Angular Stable Miniplate Fixation of Chronic Unstable Scaphoid Nonunion.
Schormans, Philip M J; Brink, Peter R G; Poeze, Martijn; Hannemann, Pascal F W
2018-02-01
Background Around 5 to 15% of all scaphoid fractures result in nonunion. Treatment of long-lasting scaphoid nonunion remains a challenge for the treating surgeon. Healing of scaphoid nonunion is essential for prevention of scaphoid nonunion advanced collapse and the subsequent predictable pattern of radiocarpal osteoarthritis. Purpose The purpose of this study was to investigate the feasibility of fixation of the scaphoid nonunion with a volar angular stable miniplate and cancellous bone grafting. We hypothesized that this technique could be successful, even in patients with previous surgery for nonunion and in patients with a long duration of nonunion. Patients and Methods A total of 21 patients enrolled in a single-center prospective cohort study. Healing of nonunion was assessed on multiplanar computed tomography scan of the wrist at a 3-month interval. Functional outcome was assessed by measuring grip strength, range of motion, and by means of the patient-rated wrist and hand evaluation (PRWHE) questionnaire. Results During follow-up, 19 out of 21 patients (90%) showed radiological healing of the nonunion. The range of motion did not improve significantly. Postoperative PRWHE scores decreased by 34 points. Healing occurred regardless of the length of time of the nonunion (range: 6-183 months) and regardless of previous surgery (38% of patients). Conclusion Volar angular stable miniplate fixation with autologous cancellous bone grafting is a successful technique for the treatment of chronic unstable scaphoid nonunion, even in patients with long-lasting nonunion and in patients who underwent previous surgery for a scaphoid fracture. Rotational interfragmentary stability might be an important determining factor for the successful treatment of unstable scaphoid nonunion. Level of Evidence Level IV.
Moore, Amy M; Dennison, David G
2014-06-01
The volar lunate facet fragment of a distal radius fracture may not be stabilized with volar-locked plating alone due to the small size and distal location of the fragment. Identification and stabilization of this small fragment is critical as unstable fixation may result in radiocarpal and radioulnar joint subluxation. The addition of spring wire fixation with volar plating can provide stable internal fixation of this critical fracture fragment. A retrospective review (2006-2011) identified nine patients with distal radius fractures with an associated volar lunate facet fragment that were treated with volar-locked plating and spring wire fixation of the volar lunate facet fragment. Radiographic indices, range of motion, grip strength, and postoperative Patient-related wrist evaluation (PRWE) scores were obtained to assess pain and function. All distal radius fractures healed, and the volar lunate facet fragment reduction was maintained. The mean follow-up was 54 weeks. Mean active range of motion was 46° wrist flexion, 51° wrist extension, 80° pronation, and 68° supination. The mean grip strength was 21 Kg, achieving 66 % of the uninjured limb. The average PRWE score was 17. No patient required removal of hardware or had evidence of tendon irritation. The addition of spring wire fixation to volar-locked plating provided stable fixation of the volar lunate facet fragment of distal radius fractures without complication. This technique addresses a limitation of volar-locked plating to control the small volar lunate facet fragment in distal radius fractures otherwise amenable to volar plating. A retrospective case series, Level IV.
O'Shaughnessy, Maureen A.; Shin, Alexander Y.; Kakar, Sanjeev
2016-01-01
Background Distal radius fractures involving the lunate facet can be challenging to manage. Reports have shown the volar carpal subluxation/dislocation that can occur if the facet is not appropriately stabilized. Literature Review Recent emphasis in the literature has underscored the difficulty in managing this fracture fragment, suggesting standard volar plates may not be able to adequately stabilize the fragment. This article reviews the current literature with a special emphasis on fixation with a specifically designed fragment-specific hook plate to secure the lunate facet. Case Description An extended flexor carpi radialis volar approach was made which allows access to the distal volar ulnar fracture fragment. Once provisionally stabilized with Kirschner wire fixation, a volar hook plate was applied to capture this fragment. Additional fracture stabilization was used as deemed necessary to stabilize the remaining distal radius fracture. Clinical Relevance The volar marginal rim fragment remains a challenge in distal radius fracture management. Use of a hook plate to address the volar ulnar corner allows for stable fixation without loss of reduction at intermediate-term follow-up. PMID:27104076
Goorens, Chul Ki; Geeurickx, Stijn; Wernaers, Pascal; Staelens, Barbara; Scheerlinck, Thierry; Goubau, Jean
2017-06-01
Specific treatment of the volar marginal rim fragment of distal radius fractures avoids occurance of volar radiocarpal dislocation. Although several fixation systems are available to capture this fragment, adequately maintaining internal fixation is difficult. We present our experience of the first 10 cases using the 2.4 mm variable angle LCP volar rim distal radius plate (Depuy Synthes®, West Chester, US), a low-profile volar rim-contouring plate designed for distal plate positioning and stable buttressing of the volar marginal fragment. Follow-up patient satisfaction, range of motion, grips strength, functional scoring with the QuickDASH and residual pain with a numeric rating scale were assessed. Radiological evaluation consisted in evaluating fracture consolidation, ulnar variance, volar angulation and maintenance of the volar rim fixation. The female to male ratio was 5:5 and the mean age was 52.2 (range, 17-80) years. The mean follow-up period was 11 (range, 5-19) months postoperatively. Patient satisfaction was high. The mean total flexion/extension range was 144° (range, 100-180°) compared to the contralateral uninjured side 160° (range, 95-180°). The mean total pronation/supination range was 153° (range, 140-180°) compared to the contralateral uninjured side 170° (range, 155-180°). Mean grip strength was 14 kg (range, 9-22), compared to the contralateral uninjured side 20 kg (range, 12-25 kg). Mean pre-injury level activity QuickDASH was 23 (range, 0-34.1), while post-recovery QuickDASH was 25 (range 0-43.2). Residual pain was 1.5 on the visual numerical pain rating scale. Radiological evaluation revealed in all cases fracture consolidation, satisfactory reconstruction of ulnar variance, volar angulation and volar rim. We encountered no flexor tendon complications, although plate removal was systematically performed after fracture consolidation. The 2.4 mm variable angle LCP volar rim distal radius plates is a valid treatment option for treating the volar marginal fragment in distal radius fractures.
Sharma, Himanshu; Khare, Ghanshyam Narayan; Singh, Saurabh; Ramaswamy, Arun Govindraj; Kumaraswamy, Vinay; Singh, Ashutosh Kumar
2014-07-01
Management of AO type B and C fractures of the distal radius is controversial. This study compares outcomes and complications of AO type B and C fractures of the distal radius treated with volar locked plating and nonoperative methods. Sixty-four patients with fractures of the distal radius (AO type B and C) were included in this study, according to inclusion criteria, and were allocated to the volar plating group or nonoperative group by alternate randomization: 32 patients with odd numbers went into the nonoperative group and the other 32 with even numbers went into the volar plating group. Patients in the nonoperative group were managed with closed reduction of the fracture and plaster cast application under an image intensifier. Those in the volar plating group were managed by open reduction and fixation with a volar locked plate. Preoperative and postoperative serial clinico-radiological follow-up was done. The range of movement, grip strength, functional outcome scores and radiological parameters were compared. Student's t-test was used for statistical analysis with significance at p < 0.05. Range of movement and functional scores were significantly (p < 0.001) better in the volar plating group, but the difference in ulnar variance and radial and ulnar deviation was insignificant as compared to the nonoperative group. At 24 months follow-up, the nonoperative group had significantly more cases with malunion, articular incongruity and osteoarthritis. In cases of AO type B or C fractures of the distal radius, volar locked plating provides anatomical stable fixation and early mobilization with better clinico-radiological outcome as compared to conservative treatment.
Dorsal Plating of Unstable Scaphoid Fractures and Nonunions.
Bain, Gregory I; Turow, Arthur; Phadnis, Joideep
2015-09-01
Achieving stable fixation of displaced acute and chronic nonunited scaphoid fractures continues to be a challenge for the treating surgeon. The threaded compression screw has been the mainstay of treatment of these fractures for the last 3 decades; however, persistent nonunion after screw fixation has prompted development of new techniques. Recent results of volar buttress plating have been promising. We describe a novel technique of dorsal scaphoid plating. In contrast to volar plating, the dorsal plate is biomechanically more favorable as it utilizes the tension side of the scaphoid bone for dynamic compression. Dorsal scaphoid plating provides a more stable construct than the traditional Herbert screw and mitigates the need for vascular or corticocancellous bone grafting in most cases.
Sechachalam, Sreedharan; Satku, Mala; Wong, Jian Hao Kevin; Tan, Lester Teong Jin; Yong, Fok Chuan
2017-03-01
Restoration of extra-articular and intra-articular parameters are important considerations during operative fixation of distal radius fractures. Restoration of volar tilt by using visual estimation and the 'lift' technique has previously been described. The aim of our study was to describe a mathematical technique for accurately restoring the volar tilt of the distal radius to acceptable anatomic values. A retrospective review of cases performed using the trigonometry-integrated ' lift' technique (TILT) was performed. This technique uses the pre-operative volar tilt angle as well as the dimensions of the implant to calculate the 'lift' required to restore volar tilt. Intra-operative angles were measured using a marked transparency overlay on fluoroscopic images. Pre-operative and post-operative volar tilt were measured and analysed. Twenty-seven fractures were included in the study, with 20 being classified as Arbeitsgemeinschaft für Osteosynthesefragen (AO) C-type. Pre-'lift' volar tilt ranged from 0° to -20°. Post-'lift' volar tilt ranged from 2° to 16°, with all but three cases ranging from 5° to 15°. The mean volar tilt achieved was 10.2°. The trigonometry-integrated 'lift' technique resulted in reliable intra-operative restoration of anatomic volar tilt in distal radius fractures.
Distal Radius Volar Rim Fracture Fixation Using DePuy-Synthes Volar Rim Plate
Kachooei, Amir Reza; Tarabochia, Matthew; Jupiter, Jesse B.
2016-01-01
Background To assess the results of distal radius fractures with the involvement of the volar rim fixed with the DePuy-Synthes Volar Rim Plate. Case Description We searched for the patients with volar rim fracture and/or volar rim fractures as part of a complex fracture fixed with a volar rim plate. Ten patients met the inclusion criteria: three patients with type 23B3, six patients with type 23C, and one patient with very distal type 23A. The mean follow-up was 14 months (range: 2–26). Fractures healed in all patients. Of the three patients with isolated volar rim fractures (type 23B3), two patients had no detectable deficits in motion. These patients had an average Gartland and Werley score of 9 (range: 2–14). Of the other seven patients (six with type 23C and one with type 23A fracture), three patients healed with full range of motion and four had some deficits in range of motion. Two patients had excellent results, three had good results, and two had fair results using the Gartland and Werley categorical rating. One patient healed with a shortened radius and ulnar impingement requiring a second surgery for ulnar head resection arthroplasty. Literature Review Results after nonoperative treatment of volar rim fractures are not satisfactory and often require subsequent corrective osteotomy. Satisfactory outcomes are achieved when the fragments are well reduced and secured regardless of the device type. Clinical Relevance Volar rim plates give an adequate buttress of the volar radius distal to volar projection of the lunate facet and do not interfere with wrist mobility. Furthermore, the dorsal fragments can be fixed securely through the volar approach eliminating the need for a secondary posterior incision. However, patients should be informed of the potential problems and the need to remove the plate if symptoms develop. PMID:26855829
Wurtzel, Caroline N Wolfe; Burns, Geoffrey T; Zhu, Andy F; Ozer, Kagan
2017-12-01
Volar plates positioned at, or distal to, the watershed line have been shown to have a higher incidence of attritional rupture of the flexor pollicis longus (FPL). In this study, we aimed to evaluate the effect of wrist extension and volar tilt on the contact between the plate and the FPL tendon in a cadaver model. We hypothesized that, following volar plate application, loss of native volar tilt increases the contact between the FPL and the plate at lower degrees of wrist extension. A volar locking plate was applied on 6 fresh-frozen cadavers. To determine the contact between the plate and the FPL tendon, both structures were wrapped with copper wire and circuit conductivity was monitored throughout wrist motion. A lateral wrist radiograph was obtained at each circuit closure, indicating tendon-plate contact. Baseline measurements were obtained with plate positioned at Soong grades 0, 1, and 2. An extra-articular osteotomy was made and contact was recorded at various volar tilt angles (+5°, 0°, -5°, -10°, -15°, and -20°) in 3 different plate positions. A blinded observer measured the degree of wrist extension on all lateral radiographs. Data were analyzed using linear mixed-effects regression model. Plates placed distal to the watershed line had the most contact throughout wrist range of motion. Significantly, less wrist extension was required for contact in wrists with neutral or dorsal tilt and in distally placed volar plates. Volar tilt, wrist extension, and plate position were 3 independent risk factors determining contact between plate and tendon. Loss of volar tilt, increased wrist extension, and higher Soong grade plate position result in greater contact between wire-wrapped FPL tendon and plate. The FPL/plate contact chart generated in this study may be used to assess the risk of rupture in the clinical setting. Copyright © 2017 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Radiographic Outcomes of Volar Locked Plating for Distal Radius Fractures
Mignemi, Megan E.; Byram, Ian R.; Wolfe, Carmen C.; Fan, Kang-Hsien; Koehler, Elizabeth A.; Block, John J.; Jordanov, Martin I.; Watson, Jeffry T.; Weikert, Douglas R.; Lee, Donald H.
2013-01-01
Purpose To assess the ability of volar locked plating to achieve and maintain normal radiographic parameters for articular stepoff, volar tilt, radial inclination, ulnar variance, and radial height in distal radius fractures. Methods We performed a retrospective review of 185 distal radius fractures that underwent volar locked plating with a single plate design over a 5-year period. We reviewed radiographs and recorded measurements for volar tilt, radial inclination, ulnar variance, radial height, and articular stepoff. We used logistic regression to determine the association between return to radiographic standard norms and fracture type. Results At the first and final postoperative follow-up visits, we observed articular congruence less than 2 mm in 92% of fractures at both times. Normal volar tilt (11°) was restored in 46% at the first follow-up and 48% at the final one. Radial inclination (22°) was achieved in 44% at the first follow-up and 43% at the final one, and ulnar variance (01 ± 2 mm) was achieved in 53% at the first follow-up and 53% at the final one. In addition, radial height (14 ± 1mm) was restored in 14% at the first follow-up and 12% at the final one. More complex, intra-articular fractures (AO class B and C and Frykman types 3, 4, 7, and 8) were less likely to be restored to normal radiographic parameters. However, because of the small sample size for some fracture types, it was difficult to discover significant associations between fracture type and radiographic outcome. Conclusions Volar locked plating for distal radius fractures achieved articular stepoff less than 2 mm in most fractures but only restored and maintained normal radiographic measurements for volar tilt, radial inclination, and ulnar variance in 50% of fractures. The ability of volar locked plating to restore and maintain ulnar variance and volar tilt decreased with more complex intra-articular fracture types. PMID:23218558
Lee, Daniel J; Elfar, John C
2014-09-01
The optimal management of displaced dorsal radius fractures (DRFs) in older patients remains an issue of debate. Bridging external fixation is a well-accepted treatment modality for severely comminuted DRFs, while open reduction and internal fixation with locked volar plating has emerged as a promising alternative in recent years. The current body of randomized trials supports the trend toward locked volar plating, as it allows for quicker improvement in subjective and functional outcomes. There is no clear evidence to suggest that one technique carries significantly less complications than the other. Locked volar plating should be considered in patients for whom an accelerated functional recovery would be advantageous. Otherwise, both external fixation and locked volar plating provide good long-term clinical outcomes.
Hand Surgeon Reporting of Tendon Rupture Following Distal Radius Volar Plating
Monaco, Nathan A.; Dwyer, C. Liam; Ferikes, Alex J.; Lubahn, John D.
2016-01-01
Background: Volar plate fixation with locked screws has become the preferred treatment of displaced distal radius fractures that cannot be managed nonoperatively. This treatment, however, is not without complication. The purpose of this study was to determine what percentage of hand surgeons, over a 12-month period, have experienced a tendon complication when using volar plates for the treatment of distal radius fractures. Methods: A total of 3022 hand surgeons were e-mailed a link to an online questionnaire regarding their observation and treatment of tendon injuries associated with volar plating of distal radius fractures. Responses were reported using descriptive statistics. Results: Of the 596 (20%) respondents, 199 (33%) surgeons reported encountering at least one flexor tendon injury after distal radius volar plating over the past year of practice. The flexor pollicis longus was the most commonly reported tendon injury (254, 75%). Palmaris longus grafting (118, 37%) and tendon transfer (114, 36%) were the most often reported treatments following this complication. A total of 216 respondents (36%) also encountered 324 cases of extensor tendon rupture after volar plating of distal radius fractures, with tendon transfer (88%) being the preferred treatment option. Conclusions: Both flexor and extensor tendon ruptures can be seen after volar plating of distal radius fractures. Surgeons should be aware of these complications. Critical assessment of hardware position at the time of index procedure is recommended to avoid complications. Long-term studies are needed to standardize approaches to managing tendon rupture following volar plating of distal radius fractures. PMID:27698628
Hand Surgeon Reporting of Tendon Rupture Following Distal Radius Volar Plating.
Monaco, Nathan A; Dwyer, C Liam; Ferikes, Alex J; Lubahn, John D
2016-09-01
Background: Volar plate fixation with locked screws has become the preferred treatment of displaced distal radius fractures that cannot be managed nonoperatively. This treatment, however, is not without complication. The purpose of this study was to determine what percentage of hand surgeons, over a 12-month period, have experienced a tendon complication when using volar plates for the treatment of distal radius fractures. Methods: A total of 3022 hand surgeons were e-mailed a link to an online questionnaire regarding their observation and treatment of tendon injuries associated with volar plating of distal radius fractures. Responses were reported using descriptive statistics. Results: Of the 596 (20%) respondents, 199 (33%) surgeons reported encountering at least one flexor tendon injury after distal radius volar plating over the past year of practice. The flexor pollicis longus was the most commonly reported tendon injury (254, 75%). Palmaris longus grafting (118, 37%) and tendon transfer (114, 36%) were the most often reported treatments following this complication. A total of 216 respondents (36%) also encountered 324 cases of extensor tendon rupture after volar plating of distal radius fractures, with tendon transfer (88%) being the preferred treatment option. Conclusions: Both flexor and extensor tendon ruptures can be seen after volar plating of distal radius fractures. Surgeons should be aware of these complications. Critical assessment of hardware position at the time of index procedure is recommended to avoid complications. Long-term studies are needed to standardize approaches to managing tendon rupture following volar plating of distal radius fractures.
Shock-Absorbing Effects of Various Padding Conditions in Improving Efficacy of Wrist Guards
Hwang, Il-Kyu; Kim, Kyu-Jung
2004-01-01
The use of wrist guards has limited efficacy in preventing wrist injuries during falling in many sports activities. The objectives of this study were to measure the ground reaction force of the hand under simulated impact of the forearm and hand complex with different padding conditions of wrist guards and to analyze their impact force attenuation and maximum energy absorption for improved functional efficiency. A total of 15 subjects, wearing a commercial wrist guard, participated in a cable-released hand impact experiment to test four different conditions on the volar aspect of the hand, which include a wrist guard without a volar splint (bare hand), with a volar splint (normal use), with a volar splint and additional viscoelastic polymeric padding, and a volar splint and additional air cell padding. The ground reaction force and acceleration of the hand were measured using a force platform mounted on an anti-vibration table and a miniature accelerometer, respectively. Additional padding on the bare hand could substantially improve the maximum energy absorption by more than 39%, with no differences with each other. However, only the air cell padding could simultaneously improve the impact force attenuation by 32% compared with the bare hand impact without compromising the maximum energy absorption. It is recommended that common wrist guard design should provide more compliant padding in the volar aspect to improve the impact force attenuation through optimal material selection and design. Key Points The controversial efficacy of wrist guards in preventing wrist injuries during falling was tested through investigation of their impact force attenuation and maximum energy absorption from the measured ground reaction force of the hand under simulated impact of the forearm and hand complex with four different padding conditions of wrist guards: a wrist guard without a volar splint (bare hand), with a volar splint (normal use), with a volar splint and additional viscoelastic polymeric padding, and a volar splint and additional air cell padding. In general, padding on the bare hand could improve the maximum energy absorption by more than 39%, while only the air cell padding could simultaneously attenuate the peak impact force by 32% without compromising the maximum energy absorption. Common wrist guard design requires more compliant padding in the volar aspect to improve the impact force attenuation, which should be done through optimal material selection and design. PMID:24497817
Beck, John D; Harness, Neil G; Spencer, Hillard T
2014-04-01
To determine the percentage of AO B3 distal radius fractures that lose reduction after operative fixation and to see whether fracture morphology, patient factors, or fixation methods predict failure. We hypothesized that initial fracture displacement, amount of lunate facet available for fixation, plate position, and screw fixation would be significant risk factors for loss of reduction. A prospective, observational review was conducted of 51 patients (52 fractures) with AO B3 (volar shearing) distal radius fractures treated operatively between January 2007 and June 2012. We reviewed a prospective distal radius registry to determine demographic data, medical comorbidities, and physical examination findings. Radiographs were evaluated for AO classification, loss of reduction, length of volar cortex available for fixation, and adequacy of stabilization of the lunate facet fragment with a volar plate. Preoperative data were compared between patients who maintained radiographic alignment and those with loss of reduction. A multivariate logistic regression analysis was completed to determine significant predictors of loss of reduction. Volar shearing fractures with separate scaphoid and lunate facet fragments (AO B3.3), preoperative lunate subsidence distance, and length of volar cortex available for fixation were significant predictors for loss of reduction; the latter was significant in multivariate analysis. Plate position and number of screws used to stabilize the lunate facet were not statistically different between groups. Patients with AO B3.3 fractures with less than 15 mm of lunate facet available for fixation, or greater than 5 mm of initial lunate subsidence, are at risk for failure even if a volar plate is properly placed. In these cases, we recommend additional fixation to maintain reduction of the small volar lunate facet fracture fragments in the form of plate extensions, pins, wires, suture, wire forms, or mini screws. Therapeutic III. Copyright © 2014 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Dorsal or Volar Plate Fixation of the Distal Radius: Does the Complication Rate Help Us to Choose?
Disseldorp, D J G; Hannemann, P F W; Poeze, M; Brink, P R G
2016-08-01
Internal fixation with plates is a reliable fixation technique for the treatment of distal radius fractures. An ongoing discussion exists whether volar or dorsal plating is the appropriate technique. In clinical practice, volar plate fixation is usually preferred because of the assumed lower complication frequency. However, recent studies with the newer generation low-profile dorsal plates reported lower complication rates. The aim of our study was to evaluate the differences in complication rates between volar and dorsal plate for the treatment of distal radius fractures in adult patients. A total of 214 patients with acute distal radius fractures were included in this retrospective study with a minimum 2 years of follow-up. In total, 123 patients were treated with dorsal plate fixation and 91 patients with volar plate fixation. Our primary study outcome was complication rate. The overall risk for complications was 15.4% in the dorsal group and 14.3% in the volar group (p = 0.81). A total of 19 patients had implant removal due to complications: 11 patients in the dorsal group and 8 patients in the volar group (p = 0.97). There is no preferred plate fixation technique based on these study results. In our opinion, decision for type of plate fixation should be based on fracture type and surgeon's experience with the specific approach and plate types. Therapeutic level III.
Volar denervation and osteophyte resection to relieve volar CMC joint pain.
Dellon, A Lee
2017-01-01
At mean 125.6 months, pain was reduced from mean of 8.7 to 0.67, p < .001. Each of three patients, two of whom were musicians, returned to full professional ability. It is concluded that volar CMC joint denervation is a useful procedure, preserving joint function and relieving pain long-term.
Kumar, Sanjay; Khan, A N; Sonanis, S V
2016-12-01
Fracture of the distal radius is a common clinical problem. Complex fracture requires open reduction and stabilization with plating to restore anatomy. Dorsal plating has advantages of buttressing the fracture better but often complicated with tendon problems as per literature. The rate of complications however, was not compared between the low-profile dorsal and the volar plates. This was a retrospective study on seventy one patients with dorsally angulated or displaced distal radius fractures, who underwent fixation of fractures with either dorsal or volar locking plate from Jan - Nov 2012. Preoperative radiographs were classified based on Universal and Fernandez classification. Postoperative radiographs were assessed for anatomical restoration of Radial length, radial inclination and volar tilt. Tendon and nerve related complications were assessed and functional evaluation was performed on the basis of PRWE (Patient related wrist evaluation) score. Both groups were matched for their demographic profile and fracture types (p 0.033). Dorsal plating group had 89% excellent/good restoration and fair in 11%. Volar group had 96% excellent/good restoration and fair in 4%. Statistical analysis was performed with unpaired t test for radiographic parameters. Three patients had tendon related complications in dorsal plating group; two patients in volar group had nerve related complications. Functional outcome with PRWE was comparable between two groups. Results with low profile dorsal plating were comparable to volar plating. Therefore dorsal plating can be used as an alternative method when dorsal buttressing of comminuted fracture is required, especially with concomitant osteoporosis.
2014-01-01
Background Distal radius fractures are among the most common fractures seen in the hospital emergency department. Of these, over 40% are considered unstable and require some form of fixation. In recent years with the advent of low profile plating, open reduction and internal fixation (ORIF) using volar plates has become the surgical treatment of choice in many hospitals. However, it is currently unknown which plating system has the lowest complication rate and/or superior clinical and radiological outcomes following surgery. Few studies have compared different types of plates, which may have various features, different plate and screw designs or may be manufactured from different materials (for example, stainless steel or titanium). This study will specifically investigate and compare the clinical and radiological outcomes and complication rates of two commonly used volar plating systems for fixation of distal radius fractures: one made from stainless steel (Trimed™ Volar Plate, Trimed™, California, USA) and the other made from titanium (Medartis® Aptus Volar Plate, Medartis®, Basel, Switzerland). The primary aim of this study is to determine if there is a difference on the Patient Reported Wrist Evaluation six months following ORIF using a volar plate for adult patients with a distal radius fracture. Methods/Design This study will implement a randomized prospective clinical trial study design evaluating the outcomes of two different types of volar plates: one plate manufactured from stainless steel (Trimed™ Volar Plate) and one plate manufactured from titanium (Medartis® Aptus Volar Plate). The surgery will be performed at a major trauma hospital in Brisbane, Australia. Outcome measures including function, adverse events, range of movement, strength, disability, radiological findings and health-related quality of life will be collected at 6 weeks, 3, 6, 12 and 24 months following surgery. A parallel economic analysis will also be performed. This randomized clinical trial is due to deliver results in December 2016. Discussion Results from this trial will contribute to the evidence on operative management of distal radius fractures and plate material type. Trial registration ACTRN12612000969864 PMID:24612524
Qiu, Wen-Jun; Li, Yi-Fan; Ji, Yun-Han; Xu, Wei; Zhu, Xiao-Dong; Tang, Xian-Zhong; Zhao, Huan-Li; Wang, Gui-Bin; Jia, Yue-Qing; Zhu, Shi-Cai; Zhang, Feng-Fang; Liu, Hong-Mei
2015-01-01
In this study, we performed a network meta-analysis to compare the outcomes of seven most common surgical procedures to fix DRF, including bridging external fixation, non-bridging external fixation, K-wire fixation, plaster fixation, dorsal plating, volar plating, and dorsal and volar plating. Published studies were retrieved through PubMed, Embase and Cochrane Library databases. The database search terms used were the following keywords and MeSH terms: DRF, bridging external fixation, non-bridging external fixation, K-wire fixation, plaster fixation, dorsal plating, volar plating, and dorsal and volar plating. The network meta-analysis was performed to rank the probabilities of postoperative complication risks for the seven surgical modalities in DRF patients. This network meta-analysis included data obtained from a total of 19 RCTs. Our results revealed that compared to DRF patients treated with bridging external fixation, marked differences in pin-track infection (PTI) rate were found in patients treated with plaster fixation, volar plating, and dorsal and volar plating. Cluster analysis showed that plaster fixation is associated with the lowest probability of postoperative complication in DRF patients. Plaster fixation is associated with the lowest risk for postoperative complications in DRF patients, when compared to six other common DRF surgical methods examined. PMID:26549312
Selvan, D R; Perry, D; Machin, D G; Brown, D J
2014-12-01
Volar plating of distal radius fractures is one of the common procedures performed in trauma surgery. Flexor pollicis longus (FPL) rupture has been described as complication following volar plating of distal radius fractures. The aim of our study was to investigate the possible relation between parameters measured on post-operative radiographs and the occurrence of FPL ruptures. This was a case control study. The post-operative radiographs of 11 FPL rupture, and 22 non-FPL rupture patients were reviewed with respect to fracture reduction and plate position and the various parameters were calculated by five independent people. Logistic regression was used to examine the importance of the variables. We identified two significant factors to predict FPL rupture after volar plating of distal radial fractures. These were radial tilt and plate distance from the joint line. The odds ratio of ruptures was 0.74 (95% CI 0.57-0.95) for every degree of radial tilt <25° and 0.50 (95% CI 0.28-0.88) for every millimetre that the distal end of the plate was away from the volar lip of the distal radius at the wrist joint. Post-operative radiographs could help us predict FPL rupture after distal radius volar plating. The findings also highlight the need for good fracture reduction and thoughtful placement of the volar plate intraoperatively to minimise the risk of FPL tendon rupture. Copyright © 2014 Elsevier Ltd. All rights reserved.
Fixation Options for the Volar Lunate Facet Fracture: Thinking Outside the Box.
Harness, Neil G
2016-03-01
Background Fractures of the distal radius with small volar ulnar marginal fracture fragments are difficult to stabilize with standard volar locking plates. The purpose of this study is to describe alternative techniques available to stabilize these injuries. Materials and Methods Five patients were identified retrospectively with unstable volar lunate facet fracture fragments treated with supplemental fixation techniques. The demographic data, pre- and postoperative radiographic parameters, and early outcomes data were analyzed. The AO classification, preoperative and final postoperative ulnar variance, articular step-off, volar tilt, radial inclination, and teardrop angle were measured. The lunate subsidence and length of the volar cortex available for fixation were measured from the initial injury films. Description of Technique Lunate facet fixation was based on the morphology of the fragment, and stabilization was achieved with headless compression screws in three patients, a tension band wire construct in one, and two cortical screws in another. Results Five patients with a mean age of 58 years (range: 41-82) were included. There were two AO C3.2 and three B3.3 fractures. Preoperative radiographic measurements including radial inclination, tilt, and ulnar variance all improved after surgery and were maintained within normal limits at 3-month follow-up. There was no change in the teardrop angle at final follow-up (70-64 degrees; p = 0.14). None of the patients had loss of fixation or volar carpal subluxation. The mean visual analog scale pain score at 3 months was 1 (range: 0-2). Conclusions The morphology of volar lunate facet fracture fragments is variable, and fixation must be customized to the particular pattern. Small fragments may preclude the use of plates and screws for fixation. These fractures can be managed successfully with tension band wire constructs and headless screws. These low-profile implants may decrease the risk of tendon irritation that might accompany distally placed plates.
Fixation Options for the Volar Lunate Facet Fracture: Thinking Outside the Box
Harness, Neil G.
2016-01-01
Background Fractures of the distal radius with small volar ulnar marginal fracture fragments are difficult to stabilize with standard volar locking plates. The purpose of this study is to describe alternative techniques available to stabilize these injuries. Materials and Methods Five patients were identified retrospectively with unstable volar lunate facet fracture fragments treated with supplemental fixation techniques. The demographic data, pre- and postoperative radiographic parameters, and early outcomes data were analyzed. The AO classification, preoperative and final postoperative ulnar variance, articular step-off, volar tilt, radial inclination, and teardrop angle were measured. The lunate subsidence and length of the volar cortex available for fixation were measured from the initial injury films. Description of Technique Lunate facet fixation was based on the morphology of the fragment, and stabilization was achieved with headless compression screws in three patients, a tension band wire construct in one, and two cortical screws in another. Results Five patients with a mean age of 58 years (range: 41–82) were included. There were two AO C3.2 and three B3.3 fractures. Preoperative radiographic measurements including radial inclination, tilt, and ulnar variance all improved after surgery and were maintained within normal limits at 3-month follow-up. There was no change in the teardrop angle at final follow-up (70–64 degrees; p = 0.14). None of the patients had loss of fixation or volar carpal subluxation. The mean visual analog scale pain score at 3 months was 1 (range: 0–2). Conclusions The morphology of volar lunate facet fracture fragments is variable, and fixation must be customized to the particular pattern. Small fragments may preclude the use of plates and screws for fixation. These fractures can be managed successfully with tension band wire constructs and headless screws. These low-profile implants may decrease the risk of tendon irritation that might accompany distally placed plates. PMID:26855830
Incidence and Risk Factors for Volar Wrist Ganglia in the U.S. Military and Civilian Populations.
Balazs, George C; Dworak, Theodora C; Tropf, Jordan; Nanos, George P; Tintle, Scott M
2016-11-01
To identify the incidence and demographic factors associated with volar wrist ganglia in both military and civilian beneficiary populations. The U.S. Department of Defense Management Analysis and Reporting Tool (M2) accesses a comprehensive database of all health care visits by military personnel and their dependents. Because there is no specific code for ganglions of the wrist, the database was searched for all military personnel and civilian beneficiaries with an International Classification of Diseases, 9th Revision, diagnosis of 727.41 (ganglion of a joint) or 727.43 (ganglion, unspecified location) between 2009 and 2014. Two random samples of 1000 patients were selected from both the military and the civilian beneficiary cohorts, and their electronic medical records were examined to identify those with volar wrist ganglia. The proportion of volar wrist ganglia was then applied to the overall population data to estimate the total incidence with a 95% confidence interval and 5% margin of error. Unadjusted incidence rates and adjusted incidence rate ratios were determined using Poisson regression, controlling for age, sex, branch of military service, and military seniority. The unadjusted incidence of volar wrist ganglia is 3.72 per 10,000 person-years (0.04%/y) in female civilian beneficiaries, 1.04 per 10,000 person-years (0.01%/y) in male civilian beneficiaries, 7.98 per 10,000 person-years (0.08%/y) in female military personnel, and 3.73 per 10,000 person-years (0.04%/y) in male military personnel. When controlled for age, military personnel have a 2.5-times increased rate of volar wrist ganglia, and women have a 2.3-times increased rate. In the military cohort, female sex, branch of service, and seniority were significantly associated with the diagnosis of a volar wrist ganglion when controlled for age. In the civilian beneficiary cohort, only female sex was significant. Military service members have higher rates of volar wrist ganglia diagnoses than their age- and sex-matched civilian counterparts. Women are significantly more likely to be diagnosed with a volar wrist ganglion, regardless of age or military status. The epidemiology of volar wrist ganglia is poorly defined, and few studies have firmly defined demographic factors associated with the diagnosis. We provide the overall incidence rate of the diagnosis and report a significant association with female sex even when controlled for age. Copyright © 2016 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Lee, Jun-Ku; Lee, Soo-Hyun; Sim, Young-Suk; Kim, Tae-Ho; Baek, Eugene
2018-01-01
Background Although distal radius fractures (DRF) are common fractures, intra-articular comminuted DRF with volar free fragments are uncommon. There is considerable difficulty in the fixation of free fragments beyond the watershed line using the existing volar locking plate. We aimed to examine the efficacy and potential complications associated with the use of juxta-articular volar plates in intra-articular DRF accompanied by free fragments beyond the watershed line. Methods The patients were enrolled in a consecutive manner between 2007 and 2016. In cases of DRF with free fragments beyond the watershed line, we employed a 2.4-mm small fragment juxta-articular volar locking compression plate using a volar Henry approach. A total of 32 patients were included in this study. There were 15 males and 17 females with a mean age of 52.3 years (range, 33 to 69 years). The mean follow-up period was 14.5 months (range, 10 to 24 months). Preoperative radiographs and three-dimensional computed tomography images were used to analyze fracture patterns and assess the free fragments beyond the watershed line. The mean number of free fracture fragments beyond the watershed line was 2.33. Plain radiographs of immediate postoperative and last follow-up were used to confirm fracture union, incongruence, radial height, volar tilt, radial inclination, and arthritic changes. For functional assessment, we measured grip strength, range of motion (ROM), modified Mayo wrist score (MMWS) and determined Disabilities of Arm, Shoulder and Hand (DASH) scores at the last follow-up. Postoperative complications were monitored during the follow-up period. Results All patients obtained sound union without significant complications. At the last follow-up, 16 cases presented with an articular step-off of more than 1 mm (mean, 1.10 mm). The mean MMWS was 76.3 (range, 55 to 90), mean DASH score was 15.38 (range, 9 to 22), mean visual analogue scale score for pain was 1.2 and mean grip strength was 75.5% of the opposite side. The mean ROM was 74.3° for volar flexion and 71.5° for dorsiflexion. Conclusions In cases of intra-articular DRF with free fragments beyond the watershed line, a volar approach with use of a juxtaarticular plate provided favorable outcomes without significant complications. PMID:29854335
Sonographic assessment of volar digital nerve injury in the context of penetrating trauma.
Umans, Hilary; Kessler, James; de la Lama, Mauricio; Magge, Keshav; Liebling, Ralph; Negron, Judith
2010-05-01
The purpose of this article was to report our experience using ultrasound to assess digital nerve integrity after penetrating hand trauma with sensory deficit. Ultrasound was performed in the long axis on 22 digital nerves in 11 patients using a 12-14-MHz linear array hockey stick transducer. Of 22 volar digital nerves evaluated by sonography, six were transected. All imaging findings were confirmed surgically. High-frequency ultrasound permits accurate imaging of intact and transected volar digital nerves.
Anatomy of the Volar Retinacular Elements of the Hand: A Unified Nomenclature.
Godfrey, Jenna; Rayan, Ghazi M
2018-03-01
Many investigators have described the anatomy of the volar retinacular structures of the hand over the last 60 years. As a result, multiple terms have been assigned to 1 anatomical structure and 1 name designated to more than 1 structure. Our purpose is to review the detailed anatomy and key components of the volar retinacular elements of the hand, their etymology, and their most recent descriptions. The objective also is to organize these structures into systems, which can be helpful for learners to assimilate into a practical anatomical guide. Lastly, the goal is to create a common nomenclature for identifying the volar retinacular structures of the hand in order to facilitate clear communication about them across languages. Copyright © 2018 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Incidence and clinical outcomes of tendon rupture following distal radius fracture.
White, Brian D; Nydick, Jason A; Karsky, Dawnne; Williams, Bailee D; Hess, Alfred V; Stone, Jeffrey D
2012-10-01
To evaluate the incidence of tendon rupture after nonoperative and operative management of distal radius fractures, report clinical outcomes after tendon repair or transfer, and examine volar plate and dorsal screw prominence as a predictor of tendon rupture. We performed a retrospective chart review on patients treated for tendon rupture after distal radius fracture. We evaluated active range of motion, Disabilities of Arm, Shoulder, and Hand score, grip strength, and pain score, and performed radiographic evaluation of volar plate and dorsal screw prominence in both the study group and a matched control group. There were 6 tendon ruptures in 1,359 patients (0.4%) treated nonoperatively and 8 tendon ruptures in 999 patients (0.8%) treated with volar plate fixation. At the time of final follow-up, regardless of treatment, we noted that patients had minimal pain and excellent motion and grip strength. Mean Disabilities of the Shoulder, Arm, and Hand scores were 6 for patients treated nonoperatively and 4 for those treated with volar plating. We were unable to verify volar plate or dorsal screw prominence as independent risk factors for tendon rupture after distal radius fractures. However, we recommend continued follow-up and plate removal for symptomatic patients who have volar plate prominence or dorsal screw prominence. In the event of tendon rupture, we report excellent clinical outcomes after tendon repair or tendon transfer. Therapeutic IV. Copyright © 2012 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
van Kampen, Robert J; Bayne, Christopher O; Moran, Steven L
2015-11-01
Introduction Most surgical techniques for scapholunate interosseous ligament (SLIL) repair address only the dorsal component of the ligament, potentially leading to high surgical failure rates. We introduce a new technique to reconstruct the volar SLIL using a portion of the long radiolunate ligament (LRL). A biomechanical evaluation was performed to evaluate the rupture strength of this repair, and a subsequent anatomic study was performed to verify that this repair would not compromise the blood supply to either the scaphoid or the lunate. Methods A reconstruction of the volar SLIL was developed utilizing a lunate-based strip of the LRL. Fourteen cadaver arms were injected with red-colored epoxide and latex. The blood supply of the volar wrist capsule was dissected. The vascular supply to the ligaments, scaphoid, and lunate were investigated. The biomechanical strength of this reconstruction was tested on five cadaver arms by potting the scaphoid, lunate, and radius and subjecting the repair to a tensile load using a servohydraulic vertical displacement testing machine. Results In all arms, a branch of the radial artery or radiocarpal arch supplied the radioscapholunate ligament at the medial border of the LRL. The proximal half of the scaphoid was supplied by dorsal branches of the radial artery. In all cases, a vessel entered the lunate on its ulnar volar side, away from the repair. The average strength of the intact LRL strip was 97.4 N, and the average strength of the ligament-suture interface used for the capsulodesis was 43.5 N. Conclusion This volar approach to the SLIL does not compromise the vascularity of the scaphoid or the lunate. This approach allows the possibility of repairing or augmenting the volar SLIL. The strength of this repair appears to be less than the strength of the native SLIL. Further clinical studies are warranted.
Chen, Huan-qing; Wen, Xi-le; Li, Yang-ming; Wen, Cong-you
2015-06-01
To compare clinical effect of T-shaped locking internal fixation and external fixation in treating dorsal Barton's fracture,and investigate selective strategy of internal fixation. From January 2008 to January 2013, 100 patients with dorsal Barton's fracture were randomly divided into two groups. In treatment group, there were 30 males and 20 females with an average age of (33.8±3.6) years old;30 cases were type B, 20 cases were type C;and treated with T-shaped locking internal fixation. In control group, there were 32 male and 18 females with an average age of (32.9±3.4) years old; 29 cases were type B, 21 cases were type C; and treated with external fixation. Volar tilt, ulnar deviation and radial height at 3 months after operation were detected and compared between two groups. Mechara functional evaluation were used to evaluate postoperative clinical effects. Clinical cure time, postoperative complications,joint mobility and function score were recorded and compared between two groups. In treatment group,volar tilt was (11.9±2.7)°, ulnar deviation was (20.8+ 2.9)°,and radial height was (10.9±1.8) mm; while volar tilt was (9.1±1.6)°, ulnar deviation was (17.1±2.9)°, and radial height was (8.1±1.5) mm in control group. Treatment group was better than control group in volar tilt, ulnar deviation and radial height. Clinical cure time in treatment group was(12.0±2.3) weeks, shorter than control group (18.0±4.1) weeks. The incidence of complications in treatment group was lower than control group. According to Mehara functional evaluation,20 cases got excellent results, 25 good, 3 moderate and 2 poor in treatment group; 16 cases got excellent results, 14 good, 10 moderate and 10 poor in control group. Treatment group was better than control group in clinical effects. T-shaped locking internal fixation with postoperative functional exercise for the treatment of dorsal Barton's fracture fits for biomechanics demands,and has advantages of stable fixation,rapid recovery, less complications and good functional recovery, it has better clinical effects.
Reattachment of flexor digitorum profundus avulsion: biomechanical performance of 3 techniques.
Brar, Ravinder; Owen, John R; Melikian, Raymond; Gaston, R Glenn; Wayne, Jennifer S; Isaacs, Jonathan E
2014-11-01
To investigate whether inclusion of the volar plate in repair of flexor digitorum profundus avulsions increases the strength of the repair and resists gapping. Cadaveric fingers (n = 18) were divided into 3 equal groups. The first technique involved 2 micro-suture anchors only (A). The second used only volar plate repair (VP). The third group was a hybrid, combining a micro-suture anchor with volar plate augmentation (AVP). Specimens were loaded cyclically to simulate passive motion rehabilitation before being loaded to failure. Clinical failure was defined as 3 mm of gapping, and physical failure as the highest load associated with hardware failure, suture breakage, anchor pullout, or volar plate avulsion. Gapping throughout cycling was significantly greater for the A group than VP and AVP with no difference detected between VP and AVP groups. Gapping exceeded 3 mm during cycling of 3 A specimens, but in none of the VP or AVP specimens. Load at clinical and physical failure for A was significantly lower than for VP and AVP, whereas no difference was detected between VP and AVP. In this cadaveric model, incorporating the volar plate conferred a significant advantage in strength, increasing the mean load to physical failure by approximately 100 N. According to previous biomechanical studies, current reconstructive strategies for flexor digitorum profundus zone I avulsions are not strong enough to withstand active motion rehabilitation. We demonstrated the potential use of volar plate augmentation and the prospective advantageous increase in strength in this cadaveric model. In vivo performance and effects on digital motion are not known. Copyright © 2014 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Zhao, Huan-Li; Wang, Gui-Bin; Jia, Yue-Qing; Zhu, Shi-Cai; Zhang, Feng-Fang; Liu, Hong-Mei
2015-01-01
Background To compare risk of carpal tunnel syndrome (CTS) in distal radius fracture (DRF) patients after 7 treatments using bridging external fixation (BrEF), non-bridging external fixation (non-BrEF), plaster fixation, K-wire fixation, dorsal plating fixation, volar plating fixation, and dorsal and volar plating by performing a network meta-analysis. Material/Methods An exhaustive search of electronic databases identified randomized controlled trails (RCTs) closely related to our study topic. The published articles were screened, based on predefined inclusion and exclusion criteria, to select high-quality studies for the present network meta-analysis. Data extracted from the selected studies were analyzed using STATA version 12.0 software. Results The literature search and selection process identified 12 eligible RCTs that contained a total of 1370 DRF patients (394 patients with BrEF, 377 patients with non-BrEF, 89 patients with K-wire fixation, 192 patients with plaster fixation, 42 patients with dorsal plating fixation, 152 patients with volar plating fixation, and 124 patients with dorsal and volar plating fixation). Our network meta-analysis results demonstrated no significant differences in CTS risk among the 7 treatments (P>0.05). The value of surface under the cumulative ranking curve (SUCRA), however, suggested that dorsal plating fixation is the optimal treatment, with the lowest risk of CTS in DRF patients (dorsal plating fixation: 89.2%; dorsal and volar plating: 57.8%; plaster fixation: 50.9%; non-BrEF: 50.6%; volar plating fixation: 39.6%; BrEF: 38.4%; K-wire fixation: 23.6%). Conclusions Our network meta-analysis provides evidence that dorsal plating fixation significantly decreases the risk of CTS and could be the method of choice in DRF patients. PMID:26391617
Sun, Tao
2016-01-01
Introduction Using network meta-analysis, we evaluated the adverse effects of the seven most common treatment methods, i.e., bridging external fixation, non-bridging external fixation, K-wire fixation, plaster fixation, dorsal plating, volar plating, and dorsal and volar plating, by their associated risk of developing complex regional pain syndrome (CRPS) in distal radius fracture (DRF) patients. Material and methods Following an exhaustive search of scientific literature databases for high quality studies, randomized controlled trials (RCTs) related to our study topic were screened and selected based on stringent predefined inclusion and exclusion criteria. Data extracted from the selected studies were used for statistical analyses using Stata 12.0 software. Results A total of 17 RCTs, including 1658 DRF patients, were enrolled in this network meta-analysis. Among the 1658 DRF patients, 452 received bridging external fixation, 525 received non-bridging external fixation, 154 received K-wire fixation, 84 received plaster fixation, 132 received dorsal plating, 123 received volar plating, and 188 received dorsal and volar plating. When compared to bridging external fixation patients, there was no marked difference in the CRPS risk in DRF patients receiving different treatments (all p > 0.05). However, the surface under the cumulative ranking curves (SUCRA) for plaster fixation (77.0%) and non-bridging external fixation (71.3%) were significantly higher compared with the other five methods. Conclusions Our findings suggest that compared with bridging external fixation, K-wire fixation, dorsal plating, volar plating, dorsal and volar plating, plaster fixation and non-bridging external fixation might be the better treatment methods to reduce the risk of CRPS in DRF patients. PMID:28144268
Tyser, Andrew R; Tsai, Michael A; Parks, Brent G; Means, Kenneth R
2015-02-01
To compare stability and range of motion after hemi-hamate reconstruction versus volar plate arthroplasty in a biomechanical proximal interphalangeal (PIP) joint fracture-dislocation model. Eighteen digits from 6 cadaver hands were tested. We created defects of 40%, 60%, and 80% in the palmar base of each digit's middle phalanx, simulating an acute PIP joint fracture-dislocation. Each defect scenario was reconstructed with a hemi-hamate arthroplasty followed by a volar plate arthroplasty. A computer-controlled mechanism was used to bring each digit's PIP joint from full extension to full flexion via the digital tendons in each testing state, and in the intact state. During each testing scenario we collected PIP joint cinedata in a true lateral projection using mini-fluoroscopy. A digital radiography program was used to measure the amount of middle phalanx dorsal translation (subluxation) in full PIP joint extension. We recorded the angle at which subluxation, if present, occurred during each testing scenario. Average dorsal displacement of the middle phalanx in relation to the proximal phalanx was 0.01 mm for the hemi-hamate reconstructed joints and -0.03 mm for the volar plate arthroplasty, compared with the intact state. Flexion contractures were noted in each of the specimens reconstructed with volar plate arthroplasty. Degree of contracture was directly correlated with defect size, averaging 20° for 40% defects, 35° for 60% defects, and 60° for 80% defects. We observed no flexion contractures in the hemi-hamate reconstructions. Surgeons can use both hemi-hamate and volar plate arthroplasty to restore PIP joint stability following a fracture dislocation with a large middle phalanx palmar base defect. Use of volar plate arthroplasty led to an increasing flexion contracture as the middle phalanx palmar base defect increased. Clinicians can use the information from this study to help with surgical decision-making and patient education. Copyright © 2015 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Thorninger, Rikke; Madsen, Mette Lund; Wæver, Daniel; Borris, Lars Carl; Rölfing, Jan Hendrik Duedal
2017-06-01
Volar plating of unstable distal radius fractures (DRF) has become the favoured treatment. The complication rates vary from 3 to 36%. The purpose of the study was to estimate the complication rate of volar plating of DRF and its association with AO/OTA fracture type, surgeon experience and type of volar plate. Retrospectively, all patients treated with volar plating of a DRF between February 2009 and June 2013 at Aarhus University Hospital, Denmark were included. AO/OTA fracture type, surgeon experience (1st year, 2nd-5th year resident or consultant), type of plate (VariAx ® , Acu-Loc ® ) and complications were extracted from the electronic medical records. Complications were categorized as carpal tunnel syndrome, other sensibility issues, tendon complications including irritation and rupture, deep infections, complex regional pain syndrome and unidentified DRUJ or scapholunar problems. Reoperations including hardware removal were also charted. 576 patients with a median age of 63 years (min: 15; max: 87) were included. 78% were female and the mean observation time was 3.2 years (min: 2.0; max: 5.4). 78% (n=451) of the patients were treated with VariAx ® and 22% (n=125) with Acu-Loc ® . The overall complication rate was 14.6% (95% CI 11.8-17.7) including carpal tunnel syndrome or change in sensibility in 5.2% and tendon complications in 4.7%. Five flexor tendon ruptures and 12 extensor tendon ruptures were observed. The reoperation rate was 10.4% including 41 cases of hardware removal. A statistically significant association between AO/OTA fracture type C and complications was found. No statistically significant association between complication rate and surgeon experience and type of plate was observed. The majority of DRF patients treated with a volar plate suffer no complications. However, the overall complication rate of 14.6% is substantial. Intra-articular fractures, e.g. AO/OTA-type 23C1-3, had significantly higher complication rates. Neither surgeon experience, nor type of volar plate was able to predict complications. Copyright © 2017 Elsevier Ltd. All rights reserved.
Reversed Palmaris Longus Muscle Causing Volar Forearm Pain and Ulnar Nerve Paresthesia.
Bhashyam, Abhiram R; Harper, Carl M; Iorio, Matthew L
2017-04-01
A case of volar forearm pain associated with ulnar nerve paresthesia caused by a reversed palmaris longus muscle is described. The patient, an otherwise healthy 46-year-old male laborer, presented after a previous unsuccessful forearm fasciotomy for complaints of exercise exacerbated pain affecting the volar forearm associated with paresthesia in the ulnar nerve distribution. A second decompressive fasciotomy was performed revealing an anomalous "reversed" palmaris longus, with the muscle belly located distally. Resection of the anomalous muscle was performed with full relief of pain and sensory symptoms. Copyright © 2017 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Ligamentous and capsular injuries to the metacarpophalangeal joints of the hand.
Shah, Smiresh Suresh; Techy, Fernando; Mejia, Alfonso; Gonzalez, Mark H
2012-01-01
The mechanism of dorsal dislocation of the metacarpophalangeal (MCP) joint is with forced hyperextension of the joint and the main structure injured is the volar plate. A simple dislocation can be reduced by closed means whereas a complex dislocation cannot. Care must be taken not to put traction across the joint, which may cause the volar plate to slip into the joint, converting a simple dislocation into a complex dislocation. Volar dislocations are rare and mainly treated nonoperatively. Sagittal band injuries can be treated with extension splinting or surgical management with direct repair or reconstruction. A locked MCP joint can usually be treated with closed manipulation. This article discusses these injuries and management options.
Quantum orbital angular momentum of elliptically symmetric light
NASA Astrophysics Data System (ADS)
Plick, William N.; Krenn, Mario; Fickler, Robert; Ramelow, Sven; Zeilinger, Anton
2013-03-01
We present a quantum-mechanical analysis of the orbital angular momentum of a class of recently discovered elliptically symmetric stable light fields—the so-called Ince-Gauss modes. We study, in a fully quantum formalism, how the orbital angular momentum of these beams varies with their ellipticity, and we discover several compelling features, including nonmonotonic behavior, stable beams with real continuous (noninteger) orbital angular momenta, and orthogonal modes with the same orbital angular momenta. We explore, and explain in detail, the reasons for this behavior. These features may have applications in quantum key distribution, atom trapping, and quantum informatics in general—as the ellipticity opens up an alternative way of navigating the spatial photonic Hilbert space.
Landgren, Marcus; Abramo, Antonio; Geijer, Mats; Kopylov, Philippe; Tägil, Magnus
2017-03-01
To compare the patient-reported, clinical, and radiographic outcome of 2 methods of internal fixation in distal radius fractures. Fifty patients, mean age 56 years (range, 21-69 years) with primarily nonreducible or secondarily redisplaced distal radius fractures were randomized to open reduction internal fixation using volar locking plates (n = 25) or fragment-specific fixation (n = 25). The patients were assessed on grip strength, range of motion, patient-reported outcome (Quick Disabilities of the Arm, Shoulder, and Hand), pain (visual analog scale), health-related quality of life (Short Form-12 [SF-12]), and radiographic evaluation. Grip strength at 12 months was the primary outcome measure. At 12 months, no difference was found in grip strength, which was 90% of the uninjured side in the volar plate group and 87% in the fragment-specific fixation group. No differences were found in range of motion and the median Quick Disabilities of the Arm, Shoulder, and Hand score was 5 in both groups. The overall complication rate was significant, 21% in the volar locking plate group, compared with 52% in the fragment-specific group. In treatment of primarily nonreducible or secondarily redisplaced distal radius fractures, volar locking plates and fragment-specific fixation both achieve good and similar patient-reported outcomes, although more complications were recorded in the fragment-specific group. Therapeutic II. Copyright © 2017 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Nho, Jae-Hwi; Gong, Hyun Sik; Song, Cheol Ho; Wi, Seung Myung; Lee, Young Ho; Baek, Goo Hyun
2014-09-01
It is not clear whether the pronator quadratus (PQ) muscle actually heals and provides a meaningful pronation force after volar plating for distal radius fractures (DRFs). We aimed to determine whether the length of the PQ muscle, which is dissected and then repaired during volar plating for a DRF, affects the forearm rotation strength and clinical outcomes. We examined 41 patients who requested hardware removal after volar plating. We measured the isokinetic forearm rotation strength and clinical outcomes including grip strength, wrist range of motion, and disabilities of the arm, shoulder and hand (DASH) scores at 6 months after fracture fixation. During the hardware removal surgery, which was performed at an average of 9 months (range, 8.3 to 11.5 months) after fracture fixation, we measured the PQ muscle length. The average PQ muscle length was 68% of the normal muscle length, and no significant relationship was found between the PQ muscle length and the outcomes including isokinetic forearm rotation strength, grip strength, wrist range of motion, and DASH scores. This study demonstrates that the length of the healed PQ muscle does not affect isokinetic forearm rotation strength and clinical outcomes after volar plating for DRFs. The results of this study support our current practice of loose repair of the PQ that is performed by most of the surgeons to prevent tendon irritation over the plate, and suggest that tight repair of the PQ is not necessary for achieving improved forearm function.
Dashti, Pedram Z; Alhassen, Fares; Lee, Henry P
2006-02-03
Acousto-optic interaction in optical fiber is examined from the perspective of copropagating optical and acoustic vortex modes. Calculation of the acousto-optic coupling coefficient between different optical modes leads to independent conservation of spin and orbital angular momentum of the interacting photons and phonons. We show that the orbital angular momentum of the acoustic vortex can be transferred to a circularly polarized fundamental optical mode to form a stable optical vortex in the fiber carrying orbital angular momentum. The technique provides a useful way of generating stable optical vortices in the fiber medium.
Gbara, Ali; Heiland, Max; Schmelzle, Rainer; Blake, Felix
2008-04-01
Following open reduction, internal fixation of fractures of the mandible is predominantly achieved using plates and screws. Today, a multitude of osteosynthesis systems are available on the market. One therapy modality, primarily developed for orthopaedic surgery, is using angular stable osteosynthesis plate systems. The dominating principle of these is the bond between screw and plate following insertion. This principle of an "internal fixateur" results in a more stable fixation of the fragments associated with less compression of the bone surfaces. A new multidirectional osteosynthesis system (TiFix=Smartlock, Hamburg - Germany) was modified to fit the maxillofacial region and compared with four other well established osteosynthesis systems developed by Mondial, Medicon, Synthes, Leibinger-Stryker, one of these (Unilock by Synthes) being also angular stable. The resistance to deformation in varying directions was investigated following fixation in four different materials. The TiFix system proved more resistant to deformation even when mounted with fewer screws than the non-angular stable systems. This system results in greater stability even when fewer screws are used. For the clinician this means smaller access incisions, less soft tissue trauma, better aesthetic results, decreased duration of operation and a reduction of costs.
Xavier, Claudio Roberto Martins; Dal Molin, Danilo Canesin; dos Santos, Rafael Mota Marins; dos Santos, Roberto Della Torre; Neto, Julio Cezar Ferreira
2015-01-01
Objectives: To analyze and correlate the clinical and radiographic results from patients with distal radius fractures who underwent surgical treatment with a fixed-angle volar locked plate. Methods: Sixty-four patients with distal radius fractures were evaluated. They all underwent surgical treatment with a volar locked plate for the distal radius, with a minimum of six months of postoperative follow-up. They underwent a physical examination that measured range of motion and grip strength, answered the Disabilities of the Arm, Shoulder, and Hand (DASH) questionnaire and underwent radiographic examination. Results: In the physical examination on the patients, all the range-of-motion measurements were reduced. Grip strength measured in kgf was on average 85.8% of the strength on the unaffected side. The mean DASH score was 15.99. A significant relationship was found between lower DASH scores and losses of extension and grip strength. On the radiographs, the mean values in relation to the unfractured side were 84.0% for radial inclination, 85.4% for radial length and 86.8% for volar deviation of the radius. Loss of radial length was correlated with losses of extension and grip strength. PMID:27027046
The Effect of Distal Location of the Volar Short Arm Splint on the Metacarpophalangeal Joint Motion.
Kim, Joon Yub; Sohn, Dong Wook; Park, Ho Youn; Yoo, Jeong Hyun; Kim, Joo Hak; Jung, Myung Gon; Cho, Jae Ho
2016-06-01
The goals of this study were to compare maximal metacarpophalangeal joint (MCPJ) flexion angles after application of a volar short arm splint at 3 different locations and verify the relations between the three different physical and radiological locations. Forty dominant hands of healthy subjects were analyzed in the study. We defined a transverse skin folding line as a line drawn from the radial aspect of the thenar crease to the ulnar aspect of the distal transverse palmar crease. The distal end of the volar short arm splint was applied on 3 parallel locations to this line. Location A was on this transverse skin folding line; location B was 1 cm proximal to location A; and location C was 1 cm distal to location A. Two orthopedic surgeons measured the maximal MCPJ flexion angles of each finger except the thumb with the application of a volar short arm splint at 3 different locations as well as without a splint as a control. Radiological locations of the 3 different distal ends of the volar short arm splint were also assessed by anteroposterior radiographs of the wrist. When the splint was applied at location A and C, the maximal MCPJ flexion angle decreased to a mean of 83° (91% of control value) and 56° (62% of control value), respectively (compared to the control, p < 0.001). At location B, the maximal MCPJ flexion angle was a mean of 90° (99% of control value); no significant difference was observed compared to the control or without the splint (p = 0.103). On radiography, the average length from the metacarpal head to the distal end of the splint at all fingers decreased in the order of location B, A, and C (29 mm, 19 mm, and 10 mm, respectively; p < 0.001). We recommend applying the distal end of a volar short arm splint at proximal 1 cm to the transverse skin folding line to preserve MCPJ motion perfectly, which is located at distal 44% of the whole metacarpal bone length radiologically.
Korkmaz, Murat; Ozturk, Hayati; Amanvermez Senarslan, Dilsad; Erdogan, Yalcin
2013-01-01
Objective: There are several types of treatment modalities for wrist ganglions. The aim of the study was to assess the effectiveness of cyst aspiration and methyl prednisolone acetate injection with double IV cannula rather than sharp pointed needle, as a new technique in the treatment of volar ganglia. Methodology: The study involves total of 19 patients who received treatment by aspiration and methyl prednisolone injection into the cavity. Two IV cannulas are pricked to the cystic cavity. Cyst fluid is drained by the distally placed IV cannula meanwhile injecting methyl prednisolone by proximally placed IV cannula. The patient records and follow-up reports are retrospectively investigated. The patient age, sex, site of the cyst, the treatment that was applied, adjacency to the artery and the nerves and recurrence are recorded. Mean follow up time was 2.1±0.5 years. Results: The study involved 19 patients that received aspiration treatment for volar ganglion cysts between January 2004 and December 2009. There were 12 (63.2%) female and 7 (36.8%) male subject with volar wrist ganglion cyst. The mean age of patients was 27.63±6.6 years. Fourteen (73.7%) patients of total had cysts close to the artery. We didn’t observe any complication related to methyl prednisolone injection and arterial ischemia. Recurrence was observed in three (15.8%) patients. Conclusion: This method has lower recurrence rate than other aspiration therapy with sharp pointed needle. We prefer to use IV cannula needle for cyst aspiration and steroid injection in treatment of volar ganglia before any surgical intervention. PMID:24353517
Wong, Alison L; Meals, Clifton G; Ruff, Christopher B
2018-03-01
The variation of bone structure and biomechanics between the metacarpals is not well characterized. It was hypothesized that their structure would reflect their common patterns of use (i.e., patterns of hand grip), specifically that trabecular bone density would be greater on the volar aspect of all metacarpal bases, that this would be most pronounced in the thumb, and that the thumb diaphysis would have the greatest bending strength. Cross-sections at basal and mid-diaphyseal locations of 50 metacarpals from 10 human hands were obtained by peripheral quantitative computed tomography. The volar and dorsal trabecular densities of each base were measured and characterized using the volar/dorsal density ratio. The polar stress-strain index (SSIp), a surrogate measure of torsional/bending strength, was measured for each diaphysis and standardized for bone length and mass. Comparisons were made using mixed-model analyses of variance (ANOVAs) and post hoc tests. Volar/dorsal trabecular density ratios showed even distribution in all metacarpal bases except for the thumb, which showed greater values on the volar aspect. The thumb, second, and third metacarpals all had high bending strength (SSIp), but the thumb's SSIp relative to its length and trabecular mass was much higher than those of the other metacarpals. Trabecular density of the metacarpal bases was evenly distributed except in the thumb, which also showed higher bending strength relative to its length and mass. Understanding of how these indicators of strength differ across metacarpals may improve both fracture diagnosis and treatment and lays the groundwork for investigating changes with age, hand dominance, and occupation.
