio during formation-dissociation decrease at high effective stress levels. The volumetric strain during dissociation under zero lateral strain scales with hydrate saturation and sediment compressibility. The volumetric strain during dissociation under high shear is a function of the initial volume average void ratio and the stress-dependent critical state void ratio of the sediment. Other contributions to volume reduction upon hydrate dissociation are related to segregated hydrate in lenses and nodules. For natural gas hydrates, some conditions (e.g., gas production driven by depressurization) might contribute to additional volume reduction by increasing the effective stress.

  10. Investigation of nanoscale voids in Sb-doped p-type ZnO nanowires.

    PubMed

    Pradel, Ken C; Uzuhashi, Jun; Takei, Toshiaki; Ohkubo, Tadakatsu; Hono, Kazuhiro; Fukata, Naoki

    2018-08-17

    While it has multiple advantageous optoelectronic and piezoelectric properties, the application of zinc oxide has been limited by the lack of a stable p-type dopant. Recently, it was discovered that antimony doping can lead to stable p-type doping in ZnO, but one curious side effect of the doping process is the formation of voids inside the nanowire. While previously used as a signifier of successful doping, up until now, little research has been performed on these structures themselves. In this work, the effect of annealing on the size and microstructure of the voids was investigated using TEM and XRD, finding that the voids form around a region of Zn 7 Sb 2 O 12 . Furthermore, using Raman spectroscopy, a new peak associated with successful doping was identified. The most surprising finding, however, was the presence of water trapped inside the nanowire, showing that this is actually a composite structure. Water was initially discovered in the nanowires using atom probe tomography, and verified using Raman spectroscopy.

  11. Nebular Metallicities in Two Isolated Local Void Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Nicholls, David C.; Jerjen, Helmut; Dopita, Michael A.; Basurah, Hassan

    2014-01-01

    Isolated dwarf galaxies, especially those situated in voids, may provide insight into primordial conditions in the universe and the physical processes that govern star formation in undisturbed stellar systems. The metallicity of H II regions in such galaxies is key to investigating this possibility. From the SIGRID sample of isolated dwarf galaxies, we have identified two exceptionally isolated objects, the Local Void galaxy [KK98]246 (ESO 461-G036) and another somewhat larger dwarf irregular on the edge of the Local Void, MCG-01-41-006 (HIPASS J1609-04). We report our measurements of the nebular metallicities in these objects. The first object has a single low luminosity H II region, while the second is in a more vigorous star forming phase with several bright H II regions. We find that the metallicities in both galaxies are typical for galaxies of this size, and do not indicate the presence of any primordial gas, despite (for [KK98]246) the known surrounding large reservoir of neutral hydrogen.

  12. Cavitation instability as a trigger of aneurysm rupture.

    PubMed

    Volokh, K Y

    2015-10-01

    Aneurysm formation and growth is accompanied by microstructural alterations in the arterial wall. Particularly, the loss of elastin may lead to tissue disintegration and appearance of voids or cavities at the micron scale. Unstable growth and coalescence of voids may be a predecessor and trigger for the onset of macroscopic cracks. In the present work, we analyze the instability of membrane (2D) and bulk (3D) voids under hydrostatic tension by using two experimentally calibrated constitutive models of abdominal aortic aneurysm enhanced with energy limiters. The limiters provide the saturation value for the strain energy, which indicates the maximum energy that can be stored and dissipated by an infinitesimal material volume. We find that the unstable growth of voids can start when the critical stress is considerably less than the aneurysm strength. Moreover, this critical stress may even approach the arterial wall stress in the physiological range. This finding suggests that cavitation instability can be a rational indicator of the aneurysm rupture.

  13. Atomistic Simulation of Initiation in Hexanitrostilbene

    NASA Astrophysics Data System (ADS)

    Shan, Tzu-Ray; Wixom, Ryan; Yarrington, Cole; Thompson, Aidan

    2015-06-01

    We report on the effect of cylindrical voids on hot spot formation, growth and chemical reaction initiation in hexanitrostilbene (HNS) crystals subjected to shock. Large-scale, reactive molecular dynamics simulations are performed using the reactive force field (ReaxFF) as implemented in the LAMMPS software. The ReaxFF force field description for HNS has been validated previously by comparing the isothermal equation of state to available diamond anvil cell (DAC) measurements and density function theory (DFT) calculations and by comparing the primary dissociation pathway to ab initio calculations. Micron-scale molecular dynamics simulations of a supported shockwave propagating through the HNS crystal along the [010] orientation are performed with an impact velocity (or particle velocity) of 1.25 km/s, resulting in shockwave propagation at 4.0 km/s in the bulk material and a bulk shock pressure of ~ 11GPa. The effect of cylindrical void sizes varying from 0.02 to 0.1 μm on hot spot formation and growth rate has been studied. Interaction between multiple voids in the HNS crystal and its effect on hot spot formation will also be addressed. Results from the micron-scale atomistic simulations are compared with hydrodynamics simulations. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  14. Finite Element Analysis of Transverse Compressive Loads on Superconducting Nb3Sn Wires Containing Voids

    NASA Astrophysics Data System (ADS)

    D'Hauthuille, Luc; Zhai, Yuhu; Princeton Plasma Physics Lab Collaboration; University of Geneva Collaboration

    2015-11-01

    High field superconductors play an important role in many large-scale physics experiments, particularly particle colliders and fusion devices such as the LHC and ITER. The two most common superconductors used are NbTi and Nb3Sn. Nb3Sn wires are favored because of their significantly higher Jc, allowing them to produce much higher magnetic fields. The main disadvantage is that the superconducting performance of Nb3Sn is highly strain-sensitive and it is very brittle. The strain-sensitivity is strongly influenced by two factors: plasticity and cracked filaments. Cracks are induced by large stress concentrators due to the presence of voids. We will attempt to understand the correlation between Nb3Sn's irreversible strain limit and the void-induced stress concentrations around the voids. We will develop accurate 2D and 3D finite element models containing detailed filaments and possible distributions of voids in a bronze-route Nb3Sn wire. We will apply a compressive transverse load for the various cases to simulate the stress response of a Nb3Sn wire from the Lorentz force. Doing this will further improve our understanding of the effect voids have on the wire's mechanical properties, and thus, the connection between the shape & distribution of voids and performance degradation.

  15. Ductile failure initiation and evolution in porous polycrystalline aggregates due to interfacial effects

    NASA Astrophysics Data System (ADS)

    Ashmawi, Waeil Muhammad Al-Anwar

    New analytical and computational formulations have been developed for the investigation of micro structurally induced ductile failure mechanisms in porous polycrystalline aggregates with low and high (CSL) angle grain-boundaries (GBs). A multiple-slip rate-dependent crystalline constitutive formulation that is coupled to the evolution of mobile and immobile dislocation densities, a new internal porosity formulation for void nucleation and growth, and specialized computational schemes have been developed to obtain a detailed understanding of the multi-scale interrelated physical mechanisms that result in ductile failure in polycrystalline materials. Comprehensive transmission and pile-up mechanisms have also been introduced to investigate dislocation-density impedance and slip-rate incompatibility at the GBs. The interrelated effects of GB orientation, mobile and immobile dislocation densities, strain hardening, geometrical softening, localized plastic strains, and dislocation-density transmission and blockage on void growth, interaction, and coalescence have been studied. Criteria have been developed to identify and monitor the initiation and development of potential dislocation-density activity sites adjacent to GB regions. These interactions play an important role in the formation of GB pile-up and transmission regions. The effects of GB structure and orientation on ductile failure have been accounted for by the development of GB interfacial kinematic conditions that account for a multitude of dislocation-density interactions with GBs, such as full and partial transmission, impedance, blockage, and absorption. Pile-ups and transmission regions are identified and monitored as the deformation and failure evolve. These kinematic conditions are linked to the initiation and evolution of failure modes by the development of a new internal porosity evolution formulation that accounts for void nucleation and growth. The internal porosity relation is coupled with the proposed dislocation-density based crystalline constitutive formulation, the interfacial GB dislocation-density interaction models, and the specialized computational schemes to obtain detailed predictions of the behavior of aggregates with explicit voids that have different orientations and combinations of sizes, shapes, and spacings. Results from the present study indicate that material failure is a competition between different interrelated effects, such as stress triaxiality, accumulated plastic shear strain, temperature, dislocation density concentration, and grain and GB crystallographic orientations. For all void arrangements, as the void size is increased, specimen necking is diffuse and failure is concentrated in the ligament regions. Furthermore, there are more dislocation-density activity sites for potential transmission and pile-ups at the GBs. Failure is concentrated along the void peripheries and within intervoid ligaments. It has been shown that the evolution of the mobile dislocation density saturation curves, and their saturation rate are directly related to the aggregate response. Nucleation and growth for all void distributions have occurred in regions of maximum dislocation density and along preferred crystallographic orientations. Spatial distributions of porosity, accumulated plastic strains, and pressure have been obtained to further elucidate how these parameters evolve and affect void to void interaction in critical ligament and localized regions as a function of intervoid spacing and nominal strains. These failure predictions can be also used to identify intergranular and transgranular failure propagation. The present study underscores the importance of using dislocation-density based multiple-slip crystalline constitutive formulations and GB interfacial mechanisms that are consistent with experimental observations and results to accurately characterize the microstructural evolution of deformation and failure modes on a length scale that is commensurate with the material competition between the inherent strengthening and softening mechanisms of crystalline systems.

  16. PRECISION COSMOGRAPHY WITH STACKED VOIDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavaux, Guilhem; Wandelt, Benjamin D.

    2012-08-01

    We present a purely geometrical method for probing the expansion history of the universe from the observation of the shape of stacked voids in spectroscopic redshift surveys. Our method is an Alcock-Paczynski (AP) test based on the average sphericity of voids posited on the local isotropy of the universe. It works by comparing the temporal extent of cosmic voids along the line of sight with their angular, spatial extent. We describe the algorithm that we use to detect and stack voids in redshift shells on the light cone and test it on mock light cones produced from N-body simulations. Wemore » establish a robust statistical model for estimating the average stretching of voids in redshift space and quantify the contamination by peculiar velocities. Finally, assuming that the void statistics that we derive from N-body simulations is preserved when considering galaxy surveys, we assess the capability of this approach to constrain dark energy parameters. We report this assessment in terms of the figure of merit (FoM) of the dark energy task force and in particular of the proposed Euclid mission which is particularly suited for this technique since it is a spectroscopic survey. The FoM due to stacked voids from the Euclid wide survey may double that of all other dark energy probes derived from Euclid data alone (combined with Planck priors). In particular, voids seem to outperform baryon acoustic oscillations by an order of magnitude. This result is consistent with simple estimates based on mode counting. The AP test based on stacked voids may be a significant addition to the portfolio of major dark energy probes and its potentialities must be studied in detail.« less

  17. Detection of atomic scale changes in the free volume void size of three-dimensional colorectal cancer cell culture using positron annihilation lifetime spectroscopy.

    PubMed

    Axpe, Eneko; Lopez-Euba, Tamara; Castellanos-Rubio, Ainara; Merida, David; Garcia, Jose Angel; Plaza-Izurieta, Leticia; Fernandez-Jimenez, Nora; Plazaola, Fernando; Bilbao, Jose Ramon

    2014-01-01

    Positron annihilation lifetime spectroscopy (PALS) provides a direct measurement of the free volume void sizes in polymers and biological systems. This free volume is critical in explaining and understanding physical and mechanical properties of polymers. Moreover, PALS has been recently proposed as a potential tool in detecting cancer at early stages, probing the differences in the subnanometer scale free volume voids between cancerous/healthy skin samples of the same patient. Despite several investigations on free volume in complex cancerous tissues, no positron annihilation studies of living cancer cell cultures have been reported. We demonstrate that PALS can be applied to the study in human living 3D cell cultures. The technique is also capable to detect atomic scale changes in the size of the free volume voids due to the biological responses to TGF-β. PALS may be developed to characterize the effect of different culture conditions in the free volume voids of cells grown in vitro.

  18. Three-Dimensional Computed Tomography as a Method for Finding Die Attach Voids in Diodes

    NASA Technical Reports Server (NTRS)

    Brahm, E. N.; Rolin, T. D.

    2010-01-01

    NASA analyzes electrical, electronic, and electromechanical (EEE) parts used in space vehicles to understand failure modes of these components. The diode is an EEE part critical to NASA missions that can fail due to excessive voiding in the die attach. Metallography, one established method for studying the die attach, is a time-intensive, destructive, and equivocal process whereby mechanical grinding of the diodes is performed to reveal voiding in the die attach. Problems such as die attach pull-out tend to complicate results and can lead to erroneous conclusions. The objective of this study is to determine if three-dimensional computed tomography (3DCT), a nondestructive technique, is a viable alternative to metallography for detecting die attach voiding. The die attach voiding in two- dimensional planes created from 3DCT scans was compared to several physical cross sections of the same diode to determine if the 3DCT scan accurately recreates die attach volumetric variability

  19. Tensile fracture of coarse-Grained cast austenitic manganese steels

    NASA Astrophysics Data System (ADS)

    Rittel, D.; Roman, I.

    1988-09-01

    Tensile fracture of coarse-grained (0.25 to 1 mm) cast austenitic manganese (Hadfield) steels has been investigated. Numerous surface discontinuities nucleate in coarse slip bands, on the heavily deformed surface of tensile specimens. These discontinuities do not propagate radially and final fracture results from central specimen cracking at higher strains. On the microscopic scale, bulk voids nucleate during the entire plastic deformation and they do not coalesce by shear localization (e.g., void-sheet) mechanism. Close voids coalesce by internal necking, whereas distant voids are bridged by means of small voids which nucleate at later stages of the plastic deformation. The high toughness of Hadfield steels is due to their high strain-hardening capacity which stabilizes the plastic deformation, and avoids shear localization and loss of load-bearing capacity. The observed dependence of measured mechanical properties on the specimen’s geometry results from the development of a surface layer which charac-terizes the deformation of this coarse-grained material.

  20. Detection of Atomic Scale Changes in the Free Volume Void Size of Three-Dimensional Colorectal Cancer Cell Culture Using Positron Annihilation Lifetime Spectroscopy

    PubMed Central

    Castellanos-Rubio, Ainara; Merida, David; Garcia, Jose Angel; Plaza-Izurieta, Leticia; Fernandez-Jimenez, Nora; Plazaola, Fernando; Bilbao, Jose Ramon

    2014-01-01

    Positron annihilation lifetime spectroscopy (PALS) provides a direct measurement of the free volume void sizes in polymers and biological systems. This free volume is critical in explaining and understanding physical and mechanical properties of polymers. Moreover, PALS has been recently proposed as a potential tool in detecting cancer at early stages, probing the differences in the subnanometer scale free volume voids between cancerous/healthy skin samples of the same patient. Despite several investigations on free volume in complex cancerous tissues, no positron annihilation studies of living cancer cell cultures have been reported. We demonstrate that PALS can be applied to the study in human living 3D cell cultures. The technique is also capable to detect atomic scale changes in the size of the free volume voids due to the biological responses to TGF-β. PALS may be developed to characterize the effect of different culture conditions in the free volume voids of cells grown in vitro. PMID:24392097

  1. Effects of Sn Layer Orientation on the Evolution of Cu/Sn Interfaces

    NASA Astrophysics Data System (ADS)

    Sun, Menglong; Zhao, Zhangjian; Hu, Fengtian; Hu, Anmin; Li, Ming; Ling, Huiqin; Hang, Tao

    2018-03-01

    The effects of Sn layer orientation on the evolution of Cu/Sn joint interfaces were investigated. Three Sn layers possessing (112), (321) and (420) orientations were electroplated on polycrystalline Cu substrates respectively. The orientations of Sn layer preserved during reflowing at 250 °C for 10 s. After aging at 150 °C for different time, the interfacial microstructures were observed from the cross-section and top-view. The alignment between the c-axis of Sn and Cu diffusion direction significantly sped up the Cu diffusion, leading to the thickest intermetallic compound layer formed in (112) joint. Two types of voids, namely, intracrystalline voids and grain islanding caused intercrystalline voids generated at Cu/Cu3Sn interfaces due to the different interdiffusion coefficients of Cu and Sn (112) oriented Sn/Cu joint produced many more voids than (321) joint, and no voids were detected in (420) joint. Therefore, to enhance the reliability of solder joints, using (420) oriented Sn as solder layer could be an efficient way.

  2. Synthesis and characterization of an injectable allograft bone/polymer composite bone void filler with tunable mechanical properties.

    PubMed

    Dumas, Jerald E; Zienkiewicz, Katarzyna; Tanner, Shaun A; Prieto, Edna M; Bhattacharyya, Subha; Guelcher, Scott A

    2010-08-01

    In recent years, considerable effort has been expended toward the development of synthetic bone graft materials. Injectable biomaterials offer several advantages relative to implants due to their ability to cure in situ, thus conforming to irregularly shaped defects. While Food and Drug Administration-approved injectable calcium phosphate cements have excellent osteoconductivity and compressive strengths, these materials have small pore sizes (e.g., 1 mum) and are thus relatively impermeable to cellular infiltration. To overcome this limitation, we aimed to develop injectable allograft bone/polyurethane (PUR) composite bone void fillers with tunable properties that support rapid cellular infiltration and remodeling. The materials comprised particulated (e.g., >100 microm) allograft bone particles and a biodegradable two-component PUR, and had variable (e.g., 30%-70%) porosities. The injectable void fillers exhibited an initial dynamic viscosity of 220 Pa.s at clinically relevant shear rates (40 s(-1)), wet compressive strengths ranging from < 1 to 13 MPa, working times from 3 to 8 min, and setting times from 10 to 20 min, which are comparable to the properties of calcium phosphate bone cements. When injected in femoral plug defects in athymic rats, the composites supported extensive cellular infiltration, allograft resorption, collagen deposition, and new bone formation at 3 weeks. The combination of both initial mechanical properties suitable for weight-bearing applications as well as the ability of the materials to undergo rapid cellular infiltration and remodeling may present potentially compelling opportunities for injectable allograft/PUR composites as biomedical devices for bone regeneration.

  3. Biodegradable braided poly(lactic-co-glycolic acid) urethral stent combined with dutasteride in the treatment of acute urinary retention due to benign prostatic enlargement: a pilot study.

    PubMed

    Kotsar, Andres; Isotalo, Taina; Juuti, Hanne; Mikkonen, Joonas; Leppiniemi, Jenni; Hänninen, Venla; Kellomäki, Minna; Talja, Martti; Tammela, Teuvo L J

    2009-03-01

    To evaluate, in a pilot study, the efficacy and safety of combining a braided poly(lactic-co-glycolic acid) (PLGA, a copolymer of l-lactide and glycolide) urethral stent and dutasteride in the treatment of acute urinary retention (AUR) due to benign prostatic enlargement (BPE). Ten men with AUR due to BPE were treated as outpatients. A biodegradable braided PLGA urethral stent was inserted into the prostatic urethra, using a specially designed insertion device under visual control. Dutasteride treatment was started and the patients were followed up for 3 months after insertion of the stents. In all patients the stents were placed successfully with the new insertion device. All men were able to void after inserting the stent. At 1 month five patients voided freely with a low residual urine volume (<150 mL), two voided but had a high residual urine volume and a suprapubic catheter was placed, and three needed a suprapubic or an indwelling catheter before 1 month, due to AUR or comorbidities. At 3 months five patients were voiding with no problems. We have developed a new and effective insertion device for biodegradable braided prostatic stents. The new braided-pattern stent overcomes the earlier problems of migration and sudden breakage into large particles associated with biodegradable spiral stents. However, the mechanical properties of the new stent need to be improved and tested in a longer follow-up. We consider that this new biodegradable braided-pattern urethral stent could provide a new option in the future treatment of AUR.

  4. Immortality of Cu damascene interconnects

    NASA Astrophysics Data System (ADS)

    Hau-Riege, Stefan P.

    2002-04-01

    We have studied short-line effects in fully-integrated Cu damascene interconnects through electromigration experiments on lines of various lengths and embedded in different dielectric materials. We compare these results with results from analogous experiments on subtractively-etched Al-based interconnects. It is known that Al-based interconnects exhibit three different behaviors, depending on the magnitude of the product of current density, j, and line length, L: For small values of (jL), no void nucleation occurs, and the line is immortal. For intermediate values, voids nucleate, but the line does not fail because the current can flow through the higher-resistivity refractory-metal-based shunt layers. Here, the resistance of the line increases but eventually saturates, and the relative resistance increase is proportional to (jL/B), where B is the effective elastic modulus of the metallization system. For large values of (jL/B), voiding leads to an unacceptably high resistance increase, and the line is considered failed. By contrast, we observed only two regimes for Cu-based interconnects: Either the resistance of the line stays constant during the duration of the experiment, and the line is considered immortal, or the line fails due to an abrupt open-circuit failure. The absence of an intermediate regime in which the resistance saturates is due to the absence of a shunt layer that is able to support a large amount of current once voiding occurs. Since voids nucleate much more easily in Cu- than in Al-based interconnects, a small fraction of short Cu lines fails even at low current densities. It is therefore more appropriate to consider the probability of immortality in the case of Cu rather than assuming a sharp boundary between mortality and immortality. The probability of immortality decreases with increasing amount of material depleted from the cathode, which is proportional to (jL2/B) at steady state. By contrast, the immortality of Al-based interconnects is described by (jL) if no voids nucleate, and (jL/B) if voids nucleate.

  5. Solid-state dewetting of Au-Ni bi-layer films mediated through individual layer thickness and stacking sequence

    NASA Astrophysics Data System (ADS)

    Herz, Andreas; Theska, Felix; Rossberg, Diana; Kups, Thomas; Wang, Dong; Schaaf, Peter

    2018-06-01

    In the present work, the solid-state dewetting of Au-Ni bi-layer thin films deposited on SiO2/Si is systematically studied with respect to individual layer thickness and stacking sequence. For this purpose, a rapid heat treatment at medium temperatures is applied in order to examine void formation at the early stages of the dewetting. Compositional variations are realized by changing the thickness ratio of the bi-layer films, while the total thickness is maintained at 20 nm throughout the study. In the event of Au/Ni films annealed at 500 °C, crystal voids exposing the substrate are missing regardless of chemical composition. In reverse order, the number of voids per unit area in two-phase Au-Ni thin films is found to be governed by the amount of Au-rich material. At higher temperatures up to 650 °C, a decreased probability of nucleation comes at the expense of a major portion of cavities, resulting in the formation of bubbles in 15 nm Ni/5 nm Au bi-layers. Film buckling predominantly occurred at phase boundaries crossing the bubbles.

  6. Self-assembly of bimetallic AuxPd1-x alloy nanoparticles via dewetting of bilayers through the systematic control of temperature, thickness, composition and stacking sequence

    NASA Astrophysics Data System (ADS)

    Kunwar, Sundar; Pandey, Puran; Sui, Mao; Bastola, Sushil; Lee, Jihoon

    2018-03-01

    Bimetallic alloy nanoparticles (NPs) are attractive materials for various applications with their morphology and elemental composition dependent optical, electronic, magnetic and catalytic properties. This work demonstrates the evolution of AuxPd1-x alloy nanostructures by the solid-state dewetting of sequentially deposited bilayers of Au and Pd on sapphire (0001). Various shape, size and configuration of AuxPd1‑x alloy NPs are fabricated by the systematic control of annealing temperature, deposition thickness, composition as well as stacking sequence. The evolution of alloy nanostructures is attributed to the surface diffusion, interface diffusion between bilayers, surface and interface energy minimization, Volmer-Weber growth model and equilibrium configuration. Depending upon the temperature, the surface morphologies evolve with the formation of pits, grains and voids and gradually develop into isolated semi-spherical alloy NPs by the expansion of voids and agglomeration of Au and Pd adatoms. On the other hand, small isolated to enlarged elongated and over-grown layer-like alloy nanostructures are fabricated due to the coalescence, partial diffusion and inter-diffusion with the increased bilayer thickness. In addition, the composition and stacking sequence of bilayers remarkably affect the final geometry of AuxPd1‑x nanostructures due to the variation in the dewetting process. The optical analysis based on the UV–vis-NIR reflectance spectra reveals the surface morphology dependent plasmonic resonance, scattering, reflection and absorption properties of AuxPd1‑x alloy nanostructures.

  7. Matrix Elasticity of Void-Forming Hydrogels Controls Transplanted Stem Cell-Mediated Bone Formation

    PubMed Central

    Huebsch, Nathaniel; Lippens, Evi; Lee, Kangwon; Mehta, Manav; Koshy, Sandeep T; Darnell, Max C; Desai, Rajiv; Madl, Christopher M.; Xu, Maria; Zhao, Xuanhe; Chaudhuri, Ovijit; Verbeke, Catia; Kim, Woo Seob; Alim, Karen; Mammoto, Akiko; Ingber, Donald E.; Duda, Georg N; Mooney, David J.

    2015-01-01

    The effectiveness of stem-cell therapies has been hampered by cell death and limited control over fate1. These problems can be partially circumvented by using macroporous biomaterials that improve the survival of transplanted stem cells and provide molecular cues to direct cell phenotype2–4. Stem cell behavior can also be controlled in vitro by manipulating the elasticity of both porous and non-porous materials5–7, yet translation to therapeutic processes in vivo remains elusive. Here, by developing injectable, void-forming hydrogels that decouple pore formation from elasticity, we show that mesenchymal stem cell (MSC) osteogenesis in vitro, and cell deployment in vitro and in vivo, can be controlled by modifying, respectively, the hydrogel's elastic modulus or its chemistry. When the hydrogels were used to transplant MSCs, the hydrogel's elasticity regulated bone regeneration, with optimal bone formation at 60 kPa. Our findings show that biophysical cues can be harnessed to direct therapeutic stem-cell behaviors in situ. PMID:26366848

  8. Matrix elasticity of void-forming hydrogels controls transplanted-stem-cell-mediated bone formation

    NASA Astrophysics Data System (ADS)

    Huebsch, Nathaniel; Lippens, Evi; Lee, Kangwon; Mehta, Manav; Koshy, Sandeep T.; Darnell, Max C.; Desai, Rajiv M.; Madl, Christopher M.; Xu, Maria; Zhao, Xuanhe; Chaudhuri, Ovijit; Verbeke, Catia; Kim, Woo Seob; Alim, Karen; Mammoto, Akiko; Ingber, Donald E.; Duda, Georg N.; Mooney, David J.

    2015-12-01

    The effectiveness of stem cell therapies has been hampered by cell death and limited control over fate. These problems can be partially circumvented by using macroporous biomaterials that improve the survival of transplanted stem cells and provide molecular cues to direct cell phenotype. Stem cell behaviour can also be controlled in vitro by manipulating the elasticity of both porous and non-porous materials, yet translation to therapeutic processes in vivo remains elusive. Here, by developing injectable, void-forming hydrogels that decouple pore formation from elasticity, we show that mesenchymal stem cell (MSC) osteogenesis in vitro, and cell deployment in vitro and in vivo, can be controlled by modifying, respectively, the hydrogel’s elastic modulus or its chemistry. When the hydrogels were used to transplant MSCs, the hydrogel’s elasticity regulated bone regeneration, with optimal bone formation at 60 kPa. Our findings show that biophysical cues can be harnessed to direct therapeutic stem cell behaviours in situ.

  9. Corrosion resistance of inconel 690 to borax, boric acid, and boron nitride at 1100{degrees}C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imrich, K.J.

    1996-12-12

    Significant general and localized corrosion was observed on Inconel 690 coupons following exposure to borax, boric acid and boron nitride at 1100{degrees}C. Severe localized attack at and below the melt line was observed on coupons exposed to borax. An intergranular attack at and below the melt line was observed on coupons exposed to borax. An intergranular attack (IGA) of the Inconel 690 was also observed. Severe internal void formation and IGA (30 mils penetration after 3 days) was observed in the coupon exposed to boric acid. Both borax and boric acid remove the protective chromium oxide; however, this layer canmore » be reestablished by heating the Inconel 690 to 975 {degrees}C in air for several hours. Inconel 690 in direct contact with boron nitride resulted in the formation of a thick chromium borate layer, a general corrosion rate of 50 to 90 mils per year, and internal void formation of 1 mil per day.« less

  10. Void asymmetries in the cosmic web: a mechanism for bulk flows

    NASA Astrophysics Data System (ADS)

    Bland-Hawthorn, J.; Sharma, S.

    2016-10-01

    Bulk flows of galaxies moving with respect to the cosmic microwave background are well established observationally and seen in the most recent ΛCDM simulations. With the aid of an idealised Gadget-2 simulation, we show that void asymmetries in the cosmic web can exacerbate local bulk flows of galaxies. The {\\it Cosmicflows-2} survey, which has mapped in detail the 3D structure of the Local Universe, reveals that the Local Group resides in a ``local sheet'' of galaxies that borders a ``local void'' with a diameter of about 40 Mpc. The void is emptying out at a rate of 16 km s-1 Mpc-1. In a co-moving frame, the Local Sheet is found to be moving away from the Local Void at ~ 260 km s-1. Our model shows how asymmetric collapse due to unbalanced voids on either side of a developing sheet or wall can lead to a systematic movement of the sheet. We conjectured that asymmetries could lead to a large-scale separation of dark matter and baryons, thereby driving a dependence of galaxy properties with environment, but we do {\\it not} find any evidence for this effect.

  11. Microstructural characterization and density change of 304 stainless steel reflector blocks after long-term irradiation in EBR-II

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Wiezorek, J. M. K.; Garner, F. A.; Freyer, P. D.; Okita, T.; Sagisaka, M.; Isobe, Y.; Allen, T. R.

    2015-10-01

    While thin reactor structural components such as cladding and ducts do not experience significant gradients in dpa rate, gamma heating rate, temperature or stress, thick components can develop strong local variations in void swelling and irradiation creep in response to gradients in these variables. In this study we conducted microstructural investigations by transmission electron microscopy of two 52 mm thick 304-type stainless steel hex-blocks irradiated for 12 years in the EBR-II reactor with accumulated doses ranging from ∼0.4 to 33 dpa. Spatial variations in the populations of voids, precipitates, Frank loops and dislocation lines have been determined for 304 stainless steel sections exposed to different temperatures, different dpa levels and at different dpa rates, demonstrating the existence of spatial gradients in the resulting void swelling. The microstructural measurements compare very well with complementary density change measurements regarding void swelling gradients in the 304 stainless steel hex-block components. The TEM studies revealed that the original cold-worked-state microstructure of the unirradiated blocks was completely erased by irradiation, replaced by high densities of interstitial Frank loops, voids and carbide precipitates at both the lowest and highest doses. At large dose levels the amount of volumetric void swelling correlated directly with the gamma heating gradient-related temperature increase (e.g. for 28 dpa, ∼2% swelling at 418 °C and ∼2.9% swelling at 448 °C). Under approximately iso-thermal local conditions, volumetric void swelling was found to increase with dose level (e.g. ∼0.2% swelling at 0.4 dpa, ∼0.5% swelling at 4 dpa and ∼2% swelling at 28 dpa). Carbide precipitate formation levels were found to be relatively independent of both dpa level and temperature and induced a measurable densification. Void swelling was dominant at the higher dose levels and caused measurable decreases in density. Void swelling at the lowest doses was larger than might be expected based on the dpa level, an observation in agreement with earlier studies showing that the onset of void swelling is accelerated by decreasing dpa rates.

  12. Comparison of the agglomeration behavior of thin metallic films on SiO2

    NASA Astrophysics Data System (ADS)

    Gadkari, P. R.; Warren, A. P.; Todi, R. M.; Petrova, R. V.; Coffey, K. R.

    2005-07-01

    The stability of continuous metallic thin films on insulating oxide surfaces is of interest to applications such as semiconductor interconnections and gate engineering. In this work, we report the study of the formation of voids and agglomeration of initially continuous Cu, Au, Ru and Pt thin films deposited on amorphous thermally grown SiO2 surfaces. Polycrystalline thin films having thicknesses in the range of 10-100 nm were ultrahigh vacuum sputter deposited on thermally grown SiO2 surfaces. The films were annealed at temperatures in the range of 150-800 °C in argon and argon+3% hydrogen gases. Scanning electron microscopy was used to investigate the agglomeration behavior, and transmission electron microscopy was used to characterize the microstructure of the as-deposited and annealed films. The agglomeration sequence in all of the films is found to follow a two step process of void nucleation and void growth. However, void growth in Au and Pt thin films is different from Cu and Ru thin films. Residual stress and adhesion were observed to play an important part in deciding the mode of void growth in Au and Pt thin films. Last, it is also observed that the tendency for agglomeration can be reduced by encapsulating the metal film with an oxide overlayer.

  13. Drops and Bubble in Materials Science

    NASA Technical Reports Server (NTRS)

    Doremus, R. H.

    1982-01-01

    The formation of extended p-n junctions in semiconductors by drop migration, mechanisms and morphologies of migrating drops and bubbles in solids and nucleation and corrections to the Volmer-Weber equations are discussed. Bubble shrinkage in the processing of glass, the formation of glass microshells as laser-fusion targets, and radiation-induced voids in nuclear reactors were examined.

  14. Fractography and Mechanical Properties of Urethane Dimethacrylate Dental Composites Reinforced with Glass Nanoparticles.

    PubMed

    M, Monfared; Me, Bahrololoom

    2016-12-01

    Dental resin composites are becoming prevalent in restorative dentistry and have almost replaced amalgam nowadays. Consequently, their mechanical properties and durability are critical. The aim of this study was to produce Pyrex glass nano-particles by wet milling process and use them as reinforcement in dental resins for anterior restorations and then examination of fractographic properties of these composites. The glass nano-particles were achieved via wet milling. The surface of the particles was modified with 3-(Trimethoxysilyl) propyl methacrylate (γ-MPTMS) silane in order to improve their surface. Fourier transform infra-red (FTIR) analysis showed that the silane groups provided double bonds to the surface of the particles and prevented agglomeration. Then, the composite resins were made with different weight percentages of Pyrex glass. The mechanical properties of samples flexural test were evaluated. The required energy for fracture of the specimens was achieved via this test. The fracture surfaces of the samples were analyzed using a scanning electron microscope (SEM) in order to explain the mechanisms of fracture. The results and analysis showed that increasing the glass nano-particles mass fraction had a great effect on mechanical properties of the composites due to the mechanisms of crack propagation and crack deflection as well as preventing void formation. The effective energy dissipation mechanisms such as crack pinning and deflection, was observed in SEM micrographs. Void formation in the low filler content composite is one of the mechanisms to decrease the energy required for fracture of these composites and eventually weaken them.

  15. Fractography and Mechanical Properties of Urethane Dimethacrylate Dental Composites Reinforced with Glass Nanoparticles

    PubMed Central

    M*, Monfared; ME, Bahrololoom

    2016-01-01

    Statement of Problem: Dental resin composites are becoming prevalent in restorative dentistry and have almost replaced amalgam nowadays. Consequently, their mechanical properties and durability are critical. Objectives: The aim of this study was to produce Pyrex glass nano-particles by wet milling process and use them as reinforcement in dental resins for anterior restorations and then examination of fractographic properties of these composites. Materials and Methods: The glass nano-particles were achieved via wet milling. The surface of the particles was modified with 3-(Trimethoxysilyl) propyl methacrylate (γ-MPTMS) silane in order to improve their surface. Fourier transform infra-red (FTIR) analysis showed that the silane groups provided double bonds to the surface of the particles and prevented agglomeration. Then, the composite resins were made with different weight percentages of Pyrex glass. The mechanical properties of samples flexural test were evaluated. The required energy for fracture of the specimens was achieved via this test. The fracture surfaces of the samples were analyzed using a scanning electron microscope (SEM) in order to explain the mechanisms of fracture. Results: The results and analysis showed that increasing the glass nano-particles mass fraction had a great effect on mechanical properties of the composites due to the mechanisms of crack propagation and crack deflection as well as preventing void formation. The effective energy dissipation mechanisms such as crack pinning and deflection, was observed in SEM micrographs. Conclusions: Void formation in the low filler content composite is one of the mechanisms to decrease the energy required for fracture of these composites and eventually weaken them. PMID:28959761

  16. X-ray Computed Tomography Assessment of Air Void Distribution in Concrete

    NASA Astrophysics Data System (ADS)

    Lu, Haizhu

    Air void size and spatial distribution have long been regarded as critical parameters in the frost resistance of concrete. In cement-based materials, entrained air void systems play an important role in performance as related to durability, permeability, and heat transfer. Many efforts have been made to measure air void parameters in a more efficient and reliable manner in the past several decades. Standardized measurement techniques based on optical microscopy and stereology on flat cut and polished surfaces are widely used in research as well as in quality assurance and quality control applications. Other more automated methods using image processing have also been utilized, but still starting from flat cut and polished surfaces. The emergence of X-ray computed tomography (CT) techniques provides the capability of capturing the inner microstructure of materials at the micrometer and nanometer scale. X-ray CT's less demanding sample preparation and capability to measure 3D distributions of air voids directly provide ample prospects for its wider use in air void characterization in cement-based materials. However, due to the huge number of air voids that can exist within a limited volume, errors can easily arise in the absence of a formalized data processing procedure. In this study, air void parameters in selected types of cement-based materials (lightweight concrete, structural concrete elements, pavements, and laboratory mortars) have been measured using micro X-ray CT. The focus of this study is to propose a unified procedure for processing the data and to provide solutions to deal with common problems that arise when measuring air void parameters: primarily the reliable segmentation of objects of interest, uncertainty estimation of measured parameters, and the comparison of competing segmentation parameters.

  17. Acute bacterial prostatitis and abscess formation.

    PubMed

    Lee, Dong Sup; Choe, Hyun-Sop; Kim, Hee Youn; Kim, Sun Wook; Bae, Sang Rak; Yoon, Byung Il; Lee, Seung-Ju

    2016-07-07

    The purpose of this study was to identify risk factors for abscess formation in acute bacterial prostatitis, and to compare treatment outcomes between abscess group and non-abscess group. This is a multicenter, retrospective cohort study. All patients suspected of having an acute prostatic infection underwent computed tomography or transrectal ultrasonography to discriminate acute prostatic abscesses from acute prostatitis without abscess formation. A total of 31 prostate abscesses were reviewed among 142 patients with acute prostatitis. Univariate analysis revealed that symptom duration, diabetes mellitus and voiding disturbance were predisposing factors for abscess formation in acute prostatitis. However, diabetes mellitus was not related to prostate abscess in multivariate analysis. Patients with abscesses <20 mm in size did not undergo surgery and were cured without any complications. In contrast, patients with abscesses >20 mm who underwent transurethral resection had a shorter duration of antibiotic treatment than did those who did not have surgery. Regardless of surgical treatment, both the length of hospital stay and antibiotic treatment were longer in patients with prostatic abscesses than they were in those without abscesses. However, the incidence of septic shock was not different between the two groups. A wide spectrum of microorganisms was responsible for prostate abscesses. In contrast, Escherichia coli was the predominant organism responsible for acute prostatitis without abscess. Imaging studies should be considered when patients with acute prostatitis have delayed treatment and signs of voiding disturbance. Early diagnosis is beneficial because prostatic abscesses require prolonged treatment protocols, or even require surgical drainage. Surgical drainage procedures such as transurethral resection of the prostate were not necessary in all patients with prostate abscesses. However, surgical intervention may have potential merits that reduce the antibiotic exposure period and enhance voiding function in patients with prostatic abscess.

  18. Formation of the Sun-aligned arc region and the void (polar slot) under the null-separator structure

    NASA Astrophysics Data System (ADS)

    Tanaka, T.; Obara, T.; Watanabe, M.; Fujita, S.; Ebihara, Y.; Kataoka, R.

    2017-04-01

    From the global magnetosphere-ionosphere coupling simulation, we examined the formation of the Sun-aligned arc region and the void (polar slot) under the northward interplanetary magnetic field (IMF) with negative By condition. In the magnetospheric null-separator structure, the separatrices generated from two null points and two separators divide the entire space into four types of magnetic region, i.e., the IMF, the northern open magnetic field, the southern open magnetic field, and the closed magnetic field. In the ionosphere, the Sun-aligned arc region and the void are reproduced in the distributions of simulated plasma pressure and field-aligned current. The outermost closed magnetic field lines on the boundary (separatrix) between the northern open magnetic field and the closed magnetic field are projected to the northern ionosphere at the boundary between the Sun-aligned arc region and the void, both on the morning and evening sides. The magnetic field lines at the plasma sheet inner edge are projected to the equatorward boundary of the oval. Therefore, the Sun-aligned arc region is on the closed magnetic field lines of the plasma sheet. In the plasma sheet, an inflated structure (bulge) is generated at the junction of the tilted plasma sheet in the far-to-middle tail and nontilted plasma sheet in the ring current region. In the Northern Hemisphere, the bulge is on the evening side wrapped by the outermost closed magnetic field lines that are connected to the northern evening ionosphere. This inflated structure (bulge) is associated with shear flows that cause the Sun-aligned arc.

  19. Roles of interfacial reaction on mechanical properties of solder interfaces

    NASA Astrophysics Data System (ADS)

    Liu, Pilin

    This study investigated roles of interfacial reaction in fracture and fatigue of solder interconnects. The interfacial reaction phases in the as-reflowed and after aging were examined by cross-sectional transmission electron microscopy (TEM) while interfacial mechanical properties were determined from a flexural peel fracture mechanics technique. Because of their widespread uses in microelectronic packaging, SnPb solder interfaces, and Bi-containing Pb-free solder interfaces were chosen as the subjects of this study. In the interfacial reaction study, we observed a complicated micro structural evolution during solid-state aging of electroless-Ni(P)/SnPb solder interconnects. In as-reflowed condition, the interfacial reaction produced Ni3Sn 4 and P-rich layers. Following overaging, the interfacial microstructure degenerated into a complex multilayer structure consisting of multiple layers of Ni-Sn compounds and transformed Ni-P phases. In SnPb solder interfacial system, fatigue study showed that the overaging of the high P electroless Ni-P/SnPb interconnects resulted in a sharp reduction in the fatigue resistance of the interface in the high crack growth rate regime. Fracture mechanism analysis indicated that the sharp drop in fatigue resistance was triggered by the brittle fracture of the Ni3Sn2 intermetallic phase developed at the overaged interface. The fatigue behavior was strongly dependent on P concentration in electroless Ni. Kirkendall voids were found in the interfacial region after aging, but they did not cause premature fracture of the solder interfaces. In Bi-containing solder interfacial system, we found that Bi segregated to the Cu-intermetallic interface during aging in SnBi/Cu interconnect. This caused serious embrittlement of Sn-Bi/Cu interface. Further aging induced numerous voids along the Cu3Sn/Cu interface. These interfacial voids were different from Kirkendall voids. Their formation was explained on basis of vacancy condensation at the interface as the Bi segregants reduced the number of effective Cu vacancy sink sites and enhanced void nucleation at the interface. The Bi segregation was avoided by replacing the Cu metallization with Ni. It was found that Bi developed a concentration gradient in the Ni 3Sn4 during interfacial reaction, with the Bi concentration falling off to zero as the Ni/IMC interface was approached. Therefore, the inhibition of Bi segregation by Ni was due to the inability of Bi to reach Ni/IMC interface.

  20. Formation of large-scale structure from cosmic strings and massive neutrinos

    NASA Technical Reports Server (NTRS)

    Scherrer, Robert J.; Melott, Adrian L.; Bertschinger, Edmund

    1989-01-01

    Numerical simulations of large-scale structure formation from cosmic strings and massive neutrinos are described. The linear power spectrum in this model resembles the cold-dark-matter power spectrum. Galaxy formation begins early, and the final distribution consists of isolated density peaks embedded in a smooth background, leading to a natural bias in the distribution of luminous matter. The distribution of clustered matter has a filamentary appearance with large voids.

  1. Comparison of thermal insulation performance of fibrous materials for the advanced space suit.

    PubMed

    Paul, Heather L; Diller, Kenneth R

    2003-10-01

    The current multi-layer insulation used in the extravehicular mobility unit (EMU) will not be effective in the atmosphere of Mars due to the presence of interstitial gases. Alternative thermal insulation means have been subjected to preliminary evaluation by NASA to attempt to identify a material that will meet the target conductivity of 0.005 W/m-K. This study analyzes numerically the thermal conductivity performance for three of these candidate insulating fiber materials in terms of various denier (size), interstitial void fractions, interstitial void media, and orientations to the applied temperature gradient to evaluate their applicability for the new Mars suit insulation. The results demonstrate that the best conductive insulation is achieved for a high-void-fraction configuration with a grooved fiber cross section, aerogel void medium, and the fibers oriented normal to the heat flux vector. However, this configuration still exceeds the target thermal conductivity by a factor of 1.5.

  2. Adjustment capacity of maritime pine cambial activity in drought-prone environments.

    PubMed

    Vieira, Joana; Campelo, Filipe; Rossi, Sergio; Carvalho, Ana; Freitas, Helena; Nabais, Cristina

    2015-01-01

    Intra-annual density fluctuations (IADFs) are anatomical features formed in response to changes in the environmental conditions within the growing season. These anatomical features are commonly observed in Mediterranean pines, being more frequent in younger and wider tree rings. However, the process behind IADF formation is still unknown. Weekly monitoring of cambial activity and wood formation would fill this void. Although studies describing cambial activity and wood formation have become frequent, this knowledge is still fragmentary in the Mediterranean region. Here we present data from the monitoring of cambial activity and wood formation in two diameter classes of maritime pine (Pinus pinaster Ait.), over two years, in order to test: (i) whether the differences in stem diameter in an even-aged stand were due to timings and/or rates of xylogenesis; (ii) if IADFs were more common in large trees; and (iii) if their formation is triggered by cambial resumption after the summer drought. Larger trees showed higher rates of cell production and longer growing seasons, due to an earlier start and later end of xylogenesis. When a drier winter occurs, larger trees were more affected, probably limiting xylogenesis in the summer months. In both diameter classes a latewood IADF was formed in 2012 in response to late-September precipitation, confirming that the timing of the precipitation event after the summer drought is crucial in determining the resumption of cambial activity and whether or not an IADF is formed. It was the first time that the formation of a latewood IADF was monitored at a weekly time scale in maritime pine. The capacity of maritime pine to adjust cambial activity to the current environmental conditions represents a valuable strategy under the future climate change conditions.

  3. Characterization of Beryllium Windows for Coherent X-ray Optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goto, Shunji; Yabashi, Makina; Tamasaku, Kenji

    2007-01-19

    Beryllium foils fabricated by several processes were characterized using spatially coherent x rays at 1-km beamline of SPring-8. By thickness dependence of bright x-ray spot density due to Fresnel diffraction from several-micron deficiencies, we found that speckles (bright x-ray spots) were due to voids with densities 103-104 mm-3 in powder foils and ingot foils. Compared with powder and ingot foils, a polished physical-vapor-deposited (PVD) beryllium foil gave highly uniform beams with no speckles. The PVD process eliminates the internal voids in principle and the PVD foil is the best for coherent x-ray applications.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharya, Arunodaya; Meslin, Estelle; Henry, Jean

    Effect of helium on void swelling was studied in high-purity α-iron, irradiated using energetic self-ions to 157 displacements per atom (dpa) at 773 K, with and without helium co-implantation up to 17 atomic parts-per-million (appm) He/dpa. Helium is known to enhance cavity formation in metals in irradiation environments, leading to early void swelling onset. In this study, microstructure characterization by transmission electron microscopy revealed compelling evidence of dramatic swelling reduction by helium co-implantation, achieved primarily by cavity size reduction. In conclusion, a comprehensive understanding of helium induced cavity microstructure development is discussed using sink strength ratios of dislocations and cavities.

  5. Electromigration and thermomigration in lead-free tin-silver-copper and eutectic tin-lead flip chip solder joints

    NASA Astrophysics Data System (ADS)

    Ou Yang, Fan-Yi

    Phase separation and microstructure change of eutectic SnPb and SnAgCu flip chip solder joint were investigated under thermomigration, electromigration, stressmigration and the combination of these effects. Different morphological behaviors under DC and AC electromigration were seen. Phase separation with Pb rich phase migration to the anode was observed when current density is below 1.6 x 104 A/cm2 at 100°C. For some cases, phase separation of Pb-rich phase and Su-rich phase as well as refinement of lamellar microstructure has also been observed. We propose that the refinement is due to recrystallization. On the other hand, time-dependent melting of eutectic SnPb flip chip solder joints has been observed to occur frequently with current density above 1.6 x 104 A/cm 2at 100°C. It has been found that it is due to joule heating of the on-chip Al interconnects. We found that electromigration has especially generated voids at the anode of the Al. This damage has greatly increased the resistance of the Al, which produces the heat needed to melt the solder joint. Owing to the line-to-bump configuration in flip chip solder joints, current crowding occurs when electrons enters into or exits from the solder bump. At the cathode contact, current crowding induced pancake-type void formation was observed widely. Furthermore, at the anode contact, we note that hillock or whisker forms. The cross-sectioned surface in SnPb showed dimple and bulge after electromigration, while that of SnAgCu remained flat. The difference is due to a larger back stress in the SnAgCu, consequently electromigration in SnAgCu is slower than that in SnPb. For thermomigration in eutectic SnPb flip chip solder joints, phase separation of Sn and Pb occurred, with Pb moving to the cold end. Both Sn and Pb have a stepwise concentration profile across solder bump. Refinement of lamellar microstructure was observed, indicating recrystallization. Also, thermomigration in eutectic SnAgCu flip chip solder joint were presented. It seems that vacancy flux plays a dominant role in thermomigration in Pb-free solder bumps; voids formed on the cold end and Sn moved to the hot end.

  6. Molecular microelectrostatic view on electronic states near pentacene grain boundaries

    NASA Astrophysics Data System (ADS)

    Verlaak, Stijn; Heremans, Paul

    2007-03-01

    Grain boundaries are the most inevitable and pronounced structural defects in pentacene films. To study the effect of those structural defects on the electronic state distribution, the energy levels of a hole on molecules at and near the defect have been calculated using a submolecular self-consistent-polarization-field approach in combination with atomic charge-quadrupole interaction energy calculations. This method has been benchmarked prior to application on four idealized grain boundaries: a grain boundary void, a void with molecules squeezed in between two grains, a boundary between two grains with different crystallographic orientations, and a grain boundary void in which a permanent dipole (e.g., a water molecule) has nested. While idealized, those views highlight different aspects of real grain boundaries. Implications on macroscopic charge transport models are discussed, as well as some relation between growth conditions and the formation of the grain boundary.

  7. Residual Gases in Crystal Growth Systems

    NASA Technical Reports Server (NTRS)

    Palosz, W.

    2003-01-01

    Residual gases present in closed ampoules may affect different crystal growth processes. That seems to be particularly true under microgravity conditions where, due to weightlessness of the melt, the gases may lead to detached solidification and/or formation of voids and bubbles, as observed in the past. For that reason a good understanding and control of formation of residual gases is important for an optimum design and meaningful interpretation of crystal growth experiments. Our extensive experimental and theoretical studies of the subject, summarized in this paper, include degassing of silica glass and generation of gases from different source materials. Different materials processing conditions, like outgassing under vacuum, annealing in hydrogen, resublimation, different material preparation procedures, multiple annealings, different processing times, and others were applied and their effect on the amount and composition of gas were analyzed. The experimental results were interpreted based on theoretical calculations on diffusion in silica glass and source materials and thermochemistry of the system. Procedures for a reduction of the amount of gas are also discussed.