Weninger, Patrick; Dall'Ara, Enrico; Leixnering, Martin; Pezzei, Christoph; Hertz, Harald; Drobetz, Herwig; Redl, Heinz; Zysset, Philippe
2010-11-01
Distal radius fractures represent the most common fractures in adult individuals. Volar fixed-angle plating has become a popular modality for treating unstable distal radius fractures. Most of the plates allow insertion of either threaded locking screws or smooth locking pegs. To date, no biomechanical studies compare locking screws and pegs under axial and torsional loading. Ten Sawbones radii were used to simulate an AO/OTA A3 fracture. Volar fixed-angle plates (Aptus Radius 2.5, Medartis, Switzerland) with threaded locking screws (n = 5) or smooth locking pegs (n = 5) were used to fix the distal metaphyseal fragment. Each specimen was tested under axial compression and under torsional load with a servohydraulic testing machine. Qualitative parameters were recorded as well as axial and torsional stiffness, torsion strength, energy absorbed during monotonic loading and energy absorbed in one cycle. Axial stiffness was comparable between both groups (p = 0.818). If smooth pegs were used, a 17% reduction of torsional stiffness (p = 0.017) and a 12% reduction of minimum torque (p = 0.012) were recorded. A 12% reduction of energy absorbed (p = 0.013) during monotonic loading and unloading was recorded if smooth pegs were used. A 34% reduction of energy absorbed in one cycle (p < 0.007) was recorded if threaded screws were used. Sliding of the pegs out of the distal radius metaphyses of the synthetic bones was recorded at a mean torque of 3.80 Nm ± 0.19 Nm. No sliding was recorded if threaded screws were used. According to the results of this study using Sawbones, volar fixed-angle plates with threaded locking screws alone are mechanically superior to volar fixed-angle plates with smooth locking pegs alone under torsional loading.
Modern Volunteer Army Experiment - 1971
1971-07-26
same areas after VOLAR actions had been Implemented. Accordingly, when the de - cision was made that Fort Benning was to be a VOLAR test post, work was...beer in barracks. (continued) 31 JHHH mmimitriittiliM’ ’ ruta Table 17 (Continued) Item 1 Correlation 54 .25 74 .25 83 .24 18 23 Item Content...13 45 45.45 16 107 44.65 17 50 43.94 18 83 42.83 Frequency of kitchen police (KP). Transportation to recreat Ion facilities within a 200-mile
One size does not fit all: distal radioulnar joint dysfunction after volar locking plate fixation.
Jones, Christopher W; Lawson, Richard D
2014-02-01
Background Fractures of the distal radius are among the most common injuries treated by orthopedic surgeons worldwide. Failure to restore distal radius alignment can lead to fracture malunion and poor clinical outcomes, including distal radioulnar joint (DRUJ) instability and limitation of motion. Case Description We present a unique case of DRUJ dysfunction following volar plate fixation of bilateral distal radius fractures and analyze the biomechanical causes of this complication. As a result of a relatively excessive tilt of the precontoured locking plate (in comparison to the patient's particular anatomy), the fracture on one side was "over-reduced," disrupting the biomechanics of the DRUJ, causing a supination block. Clinical Relevance Volar locking plates are not a panacea to all distal radius fractures. Plate selection and fixation technique must include consideration of patient anatomy. Robust plates offer the advantage of providing rigid fixation but can be difficult to contour when reconstructing normal anatomy. Restoration of patient-specific anatomy is crucial to the management of distal radius fractures.
Lunate fractures and associated radiocarpal and midcarpal instabilities: a systematic review.
Shunmugam, Meenalochani; Phadnis, Joideep; Watts, Amy; Bain, Gregory I
2018-01-01
The aim of this study was to analyse lunate fractures and any associated osseo-ligamentous injuries. A systematic review identified 34 cases. We identified carpal instabilities at the radiocarpal and midcarpal joints in volar and dorsal directions. Radiocarpal instabilities (10/34) were usually dorsoradial (8/10), with a transverse lunate fracture, best seen on a coronal image. Midcarpal instabilities (24/34) were usually volar (14/18), with a volar lunate shear fracture, best seen on a sagittal image. Instabilities were sub-classified into non-displaced, subluxated and dislocated. Associated fractures of the scaphoid and the radial and ulnar styloid processes were common. Lunate fractures without subluxation or dislocation had good outcomes with cast immobilization or fixation of associated fractures. Lunate fracture-subluxations are unstable injuries that are best managed with fixation of the carpal fractures. Lunate fracture-dislocations are complex injuries, requiring stabilization of the lunate, associated fractures and ligament injuries; complications are common and acute or delayed salvage procedures may be required.
Yamamoto, Michiro; Malay, Sunitha; Fujihara, Yuki; Zhong, Lin; Chung, Kevin C.
2016-01-01
Background Outcomes after implant arthroplasty for primary degenerative and posttraumatic osteoarthritis (OA) of proximal interphalangeal (PIP) joint were different according to the implant design and surgical approach. The purpose of this systematic review was to evaluate outcomes of various types of implant arthroplasty for PIP joint OA with emphasis on different surgical approaches. Methods The authors searched all available literature in the PubMed and EMBASE databases for articles reporting on outcomes of implant arthroplasty for PIP joint OA. Data collection included active arc of motion (AOM), extension lag, and complications. We combined the data of various types of surface replacement arthroplasty into one group to compare with silicone arthroplasty. Results A total of 849 articles were screened, yielding 40 studies for final review. The mean postoperative AOM and the mean gain in AOM of silicone implant with volar approach were 58° and 17° respectively which was greater than surface replacement implant with dorsal approach as 51° and 8°, respectively. The mean postoperative extension lag of silicone implant with volar approach and surface replacement with dorsal approach was 5° and 14° respectively. The revision rate of silicone implant with volar approach and surface replacement with dorsal approach was 6% and 18% at the mean follow-up period of 41.2 and 51 months, respectively. Conclusions Silicone implant with volar approach showed the best AOM with less extension lag and fewer complications after surgery among all the implant designs and surgical approaches. PMID:28445369
Collapse and Nonlinear Instability of AdS Space with Angular Momentum
NASA Astrophysics Data System (ADS)
Choptuik, Matthew W.; Dias, Óscar J. C.; Santos, Jorge E.; Way, Benson
2017-11-01
We present a numerical study of rotational dynamics in AdS5 with equal angular momenta in the presence of a complex doublet scalar field. We determine that the endpoint of gravitational collapse is a Myers-Perry black hole for high energies and a hairy black hole for low energies. We investigate the time scale for collapse at low energies E , keeping the angular momenta J ∝E in anti-de Sitter (AdS) length units. We find that the inclusion of angular momenta delays the collapse time, but retains a t ˜1 /E scaling. We perturb and evolve rotating boson stars, and find that boson stars near AdS space appear stable, but those sufficiently far from AdS space are unstable. We find that the dynamics of the boson star instability depend on the perturbation, resulting either in collapse to a Myers-Perry black hole, or development towards a stable oscillating solution.
Dhondge, Attrimuni P; Tsai, Pei-Chung; Nien, Chiao-Yun; Xu, Wei-Yu; Chen, Po-Ming; Hsu, Yu-Hung; Li, Kan-Wei; Yen, Feng-Ming; Tseng, Shin-Lun; Chang, Yu-Chang; Chen, Henry J H; Kuo, Ming-Yu
2018-05-04
The synthesis, characterization, and application of two angular-shaped naphthalene bis(1,5-diamide-2,6-diylidene)malononitriles (NBAMs) as high-performance air-stable n-type organic field effect transistor (OFET) materials are reported. NBAM derivatives exhibit deep lowest-unoccupied molecular orbital (LUMO) levels, suitable for air-stable n-type OFETs. The OFET device based on NBAM-EH fabricated by vapor deposition exhibits a maximum electron mobility of 0.63 cm 2 V -1 s -1 in air with an on/off current ratio ( I on / I off ) of 10 5 .
Rausch, S; Hoffmeier, K; Gueorguiev, B G; Klos, K; Gras, F; Hofmann, G O; Mückley, T
2011-12-01
Polyaxial angle-stable plating is thought to be particularly beneficial in the management of complex intra-articular fractures of the distal radius. The present study was performed to investigate the strength of polyaxial locking interfaces of distal radius plates. We tested the polyaxial interfaces of 3 different distal radius plates (2.4 mm Variable Angle LCP Two-Column Volar Distal Radius Plate, Synthes, Palmar Classic, Königsee Implantate and VariAx Plate Stryker). The strength of 0° and 10° screw locking angle was obtained during static loading. The strength of Palmar Classic with a 0° locking angle is significantly the best of all tested systems. With a 10° locking angle there is no significant difference between Palmar Classic, Two column Plate and VariAx Plate. The strength of polyaxial interfaces differs between the tested systems. A reduction of ultimate strength is due to increases of screw locking angle. The design of polyaxial locking interfaces should be investigated in human bone models. © Georg Thieme Verlag KG Stuttgart · New York.
Zhang, Xiong; Hu, Chunhe; Yu, Kunlun; Bai, Jiangbo; Tian, Dehu; Xu, Yi; Zhang, Bing
2016-10-01
This study aims to evaluate whether volar locking plate was superior over non-locking plate in the treatment of die-punch fractures of the distal radius. A total of 57 patients with closed die-punch fractures of the distal radius were included and analyzed. Of them, 32 were treated by non-locking plate (NLP) and the remaining 25 were treated by volar locking plate (VLP). Preoperative radiographs, computer tomographs and three-dimensional reconstruction, radiographs taken at immediate postoperation and at last follow-up were extracted and evaluated. Patients' electronic medical records were inquired and related demographic and medical data were documented. The documented contents were volar tilt, radial inclination, ulnar variance, grip strength, Disabilities of the Arm, Shoulder, and Hand (DASH) and visual analog scale (VAS) scores and complications. VLP group demonstrated a significantly reduced radial subsidence of 1.5 mm (0.7 versus 2.2 mm), during the interval of bony union (P < 0.001), compared to NLP group. Larger proportion of patients (88% versus 62.5%) in VLP group gained acceptable joint congruity (step-off <2 mm) at the final follow-up (P = 0.037). No significant differences were observed between the groups in the measurements of volar tilt, radial inclination, DASH, VAS and grip strength recovery at the last follow-up. There was a trend of fewer overall complications (5/25 versus 10/32) and major complications that required surgery interventions (1/25 versus 4/32) in VLP than NLP groups, although the difference did not approach to significance (P = 0.339, 0.372). VLP leaded to significantly better results of reduction maintainance and the final joint congruity than NLP, while reducing overall and major complications. However, the results should be treated in the context of limitations and the clinical significance of the difference required further studies to investigate. Copyright © 2016 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.
Yamamoto, Michiro; Malay, Sunitha; Fujihara, Yuki; Zhong, Lin; Chung, Kevin C
2017-05-01
Outcomes after implant arthroplasty for primary degenerative and posttraumatic osteoarthritis of the proximal interphalangeal joint were different according to the implant design and surgical approach. The purpose of this systematic review was to evaluate outcomes of various types of implant arthroplasty for proximal interphalangeal joint osteoarthritis, with an emphasis on different surgical approaches. The authors searched all available literature in the PubMed and EMBASE databases for articles reporting on outcomes of implant arthroplasty for proximal interphalangeal joint osteoarthritis. Data collection included active arc of motion, extension lag, and complications. The authors combined the data of various types of surface replacement arthroplasty into one group for comparison with silicone arthroplasty. A total of 849 articles were screened, yielding 40 studies for final review. The mean postoperative arc of motion and the mean gain in arc of motion of silicone implant with the volar approach were 58 and 17 degrees, respectively, which was greater than surface replacement implant with the dorsal approach at 51 and 8 degrees, respectively. The mean postoperative extension lag of silicone implant with the volar approach and surface replacement with the dorsal approach was 5 and 14 degrees, respectively. The revision rate of silicone implant with the volar approach and surface replacement with the dorsal approach was 6 percent and 18 percent at a mean follow-up of 41.2 and 51 months, respectively. Silicone implant with the volar approach showed the best arc of motion, with less extension lag and fewer complications after surgery among all the implant designs and surgical approaches.
Huish, Eric G; Coury, John G; Ibrahim, Mohamed A; Trzeciak, Marc A
2017-04-01
The purpose of this study is to compare radiographic outcomes of patients treated with dorsal spanning plates with previously reported normal values of radiographic distal radius anatomy and compare the results with prior publications for both external fixation and internal fixation with volar locked plates. Patients with complex distal radius fractures including dorsal marginal impaction pattern necessitating dorsal distraction plating at the discretion of the senior authors (M.A.T. and M.A.I.) from May 30, 2013, to December 29, 2015, were identified and included in the study. Retrospective chart and radiograph review was performed on 19 patients, 11 male and 8 female, with mean age of 47.83 years (22-82). No patients were excluded from the study. All fractures united prior to plate removal. The average time the plate was in place was 80.5 days (49-129). Follow-up radiographs showed average radial inclination of 20.5° (13.2°-25.5°), radial height of 10.7 mm (7.5-14 mm), ulnar variance of -0.3 mm (-2.1 to 3.1 mm), and volar tilt of 7.9° (-3° to 15°). One patient had intra-articular step-off greater than 2 mm. Dorsal distraction plating of complex distal radius fractures yields good radiographic results with minimal complications. In cases of complex distal radius fractures including dorsal marginal impaction where volar plating is not considered adequate, a dorsal distraction plate should be considered as an alternative to external fixation due to reduced risk for infection and better control of volar tilt.
Tribological testing of skin products: gender, age, and ethnicity on the volar forearm.
Sivamani, Raja K; Wu, Gabriel C; Gitis, Norm V; Maibach, Howard I
2003-11-01
Few studies have focused on the simultaneous measurement of the friction and electrical properties of skin. This work investigates the feasibility of using these measurements to differentiate between the effects of chemicals commonly applied to the skin. In addition, this study also compares the condition of the skin and its response to application of chemicals across gender, ethnicity, and age at the volar forearm. Friction and electrical tests were performed on 59 healthy volunteers with the UMT Series Micro-Tribometer (UMT). A 13-mm-diameter copper cylindrical friction/electrical probe was pressed onto the skin with a weight of 20 g and moved across the skin at a constant velocity of 0.4 mm/s. Each volunteer served as his or her own control. The friction and electrical impedance measurements were performed for polyvinylidene chloride occlusion and for the application of glycerin and petrolatum. No differences were found across age, gender, or ethnicity at the volar forearm. Polyvinylidene chloride (PVDC) occlusion showed a small increase in the friction and a small decrease in the electrical impedance; petrolatum increased the friction by a greater amount but its effect on the impedance was comparable to PVDC occlusion; glycerin increased the friction by an amount comparable to petrolatum, but it decreased the impedance to a much greater degree than petrolatum or the PVDC occlusion. An amplitude/mean measurement of the friction curves of glycerin and petrolatum showed that glycerin has a significantly higher amplitude/mean than petrolatum. The properties of the volar forearm appear to be independent of age, gender, and ethnicity. Also, the simultaneous measurement of friction and electrical impedance was useful in differentiating between compounds administered to the skin.
Yoshii, Yuichi; Kusakabe, Takuya; Akita, Kenichi; Tung, Wen Lin; Ishii, Tomoo
2017-12-01
A three-dimensional (3D) digital preoperative planning system for the osteosynthesis of distal radius fractures was developed for clinical practice. To assess the usefulness of the 3D planning for osteosynthesis, we evaluated the reproducibility of the reduction shapes and selected implants in the patients with distal radius fractures. Twenty wrists of 20 distal radius fracture patients who underwent osteosynthesis using volar locking plates were evaluated. The 3D preoperative planning was performed prior to each surgery. Four surgeons conducted the surgeries. The surgeons performed the reduction and the placement of the plate while comparing images between the preoperative plan and fluoroscopy. Preoperative planning and postoperative reductions were compared by measuring volar tilt and radial inclination of the 3D images. Intra-class correlation coefficients (ICCs) of the volar tilt and radial inclination were evaluated. For the implant choices, the ICCs for the screw lengths between the preoperative plan and the actual choices were evaluated. The ICCs were 0.644 (p < 0.01) and 0.625 (p < 0.01) for the volar tilt and radial inclination in the 3D measurements, respectively. The planned size of plate was used in all of the patients. The ICC for the screw length between preoperative planning and actual choice was 0.860 (p < 0.01). Good reproducibility for the reduction shape and excellent reproducibility for the implant choices were achieved using 3D preoperative planning for distal radius fracture. Three-dimensional digital planning was useful to visualize the reduction process and choose a proper implant for distal radius fractures. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2646-2651, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Teaching Splinting Techniques Using a Just-in-Time Training Instructional Video.
Cheng, Yu-Tsun; Liu, Deborah R; Wang, Vincent J
2017-03-01
Splinting is a multistep procedure that is seldom performed by primary care physicians. Just-in-time training (JITT) is an emerging teaching modality and can be an invaluable asset for infrequently performed procedures or in locations where teaching resources and trained professionals are limited. Our objective was to determine the utility of JITT for teaching medical students the short-arm (SA) volar splinting technique. This was a prospective randomized controlled pilot study. An instructional video on SA volar splinting was produced. Students viewed the video or had access to standard medical textbooks (control group) immediately before applying an SA volar splint. The students were assessed for the quality of the splint via a standard 6-point skills checklist. The times required for presplinting preparation and for completion of the splint were also measured. Just-in-time training group students scored higher on the splint checklist (mean [SD], 5.45 [1.06]; 95% confidence interval [CI], 4.99-5.92 vs mean [SD], 1.58 [1.12]; 95% CI, 1.04-2.12; P < 0.0001), had higher pass rates (73%; 95% CI, 53%-93% vs 0%; P < 0.0001), and required less time (minutes) for presplinting preparation (mean [SD], 7.86 [2.45]; 95% CI, 6.78-8.94 vs mean [SD], 9.89 [0.46]; 95% CI, 9.67-10.12; P < 0.0001) compared with the control group. No difference was seen in the time required to complete a splint, successful or not. In comparison with reading standard textbooks, watching a brief JITT instructional video before splinting yielded faster learning times combined with more successful procedural skills. The use of a JITT instructional video may have potential applications, including globally, as an alternative resource for teaching and disseminating procedural skills, such as SA volar splinting.
Huang, Jerry I; Peterson, Bret; Bellevue, Kate; Lee, Nicolas; Smith, Sean; Herfat, Safa
2017-04-01
The goal of this study was to compare the biomechanical stability of a 2.4-mm dorsal spanning bridge plate with a volar locking plate (VLP) in a distal radius fracture model, during simulated crutch weight-bearing. Five paired cadaveric forearms were tested. A 1-cm dorsal wedge osteotomy was created to simulate an unstable distal radius fracture with dorsal comminution. Fractures were fixed with a VLP or a dorsal bridge plate (DBP). Specimens were mounted to a crutch handle, and optical motion-tracking sensors were attached to the proximal and distal segments. Specimens were loaded in compression at 1 mm/s on a servohydraulic test frame until failure, defined as 2 mm of gap site displacement. The VLP construct was significantly more stable to axial load in a crutch weight-bearing model compared with the DBP plate (VLP: 493 N vs DBP: 332 N). Stiffness was higher in the VLP constructs, but this was not statistically significant (VLP: 51.4 N/mm vs DBP: 32.4 N/mm). With the crutch weight-bearing model, DBP failed consistently with wrist flexion and plate bending, whereas VLP failed with axial compression at the fracture site and dorsal collapse. Dorsal spanning bridge plating is effective as an internal spanning fixator in treating highly comminuted intra-articular distal radius fracture and prevents axial collapse at the radiocarpal joint. However, bridge plating may not offer advantages in early weight-bearing or transfer in polytrauma patients, with less axial stability in our crutch weight-bearing model compared with volar plating. A stiffer 3.5-mm DBP or use of a DBP construct without the central holes may be considered for distal radius fractures if the goal is early crutch weight-bearing through the injured extremity.
Goldzak, M; Simon, P; Mittlmeier, T; Chaussemier, M; Chiergatti, R
2014-01-01
Nowadays, open anatomic reduction and internal fixation can be considered as a valuable treatment for displaced intra-articular fractures of the calcaneus. However, the application of a calcaneal plate via an extensile lateral approach is at risk for a substantial rate of complications including delayed healing, skin necrosis, or infection. There is some evidence that a limited exposure might contribute to a decreased soft tissue complication rate bearing in mind that most minimally invasive techniques have to accept a reduced primary stability compared with the open application of an angular stable plate. Recently, an intrafocal minimal invasive reduction technique has been established employing an intramedullary nail for fracture stabilisation and support of the subtalar joint. The aim of this study was to compare the primary biomechanical performance of the new device versus lateral angular stable plating. Biomechanical testings were performed on 14 human cadaveric feet (7 pairs). Dry calcaneal bones were fractured resulting in a Sanders type IIB fracture pattern and fixed by either a calcaneal locking plate or an intramedullary calcaneal nail. Compressive testing via the corresponding talus was employed at a constant loading velocity until failure with an universal testing machine and a specific mounting device to avoid any shear forces. Apart from the data of the load deformation diagram the relative motion of the fracture elements during loading was recorded by 8 extensometric transducers. After failure the specimens were carefully examined to check the failure patterns. The displacement of the subtalar joint fragment was substantially lower in specimens fixed with the nail. Stiffness and load to failure were significantly higher after fixation with the intramedullary nail than after application of the angular stable plate. Failure with both fixation modes generally occurred at the anterior calcaneal process fragment. The primary stability of an intramedullary nail appeared to be superior to an angular stable plate representing the present standard technique in open reconstruction of the fractured calcaneus. The results from the experimental model speak in favour of the clinical use of the intramedullary calcaneal nail. Copyright © 2013 Elsevier Ltd. All rights reserved.
The morphologic universe of melanoma.
Jaimes, Natalia; Marghoob, Ashfaq A
2013-10-01
Differentiating dysplastic nevi from melanoma remains one of the main objectives of dermoscopy. Melanomas tend not to manifest any of the benign patterns described for nevi and instead usually display chaotic dermoscopic morphologies. Melanomas located on the face, chronically sun-damaged skin, volar surfaces, nails, and mucosal surfaces have additional features that can assist in their identification. However, some melanomas lack any defined dermoscopic structures. These so-called featureless melanomas can be identified via digital surveillance. This article reviews the melanoma-specific structures as a function of anatomic location (ie, melanomas on nonglabrous skin, face, volar surfaces, mucosae, and nails). Copyright © 2013 Elsevier Inc. All rights reserved.
Anatomy and Biomechanics of the Finger Proximal Interphalangeal Joint.
Pang, Eric Quan; Yao, Jeffrey
2018-05-01
A complete understanding of the normal anatomy and biomechanics of the proximal interphalangeal joint is critical when treating pathology of the joint as well as in the design of new reconstructive treatments. The osseous anatomy dictates the principles of motion at the proximal interphalangeal joint. Subsequently, the joint is stabilized throughout its motion by the surrounding proximal collateral ligament, accessory collateral ligament, and volar plate. The goal of this article is to review the normal anatomy and biomechanics of the proximal interphalangeal joint and its associated structures, most importantly the proper collateral ligament, accessory collateral ligament, and volar plate. Copyright © 2017 Elsevier Inc. All rights reserved.
Particle dynamics around time conformal regular black holes via Noether symmetries
NASA Astrophysics Data System (ADS)
Jawad, Abdul; Umair Shahzad, M.
The time conformal regular black hole (RBH) solutions which are admitting the time conformal factor e𝜖g(t), where g(t) is an arbitrary function of time and 𝜖 is the perturbation parameter are being considered. The approximate Noether symmetries technique is being used for finding the function g(t) which leads to t α. The dynamics of particles around RBHs are also being discussed through symmetry generators which provide approximate energy as well as angular momentum of the particles. In addition, we analyze the motion of neutral and charged particles around two well known RBHs such as charged RBH using Fermi-Dirac distribution and Kehagias-Sftesos asymptotically flat RBH. We obtain the innermost stable circular orbit and corresponding approximate energy and angular momentum. The behavior of effective potential, effective force and escape velocity of the particles in the presence/absence of magnetic field for different values of angular momentum near horizons are also being analyzed. The stable and unstable regions of particle near horizons due to the effect of angular momentum and magnetic field are also explained.
NASA Technical Reports Server (NTRS)
Walter, R. A.
1982-01-01
The results obtained from fuel economy and emission tests conducted on a prototype Chrysler Volare diesel vehicle are documented. The vehicle was tested on a chassis dynamometer over selected drive cycles and steady-state conditions. The fuel used, was a DOE/BETC referee fuel. Particulate emission rates were calculated from dilution tunnel measurements and large volume particulate samples were collected for biological and chemical analysis. The vehicle obtained 32.7 mpg for the FTP urban cycle and 48.8 mpg for the highway cycle. The emissions rates were 0.42/1.58/1.17/0.28 g/mile of HC, CO, NOx and particulates respectively.
Angioma serpiginosum: report of an unusual acral case and review of the literature*
Freites-Martinez, Azael; Martinez-Sanchez, Diego; Moreno-Torres, Amalia; Huerta-Brogeras, Maria; Núñez, Almudena Hernández; Borbujo, Jesus
2015-01-01
We report the case of a 35-year-old woman with deep-red asymptomatic macules on the plantar and dorsal skin of the right great toe. Histopathologic fi ndings were compatible with Angioma serpiginosum. Immunohistochemical stains for estrogens and progesterone receptors were negative. Dermoscopy showed an erythematous parallel ridge pattern with double rows of irregular dots and globules. We report an unusual case of angioma serpiginosum with acral volar skin involvement. The dermoscopic features described may aid in the diagnosis of AS in this specifi c skin area. Acral volar skin involvement must be included in the clinical spectrum of Angioma serpiginosum and in the differential diagnosis of acral vascular lesions. PMID:26312666
REVIEWS OF TOPICAL PROBLEMS: Global phase-stable radiointerferometric systems
NASA Astrophysics Data System (ADS)
Dravskikh, A. F.; Korol'kov, Dimitrii V.; Pariĭskiĭ, Yu N.; Stotskiĭ, A. A.; Finkel'steĭn, A. M.; Fridman, P. A.
1981-12-01
We discuss from a unitary standpoint the possibility of building a phase-stable interferometric system with very long baselines that operate around the clock with real-time data processing. The various problems involved in the realization of this idea are discussed: the methods of suppression of instrumental and tropospheric phase fluctuations, the methods for constructing two-dimensional images and determining the coordinates of radio sources with high angular resolution, and the problem of the optimal structure of the interferometric system. We review in detail the scientific problems from the various branches of natural science (astrophysics, cosmology, geophysics, geodynamics, astrometry, etc.) whose solution requires superhigh angular resolution.
Forty-Year Follow-up of Full-Thickness Skin Graft After Thermal Burn Injury to the Volar Hand.
Weeks, Dexter; Kasdan, Morton L; Wilhelmi, Bradon J
2016-01-01
The hands are commonly affected in severe thermal burn injuries. Resulting contractures lead to significant loss of function. Burn contracture release and skin grafting are necessary to restore hand function. We report a case in which surgical reconstruction of a volar hand burn was performed with full-thickness skin grafting. The patient had a 40-year follow-up to assess the function and cosmesis of the repaired hand. We report a case in which a 15-month-old boy presented after receiving third-degree burns to the left volar hand, including the flexural aspects of the index, long, and ring fingers by placing it on a hot kitchen stove burner. The patient subsequently underwent scar contracture release and full-thickness skin grafting. Eleven years after reconstruction, further contractures developed associated with the patient's growth, which were reconstructed with repeat full-thickness skin graft from the inguinal region. No recurrence was witnessed afterward and 40 years after initial injury, the patient maintains full activities of daily living and use of his hand in his occupation. There is debate regarding the superiority of split-thickness versus full-thickness grafts during reconstruction. Our case strengthens the argument for durability of a full-thickness skin graft following thermal burn injury.
Berents, Teresa Løvold; Carlsen, Karin Cecilie Lødrup; Mowinckel, Petter; Skjerven, Håvard Ove; Kvenshagen, Bente; Rolfsjord, Leif Bjarte; Bradley, Maria; Lieden, Agne; Carlsen, Kai-Håkon; Gaustad, Peter; Gjersvik, Petter
2015-01-01
Atopic eczema (AE) is associated with Staphylococcus aureus (S. aureus) colonization and skin barrier dysfunction, often measured by increased transepidermal water loss (TEWL). In the present study, the primary aim was to see whether S. aureus colonization in the vestibulum nasi and/or fauces was associated with increased TEWL in infants with healthy skin and infants with eczema. Secondarily, we aimed to investigate whether TEWL measurements on non-lesional skin on the lateral upper arm is equivalent to volar forearm in infants. In 167 of 240 infants, recruited from the general population, TEWL measurements on the lateral upper arm and volar forearm, using a DermaLab USB, fulfilled our environmental requirements. The mean of three TEWL measurements from each site was used for analysis. The infants were diagnosed with no eczema (n = 110), possible AE (n = 28) or AE (n = 29). DNA samples were analysed for mutations in the filaggrin gene (FLG). Bacterial cultures were reported positive with the identification of at least one culture with S. aureus from vestibulum nasi and/or fauces. S. aureus colonization, found in 89 infants (53%), was not associated with increased TEWL (i.e. TEWL in the upper quartile), neither on the lateral upper arm or volar forearm (p = 0.08 and p = 0.98, respectively), nor with AE (p = 0.10) or FLG mutation (p = 0.17). TEWL was significantly higher on both measuring sites in infants with AE compared to infants with possible AE and no eczema. FLG mutation was significantly associated with increased TEWL, with a 47% difference in TEWL. We conclude that S. aureus in vestibulum nasi and/or fauces was not associated with TEWL, whereas TEWL measurements on the lateral upper arm and volar forearm appear equally appropriate in infants.
[Locked volar plating for complex distal radius fractures: maintaining radial length].
Jeudy, J; Pernin, J; Cronier, P; Talha, A; Massin, P
2007-09-01
Maintaining radial length, likely to be the main challenge in the treatment of complex distal radius fractures, is necessary for complete grip-strength and pro-supination range recovery. In spite of frequent secondary displacements, bridging external-fixation has remained the reference method, either isolated or in association with additional percutaneous pins or volar plating. Also, there seems to be a relation between algodystrophy and the duration of traction applied on the radio-carpal joint. Fixed-angle volar plating offers the advantage of maintaining the reduction until fracture healing, without bridging the joint. In a prospective study, forty-three consecutive fractures of the distal radius with a positivated ulnar variance were treated with open reduction and fixed-angle volar plating. Results were assessed with special attention to the radial length and angulation obtained and maintained throughout treatment, based on repeated measurements of the ulnar variance and radial angulation in the first six months postoperatively. The correction of the ulnar variance was maintained until complete recovery, independently of initial metaphyseal comminution, and of the amount of radial length gained at reduction. Only 3 patients lost more than 1 mm of radial length after reduction. The posterior tilt of the distal radial epiphysis was incompletely reduced in 13 cases, whereas reduction was partially lost in 6 elderly osteoporotic female patients. There was 8 articular malunions, all of them less than 2 mm. Secondary displacements were found to be related to a deficient locking technique. Eight patients developed an algodystropy. The risk factors for algodystrophy were articular malunion, associated posterior pining, and associated lesions of the ipsilateral upper limb. Provided that the locking technique was correct, this type of fixation appeared efficient in maintaining the radial length in complex fractures of the distal radius. The main challenge remains the reduction of displaced articular fractures. Based on these results, it is not possible to conclude that this method is superior to external fixation.
Sato, Junko; Ishii, Yoshinori; Noguchi, Hideo; Takeda, Mitsuhiro
2012-10-01
To evaluate trigger digits with sonography to determine morphological changes in the A1 pulley, flexor tendon, and volar plate in relation to the severity of triggering. We evaluated 67 trigger digits and graded them into 1 of 4 groups. We compared the groups according to severity and to contralateral fingers, which served as controls. The thickness of the flexor tendons under the A1 pulley was proportional to the severity of triggering. The anteroposterior thickness of the flexor tendon increased significantly among the grades exhibiting triggering regardless of the affected digit. However, in digits other than the thumb, tendon thickness increased even in the absence of active triggering. Thickening tended to be greater with finger flexion. The A1 pulley exhibited the greatest thickness and the volar plate exhibited significant thickening in the group that exhibited continuous triggering that was easily reduced with active extension (grade III). The flexor tendon thickened significantly before patients experienced triggering except in the thumb. In the thumb, the flexor tendon and A1 pulley thickened significantly only after patients exhibited triggering. Thickening of the volar plate appears to have an important role in continuous triggering. Although most clinicians can easily determine the severity of a trigger digit by clinical examination, ultrasound might be helpful for objectively understanding the severity and response to treatment, by examining the thickness of the flexor tendon and A1 pulley. In particular, sonographic measurement of the A1 pulley might be useful in judging the progression of trigger finger severity. In cases where a Doppler signal is detected inside the A1 pulley, more conservative therapies might be worth considering before surgery. Diagnostic ΙΙΙ. Copyright © 2012 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Alneamy, A. M.; Khater, M. E.; Al-Ghamdi, M. S.; Park, S.; Heppler, G. R.; Abdel-Rahman, E. M.
2018-07-01
This paper investigates the performance of cantilever-type micro-mirrors under electromagnetic, electrostatic and dual actuation. We developed and validated a two-DOFs model of the coupled bending-torsion motions of the mirror and used it in conjunction with experiments in air and in vacuum to compare all three actuation methods. We found that electromagnetic actuation is the most effective delivering a scanning range of ± out of a geometrically allowable range of ± at a current amplitude i = 3 mA and a magnetic field of B = 30 mT. Electrostatic actuation, whether alone or in conjunction with electromagnetic actuation, limited the stable angular range to smaller values (as small as ) due to the presence of spurious piston motions. This is an innate characteristic of micro-scale electrostatic actuation, the electrostatic force and the undesirable piston motion grow faster than the electrostatic torque and the desired angular displacement as the voltage is increased and they limit the stable angular range. Finally, we found that the dual actuation can be used to design two-DOF mirrors where electromagnetic actuation drives angular motion for optical beam steering and electrostatic actuation drives piston motion to control the mirror focus.
Zero potential vorticity envelopes for the zonal-mean velocity of the Venus/Titan atmospheres
NASA Technical Reports Server (NTRS)
Allison, Michael; Del Genio, Anthony D.; Zhou, Wei
1994-01-01
The diagnostic analysis of numerical simulations of the Venus/Titan wind regime reveals an overlooked constraint upon the latitudinal structure of their zonal-mean angular momentum. The numerical experiments, as well as the limited planetary observations, are approximately consistent with the hypothesis that within the latitudes bounded by the wind maxima the total Ertel potential vorticity associated with the zonal-mean motion is approximately well mixed with respect to the neutral equatorial value for a stable circulation. The implied latitudinal profile of angular momentum is of the form M equal to or less than M(sub e)(cos lambda)(exp 2/Ri), where lambda is the latitude and Ri the local Richardson number, generally intermediate between the two extremes of uniform angular momentum (Ri approaches infinity) and uniform angular velocity (Ri = 1). The full range of angular momentum profile variation appears to be realized within the observed meridional - vertical structure of the Venus atmosphere, at least crudely approaching the implied relationship between stratification and zonal velocity there. While not itself indicative of a particular eddy mechanism or specific to atmospheric superrotation, the zero potential vorticity (ZPV) constraint represents a limiting bound for the eddy - mean flow adjustment of a neutrally stable baroclinic circulation and may be usefully applied to the diagnostic analysis of future remote sounding and in situ measurements from planetary spacecraft.
Gökkus, Kemal; Sagtas, Ergin; Kesgin, Engin; Aydin, Ahmet Turan
2018-01-01
Intra-articular distal radius fractures have long been massively discussed in the literature, but regarding to fractures that possess rotated volar medial fragment in the joint a few amount papers has been written. In this article, we would like to emphasize the significance of the rotated palmar medial (lunate facet) fragment. A 39-year-old man fell from a height of about 3 m and landed on his right outstretched hand; within 40 min, he arrived at our clinic presenting with a severe pain and swelling in his right wrist. Initial X-rays of the wrist revealed dorsal subluxation of the radiocarpal joint with dorsal comminution of the radial articular surface and fracture of the radial styloid process, with (nearly inverted) ~ 140-150° rotation of the palmar medial fragment. With an additional volar approach, the fragment reduced and stabilized with two K-wires and wrist immobilized in external fixator. The patient returned to daily activities without any discomfort and pain after the 1 year from the surgery. Overlooking of palmar rotated osteochondral fragment will cause deficiency to build proper pre-operative strategy to approach the reduction of the fragment. The incompetence of reduction will deteriorate the articular surface and lead to early osteoarthritis of the wrist. The surgeon should detect this fragment and should be familiar with volar approaches of the wrist. Above average surgical experience would be needed for successful reduction.
Gutierrez, Marwin; Filippucci, Emilio; Ruta, Santiago; Salaffi, Fausto; Blasetti, Patrizia; Di Geso, Luca; Grassi, Walter
2011-02-01
The present study was aimed at testing the ability of a rheumatologist without experience in ultrasound (US) who attended an intensive 4-week training programme focused on US assessing bone erosions in the hands and feet in patients with RA. Twenty patients diagnosed with RA according to the ACR criteria were included in the study. All US examinations were performed bilaterally by two investigators (with different experience in the field of musculoskeletal US) at the following sites: the dorsal, lateral and volar aspect of the second metacarpal, ulnar and fifth metatarsal head; and the dorsal and volar aspect of the third metacarpal and second proximal heads. Each quadrant was scanning in longitudinal and transverse scans for assessing the qualitative, semiquantitative and quantitative US findings indicative of bone erosions according the OMERACT preliminary definition. Both κ-values and overall agreement percentages of qualitative and semiquantitative assessments showed moderate to excellent agreement between the two investigators. Similar results were obtained for the quantitative assessment with the concordance correlation coefficient value always significant. The only exception was the volar aspects, in particular those of the fifth metatarsal head. Our study suggests that after a 4-week dedicated training programme, a rheumatologist without experience in US is able to detect and score bone erosions in the hands and feet of patients with RA.
Otremski, Hila; Dolkart, Oleg; Atlan, Franck; Hutt, Dan; Segev, Elad; Pritsch, Tamir; Rosenblatt, Yishai
2018-06-01
Intraoperative hairline longitudinal fractures were recently reported in association with distal radius volar plating. Our aim was to further analyze this newly described complication. A retrospective radiographic and chart review was performed on 225 patients who underwent distal radius plating between June 2013 and June 2015. The Acu-Loc/Acu-Loc2© plating system (Acumed, Hillsboro, OR, USA) was used in 208 cases, and the VariAx© plating system (Stryker, Kalamazoo, MI, USA) was used in 17 cases. Three independent reviewers performed a blind evaluation of all relevant radiographs for the occurrence of longitudinal fractures around the plate, and validity was considered only when there was agreement among all three of them. Hairline longitudinal fractures were identified in 57 cases (25%), 55 with the Acu-Loc/Acu-Loc2© system and 2 with the VariAx© system. All fractures occurred with volar plating. Fracture occurrence was associated with age over 59 years, female gender, extra-articular fractures, and the use of Hexalobe screws (Acu-Loc/Acu-Loc2© system). We believe that the source of fracture occurrence lies within the screw design and that better screw design and possibly tapping in patients at risk may reduce the occurrence of intraoperative hairline longitudinal fractures. Further clinical and biomechanical research is needed to better understand this newly reported complication.
Motion of the angular momentum vector in body coordinates for torque-free dual-spin spacecraft
NASA Technical Reports Server (NTRS)
Fedor, J. V.
1981-01-01
The motion of the angular momentum vector in body coordinates for torque free, asymmetric dual spin spacecraft without and, for a special case, with energy dissipation on the main spacecraft is investigated. Without energy dissipation, two integrals can be obtained from the Euler equations of motion. Using the classical method of elimination of variable, the motion about the equilibrium points (six for the general case) are derived with these integrals. For small nutation angle, theta, the trajectories about the theta = 0 deg and theta = 180 deg points readily show the requirements for stable motion about these points. Also the conditions needed to eliminate stable motion about the theta = 180 deg point as well as the other undesireable equilibrium points follow directly from these equations. For the special case where the angular momentum vector moves about the principal axis which contains the momentum wheel, the notion of 'free variable' azimuth angle is used. Physically this angle must vary from 0 to 2 pi in a circular periodic fashion. Expressions are thus obtained for the nutation angle in terms of the free variable and other spacecraft parameters. Results show that in general there are two separate trajectory expressions that govern the motion of the angular momentum vector in body coordinates.
NASA Astrophysics Data System (ADS)
Leigh, Nathan W. C.; Wegsman, Shalma
2018-05-01
We present a formalism for constructing schematic diagrams to depict chaotic three-body interactions in Newtonian gravity. This is done by decomposing each interaction into a series of discrete transformations in energy- and angular momentum-space. Each time a transformation is applied, the system changes state as the particles re-distribute their energy and angular momenta. These diagrams have the virtue of containing all of the quantitative information needed to fully characterize most bound or unbound interactions through time and space, including the total duration of the interaction, the initial and final stable states in addition to every intervening temporary meta-stable state. As shown via an illustrative example for the bound case, prolonged excursions of one of the particles, which by far dominates the computational cost of the simulations, are reduced to a single discrete transformation in energy- and angular momentum-space, thereby potentially mitigating any computational expense. We further generalize our formalism to sequences of (unbound) three-body interactions, as occur in dense stellar environments during binary hardening. Finally, we provide a method for dynamically evolving entire populations of binaries via three-body scattering interactions, using a purely analytic formalism. In principle, the techniques presented here are adaptable to other three-body problems that conserve energy and angular momentum.
Hydrodynamic turbulence cannot transport angular momentum effectively in astrophysical disks.
Ji, Hantao; Burin, Michael; Schartman, Ethan; Goodman, Jeremy
2006-11-16
The most efficient energy sources known in the Universe are accretion disks. Those around black holes convert 5-40 per cent of rest-mass energy to radiation. Like water circling a drain, inflowing mass must lose angular momentum, presumably by vigorous turbulence in disks, which are essentially inviscid. The origin of the turbulence is unclear. Hot disks of electrically conducting plasma can become turbulent by way of the linear magnetorotational instability. Cool disks, such as the planet-forming disks of protostars, may be too poorly ionized for the magnetorotational instability to occur, and therefore essentially unmagnetized and linearly stable. Nonlinear hydrodynamic instability often occurs in linearly stable flows (for example, pipe flows) at sufficiently large Reynolds numbers. Although planet-forming disks have extreme Reynolds numbers, keplerian rotation enhances their linear hydrodynamic stability, so the question of whether they can be turbulent and thereby transport angular momentum effectively is controversial. Here we report a laboratory experiment, demonstrating that non-magnetic quasi-keplerian flows at Reynolds numbers up to millions are essentially steady. Scaled to accretion disks, rates of angular momentum transport lie far below astrophysical requirements. By ruling out purely hydrodynamic turbulence, our results indirectly support the magnetorotational instability as the likely cause of turbulence, even in cool disks.
Suojärvi, Nora; Sillat, T; Lindfors, N; Koskinen, S K
2015-12-01
Operative treatment of an intra-articular distal radius fracture is one of the most common procedures in orthopedic and hand surgery. The intra- and interobserver agreement of common radiographical measurements of these fractures using cone beam computed tomography (CBCT) and plain radiographs were evaluated. Thirty-seven patients undergoing open reduction and volar fixation for a distal radius fracture were studied. Two radiologists analyzed the preoperative radiographs and CBCT images. Agreement of the measurements was subjected to intra-class correlation coefficient and the Bland-Altman analyses. Plain radiographs provided a slightly poorer level of agreement. For fracture diastasis, excellent intraobserver agreement was achieved for radiographs and good or excellent agreement for CBCT, compared to poor interobserver agreement (ICC 0.334) for radiographs and good interobserver agreement (ICC 0.621) for CBCT images. The Bland-Altman analyses indicated a small mean difference between the measurements but rather large variation using both imaging methods, especially in angular measurements. For most of the measurements, radiographs do well, and may be used in clinical practice. Two different measurements by the same reader or by two different readers can lead to different decisions, and therefore a standardization of the measurements is imperative. More detailed analysis of articular surface needs cross-sectional imaging modalities.
Korean Type Distal Radius Anatomical Volar Plate System: A Preliminary Report
Kim, Jeong Hwan; Kim, Jihyeung; Kim, Min Bom; Rhee, Seung Hwan; Gong, Hyun Sik; Lee, Young Ho
2014-01-01
Background Distal radius fracture is the most common fracture of the upper extremity, and approximately 60,000 distal radius fractures occur annually in Korea. Internal fixation with an anatomical volar locking plate is widely used in the treatment of unstable distal radius fractures. However, most of the currently used distal radius anatomical plate systems were designed based on the anatomical characteristics of Western populations. Recently, the Korean-type distal radius anatomical volar plate (K-DRAVP) system was designed and developed based on the anatomical characteristics of the distal radius of Koreans. The purpose of this study was to evaluate the preliminary results of the new K-DRAVP system, and to compare its radiologic and functional results with those of the other systems. Methods From March 2012 to October 2012, 46 patients with acute distal radius fractures who were treated with the K-DRAVP system at three hospitals were enrolled in this study. Standard posteroanterior and lateral radiographs were obtained to assess fracture healing, and three radiographic parameters (volar tilt, radial inclination, and radial length) were assessed to evaluate radiographic outcomes. The range of motion and grip strength, the Gartland and Werley scoring system, and the disabilities of the arm, shoulder and hand (DASH) questionnaire were used to assess clinical and functional outcomes. Results All radiologic parameters were restored to normal values, and maintained without any loosening or collapse until the time of final follow-up. Grip strength was restored to 84% of the value for the unaffected side. The mean range of motion of the wrist at final follow-up was restored to 77%-95% of the value for the unaffected side. According to the Gartland and Werley scoring system, there were 16 excellent, 26 good, and 4 fair results. The mean DASH score was 8.4 points. There were no complications after surgery. Conclusions The newly developed K-DRAVP system could be used to restore and maintain good anatomical parameters, and provide good clinical outcomes with low complication rates. This system is a promising surgical option for the treatment of distal radius fractures in the Korean population. PMID:25177449
Brehmer, Jess L; Husband, Jeffrey B
2014-10-01
There are relatively few studies in the literature that specifically evaluate accelerated rehabilitation protocols for distal radial fractures treated with open reduction and internal fixation (ORIF). The purpose of this study was to compare the early postoperative outcomes (at zero to twelve weeks postoperatively) of patients enrolled in an accelerated rehabilitation protocol with those of patients enrolled in a standard rehabilitation protocol following ORIF for a distal radial fracture. We hypothesized that patients with accelerated rehabilitation after volar ORIF for a distal radial fracture would have an earlier return to function compared with patients who followed a standard protocol. From November 2007 to November 2010, eighty-one patients with an unstable distal radial fracture were prospectively randomized to follow either an accelerated or a standard rehabilitation protocol after undergoing ORIF with a volar plate for a distal radial fracture. Both groups began with gentle active range of motion at three to five days postoperatively. At two weeks, the accelerated group initiated wrist/forearm passive range of motion and strengthening exercises, whereas the standard group initiated passive range of motion and strengthening at six weeks postoperatively. Patients were assessed at three to five days, two weeks, three weeks, four weeks, six weeks, eight weeks, twelve weeks, and six months postoperatively. Outcomes included Disabilities of the Arm, Shoulder and Hand (DASH) scores (primary outcome) and measurements of wrist flexion/extension, supination, pronation, grip strength, and palmar pinch. The patients in the accelerated group had better mobility, strength, and DASH scores at the early postoperative time points (zero to eight weeks postoperatively) compared with the patients in the standard rehabilitation group. The difference between the groups was both clinically relevant and statistically significant. Patients who follow an accelerated rehabilitation protocol that emphasizes motion immediately postoperatively and initiates strengthening at two weeks after volar ORIF of a distal radial fracture have an earlier return to function than patients who follow a more standard rehabilitation protocol. Therapeutic Level I. See Instructions for Authors for a complete description of levels of evidence. Copyright © 2014 by The Journal of Bone and Joint Surgery, Incorporated.
Zemirline, A; Taleb, C; Naito, K; Vernet, P; Liverneaux, P; Lebailly, F
2018-05-17
Distal radius fractures (DRF) may trigger, reveal or decompensate acute carpal tunnel syndrome (CTS) in 0.5-21% of cases. Internal fixation and median nerve release must then be carried out urgently. Less invasive approaches have been described for both the median nerve release using an endoscopic device and for the DRF fixation using a volar locking plate. We assessed the feasibility of DRF fixation and median nerve release through a single, minimally-invasive 15mm approach on a series of 10 cases. We reviewed retrospectively 10 consecutive cases of DRF associated with symptomatic CTS in 8 women and 2 men, aged 57 years on average. CTS was diagnosed clinically. All patients were treated during outpatient surgery with a volar locking plate and endoscopic carpal tunnel release using a single 15mm minimally-invasive approach. In one case, arthroscopic scapholunate repair was also required. Six months after the procedure, all patients were reviewed with a clinical examination and a radiological evaluation. The average values for the clinical and radiological outcomes were as follows: pain on VAS 1.5/10; QuickDASH 14.3/100; flexion 90%; extension 90.6%; pronation 95.6%; supination 87.9%; grip strength 90.1%; 2PD test 5.2mm (4-8mm). Five complications occurred: two cases of temporary dysesthesia in the territory of the median nerve and one case of temporary hypoesthesia of the palmar branch of the median nerve, which had all completely recovered; two cases of complex regional pain syndrome type I, which were still active at 6 months. Despite its methodological weaknesses, our study is the only one to describe the technical feasibility of a single 15mm minimally-invasive approach for both internal fixation using a volar locking plate and endoscopic nerve release, with no serious complications. This technique should be added to the surgical toolbox of minimally-invasive procedures for the hand and wrist. Copyright © 2018 SFCM. Published by Elsevier Masson SAS. All rights reserved.
Lux in obscuro II: photon orbits of extremal AdS black holes revisited
NASA Astrophysics Data System (ADS)
Tang, Zi-Yu; Ong, Yen Chin; Wang, Bin
2017-12-01
A large class of spherically symmetric static extremal black hole spacetimes possesses a stable null photon sphere on their horizons. For the extremal Kerr-Newman family, the photon sphere only really coincides with the horizon in the sense clarified by Doran. The condition under which a photon orbit is stable on an asymptotically flat extremal Kerr-Newman black hole horizon has recently been clarified; it is found that a sufficiently large angular momentum destabilizes the photon orbit, whereas an electrical charge tends to stabilize it. We investigated the effect of a negative cosmological constant on this observation, and found the same behavior in the case of extremal asymptotically Kerr-Newman-AdS black holes in (3+1) -dimensions. In (2+1) -dimensions, in the presence of an electrical charge, the angular momentum never becomes large enough to destabilize the photon orbit. We comment on the instabilities of black hole spacetimes with a stable photon orbit.
NASA Astrophysics Data System (ADS)
Lu, Zenghai; Boadi, Joseph; Danby, Simon; Cork, Michael; Matcher, Stephen J.
2013-03-01
The effects on skin of two commercially available topical creams for the treatment of eczema are quantitatively studied using optical coherence tomography. An archetypal corticosteroid (Betamethasone valerate) is compared with a nonsteroidal anti-inflammatory drug (Tacrolimus monohydrate) via left/right comparisons of the epidermal thickness of volar forearm skin on selected volunteers, at baseline and after 14 days of treatment. In 3 of 4 subjects we confirmed previous observations that corticosteroids produce pronounced physical thinning of the epidermis over timescales of a few weeks. In 3 of 4 subjects we further found that Tacrolimus produced no change in epidermal thickness. In one of 4 subjects we found evidence that the epidermis was actually thickened following treatment using Tacrolimus.
Combined Volar Hamate Dislocation and Scapholunate Ligament Rupture: A Case Report.
Walmsley, David; Dhotar, Herman; Geddes, Christopher; Axelrod, Terry
2015-04-22
A twenty-two-year-old male patient presented to our trauma center after a motor-vehicle accident in which he sustained multiple injuries, including a volar dislocation of the hamate and ipsilateral scapholunate dissociation. Following closed reduction of the hamate dislocation, open reduction and stabilization of these carpal injuries was undertaken two days post-injury via a dorsal approach. Percutaneous Kirschner wires were used as well as two mini suture anchors to repair the scapholunate ligament. The patient was immobilized for six weeks and Kirschner wires were removed at twelve weeks postoperatively. To our knowledge, hamate dislocation with scapholunate dissociation and its surgical treatment have not previously been described. Successful surgical treatment for this injury pattern may be performed dorsally via direct reduction and repair of the scapholunate ligament with percutaneous pinning of the affected carpal bones.
Giugale, Juan Marcelo; Wang, Juntian; Kaufmann, Robert A.; Fowler, John R.
2017-01-01
Background: Proximal interphalangeal (PIP) fracture dislocations remain a complex injury pattern to treat. There are several treatment methods available aimed to restore stability, preserve range of motion, and reconstitute the articular surface. This study looked at the mid-term clinical and radiographic results of open reduction internal fixation through a shotgun approach of comminuted PIP fracture dislocations. Methods: A retrospective review was conducted of all PIP fracture dislocations treated through a volar, shotgun approach at a single institution over a 15-year period. Patients identified were contacted and asked to return to the office for clinical and radiographic evaluation. Patient reported outcomes were assessed with the Michigan hand questionnaire (MHQ) and visual analog scale (VAS) for pain. Results: 5 patients returned to the office for further evaluation with average follow-up of 69 months (range, 33-133 months). 3 patients were found to have post traumatic arthritis on radiographs. 1 case had recurrent instability and one case had a deep infection, both necessitating further surgical intervention. Average PIP arc of motion was found to be 79°. Average VAS score of 0 and MHQ result of 95 (out of a possible score of 100) indicating no residual pain and excellent functionality of the affected hand. Conclusion: Open reduction internal fixation of comminuted PIP fracture dislocations utilizing the volar, shotgun approach provides excellent mid-term functional results despite the high incidence of post traumatic arthritis. PMID:29151999
Hamada, Yoshitaka; Gotani, Hiroyuki; Hibino, Naohito; Tanaka, Yoshitaka; Satoh, Ryousuke; Sasaki, Kousuke; Kanchanathepsak, Thepparat
2016-01-01
Background The low-profile dorsal locking plating (DLP) technique is useful for treating dorsally comminuted intra-articular distal radius fractures; however, due to the complications associated with DLP, the technique is not widely used. Methods A retrospective review of 24 consecutive cases treated with DLP were done. Results All cases were classified into two types by surgical strategy according to the fracture pattern. In type 1, there is a volar fracture line distal to the watershed line in the dorsally displaced fragment, and this type is treated by H-framed DLP. In type 2, the displaced dorsal die-punch fragment is associated with a minimally displaced styloid shearing fracture or a transverse volar fracture line. We found that the die-punch fragment was reduced by the buttress effect of small l-shaped DLP after stabilization of the styloid shearing for the volar segment by cannulated screws from radial styloid processes. At 6 months after surgery, outcomes were good or excellent based on the modified Mayo wrist scores with no serious complications except one case. The mean range of motion of each type was as follows: the palmar flexion was 50, 65 degrees, dorsiflexion was 70, 75 degrees, supination was 85, 85 degrees, and pronation was 80, 80 degrees; in type 1 and 2, respectively. Conclusion DLP is a useful technique for the treatment of selected cases of dorsally displaced, comminuted intra-articular fractures of the distal radius with careful soft tissue coverage. PMID:28428920
Distal radius osteotomy with volar locking plates based on computer simulation.
Miyake, Junichi; Murase, Tsuyoshi; Moritomo, Hisao; Sugamoto, Kazuomi; Yoshikawa, Hideki
2011-06-01
Corrective osteotomy using dorsal plates and structural bone graft usually has been used for treating symptomatic distal radius malunions. However, the procedure is technically demanding and requires an extensive dorsal approach. Residual deformity is a relatively frequent complication of this technique. We evaluated the clinical applicability of a three-dimensional osteotomy using computer-aided design and manufacturing techniques with volar locking plates for distal radius malunions. Ten patients with metaphyseal radius malunions were treated. Corrective osteotomy was simulated with the help of three-dimensional bone surface models created using CT data. We simulated the most appropriate screw holes in the deformed radius using computer-aided design data of a locking plate. During surgery, using a custom-made surgical template, we predrilled the screw holes as simulated. After osteotomy, plate fixation using predrilled screw holes enabled automatic reduction of the distal radial fragment. Autogenous iliac cancellous bone was grafted after plate fixation. The median volar tilt, radial inclination, and ulnar variance improved from -20°, 13°, and 6 mm, respectively, before surgery to 12°, 24°, and 1 mm, respectively, after surgery. The median wrist flexion improved from 33° before surgery to 60° after surgery. The median wrist extension was 70° before surgery and 65° after surgery. All patients experienced wrist pain before surgery, which disappeared or decreased after surgery. Surgeons can operate precisely and easily using this advanced technique. It is a new treatment option for malunion of distal radius fractures.
Functional studies in 79-year-olds. II. Upper extremity function.
Lundgren-Lindquist, B; Sperling, L
1983-01-01
As part of the Gerontological and Geriatric Population Study of 79-year-old people in Göteborg, a representative subsample comprising 112 women and 93 men took part in a study of upper extremity function. Thirty-eight per cent of the women and 37% of the men had disorders in the upper extremities. The investigation included tests of co-ordination, static strength in the key-grip and the transversal volar grip, power capacity in opening jars and a bottle, basal movements in the upper extremities in personal hygiene and dressing activities, function in the kitchen e.g. reaching shelves, manual tasks including tests of pronation and supination of the forearm. In the key-grip as well as in the transversal volar grip men showed a generally larger decrease in strength with age than women compared to 70-year-olds in a previous population study. Significant correlations were found between strength in the key-grip and the performance time in the test of co-ordination. Women produced about 66% of the muscular force of the men when opening jars. Significant correlations were found between strength in the transversal volar grip and the maximal torque for opening the jars. Female and male subjects who were not capable of handling the electric plug in the manual ability test had significantly weaker strength in the key-grip. The importance of designing products and adapting the environment so as to correspond to the functional capacity of the elderly, is emphasized.
The general relativistic thin disc evolution equation
NASA Astrophysics Data System (ADS)
Balbus, Steven A.
2017-11-01
In the classical theory of thin disc accretion discs, the constraints of mass and angular momentum conservation lead to a diffusion-like equation for the turbulent evolution of the surface density. Here, we revisit this problem, extending the Newtonian analysis to the regime of Kerr geometry relevant to black holes. A diffusion-like equation once again emerges, but now with a singularity at the radius at which the effective angular momentum gradient passes through zero. The equation may be analysed using a combination of Wentzel-Kramers-Brillouin techniques, local techniques and matched asymptotic expansions. It is shown that imposing the boundary condition of a vanishing stress tensor (more precisely the radial-azimuthal component thereof) allows smooth stable modes to exist external to the angular momentum singularity, the innermost stable circular orbit, while smoothly vanishing inside this location. The extension of the disc diffusion equation to the domain of general relativity introduces a new tool for numerical and phenomenological studies of accretion discs, and may prove to be a useful technique for understanding black hole X-ray transients.
NASA Astrophysics Data System (ADS)
Shibata, Masaru
2004-04-01
We study secular stability against a quasi-radial oscillation for rigidly rotating stars with soft equations of state in general relativity. The polytropic equations of state with polytropic index n between 3 and 3.05 are adopted for modeling the rotating stars. The stability is determined in terms of the turning-point method. It is found that (1) for n>~3.04, all the rigidly rotating stars are unstable against the quasi-radial oscillation and (2) for n>~3.01, the nondimensional angular momentum parameter q≡cJ/GM2 (where J, M, G, and c denote the angular momentum, the gravitational mass, the gravitational constant, and the speed of light, respectively) for all marginally stable rotating stars is larger than unity. A semianalytic calculation is also performed, and good agreement with the numerical results is confirmed. The final outcome after axisymmetric gravitational collapse of rigidly rotating and marginally stable massive stars with q>1 is predicted, assuming that the rest-mass distribution as a function of the specific angular momentum is preserved and that the pressure never halt the collapse. It is found that even for 1~2.5, the significant angular momentum will prevent the direct formation of a black hole.
Further delineation of Nevo syndrome.
al-Gazali, L I; Bakalinova, D; Varady, E; Scorer, J; Nork, M
1997-01-01
Nevo syndrome is an autosomal recessive syndrome characterised by prenatal overgrowth, joint laxity, kyphosis, wrist drop, spindle shaped fingers, and volar oedema. Four children from two families have been reported previously. We report two further children from two unrelated Arab families from two different tribes. Both presented at birth with hypotonia, joint laxity, kyphosis, wrist drop, spindle shaped fingers, and volar oedema. Both have delayed motor development at the ages of 2 years 10 months and 3 months respectively. Cognitive development is normal in one, and the other case appears to be developing normally at 3 months of age. One has, in addition, a wide spinal canal on MRI of the spine indicating some degree of dural ectasia. This report brings the total number of children reported with this syndrome to six from four families; three of these families are Arab. This indicates that the gene for this syndrome is probably commoner in Arabs than in other populations. Images PMID:9152832
Surgical Approaches to the Proximal Interphalangeal Joint.
Cheah, Andre Eu-Jin; Yao, Jeffrey
2016-02-01
The proximal interphalangeal (PIP) joint may be affected by many conditions such as arthropathy, fractures, dislocations, and malunions. Whereas some of these conditions may be treated nonsurgically, many require open surgical intervention. Open interventions include implant arthroplasty or arthrodesis for arthropathy, open reduction internal fixation, or hemi-hamate arthroplasty for dorsal fracture-dislocations. Volar plate arthroplasty and corrective osteotomy for malunion about the PIP joint are also surgeries that may be required. The traditional approach to the PIP joint has been dorsal, which damages the delicate extensor apparatus with subsequent development of an extensor lag. This has led surgeons to explore volar and lateral approaches to the PIP joint. In this article, we describe each of these surgical approaches, discuss their advantages and disadvantages, and provide some guidance on which approach to choose based on the surgery that is to be performed. Copyright © 2016 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Area-angular-momentum inequality for axisymmetric black holes.
Dain, Sergio; Reiris, Martin
2011-07-29
We prove the local inequality A≥8π|J|, where A and J are the area and angular momentum of any axially symmetric closed stable minimal surface in an axially symmetric maximal initial data. From this theorem it is proved that the inequality is satisfied for any surface on complete asymptotically flat maximal axisymmetric data. In particular it holds for marginal or event horizons of black holes. Hence, we prove the validity of this inequality for all dynamical (not necessarily near equilibrium) axially symmetric black holes.
Park, Derek H; Goldie, Boyd S
2012-09-01
The use of the volar plate to treat distal radius fractures is increasing but despite the theoretical advantages of a volar approach there have been reports of extensor tendon ruptures due to prominent screw tips protruding past the dorsal cortex. The valley in the intermediate column between Lister tubercle and the sigmoid notch of the distal radius makes it difficult to rely on fluoroscopy to judge screw length. Our aim was to quantify the dimensions of this valley and to demonstrate the danger of relying on intraoperative image intensification fluoroscopy to determine lengths of distal screws. We measured the depth of this valley in the intermediate column of the distal radius in 33 patients with computed tomographic (9 patients) or magnetic resonance image (24 patients) scans of the wrist. There was a consistent valley in all images examined [average 1.8 mm (95% confidence interval, 1.6-2.0 mm)]. Thirty-nine percent of wrists had a valley depth of at least 2 mm. Standard lateral views or rotation of the forearm to obtain oblique views does not identify prominent screw tips; and whatever the rotation of the forearm, screw tips protruding beyond dorsal cortex may look as if it is within the bone when in fact it is out. When drilling we suggest noting the depth at which the drill bit just penetrates dorsal cortex and routinely downsize the distal screw length by 2 mm. We caution against relying on flourosocopy when judging the length of the distal subchondral screws.
Rereduction for Redisplacement of Both-Bone Forearm Shaft Fractures in Children.
Eismann, Emily A; Parikh, Shital N; Jain, Viral V
2016-06-01
There is a high rate of redisplacement after closed reduction and cast treatment of displaced both-bone forearm shaft fractures in children. Little evidence is available on the efficacy of rereduction of these redisplaced fractures. This study evaluates the impact of rereduction on radiographic outcomes and compares the cost to surgical stabilization. This retrospective study included 31 children (mean age, 6.3 y; 18 boys) treated with rereduction for redisplacement of a displaced both-bone forearm shaft fracture between 2008 and 2013. Angulation was measured on anteroposterior and lateral radiographs of the radius and ulna at injury, after reduction, at redisplacement, after rereduction, and at fracture union. Average procedure costs for rereduction and surgical stabilization were calculated. Initial reduction decreased apex volar angulation (initially >20 degrees) of both bones to a median of ≤2 degrees. After an average of 15 days (range, 4 to 35 d), apex volar angulation of the radius worsened to 9 degrees, and apex ulnar angulation worsened to >10 degrees for both bones. For every 5 days after initial reduction, apex ulnar angulation of the radius worsened by 4 degrees. Rereduction reduced apex ulnar and volar angulation of both bones to <5 degrees, which was maintained after cast removal. There were no complications. The average procedure cost for rereduction was $2056 compared with $4589 for surgical stabilization with or without implant removal. Rereduction of both-bone forearm shaft fractures after redisplacement following initial closed reduction had satisfactory radiographic outcomes and is a safe, effective, and less expensive option than surgical stabilization. Level IV-therapeutic.
Morphology of distal radius curvatures: a CT-based study on the Malaysian Malay population
Singh, Taran Singh Pall; Sadagatullah, Abdul Nawfar; Yusof, Abdul Halim
2015-01-01
INTRODUCTION The purpose of this study was to examine the differing curves of the volar distal radius of healthy Malaysian Malays, so as to obtain detailed morphological information that will further the understanding of volar plate osteosynthesis in Malaysian Malays. METHODS Computed tomography with three-dimensional reconstruction was performed on the wrists of 16 healthy Malaysian Malay volunteers. Profile measurements were made using a software program. A novel parameter, the pronator quadratus curve angle, was explored and introduced in this study. Interclass correlation coefficients were calculated to assess the level of agreement between the data collected by the principal investigator and that collected by an independent radiologist. RESULTS The mean ± standard deviation of the arc radii on the radial aspect was 17.50° ± 5.40°, while the median (interquartile range [IQR]) of the arc radii on the ulnar aspect was 25.27° (IQR 5.80°). The mean ± standard deviation of the curvature of the pronator quadratus line was 40.52° ± 2.48°. The arc radii on the radial aspect was significantly lower than the arc radii on the ulnar aspect (p = 0.001). Different radial and ulnar arcs were observed in 56.25% of the radii; the arc was deeper on the ulnar aspect in 93.75% of the radii. CONCLUSION Based on the findings of this study, the likelihood of achieving anatomical reduction with uniformly curved, fixed-angle volar plates is questionable. Changes in the design of these implants may be needed to optimise their usage in the Malaysian Malay population. PMID:25814075
Giannotti, S; Giovannelli, D; Dell'Osso, G; Bottai, V; Bugelli, G; Celli, F; Citarelli, C; Guido, G
2016-04-01
The tibial plateau fractures involve one of the main weight bearing joints of the human body. The goals of surgical treatment are anatomical reduction, articular surface reconstruction and high primary stability. The aim of this study was to evaluate the clinical and functional outcomes after internal plate fixation of this kind of fractures. From January 2009 to December 2012, we treated 75 cases of tibial plateau fracture with angular stable plates. We used Rasmussen Score and the Knee Society Score for the clinical and functional evaluation. Twenty-five cases that underwent hardware removal had arthroscopic and CT evaluation of the joint. No complications occurred. The clinical and functional evaluation, performed by the KSS and Rasmussen Score, highlighted the high percentage of good-to-excellent results (over 90 %). In every case, the range of motion was good with flexion >90°. Arthroscopy showed the presence of chondral damage in 100 % of patients. In all the cases, we found that X-ray images seem better than the CT images. Angular stable plates allow to obtain a good primary stability, permitting an early joint recovery with an excellent range of motion. Avoiding to perform a knee arthrotomy at the time of fracture reduction could prove to be an advantage in terms of functional recovery. The meniscus on the injured bone should be preserved in order to maintain good function of the joint. X-ray images remain the gold standard in checking the progression of post-traumatic osteoarthritis.
Study of the mode of angular velocity damping for a spacecraft at non-standard situation
NASA Astrophysics Data System (ADS)
Davydov, A. A.; Sazonov, V. V.
2012-07-01
Non-standard situation on a spacecraft (Earth's satellite) is considered, when there are no measurements of the spacecraft's angular velocity component relative to one of its body axes. Angular velocity measurements are used in controlling spacecraft's attitude motion by means of flywheels. The arising problem is to study the operation of standard control algorithms in the absence of some necessary measurements. In this work this problem is solved for the algorithm ensuring the damping of spacecraft's angular velocity. Such a damping is shown to be possible not for all initial conditions of motion. In the general case one of two possible final modes is realized, each described by stable steady-state solutions of the equations of motion. In one of them, the spacecraft's angular velocity component relative to the axis, for which the measurements are absent, is nonzero. The estimates of the regions of attraction are obtained for these steady-state solutions by numerical calculations. A simple technique is suggested that allows one to eliminate the initial conditions of the angular velocity damping mode from the attraction region of an undesirable solution. Several realizations of this mode that have taken place are reconstructed. This reconstruction was carried out using approximations of telemetry values of the angular velocity components and the total angular momentum of flywheels, obtained at the non-standard situation, by solutions of the equations of spacecraft's rotational motion.
Aksenov, Valerii P; Kolosov, Valeriy V; Pogutsa, Cheslav E
2014-06-10
The propagation of laser beams having orbital angular momenta (OAM) in the turbulent atmosphere is studied numerically. The variance of random wandering of these beams is investigated with the use of the Monte Carlo technique. It is found that, among various types of vortex laser beams, such as the Laguerre-Gaussian (LG) beam, modified Bessel-Gaussian beam, and hypergeometric Gaussian beam, having identical initial effective radii and OAM, the LG beam occupying the largest effective volume in space is the most stable one.
A new model-independent approach for finding the arrival direction of an extensive air shower
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hedayati, H. Kh., E-mail: hedayati@kntu.ac.ir
2016-11-01
A new accurate method for reconstructing the arrival direction of an extensive air shower (EAS) is described. Compared to existing methods, it is not subject to minimization of a function and, therefore, is fast and stable. This method also does not need to know detailed curvature or thickness structure of an EAS. It can have angular resolution of about 1 degree for a typical surface array in central regions. Also, it has better angular resolution than other methods in the marginal area of arrays.
Medlock, G; Smith, M; Johnstone, A J
2018-07-01
Purpose Multifragmentary intra-articular fractures displaced in multiple planes are a challenge. We use a reproducible technique of fracture and articular reduction using an initial volar approach targeting reduction in the volar lunate facet first with plate and unicortical locking screws. This creates a template for reduction in dorsal fragments through a dorsal approach. Our study investigated the radiological, clinical, and functional outcomes of patients treated with this technique. Materials and Methods We reviewed the postoperative radiographs and notes of 18 patients that had this method of fixation between the years 2008 and 2015, the mean age being 43. These patients were reviewed functionally on average 2 years and 3 months following their definitive operation. Results Normal alignment and length to the distal radius were restored with on average a 0.6 mm articular step. The average range of motion was 64% and preservation of grip strength was 71% compared with the uninjured wrist. Functional assessment averages were 29 for both the quick Disabilities of the Arm, Shoulder and Hand (DASH) and for Patient Rated Wrist Evaluation. The modified system of Green and O'Brien had results of good in 10, fair in 7, and poor in 1. With respect to the Gartland and Werley system, three patients had an excellent result, four had a good result, six had a fair result, and five had a poor result. The mean arthritic grading was 1 (grading 0-3) according to Knirk and Jupiter. Conclusion This reproducible technique provides an option for these devastating fractures providing a functioning wrist with all of the patients returning to their original form of employment.
Hardman, John; Al-Hadithy, Nawfal; Hester, Thomas; Anakwe, Raymond
2015-12-01
There remains little consensus regarding the optimal management of distal radius fractures. Fixed angle volar devices have gained recent popularity, but have also been associated with soft tissue complications. Intramedullary (IM) devices offer fixed angle stabilisation with minimally invasive surgical technique and low, IM profile. No formal review of outcomes could be identified. We conducted a systematic review of clinical studies regarding the use of fixed angle IM devices in acute extra-articular or simple intra-articular distal radius fractures. Preferred Reporting Items for Systematic Reviews (PRISMA) guidance was followed. Numerical data regarding functional scores, ranges of movement, radiological outcomes and complications were pooled to produce aggregate means and standard deviation. A total of 310 titles and abstracts were identified. Fourteen papers remained for analysis. Total patient number was 357, mean age 63.72 years and mean follow-up 12.77 months. Mean functional scores were all rated as 'excellent'. Aggregate means: flexion 53.62°, extension 56.38°, pronation 69.10°, supination 70.29°, ulnar deviation 28.35°, radial deviation 18.12°, radial height 8.98 mm, radial inclination 16.51°, volar tilt 5.35°, ulnar variance 0.66 mm and grip strength 90.37 %. Overall complication rate was 19.6 %. Tendon rupture was unreported. Tendon irritation was 0.88 %. Radial nerve paraesthesia was 11.44 %. Fixed angle IM devices facilitate excellent functional outcomes, with radiological and clinical parameters at least equivalent to volar plate devices. Low rates of tendon irritation and absence of tendon rupture are advantageous. Significant limitations include a lack of application for complex articular injuries and the propensity to cause a transient neuritis of the superficial branch of the radial nerve.
Biologic plating of unstable distal radial fractures.
Kwak, Jae-Man; Jung, Gu-Hee
2018-04-14
Volar locking plating through the flexor carpi radialis is a well-established technique for treating unstable distal radial fractures, with few reported complications. In certain circumstances, including metaphyseal comminuted fractures, bridge plating through a pronator quadratus (PQ)-sparing approach may be required to preserve the soft tissue envelope. This study describes our prospective experience with bridge plating through indirect reduction. Thirty-three wrists (four 23A2, six 23A3, 15 23C1, and eight 23C2) underwent bridge plating through a PQ-sparing approach with indirect reduction from June 2006 to December 2010. Mean patient age was 56.8 years (range, 25-83 years), and the mean follow-up period was 47.5 months (range, 36-84 months). Changes in radiologic parameters (volar tilt, radial inclination, radial length, and ulnar variance) were analyzed, and functional results at final follow-up were evaluated by measuring the Modified Mayo Wrist Score (MMWS) and Modified Gartland-Werley Score (MGWS). All wrists achieved bone healing without significant complications after a single operation. At final follow-up, radial length was restored from an average of 3.7 mm to 11.0 mm, as were radial inclination, from 16.4° to 22.5°, and volar tilt, from - 9.1° to 5.5°. However, radial length was overcorrected in three wrists, and two experienced residual dorsal tilt. Excellent and good results on the MGWS were achieved in 30 wrists (90.9%). The average MMWS outcome was 92.6 (range, 75-100). Our experience with bridge plating was similar to that previously reported in the earlier publications. Compared with the conventional technique, bridge plating through a PQ-sparing approach may help in managing metaphyseal comminuted fractures of both cortices with a reduced radio-ulnar index.
Mid-term functional outcome after the internal fixation of distal radius fractures
2012-01-01
Background Distal radius fracture is a common injury with a variety of operative and non-operative management options. There remains debate as to the optimal treatment for a given patient and fracture. Despite the popularity of volar locking plate fixation, there are few large cohort or long term follow up studies to justify this modality. Our aim was to report the functional outcome of a large number of patients at a significant follow up time after fixation of their distal radius with a volar locking plate. Methods 180 patients with 183 fractures and a mean age of 62.4 years were followed up retrospectively at a mean of 30 months (Standard deviation = 10.4). Functional assessment was performed using the Disabilities of the Arm, Shoulder and Hand (DASH) and modified MAYO wrist scores. Statistical analysis was performed to identify possible variables affecting outcome and radiographs were assessed to determine time to fracture union. Results The median DASH score was 2.3 and median MAYO score was 90 for the whole group. Overall, 133 patients (74%) had a good or excellent DASH and MAYO score. Statistical analysis showed that no specific variable including gender, age, fracture type, post-operative immobilisation or surgeon grade significantly affected outcome. Complications occurred in 27 patients (15%) and in 11 patients were major (6%). Conclusion This single centre large population series demonstrates good to excellent results in the majority of patients after volar locking plate fixation of the distal radius, with complication rates comparable to other non-operative and operative treatment modalities. On this basis we recommend this mode of fixation for distal radius fractures requiting operative intervention. PMID:22280557
Mid-term functional outcome after the internal fixation of distal radius fractures.
Phadnis, Joideep; Trompeter, Alex; Gallagher, Kieran; Bradshaw, Lucy; Elliott, David S; Newman, Kevin J
2012-01-26
Distal radius fracture is a common injury with a variety of operative and non-operative management options. There remains debate as to the optimal treatment for a given patient and fracture. Despite the popularity of volar locking plate fixation, there are few large cohort or long term follow up studies to justify this modality. Our aim was to report the functional outcome of a large number of patients at a significant follow up time after fixation of their distal radius with a volar locking plate. 180 patients with 183 fractures and a mean age of 62.4 years were followed up retrospectively at a mean of 30 months (Standard deviation=10.4). Functional assessment was performed using the Disabilities of the Arm, Shoulder and Hand (DASH) and modified MAYO wrist scores. Statistical analysis was performed to identify possible variables affecting outcome and radiographs were assessed to determine time to fracture union. The median DASH score was 2.3 and median MAYO score was 90 for the whole group. Overall, 133 patients (74%) had a good or excellent DASH and MAYO score. Statistical analysis showed that no specific variable including gender, age, fracture type, post-operative immobilisation or surgeon grade significantly affected outcome. Complications occurred in 27 patients (15%) and in 11 patients were major (6%). This single centre large population series demonstrates good to excellent results in the majority of patients after volar locking plate fixation of the distal radius, with complication rates comparable to other non-operative and operative treatment modalities. On this basis we recommend this mode of fixation for distal radius fractures requiting operative intervention.
Pleasure and pain: the effect of (almost) having an orgasm on genital and nongenital sensitivity.
Paterson, Laurel Q P; Amsel, Rhonda; Binik, Yitzchak M
2013-06-01
The effect of sexual arousal and orgasm on genital sensitivity has received little research attention, and no study has assessed sensation pleasurableness as well as painfulness. To clarify the relationship between sexual arousal, orgasm, and sensitivity in a healthy female sample. Twenty-six women privately masturbated to orgasm and almost to orgasm at two separate sessions, during which standardized pressure stimulation was applied to the glans clitoris, vulvar vestibule, and volar forearm at three testing times: (i) baseline; (ii) immediately following masturbation; and (iii) following a subsequent 15-minute rest period. Touch thresholds (tactile detection sensitivity), sensation pleasurableness ratings (pleasurable sensitivity), and pain thresholds (pain sensitivity). Pleasurableness ratings were higher on the glans clitoris than the vulvar vestibule, and at most testing times on the vulvar vestibule than the volar forearm; and at baseline and immediately after masturbation than 15 minutes later, mainly on the genital locations only. Pain thresholds were lower on the genital locations than the volar forearm, and immediately and 15 minutes after masturbation than at baseline. After orgasm, genital pleasurableness ratings and vulvar vestibular pain thresholds were lower than after masturbation almost to orgasm. Post-masturbation pleasurableness ratings were positively correlated with pain thresholds but only on the glans clitoris. Hormonal contraception users had lower pleasurableness ratings and pain thresholds on all locations than nonusers. There were no significant effects for touch thresholds. Masturbation appears to maintain pleasurable genital sensitivity but increase pain sensitivity, with lower genital pleasurable sensitivity and higher vulvar vestibular pain sensitivity when orgasm occurs. Findings suggest that enhancing stimulation pleasurableness, psychological sexual arousal and lubrication mitigate normative increases in pain sensitivity during sexual activity, and underscore the importance of measuring both pleasure and pain in sensation research. © 2013 International Society for Sexual Medicine.
Weninger, Patrick; Dall'Ara, Enrico; Drobetz, Herwig; Nemec, Wolfgang; Figl, Markus; Redl, Heinz; Hertz, Harald; Zysset, Philippe
2011-01-01
Volar fixed-angle plating is a popular treatment for unstable distal radius fractures. Despite the availability of plating systems for treating distal radius fractures, little is known about the mechanical properties of multidirectional fixed-angle plates. The aim of this study was to compare the primary fixation stability of three possible screw configurations in a distal extra-articular fracture model using a multidirectional fixed-angle plate with metaphyseal cancellous screws distally. Eighteen Sawbones radii (Sawbones, Sweden, model# 1027) were used to simulate an extra-articular distal radius fracture according to AO/OTA 23 A3. Plates were fixed to the shaft with one non-locking screw in the oval hole and two locking screws as recommended by the manufacturer. Three groups (n = 6) were defined by screw configuration in the distal metaphyseal fragment: Group 1: distal row of screws only; Group 2: 2 rows of screws, parallel insertion; Group 3: 2 rows of screws, proximal screws inserted with 30° of inclination. Specimens underwent mechanical testing under axial compression within the elastic range and load controlled between 20 N and 200 N at a rate of 40 N/s. Axial stiffness and type of construct failure were recorded. There was no difference regarding axial stiffness between the three groups. In every specimen, failure of the Sawbone-implant-construct occurred as plastic bending of the volar titanium plate when the dorsal wedge was closed. Considering the limitations of the study, the recommendation to use two rows of screws or to place screws in the proximal metaphyseal row with inclination cannot be supported by our mechanical data.
Liverneaux, P; Ichihara, S; Facca, S; Hidalgo Diaz, J J
2016-12-01
Minimally invasive plate osteosynthesis (MIPO) has been used in recent years to treat fractures of the distal radius with volar locking plates. Its advantages are the preservation of the pronator quadratus and good esthetics. The MIPO technique was described originally with two incisions: one distal transverse or longitudinal incision and one proximal longitudinal incision. The trend is now to use a single longitudinal incision less than 20mm long. Functional and radiological outcomes are comparable to those of conventional techniques. The MIPO technique is indicated for extra-articular and intra-articular fractures. Arthroscopy may be used concurrently in the latter case. When the distal radius fracture is associated with a proximal shaft fracture, a double incision is needed to introduce a longer plate. The relative contraindications of the MIPO technique are comminuted intra-articular fractures in osteoporotic elderly patients. If reduction is problematic, a larger incision can easily be made. Copyright © 2016 SFCM. Published by Elsevier Masson SAS. All rights reserved.
ERIC Educational Resources Information Center
Rueckner, Wolfgang; And Others
1995-01-01
Describes a demonstration in which a ball is placed in an unstable position on a saddle shape. The ball becomes stable when it is rotated above some threshold angular velocity. The demonstration is a mechanical analog of confining a particle in a "Paul Trap". (DDR)
The Development and Airborne Testing of the PALE Seat.
1981-06-20
Development Center 02 Comptroller 10 Directorate Command Projects 20 Systems Directorate 30 Sensors & Avionics Technology Directorate 40 Communication...31. Horten, W.M.: Para volar a bajo precio: el planeador motorizando tipo ala volante. Rev. Nacional de Aeronautics 2:6:70-72, Buenos Aires, 1949. 91
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Jun, E-mail: pengjun@cimm.com.cn; Zhang, Li, E-mail: zhangli@cimm.com.cn; School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing
The moment of inertia calibration system is developed by Changcheng Institute of Metrology and Measurement (CIMM). Rotation table - torsional spring system is used to generate angular vibration, and laser vibrometer is used to measure rotational angle and the vibration period. The object to be measured is mounted on the top of the rotation table. The air-bearing system is elaborately manufactured which reduce the friction of the angular movement and increase measurement accuracy. Heterodyne laser interferometer collaborates with column diffraction grating is used in the measurement of angular movement. Experiment shows the method of measuring oscillating angle and period introducedmore » in this paper is stable and the time resolution is high. When the air damping effect can’t be neglected in moment of inertia measurement, the periodic waveform area ratio method is introduced to calculate damping ratio and obtain the moment of inertia.« less
On smoothness of black saturns
NASA Astrophysics Data System (ADS)
Chruściel, Piotr T.; Eckstein, Michał; Szybka, Sebastian J.
2010-11-01
We prove smoothness of the domain of outer communications (d.o.c.) of the Black Saturn solutions of Elvang and Figueras. We show that the metric on the d.o.c. extends smoothly across two disjoint event horizons with topology mathbb{R} × {S^3} and mathbb{R} × {S^1} × {S^2} . We establish stable causality of the d.o.c. when the Komar angular momentum of the spherical component of the horizon vanishes, and present numerical evidence for stable causality in general.
Five degrees of freedom linear state-space representation of electrodynamic thrust bearings
NASA Astrophysics Data System (ADS)
Van Verdeghem, J.; Kluyskens, V.; Dehez, B.
2017-09-01
Electrodynamic bearings can provide stable and contactless levitation of rotors while operating at room temperatures. Depending solely on passive phenomena, specific models have to be developed to study the forces they exert and the resulting rotordynamics. In recent years, models allowing us to describe the axial dynamics of a large range of electrodynamic thrust bearings have been derived. However, these bearings being devised to be integrated into fully magnetic suspensions, the existing models still suffer from restrictions. Indeed, assuming the spin speed as varying slowly, a rigid rotor is characterised by five independent degrees of freedom whereas early models only considered the axial degree. This paper presents a model free of the previous limitations. It consists in a linear state-space representation describing the rotor's complete dynamics by considering the impact of the rotor axial, radial and angular displacements as well as the gyroscopic effects. This set of ten equations depends on twenty parameters whose identification can be easily performed through static finite element simulations or quasi-static experimental measurements. The model stresses the intrinsic decoupling between the axial dynamics and the other degrees of freedom as well as the existence of electrodynamic angular torques restoring the rotor to its nominal position. Finally, a stability analysis performed on the model highlights the presence of two conical whirling modes related to the angular dynamics, namely the nutation and precession motions. The former, whose intrinsic stability depends on the ratio between polar and transverse moments of inertia, can be easily stabilised through external damping whereas the latter, which is stable up to an instability threshold linked to the angular electrodynamic cross-coupling stiffness, is less impacted by that damping.
Magnetohydrodynamic stability of stochastically driven accretion flows.
Nath, Sujit Kumar; Mukhopadhyay, Banibrata; Chattopadhyay, Amit K
2013-07-01
We investigate the evolution of magnetohydrodynamic (or hydromagnetic as coined by Chandrasekhar) perturbations in the presence of stochastic noise in rotating shear flows. The particular emphasis is the flows whose angular velocity decreases but specific angular momentum increases with increasing radial coordinate. Such flows, however, are Rayleigh stable but must be turbulent in order to explain astrophysical observed data and, hence, reveal a mismatch between the linear theory and observations and experiments. The mismatch seems to have been resolved, at least in certain regimes, in the presence of a weak magnetic field, revealing magnetorotational instability. The present work explores the effects of stochastic noise on such magnetohydrodynamic flows, in order to resolve the above mismatch generically for the hot flows. We essentially concentrate on a small section of such a flow which is nothing but a plane shear flow supplemented by the Coriolis effect, mimicking a small section of an astrophysical accretion disk around a compact object. It is found that such stochastically driven flows exhibit large temporal and spatial autocorrelations and cross-correlations of perturbation and, hence, large energy dissipations of perturbation, which generate instability. Interestingly, autocorrelations and cross-correlations appear independent of background angular velocity profiles, which are Rayleigh stable, indicating their universality. This work initiates our attempt to understand the evolution of three-dimensional hydromagnetic perturbations in rotating shear flows in the presence of stochastic noise.
Singularities in Dromo formulation. Analysis of deep flybys
NASA Astrophysics Data System (ADS)
Roa, Javier; Sanjurjo-Rivo, Manuel; Peláez, Jesús
2015-08-01
The singularities in Dromo are characterized in this paper, both from an analytical and a numerical perspective. When the angular momentum vanishes, Dromo may encounter a singularity in the evolution equations. The cancellation of the angular momentum occurs in very specific situations and may be caused by the action of strong perturbations. The gravitational attraction of a perturbing planet may lead to rapid changes in the angular momentum of the particle. In practice, this situation may be encountered during deep planetocentric flybys. The performance of Dromo is evaluated in different scenarios. First, Dromo is validated for integrating the orbit of Near Earth Asteroids. Resulting errors are of the order of the diameter of the asteroid. Second, a set of theoretical flybys are designed for analyzing the performance of the formulation in the vicinity of the singularity. New sets of Dromo variables are proposed in order to minimize the dependency of Dromo on the angular momentum. A slower time scale is introduced, leading to a more stable description of the flyby phase. Improvements in the overall performance of the algorithm are observed when integrating orbits close to the singularity.
Effects of stimulation technique, anatomical region and time on human sweat lipid mediator profiles.
USDA-ARS?s Scientific Manuscript database
Few studies compare sampling protocol effect on sweat composition. Here we evaluate the impact of sweat stimulation mode and site of collection on lipid mediator composition. Sweat from healthy males (n = 7) was collected weekly for three weeks from the volar forearm following either pilocarpine ion...
NASA Astrophysics Data System (ADS)
Deng, Bin; Wright, Colin; Lewis-Clark, Eric; Shaheen, G.; Geier, Roman; Chaiken, J.
2010-02-01
Human transdermal in vivo spectroscopic applications for tissue analysis involving near infrared (NIR) light often must contend with broadband NIR fluorescence that, depending on what kind of spectroscopy is being employed, can degrade signal to noise ratios and dynamic range. Such NIR fluorescence, i.e. "autofluorescence" is well known to originate in blood tissues and various other endogenous materials associated with the static tissues. Results of recent experiments on human volar side fingertips in vivo are beginning to provide a relative ordering of the contributions from various sources. Preliminary results involving the variation in the bleaching effect across different individuals suggest that for 830 nm excitation well over half of the total fluorescence comes from the static tissues and remainder originates with the blood tissues, i.e. the plasma and the hematocrit. Of the NIR fluorescence associated with the static tissue, over half originates with products of well-known post-enzymatic glycation reactions, i.e. Maillard chemistry, in the skin involving glucose and other carbohydrates and skin proteins like collagen and cytosol proteins.
Achromatic vector vortex beams from a glass cone
Radwell, N.; Hawley, R. D.; Götte, J. B.; Franke-Arnold, S.
2016-01-01
The reflection of light is governed by the laws first described by Augustin-Jean Fresnel: on internal reflection, light acquires a phase shift, which depends on its polarization direction with respect to the plane of incidence. For a conical reflector, the cylindrical symmetry is echoed in an angular variation of this phase shift, allowing us to create light modes with phase and polarization singularities. Here we observe the phase and polarization profiles of light that is back reflected from a solid glass cone and, in the case of circular input light, discover that not only does the beam contain orbital angular momentum but can trivially be converted to a radially polarized beam. Importantly, the Fresnel coefficients are reasonably stable across the visible spectrum, which we demonstrate by measuring white light polarization profiles. This discovery provides a highly cost-effective technique for the generation of broadband orbital angular momentum and radially polarized beams. PMID:26861191
Unique Properties and Prospects: Quantum Theory of the Orbital Angular Momentum of Ince-Gauss Beams
NASA Astrophysics Data System (ADS)
Plick, William; Krenn, Mario; Fickler, Robert; Ramelow, Sven; Zeilinger, Anton
2012-02-01
The Ince-Gauss modes represent a new addition to the standard solutions to the paraxial wave equation. Parametrized by the ellipticity of the beam, they span the solution space between the Hermite-Gauss and the Laguerre-Gauss modes. These beams may be decomposed in either basis, and single photons in the Ince-Gauss modes exist naturally as superpositions of either Laguerre-Gauss or Hermite-Gauss modes. We present the fully quantum theory of the orbital angular momentum of these beams. Interesting features that arise are: stable beams with fractional orbital angular momentum, non-monotonic behavior of the OAM with respect to ellipticity, and the possibility of orthogonal modes possessing the same OAM. We believe that these modes may open up a fully new parameter space for quantum informatics and communication, and thus are worthy of thorough study.
Top squark with mass close to the top quark
NASA Astrophysics Data System (ADS)
Buckley, Matthew R.; Plehn, Tilman; Ramsey-Musolf, Michael J.
2014-07-01
The most natural supersymmetric solution to the hierarchy problem prefers the scalar top partner to be close in mass to the top quark. Experimental searches exclude top squarks across a wide range of masses, but a gap remains when the difference between the masses of the stop and the lightest supersymmetric particle is close to the top mass. We propose to search for stops in this regime by exploiting the azimuthal angular correlation of forward tagging jets in (s)top pair production. As shown in earlier work, this correlation is sensitive to the spin of the heavy states, allowing one to distinguish between top and stop pair production. Here, we demonstrate that this angular information can give a statistically significant stop pair production signal in the upcoming LHC run. While the appropriate simulation including parton showering and detector simulation requires some care, we find stable predictions for the angular correlation using multijet merging.
Achromatic vector vortex beams from a glass cone
NASA Astrophysics Data System (ADS)
Radwell, N.; Hawley, R. D.; Götte, J. B.; Franke-Arnold, S.
2016-02-01
The reflection of light is governed by the laws first described by Augustin-Jean Fresnel: on internal reflection, light acquires a phase shift, which depends on its polarization direction with respect to the plane of incidence. For a conical reflector, the cylindrical symmetry is echoed in an angular variation of this phase shift, allowing us to create light modes with phase and polarization singularities. Here we observe the phase and polarization profiles of light that is back reflected from a solid glass cone and, in the case of circular input light, discover that not only does the beam contain orbital angular momentum but can trivially be converted to a radially polarized beam. Importantly, the Fresnel coefficients are reasonably stable across the visible spectrum, which we demonstrate by measuring white light polarization profiles. This discovery provides a highly cost-effective technique for the generation of broadband orbital angular momentum and radially polarized beams.
Gohn-Kreuz, Cristian; Rohrbach, Alexander
2016-03-21
Self-reconstruction of Bessel beams in inhomogeneous media is beneficial in light-sheet based microscopy. Although the beam's ring system enables propagation stability, the resulting image contrast is reduced. Here, we show that by a combination of two self-reconstructing beams with different orbital angular momenta it is possible to inhibit fluorescence from the ring system by using stimulated emission depletion (STED) even in strongly scattering media. Our theoretical study shows that the remaining fluorescence γ depends non-linearly on the beams' relative radial and orbital angular momenta. For various scattering media we demonstrate that γ remains remarkably stable over long beam propagation distances.
Ono, Hiroshi; Furuta, Kazuhiko; Fujitani, Ryotaro; Katayama, Takeshi; Akahane, Manabu
2010-07-01
The purpose of this study was to assess articular surface reduction arthroscopically after volar locked-plate fixation of distal radius fractures (DRFs) via fluoroscopyguided open reduction/internal fixation. We also aimed to develop preoperative radiographic criteria to help assist in determining which DRFs may need arthroscopic evaluation. A total of 31 consecutive patients with DRF were prospectively enrolled. Posteroanterior (PA) and lateral radiographs as well as axial, coronal, and sagittal CT scans were obtained just after attempted reduction of the DRF. The widest articular displacement at the radiocarpal joint surface of the distal radius (preopD) was then measured using a digital radiography imaging system. The DRF was reduced under fluoroscopy, and a volar locked plate was applied. The degree of residual articular displacement was then measured arthroscopically, and the maximum displacement (postopD) was measured with a calibrated probe. Of the 31 patients, 7 had an arthroscopically assessed maximum postopD of > or = 2 mm after internal fixation. The correlation coefficients between each preopD and postopD of all radiographs and CTs were statistically significant. The cutoff values were 0.5 mm for PA radiographs, 2.10 mm for lateral radiographs, 2.15 mm for axial CT scans, 3.15 mm for coronal CT scans, and 1.20 mm for sagittal CT scans. All cutoff values for PA and lateral radiographs and for axial, coronal, and sagittal CT scans were unsuitable as screening criteria for arthroscopic reduction of DRF because of their low sensitivities and specificities. The cutoff value of the new preopD (the sum of the preopDs determined by lateral radiography and coronal CT scan) was 5.80 mm, and its sensitivity and specificity were 100% and 83.3%, respectively. Because a new preopD cutoff value of 5.80 mm is a good indicator for residual articular displacement after internal fixation of >2 mm, it is also a good indicator for the need for arthroscopic evaluation after internal fixation.
Mugnai, Raffaele; Tarallo, Luigi; Capra, Francesco; Catani, Fabio
2018-05-25
As the popularity of volar locked plate fixation for distal radius fractures has increased, so have the number and variety of implants, including variations in plate design, the size and angle of the screws, the locking screw mechanism, and the material of the plates. carbon-fiber reinforced polyetheretherketone (CFR-PEEK) plate features similar biomechanical properties to metallic plates, representing, therefore, an optimal alternative for the treatment of distal radius fractures. three different materials-composed plates were evaluated: stainless steel volar lateral column (Zimmer); titanium DVR (Hand Innovations); CFR-PEEK DiPHOS-RM (Lima Corporate). Six plates for each type were implanted in sawbones and an extra-articular rectangular osteotomy was created. Three plates for each material were tested for load to failure and bending stiffness in axial compression. Moreover, 3 constructs for each plate were evaluated after dynamically loading for 6000 cycles of fatigue. the mean bending stiffness pre-fatigue was significantly higher for the stainless steel plate. The titanium plate yielded the higher load to failure both pre and post fatigue. After cyclic loading, the bending stiffness increased by a mean of 24% for the stainless steel plate; 33% for the titanium; and 17% for the CFR-PEEK plate. The mean load to failure post-fatigue increased by a mean of 10% for the stainless steel and 14% for CFR-PEEK plates, whereas it decreased (-16%) for the titanium plate. Statistical analysis between groups reported significant values (p <.001) for all comparisons except for Hand Innovations vs. Zimmer bending stiffness post fatigue (p = .197). the significant higher load to failure of the titanium plate, makes it indicated for patients with higher functional requirements or at higher risk of trauma in the post-operative period. The CFR-PEEK plate showed material-specific disadvantages, represented by little tolerance to plastic deformation, and lower load to failure. N/A. Copyright © 2018. Published by Elsevier Masson SAS.
Bajwa, Ali S.; Rammappa, Manju; Lee, Ling; Nanda, Rajesh
2015-01-01
Introduction: Distal radius fracture (DRF) is a common injury and various treatment modalities including open reduction and internal fixation (ORIF) with volar locking plate are available. More recently, a non-invasive external fixator has been used. Aims: To prospectively compare the use of a non-invasive external fixator with early dynamisation for DRF against ORIF with volar locking plate control group. Methods: Consecutive patients with closed DRF were included in a prospective case-controlled study. Patients were assigned to non-invasive external fixator or ORIF. Minimum follow-up was two years. Follow-up was at weeks 2, 4, 6, 8, 12, 26 and at one and two-year post-operatively. The outcome measures included demographic details, injury mechanism, AO fracture type, risk factors, body mass index (BMI), ulnar styloid fracture and dorsal comminution, radiographs, grip strength and DASH score. Results: Consecutive 50 patients were treated either with non-invasive external fixator (25/50) or with ORIF (25/50) and the mean age of the two groups was 53 years (SD 17.1) and 49 years (SD 19.5), respectively. Demographics were matched in two groups. In the non-invasive external fixator group, there were 10 AO Type-A, 5 Type-B and 10 Type-C fractures. The ORIF group included 8 Type-A, 6 Type-B and 11 Type-C fractures. The mean DASH score at three-months and one-year post-injury in non-invasive fixator group was 12.2 (SD 3.1) and 3.5 (SD 0.7), respectively, significantly greater than those of ORIF group 14.5 (SD 5.6) and 11.2 (SD 4.4), respectively (p < 0.05). Conclusion: DRF treated with non-invasive external fixator can give functional results superior to ORIF at three-months and the trend is maintained at one and two-year post-operatively. PMID:27163089
Manske, M Claire; Wall, Lindley B; Steffen, Jennifer A; Goldfarb, Charles A
2014-05-01
To assess recurrence and complications in children with radial longitudinal deficiency treated with or without external fixator soft tissue distraction prior to centralization. Thirteen upper extremities treated with centralization alone were compared with 13 treated with ring fixator distraction followed by centralization. Resting wrist position between the 2 groups was compared before surgery, approximately 2 years after surgery (midterm), and at final follow-up, which was at a mean of 10 years for the centralization-alone group and 6 years for the distraction group. Radiographs were reviewed for hand-forearm angle, hand-forearm position, volar carpal subluxation, ulnar length, and physeal integrity. The clinical resting wrist position was improved significantly after surgery and at final follow-up in both groups, but recurrence was worse at final follow-up in the distraction group patients. Radiographically, in the centralization alone group, the hand-forearm angle improved from 53° before surgery to 13° at midterm but worsened to 27° at final follow-up. In the distraction group, the hand-forearm angle improved from 53° before surgery to 21° at midterm but worsened to 36° at final follow-up. The hand-forearm position improved between preoperative and final assessment in both groups, but at final follow-up, the centralization-alone group had a significantly better position. Volar subluxation was 4 mm improved in the centralization alone group and 2 mm worse in the distraction group at final follow-up. Centralization, with or without distraction with an external fixator, resulted in improved alignment of the wrist. Distraction facilitated centralization, but it did not prevent deformity recurrence and was associated with a worse final radial deviation and volar subluxation position compared with wrists treated with centralization alone. Therapeutic III. Copyright © 2014 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Knežević, Josip; Kodvanj, Janoš; Čukelj, Fabijan; Pamuković, Frane; Pavić, Arsen
2017-11-01
To compare the finite element models of two different composite radius fracture patterns, reduced and stabilised with four different fixed-angle dorsal plates during axial, dorsal and volar loading conditions. Eight different plastic models representing four AO/ASIF type 23-A3 distal radius fractures and four AO/ASIF 23-C2 distal radius fractures were obtained and fixed each with 1 of 4 methods: a standard dorsal non-anatomical fixed angle T-plate (3.5mm Dorsal T-plate, Synthes), anatomical fixed-angle double plates (2.4mm LCP Dorsal Distal Radius, Synthes), anatomical fixed angle T-plate (2.4mm Acu-Loc Dorsal Plate, Acumed) or anatomical variable-angle dorsal T-plate (3.5mm, Dorsal Plate, Zrinski). Composite radius with plate and screws were scanned with a 3D optical scanner and later processed in Abaqus Software to generate the finite element model. All models were axially loaded at 3 points (centrally, volarly and dorsally) with 50 N forces to avoid the appearance of plastic deformations of the models. Total displacements at the end of the bone and the stresses in the bones and plates were determined and compared. Maximal von Mises stress in bone for 3-part fracture models was very similar to that in 2-part fracture models. The biggest difference between models and the largest displacements were seen during volar loading. The stresses in all models were the highest above the fracture gap. The best performance in all parameters tested was with the Zrinski plate and the most modest results were with the Synthes T-plate. There was no significant difference between 2-part (AO/ASIF type 23-A3) and 3-part (AO/ASIF 23-C2) fracture models. Maximal stresses in the plates appeared above the fracture gap; therefore, it is worth considering the development of plates without screw holes above the gap. © 2017 Elsevier Ltd. All rights reserved.
Sawada, Hideyoshi; Shinohara, Takaaki; Natsume, Tadahiro; Hirata, Hitoshi
2016-11-01
Ulnar styloid fractures are often associated with distal radius fractures. However, controversy exists regarding whether to treat ulnar styloid fractures. This study aimed to evaluate clinical effects of internal fixation for ulnar styloid fractures after distal radius fractures were treated with the volar locking plate system. We used prospectively collected data of distal radius fractures. 111 patients were enrolled in this study. A matched case-control study design was used. We selected patients who underwent fixation for ulnar styloid fractures (case group). Three control patients for each patient of the case group were matched on the basis of age, sex, and fracture type of distal radius fractures from among patients who did not undergo fixation for ulnar styloid fractures (control group). The case group included 16 patients (7 men, 9 women; mean age: 52.6 years; classification of ulnar styloid fractures: center, 3; base, 11; and proximal, 2). The control group included 48 patients (15 men, 33 women; mean age: 61.1 years; classification of ulnar styloid fractures: center, 10; base, 31; and proximal, 7). For radiographic examination, the volar tilt angle, radial inclination angle, and ulnar variance length were measured, and the union of ulnar styloid fractures was judged. For clinical examination, the range of motions, grip strength, Hand20 score, and Numeric Rating Scale score were evaluated. There was little correction loss for each radiological parameter of fracture reduction, and these parameters were not significantly different between the groups. The bone-healing rate of ulnar styloid fractures was significantly higher in the case group than in the control group, but the clinical results were not significantly different. We revealed that there was no need to fix ulnar styloid fractures when distal radius fractures were treated via open reduction and internal fixation with a volar locking plate system. Copyright © 2016 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.
Artificial tektites: an experimental technique for capturing the shapes of spinning drops
NASA Astrophysics Data System (ADS)
Baldwin, K. A.
2014-12-01
Tektites are small stones formed from rapidly cooling drops of molten rock ejected from high velocity asteroid impacts with the Earth, that freeze into a myriad of shapes during flight. Many splash-form tektites have an elongated or dumb-bell shape owing to their rotation prior to solidification[1]. Here we present a novel method for creating 'artificial tektites' from spinning drops of molten wax, using diamagnetic levitation to suspend the drops[2]. We find that the solid wax models produced this way are the stable equilibrium shapes of a spinning liquid droplet held together by surface tension. In addition to the geophysical interest in tektite formation, the stable equilibrium shapes of liquid drops have implications for many physical phenomena, covering a wide range of length scales, from nuclear physics (e.g. in studies of rapidly rotating atomic nuclei), to astrophysics (e.g. in studies of the shapes of astronomical bodies such as asteroids, rapidly rotating stars and event horizons of rotating black holes). For liquid drops bound by surface tension, analytical and numerical methods predict a series of stable equilibrium shapes with increasing angular momentum. Slowly spinning drops have an oblate-like shape. With increasing angular momentum these shapes become secularly unstable to a series of triaxial pseudo-ellipsoids that then evolve into a family of two-lobed 'dumb-bell' shapes as the angular momentum is increased still further. Our experimental method allows accurate measurements of the drops to be taken, which are useful to validate numerical models. This method has provided a means for observing tektite formation, and has additionally confirmed experimentally the stable equilibrium shapes of liquid drops, distinct from the equivalent shapes of rotating astronomical bodies. Potentially, this technique could be applied to observe the non-equilibrium dynamic processes that are also important in real tektite formation, involving, e.g. viscoelastic effects, non-uniform solidification, surface wrinkling (Schlieren), and rapid separation/fission of dumb-bells via the Rayleigh-Plateau instability. [1] M. R. Stauffer and S. L. Butler, Earth Moon Planets, 107, 169 (2009). [2] R. J. A. Hill and L. Eaves, Phys. Rev. Lett. 101, 234501 (2008).
NASA Technical Reports Server (NTRS)
Ames, Lawrence L. (Inventor)
2006-01-01
An optical component especially suited for common path heterodyne interferometry comprises a symmetric dual-periscope configuration. Each periscope is substantially identical to the other with regard to certain design aspects. The resulting design is an optical component that is highly stable with variations in temperature and angular deviations.
``Stable'' Quasi-periodic Oscillations and Black Hole Properties from Diskoseismology
NASA Astrophysics Data System (ADS)
Wagoner, Robert V.; Silbergleit, Alexander S.; Ortega-Rodríguez, Manuel
2001-09-01
We compare our calculations of the frequencies of the fundamental g-, c-, and p-modes of relativistic thin accretion disks with recent observations of high-frequency quasi-periodic oscillations (QPOs) in X-ray binaries with black hole candidates. These classes of modes encompass all adiabatic perturbations of such disks. The frequencies of these modes depend mainly on the mass and angular momentum of the black hole; their weak dependence on disk luminosity is also explicitly indicated. Identifying the recently discovered, relatively stable QPO pairs with the fundamental g- and c-modes provides a determination of the mass and angular momentum of the black hole. For GRO J1655-40, M=5.9+/-1.0 Msolar and J=(0.917+/-0.024)GM2/c, in agreement with spectroscopic mass determinations. For GRS 1915+105, M=42.4+/-7.0 Msolar and J=(0.926+/-0.020)GM2/c or (less favored) M=18.2+/-3.1 Msolar and J=(0.701+/-0.043)GM2/c. We briefly address the issues of the amplitude, frequency width, and energy dependence of these QPOs.
Fixation of osteoporotic fractures in the upper limb with a locking compression plate.
Neuhaus, V; King, J D; Jupiter, J B
2012-01-01
Locking Compression Plate (LCP) has the advantageous feature that screws can be locked in the plate leaving an angular stable construct. There is no need to have contact between the plate and the bone to achieve stability resulting from friction of the plate-bone-construct. Therefore the plate does not need to be contoured exactly to the bone and the healing bone's periosteal blood supply is not affected. The LCP is used as a bridging plate to gain relative stability in multi-fragmentary, diaphyseal or metaphyseal fractures. Depending on the fracture, the combination hole can also allow the LCP to achieve absolute stability similar to conventional fixation techniques. Osteoporotic fractures have significant impact on morbidity and mortality. Proximal humeral and distal radius fractures are typical examples. These osteoporotic and often comminuted fractures are ideal settings/indications for LCP utilization in the upper extremity. However, the data quality is due to mostly small study populations not so powerful. Unquestionably there has been a clear and fashionable trend to choose operative treatment for these fractures, because the angular stability allows stable fixation and early functional mobilization.
Angular color uniformity enhancement of white light-emitting diodes integrated with freeform lenses.
Wang, Kai; Wu, Dan; Chen, Fei; Liu, Zongyuan; Luo, Xiaobing; Liu, Sheng
2010-06-01
We demonstrate a freeform lens to enhance the angular color uniformity (ACU) of white light-emitting diodes (LEDs) whose phosphor layers were coated by freely dispersed coating processes. Monte Carlo ray tracing simulation results indicated that the ACU of the modified LED integrated with the freeform lens significantly increased from 0.334 to 0.957, compared with the traditional LED. Enhancement of ACU reached as high as 186.5%. Moreover, the ACU of the modified LED was not only at a high level, but also stable when the shape of the phosphor layer changed. The freeform lens provided an effective way to achieve white LEDs with high ACU at low cost.
Spross, Christian; Zeledon, Rebeca; Zdravkovic, Vilijam; Jost, Bernhard
2017-09-01
With the introduction of the deltoid tuberosity index (DTI), a simple radiographic tool has become available to measure bone mineral density of the proximal humerus. The aim of this study was to assess the influence of local bone mineral density on the early failure rate after angular stable open reduction-internal fixation of proximal humeral fractures (PHFs). We retrospectively followed up all patients treated with angular stable implants for PHFs from 2007 to 2014. The fractures were classified according to Neer, and the DTI, metaphyseal head extension (MHE), medial hinge displacement, and quality of reduction were assessed. Failures were defined as head screw cutouts. The study included 146 patients (mean age, 66 years; range, 20-94 years). The mean follow-up period was 11 months (range, 3-94 months). Of the fractures, 91% were classified as 2- or 3-part fractures and 9% as 4-part fractures. The mean DTI was 1.44 (range, 1.19-2.11), and the mean MHE was 12 mm (range, 0-48 mm). The reduction result was at least acceptable in 80% of fractures. Screw cutouts were found in 23%. The DTI and MHE were the most significant preoperative predictors for the reduction result. The DTI (P = .036) and age (P = .02) were independent preoperative factors, and a good reduction (P = .001) was the only intraoperative factor influencing cutout. This study proves that good bone quality and a long MHE are helpful for the reduction. Furthermore, good bone quality, a younger age, and a good reduction prevent later cutout. We conclude that local bone quality is a relevant factor in the treatment plan for PHFs. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
A rough end for smooth microstate geometries
Marolf, Donald; Michel, Ben; Puhm, Andrea
2017-05-03
Supersymmetric microstate geometries with five non-compact dimensions have recently been shown by Eperon, Reall, and Santos (ERS) to exhibit a non-linear instability featuring the growth of excitations at an “evanescent ergosurface” of infinite redshift. We argue that this growth may be treated as adiabatic evolution along a family of exactly supersymmetric solutions in the limit where the excitations are Aichelburg-Sexl-like shockwaves. In the 2-charge system such solutions may be constructed explicitly, incorpo-rating full backreaction, and are in fact special cases of known microstate geometries. In a near-horizon limit, they reduce to Aichelburg-Sexl shockwaves in AdS 3 × S 3 propagatingmore » along one of the angular directions of the sphere. Noting that the ERS analysis is valid in the limit of large microstate angular momentum j, we use the above identification to interpret their instability as a transition from rare smooth microstates with large angular momentum to more typical microstates with smaller angular momentum. This entropic driving terminates when the angular momentum decreases to j~√n 1n 5 where the density of microstates is maximal. Finally, we argue that, at this point, the large stringy corrections to such microstates will render them non-linearly stable. We identify a possible mechanism for this stabilization and detail an illustrative toy model.« less
The Power of a Soccer Ball: A Traumatic Open Finger Dislocation-A Rare Case Presentation.
Dülgeroğlu, Turan Cihan; Metineren, Hasan; Aydın, Ekrem; Dülgeroğlu, Ayşegül
2015-01-01
Proximal interphalangeal joint dislocations are injuries observed frequently and caused by axial loading on the finger in the extension. In this paper we present a traumatic open finger dislocation due to a ball hitting a wrestler. It was successfully treated with reduction and the volar plate and collateral bond fixation were applied with absorbable sutures.
Skin hydration in postmenopausal women: argan oil benefit with oral and/or topical use.
Boucetta, Kenza Qiraouani; Charrouf, Zoubida; Derouiche, Abdelfattah; Rahali, Younes; Bensouda, Yahya
2014-10-01
The aim of this study was to evaluate the effect of daily consumption and/or application of argan oil on skin hydration in postmenopausal women. Sixty postmenopausal women consumed butter during the stabilization period and were randomly divided into two groups for the intervention period: the treatment group absorbed alimentary argan oil (n = 30) and the control group olive oil (n = 30). Both groups applied cosmetic argan oil in the left volar forearm during a sixty days' period. Evaluation of skin hydration, i.e. transepidermal water loss (TEWL) and water content of the epidermis (WCE) on both volar forearms of the two groups, were performed during three visits at D0, D30 and after sixty days (D60) of oils treatment. The consumption of argan oil has led to a significant decrease in TEWL (p = 0.023) and a significant increase in WCE (p = 0.001). The application of argan oil has led to a significant decrease in TEWL (p = 0.01) and a significant increase in WCE (p < 0.001). Our findings suggest that the daily consumption and application of argan oil have improved the skin hydration by restoring the barrier function and maintaining the water-holding capacity.
High rate of complications following volar plating of distal radius fractures.
Knudsen, Roland; Bahadirov, Zafar; Damborg, Frank
2014-10-01
Fracture of the distal radius (DRF) is one of the most common fractures treated by orthopaedic surgeons. The most common operative treatments of these fractures are open reduction and internal fixation. The incidents and types of complications associated with the use of these operations have not been studied in detail. We performed a retrospective study documenting types of complications and their occurrence in a group of patients who received open reduction and internal fixation. Our definition of a complication was a case in which the patient had one or more complications which required an operation, or suffered from complex regional pain syndrome, or skin healing problems lasting more than four weeks from the operation. A total of 165 patients were included. In all, 39 complications in 30 wrists were registered: i.e. 18% had a minimum of one complication. Our finding that 18% suffer from a serious complication when treated using a volar locking plate must be taken into consideration when surgeons choose between conservative or operative treatment for DRF treatment. A few other studies have looked at the incidents of complications and have reported similar results. not relevant. not relevant.
[Morphometric anatomic study and clinical significance of lunate fossa].
Aldemir, Cengiz; Önder, Merve; Doğan, Ali; Duygun, Fatih; Oğuz, Nurettin
2015-01-01
This study aims to investigate the depth, transverse and sagittal diameters of lunate fossa which is a significant structure of the wrist in terms of reducing the risk for volar plate screws, which are administered in distal radius fractures, from penetrating into the joint. Depth, transverse and sagittal diameters of lunate fossa in 50 right and 50 left adult dried radius bones without distal tip damage were measured by using MicroscribeG2X from the MicroScribe G series. Mean lunate fossa depth: left 2.419886±0.51 mm/right 2.543052±0.78 mm, mean lunate fossa sagittal diameter: left 19.656±1.57 mm/right 18.796±1.53 mm, mean lunate fossa transverse diameter: left 11.382±0.65 mm/right 11.106±0.91 mm. There was no statistically significant difference between right and left depth values of lunate fossa (p=0.320), whereas there was statistically significant difference between right and left transverse and sagittal diameters (p=0.006, p=0.048). Measurements involving depth of lunate fossa may guide the development of new anatomic plates and decrease complications like the penetration of screw into joint whilst volar plate administrations.
Gravitational-Wave Luminosity of Binary Neutron Stars Mergers
NASA Astrophysics Data System (ADS)
Zappa, Francesco; Bernuzzi, Sebastiano; Radice, David; Perego, Albino; Dietrich, Tim
2018-03-01
We study the gravitational-wave peak luminosity and radiated energy of quasicircular neutron star mergers using a large sample of numerical relativity simulations with different binary parameters and input physics. The peak luminosity for all the binaries can be described in terms of the mass ratio and of the leading-order post-Newtonian tidal parameter solely. The mergers resulting in a prompt collapse to black hole have the largest peak luminosities. However, the largest amount of energy per unit mass is radiated by mergers that produce a hypermassive neutron star or a massive neutron star remnant. We quantify the gravitational-wave luminosity of binary neutron star merger events, and set upper limits on the radiated energy and the remnant angular momentum from these events. We find that there is an empirical universal relation connecting the total gravitational radiation and the angular momentum of the remnant. Our results constrain the final spin of the remnant black hole and also indicate that stable neutron star remnant forms with super-Keplerian angular momentum.
Gravitational-Wave Luminosity of Binary Neutron Stars Mergers.
Zappa, Francesco; Bernuzzi, Sebastiano; Radice, David; Perego, Albino; Dietrich, Tim
2018-03-16
We study the gravitational-wave peak luminosity and radiated energy of quasicircular neutron star mergers using a large sample of numerical relativity simulations with different binary parameters and input physics. The peak luminosity for all the binaries can be described in terms of the mass ratio and of the leading-order post-Newtonian tidal parameter solely. The mergers resulting in a prompt collapse to black hole have the largest peak luminosities. However, the largest amount of energy per unit mass is radiated by mergers that produce a hypermassive neutron star or a massive neutron star remnant. We quantify the gravitational-wave luminosity of binary neutron star merger events, and set upper limits on the radiated energy and the remnant angular momentum from these events. We find that there is an empirical universal relation connecting the total gravitational radiation and the angular momentum of the remnant. Our results constrain the final spin of the remnant black hole and also indicate that stable neutron star remnant forms with super-Keplerian angular momentum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marolf, Donald; Palmer, Belkis Cabrera; Physics Department, Syracuse University, Syracuse, New York 13244
A thermodynamic argument is presented suggesting that near-extremal spinning D1-D5-P black strings become unstable when their angular momentum exceeds J{sub crit}=3Q{sub 1}Q{sub 5}/2{radical}(2). In contrast, the dimensionally reduced black holes are thermodynamically stable. The proposed instability involves a phase in which the spin angular momentum above J{sub crit} is transferred to gyration of the string in space, i.e., to orbital angular momentum of parts of the string about the mean location in space. Thus the string becomes a rotating helical coil. We note that an instability of this form would yield a counter-example to the Gubser-Mitra conjecture, which proposes amore » particular link between dynamic black string instabilities and the thermodynamics of black strings. There may also be other instabilities associated with radiation modes of various fields. Our arguments also apply to the D-brane bound states associated with these black strings in weakly coupled string theory.« less
Luebberding, S; Krueger, N; Kerscher, M
2013-10-01
Evidence is given that differences in skin physiological properties exist between men and women. However, despite an assessable number of available publications, the results are still inconsistent. Therefore, the aim of this clinical study is the first systematic assessment of gender-related differences in skin physiology in men and women, with a special focus on changes over lifetime. A total of 300 healthy male and female subjects (20-74 years) were selected following strict criteria including age, sun behaviour or smoking habits. TEWL, hydration level, sebum production and pH value were measured with worldwide-acknowledged biophysical measuring methods at forehead, cheek, neck, volar forearm and dorsum of hand. Until the age of 50 men's TEWL is significantly lower than the water loss of women of the same age, regardless of the location. With ageing gender-related differences in TEWL assimilate. Young men show higher SC hydration in comparison with women. But, whereas SC hydration is stable or even increasing in women over lifetime, the skin hydration in men is progressively decreasing, beginning at the age of 40. Sebum production in male skin is always higher and stays stable with increasing age, whereas sebum production in women progressively decreases over lifetime. Across all localizations and age groups, the pH value in men is below 5, the pH value of female subjects is, aside from limited expectations, higher than 5. Skin physiological distinctions between the sexes exist and are particularly remarkable with regard to sebum production and pH value. © 2013 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Reconstruction of the elbow and forearm for Ewing sarcoma of ulna: A new biological technique
Puri, Ajay; Gulia, Ashish; Byregowda, Suman; Ramanujan, Vishnu
2016-01-01
Primary bone tumors around the elbow represent <1% of all the skeletal tumors. Surgery with or without adjuvant therapy (radiotherapy, chemotherapy) is the treatment of choice for malignant tumors. Reconstruction of the elbow and forearm in malignant tumors is challenging as it involves a complex interplay between multiple joints which need to be stabilized for the optimal functional outcome. We describe a new technique for the reconstruction of the elbow after resection of a proximal ulna tumor with articular radio-ulnar synostosis with the creation of a single bone forearm. We attempted to achieve a mobile elbow and stable wrist joint with the radio-ulnar union at the proximal articular surface of the ulna resulting in a single bone forearm. The procedure involves an oblique osteotomy preserving the olecranon process (after taking adequate margins based on oncological principles) and its articular cartilage along with the attachment of the triceps tendon. Then the radial head was partially denuded of its cartilage using a burr, leaving cartilage only on the volar side, and then fused to the remnant olecranon. Osteosynthesis was done using compression screw and tension band wiring. The advantages of this procedure are that the mobility at wrist and elbow are retained, it requires minimal hardware and allows for primary closure of the wound. PMID:27186061
ERIC Educational Resources Information Center
Strip, Carol A.
Intended for parents of gifted children, this book, in Spanish, stresses the importance of positive relationships between parents and teachers as they work to meet children's academic, emotional, and social needs. Individual chapters address the following topics: (1) parenting the gifted child as a wild roller coaster ride; (2) determining whether…
DeGeorge, Brent R; Rodeheaver, George T; Drake, David B
2014-01-01
Devastating volar hand injuries with significant damage to the skin and soft tissues, pulley structures and fibro-osseous sheath, flexor tendons, and volar plates pose a major problem to the reconstructive hand surgeon. Despite advances in tendon handling, operative technique, and postoperative hand rehabilitation, patients who have undergone flexor tendon reconstruction are often plagued by chronic pain, stiffness, and decreased range of motion with resultant decreased ability to work and poor quality of life. In this article, we expand the technique of human composite flexor tendon allografts (CFTAs), pioneered by Dr E.E. Peacock, Jr, which consist of both the intrasynovial and extrasynovial flexor digitorum superficialis and flexor digitorum profundus tendons and their respective fibro-osseous sheath consisting of the digital pulley structures, periosteum, and volar plates procured from cadaveric donors with the use of modern tissue processing techniques. Human cadaveric CFTAs were procured and divided into 2 groups-unprocessed CFTAs and processed CFTAs, which are cleansed and sterilized to a sterility assurance level of 10(-6). Physical length and width relationships as well as tensile strength and gliding resistance assessments were recorded pre-tissue and post-tissue processing. The histologic properties of the composite allografts were assessed before and after tissue processing. There was no significant difference with respect to physical properties of the composite allografts before or after tissue processing. The processed composite allografts demonstrated equivalent maximum load to failure and elastic modulus compared to unprocessed tendons. The gliding resistance of the composite tendon allografts was not significantly different between the 2 groups. The use of CFTAs addresses the issues of adhesion formation and lack of suitable donor material by providing a source of intrasynovial tendon in its unaltered fibro-osseous sheath without donor morbidity. This approach represents an important step toward designing an ideal material for complex flexor tendon reconstruction, which takes advantage of an intrasynovial flexor tendon in its native fibro-osseous sheath without the need for additional donor morbidity using a construct which can be engineered to have minimal tissue reactivity, negligible potential for disease transmission, and improved tendon healing properties versus standard tendon allograft.
Ladd, Amy L; Lee, Julia; Hagert, Elisabet
2012-08-15
Stability and mobility represent the paradoxical demands of the human thumb carpometacarpal joint, yet the structural origin of each functional demand is poorly defined. As many as sixteen and as few as four ligaments have been described as primary stabilizers, but controversy exists as to which ligaments are most important. We hypothesized that a comparative macroscopic and microscopic analysis of the ligaments of the thumb carpometacarpal joint would further define their role in joint stability. Thirty cadaveric hands (ten fresh-frozen and twenty embalmed) from nineteen cadavers (eight female and eleven male; average age at the time of death, seventy-six years) were dissected, and the supporting ligaments of the thumb carpometacarpal joint were identified. Ligament width, length, and thickness were recorded for morphometric analysis and were compared with use of the Student t test. The dorsal and volar ligaments were excised from the fresh-frozen specimens and were stained with use of a triple-staining immunofluorescent technique and underwent semiquantitative analysis of sensory innervation; half of these specimens were additionally analyzed for histomorphometric data. Mixed-effects linear regression was used to estimate differences between ligaments. Seven principal ligaments of the thumb carpometacarpal joint were identified: three dorsal deltoid-shaped ligaments (dorsal radial, dorsal central, posterior oblique), two volar ligaments (anterior oblique and ulnar collateral), and two ulnar ligaments (dorsal trapeziometacarpal and intermetacarpal). The dorsal ligaments were significantly thicker (p < 0.001) than the volar ligaments, with a significantly greater cellularity and greater sensory innervation compared with the anterior oblique ligament (p < 0.001). The anterior oblique ligament was consistently a thin structure with a histologic appearance of capsular tissue with low cellularity. The dorsal deltoid ligament complex is uniformly stout and robust; this ligament complex is the thickest morphometrically, has the highest cellularity histologically, and shows the greatest degree of sensory nerve endings. The hypocellular anterior oblique ligament is thin, is variable in its location, and is more structurally consistent with a capsular structure than a proper ligament.
Costa, Matthew L; Achten, Juul; Parsons, Nick R; Rangan, Amar; Griffin, Damian; Tubeuf, Sandy; Lamb, Sarah E
2014-08-05
To compare the clinical effectiveness of Kirschner wire fixation with locking plate fixation for patients with a dorsally displaced fracture of the distal radius. A multicentre two arm parallel group assessor blind randomised controlled trial with 1:1 treatment allocation. 18 trauma centres in the United Kingdom. 461 adults with a dorsally displaced fracture of the distal radius within 3 cm of the radiocarpal joint that required surgical fixation. Patients were excluded if the surgeon thought that the surface of the wrist joint was so badly displaced it required open reduction. Kirschner wire fixation: wires are passed through the skin over the dorsal aspect of the distal radius and into the bone to hold the fracture in the correct anatomical position. Locking plate fixation: a locking plate is applied through an incision over the volar (palm) aspect of the wrist and secured to the bone with fixed angle locking screws. validated patient rated wrist evaluation (PRWE). This rates wrist function in two (equally weighted) sections concerning the patient's experience of pain and disability to give a score out of 100. disabilities of arm, shoulder, and hand (DASH) score, the EuroQol (EQ-5D), and complications related to the surgery. The baseline characteristics of the two groups were well balanced, and over 90% of patients completed follow-up. The wrist function of both groups of patients improved by 12 months. There was no clinically relevant difference in the patient rated wrist score at three, six, or 12 months (difference in favour of the plate group was -1.3, 95% confidence interval -4.5 to 1.8; P=0.40). Nor was there a clinically relevant difference in health related quality of life or the number of complications in each group. Contrary to the existing literature, and against the rapidly increasing use of locking plate fixation, this trial found no difference in functional outcome in patients with dorsally displaced fractures of the distal radius treated with Kirschner wires or volar locking plates. Kirschner wire fixation, however, is cheaper and quicker to perform. Current Controlled Trials ISCRTN 31379280. UKCRN 8956. © Costa et al 2014.
Thermal Microstructural Stability of AZ31 Magnesium after Severe Plastic Deformation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, John P.; Askari, Hesam A.; Hovanski, Yuri
2015-03-01
Both equal channel angular pressing and friction stir processing have the ability to refine the grain size of twin roll cast AZ31 magnesium and potentially improve its superplastic properties. This work used isochronal and isothermal heat treatments to investigate the microstructural stability of twin roll cast, equal channel angular pressed and friction stir processed AZ31 magnesium. For both heat treatment conditions, it was found that the twin roll casted and equal channel angular pressed materials were more stable than the friction stir processed material. Calculations of the grain growth kinetics showed that severe plastic deformation processing decreased the activation energymore » for grain boundary motion with the equal channel angular pressed material having the greatest Q value of the severely plastically deformed materials and that increasing the tool travel speed of the friction stir processed material improved microstructural stability. The Hollomon-Jaffe parameter was found to be an accurate means of identifying the annealing conditions that will result in substantial grain growth and loss of potential superplastic properties in the severely plastically deformed materials. In addition, Humphreys’s model of cellular microstructural stability accurately predicted the relative microstructural stability of the severely plastically deformed materials and with some modification, closely predicted the maximum grain size ratio achieved by the severely plastically deformed materials.« less
and feed forward stabilization) have been implemented. An on-mount gyro system consists of gyroscopes mounted on the radar antenna which sense...antenna motion and send compensating signals back to the antenna servo mechanism. Feed forward stabilization consists of determining antenna angular rates...caused by ships attitude changes, as measured by a stable platform (such as SINS), and feeding compensating signals back to the antenna servo
NASA Astrophysics Data System (ADS)
Dutton, Aaron A.; van den Bosch, Frank C.