  8. Understanding Irreversible Degradation of Nb3Sn Wires with Fundamental Fracture Mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, Yuhu; Calzolaio, Ciro; Senatore, Carmine

    2014-08-01

    Irreversible performance degradation of advanced Nb3Sn superconducting wires subjected to transverse or axial mechanical loading is a critical issue for the design of large-scale fusion and accelerator magnets such as ITER and LHC. Recent SULTAN tests indicate that most cable-in-conduit conductors for ITER coils made of Nb3Sn wires processed by various fabrication techniques show similar performance degradation under cyclic loading. The irreversible degradation due to filament fracture and local strain accumulation in Nb3Sn wires cannot be described by the existing strand scaling law. Fracture mechanic modeling combined with X-ray diffraction imaging of filament micro-crack formation inside the wires under mechanicalmore » loading may reveal exciting insights to the wire degradation mechanisms. We apply fundamental fracture mechanics with a singularity approach to study influence of wire filament microstructure of initial void size and distribution to local stress concentration and potential crack propagation. We report impact of the scale and density of the void structure on stress concentration in the composite wire materials for crack initiation. These initial defects result in an irreversible degradation of the critical current beyond certain applied stress. We also discuss options to minimize stress concentration in the design of the material microstructure for enhanced wire performance for future applications.« less

  9. The influence of partial replacement of hemp shives by expanded perlite on physical properties of hemp-lime composite

    NASA Astrophysics Data System (ADS)

    Brzyski, Przemysław; Widomski, Marcin

    2017-07-01

    The use of waste plants in building materials production is consistent with the principles of sustainable development, including waste management, CO2 balance, biodegradability of the material e.g. after building demolition. The porous structure of plant materials determines their usability as the insulation materials. An example of plant applicable in the construction industry is the industrial hemp. The shives are produced from the wooden core of the hemp stem as lightweight insulating filler in the composite based on lime binder. The discussed hemp-lime composite, due to the presence of lightweight, porous organic aggregates exhibits satisfactory thermal insulation properties and is used as filling and insulation of walls (as well as roofs and floors) in buildings of the wooden frame construction. The irregular shape of shives and their low density causes nonhomogenous compaction of composite and the formation of voids between the randomly arranged shives. In this paper the series of hemp-lime composites were tested. Apart from hemp shives, an additional aggregate - expanded perlite was used as a fine, lightweight, thermal insulating filler. Application of the additional aggregate was aimed to fill the voids between hemp shives and to investigate its influence on the physical properties of composite: apparent density, total porosity, water absorption and thermal conductivity.

  10. Nonswelling alloy

    DOEpatents

    Harkness, S.D.

    1975-12-23

    An aluminum alloy containing one weight percent copper has been found to be resistant to void formation and thus is useful in all nuclear applications which currently use aluminum or other aluminum alloys in reactor positions which are subjected to high neutron doses.

  11. Oxidation of nickel-aluminum and iron-aluminum alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cathcart, J.V.

    1985-01-01

    The high-temperature oxidation behavior of several ordered alloys in the Ni-Al and Fe-Al systems is reviewed with special emphasis on Ni/sub 3/Al and NiAl. Ordering influences oxidation through its effect on the activities of the alloy components and by changing the point defect concentration in an alloy. Three categories of Ni-Al alloys are distinguished based on Al content and oxidation behavior. A characteristic feature of the oxidation of high-aluminum Ni-Al and Fe-Al alloys is the formation of voids in the substrate at the oxidate-metal interface. The mechanism of void formation and its suppression by minor additions of oxygen-active elements ismore » discussed. A brief description of the effect of preoxidation on the reactions of Ni/sub 3/Al-base alloys in SO/sub 2//O/sub 2/ environments is also included. 51 references, 14 figures, 1 table.« less

  12. Oxidation of nickel-aluminum and iron-aluminum alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cathcart, J.V.

    1984-01-01

    The high-temperature oxidation behavior of several ordered alloys in the Ni-Al and Fe-Al systems is reviewed with special emphasis on Ni/sub 3/Al and NiAl. Ordering influences oxidation through its effect on the activities of the alloy components and by changing the point defect concentration in an alloy. Three categories of Ni-Al alloys are distinguished based on Al content and oxidation behavior. A characteristic feature of the oxidation of high-aluminum Ni-Al and Fe-Al alloys is the formation of voids in the substrate at the oxide-metal interface. The mechanism of void formation and its suppression by minor additions of oxygen-active elements aremore » discussed. A brief description of the effect of pre-oxidation on the reactions of Ni/sub 3/Al-base alloys in SO/sub 2//O/sub 2/ environments is also included.« less

  13. Molded underfill (MUF) encapsulation for flip-chip package: A numerical investigation

    NASA Astrophysics Data System (ADS)

    Azmi, M. A.; Abdullah, M. K.; Abdullah, M. Z.; Ariff, Z. M.; Saad, Abdullah Aziz; Hamid, M. F.; Ismail, M. A.

    2017-07-01

    This paper presents the numerical simulation of epoxy molding compound (EMC) filling in multi flip-chip packages during encapsulation process. The empty and a group flip chip packages were considered in the mold cavity in order to study the flow profile of the EMC. SOLIDWORKS software was used for three-dimensional modeling and it was incorporated into fluid analysis software namely as ANSYS FLUENT. The volume of fluid (VOF) technique was used for capturing the flow front profiles and Power Law model was applied for its rheology model. The numerical result are compared and discussed with previous experimental and it was shown a good conformity for model validation. The prediction of flow front was observed and analyzed at different filling time. The possibility and visual of void formation in the package is captured and the number of flip-chip is one factor that contributed to the void formation.

  14. Crystal plasticity in Cu damascene interconnect lines undergoing electromigration as revealed by synchrotron x-ray microdiffraction

    NASA Astrophysics Data System (ADS)

    Budiman, A. S.; Nix, W. D.; Tamura, N.; Valek, B. C.; Gadre, K.; Maiz, J.; Spolenak, R.; Patel, J. R.

    2006-06-01

    Plastic deformation was observed in damascene Cu interconnect test structures during an in situ electromigration experiment and before the onset of visible microstructural damage (voiding, hillock formation). We show here, using a synchrotron technique of white beam x-ray microdiffraction, that the extent of this electromigration-induced plasticity is dependent on the linewidth. In wide lines, plastic deformation manifests itself as grain bending and the formation of subgrain structures, while only grain rotation is observed in the narrower lines. The deformation geometry leads us to conclude that dislocations introduced by plastic flow lie predominantly in the direction of electron flow and may provide additional easy paths for the transport of point defects. Since these findings occur long before any observable voids or hillocks are formed, they may have direct bearing on the final failure stages of electromigration.

  15. Radiographic and Histologic Evaluation of a Bone Void that Formed After Recombinant Human Bone Morphogenetic Protein-2-Mediated Sinus Graft Augmentation: A Case Report.

    PubMed

    Kang, Hyun-Joo; Jun, Choong-Man; Yun, Jeong-Ho

    2016-01-01

    In the present case report, the authors describe radiographic and histologic observations of a bone void that formed after a sinus augmentation using a graft material that contained recombinant human bone morphogenetic protein-2 (rhBMP-2) and discuss clinical and histologic implications of their findings. Sinus augmentation was performed using a graft material comprising 1 g of hydroxyapatite/β-tricalcium phosphate, which contained 1 mg of rhBMP-2. Radiographic evaluation was conducted with panoramic radiographs and computed tomography images of the augmented maxillary sinus, which were analyzed using a three-dimensional image-reconstruction program. Histologic evaluation was also performed on a biopsy specimen obtained 6 months after the sinus augmentation. The total augmented volume increased from 1,582.2 mm(3) immediately after the sinus augmentation to 3,344.9 mm3 at 6 months after the augmentation because of the formation of a bone void. Twenty-six months after the sinus augmentation, the bone void remained but had reduced in volume, with the total augmented volume reduced to 2,551.7 mm(3). Histologically, new bone was observed to be in contact with the grafted particles, and a fatty marrow-like tissue was present in the area of the bone void. This case report shows that the bone void that had formed after sinus augmentation resolved over time and seemed to be partially replaced with new bone. Furthermore, none of the implants failed, and clinical adverse events were not observed during the follow-up period.

  16. "Dark energy" in the Local Void

    NASA Astrophysics Data System (ADS)

    Villata, M.

    2012-05-01

    The unexpected discovery of the accelerated cosmic expansion in 1998 has filled the Universe with the embarrassing presence of an unidentified "dark energy", or cosmological constant, devoid of any physical meaning. While this standard cosmology seems to work well at the global level, improved knowledge of the kinematics and other properties of our extragalactic neighborhood indicates the need for a better theory. We investigate whether the recently suggested repulsive-gravity scenario can account for some of the features that are unexplained by the standard model. Through simple dynamical considerations, we find that the Local Void could host an amount of antimatter (˜5×1015 M ⊙) roughly equivalent to the mass of a typical supercluster, thus restoring the matter-antimatter symmetry. The antigravity field produced by this "dark repulsor" can explain the anomalous motion of the Local Sheet away from the Local Void, as well as several other properties of nearby galaxies that seem to require void evacuation and structure formation much faster than expected from the standard model. At the global cosmological level, gravitational repulsion from antimatter hidden in voids can provide more than enough potential energy to drive both the cosmic expansion and its acceleration, with no need for an initial "explosion" and dark energy. Moreover, the discrete distribution of these dark repulsors, in contrast to the uniformly permeating dark energy, can also explain dark flows and other recently observed excessive inhomogeneities and anisotropies of the Universe.

  17. Hierarchical analysis of the degradation of fibre-reinforced polymers under the presence of void imperfections

    PubMed Central

    2016-01-01

    The subject of this work is the investigation of the influence of voids on the mechanical properties of fibre-reinforced polymers (FRPs) under compression loading. To specify the damage accumulation of FRPs in the presence of voids, the complex three-dimensional structure of the composite including voids was analysed and a reduced mechanical model composite was derived. The hierarchical analysis of the model composite on a micro-scale level implies the description of the stress and strain behaviour of the matrix using the photoelasticity technique and digital image correlation technology. These studies are presented along with an analytical examination of the stability of a single fibre. As a result of the experimental and analytical studies, the stiffness of the matrix and fibre as well as their bonding, the initial fibre orientation and the fibre diameter have the highest impact on the failure initiation. All these facts lead to a premature fibre–matrix debonding with ongoing loss of stability of the fibre and followed by kink-band formation. Additional studies on the meso-scale of transparent glass FRPs including a unique void showed that the experiments carried out on the model composites could be transferred to real composites. This article is part of the themed issue ‘Multiscale modelling of the structural integrity of composite materials’. PMID:27242296

  18. Electromigration Failure Mechanism in Sn-Cu Solder Alloys with OSP Cu Surface Finish

    NASA Astrophysics Data System (ADS)

    Chu, Ming-Hui; Liang, S. W.; Chen, Chih; Huang, Annie T.

    2012-09-01

    Organic solderable preservative (OSP) has been adopted as the Cu substrate surface finish in flip-chip solder joints for many years. In this study, the electromigration behavior of lead-free Sn-Cu solder alloys with thin-film under bump metallization and OSP surface finish was investigated. The results showed that severe damage occurred on the substrate side (cathode side), whereas the damage on the chip side (cathode side) was not severe. The damage on the substrate side included void formation, copper dissolution, and formation of intermetallic compounds (IMCs). The OSP Cu interface on the substrate side became the weakest point in the solder joint even when thin-film metallization was used on the chip side. Three-dimensional simulations were employed to investigate the current density distribution in the area between the OSP Cu surface finish and the solder. The results indicated that the current density was higher along the periphery of the bonding area between the solder and the Cu pad, consistent with the area of IMC and void formation in our experimental results.

  19. Sculpting with light: Light/matter interactions in biocompatible polymers

    NASA Astrophysics Data System (ADS)

    Applegate, Matthew B.

    When light interacts with matter either the light or the material can be changed. This dissertation focuses on light/matter interaction in silk fibroin and its utility for biomedical applications. Silk, a natural biocompatible, biodegradable polymer, has a large 3-photon absorption cross-section which allows modest peak intensity light to cause significant multiphoton absorption. This absorption allows voids to be formed with three dimensional control within soft, transparent silk hydrogels. A theoretical model of the void formation process is developed to allow the size of the voids to be predicted for a range of laser and sample parameters. Arbitrary 3D patterns are created in silk gels that allow cells to penetrate into the bulk of the gel both in vitro and in vivo. To explore how silk can be used to alter light, the creation of step-index optical waveguides, formed by encapsulating a silk film within a silk hydrogel, is described. These waveguides allow light to be delivered to targets through several centimeters of highly scattering biological tissue. Finally, the interaction of light with riboflavin is used to photocrosslink silk to form solid structures, rather than voids. The mechanism of crosslinking to be driven by radicalized tyrosine residues resulting in the formation of dityrosine bonds which lead to the gelation of a liquid silk solution. Riboflavin is a versatile photoinitiator and can be used to crosslink collagen as well as silk, which allows silk to be crosslinked directly to corneal collagen. When applied to the eye, an artificial corneal layer is formed which has the potential to treat various corneal diseases and allow for risk-free laser vision correction. These studies show the versatility of light-based processing of silk for a wide variety of medical applications.

  20. Real-time plasmon spectroscopy study of the solid-state oxidation and Kirkendall void formation in copper nanoparticles.

    PubMed

    Susman, Mariano D; Feldman, Yishai; Bendikov, Tatyana A; Vaskevich, Alexander; Rubinstein, Israel

    2017-08-31

    Oxidation and corrosion reactions have a major effect on the application of non-noble metals. Kinetic information and simple theoretical models are often insufficient for describing such processes in metals at the nanoscale, particularly in cases involving formation of internal voids (nano Kirkendall effect, NKE) during oxidation. Here we study the kinetics of solid-state oxidation of chemically-grown copper nanoparticles (NPs) by in situ localized surface plasmon resonance (LSPR) spectroscopy during isothermal annealing in the range 110-170 °C. We show that LSPR spectroscopy is highly effective in kinetic studies of such systems, enabling convenient in situ real-time measurements during oxidation. Change of the LSPR spectra throughout the oxidation follows a common pattern, observed for different temperatures, NP sizes and substrates. The well-defined initial Cu NP surface plasmon (SP) band red-shifts continuously with oxidation, while the extinction intensity initially increases to reach a maximum value at a characteristic oxidation time τ, after which the SP intensity continuously drops. The characteristic time τ is used as a scaling parameter for the kinetic analysis. Evolution of the SP wavelength and extinction intensity during oxidation at different temperatures follows the same kinetics when the oxidation time is normalized to τ, thus pointing to a general oxidation mechanism. The characteristic time τ is used to estimate the activation energy of the process, determined to be 144 ± 6 kJ mol -1 , similar to previously reported values for high-temperature Cu thermal oxidation. The central role of the NKE in the solid-state oxidation process is revealed by electron microscopy, while formation of Cu 2 O as the major oxidation product is established by X-ray diffraction, XPS, and electrochemical measurements. The results indicate a transition of the oxidation mechanism from a Valensi-Carter (VC) to NKE mechanism with the degree of oxidation. To interpret the optical evolution during oxidation, Mie scattering solutions for metal core-oxide shell spherical particles are computed, considering formation of Kirkendall voids. The model calculations are in agreement with the experimental results, showing that the large red-shift of the LSPR band during oxidation is the result of Kirkendall voiding, thus establishing the major role of the NKE in determining the optical behavior of such systems.

  1. The Cosmological Impact of Luminous TeV Blazars. III. Implications for Galaxy Clusters and the Formation of Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Pfrommer, Christoph; Chang, Philip; Broderick, Avery E.

    2012-06-01

    A subset of blazars are powerful TeV emitters, dominating the extragalactic component of the very high energy gamma-ray universe (E >~ 100 GeV). These TeV gamma rays generate ultrarelativistic electron-positron pairs via pair production with the extragalactic background light. While it has generally been assumed that the kinetic energy of these pairs cascades to GeV gamma rays via inverse Compton scattering, we have argued in Broderick et al. (Paper I in this series) that plasma beam instabilities are capable of dissipating the pairs' energy locally on timescales short in comparison to the inverse Compton cooling time, heating the intergalactic medium (IGM) with a rate that is independent of density. This dramatically increases the entropy of the IGM after redshift z ~ 2, with a number of important implications for structure formation: (1) this suggests a scenario for the origin of the cool core (CC)/non-cool core (NCC) bimodality in galaxy clusters and groups. Early-forming galaxy groups are unaffected because they can efficiently radiate the additional entropy, developing a CC. However, late-forming groups do not have sufficient time to cool before the entropy is gravitationally reprocessed through successive mergers—counteracting cooling and potentially raising the core entropy further. This may result in a population of X-ray dim groups/clusters, consistent with X-ray stacking analyses of optically selected samples. Hence, blazar heating works differently than feedback by active galactic nuclei, which we show can balance radiative cooling but is unable to transform CC into NCC clusters on the buoyancy timescale due to the weak coupling between the mechanical energy to the cluster gas. (2) We predict a suppression of the Sunyaev-Zel'dovich (SZ) power spectrum template on angular scales smaller than 5' due to the globally reduced central pressure of groups and clusters forming after z ~ 1. This allows for a larger rms amplitude of the density power spectrum, σ8, and may reconcile SZ-inferred values with those by other cosmological probes even after allowing for a contribution due to patchy reionization. (3) Our redshift-dependent entropy floor increases the characteristic halo mass below which dwarf galaxies cannot form by a factor of approximately 10 (50) at mean density (in voids) over that found in models that include photoionization alone. This prevents the formation of late-forming dwarf galaxies (z <~ 2) with masses ranging from 1010 to 1011 M ⊙ for redshifts z ~ 2 to 0, respectively. This may help resolve the "missing satellite problem" in the Milky Way of the low observed abundances of dwarf satellites compared to cold dark matter simulations and may bring the observed early star formation histories into agreement with galaxy formation models. At the same time, it explains the "void phenomenon" by suppressing the formation of galaxies within existing dwarf halos of masses <3 × 1010 M ⊙ with a maximum circular velocity <60 km s-1 for z <~ 2, hence reconciling the number of dwarfs in low-density regions in simulations and the paucity of those in observations.

  2. Fabrication of CNT@void@SnO2@C with tube-in-tube nanostructure as high-performance anode for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Tian, Qinghua; Tian, Yang; Zhang, Zhengxi; Yang, Li; Hirano, Shin-ichi

    2015-09-01

    Tin dioxide/carbon composites is an important class of promising candidates for anode materials with superior electrochemical performance and thus have attracted extensive attention. Herein, a tube-in-tube nanostructure, denoted as CNT@void@SnO2@C, has been fabricated by a facile and novel strategy. The possible formation mechanism is also discussed and determined by TEM, XRD and XPS characterizations. As a promising anode material for lithium-ion batteries, the CNT@void@SnO2@C exhibits superior lithium storage properties, delivering a reversible capacity of 702.5 mAh g-1 at 200 mA g-1 even after 350 cycles. The excellent performances should be benefited from the peculiar tube-in-tube nanostructure, in which SnO2 located between CNT and outermost carbon coating layers can sure the structural integrity and high conductivity during long-term cycling, and one-dimensional void space formed between the inner CNT and outer SnO2@C nanotubes, in particular, can provide larger free space for alleviating the huge volume variation of SnO2 and accommodating the stress formed during repeated discharge/charge process.

  3. Free-Volume Nanostructurization in Ga-Modified As2Se3 Glass.

    PubMed

    Shpotyuk, Ya; Ingram, A; Shpotyuk, O; Dziedzic, A; Boussard-Pledel, C; Bureau, B

    2016-12-01

    Different stages of intrinsic nanostructurization related to evolution of free-volume voids, including phase separation, crystalline nuclei precipitation, and growth, were studied in glassy As2Se3 doped with Ga up to 5 at. %, using complementary techniques of positron annihilation lifetime spectroscopy, X-ray powder diffraction, and scanning electron microscopy with energy-dispersive X-ray analysis. Positron lifetime spectra reconstructed in terms of a two-state trapping model testified in favor of a native void structure of g-As2Se3 modified by Ga additions. Under small Ga content (below 3 at. %), the positron trapping in glassy alloys was dominated by voids associated with bond-free solid angles of bridging As2Se4/2 units. This void agglomeration trend was changed on fragmentation with further Ga doping due to crystalline Ga2Se3 nuclei precipitation and growth, these changes being activated by employing free volume from just attached As-rich glassy matrix with higher content of As2Se4/2 clusters. Respectively, the positron trapping on free-volume voids related to pyramidal AsSe3/2 units (like in parent As2Se3 glass) was in obvious preference in such glassy crystalline alloys.

  4. Nano-structured wild moth cocoon fibers as radiative cooling and waveguiding optical materials

    NASA Astrophysics Data System (ADS)

    Shi, Norman Nan; Tsai, Cheng-Chia; Bernard, Gary D.; Craig, Catherine; Yu, Nanfang

    2017-09-01

    The study shows that comet moth cocoon fibers exhibit radiative cooing properties with enhanced solar reflectivity and thermal emissivity. Nanostructured voids inside the cocoon fiber enables the cocoons to exhibit strong scattering in the visible and near-infrared. These structures also allow the fibers to exhibit strong shape birefringence and directional reflectivity. Optical waveguiding due to transverse Anderson localization is observed in these natural fibers, where the invariance and large concentration of the voids in the longitudinal direction allow the fiber to confine light in the transverse direction. To mimic the optical effects generated by these natural silk fibers, nanostructured voids are introduced into regenerated silk fibers through wet spinning to enhance reflectivity in the solar spectrum.

  5. Newtonian self-gravitating system in a relativistic huge void universe model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishikawa, Ryusuke; Nakao, Ken-ichi; Yoo, Chul-Moon, E-mail: ryusuke@sci.osaka-cu.ac.jp, E-mail: knakao@sci.osaka-cu.ac.jp, E-mail: yoo@gravity.phys.nagoya-u.ac.jp

    We consider a test of the Copernican Principle through observations of the large-scale structures, and for this purpose we study the self-gravitating system in a relativistic huge void universe model which does not invoke the Copernican Principle. If we focus on the the weakly self-gravitating and slowly evolving system whose spatial extent is much smaller than the scale of the cosmological horizon in the homogeneous and isotropic background universe model, the cosmological Newtonian approximation is available. Also in the huge void universe model, the same kind of approximation as the cosmological Newtonian approximation is available for the analysis of themore » perturbations contained in a region whose spatial size is much smaller than the scale of the huge void: the effects of the huge void are taken into account in a perturbative manner by using the Fermi-normal coordinates. By using this approximation, we derive the equations of motion for the weakly self-gravitating perturbations whose elements have relative velocities much smaller than the speed of light, and show the derived equations can be significantly different from those in the homogeneous and isotropic universe model, due to the anisotropic volume expansion in the huge void. We linearize the derived equations of motion and solve them. The solutions show that the behaviors of linear density perturbations are very different from those in the homogeneous and isotropic universe model.« less

  6. Generation of nano-voids inside polylactide using femtosecond laser radiation

    NASA Astrophysics Data System (ADS)

    Viertel, Tina; Pabst, Linda; Olbrich, Markus; Ebert, Robby; Horn, Alexander; Exner, Horst

    2017-12-01

    The arrangement of nanometer-sized voids, induced by focusing intense laser radiation within transparent material can allow the generation of transparent components with dimensions in the micrometer to nanometre range due to internal contour cut and thus satisfy the progressive miniaturization of products in micro-optics and medical technologies. For further improvements in the precision of those components, a deep understanding of the involved processes during the interaction of laser radiation within the material is necessary. In this work, voids inside bulk polylactide (PLA), a bioabsorbable polymer, were generated using a femtosecond laser ( λ = 1030 nm, τH = 180 fs) with single and multiple pulse irradiation. The dependence of the spot size was examined by the use of four microscope objectives with focus radii of 4.9, 3.3, 2 and 1.2 µm. For the experiments, the pulse energy and focusing depth into the material were varied. The dimensions of the voids were experimentally determined as function of the intensity. Differences in the lateral and axial extents of the voids were obtained for different focus radii and focusing depths at same intensities. Furthermore, the intensity distribution of the laser radiation inside the material for the different focus radii and focusing depths, and their dependence on the lateral and axial sizes of the voids was simulated and compared with the experimental results.

  7. Effect of defect imbalance on void swelling distributions produced in pure iron irradiated with 3.5 MeV self-ions

    DOE PAGES

    Shao, Lin; Wei, C. -C.; Gigax, J.; ...

    2014-06-10

    Ion irradiation has been widely used to simulate radiation damage induced by neutrons. However, there are a number of features of ion-induced damage that differ from neutron-induced damage, and these differences require investigation before behavior arising from neutron bombardment can be confidently predicted from ion data. In this study 3.5 MeV self-ion irradiation of pure iron was used to study the influence on void swelling of the depth-dependent defect imbalance between vacancies and interstitials that arises from various surface effects, forward scattering of displaced atoms, and especially the injected interstitial effect. The depth dependence of void swelling was observed notmore » to follow the behavior anticipated from the depth dependence of the damage rate. Void nucleation and growth develop first in the lower-dose, near-surface region, and then, during continued irradiation, move to progressively deeper and higher-damage depths. This indicates a strong initial suppression of void nucleation in the peak damage region that continued irradiation eventually overcomes. This phenomenon is shown by the Boltzmann transport equation method to be due to depth-dependent defect imbalances created under ion irradiation. These findings thus demonstrate that void swelling does not depend solely on the local dose level and that this sensitivity of swelling to depth must be considered in extracting and interpreting ion-induced swelling data.« less

  8. Multi-dimensional modeling of a thermal energy storage canister. M.S. Thesis - Cleveland State Univ., Dec. 1990

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.

    1991-01-01

    The Solar Dynamic Power Module being developed for Space Station Freedom uses a eutectic mixture of LiF-CaF2 phase change material (PCM) contained in toroidal canisters for thermal energy storage. Presented are the results from heat transfer analyses of a PCM containment canister. One and two dimensional finite difference computer models are developed to analyze heat transfer in the canister walls, PCM, void, and heat engine working fluid coolant. The modes of heat transfer considered include conduction in canister walls and solid PCM, conduction and pseudo-free convection in liquid PCM, conduction and radiation across PCM vapor filled void regions, and forced convection in the heat engine working fluid. Void shape, location, growth or shrinkage (due to density difference between the solid and liquid PCM phases) are prescribed based on engineering judgment. The PCM phase change process is analyzed using the enthalpy method. The discussion of the results focuses on how canister thermal performance is affected by free convection in the liquid PCM and void heat transfer. Characterizing these effects is important for interpreting the relationship between ground-based canister performance (in 1-g) and expected on-orbit performance (in micro-g). Void regions accentuate canister hot spots and temperature gradients due to their large thermal resistance. Free convection reduces the extent of PCM superheating and lowers canister temperatures during a portion of the PCM thermal charge period. Surprisingly small differences in canister thermal performance result from operation on the ground and operation on-orbit. This lack of a strong gravity dependency is attributed to the large contribution of container walls in overall canister energy redistribution by conduction.

  9. Bubble and Slug Flow at Microgravity Conditions: State of Knowledge and Open Questions

    NASA Technical Reports Server (NTRS)

    Colin, C.; Fabre, J.; McQuillen, J.

    1996-01-01

    Based on the experiments carried out over the past decade at microgravity conditions, an overview of our current knowledge of bubbly and slug flows is presented. The transition from bubble to slug flow, the void fraction and the pressure drop are discussed from the data collected in the literature. The transition from bubble to slug flow may be predicted by introducing a critical void fraction that depends on the fluid properties and the pipe diameter; however, the role of coalescence which controls this transition is not clearly understood. The void fraction may be accurately calculated using a drift-flux model. It is shown from local measurements that the drift of the gas with respect to the mixture is due to non-uniform radial distribution of void fraction. The pressure drop happens to be controlled by the liquid flow for bubbly flow whereas for slug flow the experimental results show that pressure drops is larger than expected. From this study, the guidelines for future research in microgravity are given.

  10. Detection of underground voids in Tahura Japan Cave Bandung using ground penetrating radar

    NASA Astrophysics Data System (ADS)

    Azimmah, Azizatun; Widodo

    2017-07-01

    The detection of underground voids is important due to their effects on subsidence higher risk. Ground Penetrating Radar is one of geophysical electromagnetic methods that has been proven to be able to detect and locate any void beneath the surface effectively at a shallow depth. This method uses the contrasts of dielectric properties, resistivity and magnetic permeability to investigate and map what lies beneath the surface. Hence, this research focused on how GPR could be applied for detecting underground voids at the site of investigation, The Japan Cave in Taman Hutan Raya located in Dago, Bandung, Indonesia. A 100 MHz GPR shielded antenna frequency were used to measure three >80 meters long measurement lines. These three GPR profiles were positioned on the surface above the Japan Cave. The radargram results showed existences of different amplitude regions proven to be the air-filled cavities, at a depth of <10 meters, and interfaces between the underneath layers.

  11. Synthesis and characterization of a nanocrystalline diamond aerogel

    PubMed Central

    Pauzauskie, Peter J.; Crowhurst, Jonathan C.; Worsley, Marcus A.; Laurence, Ted A.; Kilcoyne, A. L. David; Wang, Yinmin; Willey, Trevor M.; Visbeck, Kenneth S.; Fakra, Sirine C.; Evans, William J.; Zaug, Joseph M.; Satcher, Joe H.

    2011-01-01

    Aerogel materials have myriad scientific and technological applications due to their large intrinsic surface areas and ultralow densities. However, creating a nanodiamond aerogel matrix has remained an outstanding and intriguing challenge. Here we report the high-pressure, high-temperature synthesis of a diamond aerogel from an amorphous carbon aerogel precursor using a laser-heated diamond anvil cell. Neon is used as a chemically inert, near-hydrostatic pressure medium that prevents collapse of the aerogel under pressure by conformally filling the aerogel’s void volume. Electron and X-ray spectromicroscopy confirm the aerogel morphology and composition of the nanodiamond matrix. Time-resolved photoluminescence measurements of recovered material reveal the formation of both nitrogen- and silicon- vacancy point-defects, suggesting a broad range of applications for this nanocrystalline diamond aerogel. PMID:21555550

  12. The Strength and Characteristics of VPPA Welded 2219-T87 Aluminum Alloy

    NASA Technical Reports Server (NTRS)

    Jemian, W. A.

    1985-01-01

    A study of the variable polarity plasma arc (VPPA) welding process and those factors that control the structure and properties of VPPA welded aluminum alloy 2219-T87 was conducted. The importance of joint preparation, alignment of parts and welding process variables are already established. Internal weld defects have been eliminated. However, a variation of properties was found to be due to the size variation of interdendritic particles in the fusion zone. These particles contribute to the void formation process, which controls the ultimate tensile strength of the welded alloy. A variation of 150 microns in particle size correlated with a 10 ksi variation of ultimate tensile strength. It was found that all fracture surfaces were of the dimple rupture type, with fracture initiating within the fusion zone.

  13. Synthesis and characterization of a nanocrystalline diamond aerogel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pauzauskie, Peter J.; Crowhurst, Jonathan C.; Worsley, Marcus A.

    2011-07-06

    Aerogel materials have myriad scientific and technological applications due to their large intrinsic surface areas and ultralow densities. However, creating a nanodiamond aerogel matrix has remained an outstanding and intriguing challenge. Here we report the high-pressure, high-temperature synthesis of a diamond aerogel from an amorphous carbon aerogel precursor using a laser-heated diamond anvil cell. Neon is used as a chemically inert, near-hydrostatic pressure medium that prevents collapse of the aerogel under pressure by conformally filling the aerogel's void volume. Electron and X-ray spectromicroscopy confirm the aerogel morphology and composition of the nanodiamond matrix. Time-resolved photoluminescence measurements of recovered material revealmore » the formation of both nitrogen- and silicon- vacancy point-defects, suggesting a broad range of applications for this nanocrystalline diamond aerogel.« less

  14. Development of an Inline Urine Monitoring System for the International Space Station

    NASA Technical Reports Server (NTRS)

    Broyan, James Lee, Jr.; Cibuzar, Banelle R.

    2008-01-01

    Human exposure to microgravity during spaceflight causes bone loss. Calcium and other metabolic byproducts are excreted in urine voids. Frequent and accurate measurement of urine void volume and constituents is essential to determining crew bone loss and the effectiveness of countermeasures. Previous US Space Shuttle (SS) Urine Monitoring System (UMS) technology was unable to accurately measure urine void volumes due to cross contamination between users and fluid system instabilities. Currently, urine voids must be collected manually in a flexible plastic bag containing a known tracer quantity. The crew member must completely mix the bag then withdraw a representative syringe sample for later ground analysis. The current bag system accuracy is highly dependent on mixing technique. The International Space Station (ISS) UMS has been developed as an automated device that collects urine from the Waste and Hygiene Compartment (WHC) urinal funnel interface, separates the urine, measures the void volume, and allows for syringe sampling. After operations, the ISS UMS delivers the urine to the WHC for normal processing then flushes its plumbing with a small water volume. The current ISS UMS design incorporates an innovative rotary separator that minimizes foaming, greatly reduces cross contamination between urine voids (< 0.5 ml urine), and provides accurate volume measurements (< +/- 2% error for 100 to 1000 ml void volumes). The system performance has been validated with extensive ground tests and reduced gravity aircraft flights. The lockersized ISS UMS is currently being modified to interface with the ISS Node 3 WHC Russian ACY hardware. The operation principles, characteristics, and results are outlined in the paper.

  15. Simulation-aided constitutive law development - Assessment of low triaxiality void nucleation models via extended finite element method

    NASA Astrophysics Data System (ADS)

    Zhao, Jifeng; Kontsevoi, Oleg Y.; Xiong, Wei; Smith, Jacob

    2017-05-01

    In this work, a multi-scale computational framework has been established in order to investigate, refine and validate constitutive behaviors in the context of the Gurson-Tvergaard-Needleman (GTN) void mechanics model. The eXtended Finite Element Method (XFEM) has been implemented in order to (1) develop statistical volume elements (SVE) of a matrix material with subscale inclusions and (2) to simulate the multi-void nucleation process due to interface debonding between the matrix and particle phases. Our analyses strongly suggest that under low stress triaxiality the nucleation rate of the voids f˙ can be well described by a normal distribution function with respect to the matrix equivalent stress (σe), as opposed to that proposed (σbar + 1 / 3σkk) in the original form of the single void GTN model. The modified form of the multi-void nucleation model has been validated based on a series of numerical experiments with different loading conditions, material properties, particle shape/size and spatial distributions. The utilization of XFEM allows for an invariant finite element mesh to represent varying microstructures, which implies suitability for drastically reducing complexity in generating the finite element discretizations for large stochastic arrays of microstructure configurations. The modified form of the multi-void nucleation model is further applied to study high strength steels by incorporating first principles calculations. The necessity of using a phenomenological interface separation law has been fully eliminated and replaced by the physics-based cohesive relationship obtained from Density Functional Theory (DFT) calculations in order to provide an accurate macroscopic material response.

  16. Pits Formation from Volatile Outgassing on 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Mousis, O.; Guilbert-Lepoutre, A.; Brugger, B.; Jorda, L.; Kargel, J. S.; Bouquet, A.; Auger, A.-T.; Lamy, P.; Vernazza, P.; Thomas, N.; Sierks, H.

    2015-11-01

    We investigate the thermal evolution of comet 67P/Churyumov-Gerasimenko’s subsurface in the Seth_01 region, where active pits have been observed by the ESA/Rosetta mission. Our simulations show that clathrate destabilization and amorphous ice crystallization can occur at depths corresponding to those of the observed pits in a timescale shorter than 67P/Churyumov-Gerasimenko’s lifetime in the comet’s activity zone in the inner solar system. Sublimation of crystalline ice down to such depths is possible only in the absence of a dust mantle, which requires the presence of dust grains in the matrix small enough to be dragged out by gas from the pores. Our results are consistent with both pits formation via sinkholes or subsequent to outbursts, the dominant process depending on the status of the subsurface porosity. A sealed dust mantle would favor episodic and disruptive outgassing as a result of increasing gas pressure in the pores, while high porosity should allow the formation of large voids in the subsurface due to the continuous escape of volatiles. We finally conclude that the subsurface of 67P/Churyumov-Gerasimenko is not uniform at a spatial scale of ˜100-200 m.

  17. MicroCT analysis of a retrieved root restored with a bonded fiber-reinforced composite dowel: a pilot study.

    PubMed

    Lorenzoni, Fabio Cesar; Bonfante, Estevam A; Bonfante, Gerson; Martins, Leandro M; Witek, Lukasz; Silva, Nelson R F A

    2013-08-01

    This evaluation aimed to (1) validate micro-computed tomography (microCT) findings using scanning electron microscopy (SEM) imaging, and (2) quantify the volume of voids and the bonded surface area resulting from fiber-reinforced composite (FRC) dowel cementation technique using microCT scanning technology/3D reconstructing software. A fiberglass dowel was cemented in a condemned maxillary lateral incisor prior to its extraction. A microCT scan was performed of the extracted tooth creating a large volume of data in DICOM format. This set of images was imported to image-processing software to inspect the internal architecture of structures. The outer surface and the spatial relationship of dentin, FRC dowel, cement layer, and voids were reconstructed. Three-dimensional spatial architecture of structures and volumetric analysis revealed that 9.89% of the resin cement was composed of voids and that the bonded area between root dentin and cement was 60.63% larger than that between cement and FRC dowel. SEM imaging demonstrated the presence of voids similarly observed using microCT technology (aim 1). MicroCT technology was able to nondestructively measure the volume of voids within the cement layer and the bonded surface area at the root/cement/FRC interfaces (aim 2). The interfaces at the root dentin/cement/dowel represent a timely and relevant topic where several efforts have been conducted in the past few years to understand their inherent features. MicroCT technology combined with 3D reconstruction allows for not only inspecting the internal arrangement rendered by fiberglass adhesively bonded to root dentin, but also estimating the volume of voids and contacted bond area between the dentin and cement layer. © 2013 by the American College of Prosthodontists.

  18. Dislocation confinement in the growth of Na flux GaN on metalorganic chemical vapor deposition-GaN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeuchi, S., E-mail: takeuchi@ee.es.osaka-u.ac.jp; Asazu, H.; Nakamura, Y.

    2015-12-28

    We have demonstrated a GaN growth technique in the Na flux method to confine c-, (a+c)-, and a-type dislocations around the interface between a Na flux GaN crystal and a GaN layer grown by metalorganic chemical vapor deposition (MOCVD) on a (0001) sapphire substrate. Transmission electron microscopy (TEM) clearly revealed detailed interface structures and dislocation behaviors that reduced the density of vertically aligned dislocations threading to the Na flux GaN surface. Submicron-scale voids were formed at the interface above the dislocations with a c component in MOCVD-GaN, while no such voids were formed above the a-type dislocations. The penetration ofmore » the dislocations with a c component into Na flux GaN was, in most cases, effectively blocked by the presence of the voids. Although some dislocations with a c component in the MOCVD-GaN penetrated into the Na flux GaN, their propagation direction changed laterally through the voids. On the other hand, the a-type dislocations propagated laterally and collectively near the interface, when these dislocations in the MOCVD-GaN penetrated into the Na flux GaN. These results indicated that the dislocation propagation behavior was highly sensitive to the type of dislocation, but all types of dislocations were confined to within several micrometers region of the Na flux GaN from the interface. The cause of void formation, the role of voids in controlling the dislocation behavior, and the mechanism of lateral and collective dislocation propagation are discussed on the basis of TEM results.« less

  19. Use of metallic glasses for fabrication of structures with submicron dimensions

    DOEpatents

    Wiley, John D.; Perepezko, John H.

    1986-01-01

    Patterned structures of submicron dimension formed of supported or unsupported amorphous metals having submicron feature sizes characterized by etching behavior sufficient to allow delineation of sharp edges and smooth flat flanks, resistance to time-dependent dimensional changes caused by creep, flow, in-diffusion of unwanted impurities, out-diffusion of constituent atoms, void formation, grain growth or phase separation and resistance to phase transformations or compound formation.

  20. Study of Electromigration-Induced Failures on Cu Pillar Bumps Joined to OSP and ENEPIG Substrates

    NASA Astrophysics Data System (ADS)

    Hsiao, Yu-Hsiang; Lin, Kwang-Lung; Lee, Chiu-Wen; Shao, Yu-Hsiu; Lai, Yi-Shao

    2012-12-01

    This work studies electromigration (EM)-induced failures on Cu pillar bumps joined to organic solderability preservative (OSP) on Cu substrates (OSP-bumps) and electroless Ni(P)/electroless Pd/immersion Au (ENEPIG) under bump metallurgy (UBM) on Cu substrates (ENEPIG-bumps). Two failure modes (Cu pad consumption and gap formation) were found with OSP-bumps, but only one failure mode (gap formation) was found with ENEPIG-bumps. The main interfacial compound layer was the Cu6Sn5 compound, which suffered significant EM-induced dissolution, eventually resulting in severe Cu pad consumption at the cathode side for OSP-bumps. A (Cu,Ni)6Sn5 layer with strong resistance to EM-induced dissolution exists at the joint interface when a nickel barrier layer is incorporated at the cathode side (Ni or ENEPIG), and these imbalanced atomic fluxes result in the voids and gap formation. OSP-bumps showed better lifetime results than ENEPIG-bumps for several current stressing conditions. The inverse Cu atomic flux ( J Cu,chem) which diffuses from the Cu pad to cathode side retards the formation of voids. The driving force for J Cu,chem comes from the difference in chemical potential between the (Cu,Ni)6Sn5 and Cu6Sn5 phases.

  1. Synthetic nickel-containing superoxide dismutase attenuates para-phenylenediamine-induced bladder dysfunction in rats

    PubMed Central

    Chiang, Bing-Juin; Chen, Tien-Wen; Chung, Shiu-Dong; Lee, Way-Zen; Chien, Chiang-Ting

    2017-01-01

    Para (p)-phenylenediamine and its toxic metabolites induce excess reactive oxygen species formation that results in bladder voiding dysfunction. We determined the effects of synthetic Ni-containing superoxide dismutase mimics and the role of oxidative stress in p-phenylenediamine-induced urinary bladder dysfunction. P-phenylenediamine (60 μg/kg/day) was intraperitoneally administered for 4 weeks to induce bladder injury in female Wistar rats. Synthetic Ni-containing superoxide dismutase mimics, WCT003 (1.5 mg/kg) and WCT006 (1.5 mg/kg), were then intraperitoneally administered for 2 weeks. Transcystometrograms were performed in urethane-anesthetized rats. The in vitro and in vivo reactive oxygen species levels and pathological changes in formalin-fixed bladder sections were evaluated. Western blotting and immunohistochemistry elucidated the pathophysiological mechanisms of oxidative stress-induced apoptosis, autophagy, and pyroptosis. P-phenylenediamine increased voiding frequency, blood and urinary bladder levels of reactive oxygen species, and neutrophil and mast cell infiltration. It also upregulated biomarkers of autophagy (LC3 II), apoptosis (poly (ADP-ribose) polymerase), and pyroptosis (Caspase 1). WCT003 and WCT006 ameliorated reactive oxygen species production, inflammation, apoptosis, autophagy, pyroptosis, and bladder hyperactivity. P-phenylenediamine increased oxidative stress, inflammatory leukocytosis, autophagy, apoptosis, and pyroptosis formation within the urinary bladder. Novel synthetic nickel-containing superoxide dismutase mimics relieved p-phenylenediamine-induced bladder inflammation and voiding dysfunction. PMID:29285288

  2. Liquid phase diffusion bonding of A1070 by using metal formate coated Zn sheet

    NASA Astrophysics Data System (ADS)

    Ozawa, K.; Koyama, S.; shohji, I.

    2017-05-01

    Aluminium alloy have high strength and easily recycle due to its low melting point. Therefore, aluminium is widely used in the manufacturing of cars and electronic devices. In recent years, the most common way for bonding aluminium alloy is brazing and friction stir welding. However, brazing requires positional accuracy and results in the formation of voids by the flax residue. Moreover, aluminium is an excellent heat radiating and electricity conducting material; therefore, it is difficult to bond together using other bonding methods. Because of these limitations, liquid phase diffusion bonding is considered to the suitable method for bonding aluminium at low temperature and low bonding pressure. In this study, the effect of metal formate coating processing of zinc surface on the bond strength of the liquid phase diffusion bonded interface of A1070 has been investigated by SEM observation of the interfacial microstructures and fractured surfaces after tensile test. Liquid phase diffusion bonding was carried out under a nitrogen gas atmosphere at a bonding temperature of 673 K and 713 K and a bonding load of 6 MPa (bonding time: 15 min). As a result of the metal formate coating processing, a joint having the ultimate tensile strength of the base aluminium was provided. It is hypothesized that this is because metallic zinc is generated as a result of thermal decomposition of formate in the bonded interface at lower bonding temperatures.

  3. Defects in metal crystals. Progress report, May 1, 1980-April 30, 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seidman, D.N.

    1981-01-01

    During the past year a strong endeavor was made to redirect the efforts of the research group to determine atomic mechanisms for the formation of metal silicides, among other problems, produced as a result of: (a) ion or electron irradiation of metal-silicon sandwiches; and (b) the ion irradiation of subsaturated binary alloys containing silicon. In addition, an appreciable component of the research is aimed at understanding the atomic mechanisms responsible for radiation-induced segregation and RIP in a wide range of fast-neutron irradiated refractory metals and alloys. In these same neutron irradiated specimens a search is being made for the speciesmore » that are responsible for the nucleation of voids. In particular, the voids are being examined, by the atom-probe field-ion microscope technique, for the interstitial impurities helium, carbon, nitrogen and oxygen. Evidence was obtained for the presence of carbon in a void of a fast neutron-irradiated molybdenum (titanium) alloy.« less

  4. Structural analyses of a rigid pavement overlaying a sub-surface void

    NASA Astrophysics Data System (ADS)

    Adam, Fatih Alperen

    Pavement failures are very hazardous for public safety and serviceability. These failures in pavements are mainly caused by subsurface voids, cracks, and undulation at the slab-base interface. On the other hand, current structural analysis procedures for rigid pavement assume that the slab-base interface is perfectly planar and no imperfections exist in the sub-surface soil. This assumption would be violated if severe erosion were to occur due to inadequate drainage, thermal movements, and/or mechanical loading. Until now, the effect of erosion was only considered in the faulting performance model, but not with regards to transverse cracking at the mid-slab edge. In this research, the bottom up fatigue cracking potential, caused by the combined effects of wheel loading and a localized imperfection in the form of a void below the mid-slab edge, is studied. A robust stress and surface deflection analysis was also conducted to evaluate the influence of a sub-surface void on layer moduli back-calculation. Rehabilitative measures were considered, which included a study on overlay and fill remediation. A series regression of equations was proposed that provides a relationship between void size, layer moduli stiffness, and the overlay thickness required to reduce the stress to its original pre-void level. The effect of the void on 3D pavement crack propagation was also studied under a single axle load. The amplifications to the stress intensity was shown to be high but could be mitigated substantially if stiff material is used to fill the void and impede crack growth. The pavement system was modeled using the commercial finite element modeling program Abaqus RTM. More than 10,000 runs were executed to do the following analysis: stress analysis of subsurface voids, E-moduli back-calculation of base layer, pavement damage calculations of Beaumont, TX, overlay thickness estimations, and mode I crack analysis. The results indicate that the stress and stress intensity are, on average, amplified considerably: 80% and 150%, respectively, by the presence of the void and more severe in a bonded pavement system compared to an un-bonded system. The sub-surface void also significantly affects the layer moduli back-calculation. The equivalent moduli of the layers are reduced considerably when a sub-surface void is present. However, the results indicate the back-calculated moduli derived using surface deflection, and longitudinal stress basins did not yield equivalent layer moduli under mechanical loading; the back-calculated deflection-based moduli were larger than the stress-based moduli, leading to stress calculations that were lower than those found in the real system.

  5. Development of nano-fabrication technique utilizing self-organizational behavior of point defects induced by ion irradiation

    NASA Astrophysics Data System (ADS)

    Nitta, Noriko; Taniwaki, Masafumi

    2006-04-01

    The present authors proposed a novel nano-fabrication technique that is able to arrange the fine cells orderly, based on their finding in GaSb implanted at a low temperature. In this article, first the experimental results that anomalous cellular structure was formed in GaSb by ion implantation is introduced and the self-organizational formation mechanism of the structure is described. Next a nano-fabrication technique that utilizes focused ion beam is described. This technique consists of two procedures, i.e. the formation process of the voids array and the development of the initial array to ordered cellular structure. Finally, the nano-fabrication is actually performed by this technique and their results are reported. Fabrication succeeded in structures where the dot (cell) interval was 100 nm or larger. The minimum ion dose for initial voids which develops to the ordered cellular structure is evaluated. It is also shown that the substrate temperature during implantation is an essential parameter for this technique.

  6. Two-dimensional model of a Space Station Freedom thermal energy storage canister

    NASA Astrophysics Data System (ADS)

    Kerslake, Thomas W.; Ibrahim, Mounir B.

    1990-08-01

    The Solar Dynamic Power Module being developed for Space Station Freedom uses a eutectic mixture of LiF-CaF2 phase change salt contained in toroidal canisters for thermal energy storage. Results are presented from heat transfer analyses of the phase change salt containment canister. A 2-D, axisymmetric finite difference computer program which models the canister walls, salt, void, and heat engine working fluid coolant was developed. Analyses included effects of conduction in canister walls and solid salt, conduction and free convection in liquid salt, conduction and radiation across salt vapor filled void regions and forced convection in the heat engine working fluid. Void shape, location, growth or shrinkage (due to density difference between the solid and liquid salt phases) were prescribed based on engineering judgement. The salt phase change process was modeled using the enthalpy method. Discussion of results focuses on the role of free-convection in the liquid salt on canister heat transfer performance. This role is shown to be important for interpreting the relationship between ground based canister performance (in l-g) and expected on-orbit performance (in micro-g). Attention is also focused on the influence of void heat transfer on canister wall temperature distributions. The large thermal resistance of void regions is shown to accentuate canister hot spots and temperature gradients.

  7. Two-dimensional model of a Space Station Freedom thermal energy storage canister

    NASA Astrophysics Data System (ADS)

    Kerslake, Thomas W.; Ibrahim, Mounir B.

    The Solar Dynamic Power Module being developed for Space Station Freedom uses a eutectic mixture of LiF-CaF2 phase change salt contained in toroidal canisters for thermal energy storage. Results are presented from heat transfer analyses of the phase-change salt containment canister. A 2-D, axisymmetric finite-difference computer program which models the canister walls, salt, void, and heat engine working fluid coolant was developed. Analyses included effects of conduction in canister walls and solid salt, conduction and free convection in liquid salt, conduction and radiation across salt vapor filled void regions, and forced convection in the heat engine working fluid. Void shape, location, and growth or shrinkage (due to density difference between the solid and liquid salt phases) were prescribed based on engineering judgement. The salt phase change process was modeled using the enthalpy method. Discussion of results focuses on the role of free-convection in the liquid salt on canister heat transfer performance. This role is shown to be important for interpreting the relationship between groundbased canister performance (in 1-g) and expected on-orbit performance (in micro-g). Attention is also focused on the influence of void heat transfer on canister wall temperature distributions. The large thermal resistance of void regions is shown to accentuate canister hot spots and temperature gradients.

  8. Two-dimensional model of a Space Station Freedom thermal energy storage canister

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.; Ibrahim, Mounir B.

    1990-01-01

    The Solar Dynamic Power Module being developed for Space Station Freedom uses a eutectic mixture of LiF-CaF2 phase change salt contained in toroidal canisters for thermal energy storage. Results are presented from heat transfer analyses of the phase-change salt containment canister. A 2-D, axisymmetric finite-difference computer program which models the canister walls, salt, void, and heat engine working fluid coolant was developed. Analyses included effects of conduction in canister walls and solid salt, conduction and free convection in liquid salt, conduction and radiation across salt vapor filled void regions, and forced convection in the heat engine working fluid. Void shape, location, and growth or shrinkage (due to density difference between the solid and liquid salt phases) were prescribed based on engineering judgement. The salt phase change process was modeled using the enthalpy method. Discussion of results focuses on the role of free-convection in the liquid salt on canister heat transfer performance. This role is shown to be important for interpreting the relationship between groundbased canister performance (in 1-g) and expected on-orbit performance (in micro-g). Attention is also focused on the influence of void heat transfer on canister wall temperature distributions. The large thermal resistance of void regions is shown to accentuate canister hot spots and temperature gradients.

  9. Two-dimensional model of a Space Station Freedom thermal energy storage canister

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.; Ibrahim, Mounir B.

    1990-01-01

    The Solar Dynamic Power Module being developed for Space Station Freedom uses a eutectic mixture of LiF-CaF2 phase change salt contained in toroidal canisters for thermal energy storage. Results are presented from heat transfer analyses of the phase change salt containment canister. A 2-D, axisymmetric finite difference computer program which models the canister walls, salt, void, and heat engine working fluid coolant was developed. Analyses included effects of conduction in canister walls and solid salt, conduction and free convection in liquid salt, conduction and radiation across salt vapor filled void regions and forced convection in the heat engine working fluid. Void shape, location, growth or shrinkage (due to density difference between the solid and liquid salt phases) were prescribed based on engineering judgement. The salt phase change process was modeled using the enthalpy method. Discussion of results focuses on the role of free-convection in the liquid salt on canister heat transfer performance. This role is shown to be important for interpreting the relationship between ground based canister performance (in l-g) and expected on-orbit performance (in micro-g). Attention is also focused on the influence of void heat transfer on canister wall temperature distributions. The large thermal resistance of void regions is shown to accentuate canister hot spots and temperature gradients.

  10. Study on identically voided pervious concrete made with different sized aggregates

    NASA Astrophysics Data System (ADS)

    Kastro Kiran, V.; Anand, K. B.

    2018-02-01

    Pervious concrete (PC) is also known as no fines concrete and has been found to be a reliable stormwater management tool. As a substitution for conventional impervious pavement, PC usage has been increasing during recent years. PC made with different sized aggregate shows different void ratios and changed properties. As void ratio plays a notable role on strength and permeability of PC, this study aims to focus on properties of PC at identical void ratio of 20%, made using aggregates of three size ranges, viz., 4.75-6mm, 10-12.5mm, and 10-20mm. Appropriate alternatives were used to maintain the identical void ratio. As the permeation capacity of PC gets reduced due to the clogging tendency, the life of PC will also get reduced. Hence, to make the PC to sustain for a long time it is necessary to study the clogging behavior. This study investigates the tendency of PC for clogging and the potential for regaining the permeability through de-clogging methods. Clogging tendency of PC is studied by using two sizes (coarse and fine) of clog particles and the changes in permeability are observed. Efficiency of declogging methods like pressure washing and vacuum suction on PC with different sized aggregates are also evaluated.

  11. Micron-scale Reactive Atomistic Simulation of Void Collapse and Hotspot Growth in PETN

    NASA Astrophysics Data System (ADS)

    Thompson, Aidan; Shan, Tzu-Ray; Wixom, Ryan

    2015-06-01

    Material defects and other heterogeneities such as dislocations, micro-porosity, and grain boundaries play key roles in the shock-induced initiation of detonation in energetic materials. We performed non-equilibrium molecular dynamics simulations to explore the effect of nanoscale voids on hotspot growth and initiation in micron-scale pentaerythritol tetranitrate (PETN) crystals under weak shock loading (Up = 1.25 km/s; Us = 4.5 km/s). We used the ReaxFF potential implemented in LAMMPS. We built a pseudo-2D PETN crystal with dimensions 0.3 μm × 0.22 μm × 1.3 nm containing a 20 nm cylindrical void. Once the initial shockwave traversed the entire sample, the shock-front absorbing boundary condition was applied, allowing the simulation to continue beyond 1 nanosecond. Results show an exponentially increasing hotspot growth rate. The hotspot morphology is initially symmetric about the void axis, but strong asymmetry develops at later times, due to strong coupling between exothermic chemistry, temperature, and divergent secondary shockwaves emanating from the collapsing void. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  12. Subsidence and collapse sinkholes in soluble rock: a numerical perspective

    NASA Astrophysics Data System (ADS)

    Kaufmann, Georg; Romanov, Douchko; Hiller, Thomas

    2016-04-01

    Soluble rocks such as limestone, gypsum, anhydrite, and salt are prone to subsidence and the sudden creation of collapse sinkholes. The reason for this behaviour stems from the solubility of the rock: Water percolating through fissures and bedding partings can remove material from the rock walls and thus increase the permeability of the host rock by orders of magnitudes. This process occurs on time scales of 1,000-100,000 years, resulting in enlarged fractures, voids and cavities, which then carry flow efficiently through the rock. The enlargement of sub-surface voids to the meter-size within such short times creates mechanical conditions prone to collapse. The collapse initiates at depth, but then propagates to the surface. By means of numerical modelling, we discuss the long-term evolution of secondary porosity in gypsum rocks, resulting in zones of sub-surface voids, which then become mechanically unstable and collapse. We study two real-world case scenarios, in which we can relate field observations to our numerical model: (i) A dam-site scenario, where flow around the dam caused widespread dissolution of gypsum and subsequent subsidence of the dam and a nearby highway. (ii) A natural collapse sinkhole forming as a result of freshwater inflow into a shallow anhydrite formation with rapid evolution of voids in the sub-surface.

  13. Improvement effect on the depth-dose distribution by CSF drainage and air infusion of a tumour-removed cavity in boron neutron capture therapy for malignant brain tumours

    NASA Astrophysics Data System (ADS)

    Sakurai, Yoshinori; Ono, Koji; Miyatake, Shin-ichi; Maruhashi, Akira

    2006-03-01

    Boron neutron capture therapy (BNCT) without craniotomy for malignant brain tumours was started using an epi-thermal neutron beam at the Kyoto University Reactor in June 2002. We have tried some techniques to overcome the treatable-depth limit in BNCT. One of the effective techniques is void formation utilizing a tumour-removed cavity. The tumorous part is removed by craniotomy about 1 week before a BNCT treatment in our protocol. Just before the BNCT irradiation, the cerebro-spinal fluid (CSF) in the tumour-removed cavity is drained out, air is infused to the cavity and then the void is made. This void improves the neutron penetration, and the thermal neutron flux at depth increases. The phantom experiments and survey simulations modelling the CSF drainage and air infusion of the tumour-removed cavity were performed for the size and shape of the void. The advantage of the CSF drainage and air infusion is confirmed for the improvement in the depth-dose distribution. From the parametric surveys, it was confirmed that the cavity volume had good correlation with the improvement effect, and the larger effect was expected as the cavity volume was larger.

  14. Improvement effect on the depth-dose distribution by CSF drainage and air infusion of a tumour-removed cavity in boron neutron capture therapy for malignant brain tumours.

    PubMed

    Sakurai, Yoshinori; Ono, Koji; Miyatake, Shin-Ichi; Maruhashi, Akira

    2006-03-07

    Boron neutron capture therapy (BNCT) without craniotomy for malignant brain tumours was started using an epi-thermal neutron beam at the Kyoto University Reactor in June 2002. We have tried some techniques to overcome the treatable-depth limit in BNCT. One of the effective techniques is void formation utilizing a tumour-removed cavity. The tumorous part is removed by craniotomy about 1 week before a BNCT treatment in our protocol. Just before the BNCT irradiation, the cerebro-spinal fluid (CSF) in the tumour-removed cavity is drained out, air is infused to the cavity and then the void is made. This void improves the neutron penetration, and the thermal neutron flux at depth increases. The phantom experiments and survey simulations modelling the CSF drainage and air infusion of the tumour-removed cavity were performed for the size and shape of the void. The advantage of the CSF drainage and air infusion is confirmed for the improvement in the depth-dose distribution. From the parametric surveys, it was confirmed that the cavity volume had good correlation with the improvement effect, and the larger effect was expected as the cavity volume was larger.

  15. An ultrasonic investigation of the effect of voids on the mechanical properties of bread dough and the role of gas cells in determining the cellular structure of freeze- dried breadcrumb

    NASA Astrophysics Data System (ADS)

    Elmehdi, Hussein Mohamed

    This thesis is an analysis of voids in the breadmaking process, more specifically the effect of gas cells entrapped in the dough during mixing, their expansion during fermentation, and their relationship to the breadcrumb structure in the final product. This is important to food scientists because the voids ultimately influence the structural integrity of bread and hence its quality. Understanding how voids affect the viscoelastic properties of dough is also a challenging problem in soft condensed matter physics. Longitudinal ultrasonic velocity and attenuation measurements, performed at 54 kHz, investigated changes in the mechanical properties of dough and bread as void concentration was varied. In the first part of the thesis, the effect of voids on the properties of unyeasted dough at the end of mixing was investigated. As φ is increased, the attenuation coefficient increased linearly with φ hence the change in attenuation is proportional to the number of voids, allowing the combined effects of scattering and absorption by single voids to be directly determined. By contrast, the ultrasonic velocity decreased dramatically with increasing φ in the range 0.0 12 < φ < 0.03, while at higher φ, the velocity decrease was less rapid. An effective medium model successfully modeled the viscoelastic behavior of the dough at all void fraction values, provided that the shear modulus of the matrix was permitted to vary. The same ultrasonic technique was also used to monitor the increase in gas cell size due to CO 2 production during fermentation of yeasted dough. A large decrease in velocity and an increase in the attenuation coefficient were observed as the gas cells grew. In addition, at early fermentation times, a substantial contribution to the velocity decrease arises from a reduction in the shear modulus of the dough matrix. This occurs because the pH drops as CO2 molecules dissolve in the matrix and intermolecular interactions are weakened due to protein chain charge repulsion effects. In the second part of the thesis, freeze-dried breadcrumb structure was investigated. To change the size of the air cells, the dough was proofed for various times. Ultrasonic velocity and amplitude decrease with increasing φ. The experimental data were found to be in reasonable agreement with theoretical models for the elasticity of isotropic cellular foams and tortuosity. The effects of anisotropy in breadcrumb structure were studied by compressing samples uniaxially, thereby transforming the shape of the air cells from approximately spherical to elongated ellipsoids. Ultrasonic measurements were taken in the directions parallel and perpendicular to the strain. These results indicated that the path by which sound propagates is critical. The data were interpreted using the same two theoretical models, taking into account anisotropy effects. The tortuosity model was able to interpret the void fraction dependence of the velocity along the two orthogonal directions, thus giving a way of relating changes in ultrasonic velocity to changes in breadcrumb structure. This thesis demonstrates the potential for using ultrasound as a non-destructive, cheap and accurate tool for studying the effect of voids (and their expansion) on dough properties. These ultrasonic techniques can also be used to investigate the effect of air cells on the structural integrity of breadcrumb and hence be a useful tool for quantitatively assessing bread quality.

  16. Bow shock formation in a complex plasma.

    PubMed

    Saitou, Y; Nakamura, Y; Kamimura, T; Ishihara, O

    2012-02-10

    A bow shock is observed in a two-dimensional supersonic flow of charged microparticles in a complex plasma. A thin conducting needle is used to make a potential barrier as an obstacle for the particle flow in the complex plasma. The flow is generated and the flow velocity is controlled by changing a tilt angle of the device under the gravitational force. A void, microparticle-free region, is formed around the potential barrier surrounding the obstacle. The flow is bent around the leading edge of the void and forms an arcuate structure when the flow is supersonic. The structure is characterized by the bow shock as confirmed by a polytropic hydrodynamic theory as well as numerical simulation.

  17. Dependence of triboelectric charging behavior on material microstructure

    NASA Astrophysics Data System (ADS)

    Wang, Andrew E.; Gil, Phwey S.; Holonga, Moses; Yavuz, Zelal; Baytekin, H. Tarik; Sankaran, R. Mohan; Lacks, Daniel J.

    2017-08-01

    We demonstrate that differences in the microstructure of chemically identical materials can lead to distinct triboelectric charging behavior. Contact charging experiments are carried out between strained and unstrained polytetrafluoroethylene samples. Whereas charge transfer is random between samples of identical strain, when one of the samples is strained, systematic charge transfer occurs. No significant changes in the molecular-level structure of the polymer are observed by XRD and micro-Raman spectroscopy after deformation. However, the strained surfaces are found to exhibit void and craze formation spanning the nano- to micrometer length scales by molecular dynamics simulations, SEM, UV-vis spectroscopy, and naked-eye observations. This suggests that material microstructure (voids and crazes) can govern the triboelectric charging behavior of materials.

  18. Average luminosity distance in inhomogeneous universes

    NASA Astrophysics Data System (ADS)

    Kostov, Valentin Angelov

    Using numerical ray tracing, the paper studies how the average distance modulus in an inhomogeneous universe differs from its homogeneous counterpart. The averaging is over all directions from a fixed observer not over all possible observers (cosmic), thus it is more directly applicable to our observations. Unlike previous studies, the averaging is exact, non-perturbative, an includes all possible non-linear effects. The inhomogeneous universes are represented by Sweese-cheese models containing random and simple cubic lattices of mass- compensated voids. The Earth observer is in the homogeneous cheese which has an Einstein - de Sitter metric. For the first time, the averaging is widened to include the supernovas inside the voids by assuming the probability for supernova emission from any comoving volume is proportional to the rest mass in it. For voids aligned in a certain direction, there is a cumulative gravitational lensing correction to the distance modulus that increases with redshift. That correction is present even for small voids and depends on the density contrast of the voids, not on their radius. Averaging over all directions destroys the cumulative correction even in a non-randomized simple cubic lattice of voids. Despite the well known argument for photon flux conservation, the average distance modulus correction at low redshifts is not zero due to the peculiar velocities. A formula for the maximum possible average correction as a function of redshift is derived and shown to be in excellent agreement with the numerical results. The formula applies to voids of any size that: (1) have approximately constant densities in their interior and walls, (2) are not in a deep nonlinear regime. The actual average correction calculated in random and simple cubic void lattices is severely damped below the predicted maximum. That is traced to cancelations between the corrections coming from the fronts and backs of different voids at the same redshift from the observer. The calculated correction at low redshifts allows one to readily predict the redshift at which the averaged fluctuation in the Hubble diagram is below a required precision and suggests a method to extract the background Hubble constant from low redshift data without the need to correct for peculiar velocities.

  19. Unique Moon Formation Model: Two Impacts of Earth and After Moon's Birth

    NASA Astrophysics Data System (ADS)

    Miura, Y.

    2018-04-01

    The Moon rocks are mixed with two impact-processes of Earth's impact breccias and airless Moon's impact breccias; discussed voids-rich texture and crust-like composition. The present model might be explained as cave-rich interior on the airless-and waterless Moon.

  20. Changes in electrical and thermal parameters of led packages under different current and heating stresses

    NASA Astrophysics Data System (ADS)

    Jayawardena, Adikaramge Asiri

    The goal of this dissertation is to identify electrical and thermal parameters of an LED package that can be used to predict catastrophic failure real-time in an application. Through an experimental study the series electrical resistance and thermal resistance were identified as good indicators of contact failure of LED packages. This study investigated the long-term changes in series electrical resistance and thermal resistance of LED packages at three different current and junction temperature stress conditions. Experiment results showed that the series electrical resistance went through four phases of change; including periods of latency, rapid increase, saturation, and finally a sharp decline just before failure. Formation of voids in the contact metallization was identified as the underlying mechanism for series resistance increase. The rate of series resistance change was linked to void growth using the theory of electromigration. The rate of increase of series resistance is dependent on temperature and current density. The results indicate that void growth occurred in the cap (Au) layer, was constrained by the contact metal (Ni) layer, preventing open circuit failure of contact metal layer. Short circuit failure occurred due to electromigration induced metal diffusion along dislocations in GaN. The increase in ideality factor, and reverse leakage current with time provided further evidence to presence of metal in the semiconductor. An empirical model was derived for estimation of LED package failure time due to metal diffusion. The model is based on the experimental results and theories of electromigration and diffusion. Furthermore, the experimental results showed that the thermal resistance of LED packages increased with aging time. A relationship between thermal resistance change rate, with case temperature and temperature gradient within the LED package was developed. The results showed that dislocation creep is responsible for creep induced plastic deformation in the die-attach solder. The temperatures inside the LED package reached the melting point of die-attach solder due to delamination just before catastrophic open circuit failure. A combined model that could estimate life of LED packages based on catastrophic failure of thermal and electrical contacts is presented for the first time. This model can be used to make a-priori or real-time estimation of LED package life based on catastrophic failure. Finally, to illustrate the usefulness of the findings from this thesis, two different implementations of real-time life prediction using prognostics and health monitoring techniques are discussed.

  1. Experimental studies on metallic fuel relocation in a single-pin core structure of a sodium-cooled fast reactor

    DOE PAGES

    Kim, Taeil; Harbaruk, Dzmitry; Gerardi, Craig; ...

    2017-07-10

    Experiments dropping molten uranium into test sections of single fuel pin geometry filled with sodium were conducted to investigate relocation behavior of metallic fuel in the core structures of sodium-cooled fast reactors during a hypothetical core disruptive accident. Metallic uranium was used as a fuel material and HT-9M was used as a fuel cladding material in the experiment in order to accurately mock-up the thermo-physical behavior of the relocation. The fuel cladding failed due to eutectic formation between the uranium and HT-9M for all experiments. The extent of the eutectic formation increased with increasing molten uranium temperature. Voids in themore » relocated fuel were observed for all experiments and were likely formed by sodium boiling in contact with the fuel. In one experiment, numerous fragments of the relocated fuel were found. In conclusion, it could be concluded that the injected metallic uranium fuel was fragmented and dispersed in the narrow coolant channel by sodium boiling« less

  2. The formation of cosmic structure in a texture-seeded cold dark matter cosmogony

    NASA Technical Reports Server (NTRS)

    Gooding, Andrew K.; Park, Changbom; Spergel, David N.; Turok, Neil; Gott, Richard, III

    1992-01-01

    The growth of density fluctuations induced by global texture in an Omega = 1 cold dark matter (CDM) cosmogony is calculated. The resulting power spectra are in good agreement with each other, with more power on large scales than in the standard inflation plus CDM model. Calculation of related statistics (two-point correlation functions, mass variances, cosmic Mach number) indicates that the texture plus CDM model compares more favorably than standard CDM with observations of large-scale structure. Texture produces coherent velocity fields on large scales, as observed. Excessive small-scale velocity dispersions, and voids less empty than those observed may be remedied by including baryonic physics. The topology of the cosmic structure agrees well with observation. The non-Gaussian texture induced density fluctuations lead to earlier nonlinear object formation than in Gaussian models and may also be more compatible with recent evidence that the galaxy density field is non-Gaussian on large scales. On smaller scales the density field is strongly non-Gaussian, but this appears to be primarily due to nonlinear gravitational clustering. The velocity field on smaller scales is surprisingly Gaussian.

  3. Experimental studies on metallic fuel relocation in a single-pin core structure of a sodium-cooled fast reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Taeil; Harbaruk, Dzmitry; Gerardi, Craig

    Experiments dropping molten uranium into test sections of single fuel pin geometry filled with sodium were conducted to investigate relocation behavior of metallic fuel in the core structures of sodium-cooled fast reactors during a hypothetical core disruptive accident. Metallic uranium was used as a fuel material and HT-9M was used as a fuel cladding material in the experiment in order to accurately mock-up the thermo-physical behavior of the relocation. The fuel cladding failed due to eutectic formation between the uranium and HT-9M for all experiments. The extent of the eutectic formation increased with increasing molten uranium temperature. Voids in themore » relocated fuel were observed for all experiments and were likely formed by sodium boiling in contact with the fuel. In one experiment, numerous fragments of the relocated fuel were found. In conclusion, it could be concluded that the injected metallic uranium fuel was fragmented and dispersed in the narrow coolant channel by sodium boiling« less

  4. The Effect of Copper Addition on the Properties of Sn-0.7Cu Solder Paste

    NASA Astrophysics Data System (ADS)

    Said, R. M.; Mohamad Johari, F. H.; Salleh, M. A. A. Mohd; Sandu, A. V.

    2018-03-01

    The effect of copper addition on the properties of Sn-Cu based solder paste were investigate through this study. The Sn-0.7Cu solder paste doped with different concentration of Cu were prepared using solder paste mixture. The bulk solder microstructure of assolidified solder paste was studied. Besides that, intermetallic compound (IMC) formation on Cu substrate and hardness of all solder paste also being investigated. Results shows that increasing Cu concentration cause formation of large Cu6Sn5 IMC at bulk solder and the size of the IMC grew larger at high temperature. In addition, β-Sn area reduce when Cu concentration was high. The IMC morphology for all solder paste almost remain unchanged. However, there are large Cu6Sn5 IMC form near the interfacial IMC in Sn-Cu solder paste with high amount of Cu (Sn-10Cu). The hardness value was decrease when processing temperature at 250 °C due to present of small void in the microstructure while hardness of solder material increased at high temperature.

  5. Effect of neutron energy and fluence on deuterium retention behaviour in neutron irradiated tungsten

    NASA Astrophysics Data System (ADS)

    Fujita, Hiroe; Yuyama, Kenta; Li, Xiaochun; Hatano, Yuji; Toyama, Takeshi; Ohta, Masayuki; Ochiai, Kentaro; Yoshida, Naoaki; Chikada, Takumi; Oya, Yasuhisa

    2016-02-01

    Deuterium (D) retention behaviours for 14 MeV neutron irradiated tungsten (W) and fission neutron irradiated W were evaluated by thermal desorption spectroscopy (TDS) to elucidate the correlation between D retention and defect formation by different energy distributions of neutrons in W at the initial stage of fusion reactor operation. These results were compared with that for Fe2+ irradiated W with various damage concentrations. Although dense vacancies and voids within the shallow region near the surface were introduced by Fe2+ irradiation, single vacancies with low concentration were distributed throughout the sample for 14 MeV neutron irradiated W. Only the dislocation loops were introduced by fission neutron irradiation at low neutron fluence. The desorption peak of D for fission neutron irradiated W was concentrated at low temperature region less than 550 K, but that for 14 MeV neutron irradiated W was extended toward the higher temperature side due to D trapping by vacancies. It can be said that the neutron energy distribution could have a large impact on irradiation defect formation and the D retention behaviour.

  6. Effect of sweetener combination and storage temperature on physicochemical properties of sucrose free white chocolate.

    PubMed

    Rodriguez Furlán, Laura T; Baracco, Yanina; Lecot, Javier; Zaritzky, Noemi; Campderrós, Mercedes E

    2017-08-15

    The influence of a combination of sweeteners (Stevia (St) and sucralose (Su)) and storage temperature on thermal properties, microstructure, water content, texture and Bloom of sucrose free white chocolate was investigated. A strong relationship between the microstructure and the highest percentage of Bloom was observed. The samples with 100%Su and 50%S+50%Su presented microstructures with channels through which solids and fat could more easily spread to the surface, increasing the fat and sugar Bloom formation. However, 50%St+50%Su and 75%St+25%Su samples showed a minimum Bloom formation, probably due to its dense microstructure with no void spaces. The differential scanning calorimetry studies demonstrated that the samples containing 100%St and 75%St+25%Su showed the smallest decrease of melting enthalpy with increasing temperature. Besides, non-isothermal crystallization kinetics was studied by applying Avrami model. The sample 75%St+25%Su presented the highest values of activation energy showing the greatest stability in the temperature range studied (7°C-30°C). Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Advances in non-surgical treatments for urinary tract infections in children.

    PubMed

    Yang, Stephen Shei-Dei; Chiang, I-Ni; Lin, Chia-Da; Chang, Shang-Jen

    2012-02-01

    With growing antibiotics failure due to emerging resistance of bacteria, non-surgical management of pediatric UTI plays a more important role because of its non-invasive characteristics and little adverse effects. We searched the Pubmed for management of UTI in children other than surgical correction and antibiotics using terms: risk factor, prepuce/phimosis, steroid cream/steroid, behavioral therapy, urotherapy, biofeedback/pelvic floor exercise, adrenergic antagonist, anticholinergics, diet/dietary, dysfunctional voiding/dysfunctional elimination syndrome, constipation, dietary, clean intermittent catheterization, probiotics/lactobacillus, cranberry, vitamin supplement, breastfeeding, breast milk, with infant/child/children/pediatrics/pediatrics and urinary tract infection. The proposed non-surgical management of pediatric UTI included behavioral modification (timed voiding and adequate fluids intake), topical steroid for phimosis, nutrient supplements (breast milk, cranberry, probiotics, and vitamin A), biofeedback training for dysfunctional voiding, anticholinergics for reducing intravesical pressure, alpha-blockers in dysfunctional voiding and neurogenic bladder, and intermittent catheterization for children with large PVR. The published reports usually included small number of patients and were lacking of randomization and controlled group. Further well-designed studies are warranted to support the concepts of non-operative management for pediatric UTI.

  8. Comparison of the Effects of Debonds and Voids in Adhesive Joints

    NASA Technical Reports Server (NTRS)

    Rossettos, J. N.; Lin, P.; Nayeb-Hashemi, Hamid

    1997-01-01

    An analytical model is developed to compare the effects of voids an debonds on the interfacial shear stresses between the adherends and the adhesive in simple lap joints. Since the adhesive material above the debond may undergo some extension (either due to applied load or thermal expansion or both), a modified shear lag model, where the adhesive can take an extensional as well as shear deformation, is used in the analysis. The adherends take on only axial loads and act as membranes. Two coupled nondimensional differential equations are derived, and in general, five parameters govern the stress distribution in the overlap region. As expected, the major differences between the debond and the void occur for the stresses near the edge of the defect itself. Whether the defect is a debond or a void, is hardly discernible by the stresses at the overlap region. If the defect occurs precisely at or very close to either end of the overlap, however, differences of the order of 20 percent in the peak stresses can be obtained.

  9. THE COSMOLOGICAL IMPACT OF LUMINOUS TeV BLAZARS. III. IMPLICATIONS FOR GALAXY CLUSTERS AND THE FORMATION OF DWARF GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfrommer, Christoph; Chang, Philip; Broderick, Avery E., E-mail: christoph.pfrommer@h-its.org, E-mail: aeb@cita.utoronto.ca, E-mail: pchang@cita.utoronto.ca

    2012-06-10

    A subset of blazars are powerful TeV emitters, dominating the extragalactic component of the very high energy gamma-ray universe (E {approx}> 100 GeV). These TeV gamma rays generate ultrarelativistic electron-positron pairs via pair production with the extragalactic background light. While it has generally been assumed that the kinetic energy of these pairs cascades to GeV gamma rays via inverse Compton scattering, we have argued in Broderick et al. (Paper I in this series) that plasma beam instabilities are capable of dissipating the pairs' energy locally on timescales short in comparison to the inverse Compton cooling time, heating the intergalactic mediummore » (IGM) with a rate that is independent of density. This dramatically increases the entropy of the IGM after redshift z {approx} 2, with a number of important implications for structure formation: (1) this suggests a scenario for the origin of the cool core (CC)/non-cool core (NCC) bimodality in galaxy clusters and groups. Early-forming galaxy groups are unaffected because they can efficiently radiate the additional entropy, developing a CC. However, late-forming groups do not have sufficient time to cool before the entropy is gravitationally reprocessed through successive mergers-counteracting cooling and potentially raising the core entropy further. This may result in a population of X-ray dim groups/clusters, consistent with X-ray stacking analyses of optically selected samples. Hence, blazar heating works differently than feedback by active galactic nuclei, which we show can balance radiative cooling but is unable to transform CC into NCC clusters on the buoyancy timescale due to the weak coupling between the mechanical energy to the cluster gas. (2) We predict a suppression of the Sunyaev-Zel'dovich (SZ) power spectrum template on angular scales smaller than 5' due to the globally reduced central pressure of groups and clusters forming after z {approx} 1. This allows for a larger rms amplitude of the density power spectrum, {sigma}{sub 8}, and may reconcile SZ-inferred values with those by other cosmological probes even after allowing for a contribution due to patchy reionization. (3) Our redshift-dependent entropy floor increases the characteristic halo mass below which dwarf galaxies cannot form by a factor of approximately 10 (50) at mean density (in voids) over that found in models that include photoionization alone. This prevents the formation of late-forming dwarf galaxies (z {approx}< 2) with masses ranging from 10{sup 10} to 10{sup 11} M{sub Sun} for redshifts z {approx} 2 to 0, respectively. This may help resolve the 'missing satellite problem' in the Milky Way of the low observed abundances of dwarf satellites compared to cold dark matter simulations and may bring the observed early star formation histories into agreement with galaxy formation models. At the same time, it explains the 'void phenomenon' by suppressing the formation of galaxies within existing dwarf halos of masses <3 Multiplication-Sign 10{sup 10} M{sub Sun} with a maximum circular velocity <60 km s{sup -1} for z {approx}< 2, hence reconciling the number of dwarfs in low-density regions in simulations and the paucity of those in observations.« less

  10. Finite element analysis of fretting contact for nonhomogenous materials

    NASA Astrophysics Data System (ADS)

    Korkmaz, Y. M.; Coker, D.

    2018-01-01

    Fretting problem arises in the case of relatively small sliding motion between contacting surfaces. Fatigue life of the components that are in contact with each other, especially in rotorcraft may be significantly reduced due to fretting. The purpose of this study is to investigate material inhomogeneity near the contact region on the fretting problem in a cylindrical on flat contact configuration. A finite element (FE) model was constructed by using commercial finite element package ABAQUSTMto study partial sliding and stress concentrations. In order to investigate the effect of material inhomogeneity, the fretting contact is analyzed by introducing voids near the contact region. The void size and an array of voids is introduced into the substrate. The results are compared in terms of pressure, shear traction, tangential stress magnitudes and relative slip between the contacting materials.

  11. Cavitation instability in bulk metallic glasses

    NASA Astrophysics Data System (ADS)

    Dai, L. H.; Huang, X.; Ling, Z.

    2015-09-01

    Recent experiments have shown that fracture surfaces of bulk metallic glasses (BMGs) usually exhibit an intriguing nanoscale corrugation like fractographic feature mediated by nanoscale void formation. We attribute the onset of this nanoscale corrugation to TTZs (tension transformation zones) mediated cavitation. In our recent study, the spall experiments of Zr-based BMG using a single-stage light gas gun were performed. To uncover the mechanisms of the spallation damage nucleation and evolution, the samples were designed to be subjected to dynamic tensile loadings of identical amplitude but with different durations by making use of the multi-stress pulse and the double-flyer techniques. It is clearly revealed that the macroscopic spall fracture in BMGs originates from the nucleation, growth and coalescence of micro-voids. Then, a microvoid nucleation model of BMGs based on free volume theory is proposed, which indicates that the nucleation of microvoids at the early stage of spallation in BMGs is resulted from diffusion and coalescence of free volume. Furthermore, a theoretical model of void growth in BMGs undergoing remote dynamic hydrostatic tension is developed. The critical condition of cavitation instability is obtained. It is found that dynamic void growth in BMGs can be well controlled by a dimensionless inertial number characterizing the competition between intrinsic and extrinsic time scales. To unveil the atomic-level mechanism of cavitation, a systematic molecular dynamics (MD) simulation of spallation behaviour of a binary metallic glass with different impact velocities was performed. It is found that micro-void nucleation is determined TTZs while the growth is controlled by shear transformation zones (STZs) at atomic scale.

  12. Unusual void galaxy DDO 68: implications of the HST-resolved photometry

    NASA Astrophysics Data System (ADS)

    Makarov, D. I.; Makarova, L. N.; Pustilnik, S. A.; Borisov, S. B.

    2017-04-01

    DDO 68 (UGC 5340) is an unusual dwarf galaxy with extremely low gas metallicity [12 + log (O/H) = 7.14] residing in the nearby Lynx-Cancer void. Despite its apparent isolation, it shows both optical and H I morphological evidence for strong tidal disturbance. Here, we study the resolved stellar populations of DDO 68 using deep images from the HST archive. We determined a distance of 12.75 ± 0.41 Mpc using the tip of the red giant branch (TRGB). The star formation history reconstruction reveals that about 60 per cent of stars formed during the initial period of star formation, about 12-14 Gyr ago. During the next 10 Gyr, DDO 68 was in the quenched state, with only slight traces of star formation. The onset of the most recent burst of star formation occurred about 300 Myr ago. We find that young populations with ages of several million to a few hundred million years are widely spread across various parts of DDO 68, indicating an intense star formation episode with a high mean rate of 0.15 M⊙ yr-1. A major fraction of the visible stars in the whole system (˜80 per cent) have low metallicities: Z = Z⊙/50-Z⊙/20. The properties of the northern periphery of DDO 68 can be explained by an ongoing burst of star formation induced by the minor merger of a small, gas-rich, extremely metal-poor galaxy with a more typical dwarf galaxy. The current TRGB-based distance of DDO 68 implies a total negative peculiar velocity of ≈500 km s-1.

  13. Is There a Relation between Reticular Formation and Storage Symptoms in Men.

    PubMed

    Zorba, Orhan Ü; Kirbaş, Serkan; Uzun, Hakkı; Önem, Kadir; Çetinkaya, Mehmet; Rifaioğlu, Mehmet M

    2014-01-01

    To reveal brainstem originated pathology in men with different types of lower urinary tract symptoms blink reflex latency times were assessed. A total of 32 men, 16 with storage and 16 with voiding symptoms, were enrolled in the study. Blink reflex latency times were analyzed through electrical stimulation of the supraorbital nerve. Two responses in the orbicularis oculi muscle were recorded: the latency times for the early ipsilateral response, R1, and the late bilateral responses, R2. The mean ages of the patients with storage and voiding symptoms were 57.31 ± 6.87 and 58.06 ± 6.29 years, respectively. The R2 latency times were significantly longer in men with storage symptoms. However, the R1 latency times were similar for the two groups. Late blink latency times were long only in patients who had storage symptoms. An oligosynaptic path through the trigeminal nuclei, which includes one or two interneurons, is responsible for early response; however, late response is relayed through a polysynaptic path, including neurons in the reticular formation. It has also been shown that stimulation of the pontine reticular formation inhibits the micturition contraction. In some patients, storage symptoms may result from pathology that originates with the reticular formation and this pathology may lead to increases in late blink latency times. Additional studies are needed on other reflexes that are mediated through reticular formation, in order to show the possible dysfunction of the reticular formation in men with storage symptoms. © 2013 Wiley Publishing Asia Pty Ltd.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moutanabbir, O.; Scholz, R.; Goesele, U.

    We present a detailed study of the thermal evolution of H ion-induced vacancy related complexes and voids in bulk GaN implanted under ion-cut conditions. By using transmission electron microscopy, we found that the damage band in as-implanted GaN is decorated with a high density of nanobubbles of approx1-2 nm in diameter. Variable energy Doppler broadening spectroscopy showed that this band contains vacancy clusters and voids. In addition to vacancy clusters, the presence of V{sub Ga}, V{sub Ga}-H{sub 2}, and V{sub Ga}V{sub N} complexes was evidenced by pulsed low-energy positron lifetime spectroscopy. Subtle changes upon annealing in these vacancy complexes weremore » also investigated. As a general trend, a growth in open-volume defects is detected in parallel to an increase in both size and density of nanobubbles. The observed vacancy complexes appear to be stable during annealing. However, for temperatures above 450 deg. C, unusually large lifetimes were measured. These lifetimes are attributed to the formation of positronium in GaN. Since the formation of positronium is not possible in a dense semiconductor, our finding demonstrates the presence of sufficiently large open-volume defects in this temperature range. Based on the Tao-Eldrup model, the average lattice opening during thermal annealing was quantified. We found that a void diameter of 0.4 nm is induced by annealing at 600 deg. C. The role of these complexes in the subsurface microcracking is discussed.« less

  15. Generalized Rate Theory for Void and Bubble Swelling and its Application to Delta-Plutonium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, P. G.; Wall, M. A.; Wolfer, W. G.

    2016-10-04

    A rate theory for void and bubble swelling is derived that allows both vacancies and self-interstitial atoms to be generated by thermal activation at all sinks. In addition, they can also be produced by displacement damage from external and internal radiation. This generalized rate theory (GRT) is applied to swelling of gallium-stabilized δ-plutonium in which α-decay causes the displacement damage. Since the helium atoms produced also become trapped in vacancies, a distinction is made between empty and occupied vacancies. The growth of helium bubbles observed by transmission electron microscopy (TEM) in weapons-grade and in material enriched with Pu238 is analyzed,more » using different values for the formation energy of self-interstitial atoms (SIA) and two different sets of relaxation volumes for the vacancy and for the SIA. One set allows preferential capture of SIA at dislocations, while the other set gives equal preference to both vacancy and SIA. It is found that the helium bubble diameters observed are in better agreement with GRT predictions if no preferential capture occurs at dislocations. Therefore, helium bubbles in δ-plutonium will not evolve into voids. The helium density within the bubbles remains sufficiently high to cause thermal emission of SIA. Based on a helium density between two to three helium atoms per vacant site, the sum of formation and migration energies must be around 2.0 eV for SIA in δ-plutonium.« less

  16. Endolithic algae and micrite envelope formation in Bahamian oolites as revealed by scanning electron microscopy.

    NASA Technical Reports Server (NTRS)

    Margolis, S.; Rex, R. W.

    1971-01-01

    Examination of Holocene Bahamian ooelites by scanning electron and light microscopy has revealed the morphology and orientation of aragonite crystals in the lamellar ooelitic envelope, and their modification by the boring activities of endolithic algae. The voids produced by these algae are found in progressive stages of being lined and filled with precipitated microcrystalline aragonite, which is similar to the process of micrite envelope formation in molluscan and other skeletal carbonate grains.

  17. Nanoparticle Control of Void Formation and Expansion in Polymeric and Composite Systems

    DTIC Science & Technology

    2007-02-01

    facilities of GloCal Network Corporation, a Delaware legal entity with facilities in Seattle, Washington. The team succeeded at performing work in the State of...Delaware and Washington concurrently. After December 1, 2006, Professor Seferis and his team will continue the research, exclusively through GloCal

  18. Theoretical Framework for Educational Assessment: A Synoptic Review

    ERIC Educational Resources Information Center

    Ghaicha, Abdallah

    2016-01-01

    At this age of accountability, it is acknowledged that assessment is a powerful lever that can either boost or undermine students' learning. Hitherto, much of the regular institutional and instructional practices show that assessments remain inhibitory or void rather than constructive as these lack the assessment formative aspect. This denotes…

  19. Saturation meter

    DOEpatents

    Gregurech, S.

    1984-08-01

    A saturation meter for use in a pressurized water reactor plant comprising a differential pressure transducer having a first and second pressure sensing means and an alarm. The alarm is connected to the transducer and is preset to activate at a level of saturation prior to the formation of a steam void in the reactor vessel.

  20. A Voxel-Based Approach for Imaging Voids in Three-Dimensional Point Clouds

    NASA Astrophysics Data System (ADS)

    Salvaggio, Katie N.

    Geographically accurate scene models have enormous potential beyond that of just simple visualizations in regard to automated scene generation. In recent years, thanks to ever increasing computational efficiencies, there has been significant growth in both the computer vision and photogrammetry communities pertaining to automatic scene reconstruction from multiple-view imagery. The result of these algorithms is a three-dimensional (3D) point cloud which can be used to derive a final model using surface reconstruction techniques. However, the fidelity of these point clouds has not been well studied, and voids often exist within the point cloud. Voids exist in texturally difficult areas, as well as areas where multiple views were not obtained during collection, constant occlusion existed due to collection angles or overlapping scene geometry, or in regions that failed to triangulate accurately. It may be possible to fill in small voids in the scene using surface reconstruction or hole-filling techniques, but this is not the case with larger more complex voids, and attempting to reconstruct them using only the knowledge of the incomplete point cloud is neither accurate nor aesthetically pleasing. A method is presented for identifying voids in point clouds by using a voxel-based approach to partition the 3D space. By using collection geometry and information derived from the point cloud, it is possible to detect unsampled voxels such that voids can be identified. This analysis takes into account the location of the camera and the 3D points themselves to capitalize on the idea of free space, such that voxels that lie on the ray between the camera and point are devoid of obstruction, as a clear line of sight is a necessary requirement for reconstruction. Using this approach, voxels are classified into three categories: occupied (contains points from the point cloud), free (rays from the camera to the point passed through the voxel), and unsampled (does not contain points and no rays passed through the area). Voids in the voxel space are manifested as unsampled voxels. A similar line-of-sight analysis can then be used to pinpoint locations at aircraft altitude at which the voids in the point clouds could theoretically be imaged. This work is based on the assumption that inclusion of more images of the void areas in the 3D reconstruction process will reduce the number of voids in the point cloud that were a result of lack of coverage. Voids resulting from texturally difficult areas will not benefit from more imagery in the reconstruction process, and thus are identified and removed prior to the determination of future potential imaging locations.

  1. Management of non-neuropathic underactive bladder in children with voiding dysfunction by animated biofeedback: a randomized clinical trial.

    PubMed

    Ladi-Seyedian, Sanam; Kajbafzadeh, Abdol-Mohammad; Sharifi-Rad, Lida; Shadgan, Babak; Fan, Eileen

    2015-01-01

    To assess the efficacy of animated biofeedback and pelvic floor muscle (PFM) exercise in managing children with non-neuropathic underactive bladder (UB). A total of 50 children with UB without underlying neuropathic disease, aged 5-16 years, were included in this study. They were randomly divided into 2 equal treatment groups comprising standard urotherapy (hydration, scheduled voiding, toilet training, and diet) with (group A) or without (group B) animated biofeedback and PFM exercise. The follow-up period for each participant was 1 year. A complete voiding and bowel habit diary was recorded by participants' parents before and after 2 evaluations. In addition, uroflowmetry with electromyography and bladder ultrasound were performed before, 6 months, and 1 year after treatment. Results were compared between the 2 cohorts. Mean number of voiding episodes was significantly increased in group A after biofeedback therapy compared with group B with only standard urotherapy (6.6 ± 1.6 vs 4.5 ± 1 times a day; P <.000). Urinary tract infection did not relapse in 9 of 11 (81%) and 8 of 15 (38%) patients in groups A and B, respectively (P <.02). Postvoid residual volume and voiding time decreased considerably, whereas maximum urine flow increased significantly in group A compared with group B (17.2 ± 4.7 vs 12.9 ± 4.6 mL/s; P <.01). Combination of animated biofeedback and PFM exercise effectively improves sensation of bladder fullness and contractility in children with UB due to voiding dysfunction. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Void fraction, bubble size and interfacial area measurements in co-current downflow bubble column reactor with microbubble dispersion

    DOE PAGES

    Hernandez-Alvarado, Freddy; Kalaga, Dinesh V.; Turney, Damon; ...

    2017-05-06

    Micro-bubbles dispersed in bubble column reactors have received great interest in recent years, due to their small size, stability, high gas-liquid interfacial area concentrations and longer residence times. The high gas-liquid interfacial area concentrations lead to high mass transfer rates compared to conventional bubble column reactors. In the present work, experiments have been performed in a down-flow bubble column reactor with micro-bubbles generated and dispersed by a novel mechanism to determine the gas-liquid interfacial area concentrations by measuring the void fraction and bubble size distributions. Gamma-ray densitometry has been employed to determine the axial and radial distributions of void fractionmore » and a high speed camera equipped with a borescope is used to measure the axial and radial variations of bubble sizes. Also, the effects of superficial gas and liquid velocities on the two-phase flow characteristics have been investigated. Further, reconstruction techniques of the radial void fraction profiles from the gamma densitometry's chordal measurements are discussed and compared for a bubble column reactor with dispersed micro-bubbles. The results demonstrate that the new bubble generation technique offers high interfacial area concentrations (1,000 to 4,500 m 2/m 3) with sub-millimeter bubbles (500 to 900 µm) and high overall void fractions (10% – 60%) in comparison with previous bubble column reactor designs. The void fraction data was analyzed using slip velocity model and empirical correlation has been proposed to predict the Sauter mean bubble diameter.« less

  3. Void fraction, bubble size and interfacial area measurements in co-current downflow bubble column reactor with microbubble dispersion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez-Alvarado, Freddy; Kalaga, Dinesh V.; Turney, Damon

    Micro-bubbles dispersed in bubble column reactors have received great interest in recent years, due to their small size, stability, high gas-liquid interfacial area concentrations and longer residence times. The high gas-liquid interfacial area concentrations lead to high mass transfer rates compared to conventional bubble column reactors. In the present work, experiments have been performed in a down-flow bubble column reactor with micro-bubbles generated and dispersed by a novel mechanism to determine the gas-liquid interfacial area concentrations by measuring the void fraction and bubble size distributions. Gamma-ray densitometry has been employed to determine the axial and radial distributions of void fractionmore » and a high speed camera equipped with a borescope is used to measure the axial and radial variations of bubble sizes. Also, the effects of superficial gas and liquid velocities on the two-phase flow characteristics have been investigated. Further, reconstruction techniques of the radial void fraction profiles from the gamma densitometry's chordal measurements are discussed and compared for a bubble column reactor with dispersed micro-bubbles. The results demonstrate that the new bubble generation technique offers high interfacial area concentrations (1,000 to 4,500 m 2/m 3) with sub-millimeter bubbles (500 to 900 µm) and high overall void fractions (10% – 60%) in comparison with previous bubble column reactor designs. The void fraction data was analyzed using slip velocity model and empirical correlation has been proposed to predict the Sauter mean bubble diameter.« less

  4. Investigation into Behavior of a Steam-Water Mixture Flow Through Holes in a Submerged Perforated Sheet at High Void Fractions

    NASA Astrophysics Data System (ADS)

    Melikhov, V. I.; Melikhov, O. I.; Nerovnov, A. A.; Nikonov, S. M.

    2018-01-01

    Processing of experimental data on the pressure difference across a submerged perforated sheet (SPS) revealed that, at sufficiently high void fractions under SPS, the pressure difference across it became less than the pressure difference for the pure steam stream with the same flowrate. To find the cause of this, the effect of a liquid film, which can be formed on the SPS upstream surface as a result of water droplets' impact and can smooth over sharp edges of holes in SDS, was examined. This can decrease the pressure drop across the sharp edges of holes. This assumption was checked through numerical solution to several model problems in the axisymmetric formulation for a steam flow in a round pipe with an orifice. The flow of steam and water was modeled using the viscous incompressible liquid approximation, while the turbulence was described by the k-ɛ model. The evolution of the interfacial area was modeled using the VOF model. The following model problems of steam flow through an orifice were studied: a single-phase flow, a flow through the orifice with a liquid film on its upstream surface, a flow through a chamfered hole, and a flow through the orifice with a liquid film on its upstream surface without liquid supply to the film. The predictions demonstrate that even the approximate account of the liquid film effect on the steam flow yields a considerable decrease in the pressure drop across the hole (from 8 to 24%) due to smoothing its sharp outlet edges over. This makes it possible to make a conclusion that the cause of a decrease in the pressure drop across SPS observed in the experiments at high void fractions is the formation of a liquid film, which smooths the sharp edges of the hole.

  5. Effect of alcohols on the structure and dynamics of [BMIM][PF6] ionic liquid: A combined molecular dynamics simulation and Voronoi tessellation investigation

    NASA Astrophysics Data System (ADS)

    Sharma, Anirban; Ghorai, Pradip Kr.

    2018-05-01

    The solubility of 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) ionic liquid (IL) in water is much less, whereas it is highly soluble in alcohol. The composition dependent structural and dynamical properties of [BMIM][PF6] in methanol and ethanol have been investigated by using all-atom molecular dynamics simulation. Though the density of IL/alcohol binary mixtures is nearly identical for different alcohol mole fractions, we observe the unalike structural and dynamical properties of the IL in methanol and ethanol due to different local environments of the IL and polarity of the solvent. Voronoi polyhedral analysis exhibits strong dependence of local environments on alcohol concentrations. Void and neck distribution in Voronoi tessellation are approximately Gaussian for pure IL, but it deviates from the Gaussian behavior at very high alcohol concentration. At low alcohol concentration, void and neck distributions of [BMIM]+ with [PF6]- in both methanol and ethanol are almost identical, whereas the distributions in ethanol are broader with lesser intensity than in methanol at high alcohol concentration. This suggests the existence of a very few larger free space in ethanol than in methanol. Although peak positions in the void and neck distributions in ethanol are at larger void and neck radius than in methanol, peak intensity for medium sized void in methanol is significantly higher than in ethanol. Thus the translational motion of both [BMIM]+ and [PF6]- and the rotational motion of [BMIM]+ are faster in methanol than in ethanol. Hydrogen bonding of [BMIM]+ with [PF6]- is more predominate than the alcohols, hence cation-anion hydrogen bonding plays an important role in determining self-diffusion coefficient (D) of [BMIM]+, whereas for [PF6]-, cooperative motion due to hydrogen bonding with the alcohols is indispensable.

  6. Phase-field Model for Interstitial Loop Growth Kinetics and Thermodynamic and Kinetic Models of Irradiated Fe-Cr Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yulan; Hu, Shenyang Y.; Sun, Xin

    2011-06-15

    Microstructure evolution kinetics in irradiated materials has strongly spatial correlation. For example, void and second phases prefer to nucleate and grow at pre-existing defects such as dislocations, grain boundaries, and cracks. Inhomogeneous microstructure evolution results in inhomogeneity of microstructure and thermo-mechanical properties. Therefore, the simulation capability for predicting three dimensional (3-D) microstructure evolution kinetics and its subsequent impact on material properties and performance is crucial for scientific design of advanced nuclear materials and optimal operation conditions in order to reduce uncertainty in operational and safety margins. Very recently the meso-scale phase-field (PF) method has been used to predict gas bubblemore » evolution, void swelling, void lattice formation and void migration in irradiated materials,. Although most results of phase-field simulations are qualitative due to the lake of accurate thermodynamic and kinetic properties of defects, possible missing of important kinetic properties and processes, and the capability of current codes and computers for large time and length scale modeling, the simulations demonstrate that PF method is a promising simulation tool for predicting 3-D heterogeneous microstructure and property evolution, and providing microstructure evolution kinetics for higher scale level simulations of microstructure and property evolution such as mean field methods. This report consists of two parts. In part I, we will present a new phase-field model for predicting interstitial loop growth kinetics in irradiated materials. The effect of defect (vacancy/interstitial) generation, diffusion and recombination, sink strength, long-range elastic interaction, inhomogeneous and anisotropic mobility on microstructure evolution kinetics is taken into account in the model. The model is used to study the effect of elastic interaction on interstitial loop growth kinetics, the interstitial flux, and sink strength of interstitial loop for interstitials. In part II, we present a generic phase field model and discuss the thermodynamic and kinetic properties in phase-field models including the reaction kinetics of radiation defects and local free energy of irradiated materials. In particular, a two-sublattice thermodynamic model is suggested to describe the local free energy of alloys with irradiated defects. Fe-Cr alloy is taken as an example to explain the required thermodynamic and kinetic properties for quantitative phase-field modeling. Finally the great challenges in phase-field modeling will be discussed.« less

  7. Interpretation of Secondary Organic Aerosol Formation from Diesel Exhaust Photooxidation in an Environmental Chamber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakao, Shunsuke; Shrivastava, ManishKumar B.; Nguyen, Anh

    2011-04-14

    Secondary organic aerosol (SOA) formation from diesel exhaust in a smog chamber was investigated. Particle volume measurement based on mobility diameter is shown to underestimate SOA formation from diesel exhaust due to the external void space of agglomerate particles, in which case mass-based measurement technique is necessary. Rapid determination of particle effective density as a function of particle mass was performed by an Aerosol Particle Mass analyzer – Scanning Mobility Particle Sizer (APM-SMPS) to obtain particle mass concentration and fractal dimension. Continuous aging of aerosol was observed in terms of atomic ratio (O/C), from 0.05 to 0.25 in 12 hours,more » underscoring the importance of multi-generational oxidation of low-volatile organic vapors emitted from diesel engine as the significant source of oxygenated SOA. Experimental conditions possibly have strong impacts on physical evolution of diesel particulates in a smog chamber. Higher particle effective densities were observed when raw exhaust was injected into a full bag as opposed to filling a bag with diluted exhaust using an ejector diluter. When longer transfer line was used for injecting diesel exhaust into the smog chamber, rapid particle coagulation was observed, leading to increasing particle volume concentration in dark while its mass concentration is decreasing.« less

  8. Mathematical modeling of the process of filling a mold during injection molding of ceramic products

    NASA Astrophysics Data System (ADS)

    Kulkov, S. N.; Korobenkov, M. V.; Bragin, N. A.