2012-03-01
We combine constraints on the galaxy-dark matter connection with structural and dynamical scaling relations to investigate the angular momentum content of disc galaxies. For haloes with masses in the interval 1011.3 M⊙≲Mvir≲ 1012.7 M⊙ we find that the galaxy spin parameters are basically independent of halo mass with ?. This is significantly lower than for relaxed Λcold dark matter (ΛCDM) haloes, which have an average spin parameter ?. The average ratio between the specific angular momentum of disc galaxies and their host dark matter haloes is therefore ?. This calls into question a standard assumption made in the majority of all (semi-analytical) models for (disc) galaxy formation, namely that ?. Using simple disc formation models we show that it is particularly challenging to understand why ? is independent of halo mass, while the galaxy formation efficiency (ɛGF; proportional to the ratio of galaxy mass to halo mass) reveals a strong halo mass dependence. We argue that the empirical scaling relations between ɛGF, ? and halo mass require both feedback (i.e. galactic outflows) and angular momentum transfer from the baryons to the dark matter (i.e. dynamical friction). Most importantly, the efficiency of angular momentum loss needs to decrease with increasing halo mass. Such a mass dependence may reflect a bias against forming stable discs in high-mass, low-spin haloes or a transition from cold-mode accretion in low-mass haloes to hot-mode accretion at the massive end. However, current hydrodynamical simulations of galaxy formation, which should include these processes, seem unable to reproduce the empirical relation between ɛGF and ?. We conclude that the angular momentum build-up of galactic discs remains poorly understood.
Measuring skin aging using optical coherence tomography in vivo: a validation study
NASA Astrophysics Data System (ADS)
Trojahn, Carina; Dobos, Gabor; Richter, Claudia; Blume-Peytavi, Ulrike; Kottner, Jan
2015-04-01
Dermal and epidermal structures in human skin change during intrinsic and extrinsic aging. Epidermal thickness is one of the most often reported parameters for the assessment of skin aging in cross-sectional images captured by optical coherence tomography (OCT). We aimed to identify further parameters for the noninvasive measurement of skin aging of sun-exposed and sun-protected areas utilizing OCT. Based on a literature review, seven parameters were inductively developed. Three independent raters assessed these parameters using four-point scales on images of female subjects of two age groups. All items could be detected and quantified in our sample. Interrater agreement ranged between 25.0% and 83.3%. The item scores "stratum corneum reflectivity," "upper dermal reflectivity," and "dermoepidermal contrast" showed significant differences between age groups on the volar and dorsal forearm indicating that they were best able to measure changes during skin aging. "Surface unevenness" was associated with the skin roughness parameters, Rz and Rmax, on the inner upper arm and volar forearm supporting the criterion validity of this parameter on sun-protected skin areas. Based on the interrater agreement and the ability to differentiate between age groups, these four parameters are being considered as the best candidates for measuring skin aging in OCT images.
Measuring skin aging using optical coherence tomography in vivo: a validation study.
Trojahn, Carina; Dobos, Gabor; Richter, Claudia; Blume-Peytavi, Ulrike; Kottner, Jan
2015-04-01
Dermal and epidermal structures in human skin change during intrinsic and extrinsic aging. Epidermal thickness is one of the most often reported parameters for the assessment of skin aging in cross-sectional images captured by optical coherence tomography (OCT). We aimed to identify further parameters for the noninvasive measurement of skin aging of sun-exposed and sun-protected areas utilizing OCT. Based on a literature review, seven parameters were inductively developed. Three independent raters assessed these parameters using four-point scales on images of female subjects of two age groups. All items could be detected and quantified in our sample. Interrater agreement ranged between 25.0% and 83.3%. The item scores “stratum corneum reflectivity,” “upper dermal reflectivity,” and “dermoepidermal contrast” showed significant differences between age groups on the volar and dorsal forearm indicating that they were best able to measure changes during skin aging. “Surface unevenness” was associated with the skin roughness parameters, Rz and Rmax, on the inner upper arm and volar forearm supporting the criterion validity of this parameter on sun-protected skin areas. Based on the interrater agreement and the ability to differentiate between age groups, these four parameters are being considered as the best candidates for measuring skin aging in OCT images.
In vivo THz imaging of human skin: Accounting for occlusion effects.
Sun, Qiushuo; Parrott, Edward P J; He, Yuezhi; Pickwell-MacPherson, Emma
2018-02-01
In vivo terahertz (THz) imaging of human skin needs to be done in reflection geometry due to the high attenuation of THz light by water in the skin. To aid the measurement procedure, there is typically an imaging window onto which the patient places the area of interest. The window enables better pulse alignment and helps keep the patient correctly positioned during the measurement. In this paper, we demonstrate how the occlusion caused by the skin contact with the imaging window during the measurement affects the THz response. By studying both rapid point measurements and imaging over an area of a human volar forearm, we find that even 5 seconds of occlusion affects the THz response. As the occlusion time increases, the skin surface water content increases, resulting in the reduction of the amplitude of the reflected THz pulse, especially in the first 3 minutes. Furthermore, it was found that the refractive index of the volar forearm increased by 10% to 15% after 20 minutes of occlusion. In this work, we examine and propose a model for the occlusion effects due to the quartz window with a view to compensating for its influence. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Takakura, N; Kanamaru, A; Sibuya, M; Homma, I
1992-01-01
Vibration applied to the volar side of the finger tip has been reported to induce finger flexion reflex. Acupuncture is reported to inhibit this vibration-induced finger flexion reflex (VFR) in the ipsilateral hand. The purpose of this study was to investigate the effect of unilateral acupuncture in the hand on VFR in both hands. As no systematic study on the relationship between VFR and the force of voluntary contraction with no vibration (Initial Force: IF) has been reported, this relationship was studied prior to the present study on acupuncture. VFR was induced by mechanical vibration on the volar side of the middle finger tip with 10 g to 500 g IF. With approximately 300 g IF, VFR was consistent. Therefore, approximately 300 g IF was applied for VFR induction to study the effect of acupuncture on VFR. A stainless steel needle was inserted into the right Hoku point and remained inserted (in-situ technique) for 10 minutes. VFR in both hands was significantly decreased by acupuncture at the right Hoku point (% control force of VFR: right, 67.8%; left, 74.6%). The present results suggest that acupuncture in the unilateral hand influences the bilateral reflex arc of VFR.
Longitudinal recovery following distal radial fractures managed with volar plate fixation.
Stinton, S B; Graham, P L; Moloney, N A; Maclachlan, L R; Edgar, D W; Pappas, E
2017-12-01
To synthesise the literature and perform a meta-analysis detailing the longitudinal recovery in the first two years following a distal radius fracture (DRF) managed with volar plate fixation. Three databases were searched to identify relevant articles. Following eligibility screening and quality assessment, data were extracted and outcomes were assimilated at the post-operative time points of interest. A state-of-the-art longitudinal mixed-effects meta-analysis model was employed to analyse the data. The search identified 5698 articles, of which 46 study reports met the selection criteria. High levels of disability and impairment were reported in the immediate post-operative period with subsequently a rapid initial improvement followed by more gradual improvement for up to one year. The results highlight that the period associated with the greatest physical recovery is in the first three months and suggest that the endpoint of treatment outcomes is best measured at one year post-surgery. Clinically meaningful improvements in outcomes can be expected for 12 months, after which progress plateaus and reaches normal values. This paper adopted a novel approach to meta-analyses in that the research question was of a longitudinal nature, which required a unique method of statistical analysis. Cite this article: Bone Joint J 2017;99-B:1665-76. ©2017 The British Editorial Society of Bone & Joint Surgery.
Reduced modeling of the magnetorotational instability
NASA Astrophysics Data System (ADS)
Jamroz, Ben F.
2009-06-01
Accretion describes the process by which matter in an astrophysical disk falls onto a central massive object. Accretion disks are present in many astrophysical situations including binary star systems, young stellar objects, and near black holes at the center of galaxies. Measurements from observations of these disks have shown that viscous processes are unable to transport the necessary levels of angular momentum needed for accretion. Therefore, accretion requires an efficient mechanism of angular momentum transport. Mixing by turbulent processes greatly enhances the level of angular momentum transport in a turbulent fluid. Thus, the generation of turbulence in these disks may provide the mechanism needed for accretion. A classical result of hydrodynamic theory is that typical accretion disks are hydrodynamically stable to shear instabilities, since the specific angular momentum increases outwards. Other processes of generating hydrodynamic turbulence (barotropic instability, baroclinic instability, sound wave, shock waves, finite amplitude instabilities) may be present in these disks, however, none of these mechanisms has been shown to produce the level of angular momentum transport needed for accretion. Hydrodynamical turbulence does not produce enough angular momentum transport to produce the level of accretion observed in astrophysical accretion disks. The leading candidate for the source of turbulence leading to the transport of angular momentum is the magnetorotational instability, a linear axisymmetric instability of electrically conducting fluid in the presence of an imposed magnetic field and shear (or differential rotation). This instability is an efficient mechanism of angular momentum transport generating the level of transport needed for accretion. The level of effective angular momentum transport is determined by the saturated state of sustained turbulence generated by the instability. The mechanism of nonlinear saturation of this instability is not well understood. Many recent numerical investigations of this problem are performed in a local domain, where the global cylindrical background state is projected onto a local Cartesian domain. The resulting system is then numerically modeled within a "shearing box" framework to obtain estimates of angular momentum transport and therefore accretion. However, the simplified geometry of the local domain, and the projection of global quantities leads to a model where the instability is able to grow unboundedly. Utilizing disparate characteristic scales, this thesis presents a reduced asymptotic model for the magnetorotational instability that allows a large scale feedback of local stresses (Reynolds, Maxwell and mixed) onto the projected background state. This system is investigated numerically to determine the impact of allowing this feedback on the saturated level of angular momentum transport.
General relativistic dynamics of an extreme mass-ratio binary interacting with an external body
NASA Astrophysics Data System (ADS)
Yang, Huan; Casals, Marc
2017-10-01
We study the dynamics of a hierarchical three-body system in the general relativistic regime: an extreme mass-ratio inner binary under the tidal influence of an external body. The inner binary consists of a central Schwarzschild black hole and a test body moving around it. We discuss three types of tidal effects on the orbit of the test body. First, the angular momentum of the inner binary precesses around the angular momentum of the outer binary. Second, the tidal field drives a "transient resonance" when the radial and azimuthal frequencies are commensurable. In contrast with resonances driven by the gravitational self-force, this tidal-driven resonance may boost the orbital angular momentum and eccentricity (a relativistic version of the Kozai-Lidov effect). Finally, for an orbit-dynamical effect during the nonresonant phase, we calculate the correction to the innermost stable circular (mean) orbit due to the tidal interaction. Hierarchical three-body systems are potential sources for future space-based gravitational wave missions, and the tidal effects that we find could contribute significantly to their waveform.
Vectorial structures of linear-polarized Butterfly-Gauss vortex beams in the far zone
NASA Astrophysics Data System (ADS)
Cheng, Ke; Zhou, Yan; Lu, Gang; Yao, Na; Zhong, Xianqiong
2018-05-01
By introducing the Butterfly catastrophe to optics, the far-zone vectorial structures of Butterfly-Gauss beam with vortex and non-vortex are studied using the angular spectrum representation and stationary phase method. The influence of topological charge, linear-polarized angle, off-axis distance and scaling length on the far-zone vectorial structures, especially in the Poynting vector and angular momentum density of the corresponding beam is emphasized. The results show that the embedded optical vortex at source plane lead to special dark zones in the far zone, where the number of dark zone equals the absolute value of topological charge of optical vortex. Furthermore, the symmetry and direction of the special dark zones can be controlled by off-axis distance and scaling length, respectively. The linear-polarized angle adjusts only the Poynting vectors of TE and TM terms, but it does not affect those of whole beam. Finally, the vectorial expressions also indicate that the total angular momentum density is certainly zero owing to the far-zone stable structures rather than rotation behaviors.
Creation and Validation of Sintered PTFE BRDF Targets & Standards
Durell, Christopher; Scharpf, Dan; McKee, Greg; L’Heureux, Michelle; Georgiev, Georgi; Obein, Gael; Cooksey, Catherine
2016-01-01
Sintered polytetrafluoroethylene (PTFE) is an extremely stable, near-perfect Lambertian reflecting diffuser and calibration standard material that has been used by national labs, space, aerospace and commercial sectors for over two decades. New uncertainty targets of 2 % on-orbit absolute validation in the Earth Observing Systems community have challenged the industry to improve is characterization and knowledge of almost every aspect of radiometric performance (space and ground). Assuming “near perfect” reflectance for angular dependent measurements is no longer going to suffice for many program needs. The total hemispherical spectral reflectance provides a good mark of general performance; but, without the angular characterization of bidirectional reflectance distribution function (BRDF) measurements, critical data is missing from many applications and uncertainty budgets. Therefore, traceable BRDF measurement capability is needed to characterize sintered PTFE’s angular response and provide a full uncertainty profile to users. This paper presents preliminary comparison measurements of the BRDF of sintered PTFE from several laboratories to better quantify the BRDF of sintered PTFE, assess the BRDF measurement comparability between laboratories, and improve estimates of measurement uncertainties under laboratory conditions. PMID:26900206
Creation and Validation of Sintered PTFE BRDF Targets & Standards.
Durell, Christopher; Scharpf, Dan; McKee, Greg; L'Heureux, Michelle; Georgiev, Georgi; Obein, Gael; Cooksey, Catherine
2015-09-21
Sintered polytetrafluoroethylene (PTFE) is an extremely stable, near-perfect Lambertian reflecting diffuser and calibration standard material that has been used by national labs, space, aerospace and commercial sectors for over two decades. New uncertainty targets of 2 % on-orbit absolute validation in the Earth Observing Systems community have challenged the industry to improve is characterization and knowledge of almost every aspect of radiometric performance (space and ground). Assuming "near perfect" reflectance for angular dependent measurements is no longer going to suffice for many program needs. The total hemispherical spectral reflectance provides a good mark of general performance; but, without the angular characterization of bidirectional reflectance distribution function (BRDF) measurements, critical data is missing from many applications and uncertainty budgets. Therefore, traceable BRDF measurement capability is needed to characterize sintered PTFE's angular response and provide a full uncertainty profile to users. This paper presents preliminary comparison measurements of the BRDF of sintered PTFE from several laboratories to better quantify the BRDF of sintered PTFE, assess the BRDF measurement comparability between laboratories, and improve estimates of measurement uncertainties under laboratory conditions.
Dynamic shape transitions in the sdg boson model
NASA Astrophysics Data System (ADS)
Kuyucak, S.
The dynamic evolution of shapes in the sdg interacting boson model is investigated using the angular momentum projected mean field theory. Deformed nuclei are found to be quite stable against shape changes but transitional nuclei could exhibit dynamic shape transitions in the region L = 10-20. Conditions of existence and experimental signatures for dynamic shape transitions are discussed together with a likely candidate, 192Os.
NASA Astrophysics Data System (ADS)
Nordsiek, Freja
This dissertation consists of two projects: Rayleigh-stable Taylor-Couette flow and granular electrification. Taylor-Couette flow is the fluid flow in the gap between two cylinders rotating at different rates. Azimuthal velocity profiles, dye visualization, and inner cylinder torques were measured on two geometrically similar Taylor-Couettes with axial boundaries attached to the outer cylinder, the Maryland and Twente T3C experiments. This was done in the Rayleigh stable regime, where the specific angular momentum increases radially, which is relevant to astrophysical and geophysical flows and in particular, stellar and planetary accretion disks. The flow substantially deviates from laminar Taylor-Couette flow beginning at moderate Reynolds number. Angular momentum is primarily transported to the axial boundaries instead of the outer cylinder due to Ekman pumping when the inner cylinder is rotating faster than the outer cylinder. A phase diagram was constructed from the transitions identified from torque measurements taken over four decades of the Reynolds number. Flow angular velocities larger and smaller than both cylinders were found. Together, these results indicate that experimental Taylor-Couette with axial boundaries attached to the outer cylinder is an imperfect model for accretion disk flows. Thunderstorms, thunder-snow, volcanic ash clouds, and dust storms all display lightning, which results from electrification of droplets and particles in the atmosphere. While lightning is fairly well understood (plasma discharge), the mechanisms that result in million-volt differences across the storm are not. A novel granular electrification experiment was upgraded and used to study some of these mechanisms in the lab. The relative importance of collective interactions between particles versus particle properties (material, size, etc.) on collisional electrification was investigated. While particle properties have an order of magnitude effect on the strength of macroscopic electrification, all particle types electrified with dynamics that suggest a major role for collective interactions in electrification. Moreover, mixing two types of particles together does not lead to increased electrification except for specific combinations of particles which clump, which further points towards the importance of collective phenomena. These results help us better understand the mechanisms of electrification and lightning generation in certain atmospheric systems.
Boundary between stable and unstable regimes of accretion. Ordered and chaotic unstable regimes
NASA Astrophysics Data System (ADS)
Blinova, A. A.; Romanova, M. M.; Lovelace, R. V. E.
2016-07-01
We present a new study of the Rayleigh-Taylor unstable regime of accretion on to rotating magnetized stars in a set of high grid resolution three-dimensional magnetohydrodynamic simulations performed in low-viscosity discs. We find that the boundary between the stable and unstable regimes is determined almost entirely by the fastness parameter ωs = Ω⋆/ΩK(rm), where Ω⋆ is the angular velocity of the star and ΩK(rm) is the angular velocity of the Keplerian disc at the disc-magnetosphere boundary r = rm. We found that accretion is unstable if ωs ≲ 0.6. Accretion through instabilities is present in stars with different magnetospheric sizes. However, only in stars with relatively small magnetospheres, rm/R⋆ ≲ 7, do the unstable tongues produce chaotic hotspots on the stellar surface and irregular light curves. At even smaller values of the fastness parameter, ωs ≲ 0.45, multiple irregular tongues merge, forming one or two ordered unstable tongues that rotate with the angular frequency of the inner disc. This transition occurs in stars with even smaller magnetospheres, rm/R⋆ ≲ 4.2. Most of our simulations were performed at a small tilt of the dipole magnetosphere, Θ = 5°, and a small viscosity parameter α = 0.02. Test simulations at higher α values show that many more cases become unstable, and the light curves become even more irregular. Test simulations at larger tilts of the dipole Θ show that instability is present, however, accretion in two funnel streams dominates if Θ ≳ 15°. The results of these simulations can be applied to accreting magnetized stars with relatively small magnetospheres: Classical T Tauri stars, accreting millisecond X-ray pulsars, and cataclysmic variables.
Review of Army Officer Educational System. Volume 2. Full Report, and Annexes B, C
1971-12-01
dogmatism, authoritarianism , intolerance, conformity, conventionalism, dependency, and so on. These effects , we have argued, can only be understood as...interest of self -sufficiency. Also, in the case of OPMS and VOLAR, any attempt to mesh this review directly with actions of such magnitude and...appraisal of the effectiveness of the school system in preparing officers for their actual jobs as real-life requires. The scope was then directly
Coulomb double helical structure
NASA Astrophysics Data System (ADS)
Kamimura, Tetsuo; Ishihara, Osamu
2012-01-01
Structures of Coulomb clusters formed by dust particles in a plasma are studied by numerical simulation. Our study reveals the presence of various types of self-organized structures of a cluster confined in a prolate spheroidal electrostatic potential. The stable configurations depend on a prolateness parameter for the confining potential as well as on the number of dust particles in a cluster. One-dimensional string, two-dimensional zigzag structure and three-dimensional double helical structure are found as a result of the transition controlled by the prolateness parameter. The formation of stable double helical structures resulted from the transition associated with the instability of angular perturbations on double strings. Analytical perturbation study supports the findings of numerical simulations.
Roh, Young Hak; Noh, Jung Ho; Gong, Hyun Sik; Baek, Goo Hyun
2017-12-01
Patients with low appendicular lean mass plus slow gait speed or weak grip strength are at risk for poor functional recovery after surgery for distal radius fracture, even when they have similar radiologic outcomes. Loss of skeletal muscle mass and consequent loss in muscle function associate with aging, and this condition negatively impacts the activities of daily living and increases elderly individuals' frailty to falls. Thus, patients with low appendicular lean mass would show different functional recovery compared to those without this condition after surgery for distal radius fracture (DRF). This study compares the functional outcomes after surgery for DRF in patients with or without low appendicular lean mass plus slowness or weakness. A total of 157 patients older than 50 years of age with a DRF treated via volar plate fixation were enrolled in this prospective study. A definition of low appendicular lean mass with slowness or weakness was based on the consensus of the Asian Working Group for Sarcopenia. The researchers compared functional assessments (wrist range of motion and Michigan Hand Questionnaire [MHQ]) and radiographic assessments (radial inclination, volar tilt, ulnar variance, and articular congruity) 12 months after surgery between patients with and without low appendicular lean mass plus slowness or weakness. Multivariable regression analyses were performed to determine whether appendicular lean mass, grip strength, gait speed, patient demographic, or injury characteristics accounted for the functional outcomes. Patients with low appendicular lean mass plus slowness or weakness showed a significantly lower recovery of MHQ score than those in the control group throughout 12 months. There was no significant difference in the range of motion between the groups. The radiologic outcomes showed no significant difference between groups in terms of volar tilt, radial inclination, or ulnar variance. According to multivariable regression analysis, the poor recovery of MHQ score was associated with an increase in age, weak grip strength, and lower appendicular lean mass, and these three factors accounted for 37% of the variation in the MHQ scores. Patients with low appendicular lean mass plus slowness or weakness are at risk for poor functional recovery after surgery for DRF, even when they have similar radiologic outcomes.
Shin, Seung-Han; Lee, Yong-Suk; Kang, Jin-Woo; Noh, Dong-Young; Jung, Joon-Yong; Chung, Yang-Guk
2018-03-01
The location of the ulnar styloid process can be confusing because the radius and the hand rotate around the ulna. The purpose of this study was to identify the absolute location of the ulnar styloid process, which is independent of forearm pronation or supination, to use it as a reference for neutral forearm rotation on lateral radiographs of the wrist. Computed tomography (CT) images of 23 forearms taken with elbow flexion of 70° to 90° were analyzed. The axial CT images were reconstructed to be perpendicular to the distal ulnar shaft. The absolute location of the ulnar styloid process in this study was defined as the position of the ulnar styloid process on the axial plane of the ulnar head relative to the long axis of the humeral shaft with the elbow set in the position for standard lateral radiographs of the wrist. To identify in which direction the ulnar styloid is located on the axial plane of the ulnar head, the angle between "the line of humeral long axis projected on the axial plane of the ulna" and "the line passing the center of the ulnar head and the center of the ulnar styloid" was measured (ulnar styloid direction angle). To identify how volarly or dorsally the ulnar styloid should appear on the true lateral view of the wrist, the ratio of "the volar-dorsal diameter of the ulnar head" and "the distance between the volar-most aspect of the ulnar head and the center of the ulnar styloid" was calculated (ulnar styloid location ratio). The mean ulnar styloid direction angle was 12° dorsally. The mean ulnar styloid location ratio was 1:0.55. The ulnar styloid is located at nearly the ulnar-most (the opposite side of the humerus with the elbow flexed) and slightly dorsal aspects of the ulnar head on the axial plane. It should appear almost midway (55% dorsally) from the ulnar head on the standard lateral view of the wrist in neutral forearm rotation. These location references could help clinicians determine whether the forearm is in neutral or rotated position on an axial CT/magnetic resonance imaging scan or a lateral radiograph of the wrist.
Achten, Juul; Parsons, Nick R; Rangan, Amar; Griffin, Damian; Tubeuf, Sandy; Lamb, Sarah E
2014-01-01
Objectives To compare the clinical effectiveness of Kirschner wire fixation with locking plate fixation for patients with a dorsally displaced fracture of the distal radius. Design A multicentre two arm parallel group assessor blind randomised controlled trial with 1:1 treatment allocation. Setting 18 trauma centres in the United Kingdom. Participants 461 adults with a dorsally displaced fracture of the distal radius within 3 cm of the radiocarpal joint that required surgical fixation. Patients were excluded if the surgeon thought that the surface of the wrist joint was so badly displaced it required open reduction. Interventions Kirschner wire fixation: wires are passed through the skin over the dorsal aspect of the distal radius and into the bone to hold the fracture in the correct anatomical position. Locking plate fixation: a locking plate is applied through an incision over the volar (palm) aspect of the wrist and secured to the bone with fixed angle locking screws. Main outcome measures Primary outcome measure: validated patient rated wrist evaluation (PRWE). This rates wrist function in two (equally weighted) sections concerning the patient’s experience of pain and disability to give a score out of 100. Secondary outcomes: disabilities of arm, shoulder, and hand (DASH) score, the EuroQol (EQ-5D), and complications related to the surgery. Results The baseline characteristics of the two groups were well balanced, and over 90% of patients completed follow-up. The wrist function of both groups of patients improved by 12 months. There was no clinically relevant difference in the patient rated wrist score at three, six, or 12 months (difference in favour of the plate group was −1.3, 95% confidence interval −4.5 to 1.8; P=0.40). Nor was there a clinically relevant difference in health related quality of life or the number of complications in each group. Conclusions Contrary to the existing literature, and against the rapidly increasing use of locking plate fixation, this trial found no difference in functional outcome in patients with dorsally displaced fractures of the distal radius treated with Kirschner wires or volar locking plates. Kirschner wire fixation, however, is cheaper and quicker to perform. Trial registration Current Controlled Trials ISCRTN 31379280. UKCRN 8956. PMID:25096595
2014-01-01
Background Fractures of the distal radius are common and account for an estimated 17% of all fractures diagnosed. Two-thirds of these fractures are displaced and require reduction. Although distal radius fractures, especially extra-articular fractures, are considered to be relatively harmless, inadequate treatment may result in impaired function of the wrist. Initial treatment according to Dutch guidelines consists of closed reduction and plaster immobilisation. If fracture redisplacement occurs, surgical treatment is recommended. Recently, the use of volar locking plates has become more popular. The aim of this study is to compare the functional outcome following surgical reduction and fixation with a volar locking plate with the functional outcome following closed reduction and plaster immobilisation in patients with displaced extra-articular distal radius fractures. Design This single blinded randomised controlled trial will randomise between open reduction and internal fixation with a volar locking plate (intervention group) and closed reduction followed by plaster immobilisation (control group). The study population will consist of all consecutive adult patients who are diagnosed with a displaced extra-articular distal radius fracture, which has been adequately reduced at the Emergency Department. The primary outcome (functional outcome) will be assessed by means of the Disability Arm Shoulder Hand Score (DASH). Secondary outcomes comprise the Patient-Rated Wrist Evaluation score (PRWE), quality of life, pain, range of motion, radiological parameters, complications and cross-overs. Since the treatment allocated involves a surgical procedure, randomisation status will not be blinded. However, the researcher assessing the outcome at one year will be unaware of the treatment allocation. In total, 90 patients will be included and this trial will require an estimated time of two years to complete and will be conducted in the Academic Medical Centre Amsterdam and its partners of the regional trauma care network. Dicussion Ideally, patients would be randomised before any kind of treatment has been commenced. However, we deem it not patient-friendly to approach possible participants before adequate reduction has been obtained. Trial registration This study is registered at the Netherlands Trial Register (NTR3113) and was granted permission by the Medical Ethical Review Committee of the Academic Medical Centre on 01-10-2012. PMID:24642190
NASA Astrophysics Data System (ADS)
Dong, Jingtao; Lu, Rongsheng
2018-04-01
The principle of retrieving the thickness and refractive index dispersion of a parallel glass plate is reported based on single interferogram recording and phase analysis. With the parallel plate illuminated by a convergent light sheet, the transmitted light interfering in both spectral and angular domains is recorded. The phase recovered from the single interferogram by Fourier analysis is used to retrieve the thickness and refractive index dispersion without periodic ambiguity. Experimental results of an optical substrate standard show that the accuracy of refractive index dispersion is less than 2.5 × 10-5 and the relative uncertainty of thickness is 6 × 10-5 (3σ). This method is confirmed to be robust against the intensity noises, indicating the capability of stable and accurate measurement.
Gravitational waves from plunges into Gargantua
NASA Astrophysics Data System (ADS)
Compère, Geoffrey; Fransen, Kwinten; Hertog, Thomas; Long, Jiang
2018-05-01
We analytically compute time domain gravitational waveforms produced in the final stages of extreme mass ratio inspirals of non-spinning compact objects into supermassive nearly extremal Kerr black holes. Conformal symmetry relates all corotating equatorial orbits in the geodesic approximation to circular orbits through complex conformal transformations. We use this to obtain the time domain Teukolsky perturbations for generic equatorial corotating plunges in closed form. The resulting gravitational waveforms consist of an intermediate polynomial ringdown phase in which the decay rate depends on the impact parameters, followed by an exponential quasi-normal mode decay. The waveform amplitude exhibits critical behavior when the orbital angular momentum tends to a minimal value determined by the innermost stable circular orbit. We show that either near-critical or large angular momentum leads to a significant extension of the LISA observable volume of gravitational wave sources of this kind.
NASA Astrophysics Data System (ADS)
Sutradhar, S.; Basu, S.; Paul, R.
2015-10-01
Cell division through proper spindle formation is one of the key puzzles in cell biology. In most mammalian cells, chromosomes spontaneously arrange to achieve a stable bipolar spindle during metaphase which eventually ensures proper segregation of the DNA into the daughter cells. In this paper, we present a robust three-dimensional mechanistic model to investigate the formation and maintenance of a bipolar mitotic spindle in mammalian cells under different physiological constraints. Using realistic parameters, we test spindle viability by measuring the spindle length and studying the chromosomal configuration. The model strikingly predicts a feature of the spindle instability arising from the insufficient intercentrosomal angular separation and impaired sliding of the interpolar microtubules. In addition, our model successfully reproduces chromosomal patterns observed in mammalian cells, when activity of different motor proteins is perturbed.
Boundary Between Stable and Unstable Regimes of Accretion
NASA Astrophysics Data System (ADS)
Blinova, A. A.; Lovelace, R. V. E.; Romanova, M. M.
2014-01-01
We investigated the boundary between stable and unstable regimes of accretion and its dependence on different parameters. Simulations were performed using a "cubed sphere" code with high grid resolution (244 grid points in the azimuthal direction), which is twice as high as that used in our earlier studies. We chose a very low viscosity value, with alpha-parameter α=0.02. We observed from the simulations that the boundary strongly depends on the ratio between magnetospheric radius rm (where the magnetic stress in the magnetosphere matches the matter stress in the disk) and corotation radius rcor (where the Keplerian velocity in the disk is equal to the angular velocity of the star). For a small misalignment angle of the dipole field, Θ = 5°, accretion is unstable if rcor/rm> 1.35, and is stable otherwise. In cases of a larger misalignment angle of the dipole, Θ = 20°, instability occurs at slightly larger values, rcor/rm> 1.41
Simulating Shock Triggered Star Formation with AstroBEAR2.0
NASA Astrophysics Data System (ADS)
Li, Shule; Frank, Adam; Blackman, Eric
2013-07-01
Star formation can be triggered by the compression from shocks running over stable clouds. Triggered star formation is a favored explanation for the traces of SLRI's in our solar system. Previous research has shown that when parameters such as shock speed are within a certain range, the gravitational collapse of otherwise stable, dense cloud cores is possible. However, these studies usually focus on the precursors of star formation, and the conditions for the triggering. We use AstroBEAR2.0 code to simulate the collapse and subsequent evolution of a stable Bonnor-Ebert cloud by an incoming shock. Through our simulations, we show that interesting physics happens when the newly formed star interacts with the cloud residue and the post-shock flow. We identify these interactions as controlled by the initial conditions of the triggering and study the flow pattern as well as the evolution of important physics quantities such as accretion rate and angular momentum.
Final Evaluation Report on Fort Ord Project VOLAR
1978-04-04
I%.p 4 .; .* . . . . .. .¾ 1. ...i ....j ... -4- tlVt ’,J~f ’..~ flt~UUf~jitf F7 ____ I -U- I- F ?. ;.’ 1777 I. I t:t:.. ’*1** I’ . It: 9...GENER4AL i POST ENV!RONMET fT .4 , h ,,. f avn an 31 :-12 4 two $000 tort Cd la 1.0-01 acca -O 2 :-g::2: 5~:4: BIih, Post’s Progress ri 1npuun 32 1
Outcome of Boxer’s Fractures Treated by a Soft Wrap and Buddy Taping: A Prospective Study
Kämpfen, Stephan; Berli, Martin; Fritschy, Daniel; Della Santa, Dominique; Fusetti, Cesare
2007-01-01
Introduction The ideal treatment for a boxer’s fracture remains controversial, particularly the degree of volar dislocation considered acceptable for nonoperative treatment. Patients and Methods From December 2003 to December 2004, 25 patients who sustained a subcapital metacarpal fracture of the little finger with volar angulation between 30 to 75° were prospectively enrolled in the study. All patients were treated with a circular self-adherent wrap covering metacarpal bones II–V and buddy taping of the ring and little fingers for a period of 3 weeks while allowing immediate free range of motion. Results Final evaluation at a mean of 5 months revealed all patients to be satisfied without subjective functional impairment. All fractures healed, and the angulation of the fracture remained unchanged, but moderate shortening was observed. Active flexion of the metacarpophalangeal (MCP) joint was significantly lower on the fracture side, but as the median degree of MCP flexion was the same, this statistical difference was without clinical relevance. There was no loss in grip strength. A subjective long-term evaluation was performed by phone; at a median of 3 years, a QuickDash score gave a median of 0 point. Conclusion Treating a boxer’s fracture with angulation of up to 75° by soft wrap and buddy taping resulted in satisfied patients and good clinical results. PMID:18780055
NASA Astrophysics Data System (ADS)
Zahouani, H.; Djaghloul, M.; Vargiolu, R.; Mezghani, S.; Mansori, M. E. L.
2014-03-01
The structuring of the dermis with a network of collagen and elastic fibres gives a three-dimensional structure to the skin network with directions perpendicular and parallel to the skin surface. This three-dimensional morphology prints on the surface of the stratum corneum a three dimensional network of lines which express the mechanical tension of the skin at rest. To evaluate the changes of skin morphology, we used a three-dimensional confocal microscopy and characterization of skin imaging of volar forearm microrelief. We have accurately characterize the role of skin line network during chronological aging with the identification of depth scales on the network of lines (z <= 60μm) and the network of lines covering Langer's lines (z > 60 microns). During aging has been highlighted lower rows for elastic fibres, the decrease weakened the tension and results in enlargement of the plates of the microrelief, which gives us a geometric pertinent indicator to quantify the loss of skin tension and assess the stage of aging. The study of 120 Caucasian women shows that ageing in the volar forearm zone results in changes in the morphology of the line network organisation. The decrease in secondary lines (z <= 60 μm) is counterbalanced by an increase in the depth of the primary lines (z > 60 μm) and an accentuation of the anisotropy index.
Sendagorta, Elena; Feito, Marta; Ramírez, Paloma; Gonzalez-Beato, María; Saida, Toshiaki; Pizarro, Angel
2010-11-01
Laugier-Hunziker syndrome (LHS) is an acquired, benign, macular hyperpigmentation of the lips and oral mucosa, often associated with pigmentation of the nails. Volar acral maculae on the palms and fingertips of patients affected by LHS are a typical feature of this rare entity. Dermoscopic examination of these maculae has been described in a previous report, in which authors found a parallel-furrow pattern. We describe two cases in which a parallel-ridge pattern (PRP) was found on the dermoscopic examination of the pigmented acral lesions. Histological examination showed increased melanin in basal keratinocytes, which was most prominent in those located at the crista intermedia profunda, that is, in the epidermal rete ridges underlying the surface ridges. In our study, dermoscopic features of the pigmented maculae found on LHS differed from those previously described. In addition, by means of this case report, the histological features of these lesions are described for the first time, showing an excellent correlation with dermoscopy. The reported cases prove that although the PRP is very specific of melanoma, it is also possible to find it in benign lesions. Therefore, we must be familiar with the differential diagnosis of PRP, and take into consideration the clinical context in which we find it. Further studies are needed to increase our knowledge on the histological and dermoscopic features of acral pigmented maculae of LHS. © 2010 Japanese Dermatological Association.
Rotational accelerations stabilize leading edge vortices on revolving fly wings.
Lentink, David; Dickinson, Michael H
2009-08-01
The aerodynamic performance of hovering insects is largely explained by the presence of a stably attached leading edge vortex (LEV) on top of their wings. Although LEVs have been visualized on real, physically modeled, and simulated insects, the physical mechanisms responsible for their stability are poorly understood. To gain fundamental insight into LEV stability on flapping fly wings we expressed the Navier-Stokes equations in a rotating frame of reference attached to the wing's surface. Using these equations we show that LEV dynamics on flapping wings are governed by three terms: angular, centripetal and Coriolis acceleration. Our analysis for hovering conditions shows that angular acceleration is proportional to the inverse of dimensionless stroke amplitude, whereas Coriolis and centripetal acceleration are proportional to the inverse of the Rossby number. Using a dynamically scaled robot model of a flapping fruit fly wing to systematically vary these dimensionless numbers, we determined which of the three accelerations mediate LEV stability. Our force measurements and flow visualizations indicate that the LEV is stabilized by the ;quasi-steady' centripetal and Coriolis accelerations that are present at low Rossby number and result from the propeller-like sweep of the wing. In contrast, the unsteady angular acceleration that results from the back and forth motion of a flapping wing does not appear to play a role in the stable attachment of the LEV. Angular acceleration is, however, critical for LEV integrity as we found it can mediate LEV spiral bursting, a high Reynolds number effect. Our analysis and experiments further suggest that the mechanism responsible for LEV stability is not dependent on Reynolds number, at least over the range most relevant for insect flight (100
NASA Astrophysics Data System (ADS)
Zheng, Youqi; Choi, Sooyoung; Lee, Deokjung
2017-12-01
A new approach based on the method of characteristics (MOC) is proposed to solve the neutron transport equation. A new three-dimensional (3D) spatial discretization is applied to avoid the instability issue of the transverse leakage iteration of the traditional 2D/1D approach. In this new approach, the axial and radial variables are discretized in two different ways: the linear expansion is performed in the axial direction, then, the 3D solution of the angular flux is transformed to be the planar solution of 2D angular expansion moments, which are solved by the planar MOC sweeping. Based on the boundary and interface continuity conditions, the 2D expansion moment solution is equivalently transformed to be the solution of the axially averaged angular flux. Using the piecewise averaged angular flux at the top and bottom surfaces of 3D meshes, the planes are coupled to give the 3D angular flux distribution. The 3D CMFD linear system is established from the surface net current of every 3D pin-mesh to accelerate the convergence of power iteration. The STREAM code is extended to be capable of handling 3D problems based on the new approach. Several benchmarks are tested to verify its feasibility and accuracy, including the 3D homogeneous benchmarks and heterogeneous benchmarks. The computational sensitivity is discussed. The results show good accuracy in all tests. With the CMFD acceleration, the convergence is stable. In addition, a pin-cell problem with void gap is calculated. This shows the advantage compared to the traditional 2D/1D MOC methods.
Corrugated grating on organic multilayer Bragg reflector
NASA Astrophysics Data System (ADS)
Jaquet, Sylvain; Scharf, Toralf; Herzig, Hans Peter
2007-08-01
Polymeric multilayer Bragg structures are combined with diffractive gratings to produce artificial visual color effects. A particular effect is expected due to the angular reflection dependence of the multilayer Bragg structure and the dispersion caused by the grating. The combined effects can also be used to design particular filter functions and various resonant structures. The multilayer Bragg structure is fabricated by spin-coating of two different low-cost polymer materials in solution on a cleaned glass substrate. These polymers have a refractive index difference of about 0.15 and permit multilayer coatings without interlayer problems. Master gratings of different periods are realized by laser beam interference and replicated gratings are superimposed on the multilayer structure by soft embossing in a UV curing glue. The fabrication process requires only polymer materials. The obtained devices are stable and robust. Angular dependent reflection spectrums for the visible are measured. These results show that it is possible to obtain unexpected reflection effects. A rich variety of color spectra can be generated, which is not possible with a single grating. This can be explained by the coupling of transmission of grating orders and the Bragg reflection band. A simple model permits to explain some of the spectral vs angular dependence of reflected light.
Subcritical saturation of the magnetorotational instability through mean magnetic field generation
NASA Astrophysics Data System (ADS)
Xie, Jin-Han; Julien, Keith; Knobloch, Edgar
2018-03-01
The magnetorotational instability is widely believed to be responsible for outward angular momentum transport in astrophysical accretion discs. The efficiency of this transport depends on the amplitude of this instability in the saturated state. We employ an asymptotic expansion based on an explicit, astrophysically motivated time-scale separation between the orbital period, Alfvén crossing time and viscous or resistive dissipation time-scales, originally proposed by Knobloch and Julien, to formulate a semi-analytical description of the saturated state in an incompressible disc. In our approach a Keplerian shear flow is maintained by the central mass but the instability saturates via the generation of a mean vertical magnetic field. The theory assumes that the time-averaged angular momentum flux and the radial magnetic flux are constant and determines both self-consistently. The results predict that, depending on parameters, steady saturation may be supercritical or subcritical, and in the latter case that the upper (lower) solution branch is always stable (unstable). The angular momentum flux is always outward, consistent with the presence of accretion, and for fixed wavenumber peaks in the subcritical regime. The limit of infinite Reynolds number at large but finite magnetic Reynolds number is also discussed.
WFIRST: Managing Telescope Wavefront Stability to Meet Coronagraph Performance
NASA Astrophysics Data System (ADS)
Noecker, Martin; Poberezhskiy, Ilya; Kern, Brian; Krist, John; WFIRST System Engineering Team
2018-01-01
The WFIRST coronagraph instrument (CGI) needs a stable telescope and active wavefront control to perform coronagraph science with an expected sensitivity of 8x10-9 in the exoplanet-star flux ratio (SNR=10) at 200 milliarcseconds angular separation. With its subnanometer requirements on the stability of its input wavefront error (WFE), the CGI employs a combination of pointing and wavefront control loops and thermo-mechanical stability to meet budget allocations for beam-walk and low-order WFE, which enable stable starlight speckles on the science detector that can be removed by image subtraction. We describe the control strategy and the budget framework for estimating and budgeting the elements of wavefront stability, and the modeling strategy to evaluate it.
Probing the structure of the stable Xe isotopes with inelastic neutron scattering
NASA Astrophysics Data System (ADS)
Peters, Erin E.; Ross, Timothy J.; Crider, Benjamin P.; Yates, Steven W.
2018-05-01
The stable isotopes of xenon, which have attracted interest for a number of reasons, span a transitional region that evolves from γ-soft structures for the lighter mass isotopes to nearly spherical 136Xe with a closed neutron shell. The nature of this transition, which is gradual, is not well understood. To provide detailed spectroscopic information on the Xe isotopes, we have studied 130,132,134,136Xe at the University of Kentucky Accelerator Laboratory using inelastic neutron scattering and γ-ray detection. These measurements yielded γ-ray angular distributions, branching ratios, multipole mixing ratios, and level lifetimes (from the Doppler-shift attenuation method), which allowed the determination of reduced transition probabilities and provided insight into the structure of these nuclei.
NASA Astrophysics Data System (ADS)
Lough, James D.
The Advanced LIGO detectors will soon be online with enough sensitivity to begin detecting gravitational waves, based on conservative estimates of the rate of neutron star inspirals. These first detections are sure to be significant, however, we will always strive to do better. More questions will be asked about the nature of neutron star material, rates of black hole inspirals, electromagnetic counterparts, etc. To begin to answer all of the questions aLIGO will bring us we will need even better sensitivity in future gravitational wave detectors. This thesis addresses one aspect that will limit us in the future: angular stability of the test masses. Angular stability in advanced LIGO uses an active feedback system. We are proposing to replace the active feedback system with a passive one, eliminating sensing noise contributions. This technique uses the radiation pressure of light inside a cavity as a stable optical spring, fundamentally the same as technique developed by Corbitt, et al. with an additional degree of freedom. I will review the theory of the one dimensional technique and discuss the multidimensional control theory and angular trap setup. I will then present results from the one-dimensional trap which we have built and tested. And propose improvements for the angular trap experiment. Along the way we have discovered an interesting coupling with thermal expansion due to round trip absorption in the high reflective coatings. The front surface HR coating limits our spring stability in this experiment due to the high circulating power and small beam spot size.
Parallel ridge pattern on dermoscopy: observation in non-melanoma cases*
Fracaroli, Tainá Scalfoni; Lavorato, Fernanda Guedes; Maceira, Juan Piñeiro; Barcaui, Carlos
2013-01-01
The acral melanoma is the most prevalent type of melanoma in the non-Caucasian population, and dermoscopy is a useful tool for earlier diagnosis and differentiation from benign lesions. The dermoscopic pattern often associated with melanoma on the volar skin is the parallel ridge, with 99% specificity according to the literature. However, this pattern can also occur in several benign acral lesions, so it is important to make a good interpretation of this pattern, along with the clinical history and evolution. PMID:24068145
1984-11-30
PWV were recorded with a Cyborg BL907 . pulse wave velocity monitor. Two pressure sensitive transducers were placed on the left arm, one over the... Cyborg Thermal P642. . Temperature was recorded by two thermistors placed on the volar surface of the distal phalanx of the left hand (middle and index...finger) and was displayed as the average of the two thermistors (to .01 degrees Farenheit). Electromyogram activity was measured with a Cyborg P303
Ion assisted deposition of SiO2 film from silicon
NASA Astrophysics Data System (ADS)
Pham, Tuan. H.; Dang, Cu. X.
2005-09-01
Silicon dioxide, SiO2, is one of the preferred low index materials for optical thin film technology. It is often deposited by electron beam evaporation source with less porosity and scattering, relatively durable and can have a good laser damage threshold. Beside these advantages the deposition of critical optical thin film stacks with silicon dioxide from an E-gun was severely limited by the stability of the evaporation pattern or angular distribution of the material. The even surface of SiO2 granules in crucible will tend to develop into groove and become deeper with the evaporation process. As the results, angular distribution of the evaporation vapor changes in non-predicted manner. This report presents our experiments to apply Ion Assisted Deposition process to evaporate silicon in a molten liquid form. By choosing appropriate process parameters we can get SiO2 film with good and stable property.
Face-seal lubrication: 1: Proposed and published models
NASA Technical Reports Server (NTRS)
Ludwig, L. P.
1976-01-01
The numerous published theories on the mechanism of hydrodynamic lubrication of face seals were reviewed. These theories employ either an inclined-slider-bearing macrogeometry or an inclined-slider-bearing microgeometry to produce hydrodynamic pressure that separates the surfaces of the primary seal. Secondary seal friction and primary ring inertia effects are not considered. Hypothetical seal operating models were devised to include secondary seal friction and primary ring inertia effects. It was hypothesized that these effects induce relative angular misalinement of the primary seal faces and that this misalinement is, in effect, an inclined slider macrogeometry. Stable running was postulated for some of these hypothetical operating models. In others, periodic loss of hydrodynamic lubrication was postulated to be possible with certain combinations of waviness and angular misalinement. Application of restrictions that apply to seal operation led to a hydrodynamic governing equation for the new model that is a two-dimensional, time-dependent Reynolds equation with the short-bearing approximation.
Cho, Hyunsu; Lee, Hyunkoo; Lee, Jonghee; Sung, Woo Jin; Kwon, Byoung-Hwa; Joo, Chul-Woong; Shin, Jin-Wook; Han, Jun-Han; Moon, Jaehyun; Lee, Jeong-Ik; Cho, Seungmin; Cho, Nam Sung
2017-05-01
In this work, we suggest a graphene/ poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) composite as a transparent electrode for stabilizing white emission of organic light-emitting diodes (OLEDs). Graphene/PEDOT:PSS composite electrodes have increased reflectance when compared to graphene itself, but their reflectance is still lower than that of ITO itself. Changes in the reflectance of the composite electrode have the advantage of suppressing the angular spectral distortion of white emission OLEDs and achieving an efficiency of 16.6% for white OLEDs, comparable to that achieved by graphene-only electrodes. By controlling the OLED structure to compensate for the two-beam interference effect, the CIE color coordinate change (Δxy) of OLEDs based on graphene/PEDOT:PSS composite electrodes is 0.018, less than that based on graphene-only electrode, i.e.,0.027.
Shen, Yijie; Meng, Yuan; Fu, Xing; Gong, Mali
2018-01-15
A dual-off-axis pumping scheme is presented to generate wavelength-tunable high-order Hermite-Gaussian (HG) modes in Yb:CaGdAlO 4 lasers. The mode and wavelength can be actively controlled by the off-axis displacements and pump power. The purities of the output HG modes are quantified by intensity distributions and the measured M 2 values. The highest order reaches m=15 for stable HG m,0 mode, and wavelength-tunable width is about 10 nm. Moreover, through externally converting the HG m,0 modes, the vortex beams carrying orbital angular momentum (OAM) with a large OAM-tunable range from ±1ℏ to ±15ℏ are produced. This work is effective for largely scaling the spectral and OAM tunable ranges of optical vortex beams.
NASA Astrophysics Data System (ADS)
Chandran, P.; Zafari, A.; Lui, E. W.; Xia, K.
2017-05-01
Mechanically alloyed Al with immiscible elements such as Nb can lead to a uniform distribution of nanoscaled precipitates which are highly stable compared to conventional alloying and with excellent interface, resulting in significant increase in strength without problems associated with nano ceramic particles in metal matrix composites. Although immiscible, Nb can be alloyed with Al through mechanical milling, forming trialuminide (Al3Nb), either directly or upon subsequent precipitation, which possesses high strength, stiffness and stability at elevated temperatures. In the present study, Al-5 at.% Nb supersaturated solid solution was achieved after prolonged ball milling and nano Al3Nb precipitates were formed during subsequent ageing at 530°C. The Al-Al3Nb powder was consolidated by equal channel angular pressing (ECAP) at 400°C, resulting in a fully dense material with a uniform distribution of nanoscaled Al3Nb precipitates in the Al matrix.
Reducing tilt-to-length coupling for the LISA test mass interferometer
NASA Astrophysics Data System (ADS)
Tröbs, M.; Schuster, S.; Lieser, M.; Zwetz, M.; Chwalla, M.; Danzmann, K.; Fernández Barránco, G.; Fitzsimons, E. D.; Gerberding, O.; Heinzel, G.; Killow, C. J.; Perreur-Lloyd, M.; Robertson, D. I.; Schwarze, T. S.; Wanner, G.; Ward, H.
2018-05-01
Objects sensed by laser interferometers are usually not stable in position or orientation. This angular instability can lead to a coupling of angular tilt to apparent longitudinal displacement—tilt-to-length coupling (TTL). In LISA this is a potential noise source for both the test mass interferometer and the long-arm interferometer. We have experimentally investigated TTL coupling in a setup representative for the LISA test mass interferometer and used this system to characterise two different imaging systems (a two-lens design and a four-lens design) both designed to minimise TTL coupling. We show that both imaging systems meet the LISA requirement of ±25 μm rad‑1 for interfering beams with relative angles of up to ±300 μrad. Furthermore, we found a dependency of the TTL coupling on beam properties such as the waist size and location, which we characterised both theoretically and experimentally.
Effect of severe plastic deformation on the structure and mechanical properties of Al-Cu-Mg alloy
NASA Astrophysics Data System (ADS)
Khafizova, E.; Islamgaliev, R.
2014-08-01
Aluminum Al-Cu-Mg alloy has been subjected to high pressure torsion (HPT) and equal-channel angular pressing (ECAP) at various temperatures. An ultrafine-grained (UFG) structure thermally stable up to a temperature of 175 °C was produced in all the investigated samples. Simultaneous increase in strength and ductility has been demonstrated in an ECAPed sample in comparison with a coarse-grained sample subjected to standard treatment.
Ferrofluids: Modeling, numerical analysis, and scientific computation
NASA Astrophysics Data System (ADS)
Tomas, Ignacio
This dissertation presents some developments in the Numerical Analysis of Partial Differential Equations (PDEs) describing the behavior of ferrofluids. The most widely accepted PDE model for ferrofluids is the Micropolar model proposed by R.E. Rosensweig. The Micropolar Navier-Stokes Equations (MNSE) is a subsystem of PDEs within the Rosensweig model. Being a simplified version of the much bigger system of PDEs proposed by Rosensweig, the MNSE are a natural starting point of this thesis. The MNSE couple linear velocity u, angular velocity w, and pressure p. We propose and analyze a first-order semi-implicit fully-discrete scheme for the MNSE, which decouples the computation of the linear and angular velocities, is unconditionally stable and delivers optimal convergence rates under assumptions analogous to those used for the Navier-Stokes equations. Moving onto the much more complex Rosensweig's model, we provide a definition (approximation) for the effective magnetizing field h, and explain the assumptions behind this definition. Unlike previous definitions available in the literature, this new definition is able to accommodate the effect of external magnetic fields. Using this definition we setup the system of PDEs coupling linear velocity u, pressure p, angular velocity w, magnetization m, and magnetic potential ϕ We show that this system is energy-stable and devise a numerical scheme that mimics the same stability property. We prove that solutions of the numerical scheme always exist and, under certain simplifying assumptions, that the discrete solutions converge. A notable outcome of the analysis of the numerical scheme for the Rosensweig's model is the choice of finite element spaces that allow the construction of an energy-stable scheme. Finally, with the lessons learned from Rosensweig's model, we develop a diffuse-interface model describing the behavior of two-phase ferrofluid flows and present an energy-stable numerical scheme for this model. For a simplified version of this model and the corresponding numerical scheme we prove (in addition to stability) convergence and existence of solutions as by-product . Throughout this dissertation, we will provide numerical experiments, not only to validate mathematical results, but also to help the reader gain a qualitative understanding of the PDE models analyzed in this dissertation (the MNSE, the Rosenweig's model, and the Two-phase model). In addition, we also provide computational experiments to illustrate the potential of these simple models and their ability to capture basic phenomenological features of ferrofluids, such as the Rosensweig instability for the case of the two-phase model. In this respect, we highlight the incisive numerical experiments with the two-phase model illustrating the critical role of the demagnetizing field to reproduce physically realistic behavior of ferrofluids.
B-dot algorithm steady-state motion performance
NASA Astrophysics Data System (ADS)
Ovchinnikov, M. Yu.; Roldugin, D. S.; Tkachev, S. S.; Penkov, V. I.
2018-05-01
Satellite attitude motion subject to the well-known B-dot magnetic control is considered. Unlike the majority of studies the present work focuses on the slowly rotating spacecraft. The attitude and the angular velocity acquired after detumbling the satellite is determined. This task is performed using two relatively simple geomagnetic field models. First the satellite is considered moving in the simplified dipole model. Asymptotically stable rotation around the axis of the maximum moment of inertia is found. This axis direction in the inertial space and the rotation rate are found. This result is then refined using the direct dipole geomagnetic field. Simple stable rotation transforms into the periodical motion, the rotation rate is also refined. Numerical analysis with the gravitational torque and the inclined dipole model verifies the analytical results.
Baumbach, Sebastian F; Synek, Alexander; Traxler, Hannes; Mutschler, Wolf; Pahr, Dieter; Chevalier, Yan
2015-09-08
Extensor tendon irritation is one of the most common complications following volar locking plate osteosynthesis (VLPO) for distal radius fractures. It is most likely caused by distal screws protruding the dorsal cortex. Shorter distal screws could avoid this, yet the influence of distal screw length on the primary stability in VLPO is unknown. The aim of this study was to compare 75 to 100% distal screw lengths in VLPO. A biomechanical study was conducted on 11 paired fresh-frozen radii. HRpQCT scans were performed to assess bone mineral density (BMD) and bone mineral content (BMC). The specimens were randomized pair-wise into two groups: 100% (group A) and 75% (group B) unicortical distal screw lengths. A validated fracture model for extra-articular distal radius fractures (AO-23 A3) was used. Polyaxial volar locking plates were mounted, and distal screws was inserted using a drill guide block. For group A, the distal screw tips were intended to be flush or just short of the dorsal cortex. In group B, a target screw length of 75% was calculated. The specimens were tested to failure using a displacement-controlled axial compression test. Primary biomechanical stability was assessed by stiffness, elastic limit, and maximum force as well as with residual tilt, which quantified plastic deformation. Nine specimens were tested successfully. BMD and BMC did not differ between the two groups. The mean distal screw length of group A was 21.7 ± 2.6 mm (range: 16 to 26 mm), for group B 16.9 ± 1.9 mm (range: 12 to 20 mm). Distal screws in group B were on average 5.6 ± 0.9 mm (range: 3 to 7 mm) shorter than measured. No significant differences were found for stiffness (706 ± 103 N/mm vs. 660 ± 124 N/mm), elastic limit (177 ± 25 N vs. 167 ± 36 N), maximum force (493 ± 139 N vs. 471 ± 149 N), or residual tilt (7.3° ± 0.7° vs. 7.1° ± 1.3°). The 75% distal screw length in VLPO provides similar primary stability to 100% unicortical screw length. This study, for the first time, provides the biomechanical basis to choose distal screws significantly shorter then measured.
Málek, Přemysl; Šlapáková Poková, Michaela; Cieslar, Miroslav
2015-11-12
Twin roll cast Al-Mn- and Al-Mn-Zr-based alloys were subjected to four passes of equal channel angular pressing. The resulting grain size of 400 nm contributes to a significant strengthening at room temperature. This microstructure is not fully stable at elevated temperatures and recrystallization and vast grain growth occur at temperatures between 350 and 450 °C. The onset of these microstructure changes depends on chemical and phase composition. Better stability is observed in the Al-Mn-Zr-based alloy. High temperature tensile tests reveal that equal channel angular pressing results in a softening of all studied materials at high temperatures. This can be explained by an active role of grain boundaries in the deformation process. The maximum values of ductility and strain rate sensitivity parameter m found in the Al-Mn-Zr-based alloy are below the bottom limit of superplasticity (155%, m = 0.25). However, some features typical for superplastic behavior were observed-the strain rate dependence of the parameter m , the strengthening with increasing grain size, and the fracture by diffuse necking. Grain boundary sliding is believed to contribute partially to the overall strain in specimens where the grain size remained in the microcrystalline range.
NASA Astrophysics Data System (ADS)
Kuosheng, Jiang; Guanghua, Xu; Tangfei, Tao; Lin, Liang; Yi, Wang; Sicong, Zhang; Ailing, Luo
2014-01-01
This paper presents the theory and implementation of a novel sensor system for measuring the angular speed (AS) of a shaft rotating at a very low speed range, nearly zero speed. The sensor system consists mainly of an eccentric sleeve rotating with the shaft on which the angular speed to be measured, and an eddy current displacement sensor to obtain the profile of the sleeve for AS calculation. When the shaft rotates at constant speed the profile will be a pure sinusoidal trace. However, the profile will be a phase modulated signal when the shaft speed is varied. By applying a demodulating procedure, the AS can be obtained in a straightforward manner. The sensor system was validated experimentally based on a gearbox test rig and the result shows that the AS obtained are consistent with that obtained by a conventional encoder. However, the new sensor gives very smooth and stable traces of the AS, demonstrating its higher accuracy and reliability in obtaining the AS of the low speed operations with speed-up and down transients. In addition, the experiment also shows that it is easy and cost-effective to be realised in different applications such as condition monitoring and process control.
Learning dynamic control of body yaw orientation.
Vimal, Vivekanand Pandey; Lackner, James R; DiZio, Paul
2018-05-01
To investigate the role of gravitational cues in the learning of a dynamic balancing task, we placed blindfolded subjects in a device programmed with inverted pendulum dynamics about the yaw axis. Subjects used a joystick to try and maintain a stable orientation at the direction of balance during 20 100 s-long trials. They pressed a trigger button on the joystick to indicate whenever they felt at the direction of balance. Three groups of ten subjects each participated. One group balanced with their body and the yaw axis vertical, and thus did not have gravitational cues to help them to determine their angular position. They showed minimal learning, inaccurate indications of the direction of balance, and a characteristic pattern of positional drifting away from the balance point. A second group balanced with the yaw axis pitched 45° from the gravitational vertical and had gravity relevant position cues. The third group balanced with their yaw axis horizontal where they had gravity-dependent cues about body position in yaw. Groups 2 and 3 showed better initial balancing performance and more learning across trials than Group 1. These results indicate that in the absence of vision, the integration of transient semicircular canal and somatosensory signals about angular acceleration is insufficient for determining angular position during dynamic balancing; direct position-dependent gravity cues are necessary.
NASA Technical Reports Server (NTRS)
Proud, Simon Richard; Zhang, Qingling; Schaaf, Crystal; Fensholt, Rasmus; Rasmussen, Mads Olander; Shisanya, Chris; Mutero, Wycliffe; Mbow, Cheikh; Anyamba, Assaf; Pak, Ed;
2014-01-01
A modified version of the MODerate resolution Imaging Spectroradiometer (MODIS) bidirectional reflectance distribution function (BRDF) algorithm is presented for use in the angular normalization of surface reflectance data gathered by the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) aboard the geostationary Meteosat Second Generation (MSG) satellites. We present early and provisional daily nadir BRDFadjusted reflectance (NBAR) data in the visible and near-infrared MSG channels. These utilize the high temporal resolution of MSG to produce BRDF retrievals with a greatly reduced acquisition period than the comparable MODIS products while, at the same time, removing many of the angular perturbations present within the original MSG data. The NBAR data are validated against reflectance data from the MODIS instrument and in situ data gathered at a field location in Africa throughout 2008. It is found that the MSG retrievals are stable and are of high-quality across much of the SEVIRI disk while maintaining a higher temporal resolution than the MODIS BRDF products. However, a number of circumstances are discovered whereby the BRDF model is unable to function correctly with the SEVIRI observations-primarily because of an insufficient spread of angular data due to the fixed sensor location or localized cloud contamination.
Málek, Přemysl; Šlapáková Poková, Michaela; Cieslar, Miroslav
2015-01-01
Twin roll cast Al-Mn- and Al-Mn-Zr-based alloys were subjected to four passes of equal channel angular pressing. The resulting grain size of 400 nm contributes to a significant strengthening at room temperature. This microstructure is not fully stable at elevated temperatures and recrystallization and vast grain growth occur at temperatures between 350 and 450 °C. The onset of these microstructure changes depends on chemical and phase composition. Better stability is observed in the Al-Mn-Zr-based alloy. High temperature tensile tests reveal that equal channel angular pressing results in a softening of all studied materials at high temperatures. This can be explained by an active role of grain boundaries in the deformation process. The maximum values of ductility and strain rate sensitivity parameter m found in the Al-Mn-Zr-based alloy are below the bottom limit of superplasticity (155%, m = 0.25). However, some features typical for superplastic behavior were observed—the strain rate dependence of the parameter m, the strengthening with increasing grain size, and the fracture by diffuse necking. Grain boundary sliding is believed to contribute partially to the overall strain in specimens where the grain size remained in the microcrystalline range. PMID:28793667
Design guidelines for high dimensional stability of CFRP optical bench
NASA Astrophysics Data System (ADS)
Desnoyers, Nichola; Boucher, Marc-André; Goyette, Philippe
2013-09-01
In carbon fiber reinforced plastic (CFRP) optomechanical structures, particularly when embodying reflective optics, angular stability is critical. Angular stability or warping stability is greatly affected by moisture absorption and thermal gradients. Unfortunately, it is impossible to achieve the perfect laminate and there will always be manufacturing errors in trying to reach a quasi-iso laminate. Some errors, such as those related to the angular position of each ply and the facesheet parallelism (for a bench) can be easily monitored in order to control the stability more adequately. This paper presents warping experiments and finite-element analyses (FEA) obtained from typical optomechanical sandwich structures. Experiments were done using a thermal vacuum chamber to cycle the structures from -40°C to 50°C. Moisture desorption tests were also performed for a number of specific configurations. The selected composite material for the study is the unidirectional prepreg from Tencate M55J/TC410. M55J is a high modulus fiber and TC410 is a new-generation cyanate ester designed for dimensionally stable optical benches. In the studied cases, the main contributors were found to be: the ply angular errors, laminate in-plane parallelism (between 0° ply direction of both facesheets), fiber volume fraction tolerance and joints. Final results show that some tested configurations demonstrated good warping stability. FEA and measurements are in good agreement despite the fact that some defects or fabrication errors remain unpredictable. Design guidelines to maximize the warping stability by taking into account the main dimensional stability contributors, the bench geometry and the optical mount interface are then proposed.
2011-12-28
shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number...by CMEs; (2) the angular orientation of newly emerged magnetic flux on the solar surface relative to stable filaments plays a role in how rapidly the...potential of exploiting ISOON observations to increase our understanding of solar eruptions, a requirement for improved prediction and mitigation of space
Gyroscope precession along bound equatorial plane orbits around a Kerr black hole
NASA Astrophysics Data System (ADS)
Bini, Donato; Geralico, Andrea; Jantzen, Robert T.
2016-09-01
The precession of a test gyroscope along stable bound equatorial plane orbits around a Kerr black hole is analyzed, and the precession angular velocity of the gyro's parallel transported spin vector and the increment in the precession angle after one orbital period is evaluated. The parallel transported Marck frame which enters this discussion is shown to have an elegant geometrical explanation in terms of the electric and magnetic parts of the Killing-Yano 2-form and a Wigner rotation effect.