    2015-10-01

    Using the software package Fluent it have been predicted of the filling of a mold in injection molding of ceramic products is of great importance, because the strength of the final product is directly related to the presence of voids in the molding, making possible early prediction of inaccuracies in the mold prior to manufacturing. The calculations were performed in the formulation of mathematical modeling of hydrodynamic turbulent process of filling a predetermined volume of a viscous liquid. The model used to determine the filling forms evaluated the influence of density and viscosity of the feedstock, and the injection pressure on the mold filling process to predict the formation of voids in the area caused by the shape defect geometry.

  9. The spatial distribution of dwarf galaxies in the CfA slice of the universe

    NASA Technical Reports Server (NTRS)

    Thuan, Trinh X.; Gott, J. Richard, III; Schneider, Stephen E.

    1987-01-01

    A complete (with the the exception of one) redshift sample of 58 galaxies in the Nilson catalog classified as dwarf, irregular, or Magellanic irregular is used to investigate the large-scale clustering properties of these low-surface brightness galaxies in the CfA slice of the universe (alpha in the range of 8-17 h, delta in the range of 26.5-32.5 deg). It is found that the low-surface brightness dwarf galaxies also lie on the structures delineated by the high-surface brightness normal galaxies and that they do not fill in the voids. This is inconsistent with a class of biased galaxy formation theories which predict that dwarf galaxies should be present everywhere, including the voids.

  10. Early stage of plastic deformation in thin films undergoing electromigration

    NASA Astrophysics Data System (ADS)

    Valek, B. C.; Tamura, N.; Spolenak, R.; Caldwell, W. A.; MacDowell, A. A.; Celestre, R. S.; Padmore, H. A.; Bravman, J. C.; Batterman, B. W.; Nix, W. D.; Patel, J. R.

    2003-09-01

    Electromigration occurs when a high current density drives atomic motion from the cathode to the anode end of a conductor, such as a metal interconnect line in an integrated circuit. While electromigration eventually causes macroscopic damage, in the form of voids and hillocks, the earliest stage of the process when the stress in individual micron-sized grains is still building up is largely unexplored. Using synchrotron-based x-ray microdiffraction during an in-situ electromigration experiment, we have discovered an early prefailure mode of plastic deformation involving preferential dislocation generation and motion and the formation of a subgrain structure within individual grains of a passivated Al (Cu) interconnect. This behavior occurs long before macroscopic damage (hillocks and voids) is observed.

  11. Fabrication of Cu-Ni mixed phase layer using DC electroplating and suppression of Kirkendall voids in Sn-Ag-Cu solder joints

    NASA Astrophysics Data System (ADS)

    Chee, Sang-Soo; Lee, Jong-Hyun

    2014-05-01

    A solderable layer concurrently containing Cu-rich and Ni-rich phases (mixed-phase layer, MPL) was fabricated by direct current electroplating under varying process conditions. Current density was considered as the main parameter to adjust the microstructure and composition of MPL during the electroplating process, and deposit thickness were evaluated as functions of plating time. As a result, it was observed that the coral-like structure that consisted of Cu-rich and Ni-rich phases grew in the thickness direction. The most desirable microstructure was obtained at a relatively low current density of 0.4 mA/cm2. In other words, the surface was the smoothest and defect-free at this current density. The electroplating rate was slightly enhanced with an increase in current density. Investigations of its solid-state reaction properties, including the formation of Kirkendall voids, were also carried out after reflow soldering with Sn-3.0 Ag-0.5 Cu solder balls. In the solid-state aging experiment at 125°C, Kirkendall voids at the normal Sn-3.0 Ag-0.5 Cu solder/Cu interface were easily formed after just 240 h. Meanwhile, the presence of an intermetallic compound (IMC) layer created in the solder/MPL interface indicated a slightly lower growth rate, and no Kirkendall voids were observed in the IMC layer even after 720 h.

  12. Ionic Liquids as the MOFs/Polymer Interfacial Binder for Efficient Membrane Separation.

    PubMed

    Lin, Rijia; Ge, Lei; Diao, Hui; Rudolph, Victor; Zhu, Zhonghua

    2016-11-23

    Obtaining strong interfacial affinity between filler and polymer is critical to the preparation of mixed matrix membranes (MMMs) with high separation efficiency. However, it is still a challenge for micron-sized metal organic frameworks (MOFs) to achieve excellent compatibility and defect-free interface with polymer matrix. Thin layer of ionic liquid (IL) was immobilized on micron-sized HKUST-1 to eliminate the interfacial nonselective voids in MMMs with minimized free ionic liquid (IL) in polymer matrix, and then the obtained IL decorated HKUST-1 was incorporated into 4,4'-(hexafluoroisopropylidene)diphthalic anhydride-2,3,5,6-tetramethyl-1,3-phenyldiamine (6FDA-Durene) to fabricate MMMs. Acting as a filler/polymer interfacial binder, the favorable MOF/IL and IL/polymer interaction can facilitate the enhancement of MOF/polymer affinity. Compared to MMM with only HKUST-1 incorporation, MMM with IL decorated HKUST-1 succeeded in restricting the formation of nonselective interfacial voids, leading to an increment in CO 2 selectivity. The IL decoration method can be an effective approach to eliminate interfacial voids in MMMs, extending the filler selection to a wide range of large-sized fillers.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baidakov, Vladimir G., E-mail: baidakov@itp.uran.ru; Tipeev, Azat O.

    The method of molecular dynamics simulation has been used to investigate the phase decay of a metastable Lennard-Jones face-centered cubic crystal at positive and negative pressures. It is shown that at high degrees of metastability, crystal decay proceeds through the spontaneous formation and growth of new-phase nuclei. It has been found that there exists a certain boundary temperature. Below this temperature, the crystal phase disintegrates as the result of formation of voids, and above, as a result of formation of liquid droplets. The boundary temperature corresponds to the temperature of cessation of a crystal–liquid phase equilibrium when the melting linemore » comes in contact with the spinodal of the stretched liquid. The results of the simulations are interpreted in the framework of classical nucleation theory. The thermodynamics of phase transitions in solids has been examined with allowance for the elastic energy of stresses arising owing to the difference in the densities of the initial and the forming phases. As a result of the action of elastic forces, at negative pressures, the boundary of the limiting superheating (stretching) of a crystal approaches the spinodal, on which the isothermal bulk modulus of dilatation becomes equal to zero. At the boundary of the limiting superheating (stretching), the shape of liquid droplets and voids is close to the spherical one.« less

  14. AC impedance spectroscopy of NASICON type Na3Fe2(PO4)3 ceramic

    NASA Astrophysics Data System (ADS)

    Mandal, Biswajit; Thakur, A. K.

    2018-05-01

    Super ionic conductors (e.g.; A3M2(XO4)3, A=Li, Na) have received attention in applied research due to their interesting electrochemical property and inherently high ionic conductivity [1]. However, structural and compatibility requirements for fast ion transport is stringent and it plays a crucial role. In A3M2(XO4)3, a suitable cage formation in the crystal framework due to corner sharing arrangement of XO4 tetrahedra and MO6 octahedra creates voids that acts as host/guest site for cation transport. In this work, we report Nasicon structure Na3Fe2(PO4)3 (NFP) prepared via sol-gel route mediated by citric acid. Structural analysis confirmed that NFP sample belongs to monoclinic crystal structure having Cc space group (S. G. No 9) with lattice parameters, a=15.106 Å, b=8.722 Å, c=8.775 Å and β=124.96°. Electrical properties of the prepared sample have been studied by AC impedance spectroscopy technique. The AC conductivity results indicated typical signature of ionically conducting system.

  15. Effect of filler content on mechanical and dynamic mechanical properties of particulate biphasic calcium phosphate--polylactide composites.

    PubMed

    Bleach, N C; Nazhat, S N; Tanner, K E; Kellomäki, M; Törmälä, P

    2002-04-01

    A bioabsorbable self-reinforced polylactide/biphasic calcium phosphate (BCP) composite is being developed for fracture fixation plates. One manufacturing route is to produce preimpregnated sheets by pulling polylactide (PLA) fibres through a suspension of BCP filler in a PLA solution and compression moulding the prepreg to the desired shape. To aid understanding of the process, interactions between the matrix and filler were investigated. Composite films containing 0-0.25 volume fraction filler, produced by solvent casting, were analysed using SEM, tensile testing and dynamic mechanical analysis (DMA). Homogeneous films could be made, although some particle agglomeration was seen at higher filler volume fractions. As the filler content increased, the failure strain decreased due to a reduction in the amount of ductile polymer present and the ultimate tensile strength (UTS) decreased because of agglomeration and void formation at higher filler content. The matrix glass transition temperature increased due to polymer chain adsorption and immobilization onto the BCP particles. Complex damping mechanisms, such as particle-particle agglomeration, may exist at the higher BCP volume fractions.

  16. Development of an In-line Urine Monitoring System for the International Space Station

    NASA Technical Reports Server (NTRS)

    Broyan, James Lee, Jr.; Cibuzar, Branelle R.

    2009-01-01

    Exposure to microgravity during space flight causes bone loss when calcium and other metabolic by-products are excreted in urine voids. Frequent and accurate measurement of urine void volume and constituents is thus essential in determining crew bone loss and the effectiveness of the countermeasures that are taken to minimize this loss. Earlier space shuttle Urine Monitoring System (UMS) technology was unable to accurately measure urine void volumes due to the cross-contamination that took place between users, as well as to fluid system instabilities. Crew urine voids are currently collected manually in a flexible plastic bag that contains a known tracer quantity. A crew member must completely mix the contents of this bag before withdrawing a representative syringe sample for later ground analysis. The existing bag system accuracy is therefore highly dependent on mixing technique. The International Space Station (ISS) UMS has been developed as an automated device that collects urine from the Waste and Hygiene Compartment (WHC) urinal funnel interface, separates the urine, measures void volume, and allows for syringe sampling. After the ISS UMS has been used by a crew member, it delivers urine to the WHC for normal processing. The UMS plumbing is then flushed with a small volume of water. The current ISS UMS design incorporates an innovative rotary separator that minimizes foaming, consequently greatly reducing cross-contamination among urine voids (less than 0.5 mL urine) while also providing accurate volume measurements (less than 2 percent error for 100 to 1,000 mL void volumes). ISS UMS performance has been validated through extensive ground tests and reduced-gravity aircraft flights. The locker-sized ISS UMS is currently undergoing a design modification that will permit it to interface with the ISS Node 3 WHC Russian toilet (ACY) hardware. The operating principles, characteristics, and results of this design modification are outlined here.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, B.; The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610207; Wang, L.

    With large-scale molecular dynamics simulations, we investigate shock response of He nanobubbles in single crystal Cu. For sufficient bubble size or internal pressure, a prismatic dislocation loop may form around a bubble in unshocked Cu. The internal He pressure helps to stabilize the bubble against plastic deformation. However, the prismatic dislocation loops may partially heal but facilitate nucleation of new shear and prismatic dislocation loops. For strong shocks, the internal pressure also impedes internal jetting, while a bubble assists local melting; a high speed jet breaks a He bubble into pieces dispersed among Cu. Near-surface He bubbles may burst andmore » form high velocity ejecta containing atoms and small fragments, while the ejecta velocities do not follow the three-dimensional Maxwell-Boltzmann distributions expected for thermal equilibrium. The biggest fragment size deceases with increasing shock strength. With a decrease in ligament thickness or an increase in He bubble size, the critical shock strength required for bubble bursting decreases, while the velocity range, space extension and average velocity component along the shock direction, increase. Small bubbles are more efficient in mass ejecting. Compared to voids and perfect single crystal Cu, He bubbles have pronounced effects on shock response including bubble/void collapse, Hugoniot elastic limit (HEL), deformation mechanisms, and surface jetting. HEL is the highest for perfect single crystal Cu with the same orientations, followed by He bubbles without pre-existing prismatic dislocation loops, and then voids. Complete void collapse and shear dislocations occur for embedded voids, as opposed to partial collapse, and shear and possibly prismatic dislocations for He bubbles. He bubbles lower the threshhold shock strength for ejecta formation, and increase ejecta velocity and ejected mass.« less

  18. Cosmic strings and the large-scale structure

    NASA Technical Reports Server (NTRS)

    Stebbins, Albert

    1988-01-01

    A possible problem for cosmic string models of galaxy formation is presented. If very large voids are common and if loop fragmentation is not much more efficient than presently believed, then it may be impossible for string scenarios to produce the observed large-scale structure with Omega sub 0 = 1 and without strong environmental biasing.

  19. Mechanical and thermal characterization of a ceramic/glass composite seal for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Dev, Bodhayan; Walter, Mark E.; Arkenberg, Gene B.; Swartz, Scott L.

    2014-01-01

    Solid oxide fuel cells (SOFCs) require seals that can function in harsh, elevated temperature environments. Comprehensive characterization and understanding of seals is needed for commercially viable SOFCs. The present research focuses on a novel ceramic/glass composite seal that is produced by roller compaction or tape casting of glass and ceramic powders and an organic binder. Upon heat treatment, micro-voids and surface anomalies are formed. Increased heating and cooling rates during the heat treatment resulted in more and larger voids. The first goal of the current research is to suggest an appropriate heating and cooling rate to minimize the formation of microstructural defects. After identifying an appropriate cure cycle, seals were thermally cycled and then characterized with laser dilatometry, X-ray diffraction, and sonic resonance. From these experiments the crystalline phases, thermal expansion, and elastic properties were determined. Subsequently compression testing with an acoustic emission (AE) sensor and post-test microstructural analysis were used to identify the formation of damage. By fully understanding the characteristics of this ceramic/glass composite seal, next generation seals can be fabricated for improved performance.

  20. Advances in Chemical and Structural Characterization of Concretion with Implications for Modeling Marine Corrosion

    NASA Astrophysics Data System (ADS)

    Johnson, Donald L.; DeAngelis, Robert J.; Medlin, Dana J.; Carr, James D.; Conlin, David L.

    2014-05-01

    The Weins number model and concretion equivalent corrosion rate methodology were developed as potential minimum-impact, cost-effective techniques to determine corrosion damage on submerged steel structures. To apply the full potential of these technologies, a detailed chemical and structural characterization of the concretion (hard biofouling) that transforms into iron bearing minerals is required. The fractions of existing compounds and the quantitative chemistries are difficult to determine from x-ray diffraction. Environmental scanning electron microscopy was used to present chemical compositions by means of energy-dispersive spectroscopy (EDS). EDS demonstrates the chemical data in mapping format or in point or selected area chemistries. Selected-area EDS data collection at precise locations is presented in terms of atomic percent. The mechanism of formation and distribution of the iron-bearing mineral species at specific locations will be presented. Based on water retention measurements, porosity in terms of void volume varies from 15 v/o to 30 v/o (vol.%). The void path displayed by scanning electron microscopy imaging illustrates the tortuous path by which oxygen migrates in the water phase within the concretion from seaside to metalside.

  1. Systematic Study on the Self-Assembled Hexagonal Au Voids, Nano-Clusters and Nanoparticles on GaN (0001).

    PubMed

    Pandey, Puran; Sui, Mao; Li, Ming-Yu; Zhang, Quanzhen; Kim, Eun-Soo; Lee, Jihoon

    2015-01-01

    Au nano-clusters and nanoparticles (NPs) have been widely utilized in various electronic, optoelectronic, and bio-medical applications due to their great potentials. The size, density and configuration of Au NPs play a vital role in the performance of these devices. In this paper, we present a systematic study on the self-assembled hexagonal Au voids, nano-clusters and NPs fabricated on GaN (0001) by the variation of annealing temperature and deposition amount. At relatively low annealing temperatures between 400 and 600°C, the fabrication of hexagonal shaped Au voids and Au nano-clusters are observed and discussed based on the diffusion limited aggregation model. The size and density of voids and nano-clusters can systematically be controlled. The self-assembled Au NPs are fabricated at comparatively high temperatures from 650 to 800°C based on the Volmer-Weber growth model and also the size and density can be tuned accordingly. The results are symmetrically analyzed and discussed in conjunction with the diffusion theory and thermodynamics by utilizing AFM and SEM images, EDS maps and spectra, FFT power spectra, cross-sectional line-profiles and size and density plots.

  2. Systematic Study on the Self-Assembled Hexagonal Au Voids, Nano-Clusters and Nanoparticles on GaN (0001)

    PubMed Central

    Pandey, Puran; Sui, Mao; Li, Ming-Yu; Zhang, Quanzhen; Kim, Eun-Soo; Lee, Jihoon

    2015-01-01

    Au nano-clusters and nanoparticles (NPs) have been widely utilized in various electronic, optoelectronic, and bio-medical applications due to their great potentials. The size, density and configuration of Au NPs play a vital role in the performance of these devices. In this paper, we present a systematic study on the self-assembled hexagonal Au voids, nano-clusters and NPs fabricated on GaN (0001) by the variation of annealing temperature and deposition amount. At relatively low annealing temperatures between 400 and 600°C, the fabrication of hexagonal shaped Au voids and Au nano-clusters are observed and discussed based on the diffusion limited aggregation model. The size and density of voids and nano-clusters can systematically be controlled. The self-assembled Au NPs are fabricated at comparatively high temperatures from 650 to 800°C based on the Volmer-Weber growth model and also the size and density can be tuned accordingly. The results are symmetrically analyzed and discussed in conjunction with the diffusion theory and thermodynamics by utilizing AFM and SEM images, EDS maps and spectra, FFT power spectra, cross-sectional line-profiles and size and density plots. PMID:26285135

  3. Void swelling and irradiation creep in austenitic and martensitic stainless steels under cyclic irradiation

    NASA Astrophysics Data System (ADS)

    Zhiyong, Zhu; Jung, Peter; Klein, Horst

    1993-07-01

    A high purity austenitic FeCrNiMo alloy and DIN 1.4914 martensitic stainless steel were irradiated with 6.2 MeV protons. The pulsed operation of a tokamak fusion reactor was simulated by simultaneous cycling of beam, temperature and stress similar to that anticipated in the NET (Next European Torus) design. Void swelling and irradiation creep of the FeCrNiMo alloy under cyclic and stationary conditions were identical within the experimental error. The martensitic steel showed no swelling at the present low doses (~0.2 dpa). The plastic deformation under continuous and cyclic irradiation was essentially determined by thermal creep. During irradiation the electrical resistivity of FeCrNiMo slightly increased, probably due to swelling, while that of DIN 1.4914 linearly decreased, probably due to segregation effects.

  4. The sparkling Universe: clustering of voids and void clumps

    NASA Astrophysics Data System (ADS)

    Lares, Marcelo; Ruiz, Andrés N.; Luparello, Heliana E.; Ceccarelli, Laura; Garcia Lambas, Diego; Paz, Dante J.

    2017-07-01

    We analyse the clustering of cosmic voids using a numerical simulation and the main galaxy sample from the Sloan Digital Sky Survey. We take into account the classification of voids into two types that resemble different evolutionary modes: those with a rising integrated density profile (void-in-void mode or R-type) and voids with shells (void-in-cloud mode or S-type). The results show that voids of the same type have stronger clustering than the full sample. We use the correlation analysis to define void clumps, associations with at least two voids separated by a distance of at most the mean void separation. In order to study the spatial configuration of void clumps, we compute the minimal spanning tree and analyse their multiplicity, maximum length and elongation parameter. We further study the dynamics of the smaller sphere that enclose all the voids in each clump. Although the global densities of void clumps are different according to their member-void types, the bulk motions of these spheres are remarkably lower than those of randomly placed spheres with the same radius distribution. In addition, the coherence of pairwise void motions does not strongly depend on whether voids belong to the same clump. Void clumps are useful to analyse the large-scale flows around voids, since voids embedded in large underdense regions are mostly in the void-in-void regime, where the expansion of the larger region produces the separation of voids. Similarly, voids around overdense regions form clumps that are in collapse, as reflected in the relative velocities of voids that are mostly approaching.

  5. Self-organization of helium precipitates into elongated channels within metal nanolayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Di; Li, Nan; Yuryev, Dina

    Material degradation due to precipitation of implanted helium (He) is a key concern in nuclear energy. Decades of research have mapped out the fate of He precipitates in metals, from nucleation and growth of equiaxed bubbles and voids to formation and bursting of surface blisters. By contrast, we show that He precipitates confined within nanoscale metal layers depart from their classical growth trajectories: They self-organize into elongated channels. These channels form via templated nucleation of He precipitates along layer surfaces followed by their growth and spontaneous coalescence into stable precipitate lines. The total line length and connectivity increases with themore » amount of implanted He, indicating that these channels ultimately interconnect into percolating “vascular” networks. In conclusion, vascularized metal composites promise a transformative solution to He-induced damage by enabling in operando outgassing of He and other impurities while maintaining material integrity.« less

  6. Multiphysics Simulations of Hot-Spot Initiation in Shocked Insensitive High-Explosive

    NASA Astrophysics Data System (ADS)

    Najjar, Fady; Howard, W. M.; Fried, L. E.

    2010-11-01

    Solid plastic-bonded high-explosive materials consist of crystals with micron-sized pores embedded. Under mechanical or thermal insults, these voids increase the ease of shock initiation by generating high-temperature regions during their collapse that might lead to ignition. Understanding the mechanisms of hot-spot initiation has significant research interest due to safety, reliability and development of new insensitive munitions. Multi-dimensional high-resolution meso-scale simulations are performed using the multiphysics software, ALE3D, to understand the hot-spot initiation. The Cheetah code is coupled to ALE3D, creating multi-dimensional sparse tables for the HE properties. The reaction rates were obtained from MD Quantum computations. Our current predictions showcase several interesting features regarding hot spot dynamics including the formation of a "secondary" jet. We will discuss the results obtained with hydro-thermo-chemical processes leading to ignition growth for various pore sizes and different shock pressures.

  7. Self-assembled patches in PtSi/n-Si (111) diodes

    NASA Astrophysics Data System (ADS)

    Afandiyeva, I. M.; Altιndal, Ş.; Abdullayeva, L. K.; Bayramova, A. İ.

    2018-05-01

    Using the effect of the temperature on the capacitance–voltage (C–V) and conductance–voltage (G/ω–V) characteristics of PtSi/n-Si (111) Schottky diodes the profile of apparent doping concentration (N Dapp), the potential difference between the Fermi energy level and the bottom of the conduction band (V n), apparent barrier height (Φ Bapp), series resistance (R s) and the interface state density N ss have been investigated. From the temperature dependence of (C–V) it was found that these parameters are non-uniformly changed with increasing temperature in a wide temperature range of 79–360 K. The voltage and temperature dependences of apparent carrier distribution we attributed to the existence of self-assembled patches similar the quantum wells, which formed due to the process of PtSi formation on semiconductor and the presence of hexagonal voids of Si (111).

  8. Self-organization of helium precipitates into elongated channels within metal nanolayers

    DOE PAGES

    Chen, Di; Li, Nan; Yuryev, Dina; ...

    2017-11-10

    Material degradation due to precipitation of implanted helium (He) is a key concern in nuclear energy. Decades of research have mapped out the fate of He precipitates in metals, from nucleation and growth of equiaxed bubbles and voids to formation and bursting of surface blisters. By contrast, we show that He precipitates confined within nanoscale metal layers depart from their classical growth trajectories: They self-organize into elongated channels. These channels form via templated nucleation of He precipitates along layer surfaces followed by their growth and spontaneous coalescence into stable precipitate lines. The total line length and connectivity increases with themore » amount of implanted He, indicating that these channels ultimately interconnect into percolating “vascular” networks. In conclusion, vascularized metal composites promise a transformative solution to He-induced damage by enabling in operando outgassing of He and other impurities while maintaining material integrity.« less

  9. Self-organization of helium precipitates into elongated channels within metal nanolayers

    PubMed Central

    Chen, Di; Li, Nan; Yuryev, Dina; Baldwin, J. Kevin; Wang, Yongqiang; Demkowicz, Michael J.

    2017-01-01

    Material degradation due to precipitation of implanted helium (He) is a key concern in nuclear energy. Decades of research have mapped out the fate of He precipitates in metals, from nucleation and growth of equiaxed bubbles and voids to formation and bursting of surface blisters. By contrast, we show that He precipitates confined within nanoscale metal layers depart from their classical growth trajectories: They self-organize into elongated channels. These channels form via templated nucleation of He precipitates along layer surfaces followed by their growth and spontaneous coalescence into stable precipitate lines. The total line length and connectivity increases with the amount of implanted He, indicating that these channels ultimately interconnect into percolating “vascular” networks. Vascularized metal composites promise a transformative solution to He-induced damage by enabling in operando outgassing of He and other impurities while maintaining material integrity. PMID:29152573

  10. Effect of current crowding on whisker growth at the anode in flip chip solder joints

    NASA Astrophysics Data System (ADS)

    Ouyang, Fan-Yi; Chen, Kai; Tu, K. N.; Lai, Yi-Shao

    2007-12-01

    Owing to the line-to-bump configuration in flip chip solder joints, current crowding occurs when electrons enter into or exit from the solder bump. At the cathode contact, where electrons enter into the bump, current crowding induced pancake-type void formation has now been observed widely. At the anode contact, where electrons exit from the bump, we report here that whisker is formed. Results of both eutectic SnPb and SnAgCu solder joints are presented and compared. The cross-sectioned surface in SnPb showed dimple and bulge after electromigration, while that of SnAgCu remained flat. The difference is due to a larger back stress in the SnAgCu, consequently, electromigration in SnAgCu is slower than that in SnPb. Nanoindentation markers were used to measure the combined atomic fluxes of back stress and electromigration.

  11. “U-Method” TVT-Secur Slings: Are they obstructive?

    PubMed Central

    Richard, Patrick; Gagnon, Louis-Olivier; Tu, Le Mai

    2012-01-01

    Introduction: The TVT-Secur, a single incision sling, was introduced in 2006. It is implanted using either the “hammock” or the “U-method” technique. With the latter, the sling is tightened to create a “pillowing effect” on the urethra until a negative stress test is obtained. Short-term results seem promising. However, no study has ever reported on the voiding pattern 12 months after its implantation. Our objective was to assess whether the “U-method” technique creates an obstructive voiding pattern on pressure-flow study (PFS) 12 months after the surgery. Methods: In this retrospective study, we reviewed the charts of 33 women who underwent the “U-method” TVT-Secur. Patients were evaluated before and 12 months postoperatively with regard to different urodynamic studies (UDS). The incontinence status was also assessed 12 months after surgery. Results: At 12 months after the operation, 12.5% (4/32) of the patients reported an improvement of their stress urinary incontinence, while 78.1% (25/32) reported being cured from it. The objective cure rate was 63% (19/30). One patient had a suspected bladder outlet obstruction (BOO) based on PFS. Maximal flow rate (Qmax) was significantly lower 12 months after surgery (26.0 mL/s [range: 19.0–36.5] vs. 21.5 mL/s [range: 16.0–32.3]). However, median voided volume was lower on the postoperative uroflowmetry (446 mL [range: 348–605] vs. 320 mL [range: 243–502]). Furthermore, none of the patients complained of voiding symptoms after surgery. Conclusions: Although one patient had findings compatible with BOO, none complained of voiding symptoms. TVT-Secur may result in a lower Qmax. However, this finding may be due to a lower voiding volume on the postoperative UDS. PMID:22511425

  12. Angular momentum of dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Kurapati, Sushma; Chengalur, Jayaram N.; Pustilnik, Simon; Kamphuis, Peter

    2018-05-01

    Mass and specific angular momentum are two fundamental physical parameters of galaxies. We present measurements of the baryonic mass and specific angular momentum of 11 void dwarf galaxies derived from neutral hydrogen (HI) synthesis data. Rotation curves were measured using 3D and 2D tilted ring fitting routines, and the derived curves generally overlap within the error bars, except in the central regions where, as expected, the 3D routines give steeper curves. The specific angular momentum of void dwarfs is found to be high compared to an extrapolation of the trends seen for higher mass bulge-less spirals, but comparable to that of other dwarf irregular galaxies that lie outside of voids. As such, our data show no evidence for a dependence of the specific angular momentum on the large scale environment. Combining our data with the data from the literature, we find a baryonic threshold of ˜109.1 M⊙ for this increase in specific angular momentum. Interestingly, this threshold is very similar to the mass threshold below which the galaxy discs start to become systematically thicker. This provides qualitative support to the suggestion that the thickening of the discs, as well as the increase in specific angular momentum, are both results of a common physical mechanism, such as feedback from star formation. Quantitatively, however, the amount of star formation observed in our dwarfs appears insufficient to produce the observed increase in specific angular momentum. It is hence likely that other processes, such as cold accretion of high angular momentum gas, also play a role in increasing the specific angular momentum.

  13. Investigation of shear damage considering the evolution of anisotropy

    NASA Astrophysics Data System (ADS)

    Kweon, S.

    2013-12-01

    The damage that occurs in shear deformations in view of anisotropy evolution is investigated. It is widely believed in the mechanics research community that damage (or porosity) does not evolve (increase) in shear deformations since the hydrostatic stress in shear is zero. This paper proves that the above statement can be false in large deformations of simple shear. The simulation using the proposed anisotropic ductile fracture model (macro-scale) in this study indicates that hydrostatic stress becomes nonzero and (thus) porosity evolves (increases or decreases) in the simple shear deformation of anisotropic (orthotropic) materials. The simple shear simulation using a crystal plasticity based damage model (meso-scale) shows the same physics as manifested in the above macro-scale model that porosity evolves due to the grain-to-grain interaction, i.e., due to the evolution of anisotropy. Through a series of simple shear simulations, this study investigates the effect of the evolution of anisotropy, i.e., the rotation of the orthotropic axes onto the damage (porosity) evolution. The effect of the evolutions of void orientation and void shape onto the damage (porosity) evolution is investigated as well. It is found out that the interaction among porosity, the matrix anisotropy and void orientation/shape plays a crucial role in the ductile damage of porous materials.

  14. Laboratory measurements of electrical resistivity versus water content on small soil cores

    NASA Astrophysics Data System (ADS)

    Robain, H.; Camerlynck, C.; Bellier, G.; Tabbagh, A.

    2003-04-01

    The assessment of soil water content variations more and more leans on geophysical methods that are non invasive and that allow a high spatial sampling. Among the different methods, DC electrical imaging is moving forward. DC Electrical resistivity shows indeed strong seasonal variations that principally depend on soil water content variations. Nevertheless, the widely used Archie's empirical law [1], that links resistivity with voids saturation and water conductivity is not well suited to soil materials with high clay content. Furthermore, the shrinking and swelling properties of soil materials have to be considered. Hence, it is relevant to develop new laboratory experiments in order to establish a relation between electrical resistivity and water content taking into account the rheological and granulometrical specificities of soil materials. The experimental device developed in IRD laboratory allows to monitor simultaneously (i) the water content, (ii) the electrical resistivity and (iii) the volume of a small cylindrical soil core (100cm3) put in a temperature controlled incubator (30°C). It provides both the shrinkage curve of the soil core (voids volume versus water content) and the electrical resistivity versus water content curve The modelisation of the shrinkage curve gives for each moisture state the water respectively contained in macro and micro voids [2], and then allows to propose a generalized Archie's like law as following : 1/Rs = 1/Fma.Rma + 1/Fmi.Rmi and Fi = Ai/(Vi^Mi.Si^Ni) with Rs : the soil resistivity. Fma and Fmi : the so called "formation factor" for macro and micro voids, respectively. Rma and Rmi : the resistivity of the water contained in macro and micro voids, respectively. Vi : the volume of macro and micro voids, respectively. Si : the saturation of macro and micro voids, respectively. Ai, Mi and Ni : adjustment coefficients. The variations of Rmi are calculated, assuming that Rma is a constant. Indeed, the rise of ionic concentration in water may be neglected during the sewage of macro voids as it corresponds to a small quantity of water for the studied samples. Soil solid components are generally electrical insulators, the conduction of electrical current only lies on two phenomenon occurring in water : (i) volume conduction controlled by the electrolyte concentration in water and the geometrical characteristics of macro voids network ; (ii) surface conduction controlled by the double diffuse layer that depends on the solid-liquid interactions, the specific surface of clay minerals and the geometry of particles contacts. For the water contained in macro voids the preeminent phenomenon seems to be volume conduction while for the water contained in micro voids, it seems to be surface conduction. This hypothesis satisfyingly explains the shape of the electrical resistivity versus water content curves obtained for three different oxisols with clayey, clayey-sandy and sandy-clayey texture. [1] Archie G.E. 1942. The electrical resistivity log as an aid in determining some reservoirs characteristics. Trans. AIME, 146, 54-67. [2] Braudeau E. et al. 1999. New device and method for soil shrinkage curve measurement and characterization. S.S.S.A.J., 63(3), 525-535.

  15. COMBINED USE OF α-ADRENERGIC AND MUSCARINIC ANTAGONISTS FOR THE TREATMENT OF VOIDING DYSFUNCTION

    PubMed Central

    RUGGIERI, MICHAEL R.; BRAVERMAN, ALAN S.; PONTARI, MICHEL A.

    2012-01-01

    Purpose We provide an overview of the medical literature supporting the combined use of muscarinic and α-adrenergic antagonist therapy for the treatment of voiding dysfunction. Materials and Methods The MEDLINE database (1966 to 2004) of the United States National Library of Medicine was searched for pertinent studies. Results Although the mechanism of action of α-adrenergic antagonist therapy for voiding dysfunction has traditionally been assumed to be relaxation of the periurethral, prostatic and bladder neck smooth muscle, substantial evidence supports action at extraprostatic sites involved in micturition, including the bladder dome smooth muscle, peripheral ganglia, spinal cord and brain. Likewise the mechanism of action of anticholinergic therapy has been traditionally assumed to be inhibition of the M3 muscarinic receptor subtypes that mediate normal bladder contractions. However, M2 receptor mediates hypertrophied bladder contractions and there is evidence for an M2 component to the suprasacral control of voiding. Conclusions Based on the physiology of α-adrenergic and muscarinic receptors the inhibition of each one would be expected to be more beneficial than that of either alone because they would work on 2 components of detrusor function. Patients who would likely benefit from this combination therapy are men with lower urinary tract symptoms, women with urgency/frequency syndrome (overactive bladder), patients with uninhibited bladder contractions due to neurogenic bladder, and patients with pelvic pain and voiding symptoms, ie interstitial cystitis and chronic prostatitis/chronic pelvic pain syndrome. PMID:16217275

  16. Tapioca starch graft copolymers and Dome Matrix® modules II. Effect of modules assemblage on riboflavin release kinetics.

    PubMed

    Casas, Marta; Strusi, Orazio Luca; Jiménez-Castellanos, M Rosa; Colombo, Paolo

    2011-01-01

    This paper studies the Riboflavin release from systems made of assembled modules of Dome Matrix® technology using tapioca starch-ethylmethacrylate (TSEMA) and tapioca hydroxypropylstarch-ethylmethacrylate (THSEMA) graft copolymers produced by two different drying methods. Two different shape modules were manufactured for this study, i.e., female and male modules, in order to facilitate their assemblage in "void configuration", a system with an internal void space. Drug release studies on void configurations based on THSEMA show faster releases than TSEMA; HPMC systems used as a comparative reference showed intermediate release. Moreover, using void configurations made with one module of TSEMA and the other of THSEMA is possible to average the drug release, without difference between the drying methods used for the polymers. With respect to the floatation characteristics, all the void configurations floated immediately and, due to the mass center of the system, the floatation position of the system was always axial with the female module up and the male down. The drug release studies performed with a sinker to force the immersion of the systems in the medium did not show differences with respect to the dissolution test without a sinker. The combination of floatation capability of the assembled modules and the prolonged drug release provided with the graft copolymers make these assembled modules candidates as controlled release gastro-retentive dosage forms. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. URBAN: Development of a Citizen Science Biomonitoring Program Based in Hamilton, Ontario, Canada

    ERIC Educational Resources Information Center

    Cartwright, Lyndsay A.; Cvetkovic, Maja; Graham, Spencer; Tozer, Douglas; Chow-Fraser, Patricia

    2015-01-01

    Due to increasing urbanization, wetlands and streams within city limits are being altered, filled in, and degraded. The habitat that remains is critical for providing urban areas with ecosystem services and maintaining biodiversity, yet is often insufficiently monitored by environmental agencies due to a lack of resources. To help fill this void,…

  18. Development of Envelope Curves for Predicting Void Dimensions from Overturned Trees

    DTIC Science & Technology

    2014-07-01

    transport due to tree root throw: integrating tree population dynamics, wildfire, and geomorphic response (Gallaway et al. 2009...Johnson. 2009. Sediment transport due to tree root throw: Integrating tree population dynamics, wildfire and geomorphic response. Earth Surface Processes...environment, but not vegetation (Peterson and Leach 2008) ............................................................ 17 4.7 Pedologic and geomorphic impacts

  19. A single measurement of biochemical markers of bone turnover has limited utility in the individual person.

    PubMed

    Beck-Jensen, J E; Kollerup, G; Sørensen, H A; Pors Nielsen, S; Sørensen, O H

    1997-07-01

    Biochemical markers of bone turnover are used to estimate the rate of bone loss in the individual osteoporotic patient. During recent years it has become increasingly clear that the biological variability of biochemical bone markers has to be taken into consideration in the evaluation of their usefulness in the clinical setting. Eleven premenopausal, 8 perimenopausal and 11 postmenopausal healthy women were included. We assessed the analytical and the biological components of variation for a number of resorptive and formative bone markers: u-hydroxyproline, u-pyridinoline, and u-deoxypyridinoline together with u-calcium and u-creatinine, s-total alkaline phosphatases and s-osteocalcin. Blood and urine samples were collected five times with 7-day intervals. Urinary parameters were expressed as outputs and corrected for creatinine in fasting night urines and second void fasting morning urines. The absolute values differed with a tendency towards increasing values in the postmenopausal women, but the biological variations in relation to menopausal status were not different. The biological variability was much higher for the urinary resorptive markers than for the formative markers in the blood. The critical difference expressing the difference needed between two serial results from the same person to be significant at a 5% level was 15% for s-alkaline phosphatases, 18% for s-osteocalcin, and lowest in the second void fasting morning urines with values of 28% and 34% for u-pyridinoline/creatinine and u-deoxypyridinoline/creatinine, and 50% and 112% for u-hydroxyproline/creatinine and u-calcium/creatinine, respectively. The index of individuality, denoting the individual variation divided by the variation between subjects, was in the range from 0.19 for s-alkaline phosphatases to 1.23 for u-hydroxyproline/minute in second void fasting morning urine making the use of conventional reference intervals difficult. Low indices, however, indicate high test performance and offer the possibility of stratification of persons within a range. The number of samples required to determine the true individual mean value +/- 5% for the single person, ranged from 5 for s-total alkaline phosphatases, 6 for s-osteocalcin, 23 for u-deoxypyridinoline/creatinine in the fasting morning urine to over two hundred for u-calcium analytes. It is concluded that, due to high biological variation, a single measurement of biochemical markers of bone turnover is of limited utility in the individual person. We recommend that routine clinical use of biochemical markers should be restricted until further evidence justifies it.

  20. Gullies and Voids

    NASA Image and Video Library

    2018-02-05

    Intricate gullies have formed on the northern wall of this impact crater located in the Terra Cimmeria region in this image from NASA's Mars Reconnaissance Orbiter (MRO). This crater may have formed in a region rich in ground water. This ground water likely flowed down the wall, eventually eroding numerous gullies while carrying sediments to form fan deposits. Ultimately the water likely infiltrated and froze beneath the surface. Other hypotheses say gullies form through carbon dioxide frost avalanches that we can see today. What about this chain of pits snaking their way downhill? After material was transported, subsurface voids may have formed, removing support for the overlying material. The collapse of the surface into the cavities below likely resulted in the pits and troughs, perhaps beginning a new cycle of gully formation. https://photojournal.jpl.nasa.gov/catalog/PIA22239

  1. Understanding catalyst behavior during in situ heating through simultaneous secondary and transmitted electron imaging

    DOE PAGES

    Howe, Jane Y.; Allard, Jr., Lawrence Frederick; Demers, Hendrix; ...

    2014-11-14

    In situ heating study via a simultaneous secondary electron (SE) and transmitted electron (TE) microscopy is extremely insightful because information from the surface (SE) and bulk (TE) can be readily obtained. The leached Au/Fe 2O 3 catalyst has voids on the surface of Fe 2O 3. Upon heating to 500 °C, voids shrank and disappeared, while internal Au species diffused to the surface to form new nanoparticles. Heating in vacuum reduced Fe 2O 3 to Fe 3O 4. Heating at 700 °C caused coalescence and growth of Au particles and formation of faceted Fe 3O 4 surfaces. We achieved 1.1more » nm resolution in SE imaging during in situ heating.« less

  2. Two reference time scales for studying the dynamic cavitation of liquid films

    NASA Technical Reports Server (NTRS)

    Sun, D. C.; Brewe, D. E.

    1992-01-01

    Two formulas, one for the characteristic time of filling a void with the vapor of the surrounding liquid, and one of filling the void by diffusion of the dissolved gas in the liquid, are derived. By comparing these time scales with that of the dynamic operation of oil film bearings, it is concluded that the evaporation process is usually fast enough to fill the cavitation bubble with oil vapor; whereas the diffusion process is much too slow for the dissolved air to liberate itself and enter the cavitation bubble. These results imply that the formation of a two phase fluid in dynamically loaded bearings, as often reported in the literature, is caused by air entrainment. They further indicate a way to simplify the treatment of the dynamic problem of bubble evolution.

  3. Fundamental Studies of Irradiation-Induced Modifications in Microstructural Evolution and Mechanical Properties of Advanced Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stubbins, James; Heuser, Brent; Hosemann, Peter

    This final technical report summarizes the research performed during October 2014 and December 2017, with a focus on investigating the radiation-induced microstructural and mechanical property modifications in optimized advanced alloys for sodium-cooled fast reactor (SFR) structural applications. To accomplish these objectives, the radiation responses of several different advanced alloys, including austenitic steel Alloy 709 (A709) and 316H, and ferritic/ martensitic Fe–9Cr steels T91 and G92, were investigated using a combination of microstructure characterizations and nanoindentation measurements. Different types of irradiation, including ex situ bulk ion irradiation and in situ transmission electron microscopy (TEM) ion irradiation, were employed in this study.more » Radiation-induced dislocations, precipitates, and voids were characterized by TEM. Scanning transmission electron microscopy with energy dispersive X-ray spectroscopy (STEM-EDS) and/or atom probe tomography (APT) were used to study radiation-induced segregation and precipitation. Nanoindentation was used for hardness measurements to study irradiation hardening. Austenitic A709 and 316H was bulk-irradiated by 3.5 MeV Fe ++ ions to up to 150 peak dpa at 400, 500, and 600°. Compared to neutron-irradiated stainless steel (SS) 316, the Frank loop density of ion-irradiated A709 shows similar dose dependence at 400°, but very different temperature dependence. Due to the noticeable difference in the initial microstructure of A709 and 316H, no systematic comparison on the Frank loops in A709 vs 316H was made. It would be helpful that future ion irradiation study on 316 stainless steel could be conducted to directly compare the temperature dependence of Frank loop density in ion-irradiated 316 SS with that in neutron-irradiated 316 SS. In addition, future neutron irradiation on A709 at 400–600° at relative high dose (≥10 dpa) can be carried out to compare with ion-irradiated A709. The radiation-induced segregation (RIS) of Ni and Si was observed in both A709 and 316H in all irradiated conditions and was found at various sinks: line dislocations, dislocation loops, void surfaces, carbide-matrix interfaces, etc. Radiation also induced the formation of Ni,Si-rich precipitates. As suggested in a previous study on neutron-irradiated 316 stainless steel, one possible consequence of the significant RIS of Si is that the enrichment at defect sinks depletes the silicon in the matrix, which can lead to enhanced void nucleation rate. The enrichment of Ni and Si is accompanied by the depletion of Cr at defect sinks, which could also affect the corrosion resistance. Radiation-induced change in the orientation relationship of pre-existing MX precipitates was observed at 600°. It is believed that this change is associated with the network dislocations formed under irradiation. The underlying mechanism is still not well understood. This change could be a positive indication that the MX precipitates can survive high density network dislocations. It would be helpful if neutron irradiation at similar dose conditions could be carried out to verify that this effect is not unique for ion irradiation. Intragranular Cr-rich carbides with a core-shell structure, i.e. Cr-rich carbide core and Ni,Si-rich shell was found at 500° and 600° in the highest dose (150 peak dpa) specimens. Coarse voids (30 nm in diameter) were only commonly found at 500° in the 50 and 150 peak dpa specimens in regions less than 750 nm in depth. The highest swelling for A709 irradiated to 50 and 150 peak dpa at 500° is about 0.44% and 0.37%, respectively. Due to the choice of 100 degree temperature intervals, this study did not attempt to precisely identify peak void swelling conditions, merely the range of irradiation temperatures where this could be a concern. It is known high-dose ion irradiation can significantly suppress void nucleation. Future neutron irradiation in the 500–600° range (without considering the temperature shift) is needed to determine the onset of accelerated void swelling (possibly at lower dose).« less

  4. Ascorbic Acid Intake and Oxalate Synthesis

    PubMed Central

    Knight, John; Madduma-Liyanage, Kumudu; Mobley, James A.; Assimos, Dean G.; Holmes, Ross P.

    2016-01-01

    In humans approximately 60 mg of ascorbic acid (AA) breaks down in the body each day and has to be replaced by a dietary intake of 70 mg in females and 90 mg in males to maintain optimal health and AA homeostasis. The breakdown of AA is non-enzymatic and results in oxalate formation. The exact amount of oxalate formed has been difficult to ascertain primarily due to the limited availability of healthy human tissue for such research and the difficulty in measuring AA and its breakdown products. The breakdown of 60 mg of AA to oxalate could potentially result in the formation of up to 30 mg oxalate per day. This exceeds our estimates of the endogenous production of 10 – 25 mg oxalate per day, indicating that degradative pathways that do not form oxalate exist. In this review we examine what is known about the pathways of AA metabolism and how oxalate forms. We further identify how gaps in our knowledge may be filled to more precisely determine the contribution of AA breakdown to oxalate production in humans. The use of stable isotopes of AA to directly assess the conversion of vitamin to oxalate should help fill this void. PMID:27002809

  5. BISON Investigation of the Effect of the Fuel- Cladding Contact Irregularities on the Peak Cladding Temperature and FCCI Observed in AFC-3A Rodlet 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medvedev, Pavel G.

    2016-09-01

    The primary objective of this report is to document results of BISON analyses supporting Fuel Cycle Research and Development (FCRD) activities. Specifically, the present report seeks to provide explanation for the microstructural features observed during post irradiation examination of the helium-bonded annular U-10Zr fuel irradiated during the AFC-3A experiment. Post irradiation examination of the AFC-3A rodlet revealed microstructural features indicative of the fuel-cladding chemical interaction (FCCI) at the fuel-cladding interface. Presence of large voids was also observed in the same locations. BISON analyses were performed to examine stress and temperature profiles and to investigate possible correlation between the voids andmore » FCCI. It was found that presence of the large voids lead to a formation of circumferential temperature gradients in the fuel that may have redirected migrating lanthanides to the locations where fuel and cladding are in contact. Resulting localized increase of lanthanide concentration is expected to accelerate FCCI. The results of this work provide important guidance to the post irradiation examination studies. Specifically, the hypothesis of lanthanides being redirected from the voids to the locations where the fuel and the cladding are in contact should be verified by conducting quantitative electron microscopy or Electron Probe Micro-Analyzer (EPMA). The results also highlight the need for computer models capable of simulating lanthanide diffusion in metallic fuel and establish a basis for validation of such models.« less

  6. Fayalite Dissolution and Siderite Formation in Water-Saturated Supercritical CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qafoku, Odeta; Kovarik, Libor; Kukkadapu, Ravi K.

    2012-11-25

    Olivines, a significant constituent of basaltic rocks, have the potential to immobilize permanently CO2 after it is injected in the deep subsurface, due to carbonation reactions occurring between CO2 and the host rock. To investigate the reactions of fayalitic olivine with supercritical CO2 (scCO2) and formation of mineral carbonates, experiments were conducted at temperatures of 35 °C to 80 °C, 90 atm pressure and anoxic conditions. For every temperature, the dissolution of fayalite was examined both in the presence of liquid water and H2O-saturated scCO2. The experiments were conducted in a high pressure batch reactor at reaction time extending upmore » to 85 days. The newly formed products were characterized using a comprehensive suite of bulk and surface characterization techniques X-ray diffraction, Transmission/Emission Mössbauer Spectroscopy, Scanning Electron Microscopy coupled with Focused Ion Beam, and High Resolution Transmission Electron Microscopy. Siderite with rhombohedral morphology was formed at 35 °C, 50 °C, and 80 °C in the presence of liquid water and scCO2. In H2O-saturated scCO2, the formation of siderite was confirmed only at high temperature (80 °C). Characterization of reacted samples in H2O-saturated scCO2 with high resolution TEM indicated that siderite formation initiated inside voids created during the initial steps of fayalite dissolution. Later stages of fayalite dissolution result in the formation of siderite in layered vertical structures, columns or pyramids with a rhombus base morphology.« less

  7. On the influence of microscale inertia on dynamic ductile crack extension

    NASA Astrophysics Data System (ADS)

    Jacques, N.; Mercier, S.; Molinari, A.

    2012-08-01

    The present paper is devoted to the modelling of damage by micro-voiding in ductile solids under dynamic loading conditions. Using a dynamic homogenization procedure, a constitutive damage model accounting for inertial effects due to void growth (microscale inertia or micro-inertia) has been developed. The role played by microscale inertia in dynamic ductile crack growth is investigated with the use of the proposed micromechanical modelling. It is found that micro-inertia has a significant influence on the fracture behaviour. Micro-inertia limits the velocity at which cracks propagate. It also contributes to increase the apparent dynamic toughness of the material.

  8. Topology and dark energy: testing gravity in voids.

    PubMed

    Spolyar, Douglas; Sahlén, Martin; Silk, Joe

    2013-12-13

    Modified gravity has garnered interest as a backstop against dark matter and dark energy (DE). As one possible modification, the graviton can become massive, which introduces a new scalar field--here with a Galileon-type symmetry. The field can lead to a nontrivial equation of state of DE which is density and scale dependent. Tension between type Ia supernovae and Planck could be reduced. In voids, the scalar field dramatically alters the equation of state of DE, induces a soon-observable gravitational slip between the two metric potentials, and develops a topological defect (domain wall) due to a nontrivial vacuum structure for the field.

  9. Heterogeneous nucleation on rough surfaces: Generalized Gibbs' approach.

    PubMed

    Abyzov, Alexander S; Schmelzer, Jürn W P; Davydov, Leonid N

    2017-12-07

    Heterogeneous nucleation (condensation) of liquid droplets from vapor (gas) on a defective solid surface is considered. The vapor is described by the van der Waals equation of state. The dependence of nucleating droplet parameters on droplet size is accounted for within the generalized Gibbs approach. As a surface defect, a conic void is taken. This choice allows us to simplify the analysis and at the same time to follow the main aspects of the influence of the surface roughness on the nucleation process. Similar to condensation on ideal planar surfaces, the contact angle and catalytic factor for heterogeneous nucleation on a rough surface depend on the degree of vapor overcooling. In the case of droplet formation on a hydrophilic surface of a conic void, the nucleation rate considerably increases in comparison with the condensation on a planar interface. In fact, the presence of a defect on the hydrophilic surface leads to a considerable shift of the spinodal towards lower supersaturation in comparison with heterogeneous nucleation on a planar interface. With the decrease in the void cone angle, the heterogeneous spinodal approaches the binodal, and the region of metastability is diminished at the expense of the instability region.

  10. Theoretical prediction and atomic kinetic Monte Carlo simulations of void superlattice self-organization under irradiation.

    PubMed

    Gao, Yipeng; Zhang, Yongfeng; Schwen, Daniel; Jiang, Chao; Sun, Cheng; Gan, Jian; Bai, Xian-Ming

    2018-04-26

    Nano-structured superlattices may have novel physical properties and irradiation is a powerful mean to drive their self-organization. However, the formation mechanism of superlattice under irradiation is still open for debate. Here we use atomic kinetic Monte Carlo simulations in conjunction with a theoretical analysis to understand and predict the self-organization of nano-void superlattices under irradiation, which have been observed in various types of materials for more than 40 years but yet to be well understood. The superlattice is found to be a result of spontaneous precipitation of voids from the matrix, a process similar to phase separation in regular solid solution, with the symmetry dictated by anisotropic materials properties such as one-dimensional interstitial atom diffusion. This discovery challenges the widely accepted empirical rule of the coherency between the superlattice and host matrix crystal lattice. The atomic scale perspective has enabled a new theoretical analysis to successfully predict the superlattice parameters, which are in good agreement with independent experiments. The theory developed in this work can provide guidelines for designing target experiments to tailor desired microstructure under irradiation. It may also be generalized for situations beyond irradiation, such as spontaneous phase separation with reaction.

  11. Precipitates and voids in cubic silicon carbide implanted with 25Mg+ ions

    NASA Astrophysics Data System (ADS)

    Jiang, Weilin; Spurgeon, Steven R.; Liu, Jia; Schreiber, Daniel K.; Jung, Hee Joon; Devaraj, Arun; Edwards, Danny J.; Henager, Charles H.; Kurtz, Richard J.; Wang, Yongqiang

    2018-01-01

    Single crystal cubic phase silicon carbide (3C-SiC) films on Si were implanted to 9.6 × 101625Mg+/cm2 at 673 K and annealed at 1073 and 1573 K for 2, 6, and 12 h in an Ar environment. The data from scanning transmission election microscopy (STEM) and electron energy loss spectroscopy (EELS) mapping suggest a possible formation of unidirectionally aligned tetrahedral precipitates of core (MgC2)-shell (Mg2Si) in the implanted sample annealed at 1573 K for 12 h. There are also small spherical voids near the surface and larger faceted voids around the region of maximum vacancy concentration. Atom probe tomography confirms 25Mg segregation dominated by small atomic clusters with local 25Mg concentrations up to 85 at.%. The resulting precipitate size and number density are found to decrease and increase, respectively, probably as a result of the thermal annealing that decomposes the 25Mg-bearing precipitates at the elevated temperatures and subsequent nucleation and growth below 1073 K during the cooling stage. The results from this study provide data needed to fully understand the property degradation of SiC in a high-flux fast neutron environment.

  12. [Urinary tract infections--pediatric urologist point of view].

    PubMed

    Baka-Ostrowska, Małgorzata

    2008-01-01

    Urinary tract infections (UTI) could present with different clinical forms dependent on intensity and localization of infection and child's age. The symptoms could be non specific in children. Condition that provoke to urinary stasis, especially voiding dysfunction is the favourable factor for UTI appearance. Gram-negative enteric bacteria is the most common pathogen. Urine culture is the basic investigation that allow to identify pathogen and its drug sensitiveness but simultaneous urinalysis is necessary to recognize the inflammation of urinary organs. In addition, the number of leukocytes gives an idea about inflammation intensity. Ultrasonographic (USG) scan is necessary to examine urostasis. DMSA study performed during febrile UTI allow to identify children with acute pyelonephritis and when repeated 6 months later - those with renal scars. A normal USG and DMSA scan during infection makes voiding cystourethrography (VCU) unnecessary in the primary examination. The presence of vesicoureteric reflux (VUR) not always predispose children to renal lesions. Early and appropriate treatment of UTI, especially during the first 24 hours, diminishes the likelihood of renal involvement during the acute phase of infection but does not prevent scar formation. The proper hygiene of the urethral meatus, voiding and drinking habits and preventing of constipation are crucial in UTI prophylaxis.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    John J. Gangloff Jr; Shatil Sinha; Suresh G. Advani

    The formation and transport of voids in composite materials remains a key research area in composite manufacturing science. Knowledge of how voids, resin, and fiber reinforcement propagate throughout a composite material continuum from green state to cured state during an automated tape layup process is key to minimizing defects induced by void-initiated stress concentrations under applied loads for a wide variety of composite applications. This paper focuses on modeling resin flow in a deforming fiber tow during an automated process of partially impregnated thermoset prepreg composite material tapes. In this work, a tow unit cell based model has been presentedmore » that determines the consolidation and impregnation of a thermoset prepreg tape under an input pressure profile. A parametric study has been performed to characterize the behavior of varying tow speed and compaction forces on the degree of consolidation. Results indicate that increased tow consolidation is achieved with slower tow speeds and higher compaction forces although the relationship is not linear. The overall modeling of this project is motivated to address optimization of the 'green state' composite properties and processing parameters to reduce or eliminate 'cured state' defects, such as porosity and de-lamination. This work is partially funded by the Department of Energy under Award number DE-EE0001367.« less

  14. Simulation of Intergranular Ductile Cracking in β Titanium Alloys Based on a Micro-Mechanical Damage Model

    PubMed Central

    Li, Huan; Li, Jinshan; Tang, Bin; Fan, Jiangkun; Yuan, Huang

    2017-01-01

    The intergranular crack propagation of the lamellar structure β titanium alloys is investigated by using a modified Gurson-type damage model. The representative microstructure of the lamellar alloy, which consists of the soft α phase layer surrounding the hard grain interiors, is generated based on an advanced Voronoi algorithm. Both the normal fracture due to void growth and the shear fracture associated with void shearing are considered for the grain boundary α layer. The individual phase properties are determined according to the experimental nanoindentation result and the macroscopic stress–strain curve from a uni-axial tensile test. The effects of the strain hardening exponent of the grain interiors and the void shearing mechanism of the grain boundary α layer on fracture toughness and the intergranular crack growth behavior are emphatically studied. The computational predictions indicate that fracture toughness can be increased with increasing the strain hardening ability of the grain interiors and void shearing can be deleterious to fracture toughness. Based on the current simulation technique, qualitative understanding of relationships between the individual phase features and the fracture toughness of the lamellar alloys can be obtained, which provides useful suggestions to the heat treatment process of the β titanium alloys. PMID:29084171

  15. Micro-Mechanical Modeling of Ductile Fracture in Welded Aluminum-Lithium Alloys

    NASA Technical Reports Server (NTRS)

    Ibrahim, Ahmed

    2002-01-01

    This computation model for microscopic crack growth in welded aluminum-lithium alloys consists of a cavity with initial volume specified by the fraction f(sub 0), i.e. the void volume relative to the cell volume. Thus, cell size D and initial porosity f(sub 0) defines the key parameters in this model. The choice of cell size requires: 1) D must be representative of the large inclusion spacing. 2) Predicted R-curves scale almost proportionally with D for fixed f(sub 0). 3) mapping of one finite element per cell must provide adequate resolution of the stress-strain fields in the active layer and the adjacent material. For the ferritic steels studied thus far with this model, calibrated cell sizes range from 50-200 microns with f(sub 0) in the 0.0001 to 0.004 micron range. This range of values for D and f (sub 0) satisfies issues 1) and 3). This computational model employs the Gurson and Tvergaard constitutive model for porous plastic materials to describe the progressive damage of cells due to the growth of pre-existing voids. The model derives from a rigid-plastic limit analysis of a solid having a volume fraction (f) of voids approximated by a homogenous spherical body containing a spherical void.

  16. Simulation of Intergranular Ductile Cracking in β Titanium Alloys Based on a Micro-Mechanical Damage Model.

    PubMed

    Li, Huan; Li, Jinshan; Tang, Bin; Fan, Jiangkun; Yuan, Huang

    2017-10-30

    The intergranular crack propagation of the lamellar structure β titanium alloys is investigated by using a modified Gurson-type damage model. The representative microstructure of the lamellar alloy, which consists of the soft α phase layer surrounding the hard grain interiors, is generated based on an advanced Voronoi algorithm. Both the normal fracture due to void growth and the shear fracture associated with void shearing are considered for the grain boundary α layer. The individual phase properties are determined according to the experimental nanoindentation result and the macroscopic stress-strain curve from a uni-axial tensile test. The effects of the strain hardening exponent of the grain interiors and the void shearing mechanism of the grain boundary α layer on fracture toughness and the intergranular crack growth behavior are emphatically studied. The computational predictions indicate that fracture toughness can be increased with increasing the strain hardening ability of the grain interiors and void shearing can be deleterious to fracture toughness. Based on the current simulation technique, qualitative understanding of relationships between the individual phase features and the fracture toughness of the lamellar alloys can be obtained, which provides useful suggestions to the heat treatment process of the β titanium alloys.

  17. A Model for the Breakup of Comet Linear (C/1999 S4)

    NASA Technical Reports Server (NTRS)

    Samarasinha, Nalin H.

    2001-01-01

    We propose a mechanism based on the rubble-pile hypothesis of the cometary nucleus (Weissman 1986) to explain the catastrophic breakup of comet LINEAR (C/1999 S4) observed during July-August 2000. We suggest that a solid nucleus made up of 10-100 m "cometesimals" (Weidenschilling 1997) contains a network of inter-connected voids in the inter-cometesimal regions. The production of super-volatile (i.e., species more volatile than water) gases into these voids occurs due to the thermal wave propagating through the nucleus and associated phase transitions of water ice. The network of voids provides an efficient pathway for rapid propagation of these gases within the nucleus resulting in gas pressure caused stresses over a wide regime of the nucleus. This provides a mechanism for catastrophic breakups of small cometary nuclei such as comet LINEAR (C/1999 S4) as well as for some observed cometary outbursts including those that occur at large heliocentric distances (e.g., West et al. 1991). We emphasize the importance of techniques such as radar reflection tomography and radiowave transmission tomography (e.g., Kofman et al. 1998) aboard cometary missions to determine the three dimensional structure of the nucleus in particular the extent of large scale voids.

  18. Dental artifacts in the head and neck region: implications for Dixon-based attenuation correction in PET/MR.

    PubMed

    Ladefoged, Claes N; Hansen, Adam E; Keller, Sune H; Fischer, Barbara M; Rasmussen, Jacob H; Law, Ian; Kjær, Andreas; Højgaard, Liselotte; Lauze, Francois; Beyer, Thomas; Andersen, Flemming L

    2015-12-01

    In the absence of CT or traditional transmission sources in combined clinical positron emission tomography/magnetic resonance (PET/MR) systems, MR images are used for MR-based attenuation correction (MR-AC). The susceptibility effects due to metal implants challenge MR-AC in the neck region of patients with dental implants. The purpose of this study was to assess the frequency and magnitude of subsequent PET image distortions following MR-AC. A total of 148 PET/MR patients with clear visual signal voids on the attenuation map in the dental region were included in this study. Patients were injected with [(18)F]-FDG, [(11)C]-PiB, [(18)F]-FET, or [(64)Cu]-DOTATATE. The PET/MR data were acquired over a single-bed position of 25.8 cm covering the head and neck. MR-AC was based on either standard MR-ACDIXON or MR-ACINPAINTED where the susceptibility-induced signal voids were substituted with soft tissue information. Our inpainting algorithm delineates the outer contour of signal voids breaching the anatomical volume using the non-attenuation-corrected PET image and classifies the inner air regions based on an aligned template of likely dental artifact areas. The reconstructed PET images were evaluated visually and quantitatively using regions of interests in reference regions. The volume of the artifacts and the computed relative differences in mean and max standardized uptake value (SUV) between the two PET images are reported. The MR-based volume of the susceptibility-induced signal voids on the MR-AC attenuation maps was between 1.6 and 520.8 mL. The corresponding/resulting bias of the reconstructed tracer distribution was localized mainly in the area of the signal void. The mean and maximum SUVs averaged across all patients increased after inpainting by 52% (± 11%) and 28% (± 11%), respectively, in the corrected region. SUV underestimation decreased with the distance to the signal void and correlated with the volume of the susceptibility artifact on the MR-AC attenuation map. Metallic dental work may cause severe MR signal voids. The resulting PET/MR artifacts may exceed the actual volume of the dental fillings. The subsequent bias in PET is severe in regions in and near the signal voids and may affect the conspicuity of lesions in the mandibular region.

  19. Method for encapsulating the edge of a flexible sheet

    DOEpatents

    Keenihan, James R; Clarey, Todd M

    2013-02-19

    The present invention is premised upon an inventive method of producing an over-molded edge portion on a flexible substrate, wherein the edge portion is void of open areas due to support devices in the mold cavity.

  20. Influence of different aspect ratios on the structural and electrical properties of GaN thin films grown on nanoscale-patterned sapphire substrates

    NASA Astrophysics Data System (ADS)

    Lee, Fang-Wei; Ke, Wen-Cheng; Cheng, Chun-Hong; Liao, Bo-Wei; Chen, Wei-Kuo

    2016-07-01

    This study presents GaN thin films grown on nanoscale-patterned sapphire substrates (NPSSs) with different aspect ratios (ARs) using a homemade metal-organic chemical vapor deposition system. The anodic aluminum oxide (AAO) technique is used to prepare the dry etching mask. The cross-sectional view of the scanning electron microscope image shows that voids exist between the interface of the GaN thin film and the high-AR (i.e. ∼2) NPSS. In contrast, patterns on the low-AR (∼0.7) NPSS are filled full of GaN. The formation of voids on the high-AR NPSS is believed to be due to the enhancement of the lateral growth in the initial growth stage, and the quick-merging GaN thin film blocks the precursors from continuing to supply the bottom of the pattern. The atomic force microscopy images of GaN on bare sapphire show a layer-by-layer surface morphology, which becomes a step-flow surface morphology for GaN on a high-AR NPSS. The edge-type threading dislocation density can be reduced from 7.1 × 108 cm-2 for GaN on bare sapphire to 4.9 × 108 cm-2 for GaN on a high-AR NPSS. In addition, the carrier mobility increases from 85 cm2/Vs for GaN on bare sapphire to 199 cm2/Vs for GaN on a high-AR NPSS. However, the increased screw-type threading dislocation density for GaN on a low-AR NPSS is due to the competition of lateral growth on the flat-top patterns and vertical growth on the bottom of the patterns that causes the material quality of the GaN thin film to degenerate. Thus, the experimental results indicate that the AR of the particular patterning of a NPSS plays a crucial role in achieving GaN thin film with a high crystalline quality.

  1. Centimeter to decimeter hollow concretions and voids in Gale Crater sediments, Mars

    NASA Astrophysics Data System (ADS)

    Wiens, Roger C.; Rubin, David M.; Goetz, Walter; Fairén, Alberto G.; Schwenzer, Susanne P.; Johnson, Jeffrey R.; Milliken, Ralph; Clark, Ben; Mangold, Nicolas; Stack, Kathryn M.; Oehler, Dorothy; Rowland, Scott; Chan, Marjorie; Vaniman, David; Maurice, Sylvestre; Gasnault, Olivier; Rapin, William; Schroeder, Susanne; Clegg, Sam; Forni, Olivier; Blaney, Diana; Cousin, Agnes; Payré, Valerie; Fabre, Cecile; Nachon, Marion; Le Mouelic, Stephane; Sautter, Violaine; Johnstone, Stephen; Calef, Fred; Vasavada, Ashwin R.; Grotzinger, John P.

    2017-06-01

    Voids and hollow spheroids between ∼1 and 23 cm in diameter occur at several locations along the traverse of the Curiosity rover in Gale crater, Mars. These hollow spherical features are significantly different from anything observed in previous landed missions. The voids appear in dark-toned, rough-textured outcrops, most notably at Point Lake (sols 302-305) and Twin Cairns Island (sol 343). Point Lake displays both voids and cemented spheroids in close proximity; other locations show one or the other form. The spheroids have 1-4 mm thick walls and appear relatively dark-toned in all cases, some with a reddish hue. Only one hollow spheroid (Winnipesaukee, sol 653) was analyzed for composition, appearing mafic (Fe-rich), in contrast to the relatively felsic host rock. The interior surface of the spheroid appears to have a similar composition to the exterior with the possible exceptions of being more hydrated and slightly depleted in Fe and K. Origins of the spheroids as Martian tektites or volcanic bombs appear unlikely due to their hollow and relatively fragile nature and the absence of in-place clearly igneous rocks. A more likely explanation to both the voids and the hollow spheroids is reaction of reduced iron with oxidizing groundwater followed by some re-precipitation as cemented rind concretions at a chemical reaction front. Although some terrestrial concretion analogs are produced from a precursor siderite or pyrite, diagenetic minerals could also be direct precipitates for other terrestrial concretions. The Gale sediments differ from terrestrial sandstones in their high initial iron content, perhaps facilitating a higher occurrence of such diagenetic reactions.

  2. Study of GRBs Hosts Galaxies Vicinity Properties

    NASA Astrophysics Data System (ADS)

    Bernal, S.; Vasquez, N.; Hoyle, F.

    2017-07-01

    The study of GRBs host galaxies and its vicinity could provide constrains on the progenitor and an opportunity to use these violent explosions to characterize the nature of the highredshift universe. Studies of GRB host galaxies reveal a population of starforming galaxies with great diversity, spanning a wide range of masses, star formation rate, and redshifts. In order to study the galactic ambient of GRBs we used the S. Savaglio catalog from 2015 where 245 GRBs are listed with RA-Dec position and z. We choose 22 GRBs Hosts galaxies from Savaglio catalog and SDSS DR12, with z range 0

  3. Stable isotopic compositions of early calcite cements in the Middle Devonian Coralville Formation (Cedar Valley Group), eastern Iowa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ludvigson, G.A.; Gonzalez, L.S.; Witzke, B.J.

    1993-03-01

    The Middle-Upper Devonian Cedar Valley Gp in Iowa is subdivided into four formations each representing a broad transgressive-regressive (T-R) cycle of deposition. Cycles consist of basal open marine facies that shallow upward into capping peritidal facies. Results from ongoing diagenetic studies of the Coralville Fm (late Givetian), the second T-R cycle of the Cedar Valley Gp, have focused attention on the origins of early cements. Early calcite cements in the Coralville Fm of Johnson County, Iowa, include blocky equant spars filling fenestral voids in birdseye limestones of the Iowa City Mbr and isopachous bladed spars that occur throughout the Coralville.more » Bladed spars fill stromatactis and microkarstic voids in the Iowa City Mbr, and sheltered voids in underlying open-marine skeletal packstones of the Cou Falls Mbr (lower Coralville cycle). The bladed spars include nonluminescent inclusion-free domains that contain up to 4,000 ppm Mg, and luminescent inclusion-rich domains that contain less than 2,000 ppm Mg. Birdseye spars have a constructive oscillatory luminescent-nonluminescent zonation controlled by Mn contents and contain less than 1,000 ppm Mg. Nonluminescent domains in bladed spars have the heaviest oxygen isotopic compositions of all components in the Coralville, similar to the isotopically heaviest nonluminescent brachiopods but have [delta][sup 13]C values ranging from [minus]3 to [minus]5 [per thousand]. They are interpreted to have precipitated from marine fluids saturated by CO[sub 2] produced from bacterial oxidation of organic matter. Altered luminescent domains in the bladed spars have the same [delta][sup 13]C compositions, but have widely varying [delta][sup 18]O compositions, ranging to [minus]9 [per thousand].« less

  4. Advances in Additive Manufacturing

    DTIC Science & Technology

    2016-07-14

    of 3D - printed structures. Analysis examples will include quantification of tolerance differences between the designed and manufactured parts, void...15. SUBJECT TERMS 3-D printing , validation and verification, nondestructive inspection, print -on-the-move, prototyping 16. SECURITY CLASSIFICATION...researching the formation of AM-grade metal powder from battlefield scrap and operating base waste, 2) potential of 3-D printing with sand to make

  5. [Specialized outpatient care in the Unified Health System: how to fill a void].

    PubMed

    Tesser, Charles Dalcanale; Poli, Paulo

    2017-03-01

    The structuring of specialized outpatient care is a bottleneck in the operation of the Unified Health System. Based on a brief discussion about this void in an organizational model, we propose the federal induction of a format of specialized services from the experiences of Centers of Support for Family Health (NASF). They adapted matrix operations and constitute an excellent prototype for the organization of specialized outpatient care. It allows for equal access and maximum proximity to the specialized care of the reality of primary care users, the personal relationship and the close relationship between the family health teams and medical and non-medical specialists, enabling mutual lifelong learning, negotiated regulation and increased efficacy of primary care. Municipal experiences of Florianopolis and Curitiba are synthesized as partial examples of the proposal. the structure of care in mental health of Florianópolis, all organized as a matrix support is briefly described; and we focus on the change in the action of the support teams of Curitiba, which gradually began to engage, involve and mediate the relationship between basic and specialized care. This format can be expanded to most medical specialties.

  6. Porosity inside a metal casting

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Pores and voids often form in metal castings on Earth (above) making them useless. A transparent material that behaves at a large scale in microgravity the way that metals behave at the microscopic scale on Earth, will help show how voids form and learn how to prevent them. Scientists are using the microgravity environment on the International Space Station to study how these bubbles form, move and interact. The Pore Formation and Mobility Investigation (PFMI) in the Microgravity Science Glovebox aboard the International Space Station uses a transparent material called succinonitrile that behaves like a metal to study this problem. Video images sent to the ground allow scientists to watch the behavior of the bubbles as they control the melting and freezing of the material. The bubbles do not float to the top of the material in microgravity, so they can study their interactions.

  7. Material Science

    NASA Image and Video Library

    2003-01-22

    Pores and voids often form in metal castings on Earth (above) making them useless. A transparent material that behaves at a large scale in microgravity the way that metals behave at the microscopic scale on Earth, will help show how voids form and learn how to prevent them. Scientists are using the microgravity environment on the International Space Station to study how these bubbles form, move and interact. The Pore Formation and Mobility Investigation (PFMI) in the Microgravity Science Glovebox aboard the International Space Station uses a transparent material called succinonitrile that behaves like a metal to study this problem. Video images sent to the ground allow scientists to watch the behavior of the bubbles as they control the melting and freezing of the material. The bubbles do not float to the top of the material in microgravity, so they can study their interactions.

  8. Optical Spectroscopy of New Materials

    NASA Technical Reports Server (NTRS)

    White, Susan M.; Arnold, James O. (Technical Monitor)

    1993-01-01

    Composites are currently used for a rapidly expanding number of applications including aircraft structures, rocket nozzles, thermal protection of spacecraft, high performance ablative surfaces, sports equipment including skis, tennis rackets and bicycles, lightweight automobile components, cutting tools, and optical-grade mirrors. Composites are formed from two or more insoluble materials to produce a material with superior properties to either component. Composites range from dispersion-hardened alloys to advanced fiber-reinforced composites. UV/VIS and FTIR spectroscopy currently is used to evaluate the bonding between the matrix and the fibers, monitor the curing process of a polymer, measure surface contamination, characterize the interphase material, monitor anion transport in polymer phases, characterize the void formation (voids must be minimized because, like cracks in a bulk material, they lead to failure), characterize the surface of the fiber component, and measure the overall optical properties for energy balances.

  9. Void effect on mechanical properties of copper nanosheets under biaxial tension by molecular dynamics method

    NASA Astrophysics Data System (ADS)

    Yang, Zailin; Yang, Qinyou; Zhang, Guowei; Yang, Yong

    2018-03-01

    The relationship between void size/location and mechanical behavior under biaxial loading of copper nanosheets containing voids are investigated by molecular dynamics method. The void location and the void radius on the model are discussed in the paper. The main reason of break is discovered by the congruent relationship between the shear stress and its dislocations. Dislocations are nucleated at the corner of system and approached to the center of void with increased deformation. Here, a higher stress is required to fail the voided sheets when smaller voids are utilized. The void radius influences the time of destruction. The larger the void radius is, the lower the shear stress and the earlier the model breaks. The void location impacts the dislocation distribution.

  10. Corrosion performance of prestressing strands in contact with dissimilar grouts : technical summary.

    DOT National Transportation Integrated Search

    2013-01-01

    Inspections of post-tensioned bridges : by the Kansas Department of Transportation : have revealed voids in strand ducts due to : bleeding and shrinkage of older Portland : Cement grouts. The Kansas Department : of Transportation is faced with a deci...

  11. In situ 3-D mapping of pore structures and hollow grains of interplanetary dust particles with phase contrast X-ray nanotomography

    NASA Astrophysics Data System (ADS)

    Hu, Z. W.; Winarski, R. P.

    2016-09-01

    Unlocking the 3-D structure and properties of intact chondritic porous interplanetary dust particles (IDPs) in nanoscale detail is challenging, which is also complicated by atmospheric entry heating, but is important for advancing our understanding of the formation and origins of IDPs and planetary bodies as well as dust and ice agglomeration in the outer protoplanetary disk. Here, we show that indigenous pores, pristine grains, and thermal alteration products throughout intact particles can be noninvasively visualized and distinguished morphologically and microstructurally in 3-D detail down to ~10 nm by exploiting phase contrast X-ray nanotomography. We have uncovered the surprisingly intricate, submicron, and nanoscale pore structures of a ~10-μm-long porous IDP, consisting of two types of voids that are interconnected in 3-D space. One is morphologically primitive and mostly submicron-sized intergranular voids that are ubiquitous; the other is morphologically advanced and well-defined intragranular nanoholes that run through the approximate centers of ~0.3 μm or lower submicron hollow grains. The distinct hollow grains exhibit complex 3-D morphologies but in 2-D projections resemble typical organic hollow globules observed by transmission electron microscopy. The particle, with its outer region characterized by rough vesicular structures due to thermal alteration, has turned out to be an inherently fragile and intricately submicron- and nanoporous aggregate of the sub-μm grains or grain clumps that are delicately bound together frequently with little grain-to-grain contact in 3-D space.

  12. Computation for Electromigration in Interconnects of Microelectronic Devices

    NASA Astrophysics Data System (ADS)

    Averbuch, Amir; Israeli, Moshe; Ravve, Igor; Yavneh, Irad

    2001-03-01

    Reliability and performance of microelectronic devices depend to a large extent on the resistance of interconnect lines. Voids and cracks may occur in the interconnects, causing a severe increase in the total resistance and even open circuits. In this work we analyze void motion and evolution due to surface diffusion effects and applied external voltage. The interconnects under consideration are three-dimensional (sandwich) constructs made of a very thin metal film of possibly variable thickness attached to a substrate of nonvanishing conductance. A two-dimensional level set approach was applied to study the dynamics of the moving (assumed one-dimensional) boundary of a void in the metal film. The level set formulation of an electromigration and diffusion model results in a fourth-order nonlinear (two-dimensional) time-dependent PDE. This equation was discretized by finite differences on a regular grid in space and a Runge-Kutta integration scheme in time, and solved simultaneously with a second-order static elliptic PDE describing the electric potential distribution throughout the interconnect line. The well-posed three-dimensional problem for the potential was approximated via singular perturbations, in the limit of small aspect ratio, by a two-dimensional elliptic equation with variable coefficients describing the combined local conductivity of metal and substrate (which is allowed to vary in time and space). The difference scheme for the elliptic PDE was solved by a multigrid technique at each time step. Motion of voids in both weak and strong electric fields was examined, and different initial void configurations were considered, including circles, ellipses, polygons with rounded corners, a butterfly, and long grooves. Analysis of the void behavior and its influence on the resistance gives the circuit designer a tool for choosing the proper parameters of an interconnect (width-to-length ratio, properties of the line material, conductivity of the underlayer, etc.).

  13. Constitutive equations of a tensorial model for strain-induced damage of metals based on three invariants

    NASA Astrophysics Data System (ADS)

    Tutyshkin, Nikolai D.; Lofink, Paul; Müller, Wolfgang H.; Wille, Ralf; Stahn, Oliver

    2017-01-01

    On the basis of the physical concepts of void formation, nucleation, and growth, generalized constitutive equations are formulated for a tensorial model of plastic damage in metals based on three invariants. The multiplicative decomposition of the metric transformation tensor and a thermodynamically consistent formulation of constitutive relations leads to a symmetric second-order damage tensor with a clear physical meaning. Its first invariant determines the damage related to plastic dilatation of the material due to growth of the voids. The second invariant of the deviatoric damage tensor is related to the change in void shape. The third invariant of the deviatoric tensor describes the impact of the stress state on damage (Lode angle), including the effect of rotating the principal axes of the stress tensor (Lode angle change). The introduction of three measures with related physical meaning allows for the description of kinetic processes of strain-induced damage with an equivalent parameter in a three-dimensional vector space, including the critical condition of ductile failure. Calculations were performed by using experimentally determined material functions for plastic dilatation and deviatoric strain at the mesoscale, as well as three-dimensional graphs for plastic damage of steel DC01. The constitutive parameter was determined from tests in tension, compression, and shear by using scanning electron microscopy, which allowed to vary the Lode angle over the full range of its values [InlineEquation not available: see fulltext.]. In order to construct the three-dimensional plastic damage curve for a range of triaxiality parameters -1 ≤ ST ≤ 1 and of Lode angles [InlineEquation not available: see fulltext.], we used our own, as well as systematized published experimental data. A comparison of calculations shows a significant effect of the third invariant (Lode angle) on equivalent damage. The measure of plastic damage, based on three invariants, can be useful for assessing the quality of metal mesostructure produced during metal forming processes. In many processes of metal sheet forming the material experiences, a non-proportional loading accompanied by rotating the principal axes of the stress tensor and a corresponding change of Lode angle.

  14. Generation of Subsurface Voids, Incubation Effect, and Formation of Nanoparticles in Short Pulse Laser Interactions with Bulk Metal Targets in Liquid: Molecular Dynamics Study

    PubMed Central

    2017-01-01

    The ability of short pulse laser ablation in liquids to produce clean colloidal nanoparticles and unusual surface morphology has been employed in a broad range of practical applications. In this paper, we report the results of large-scale molecular dynamics simulations aimed at revealing the key processes that control the surface morphology and nanoparticle size distributions by pulsed laser ablation in liquids. The simulations of bulk Ag targets irradiated in water are performed with an advanced computational model combining a coarse-grained representation of liquid environment and an atomistic description of laser interaction with metal targets. For the irradiation conditions that correspond to the spallation regime in vacuum, the simulations predict that the water environment can prevent the complete separation of the spalled layer from the target, leading to the formation of large subsurface voids stabilized by rapid cooling and solidification. The subsequent irradiation of the laser-modified surface is found to result in a more efficient ablation and nanoparticle generation, thus suggesting the possibility of the incubation effect in multipulse laser ablation in liquids. The simulations performed at higher laser fluences that correspond to the phase explosion regime in vacuum reveal the accumulation of the ablation plume at the interface with the water environment and the formation of a hot metal layer. The water in contact with the metal layer is brought to the supercritical state and provides an environment suitable for nucleation and growth of small metal nanoparticles from metal atoms emitted from the hot metal layer. The metal layer itself has limited stability and can readily disintegrate into large (tens of nanometers) nanoparticles. The layer disintegration is facilitated by the Rayleigh–Taylor instability of the interface between the higher density metal layer decelerated by the pressure from the lighter supercritical water. The nanoparticles emerging from the layer disintegration are rapidly cooled and solidified due to the interaction with water environment, with a cooling rate of ∼2 × 1012 K/s observed in the simulations. The computational prediction of two distinct mechanisms of nanoparticle formation yielding nanoparticles with different characteristic sizes provides a plausible explanation for the experimental observations of bimodal nanoparticle size distributions in laser ablation in liquids. The ultrahigh cooling and solidification rates suggest the possibility for generation of nanoparticles featuring metastable phases and highly nonequilibrium structures. PMID:28798858

  15. A dynamical classification of the cosmic web

    NASA Astrophysics Data System (ADS)

    Forero-Romero, J. E.; Hoffman, Y.; Gottlöber, S.; Klypin, A.; Yepes, G.

    2009-07-01

    In this paper, we propose a new dynamical classification of the cosmic web. Each point in space is classified in one of four possible web types: voids, sheets, filaments and knots. The classification is based on the evaluation of the deformation tensor (i.e. the Hessian of the gravitational potential) on a grid. The classification is based on counting the number of eigenvalues above a certain threshold, λth, at each grid point, where the case of zero, one, two or three such eigenvalues corresponds to void, sheet, filament or a knot grid point. The collection of neighbouring grid points, friends of friends, of the same web type constitutes voids, sheets, filaments and knots as extended web objects. A simple dynamical consideration of the emergence of the web suggests that the threshold should not be null, as in previous implementations of the algorithm. A detailed dynamical analysis would have found different threshold values for the collapse of sheets, filaments and knots. Short of such an analysis a phenomenological approach has been opted for, looking for a single threshold to be determined by analysing numerical simulations. Our cosmic web classification has been applied and tested against a suite of large (dark matter only) cosmological N-body simulations. In particular, the dependence of the volume and mass filling fractions on λth and on the resolution has been calculated for the four web types. We also study the percolation properties of voids and filaments. Our main findings are as follows. (i) Already at λth = 0.1 the resulting web classification reproduces the visual impression of the cosmic web. (ii) Between 0.2 <~ λth <~ 0.4, a system of percolated voids coexists with a net of interconnected filaments. This suggests a reasonable choice for λth as the parameter that defines the cosmic web. (iii) The dynamical nature of the suggested classification provides a robust framework for incorporating environmental information into galaxy formation models, and in particular to semi-analytical models.

  16. Computational Study of 3-D Hot-Spot Initiation in Shocked Insensitive High-Explosive

    NASA Astrophysics Data System (ADS)

    Najjar, F. M.; Howard, W. M.; Fried, L. E.

    2011-06-01

    High explosive shock sensitivity is controlled by a combination of mechanical response, thermal properties, and chemical properties. The interplay of these physical phenomena in realistic condensed energetic materials is currently lacking. A multiscale computational framework is developed investigating hot spot (void) ignition in a single crystal of an insensitive HE, TATB. Atomistic MD simulations are performed to provide the key chemical reactions and these reaction rates are used in 3-D multiphysics simulations. The multiphysics code, ALE3D, is linked to the chemistry software, Cheetah, and a three-way coupled approach is pursued including hydrodynamics, thermal and chemical analyses. A single spherical air bubble is embedded in the insensitive HE and its collapse due to shock initiation is evolved numerically in time; while the ignition processes due chemical reactions are studied. Our current predictions showcase several interesting features regarding hot spot dynamics including the formation of a ``secondary'' jet. Results obtained with hydro-thermo-chemical processes leading to ignition growth will be discussed for various pore sizes and different shock pressures. LLNL-ABS-471438. This work performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.

  17. Embedding piezoresistive pressure sensors to obtain online pressure profiles inside fiber composite laminates.

    PubMed

    Moghaddam, Maryam Kahali; Breede, Arne; Brauner, Christian; Lang, Walter

    2015-03-27

    The production of large and complex parts using fiber composite materials is costly due to the frequent formation of voids, porosity and waste products. By embedding different types of sensors and monitoring the process in real time, the amount of wastage can be significantly reduced. This work focuses on developing a knowledge-based method to improve and ensure complete impregnation of the fibers before initiation of the resin cure. Piezoresistive and capacitive pressure sensors were embedded in fiber composite laminates to measure the real-time the pressure values inside the laminate. A change of pressure indicates resin infusion. The sensors were placed in the laminate and the resin was infused by vacuum. The embedded piezoresistive pressure sensors were able to track the vacuum pressure in the fiber composite laminate setup, as well as the arrival of the resin at the sensor. The pressure increase due to closing the resin inlet was also measured. In contrast, the capacitive type of sensor was found to be inappropriate for measuring these quantities. The following study demonstrates real-time monitoring of pressure changes inside the fiber composite laminate, which validate the use of Darcy's law in porous media to control the resin flow during infusion.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Applegate, Matthew B.; Alonzo, Carlo; Georgakoudi, Irene

    High resolution three-dimensional voids can be directly written into transparent silk fibroin hydrogels using ultrashort pulses of near-infrared (NIR) light. Here, we propose a simple finite-element model that can be used to predict the size and shape of individual features under various exposure conditions. We compare predicted and measured feature volumes for a wide range of parameters and use the model to determine optimum conditions for maximum material removal. The simplicity of the model implies that the mechanism of multiphoton induced void creation in silk is due to direct absorption of light energy rather than diffusion of heat or othermore » photoproducts, and confirms that multiphoton absorption of NIR light in silk is purely a 3-photon process.« less

  19. Dynamic void behavior in polymerizing polymethyl methacrylate cement.

    PubMed

    Muller, Scott D; McCaskie, Andrew W

    2006-02-01

    Cement mantle voids remain controversial with respect to survival of total hip arthroplasty. Void evolution is poorly understood, and attempts at void manipulation can only be empirical. We induced voids in a cement model simulating the constraints of the proximal femur. Intravoid pressure and temperature were recorded throughout polymerization, and the initial and final void volumes were measured. Temperature-dependent peak intravoid pressures and void volume increases were observed. After solidification, subatmospheric intravoid pressures were observed. The magnitude of these observations could not be explained by the ideal gas law. Partial pressures of the void gas at peak pressures demonstrated a dominant effect of gaseous monomer, thereby suggesting that void growth is a pressure-driven phenomenon resulting from temperature-dependent evaporation of monomer into existing trapped air voids.

  20. Voids and superstructures: correlations and induced large-scale velocity flows

    NASA Astrophysics Data System (ADS)

    Lares, Marcelo; Luparello, Heliana E.; Maldonado, Victoria; Ruiz, Andrés N.; Paz, Dante J.; Ceccarelli, Laura; Garcia Lambas, Diego

    2017-09-01

    The expanding complex pattern of filaments, walls and voids build the evolving cosmic web with material flowing from underdense on to high density regions. Here, we explore the dynamical behaviour of voids and galaxies in void shells relative to neighbouring overdense superstructures, using the Millenium simulation and the main galaxy catalogue in Sloan Digital Sky Survey data. We define a correlation measure to estimate the tendency of voids to be located at a given distance from a superstructure. We find voids-in-clouds (S-types) preferentially located closer to superstructures than voids-in-voids (R-types) although we obtain that voids within ˜40 h-1 Mpc of superstructures are infalling in a similar fashion independently of void type. Galaxies residing in void shells show infall towards the closest superstructure, along with the void global motion, with a differential velocity component depending on their relative position in the shell with respect to the direction to the superstructure. This effect is produced by void expansion and therefore is stronger for R-types. We also find that galaxies in void shells facing the superstructure flow towards the overdensities faster than galaxies elsewhere at the same relative distance to the superstructure. The results obtained for the simulation are also reproduced for the Sky Survey Data Release data with a linearized velocity field implementation.

  1. Pore Formation and Mobility Investigation video images

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Video images sent to the ground allow scientists to watch the behavior of the bubbles as they control the melting and freezing of the material during the Pore Formation and Mobility Investigation (PFMI) in the Microgravity Science Glovebox aboard the International Space Station. While the investigation studies the way that metals behave at the microscopic scale on Earth -- and how voids form -- the experiment uses a transparent material called succinonitrile that behaves like a metal to study this problem. The bubbles do not float to the top of the material in microgravity, so they can study their interactions.

  2. Low-loss binder for hot pressing boron nitride

    DOEpatents

    Maya, Leon

    1991-01-01

    Borazine derivatives used as low-loss binders and precursors for making ceramic boron nitride structures. The derivative forms the same composition as the boron nitride starting material, thereby filling the voids with the same boron nitride material upon forming and hot pressing. The derivatives have a further advantage of being low in carbon thus resulting in less volatile byproduct that can result in bubble formation during pressing.

  3. Redshift-space distortions around voids

    NASA Astrophysics Data System (ADS)

    Cai, Yan-Chuan; Taylor, Andy; Peacock, John A.; Padilla, Nelson

    2016-11-01

    We have derived estimators for the linear growth rate of density fluctuations using the cross-correlation function (CCF) of voids and haloes in redshift space. In linear theory, this CCF contains only monopole and quadrupole terms. At scales greater than the void radius, linear theory is a good match to voids traced out by haloes; small-scale random velocities are unimportant at these radii, only tending to cause small and often negligible elongation of the CCF near its origin. By extracting the monopole and quadrupole from the CCF, we measure the linear growth rate without prior knowledge of the void profile or velocity dispersion. We recover the linear growth parameter β to 9 per cent precision from an effective volume of 3( h-1Gpc)3 using voids with radius >25 h-1Mpc. Smaller voids are predominantly sub-voids, which may be more sensitive to the random velocity dispersion; they introduce noise and do not help to improve measurements. Adding velocity dispersion as a free parameter allows us to use information at radii as small as half of the void radius. The precision on β is reduced to 5 per cent. Voids show diverse shapes in redshift space, and can appear either elongated or flattened along the line of sight. This can be explained by the competing amplitudes of the local density contrast, plus the radial velocity profile and its gradient. The distortion pattern is therefore determined solely by the void profile and is different for void-in-cloud and void-in-void. This diversity of redshift-space void morphology complicates measurements of the Alcock-Paczynski effect using voids.

  4. Hydrogeothermal Convective Circulation Model for the Formation of the Chicxulub Ring of Cenotes in the Yucatan Peninsula, Mexico.

    NASA Astrophysics Data System (ADS)

    Monroy-Rios, E.; Beddows, P. A.

    2015-12-01

    Despite being deeply buried, the topography and geophysical characteristics of the multi-ring Chicxulub impact structure are reflected on the now subaerial Yucatan Peninsula with aligned arcs of cenotes (sinkholes), forming the "Ring of Cenotes". A pending question is the determination of the geological, geochemical, structural features and associated processes that have led to void development, and the upwards propagation of the voids, cross cutting over 1000 m of super-deposited carbonate sequences. Drawing from the published literature on drill core and geophysical surveys undertaken by Pemex, UNAM, and IODP/ICDP, numerical modeling, and general carbonate platform hydrothermal reactive transport models, we provide a conceptual model for the genesis of the Ring of Cenotes. In horizontally bedded carbonate platforms, geothermal gradients will drive convective flow, with strong vertical components specifically in the platform center. In the Yucatan Platform, a high occurrence of anhydrite and dolomite at depth evokes early burial dolomitization and anhydritization, sourcing Mg from seawater. The Chicxulub impact near the center of the platform produced a low permeability and high thermal conductivity melt rock that arguably extends to the basement rock at 3.5 km below surface. Heat of impact enforced the pre-existing geothermal circulation pattern, and even with depletion of the heat of impact, the high thermal conductivity of the crystalline melt would lead to enhanced geothermal gradients in the center of the platform. The cenotes overlying the crater are deep (150+ m) vertical shafts with most (but not all) breaching the surface. The pit geomorphology suggests a bottom-up formation. Excess Si in the shallow groundwater points to a convective circulation with strong vertical components geochemically linking the granodioritic basement rock to the surface. Water temperature and conductivity profiles support ongoing vertical flux in some deep pit cenotes. Within this framework, we argue for the formation of the Ring of Cenotes by hydrogeothermal convective circulation in the post-impact carbonate sequences, leading to spatially focused dissolution at depth, with voids initiated along the crater edge effectively propagating upwards, often breaching the surface.

  5. Void initiation from interfacial debonding of spherical silicon particles inside a silicon-copper nanocomposite: a molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Cui, Yi; Chen, Zengtao

    2017-02-01

    Silicon particles with diameters from 1.9 nm to 30 nm are embedded in a face-centered-cubic copper matrix to form nanocomposite specimens for simulation. The interfacial debonding of silicon particles from the copper matrix and the subsequent growth of nucleated voids are studied via molecular dynamics (MD). The MD results are examined from several different perspectives. The overall mechanical performance is monitored by the average stress-strain response and the accumulated porosity. The ‘relatively farthest-traveled’ atoms are identified to characterize the onset of interfacial debonding. The relative displacement field is plotted to illustrate both subsequent interfacial debonding and the growth of a nucleated void facilitated by a dislocation network. Our results indicate that the initiation of interfacial debonding is due to the accumulated surface stress if the matrix is initially dislocation-free. However, pre-existing dislocations can make a considerable difference. In either case, the dislocation emission also contributes to the subsequent debonding process. As for the size effect, the debonding of relatively larger particles causes a drop in the stress-strain curve. The volume fraction of second-phase particles is found to be more influential than the size of the simulation box on the onset of interfacial debonding. The volume fraction of second-phase particles also affects the shape of the nucleated void and, therefore, influences the stress response of the composite.

  6. Predicting Young’s Modulus of Glass/Ceramic Sealant for Solid Oxide Fuel Cell Considering the Combined Effects of Aging, Micro-Voids and Self-Healing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.

    We study the temperature dependent Young’s modulus for the glass/ceramic seal material used in Solid Oxide Fuel Cells (SOFCs). With longer heat treatment or aging time during operation, further devitrification may reduce the residual glass content in the seal material while boosting the ceramic crystalline content. In the meantime, micro-voids induced by the cooling process from the high operating temperature to room temperature can potentially degrade the mechanical properties of the glass/ceramic sealant. Upon reheating to the SOFC operating temperature, possible self-healing phenomenon may occur in the glass/ceramic sealant which can potentially restore some of its mechanical properties. A phenomenologicalmore » model is developed to model the temperature dependent Young’s modulus of glass/ceramic seal considering the combined effects of aging, micro-voids, and possible self-healing. An aging-time-dependent crystalline content model is first developed to describe the increase of the crystalline content due to the continuing devitrification under high operating temperature. A continuum damage mechanics (CDM) model is then adapted to model the effects of both cooling induced micro-voids and reheating induced self-healing. This model is applied to model the glass-ceramic G18, a candidate SOFC seal material previously developed at PNNL. Experimentally determined temperature dependent Young’s modulus is used to validate the model predictions« less

  7. High Temperature VARTM of Phenylethynyl Terminated Imides (PETI) Resins

    NASA Technical Reports Server (NTRS)

    Ghose, Sayata; Cano, Roberto J.; Britton, Sean M.; Watson, Kent A.; Jensen, Brian J.; Connell, John W.

    2010-01-01

    Fabrication of composite structures using vacuum assisted resin transfer molding (VARTM) is generally more affordable than conventional autoclave techniques. Recent efforts have focused on adapting VARTM for the fabrication of high temperature composites. Due to their low melt viscosity and long melt stability, certain phenylethynyl terminated imides (PETI) can be processed into composites using high temperature VARTM (HT-VARTM). However, one of the disadvantages of the current HT-VARTM resin systems has been the high porosity of the resultant composites. For aerospace applications a void fraction of less than 2% is desired. In the current study, two PETI resins, LARCTM PETI-330 and LARCTM PETI-8 have been used to fabricate test specimens using HT-VARTM. The resins were infused into carbon fiber preforms at 260 C and cured between 316 C and 371 C. Modifications to the thermal cycle used in the laminate fabrication have reduced the void content significantly (typically < 3%) for carbon fiber biaxially woven fabric. Photomicrographs of the panels were taken and void contents were determined by acid digestion. For carbon fiber uniaxial fabric, void contents of less than 2% have been obtained using both PETI-8 and PETI-330. Mechanical properties of the panels were determined at both room and elevated temperatures. These include short beam shear and flexure tests. The results of this work are presented herein.

  8. 1-Hydroxypyrene concentrations in first morning voids and 24-h composite urine: intra- and inter-individual comparisons.

    PubMed

    Han, In-Kyu; Duan, Xiaoli; Zhang, Lin; Yang, Hongbiao; Rhoads, George G; Wei, Fusheng; Zhang, Junfeng

    2008-09-01

    Urinary 1-hydroxypyrene (1-OHP) has been suggested as an exposure biomarker for polycyclic aromatic hydrocarbons (PAHs). However, it remains unknown whether a first morning urine sample can be used to reflect average exposure. In this paper, we examine intra-individual differences and inter-individual associations between first morning voids and 24-h composite urine samples. The analysis was performed using data collected from 100 adults who had a wide range of PAH exposure due to differences in their occupation, e.g., coke oven workers vs. non-coke oven workers. For each subject, all the urine voids within each of two 24-h measurement periods were collected. Results showed a significant (40% to 62%) intra-individual difference between first morning voids and 24-h urinary 1-OHP concentrations (in ng/ml urine). Creatinine adjustments of 1-OHP concentrations (in micromol/mol urinary creatinine) reduced the intra-individual difference by approximately 10%. Across all the subjects, a high overall correlation (r=0.76) was observed between first morning and 24-h average 1-OHP concentrations. Work environment and sampling season were found to significantly affect the relationship between first morning and 24-h 1-OHP concentrations. An increase of 1 ng/ml of first morning urinary 1-OHP predicted an increase of 0.5 and 0.25 ng/ml of 24-h urinary 1-OHP for coke oven workers and non-coke oven workers, respectively. Data collected in a winter season showed a higher correlation between first morning and 24-h concentrations than data collected in a fall season. Creatinine adjustments did not significantly improve overall correlations between first morning void and 24-h measurements, but increased total variances for 24-h urines explained by first morning urines in coke workers.

  9. Centimeter to decimeter hollow concretions and voids in Gale Crater sediments, Mars

    DOE PAGES

    Wiens, Roger C.; Rubin, David M.; Goetz, Walter; ...