Statistical Mechanics and Dynamics of the Outer Solar System.I. The Jupiter/Saturn Zone
NASA Technical Reports Server (NTRS)
Grazier, K. R.; Newman, W. I.; Kaula, W. M.; Hyman, J. M.
1996-01-01
We report on numerical simulations designed to understand how the solar system evolved through a winnowing of planetesimals accreeted from the early solar nebula. This sorting process is driven by the energy and angular momentum and continues to the present day. We reconsider the existence and importance of stable niches in the Jupiter/Saturn Zone using greatly improved numerical techniques based on high-order optimized multi-step integration schemes coupled to roundoff error minimizing methods.
Three Dimensional Structure and Time Development of Radio Emission from Solar Active Regions.
1983-01-15
8217 surrounded by a weaker unpolarized halo whose angular extent ranges between 5’ and 9’. The bright (106K) sunspot-associated cores, which were intepreted in...shorter intervals. Examination of the He film indicates that the dominant He emission was stable for periods of at least six hours. Figure 8 and 9 also...the cool loops and may occupy a substantial fraction of the region above sunspots. This intepretation has, in fact, been supported by the model of
Production of slow protonium in vacuum
NASA Astrophysics Data System (ADS)
Zurlo, N.; Rizzini, E. Lodi; Venturelli, L.; Amoretti, M.; Carraro, C.; Lagomarsino, V.; Macrì, M.; Manuzio, G.; Testera, G.; Variola, A.; Amsler, C.; Pruys, H.; Regenfus, C.; Bonomi, G.; Fontana, A.; Genova, P.; Montagna, P.; Rotondi, A.; Cesar, C. L.; Charlton, M.; Mitchard, D.; Jørgensen, L. V.; Madsen, N.; Van der Werf, D. P.; Doser, M.; Kellerbauer, A.; Landua, R.; Funakoshi, R.; Hayano, R. S.; Posada, L. G.; Yamazaki, Y.
We describe how protonium, the quasi-stable antiproton-proton bound system, has been synthesized following the interaction of antiprotons with the molecular ion H{2/+} in a nested Penning trap environment. From a careful analysis of the spatial distributions of antiproton annihilation events in the ATHENA experiment, evidence is presented for protonium production with sub-eV kinetic energies in states around n = 70, with iow angular momenta. This work provides a new two-body system for studies using laser spectroscopic techniques.
Production of slow protonium in vacuum
NASA Astrophysics Data System (ADS)
Zurlo, N.; Amoretti, M.; Amsler, C.; Bonomi, G.; Carraro, C.; Cesar, C. L.; Charlton, M.; Doser, M.; Fontana, A.; Funakoshi, R.; Genova, P.; Hayano, R. S.; Jørgensen, L. V.; Kellerbauer, A.; Lagomarsino, V.; Landua, R.; Lodi Rizzini, E.; Macrì, M.; Madsen, N.; Manuzio, G.; Mitchard, D.; Montagna, P.; Posada, L. G.; Pruys, H.; Regenfus, C.; Rotondi, A.; Testera, G.; van der Werf, D. P.; Variola, A.; Venturelli, L.; Yamazaki, Y.
2006-09-01
We descrbe how protonium, the quasi-stable antiproton-proton bound system, has been synthesized following the interaction of antiprotons with the molecular ion H_2^+ in a nested Penning trap environment. From a careful analysis of the spatial distributions of antiproton annihilation events in the ATHENA experiment, evidence is presented for protonium production with sub-eV kinetic energies in states around n = 70, with low angular momenta. This work provides a new two-body system for studies using laser spectroscopic techniques.
Improved Time-Lapsed Angular Scattering Microscopy of Single Cells
NASA Astrophysics Data System (ADS)
Cannaday, Ashley E.
By measuring angular scattering patterns from biological samples and fitting them with a Mie theory model, one can estimate the organelle size distribution within many cells. Quantitative organelle sizing of ensembles of cells using this method has been well established. Our goal is to develop the methodology to extend this approach to the single cell level, measuring the angular scattering at multiple time points and estimating the non-nuclear organelle size distribution parameters. The diameters of individual organelle-size beads were successfully extracted using scattering measurements with a minimum deflection angle of 20 degrees. However, the accuracy of size estimates can be limited by the angular range detected. In particular, simulations by our group suggest that, for cell organelle populations with a broader size distribution, the accuracy of size prediction improves substantially if the minimum angle of detection angle is 15 degrees or less. The system was therefore modified to collect scattering angles down to 10 degrees. To confirm experimentally that size predictions will become more stable when lower scattering angles are detected, initial validations were performed on individual polystyrene beads ranging in diameter from 1 to 5 microns. We found that the lower minimum angle enabled the width of this delta-function size distribution to be predicted more accurately. Scattering patterns were then acquired and analyzed from single mouse squamous cell carcinoma cells at multiple time points. The scattering patterns exhibit angular dependencies that look unlike those of any single sphere size, but are well-fit by a broad distribution of sizes, as expected. To determine the fluctuation level in the estimated size distribution due to measurement imperfections alone, formaldehyde-fixed cells were measured. Subsequent measurements on live (non-fixed) cells revealed an order of magnitude greater fluctuation in the estimated sizes compared to fixed cells. With our improved and better-understood approach to single cell angular scattering, we are now capable of reliably detecting changes in organelle size predictions due to biological causes above our measurement error of 20 nm, which enables us to apply our system to future studies of the investigation of various single cell biological processes.
Comparative morphology of the pollical distal phalanx.
Shrewsbury, M M; Marzke, M W; Linscheid, R L; Reece, S P
2003-05-01
Functional analysis of human pollical distal phalangeal (PDP) morphology is undertaken to establish a basis for the assessment of fossil hominid PDP morphology. Features that contribute to the effectiveness of grips involving the distal thumb and finger pulp areas include: 1) distal thumb interphalangeal joint morphology, facilitating PDP conjunct pronation with flexion; 2) differentiation of a proximal, mobile pulp region from a distal, stable pulp region, providing for firm precision pinch grips and precision handling of objects; and 3) asymmetric attachment of the flexor pollicis longus (FPL) tendon fibers, favoring PDP conjunct pronation. A proportionately larger size of the ulnar vs. radial ungual spine suggests differential loading intensity of the ulnar side of the proximal ungual pulp and supporting nail bed. Stresses at the distal interphalangeal joint are indicated by the presence of a sesamoid bone within the volar (palmar) plate, which also increases the length of the flexor pollicis longus tendon moment arm. Dissections of specimens from six nonhuman primate genera indicate that these human features are shared variably with individuals in other species, although the full pattern of features appears to be distinctively human. Humans share variably with these other species all metric relationships examined here. The new data identify a need to systematically review long-standing assumptions regarding the range of precision and power manipulative capabilities that might reasonably be inferred from morphology of the distal phalangeal tuberosity and from the FPL tendon insertion site on the PDP. Copyright 2003 Wiley-Liss, Inc.
Robertson, Susan J; Leonard, Jane; Chamberlain, Alex J
2010-08-01
A 16-year-old boy presented with a number of asymptomatic pigmented macules on the volar aspect of his index fingers. Dermoscopy of each macule revealed a parallel ridge pattern of homogenous reddish-brown pigment. We propose that these lesions were induced by repetitive trauma from a Sony PlayStation 3 (Sony Corporation, Tokyo, Japan) vibration feedback controller. The lesions completely resolved following abstinence from gaming over a number of weeks. Although the parallel ridge pattern is typically the hallmark for early acral lentiginous melanoma, it may be observed in a limited number of benign entities, including subcorneal haematoma.
Spin Evolution of Stellar Progenitors in Compact Binaries
NASA Astrophysics Data System (ADS)
Steinle, Nathan; Kesden, Michael
2018-01-01
Understanding the effects of various processes on the spins of stellar progenitors in compact binary systems is important for modeling the binary’s evolution and thus for interpreting the gravitational radiation emitted during inspiral and merger. Tides, winds, and natal kicks can drastically modify the binary parameters: tidal interactions increase the spin magnitudes, align the spins with the orbital angular momentum, and circularize the orbit; stellar winds decrease the spin magnitudes and cause mass loss; and natal kicks can misalign the spins and orbital angular momentum or even disrupt the binary. Also, during Roche lobe overflow, the binary may experience either stable mass transfer or common envelope evolution. The former can lead to a mass ratio reversal and alter the component spins, while the latter can dramatically shrink the binary separation. For a wide range of physically reasonable stellar-evolution scenarios, we compare the timescales of these processes to assess their relative contributions in determining the initial spins of compact binary systems.
NASA Technical Reports Server (NTRS)
Gorenstein, P.; Perlman, D.; Parsignault, D.; Burns, R.
1979-01-01
A sealed position sensitive proportional counter filled with two atmospheres of 95% xenon and 5% methane, and containing a drift region of 24 atm cm, has operated in a stable manner for many months. The detector contains G-10 frames to support the anode and cathode wires. The detector was sealed successfully by a combination of vacuum baking the G-10 frames at 150 C for two weeks followed by assembly into the detector in an environment of dry nitrogen, and the use of passive internal getters. The counter is intended for use with a circumferential cylindrical collimator. Together they provide a very broad field of view detection system with the ability to locate cosmic hard X-ray and soft gamma ray sources to an angular precision of a minute of arc. A set of instruments based on this principle have been proposed for satellites to detect and precisely locate cosmic gamma ray bursts.
Calibration of the head direction network: a role for symmetric angular head velocity cells.
Stratton, Peter; Wyeth, Gordon; Wiles, Janet
2010-06-01
Continuous attractor networks require calibration. Computational models of the head direction (HD) system of the rat usually assume that the connections that maintain HD neuron activity are pre-wired and static. Ongoing activity in these models relies on precise continuous attractor dynamics. It is currently unknown how such connections could be so precisely wired, and how accurate calibration is maintained in the face of ongoing noise and perturbation. Our adaptive attractor model of the HD system that uses symmetric angular head velocity (AHV) cells as a training signal shows that the HD system can learn to support stable firing patterns from poorly-performing, unstable starting conditions. The proposed calibration mechanism suggests a requirement for symmetric AHV cells, the existence of which has previously been unexplained, and predicts that symmetric and asymmetric AHV cells should be distinctly different (in morphology, synaptic targets and/or methods of action on postsynaptic HD cells) due to their distinctly different functions.
Experimental Investigation of Rotating Menisci
NASA Astrophysics Data System (ADS)
Reichel, Yvonne; Dreyer, Michael E.
2014-07-01
In upper stages of spacecrafts, Propellant Management Devices (PMD's) can be used to position liquid propellant over the outlet in the absence of gravity. Centrifugal forces due to spin of the upper stage can drive the liquid away from the desired location resulting in malfunction of the stage. In this study, a simplified model consisting of two parallel, segmented and unsegmented disks and a central tube assembled at the center of the upper disk is analyzed experimentally during rotation in microgravity. For each drop tower experiment, the angular speed caused by a centrifugal stage in the drop capsule is kept constant. Steady-states for the menisci between the disks are observed for moderate rotation. For larger angular speeds, a stable shape of the free surfaces fail to sustain and the liquid is driven away. Additionally, tests were performed without rotation to quantify two effects: the removal of a metallic cylinder around the model to establish the liquid column and the determination of the the settling time from terrestrial to microgravity conditions.
Rovibrational bound states of SO2 isotopologues. II: Total angular momentum J = 11-20
NASA Astrophysics Data System (ADS)
Kumar, Praveen; Poirier, Bill
2015-11-01
In a two-part series, the rovibrational bound states of SO2 are investigated in comprehensive detail, for all four stable sulfur isotopes 32-34,36S. All low-lying rovibrational energy levels-both permutation-symmetry-allowed and not allowed-are computed, for all values of total angular momentum in the range J = 0-20. The calculations have carried out using the ScalIT suite of parallel codes. The present study (Paper II) examines the J = 11-20 rovibrational levels, providing symmetry and rovibrational labels for every computed state, relying on a new lambda-doublet splitting technique to make completely unambiguous assignments. Isotope shifts are analyzed, as is the validity of ;J-shifting; as a predictor of rotational fine structure. Among other ramifications, this work will facilitate understanding of mass-independent fractionation of sulfur isotopes (S-MIF) observed in the Archean rock record-particularly as this may have arisen from self shielding. S-MIF, in turn is highly relevant in the broader context of understanding the ;oxygen revolution;.
Rovibrational bound states of SO2 isotopologues. I: Total angular momentum J = 0-10
NASA Astrophysics Data System (ADS)
Kumar, Praveen; Ellis, Joseph; Poirier, Bill
2015-04-01
Isotopic variation of the rovibrational bound states of SO2 for the four stable sulfur isotopes 32-34,36S is investigated in comprehensive detail. In a two-part series, we compute the low-lying energy levels for all values of total angular momentum in the range J = 0-20. All rovibrational levels are computed, to an extremely high level of numerical convergence. The calculations have been carried out using the ScalIT suite of parallel codes. The present study (Paper I) examines the J = 0-10 rovibrational levels, providing unambiguous symmetry and rovibrational label assignments for each computed state. The calculated vibrational energy levels exhibit very good agreement with previously reported experimental and theoretical data. Rovibrational energy levels, calculated without any Coriolis approximations, are reported here for the first time. Among other potential ramifications, this data will facilitate understanding of the origin of mass-independent fractionation of sulfur isotopes in the Archean rock record-of great relevance for understanding the "oxygen revolution".
NASA Astrophysics Data System (ADS)
Uchida, T.; Tanaka, H. K. M.; Tanaka, M.
2010-02-01
Cosmic-ray muon radiography is a method that is used to study the internal structure of volcanoes. We have developed a muon radiographic imaging board with a power consumption low enough to be powered by a small solar power system. The imaging board generates an angular distribution of the muons. Used for real-time reading, the method may facilitate the prediction of eruptions. For real-time observations, the Ethernet is employed, and the board works as a web server for a remote operation. The angular distribution can be obtained from a remote PC via a network using a standard web browser. We have collected and analyzed data obtained from a 3-day field study of cosmic-ray muons at a Satsuma-Iwojima volcano. The data provided a clear image of the mountain ridge as a cosmic-ray muon shadow. The measured performance of the system is sufficient for a stand-alone cosmic-ray muon radiography experiment.
NASA Astrophysics Data System (ADS)
Lake, Matthew; Thomas, Steven; Ward, John
2010-01-01
We propose a mechanism for the creation of cosmic string loops with dynamically stabilised windings in the internal space. Assuming a velocity correlations regime in the post-inflationary epoch, such windings are seen to arise naturally in string networks prior to loop formation. The angular momentum of the string in the compact space may then be sufficient to ensure that the windings remain stable after the loop chops off from the network, even if the internal manifold is simply connected. For concreteness we embed our model in the Klebanov-Strassler geometry, which provides a natural mechanism for brane inflation, as well a being one of the best understood compactification schemes in type IIB string theory. We see that the interaction of angular momentum with the string tension causes the loop to oscillate between phases of expansion and contraction. This, in principle, should give rise to a distinct gravitational wave signature, the future detection of which could provide indirect evidence for the existence of extra dimensions.
Equilibrium configurations of perfect fluid orbiting Schwarzschild-de Sitter black holes
NASA Astrophysics Data System (ADS)
Stuchlík, Z.; Slaný, P.; Hledík, S.
2000-11-01
The hydrodynamical structure of perfect fluid orbiting Schwarzschild-de Sitter black holes is investigated for configurations with uniform distribution of angular momentum density. It is shown that in the black-hole backgrounds admitting the existence of stable circular geodesics, closed equipotential surfaces with a cusp, allowing the existence of toroidal accretion disks, can exist. Two surfaces with a cusp exist for the angular momentum density smaller than the one corresponding to marginally bound circular geodesics; the equipotential surface corresponding to the marginally bound circular orbit has just two cusps. The outer cusp is located nearby the static radius where the gravitational attraction is compensated by the cosmological repulsion. Therefore, due to the presence of a repulsive cosmological constant, the outflow from thick accretion disks can be driven by the same mechanism as the accretion onto the black hole. Moreover, properties of open equipotential surfaces in vicinity of the axis of rotation suggest a strong collimation effects of the repulsive cosmological constant acting on jets produced by the accretion disks.
Twisted ultrathin silicon nanowires: A possible torsion electromechanical nanodevice
NASA Astrophysics Data System (ADS)
Garcia, J. C.; Justo, J. F.
2014-11-01
Nanowires have been considered for a number of applications in nanometrology. In such a context, we have explored the possibility of using ultrathin twisted nanowires as torsion nanobalances to probe forces and torques at molecular level with high precision, a nanoscale system analogous to the Coulomb's torsion balance electrometer. In order to achieve this goal, we performed a first-principles investigation on the structural and electronic properties of twisted silicon nanowires, in their pristine and hydrogenated forms. The results indicated that wires with pentagonal and hexagonal cross-sections are the thinnest stable silicon nanostructures. Additionally, all wires followed a Hooke's law behavior for small twisting deformations. Hydrogenation leads to spontaneous twisting, but with angular spring constants considerably smaller than the ones for the respective pristine forms. We observed considerable changes on the nanowire electronic properties upon twisting, which allows to envision the possibility of correlating the torsional angular deformation with the nanowire electronic transport. This could ultimately allow a direct access to measurements on interatomic forces at molecular level.
Characterization of commercial MOSFET detectors and their feasibility for in-vivo HDR brachytherapy.
Phurailatpam, Reena; Upreti, Rituraj; Nojin Paul, Siji; Jamema, Swamidas V; Deshpande, Deepak D
2016-01-01
The present study was to investigate the use of MOSFET as an vivo dosimeter for the application of Ir-192 HDR brachytherapy treatments. MOSFET was characterized for dose linearity in the range of 50-1000 cGy, depth dose dependence from 2 to 7 cm, angular dependence. Signal fading was checked for two weeks. Dose linearity was found to be within 2% in the dose range (50-1000 cGy). The response varied within 8.07% for detector-source distance of 2-7 cm. The response of MOSFET with the epoxy side facing the source (0 degree) is the highest and the lowest response was observed at 90 and 270 degrees. Signal was stable during the study period. The detector showed high dose linearity and insignificant fading. But due to angular and depth dependence, care should be taken and corrections must be applied for clinical dosimetry. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Itoh, Soichiro; Yumoto, Myu; Kanai, Misa; Yoshida, Wataru; Yoshioka, Taro
2016-01-01
Background: The preservation of the integrity of the pronator quadratus (PQ) muscle is expected to have many benefits, particularly in cases of highly comminuted intra-articular fractures of the distal radius. Therefore, we examined the significance of a PQ muscle–sparing approach for volar locking plate (VLP) fixation of these types of fractures. Methods: Sixty-five patients who sustained AO Foundation and Orthopaedic Trauma Association (AO/OTA) type C2 and C3 distal radius fractures were treated with VLP fixation using either a PQ muscle release and repair (PQ-releasing group, n = 30) or a PQ muscle–sparing approach (PQ-sparing group, n = 35). Radiographic parameters, active range of motion (ROM), percentage of the grip power of the injured hand compared with that of the opposite hand, wrist pain visual analog scale (VAS) score, and Quick Disability of the Arm, Shoulder, and Hand (DASH) score (disability/symptom) were evaluated monthly up to 12 months after surgery. Results: The mean VAS score was significantly lower in the PQ-sparing group at 2, 3, and 4 months postoperatively than in the PQ-releasing group. Furthermore, the mean Quick DASH score in the PQ-sparing group was significantly lower than that in the PQ-releasing group at 1 and 2 months postoperatively. There were no significant differences, however, in the other functional parameters in the groups through the observation period. Conclusions: The PQ muscle–sparing approach appears to achieve satisfactory results in patients undergoing VLP fixation of comminuted intra-articular fractures of the distal radius. PMID:27418895
Tips and tricks in the dermoscopy of pigmented lesions
2012-01-01
Dermoscopy is a useful, widely used tool for examining pigmented lesions, especially helpful in cases of an uncertain nature. Nevertheless, doctors may experience diagnostic difficulties while using this method. An example of this may be found in the examination of subcorneal hematoma, dark nevi with black lamella or lesions of acral volar skin. In such cases, a few diagnostic tricks have proven to be helpful in achieving diagnostic accuracy. This paper reviews various methods of performing dermoscopy, suggesting a number of simple, yet helpful tests. These include the adhesive tape test, the skin scraping test and the ink furrow test. The adhesive tape test is helpful in differentiating between dark melanocytic nevi and melanoma. Hematoma may be more easily differentiated with the use of the so-called skin scraping test. The confirmation of benign and melanocytic lesions of acral volar skin, on the other hand, is more accurate when using the ink furrow test. These methods have been discussed here based upon a series of literature reviews, the authors’ own experience and, also, iconography. The present article describes novel methods used in dermoscopy, helping to bring about a faster, more accurate diagnostics of those lesions which have proven to be more difficult to recognize. Helpful tricks, such as have been known to professional literature, as well as the authors’ own experience (for instance, applying urea cream to hyperkeratotic lesions or using photographs of skin lesions taken with the aid of a mobile phone camera – all prior to surgery) will surely be considered beneficial to the practitioner, be it dermatologist or any other physician. PMID:22916721
Ma, Chuang; Deng, Qiang; Pu, Hongwei; Cheng, Xinchun; Kan, Yuhua; Yang, Jing; Yusufu, Aihemaitijiang; Cao, Li
2016-01-01
The purpose of this study was to compare the functional outcomes, psychological impact, and complication rates associated with external fixation and volar or dorsal plating in relation to the functional parameters following treatment of intra-articular fractures of the distal radius (IFDR) in patients older than 65 years. We hypothesized that using volar or dorsal plating would improve functional outcomes, but that it would be associated with more complications and equivalent functional outcomes when compared with the external fixation group. A total of 123 consecutive patients suffering from IFDR were recruited into the study. The patients were measured for clinical, radiological, and psychosocial functioning outcomes and were followed up after 1 week and 3, 6 and 12 months. After 3 months, the plating group had better pronation (P=0.001), supination, (P=0.047) and extension (P=0.043) scores. These differences were somewhat attenuated by 6 months and disappeared at 1 year. The plating group had a greater occurrence of wound infection (P=0.043), tendonitis, (P=0.024) and additional surgery compared with the external fixation group. The only TNO-AZL Adult Quality of Life scores in the plating group that were lower than those in the external fixation group were in the “gross motor” category (walking upstairs, bending over, walking 500 yards; P=0.023). Internal fixation was more advantageous than external fixation in the early rehabilitation period; after 1 year the outcomes were similar. The plating group showed significantly higher levels of wound infection and tendonitis and had a greater need for additional surgeries. PMID:27408765
Self-similar Hot Accretion Flow onto a Neutron Star
NASA Astrophysics Data System (ADS)
Medvedev, Mikhail V.; Narayan, Ramesh
2001-06-01
We consider hot, two-temperature, viscous accretion onto a rotating, unmagnetized neutron star. We assume Coulomb coupling between the protons and electrons, as well as free-free cooling from the electrons. We show that the accretion flow has an extended settling region that can be described by means of two analytical self-similar solutions: a two-temperature solution that is valid in an inner zone, r<~102.5, where r is the radius in Schwarzschild units; and a one-temperature solution that is valid in an outer zone, r>~102.5. In both zones the density varies as ρ~r-2 and the angular velocity as Ω~r-3/2. We solve the flow equations numerically and confirm that the analytical solutions are accurate. Except for the radial velocity, all gas properties in the self-similar settling zone, such as density, angular velocity, temperature, luminosity, and angular momentum flux, are independent of the mass accretion rate; these quantities do depend sensitively on the spin of the neutron star. The angular momentum flux is outward under most conditions; therefore, the central star is nearly always spun down. The luminosity of the settling zone arises from the rotational energy that is released as the star is braked by viscosity, and the contribution from gravity is small; hence, the radiative efficiency, η=Lacc/Mc2, is arbitrarily large at low M. For reasonable values of the gas adiabatic index γ, the Bernoulli parameter is negative; therefore, in the absence of dynamically important magnetic fields, a strong outflow or wind is not expected. The flow is also convectively stable but may be thermally unstable. The described solution is not advection dominated; however, when the spin of the star is small enough, the flow transforms smoothly to an advection-dominated branch of solution.
Fast rotating neutron stars with realistic nuclear matter equation of state
NASA Astrophysics Data System (ADS)
Cipolletta, F.; Cherubini, C.; Filippi, S.; Rueda, J. A.; Ruffini, R.
2015-07-01
We construct equilibrium configurations of uniformly rotating neutron stars for selected relativistic mean-field nuclear matter equations of state (EOS). We compute, in particular, the gravitational mass (M ), equatorial (Req) and polar (Rpol) radii, eccentricity, angular momentum (J ), moment of inertia (I ) and quadrupole moment (M2) of neutron stars stable against mass shedding and secular axisymmetric instability. By constructing the constant frequency sequence f =716 Hz of the fastest observed pulsar, PSR J1748-2446ad, and constraining it to be within the stability region, we obtain a lower mass bound for the pulsar, Mmin=[1.2 - 1.4 ]M⊙ , for the EOS employed. Moreover, we give a fitting formula relating the baryonic mass (Mb) and gravitational mass of nonrotating neutron stars, Mb/M⊙=M /M⊙+(13 /200 )(M /M⊙)2 [or M /M⊙=Mb/M⊙-(1 /20 )(Mb/M⊙)2], which is independent of the EOS. We also obtain a fitting formula, although not EOS independent, relating the gravitational mass and the angular momentum of neutron stars along the secular axisymmetric instability line for each EOS. We compute the maximum value of the dimensionless angular momentum, a /M ≡c J /(G M2) (or "Kerr parameter"), (a /M )max≈0.7 , found to be also independent of the EOS. We then compare and contrast the quadrupole moment of rotating neutron stars with the one predicted by the Kerr exterior solution for the same values of mass and angular momentum. Finally, we show that, although the mass quadrupole moment of realistic neutron stars never reaches the Kerr value, the latter is closely approached from above at the maximum mass value, as physically expected from the no-hair theorem. In particular, the stiffer the EOS, the closer the mass quadrupole moment approaches the value of the Kerr solution.
Mass transfer in white dwarf-neutron star binaries
NASA Astrophysics Data System (ADS)
Bobrick, Alexey; Davies, Melvyn B.; Church, Ross P.
2017-05-01
We perform hydrodynamic simulations of mass transfer in binaries that contain a white dwarf and a neutron star (WD-NS binaries), and measure the specific angular momentum of material lost from the binary in disc winds. By incorporating our results within a long-term evolution model, we measure the long-term stability of mass transfer in these binaries. We find that only binaries containing helium white dwarfs (WDs) with masses less than a critical mass of MWD, crit = 0.2 M⊙ undergo stable mass transfer and evolve into ultracompact X-ray binaries. Systems with higher mass WDs experience unstable mass transfer, which leads to tidal disruption of the WD. Our low critical mass compared to the standard jet-only model of mass-loss arises from the efficient removal of angular momentum in the mechanical disc winds, which develop at highly super-Eddington mass-transfer rates. We find that the eccentricities expected for WD-NS binaries when they come into contact do not affect the loss of angular momentum, and can only affect the long-term evolution if they change on shorter time-scales than the mass-transfer rate. Our results are broadly consistent with the observed numbers of both ultracompact X-ray binaries and radio pulsars with WD companions. The observed calcium-rich gap transients are consistent with the merger rate of unstable systems with higher mass WDs.
The area-angular momentum inequality for black holes in cosmological spacetimes
NASA Astrophysics Data System (ADS)
Gabach Clément, María Eugenia; Reiris, Martín; Simon, Walter
2015-07-01
For a stable, marginally outer trapped surface (MOTS) in an axially symmetric spacetime with cosmological constant Λ \\gt 0 and with matter satisfying the dominant energy condition, we prove that the area A and the angular momentum J satisfy the inequality 8π | J| ≤slant A\\sqrt{(1-Λ A/4π )(1-Λ A/12π )}, which is saturated precisely for the extreme Kerr-de Sitter family of metrics. This result entails a universal upper bound | J| ≤slant {J}{max}≈ 0.17/Λ for such MOTS, which is saturated for one particular extreme configuration. Our result sharpens the inequality 8π | J| ≤slant A (Dain and Reiris 2011 Phys. Rev. Lett. 107 051101, Jaramillo, Reiris and Dain 2011 Phys. Rev. Lett. D 84 121503), and we follow the overall strategy of its proof in the sense that we first estimate the area from below in terms of the energy corresponding to a ‘mass functional’, which is basically a suitably regularized harmonic map {{{S}}}2\\to {{{H}}}2. However, in the cosmological case this mass functional acquires an additional potential term which itself depends on the area. To estimate the corresponding energy in terms of the angular momentum and the cosmological constant we use a subtle scaling argument, a generalized ‘Carter-identity’, and various techniques from variational calculus, including the mountain pass theorem.
NASA Technical Reports Server (NTRS)
Reed, Kenneth W.
1992-01-01
A new hybrid stress finite element algorithm suitable for analyses of large quasistatic deformation of inelastic solids is presented. Principal variables in the formulation are the nominal stress rate and spin. The finite element equations which result are discrete versions of the equations of compatibility and angular momentum balance. Consistent reformulation of the constitutive equation and accurate and stable time integration of the stress are discussed at length. Examples which bring out the feasibility and performance of the algorithm conclude the work.
Plunge waveforms from inspiralling binary black holes.
Baker, J; Brügmann, B; Campanelli, M; Lousto, C O; Takahashi, R
2001-09-17
We study the coalescence of nonspinning binary black holes from near the innermost stable circular orbit down to the final single rotating black hole. We use a technique that combines the full numerical approach to solve the Einstein equations, applied in the truly nonlinear regime, and linearized perturbation theory around the final distorted single black hole at later times. We compute the plunge waveforms, which present a non-negligible signal lasting for t approximately 100M showing early nonlinear ringing, and we obtain estimates for the total gravitational energy and angular momentum radiated.
Prevention of extravasation injuries secondary to doxorubicin.
Linder, R M; Upton, J
1985-03-01
Intravenously administered drugs with potentially devastating consequences should be given only by personnel highly knowledgeable regarding the side effects and skilled in intravenous cannulation. A strict protocol should be followed. The earliest signs heralding extravasation should be recognized and infusion discontinued immediately. If extravasation occurs, prompt surgical consultation is necessary. Injection into the volar wrist, dorsum of the hand, and antecubital fossa should always be avoided. Polyethylene catheters are preferable to butterfly needles for administering chemotherapeutic agents. A careful history of the venous problems of patients who require long-term therapy should be maintained in their chart. Ideally, vascular access should avoid these problems.
Study of electrical properties of meridian on human body surface
NASA Astrophysics Data System (ADS)
Wang, Feng; Uematsu, Haruyuki; Otani, Nobuo
2007-12-01
This paper presents the study of the subcutaneous electrical impedance on the human body surface. Measurements of the electrical impedance on five adult male subjects were carried out and analyzed for the possible detection of the acupuncture meridian lines of ancient Chinese medicine on the human body. The distribution of electrical impedance measured at 40 points over the volar side of the right upper limb of the subjects. The results show that electrical impedance varies at different locations of the human body surface, and the locations with lower electrical impedance coincide with the locations where the meridian is believed to exist.
FORMATION OF STABLE MAGNETARS FROM BINARY NEUTRON STAR MERGERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giacomazzo, Bruno; Perna, Rosalba
2013-07-10
By performing fully general relativistic magnetohydrodynamic simulations of binary neutron star mergers, we investigate the possibility that the end result of the merger is a stable magnetar. In particular, we show that, for a binary composed of two equal-mass neutron stars (NSs) of gravitational mass M {approx} 1.2 M{sub Sun} and equation of state similar to Shen et al. at high densities, the merger product is a stable NS. Such NS is found to be differentially rotating and ultraspinning with spin parameter J/M{sup 2} {approx} 0.86, where J is its total angular momentum, and it is surrounded by a diskmore » of Almost-Equal-To 0.1 M{sub Sun }. While in our global simulations the magnetic field is amplified by about two orders of magnitude, local simulations have shown that hydrodynamic instabilities and the onset of the magnetorotational instability could further increase the magnetic field strength up to magnetar levels. This leads to the interesting possibility that, for some NS mergers, a stable and magnetized NS surrounded by an accretion disk could be formed. We discuss the impact of these new results for the emission of electromagnetic counterparts of gravitational wave signals and for the central engine of short gamma-ray bursts.« less
Controlling interactions between highly magnetic atoms with Feshbach resonances.
Kotochigova, Svetlana
2014-09-01
This paper reviews current experimental and theoretical progress in the study of dipolar quantum gases of ground and meta-stable atoms with a large magnetic moment. We emphasize the anisotropic nature of Feshbach resonances due to coupling to fast-rotating resonant molecular states in ultracold s-wave collisions between magnetic atoms in external magnetic fields. The dramatic differences in the distribution of resonances of magnetic (7)S3 chromium and magnetic lanthanide atoms with a submerged 4f shell and non-zero electron angular momentum is analyzed. We focus on dysprosium and erbium as important experimental advances have been recently made to cool and create quantum-degenerate gases for these atoms. Finally, we describe progress in locating resonances in collisions of meta-stable magnetic atoms in electronic P-states with ground-state atoms, where an interplay between collisional anisotropies and spin-orbit coupling exists.
Reproducing the hierarchy of disorder for Morpho-inspired, broad-angle color reflection
NASA Astrophysics Data System (ADS)
Song, Bokwang; Johansen, Villads Egede; Sigmund, Ole; Shin, Jung H.
2017-04-01
The scales of Morpho butterflies are covered with intricate, hierarchical ridge structures that produce a bright, blue reflection that remains stable across wide viewing angles. This effect has been researched extensively, and much understanding has been achieved using modeling that has focused on the positional disorder among the identical, multilayered ridges as the critical factor for producing angular independent color. Realizing such positional disorder of identical nanostructures is difficult, which in turn has limited experimental verification of different physical mechanisms that have been proposed. In this paper, we suggest an alternative model of inter-structural disorder that can achieve the same broad-angle color reflection, and is applicable to wafer-scale fabrication using conventional thin film technologies. Fabrication of a thin film that produces pure, stable blue across a viewing angle of more than 120 ° is demonstrated, together with a robust, conformal color coating.
NASA Astrophysics Data System (ADS)
Lu, Xiaodong; Wu, Tianze; Zhou, Jun; Zhao, Bin; Ma, Xiaoyuan; Tang, Xiucheng
2016-03-01
An electronic image stabilization method compounded with inertia information, which can compensate the coupling interference caused by the pitch-yaw movement of the optical stable platform system, has been proposed in this paper. Firstly the mechanisms of coning rotation and lever-arm translation of line of sight (LOS) are analyzed during the stabilization process under moving carriers, and the mathematical model which describes the relationship between LOS rotation angle and platform attitude angle are derived. Then the image spin angle caused by coning rotation is estimated by using inertia information. Furthermore, an adaptive block matching method, which based on image edge and angular point, is proposed to smooth the jitter created by the lever-arm translation. This method optimizes the matching process and strategies. Finally, the results of hardware-in-the-loop simulation verified the effectiveness and real-time performance of the proposed method.
NASA Astrophysics Data System (ADS)
Mogilevych, Borys; Isensee, Debora; Rangel, Joao L.; Dal Pizzol, Carine; Martinello, Valeska C. A.; Dieamant, Gustavo C.; Martin, Airton A.
2015-06-01
Vitamins A, E and C play important role in skin homeostasis and protection. Hence, they are extensively used in many cosmetic and cosmeceutic products. However, their molecules are unstable, and do not easily penetrate into the skin, which drastically decreases its efficiency in topical formulations. Liposoluble derivative of the vitamin A - retinyl palmitate, vitamin E - tocopheryl acetate, and vitamin C - tetraisopalmitoyl ascorbic acid, are more stable, and are frequently used as an active ingredient in cosmetic products. Moreover, increased hydrophobicity of these molecules could lead to a higher skin penetration. The aim of this work is to track and compare the absorption of the liposoluble derivatives of the vitamins and their encapsulated form, into the healthy human skin in vivo. We used Confocal Raman Spectroscopy (CRS) that is proven to be helpful in label-free non-destructive investigation of the biochemical composition and molecular conformational analysis of the biological samples. The measurements were performed in the volar forearm of the 10 healthy volunteers. Skin was treated with both products, and Raman spectra were obtained after 15 min, 3 hours, and 6 hours after applying the formulation. 3510 Skin Composition Analyzer (River Diagnostics, The Netherlands) with 785 nm laser excitation was used to acquire information in the fingerprint region. Significant difference in permeation of the products was observed. Whereas only free form of retinyl palmitate penetrate the skin within first 15 minutes, all three vitamin derivatives were present under the skin surface in case of nanoparticulated form.
Bot, Arjan G J; Souer, J Sebastiaan; van Dijk, C Niek; Ring, David
2012-12-01
Symptoms and psychosocial factors are suggested to account for more of the variation in disability than physical impairment, but perhaps less so at the level of specific tasks. This study assessed the influence of impaired wrist motion on specific tasks on the Disabilities of the Arm, Shoulder, and Hand (DASH) questionnaire. Sixty-three patients with an operatively treated fracture of the distal radius completed the Pain Catastrophizing Scale (PCS), Pain Anxiety Symptoms Scale, and Center for Epidemiologic Studies Depression Scale (CES-D) just before surgery and the DASH questionnaire 3 months after surgery. Nine questions on the DASH were selected as potentially sensitive to changes in wrist motion and evaluated in bivariate and multivariable analyses. In multivariable models of factors associated with specific tasks, only "Open a tight or new jar" was affected by wrist flexion and PCS accounting for 33 % of the variation. Motion, pain, and PCS were significant predictors of the DASH score. Among the eight tasks not related to wrist motion, 33 % of the variation in disability with writing was accounted for by PCS and limb dominance; 20 % of disability preparing a meal by pain, CES-D, and PCS; 14 % of disability with making a bed by pain and CES-D; and 23 % of changing a light bulb overhead by age, pain, and fracture type. After volar plate fixation of a fracture of the distal radius, upper extremity disability based on select items from the DASH questionnaire correlated minimally with impairment of wrist motion, even at the level of specific tasks. Prognostic Level II.
Uzel, A-P; Bulla, A; Laurent-Joye, M; Caix, P
2011-08-01
The Henry approach is the classical anterolateral surgical exposure of the volar aspect of the distal radius. This approach does not allow good access to the medial side of the volar distal radius (lunate facet) and the distal radio-ulnar joint, unless it is extended proximally, retracting the tendons and the median nerve medially, which can cause some trauma. The purpose of our study was to investigate the anatomic basis and to outline the advantages of the unusual anteromedial approach, reporting our experience in the treatment of 4 distal radius fractures, with a 90° or 180° twist of the lunate facet, and 10 wrist dissections on cadavers. The average follow-up was 68.8 months (range 18 to 115 months). In our series, this approach did not cause any nerve injuries or any sensory loss of the distal forearm and the palm. All the fractures of the lunate facet and of the radial styloid process healed. One patient with an ulnar styloid process fracture associated showed pseudarthrosis, but with no instability of the distal radio-ulnar joint or pain on the ulnar side. Using the criteria of Green and O'Brien, modified by Cooney, the results were: excellent in two cases, good in one case, and average in another. The evaluation of arthritis according to Knirk and Jupiter's classification showed grade 0 in three cases and grade 3 in one case with osteochondral sclerosis. We showed that the anteromedial approach is reliable and convenient in the case of fractures situated in the antero-medial portion of the radius, for the double objective of reducing the fracture under direct control and checking the congruence of the distal radio-ulnar joint.
Assessment of a novel biomechanical fracture model for distal radius fractures
2012-01-01
Background Distal radius fractures (DRF) are one of the most common fractures and often need surgical treatment, which has been validated through biomechanical tests. Currently a number of different fracture models are used, none of which resemble the in vivo fracture location. The aim of the study was to develop a new standardized fracture model for DRF (AO-23.A3) and compare its biomechanical behavior to the current gold standard. Methods Variable angle locking volar plates (ADAPTIVE, Medartis) were mounted on 10 pairs of fresh-frozen radii. The osteotomy location was alternated within each pair (New: 10 mm wedge 8 mm / 12 mm proximal to the dorsal / volar apex of the articular surface; Gold standard: 10 mm wedge 20 mm proximal to the articular surface). Each specimen was tested in cyclic axial compression (increasing load by 100 N per cycle) until failure or −3 mm displacement. Parameters assessed were stiffness, displacement and dissipated work calculated for each cycle and ultimate load. Significance was tested using a linear mixed model and Wald test as well as t-tests. Results 7 female and 3 male pairs of radii aged 74 ± 9 years were tested. In most cases (7/10), the two groups showed similar mechanical behavior at low loads with increasing differences at increasing loads. Overall the novel fracture model showed a significant different biomechanical behavior than the gold standard model (p < 0,001). The average final loads resisted were significantly lower in the novel model (860 N ± 232 N vs. 1250 N ± 341 N; p = 0.001). Conclusion The novel biomechanical fracture model for DRF more closely mimics the in vivo fracture site and shows a significantly different biomechanical behavior with increasing loads when compared to the current gold standard. PMID:23244634
Kim, M A; Kim, E J; Lee, H K
2018-02-06
Skin elasticity is an important indicator of skin aging. The aim of this study was to demonstrate that the SkinFibrometer ® is appropriate for measuring skin biomechanical properties, and to correlate it with elasticity parameters measured using the Cutometer ® and with dermis structural properties measured using DUB ® Skinscanner. Twenty-one individuals participated in this study. The skin of the cheek, around the eye, and the volar forearm were evaluated. To analyze correlations of elasticity parameters, the induration value against the indenter pressure of SkinFibrometer ® and R, Q parameters of Cutometer ® were compared. Dermal echogenicity using DUB ® Skinscanner was compared with the induration value of SkinFibrometer ® . The younger age group showed more firm and elastic skin properties compared to the older age group, and the elasticity values of the volar forearm were significantly higher than those of the cheek and around the eye region. Even though the measuring principle is different, both SkinFibrometer ® and Cutometer ® demonstrated the same trends of skin elasticity differences according to age and anatomical regions. There were significant correlations between the induration value of SkinFibrometer ® , representing skin firmness, and R0, Q0 and R2, R5, R7, Q1, Q2 of Cutometer ® , which represent skin firmness and resilience, respectively (P < .01). In addition, dermal echogenicity positively correlated with skin firmness determined by SkinFibrometer ® (P < .01). We identified correlations between skin elasticity parameters evaluated by two different methods of suction and indentation, and demonstrated that the SkinFibrometer ® is an objective, non-invasive evaluation tool for skin stiffness and elasticity. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Nazerani, Shaharm; Keramati, Mohammad Reza; Vahedian, Jalal; Fereshtehnejad, Seyed-Mohammad
2012-01-01
Interphalangeal joint contracture is a challenging complication of hand trauma, which reduces the functional capacity of the entire hand. In this study we evaluated the results of soft tissue distraction with no collateral ligament transection or volar plate removal in comparison with traditional operation of contracture release and partial ligament transection and volar plate removal. In this prospective study, a total of 40 patients in two equal groups (A and B) were studied. Patients suffering from chronic flexion contracture of abrasive traumatic nature were included. Group A were treated by soft tissue distraction using pentagonal frame technique and in Group B the contracture release was followed by finger splinting. Analyzed data revealed a significant difference between the two groups for range of motion in the proximal interphalangeal joints (P less than 0.05), while it was not meaningful in the distal interphalangeal joints (P larger than 0.05). There was not a significant difference in the degrees of flexion contracture between groups (P larger than 0.05). Regression analysis showed that using pentagonal frame technique significantly increased the mean improvement in range of motion of proximal interphalangeal joints (P less than 0.001), while the higher the preoperative flexion contracture was observed in proximal interphalangeal joints, the lower improvement was achieved in range of motion of proximal interphalangeal joints after intervention (P less than 0.001). Soft tissue distraction using pentagonal frame technique with gradual and continuous collateral ligament and surrounding joint tissues distraction combined with skin Z-plasty significantly improves the range of motion in patients with chronic traumatic flexion deformity of proximal and/or distal interphalangeal joints.
Chiavaras, Mary M; Harish, Srinivasan; Oomen, Glen; Popowich, Terry; Wainman, Bruce; Bain, James R
2010-12-01
The purpose of this study was to evaluate the ability of ultrasound to identify and characterize the anterior oblique ligament of the thumb in cadavers and asymptomatic volunteers. The anterior oblique ligaments of four cadaveric hands were imaged with a high-resolution transducer. The ligaments were then injected with 0.1% methylene blue using ultrasound guidance. To confirm identification of the ligament, the base of the thumb was immediately dissected, revealing the exact location of the dye. The bilateral ligaments in 40 asymptomatic adult volunteers were imaged. Surgical dissection confirmed injection of methylene blue into all cadaveric ligaments. The proximal attachment of the anterior oblique ligament was well defined in all the hands, and the distal attachment was well defined in 94% of the hands. The mean thickness of the anterior oblique ligament at the metacarpal attachment (0.7 mm), midportion (0.98 mm), and trapezial attachment (0.65 mm) did not differ significantly with respect to sex, right and left side, or hand dominance and was weakly correlated with weight, height, body mass index, and age. The length of the ligament was statistically significantly different between the dominant (10.6 mm) and nondominant (9.6 mm) hands. The volar metacarpal translation with palmar abduction stress did not differ significantly between the dominant (0.7 mm) and nondominant (0.8 mm) hands. There was no association between the degree of translation and the biologic characteristics (weight, height, body mass index, and age). High-resolution ultrasound can be used to identify and measure the thickness of the anterior oblique ligament. Dynamic ultrasound imaging can depict volar translation of the metacarpal, which may facilitate diagnosis of ligamentous injury.
Anatomic Considerations for Plating of the Distal Ulna
Hazel, Antony; Nemeth, Nicole; Bindra, Randy
2015-01-01
Purpose The purpose of our study was to examine the anatomy of the distal ulna and identify an interval that would be amenable to plating and would not cause impingement during wrist rotation nor irritation to the extensor carpi ulnaris (ECU) tendon. Methods Six cadaveric forearms were dissected and the arc of the articular surface of the distal ulna was measured. The distal ulna was divided up as a clock face, with the ulnar styloid being assigned the 12 o'clock position, and the location of the ECU was identified accordingly. The distance from the ulnar styloid to where the dorsal sensory ulnar nerve crosses from volar to dorsal was also measured. Based on these measurements a safe zone was defined. Results A safe zone was identified between the 12 and 2 o'clock position on the right wrist, and between the 10 and 12 o'clock on the left wrist. The dorsal sensory branch of the ulnar nerve crossed from volar to dorsal position at a variable location near the ulnar styloid. Two commercially available plates were utilized and could be placed in our designated interval and did not cause impingement when the forearm was rotated fully. Conclusion Our study demonstrates a location for plating of the distal ulna that avoids impingement during forearm rotation and that is outside of the footprint of the ECU subsheath. Clinical Relevance Plating of the distal ulna may be necessary with distal ulna fracture, and although plate placement may be dictated by the fracture pattern, it is important to understand the implications of plate placement. Although the ideal plate may not be possible because of comminution, the patient can be educated in regards to potential for tendon irritation, loss of motion, or need for hardware removal. PMID:26261745
Diaz-Garcia, Rafael J.; Oda, Takashi; Shauver, Melissa J.; Chung, Kevin C.
2011-01-01
Purpose As the population in developed countries continues to age, the incidence of osteoporotic distal radius fractures (DRFs) will increase as well. Treatment of DRF in the elderly population is controversial. We systematically reviewed the existing literature for the management of DRFs in patients 60 and over with five common techniques: volar locking plate system (VLPS), non-bridging external fixation (non-BrEF), bridging external fixation (BrEF), percutaneous Kirschner-wire fixation (PKF), and cast immobilization (CI). Methods Articles retrieved from MEDLINE, Embase and CINAHL Plus that met predetermined inclusion and exclusion criteria were reviewed in two literature reviews. Outcomes of interest included wrist arc of motion, grip strength, functional outcome measurements, radiographic parameters, and the number and type of complications. The data were statistically analyzed using weighted means and proportions based on the sample size in each study. Results 2,039 papers were identified, and 21 papers fitting the inclusion criteria were selected in the primary review of articles with mean patient age of 60 and over. Statistically significant differences were detected for wrist arc of motion, grip strength, and DASH score, although these findings may not be clinically meaningful. Volar tilt and ulnar variance revealed significant differences amongst the groups, with CI resulting in the worst radiographic outcomes. The complications were significantly different, with CI having the lowest rate of complications, whereas VLPS had significantly more major complications requiring additional surgical intervention. Conclusions This systematic review suggests that despite worse radiographic outcomes associated with CI, functional outcomes were no different than surgically treated groups for patients 60 and over. Prospective comparative outcomes studies are necessary to evaluate the rate of functional recovery, cost, and outcomes associated with these 5 treatment methods. Level of Evidence Therapeutic, Level III PMID:21527140
2011-01-01
Background Fractures of the distal radius are extremely common injuries in adults. However, the optimal management remains controversial. In general, fractures of the distal radius are treated non-operatively if the bone fragments can be held in anatomical alignment by a plaster cast or orthotic. However, if this is not possible, then operative fixation is required. There are several operative options but the two most common in the UK, are Kirschner-wire fixation (K-wires) and volar plate fixation using fixed-angle screws (locking-plates). The primary aim of this trial is to determine if there is a difference in the Patient-Reported Wrist Evaluation one year following K-wire fixation versus locking-plate fixation for adult patients with a dorsally-displaced fracture of the distal radius. Methods/design All adult patients with an acute, dorsally-displaced fracture of the distal radius, requiring operative fixation are potentially eligible to take part in this study. A total of 390 consenting patients will be randomly allocated to either K-wire fixation or locking-plate fixation. The surgery will be performed in trauma units across the UK using the preferred technique of the treating surgeon. Data regarding wrist function, quality of life, complications and costs will be collected at six weeks and three, six and twelve months following the injury. The primary outcome measure will be wrist function with a parallel economic analysis. Discussion This pragmatic, multi-centre trial is due to deliver results in December 2013. Trial registration Current Controlled Trials ISRCTN31379280 UKCRN portfolio ID 8956 PMID:21914196
Burkhart, Timothy A; Brydges, Evan; Stefanczyk, Jennifer; Andrews, David M
2017-04-01
The occurrence of distal upper extremity injuries resulting from forward falls (approximately 165,000 per year) has remained relatively constant for over 20years. Previous work has provided valuable insight into fall arrest strategies, but only symmetric falls in body postures that do not represent actual fall scenarios closely have been evaluated. This study quantified the effect of asymmetric loading and body postures on distal upper extremity response to simulated forward falls. Twenty participants were suspended from the Propelled Upper Limb fall ARest Impact System (PULARIS) in different torso and leg postures relative to the ground and to the sagittal plane (0°, 30° and 45°). When released from PULARIS (hands 10cm above surface, velocity 1m/s), participants landed on two force platforms, one for each hand. Right forearm impact response was measured with distal (radial styloid) and proximal (olecranon) tri-axial accelerometers and bipolar EMG from seven muscles. Overall, the relative height of the torso and legs had little effect on the forces, or forearm response variables. Muscle activation patterns consistently increased from the start to the peak activation levels after impact for all muscles, followed by a rapid decline after peak. The impact forces and accelerations suggest that the distal upper extremity is loaded more medial-laterally during asymmetric falls than symmetric falls. Altering the direction of the impact force in this way (volar-dorsal to medial-lateral) may help reduce distal extremity injuries caused when landing occurs symmetrically in the sagittal plane as it has been shown that volar-dorsal forces increase the risk of injury. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nilsson, H J; Schouenborg, J
1999-03-01
It is known that stimulation of thin cutaneous nerve fibers can induce long lasting analgesia through both supraspinal and segmental mechanisms, the latter often exhibiting restricted receptive fields. On this basis, we recently developed a new method, termed cutaneous field stimulation (CFS), for localized stimulation of A delta and C fibers in the superficial part of the skin. In the present study, we have evaluated the effects of CFS on non-nociceptive and nociceptive skin senses. We compared the effects of CFS with those of conventional transcutaneous electrical nerve stimulation (TENS), known to preferentially activate coarse myelinated fibers. A battery of sensory tests were made on the right volar forearm of 20 healthy subjects. CFS (16 electrodes, 4 Hz per electrode, 1 ms, up to 0.8 mA) and TENS (100 Hz, 0.2 ms, up to 26 mA) applied either on the right volar forearm (homotopically), or on the lower right leg (heterotopically) were used as conditioning stimulation for 25 min. The tactile threshold was not affected by either homo- or heterotopical CFS or TENS. The mean thresholds for detecting warming or cooling of the skin were increased by 0.4-0.9 degrees C after homo- but not heterotopical CFS and TENS. Regarding nociceptive skin senses, homo- but not heterotopical CFS, markedly reduced CO2-laser evoked A delta- and C fiber mediated heat pain to 75 and 48% of control, respectively, and mechanically evoked pain to 73% of control. Fabric evoked prickle, was not affected by CFS. Neither homo- nor heterotopical TENS induced any marked analgesic effects. It is concluded that different qualities of nociception can be differentially controlled by CFS.
Photonic Interrogation and Control of Nano Processes
NASA Technical Reports Server (NTRS)
Jassemnejad, Baha
2003-01-01
My research activities for the summer of 2003 consisted of two projects: One project was concerned with determining a method for predicting the static and dynamic assembly properties of nano-structures using laser tweezers. The other project was to investigate the generation of Laguerre-Gaussian modes using a spatial light modulator incorporated into an optical tweezers system. Concerning the first project, I initially pursued the approach suggested by my NASA colleague Dr. Art Decker. This approach involved mimicking the model of the structure of atomic nucleus for the assembly of 1 to 100 atoms using allowed quadruple transitions induced by orbital angular momentums of a Laguerre- Gaussian (Doughnut) laser mode. After realizing the inaptness of the nuclear model with the nanostructure model as far as the binding forces and transitions were concerned, I focused on using quantum dot modei. This model was not attuned also for the host lattice influences the electronic structure of the quantum dot. Thus one other option that I decided to pursue was the approach of molecular quantum mechanics. In this approach the nanostructure is treated as a large (10-100 nm) molecule constructed from single element or multi-elements. Subsequent to consultation with Dr. Fred Morales, a chemical engineer at NASA GRC, and Dr. David Ball, a computational chemist at Cleveland State University, I acquired a molecular-quantum computation software, Hyperchem 7.0. This software allows simulation of different molecular structures as far as their static and dynamic behaviors are concerned. The time that I spent on this project was about eight weeks. Once this suitable approach was identified, I realized the need to collaborate with a computational quantum chemist to pursue searching for stable nanostructures in the range of 10-100 nm that we can be assembled using laser tweezers. The second project was about generating laser tweezers that possess orbital angular momentum. As shown, we were able to generate laser tweezers modes of different orbital angular momentum using a spatial light modulator incorporated into a laser tweezers system. The motivation for investigating these types of modes stems from being able to spin particles at high speeds and also to orient two particles in separate traps and then join them together. Also, there has been recent intense interest on fundamental physics research on orbital angular momentum of light. The fact that circularly polarized light may have associated with it angular momentum that relates to the spin of individual photons (spin 0 for the plane polarized light, spin +1 for the right-circularly polarized light and spin -1 for the left-circularly polarized light) was first demonstrated by Beth in 1936. Orbital angular momentum is, however, distinct from spin in that the spin angular momentum of light is intrinsically linked to the behavior of the electric field in the light whereas orbital angular momentum is a consequence of inclined wavefronts. In 1992 L. Allen, et al showed that the Laguerre-Gaussian (LG) modes could possess well-defined orbital angular momentum that can exceed 1 planck's constant, i.e. l plancks constant per photon, where l is the azimuthal index of the mode.
Transit timing variations for planets co-orbiting in the horseshoe regime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vokrouhlický, David; Nesvorný, David, E-mail: vokrouhl@cesnet.cz, E-mail: davidn@boulder.swri.edu
2014-08-10
Although not yet detected, pairs of exoplanets in 1:1 mean motion resonance probably exist. Low eccentricity, near-planar orbits, which in the comoving frame follow horseshoe trajectories, are one of the possible stable configurations. Here we study transit timing variations (TTVs) produced by mutual gravitational interaction of planets in this orbital architecture, with the goal to develop methods that can be used to recognize this case in observational data. In particular, we use a semi-analytic model to derive parametric constraints that should facilitate data analysis. We show that characteristic traits of the TTVs can directly constrain the (1) ratio of planetarymore » masses and (2) their total mass (divided by that of the central star) as a function of the minimum angular separation as seen from the star. In an ideal case, when transits of both planets are observed and well characterized, the minimum angular separation can also be inferred from the data. As a result, parameters derived from the observed transit timing series alone can directly provide both planetary masses scaled to the central star mass.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pu, Hung-Yi; Asada, Keiichi; Akiyama, Kazunori
A radiatively inefficient accretion flow (RIAF), which is commonly characterized by its sub-Keplerian nature, is a favored accretion model for the supermassive black hole at the Galactic center, Sagittarius A*. To investigate the observable features of an RIAF, we compare the modeled shadow images, visibilities, and spectra of three flow models with dynamics characterized by (i) a Keplerian shell that is rigidly rotating outside the innermost stable circular orbit (ISCO) and infalling with a constant angular momentum inside ISCO, (ii) a sub-Keplerian motion, and (iii) a free-falling motion with zero angular momentum at infinity. At near-millimeter wavelengths, the emission ismore » dominated by the flow within several Schwarzschild radii. The energy shift due to these flow dynamics becomes important and distinguishable, suggesting that the flow dynamics are an important model parameter for interpreting the millimeter/sub-millimeter very long baseline interferometric observations with the forthcoming, fully assembled Event Horizon Telescope (EHT). As an example, we demonstrate that structural variations of Sagittarius A* on event horizon-scales detected in previous EHT observations can be explained by the non-stationary dynamics of an RIAF.« less
Kerr black holes with scalar hair.
Herdeiro, Carlos A R; Radu, Eugen
2014-06-06
We present a family of solutions of Einstein's gravity minimally coupled to a complex, massive scalar field, describing asymptotically flat, spinning black holes with scalar hair and a regular horizon. These hairy black holes (HBHs) are supported by rotation and have no static limit. Besides mass M and angular momentum J, they carry a conserved, continuous Noether charge Q measuring the scalar hair. HBHs branch off from the Kerr metric at the threshold of the superradiant instability and reduce to spinning boson stars in the limit of vanishing horizon area. They overlap with Kerr black holes for a set of (M, J) values. A single Killing vector field preserves the solutions, tangent to the null geodesic generators of the event horizon. HBHs can exhibit sharp physical differences when compared to the Kerr solution, such as J/M^{2}>1, a quadrupole moment larger than J^{2}/M, and a larger orbital angular velocity at the innermost stable circular orbit. Families of HBHs connected to the Kerr geometry should exist in scalar (and other) models with more general self-interactions.
NASA Astrophysics Data System (ADS)
Tuller, Markus; Or, Dani
2001-05-01
Many models for hydraulic conductivity of partially saturated porous media rely on oversimplified representation of the pore space as a bundle of cylindrical capillaries and disregard flow in liquid films. Recent progress in modeling liquid behavior in angular pores of partially saturated porous media offers an alternative framework. We assume that equilibrium liquid-vapor interfaces provide well-defined and stable boundaries for slow laminar film and corner flow regimes in pore space comprised of angular pores connected to slit-shaped spaces. Knowledge of liquid configuration in the assumed geometry facilitates calculation of average liquid velocities in films and corners and enables derivation of pore-scale hydraulic conductivity as a function of matric potential. The pore-scale model is statistically upscaled to represent hydraulic conductivity for a sample of porous medium. Model parameters for the analytical sample-scale expressions are estimated from measured liquid retention data and other measurable medium properties. Model calculations illustrate the important role of film flow, whose contribution dominates capillary flow (in full pores and corners) at relatively high matric potentials (approximately -100 to -300 J kg-1, or -1 to 3 bars). The crossover region between film and capillary flow is marked by a significant change in the slope of the hydraulic conductivity function as often observed in measurements. Model predictions are compared with the widely applied van Genuchten-Mualem model and yield reasonable agreement with measured retention and hydraulic conductivity data over a wide range of soil textural classes.
Damascus steel ledeburite class
NASA Astrophysics Data System (ADS)
Sukhanov, D. A.; Arkhangelsky, L. B.; Plotnikova, N. V.
2017-02-01
Discovered that some of blades Damascus steel has an unusual nature of origin of the excess cementite, which different from the redundant phases of secondary cementite, cementite of ledeburite and primary cementite in iron-carbon alloys. It is revealed that the morphological features of separate particles of cementite in Damascus steels lies in the abnormal size of excess carbides having the shape of irregular prisms. Considered three hypotheses for the formation of excess cementite in the form of faceted prismatic of excess carbides. The first hypothesis is based on thermal fission of cementite of a few isolated grains. The second hypothesis is based on the process of fragmentation cementite during deformation to the separate the pieces. The third hypothesis is based on the transformation of metastable cementite in the stable of angular eutectic carbide. It is shown that the angular carbides are formed within the original metastable colony ledeburite, so they are called “eutectic carbide”. It is established that high-purity white cast iron is converted into of Damascus steel during isothermal soaking at the annealing. It was revealed that some of blades Damascus steel ledeburite class do not contain in its microstructure of crushed ledeburite. It is shown that the pattern of carbide heterogeneity of Damascus steel consists entirely of angular eutectic carbides. Believe that Damascus steel refers to non-heat-resistant steel of ledeburite class, which have similar structural characteristics with semi-heat-resistant die steel or heat-resistant high speed steel, differing from them only in the nature of excess carbide phase.
Spin accumulation in thin Cs salts on contact with optically polarized Cs vapor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishikawa, Kiyoshi
2011-09-15
The spin angular momentum accumulates in the Cs nuclei of salt on contact with optically pumped Cs vapor. The spin polarization in stable chloride as well as dissociative hydride indicates that nuclear dipole interaction works in spin transferring with a lesser role of atom exchange. In the solid film, not only the spin buildup but also the decay of enhanced polarization is faster than the thermal recovery rate for the bulk salt. Eliminating the signal of thick salt, we find that the nuclear spin polarization in the chloride film reaches over 100 times the thermal equilibrium.
Edge-dip air core fiber for improvement of the transmission of higher-order OAM modes
NASA Astrophysics Data System (ADS)
Sun, Xibo; Geng, Yuanchao; Zhu, Qihua; Feng, Xi; Huang, Wanqing; Zhang, Ying; Wang, Wenyi; Liu, Lanqin
2018-03-01
We presented a novel scheme to improve the stability of the orbital angular momentum (OAM) modes transmission by adding a dip at the edge of the annular high-index region of the air-core fiber. The simulation indicated a larger effective index difference of the vector modes that composed OAM modes in the same order, promising a stable transmission of the OAM modes. The intensity of the modes was concentrated better in this scheme decreasing the crosstalk between adjacent fibers. The propagation properties of the OAM modes in bent fiber were investigated.
Long-lived oscillons from asymmetric bubbles: Existence and stability
NASA Astrophysics Data System (ADS)
Adib, Artur B.; Gleiser, Marcelo; Almeida, Carlos A.
2002-10-01
The possibility that extremely long-lived, time-dependent, and localized field configurations (``oscillons'') arise during the collapse of asymmetrical bubbles in (2+1)-dimensional φ4 models is investigated. It is found that oscillons can develop from a large spectrum of elliptically deformed bubbles. Moreover, we provide numerical evidence that such oscillons are (a) circularly symmetric and (b) linearly stable against small arbitrary radial and angular perturbations. The latter is based on a dynamical approach designed to investigate the stability of nonintegrable time-dependent configurations that is capable of probing slowly growing instabilities not seen through the usual ``spectral'' method.
Arthroscopic-Assisted Triangular Fibrocartilage Complex Reconstruction.
Chu-Kay Mak, Michael; Ho, Pak-Cheong
2017-11-01
Injury of the triangular fibrocartilage complex (TFCC) is a common cause of ulnar-sided wrist pain. Volar and dorsal radioulnar ligaments and their foveal insertion are the most important stabilizing components of the TFCC. In irreparable tears, anatomic reconstruction of the TFCC aims to restore normal biomechanics and stability of the distal radioulnar joint. We proposed a novel arthroscopic-assisted technique using a palmaris longus tendon graft. Arthroscopic-assisted TFCC reconstruction is a safe and effective approach with outcomes comparable to conventional open reconstruction and may result in a better range of motion from minimizing soft tissue dissection and subsequent scarring. Copyright © 2017 Elsevier Inc. All rights reserved.
Simultaneous dislocation of the metacarpophalangeal and interphalangeal joints of the thumb.