    2017-02-21

    Voids and hollow spheroids between ~1 and 23 cm in diameter occur at several locations along the traverse of the Curiosity rover in Gale crater, Mars. These hollow spherical features are significantly different from anything observed in previous landed missions. The voids appear in dark-toned, rough-textured outcrops, most notably at Point Lake (sols 302–305) and Twin Cairns Island (sol 343). Point Lake displays both voids and cemented spheroids in close proximity; other locations show one or the other form. The spheroids have 1–4 mm thick walls and appear relatively dark-toned in all cases, some with a reddish hue. Only onemore » hollow spheroid (Winnipesaukee, sol 653) was analyzed for composition, appearing mafic (Fe-rich), in contrast to the relatively felsic host rock. The interior surface of the spheroid appears to have a similar composition to the exterior with the possible exceptions of being more hydrated and slightly depleted in Fe and K. The origins of the spheroids as Martian tektites or volcanic bombs appear unlikely due to their hollow and relatively fragile nature and the absence of in-place clearly igneous rocks. A more likely explanation to both the voids and the hollow spheroids is reaction of reduced iron with oxidizing groundwater followed by some re-precipitation as cemented rind concretions at a chemical reaction front. Though some terrestrial concretion analogs are produced from a precursor siderite or pyrite, diagenetic minerals could also be direct precipitates for other terrestrial concretions. The Gale sediments differ from terrestrial sandstones in their high initial iron content, perhaps facilitating a higher occurrence of such diagenetic reactions.« less

  10. Centimeter to decimeter hollow concretions and voids in Gale Crater sediments, Mars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiens, Roger C.; Rubin, David M.; Goetz, Walter

    Voids and hollow spheroids between ~1 and 23 cm in diameter occur at several locations along the traverse of the Curiosity rover in Gale crater, Mars. These hollow spherical features are significantly different from anything observed in previous landed missions. The voids appear in dark-toned, rough-textured outcrops, most notably at Point Lake (sols 302–305) and Twin Cairns Island (sol 343). Point Lake displays both voids and cemented spheroids in close proximity; other locations show one or the other form. The spheroids have 1–4 mm thick walls and appear relatively dark-toned in all cases, some with a reddish hue. Only onemore » hollow spheroid (Winnipesaukee, sol 653) was analyzed for composition, appearing mafic (Fe-rich), in contrast to the relatively felsic host rock. The interior surface of the spheroid appears to have a similar composition to the exterior with the possible exceptions of being more hydrated and slightly depleted in Fe and K. The origins of the spheroids as Martian tektites or volcanic bombs appear unlikely due to their hollow and relatively fragile nature and the absence of in-place clearly igneous rocks. A more likely explanation to both the voids and the hollow spheroids is reaction of reduced iron with oxidizing groundwater followed by some re-precipitation as cemented rind concretions at a chemical reaction front. Though some terrestrial concretion analogs are produced from a precursor siderite or pyrite, diagenetic minerals could also be direct precipitates for other terrestrial concretions. The Gale sediments differ from terrestrial sandstones in their high initial iron content, perhaps facilitating a higher occurrence of such diagenetic reactions.« less

  11. Stiffness optimization of non-linear elastic structures

    DOE PAGES

    Wallin, Mathias; Ivarsson, Niklas; Tortorelli, Daniel

    2017-11-13

    Our paper revisits stiffness optimization of non-linear elastic structures. Due to the non-linearity, several possible stiffness measures can be identified and in this work conventional compliance, i.e. secant stiffness designs are compared to tangent stiffness designs. The optimization problem is solved by the method of moving asymptotes and the sensitivities are calculated using the adjoint method. And for the tangent cost function it is shown that although the objective involves the third derivative of the strain energy an efficient formulation for calculating the sensitivity can be obtained. Loss of convergence due to large deformations in void regions is addressed bymore » using a fictitious strain energy such that small strain linear elasticity is approached in the void regions. We formulate a well-posed topology optimization problem by using restriction which is achieved via a Helmholtz type filter. The numerical examples provided show that for low load levels, the designs obtained from the different stiffness measures coincide whereas for large deformations significant differences are observed.« less

  12. Stiffness optimization of non-linear elastic structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallin, Mathias; Ivarsson, Niklas; Tortorelli, Daniel

    Our paper revisits stiffness optimization of non-linear elastic structures. Due to the non-linearity, several possible stiffness measures can be identified and in this work conventional compliance, i.e. secant stiffness designs are compared to tangent stiffness designs. The optimization problem is solved by the method of moving asymptotes and the sensitivities are calculated using the adjoint method. And for the tangent cost function it is shown that although the objective involves the third derivative of the strain energy an efficient formulation for calculating the sensitivity can be obtained. Loss of convergence due to large deformations in void regions is addressed bymore » using a fictitious strain energy such that small strain linear elasticity is approached in the void regions. We formulate a well-posed topology optimization problem by using restriction which is achieved via a Helmholtz type filter. The numerical examples provided show that for low load levels, the designs obtained from the different stiffness measures coincide whereas for large deformations significant differences are observed.« less

  13. Transurethral lithotripsy with holmium-YAG laser of a large exogenous prostatic calculus.

    PubMed

    Hasegawa, Masanori; Ohara, Rei; Kanao, Kent; Nakajima, Yosuke

    2011-04-01

    Prostatic calculi are classified into two types, endogenous and exogenous calculi, based on their origin. Endogenous calculi are commonly observed in elderly men; however, exogenous prostatic calculi are extremely rare. We report here the case of a 51-year-old man who suffered incontinence and pollakiuria with a giant exogenous prostatic calculus almost completely replacing the prostatic tissue. X-rays and computed tomography demonstrated a large calculus of 65 × 58 mm in the small pelvic cavity. The patient underwent a transurethral lithotripsy with a holmium-YAG laser and a total of 85 g of disintegrated stones was retrieved and chemical stone analysis revealed the presence of magnesium ammonium phosphate. The incontinence improved and the voiding volume increased dramatically, and no stone recurrence in the prostatic fossa occurred at the 2 years follow-up. The etiology of this stone formation seemed to be based on some exogenous pathways combined with urinary stasis and chronic urinary infection due to compression fracture of the lumbar vertebra.

  14. HVOF coatings of Diamalloy 2002 and Diamalloy 4010 onto steel: Tensile and bending response of coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Shehri, Y. A.; Hashmi, M. S. J.; Yilbas, B. S.

    HVOF coating of Diamalloy 2002 powders and Diamalloy 4010 powders as well as two-layered coatings consisting of these powders is carried out. In the two-layered structure, Diamalloy 4010 is sprayed at the substrate surface while Diamalloy 2002 is sprayed on the top of Diamalloy 4010 coating. The mechanical properties of the coatings are examined through tensile and three-point bending tests. The coating microstructure and morphology are examined using the Scanning Electron Microscope (SEM), Energy Dispersive Spectroscopy (EDS) and X-ray diffraction (XRD). It is found that the coating produced is free from defects including voids and cracks. The failure mechanism ofmore » coating during tensile and three-point bending tests is mainly crack formation and propagation in the coating. The elastic modulus of coating produced from Diamalloy 2002 is higher than that of Diamalloy 4010 coating, which is due to the presence of 12% WC in the coating.« less

  15. Porous media modeling and micro-structurally motivated material moduli determination via the micro-dilatation theory

    NASA Astrophysics Data System (ADS)

    Jeong, J.; Ramézani, H.; Sardini, P.; Kondo, D.; Ponson, L.; Siitari-Kauppi, M.

    2015-07-01

    In the present contribution, the porous material modeling and micro-structural material parameters determination are scrutinized via the micro-dilatation theory. The main goal is to take advantage of the micro-dilatation theory which belongs to the generalized continuum media. In the first stage, the thermodynamic laws are entirely revised to reach the energy balance relation using three variables, deformation, porosity change and its gradient underlying the porous media as described in the micro-dilatation theory or so-called void elasticity. Two experiments over cement mortar specimens are performed in order to highlight the material parameters related to the pore structure. The shrinkage due to CO2 carbonation, porosity and its gradient are calculated. The extracted values are verified via 14C-PMMA radiographic image method. The modeling of swelling phenomenon of Delayed Ettringite Formation (DEF) is studied later on. This issue is performed via the crystallization pressure application using the micro-dilatation theory.

  16. Radiation Enhanced Absorption of Frank Loops by Nanovoids in Cu

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Youxing; Zhang, Xinghang; Wang, Jian

    Neutron and heavy ion irradiation generally induces voids in metallic materials, and continuous radiations typically result in void swelling and mechanical failure of the irradiated materials. Recent experiments showed that nanovoids in nanotwinned copper could act as sinks for radiation-induced Frank loops, significantly mitigating radiation damage [Y. Chen et al., Nat. Commun. 6:7036 (2015)]. In this paper, we report on structural evolution of Frank loops under cascades and address the role of nanovoids in absorbing Frank loops in detail by using molecular dynamics simulations. Results show that a stand-alone Frank loop is stable under cascades. When Frank loops are adjacentmore » to nanovoids, the diffusion of a group of atoms from the loop into nanovoids is accomplished via the formation and propagation of dislocation loops. The loop-nanovoid interactions result in the shrinkage of the nanovoids and the Frank loops.« less

  17. Radiation Enhanced Absorption of Frank Loops by Nanovoids in Cu

    DOE PAGES

    Chen, Youxing; Zhang, Xinghang; Wang, Jian

    2016-11-01

    Neutron and heavy ion irradiation generally induces voids in metallic materials, and continuous radiations typically result in void swelling and mechanical failure of the irradiated materials. Recent experiments showed that nanovoids in nanotwinned copper could act as sinks for radiation-induced Frank loops, significantly mitigating radiation damage [Y. Chen et al., Nat. Commun. 6:7036 (2015)]. In this paper, we report on structural evolution of Frank loops under cascades and address the role of nanovoids in absorbing Frank loops in detail by using molecular dynamics simulations. Results show that a stand-alone Frank loop is stable under cascades. When Frank loops are adjacentmore » to nanovoids, the diffusion of a group of atoms from the loop into nanovoids is accomplished via the formation and propagation of dislocation loops. The loop-nanovoid interactions result in the shrinkage of the nanovoids and the Frank loops.« less

  18. Atomistic simulations of shock-induced alloying reactions in Ni /Al nanolaminates

    NASA Astrophysics Data System (ADS)

    Zhao, Shijin; Germann, Timothy C.; Strachan, Alejandro

    2006-10-01

    We employ molecular dynamics simulations with a first principles-based many body potential to characterize the exothermic alloying reactions of nanostructured Ni /Al multilayers induced by shock loading. We introduce a novel technique that captures both the initial shock transit as well as the subsequent longer-time-scale Ni3Al alloy formation. Initially, the softer Al layers are shock heated to a higher temperature than the harder Ni layers as a result of a series of shock reflections from the impedance-mismatched interfaces. Once initiated, the highly exothermic alloying reactions can propagate in a self-sustained manner by mass and thermal diffusion. We also characterize the role of voids on the initiation of alloying. The interaction of the shock wave with the voids leads not only to significant local heating (hot spots) but also directly aids the intermixing between Al and Ni; both of these phenomena contribute to a significant acceleration of the alloying reactions.

  19. Effect of microbubble-induced cavitation on the dispersion of sprays

    NASA Astrophysics Data System (ADS)

    van der Voort, D. D.; Dam, N. J.; Kunnen, R. P. J.; van Heijst, G. J. F.; Clercx, H. J. H.

    2017-03-01

    The presence of bubbles and voids inside nozzles has a large effect on the morphology and atomization of sprays. In this investigation the voids formed by microbubbles entering the nozzle are investigated using transparent glass nozzles, pressure transducers, and high-speed diffuse backlight imaging. A correlation is found between the magnitude of pressure pulses inside the nozzle and the size of the bubbles causing these pulses. This relation allows the prediction of cavity formation also in nontransparent nozzles, which allow more realistic conditions of operation. Subsequently, the direct measurements of dispersion derived from the spread of glowing fluid showed no significant increase of the dispersion compared to cavitation-free conditions. This indicates that, while the spray angle may increase, the turbulence (in both liquid and gas phase) that governs the dispersion remains the same and the cavitation bubble events do not have a significant impact on this process.

  20. Complex doping of group 13 elements In and Ga in caged skutterudite CoSb 3

    DOE PAGES

    Xi, Lili; Qiu, Yting; Zheng, Shang; ...

    2014-12-12

    The complex doping behavior of Ga and In in CoSb 3 has been investigated using ab initio total-energy calculations and thermodynamics. The formation energies of void filling, Sb substitution and complex dual-site occupancy defects with different charge states, and their dependence on chemical potentials of species, were studied. Results show that Ga predominantly forms dual-site 2Ga VF–Ga Sb defects and substitutes for Sb only at very high Fermi levels or electron concentrations. In, on the other hand, can play multiple roles in skutterudites, including filling in the crystalline voids, substituting for Sb atoms or forming dual-site occupancy, among which themore » fully charge-compensated dual-site defects (2In VF–In Sb and 4In VF–2In Sb) are dominant. The equilibrium concentration ratio of impurities at void-filling sites to those at Sb-substitution sites for Ga-doped CoSb 3 is very close to be 2:1, while this value markedly deviates from 2:1 for In-doped CoSb 3. Furthermore, the 2:1 ratio of Ga doping in CoSb 3 leads to low electron concentration (~2 × 10 19 cm –3) and makes the doped system a semiconductor.« less

  1. Damage structures in fission-neutron irradiated Ni-based alloys at high temperatures

    NASA Astrophysics Data System (ADS)

    Yamakawa, K.; Shimomura, Y.

    1999-01-01

    The defects formed in Ni based (Ni-Si, Ni-Cu and Ni-Fe) alloys which were irradiated with fission-neutrons were examined by electron microscopy. Irradiations were carried out at 473 K and 573 K. In the 473 K irradiated specimens, a high density of large interstitial loops and small vacancy clusters with stacking fault tetrahedra (SFT) were observed. The number densities of these two types of defects did not strongly depend on the amount of solute atoms in each alloy. The density of the loops in Ni-Si alloys was much higher than those in Ni-Cu and Ni-Fe alloys, while the density of SFT only slightly depended on the kind of solute. Also, the size of the loops depended on the kinds and amounts of solute. In 573 K irradiated Ni-Cu specimens, a high density of dislocation lines developed during the growth of interstitial loops. In Ni-Si alloys, the number density and size of the interstitial loops changed as a function of the amount of solute. Voids were formed in Ni-Cu alloys but scarcely formed in Ni-Si alloys. The number density of voids was one hundredth of that of SFT observed in 473 K irradiated Ni-Cu alloys. Possible formation processes of interstitial loops, SFT dislocation lines and voids are discussed.

  2. Criticality conditions of heterogeneous energetic materials under shock loading

    NASA Astrophysics Data System (ADS)

    Nassar, Anas; Rai, Nirmal Kumar; Sen, Oishik; Udaykumar, H. S.

    2017-06-01

    Shock interaction with the microstructural heterogeneities of energetic materials can lead to the formation of locally heated regions known as hot spots. These hot spots are the potential sites where chemical reaction may be initiated. However, the ability of a hot spot to initiate chemical reaction depends on its size, shape and strength (temperature). Previous study by Tarver et al. has shown that there exists a critical size and temperature for a given shape (spherical, cylindrical, and planar) of the hot spot above which reaction initiation is imminent. Tarver et al. assumed a constant temperature variation in the hot spot. However, the meso-scale simulations show that the temperature distribution within a hot spot formed from processes such as void collapse is seldom constant. Also, the shape of a hot spot can be arbitrary. This work is an attempt towards development of a critical hot spot curve which is a function of loading strength, duration and void morphology. To achieve the aforementioned goal, mesoscale simulations are conducted on porous HMX material. The process is repeated for different loading conditions and void sizes. The hot spots formed in the process are examined for criticality depending on whether they will ignite or not. The metamodel is used to obtain criticality curves and is compared with the critical hot spot curve of Tarver et al.

  3. The void nucleation mechanism within lead phase during spallation of leaded brass

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Wang, Can; Chen, Xingzhi; Chen, Kaiguo; Hu, Haibo; Fu, Yanan

    2018-07-01

    The incipient spall behaviours of Cu-34%Zn-3%Pb leaded brass samples with annealed and cryogenic-treated conditions were loaded using one-stage light gas gun experiments. The effect of Pb-phase on dynamic damage nucleation in leaded brass specimens was investigated by means of optical microscopy, scanning electron microscopy and x-ray computer tomography. It was found that the voids of incipient spall were mainly nucleated in the interior of the lead (no tensile stress would be produced within lead according to the impact theory) instead of nucleated at the phase interface as expected by quasi-static damage fracture theory. A nucleation model is proposed in the present work that is the asymmetry high compression zones in the centre of the lead-phase were formed by the rarefaction wave convergence effects of matrix/quasi-spherical lead interface, which caused adiabatic temperature rise that exceeded melting point of lead due to severe plastic deformation, finally led to local melting and void nucleation. In addition, the spall strength and damage rate increased with the increase in the Pb-phase number.

  4. Monitoring Detrusor Oxygenation and Hemodynamics Noninvasively during Dysfunctional Voiding

    PubMed Central

    Macnab, Andrew J.; Stothers, Lynn S.; Shadgan, Babak

    2012-01-01

    The current literature indicates that lower urinary tract symptoms (LUTSs) related to benign prostatic hyperplasia (BPH) have a heterogeneous pathophysiology. Pressure flow studies (UDSs) remain the gold standard evaluation methodology for such patients. However, as the function of the detrusor muscle depends on its vasculature and perfusion, the underlying causes of LUTS likely include abnormalities of detrusor oxygenation and hemodynamics, and available treatment options include agents thought to act on the detrusor smooth muscle and/or vasculature. Hence, near infrared spectroscopy (NIRS), an established optical methodology for monitoring changes in tissue oxygenation and hemodynamics, has relevance as a means of expanding knowledge related to the pathophysiology of BPH and potential treatment options. This methodological report describes how to conduct simultaneous NIRS monitoring of detrusor oxygenation and hemodynamics during UDS, outlines the clinical implications and practical applications of NIRS, explains the principles of physiologic interpretation of NIRS voiding data, and proposes an exploratory hypothesis that the pathophysiological causes underlying LUTS include detrusor dysfunction due to an abnormal hemodynamic response or the onset of oxygen debt during voiding. PMID:23019422

  5. Processing and Testing of Thermoplastic Composite Cylindrical Shells Fabricated by Automated Fiber Placement

    NASA Technical Reports Server (NTRS)

    Hulcher, Anthony Bruce; McGowan, David M.; Grimsley, Brian W.; Johnston, Norman J.; Gordon, Gail H. (Technical Monitor)

    2001-01-01

    Two 61-cm-diameter eight-ply quasi-isotropic IM7/PEEK cylindrical shells were fabricated by automated fiber placement the NASA Langley Research Center using only infrared radiant heat to preheat the substrate and incoming composite uni-tape. The shells were characterized by ultrasonic c-scans for overall consolidation quality, and by optical microscopy and acid digestion for void content. Compression tests were also performed. Although the material used in the study was of generally poor quality due to numerous splits and dry fiber regions, the process was able to achieve a net reduction in void content in the as-placed component. Microscopy of the composite shells revealed well-consolidated, void-free interfaces. The two cylinders were then tested in uni-axial compression in a 1334 kN-capacity hydraulic test machine until buckling occurred. A geometrically nonlinear finite element analysis was conducted, and the differences between the predicted and measured values were 18.0 and 25.8%, respectively. Inclusion of measured imperfections of the cylinder into the analysis is expected to reduce these differences.

  6. Fault geometry and fluid-rock reaction: Combined controls on mineralization in the Xinli gold deposit, Jiaodong Peninsula, China

    NASA Astrophysics Data System (ADS)

    Yang, Lin; Zhao, Rui; Wang, Qingfei; Liu, Xuefei; Carranza, Emmanuel John M.

    2018-06-01

    The structures and fluid-rock reaction in the Xinli gold deposit, Jiaodong Peninsula, were investigated to further understand their combined controls on the development of permeability associated with ore-forming fluid migration. Orebodies in this deposit are hosted by the moderately SE-to S-dipping Sanshandao-Cangshang fault (SCF). Variations in both dip direction and dip angle along the SCF plane produced fault bends, which controlled the fluid accumulation and ore-shoot formation. Gold mineralizations occurred in early gold-quartz-pyrite and late gold-quartz-polymetallic sulphide stages following pervasive sericitization and silicification alterations. Theoretical calculation indicates that sericitization caused 8-57% volume decrease resulting in the development/enlargement of voids, further increase of grain-scale permeability, and resultant precipitation of the early gold-quartz-pyrite pods, which destroyed permeability. The rock softening produced by alterations promoted activities of SCF secondary faults and formation of new fractures, which rebuilt the permeability and controlled the late gold-quartz-polymetallic sulfide veins. Quantitative studies on permeability distributions show that the southwestern and northeastern bend areas with similar alteration and mineralization have persistent and anti-persistent permeability networks, respectively. These were likely caused by different processes of rebuilding permeability due to different stress states resulting from changes in fault geometry.

  7. Morphology and composition of gold in a lateritic profile, Fazenda Pison “Garimpo”, Amazon, Brazil

    NASA Astrophysics Data System (ADS)

    Larizzatti, J. H.; Oliveira, S. M. B.; Butt, C. R. M.

    2008-05-01

    This study describes the morphological evolution of gold grains in a lateritic weathering profile in an equatorial rainforest climate. Primary sources of gold are quartz veins associated with shallow granophyric intrusion. Gold grains were found in fresh ore, saprolite, transition zones, ferruginous duricrust, red latosol, and yellow latosol. Irregularly shaped grains predominate, with smaller proportions of dendritic and prismatic forms. Gold grains are weathered in the uppermost 10 m of the regolith. Mean gold grain size is maximum in the duricrust (>125 μm) and decreases progressively upward into the yellow latosol (<90 μm). Voids and corrosion pits appear on grain surfaces, and progressive rounding is observed from the bottom of the profile to the top. Gold grains can be classified as either homogeneous or zoned with respect to their chemical composition. Homogeneous grains contain 2-15% Ag (mean 8.3%). Zoned grains have more variable Ag contents; grain cores have means of approximately 10% or 23% Ag, with Ag-poor zones of approximately 3.7% Ag along internal discontinuities and/or outer rims. Formation of Ag-poor rims is due to preferential depletion of silver. Processes responsible for duricrust formation may preserve some grains as large aggregates, but subsequent transformation into latosol further modifies them.

  8. Clinical field-strength MRI of amyloid plaques induced by low-level cholesterol feeding in rabbits

    PubMed Central

    Chen, Yuanxin; Bernas, Lisa; Kitzler, Hagen H.; Rogers, Kem A.; Hegele, Robert A.; Rutt, Brian K.

    2009-01-01

    Two significant barriers have limited the development of effective treatment of Alzheimer's disease. First, for many cases the aetiology is unknown and likely multi-factorial. Among these factors, hypercholesterolemia is a known risk predictor and has been linked to the formation of β-amyloid plaques, a pathological hallmark this disease. Second, standardized diagnostic tools are unable to definitively diagnose this disease prior to death; hence new diagnostic tools are urgently needed. Magnetic resonance imaging (MRI) using high field-strength scanners has shown promise for direct visualization of β-amyloid plaques, allowing in vivo longitudinal tracking of disease progression in mouse models. Here, we present a new rabbit model for studying the relationship between cholesterol and Alzheimer's disease development and new tools for direct visualization of β-amyloid plaques using clinical field-strength MRI. New Zealand white rabbits were fed either a low-level (0.125–0.25% w/w) cholesterol diet (n = 5) or normal chow (n = 4) for 27 months. High-resolution (66 × 66 × 100 µm3; scan time = 96 min) ex vivo MRI of brains was performed using a 3-Tesla (T) MR scanner interfaced with customized gradient and radiofrequency coils. β-Amyloid-42 immunostaining and Prussian blue iron staining were performed on brain sections and MR and histological images were manually registered. MRI revealed distinct signal voids throughout the brains of cholesterol-fed rabbits, whereas minimal voids were seen in control rabbit brains. These voids corresponded directly to small clusters of extracellular β-amyloid-positive plaques, which were consistently identified as iron-loaded (the presumed source of MR contrast). Plaques were typically located in the hippocampus, parahippocampal gyrus, striatum, hypothalamus and thalamus. Quantitative analysis of the number of histologically positive β-amyloid plaques (P < 0.0001) and MR-positive signal voids (P < 0.05) found in cholesterol-fed and control rabbit brains corroborated our qualitative observations. In conclusion, long-term, low-level cholesterol feeding was sufficient to promote the formation of extracellular β-amyloid plaque formation in rabbits, supporting the integral role of cholesterol in the aetiology of Alzheimer's disease. We also present the first evidence that MRI is capable of detecting iron-associated β-amyloid plaques in a rabbit model of Alzheimer's disease and have advanced the sensitivity of MRI for plaque detection to a new level, allowing clinical field-strength scanners to be employed. We believe extension of these technologies to an in vivo setting in rabbits is feasible and that our results support future work exploring the role of MRI as a leading imaging tool for this debilitating and life-threatening disease. PMID:19293239

  9. Breaking the Web

    ERIC Educational Resources Information Center

    Uetz, George; Johnson, Donald Lee

    1974-01-01

    A large number of animals are becoming extinct at an alarming rate due to ecosystem alteration, hunting, introduction of species, predator and pest control, capture of animals for legitimate and illegal purposes and pollution. There is concern man may not be able to survive in a world void of diversity. (BT)

  10. Closure behavior of spherical void in slab during hot rolling process

    NASA Astrophysics Data System (ADS)

    Cheng, Rong; Zhang, Jiongming; Wang, Bo

    2018-04-01

    The mechanical properties of steels are heavily deteriorated by voids. The influence of voids on the product quality should be eliminated through rolling processes. The study on the void closure during hot rolling processes is necessary. In present work, the closure behavior of voids at the center of a slab at 800 °C during hot rolling processes has been simulated with a 3D finite element model. The shape of the void and the plastic strain distribution of the slab are obtained by this model. The void decreases along the slab thickness direction and spreads along the rolling direction but hardly changes along the strip width direction. The relationship between closure behavior of voids and the plastic strain at the center of the slab is analyzed. The effects of rolling reduction, slab thickness and roller diameter on the closure behavior of voids are discussed. The larger reduction, thinner slab and larger roller diameter all improve the closure of voids during hot rolling processes. Experimental results of the closure behavior of a void in the slab during hot rolling process mostly agree with the simulation results..

  11. NASADEM Overview and First Results: Shuttle Radar Topography Mission (SRTM) Reprocessing and Improvements

    NASA Astrophysics Data System (ADS)

    Buckley, S.; Agram, P. S.; Belz, J. E.; Crippen, R. E.; Gurrola, E. M.; Hensley, S.; Kobrick, M.; Lavalle, M.; Martin, J. M.; Neumann, M.; Nguyen, Q.; Rosen, P. A.; Shimada, J.; Simard, M.; Tung, W.

    2015-12-01

    NASADEM is a significant modernization of SRTM digital elevation model (DEM) data supported by the NASA MEaSUREs program. We are reprocessing the raw radar signal data using improved algorithms and incorporating ICESat and ASTER-derived DEM data unavailable during the original processing. The NASADEM products will be freely-available through the Land Processes Distributed Active Archive Center (LPDAAC) at 1-arcsecond spacing. The most significant processing improvements involve void reduction through improved phase unwrapping and using ICESat data for control. The updated unwrapping strategy now includes the use of SNAPHU for data processing patches where the unwrapped coverage from the original residue-based unwrapper falls below a coverage threshold. In North America continental processing, first experiments show the strip void area is reduced by more than 50% and the number of strip void patches is reduced by 40%. Patch boundary voids are mitigated by reprocessing with a different starting burst and merging the unwrapping results. We also updated a low-resolution elevation database to aid with unwrapping bootstrapping, retaining isolated component of unwrapped phase, and assessing the quality of the strip DEMs. We introduce a height ripple error correction to reduce artifacts in the strip elevation data. These ripples are a few meters in size with along-track spatial scales of tens of kilometers and are due to uncompensated mast motion most pronounced after Shuttle roll angle adjustment maneuvers. We developed an along-track filter utilizing differences between the SRTM heights and ICESat lidar elevation data. For a test using all data over North America, the algorithm reduced the ICESat-SRTM bias from 80 cm to 3 cm and the RMS from 5m to 4m. After merging and regridding the SRTM strip DEMs into 1x1-degree tiles, remaining voids are primarily filled with the ASTER-derived Global DEM. We use a Delta Surface Fill method to rubbersheet fill data across the void for a seamless merger. We find this to provide a more accurate fill than cut-and-paste patching. A new post-processing module creates DEM-derived layers from the void-free elevation data. The slope/aspect & plan/profile curvatures are found by fitting a local quadratic surface to each DEM post and computing metrics from the fit coefficients.

  12. Extended Burnup Credit for BWR Spent Nuclear Fuel in Storage and Transportation Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ade, Brian J; Bowman, Stephen M; Gauld, Ian C

    2015-01-01

    [Full Text] Oak Ridge National Laboratory and the United States Nuclear Regulatory Commission have initiated a multiyear project to investigate the application of burnup credit (BUC) for boiling-water reactor (BWR) fuel in storage and transportation casks. This project includes two phases. The first phase investigates the applicability of peak reactivity methods currently used for spent fuel pools to spent fuel storage and transportation casks and the validation of reactivity (k eff) calculations and depleted fuel compositions. The second phase focuses on extending BUC beyond peak reactivity. This paper documents work performed to date, investigating some aspects of extended BUC, andmore » it also describes the plan to complete the evaluations. The technical basis for application of peak reactivity methods to BWR fuel in storage and transportation systems is presented in a companion paper. Two reactor operating parameters are being evaluated to establish an adequate basis for extended BWR BUC, including investigation of the axial void profile effect and the effect of control blade utilization during operation. A detailed analysis of core simulator data for one cycle of an operating BWR plant was performed to determine the range of void profiles and the variability of the profile experienced during irradiation. While a single cycle does not provide complete data, the data obtained are sufficient to use to determine the primary effects and identify conservative modeling approaches. Using data resulting from a single cycle, the axial void profile is studied by first determining the temporal fidelity necessary in depletion modeling, and then using multiple void profiles to examine the effect of the void profile on cask reactivity. The results of these studies are being used to develop recommendations for conservatively modeling the void profile effects for BWR depletion calculations. The second operational parameter studied is control blade exposure. Control blades are inserted in various locations and at varying degrees during BWR operation based on the reload design. The presence of control blades during depletion hardens the neutron spectrum locally due to both moderator displacement and introduction of a thermal neutron absorber. The reactivity impact of control blade presence is investigated herein, as well as the effect of multiple (continuous and intermittent) exposure periods. The coupled effects of control blade presence on power density, void profile, or burnup profile have not been considered to date but will be addressed in future work.« less

  13. Voiding diary might serve as a useful tool to understand differences between bladder pain syndrome/interstitial cystitis and overactive bladder.

    PubMed

    Kim, Sung Han; Oh, Shin Ah; Oh, Seung-June

    2014-02-01

    To identify the voiding characteristics of bladder pain syndrome/interstitial cystitis and overactive bladder. Between September 2005 and June 2010, 3-day voiding diaries of 49 consecutive bladder pain syndrome/interstitial cystitis patients and 301 overactive bladder patients were prospectively collected at an outpatient clinic and retrospectively analyzed. The characteristics of the two groups were not significantly different. However, all voiding variables including volume and frequency were significantly different except for the total voided volume: patients with bladder pain syndrome/interstitial cystitis showed significantly higher voiding frequencies, smaller maximal and mean voided volume, and more constant and narrower ranges of voided volume compared with overactive bladder patients (P < 0.005). Furthermore, mean intervals between voiding in bladder pain syndrome/interstitial cystitis were shorter and more consistent during the day and night (P < 0.001), although mean night-time variances were greater than daytime variances. Logistic regression analysis showed that total night-time frequency, maximal night-time voided volume and mean variance of daytime voiding intervals most significantly differentiated the two groups. Some voiding characteristics of bladder pain syndrome/interstitial cystitis and overactive bladder patients differ significantly according to 3-day voiding diary records. These findings provide additional information regarding the differences between these two diseases in the outpatient clinical setting. © 2013 The Japanese Urological Association.

  14. 3D Simulations of Void collapse in Energetic Materials

    NASA Astrophysics Data System (ADS)

    Rai, Nirmal Kumar; Udaykumar, H. S.

    2017-06-01

    Voids present in the microstructure of heterogeneous energetic materials effect the sensitivity towards ignition. It is established that the morphology of voids can play a significant role in sensitivity enhancement of energetic materials. Depending on the void shape, sensitivity can be either increased or decreased under given loading conditions. In the past, effects of different void shapes i.e. triangular, ellipse, cylindrical etc. on the sensitivity of energetic materials have been analyzed. However, most of these studies are performed in 2D and are limited under the plain strain assumption. Axisymmetric studies have also been performed in the past to incorporate the 3D effects, however axisymmetric modeling is limited to only certain geometries i.e. sphere. This work analyzes the effects of various void shapes in three dimensions on the ignition behavior of HMX. Various void shapes are analyzed including spherical, prolate and oblate speheroid oriented at different orientations, etc. Three dimensional void collapse simulations are performed on a single void to quantify the effects void morphology on initiation. A Cartesian grid based Eulerian solver SCIMITAR3D is used to perform the void collapse simulations. Various aspects of void morphology i.e. size, thickness of voids, elongation, orientation etc. are considered to obtain a comprehensive analysis. Also, 2D plane strain calculations are compared with the three dimensional analysis to evaluate the salient differences between 2D and 3D modeling.

  15. NDE of structural ceramics

    NASA Technical Reports Server (NTRS)

    Klima, S. J.; Vary, A.

    1986-01-01

    Radiographic, ultrasonic, scanning laser acoustic microscopy (SLAM), and thermo-acoustic microscopy techniques were used to characterize silicon nitride and silicon carbide modulus-of-rupture test specimens in various stages of fabrication. Conventional and microfocus X-ray techniques were found capable of detecting minute high density inclusions in as-received powders, green compacts, and fully densified specimens. Significant density gradients in sintered bars were observed by radiography, ultrasonic velocity, and SLAM. Ultrasonic attenuation was found sensitive to microstructural variations due to grain and void morphology and distribution. SLAM was also capable of detecting voids, inclusions and cracks in finished test bars. Consideration is given to the potential for applying thermo-acoustic microscopy techniques to green and densified ceramics. The detection probability statistics and some limitations of radiography and SLAM also are discussed.

  16. Ultrasonic sensing of powder densification

    NASA Technical Reports Server (NTRS)

    Lu, Yichi; Wadley, Haydn N. G.; Parthasarathi, Sanjai

    1992-01-01

    An independent scattering theory has been applied to the interpretation of ultrasonic velocity measurements made on porous metal samples produced either by a cold or a high-temperature compaction process. The results suggest that the pores in both processes are not spherical, an aspect ration of 1:3 fitting best with the data for low (less than 4 percent) pore volume fractions. For the hot compacted powders, the pores are smooth due to active diffusional processes during processing. For these types of voids, the results can be extended to a pore fraction of 10 percent, at which point voids form an interconnected network that violates the model assumptions. The cold pressed samples are not as well predicted by the theory because of poor particle bonding.

  17. Observation of electromigration in a Cu thin line by in situ coherent x-ray diffraction microscopy

    NASA Astrophysics Data System (ADS)

    Takahashi, Yukio; Nishino, Yoshinori; Furukawa, Hayato; Kubo, Hideto; Yamauchi, Kazuto; Ishikawa, Tetsuya; Matsubara, Eiichiro

    2009-06-01

    Electromigration (EM) in a 1-μm-thick Cu thin line was investigated by in situ coherent x-ray diffraction microscopy (CXDM). Characteristic x-ray speckle patterns due to both EM-induced voids and thermal deformation in the thin line were observed in the coherent x-ray diffraction patterns. Both parts of the voids and the deformation were successfully visualized in the images reconstructed from the diffraction patterns. This result not only represents the first demonstration of the visualization of structural changes in metallic materials by in situ CXDM but is also an important step toward studying the structural dynamics of nanomaterials using x-ray free-electron lasers in the near future.

  18. Grieving the Loss of a Pet Needs the Health System Recognition.

    PubMed

    Mohanti, Bidhu K

    2017-01-01

    Globally there is increased presence of pets in the households. This non-human relationship, with its dimensions of physical and emotional bonds, can get severely jolted on the death of the companion animal. It sets a feeling, 'our life is now left with a void and the house feels utterly empty'. Unlike the loss of a child, spouse or parent which become a shared tragedy; others may not understand the depth of sadness and a sense of void in a grieving pet owner. Emotional pain and physical distress due to the loss of a companion animal are likely to be pronounced. A big challenge for the medical community is to anticipate, identify and address physical and psychosocial symptom burdens in a timely manner.

  19. Collapse of elongated voids in porous energetic materials: Effects of void orientation and aspect ratio on initiation

    NASA Astrophysics Data System (ADS)

    Rai, Nirmal Kumar; Schmidt, Martin J.; Udaykumar, H. S.

    2017-04-01

    The sensitivity of porous energetic materials depends on mesostructural heterogeneities such as voids, defects, cracks, and grain boundaries. The mesostructure of pressed explosives contains voids of arbitrary shapes including elongated voids of various orientations and aspect ratios. Mesoscale simulations to date have analyzed the effect of void morphology on the sensitivity of energetic materials for idealized shapes such as cylindrical, conical, and elliptical. This work analyzes the sensitivity behavior of elongated voids in an HMX matrix subject to shock loading. Simulations show that sensitivity of elongated voids depends strongly on orientation as well as aspect ratio. Ranges of orientations and aspects ratios are identified that enhance or inhibit initiation. Insights obtained from single elongated void analyses are used to identify sensitive locations in an imaged mesostructure of a pressed explosive sample.

  20. Nano Particle Control of Void Formation and Expansion in Polymeric and Composite Systems

    DTIC Science & Technology

    2009-05-01

    ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Glocal Network Corporation 3131 Western Avenue Ste M-526 Seattle, WA 98121...Scientific Research Arlington, VA 22203-1954 Principal Investigator Dr. James C. Seferis Polymeric Composites Laboratory GloCal Network...F.R.E.E.D.O.M., with the flexibility of a profit research and development organization, GloCal Network Corporation, with both entities doing business as the

  1. Assessing Hydrogen Assisted Cracking Modes in High Strength Steel Welds

    DTIC Science & Technology

    1988-12-01

    posed theoretical hydrogen assisted cracking mechanisms. It was found that the microplasticity theory of Beachem can best describe how the stress...precludes an internal pressure gradient as the driv- ing force for crack growth. The adsorption theory of Petch and Stables3 and further modifications4...the adsorption theory. In addition, fracture surfaces indicate rapid void formation and coales- cence at low temperatures where the rate of surface

  2. Friction stir welding process to repair voids in aluminum alloys

    NASA Technical Reports Server (NTRS)

    Rosen, Charles D. (Inventor); Litwinski, Edward (Inventor); Valdez, Juan M. (Inventor)

    1999-01-01

    The present invention provides an in-process method to repair voids in an aluminum alloy, particularly a friction stir weld in an aluminum alloy. For repairing a circular void or an in-process exit hole in a weld, the method includes the steps of fabricating filler material of the same composition or compatible with the parent material into a plug form to be fitted into the void, positioning the plug in the void, and friction stir welding over and through the plug. For repairing a longitudinal void (30), the method includes machining the void area to provide a trough (34) that subsumes the void, fabricating filler metal into a strip form (36) to be fitted into the trough, positioning the strip in the trough, and rewelding the void area by traversing a friction stir welding tool longitudinally through the strip. The method is also applicable for repairing welds made by a fusing welding process or voids in aluminum alloy workpieces themselves.

  3. Early discontinuation of antibiotic prophylaxis in patients with persistent primary vesicoureteral reflux initially detected during infancy: outcome analysis and risk factors for febrile urinary tract infection.

    PubMed

    Moriya, Kimihiko; Mitsui, Takahiko; Kitta, Takeya; Nakamura, Michiko; Kanno, Yukiko; Kon, Masafumi; Nishimura, Yoko; Shinohara, Nobuo; Nonomura, Katsuya

    2015-02-01

    We retrospectively assessed the incidence of and risk factors for febrile urinary tract infection in children during active surveillance after early discontinuation of antibiotic prophylaxis. We retrospectively evaluated 9 females and 61 uncircumcised males diagnosed with primary vesicoureteral reflux before age 1 year who had persistent reflux on followup voiding cystourethrogram and were subsequently followed under active surveillance without continuous antibiotic prophylaxis. Patients with secondary vesicoureteral reflux or associated urological abnormality were excluded. Clinical outcomes, including incidence of febrile urinary tract infection and new scar formation, were evaluated. Risk factors for febrile urinary tract infection were also analyzed. Mean age at stopping continuous antibiotic prophylaxis was 21 months, and mean followup was 61 months. During active surveillance 21 patients had febrile urinary tract infection, and the 5-year infection-free rate under active surveillance was 67.5%. One or 2 foci of minimal new scarring developed in 4 of 16 patients who underwent followup dimercapto-succinic acid scan after febrile urinary tract infection. On multivariate analysis dilated vesicoureteral reflux on followup voiding cystourethrogram was the only significant risk factor for febrile urinary tract infection. This study revealed that about two-thirds of patients with persistent vesicoureteral reflux were free of febrile urinary tract infection during 5 years of active surveillance. Those with dilated vesicoureteral reflux on followup voiding cystourethrogram are at significantly greater risk for febrile urinary tract infection. Accordingly active surveillance, especially in patients with nondilated vesicoureteral reflux on followup voiding cystourethrogram, seems to be a safe option even in children who have not yet been toilet trained. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  4. Hubble Peers Into the Center of a Spiral

    NASA Image and Video Library

    2017-12-08

    This Hubble image shows the central region of a spiral galaxy known as NGC 247. NGC 247 is a relatively small spiral galaxy in the southern constellation of Cetus (The Whale). Lying at a distance of around 11 million light-years from us, it forms part of the Sculptor Group, a loose collection of galaxies that also contains the more famous NGC 253 (otherwise known as the Sculptor Galaxy). NGC 247’s nucleus is visible here as a bright, whitish patch, surrounded by a mixture of stars, gas and dust. The dust forms dark patches and filaments that are silhouetted against the background of stars, while the gas has formed into bright knots known as H II regions, mostly scattered throughout the galaxy’s arms and outer areas. This galaxy displays one particularly unusual and mysterious feature — it is not visible in this image, but can be seen clearly in wider views of the galaxy, such as a picture from ESO’s MPG/ESO 2.2-meter telescope. The northern part of NGC 247’s disc hosts an apparent void, a gap in the usual swarm of stars and H II regions that spans almost a third of the galaxy’s total length. There are stars within this void, but they are quite different from those around it. They are significantly older, and as a result much fainter and redder. This indicates that the star formation taking place across most of the galaxy’s disk has somehow been arrested in the void region, and has not taken place for around one billion years. Although astronomers are still unsure how the void formed, recent studies suggest it might have been caused by gravitational interactions with part of another galaxy. Image Credit: NASA/ESA

  5. The centre of NGC 247

    NASA Image and Video Library

    2016-10-03

      This Hubble image shows the central region of a spiral galaxy known as NGC 247. NGC 247 is a relatively small spiral galaxy in the southern constellation of Cetus (The Whale). Lying at a distance of around 11 million light-years from us, it forms part of the Sculptor Group, a loose collection of galaxies that also contains the more famous NGC 253 (otherwise known as the Sculptor Galaxy). NGC 247’s nucleus is visible here as a bright, whitish patch, surrounded by a mixture of stars, gas and dust. The dust forms dark patches and filaments that are silhouetted against the background of stars, while the gas has formed into bright knots known as H II regions, mostly scattered throughout the galaxy’s arms and outer areas. This galaxy displays one particularly unusual and mysterious feature — it is not visible in this image, but can be seen clearly in wider views of the galaxy, such as this picture from ESO’s MPG/ESO 2.2-metre telescope. The northern part of NGC 247’s disc hosts an apparent void, a gap in the usual swarm of stars and H II regions that spans almost a third of the galaxy’s total length. There are stars within this void, but they are quite different from those around it. They are significantly older, and as a result much fainter and redder. This indicates that the star formation taking place across most of the galaxy’s disc has somehow been arrested in the void region, and has not taken place for around one billion years. Although astronomers are still unsure how the void formed, recent studies suggest it might have been caused by gravitational interactions with part of another galaxy.

  6. Cosmic voids and void lensing in the Dark Energy Survey science verification data

    DOE PAGES

    Sánchez, C.; Clampitt, J.; Kovacs, A.; ...

    2016-10-26

    Galaxies and their dark matter halos populate a complicated filamentary network around large, nearly empty regions known as cosmic voids. Cosmic voids are usually identified in spectroscopic galaxy surveys, where 3D information about the large-scale structure of the Universe is available. Although an increasing amount of photometric data is being produced, its potential for void studies is limited since photometric redshifts induce line-of-sight position errors of ~50 Mpc/h or more that can render many voids undetectable. In this paper we present a new void finder designed for photometric surveys, validate it using simulations, and apply it to the high-quality photo-zmore » redMaGiC galaxy sample of the Dark Energy Survey Science Verification (DES-SV) data. The algorithm works by projecting galaxies into 2D slices and finding voids in the smoothed 2D galaxy density field of the slice. Fixing the line-of-sight size of the slices to be at least twice the photo- z scatter, the number of voids found in these projected slices of simulated spectroscopic and photometric galaxy catalogs is within 20% for all transverse void sizes, and indistinguishable for the largest voids of radius ~70 Mpc/h and larger. The positions, radii, and projected galaxy profiles of photometric voids also accurately match the spectroscopic void sample. Applying the algorithm to the DES-SV data in the redshift range 0.2 < z < 0.8 , we identify 87 voids with comoving radii spanning the range 18-120 Mpc/h, and carry out a stacked weak lensing measurement. With a significance of 4.4σ, the lensing measurement confirms the voids are truly underdense in the matter field and hence not a product of Poisson noise, tracer density effects or systematics in the data. In conclusion, it also demonstrates, for the first time in real data, the viability of void lensing studies in photometric surveys.« less

  7. The influence of void and porosity on deformation behaviour of nanocrystalline Ni under tensile followed by compressive loading

    NASA Astrophysics Data System (ADS)

    Meraj, Md.; Nayak, Shradha; Krishanjeet, Kumar; Pal, Snehanshu

    2018-03-01

    In this paper, we present a lucid understanding about the deformation behaviour of nanocrystalline (NC) Ni with and without defects subjected to tensile followed by compressive loading using molecular dynamic (MD) simulations. The embedded atom method (EAM) potential have been incorporated in the simulation for three kinds of samples-i.e. for NC Ni (without any defect), porous NC Ni and NC Ni containing a centrally located void. All the three samples, which have been prepared by implementing the Voronoi method and using Atom Eye software, consist of 16 uniform grains. The total number of atoms present in NC Ni, porous NC Ni and NC Ni containing a void are 107021, 105968 and 107012 respectively. The stress-strain response of NC Ni under tensile followed by compressive loading are simulated at a high strain rate of 107 s-1 and at a constant temperature of 300K. The stress-strain curves for the NC Ni with and without defects have been plotted for three different types of loading: (a) tensile loading (b) compressive loading (c) forward tensile loading followed by reverse compressive loading. Prominent change in yield strength of the NC Ni is observed due to the introduction of defects. For tensile followed by compressive loading (during forward loading), the yield point for NC Ni with void is lesser than the yield point of NC Ni and porous NC Ni. The saw tooth shape or serration portion of the stress-strain curve is mainly due to three characteristic phenomena, dislocation generation and its movement, dislocation pile-up at the junctions, and dislocation annihilation. Both twins and stacking faults are observed due to plastic deformation as the deformation mechanism progresses. The dislocation density, number of clusters and number of vacancy of the NC sample with and without defects are plotted against the strain developed in the sample. It is seen that introduction of defects brings about change in mechanical properties of the NC Ni. The crystalline nature of NC Ni is found to decrease with introduction of defects. The findings of this work can thus be extended in bringing a whole new insight related to the deformation behaviour and properties of Nano- materials during cyclic deformation at various temperatures.

  8. Field demonstration of new bridge approach slab designs and performance : [research project capsule].

    DOT National Transportation Integrated Search

    2008-10-01

    A normal bridge approach slab in Louisiana is a reinforced concrete slab. It connects : the bridge deck to the adjacent paved roadway. Its intended functions are: : 1. To span the void that may develop below the slab due to soil erosion or : embankme...

  9. On the abundance of extreme voids II: a survey of void mass functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chongchitnan, Siri; Hunt, Matthew, E-mail: s.chongchitnan@hull.ac.uk, E-mail: m.d.hunt@2012.hull.ac.uk

    2017-03-01

    The abundance of cosmic voids can be described by an analogue of halo mass functions for galaxy clusters. In this work, we explore a number of void mass functions: from those based on excursion-set theory to new mass functions obtained by modifying halo mass functions. We show how different void mass functions vary in their predictions for the largest void expected in an observational volume, and compare those predictions to observational data. Our extreme-value formalism is shown to be a new practical tool for testing void theories against simulation and observation.

  10. Atomistic modeling of shock-induced void collapse in copper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davila, L P; Erhart, P; Bringa, E M

    2005-03-09

    Nonequilibrium molecular dynamics (MD) simulations show that shock-induced void collapse in copper occurs by emission of shear loops. These loops carry away the vacancies which comprise the void. The growth of the loops continues even after they collide and form sessile junctions, creating a hardened region around the collapsing void. The scenario seen in our simulations differs from current models that assume that prismatic loop emission is responsible for void collapse. We propose a new dislocation-based model that gives excellent agreement with the stress threshold found in the MD simulations for void collapse as a function of void radius.

  11. Nanovoid growth in BCC α-Fe: influences of initial void geometry

    NASA Astrophysics Data System (ADS)

    Xu, Shuozhi; Su, Yanqing

    2016-12-01

    The growth of voids has a great impact on the mechanical properties of ductile materials by altering their microstructures. Exploring the process of void growth at the nanoscale helps in understanding the dynamic fracture of metals. While some very recent studies looked into the effects of the initial geometry of an elliptic void on the plastic deformation of face-centered cubic metals, a systematic study of the initial void ellipticity and orientation angle in body-centered cubic (BCC) metals is still lacking. In this paper, large scale molecular dynamics simulations with millions of atoms are conducted, investigating the void growth process during tensile loading of metallic thin films in BCC α-Fe. Our simulations elucidate the intertwined influences on void growth of the initial ellipticity and initial orientation angle of the void. It is shown that these two geometric parameters play an important role in the stress-strain response, the nucleation and evolution of defects, as well as the void size/outline evolution in α-Fe thin films. Results suggest that, together with void size, different initial void geometries should be taken into account if a continuum model is to be applied to nanoscale damage progression.

  12. Comparison of sensation-related voiding patterns between continent and incontinent women: a study with a 3-day sensation-related bladder diary (SR-BD).

    PubMed

    Naoemova, Irina; De Wachter, Stefan; Wyndaele, Jean-Jacques

    2008-01-01

    To describe and compare voiding patterns on a 3-day sensation-related bladder diary (SR-BD) in women with urinary incontinence (UI) and healthy volunteers. A total of 251 women (224 incontinent patients and 27 healthy volunteers) who recorded a 3-day SR-BD and underwent standard cystometry participated in the study. Parameters from the 3-day SR-BD were compared between incontinent patients and healthy volunteers. Compared to continent women, all groups of incontinent women noted a significantly higher 24 hr voiding frequency, a greater voiding frequency per liter diuresis, a smaller mean voided volume for different degrees of bladder sensation with more voids made with higher intensity of desire to void. The smallest mean voided volumes for different degrees of desire to void and the highest voiding frequency per liter diuresis were observed in the urge incontinence group. There were different sensation-related voiding patterns on the 3-day SR-BD from incontinent women and healthy volunteers. All incontinence groups had increased bladder sensation compared to healthy volunteers. The most severe increase of bladder sensation was observed in the patients with urgency incontinence. (c) 2007 Wiley-Liss, Inc.

  13. The dark matter of galaxy voids

    NASA Astrophysics Data System (ADS)

    Sutter, P. M.; Lavaux, Guilhem; Wandelt, Benjamin D.; Weinberg, David H.; Warren, Michael S.

    2014-03-01

    How do observed voids relate to the underlying dark matter distribution? To examine the spatial distribution of dark matter contained within voids identified in galaxy surveys, we apply Halo Occupation Distribution models representing sparsely and densely sampled galaxy surveys to a high-resolution N-body simulation. We compare these galaxy voids to voids found in the halo distribution, low-resolution dark matter and high-resolution dark matter. We find that voids at all scales in densely sampled surveys - and medium- to large-scale voids in sparse surveys - trace the same underdensities as dark matter, but they are larger in radius by ˜20 per cent, they have somewhat shallower density profiles and they have centres offset by ˜ 0.4Rv rms. However, in void-to-void comparison we find that shape estimators are less robust to sampling, and the largest voids in sparsely sampled surveys suffer fragmentation at their edges. We find that voids in galaxy surveys always correspond to underdensities in the dark matter, though the centres may be offset. When this offset is taken into account, we recover almost identical radial density profiles between galaxies and dark matter. All mock catalogues used in this work are available at http://www.cosmicvoids.net.

  14. The leading edge of basement logging science: The detailed in situ volcanic architecture, crustal construction processes, vacancy for water, minerals, and microbes, and beyond

    NASA Astrophysics Data System (ADS)

    Tominaga, M.