Tabib, William; Sayegh, Samir
2002-01-01
Combined dislocation of the metacarpophalangeal and interphalangeal joints of the thumb is uncommon. We know of only four previously reported cases. We report a new case characterised by dorsal dislocation of both joints. Because of entrapment of the volar plate, open reduction at the interphalangeal joint was necessary. The metacarpophalangeal dislocation was treated by closed reduction. After three weeks of immobilisation, physiotherapy resulted in a satisfactory outcome. Even if the diagnosis of dislocation of the interphalangeal joint is obvious it would be easy to overlook a simultaneous dislocation of the metacarpophalangeal joint with serious consequences. Whole hand examination remains an essential rule.
Rainbow, Michael J.; Kamal, Robin N.; Moore, Douglas C.; Akelman, Edward; Wolfe, Scott W.; Crisco, Joseph J.
2015-01-01
This study examined whether the radiocarpal and dorsal capsular ligaments limit end-range wrist motion or remain strained during midrange wrist motion. Fibers of these ligaments were modeled in the wrists of 12 subjects over multiple wrist positions that reflect high demand tasks and the dart thrower's motion. We found that many of the volar and dorsal ligaments were within 5% of their maximum length throughout the range of wrist motion. Our finding of wrist ligament recruitment during midrange and end-range wrist motion helps to explain the complex but remarkably similar intersubject patterns of carpal motion. PMID:26367853
NASA Astrophysics Data System (ADS)
Hu, Qinglei
2010-02-01
Semi-globally input-to-state stable (ISS) control law is derived for flexible spacecraft attitude maneuvers in the presence of parameter uncertainties and external disturbances. The modified rodrigues parameters (MRP) are used as the kinematic variables since they are nonsingular for all possible rotations. This novel simple control is a proportional-plus-derivative (PD) type controller plus a sign function through a special Lyapunov function construction involving the sum of quadratic terms in the angular velocities, kinematic parameters, modal variables and the cross state weighting. A sufficient condition under which this nonlinear PD-type control law can render the system semi-globally input-to-state stable is provided such that the closed-loop system is robust with respect to any disturbance within a quantifiable restriction on the amplitude, as well as the set of initial conditions, if the control gains are designed appropriately. In addition to detailed derivations of the new controllers design and a rigorous sketch of all the associated stability and attitude convergence proofs, extensive simulation studies have been conducted to validate the design and the results are presented to highlight the ensuring closed-loop performance benefits when compared with the conventional control schemes.
Calliste, Jabari; Wu, Gongting; Laganis, Philip E; Spronk, Derrek; Jafari, Houman; Olson, Kyle; Gao, Bo; Lee, Yueh Z; Zhou, Otto; Lu, Jianping
2017-09-01
The aim of this study was to characterize a new generation stationary digital breast tomosynthesis system with higher tube flux and increased angular span over a first generation system. The linear CNT x-ray source was designed, built, and evaluated to determine its performance parameters. The second generation system was then constructed using the CNT x-ray source and a Hologic gantry. Upon construction, test objects and phantoms were used to characterize system resolution as measured by the modulation transfer function (MTF), and artifact spread function (ASF). The results indicated that the linear CNT x-ray source was capable of stable operation at a tube potential of 49 kVp, and measured focal spot sizes showed source-to-source consistency with a nominal focal spot size of 1.1 mm. After construction, the second generation (Gen 2) system exhibited entrance surface air kerma rates two times greater the previous s-DBT system. System in-plane resolution as measured by the MTF is 7.7 cycles/mm, compared to 6.7 cycles/mm for the Gen 1 system. As expected, an increase in the z-axis depth resolution was observed, with a decrease in the ASF from 4.30 mm to 2.35 mm moving from the Gen 1 system to the Gen 2 system as result of an increased angular span. The results indicate that the Gen 2 stationary digital breast tomosynthesis system, which has a larger angular span, increased entrance surface air kerma, and faster image acquisition time over the Gen 1 s-DBT system, results in higher resolution images. With the detector operating at full resolution, the Gen 2 s-DBT system can achieve an in-plane resolution of 7.7 cycles per mm, which is better than the current commercial DBT systems today, and may potentially result in better patient diagnosis. © 2017 American Association of Physicists in Medicine.
Cyclostationarity approach for monitoring chatter and tool wear in high speed milling
NASA Astrophysics Data System (ADS)
Lamraoui, M.; Thomas, M.; El Badaoui, M.
2014-02-01
Detection of chatter and tool wear is crucial in the machining process and their monitoring is a key issue, for: (1) insuring better surface quality, (2) increasing productivity and (3) protecting both machines and safe workpiece. This paper presents an investigation of chatter and tool wear using the cyclostationary method to process the vibrations signals acquired from high speed milling. Experimental cutting tests were achieved on slot milling operation of aluminum alloy. The experimental set-up is designed for acquisition of accelerometer signals and encoding information picked up from an encoder. The encoder signal is used for re-sampling accelerometers signals in angular domain using a specific algorithm that was developed in LASPI laboratory. The use of cyclostationary on accelerometer signals has been applied for monitoring chatter and tool wear in high speed milling. The cyclostationarity appears on average properties (first order) of signals, on the energetic properties (second order) and it generates spectral lines at cyclic frequencies in spectral correlation. Angular power and kurtosis are used to analyze chatter phenomena. The formation of chatter is characterized by unstable, chaotic motion of the tool and strong anomalous fluctuations of cutting forces. Results show that stable machining generates only very few cyclostationary components of second order while chatter is strongly correlated to cyclostationary components of second order. By machining in the unstable region, chatter results in flat angular kurtosis and flat angular power, such as a pseudo (white) random signal with flat spectrum. Results reveal that spectral correlation and Wigner Ville spectrum or integrated Wigner Ville issued from second-order cyclostationary are an efficient parameter for the early diagnosis of faults in high speed machining, such as chatter, tool wear and bearings, compared to traditional stationary methods. Wigner Ville representation of the residual signal shows that the energy corresponding to the tooth passing decreases when chatter phenomenon occurs. The effect of the tool wear and the number of broken teeth on the excitation of structure resonances appears in Wigner Ville presentation.
Dal'Belo, Susi Elaine; Gaspar, Lorena Rigo; Maia Campos, Patrícia Maria Berardo Gonçalves
2006-11-01
The polysaccharide-rich composition of Aloe vera extracts (Aloe barbadensis Miller), often used in cosmetic formulations, may impart moisturizing properties to the product. The aim of this study was to evaluate the effect of cosmetic formulations containing different concentrations of freeze-dried Aloe vera extract on skin hydration, after a single and a 1- and 2-week period of application, by using skin bioengineering techniques. Stable formulations containing 5% (w/w) of a trilaureth-4 phosphate-based blend were supplemented with 0.10%, 0.25% or 0.50% (w/w) of freeze-dried Aloe vera extract and applied to the volar forearm of 20 female subjects. Skin conditions in terms of the water content of the stratum corneum and of transepidermal water loss (TEWL) (Corneometer CM 825 and Tewameter TM 210) were analysed before and after a single and 1- and 2-week period of daily application. After a single application, only formulations supplemented with 0.25% and 0.50% (w/w) of Aloe vera extract increased the water content of the stratum corneum, while after the 2-week period application, all formulations containing the extract (0.10%, 0.25% and 0.50%) had the same effect, in both cases as compared with the vehicle. TEWL was not modified after a single and after 1- and 2-week period of application, when compared with the vehicle. Our results show that freeze-dried Aloe vera extract is a natural effective ingredient for improving skin hydration, possibly through a humectant mechanism. Consequently, it may be used in moisturizing cosmetic formulations and also as a complement in the treatment of dry skin.
STANDING SHOCK INSTABILITY IN ADVECTION-DOMINATED ACCRETION FLOWS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le, Truong; Wood, Kent S.; Wolff, Michael T.
2016-03-10
Depending on the values of the energy and angular momentum per unit mass in the gas supplied at large radii, inviscid advection-dominated accretion flows can display velocity profiles with either preshock deceleration or preshock acceleration. Nakayama has shown that these two types of flow configurations are expected to have different stability properties. By employing the Chevalier and Imamura linearization method and the Nakayama instability boundary conditions, we discover that there are regions of parameter space where disks/shocks with outflows can be stable or unstable. In regions of instability, we find that preshock deceleration is always unstable to the zeroth mode withmore » zero frequency of oscillation, but is always stable to the fundamental mode and overtones. Furthermore, we also find that preshock acceleration is always unstable to the zeroth mode and that the fundamental mode and overtones become increasingly less stable as the shock location moves away from the horizon when the disk half-height expands above ∼12 gravitational radii at the shock radius. In regions of stability, we demonstrate the zeroth mode to be stable for the velocity profiles that exhibit preshock acceleration and deceleration. Moreover, for models that are linearly unstable, our model suggests the possible existence of quasi-periodic oscillations (QPOs) with ratios 2:3 and 3:5. These ratios are believed to occur in stellar and supermassive black hole candidates, for example, in GRS 1915+105 and Sgr A*, respectively. We expect that similar QPO ratios also exist in regions of stable shocks.« less
Feedback control of flow vorticity at low Reynolds numbers.
Zeitz, Maria; Gurevich, Pavel; Stark, Holger
2015-03-01
Our aim is to explore strategies of feedback control to design and stabilize novel dynamic flow patterns in model systems of complex fluids. To introduce the control strategies, we investigate the simple Newtonian fluid at low Reynolds number in a circular geometry. Then, the fluid vorticity satisfies a diffusion equation. We determine the mean vorticity in the sensing area and use two control strategies to feed it back into the system by controlling the angular velocity of the circular boundary. Hysteretic feedback control generates self-regulated stable oscillations in time, the frequency of which can be adjusted over several orders of magnitude by tuning the relevant feedback parameters. Time-delayed feedback control initiates unstable vorticity modes for sufficiently large feedback strength. For increasing delay time, we first observe oscillations with beats and then regular trains of narrow pulses. Close to the transition line between the resting fluid and the unstable modes, these patterns are relatively stable over long times.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clausen, Drew; Wade, Richard A.; Kopparapu, Ravi Kumar
Binaries that contain a hot subdwarf (sdB) star and a main-sequence companion may have interacted in the past. This binary population has historically helped determine our understanding of binary stellar evolution. We have computed a grid of binary population synthesis models using different assumptions about the minimum core mass for helium ignition, the envelope binding energy, the common-envelope ejection efficiency, the amount of mass and angular momentum lost during stable mass transfer, and the criteria for stable mass transfer on the red giant branch and in the Hertzsprung gap. These parameters separately and together can significantly change the entire predictedmore » population of sdBs. Nonetheless, several different parameter sets can reproduce the observed subpopulation of sdB + white dwarf and sdB + M dwarf binaries, which has been used to constrain these parameters in previous studies. The period distribution of sdB + early F dwarf binaries offers a better test of different mass transfer scenarios for stars that fill their Roche lobes on the red giant branch.« less
Cuprous Oxide as a Potential Low-Cost Hole-Transport Material for Stable Perovskite Solar Cells.
Nejand, Bahram Abdollahi; Ahmadi, Vahid; Gharibzadeh, Saba; Shahverdi, Hamid Reza
2016-02-08
Inorganic hole-transport materials are commercially desired to decrease the fabrication cost of perovskite solar cells. Here, Cu2O is introduced as a potential hole-transport material for stable, low-cost devices. Considering that Cu2O formation is highly sensitive to the underlying mixture of perovskite precursors and their solvents, we proposed and engineered a technique for reactive magnetron sputtering. The rotational angular deposition of Cu2O yields high surface coverage of the perovskite layer for high rate of charge extraction. Deposition of this Cu2O layer on the pinhole-free perovskite layer produces devices with power conversion efficiency values of up to 8.93%. The engineered Cu2O layers showed uniform, compact, and crack-free surfaces on the perovskite layer without affecting the perovskite structure, which is desired for deposition of the top metal contact and for surface shielding against moisture and mechanical damages. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A stable 1D multigroup high-order low-order method
Yee, Ben Chung; Wollaber, Allan Benton; Haut, Terry Scot; ...
2016-07-13
The high-order low-order (HOLO) method is a recently developed moment-based acceleration scheme for solving time-dependent thermal radiative transfer problems, and has been shown to exhibit orders of magnitude speedups over traditional time-stepping schemes. However, a linear stability analysis by Haut et al. (2015 Haut, T. S., Lowrie, R. B., Park, H., Rauenzahn, R. M., Wollaber, A. B. (2015). A linear stability analysis of the multigroup High-Order Low-Order (HOLO) method. In Proceedings of the Joint International Conference on Mathematics and Computation (M&C), Supercomputing in Nuclear Applications (SNA) and the Monte Carlo (MC) Method; Nashville, TN, April 19–23, 2015. American Nuclear Society.)more » revealed that the current formulation of the multigroup HOLO method was unstable in certain parameter regions. Since then, we have replaced the intensity-weighted opacity in the first angular moment equation of the low-order (LO) system with the Rosseland opacity. Furthermore, this results in a modified HOLO method (HOLO-R) that is significantly more stable.« less
Sine-Bar Attachment For Machine Tools
NASA Technical Reports Server (NTRS)
Mann, Franklin D.
1988-01-01
Sine-bar attachment for collets, spindles, and chucks helps machinists set up quickly for precise angular cuts that require greater precision than provided by graduations of machine tools. Machinist uses attachment to index head, carriage of milling machine or lathe relative to table or turning axis of tool. Attachment accurate to 1 minute or arc depending on length of sine bar and precision of gauge blocks in setup. Attachment installs quickly and easily on almost any type of lathe or mill. Requires no special clamps or fixtures, and eliminates many trial-and-error measurements. More stable than improvised setups and not jarred out of position readily.
NASA Technical Reports Server (NTRS)
Barker, L. E., Jr.; Bowles, R. L.; Williams, L. H.
1973-01-01
High angular rates encountered in real-time flight simulation problems may require a more stable and accurate integration method than the classical methods normally used. A study was made to develop a general local linearization procedure of integrating dynamic system equations when using a digital computer in real-time. The procedure is specifically applied to the integration of the quaternion rate equations. For this application, results are compared to a classical second-order method. The local linearization approach is shown to have desirable stability characteristics and gives significant improvement in accuracy over the classical second-order integration methods.
NASA Astrophysics Data System (ADS)
Rincón, Ángel; Panotopoulos, Grigoris
2018-01-01
We study for the first time the stability against scalar perturbations, and we compute the spectrum of quasinormal modes of three-dimensional charged black holes in Einstein-power-Maxwell nonlinear electrodynamics assuming running couplings. Adopting the sixth order Wentzel-Kramers-Brillouin (WKB) approximation we investigate how the running of the couplings change the spectrum of the classical theory. Our results show that all modes corresponding to nonvanishing angular momentum are unstable both in the classical theory and with the running of the couplings, while the fundamental mode can be stable or unstable depending on the running parameter and the electric charge.
High precision active nutation control for a flexible momentum biased spacecraft
NASA Technical Reports Server (NTRS)
Laskin, R. A.; Kopf, E. H.
1984-01-01
The controller design for the Solar Dynamics Observatory (SDO) is presented. SDO is a momentum biased spacecraft with three flexible appendages. Its primary scientific instrument, the solar oscillations imager (SOI), is rigidly attached to the spacecraft bus and has arc-second pointing requirements. Meeting these requirements necessitates the use of an active nutation controller (ANC) which is here mechanized with a small reaction wheel oriented along a bus transverse axis. The ANC does its job by orchestrating the transfer of angular momentum out of the bus transverse axes and into the momentum wheel. A simulation study verifies that the controller provides quick, stable, and accurate response.
Rotating black holes in dilatonic Einstein-Gauss-Bonnet theory.
Kleihaus, Burkhard; Kunz, Jutta; Radu, Eugen
2011-04-15
We construct generalizations of the Kerr black holes by including higher-curvature corrections in the form of the Gauss-Bonnet density coupled to the dilaton. We show that the domain of existence of these Einstein-Gauss-Bonnet-dilaton (EGBD) black holes is bounded by the Kerr black holes, the critical EGBD black holes, and the singular extremal EGBD solutions. The angular momentum of the EGBD black holes can exceed the Kerr bound. The EGBD black holes satisfy a generalized Smarr relation. We also compare their innermost stable circular orbits with those of the Kerr black holes and show the existence of differences which might be observable in astrophysical systems.
Optical binding with cold atoms
NASA Astrophysics Data System (ADS)
Máximo, C. E.; Bachelard, R.; Kaiser, R.
2018-04-01
Optical binding is a form of light-mediated forces between elements of matter which emerge in response to the collective scattering of light. Such a phenomenon has been studied mainly in the context of the equilibrium stability of dielectric sphere arrays which move amid dissipative media. In this article, we demonstrate that optically bounded states of a pair of cold atoms can exist, in the absence of nonradiative damping. We study the scaling laws for the unstable-stable phase transition at negative detuning and the unstable-metastable one for positive detuning. In addition, we show that angular momentum can lead to dynamical stabilization with infinite-range scaling.
Hölzle, E; Neubert, U
1982-01-01
To document deodorant efficacy the antimicrobial activity of a gelatinous antiperspirant formulation of aqueous aluminum chloride hexahydrate was investigated. In vitro assays demonstrated highly bactericidal activity on microorganisms comprising the resident axillary skin flora, including micrococcaceae and aerobic diphtheroid bacteria. Gram-negative bacteria and yeast were partially inhibited. In vivo experiments utilizing occlusive patches on forearm skin and bacterial sampling of the axilla showed pronounced bacteriostasis and persistence of aluminum chloride on the skin. Inhibition of microbial growth lasted more than 3 days after a single treatment of the axilla. Following repeated open applications to the volar aspect of the forearm, the skin remained virtually sterile for 3 days.
Seghilani, Mohamed S.; Myara, Mikhael; Sellahi, Mohamed; Legratiet, Luc; Sagnes, Isabelle; Beaudoin, Grégoire; Lalanne, Philippe; Garnache, Arnaud
2016-01-01
The generation of a coherent state, supporting a large photon number, with controlled orbital-angular-momentum L = ħl (of charge l per photon) presents both fundamental and technological challenges: we demonstrate a surface-emitting laser, based on III-V semiconductor technology with an integrated metasurface, generating vortex-like coherent state in the Laguerre-Gauss basis. We use a first order phase perturbation to lift orbital degeneracy of wavefunctions, by introducing a weak anisotropy called here “orbital birefringence”, based on a dielectric metasurface. The azimuthal symmetry breakdown and non-linear laser dynamics create “orbital gain dichroism” allowing selecting vortex handedness. This coherent photonic device was characterized and studied, experimentally and theoretically. It exhibits a low divergence (<1°) diffraction limited beam, emitting 49 mW output power in the near-IR at λ ≃ 1 μm, a charge l = ±1, … ±4 (>50 dB vortex purity), and single frequency operation in a stable low noise regime (0.1% rms). Such high performance laser opens the path to widespread new photonic applications. PMID:27917885
The Stability of Tidal Equilibrium for Hierarchical Star-Planet-Moon Systems
NASA Astrophysics Data System (ADS)
Adams, Fred C.
2018-04-01
Motivated by the current search for exomoons, this talk considers the stability of tidal equilibrium for hierarchical three-body systems containing a star, a planet, and a moon. In this treatment, the energy and angular momentum budgets include contributions from the planetary orbit, lunar orbit, stellar spin, planetary spin, and lunar spin. The goal is to determine the optimized energy state of the system subject to the constraint of constant angular momentum. Due to the lack of a closed form solution for the full three-body problem, however, we must use use an approximate description of the orbits. We first consider the Keplerian limit and find that the critical energy states are saddle points, rather than minima, so that these hierarchical systems have no stable tidal equilibrium states. We then generalize the calculation so that the lunar orbit is described by a time-averaged version of the circular restricted three-body problem. In this latter case, the critical energy state is a shallow minimum, so that a tidal equilibrium state exists. In both cases, however, the lunar orbit for the critical point lies outside the boundary (roughly half the Hill radius) where (previous) numerical simulations indicate dynamical instability.
The Dynamics of a Viscous Gas Ring around a Kerr Black Hole
NASA Astrophysics Data System (ADS)
Riffert, H.
2000-01-01
The dynamics of a rotationally symmetric viscous gas ring around a Kerr black hole is calculated in the thin-disk approximation. An evolution equation for the surface density Σ(t,r) is derived, which is the relativistic extension of a classical equation obtained by R. Lüst. A singular point appears at the radius of the last stable circular orbit r=rc. The nature of this point is investigated, and it turns out that the solution is always bounded at rc, and no boundary condition can be obtained at this radius. A unique solution of an initial value problem requires a matching condition at rc which follows from the flow structure between rc and the horizon. In the model presented here, the density in this domain is zero, and the resulting boundary condition leads to a vanishing shear stress at r=rc, which is the condition used in the standard stationary thin-disk model of Novikov & Thorne. Numerical solutions of the evolution equation are presented for two different angular momenta of the black hole. The time evolution of the resulting accretion rate depends strongly on this angular momentum.
NASA Astrophysics Data System (ADS)
Guo, Min; Su, Haijun; Zhang, Jun; Liu, Lin; Fu, Nianqing; Yong, Zehui; Huang, Haitao; Xie, Keyu
2017-03-01
Design of more effective broadband light-trapping elements to improve the light harvesting efficiency under both normal and tilted light for solar cells and other photonic devices is highly desirable. Herein we present a theoretical analysis on the optical properties of a novel TiO2 nanotube aperiodic photonic crystal (NT APC) following an aperiodic sequences and its photocurrent enhancement effect for dye-sensitized solar cells (DSSCs) under various incidence angles. It is found that, compared to regular PC, the designed TiO2 NT APC owns broader reflection region and a desired omnidirectional reflection (ODR) bandgaps, leading to considerable and stable photocurrent enhancement under both normal and oblique light. The effects of the structural parameters of the TiO2 NT APC, including the average lattice constant and the common sequence difference, on the optical properties, ODR bandgaps and absorption magnification of the integrated DSSCs are investigated in detail. Moreover, the angular dependence of photocurrent enhancement and angular compensation effect of such TiO2 NT APCs are also provided to offer a guidance on the optimum structural parameters design under different engineering application conditions.
About Some Regge-Like Relations for (stable) Black Holes
NASA Astrophysics Data System (ADS)
Recami, E.; Tonin-Zanchin, V.; del Popolo, A.; Gambera, M.
1997-08-01
We associated, in a classical formulation of "strong gravity", hadron constituents with suitable stationary, axisymmetric solutions of some new Einstein-type equations supposed to describe the strong field inside hadrons. These new equations can be obtained by the Einstein equations with cosmological term Lambda. As a consequence, Lambda and the masses M result in our theory to be scaled up, and transformed into a "hadronic constant" and into "strong masses", respectively. Due to the unusual range of Lambda and M values considered, we met a series of solutions of the Kerr-Newman-de Sitter (hereafter KNdS) type with rather interesting properties. The requirement that those solutions be stable, i.e., that their temperature (or surface gravity) be vanishingly small, implies the coincidence of at least two of their (in general, three) horizons. Imposing the stability condition of a certain horizon does yield (once chosen the values of J, q and Lambda) mass and radius of the associated black-hole (hereafter BH). In the case of ordinary Einstein equations and for stable BHs of the KNdS type, we get in particular Regge-like (hereafter RL) relations among mass M, angular momentum J, charge q and cosmological constant Lambda; which did not receive enough attention in the previous literature. Besides, we show some particular and interesting cases of these relations. Another interesting point is that, with few exceptions, all such relations (among M, J, q, Lambda) lead to solutions that can be regarded as (stable) cosmological models.
Adiabatic elimination of inertia of the stochastic microswimmer driven by α -stable noise
NASA Astrophysics Data System (ADS)
Noetel, Joerg; Sokolov, Igor M.; Schimansky-Geier, Lutz
2017-10-01
We consider a microswimmer that moves in two dimensions at a constant speed and changes the direction of its motion due to a torque consisting of a constant and a fluctuating component. The latter will be modeled by a symmetric Lévy-stable (α -stable) noise. The purpose is to develop a kinetic approach to eliminate the angular component of the dynamics to find a coarse-grained description in the coordinate space. By defining the joint probability density function of the position and of the orientation of the particle through the Fokker-Planck equation, we derive transport equations for the position-dependent marginal density, the particle's mean velocity, and the velocity's variance. At time scales larger than the relaxation time of the torque τϕ, the two higher moments follow the marginal density and can be adiabatically eliminated. As a result, a closed equation for the marginal density follows. This equation, which gives a coarse-grained description of the microswimmer's positions at time scales t ≫τϕ , is a diffusion equation with a constant diffusion coefficient depending on the properties of the noise. Hence, the long-time dynamics of a microswimmer can be described as a normal, diffusive, Brownian motion with Gaussian increments.
Titze, Ingo R
2014-04-01
The origin of vocal registers has generally been attributed to differential activation of cricothyroid and thyroarytenoid muscles in the larynx. Register shifts, however, have also been shown to be affected by glottal pressures exerted on vocal fold surfaces, which can change with loudness, pitch, and vowel. Here it is shown computationally and with empirical data that intraglottal pressures can change abruptly when glottal adductory geometry is changed relatively smoothly from convergent to divergent. An intermediate shape between large convergence and large divergence, namely, a nearly rectangular glottal shape with almost parallel vocal fold surfaces, is associated with mixed registration. It can be less stable than either of the highly angular shapes unless transglottal pressure is reduced and upper stiffness of vocal fold tissues is balanced with lower stiffness. This intermediate state of adduction is desirable because it leads to a low phonation threshold pressure with moderate vocal fold collision. Achieving mixed registration consistently across wide ranges of F0, lung pressure, and vocal tract shapes appears to be a balancing act of coordinating laryngeal muscle activation with vocal tract pressures. Surprisingly, a large transglottal pressure is not facilitative in this process, exacerbating the bi-stable condition and the associated register contrast.
Adiabatic elimination of inertia of the stochastic microswimmer driven by α-stable noise.
Noetel, Joerg; Sokolov, Igor M; Schimansky-Geier, Lutz
2017-10-01
We consider a microswimmer that moves in two dimensions at a constant speed and changes the direction of its motion due to a torque consisting of a constant and a fluctuating component. The latter will be modeled by a symmetric Lévy-stable (α-stable) noise. The purpose is to develop a kinetic approach to eliminate the angular component of the dynamics to find a coarse-grained description in the coordinate space. By defining the joint probability density function of the position and of the orientation of the particle through the Fokker-Planck equation, we derive transport equations for the position-dependent marginal density, the particle's mean velocity, and the velocity's variance. At time scales larger than the relaxation time of the torque τ_{ϕ}, the two higher moments follow the marginal density and can be adiabatically eliminated. As a result, a closed equation for the marginal density follows. This equation, which gives a coarse-grained description of the microswimmer's positions at time scales t≫τ_{ϕ}, is a diffusion equation with a constant diffusion coefficient depending on the properties of the noise. Hence, the long-time dynamics of a microswimmer can be described as a normal, diffusive, Brownian motion with Gaussian increments.
Bi-stable vocal fold adduction: A mechanism of modal-falsetto register shifts and mixed registration
Titze, Ingo R.
2014-01-01
The origin of vocal registers has generally been attributed to differential activation of cricothyroid and thyroarytenoid muscles in the larynx. Register shifts, however, have also been shown to be affected by glottal pressures exerted on vocal fold surfaces, which can change with loudness, pitch, and vowel. Here it is shown computationally and with empirical data that intraglottal pressures can change abruptly when glottal adductory geometry is changed relatively smoothly from convergent to divergent. An intermediate shape between large convergence and large divergence, namely, a nearly rectangular glottal shape with almost parallel vocal fold surfaces, is associated with mixed registration. It can be less stable than either of the highly angular shapes unless transglottal pressure is reduced and upper stiffness of vocal fold tissues is balanced with lower stiffness. This intermediate state of adduction is desirable because it leads to a low phonation threshold pressure with moderate vocal fold collision. Achieving mixed registration consistently across wide ranges of F0, lung pressure, and vocal tract shapes appears to be a balancing act of coordinating laryngeal muscle activation with vocal tract pressures. Surprisingly, a large transglottal pressure is not facilitative in this process, exacerbating the bi-stable condition and the associated register contrast. PMID:25235006
Yang, Z; Yuan, Z Z; Ma, J X; Ma, X L
2017-11-07
Objective: To make a systematic assessment of the Long-term efficacy of open reduction and internal fixation versus external fixation for unstable distal radius fractures. Methods: A computer-based online search of PubMed, ScienceDirect, EMBASE, BIOSIS, Springer and Cochrane Library were performed. The randomized and controlled trials of open reduction and internal fixation versus external fixation for unstable distal radius fractures were collected. The included trials were screened out strictly based on the criterion of inclusion and exclusion. The quality of included trials was evaluated. RevMan 5.0 was used for data analysis. Results: Sixteen studies involving 1 268 patients were included. There were 618 patients with open reduction and internal fixation and 650 with external fixation. The results of meta-analysis indicated that there were statistically significant differences with regard to the complications postoperatively (infection( I (2)=0%, RR =0.27, 95% CI 0.16-0.45, Z =4.92, P <0.000 01) and total complications( I (2)=0%, RR =0.71, 95% CI 0.59-0.85, Z =3.65, P =0.000 3) ), DASH scores( I (2)=37%, MD =-5.67, 95% CI -8.31--3.04, Z =4.22, P <0.000 1) and volar tilt( I (2)=78%, MD =2.29, 95% CI 0.33-4.24, Z =2.30, P =0.02)( P <0.05) at the end of follow-up period were noted. There were no statistically significant differences observed between two approaches with respect to the clinical outcomes (grip strength, flexion, extension, pronation, supination, radial deviation and ulnar deviation) and radiographic outcome(radial length) at the end of follow-up period( P <0.05). Conclusion: Both open reduction and internal fixation and external fixation are effective treatment for unstable distal radius fractures. Compared with external fixation, open reduction and internal fixation provides reduced complications postoperatively, lower DASH scores and better restoration of volar tilt for treatment of distal radius fractures.
Hand burns surface area: A rule of thumb.
Dargan, Dallan; Mandal, Anirban; Shokrollahi, Kayvan
2018-08-01
Rapid estimation of acute hand burns is important for communication, standardisation of assessment, rehabilitation and research. Use of an individual's own thumbprint area as a fraction of their total hand surface area was evaluated to assess potential utility in hand burn evaluation. Ten health professionals used an ink-covered dominant thumb pulp to cover the surfaces of their own non-dominant hand using the contralateral thumb. Thumbprints were assessed on the web spaces, sides of digits and dorsum and palm beyond the distal wrist crease. Hand surface area was estimated using the Banerjee and Sen method, and thumbprint ellipse area calculated to assess correlation. Mean estimated total hand surface area was 390.0cm 2 ±SD 51.5 (328.3-469.0), mean thumbprint ellipse area was 5.5cm 2 ±SD 1.3 (3.7-8.4), and mean estimated print number was 73.5±SD 11.0 (range 53.1-87.8, 95% CI 6.8). The mean observed number of thumbprints on one hand was 80.1±SD 5.9 (range 70.0-88.0, 95% CI 3.7), χ 2 =0.009. The combined mean of digital prints was 42, comprising a mean of two prints each on volar, dorsal, radial and ulnar digit surfaces, except volar middle and ring (3 prints each). Palmar prints were 15 (11-19), dorsal 15 (11-19), ulnar palm border 3, first web space 2, and second, third and fourth web spaces one each. Using the surface of the palm alone, excluding digits, as 0.5% of total body surface area, the area of one thumbprint was approximated as 1/30th of 1%. We have demonstrated how thumbprint area serves as a simple method for evaluating hand burn surface area. Copyright © 2018 Elsevier Ltd and ISBI. All rights reserved.
[Intraoperative virtual implant planning for volar plate osteosynthesis of distal radius fractures].
Franke, J; Vetter, S Y; Reising, K; Herrmann, S; Südkamp, N P; Grützner, P A; von Recum, J
2016-01-01
Digital planning of implants is in most cases conducted prior to surgery. The virtual implant planning system (VIPS) is an application developed for mobile C-arms, which assists the virtual planning of screws close to the joint line during surgery for treatment of distal radius fractures with volar plate osteosynthesis. The aim of this prospective randomized study was to acquire initial clinical experiences and to compare the VIPS method with the conventional technique. The study included 10 patients for primary testing and 30 patients with distal radius fractures of types A3, C1 and C2, divided in 2 groups. In the VIPS group, after placement of the plate and fracture reduction, a virtual 3D model of the plate was matched with the image of the plate from the fluoroscopic acquisition. Next, the length and position of the screws close to the joint line were planned on the virtual plate. The control group was treated with the same implant in the conventional way. Data were collected regarding screw replacement, fluoroscopy and operating room (OR) times. The VIPS group included six A3, one C1 and eight C2 fractures, while the control group consisted of six A3 and nine C2 fractures. Three screws were replaced in the VIPS group and two in the control group (p = 0.24). The mean intraoperative fluoroscopy time of the VIPS group amounted to 2.58 ± 1.38 min, whereas it was 2.12 ± 0.73 min in the control group (p = 0.26). The mean OR time in the VIPS group was 53.3 ± 34.5 minutes and 42.3 ± 8.8 min (p = 0.23) in the control group. The VIPS enables a precise positioning of screws close to joint line in the treatment of distal radius fractures; however, for routine use, further development of the system is necessary.
In vivo penetration of bare and lipid-coated silica nanoparticles across the human stratum corneum.
Iannuccelli, Valentina; Bertelli, Davide; Romagnoli, Marcello; Scalia, Santo; Maretti, Eleonora; Sacchetti, Francesca; Leo, Eliana
2014-10-01
Skin penetration of silica nanoparticles (NP) currently used in pharmaceutical and cosmetic products is a topic of interest not only to evaluate their possible toxicity, but also to understand their behaviour upon contact with the skin and to exploit their potential positive effects in drug or cosmetic delivery field. Therefore, the present work aimed to elucidate the in vivo mechanism by which amorphous hydrophilic silica NP enter human stratum corneum (SC) through the evaluation of the role played by the nanoparticle surface polarity and the human hair follicle density. Two silica samples, bare hydrophilic silica (B-silica, 162±51nm in size) and hydrophobic lipid-coated silica (LC-silica, 363±74nm in size) were applied on both the volar and dorsal side of volunteer forearms. Twelve repetitive stripped tapes were removed from the human skin and evaluated for elemental composition by Energy Dispersive X-ray (EDX) analysis and for silicon content by Inductively Coupled Plasma quadrupole Mass Spectrometry (ICP-MS). All the stripped tapes revealed nanosized structures generally located in the broad spaces between corneocytes and characterized by the same elemental composition (relative weight percentage of silicon and silicon to oxygen weight ratio) than that of the applied samples. However, only about 10% B-silica permeated until the deepest SC layers considered in the study indicating a silica retention in the upper layers of SC, regardless of the hair follicle density. Otherwise, the exposure to LC-silica led to a greater silica skin penetration extent into the deeper SC layers (about 42% and 18% silica following volar and dorsal forearm application, respectively) indicating that the NP surface polarity played a predominant role on that of their size in determining the route and the extent of penetration. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Oh, Haekwan; Fu, Chen; Yang, Sang Sik; Wang, Wen; Lee, Keekeun
2012-04-01
A surface acoustic wave (SAW)-based gyroscope with an 80 MHz central frequency was fabricated on a 128° YX LiNbO3 piezoelectric substrate. The fabricated gyroscope is composed of a SAW resonator, metallic dots and a SAW reflective delay line. The SAW resonator, which is activated by a voltage-controlled oscillator, generates a stable standing wave with a large amplitude at an 80 MHz resonant frequency, and the metallic dots induce a Coriolis force and generate a secondary SAW in the direction orthogonal to the propagating standing wave. The SAW reflective delay line is employed to measure the Coriolis effect by analyzing the deviations in the resonant frequency of the SAW reflective delay line. A combined finite element method/boundary element method was utilized to extract the optimal device parameters prior to fabrication. The device was fabricated according to the modeling results and then measured on a rate table. When the device was subjected to an angular rotation, a secondary SAW from the vibrating metallic dots was generated owing to the Coriolis force, resulting in a perturbation of the propagating SAW in the SAW reflective delay line. Depending on the angular velocity, the reflection peak of SAW reflective delay line was changed linearly, and this change was measured by the network analyzer. The measured results matched the modeling results well. The obtained sensitivity was approximately 1.23 deg/(deg/s) in an angular rate range of 0-2000 deg s-1. Good thermal and shock stabilities were observed during the evaluation process proving the shock and heat robustness of the fabricated SAW gyroscope.
Toyoda, Hiromitsu; Takahashi, Shinji; Hoshino, Masatoshi; Takayama, Kazushi; Iseki, Kazumichi; Sasaoka, Ryuichi; Tsujio, Tadao; Yasuda, Hiroyuki; Sasaki, Takeharu; Kanematsu, Fumiaki; Kono, Hiroshi; Nakamura, Hiroaki
2017-09-23
This study demonstrated four distinct patterns in the course of back pain after osteoporotic vertebral fracture (OVF). Greater angular instability in the first 6 months after the baseline was one factor affecting back pain after OVF. Understanding the natural course of symptomatic acute OVF is important in deciding the optimal treatment strategy. We used latent class analysis to classify the course of back pain after OVF and identify the risk factors associated with persistent pain. This multicenter cohort study included 218 consecutive patients with ≤ 2-week-old OVFs who were enrolled at 11 institutions. Dynamic x-rays and back pain assessment with a visual analog scale (VAS) were obtained at enrollment and at 1-, 3-, and 6-month follow-ups. The VAS scores were used to characterize patient groups, using hierarchical cluster analysis. VAS for 128 patients was used for hierarchical cluster analysis. Analysis yielded four clusters representing different patterns of back pain progression. Cluster 1 patients (50.8%) had stable, mild pain. Cluster 2 patients (21.1%) started with moderate pain and progressed quickly to very low pain. Patients in cluster 3 (10.9%) had moderate pain that initially improved but worsened after 3 months. Cluster 4 patients (17.2%) had persistent severe pain. Patients in cluster 4 showed significant high baseline pain intensity, higher degree of angular instability, and higher number of previous OVFs, and tended to lack regular exercise. In contrast, patients in cluster 2 had significantly lower baseline VAS and less angular instability. We identified four distinct groups of OVF patients with different patterns of back pain progression. Understanding the course of back pain after OVF may help in its management and contribute to future treatment trials.
Howarth, Samuel J; Graham, Ryan B
2015-04-13
Application of non-linear dynamics analyses to study human movement has increased recently, which necessitates an understanding of how dependent measures may be influenced by experimental design and setup. Quantifying local dynamic stability for a multi-articulated structure such as the spine presents the possibility for estimates to be influenced by positioning of kinematic sensors used to measure spine angular kinematics. Oftentimes researchers will also choose to constrain the spine's movement by physically restraining the pelvis and/or using targets to control movement endpoints. Ten healthy participants were recruited, and asked to perform separate trials of 35 consecutive cycles of spine flexion under both constrained and unconstrained conditions. Electromagnetic sensors that measure three-dimensional angular orientations were positioned over the pelvis and the spinous processes of L3, L1, and T11. Using the pelvic sensor as a reference, each sensor location on the spine was used to obtain a different representation of the three-dimensional spine angular kinematics. Local dynamic stability of each kinematic time-series was determined by calculating the maximum finite-time Lyapunov exponent (λmax). Estimates for λmax were significantly lower (i.e. dynamically more stable) for spine kinematic data obtained from the L3 sensor than those obtained from kinematic data using either the L1 or T11 sensors. Likewise, λmax was lower when the movement was constrained. These results emphasize the importance of proper placement of instrumentation for quantifying local dynamic stability of spine kinematics and are especially relevant for repeated measures designs where data are obtained from the same individual on multiple days. Copyright © 2015 Elsevier Ltd. All rights reserved.
Past and future detector arrays for complete event reconstruction in heavy-ion reactions
NASA Astrophysics Data System (ADS)
Cardella, G.; Acosta, L.; Auditore, L.; Boiano, C.; Castoldi, A.; D'Andrea, M.; De Filippo, E.; Dell'Aquila, D.; De Luca, S.; Fichera, F.; Giudice, N.; Gnoffo, B.; Grimaldi, A.; Guazzoni, C.; Lanzalone, G.; Librizzi, F.; Lombardo, I.; Maiolino, C.; Maffesanti, S.; Martorana, N. S.; Norella, S.; Pagano, A.; Pagano, E. V.; Papa, M.; Parsani, T.; Passaro, G.; Pirrone, S.; Politi, G.; Previdi, F.; Quattrocchi, L.; Rizzo, F.; Russotto, P.; Saccà, G.; Salemi, G.; Sciliberto, D.; Trifirò, A.; Trimarchi, M.; Vigilante, M.
2017-11-01
Complex and more and more complete detector arrays have been developed in the last two decades, or are in advanced design stage, in different laboratories. Such arrays are necessary to fully characterize nuclear reactions induced by stable and exotic beams. The need for contemporary detection of charged particles, and/or γ -rays, and/or neutrons, has been stressed in many fields of nuclear structure and reaction dynamics, with particular attention to the improvement of both high angular and energy resolution. Some examples of detection systems adapted to various energy ranges is discussed. Emphasis is given to the possible update of relatively old 4π detectors with new electronics and new detection methods.
Biomechanical Assessment of Locked Plating for the Fixation of Patella Fractures.
Wurm, Simone; Augat, Peter; Bühren, Volker
2015-09-01
To analyze the mechanical stability of locked plating in comparison with tension-band wiring for the fixation of fractures of the patella. Biomechanical tests were performed on artificial foam patella specimens comparing an angular stable plate and monocortical screws with tension-band wiring. Tests were performed under combined tension and bending until failure simulating physiological loading of the tibia during walking. Tension-band wiring failed at 66% of the failure load of plating (1052 N, P = 0.002) and had 5 times larger fracture gap displacements (P = 0.002). Based on the biomechanical advantages, locked plating of the patella may constitute a reasonable alternative in the treatment of patella fractures.
Calafat, V; Strugarek, C; Montoya-Faivre, D; Dap, F; Dautel, G
2018-04-04
Skin envelope degloving of fingers are rare injuries that require rapid care and surgical treatment. Mostly caused by ring finger injuries, these traumas include bone, tendon and neurovascular pedicle damage. The authors present an unusual case of finger degloving limited exclusively to the skin envelope, without skeletal, tendinous or vascular lesion. This rare case of skin envelope degloving rendered microsurgical revascularization impossible. The authors report the results at 12 months following salvage reconstruction combining a partial second toe pulp free flap for the volar side and a dermal substitute with a thin skin graft for the dorsum. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Harness, Neil; Jupiter, Jesse B
2004-09-01
We report the morphology and treatment of a proximal interphalangeal joint dislocation resulting in an injury to the articular surface of the proximal phalanx and avulsion of the radial collateral ligament from its proximal origin. A large osteochondral fragment was sheared from the radial articular surface of the proximal phalanx and remained displaced volarly after reduction of the joint. Plain radiographs and 2- and 3-dimensional computed tomography images were used to evaluate this unusual injury before surgery. Open reduction and internal fixation using a small K-wire and figure-of-eight wire technique restored the articular surface of the head of the proximal phalanx and gave a satisfactory functional result.
Min, Hak Jin; Kim, Jeong Hwan; Kim, Jae Woo; Yeom, Jae Woo
2018-06-01
Giant cell tumor of the tendon sheath (GCTTS) is a common neoplasm of the hand. This tumor is usually solitary. Multi focal origin of the tumor is considered unusual and very few cases of multiple GCTTS have been reported. We report a 48-year-old female patient who presented with three separate painless nodules in same index finger since three years. The two masses located on dorsal aspect, and the other one located on volar aspect. The imaging studies revealed three separated masses without any connection. We performed excisional biopsy and found multiple tumors, attached to flexor and extensor tendon. The final histopathologic diagnosis was GCTTS.
NASA Astrophysics Data System (ADS)
Doria, Mauro M.; Vargas-Paredes, Alfredo A.; Cariglia, Marco
2014-12-01
We consider an effective theory of superconductivity for layered superconductors using a two-component order parameter, and show that it allows the formation of a condensate with magnetic and charge degrees of freedom. This condensate is an inhomogeneous state, topologically stable, that exists without the presence of an applied magnetic field. In particular, it is associated to a charge density in the superconducting layers. We show that well defined angular momentum states have for their lowest moment an hexadecapole charge distribution, i.e. quartic in the momenta. Our approach is based on solving first order equations (FOE) that generalize the Abrikosov-Bogomolny equations of the Ginzburg-Landau theory with one order parameter. The FOE solve the variational equations of the theory in the limit of a small order parameter, which is achieved for the special temperature that corresponds to the crossing of the superconducting dome and the pseudogap transition line. This topologically stable state is a condensate of skyrmions that breaks time reversal symmetry and produces a weak local magnetic field below the threshold of experimental observation.
Toroidal configurations of perfect fluid in the Reissner-Nordström-(anti-)de Sitter spacetimes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kucáková, Hana; Slaný, Petr; Stuchlík, Zdenĕk, E-mail: hana.kucakova@centrum.cz, E-mail: petr.slany@fpf.slu.cz, E-mail: zdenek.stuchlik@fpf.slu.cz
Influence of cosmological constant on toroidal fluid configurations around charged spherically symmetric black holes and naked singularities is demostrated by study of perfect-fluid tori with uniform distribution of specific angular momentum orbiting in the Reissner-Nordström-(anti-)de Sitter spacetimes. Toroidal configurations are allowed only in the spacetimes admitting existence of stable circular geodesics. Configurations with marginally closed equipotential (equipressure) surfaces crossing itself in a cusp allow accretion (through the inner cusp) and/or excretion (through the outer cusp) of matter from the toroidal configuration. Detailed classification of the Reissner-Nordström-(anti-)de Sitter spacetimes according to properties of the marginally stable tori is given. It ismore » demonstrated that in the Reissner-Nordström-de Sitter naked-singularity spacetimes an interesting phenomenon of doubled tori can exist enabling exchange of matter between two tori in both inward and outward directions. In naked-singularity spacetimes the accretion onto the central singularity is impossible due to existence of a potential barrier.« less
NASA Astrophysics Data System (ADS)
Imamura, James N.; Durisen, Richard H.
2001-03-01
Core collapse in a massive rotating star may halt at subnuclear density if the core contains angular momentum J>~1049 g cm2 s-1. An aborted collapse can lead to the formation of a rapidly rotating equilibrium object, which, because of its high electron fraction, Ye>0.4, and high entropy per baryon, Sb/k~1-2, is secularly and dynamically stable. The further evolution of such a ``fizzler'' is driven by deleptonization and cooling of the hot, dense material. These processes cause the fizzler both to contract toward neutron star densities and to spin up, driving it toward instability points of the barlike modes. Using linear stability analyses to study the latter case, we find that the stability properties of fizzlers are similar to those of Maclaurin spheroids and polytropes despite the nonpolytropic nature and extreme compressibility of the fizzler equation of state. For fizzlers with the specific angular momentum distribution of the Maclaurin spheroids, secular and dynamic barlike instabilities set in at T/|W|~0.14 and 0.27, respectively, where T is the rotational kinetic energy and W is the gravitational energy of the fizzler, the same limits as found for Maclaurin spheroids. For fizzlers in which angular momentum is more concentrated toward the equator, the secular stability limits drop dramatically. For the most extreme angular momentum distribution we consider, the secular stability limit for the barlike modes falls to T/|W|~0.038, compared with T/|W|~0.09-0.10 for the most extreme polytropic cases known previously (Imamura et al.). For fixed equation-of-state parameters, the secular and dynamic stability limits occur at roughly constant mass over the range of typical fizzler central densities. Deleptonization and cooling decrease the limiting masses on timescales shorter than the growth time for secular instability. Consequently, unless an evolving fizzler reaches neutron star densities first, it will always encounter dynamic barlike instabilities before secular instabilities have time to grow. Quasi-linear analysis shows that the angular momentum loss during the early nonlinear evolution of the dynamic barlike instability is dominated by Newtonian self-interaction gravitational torques rather than by the emission of gravitational wave (GW) radiation. GW emission may dominate after the initial dynamic evolutionary phase ends. Nonlinear hydrodynamics simulations with a proper equation of state will be required to determine the ultimate outcome of such evolutions and to refine predictions of GW production by barlike instabilities.
Lev-Ari, Tidhar; Lustig, Avichai; Ketter-Katz, Hadas; Baydach, Yossi; Katzir, Gadi
2016-08-01
A chameleon (Chamaeleo chamaeleon) on a perch responds to a nearby threat by moving to the side of the perch opposite the threat, while bilaterally compressing its abdomen, thus minimizing its exposure to the threat. If the threat moves, the chameleon pivots around the perch to maintain its hidden position. How precise is the body rotation and what are the patterns of eye movement during avoidance? Just-hatched chameleons, placed on a vertical perch, on the side roughly opposite to a visual threat, adjusted their position to precisely opposite the threat. If the threat were moved on a horizontal arc at angular velocities of up to 85°/s, the chameleons co-rotated smoothly so that (1) the angle of the sagittal plane of the head relative to the threat and (2) the direction of monocular gaze, were positively and significantly correlated with threat angular position. Eye movements were role-dependent: the eye toward which the threat moved maintained a stable gaze on it, while the contralateral eye scanned the surroundings. This is the first description, to our knowledge, of such a response in a non-flying terrestrial vertebrate, and it is discussed in terms of possible underlying control systems.
Cockpit Window Edge Proximity Effects on Judgements of Horizon Vertical Displacement
NASA Technical Reports Server (NTRS)
Haines, R. F.
1984-01-01
To quantify the influence of a spatially fixed edge on vertical displacement threshold, twenty-four males (12 pilots, 12 non-pilots) were presented a series of forced choice, paired comparison trials in which a 32 deg arc wide, thin, luminous horizontal stimulus line moved smoothly downward through five angles from a common starting position within a three second-long period. The five angles were 1.4, 1.7, 2, 2.3, and 2.6 deg. Each angle was presented paired with itself and the other four angles in all combinations in random order. For each pair of trials the observer had to choose which trial possessed the largest displacement. A confidence response also was made. The independent variable was the angular separation between the lower edge of a stable 'window' aperture through which the stimulus was seen to move and the lowest position attained by the stimulus. It was found that vertical displacement accuracy is inversely related to the angle separating the stimulus and the fixed window edge (p = .05). In addition, there is a strong tendency for pilot confidence to be lower than that of non-pilots for each of the three angular separations. These results are discussed in erms of selected cockpit features and as they relate to how pilots judge changes in aircraft pitch attitude.
Borgese, Michele; Costa, Filippo; Genovesi, Simone; Monorchio, Agostino; Manara, Giuliano
2018-05-16
An ultra-wideband linear polarization converter based on a reflecting metasurface is presented. The polarizer is composed by a periodic arrangement of miniaturized metallic elements printed on a grounded dielectric substrate. In order to achieve broadband polarization converting properties, the metasurface is optimized by employing a genetic algorithm (GA) which imposes the minimization of the amplitude of the co-polar reflection coefficient over a wide frequency band. The enhanced angular stability of the polarization converter is due to the miniaturized unit cell which is obtained by imposing the maximum periodicity of the metasurface in the GA optimization process. The pixelated polarization converter obtained by the GA exhibits a relative bandwidth of 102% working from 8.12 GHz to 25.16 GHz. The analysis of the surface current distribution of the metasurface led to a methodology for refining the optimized GA solution based on the sequential removal of pixels of the unit cell on which surface currents are not excited. The relative bandwidth of the refined polarizer is extended up to 117.8% with a unit cell periodicity of 0.46 mm, corresponding to λ/20 at the maximum operating frequency. The performance of the proposed ultra-wideband polarization metasurface has been confirmed through full-wave simulations and measurements.
Magnetic braking of stellar cores in red giants and supergiants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maeder, André; Meynet, Georges, E-mail: andre.maeder@unige, E-mail: georges.meynet@unige.ch
2014-10-01
Magnetic configurations, stable on the long term, appear to exist in various evolutionary phases, from main-sequence stars to white dwarfs and neutron stars. The large-scale ordered nature of these fields, often approximately dipolar, and their scaling according to the flux conservation scenario favor a fossil field model. We make some first estimates of the magnetic coupling between the stellar cores and the outer layers in red giants and supergiants. Analytical expressions of the truncation radius of the field coupling are established for a convective envelope and for a rotating radiative zone with horizontal turbulence. The timescales of the internal exchangesmore » of angular momentum are considered. Numerical estimates are made on the basis of recent model grids. The direct magnetic coupling of the core to the extended convective envelope of red giants and supergiants appears unlikely. However, we find that the intermediate radiative zone is fully coupled to the core during the He-burning and later phases. This coupling is able to produce a strong spin down of the core of red giants and supergiants, also leading to relatively slowly rotating stellar remnants such as white dwarfs and pulsars. Some angular momentum is also transferred to the outer convective envelope of red giants and supergiants during the He-burning phase and later.« less
Using sky radiances measured by ground based AERONET Sun-Radiometers for cirrus cloud detection
NASA Astrophysics Data System (ADS)
Sinyuk, A.; Holben, B. N.; Eck, T. F.; Slutsker, I.; Lewis, J. R.
2013-12-01
Screening of cirrus clouds using observations of optical depth (OD) only has proven to be a difficult task due mostly to some clouds having temporally and spatially stable OD. On the other hand, the sky radiances measurements which in AERONET protocol are taken throughout the day may contain additional cloud information. In this work the potential of using sky radiances for cirrus cloud detection is investigated. The detection is based on differences in the angular shape of sky radiances due to cirrus clouds and aerosol (see Figure). The range of scattering angles from 3 to 6 degrees was selected due to two primary reasons: high sensitivity to cirrus clouds presence, and close proximity to the Sun. The angular shape of sky radiances was parametrized by its curvature, which is a parameter defined as a combination of the first and second derivatives as a function of scattering angle. We demonstrate that a slope of the logarithm of curvature versus logarithm of scattering angle in this selected range of scattering angles is sensitive to cirrus cloud presence. We also demonstrate that restricting the values of the slope below some threshold value can be used for cirrus cloud screening. The threshold value of the slope was estimated using collocated measurements of AERONET data and MPLNET lidars.
Stability analysis of a deterministic dose calculation for MRI-guided radiotherapy.
Zelyak, O; Fallone, B G; St-Aubin, J
2017-12-14
Modern effort in radiotherapy to address the challenges of tumor localization and motion has led to the development of MRI guided radiotherapy technologies. Accurate dose calculations must properly account for the effects of the MRI magnetic fields. Previous work has investigated the accuracy of a deterministic linear Boltzmann transport equation (LBTE) solver that includes magnetic field, but not the stability of the iterative solution method. In this work, we perform a stability analysis of this deterministic algorithm including an investigation of the convergence rate dependencies on the magnetic field, material density, energy, and anisotropy expansion. The iterative convergence rate of the continuous and discretized LBTE including magnetic fields is determined by analyzing the spectral radius using Fourier analysis for the stationary source iteration (SI) scheme. The spectral radius is calculated when the magnetic field is included (1) as a part of the iteration source, and (2) inside the streaming-collision operator. The non-stationary Krylov subspace solver GMRES is also investigated as a potential method to accelerate the iterative convergence, and an angular parallel computing methodology is investigated as a method to enhance the efficiency of the calculation. SI is found to be unstable when the magnetic field is part of the iteration source, but unconditionally stable when the magnetic field is included in the streaming-collision operator. The discretized LBTE with magnetic fields using a space-angle upwind stabilized discontinuous finite element method (DFEM) was also found to be unconditionally stable, but the spectral radius rapidly reaches unity for very low-density media and increasing magnetic field strengths indicating arbitrarily slow convergence rates. However, GMRES is shown to significantly accelerate the DFEM convergence rate showing only a weak dependence on the magnetic field. In addition, the use of an angular parallel computing strategy is shown to potentially increase the efficiency of the dose calculation.
Stability analysis of a deterministic dose calculation for MRI-guided radiotherapy
NASA Astrophysics Data System (ADS)
Zelyak, O.; Fallone, B. G.; St-Aubin, J.
2018-01-01
Modern effort in radiotherapy to address the challenges of tumor localization and motion has led to the development of MRI guided radiotherapy technologies. Accurate dose calculations must properly account for the effects of the MRI magnetic fields. Previous work has investigated the accuracy of a deterministic linear Boltzmann transport equation (LBTE) solver that includes magnetic field, but not the stability of the iterative solution method. In this work, we perform a stability analysis of this deterministic algorithm including an investigation of the convergence rate dependencies on the magnetic field, material density, energy, and anisotropy expansion. The iterative convergence rate of the continuous and discretized LBTE including magnetic fields is determined by analyzing the spectral radius using Fourier analysis for the stationary source iteration (SI) scheme. The spectral radius is calculated when the magnetic field is included (1) as a part of the iteration source, and (2) inside the streaming-collision operator. The non-stationary Krylov subspace solver GMRES is also investigated as a potential method to accelerate the iterative convergence, and an angular parallel computing methodology is investigated as a method to enhance the efficiency of the calculation. SI is found to be unstable when the magnetic field is part of the iteration source, but unconditionally stable when the magnetic field is included in the streaming-collision operator. The discretized LBTE with magnetic fields using a space-angle upwind stabilized discontinuous finite element method (DFEM) was also found to be unconditionally stable, but the spectral radius rapidly reaches unity for very low-density media and increasing magnetic field strengths indicating arbitrarily slow convergence rates. However, GMRES is shown to significantly accelerate the DFEM convergence rate showing only a weak dependence on the magnetic field. In addition, the use of an angular parallel computing strategy is shown to potentially increase the efficiency of the dose calculation.
Corrigendum to "Stability analysis of a deterministic dose calculation for MRI-guided radiotherapy".
Zelyak, Oleksandr; Fallone, B Gino; St-Aubin, Joel
2018-03-12
Modern effort in radiotherapy to address the challenges of tumor localization and motion has led to the development of MRI guided radiotherapy technologies. Accurate dose calculations must properly account for the effects of the MRI magnetic fields. Previous work has investigated the accuracy of a deterministic linear Boltzmann transport equation (LBTE) solver that includes magnetic field, but not the stability of the iterative solution method. In this work, we perform a stability analysis of this deterministic algorithm including an investigation of the convergence rate dependencies on the magnetic field, material density, energy, and anisotropy expansion. The iterative convergence rate of the continuous and discretized LBTE including magnetic fields is determined by analyzing the spectral radius using Fourier analysis for the stationary source iteration (SI) scheme. The spectral radius is calculated when the magnetic field is included (1) as a part of the iteration source, and (2) inside the streaming-collision operator. The non-stationary Krylov subspace solver GMRES is also investigated as a potential method to accelerate the iterative convergence, and an angular parallel computing methodology is investigated as a method to enhance the efficiency of the calculation. SI is found to be unstable when the magnetic field is part of the iteration source, but unconditionally stable when the magnetic field is included in the streaming-collision operator. The discretized LBTE with magnetic fields using a space-angle upwind stabilized discontinuous finite element method (DFEM) was also found to be unconditionally stable, but the spectral radius rapidly reaches unity for very low density media and increasing magnetic field strengths indicating arbitrarily slow convergence rates. However, GMRES is shown to significantly accelerate the DFEM convergence rate showing only a weak dependence on the magnetic field. In addition, the use of an angular parallel computing strategy is shown to potentially increase the efficiency of the dose calculation. © 2018 Institute of Physics and Engineering in Medicine.
A 2D eye gaze estimation system with low-resolution webcam images
NASA Astrophysics Data System (ADS)
Ince, Ibrahim Furkan; Kim, Jin Woo
2011-12-01
In this article, a low-cost system for 2D eye gaze estimation with low-resolution webcam images is presented. Two algorithms are proposed for this purpose, one for the eye-ball detection with stable approximate pupil-center and the other one for the eye movements' direction detection. Eyeball is detected using deformable angular integral search by minimum intensity (DAISMI) algorithm. Deformable template-based 2D gaze estimation (DTBGE) algorithm is employed as a noise filter for deciding the stable movement decisions. While DTBGE employs binary images, DAISMI employs gray-scale images. Right and left eye estimates are evaluated separately. DAISMI finds the stable approximate pupil-center location by calculating the mass-center of eyeball border vertices to be employed for initial deformable template alignment. DTBGE starts running with initial alignment and updates the template alignment with resulting eye movements and eyeball size frame by frame. The horizontal and vertical deviation of eye movements through eyeball size is considered as if it is directly proportional with the deviation of cursor movements in a certain screen size and resolution. The core advantage of the system is that it does not employ the real pupil-center as a reference point for gaze estimation which is more reliable against corneal reflection. Visual angle accuracy is used for the evaluation and benchmarking of the system. Effectiveness of the proposed system is presented and experimental results are shown.
Kuhlmann, T; Hofmann, T; Seibert, O; Gundlach, G; Schmidt-Horlohé, K; Hoffmann, R
2012-04-01
Although being one of the most common fractures in elderly patients, there is still no standardised treatment protocol for four-part fractures of the proximal humerus. However, a wide variety of angular-stable implants is available. The present retrospective study compares the clinical and radiological outcome following operative treatment of four-part fractures of the proximal humerus with the Philos system (Philos, proximal humeral internal locking system, Synthes GmbH, Umkirch Germany) and the angular-stable Königsee plate system (Königsee Implantate GmbH, Allendorf, Germany) in patients older than 65 years. From July 2005 until December 2007 we identified 77 patients with a four-part fracture of the proximal humerus who were treated operatively with one of the two implant systems. Of the patients, 17 could not be located so that in total 60 patients (78 %) participated in this study. The mean age of the 30 patients (10 m, 20 f) in the Philos group was 69 years (65-92), whereas the mean age of the 30 patients (11 m, 19 f) in the Königsee group was 71 years (65-93). A comprehensive assessment was performed after a median of 17 months (12-24), including physical examination, radiographic examination and completion of the disabilities of the arm, shoulder and hand score (DASH) and the Constant score (CS) as patient-oriented, limb-specific questionnaires. Neither in the Philos nor in the Königsee group could excellent results be achieved. Using the CS 13 patients (43 %) of the Philos group achieved a good and 15 (50 %) a satisfactory result. Bad results were found in 2 patients (7 %). The mean CS was 61.53 points. In the Königsee group mean CS was 61.76 points. In detail, 14 patients (47 %) treated with the Königsee implant were rated as good and 15 (50 %) as satisfactory. Only 1 patient (3 %) was rated as poor. No significant statistical differences were found between the groups. Mean DASH score in the Philos group was 56.30 points and 55.37 points in the Königsee group. Again, no statistical difference was found. Partial humeral head necrosis was observed in 2 patients of the Philos and 1 of the Königsee group. In the remaining patients uneventful fracture consolidation was observed. There were no complications requiring further surgical intervention. To the date of follow-up all implants were still in situ and none of the patients reported discomfort with respect to the hardware. In this study we were able to demonstrate that good and satisfactory results can be achieved in the majority of patients, regardless of whether a Philos or a Königsee system was used. Significant differences between the two groups could not be found in any of the performed examinations. Both implants seem to be suitable in four-part fractures of the proximal humerus. However, the Königsee plate represents a more cost-effective option compared to the Philos system. © Georg Thieme Verlag KG Stuttgart · New York.
Properties and circulation of Jupiter's circumpolar cyclones as measured by JunoCam
NASA Astrophysics Data System (ADS)
Orton, G. S.; Eichstaedt, G.; Rogers, J. H.; Hansen, C. J.; Caplinger, M.; Momary, T.; Tabataba-Vakili, F.; Intersoll, A. P.
2017-09-01
JunoCam has taken the first high-resolution visible images of Jupiter's poles, which show that each pole has a cluster of circumpolar cyclones, each one separated in longitude by roughly equal spacing. There are five at the south pole and eight at the north pole. These configurations, including their asymmetries and the characteristics of individual cyclones, have remained stable over 7 months from perijove 1 to perijove 5 as of this writing. Each cyclone has a circular outline with a prominent system of trailing spiral arms. In the north, the internal morphology of adjacent cyclones alternates from one to the next. Angular motions within each cyclone appear to be similar to each other but quite different from vortices at lower latitudes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fleming, D.G.; Becchetti, F.D.; Flynn, E.R.
Inelastic proton scattering on the stable odd-A tin isotopes /sup 115/Sn, /sup 117/Sn, and /sup 119/Sn has been carried out at 18 MeV on isotope separated targets. Angular distributions were not obtained but, nevertheless, the individual spectra reveal a large number of strongly populated states in the energy region of the known octupole strength of the even-A nuclei, permitting several new (tentative) 5/2/sup -/,7/2/sup -/ spin assignments. General comparisons are made of the observed relative strengths with those obtained from other reactions populating the same final states, revealing a complex nuclear structure in the odd-A tins which is not understoodmore » theoretically.« less
Adaptive optics for array telescopes using piston-and-tilt wave-front sensing
NASA Technical Reports Server (NTRS)
Wizinowich, P.; Mcleod, B.; Lloyd-Yhart, M.; Angel, J. R. P.; Colucci, D.; Dekany, R.; Mccarthy, D.; Wittman, D.; Scott-Fleming, I.