    2010-12-01

    Understanding the detailed architecture of the upper ocean crust is one of the key components to advance our knowledge on numerous events occurring in the oceanic lithosphere from spreading ridges to subduction zones. Studies on crustal characterization are limited to either the crustal or hand-specimen scales so far, and little has been done at centimeter - meter scale, which potentially ties those two end-member prospects. The lack of this scale is due mainly to the difficulties in direct sampling and the limited resolution of geophysical experiments; as a consequence, critical questions remain unanswered, e.g., what does the cross-section of actual ocean crust look like and what does it tell us?; where exactly in the lithosphere does fluid exist and promote the deep hydration and biosphere?; to what extent do we average out the heterogeneity in the crustal properties depending on the scale? Ocean Drilling Program (ODP) Hole 1256D is located at the 15 Ma super-fast spreading Cocos Plate and the first drilled hole that successfully penetrate through the intact upper ocean crust. Coring in the Hole 1256D basement is suffered from the low core recovery rates (~ 32 %) and the origins of recovered cores are mostly biased toward formations with minimal fractures. Wire-line logging in this hole becomes, thus, extremely useful for both the physical and chemical characterization of the crust. In particular, Formation MicroScanner (FMS) data acquired from multiple paths during three drilling expeditions have unprecedented lateral coverage of the borehole wall. The FMS images are the first realization of the cross-section of in situ architecture of the intact upper ocean crust with a centimeter-meter scale resolution. A lithostratigraphy model is reconstructed by integrating the analyses on FMS electrofacies, other physical property logs, and recovered cores. The new lithostratigraphy reveals that nearly 50 % of the in situ lithofacies in the Hole 1256D crust consists of either breccias or highly fractured lava flows, inferring that the shipboard stratigraphy with mostly massive flows is inaccurate. The meticulously deciphered lava morphology tie the lava deposition history in Hole 1256D to the East Pacific Rise surface volcanology, and with this, the upper ocean crustal construction processes in the Hole 1256D crust, from the spreading axis to the abyssal plain, can be proposed. Furthermore, the vacancy in the crustal matrix, where water and minerals can be stored and microbes can exist, is determined from the FMS images. The distribution and areas of the surface void calculated by ImageJ image processor reveals that the visible void in the 1256D crust vary 10 to 60 % depending on lithofacies, with the average of 37 %. This downhole distribution of the void areas also shows the positive correlation with previously observed lab-based porosity and 1-D sonic-log based fractional porosity data. Further study is in progress on scaling of the porosity structure from hand-specimen to crustal scales in the Hole 1256D crust: from the lab porosity data, to 1D sonic-log, to the areas of surface void detected observed in the FMS images, and ultimately to the vertical seismic experiments.

  15. The origin of 17O-depleted barite in Neoproterozoic cap carbonates in South China: A sedimentological perspective

    NASA Astrophysics Data System (ADS)

    Zhou, C.; Bao, H.; Yuan, X.

    2009-12-01

    Barite deposits are known from the Marinoan cap carbonate sequence in NW Africa, NW Canada, and many other localities worldwide, including South China, where the barite has been found to have distinct, non-mass-dependent depletion in 17O. It has been proposed that the negative anomalies most likely reflect an extremely high pCO2 atmosphere at the initiation of a global glacial meltdown. While widespread in occurrence and distinct in isotopic composition, the barite’s origin remains elusive. Field observation shows that the 17O-anomalous barite occurs only at one specific horizon/surface of the cap dolostone. A satisfying formation model based on geochemical data for the barite must corroborate evidence from geological, tectonic, sedimentological, and petrographic contexts. The Nantuo glacial deposit (Marinoan in age) and its cap carbonate occur widely on the Yangtze Block of South China. The thickness of the Nantuo tillites increases evidently from the shallow platform to basinal settings. The overlying cap carbonates, consisting mainly of dolostone, however, are generally around 3~4 meters thick and remain relatively stable on the Yangtze Block. There is a widespread occurrence of voids and cavities in the lower part of cap dolostones, in both shallow platform facies and transitional zones of the Yangtze Block. Barite deposits occur as fans or coatings on pre-existing surfaces or on walls of voids and fractures, probably marking a synchronous event affecting the entire Yangtze Block. Void and cavity fills generally start with aragonite crystal fans and barite fans, followed by opal (silica) or quartz, or calcite. The remaining space was finally filled with large blocky calcite crystals in shallower settings or pyrite crystals in deeper settings. We propose that the voids and cavities are the result of carbonate dissolution after the initial deposition of cap dolostones. The dissolution may imply a regional or even a global sedimentation hiatus during the deposition of Marinoan cap carbonates. One possibility is that the initially deposited cap carbonate may have been uplifted into a zone influenced by meteoric water due to glacioeustasy and lithospheric rebound as a result of a quick unloading of a massive continental ice cap on the Yangtze Block. Karstic dissolution has also been recognized in cap dolostones in NW Africa and NW Canada. While the voids and cavities in South China may be of a similar karst origin as those in NM Africa, sedimentological evidence, together with multiple sulfur and oxygen isotope data, suggests that the precipitation of the barite in South China may be related to an episode of free Ba2+ supply from deep, anoxic water, in association with a transgression (instead of an sea-level fall) after a karst dissolution. Thus, we suggest that SO42- was present in seawater prior to the beginning of Marinoan meltdown. It was the Ba2+ supply that limited the occurrence of barite to specific stratigraphic horizons in the cap carbonates. If the above inference is true, the 17O-depleted barite has recorded an atmospheric/hydrological condition well after the initial meltdown of the Marinoan "snowball" Earth.

  16. Nanostructured light-absorbing crystalline CuIn(1-x)GaxSe2 thin films grown through high flux, low energy ion irradiation

    NASA Astrophysics Data System (ADS)

    Hall, Allen J.; Hebert, Damon; Shah, Amish B.; Bettge, Martin; Rockett, Angus A.

    2013-10-01

    A hybrid effusion/sputtering vacuum system was modified with an inductively coupled plasma (ICP) coil enabling ion assisted physical vapor deposition of CuIn1-xGaxSe2 thin films on GaAs single crystals and stainless steel foils. With <80 W rf power to the ICP coil at 620-740 °C, film morphologies were unchanged compared to those grown without the ICP. At low temperature (600-670 °C) and high rf power (80-400 W), a light absorbing nanostructured highly anisotropic platelet morphology was produced with surface planes dominated by {112}T facets. At 80-400 W rf power and 640-740 °C, both interconnected void and small platelet morphologies were observed while at >270 W and above >715 °C nanostructured pillars with large inter-pillar voids were produced. The latter appeared black and exhibited a strong {112}T texture with interpillar twist angles of ±8°. Application of a negative dc bias of 0-50 V to the film during growth was not found to alter the film morphology or stoichiometry. The results are interpreted as resulting from the plasma causing strong etching favoring formation of {112}T planes and preferential nucleation of new grains, balanced against conventional thermal diffusion and normal growth mechanisms at higher temperatures. The absence of effects due to applied substrate bias suggests that physical sputtering or ion bombardment effects were minimal. The nanostructured platelet and pillar films were found to exhibit less than one percent reflectivity at angles up to 75° from the surface normal.

  17. Comparison of the microstructure, deformation and crack initiation behavior of austenitic stainless steel irradiated in-reactor or with protons

    NASA Astrophysics Data System (ADS)

    Stephenson, Kale J.; Was, Gary S.

    2015-01-01

    The objective of this study was to compare the microstructures, microchemistry, hardening, susceptibility to IASCC initiation, and deformation behavior resulting from proton or reactor irradiation. Two commercial purity and six high purity austenitic stainless steels with various solute element additions were compared. Samples of each alloy were irradiated in the BOR-60 fast reactor at 320 °C to doses between approximately 4 and 12 dpa or by a 3.2 MeV proton beam at 360 °C to a dose of 5.5 dpa. Irradiated microstructures consisted mainly of dislocation loops, which were similar in size but lower in density after proton irradiation. Both irradiation types resulted in the formation of Ni-Si rich precipitates in a high purity alloy with added Si, but several other high purity neutron irradiated alloys showed precipitation that was not observed after proton irradiation, likely due to their higher irradiation dose. Low densities of small voids were observed in several high purity proton irradiated alloys, and even lower densities in neutron irradiated alloys, implying void nucleation was in process. Elemental segregation at grain boundaries was very similar after each irradiation type. Constant extension rate tensile experiments on the alloys in simulated light water reactor environments showed excellent agreement in terms of the relative amounts of intergranular cracking, and an analysis of localized deformation after straining showed a similar response of cracking to surface step height after both irradiation types. Overall, excellent agreement was observed after proton and reactor irradiation, providing additional evidence that proton irradiation is a useful tool for accelerated testing of irradiation effects in austenitic stainless steel.

  18. Is top-down vs bottom-up radiological evaluation after febrile urinary tract infection really less stressful for the child and family? Challenging the dogma.

    PubMed

    Telli, Onur; Mermerkaya, Murat; Hajiyev, Perviz; Aydogdu, Ozgu; Afandiyev, Faraj; Suer, Evren; Soygur, Tarkan; Burgu, Berk

    2015-03-01

    We evaluated whether stress levels in children and parents during radiological evaluation after febrile urinary tract infection are really lower using the top-down approach, where (99m)technetium dimercaptosuccinic acid renal scintigraphy is used initially, than the bottom-up approach, where voiding cystourethrography is initially performed and repeated examinations are easier for all. We prospectively evaluated 120 children 3 to 8 years old. Pain ratings were obtained using the Faces Pain Scale-Revised, and conversation during the procedure was evaluated using the Child-Adult Medical Procedure Interaction Scale-Revised by 2 independent observers. To evaluate parental anxiety, the State-Trait Anxiety Inventory form was also completed. Following a documented febrile urinary tract infection children were randomized to the top-down or bottom-up group. A third group of 44 children undergoing repeat voiding cystourethrography and their parents were also evaluated. Child ratings of pain using the Faces Pain Scale-Revised were not significantly different between the top-down group following (99m)technetium dimercaptosuccinic acid renal scintigraphy (2.99 on a scale of 10) and the bottom-up group following voiding cystourethrography (3.21). Also the Faces Pain Scale-Revised was not significantly different in the repeat voiding cystourethrography group (3.35). On the Child-Adult Medical Procedure Interaction Scale-Revised there was negative correlation between child coping and child distress, as well as rate of child distress and adult coping promoting behavior. Parental state anxiety scores were significantly less in the top-down and repeat voiding cystourethrography groups than in the bottom-up group. Although the top-down approach and repeat voiding cystourethrography cause less anxiety for caregivers, these values do not correlate to pain scale in children. This finding might be due to lack of appropriate evaluation tools of pediatric pain and anxiety. However, the theory that the top-down approach is less invasive, and thus less stressful, requires further research. The Child-Adult Medical Procedure Interaction Scale-Revised data indicate that influences in adult-child interaction are bidirectional. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  19. On the energetics of tensile and shear void coalescences

    NASA Astrophysics Data System (ADS)

    Wong, W. H.; Guo, T. F.

    2015-09-01

    This paper investigates the mechanisms of tensile and shear void coalescences in ductile materials from energetics perspective. By examining and comparing the elastic and plastic energies of a voided cell throughout its deformation history, the onset of and final coalescence can be distinctly established. This energy-based approach offers a single unified method and criterion for determining the occurrences of both mechanisms. This paper also reports a novel micromechanics model that considers general stress states described by three macroscopic normal stresses and one macroscopic shear stress. Detailed formulation of the model is presented that includes the homogenization-based derivation and implementation of a 4×4 orthogonal transformation matrix, which relates the macroscopic deformation rate of the cell to displacement rates of non-physical degrees-of-freedom (DOFs), and the polar decomposition of the macroscopic deformation gradient tensor which admits the explicit determination of the logarithmic strain measures and rotation angle. In terms of stress ratios, ρ1 (=Σ11 /Σ22) ,ρ2 (=Σ12 /Σ22) ,ρ3 (=Σ33 /Σ22), it is analytically shown that multiple macroscopic stress states {ρ1 ,ρ2 ,ρ3 } can exist that result in the same stress triaxiality T and Lode parameter L. Specifically, it is shown that for a prescribed pair of T and L and in the absence of shear stress, at most six stress states {ρ1 , 0 ,ρ3 } are possible. On the other extreme in the presence of shear stress, an infinite number of stress states is possible, due to the existence of Mohr's circle for this stress state. This model, together with the proposed energy-based criteria, is used to examine void coalescence under multiple stress-state conditions for any given T and L. Numerical results have shown that the presence of shear stress has a significant effect of reducing the effective strains for the onset of and final void coalescences. In addition, a relationship has also been established between shear angle and effective strain at the onset of shear void coalescence.

  20. Bacterial loads of Ureaplasma parvum contribute to the development of inflammatory responses in the male urethra.

    PubMed

    Deguchi, Takashi; Shimada, Yasushi; Horie, Kengo; Mizutani, Kohsuke; Seike, Kensaku; Tsuchiya, Tomohiro; Yokoi, Shigeaki; Yasuda, Mitsuru; Ito, Shin

    2015-12-01

    Ureaplasma parvum, which has been recognised as a coloniser in the male urethra, is detected in some men with non-gonococcal urethritis. In this study, we quantified the 16 S rRNA genes of U. parvum by a real-time polymerase chain reaction-based assay in first-voided urine from 15 symptomatic and 38 asymptomatic men who were positive only for U. parvum. We also determined the leukocyte counts by automated quantitative urine particle analysis in their first-voided urine. Positive correlations were observed between copies of the 16 S rRNA genes of U. parvum/ml and the leukocyte counts/µl in first-voided urine (p = 0.0019). The loads of ≥10(4) copies of the 16 S rRNA gene/ml, corresponding to ≥5 × 10(3) cells of U. parvum/ml, were significantly associated with the presence of ≥12.5 leukocytes/µl in first-voided urine that might document the presence of inflammatory responses in the urethra. However, a large portion of the subjects (83.0%) had bacterial loads of <5 × 10(3) cells of U. parvum/ml, and 79.5% of them showed <12.5 leukocytes/µl. The ambiguity of the pathogenic role of U. parvum in non-gonococcal urethritis could, in part, be due to its low bacterial loads, which might not give rise to inflammatory responses in the male urethra. © The Author(s) 2015.

  1. Numerical study of the influence of geometrical characteristics of a vertical helical coil on a bubbly flow

    NASA Astrophysics Data System (ADS)

    Saffari, H.; Moosavi, R.

    2014-11-01

    In this article, turbulent single-phase and two-phase (air-water) bubbly fluid flows in a vertical helical coil are analyzed by using computational fluid dynamics (CFD). The effects of the pipe diameter, coil diameter, coil pitch, Reynolds number, and void fraction on the pressure loss, friction coefficient, and flow characteristics are investigated. The Eulerian-Eulerian model is used in this work to simulate the two-phase fluid flow. Three-dimensional governing equations of continuity, momentum, and energy are solved by using the finite volume method. The k- ɛ turbulence model is used to calculate turbulence fluctuations. The SIMPLE algorithm is employed to solve the velocity and pressure fields. Due to the effect of a secondary force in helical pipes, the friction coefficient is found to be higher in helical pipes than in straight pipes. The friction coefficient increases with an increase in the curvature, pipe diameter, and coil pitch and decreases with an increase in the coil diameter and void fraction. The close correlation between the numerical results obtained in this study and the numerical and empirical results of other researchers confirm the accuracy of the applied method. For void fractions up to 0.1, the numerical results indicate that the friction coefficient increases with increasing the pipe diameter and keeping the coil pitch and diameter constant and decreases with increasing the coil diameter. Finally, with an increase in the Reynolds number, the friction coefficient decreases, while the void fraction increases.

  2. 21 CFR 888.3045 - Resorbable calcium salt bone void filler device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Resorbable calcium salt bone void filler device... salt bone void filler device. (a) Identification. A resorbable calcium salt bone void filler device is... entitled “Class II Special Controls Guidance: Resorbable Calcium Salt Bone Void Filler Device; Guidance for...

  3. 21 CFR 888.3045 - Resorbable calcium salt bone void filler device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Resorbable calcium salt bone void filler device... salt bone void filler device. (a) Identification. A resorbable calcium salt bone void filler device is... entitled “Class II Special Controls Guidance: Resorbable Calcium Salt Bone Void Filler Device; Guidance for...

  4. 21 CFR 888.3045 - Resorbable calcium salt bone void filler device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Resorbable calcium salt bone void filler device... salt bone void filler device. (a) Identification. A resorbable calcium salt bone void filler device is... entitled “Class II Special Controls Guidance: Resorbable Calcium Salt Bone Void Filler Device; Guidance for...

  5. 21 CFR 888.3045 - Resorbable calcium salt bone void filler device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Resorbable calcium salt bone void filler device... salt bone void filler device. (a) Identification. A resorbable calcium salt bone void filler device is... entitled “Class II Special Controls Guidance: Resorbable Calcium Salt Bone Void Filler Device; Guidance for...

  6. 21 CFR 888.3045 - Resorbable calcium salt bone void filler device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Resorbable calcium salt bone void filler device... salt bone void filler device. (a) Identification. A resorbable calcium salt bone void filler device is... entitled “Class II Special Controls Guidance: Resorbable Calcium Salt Bone Void Filler Device; Guidance for...

  7. 21 CFR 1305.28 - Canceling and voiding electronic orders.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 9 2014-04-01 2014-04-01 false Canceling and voiding electronic orders. 1305.28... I AND II CONTROLLED SUBSTANCES Electronic Orders § 1305.28 Canceling and voiding electronic orders. (a) A supplier may void all or part of an electronic order by notifying the purchaser of the voiding...

  8. 21 CFR 1305.28 - Canceling and voiding electronic orders.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 9 2010-04-01 2010-04-01 false Canceling and voiding electronic orders. 1305.28... I AND II CONTROLLED SUBSTANCES Electronic Orders § 1305.28 Canceling and voiding electronic orders. (a) A supplier may void all or part of an electronic order by notifying the purchaser of the voiding...

  9. 38 CFR 3.207 - Void or annulled marriage.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Void or annulled marriage... Void or annulled marriage. Proof that a marriage was void or has been annulled should consist of: (a... marriage void, together with such other evidence as may be required for a determination. (b) Annulled. A...

  10. Molecular dynamics modeling and simulation of void growth in two dimensions

    NASA Astrophysics Data System (ADS)

    Chang, H.-J.; Segurado, J.; Rodríguez de la Fuente, O.; Pabón, B. M.; LLorca, J.

    2013-10-01

    The mechanisms of growth of a circular void by plastic deformation were studied by means of molecular dynamics in two dimensions (2D). While previous molecular dynamics (MD) simulations in three dimensions (3D) have been limited to small voids (up to ≈10 nm in radius), this strategy allows us to study the behavior of voids of up to 100 nm in radius. MD simulations showed that plastic deformation was triggered by the nucleation of dislocations at the atomic steps of the void surface in the whole range of void sizes studied. The yield stress, defined as stress necessary to nucleate stable dislocations, decreased with temperature, but the void growth rate was not very sensitive to this parameter. Simulations under uniaxial tension, uniaxial deformation and biaxial deformation showed that the void growth rate increased very rapidly with multiaxiality but it did not depend on the initial void radius. These results were compared with previous 3D MD and 2D dislocation dynamics simulations to establish a map of mechanisms and size effects for plastic void growth in crystalline solids.

  11. Fuzzy Reasoning to More Accurately Determine Void Areas on Optical Micrographs of Composite Structures

    NASA Technical Reports Server (NTRS)

    Dominquez, Jesus A.; Tate, Lanetra C.; Wright, M. Clara; Caraccio, Anne

    2013-01-01

    Accomplishing the best-performing composite matrix (resin) requires that not only the processing method but also the cure cycle generate low-void-content structures. If voids are present, the performance of the composite matrix will be significantly reduced. This is usually noticed by significant reductions in matrix-dominated properties, such as compression and shear strength. Voids in composite materials are areas that are absent of the composite components: matrix and fibers. The characteristics of the voids and their accurate estimation are critical to determine for high performance composite structures. One widely used method of performing void analysis on a composite structure sample is acquiring optical micrographs or Scanning Electron Microscope (SEM) images of lateral sides of the sample and retrieving the void areas within the micrographs/images using an image analysis technique. Segmentation for the retrieval and subsequent computation of void areas within the micrographs/images is challenging as the gray-scaled values of the void areas are close to the gray-scaled values of the matrix leading to the need of manually performing the segmentation based on the histogram of the micrographs/images to retrieve the void areas. The use of an algorithm developed by NASA and based on Fuzzy Reasoning (FR) proved to overcome the difficulty of suitably differentiate void and matrix image areas with similar gray-scaled values leading not only to a more accurate estimation of void areas on composite matrix micrographs but also to a faster void analysis process as the algorithm is fully autonomous.

  12. Voids in cosmological simulations over cosmic time

    NASA Astrophysics Data System (ADS)

    Wojtak, Radosław; Powell, Devon; Abel, Tom

    2016-06-01

    We study evolution of voids in cosmological simulations using a new method for tracing voids over cosmic time. The method is based on tracking watershed basins (contiguous regions around density minima) of well-developed voids at low redshift, on a regular grid of density field. It enables us to construct a robust and continuous mapping between voids at different redshifts, from initial conditions to the present time. We discuss how the new approach eliminates strong spurious effects of numerical origin when voids' evolution is traced by matching voids between successive snapshots (by analogy to halo merger trees). We apply the new method to a cosmological simulation of a standard Λ-cold-dark-matter cosmological model and study evolution of basic properties of typical voids (with effective radii 6 h-1 Mpc < Rv < 20 h-1 Mpc at redshift z = 0) such as volumes, shapes, matter density distributions and relative alignments. The final voids at low redshifts appear to retain a significant part of the configuration acquired in initial conditions. Shapes of voids evolve in a collective way which barely modifies the overall distribution of the axial ratios. The evolution appears to have a weak impact on mutual alignments of voids implying that the present state is in large part set up by the primordial density field. We present evolution of dark matter density profiles computed on isodensity surfaces which comply with the actual shapes of voids. Unlike spherical density profiles, this approach enables us to demonstrate development of theoretically predicted bucket-like shape of the final density profiles indicating a wide flat core and a sharp transition to high-density void walls.

  13. Effect of voids on Arrhenius relationship between H-solubility and temperature in nickel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Q.Y.; Sun, X.K.; Hu, Z.Q.

    1997-01-15

    Many investigations about the states of hydrogen in voids within metals have been carried out over the past years. These probable states of hydrogen in the voids are directly relevant to hydrogen embrittlement mechanisms. Therefore, a knowledge of the states of hydrogen in the voids is important to an understanding of hydrogen-related degradation of material properties. Some results show that hydrogen exists as a molecule in the voids, while others suggest it is in the chemisorbed state on the internal surface of the voids. The results of Sung-Man lee et al. suggested that hydrogen in the voids in nickel existsmore » both in the gaseous and chemisorbed stats, and most of the hydrogen trapped in the voids seems to be present as a chemisorbed state in 1 atm. hydrogen pressure in the temperature range of 350--582 C. But there is no quantitative description concerning the effects of the voids on the solubility of hydrogen in materials. The purpose of this work is to describe quantitatively the effects of the voids on hydrogen solubility in nickel, considering hydrogen exists as gaseous and chemisorbed states in the voids, and the very weak physical adsorption above room temperature is neglected.« less

  14. Deuterium trapping in tungsten

    NASA Astrophysics Data System (ADS)

    Poon, Michael

    Tungsten is one of the primary material candidates being investigated for use in the first-wall of a magnetic confinement fusion reactor. An ion accelerator was used to simulate the type of ion interaction that may occur at a plasma-facing material. Thermal desorption spectroscopy (TDS) was the primary tool used to analyze the effects of the irradiation. Secondary ion mass spectroscopy (SIMS) was used to determine the distribution of trapped D in the tungsten specimen. The tritium migration analysis program (TMAP) was used to simulate thermal desorption profiles from the D depth distributions. Fitting of the simulated thermal desorption profiles with the measured TDS results provided values of the D trap energies. Deuterium trapping in single crystal tungsten was studied as a function of the incident ion fluence, ion flux, irradiation temperature, irradiation history, and surface impurity levels during irradiation. The results show that deuterium was trapped at vacancies and voids. Two deuterium atoms could be trapped at a tungsten vacancy, with trapping energies of 1.4 eV and 1.2 eV for the first and second D atoms, respectively. In a tungsten void, D is trapped as atoms adsorbed on the inner walls of the void with a trap energy of 2.1 eV, or as D2 molecules inside the void with a trap energy of 1.2 eV. Deuterium trapping in polycrystalline tungsten was also studied as a function of the incident fluence, irradiation temperature, and irradiation history. Deuterium trapping in polycrystalline tungsten also occurs primarily at vacancies and voids with the same trap energies as in single crystal tungsten; however, the presence of grain boundaries promotes the formation of large surface blisters with high fluence irradiations at 500 K. In general, D trapping is greater in polycrystalline tungsten than in single crystal tungsten. To simulate mixed materials comprising of carbon (C) and tungsten, tungsten specimens were pre-irradiated with carbon ions prior to D irradiation. Deuterium trapping could be characterized by three regimes: (i) enhanced D retention in a graphitic film formed by the C+ irradiation; (ii) decreased D retention in a modified tungsten-carbon layer; and (iii) D retention in pure tungsten.

  15. Simulating the dynamics of complex plasmas.

    PubMed

    Schwabe, M; Graves, D B

    2013-08-01

    Complex plasmas are low-temperature plasmas that contain micrometer-size particles in addition to the neutral gas particles and the ions and electrons that make up the plasma. The microparticles interact strongly and display a wealth of collective effects. Here we report on linked numerical simulations that reproduce many of the experimental results of complex plasmas. We model a capacitively coupled plasma with a fluid code written for the commercial package comsol. The output of this model is used to calculate forces on microparticles. The microparticles are modeled using the molecular dynamics package lammps, which we extended to include the forces from the plasma. Using this method, we are able to reproduce void formation, the separation of particles of different sizes into layers, lane formation, vortex formation, and other effects.

  16. Mechanism of Void Prediction in Flip Chip Packages with Molded Underfill

    NASA Astrophysics Data System (ADS)

    Wu, Kuo-Tsai; Hwang, Sheng-Jye; Lee, Huei-Huang

    2017-08-01

    Voids have always been present using the molded underfill (MUF) package process, which is a problem that needs further investigation. In this study, the process was studied using the Moldex3D numerical analysis software. The effects of gas (air vent effect) on the overall melt front were also considered. In this isothermal process containing two fluids, the gas and melt colloid interact in the mold cavity. Simulation enabled an appropriate understanding of the actual situation to be gained, and, through analysis, the void region and exact location of voids were predicted. First, the global flow end area was observed to predict the void movement trend, and then the local flow ends were observed to predict the location and size of voids. In the MUF 518 case study, simulations predicted the void region as well as the location and size of the voids. The void phenomenon in a flip chip ball grid array underfill is discussed as part of the study.

  17. Characterization of dimethacrylate polymeric networks: a study of the crosslinked structure formed by monomers used in dental composites

    PubMed Central

    Shelton, Zachary R.; Braga, Roberto R.; Windmoller, Dario; Machado, José C.

    2011-01-01

    The resin phase of dental composites is mainly composed of combinations of dimethacrylate comonomers, with final polymeric network structure defined by monomer type/reactivity and degree of conversion. This fundamental study evaluates how increasing concentrations of the flexible triethylene glycol dimethacrylate (TEGDMA) influences void formation in bisphenol A diglycidyl dimethacrylate (BisGMA) co-polymerizations and correlates this aspect of network structure with reaction kinetic parameters and macroscopic volumetric shrinkage. Photopolymerization kinetics was followed in real-time by a near-infrared (NIR) spectroscopic technique, viscosity was assessed with a viscometer, volumetric shrinkage was followed with a linometer, free volume formation was determined by positron annihilation lifetime spectroscopy (PALS) and the sol-gel composition was determined by extraction with dichloromethane followed by 1H-NMR analysis. Results show that, as expected, volumetric shrinkage increases with TEGDMA concentration and monomer conversion. Extraction/1H-NMR studies show increasing participation of the more flexible TEGDMA towards the limiting stages of conversion/crosslinking development. As the conversion progresses, either based on longer irradiation times or greater TEGDMA concentrations, the network becomes more dense, which is evidenced by the decrease in free volume and weight loss after extraction in these situations. For the same composition (BisGMA/TEGDMA 60–40 mol%) light-cured for increasing periods of time (from 10 to 600 s), free volume decreased and volumetric shrinkage increased, in a linear relationship with conversion. However, the correlation between free volume and macroscopic volumetric shrinkage was shown to be rather complex for variable compositions exposed for the same time (600 s). The addition of TEGDMA decreases free-volume up to 40 mol% (due to increased conversion), but above that concentration, in spite of the increase in conversion/crosslinking, free volume pore size increases due to the high concentration of the more flexible monomer. In those cases, the increase in volumetric shrinkage was due to higher functional group concentration, in spite of the greater free volume. Therefore, through the application of the PALS model, this study elucidates the network formation in dimethacrylates commonly used in dental materials. PMID:21499538

  18. Characterization of dimethacrylate polymeric networks: a study of the crosslinked structure formed by monomers used in dental composites.

    PubMed

    Pfeifer, Carmem S; Shelton, Zachary R; Braga, Roberto R; Windmoller, Dario; Machado, José C; Stansbury, Jeffrey W

    2011-02-01

    The resin phase of dental composites is mainly composed of combinations of dimethacrylate comonomers, with final polymeric network structure defined by monomer type/reactivity and degree of conversion. This fundamental study evaluates how increasing concentrations of the flexible triethylene glycol dimethacrylate (TEGDMA) influences void formation in bisphenol A diglycidyl dimethacrylate (BisGMA) co-polymerizations and correlates this aspect of network structure with reaction kinetic parameters and macroscopic volumetric shrinkage. Photopolymerization kinetics was followed in real-time by a near-infrared (NIR) spectroscopic technique, viscosity was assessed with a viscometer, volumetric shrinkage was followed with a linometer, free volume formation was determined by positron annihilation lifetime spectroscopy (PALS) and the sol-gel composition was determined by extraction with dichloromethane followed by (1)H-NMR analysis. Results show that, as expected, volumetric shrinkage increases with TEGDMA concentration and monomer conversion. Extraction/(1)H-NMR studies show increasing participation of the more flexible TEGDMA towards the limiting stages of conversion/crosslinking development. As the conversion progresses, either based on longer irradiation times or greater TEGDMA concentrations, the network becomes more dense, which is evidenced by the decrease in free volume and weight loss after extraction in these situations. For the same composition (BisGMA/TEGDMA 60-40 mol%) light-cured for increasing periods of time (from 10 to 600 s), free volume decreased and volumetric shrinkage increased, in a linear relationship with conversion. However, the correlation between free volume and macroscopic volumetric shrinkage was shown to be rather complex for variable compositions exposed for the same time (600 s). The addition of TEGDMA decreases free-volume up to 40 mol% (due to increased conversion), but above that concentration, in spite of the increase in conversion/crosslinking, free volume pore size increases due to the high concentration of the more flexible monomer. In those cases, the increase in volumetric shrinkage was due to higher functional group concentration, in spite of the greater free volume. Therefore, through the application of the PALS model, this study elucidates the network formation in dimethacrylates commonly used in dental materials.

  19. Mechanisms of objectionable textural changes by microwave reheating of foods: a review.

    PubMed

    Mizrahi, Shimon

    2012-01-01

    Microwave reheating, compared to a conventional method, is notorious for lack of crust formation and severe toughening of flour and starch-based products. This review discusses how the typical thermal characteristics of microwave heating are involved in affecting the texture as well as the possible role of non-thermal effects. While low surface temperature is the well known mechanism why microwave heating is incapable of crust formation, the most severe toughening problems are caused by internal boiling. Beside moisture loss, the internally generated steam causes 2 main textural effects when it is vented out. The first is the replacing of non-condensable gases (air) in the product voids with a condensable one (steam). When the latter is condensed by cooling, a vacuum may be created in the voids causing their collapse and a formation of a more compact and tougher structure. The second textural effect involves amylose extraction from starch granules and its redistribution to eventually form a rich layer on the walls of the structural foam cells of the baked goods. Relatively fast crystallization of the amylose seems to be the main cause of toughening a short while after microwave heating. This mechanism is relevant mainly to products where starch is an important structural element. Structural disruptions by localize excessive steam pressure at hot-spots are also discussed in this review as well as methods of preventing or alleviating the most objectionable textural changes. The most effective ways of preventing these undesirable changes are by avoiding internal boiling and/or by manipulating the starch content and properties. © 2011 Institute of Food Technologists®

  20. Methods of predicting aggregate voids.

    DOT National Transportation Integrated Search

    2013-03-01

    Percent voids in combined aggregates vary significantly. Simplified methods of predicting aggregate : voids were studied to determine the feasibility of a range of gradations using aggregates available in Kansas. : The 0.45 Power Curve Void Predictio...

  1. Direct evidence of void passivation in Cu(InGa)(SSe){sub 2} absorber layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Dongho; Kim, Young-Su; Mo, Chan B.

    We have investigated the charge collection condition around voids in copper indium gallium sulfur selenide (CIGSSe) solar cells fabricated by sputter and a sequential process of selenization/sulfurization. In this study, we found direct evidence of void passivation by using the junction electron beam induced current method, transmission electron microscopy, and energy dispersive X-ray spectroscopy. The high sulfur concentration at the void surface plays an important role in the performance enhancement of the device. The recombination around voids is effectively suppressed by field-assisted void passivation. Hence, the generated carriers are easily collected by the electrodes. Therefore, when the S/(S + Se)more » ratio at the void surface is over 8% at room temperature, the device performance degradation caused by the recombination at the voids is negligible at the CIGSSe layer.« less

  2. Log-Normal Distribution of Cosmic Voids in Simulations and Mocks

    NASA Astrophysics Data System (ADS)

    Russell, E.; Pycke, J.-R.

    2017-01-01

    Following up on previous studies, we complete here a full analysis of the void size distributions of the Cosmic Void Catalog based on three different simulation and mock catalogs: dark matter (DM), haloes, and galaxies. Based on this analysis, we attempt to answer two questions: Is a three-parameter log-normal distribution a good candidate to satisfy the void size distributions obtained from different types of environments? Is there a direct relation between the shape parameters of the void size distribution and the environmental effects? In an attempt to answer these questions, we find here that all void size distributions of these data samples satisfy the three-parameter log-normal distribution whether the environment is dominated by DM, haloes, or galaxies. In addition, the shape parameters of the three-parameter log-normal void size distribution seem highly affected by environment, particularly existing substructures. Therefore, we show two quantitative relations given by linear equations between the skewness and the maximum tree depth, and between the variance of the void size distribution and the maximum tree depth, directly from the simulated data. In addition to this, we find that the percentage of voids with nonzero central density in the data sets has a critical importance. If the number of voids with nonzero central density reaches ≥3.84% in a simulation/mock sample, then a second population is observed in the void size distributions. This second population emerges as a second peak in the log-normal void size distribution at larger radius.

  3. Theory of Dust Voids in Plasmas

    NASA Technical Reports Server (NTRS)

    Goree, J.; Morfill, G. E.; Tsytovich, V. N.; Vladimirov, S. V.

    1999-01-01

    Dusty plasmas in a gas discharge often feature a stable void, i.e., a dust-free region inside the dust cloud. This occurs under conditions relevant to both plasma processing discharges and plasma crystal experiments. The void results from a balance of the electrostatic and ion drag forces on a dust particle. The ion drag force is driven by a flow of ions outward from an ionization source and toward the surrounding dust cloud, which has a negative space charge. In equilibrium the force balance for dust particles requires that the boundary with the dust cloud be sharp, provided that the particles are cold and monodispersive. Numerical solutions of the one-dimensional nonlinear fluid equations are carried out including dust charging and dust-neutral collisions, but not ion-neutral collisions. The regions of parameter space that allow stable void equilibria are identified. There is a minimum ionization rate that can sustain a void. Spatial profiles of plasma parameters in the void are reported. In the absence of ion-neutral collisions, the ion flow enters the dust cloud's edge at Mach number M = 1. Phase diagrams for expanding or contracting voids reveal a stationary point corresponding to a single stable equilibrium void size, provided the ionization rate is constant. Large voids contract and small voids expand until they attain this stationary void size. On the other hand, if the ionization rate is not constant, the void size can oscillate. Results are compared to recent laboratory and microgravity experiments.

  4. VizieR Online Data Catalog: A cosmic void catalog of SDSS DR12 BOSS galaxies (Mao+, 2017)

    NASA Astrophysics Data System (ADS)

    Mao, Q.; Berlind, A. A.; Scherrer, R. J.; Neyrinck, M. C.; Scoccimarro, R.; Tinker, J. L.; McBride, C. K.; Schneider, D. P.; Pan, K.; Bizyaev, D.; Malanushenko, E.; Malanushenko, V.

    2017-08-01

    We present a cosmic void catalog using the large-scale structure galaxy catalog from the Baryon Oscillation Spectroscopic Survey (BOSS). This galaxy catalog is part of the Sloan Digital Sky Survey (SDSS) Data Release 12 and is the final catalog of SDSS-III. We take into account the survey boundaries, masks, and angular and radial selection functions, and apply the ZOBOV (Neyrinck 2008MNRAS.386.2101N) void finding algorithm to the Galaxy catalog. We identify a total of 10643 voids. After making quality cuts to ensure that the voids represent real underdense regions, we obtain 1228 voids with effective radii spanning the range 20-100h-1Mpc and with central densities that are, on average, 30% of the mean sample density. We release versions of the catalogs both with and without quality cuts. We discuss the basic statistics of voids, such as their size and redshift distributions, and measure the radial density profile of the voids via a stacking technique. In addition, we construct mock void catalogs from 1000 mock galaxy catalogs, and find that the properties of BOSS voids are in good agreement with those in the mock catalogs. We compare the stellar mass distribution of galaxies living inside and outside of the voids, and find no large difference. These BOSS and mock void catalogs are useful for a number of cosmological and galaxy environment studies. (1 data file).

  5. Cosmic voids detection without density measurements

    NASA Astrophysics Data System (ADS)

    Elyiv, Andrii; Marulli, Federico; Pollina, Giorgia; Baldi, Marco; Branchini, Enzo; Cimatti, Andrea; Moscardini, Lauro

    2015-03-01

    Cosmic voids are effective cosmological probes to discriminate among competing world models. Their identification is generally based on density or geometry criteria that, because of their very nature, are prone to shot noise. We propose two void finders that are based on dynamical criterion to select voids in Lagrangian coordinates and minimize the impact of sparse sampling. The first approach exploits the Zel'dovich approximation to trace back in time the orbits of galaxies located in voids and their surroundings; the second uses the observed galaxy-galaxy correlation function to relax the objects' spatial distribution to homogeneity and isotropy. In both cases voids are defined as regions of the negative velocity divergence, which can be regarded as sinks of the back-in-time streamlines of the mass tracers. To assess the performance of our methods we used a dark matter halo mock catalogue CODECS, and compared the results with those obtained with the ZOBOV void finder. We find that the void divergence profiles are less scattered than the density ones and, therefore, their stacking constitutes a more accurate cosmological probe. The significance of the divergence signal in the central part of voids obtained from both our finders is 60 per cent higher than for overdensity profiles in the ZOBOV case. The ellipticity of the stacked void measured in the divergence field is closer to unity, as expected, than what is found when using halo positions. Therefore, our void finders are complementary to the existing methods, which should contribute to improve the accuracy of void-based cosmological tests.

  6. 3-D Resistivity Tomography for Cliff Stability Study at the D-Day Pointe du Hoc Historic Site in Normandy, France

    NASA Astrophysics Data System (ADS)

    Udphuay, S.; Everett, M. E.; Guenther, T.; Warden, R. R.

    2007-12-01

    The D-Day invasion site at Pointe du Hoc in Normandy, France is one of the most important World War II battlefields. The site remains today a valuable historic cultural resource. However the site is vulnerable to cliff collapses that could endanger the observation post building and U.S. Ranger memorial located just landward of the sea stack, and an anti-aircraft gun emplacement, Col. Rudder's command post, located on the cliff edge about 200 m east of the observation post. A 3-D resistivity tomography incorporating extreme topography is used in this study to provide a detailed site stability assessment with special attention to these two buildings. Multi-electrode resistivity measurements were made across the cliff face and along the top of the cliff around the two at-risk buildings to map major subsurface fracture zones and void spaces that could indicate possible accumulations and pathways of groundwater. The ingress of acidic groundwater through the underlying carbonate formations enlarges pre-existing tectonic fractures via limestone dissolution and weakens the overall structural integrity of the cliff. The achieved 3-D resistivity tomograms provide diagnostic subsurface resistivity distributions. Resistive zones associated with subsurface void spaces have been located. These void spaces constitute a stability geohazard as they become significant drainage routes during and after periods of heavy rainfalls.

  7. Characterization of lap joints laser beam welding of thin AA 2024 sheets with Yb:YAG disk-laser

    NASA Astrophysics Data System (ADS)

    Caiazzo, Fabrizia; Alfieri, Vittorio; Cardaropoli, Francesco; Sergi, Vincenzo

    2012-06-01

    Lap joints obtained by overlapping two plates are widely diffused in aerospace industry. Nevertheless, because of natural aging, adhesively bonded and riveted aircraft lap joints may be affected by cracks from rivets, voids or corrosion. Friction stir welding has been proposed as a valid alternative, although large heat affected zones are produced both in the top and the bottom plate due to the pin diameter. Interest has therefore been shown in studying laser lap welding as the laser beam has been proved to be competitive since it allows to concentrate the thermal input and increases productivity and quality. Some challenges arise as a consequence of aluminum low absorptance and high thermal conductivity; furthermore, issues are due to metallurgical challenges such as both micro and macro porosity formation and softening in the fused zone. Welding of AA 2024 thin sheets in a lap joint configuration is discussed in this paper: tests are carried out using a recently developed Trumpf TruDisk 2002 Yb:YAG disk-laser with high beam quality which allows to produce beads with low plates distortion and better penetration. The influence of the processing parameters is discussed considering the fused zone extent and the bead shape. The porosity content as well as the morphological features of the beads have been examined.

  8. Experimental Investigation of Ice Phase Change Material Heat Exchangers

    NASA Technical Reports Server (NTRS)

    Leimkuehler, Thomas O.; Stephan, Ryan A.

    2011-01-01

    Phase change materials (PCM) may be useful for spacecraft thermal control systems that involve cyclical heat loads or cyclical thermal environments. Thermal energy can be stored in the PCM during peak heat loads or in adverse thermal environments. The stored thermal energy can then be released later during minimum heat loads or in more favorable thermal environments. This can result in a decreased turndown ratio for the radiator and a reduced system mass. The use of water as a PCM rather than the more traditional paraffin wax has the potential for significant mass reduction since the latent heat of formation of water is approximately 70% greater than that of wax. One of the potential drawbacks of using ice as a PCM is its potential to rupture its container as water expands upon freezing. In order to develop a space qualified ice PCM heat exchanger, failure mechanisms must first be understood. Therefore, a methodical experimental investigation has been undertaken to demonstrate and document specific failure mechanisms due to ice expansion in the PCM. A number of ice PCM heat exchangers were fabricated and tested. Additionally, methods for controlling void location in order to reduce the risk of damage due to ice expansion were investigated. This paper presents an overview of the results of this investigation from the past three years.

  9. Experimental Investigation of Ice Phase Change Material Heat Exchangers

    NASA Technical Reports Server (NTRS)

    Leimkuehler, Thomas O.; Stephan, Ryan A.

    2012-01-01

    Phase change materials (PCM) may be useful for spacecraft thermal control systems that involve cyclical heat loads or cyclical thermal environments. Thermal energy can be stored in the PCM during peak heat loads or in adverse thermal environments. The stored thermal energy can then be released later during minimum heat loads or in more favorable thermal environments. This can result in a decreased turndown ratio for the radiator and a reduced system mass. The use of water as a PCM rather than the more traditional paraffin wax has the potential for significant mass reduction since the latent heat of formation of water is approximately 70% greater than that of wax. One of the potential drawbacks of using ice as a PCM is its potential to rupture its container as water expands upon freezing. In order to develop a space qualified ice PCM heat exchanger, failure mechanisms must first be understood. Therefore, a methodical experimental investigation has been undertaken to demonstrate and document specific failure mechanisms due to ice expansion in the PCM. A number of ice PCM heat exchangers were fabricated and tested. Additionally, methods for controlling void location in order to reduce the risk of damage due to ice expansion were investigated. This paper presents an overview of the results of this investigation from the past three years.

  10. Biased resistor network model for electromigration failure and related phenomena in metallic lines

    NASA Astrophysics Data System (ADS)

    Pennetta, C.; Alfinito, E.; Reggiani, L.; Fantini, F.; Demunari, I.; Scorzoni, A.

    2004-11-01

    Electromigration phenomena in metallic lines are studied by using a biased resistor network model. The void formation induced by the electron wind is simulated by a stochastic process of resistor breaking, while the growth of mechanical stress inside the line is described by an antagonist process of recovery of the broken resistors. The model accounts for the existence of temperature gradients due to current crowding and Joule heating. Alloying effects are also accounted for. Monte Carlo simulations allow the study within a unified theoretical framework of a variety of relevant features related to the electromigration. The predictions of the model are in excellent agreement with the experiments and in particular with the degradation towards electrical breakdown of stressed Al-Cu thin metallic lines. Detailed investigations refer to the damage pattern, the distribution of the times to failure (TTFs), the generalized Black’s law, the time evolution of the resistance, including the early-stage change due to alloying effects and the electromigration saturation appearing at low current densities or for short line lengths. The dependence of the TTFs on the length and width of the metallic line is also well reproduced. Finally, the model successfully describes the resistance noise properties under steady state conditions.

  11. Embedding Piezoresistive Pressure Sensors to Obtain Online Pressure Profiles Inside Fiber Composite Laminates

    PubMed Central

    Kahali Moghaddam, Maryam; Breede, Arne; Brauner, Christian; Lang, Walter

    2015-01-01

    The production of large and complex parts using fiber composite materials is costly due to the frequent formation of voids, porosity and waste products. By embedding different types of sensors and monitoring the process in real time, the amount of wastage can be significantly reduced. This work focuses on developing a knowledge-based method to improve and ensure complete impregnation of the fibers before initiation of the resin cure. Piezoresistive and capacitive pressure sensors were embedded in fiber composite laminates to measure the real-time the pressure values inside the laminate. A change of pressure indicates resin infusion. The sensors were placed in the laminate and the resin was infused by vacuum. The embedded piezoresistive pressure sensors were able to track the vacuum pressure in the fiber composite laminate setup, as well as the arrival of the resin at the sensor. The pressure increase due to closing the resin inlet was also measured. In contrast, the capacitive type of sensor was found to be inappropriate for measuring these quantities. The following study demonstrates real-time monitoring of pressure changes inside the fiber composite laminate, which validate the use of Darcy’s law in porous media to control the resin flow during infusion. PMID:25825973

  12. Bubble velocity, diameter, and void fraction measurements in a multiphase flow using fiber optic reflectometer

    NASA Astrophysics Data System (ADS)

    Lim, Ho-Joon; Chang, Kuang-An; Su, Chin B.; Chen, Chi-Yueh

    2008-12-01

    A fiber optic reflectometer (FOR) technique featuring a single fiber probe is investigated for its feasibility of measuring the bubble velocity, diameter, and void fraction in a multiphase flow. The method is based on the interference of the scattered signal from the bubble surface with the Fresnel reflection signal from the tip of the optical fiber. Void fraction is obtained with a high accuracy if an appropriate correction is applied to compensate the underestimated measurement value. Velocity information is accurately obtained from the reflected signals before the fiber tip touches the bubble surface so that several factors affecting the traditional dual-tip probes such as blinding, crawling, and drifting effects due to the interaction between the probe and bubbles can be prevented. The coherent signals reflected from both the front and rear ends of a bubble can provide velocity information. Deceleration of rising bubbles and particles due to the presence of the fiber probe is observed when they are very close to the fiber tip. With the residence time obtained, the bubble chord length can be determined by analyzing the coherent signal for velocity determination before the deceleration starts. The bubble diameters are directly obtained from analyzing the signals of the bubbles that contain velocity information. The chord lengths of these bubbles measured by FOR represent the bubble diameters when the bubble shape is spherical or represent the minor axes when the bubble shape is ellipsoidal. The velocity and size of bubbles obtained from the FOR measurements are compared with those obtained simultaneously using a high speed camera.

  13. begin{center} MUSIC Algorithms for Rebar Detection

    NASA Astrophysics Data System (ADS)

    Leone, G.; Solimene, R.

    2012-04-01

    In this contribution we consider the problem of detecting and localizing small cross section, with respect to the wavelength, scatterers from their scattered field once a known incident field interrogated the scene where they reside. A pertinent applicative context is rebar detection within concrete pillar. For such a case, scatterers to be detected are represented by rebars themselves or by voids due to their lacking. In both cases, as scatterers have point-like support, a subspace projection method can be conveniently exploited [1]. However, as the field scattered by rebars is stronger than the one due to voids, it is expected that the latter can be difficult to be detected. In order to circumvent this problem, in this contribution we adopt a two-step MUltiple SIgnal Classification (MUSIC) detection algorithm. In particular, the first stage aims at detecting rebars. Once rebar are detected, their positions are exploited to update the Green's function and then a further detection scheme is run to locate voids. However, in this second case, background medium encompasses also the rabars. The analysis is conducted numerically for a simplified two-dimensional scalar scattering geometry. More in detail, as is usual in MUSIC algorithm, a multi-view/multi-static single-frequency configuration is considered [2]. Baratonia, G. Leone, R. Pierri, R. Solimene, "Fault Detection in Grid Scattering by a Time-Reversal MUSIC Approach," Porc. Of ICEAA 2011, Turin, 2011. E. A. Marengo, F. K. Gruber, "Subspace-Based Localization and Inverse Scattering of Multiply Scattering Point Targets," EURASIP Journal on Advances in Signal Processing, 2007, Article ID 17342, 16 pages (2007).

  14. Subsidence problems related to the development of siliciclastic karst on the Citronelle Formation of southwestern Alabama

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isphording, W.C.; Flowers, G.C.

    1985-01-01

    The irreversible transformation of kaolinite to gibbsite and the concomitant negative volume change associated with the reaction has resulted in residential structural damage in Mobile, Alabama. Failure of the insurance company to honor damage resulting from a sinkhole collapse clause resulted in litigation. The main points of contention in the trial were: (1) were the small depressions in the owner's yard caused by dissolution of material, resulting in the formation of subteranean voids., (2) does the language used in the policy, i.e., We cover for damages caused by sinkhole collapse due to the dissolution of limestone or similar rock formations,more » mean that because the Citronelle Sand is a rock formation that the resident should recover for damage to his house. Evidence introduced for the plaintiff included x-ray diffractograms, SEM photographs and grain size analyses. A summary of literature on the development of karst in non-carbonate terranes was also produced x-ray diffractograms indicated that gibbsite was being formed in the vadose zone; SEM photographs clearly revealed the presence of euhedral gibbsite crystals on both quartz grains and kaolinite. Size analyses were offered to disprove the allegation that the subsidence was a piping effect caused solely by removal of the silt component. Mass-balance equations and chemical analyses of groundwater were used to demonstrate that not only was kaolinite altering to gibbsite, causing loss of volume, but that some quartz was also being taken into solution. After consideration of the evidence, the jury found in favor of the plaintiff and the resident was compensated for damage.« less

  15. Experimental and Numerical Investigation of Combined Sensible/Latent Thermal Energy Storage for High-Temperature Applications.

    PubMed

    Geissbühler, Lukas; Zavattoni, Simone; Barbato, Maurizio; Zanganeh, Giw; Haselbacher, Andreas; Steinfeld, Aldo

    2015-01-01

    Combined sensible/latent heat storage allows the heat-transfer fluid outflow temperature during discharging to be stabilized. A lab-scale combined storage consisting of a packed bed of rocks and steel-encapsulated AlSi(12) was investigated experimentally and numerically. Due to the small tank-to-particle diameter ratio of the lab-scale storage, void-fraction variations were not negligible, leading to channeling effects that cannot be resolved in 1D heat-transfer models. The void-fraction variations and channeling effects can be resolved in 2D models of the flow and heat transfer in the storage. The resulting so-called bypass fraction extracted from the 2D model was used in the 1D model and led to good agreement with experimental measurements.

  16. Physics-based simulation of EM and SM in TSV-based 3D IC structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kteyan, Armen; Sukharev, Valeriy; Zschech, Ehrenfried

    2014-06-19

    Evolution of stresses in through-silicon-vias (TSVs) and in the TSV landing pad due to the stress migration (SM) and electromigration (EM) phenomena are considered. It is shown that an initial stress distribution existing in a TSV depends on its architecture and copper fill technology. We demonstrate that in the case of proper copper annealing the SM-induced redistribution of atoms results in uniform distributions of the hydrostatic stress and concentration of vacancies along each segment. In this case, applied EM stressing generates atom migration that is characterized by kinetics depending on the preexisting equilibrium concentration of vacancies. Stress-induced voiding in TSVmore » is considered. EM induced voiding in TSV landing pad is analyzed in details.« less

  17. Morphology of the supercluster-void network in ΛCDM cosmology

    NASA Astrophysics Data System (ADS)

    Shandarin, Sergei F.; Sheth, Jatush V.; Sahni, Varun

    2004-09-01

    We report here the first systematic study of the supercluster-void network in the ΛCDM concordance cosmology in which voids and superclusters are treated on an equal footing. We study the dark matter density field in real space smoothed on a scale of 5 h-1 Mpc. Superclusters are defined as individual members of an overdense excursion set, and voids are defined as individual members of a complementary underdense excursion set at the same density threshold. We determine the geometric, topological and morphological properties of the cosmic web at a large set of density levels by computing Minkowski functionals for every supercluster and void using SURFGEN (described recently by Sheth et al.). The properties of the largest (percolating) supercluster and the complementary void are found to be very different from those of the individual superclusters and voids. In total, the individual superclusters occupy no more than about 5 per cent of the volume and contain no more than 20 per cent of the mass if the largest supercluster is excluded. Likewise, in total, individual voids occupy no more than 14 per cent of the volume and contain no more than 4 per cent of the mass if the largest void is excluded. Although superclusters are more massive and voids are more voluminous, the difference in maximum volumes is no greater than an order of magnitude. The genus value of individual superclusters can be ~5, while the genus of individual voids can reach ~50, implying a significant amount of substructure in superclusters and especially in voids. One of our main results is that large voids, as defined through the dark matter density field in real space, are distinctly non-spherical.

  18. Methods of predicting aggregate voids : [technical summary].

    DOT National Transportation Integrated Search

    2013-03-01

    Percent voids in combined aggregates vary significantly. Simplified methods of predicting aggregate voids were studied to determine the feasibility of a range of gradations using aggregates available in Kansas. : The 0.45 Power Curve Void Prediction ...

  19. Delineation of voided and hydrocarbon contaminated regions with REDEM and STI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whiteley, B.

    1997-10-01

    Undetected voids and cavernous regions at shallow depth are a significant geotechnical and environmental hazard if they are filled or act as conduits for pollutants, particularly for LNAPL and DNAPL contaminants. Such features are often difficult to locate with drilling and conventional geophysical methods including resistivity, electromagnetics, microgravity, seismic and ground penetrating radar when they occur in industrial or urban areas where electrical and vibrational interference can combine with subsurface complexity due to human action to severely degrade geophysical data quality. A new geophysical method called Radiowave Diffraction Electromagnetics (RDEM) has proved successful for rapid screening of difficult sites andmore » for the delineation of buried sinkholes, cavities and hydrocarbon plumes. RDEM operates with a null coupled coil configuration at about 1.6 MHZ and is relatively insensitive to electrical interference and surrounding metal objects. It responds to subsurface variations in both conductivity and dielectric constant. Voided and contaminated regions can be more fully detailed when RDEM is combined with Seismic Tomographic Imaging (STI) from follow-up boreholes. Case studies from sites in Australia and South East Asia demonstrate the application of RDEM and STI and the value in combining both methods.« less

  20. Refractive index dependence of Papilio Ulysses butterfly wings reflectance spectra

    NASA Astrophysics Data System (ADS)

    Isnaeni, Muslimin, Ahmad Novi; Birowosuto, Muhammad Danang

    2016-02-01

    We have observed and utilized butterfly wings of Papilio Ulysses for refractive index sensor. We noticed this butterfly wings have photonic crystal structure, which causes blue color appearance on the wings. The photonic crystal structure, which consists of cuticle and air void, is approximated as one dimensional photonic crystal structure. This photonic crystal structure opens potential to several optical devices application, such as refractive index sensor. We have utilized small piece of Papilio Ulysses butterfly wings to characterize refractive index of several liquid base on reflectance spectrum of butterfly wings in the presence of sample liquid. For comparison, we simulated reflectance spectrum of one dimensional photonic crystal structure having material parameter based on real structure of butterfly wings. We found that reflectance spectrum peaks shifted as refractive index of sample changes. Although there is a slight difference in reflectance spectrum peaks between measured spectrum and calculated spectrum, the trend of reflectance spectrum peaks as function of sample's refractive index is the similar. We assume that during the measurement, the air void that filled by sample liquid is expanded due to liquid pressure. This change of void shape causes non-similarity between measured spectrum and calculated spectrum.

  1. Radioactivity as a significant energy source in prebiotic synthesis.

    PubMed

    Garzón, L; Garzón, M L

    2001-01-01

    Radioactivity in the continental crust (due mainly to the isotopes 238U, 235U, 232Th and 40K), as a energy source for chemical evolution in the early Archean (between 3.5 and approximately 4 Ga bp), is reviewed. The most important radioactive source in the continental crust is due to the production and accumulation of radioactive gases within the crust voids (porosity). The study of such mechanism has allowed us to reach a deeper understanding about the nature of the radioactive source and to describe its behavior, particularly with regard to prebiotic chemical evolution. An effective total energy of 3 x 10(18) Ja-1 has been obtained for a depth of 1 km, 4 Ga ago. If a depth of 30 km is taken, the obtained value is almost equal to the UV solar energy radiation (lambda < 150 nm). Within the voids the radioactive source of the continental crust played a relevant role in prebiotic synthesis. In uranium deposits of the same age, the role of radioactivity must have been even more relevant in favoring chemical evolution.

  2. Velocity field measurement in gas-liquid metal two-phase flow with use of PIV and neutron radiography techniques.

    PubMed

    Saito, Y; Mishima, K; Tobita, Y; Suzuki, T; Matsubayashi, M

    2004-10-01

    To establish reasonable safety concepts for the realization of commercial liquid-metal fast breeder reactors, it is indispensable to demonstrate that the release of excessive energy due to re-criticality of molten core could be prevented even if a severe core damage accident took place. Two-phase flow due to the boiling of fuel-steel mixture in the molten core pool has a larger liquid-to-gas density ratio and higher surface tension in comparison with those of ordinary two-phase flows such as air-water flow. In this study, to investigate the effect of the recirculation flow on the bubble behavior, visualization and measurement of nitrogen gas-molten lead bismuth in a rectangular tank was performed by using neutron radiography and particle image velocimetry techniques. Measured flow parameters include flow regime, two-dimensional void distribution, and liquid velocity field in the tank. The present technique is applicable to the measurement of velocity fields and void fraction, and the basic characteristics of gas-liquid metal two-phase mixture were clarified.

  3. Application of nanoindentation testing to study of the interfacial transition zone in steel fiber reinforced mortar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Xiaohui; Jacobsen, Stefan; He Jianying

    2009-08-15

    The characteristics of the profiles of elastic modulus and hardness of the steel fiber-matrix and fiber-matrix-aggregate interfacial zones in steel fiber reinforced mortars have been investigated by using nanoindentation and Scanning Electron Microscopy (SEM), where two sets of parameters, i.e. water/binder ratio and content of silica fume were considered. Different interfacial bond conditions in the interfacial transition zones (ITZ) are discussed. For sample without silica fume, efficient interfacial bonds across the steel fiber-matrix and fiber-matrix-aggregate interfaces are shown in low water/binder ratio mortar; while in high water/binder ratio mortar, due to the discontinuous bleeding voids underneath the fiber, the fiber-matrixmore » bond is not very good. On the other hand, for sample with silica fume, the addition of 10% silica fume leads to no distinct presence of weak ITZ in the steel fiber-matrix interface; but the effect of the silica fume on the steel fiber-matrix-aggregate interfacial zone is not obvious due to voids in the vicinity of steel fiber.« less

  4. Impact of posterior urethral diameter/external urethral sphincter diameter as a new tool to predict detrusor pressure in the voiding phase.

    PubMed

    Kon, Masafumi; Mitsui, Takahiko; Kitta, Takeya; Moriya, Kimihiko; Shinohara, Nobuo; Takeda, Masayuki; Nonomura, Katsuya

    2018-02-01

    We measured posterior urethra diameter (PUD) and external urethral sphincter diameter (EUSD), which can also be measured by voiding cystourethrography (VCUG) and investigated the relationship between PUD/EUSD and detrusor pressure (Pdet) during voiding by videourodynamics (VUDS). Sixty-three children, who were 3 years old or less and underwent VUDS, were enrolled in the present study. We measured PUD and EUSD in addition to detrusor pressure at the time of the widest EUS during voiding (Pdet-voiding) by VUDS, and PUD/EUSD was investigated compared to Pdet-voiding. Seventy-eight VUDS were performed in 63 patients, and the median age at VUDS was 10.2 months. These studies revealed a significant correlation between PUD/EUSD and Pdet-voiding (r = 0.641, p < 0.001). However, a significant correlation was not observed between PUD/EUSD and age (r = 0.180). We defined Pdet-voiding of more than 80 cmH 2 O as a high voiding pressure, and a PUD/EUSD of 2.4 was a good predictor for the cutoff value for high voiding pressure. Pdet-voiding was significantly higher in children with a PUD/EUSD of ≥ 2.4 (p < 0.001). In 19 children who had neurological diseases, a significant correlation was found between PUD/EUSD and Pdet-voiding (r = 0.842, p < 0.001), and a PUD/EUSD of 2.4 was a useful cutoff value for high voiding pressure. PUD/EUSD is a valuable tool to predict high voiding pressure in pediatric patients. A PUD/EUSD of ≥ 2.4 in VCUG indicates the need to perform more invasive tests, such as VUDS, in pediatric patients aged 3 and under with neuropathic diseases.

  5. Flow void of cerebrospinal fluid in idiopathic normal pressure hydrocephalus of the elderly: can it predict outcome after shunting?

    PubMed

    Krauss, J K; Regel, J P; Vach, W; Jüngling, F D; Droste, D W; Wakhloo, A K

    1997-01-01

    We investigate the predictive value of cerebrospinal fluid (CSF) flow void on outcome after shunting in a prospective series of patients with idiopathic normal pressure hydrocephalus (NPH). The degree and extension of CSF flow void were examined on T2-weighted magnetic resonance imaging scans of 37 elderly patients with idiopathic NPH who underwent subsequent shunting. The degree of flow void was assessed in comparison with the signal of large cerebral arteries. The extension was evaluated via the calculation of sum scores for the occurrence of flow void in different locations of the ventricular system. Those parameters were not considered in the decision to perform shunting. CSF flow void in the aqueduct and the adjacent third and fourth ventricles of the 37 patients with idiopathic NPH was compared with that of 37 age-matched control patients. CSF flow void scores in patients with idiopathic NPH were investigated for correlations between postoperative outcome scores and ventricular width indices. No difference was found between the occurrence of aqueductal CSF flow void in patients with idiopathic NPH and the control group. A significant difference, however, was noted for the extension of the CSF flow void, which was greater in the NPH group. Postoperative improvement was found in 33 of 37 patients with idiopathic NPH at a mean follow-up of 15.6 months. Only small, statistically not significant correlations were found between CSF flow void and postoperative outcome. Flow void sum scores, however, correlated significantly with ventricular width indices. The degree and extension of CSF flow void on T2-weighted magnetic resonance imaging scans have little predictive value for outcome after shunting in patients with idiopathic NPH. The greater extension of the CSF flow void in patients with NPH is most likely related to increased ventricular width. It is not useful to consider CSF flow void findings on conventional magnetic resonance imaging scans in making the decision to offer shunting in patients with idiopathic NPH.

  6. On the observability of coupled dark energy with cosmic voids

    NASA Astrophysics Data System (ADS)

    Sutter, P. M.; Carlesi, Edoardo; Wandelt, Benjamin D.; Knebe, Alexander

    2015-01-01

    Taking N-body simulations with volumes and particle densities tuned to match the sloan digital sky survey DR7 spectroscopic main sample, we assess the ability of current void catalogues to distinguish a model of coupled dark matter-dark energy from Λ cold dark matter cosmology using properties of cosmic voids. Identifying voids with the VIDE toolkit, we find no statistically significant differences in the ellipticities, but find that coupling produces a population of significantly larger voids, possibly explaining the recent result of Tavasoli et al. In addition, we use the universal density profile of Hamaus et al. to quantify the relationship between coupling and density profile shape, finding that the coupling produces broader, shallower, undercompensated profiles for large voids by thinning the walls between adjacent medium-scale voids. We find that these differences are potentially measurable with existing void catalogues once effects from survey geometries and peculiar velocities are taken into account.

  7. Micro-CT and nano-CT analysis of filling quality of three different endodontic sealers.

    PubMed

    Huang, Yan; Celikten, Berkan; de Faria Vasconcelos, Karla; Ferreira Pinheiro Nicolielo, Laura; Lippiatt, Nicholas; Buyuksungur, Arda; Jacobs, Reinhilde; Orhan, Kaan

    2017-12-01

    To investigate voids in different root canal sealers using micro-CT and nano-CT, and to explore the feasibility of using nano-CT for quantitative analysis of sealer filling quality. 30 extracted mandibular central incisors were randomly assigned into three groups according to the applied root canal sealers (Total BC Sealer, Sure Seal Root, AH Plus) by the single cone technique. Subsequently, micro-CT and nano-CT were performed to analyse the incidence rate of voids, void fraction, void volume and their distribution in each sample. Micro-CT evaluation showed no significant difference among sealers for the incidence rate of voids or void fraction in the whole filling materials (p > 0.05), whereas a significant difference was found between AH Plus and the other two sealers using nano-CT (p < 0.05). All three sealers presented less void volume in the apical third; however, higher void volumes were observed in the apical and coronal thirds in AH Plus using micro-CT (p < 0.05), while nano-CT results displayed higher void volume in AH Plus among all the sealers and regions (p < 0.05). Bioactive sealers showed higher root filling rate, lower incidence rate of voids, void fraction and void volume than AH Plus under nano-CT analysis, when round root canals were treated by the single cone technique. The disparate results suggest that the higher resolution of nano-CT have a greater ability of distinguishing internal porosity, and therefore suggesting the potential use of nano-CT in quantitative analysis of filling quality of sealers.

  8. LOG-NORMAL DISTRIBUTION OF COSMIC VOIDS IN SIMULATIONS AND MOCKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, E.; Pycke, J.-R., E-mail: er111@nyu.edu, E-mail: jrp15@nyu.edu

    2017-01-20

    Following up on previous studies, we complete here a full analysis of the void size distributions of the Cosmic Void Catalog based on three different simulation and mock catalogs: dark matter (DM), haloes, and galaxies. Based on this analysis, we attempt to answer two questions: Is a three-parameter log-normal distribution a good candidate to satisfy the void size distributions obtained from different types of environments? Is there a direct relation between the shape parameters of the void size distribution and the environmental effects? In an attempt to answer these questions, we find here that all void size distributions of thesemore » data samples satisfy the three-parameter log-normal distribution whether the environment is dominated by DM, haloes, or galaxies. In addition, the shape parameters of the three-parameter log-normal void size distribution seem highly affected by environment, particularly existing substructures. Therefore, we show two quantitative relations given by linear equations between the skewness and the maximum tree depth, and between the variance of the void size distribution and the maximum tree depth, directly from the simulated data. In addition to this, we find that the percentage of voids with nonzero central density in the data sets has a critical importance. If the number of voids with nonzero central density reaches ≥3.84% in a simulation/mock sample, then a second population is observed in the void size distributions. This second population emerges as a second peak in the log-normal void size distribution at larger radius.« less

  9. Doppler Systolic Signal Void in Hypertrophic Cardiomyopathy: Apical Aneurysm and Severe Obstruction without Elevated Intraventricular Velocities.

    PubMed

    Po, Jose Ricardo F; Kim, Bette; Aslam, Farhan; Arabadjian, Milla; Winson, Glenda; Cantales, Deborah; Kushner, Josef; Kornberg, Robert; Sherrid, Mark V

    2015-12-01

    In patients with hypertrophic cardiomyopathy (HCM), akinetic apical aneurysms are associated with ventricular tachycardia, heart failure, apical thrombus, and mortality. The cause of apical aneurysms remains unresolved, and there is controversy about prevalence and significance of mid-left ventricular (LV) obstruction, often present in these patients. The aim of this study was to test the hypothesis that low velocities in patients with aneurysms are due to near complete cessation of mid-LV flow, characteristically marked by a Doppler signal void. This was a retrospective analysis of 39 patients with HCM with segmental hypertrophy of the mid left ventricle and complete systolic emptying at the mid-LV level. The severity of dynamic obstruction was evaluated by measuring the time during which cross-sectional mid-LV cavity area was <1 cm(2). Presence or absence of an LV Doppler midsystolic signal void was determined. Akinetic apical aneurysms were present in 21 patients. The duration of two-dimensional mid-LV short-axis complete emptying was longer in patients with akinetic apical aneurysms (194 ± 45 vs 148 ± 63 msec, P = .013), nearly 50% of systole. Midsystolic signal voids were seen only in patients with akinetic apical aneurysms (P < .001), present in 86%. In patients with akinetic aneurysms, there was a strong correlation between the duration of the systolic signal void and the proportion of systole with complete emptying < 1 cm(2) (r = 0.704; P = .001). Complete emptying < 1 cm(2) for ≥ 38% of systole was associated with akinetic aneurysm (odds ratio, 9.35; P < .004). Patients with akinetic apical aneurysm HCM have near complete cessation of flow across severe dynamic mid-LV obstruction for nearly 50% of systole. This explains how the adverse effects of obstruction may occur without high velocities on echocardiography. Copyright © 2015 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.

  10. Morphological statistics of the cosmic web

    NASA Astrophysics Data System (ADS)

    Shandarin, Sergei F.

    2004-07-01

    We report the first systematic study of the supercluster-void network in the ΛCDM concordance cosmology treating voids and superclusters on an equal footing. We study the dark matter density field in real space smoothed with the Ls = 5 h[minus sign]1Mpc Gaussian window. Superclusters and voids are defined as individual members of over-dense and under-dense excursion sets respectively. We determine the morphological properties of the cosmic web at a large number of dark matter density levels by computing Minkowski functionals for every supercluster and void. At the adopted smoothing scale individual superclusters totally occupy no more than about 5% of the total volume and contain no more than 20% of mass if the largest supercluster is excluded. Likewise, individual voids totally occupy no more than 14% of volume and contain no more than 4% of mass if the largest void is excluded. The genus of individual superclusters can be ˜ 5 while the genus of individual voids reaches ˜ 55, implying significant amount of substructure in superclusters and especially in voids. Large voids are typically distinctly non-spherical.

  11. Fluid intake and voiding; habits and health knowledge in a young, healthy population

    PubMed Central

    Das, Rebekah N; Grimmer-Somers, Karen A

    2012-01-01

    Objectives Health professionals commonly advise patients with incontinence and other lower urinary tract symptoms about modifiable contributing factors such as drinking and voiding habits. Poor drinking and voiding habits may begin early in life, before symptoms emerge. However, little is known about the habits and knowledge young people have regarding healthy drinking and voiding behaviors. This research aimed to assess the habits and health knowledge of young people regarding fluid intake and voiding. Methods A questionnaire was used to assess the drinking and voiding behaviors of first year university students and their knowledge about healthy fluid intake and voiding. Results The average daily fluid intake was >2 L/day for both genders. Poor drinking and voiding habits (such as high consumption of caffeinated drinks and alcohol, or nocturia) were common. Widely reported myths about the benefits of a high fluid intake were commonly believed. Conclusion More informed public education regarding healthy fluid intake, and drinking and voiding habits, is required as part of the effort to reduce the development of lower urinary tract symptoms, including incontinence. PMID:24199175

  12. Fluid intake and voiding; habits and health knowledge in a young, healthy population.

    PubMed

    Das, Rebekah N; Grimmer-Somers, Karen A

    2012-01-01

    Health professionals commonly advise patients with incontinence and other lower urinary tract symptoms about modifiable contributing factors such as drinking and voiding habits. Poor drinking and voiding habits may begin early in life, before symptoms emerge. However, little is known about the habits and knowledge young people have regarding healthy drinking and voiding behaviors. This research aimed to assess the habits and health knowledge of young people regarding fluid intake and voiding. A questionnaire was used to assess the drinking and voiding behaviors of first year university students and their knowledge about healthy fluid intake and voiding. The average daily fluid intake was >2 L/day for both genders. Poor drinking and voiding habits (such as high consumption of caffeinated drinks and alcohol, or nocturia) were common. Widely reported myths about the benefits of a high fluid intake were commonly believed. More informed public education regarding healthy fluid intake, and drinking and voiding habits, is required as part of the effort to reduce the development of lower urinary tract symptoms, including incontinence.

  13. Microscopic character of marine sediment containing disseminated gas hydrate. Examples from the Blake Ridge and the Middle America Trench

    USGS Publications Warehouse

    Lorenson, T.D.

    2000-01-01

    The presence of disseminated gas hydrate was inferred based on pore fluid geochemistry and downhole logging data, but was rarely observed at Ocean Drilling Program (ODP) Leg 164 (Blake Ridge), and Leg 170 (Middle America Trench, offshore from Costa Rica) drilling sites. Gas hydrate nucleation is likely to occur first in larger voids rather than in constricted pore space, where capillary forces depress the temperature-pressure stability field for gas hydrate formation. Traditional macroscopic descriptions of sediment fail to detect the microscopic character of primary and secondary porosity in sediment hosting disseminated gas hydrate. Light transmission and scanning electron microscopy of sediments within and below the depth of gas hydrate occurrences reveal at least four general types of primary and secondary porosity: (1) microfossils (diatoms, foraminifera, and spicules) void of infilling sediment, but commonly containing small masses of pyrite framboids; (2) infauna burrows filled with unconsolidated sand and or microfossil debris; (3) irregularly shaped pods of nonconsolidated framboidial pyrite; and (4) nonlithified volcanic ash.

  14. Irradiation effects on multilayered W/ZrO2 film under 4 MeV Au ions

    NASA Astrophysics Data System (ADS)

    Wang, Hongwei; Gao, Yuan; Fu, Engang; Yang, Tengfei; Xue, Jianming; Yan, Sha; Chu, Paul K.; Wang, Yugang

    2014-12-01

    Irradiation induced structural changes in multilayered W/ZrO2 nanocomposites with periodic bilayer thicknesses of (7/14 nm) and (70/140 nm) were investigated following Au+ ion irradiation. The samples were irradiated by 4 MeV Au ions with fluences ranging from 6 × 1014 to 1 × 1016 ions/cm2. The immiscible W/ZrO2 interfaces remained unchanged without intermixing of the layers upon the irradiation. No voids were observed in the samples with different periodic layer thicknesses. The XRD and XTEM studies reveal thickness dependent microstructural changes in the samples. W and ZrO2 grains in the thinner (7/14 nm) bilayer sample exhibit significant resistance to grain growth compared to the thicker (70/140 nm) bilayer sample as well as a W monolayer film. The high fraction of flat interfaces as well as grain boundaries in multilayer films plays a role in suppressing ion irradiation-induced grain growth and void formation.

  15. Comparison of tungsten nano-tendrils grown in Alcator C-Mod and linear plasma devices

    NASA Astrophysics Data System (ADS)

    Wright, G. M.; Brunner, D.; Baldwin, M. J.; Bystrov, K.; Doerner, R. P.; Labombard, B.; Lipschultz, B.; De Temmerman, G.; Terry, J. L.; Whyte, D. G.; Woller, K. B.

    2013-07-01

    Growth of tungsten nano-tendrils ("fuzz") has been observed for the first time in the divertor region of a high-power density tokamak experiment. After 14 consecutive helium L-mode discharges in Alcator C-Mod, the tip of a tungsten Langmuir probe at the outer strike point was fully covered with a layer of nano-tendrils. The depth of the W fuzz layer (600 ± 150 nm) is consistent with an empirical growth formula from the PISCES experiment. Re-creating the C-Mod exposures as closely as possible in Pilot-PSI experiment can produce nearly-identical nano-tendril morphology and layer thickness at surface temperatures that agree with uncertainties with the C-Mod W probe temperature data. Helium concentrations in W fuzz layers are measured at 1-4 at.%, which is lower than expected for the observed sub-surface voids to be filled with several GPa of helium pressure. This possibly indicates that the void formation is not pressure driven.

  16. Current Space Station Experiments Investigating Component Level Electronics Repair

    NASA Technical Reports Server (NTRS)

    Easton, John W.; Struk, Peter M.

    2010-01-01

    The Soldering in a Reduced Gravity Experiment (SoRGE) and Component Repair Experiment (CRE)-1 are tests performed on the International Space Station to determine the techniques, tools, and training necessary to allow future crews to perform manual electronics repairs at the component level. SoRGE provides information on the formation and internal structure of through-hole solder joints, illustrating the challenges and implications of soldering in reduced gravity. SoRGE showed a significant increase in internal void defects for joints formed in low gravity compared to normal gravity. Methods for mitigating these void defects were evaluated using a modified soldering process. CRE-1 demonstrated the removal, cleaning, and replacement of electronics components by manual means on functional circuit boards. The majority of components successful passed a post-repair functional test demonstrating the feasibility of component-level repair within the confines of a spacecraft. Together, these tasks provide information to recommend material and tool improvements, training improvements, and future work to help enable electronics repairs in future space missions.

  17. Improved alumina scale adhesion of electron beam physical vapor deposited Dy/Hf-doped β-NiAl coatings

    NASA Astrophysics Data System (ADS)

    Li, Dongqing; Guo, Hongbo; Peng, Hui; Gong, Shengkai; Xu, Huibin

    2013-10-01

    The cyclic oxidation behavior of Dy/Hf-doped β-NiAl coatings produced by electron beam physical vapor deposition (EB-PVD) was investigated. For the undoped NiAl coating, numerous voids were formed at the alumina scale/coating interface and large rumpling developed in the scale, leading to premature oxide spallation. The addition of Dy and Hf both improved scale adhesion and the alumina scale grown on the NiAl-Hf coating showed better adhesion than that on the NiAl-Dy coating, although the suppressing effect on interfacial void formation and the scale rumpling resistance were stronger in the NiAl-Dy coating. It is proposed that the segregation of Dy and Hf ions at the scale/coating interfaces not only prevent interfacial sulfur segregation but also may directly enhance interfacial adhesion by participating in bonding across the interfaces, and this strengthening effect is relatively stronger for Hf ionic segregation.

  18. Scaling analysis applied to the NORVEX code development and thermal energy flight experiment

    NASA Technical Reports Server (NTRS)

    Skarda, J. Raymond Lee; Namkoong, David; Darling, Douglas

    1991-01-01

    A scaling analysis is used to study the dominant flow processes that occur in molten phase change material (PCM) under 1 g and microgravity conditions. Results of the scaling analysis are applied to the development of the NORVEX (NASA Oak Ridge Void Experiment) computer program and the preparation of the Thermal Energy Storage (TES) flight experiment. The NORVEX computer program which is being developed to predict melting and freezing with void formation in a 1 g or microgravity environment of the PCM is described. NORVEX predictions are compared with the scaling and similarity results. The approach to be used to validate NORVEX with TES flight data is also discussed. Similarity and scaling show that the inertial terms must be included as part of the momentum equation in either the 1 g or microgravity environment (a creeping flow assumption is invalid). A 10(exp -4) environment was found to be a suitable microgravity environment for the proposed PCM.

  19. Method and apparatus for igniting an in situ oil shale retort

    DOEpatents

    Burton, Robert S.; Rundberg, Sten I.; Vaughn, James V.; Williams, Thomas P.; Benson, Gregory C.

    1981-01-01

    A technique is provided for igniting an in situ oil shale retort having an open void space over the top of a fragmented mass of particles in the retort. A conduit is extended into the void space through a hole in overlying unfragmented formation and has an open end above the top surface of the fragmented mass. A primary air pipe having an open end above the open end of the conduit and a liquid atomizing fuel nozzle in the primary air pipe above the open end of the primary air pipe are centered in the conduit. Fuel is introduced through the nozzle, primary air through the pipe, and secondary air is introduced through the conduit for vortical flow past the open end of the primary air pipe. The resultant fuel and air mixture is ignited for combustion within the conduit and the resultant heated ignition gas impinges on the fragmented mass for heating oil shale to an ignition temperature.

  20. A study of the formation and dynamics of galaxies

    NASA Astrophysics Data System (ADS)

    Fillmore, J. A.

    The first half of this thesis is a study on the growth of perturbations in the early universe which might lead to galaxies, clusters of galaxies, or regions void of galaxies. The growth of self-similar perturbations in an Einstein-deSitter universe with cold, collisionless particles is investigated. Three classes of solutions are obtained; one each with planar, cylindrical, and spherical symmetry. The solutions follow the development of structure in both the linear and nonlinear regimes. Self-similar spherical voids which develop from initially underdense regions are also investigated. The character of each solution depends upon the initial density deficit. The second half of this thesis details solutions of steady-state axisymmetric models of elliptical and disk galaxies, and considers which observable properties can be used as diagnostics of the kinematic configuration of the spheroidal component of these systems. Two component mass models are fitted to surface brightness measurements and used to fit kinematic models to the velocity data.

  1. Shock induced damage in copper: A before and after, three-dimensional study

    NASA Astrophysics Data System (ADS)

    Menasche, David B.; Lind, Jonathan; Li, Shiu Fai; Kenesei, Peter; Bingert, John F.; Lienert, Ulrich; Suter, Robert M.

    2016-04-01

    We report on the microstructural features associated with the formation of incipient spall and damage in a fully recrystallized, high purity copper sample. Before and after ballistic shock loading, approximately 0.8 mm3 of the sample's crystal lattice orientation field is mapped using non-destructive near-field High Energy Diffraction Microscopy. Absorption contrast tomography is used to image voids after loading. This non-destructive interrogation of damage initiation allows for novel characterization of spall points vis-a-vis microstructural features and a fully 3D examination of microstructural topology and its influence on incipient damage. The spalled region is registered with and mapped back onto the pre-shock orientation field. As expected, the great majority of voids occur at grain boundaries and higher order microstructural features; however, we find no statistical preference for particular grain boundary types. The damaged region contains a large volume of Σ-3 (60 °<111 >) connected domains with a large area fraction of incoherent Σ-3 boundaries.

  2. Reliability of scanning laser acoustic microscopy for detecting internal voids in structural ceramics

    NASA Technical Reports Server (NTRS)

    Roth, D. J.; Baaklini, G. Y.

    1986-01-01

    The reliability of 100 MHz scanning laser acoustic microscopy (SLAM) for detecting internal voids in sintered specimens of silicon nitride and silicon carbide was evaluated. The specimens contained artificially implanted voids and were positioned at depths ranging up to 2 mm below the specimen surface. Detection probability of 0.90 at a 0.95 confidence level was determined as a function of material, void diameter, and void depth. The statistical results presented for void detectability indicate some of the strengths and limitations of SLAM as a nondestructive evaluation technique for structural ceramics.

  3. Mechanisms for Ductile Rupture - FY16 ESC Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyce, Brad L.; Carroll, Jay D.; Noell, Phillip

    2017-01-01

    Ductile rupture in metals is generally a multi-step process of void nucleation, growth, and coalescence. Particle decohesion and particle fracture are generally invoked as the primary microstructural mechanisms for room-temperature void nucleation. However, because high-purity materials also fail by void nucleation and coalescence, other microstructural features must also act as sites for void nucleation. Early studies of void initiation in high-purity materials, which included post-mortem fracture surface characterization using scanning electron microscopy (SEM) and high-voltage electron microscopy (HVEM) and in-situ HVEM observations of fracture, established the presence of dislocation cell walls as void initiation sites in high-purity materials. Direct experimentalmore » evidence for this contention was obtained during in-situ HVEM tensile tests of Be single crystals. Voids between 0.2 and 1 μm long appeared suddenly along dislocation cell walls during tensile straining. However, subsequent attempts to replicate these results in other materials, particularly α -Fe single crystals, were unsuccessful because of the small size of the dislocation cells, and these remain the only published in-situ HVEM observations of void nucleation at dislocation cell walls in the absence of a growing macrocrack. Despite this challenge, other approaches to studying void nucleation in high-purity metals also indicate that dislocation cell walls are nucleation sites for voids.« less

  4. Quantifying Effects of Voids in Woven Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Goldsmith, Marlana B.; Sankar, Bhavani V.; Haftka, Raphael T.; Goldberg, Robert K.

    2013-01-01

    Randomness in woven ceramic matrix composite architecture has been found to cause large variability in stiffness and strength. The inherent voids are an aspect of the architecture that may cause a significant portion of the variability. A study is undertaken to investigate the effects of many voids of random sizes and distributions. Response surface approximations were formulated based on void parameters such as area and length fractions to provide an estimate of the effective stiffness. Obtaining quantitative relationships between the properties of the voids and their effects on stiffness of ceramic matrix composites are of ultimate interest, but the exploratory study presented here starts by first modeling the effects of voids on an isotropic material. Several cases with varying void parameters were modeled which resulted in a large amount of variability of the transverse stiffness and out-of-plane shear stiffness. An investigation into a physical explanation for the stiffness degradation led to the observation that the voids need to be treated as an entity that reduces load bearing capabilities in a space larger than what the void directly occupies through a corrected length fraction or area fraction. This provides explanation as to why void volume fraction is not the only important factor to consider when computing loss of stiffness.

  5. Resurrecting hot dark matter - Large-scale structure from cosmic strings and massive neutrinos

    NASA Technical Reports Server (NTRS)

    Scherrer, Robert J.

    1988-01-01

    These are the results of a numerical simulation of the formation of large-scale structure from cosmic-string loops in a universe dominated by massive neutrinos (hot dark matter). This model has several desirable features. The final matter distribution contains isolated density peaks embedded in a smooth background, producing a natural bias in the distribution of luminous matter. Because baryons can accrete onto the cosmic strings before the neutrinos, the galaxies will have baryon cores and dark neutrino halos. Galaxy formation in this model begins much earlier than in random-phase models. On large scales the distribution of clustered matter visually resembles the CfA survey, with large voids and filaments.

  6. New Insight into Phase Formation of MxMg2Al4+xSi5−xO18:Eu2+ Solid Solution Phosphors and Its Luminescence Properties

    PubMed Central

    Zhou, Jun; Xia, Zhiguo; Chen, Mingyue; Molokeev, Maxim S.; Liu, Quanlin

    2015-01-01

    Here we reported the phase formation of MxMg2Al4+xSi5−xO18:Eu2+ (M = K, Rb) solid solution phosphors, where M+ ions were introduced into the void channels of Mg2Al4Si5O18 via Al3+/Si4+ substitution to keep the charge balance. XRD results revealed that the as-prepared phosphors with different M+ contents were iso-structural with Mg2Al4Si5O18 phase. The combined analysis of the Rietveld refinement and high resolution transmission electron microscopy (HRTEM) results proved that M+ ions were surely introduced into the intrinsic channels in Mg2Al4Si5O18. The emission peaks of MxMg2Al4+xSi5−xO18:Eu2+ (M = K, Rb) phosphors with various x values performed a systematic red-shift tendency, which was ascribed to the elongation of [MgO6] octahedra. The temperature stable photoluminescence and internal quantum efficiency (QE) of MxMg2Al4+xSi5−xO18:Eu2+ (M = K, Rb) phosphors were enhanced owing to the filling of M+ in the void channels suggesting a new insight to design the solid solution phosphors with improved photoluminescence properties. PMID:26190348

  7. The Role of Microbial Iron Reduction in the Formation of Proterozoic Molar Tooth Structures

    NASA Astrophysics Data System (ADS)

    Hodgskiss, M. S. W.; Kunzmann, M.; Halverson, G. P.; Poirier, A.

    2016-12-01

    Molar tooth structures are poorly understood early diagenetic, microspar-filled voids in clay-rich carbonate sediments. They are a common structure in sedimentary successions dating from 2600-720 Ma, but do not occur in rocks older or younger. Despite being volumetrically significant in carbonate rocks of this age, their formation and disappearance are poorly understood. Here, we present iron isotope data, supported by carbon and oxygen isotopes, major and minor element concentrations, and total organic carbon and pyrite contents for samples from ten regions spanning 1870-635 Ma. The iron isotopic composition of molar tooth structures is almost always lighter (modal depletion of 2‰) than the carbonate or siliciclastic components in the host sediment, whereas carbon isotopes are indistinguishable. We interpret the isotopically light iron in molar tooth structures to have been produced by microbial iron reduction utilising Fe-oxyhydroxides and smectites. The microbial conversion of smectite to illite results in a volume reduction of clay minerals ( 30%), while locally increasing pore water alkalinity. Therefore, this biogeochemical process is a viable mechanism to produce voids and subsequently precipitate carbonate minerals. The disappearance of molar tooth structures is likely linked to a combination of a decrease in smectite abundance, a decline in the marine DIC reservoir, and increase in the concentration of O2 in shallow seawater in the mid-Neoproterozoic.

  8. Method of simulating spherical voids for use as a radiographic standard

    DOEpatents

    Foster, Billy E.

    1977-01-01

    A method of simulating small spherical voids in metal is provided. The method entails drilling or etching a hemispherical depression of the desired diameter in each of two sections of metal, the sections being flat plates or different diameter cylinders. A carbon bead is placed in one of the hemispherical voids and is used as a guide to align the second hemispherical void with that in the other plate. The plates are then bonded together with epoxy, tape or similar material and the two aligned hemispheres form a sphere within the material; thus a void of a known size has been created. This type of void can be used to simulate a pore in the development of radiographic techniques of actual voids (porosity) in welds and serve as a radiographic standard.

  9. Optimizing Vacuum Assisted Resin Transfer Moulding (VARTM) Processing Parameters to Improve Part Quality

    NASA Astrophysics Data System (ADS)

    Polowick, Christopher

    The Low Cost Composites (LCC) group at Carleton University is studying out-of-autoclave composite manufacturing processes such as Vacuum Assisted Resin Transfer Moulding (VARTM) and Closed Cavity Bag Moulding (CCBM). These processes are used to produce inexpensive and high performance components for the GeoSurv II, an Unmanned Aerial Vehicle (UAV) being developed at Carleton University. This research has focused on optimizing VARTM processing parameters to reduce the weight and improve the strength and surface finish of GeoSurv II composite components. A simulation was developed to model resin flow through in VARTM infusions and was used to simulate mould filling and resin emptying of the GeoSurv II inverted V-empennage and mission avionics hatch. The resin infusion schemes of these parts were designed to ensure full preform resin saturation, and minimize thickness variations. An experimental study of the effects of the presence of a corner on composite thickness, void content, and strength was conducted. It was found that inside corners result in local increases in thickness and void content due to poor preform compaction. A novel bagging technique was developed to improve corner compaction, and this technique was shown to reduce thickness variability and void content. The strength, void content, and thickness variation were found to be heavily dependent on corner radius, with corner radii greater than 6.4 mm displaying the greatest improvement in performance for the layups considered. The design of the empennage and hatch mould incorporated the results of this study to improve the quality of these components.

  10. High Temperature VARTM of Phenylethynyl Terminated Imides

    NASA Technical Reports Server (NTRS)

    Cano, Roberto J.; Britton, Sean M.; Jensen, Brian J.; Connell, John W.; Herring, Helen M.; Linberry, Quentin J.; Ghose, Sayata; Watson, Kent A.

    2009-01-01

    Fabrication of composite structures using vacuum assisted resin transfer molding (VARTM) is generally more affordable than conventional autoclave techniques. Recent efforts have focused on adapting VARTM for the fabrication of high temperature composites. Due to their low melt viscosity and long melt stability, certain phenylethynyl terminated imides (PETI) can be processed into composites using high temperature VARTM (HT-VARTM). However, one of the disadvantages of the current HT-VARTM resin systems has been the high porosity of the resultant composites. For aerospace applications, the desired void fraction of less than 2% has not yet been achieved. In the current study, two PETI resins, LaRC PETI-330 and LaRC PETI-8 have been used to make test specimens using HT-VARTM. The resins were infused into ten layers of IM7-6K carbon fiber 5-harness satin fabric at 260 C or 280 C and cured at 371 C. Initial runs yielded composites with high void content, typically greater than 7% by weight. A thermogravimetric-mass spectroscopic study was conducted to determine the source of volatiles leading to high porosity. It was determined that under the thermal cycle used for laminate fabrication, the phenylethynyl endcap was undergoing degradation leading to volatile evolution. By modifying the thermal cycle used in laminate fabrication, the void content was reduced significantly (typically approximately 3%). Densities of the composites were determined using a density gradient column and the glass transition temperatures of the cured composites were measured by dynamic mechanical analysis. Photomicrographs of the panels were taken and void contents were determined by acid digestion. The results of this work are presented herein.

  11. The nondestructive evaluation of high temperature conditioned concrete in conjunction with acoustic emission and x-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Su, Yu-Min; Hou, Tsung-Chin; Lin, Li-Chiang; Chen, Gwan-Ying; Pan, Huang-Hsing

    2016-04-01

    Portland Cement Concrete plays a vital part of protecting structural rebars or steels when high-temperature fire incidents occur, that induces loss of evaporate water, dehydration of CH, and deconstruction of C-S-H. The objective of the study was to assess fire-damaged concrete in conjunction with nondestructive evaluation methods of acoustic emission, visual inspections, and X-ray computed tomography. The experimental program was to mix an Ordinary Portland Cement concrete firstly. Concrete cylinders with twenty-day moisture cure were treated in a furnace with 400 and 600°C for one hour. After temperature is cooled down, the concrete cylinders were brought to air or moisture re-curing for ten days. Due to the incident of the furnace, acoustic emission associated with splitting tensile strength test was not able to continue. Future efforts are planned to resume this unfinished task. However, two proposed tasks were executed and completed, namely visual inspections and voids analysis on segments obtained from X-ray CT facility. Results of visual inspections on cross-sectional and cylindrical length of specimens showed that both aggregates and cement pastes turned to pink or red at 600°C. More surface cracks were generated at 600°C than that at 400°C. On the other hand, voids analysis indicated that not many cracks were generated and voids were remedied at 400°C. However, a clear tendency was found that remedy by moisture curing may heal up to 2% voids of the concrete cylinder that was previously subject to 600°C of high temperature conditioning.

  12. Voids characteristics of asphaltic concrete containing coconut shell

    NASA Astrophysics Data System (ADS)

    Ezree Abdullah, Mohd; Hannani Madzaili, Amirah; Putra Jaya, Ramadhansyah; Yaacob, Haryati; Hassan, Norhidayah Abdul; Nazri, Fadzli Mohamed

    2017-07-01

    Asphalt durability is often linked to the thickness of the asphalt coating on the aggregate particles. In order to have adequate film thickness in asphaltic concrete, there must be sufficient space between the aggregate particles in the compacted pavement. This void space is referred to as voids in total mix (VTM), voids with filled bitumen (VFB), and voids in mineral aggregate (VMA). Hence, this study investigates the performance of coconut shell (CS) as coarse aggregate replacement on voids characteristics of asphaltic concrete. Four CS were used as coarse aggregates replacement in asphalt mixture namely 0%, 10%, 20%, 30%, and 40% (by weight volume). The voids properties of asphalt mixture were determined based on Marshall Mix design test. Test results show that VTM and VMA values were decrease with the increasing bitumen content where VFB was increase with increasing bitumen content. Furthermore, increasing the percentage of coconut shell in asphalt mixture was found to increases the voids value up to a peak level and then decreases with further additions of CS.

  13. The Effect of Molybdenum Substrate Oxidation on Molybdenum Splat Formation

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Li, Chang-Jiu

    2018-01-01

    Disk splats are usually observed when the deposition temperature exceeds the transition temperature, whereas thick oxide layer will reduce the adhesion resulting from high deposition temperature. In present study, single molybdenum splats were deposited onto polished molybdenum substrates with different preheating processes to clarify the effect of surface oxidation on the splat formation. Three substrate samples experienced three different preheating processes in an argon atmosphere. Two samples were preheated to 350 and 550 °C, and another sample was cooled to 350 °C after it was preheated to 550 °C. The chemistry and compositions of substrate surface were examined by XPS. The cross sections of splats were prepared by focus ion beam (FIB) and then characterized by SEM. Nearly disk-shaped splat with small fingers in the periphery was observed on the sample preheated to 350 °C. A perfect disk-shape splat was deposited at 550 °C. With the sample on the substrate preheated to 350 °C (cooling down from 550 °C), flower-shaped splat exhibited a central core and discrete periphery detached by some voids. The results of peeling off splats by carbon tape and the morphology of FIB sampled cross sections indicated that no effective bonding formed at the splat-substrate interface for the substrate ever heated to 550 °C, due to the increasing content of MoO3 on the preheated molybdenum surface.

  14. Systematic void fraction studies with RELAP5, FRANCESCA and HECHAN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stosic, Z.; Preusche, G.

    1996-08-01

    In enhancing the scope of standard thermal-hydraulic codes applications beyond its capabilities, i.e. coupling with a one and/or three-dimensional kinetics core model, the void fraction, transferred from thermal-hydraulics to the core model, plays a determining role in normal operating range and high core flow, as the generated heat and axial power profiles are direct functions of void distribution in the core. Hence, it is very important to know if the void quality models in the programs which have to be coupled are compatible to allow the interactive exchange of data which are based on these constitutive void-quality relations. The presentedmore » void fraction study is performed in order to give the basis for the conclusion whether a transient core simulation using the RELAP5 void fractions can calculate the axial power shapes adequately. Because of that, the void fractions calculated with RELAP5 are compared with those calculated by BWR safety code for licensing--FRANCESCA and the best estimate model for pre- and post-dryout calculation in BWR heated channel--HECHAN. In addition, a comparison with standard experimental void-quality benchmark tube data is performed for the HECHAN code.« less

  15. Correlation of air void parameters obtained by linear traverse with freeze-thaw durability.

    DOT National Transportation Integrated Search

    1983-01-01

    The correlations obtainable from comparisons of the various air void parameters with the freeze-thaw durability of concretes are listed. It is shown that correlations are no better when only small voids are used than when the total void content is us...

  16. Cosmic void clumps

    NASA Astrophysics Data System (ADS)

    Lares, M.; Luparello, H. E.; Garcia Lambas, D.; Ruiz, A. N.; Ceccarelli, L.; Paz, D.

    2017-10-01

    Cosmic voids are of great interest given their relation to the large scale distribution of mass and the way they trace cosmic flows shaping the cosmic web. Here we show that the distribution of voids has, in consonance with the distribution of mass, a characteristic scale at which void pairs are preferentially located. We identify clumps of voids with similar environments and use them to define second order underdensities. Also, we characterize its properties and analyze its impact on the cosmic microwave background.

  17. The Needs and Concerns of Students during the Sport Management Internship Experience

    ERIC Educational Resources Information Center

    Stratta, Terese M. Peretto

    2004-01-01

    To date, no empirical studies have examined the sport management internship from students' perspectives. Due to this void in the literature, the purpose of this study was to examine the needs and concerns of students when accessing and completing internships. Rather than relying solely on sport management professionals to determine the parameters…

  18. In-situ observation of equilibrium transitions in Ni films; agglomeration and impurity effects.

    PubMed

    Thron, Andrew M; Greene, Peter; Liu, Kai; van Benthem, Klaus

    2014-02-01

    Dewetting of ultra-thin Ni films deposited on SiO2 layers was observed, in cross-section, by in situ scanning transmission electron microscopy. Holes were observed to nucleate by voids which formed at the Ni/SiO2 interface rather than at triple junctions at the free surface of the Ni film. Ni islands were observed to retract, in attempt to reach equilibrium on the SiO2 layer. SiO2 layers with 120 nm thickness were found to limit in situ heating experiments due to poor thermal conductivity of SiO2. The formation of graphite was observed during the agglomeration of ultra-thin Ni films. Graphite was observed to wet both the free surface and the Ni/SiO2 interface of the Ni islands. Cr forms surface oxide layers on the free surface of the SiO2 layer and the Ni islands. Cr does not prevent the dewetting of Ni, however it will likely alter the equilibrium shape of the Ni islands. © 2013 Published by Elsevier B.V.

  19. Two-phase SLIPI for instantaneous LIF and Mie imaging of transient fuel sprays.

    PubMed

    Storch, Michael; Mishra, Yogeshwar Nath; Koegl, Matthias; Kristensson, Elias; Will, Stefan; Zigan, Lars; Berrocal, Edouard

    2016-12-01

    We report in this Letter a two-phase structured laser illumination planar imaging [two-pulse SLIPI (2p-SLIPI)] optical setup where the "lines structure" is spatially shifted by exploiting the birefringence property of a calcite crystal. By using this optical component and two cross-polarized laser pulses, the shift of the modulated pattern is not "time-limited" anymore. Consequently, two sub-images with spatially mismatched phases can be recorded within a few hundred of nanoseconds only, freezing the motion of the illuminated transient flow. In comparison with previous setups for instantaneous imaging based on structured illumination, the current optical design presents the advantage of having a single optical path, greatly simplifying its complexity. Due to its virtue of suppressing the effects from multiple light scattering, the 2p-SLIPI technique is applied here in an optically dense multi-jet direct-injection spark-ignition (DISI) ethanol spray. The fast formation of polydispersed droplets and appearance of voids after fuel injection are investigated by simultaneous detection of Mie scattering and liquid laser-induced fluorescence. The results allow for significantly improved analysis of the spray structure.

  20. High T(g) Polyimides

    NASA Technical Reports Server (NTRS)

    Chuang, Kathy

    2001-01-01

    The use of high temperature polymer matrix composites in aerospace applications has expanded steadily over the past 30 years, due to the increasing demand of replacing metal parts with light weight composite materials for fuel efficiency and bigger payloads in the aircraft and the space transportation vehicles. Polyimide/carbon fiber composites, especially, have been regarded as major high temperature matrix materials, based on their outstanding performance in terms of heat resistance, high strength-to-weight ratio and property retention compared with epoxies (177 C/350 F) and bismaleimides (232 C/450 F). Traditional, then-neoplastic polyimides were prepared from dianhydrides and diamines in N-methyl-2-pyrrolidinone (NMP) at room temperature to form the polyamic acids, which were then imidized at 150 C to yield polyimides. However, the high-boiling solvent (NMP, BP= 202 C) is very difficult to remove, leading to the formation of voids during composite fabrication. In the early 1970's, PMR addition curing polyimides with reactive endcaps were developed at the Lewis Research Center (renamed NASA Glenn) to ensure the easy processing of imide oligomers in methanol during composite fabrication.

Top