1992-01-01
A near-infrared adaptive optics system operating at about 50 Hz has been used to control phase errors adaptively between two mirrors of the Multiple Mirror Telescope by stabilizing the position of the interference fringe in the combined unresolved far-field image. The resultant integrated images have angular resolutions of better than 0.1 arcsec and fringe contrasts of more than 0.6. Measurements of wave-front tilt have confirmed the wavelength independence of image motion. These results show that interferometric sensing of phase errors, when combined with a system for sensing the wave-front tilt of the individual telescopes, will provide a means of achieving a stable diffraction-limited focus with segmented telescopes or arrays of telescopes.
Development of High Sensitivity Nuclear Emulsion and Fine Grained Emulsion
NASA Astrophysics Data System (ADS)
Kawahara, H.; Asada, T.; Naka, T.; Naganawa, N.; Kuwabara, K.; Nakamura, M.
2014-08-01
Nuclear emulsion is a particle detector having high spacial resolution and angular resolution. It became useful for large statistics experiment thanks to the development of automatic scanning system. In 2010, a facility for emulsion production was introduced and R&D of nuclear emulsion began at Nagoya university. In this paper, we present results of development of the high sensitivity emulsion and fine grained emulsion for dark matter search experiment. Improvement of sensitivity is achieved by raising density of silver halide crystals and doping well-adjusted amount of chemicals. Production of fine grained emulsion was difficult because of unexpected crystal condensation. By mixing polyvinyl alcohol (PVA) to gelatin as a binder, we succeeded in making a stable fine grained emulsion.
The Research Program at RIBRAS (Radioactive Ion Beams in Brasil)-III
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lichtenthaeler, R.; Lepine-Szily, A.; Guimaraes, V.
A part of the research program developed in the RIBRAS facility over the last four years is presented. Experiments using radioactive secondary beams of light exotic nuclei such as {sup 6}He, {sup 7}Be, {sup 8}Li on several targets have been performed. Elastic angular distributions have been analysed by the Optical Model and four body Continuous Discretized Coupled Channels Calculations (4b-CDCC) and the total reaction cross sections have been obtained. A comparison between the reaction cross sections of {sup 6}He and other stable projectiles with medium-heavy targets was performed. Measurements of the proton transfer reaction {sup 12}C({sup 8}Li,{sup 9}Be){sup 11}B aremore » also presented.« less
D'Arcangelo, M; Gilbert, A; Pirrello, R
1996-06-01
The long-term results of a technique for correction of syndactyly are reported. The technique consists of a dorsal omega flap and a palmar anchor forming two palmar and lateral flaps. A long-term review was made of 50 patients with a minimum of 8 years follow-up operated over a period of 10 years. A total of 122 web spaces in simple, complex and syndromic syndactyly were operated on. Most patients achieved satisfactory reconstruction of the web spaces, resulting in a web of good shape. At long-term review, web creep was recorded in eight webs, and skin contractures in three fingers. This study shows the technique to be effective in reconstructing web spaces and in minimizing the prevalence of complications.
Schreck, Michael J; Holbrook, Hayden S; Koman, L Andrew
2018-02-01
Pseudo-boutonniere deformity is an uncommon complication from long-standing proximal interphalangeal (PIP) joint contracture in Dupuytren disease. Prolonged flexion contracture of the PIP joint can lead to central slip attenuation and resultant imbalances in the extensor mechanism. We present a technique of flexor digitorum superficialis (FDS) tendon transfer to the lateral bands to correct pseudo-boutonniere deformity at the time of palmar fasciectomy for the treatment of Dupuytren disease. The FDS tendon is transferred from volar to dorsal through the lumbrical canal and sutured into the dorsally mobilized lateral bands. This technique presents an approach to the repair of pseudo-boutonniere deformity in Dupuytren disease. Copyright © 2018 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Free 'mini' groin flap for digital resurfacing.
Tare, M; Ramakrishnan, V
2009-06-01
Ten cases of post-traumatic skin and soft tissue loss over the digits were resurfaced by free 'mini' groin flap. Five patients had defects of the dorsum of the digit, three had proximal palmar defects, one patient had circumferential skin loss and one had multiple digital injuries. The flap was harvested from the contralateral groin using a two-team approach. The average size of the flap was 5.5 x 4.75 cm and the mean operating time was 2.45 hrs. All patients had physiotherapy within 48-72 hrs. There were no flap losses. Six patients were happy with the cosmetic result and did not require any further debulking. We recommend free tissue transfer for digital resurfacing specifically in moderate to large dorsal defects, proximal volar defects, circumferential skin loss and multiple digit injuries.
Sensory characteristics of camphor.
Green, B G
1990-05-01
The perceptual effects of camphor on hairy skin were measured in a psychophysical experiment. Subjects rated the intensity and quality of sensations produced when a solution of 20% camphor (in a vehicle of ethanol and deionized H2O) was applied topically to the volar forearm. Under conditions in which skin temperature was varied either from 33-43 degrees C or from 33-18 degrees C, it was found that camphor increased the perceived intensity of the cutaneous sensations produced during heating and cooling. Although camphor's effect appeared to be greater during warming, neither effect was large. Camphor also produced a significant increase in the frequency of reports of "burning." It is concluded that camphor is a relatively weak sensory irritant that may have a modest excitatory effect on thermosensitive (and perhaps nociceptive) cutaneous fibers.
Immunohistochemical Mapping of Sensory Nerve Endings in the Human Triangular Fibrocartilage Complex.
Rein, Susanne; Semisch, Manuel; Garcia-Elias, Marc; Lluch, Alex; Zwipp, Hans; Hagert, Elisabet
2015-10-01
The triangular fibrocartilage complex is the main stabilizer of the distal radioulnar joint. While static joint stability is constituted by osseous and ligamentous integrity, the dynamic aspects of joint stability chiefly concern proprioceptive control of the compressive and directional muscular forces acting on the joint. Therefore, an investigation of the pattern and types of sensory nerve endings gives more insight in dynamic distal radioulnar joint stability. We aimed to (1) analyze the general distribution of sensory nerve endings and blood vessels; (2) examine interstructural distribution of sensory nerve endings and blood vessels; (3) compare the number and types of mechanoreceptors in each part; and (4) analyze intrastructural distribution of nerve endings at different tissue depth. The subsheath of the extensor carpi ulnaris tendon sheath, the ulnocarpal meniscoid, the articular disc, the dorsal and volar radioulnar ligaments, and the ulnolunate and ulnotriquetral ligaments were dissected from 11 human cadaver wrists. Sensory nerve endings were counted in five levels per specimen as total cell amount/cm(2) after staining with low-affinity neurotrophin receptor p75, protein gene product 9.5, and S-100 protein and thereafter classified according to Freeman and Wyke. All types of sensory corpuscles were found in the various structures of the triangular fibrocartilage complex with the exception of the ulnolunate ligament, which contained only Golgi-like endings, free nerve endings, and unclassifiable corpuscles. The articular disc had only free nerve endings. Furthermore, free nerve endings were the predominant sensory nerve ending (median, 72.6/cm(2); range, 0-469.4/cm(2)) and more prevalent than all other types of mechanoreceptors: Ruffini (median, 0; range, 0-5.6/cm(2); difference of medians, 72.6; p < 0.001), Pacini (median, 0; range, 0-3.8/cm(2); difference of medians, 72.6; p < 0.001), Golgi-like (median, 0; range, 0-2.1/cm(2); difference of medians, 72.6; p < 0.001), and unclassifiable corpuscles (median, 0; range, 0-2.5/cm(2); difference of medians, 72.6; p < 0.001). The articular disc contained fewer free nerve endings (median, 1.8; range, 0-17.8/cm(2)) and fewer blood vessels (median, 29.8; range, 0-112.2/cm(2); difference of medians: 255.9) than all other structures of the triangular fibrocartilage complex (p ≤ 0.001, respectively) except the ulnolunate ligament. More blood vessels were seen in the volar radioulnar ligament (median, 363.62; range, 117.8-871.8/cm(2)) compared with the ulnolunate ligament (median, 107.7; range, 15.9-410.3/cm(2); difference of medians: 255.91; p = 0.002) and the dorsal radioulnar ligament (median, 116.2; range, 53.9-185.1/cm(2); difference of medians: 247.47; p = 0.001). Free nerve endings were obtained in each structure more often than all other types of sensory nerve endings (p < 0.001, respectively). The intrastructural analysis revealed no differences in mechanoreceptor distribution in all investigated specimens with the numbers available, showing a homogenous distribution of proprioceptive qualities in all seven parts of the triangular fibrocartilage complex. Nociception has a primary proprioceptive role in the neuromuscular stability of the distal radioulnar joint. The articular disc and ulnolunate ligament rarely are innervated, which implies mainly mechanical functions, whereas all other structures have pronounced proprioceptive qualities, prerequisite for dynamic joint stability. Lesions of the volar and dorsal radioulnar ligaments have immense consequences not only for mechanical but also for dynamic stability of the distal radioulnar joint, and surgical reconstruction in instances of radioulnar ligament injury is important.
Stern-Gerlach-like approach to electron orbital angular momentum measurement
Harvey, Tyler R.; Grillo, Vincenzo; McMorran, Benjamin J.
2017-02-28
Many methods now exist to prepare free electrons into orbital-angular-momentum states, and the predicted applications of these electron states as probes of materials and scattering processes are numerous. The development of electron orbital-angular-momentum measurement techniques has lagged behind. We show that coupling between electron orbital angular momentum and a spatially varying magnetic field produces an angular-momentum-dependent focusing effect. We propose a design for an orbital-angular-momentum measurement device built on this principle. As the method of measurement is noninterferometric, the device works equally well for mixed, superposed, and pure final orbital-angular-momentum states. The energy and orbital-angular-momentum distributions of inelastically scattered electronsmore » may be simultaneously measurable with this technique.« less
Stern-Gerlach-like approach to electron orbital angular momentum measurement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harvey, Tyler R.; Grillo, Vincenzo; McMorran, Benjamin J.
Many methods now exist to prepare free electrons into orbital-angular-momentum states, and the predicted applications of these electron states as probes of materials and scattering processes are numerous. The development of electron orbital-angular-momentum measurement techniques has lagged behind. We show that coupling between electron orbital angular momentum and a spatially varying magnetic field produces an angular-momentum-dependent focusing effect. We propose a design for an orbital-angular-momentum measurement device built on this principle. As the method of measurement is noninterferometric, the device works equally well for mixed, superposed, and pure final orbital-angular-momentum states. The energy and orbital-angular-momentum distributions of inelastically scattered electronsmore » may be simultaneously measurable with this technique.« less
Goodworth, Adam D; Paquette, Caroline; Jones, Geoffrey Melvill; Block, Edward W; Fletcher, William A; Hu, Bin; Horak, Fay B
2012-05-01
Linear and angular control of trunk and leg motion during curvilinear navigation was investigated in subjects with cerebellar ataxia and age-matched control subjects. Subjects walked with eyes open around a 1.2-m circle. The relationship of linear to angular motion was quantified by determining the ratios of trunk linear velocity to trunk angular velocity and foot linear position to foot angular position. Errors in walking radius (the ratio of linear to angular motion) also were quantified continuously during the circular walk. Relative variability of linear and angular measures was compared using coefficients of variation (CoV). Patterns of variability were compared using power spectral analysis for the trunk and auto-covariance analysis for the feet. Errors in radius were significantly increased in patients with cerebellar damage as compared to controls. Cerebellar subjects had significantly larger CoV of feet and trunk in angular, but not linear, motion. Control subjects also showed larger CoV in angular compared to linear motion of the feet and trunk. Angular and linear components of stepping differed in that angular, but not linear, foot placement had a negative correlation from one stride to the next. Thus, walking in a circle was associated with more, and a different type of, variability in angular compared to linear motion. Results are consistent with increased difficulty of, and role of the cerebellum in, control of angular trunk and foot motion for curvilinear locomotion.
Raduan Neto, Jorge; de Moraes, Vinicius Ynoe; Gomes Dos Santos, João B; Faloppa, Flávio; Belloti, João Carlos
2014-03-05
Various treatments are available for reducible unstable fractures of the distal radius, such as closed reduction combined with fixation by external fixator (EF), and rigid internal fixation using a locked volar plate (VP). Although there are studies comparing these methods, there is no conclusive evidence indicating which treatment is best. The hypothesis of this study is that surgical treatment with a VP is more effective than EF from the standpoint of functional outcome (patient-reported). The study is randomized clinical trial with parallel groups and a blinded evaluator and involves the surgical interventions EF and VP. Patients will be randomly assigned (assignment ratio 1:1) using sealed opaque envelopes. This trial will include consecutive adult patients with an acute (up to 15 days) displaced, unstable fracture of the distal end of the radius of type A2, A3, C1, C2 or C3 by the Arbeitsgemeinschaft für Osteosynthesefragen-Association for the Study of Internal Fixation classification and type II or type III by the IDEAL32 classification, without previous surgical treatments of the wrist. The surgical intervention assigned will be performed by three surgical specialists familiar with the techniques described. Evaluations will be performed at 2, and 8 weeks, 3, 6 and 12 months, with the primary outcomes being measured by the Disabilities of the Arm, Shoulder and Hand (DASH) questionnaire and measurement of pain (Visual Analog Pain Scale and digital algometer). Secondary outcomes will include radiographic parameters, objective functional evaluation (goniometry and dynamometry), and the rate of complications and method failure according to the intention-to-treat principle. Final postoperative evaluations (6 and 12 months) will be performed by independent blinded evaluators. For the Student's t-test, a difference of 10 points in the DASH score, with a 95% confidence interval, a statistical power of 80%, and 20% sampling error results in 36 patients per group. Results from this study protocol will improve the current evidence regarding to the surgical treatment these fractures. ISCRTN09599740.
Tsutsui, Sadaaki; Kawasaki, Keikichi; Yamakoshi, Ken-Ichi; Uchiyama, Eiichi; Aoki, Mitsuhiro; Inagaki, Katsunori
2016-09-01
The present study compared the changes in biomechanical and radiographic properties under cyclic axial loadings between the 'double-tiered subchondral support' (DSS) group (wherein two rows of screws were used) and the 'non-DSS' (NDSS) group (wherein only one row of distal screws was used) using cadaveric forearm models of radius fractures fixed with a polyaxial locking plate. Fifteen fresh cadaveric forearms were surgically operated to generate an Arbeitsgemeinschaft für Osteosynthesefragen (AO) type 23-C2 fracture model with the fixation of polyaxial volar locking plates. The model specimens were randomized into two groups: DSS (n = 7) and NDSS (n = 8). Both the groups received 4 locking screws in the most distal row, as is usually applied, whereas the DSS group received 2 additional screws in the second row inserted at an inclination of about 15° to support the dorsal aspect of the dorsal subchondral bone. Cyclic axial compression test was performed (3000 cycles; 0-250 N; 60 mm/min) to measure absolute rigidity and displacement, after 1, 1000, 2000 and 3000 cycles, and values were normalized relative to cycle 1. These absolute and normalized values were compared between those two groups. Radiographic images were taken before and after the cyclic loading to measure changes in volar tilt (ΔVT) and radial inclination (ΔRI). The DSS group maintained significantly higher rigidity and lower displacement values than the NDSS group during the entire loading period. Radiographic analysis indicated that the ΔVT values of the DSS group were lower than those of the NDSS group. In contrast, the fixation design did not influence the impact of loading on the ΔRI values. Biomechanical and radiographic analyses demonstrated that two rows of distal locking screws in the DSS procedure conferred higher stability than one row of distal locking screws. Copyright © 2016 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.
Quadlbauer, Stefan; Pezzei, Christoph; Jurkowitsch, Josef; Kolmayr, Brigitta; Keuchel, Tina; Simon, Daniel; Hausner, Thomas; Leixnering, Martin
2016-01-01
Background Distal radius fractures are very common and an increased incidence of 50% is estimated by 2030. Therefore, both operative and postsurgical treatment remains pertinent. Main aim in treating intra-articular fractures is to restore the articular surface by internal fixation and early mobilization (EM). Questions/Purposes The purpose of this study was to compare functional results between EM immediately after surgery and 5 weeks of immobilization (IM). Patients and Methods In a randomized prospective study, 30 patients with an isolated distal radius fracture were treated by open reduction and internal fixation using a single volar locking plate excluding bone graft. Fifteen patients were randomized in the EM group and 15 in the IM group. At 6 weeks, 9 weeks, 3 months, 6 months, and 1 year postsurgery, range of motion, grip strength and X-rays were evaluated. Additionally, Quick Disability of the Arm, Shoulder and Hand (QuickDASH) questionnaire, Patient-Rated Wrist Evaluation (PRWE), modified Green O'Brien (Mayo) score, and pain according to the Visual Analog Scale score were analyzed. Results Patients in the EM group had a significantly better range of motion in the sagittal plane, in grip strength up to 6 months, in the frontal plane up to 9 weeks, and in forearm rotation up to 6 weeks. Also QuickDASH and PRWE scores were better up to 6 weeks postsurgery. The Green O'Brien score differed significantly up to 1 year. At 1 year, 93% “excellent” and “good” results in the Green O'Brien score with a mean QuickDASH of 5.98 ± 10.94 and PRWE score of 4.27 ± 9.23 were observed in the EM group. No differences regarding loss of reduction, pain, duration of physiotherapy, and sick leave were noted. Conclusion EM of surgically treated distal radius fractures (without bone graft) is a safe method for postoperative aftercare and leads to an improved range of motion and grip strength at 6 months postsurgery compared with an IM of 5 weeks. Level of Evidence This is a level Ib clinical study. PMID:28428911
2014-01-01
Background The use of pre-operatively applied topical tissue expansion tapes have previously demonstrated increased rates of primary closure of radial forearm free flap donor sites. This is associated with a reduced cost of care as well as improved cosmetic appearance of the donor site. Unfortunately, little is known about the biomechanical changes these tapes cause in the forearm skin. This study tested the hypothesis that the use of topically applied tissue expansion tapes will result in an increase in forearm skin pliability in patients undergoing radial forearm free flap surgery. Methods Twenty-four patients scheduled for head and neck surgery requiring a radial forearm free flap were enrolled in this prospective self-controlled observational study. DynaClose tissue expansion tapes (registered Canica Design Inc, Almonte, Canada) were applied across the forearm one week pre-operatively. Immediately prior to surgery, the skin pliability of the dorsal and volar forearm sites were measured with the Cutometer MPA 580 (registered Courage-Khazaka Electronic GmbH, Cologne, Germany) on both the treatment and contralateral (control) arms. Paired t-tests were used to compare treatment to control at both sites, with p < 0.025 defined as statistically significant. Results There was a statistically significant increase in pliability by a mean of 0.05 mm (SD = 0.09 mm) between treatment and control arms on the dorsal site (95% CI [0.01, 0.08], p = 0.018). This corresponded to an 8% increase in pliability. In contrast, the volar site did not show a statistically significant difference between treatment and control (mean difference = 0.04 mm, SD = 0.20 mm, 95% CI [−0.04, 0.12], p = 0.30). Conclusions This result provides evidence that the pre-operative application of topical tissue expansion tapes produces measurable changes in skin biomechanical properties. The location of this change on the dorsal forearm is consistent with the method of tape application. While this increase in skin pliability may account for the improved rate of primary donor site closure reported using this technique, the results did not reach our definition of clinical significance. PMID:24739510
Binary star formation: gravitational fragmentation followed by capture
NASA Astrophysics Data System (ADS)
Turner, J. A.; Chapman, S. J.; Bhattal, A. S.; Disney, M. J.; Pongracic, H.; Whitworth, A. P.
1995-11-01
We describe in detail one of a sequence of numerical simulations which realize the mechanism of binary star formation proposed by Pringle. In these simulations, collisions between stable molecular cloud clumps produce dense shocked layers, which cool radiatively and fragment gravitationally. The resulting fragments then condense to form protostellar discs, which at the same time fall together and, as a result of tidal and viscous interactions, capture one another to form binary systems. We refer to this mechanism as shock-induced gravitational fragmentation followed by capture, or SGF+C. When the initial clumps are sufficiently massive and/or the Mach number of the collision is sufficiently high, a large number (>~10) of protostellar discs is produced; under these circumstances, the layer fragments first into filaments, and then into beads along the filaments. The marriage of two protostellar discs in this way is `arranged' in the sense that the protostellar discs involved do not form independently. First, they both condense out of the same layer, and probably also out of the same filament within this layer; this significantly increases the likelihood of them interacting dynamically. Secondly, there tends to be alignment between the orbital and spin angular momenta of the interacting protostellar discs, reflecting the fact that these angular momenta derive mainly from the systematic global angular momentum of the off-axis collision which produced the layer; this alignment of the various angular momenta pre-disposes the discs to very dissipative interactions, thereby increasing the probability of producing a strongly bound, long-lasting union. It is a marriage because the binary orbit stabilizes itself rather quickly. Any subsequent orbit evolution, as the protostellar discs `mop up' the surrounding residual gas and interact tidally, tends to harden the orbit. Therefore, as long as a third body does not intervene, the union is binding. Even if a third body does intervene, provided the binary components are well matched (i.e. of comparable mass) and the third body is not too massive, such interventions will - more often than not - harden the orbit further. In two appendices we describe the code used in the simulations presented in this and the companion paper, and the tests performed to demonstrate the code's ability to handle the physical processes involved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Bumsoo; Barrows, Frank P.; Sharma, Yogesh
We have studied the ferroelectric domains in (001) BiFeO 3 (BFO) films patterned into mesas with various aspect ratios, using angle-resolved piezoresponse force microscope (AR-PFM), which can image the in-plane polarization component with an angular resolution of 30 degrees. We observed not only stable polarization variants, but also meta-stable polarization variants, which can reduce the charge accumulated at domain boundaries. We considered the number of neighboring domains that are in contact, in order to analyze the complexity of the ferroelectric domain structure. Comparison of the ferroelectric domains from the patterned and unpatterned regions showed that the elastic relaxation induced bymore » removal of the film surrounding the mesas led to a reduction of the average number of neighboring domains, indicative of a decrease in domain complexity. Finally, we also found that the rectangular BFO patterns with high aspect ratio had a simpler domain configuration and enhanced piezoelectric characteristics than square-shaped mesas. Manipulation of the ferroelectric domains by controlling the aspect ratio of the patterned BFO thin film mesas can be useful for nanoelectronic applications.« less
Formation of high-β plasma and stable confinement of toroidal electron plasma in Ring Trap 1a)
NASA Astrophysics Data System (ADS)
Saitoh, H.; Yoshida, Z.; Morikawa, J.; Furukawa, M.; Yano, Y.; Kawai, Y.; Kobayashi, M.; Vogel, G.; Mikami, H.
2011-05-01
Formation of high-β electron cyclotron resonance heating plasma and stable confinement of pure electron plasma have been realized in the Ring Trap 1 device, a magnetospheric configuration generated by a levitated dipole field magnet. The effects of coil levitation resulted in drastic improvements of the confinement properties, and the maximum local β value has exceeded 70%. Hot electrons are major component of electron populations, and its particle confinement time is 0.5 s. Plasma has a peaked density profile in strong field region [H. Saitoh et al., 23rd IAEA Fusion Energy Conference EXC/9-4Rb (2010)]. In pure electron plasma experiment, inward particle diffusion is realized, and electrons are stably trapped for more than 300 s. When the plasma is in turbulent state during beam injection, plasma flow has a shear, which activates the diocotron (Kelvin-Helmholtz) instability. The canonical angular momentum of the particle is not conserved in this phase, realizing the radial diffusion of charged particles across closed magnetic surfaces. [Z. Yoshida et al., Phys Rev. Lett. 104, 235004 (2010); H. Saitoh et al., Phys. Plasmas 17, 112111 (2010).].
Kim, Bumsoo; Barrows, Frank P.; Sharma, Yogesh; ...
2018-01-09
We have studied the ferroelectric domains in (001) BiFeO 3 (BFO) films patterned into mesas with various aspect ratios, using angle-resolved piezoresponse force microscope (AR-PFM), which can image the in-plane polarization component with an angular resolution of 30 degrees. We observed not only stable polarization variants, but also meta-stable polarization variants, which can reduce the charge accumulated at domain boundaries. We considered the number of neighboring domains that are in contact, in order to analyze the complexity of the ferroelectric domain structure. Comparison of the ferroelectric domains from the patterned and unpatterned regions showed that the elastic relaxation induced bymore » removal of the film surrounding the mesas led to a reduction of the average number of neighboring domains, indicative of a decrease in domain complexity. Finally, we also found that the rectangular BFO patterns with high aspect ratio had a simpler domain configuration and enhanced piezoelectric characteristics than square-shaped mesas. Manipulation of the ferroelectric domains by controlling the aspect ratio of the patterned BFO thin film mesas can be useful for nanoelectronic applications.« less
Chen, Delei; Goris, Bart; Bleichrodt, Folkert; Mezerji, Hamed Heidari; Bals, Sara; Batenburg, Kees Joost; de With, Gijsbertus; Friedrich, Heiner
2014-12-01
In electron tomography, the fidelity of the 3D reconstruction strongly depends on the employed reconstruction algorithm. In this paper, the properties of SIRT, TVM and DART reconstructions are studied with respect to having only a limited number of electrons available for imaging and applying different angular sampling schemes. A well-defined realistic model is generated, which consists of tubular domains within a matrix having slab-geometry. Subsequently, the electron tomography workflow is simulated from calculated tilt-series over experimental effects to reconstruction. In comparison with the model, the fidelity of each reconstruction method is evaluated qualitatively and quantitatively based on global and local edge profiles and resolvable distance between particles. Results show that the performance of all reconstruction methods declines with the total electron dose. Overall, SIRT algorithm is the most stable method and insensitive to changes in angular sampling. TVM algorithm yields significantly sharper edges in the reconstruction, but the edge positions are strongly influenced by the tilt scheme and the tubular objects become thinned. The DART algorithm markedly suppresses the elongation artifacts along the beam direction and moreover segments the reconstruction which can be considered a significant advantage for quantification. Finally, no advantage of TVM and DART to deal better with fewer projections was observed. Copyright © 2014 Elsevier B.V. All rights reserved.
End-State Relative Equilibria in the Sphere-Restricted Full Three-Body Problem
NASA Astrophysics Data System (ADS)
Gabriel, Travis; Scheeres, Daniel J.
2015-05-01
The Sphere-Restricted Full Three-Body Problem studies the motion of three finite density spheres as they interact under surface and gravitational forces. When accounting for the dissipation of energy, full-body systems may achieve minimum energy states that are unatainable in the classic treatment of the N-Body Problem. This serves as a simple model for the mechanics of rubble pile asteroids, interacting grains in a protoplanetary disk, and potentially the interactions of planetary ring particles. Previous studies of this problem have been performed in the case where the three spheres are of equal size and mass, with all possible relative equilibria and their stability having been identified as a function of the total angular momentum of the system. These studies uncovered that at certain levels of angular momentum there exists more than one stable relative equilibrium state. Thus a question of interest is which of these states a dissipative system would preferentially settle in provided some domain of initial conditions, and whether this would be a function of the dissipation parameters. Using perfectly-rigid dynamics, three-equal-sphere systems are simulated in a purpose-written C-based code to uncover these details. Results from this study are relevant to the mechanics and dynamics in small solar system bodies where relative forces are not great enough to compromise the rigidity of the constituents.
Instability of Non-uniform Toroidal Magnetic Fields in Accretion Disks
NASA Astrophysics Data System (ADS)
Hirabayashi, Kota; Hoshino, Masahiro
2016-05-01
We present a new type of instability that is expected to drive magnetohydrodynamic (MHD) turbulence from a purely toroidal magnetic field in an accretion disk. It is already known that in a differentially rotating system, the uniform toroidal magnetic field is unstable due to magnetorotational instability (MRI) under a non-axisymmetric and vertical perturbation, while it is stable under a purely vertical perturbation. Contrary to the previous study, this paper proposes an unstable mode completely confined to the equatorial plane, driven by the expansive nature of the magnetic pressure gradient force under a non-uniform toroidal field. The basic nature of this growing eigenmode, which we name “magneto-gradient driven instability,” is studied using linear analysis, and the corresponding nonlinear evolution is then investigated using two-dimensional ideal MHD simulations. Although a single localized magnetic field channel alone cannot provide sufficient Maxwell stress to contribute significantly to the angular momentum transport, we find that the mode coupling between neighboring toroidal fields under multiple localized magnetic field channels drastically generates a highly turbulent state and leads to the enhanced transport of angular momentum, which is comparable to the efficiency seen in previous studies on MRIs. This horizontally confined mode may play an important role in the saturation of an MRI through complementray growth with the toroidal MRIs and coupling with magnetic reconnection.
Hummingbird wing efficacy depends on aspect ratio and compares with helicopter rotors
Kruyt, Jan W.; Quicazán-Rubio, Elsa M.; van Heijst, GertJan F.; Altshuler, Douglas L.; Lentink, David
2014-01-01
Hummingbirds are the only birds that can sustain hovering. This unique flight behaviour comes, however, at high energetic cost. Based on helicopter and aeroplane design theory, we expect that hummingbird wing aspect ratio (AR), which ranges from about 3.0 to 4.5, determines aerodynamic efficacy. Previous quasi-steady experiments with a wing spinner set-up provide no support for this prediction. To test this more carefully, we compare the quasi-steady hover performance of 26 wings, from 12 hummingbird taxa. We spun the wings at angular velocities and angles of attack that are representative for every species and measured lift and torque more precisely. The power (aerodynamic torque × angular velocity) required to lift weight depends on aerodynamic efficacy, which is measured by the power factor. Our comparative analysis shows that AR has a modest influence on lift and drag forces, as reported earlier, but interspecific differences in power factor are large. During the downstroke, the power required to hover decreases for larger AR wings at the angles of attack at which hummingbirds flap their wings (p < 0.05). Quantitative flow visualization demonstrates that variation in hover power among hummingbird wings is driven by similar stable leading edge vortices that delay stall during the down- and upstroke. A side-by-side aerodynamic performance comparison of hummingbird wings and an advanced micro helicopter rotor shows that they are remarkably similar. PMID:25079868
INSTABILITY OF NON-UNIFORM TOROIDAL MAGNETIC FIELDS IN ACCRETION DISKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirabayashi, Kota; Hoshino, Masahiro, E-mail: hirabayashi-k@eps.s.u-tokyo.ac.jp
We present a new type of instability that is expected to drive magnetohydrodynamic (MHD) turbulence from a purely toroidal magnetic field in an accretion disk. It is already known that in a differentially rotating system, the uniform toroidal magnetic field is unstable due to magnetorotational instability (MRI) under a non-axisymmetric and vertical perturbation, while it is stable under a purely vertical perturbation. Contrary to the previous study, this paper proposes an unstable mode completely confined to the equatorial plane, driven by the expansive nature of the magnetic pressure gradient force under a non-uniform toroidal field. The basic nature of thismore » growing eigenmode, which we name “magneto-gradient driven instability,” is studied using linear analysis, and the corresponding nonlinear evolution is then investigated using two-dimensional ideal MHD simulations. Although a single localized magnetic field channel alone cannot provide sufficient Maxwell stress to contribute significantly to the angular momentum transport, we find that the mode coupling between neighboring toroidal fields under multiple localized magnetic field channels drastically generates a highly turbulent state and leads to the enhanced transport of angular momentum, which is comparable to the efficiency seen in previous studies on MRIs. This horizontally confined mode may play an important role in the saturation of an MRI through complementray growth with the toroidal MRIs and coupling with magnetic reconnection.« less
MICRONERVA: A Novel Approach to Large Aperture Astronomical Spectroscopy
NASA Astrophysics Data System (ADS)
Hall, Ryan; Plavchan, Peter; Geneser, Claire; Giddens, Frank; Spangler, Sophia
2016-06-01
MICRONERVA (MICRO Novel Exoplanet Radial Velocity Array) is a project to measure precise spectroscopic radial velocities. The cost of telescopes are a strong function of diameter, and light gathering power as opposed to angular resolution is the fundamental driver for telescope design for many spectroscopic science applications. By sacrificing angular resolution, many multiple smaller fiber-fed telescopes can be combined to synthesize the light gathering power of a larger diameter telescope at a lower effective cost. For our MICRONERVA prototype, based upon the larger MINERVA project, we will attempt to demonstrate that an array of four 8-inch CPC Celestron telescopes can be automated with sufficient active guiding precision for robust nightly robotic operations. The light from each telescope is coupled into single mode fibers, which are conveniently matched to the point spread function of 8-inch telescopes, which can be diffraction limited at red wavelengths in typical seeing at good observing sites. Additionally, the output from an array of single mode fibers provides stable output illumination of a spectrograph, which is a critical requirement of future precise radial velocity instrumentation. All of the hardware from the system is automated using Python programs and ASCOM and MaxIm DL software drivers. We will present an overview of the current status of the project and plans for future work. The detection of exoplanets using the techniques of MICRONERVA could potentially enable cost reductions for many types of spectroscopic research.
NASA Astrophysics Data System (ADS)
Bhattacharyya, S.; Thampan, A. V.; Bombaci, I.
2001-06-01
We compute the temperature profiles of accretion discs around rapidly rotating strange stars, using constant gravitational mass equilibrium sequences of these objects, considering the full effect of general relativity. Beyond a certain critical value of stellar angular momentum (J), we observe the radius (r_orb) of the innermost stable circular orbit (ISCO) to increase with J (a property seen neither in rotating black holes nor in rotating neutron stars). The reason for this is traced to the crucial dependence of dr_orb/dJ on the rate of change of the radial gradient of the Keplerian angular velocity at r_orb with respect to J. The structure parameters and temperature profiles obtained are compared with those of neutron stars, as an attempt to provide signatures for distinguishing between the two. We show that when the full gamut of strange star equation of state models, with varying degrees of stiffness are considered, there exists a substantial overlap in properties of both neutron stars and strange stars. However, applying accretion disc model constraints to rule out stiff strange star equation of state models, we notice that neutron stars and strange stars exclusively occupy certain parameter spaces. This result implies the possibility of distinguishing these objects from each other by sensitive observations through future X-ray detectors.
NASA Astrophysics Data System (ADS)
Banks, J. W.; Henshaw, W. D.; Schwendeman, D. W.; Tang, Qi
2017-08-01
A stable partitioned algorithm is developed for fluid-structure interaction (FSI) problems involving viscous incompressible flow and rigid bodies. This added-mass partitioned (AMP) algorithm remains stable, without sub-iterations, for light and even zero mass rigid bodies when added-mass and viscous added-damping effects are large. The scheme is based on a generalized Robin interface condition for the fluid pressure that includes terms involving the linear acceleration and angular acceleration of the rigid body. Added mass effects are handled in the Robin condition by inclusion of a boundary integral term that depends on the pressure. Added-damping effects due to the viscous shear forces on the body are treated by inclusion of added-damping tensors that are derived through a linearization of the integrals defining the force and torque. Added-damping effects may be important at low Reynolds number, or, for example, in the case of a rotating cylinder or rotating sphere when the rotational moments of inertia are small. In this second part of a two-part series, the general formulation of the AMP scheme is presented including the form of the AMP interface conditions and added-damping tensors for general geometries. A fully second-order accurate implementation of the AMP scheme is developed in two dimensions based on a fractional-step method for the incompressible Navier-Stokes equations using finite difference methods and overlapping grids to handle the moving geometry. The numerical scheme is verified on a number of difficult benchmark problems.
Wang, Xiaonan; Malik, Aamer; Bartel, Donald L; Wright, Timothy M; Padgett, Douglas E
2016-08-01
The normal knee joint maintains stable motion during activities of daily living. After total knee arthroplasty (TKA), stability is achieved by the conformity of the bearing surfaces of the implant components, ligaments, and constraint structures incorporated in the implant design. The large, rectangular tibial post in constrained condylar knee (CCK) arthroplasty, often used in revision surgery, provides added stability, but increases susceptibility to polyethylene wear as it contacts the intercondylar box on the femoral component. We examined coronal plane stability to understand the relative contributions of the mechanisms that act to stabilize the CCK knee under varus-valgus loading, namely, load distribution between the medial and lateral condyles, contact of the tibial post with the femoral intercondylar box, and elongation of the collateral ligaments. A robot testing system was used to determine the joint stability in human cadaveric knees as described by the moment versus angular rotation behavior under varus-valgus moments at 0 deg, 30 deg, and 90 deg of flexion. The angular rotation of the CCK knee in response to the physiological moments was limited to ≤1.5 deg. The primary stabilizing mechanism was the redistribution of the contact force on the bearing surfaces. Contact between the tibial post and the femoral box provided a secondary stabilizing mechanism after lift-off of a condyle had occurred. Collateral ligaments provide limited stability because little ligament elongation occurred under such small angular rotations. Compressive loads applied across the knee joint, such as would occur with the application of muscle forces, enhanced the ability of the bearing surfaces to provide resisting internal varus-valgus moment and, thus, reduced the exposure of the tibial post to the external varus-valgus loads. Our results suggest that the CCK stability can be refined by considering both the geometry of the bearing surfaces and the contacting geometry between the tibial post and femoral box.
Dynamics of merging: post-merger mixing and relaxation of an Illustris galaxy
NASA Astrophysics Data System (ADS)
Young, Anthony M.; Williams, Liliya L. R.; Hjorth, Jens
2018-02-01
During the merger of two galaxies, the resulting system undergoes violent relaxation and seeks stable equilibrium. However, the details of this evolution are not fully understood. Using Illustris simulation, we probe two physically related processes, mixing and relaxation. Though the two are driven by the same dynamics—global time-varying potential for the energy, and torques caused by asymmetries for angular momentum—we measure them differently. We define mixing as the redistribution of energy and angular momentum between particles of the two merging galaxies. We assess the degree of mixing as the difference between the shapes of their energy distributions, N(E)s, and their angular momentum distributions, N(L2)s. We find that the difference is decreasing with time, indicating mixing. To measure relaxation, we compare N(E) of the newly merged system to N(E) of a theoretical prediction for relaxed collisionless systems, DARKexp, and witness the system becoming more relaxed, in the sense that N(E) approaches DARKexp N(E). Because the dynamics driving mixing and relaxation are the same, the timescale is similar for both. We measure two sequential timescales: a rapid, 1 Gyr phase after the initial merger, during which the difference in N(E) of the two merging halos decreases by ~ 80%, followed by a slow phase, when the difference decreases by ~ 50% over ~ 8.5 Gyrs. This is a direct measurement of the relaxation timescale. Our work also draws attention to the fact that when a galaxy has reached Jeans equilibrium it may not yet have reached a fully relaxed state given by DARKexp, in that it retains information about its past history. This manifests itself most strongly in stars being centrally concentrated. We argue that it is particularly difficult for stars, and other tightly bound particles, to mix because they have less time to be influenced by the fluctuating potential, even across multiple merger events.
Whole-body angular momentum during stair ascent and descent.
Silverman, Anne K; Neptune, Richard R; Sinitski, Emily H; Wilken, Jason M
2014-04-01
The generation of whole-body angular momentum is essential in many locomotor tasks and must be regulated in order to maintain dynamic balance. However, angular momentum has not been investigated during stair walking, which is an activity that presents a biomechanical challenge for balance-impaired populations. We investigated three-dimensional whole-body angular momentum during stair ascent and descent and compared it to level walking. Three-dimensional body-segment kinematic and ground reaction force (GRF) data were collected from 30 healthy subjects. Angular momentum was calculated using a 13-segment whole-body model. GRFs, external moment arms and net joint moments were used to interpret the angular momentum results. The range of frontal plane angular momentum was greater for stair ascent relative to level walking. In the transverse and sagittal planes, the range of angular momentum was smaller in stair ascent and descent relative to level walking. Significant differences were also found in the ground reaction forces, external moment arms and net joint moments. The sagittal plane angular momentum results suggest that individuals alter angular momentum to effectively counteract potential trips during stair ascent, and reduce the range of angular momentum to avoid falling forward during stair descent. Further, significant differences in joint moments suggest potential neuromuscular mechanisms that account for the differences in angular momentum between walking conditions. These results provide a baseline for comparison to impaired populations that have difficulty maintaining dynamic balance, particularly during stair ascent and descent. Copyright © 2014 Elsevier B.V. All rights reserved.
A 2-DOF model of an elastic rocket structure excited by a follower force
NASA Astrophysics Data System (ADS)
Brejão, Leandro F.; da Fonseca Brasil, Reyolando Manoel L. R.
2017-10-01
We present a two degree of freedom model of an elastic rocket structure excited by the follower force given by the motor thrust that is supposed to be always in the direction of the tangent to the deformed shape of the device at its lower tip. The model comprises two massless rigid pinned bars, initially in vertical position, connected by rotational springs. Lumped masses and dampers are considered at the connections. The generalized coordinates are the angular displacements of the bars with respect to the vertical. We derive the equations of motion via Lagrange’s equations and simulate its time evolution using Runge-Kutta 4th order time step-by-step numerical integration algorithm. Results indicate possible occurrence of stable and unstable vibrations, such as limit cycles.
Bearing tester data compilation, analysis and reporting and bearing math modeling, volume 1
NASA Technical Reports Server (NTRS)
Marshall, D. D.; Montgomery, E. E.; New, L. S.; Stone, M. A.; Tiller, B. K.
1984-01-01
Thermal and mechanical models of high speed angular contact ball bearings operating in LOX and LN2 were developed and verified with limited test data in an effort to further understand the parameters that determine or effect the SSME turbopump bearing operational characteristics and service life. The SHABERTH bearing analysis program which was adapted to evaluate shaft bearing systems in cryogenics is not capable of accommodating varying thermal properties and two phase flow. A bearing model with this capability was developed using the SINDA thermal analyzer. Iteration between the SHABERTH and the SINDA models enable the establishment of preliminary bounds for stable operation in LN2. These limits were established in terms of fluid flow, fluid inlet temperature, and axial load for a shaft speed of 30,000 RPM.
Effect of Shear Strain on the Structure and Properties of Chromium-Nickel Corrosion-Resistant Steels
NASA Astrophysics Data System (ADS)
Dobatkin, S. V.; Rybal'chenko, O. V.; Kliauga, A.; Tokar', A. A.
2015-07-01
The structure and properties of metastable austenitic steel 08Kh18N10T and stable austenitic steel ASTM F138 under shear deformation implemented by torsion under hydrostatic pressure (THP) at T = 300 and 450°C and by equichannel angular pressing (ECAP) at T = 400°C are studied. The THP yields an ultrafine-grain structure in a fully austenitic matrix with grain size 45 - 70 nm in steel ASTM F138 and 87 - 123 nm in steel 08Kh1810T. The ECAP at 400°C yields a grain-subgrain structure with structural elements 100 - 300 nm in size in steel 08Kh18N10T and 200 - 400 nm in size in steel ASTM F138.
Proposed gravity-gradient dynamics experiments in lunar orbit using the RAE-B spacecraft
NASA Technical Reports Server (NTRS)
Blanchard, D. L.; Walden, H.
1973-01-01
A series of seven gravity-gradient dynamics experiments is proposed utilizing the Radio Astronomy Explorer (RAE-B) spacecraft in lunar orbit. It is believed that none of the experiments will impair the spacecraft structure or adversely affect the continuation of the scientific mission of the satellite. The first experiment is designed to investigate the spacecraft dynamical behavior in the absence of libration damper action and inertia. It requires stable gravity-gradient capture of the spacecraft in lunar orbit with small amplitude attitude librations as a prerequisite. Four subsequent experiments involve partial retraction, ultimately followed by full redeployment, of one or two of the 230-meter booms forming the lunar-directed Vee-antenna. These boom length change operations will induce moderate amplitude angular librations of the spacecraft.
Study on the effect of ellipticity and misalignment on OAM modes in a ring fiber
NASA Astrophysics Data System (ADS)
Zhang, Li-li; Zhang, Xia; Bai, Cheng-lin
2018-05-01
Based on the optical fiber mode theory and employing the expertized software COMSOL, we study the effect of ellipticity and misalignment on the effective refractive indices, walk-off and intensity distribution of the even and odd eigenmodes that form the basis of the orbital angular momentum (OAM) modes in a ring fiber. Our results show that the effective refractive index difference and the walk-off increase with the ellipticity and misalignment, thus reducing the stability of the OAM modes. We find that the misalignment has a greater impact on the OAM modes than the ellipticity, and both the misalignment and ellipticity affect the lower-order OAM modes more significantly, suggesting that the higher-order OAM modes are more stable during propagation.
NASA Technical Reports Server (NTRS)
Kolb, Edward W.
1989-01-01
A Friedmann-Robertson-Walker cosmology with energy density decreasing in expansion as 1/R-squared, where R is the Robertson-Walker scale factor, is studied. In such a model the universe expands with constant velocity; hence the term coasting cosmology. Observational consequences of such a model include the age of the universe, the luminosity distance-redshift relation (the Hubble diagram), the angular diameter distance-redshift relation, and the galaxy number count as a function of redshift. These observations are used to limit the parameters of the model. Among the interesting consequences of the model are the possibility of an ever-expanding closed universe, a model universe with multiple images at different redshifts of the same object, a universe with Omega - 1 not equal to 0 stable in expansion, and a closed universe with radius smaller than 1/H(0).
Control of spin ambiguity during reorientation of an energy dissipating body
NASA Technical Reports Server (NTRS)
Kaplan, M. H.; Cenker, R. J.
1973-01-01
A quasi-rigid body initially spinning about its minor principal axis and experiencing energy dissipation will enter a tumbling mode and eventually reorient itself such that stable spin about its major principal axis is achieved. However, in this final state the body may be spinning in a positive or negative sense with respect to its major axis and aligned in a positive or negative sense with the inertially fixed angular momentum vector. This ambiguity can be controlled only through an active system. The associated dynamical formulations and simulations of uncontrolled reorientations are presented. Three control schemes are discussed and results offered for specific examples. These schemes include displacement of internal masses, spinning up of internal inertia, and reaction jets, all of which have demonstrated the ability to control spin ambiguity.
Three Axes MEMS Combined Sensor for Electronic Stability Control System
NASA Astrophysics Data System (ADS)
Jeong, Heewon; Goto, Yasushi; Aono, Takanori; Nakamura, Toshiaki; Hayashi, Masahide
A microelectromechanical systems (MEMS) combined sensor measuring two-axis accelerations and an angular rate (rotation) has been developed for an electronic stability control system of automobiles. With the recent trend to mount the combined sensors in the engine compartment, the operation temperature range increased drastically, with the request of immunity to environmental disturbances such as vibration. In this paper, we report the combined sensor which has a gyroscopic part and two acceleration parts in single die. A deformation-robust MEMS structure has been adopted to achieve stable operation under wide temperature range (-40 to 125°C) in the engine compartment. A package as small as 10 × 19 × 4 mm is achieved by adopting TSV (through silicon via) and WLP (wafer-level package) technologies with enough performance as automotive grade.
Dynamo Action in a Quasi-Keplerian Taylor-Couette Flow.
Guseva, Anna; Hollerbach, Rainer; Willis, Ashley P; Avila, Marc
2017-10-20
We numerically compute the flow of an electrically conducting fluid in a Taylor-Couette geometry where the rotation rates of the inner and outer cylinders satisfy Ω_{o}/Ω_{i}=(r_{o}/r_{i})^{-3/2}. In this quasi-Keplerian regime, a nonmagnetic system would be Rayleigh stable for all Reynolds numbers Re, and the resulting purely azimuthal flow incapable of kinematic dynamo action for all magnetic Reynolds numbers Rm. For Re = 10^{4} and Rm=10^{5}, we demonstrate the existence of a finite-amplitude dynamo, whereby a suitable initial condition yields mutually sustaining turbulence and magnetic fields, even though neither could exist without the other. This dynamo solution results in significantly increased outward angular momentum transport, with the bulk of the transport being by Maxwell rather than Reynolds stresses.
NASA Astrophysics Data System (ADS)
Leader, Elliot
2018-04-01
The expression for the total angular momentum carried by a laser optical vortex beam, splits, in the paraxial approximation, into two terms which seem to represent orbital and spin angular momentum respectively. There are, however, two very different competing versions of the formula for the spin angular momentum, one based on the use of the Poynting vector, as in classical electrodynamics, the other related to the canonical expression for the angular momentum which occurs in Quantum Electrodynamics. I analyze the possibility that a sufficiently sensitive optical measurement could decide which of these corresponds to the actual physical angular momentum carried by the beam.
ERIC Educational Resources Information Center
Hay, James G.; Wilson, Barry D.
The angular momentum of a human body derived from both the angular velocity and angular displacement, utilizing cinematographic records has not been adequately assessed, prior to this study. Miller (1970) obtained the angular momentum but only during the airborne phase of activity. The method used by Ramey (1973) involved a force platform, but…
Difference in perception of angular displacement according to applied waveforms.
Kushiro, Keisuke; Goto, Fumiyuki
2013-05-01
This study shows that the differences in the waveforms of angular rotation affect the perception and memory of angular displacement. During daily life, when we turn our head during various activities, our brain calculates how much angular displacement our head has undergone. However, how we obtain an accurate estimation of this angular displacement remains unclarified. This study aims to clarify this issue by investigating the perception and memory of passive rotation for three different waveforms of angular velocity rotation (sinusoidal (sine), triangle, and step). Thirteen healthy young subjects sitting on a servo-controlled chair were passively rotated at 60° or 120° about the earth-vertical axis by using one of these three angular velocity waveforms. They then attempted to reproduce the rotation angle by rotating the chair in the same direction in which they had been passively rotated using a handheld controller. The gain (reproduced angle/passively rotated angle) was calculated and used for the evaluation of the perception and memory of angular rotation. The gain for step rotation was larger than that for sine and triangle rotations, with statistical significance. This confirms that the difference in the waveforms of angular rotation affects the perception and memory of angular displacement.
Dangers of neglect: partially embedded ring upon a finger.
Kumar, Anand; Edwards, Huw; Lidder, Surjit; Mestha, Prabhakar
2013-05-09
Digital swelling is a common presentation in clinical practice. Patients presenting with swollen fingers to the emergency department will often have rings on their finger, which can be removed using a variety of simple non-operative techniques or by cutting the ring off and thus avoiding any long-term consequences. Very rarely, when there is a delay in presentation of these patients, serious consequences may proceed, including finger ischaemia, infection, tendon attrition or ultimately the need for surgical amputation. We present an unusual case of patient with psychiatric illness who presented late with a ring that had embedded upon the volar aspect of the index finger. The difficulties faced by the emergency care practitioners in such circumstances, the consequences of rings acting as a tourniquet and strategies for removal of rings on swollen fingers are highlighted.
Qian, Xin; Tucker, Andrew; Gidcumb, Emily; Shan, Jing; Yang, Guang; Calderon-Colon, Xiomara; Sultana, Shabana; Lu, Jianping; Zhou, Otto; Spronk, Derrek; Sprenger, Frank; Zhang, Yiheng; Kennedy, Don; Farbizio, Tom; Jing, Zhenxue
2012-04-01
The purpose of this study is to investigate the feasibility of increasing the system spatial resolution and scanning speed of Hologic Selenia Dimensions digital breast tomosynthesis (DBT) scanner by replacing the rotating mammography x-ray tube with a specially designed carbon nanotube (CNT) x-ray source array, which generates all the projection images needed for tomosynthesis reconstruction by electronically activating individual x-ray sources without any mechanical motion. The stationary digital breast tomosynthesis (s-DBT) design aims to (i) increase the system spatial resolution by eliminating image blurring due to x-ray tube motion and (ii) reduce the scanning time. Low spatial resolution and long scanning time are the two main technical limitations of current DBT technology. A CNT x-ray source array was designed and evaluated against a set of targeted system performance parameters. Simulations were performed to determine the maximum anode heat load at the desired focal spot size and to design the electron focusing optics. Field emission current from CNT cathode was measured for an extended period of time to determine the stable life time of CNT cathode for an expected clinical operation scenario. The source array was manufactured, tested, and integrated with a Selenia scanner. An electronic control unit was developed to interface the source array with the detection system and to scan and regulate x-ray beams. The performance of the s-DBT system was evaluated using physical phantoms. The spatially distributed CNT x-ray source array comprised 31 individually addressable x-ray sources covering a 30 angular span with 1 pitch and an isotropic focal spot size of 0.6 mm at full width at half-maximum. Stable operation at 28 kV(peak) anode voltage and 38 mA tube current was demonstrated with extended lifetime and good source-to-source consistency. For the standard imaging protocol of 15 views over 14, 100 mAs dose, and 2 × 2 detector binning, the projection resolution along the scanning direction increased from 4.0 cycles/mm [at 10% modulation-transfer-function (MTF)] in DBT to 5.1 cycles/mm in s-DBT at magnification factor of 1.08. The improvement is more pronounced for faster scanning speeds, wider angular coverage, and smaller detector pixel sizes. The scanning speed depends on the detector, the number of views, and the imaging dose. With 240 ms detector readout time, the s-DBT system scanning time is 6.3 s for a 15-view, 100 mAs scan regardless of the angular coverage. The scanning speed can be reduced to less than 4 s when detectors become faster. Initial phantom studies showed good quality reconstructed images. A prototype s-DBT scanner has been developed and evaluated by retrofitting the Selenia rotating gantry DBT scanner with a spatially distributed CNT x-ray source array. Preliminary results show that it improves system spatial resolution substantially by eliminating image blur due to x-ray focal spot motion. The scanner speed of s-DBT system is independent of angular coverage and can be increased with faster detector without image degration. The accelerated lifetime measurement demonstrated the long term stability of CNT x-ray source array with typical clinical operation lifetime over 3 years.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teklu, Adelheid F.; Remus, Rhea-Silvia; Dolag, Klaus
The evolution and distribution of the angular momentum of dark matter (DM) halos have been discussed in several studies over the past decades. In particular, the idea arose that angular momentum conservation should allow us to infer the total angular momentum of the entire DM halo from measuring the angular momentum of the baryonic component, which is populating the center of the halo, especially for disk galaxies. To test this idea and to understand the connection between the angular momentum of the DM halo and its galaxy, we use a state-of-the-art, hydrodynamical cosmological simulation taken from the set of Magneticummore » Pathfinder simulations. Thanks to the inclusion of the relevant physical processes, the improved underlying numerical methods, and high spatial resolution, we successfully produce populations of spheroidal and disk galaxies self-consistently. Thus, we are able to study the dependence of galactic properties on their morphology. We find that (1) the specific angular momentum of stars in disk and spheroidal galaxies as a function of their stellar mass compares well with observational results; (2) the specific angular momentum of the stars in disk galaxies is slightly smaller compared to the specific angular momentum of the cold gas, in good agreement with observations; (3) simulations including the baryonic component show a dichotomy in the specific stellar angular momentum distribution when splitting the galaxies according to their morphological type (this dichotomy can also be seen in the spin parameter, where disk galaxies populate halos with slightly larger spin compared to spheroidal galaxies); (4) disk galaxies preferentially populate halos in which the angular momentum vector of the DM component in the central part shows a better alignment to the angular momentum vector of the entire halo; and (5) the specific angular momentum of the cold gas in disk galaxies is approximately 40% smaller than the specific angular momentum of the total DM halo and shows a significant scatter.« less
Optical angular momentum and atoms
2017-01-01
Any coherent interaction of light and atoms needs to conserve energy, linear momentum and angular momentum. What happens to an atom’s angular momentum if it encounters light that carries orbital angular momentum (OAM)? This is a particularly intriguing question as the angular momentum of atoms is quantized, incorporating the intrinsic spin angular momentum of the individual electrons as well as the OAM associated with their spatial distribution. In addition, a mechanical angular momentum can arise from the rotation of the entire atom, which for very cold atoms is also quantized. Atoms therefore allow us to probe and access the quantum properties of light’s OAM, aiding our fundamental understanding of light–matter interactions, and moreover, allowing us to construct OAM-based applications, including quantum memories, frequency converters for shaped light and OAM-based sensors. This article is part of the themed issue ‘Optical orbital angular momentum’. PMID:28069766
Vibration signal correction of unbalanced rotor due to angular speed fluctuation
NASA Astrophysics Data System (ADS)
Cao, Hongrui; He, Dong; Xi, Songtao; Chen, Xuefeng
2018-07-01
The rotating speed of a rotor is hardly constant in practice due to angular speed fluctuation, which affects the balancing accuracy of the rotor. In this paper, the effect of angular speed fluctuation on vibration responses of the unbalanced rotor is analyzed quantitatively. Then, a vibration signal correction method based on zoom synchrosqueezing transform (ZST) and tacholess order tracking is proposed. The instantaneous angular speed (IAS) of the rotor is extracted by the ZST firstly and then used to calculate the instantaneous phase. The vibration signal is further resampled in angular domain to reduce the effect of angular speed fluctuation. The signal obtained in angular domain is transformed into order domain using discrete Fourier transform (DFT) to estimate the amplitude and phase of the vibration signal. Simulated and experimental results show that the proposed method can successfully correct the amplitude and phase of the vibration signal due to angular speed fluctuation.
Angular-Rate Estimation Using Quaternion Measurements
NASA Technical Reports Server (NTRS)
Azor, Ruth; Bar-Itzhack, Y.; Deutschmann, Julie K.; Harman, Richard R.
1998-01-01
In most spacecraft (SC) there is a need to know the SC angular rate. Precise angular rate is required for attitude determination, and a coarse rate is needed for attitude control damping. Classically, angular rate information is obtained from gyro measurements. These days, there is a tendency to build smaller, lighter and cheaper SC, therefore the inclination now is to do away with gyros and use other means and methods to determine the angular rate. The latter is also needed even in gyro equipped satellites when performing high rate maneuvers whose angular-rate is out of range of the on board gyros or in case of gyro failure. There are several ways to obtain the angular rate in a gyro-less SC. When the attitude is known, one can differentiate the attitude in whatever parameters it is given and use the kinematics equation that connects the derivative of the attitude with the satellite angular-rate and compute the latter. Since SC usually utilize vector measurements for attitude determination, the differentiation of the attitude introduces a considerable noise component in the computed angular-rate vector.
Cross, David; Eide, May L; Kotinas, Anastasios
2010-06-01
To report the prevalence and clinical features of angular cheilitis occurring in patients undergoing orthodontic treatment. Cross-sectional, observational study. Three centres were involved; Glasgow Dental Hospital and two specialist orthodontic practices, one in Scotland and one in Greece. Six hundred and sixty consecutive patients undergoing orthodontic treatment were examined over a 9 month period. The presence and absence of angular cheilitis was recorded. A six-point clinical scale was used to describe the clinical features of angular cheilitis when present. Chi-squared tests were used to investigate the association between the presence of angular cheilitis and oral hygiene level/appliance type. Eleven per cent of orthodontic patients in this Western European population, showed signs of angular cheilitis. No correlation was found between the presence of angular cheilitis and gender. Good oral hygiene was associated with a reduced prevalence (P<0.01). Angular cheilitis is a multifactorial condition that can occur in a small percentage of patients during orthodontic treatment. Good oral hygiene may be associated with a reduced risk. A new clinical grade of angular cheilitis is suggested that may help future research. Further studies are required to investigate the microbiological features associated with angular cheilitis occurring in orthodontic patients, as well as associations with medical conditions, such as asthma.
Direct printing of miniscule aluminum alloy droplets and 3D structures by StarJet technology
NASA Astrophysics Data System (ADS)
Gerdes, B.; Zengerle, R.; Koltay, P.; Riegger, L.
2018-07-01
Drop-on demand printing of molten metal droplets could be used for prototyping 3D objects as a promising alternative to laser melting technologies. However, to date, only few printheads have been investigated for this purpose, and they used only a limited range of materials. The pneumatically actuated StarJet technology enables the direct and non-contact printing of molten metal microdroplets from metal melts at high temperatures. StarJet printheads utilize nozzle chips featuring a star-shaped orifice geometry that leads to formation of droplets inside the nozzle with high precision. In this paper, we present a novel StarJet printhead for printing aluminum (Al) alloys featuring a hybrid design with a ceramic reservoir for the molten metal and an outer shell fabricated from stainless steel. The micro machined nozzle chip is made from silicon carbide (SiC). This printhead can be operated at up to 950 °C, and is capable of printing high melting point metals like Al alloys in standard laboratory conditions. In this work, an aluminum–silicon alloy that features 12% silicon (AlSi12) is printed. The printhead, nozzle, and peripheral actuation system are optimized for stable generation of AlSi12 droplets with high monodispersity, low angular deviation, and miniaturized droplet diameters. As a result, a stable drop-on-demand printing of droplets exhibiting diameters of d droplet = 702 µm ± 1% is demonstrated at 5 Hz with a low angular deviation of 0.3°, when a nozzle chip with 500 µm orifice diameter is used. Furthermore, AlSi12 droplets featuring d droplet = 176 µm ± 7% are printed when using a nozzle chip with an orifice diameter of 130 µm. Moreover, we present directly printed objects from molten Al alloy droplets, such as high aspect ratio, free-standing walls (aspect ratio 12:1), and directly printed, flexible springs, to demonstrate the principle of 3D printing with molten metal droplets.
SU-E-T-472: Improvement of IMRT QA Passing Rate by Correcting Angular Dependence of MatriXX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Q; Watkins, W; Kim, T
2015-06-15
Purpose: Multi-channel planar detector arrays utilized for IMRT-QA, such as the MatriXX, exhibit an incident-beam angular dependent response which can Result in false-positive gamma-based QA results, especially for helical tomotherapy plans which encompass the full range of beam angles. Although MatriXX can use with gantry angle sensor to provide automatically angular correction, this sensor does not work with tomotherapy. The purpose of the study is to reduce IMRT-QA false-positives by correcting for the MatriXX angular dependence. Methods: MatriXX angular dependence was characterized by comparing multiple fixed-angle irradiation measurements with corresponding TPS computed doses. For 81 Tomo-helical IMRT-QA measurements, two differentmore » correction schemes were tested: (1) A Monte-Carlo dose engine was used to compute MatriXX signal based on the angular-response curve. The computed signal was then compared with measurement. (2) Uncorrected computed signal was compared with measurements uniformly scaled to account for the average angular dependence. Three scaling factor (+2%, +2.5%, +3%) were tested. Results: The MatriXX response is 8% less than predicted for a PA beam even when the couch is fully accounted for. Without angular correction, only 67% of the cases pass the >90% points γ<1 (3%, 3mm). After full angular correction, 96% of the cases pass the criteria. Of three scaling factors, +2% gave the highest passing rate (89%), which is still less than the full angular correction method. With a stricter γ(2%,3mm) criteria, the full angular correction method was still able to achieve the 90% passing rate while the scaling method only gives 53% passing rate. Conclusion: Correction for the MatriXX angular dependence reduced the false-positives rate of our IMRT-QA process. It is necessary to correct for the angular dependence to achieve the IMRT passing criteria specified in TG129.« less
Twisted molecular excitons as mediators for changing the angular momentum of light
NASA Astrophysics Data System (ADS)
Zang, Xiaoning; Lusk, Mark T.
2017-07-01
Molecules with CN or CN h symmetry can absorb quanta of optical angular momentum to generate twisted excitons with well-defined quasiangular momenta of their own. Angular momentum is conserved in such interactions at the level of a paraxial approximation for the light beam. A sequence of absorption events can thus be used to create a range of excitonic angular momenta. Subsequent decay can produce radiation with a single angular momentum equal to that accumulated. Such molecules can thus be viewed as mediators for changing the angular momentum of light. This sidesteps the need to exploit nonlinear light-matter interactions based on higher-order susceptibilities. A tight-binding paradigm is used to verify angular momentum conservation and demonstrate how it can be exploited to change the angular momentum of light. The approach is then extended to a time-dependent density functional theory setting where the key results are shown to hold in a many-body, multilevel setting.
Factors influencing perceived angular velocity.
Kaiser, M K; Calderone, J B
1991-11-01
The assumption that humans are able to perceive and process angular kinematics is critical to many structure-from-motion and optical flow models. The current studies investigate this sensitivity, and examine several factors likely to influence angular velocity perception. In particular, three factors are considered: (1) the extent to which perceived angular velocity is determined by edge transitions of surface elements, (2) the extent to which angular velocity estimates are influenced by instantaneous linear velocities of surface elements, and (3) whether element-velocity effects are related to three-dimensional (3-D) tangential velocities or to two-dimensional (2-D) image velocities. Edge-transition rate biased angular velocity estimates only when edges were highly salient. Element velocities influenced perceived angular velocity; this bias was related to 2-D image velocity rather than 3-D tangential velocity. Despite these biases, however, judgments were most strongly determined by the true angular velocity. Sensitivity to this higher order motion parameter was surprisingly good, for rotations both in depth (y-axis) and parallel to the line of sight (z-axis).
Quadratic Finite Element Method for 1D Deterministic Transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tolar, Jr., D R; Ferguson, J M
2004-01-06
In the discrete ordinates, or SN, numerical solution of the transport equation, both the spatial ({und r}) and angular ({und {Omega}}) dependences on the angular flux {psi}{und r},{und {Omega}}are modeled discretely. While significant effort has been devoted toward improving the spatial discretization of the angular flux, we focus on improving the angular discretization of {psi}{und r},{und {Omega}}. Specifically, we employ a Petrov-Galerkin quadratic finite element approximation for the differencing of the angular variable ({mu}) in developing the one-dimensional (1D) spherical geometry S{sub N} equations. We develop an algorithm that shows faster convergence with angular resolution than conventional S{sub N} algorithms.
NASA Astrophysics Data System (ADS)
Nagano, Koji; Enomoto, Yutaro; Nakano, Masayuki; Furusawa, Akira; Kawamura, Seiji
2016-12-01
To observe radiation pressure noise in optical cavities consisting of suspended mirrors, high laser power is necessary. However, because the radiation pressure on the mirrors could cause an angular anti-spring effect, the high laser power could induce angular instability to the cavity. An angular control system using radiation pressure as an actuator, which was previously invented to reduce the anti-spring effect for the low power case, was applied to the higher power case where the angular instability would occur. As a result the angular instability was mitigated. It was also demonstrated that the cavity was unstable without this control system.
Break-technique handheld dynamometry: relation between angular velocity and strength measurements.
Burns, Stephen P; Spanier, David E
2005-07-01
To determine whether the muscle strength, as measured with break-technique handheld dynamometry (HHD), is dependent on the angular velocity achieved during testing and to compare reliability at different angular velocities. Repeated-measures study. Participants underwent HHD by using make-technique (isometric) and break-technique (eccentric) dynamometry at 3 prespecified angular velocities. Elbow movement was recorded with an electrogoniometer. Inpatient spinal cord injury unit. Convenience sample of 20 persons with tetraplegia with weakness of elbow flexors or extensors. Not applicable. Elbow angular velocity and muscle strength recorded during HHD. With the break technique, angular velocities averaging 15 degrees , 33 degrees , and 55 degrees /s produced 16%, 30%, and 51% greater strength measurements, respectively, than velocities recorded by using the make technique (all P < .006 for comparisons between successive techniques). The intraclass correlation coefficient for intrarater reliability was .89 or greater for all testing techniques. Greater strength is recorded with faster angular velocities during HHD. Differences in angular velocity may explain the wide range previously reported for break- versus make-technique strength measurements. Variation in angular velocity is a potential source of variability in serial HHD strength measurements, and for this reason the make technique may be preferable.
Rapidly-Indexing Incremental-Angle Encoder
NASA Technical Reports Server (NTRS)
Christon, Philip R.; Meyer, Wallace W.
1989-01-01
Optoelectronic system measures relative angular position of shaft or other device to be turned, also measures absolute angular position after device turned through small angle. Relative angular position measured with fine resolution by optoelectronically counting finely- and uniformly-spaced light and dark areas on encoder disk as disk turns past position-sensing device. Also includes track containing coarsely- and nonuniformly-spaced light and dark areas, angular widths varying in proportion to absolute angular position. This second track provides gating and indexing signal.
Maximum angular accuracy of pulsed laser radar in photocounting limit.
Elbaum, M; Diament, P; King, M; Edelson, W
1977-07-01
To estimate the angular position of targets with pulsed laser radars, their images may be sensed with a fourquadrant noncoherent detector and the image photocounting distribution processed to obtain the angular estimates. The limits imposed on the accuracy of angular estimation by signal and background radiation shot noise, dark current noise, and target cross-section fluctuations are calculated. Maximum likelihood estimates of angular positions are derived for optically rough and specular targets and their performances compared with theoretical lower bounds.
NASA Technical Reports Server (NTRS)
Johnson, R. A.; Wehrly, T.
1976-01-01
Population models for dependence between two angular measurements and for dependence between an angular and a linear observation are proposed. The method of canonical correlations first leads to new population and sample measures of dependence in this latter situation. An example relating wind direction to the level of a pollutant is given. Next, applied to pairs of angular measurements, the method yields previously proposed sample measures in some special cases and a new sample measure in general.
NASA Astrophysics Data System (ADS)
Banks, J. W.; Henshaw, W. D.; Schwendeman, D. W.; Tang, Qi
2017-08-01
A stable partitioned algorithm is developed for fluid-structure interaction (FSI) problems involving viscous incompressible flow and rigid bodies. This added-mass partitioned (AMP) algorithm remains stable, without sub-iterations, for light and even zero mass rigid bodies when added-mass and viscous added-damping effects are large. The scheme is based on a generalized Robin interface condition for the fluid pressure that includes terms involving the linear acceleration and angular acceleration of the rigid body. Added-mass effects are handled in the Robin condition by inclusion of a boundary integral term that depends on the pressure. Added-damping effects due to the viscous shear forces on the body are treated by inclusion of added-damping tensors that are derived through a linearization of the integrals defining the force and torque. Added-damping effects may be important at low Reynolds number, or, for example, in the case of a rotating cylinder or rotating sphere when the rotational moments of inertia are small. In this first part of a two-part series, the properties of the AMP scheme are motivated and evaluated through the development and analysis of some model problems. The analysis shows when and why the traditional partitioned scheme becomes unstable due to either added-mass or added-damping effects. The analysis also identifies the proper form of the added-damping which depends on the discrete time-step and the grid-spacing normal to the rigid body. The results of the analysis are confirmed with numerical simulations that also demonstrate a second-order accurate implementation of the AMP scheme.
Warren, Timothy L; Weir, Peter T; Dickinson, Michael H
2018-05-11
Animals must use external cues to maintain a straight course over long distances. In this study, we investigated how the fruit fly Drosophila melanogaster selects and maintains a flight heading relative to the axis of linearly polarized light, a visual cue produced by the atmospheric scattering of sunlight. To track flies' headings over extended periods, we used a flight simulator that coupled the angular velocity of dorsally presented polarized light to the stroke amplitude difference of the animals' wings. In the simulator, most flies actively maintained a stable heading relative to the axis of polarized light for the duration of 15 min flights. We found that individuals selected arbitrary, unpredictable headings relative to the polarization axis, which demonstrates that D . melanogaster can perform proportional navigation using a polarized light pattern. When flies flew in two consecutive bouts separated by a 5 min gap, the two flight headings were correlated, suggesting individuals retain a memory of their chosen heading. We found that adding a polarized light pattern to a light intensity gradient enhanced flies' orientation ability, suggesting D . melanogaster use a combination of cues to navigate. For both polarized light and intensity cues, flies' capacity to maintain a stable heading gradually increased over several minutes from the onset of flight. Our findings are consistent with a model in which each individual initially orients haphazardly but then settles on a heading which is maintained via a self-reinforcing process. This may be a general dispersal strategy for animals with no target destination. © 2018. Published by The Company of Biologists Ltd.
NASA Astrophysics Data System (ADS)
Maureira-Fredes, Cristián; Goicovic, Felipe G.; Amaro-Seoane, Pau; Sesana, Alberto
2018-05-01
Massive black hole binaries (MBHBs) represent an unavoidable outcome of hierarchical galaxy formation, but their dynamical evolution at sub-parsec scales is poorly understood. In gas rich environments, an extended, steady circumbinary gaseous disc could play an important role in the MBHB evolution, facilitating its coalescence. However, how gas on galactic scales is transported to the nuclear region to form and maintain such a stable structure is unclear. In the aftermath of a galaxy merger, cold turbulent gas condenses into clumps and filaments that can be randomly scattered towards the nucleus. This provides a natural way of feeding the binary with intermittent pockets of gas. The aim of this work is to investigate the gaseous structures arising from this interaction. We employ a suite of smoothed-particle-hydrodynamic simulations to study the influence of the infall rate and angular momentum distribution of the incoming clouds on the formation and evolution of structures around the MBHB. We find that the continuous supply of discrete clouds is a double-edge sword, resulting in intermittent formation and disruption of circumbinary structures. Anisotropic cloud distributions featuring an excess of co-rotating events generate more prominent co-rotating circumbinary discs. Similar structures are seen when mostly counter-rotating clouds are fed to the binary, even though they are more compact and less stable. In general, our simulations do not show the formation of extended smooth and stable circumbinary discs, typically assumed in analytical and numerical investigations of the the long term evolution of MBHBs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banks, J. W.; Henshaw, W. D.; Schwendeman, D. W.
A stable partitioned algorithm is developed for fluid-structure interaction (FSI) problems involving viscous incompressible flow and rigid bodies. This added-mass partitioned (AMP) algorithm remains stable, without sub-iterations, for light and even zero mass rigid bodies when added-mass and viscous added-damping effects are large. The scheme is based on a generalized Robin interface condition for the fluid pressure that includes terms involving the linear acceleration and angular acceleration of the rigid body. Added mass effects are handled in the Robin condition by inclusion of a boundary integral term that depends on the pressure. Added-damping effects due to the viscous shear forcesmore » on the body are treated by inclusion of added-damping tensors that are derived through a linearization of the integrals defining the force and torque. Added-damping effects may be important at low Reynolds number, or, for example, in the case of a rotating cylinder or rotating sphere when the rotational moments of inertia are small. In this second part of a two-part series, the general formulation of the AMP scheme is presented including the form of the AMP interface conditions and added-damping tensors for general geometries. A fully second-order accurate implementation of the AMP scheme is developed in two dimensions based on a fractional-step method for the incompressible Navier-Stokes equations using finite difference methods and overlapping grids to handle the moving geometry. Here, the numerical scheme is verified on a number of difficult benchmark problems.« less
Banks, J. W.; Henshaw, W. D.; Schwendeman, D. W.; ...
2017-01-20
A stable partitioned algorithm is developed for fluid-structure interaction (FSI) problems involving viscous incompressible flow and rigid bodies. This added-mass partitioned (AMP) algorithm remains stable, without sub-iterations, for light and even zero mass rigid bodies when added-mass and viscous added-damping effects are large. The scheme is based on a generalized Robin interface condition for the fluid pressure that includes terms involving the linear acceleration and angular acceleration of the rigid body. Added mass effects are handled in the Robin condition by inclusion of a boundary integral term that depends on the pressure. Added-damping effects due to the viscous shear forcesmore » on the body are treated by inclusion of added-damping tensors that are derived through a linearization of the integrals defining the force and torque. Added-damping effects may be important at low Reynolds number, or, for example, in the case of a rotating cylinder or rotating sphere when the rotational moments of inertia are small. In this second part of a two-part series, the general formulation of the AMP scheme is presented including the form of the AMP interface conditions and added-damping tensors for general geometries. A fully second-order accurate implementation of the AMP scheme is developed in two dimensions based on a fractional-step method for the incompressible Navier-Stokes equations using finite difference methods and overlapping grids to handle the moving geometry. Here, the numerical scheme is verified on a number of difficult benchmark problems.« less
Motion fading is driven by perceived, not actual angular velocity.
Kohler, P J; Caplovitz, G P; Hsieh, P-J; Sun, J; Tse, P U
2010-06-01
After prolonged viewing of a slowly drifting or rotating pattern under strict fixation, the pattern appears to slow down and then momentarily stop. Here we examine the relationship between such 'motion fading' and perceived angular velocity. Using several different dot patterns that generate emergent virtual contours, we demonstrate that whenever there is a difference in the perceived angular velocity of two patterns of dots that are in fact rotating at the same angular velocity, there is also a difference in the time to undergo motion fading for those two patterns. Conversely, whenever two patterns show no difference in perceived angular velocity, even if in fact rotating at different angular velocities, we find no difference in the time to undergo motion fading. Thus, motion fading is driven by the perceived rather than actual angular velocity of a rotating stimulus. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Angular Positioning Sensor for Space Mechanisms
NASA Astrophysics Data System (ADS)
Steiner, Nicolas; Chapuis, Dominique
2013-09-01
Angular position sensors are used on various rotating mechanisms such as solar array drive mechanisms, antenna pointing mechanisms, scientific instruments, motors or actuators.Now a days, potentiometers and encoders are mainly used for angular measurement purposes. Both of them have their own pros and cons.As alternative, Ruag Space Switzerland Nyon (RSSN) is developing and qualifying two innovative technologies of angular position sensors which offer easy implementation, medium to very high lifetime and high flexibility with regards to the output signal shape/type.The Brushed angular position sensor uses space qualified processes which are already flying on RSSN's sliprings for many years. A large variety of output signal shape can be implemented to fulfill customer requirements (digital, analog, customized, etc.).The contactless angular position sensor consists in a new radiation hard Application Specific Integrated Circuit (ASIC) based on the Hall effect and providing the angular position without complex processing algorithm.
On MHD rotational transport, instabilities and dynamo action in stellar radiation zones
NASA Astrophysics Data System (ADS)
Mathis, Stéphane; Brun, A.-S.; Zahn, J.-P.
2009-04-01
Magnetic field and their related dynamical effects are thought to be important in stellar radiation zones. For instance, it has been suggested that a dynamo, sustained by a m = 1 MHD instability of toroidal magnetic fields (discovered by Tayler in 1973), could lead to a strong transport of angular momentum and of chemicals in such stable regions. We wish here to recall the different magnetic transport processes present in radiative zone and show how the dynamo can operate by recalling the conditions required to close the dynamo loop (BPol → BTor → BPol). Helped by high-resolution 3D MHD simulations using the ASH code in the solar case, we confirm the existence of the m = 1 instability, study its non-linear saturation, but we do not detect, up to a magnetic Reylnods number of 105, any dynamo action.
The Hodge-Elliptic Genus, Spinning BPS States, and Black Holes
NASA Astrophysics Data System (ADS)
Kachru, Shamit; Tripathy, Arnav
2017-10-01
We perform a refined count of BPS states in the compactification of M-theory on {K3 × T^2}, keeping track of the information provided by both the {SU(2)_L} and {SU(2)_R} angular momenta in the SO(4) little group. Mathematically, this four variable counting function may be expressed via the motivic Donaldson-Thomas counts of {K3 × T^2}, simultaneously refining Katz, Klemm, and Pandharipande's motivic stable pairs counts on K3 and Oberdieck-Pandharipande's Gromov-Witten counts on {K3 × T^2}. This provides the first full answer for motivic curve counts of a compact Calabi-Yau threefold. Along the way, we develop a Hodge-elliptic genus for Calabi-Yau manifolds—a new counting function for BPS states that interpolates between the Hodge polynomial and the elliptic genus of a Calabi-Yau.
On the Origin of the Saturnian Satellite System: Did Iapetus Form In-Situ?
NASA Technical Reports Server (NTRS)
Mosqueira, I.; Estrada, P. R.
2005-01-01
Current models of planet and satellite formation are marred by our lack of understanding regarding the turbulent state of accretion disks. According to the Rayleigh criterion, Keplerian disks are hydrodynamically stable. Indeed, it has been argued that a carefully designed Taylor Couette experiment shows stability in the case of positive radial gradients in specific angular momentum even for high Reynolds numbers [1], in agreement with numerical simulations which consistently show turbulence decay [2]. Other possible sources of turbulence may fail due to low ionization, may decay as the optical depth decreases due to dust coagulation, may involve unrealistic boundary conditions, or result in limited transport. The difficulty stems not only from the degree of turbulence, but also from the kind of turbulence, and whether it may be characterized by an alpha parameter.
NASA Technical Reports Server (NTRS)
2003-01-01
Topics covered include: Stable, Thermally Conductive Fillers for Bolted Joints; Connecting to Thermocouples with Fewer Lead Wires; Zipper Connectors for Flexible Electronic Circuits; Safety Interlock for Angularly Misdirected Power Tool; Modular, Parallel Pulse-Shaping Filter Architectures; High-Fidelity Piezoelectric Audio Device; Photovoltaic Power Station with Ultracapacitors for Storage; Time Analyzer for Time Synchronization and Monitor of the Deep Space Network; Program for Computing Albedo; Integrated Software for Analyzing Designs of Launch Vehicles; Abstract-Reasoning Software for Coordinating Multiple Agents; Software Searches for Better Spacecraft-Navigation Models; Software for Partly Automated Recognition of Targets; Antistatic Polycarbonate/Copper Oxide Composite; Better VPS Fabrication of Crucibles and Furnace Cartridges; Burn-Resistant, Strong Metal-Matrix Composites; Self-Deployable Spring-Strip Booms; Explosion Welding for Hermetic Containerization; Improved Process for Fabricating Carbon Nanotube Probes; Automated Serial Sectioning for 3D Reconstruction; and Parallel Subconvolution Filtering Architectures.
Tsokaros, Antonios; Ruiz, Milton; Paschalidis, Vasileios; Shapiro, Stuart L; Baiotti, Luca; Uryū, Kōji
2017-06-15
Targets for ground-based gravitational wave interferometers include continuous, quasiperiodic sources of gravitational radiation, such as isolated, spinning neutron stars. In this work, we perform evolution simulations of uniformly rotating, triaxially deformed stars, the compressible analogs in general relativity of incompressible, Newtonian Jacobi ellipsoids. We investigate their stability and gravitational wave emission. We employ five models, both normal and supramassive, and track their evolution with different grid setups and resolutions, as well as with two different evolution codes. We find that all models are dynamically stable and produce a strain that is approximately one-tenth the average value of a merging binary system. We track their secular evolution and find that all our stars evolve toward axisymmetry, maintaining their uniform rotation, rotational kinetic energy, and angular momentum profiles while losing their triaxiality.
Hartree-Fock calculation of the differential photoionization cross sections of small Li clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galitskiy, S. A.; Artemyev, A. N.; Jänkälä, K.
2015-01-21
Cross sections and angular distribution parameters for the single-photon ionization of all electron orbitals of Li{sub 2−8} are systematically computed in a broad interval of the photoelectron kinetic energies for the energetically most stable geometry of each cluster. Calculations of the partial photoelectron continuum waves in clusters are carried out by the single center method within the Hartree-Fock approximation. We study photoionization cross sections per one electron and analyze in some details general trends in the photoionization of inner and outer shells with respect to the size and geometry of a cluster. The present differential cross sections computed for Li{submore » 2} are in a good agreement with the available theoretical data, whereas those computed for Li{sub 3−8} clusters can be considered as theoretical predictions.« less
Kusaka, A; Essinger-Hileman, T; Appel, J W; Gallardo, P; Irwin, K D; Jarosik, N; Nolta, M R; Page, L A; Parker, L P; Raghunathan, S; Sievers, J L; Simon, S M; Staggs, S T; Visnjic, K
2014-02-01
We evaluate the modulation of cosmic microwave background polarization using a rapidly rotating, half-wave plate (HWP) on the Atacama B-Mode Search. After demodulating the time-ordered-data (TOD), we find a significant reduction of atmospheric fluctuations. The demodulated TOD is stable on time scales of 500-1000 s, corresponding to frequencies of 1-2 mHz. This facilitates recovery of cosmological information at large angular scales, which are typically available only from balloon-borne or satellite experiments. This technique also achieves a sensitive measurement of celestial polarization without differencing the TOD of paired detectors sensitive to two orthogonal linear polarizations. This is the first demonstration of the ability to remove atmospheric contamination at these levels from a ground-based platform using a rapidly rotating HWP.
Variation in Angular Velocity and Angular Acceleration of a Particle in Rectilinear Motion
ERIC Educational Resources Information Center
Mashood, K. K.; Singh, V. A.
2012-01-01
We discuss the angular velocity ([image omitted]) and angular acceleration ([image omitted]) associated with a particle in rectilinear motion with constant acceleration. The discussion was motivated by an observation that students and even teachers have difficulty in ascribing rotational motion concepts to a particle when the trajectory is a…
47 CFR 73.128 - AM stereophonic broadcasting.
Code of Federal Regulations, 2014 CFR
2014-10-01
... magnitude of the nth term of the difference signal ωsn=the nth order angular velocity of the sum signal ωdn=the nth order angular velocity of the difference signal ωc=the angular velocity of the carrier... presence of envelope modulation. (5) Maximum angular modulation, which occurs on negative peaks of the left...
System and method for correcting attitude estimation
NASA Technical Reports Server (NTRS)
Josselson, Robert H. (Inventor)
2010-01-01
A system includes an angular rate sensor disposed in a vehicle for providing angular rates of the vehicle, and an instrument disposed in the vehicle for providing line-of-sight control with respect to a line-of-sight reference. The instrument includes an integrator which is configured to integrate the angular rates of the vehicle to form non-compensated attitudes. Also included is a compensator coupled across the integrator, in a feed-forward loop, for receiving the angular rates of the vehicle and outputting compensated angular rates of the vehicle. A summer combines the non-compensated attitudes and the compensated angular rates of the to vehicle to form estimated vehicle attitudes for controlling the instrument with respect to the line-of-sight reference. The compensator is configured to provide error compensation to the instrument free-of any feedback loop that uses an error signal. The compensator may include a transfer function providing a fixed gain to the received angular rates of the vehicle. The compensator may, alternatively, include a is transfer function providing a variable gain as a function of frequency to operate on the received angular rates of the vehicle.
The effects of obesity on balance recovery using an ankle strategy.
Matrangola, Sara L; Madigan, Michael L
2011-06-01
Obesity is associated with an increased risk of falls. The purpose of this study was to investigate the effects of obesity on balance recovery using an ankle strategy. In addition, computer simulations to understand how increased inertia and weight associated with obesity independently influence balance recovery. Ten normal weight (BMI: 22.7±0.6 kg/m(2)) and ten obese (BMI: 32.2±2.2 kg/m(2)) adult male subjects participated in the study. Subjects recovered balance using an ankle strategy after three types of postural perturbations: an initial angular displacement, an initial angular velocity from the natural stance, and an initial angular velocity from a prescribed position. Balance recovery was quantified by the largest initial angular displacement or angular velocity from which balance could be recovered. Obesity impaired balance recovery from perturbations involving an initial angular velocity, but not from an initial angular displacement. Similarly, computer simulations determined that increased inertia is beneficial to balance recovery when there is little to no initial angular velocity. These findings indicate that the effects of obesity on balance recovery are dependent on the type of perturbation, and that increased inertia associated with obesity can be beneficial for perturbations that involve little to no initial angular velocity. Copyright © 2011 Elsevier B.V. All rights reserved.
Kim, Jemin; Wilson, Margaret A; Singhal, Kunal; Gamblin, Sarah; Suh, Cha-Young; Kwon, Young-Hoo
2014-09-01
The purpose of this study was to investigate the vertical angular momentum generation strategies used by skilled ballet dancers in pirouette en dehors. Select kinematic parameters of the pirouette preparation (stance depth, vertical center-of-mass motion range, initial shoulder line position, shoulder line angular displacement, and maximum trunk twist angle) along with vertical angular momentum parameters during the turn (maximum momentums of the whole body and body parts, and duration and rate of generation) were obtained from nine skilled collegiate ballet dancers through a three-dimensional motion analysis and compared among three turn conditions (single, double, and triple). A one-way ('turn') multivariate analysis of variance of the kinematic parameters and angular momentum parameters of the whole body and a two-way analysis of variance ('turn' × 'body') of the maximum angular momentums of the body parts were conducted. Significant 'turn' effects were observed in the kinematic/angular momentum parameters (both the preparation and the turn) (p < 0.05). As the number of turns increased, skilled dancers generated larger vertical angular momentums by predominantly increasing the rate of momentum generation using rotation of the upper trunk and arms. The trail (closing) arm showed the largest contribution to whole-body angular momentum followed by the lead arm.
Massive star formation by accretion. II. Rotation: how to circumvent the angular momentum barrier?
NASA Astrophysics Data System (ADS)
Haemmerlé, L.; Eggenberger, P.; Meynet, G.; Maeder, A.; Charbonnel, C.; Klessen, R. S.
2017-06-01
Context. Rotation plays a key role in the star-formation process, from pre-stellar cores to pre-main-sequence (PMS) objects. Understanding the formation of massive stars requires taking into account the accretion of angular momentum during their PMS phase. Aims: We study the PMS evolution of objects destined to become massive stars by accretion, focusing on the links between the physical conditions of the environment and the rotational properties of young stars. In particular, we look at the physical conditions that allow the production of massive stars by accretion. Methods: We present PMS models computed with a new version of the Geneva Stellar Evolution code self-consistently including accretion and rotation according to various accretion scenarios for mass and angular momentum. We describe the internal distribution of angular momentum in PMS stars accreting at high rates and we show how the various physical conditions impact their internal structures, evolutionary tracks, and rotation velocities during the PMS and the early main sequence. Results: We find that the smooth angular momentum accretion considered in previous studies leads to an angular momentum barrier and does not allow the formation of massive stars by accretion. A braking mechanism is needed in order to circumvent this angular momentum barrier. This mechanism has to be efficient enough to remove more than two thirds of the angular momentum from the inner accretion disc. Due to the weak efficiency of angular momentum transport by shear instability and meridional circulation during the accretion phase, the internal rotation profiles of accreting stars reflect essentially the angular momentum accretion history. As a consequence, careful choice of the angular momentum accretion history allows circumvention of any limitation in mass and velocity, and production of stars of any mass and velocity compatible with structure equations.
Dowling, Ariel V; Favre, Julien; Andriacchi, Thomas P
2012-09-01
The dynamic movements associated with anterior cruciate ligament (ACL) injury during jump landing suggest that limb segment angular velocity can provide important information for understanding the conditions that lead to an injury. Angular velocity measures could provide a quick and simple method of assessing injury risk without the constraints of a laboratory. The objective of this study was to assess the inter-subject variations and the sensitivity of the thigh and shank segment angular velocity in order to determine if these measures could be used to characterize jump landing mechanisms. Additionally, this study tested the correlation between angular velocity and the knee abduction moment. Thirty-six healthy participants (18 male) performed drop jumps with bilateral and unilateral landing. Thigh and shank angular velocities were measured by a wearable inertial-based system, and external knee moments were measured using a marker-based system. Discrete parameters were extracted from the data and compared between systems. For both jumping tasks, the angular velocity curves were well defined movement patterns with high inter-subject similarity in the sagittal plane and moderate to good similarity in the coronal and transverse planes. The angular velocity parameters were also able to detect differences between the two jumping tasks that were consistent across subjects. Furthermore, the coronal angular velocities were significantly correlated with the knee abduction moment (R of 0.28-0.51), which is a strong indicator of ACL injury risk. This study suggested that the thigh and shank angular velocities, which describe the angular dynamics of the movement, should be considered in future studies about ACL injury mechanisms.
Dynamical Stability and Long-term Evolution of Rotating Stellar Systems
NASA Astrophysics Data System (ADS)
Varri, Anna L.; Vesperini, E.; McMillan, S. L. W.; Bertin, G.
2011-05-01
We present the first results of an extensive survey of N-body simulations designed to investigate the dynamical stability and the long-term evolution of two new families of self-consistent stellar dynamical models, characterized by the presence of internal rotation. The first family extends the well-known King models to the case of axisymmetric systems flattened by solid-body rotation while the second family is characterized by differential rotation. The equilibrium configurations thus obtained can be described in terms of two dimensionless parameters, which measure the concentration and the amount of rotation, respectively. Slowly rotating configurations are found to be dynamically stable and we followed their long-term evolution, in order to evaluate the interplay between collisional relaxation and angular momentum transport. We also studied the stability of rapidly rotating models, which are characterized by the presence of a toroidal core embedded in an otherwise quasi-spherical configuration. In both cases, a description in terms of the radial and global properties, such as the ratio between the ordered kinetic energy and the gravitational energy of the system, is provided. Because the role of angular momentum in the process of cluster formation is only partly understood, we also undertook a preliminary investigation of the violent relaxation of simple systems initially characterized by approximate solid-body rotation. The properties of the final equilibrium configurations thus obtained are compared with those of the above-described family of differentially rotating models.
Collapse of differentially rotating neutron stars and cosmic censorship
NASA Astrophysics Data System (ADS)
Giacomazzo, Bruno; Rezzolla, Luciano; Stergioulas, Nikolaos
2011-07-01
We present new results on the dynamics and gravitational-wave emission from the collapse of differentially rotating neutron stars. We have considered a number of polytropic stellar models having different values of the dimensionless angular momentum J/M2, where J and M are the asymptotic angular momentum and mass of the star, respectively. For neutron stars with J/M2<1, i.e. “sub-Kerr” models, we were able to find models that are dynamically unstable and that collapse promptly to a rotating black hole. Both the dynamics of the collapse and the consequent emission of gravitational waves resemble those seen for uniformly rotating stars, although with an overall decrease in the efficiency of gravitational-wave emission. For stellar models with J/M2>1, i.e. “supra-Kerr” models, on the other hand, we were not able to find models that are dynamically unstable and all of the computed supra-Kerr models were found to be far from the stability threshold. For these models a gravitational collapse is possible only after a very severe and artificial reduction of the pressure, which then leads to a torus developing nonaxisymmetric instabilities and eventually contracting to a stable axisymmetric stellar configuration. While this does not exclude the possibility that a naked singularity can be produced by the collapse of a differentially rotating star, it also suggests that cosmic censorship is not violated and that generic conditions for a supra-Kerr progenitor do not lead to a naked singularity.
Rodriguez-Vegas, Manuel
2014-05-01
Because of its outstanding texture, bulkiness, pliability and sensory recovery, the medialis pedis is an excellent alternative in the reconstruction of complex volar skin defects of the digits in selected patients. However, the surgical flap anatomy related with the medial plantar artery is still somewhat confusing to the point that the different journal articles and anatomy textbooks and atlases use different terminology and are, to some extent, misleading and/or incomplete. The authors report a clinical series of 15 medialis pedis free flaps in the reconstruction of skin defects of the fingers and evaluate their indications in free flap reconstruction of the skin defects of the digits. A review is made of the most relevant journal articles, anatomy textbooks, and atlases that describe the anatomy of the medial plantar artery with a special emphasis on the cutaneous branches that nourish the medialis pedis flap.
Histological assessment of the triangular fibrocartilage complex.
Semisch, M; Hagert, E; Garcia-Elias, M; Lluch, A; Rein, S
2016-06-01
The morphological structure of the seven components of triangular fibrocartilage complexes of 11 cadaver wrists of elderly people was assessed microscopically, after staining with Hematoxylin-Eosin and Elastica van Gieson. The articular disc consisted of tight interlaced fibrocartilage without blood vessels except in its ulnar part. Volar and dorsal radioulnar ligaments showed densely parallel collagen bundles. The subsheath of the extensor carpi ulnaris muscle, the ulnotriquetral and ulnolunate ligament showed mainly mixed tight and loose parallel tissue. The ulnolunate ligament contained tighter parallel collagen bundles and clearly less elastic fibres than the ulnotriquetral ligament. The ulnocarpal meniscoid had an irregular morphological composition and loose connective tissue predominated. The structure of the articular disc indicates a buffering function. The tight structure of radioulnar and ulnolunate ligaments reflects a central stabilizing role, whereas the ulnotriquetral ligament and ulnocarpal meniscoid have less stabilizing functions. © The Author(s) 2015.
Daruwalla, ZJ; Davies, KL; Shafighian, A; Gillham, NR
2012-01-01
INTRODUCTION The preliminary results of a pyrocarbon interpositional radiocarpal implant in a small cohort of patients were reviewed. As it is currently only a limited release product, we describe to potential users early complications and negative outcomes. METHODS Patients were assessed using pain levels, ranges of motion, grip strength, type of and time to return to work as well as pre-operative and post-operative DASH (Disabilities of the Arm, Shoulder and Hand) scores. Radiographs were taken and patient satisfaction was recorded. RESULTS All six patients were contacted. One was not satisfied. Three had reduced motion. None experienced squeaking. There were no immediate or late post-operative complications. There was one early volar displacement of an implant. CONCLUSIONS Although our early results are somewhat encouraging, further and longer studies are warranted before supporting the use of this particular pyrocarbon implant as a primary procedure. PMID:23031769
Lichen planus pemphigoides treated with ustekinumab.
Knisley, Raymond R; Petropolis, Angelo A; Mackey, Vernon T
2017-12-01
A 71-year-old woman presented with pink to violaceous, flat-topped, polygonal papules on the volar wrists, extensor elbows, and bilateral lower legs of 3 years' duration. She also had erythematous, violaceous, infiltrated plaques with microvesiculation on the bilateral thighs of several months' duration. She reported pruritus, burning, and discomfort. Her medical history included type 2 diabetes mellitus, hypertension, and asthma with no history of skin rashes. Workup revealed lichen planus pemphigoides (LPP), a rare papulosquamous and vesiculobullous dermatosis that shares features of both lichen planus (LP) and bullous pemphigoid (BP). Despite multiple traditional therapies, her disease continued to progress, further developing mucosal disease. After a review of the literature on LP, BP, and LPP, it was noted that tumor necrosis factor α (TNF-α), along with other cytokines, plays a pivotal role in all 3 diseases. After several conventional systemic therapies failed, we treated our patient with ustekinumab with favorable results.
Picometer stable scan mechanism for gravitational wave detection in space: LISA PAAM
NASA Astrophysics Data System (ADS)
Pijnenburg, J. A. C. M.; Rijnveld, N.
2017-11-01
Detection and observation of gravitational waves requires extreme stability in the frequency range 0.03 mHz to 1 Hz. The Laser Interferometer Space Antenna (LISA) mission will attain this by creating a giant interferometer in space, based on free floating proof masses in three spacecrafts. Due to orbit evolution and time delay in the interferometer arms, the direction of transmitted light changes. To solve this problem, a picometer stable Point-Ahead Angle Mechanism (PAAM) was designed, realized and successfully tested. The PAAM concept is based on a rotatable mirror. The critical requirements are the contribution to the optical path length (less than 1.4 pm / rt Hz) and the angular jitter (less than 8 nrad / rt Hz). Extreme dimensional stability is achieved by manufacturing a monolithical Haberland hinge mechanism out of Ti6Al4V, through high precision wire erosion. Extreme thermal stability is realized by placing the thermal center on the surface of the mirror. Because of piezo actuator noise and leakage, the PAAM has to be controlled in closed-loop. To meet the requirements in the low frequencies, an active target capacitance-to-digital converter is used. Interferometric measurements with a triangular resonant cavity in vacuum proved that the PAAM meets the requirements.
Magnetic field induced flow pattern reversal in a ferrofluidic Taylor-Couette system
Altmeyer, Sebastian; Do, Younghae; Lai, Ying-Cheng
2015-01-01
We investigate the dynamics of ferrofluidic wavy vortex flows in the counter-rotating Taylor-Couette system, with a focus on wavy flows with a mixture of the dominant azimuthal modes. Without external magnetic field flows are stable and pro-grade with respect to the rotation of the inner cylinder. More complex behaviors can arise when an axial or a transverse magnetic field is applied. Depending on the direction and strength of the field, multi-stable wavy states and bifurcations can occur. We uncover the phenomenon of flow pattern reversal as the strength of the magnetic field is increased through a critical value. In between the regimes of pro-grade and retrograde flow rotations, standing waves with zero angular velocities can emerge. A striking finding is that, under a transverse magnetic field, a second reversal in the flow pattern direction can occur, where the flow pattern evolves into pro-grade rotation again from a retrograde state. Flow reversal is relevant to intriguing phenomena in nature such as geomagnetic reversal. Our results suggest that, in ferrofluids, flow pattern reversal can be induced by varying a magnetic field in a controlled manner, which can be realized in laboratory experiments with potential applications in the development of modern fluid devices. PMID:26687638
Magnetic field induced flow pattern reversal in a ferrofluidic Taylor-Couette system.
Altmeyer, Sebastian; Do, Younghae; Lai, Ying-Cheng
2015-12-21
We investigate the dynamics of ferrofluidic wavy vortex flows in the counter-rotating Taylor-Couette system, with a focus on wavy flows with a mixture of the dominant azimuthal modes. Without external magnetic field flows are stable and pro-grade with respect to the rotation of the inner cylinder. More complex behaviors can arise when an axial or a transverse magnetic field is applied. Depending on the direction and strength of the field, multi-stable wavy states and bifurcations can occur. We uncover the phenomenon of flow pattern reversal as the strength of the magnetic field is increased through a critical value. In between the regimes of pro-grade and retrograde flow rotations, standing waves with zero angular velocities can emerge. A striking finding is that, under a transverse magnetic field, a second reversal in the flow pattern direction can occur, where the flow pattern evolves into pro-grade rotation again from a retrograde state. Flow reversal is relevant to intriguing phenomena in nature such as geomagnetic reversal. Our results suggest that, in ferrofluids, flow pattern reversal can be induced by varying a magnetic field in a controlled manner, which can be realized in laboratory experiments with potential applications in the development of modern fluid devices.
Singularity in the Laboratory Frame Angular Distribution Derived in Two-Body Scattering Theory
ERIC Educational Resources Information Center
Dick, Frank; Norbury, John W.
2009-01-01
The laboratory (lab) frame angular distribution derived in two-body scattering theory exhibits a singularity at the maximum lab scattering angle. The singularity appears in the kinematic factor that transforms the centre of momentum (cm) angular distribution to the lab angular distribution. We show that it is caused in the transformation by the…
Stellar Rotation on the Main Sequence
NASA Astrophysics Data System (ADS)
Soderblom, D.; Murdin, P.
2000-11-01
The conservation of ANGULAR MOMENTUM is the one effective counterbalance to the inexorable pull of gravity in the universe, and so everything rotates. Stars acquire their angular momentum when they form, and, indeed, the manner in which nearly all this initial angular momentum is dissipated remains poorly understood, but without substantial angular momentum loss an interstellar cloud could never ...
Skab, Ihor; Vlokh, Rostyslav
2012-04-01
Acousto-optic diffraction of light in optically active cubic crystals is analyzed from the viewpoint of conservation of optical angular momentum. It is shown that the availability of angular momentum in the diffracted optical beam can be necessarily inferred from the requirements of angular momentum conservation law. As follows from our analysis, a circularly polarized diffracted wave should bear an orbital angular momentum. The efficiency of the spin-to-orbit momentum conversion is governed by the efficiency of acousto-optic diffraction.
Angular behavior of synchrotron radiation harmonics.
Bagrov, V G; Bulenok, V G; Gitman, D M; Jara, Jose Acosta; Tlyachev, V B; Jarovoi, A T
2004-04-01
The detailed analysis of angular dependence of the synchrotron radiation (SR) is presented. Angular distributions of linear and circular polarization integrated over all harmonics, well known for relativistic electron energies, are extended to include radiation from electrons that are not fully relativistic. In particular, we analyze the angular dependence of the integral SR intensity and peculiarities of the angular dependence of the first harmonics SR. Studying spectral SR intensities, we have discovered their unexpected angular behavior, completely different from that of the integral SR intensity; namely, for any given synchrotron frequency, maxima of the spectral SR intensities recede from the orbit plane with increasing particle energy. Thus, in contrast with the integral SR intensity, the spectral ones have the tendency to deconcentrate themselves on the orbit plane.
There are many ways to spin a photon: Half-quantization of a total optical angular momentum
Ballantine, Kyle E.; Donegan, John F.; Eastham, Paul R.
2016-01-01
The angular momentum of light plays an important role in many areas, from optical trapping to quantum information. In the usual three-dimensional setting, the angular momentum quantum numbers of the photon are integers, in units of the Planck constant ħ. We show that, in reduced dimensions, photons can have a half-integer total angular momentum. We identify a new form of total angular momentum, carried by beams of light, comprising an unequal mixture of spin and orbital contributions. We demonstrate the half-integer quantization of this total angular momentum using noise measurements. We conclude that for light, as is known for electrons, reduced dimensionality allows new forms of quantization. PMID:28861467
Physical angular momentum separation for QED
NASA Astrophysics Data System (ADS)
Sun, Weimin
2017-04-01
We study the non-uniqueness problem of the gauge-invariant angular momentum separation for the case of QED, which stems from the recent controversy concerning the proper definitions of the orbital angular momentum and spin operator of the individual parts of a gauge field system. For the free quantum electrodynamics without matter, we show that the basic requirement of Euclidean symmetry selects a unique physical angular momentum separation scheme from the multitude of the possible angular momentum separation schemes constructed using the various gauge-invariant extensions (GIEs). Based on these results, we propose a set of natural angular momentum separation schemes for the case of interacting QED by invoking the formalism of asymptotic fields. Some perspectives on such a problem for the case of QCD are briefly discussed.
Toroidal high-spin isomers in the nucleus 304120
NASA Astrophysics Data System (ADS)
Staszczak, A.; Wong, Cheuk-Yin; Kosior, A.
2017-05-01
Background: Strongly deformed oblate superheavy nuclei form an intriguing region where the toroidal nuclear structures may bifurcate from the oblate spheroidal shape. The bifurcation may be facilitated when the nucleus is endowed with a large angular moment about the symmetry axis with I =Iz . The toroidal high-K isomeric states at their local energy minima can be theoretically predicted using the cranked self-consistent Skyrme-Hartree-Fock method. Purpose: We use the cranked Skyrme-Hartree-Fock method to predict the properties of the toroidal high-spin isomers in the superheavy nucleus 120304184. Method: Our method consists of three steps: First, we use the deformation-constrained Skyrme-Hartree-Fock-Bogoliubov approach to search for the nuclear density distributions with toroidal shapes. Next, using these toroidal distributions as starting configurations, we apply an additional cranking constraint of a large angular momentum I =Iz about the symmetry z axis and search for the energy minima of the system as a function of the deformation. In the last step, if a local energy minimum with I =Iz is found, we perform at this point the cranked symmetry- and deformation-unconstrained Skyrme-Hartree-Fock calculations to locate a stable toroidal high-spin isomeric state in free convergence. Results: We have theoretically located two toroidal high-spin isomeric states of 120304184 with an angular momentum I =Iz=81 ℏ (proton 2p-2h, neutron 4p-4h excitation) and I =Iz=208 ℏ (proton 5p-5h, neutron 8p-8h) at the quadrupole moment deformations Q20=-297.7 b and Q20=-300.8 b with energies 79.2 and 101.6 MeV above the spherical ground state, respectively. The nuclear density distributions of the toroidal high-spin isomers 120304184(Iz=81 ℏ and 208 ℏ ) have the maximum density close to the nuclear matter density, 0.16 fm-3, and a torus major to minor radius aspect ratio R /d =3.25 . Conclusions: We demonstrate that aligned angular momenta of Iz=81 ℏ and 208 ℏ arising from multiparticle-multihole excitations in the toroidal system of 120304184 can lead to high-spin isomeric states, even though the toroidal shape of 120304184 without spin is unstable. Toroidal energy minima without spin may be possible for superheavy nuclei with higher atomic numbers, Z ≳122 , as reported previously [7 A. Staszczak and C. Y. Wong, Acta Phys. Pol. B 40, 753 (2008)].
Toroidal high-spin isomers in the nucleus 120 304
Staszczak, A.; Wong, Cheuk-Yin; Kosior, A.
2017-05-22
Strongly deformed oblate superheavy nuclei form an intriguing region where the toroidal nuclear structures may bifurcate from the oblate spheroidal shape. The bifurcation may be facilitated when the nucleus is endowed with a large angular moment about the symmetry axis withmore » $$I=I_{z}$$. The toroidal high-$K$ isomeric states at their local energy minima can be theoretically predicted using the cranked self-consistent Skyrme-Hartree-Fock method. We use the cranked Skyrme-Hartree-Fock method to predict the properties of the toroidal high-spin isomers in the superheavy nucleus $$^{304}{120}_{184}$$. This method consists of three steps: first, we use the deformation-constrained Skyrme-Hartree-Fock-Bogoliubov approach to search for the nuclear density distributions with toroidal shapes. Next, using these toroidal distributions as starting configurations we apply an additional cranking constraint of a large angular momentum $$I=I_{z}$$ about the symmetry $z$-axis and search for the energy minima of the system as a function of the deformation. In the last step, if a local energy minimum with $$I=I_{z}$$ is found, we perform at this point the cranked symmetry- and deformation-unconstrained Skyrme-Hartree-Fock calculations to locate a stable toroidal high-spin isomeric state in free convergence. Furthemore, we have theoretically located two toroidal high-spin isomeric states of $$^{304}{120}_{184}$$ with an angular momentum $I$=$$I_z$$=81$$\\hbar$$ (proton 2p-2h, neutron 4p-4h excitation) and $I$=$$I_z$$=208$$\\hbar$$ (proton 5p-5h, neutron 8p-8h) at the quadrupole moment deformations $$Q_{20}=-297.7$$~b and $$Q_{20}=-300.8$$~b with energies 79.2 MeV and 101.6 MeV above the spherical ground state, respectively. The nuclear density distributions of the toroidal high-spin isomers $$^{304}{120}_{184}(I_z$$=81$$\\hbar$$ and 208$$\\hbar$$) have the maximum density close to the nuclear matter density, 0.16 fm$$^{-3}$$, and a torus major to minor radius aspect ratio $R/d=3.25$. Here, we demonstrate that aligned angular momenta of $$I_z$$=81$$\\hbar$$ and 208$$\\hbar$$ arising from multi-particle-multi-hole excitations in the toroidal system of $$^{304}{120}_{184}$$ can lead to high-spin isomeric states, even though the toroidal shape of $$^{304}120_{184}$$ without spin is unstable. Toroidal energy minima without spin may be possible for superheavy nuclei with higher atomic numbers, $$Z\\gtrsim$$122, as reported previously [A. Staszczak and C. Y. Wong,Acta Phys. Pol. B 40 , 753 (2008)].« less
Implementing a Low-Cost Long-Range Unmanned Underwater Vehicle: The SeaDiver Glider
2007-01-09
25 2. Position estimation.............................................................................26 3. Angular ...calculation velocity..............................................................27 4. Angular calculation position...25 Figure 14. Angular Positions.............................................................................................27
Angular momentum of dwarf galaxies
NASA Astrophysics Data System (ADS)
Kurapati, Sushma; Chengalur, Jayaram N.; Pustilnik, Simon; Kamphuis, Peter
2018-05-01
Mass and specific angular momentum are two fundamental physical parameters of galaxies. We present measurements of the baryonic mass and specific angular momentum of 11 void dwarf galaxies derived from neutral hydrogen (HI) synthesis data. Rotation curves were measured using 3D and 2D tilted ring fitting routines, and the derived curves generally overlap within the error bars, except in the central regions where, as expected, the 3D routines give steeper curves. The specific angular momentum of void dwarfs is found to be high compared to an extrapolation of the trends seen for higher mass bulge-less spirals, but comparable to that of other dwarf irregular galaxies that lie outside of voids. As such, our data show no evidence for a dependence of the specific angular momentum on the large scale environment. Combining our data with the data from the literature, we find a baryonic threshold of ˜109.1 M⊙ for this increase in specific angular momentum. Interestingly, this threshold is very similar to the mass threshold below which the galaxy discs start to become systematically thicker. This provides qualitative support to the suggestion that the thickening of the discs, as well as the increase in specific angular momentum, are both results of a common physical mechanism, such as feedback from star formation. Quantitatively, however, the amount of star formation observed in our dwarfs appears insufficient to produce the observed increase in specific angular momentum. It is hence likely that other processes, such as cold accretion of high angular momentum gas, also play a role in increasing the specific angular momentum.
Gaffney, Brecca M; Murray, Amanda M; Christiansen, Cory L; Davidson, Bradley S
2016-03-01
Patients with unilateral dysvascular transtibial amputation (TTA) have a higher risk of developing low back pain than their healthy counterparts, which may be related to movement compensations used in the absence of ankle function. Assessing components of segmental angular momentum provides a unique framework to identify and interpret these movement compensations alongside traditional observational analyses. Angular momentum separation indicates two components of total angular momentum: (1) transfer momentum and (2) rotational momentum. The objective of this investigation was to assess movement compensations in patients with dysvascular TTA, patients with diabetes mellitus (DM), and healthy controls (HC) by examining patterns of generating and arresting trunk and pelvis segmental angular momenta during gait. We hypothesized that all groups would demonstrate similar patterns of generating/arresting total momentum and transfer momentum in the trunk and pelvis in reference to the groups (patients with DM and HC). We also hypothesized that patients with amputation would demonstrate different (larger) patterns of generating/arresting rotational angular momentum in the trunk. Patients with amputation demonstrated differences in trunk and pelvis transfer angular momentum in the sagittal and transverse planes in comparison to the reference groups, which indicates postural compensations adopted during walking. However, patients with amputation demonstrated larger patterns of generating and arresting of trunk and pelvis rotational angular momentum in comparison to the reference groups. These segmental rotational angular momentum patterns correspond with high eccentric muscle demands needed to arrest the angular momentum, and may lead to consequential long-term effects such as low back pain. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bouchard, Frédéric; De Leon, Israel; Schulz, Sebastian A.
Orbital angular momentum associated with the helical phase-front of optical beams provides an unbounded “space” for both classical and quantum communications. Among the different approaches to generate and manipulate orbital angular momentum states of light, coupling between spin and orbital angular momentum allows a faster manipulation of orbital angular momentum states because it depends on manipulating the polarisation state of light, which is simpler and generally faster than manipulating conventional orbital angular momentum generators. In this work, we design and fabricate an ultra-thin spin-to-orbital angular momentum converter, based on plasmonic nano-antennas and operating in the visible wavelength range that ismore » capable of converting spin to an arbitrary value of orbital angular momentum ℓ. The nano-antennas are arranged in an array with a well-defined geometry in the transverse plane of the beam, possessing a specific integer or half-integer topological charge q. When a circularly polarised light beam traverses this metasurface, the output beam polarisation switches handedness and the orbital angular momentum changes in value by ℓ=±2qℏ per photon. We experimentally demonstrate ℓ values ranging from ±1 to ±25 with conversion efficiencies of 8.6% ± 0.4%. Our ultra-thin devices are integratable and thus suitable for applications in quantum communications, quantum computations, and nano-scale sensing.« less
NASA Astrophysics Data System (ADS)
Kolaczek, B.; Pasnicka, M.; Nastula, J.
2012-12-01
Up to now studies of geophysical excitation of polar motion containing AAM (Atmospheric Angular Momentum), OAM (Oceanic Angular Momentum) and HAM (Hydrological Angular Momentum) excitation functions of polar motion have not achieved the total agreement between geophysical and determined geodetic excitation (GAM, Geodetic AngularMomentum) functions of polar motion...
A goal-based angular adaptivity method for thermal radiation modelling in non grey media
NASA Astrophysics Data System (ADS)
Soucasse, Laurent; Dargaville, Steven; Buchan, Andrew G.; Pain, Christopher C.
2017-10-01
This paper investigates for the first time a goal-based angular adaptivity method for thermal radiation transport, suitable for non grey media when the radiation field is coupled with an unsteady flow field through an energy balance. Anisotropic angular adaptivity is achieved by using a Haar wavelet finite element expansion that forms a hierarchical angular basis with compact support and does not require any angular interpolation in space. The novelty of this work lies in (1) the definition of a target functional to compute the goal-based error measure equal to the radiative source term of the energy balance, which is the quantity of interest in the context of coupled flow-radiation calculations; (2) the use of different optimal angular resolutions for each absorption coefficient class, built from a global model of the radiative properties of the medium. The accuracy and efficiency of the goal-based angular adaptivity method is assessed in a coupled flow-radiation problem relevant for air pollution modelling in street canyons. Compared to a uniform Haar wavelet expansion, the adapted resolution uses 5 times fewer angular basis functions and is 6.5 times quicker, given the same accuracy in the radiative source term.
Analysis of angular momentum properties of photons emitted in fundamental atomic processes
NASA Astrophysics Data System (ADS)
Zaytsev, V. A.; Surzhykov, A. S.; Shabaev, V. M.; Stöhlker, Th.
2018-04-01
Many atomic processes result in the emission of photons. Analysis of the properties of emitted photons, such as energy and angular distribution as well as polarization, is regarded as a powerful tool for gaining more insight into the physics of corresponding processes. Another characteristic of light is the projection of its angular momentum upon propagation direction. This property has attracted a special attention over the past decades due to studies of twisted (or vortex) light beams. Measurements being sensitive to this projection may provide valuable information about the role of angular momentum in the fundamental atomic processes. Here we describe a simple theoretical method for determination of the angular momentum properties of the photons emitted in various atomic processes. This method is based on the evaluation of expectation value of the total angular momentum projection operator. To illustrate the method, we apply it to the textbook examples of plane-wave, spherical-wave, and Bessel light. Moreover, we investigate the projection of angular momentum for the photons emitted in the process of the radiative recombination with ionic targets. It is found that the recombination photons do carry a nonzero projection of the orbital angular momentum.
Angular Spacing Control for Segmented Data Pages in Angle-Multiplexed Holographic Memory
NASA Astrophysics Data System (ADS)
Kinoshita, Nobuhiro; Muroi, Tetsuhiko; Ishii, Norihiko; Kamijo, Koji; Kikuchi, Hiroshi; Shimidzu, Naoki; Ando, Toshio; Masaki, Kazuyoshi; Shimizu, Takehiro
2011-09-01
To improve the recording density of angle-multiplexed holographic memory, it is effective to increase the numerical aperture of the lens and to shorten the wavelength of the laser source as well as to increase the multiplexing number. The angular selectivity of a hologram, which determines the multiplexing number, is dependent on the incident angle of not only the reference beam but also the signal beam to the holographic recording medium. The actual signal beam, which is a convergent or divergent beam, is regarded as the sum of plane waves that have different propagation directions, angular selectivities, and optimal angular spacings. In this paper, focusing on the differences in the optimal angular spacing, we proposed a method to control the angular spacing for each segmented data page. We investigated the angular selectivity of a hologram and crosstalk for segmented data pages using numerical simulation. The experimental results showed a practical bit-error rate on the order of 10-3.
Ultra-Stable Beacon Source for Laboratory Testing of Optical Tracking
NASA Technical Reports Server (NTRS)
Aso, Yoichi; Marka, Szabolcs; Kovalik, Joseph
2008-01-01
The ultra-stable beacon source (USBS) provides a laser-beam output with a very low angular jitter and can be used as an absolute angular reference to simulate a beacon in the laboratory. The laser is mounted on the top of a very short (approximately equal to 1 m) inverted pendulum (IP) with its optical axis parallel to the carbon fiber pendulum leg. The 85-cm, carbon fiber rods making up the leg are very lightweight and rigid, and are supported by a flex-joint at the bottom (see figure). The gimbal-mounted laser is a weight-adjustable load of about 1.5 kg with its center of rotation co-located with the center of percussion of the inverted pendulum. This reduces the coupling of transverse motion at the base of the pendulum to angular motion of the laser at the top. The inverted pendulum is mounted on a gimbal with its center of rotation coinciding with the pivot position of the inverted pendulum flexure joint. This reduces coupling of ground tilt at the inverted pendulum base to motion of the laser mounted at the top. The mass of the top gimbal is adjusted to give the pendulum a very low resonant frequency (approximately equal to 10 mHz) that filters transverse seismic disturbances from the ground where the base is attached. The motion of the IP is monitored by an optical-lever sensor. The laser light is reflected by the mirror on the IP, and then is detected by a quadrant photo-detector (QPD). The position of the beam spot on the QPD corresponds to the tilt of the IP. Damping of this motion is provided by two coil and magnet pairs. The bottom gimbal mount consists of two plates. The IP is mounted on the second plate. The first plate is supported by two posts through needles and can be rotated about the axis connecting the tips of the needles. The second plate hangs from the first plate and can be rotated about the axis perpendicular to the first plate. As a result, the second plate acts as a two-axis rotation stage. Its center of rotation is located at the effective bending point of the flex-joint. The second plate is pressed against two screw actuators by the weight of the IP. The screw actuators are orthogonal to each other and are used to adjust the inclination of the second plate. The actuators are driven by stepper motors. The whole IP system is housed in a box made of Lexan plastic plates to provide isolation from air currents and temperature variations. The signals from the sensors are processed and recorded with a PC using the xPC Target realtime environment of Math- Works. The control algorithms are written using the Simulink package from The MathWorks.
Amplification of Angular Rotations Using Weak Measurements
NASA Astrophysics Data System (ADS)
Magaña-Loaiza, Omar S.; Mirhosseini, Mohammad; Rodenburg, Brandon; Boyd, Robert W.
2014-05-01
We present a weak measurement protocol that permits a sensitive estimation of angular rotations based on the concept of weak-value amplification. The shift in the state of a pointer, in both angular position and the conjugate orbital angular momentum bases, is used to estimate angular rotations. This is done by an amplification of both the real and imaginary parts of the weak-value of a polarization operator that has been coupled to the pointer, which is a spatial mode, via a spin-orbit coupling. Our experiment demonstrates the first realization of weak-value amplification in the azimuthal degree of freedom. We have achieved effective amplification factors as large as 100, providing a sensitivity that is on par with more complicated methods that employ quantum states of light or extremely large values of orbital angular momentum.
Angular-domain scattering interferometry.
Shipp, Dustin W; Qian, Ruobing; Berger, Andrew J
2013-11-15
We present an angular-scattering optical method that is capable of measuring the mean size of scatterers in static ensembles within a field of view less than 20 μm in diameter. Using interferometry, the method overcomes the inability of intensity-based models to tolerate the large speckle grains associated with such small illumination areas. By first estimating each scatterer's location, the method can model between-scatterer interference as well as traditional single-particle Mie scattering. Direct angular-domain measurements provide finer angular resolution than digitally transformed image-plane recordings. This increases sensitivity to size-dependent scattering features, enabling more robust size estimates. The sensitivity of these angular-scattering measurements to various sizes of polystyrene beads is demonstrated. Interferometry also allows recovery of the full complex scattered field, including a size-dependent phase profile in the angular-scattering pattern.
NASA Technical Reports Server (NTRS)
Stepinski, T. F.; Levy, E. H.
1990-01-01
Magnetic torques can produce angular momentum redistribution in protostellar nebulas. Dynamo magnetic fields can be generated in differentially rotating and turbulent nebulas and can be the source of magnetic torques that transfer angular momentum from a protostar to a disk, as well as redistribute angular momentum within a disk. A magnetic field strength of 100-1000 G is needed to transport the major part of a protostar's angular momentum into a surrounding disk in a time characteristic of star formation, thus allowing formation of a solar-system size protoplanetary nebula in the usual 'minimum-mass' model of the protosolar nebula. This paper examines the possibility that a dynamo magnetic field could have induced the needed angular momentum transport from the proto-Sun to the protoplanetary nebula.
Wang, Wei; Takeda, Mitsuo
2007-09-15
In analogy with the separation of the total optical angular momentum into a spin and an orbital part in electrodynamics, we introduce a new concept of spin and orbital angular coherence momenta into the general coherence theory of vector electromagnetic fields. The properties of the newly introduced spin and orbital angular coherence momenta are investigated through the decomposition of the total coherence angular momentum into the sum of these two components, and their separate conservations have been derived for what is believed to be the first time.
Correction of severe postburn claw hand.
Davami, Babak; Pourkhameneh, Golnar
2011-12-01
Burn scar contractures are perhaps the most frequent and most frustrating sequelae of thermal injuries to the hand. Unfortunately, stiffness occurs in the burned hand quickly. A week of neglect in the burned hand can lead to digital malpositioning and distortion that may be difficult to correct. The dorsal contracture is the most common of all the complications of the burned hand. It is the result of damage to the thin dorsal skin and scant subcutaneous tissue, which offers little protection to the deeper structures. Consequently, these injuries are deep resulting in a spectrum of deformities that has remained the bane of reconstructive surgery. Flap coverage will be required in the event of exposure of joints and tendons with absent paratenons. Multiple different flap types are available to treat complex severe postburn hand contractures. In our center, which is the largest regional burn center in northwest Iran, we have considerable experience in the treatment of thermal hand injuries. Between 2005 and 2010, we treated 53 consecutive patients with 65 severe postburn hand deformities. There were 35 men and 18 women with a mean age of 35±3 years. Flame injury was the inciting traumatic event in each patient. The severity of original injury and inadequate early treatment resulted in all of the fingers developing a severe extension contracture with scarred and adherent extensor tendons and subluxed metacarpophalangeal joints. In 36 cases, the injury was in the patients' dominant hand. We first incised the dorsal aspect of the contracted hands where there was maximum tension, then tenolysed the extensor tendons and released the volar capsules, collateral ligaments, and volar plate in all cases. In 30 cases, we also tenolysed the flexor tendons. We reduced the subluxed metacarpophalangeal joints and fixed them with Kirschner wires in 70 to 90 degrees flexion. Then, we planned and performed axial groin flaps to reconstruct the defects in all of them. In all of these patients, there was availability of intact skin in the territory of groin flap. However, in case of burn scars in this region, we had other options such as posterior interosseous flap in mind. Six patients experienced superficial necrosis at the distal margin of the flap, which was successfully treated with local wound care and dressing changes. There were no other complications. Physical therapy was initiated after Kirschner wire removal.
Signatures of human skin in the millimetre wave band (80-100) GHz
NASA Astrophysics Data System (ADS)
Owda, Amani Y.; Rezgui, Nacer-Ddine; Salmon, Neil A.
2017-10-01
With the performance of millimeter wave security screening imagers improving (reduced speckle, greater sensitivity, and better spatial resolution) attention is turning to identification of anomalies which appear on the human body. Key to this identification is the understanding of how the emissive and reflective properties vary over the human body and between different categories of people, defined by age and gender for example. As the interaction of millimetre waves with the human body is only a fraction of a millimetre into the skin, precise measurement of the emission and reflection of this radiation will allow comparisons with the norm for that region of the body and person category. On an automated basis at security screening portals, this will increase detection probabilities and reduce false alarm rates, ensuring high throughputs at entrances to future airport departure lounges and transport networks. A technique to measure the human skin emissivity in vivo over the frequency band 80 GHz to 100 GHz is described. The emissivities of the skin of a sample of 60 healthy participants (36 males and 24 females) measured using a 90 GHz calibrated radiometer was found to range from 0.17+/-0.002 to 0.68+/-0.002. The radiometric measurements were made at four locations on the arm, namely: palm of hand, back of hand, dorsal surface of the forearm, and volar side of the forearm, where the water content and the skin thickness are known to be different. These measurements show significant variation in emissivity from person to person and, more importantly, significant variation at different locations on the arms of individuals. Males were found to have an emissivity 0.03 higher than those of females. The emissivity of the back of the hand, where the skin is thinner and the blood vessels are closer to the skin surface, was found to be lower by 0.0681 than the emissivity of the palm of the hand, where the skin is thicker. The measurements also show that the emissivity of the volar side location where the blood vessels are closer to the skin surface is lower by 0.0677 than the emissivity of the dorsal surface location. The measured differences agree with those differences estimated by a half space electromagnetic model of the interaction and can be interpreted in terms of the differing water contents and skin thickness of those regions of the body.
NASA Technical Reports Server (NTRS)
DeHart, Russell
2017-01-01
This study determines the feasibility of creating a tool that can accurately predict Lunar Reconnaissance Orbiter (LRO) reaction wheel assembly (RWA) angular momentum, weeks or even months into the future. LRO is a three-axis stabilized spacecraft that was launched on June 18, 2009. While typically nadir-pointing, LRO conducts many types of slews to enable novel science collection. Momentum unloads have historically been performed approximately once every two weeks with the goal of maintaining system total angular momentum below 70 Nms; however flight experience shows the models developed before launch are overly conservative, with many momentum unloads being performed before system angular momentum surpasses 50 Nms. A more accurate model of RWA angular momentum growth would improve momentum unload scheduling and decrease the frequency of these unloads. Since some LRO instruments must be deactivated during momentum unloads and in the case of one instrument, decontaminated for 24 hours there after a decrease in the frequency of unloads increases science collection. This study develops a new model to predict LRO RWA angular momentum. Regression analysis of data from October 2014 to October 2015 was used to develop relationships between solar beta angle, slew specifications, and RWA angular momentum growth. The resulting model predicts RWA angular momentum using input solar beta angle and mission schedule data. This model was used to predict RWA angular momentum from October 2013 to October 2014. Predictions agree well with telemetry; of the 23 momentum unloads performed from October 2013 to October 2014, the mean and median magnitude of the RWA total angular momentum prediction error at the time of the momentum unloads were 3.7 and 2.7 Nms, respectively. The magnitude of the largest RWA total angular momentum prediction error was 10.6 Nms. Development of a tool that uses the models presented herein is currently underway.
NASA Astrophysics Data System (ADS)
Osabe, Keiichi; Kawai, Kotaro
2017-03-01
In this study, angular multiplexing hologram recording photopolymer films were studied experimentally. The films contained acrylamide as a monomer, eosin Y as a sensitizer, and triethanolamine as a promoter in a polyvinyl alcohol matrix. In order to determine the appropriate thickness of the photopolymer films for angular multiplexing, photopolymer films with thicknesses of 29-503 μm were exposed to two intersecting beams of a YVO laser at a wavelength of 532 nm to form a holographic grating with a spatial frequency of 653 line/mm. The diffraction efficiencies as a function of the incident angle of reconstruction were measured. A narrow angular bandwidth and high diffraction efficiency are required for angular multiplexing; hence, we define the Q value, which is the diffraction efficiency divided by half the bandwidth. The Q value of the films depended on the thickness of the films, and was calculated based on the measured diffraction efficiencies. The Q value of a 297-μm-thick film was the highest of the all films. Therefore, the angular multiplexing experiments were conducted using 300-μm-thick films. In the angular multiplexing experiments, the object beam transmitted by a square aperture was focused by a Fourier transform lens and interfered with a reference beam. The maximum order of angular multiplexing was four. The signal intensity that corresponds to the squared-aperture transmission and the noise intensity that corresponds to transmission without the square aperture were measured. The signal intensities decreased as the order of angular multiplexing increased, and the noise intensities were not dependent on the order of angular multiplexing.
Iwahashi, Toshihiko; Ogawa, Makoto; Hosokawa, Kiyohito; Kato, Chieri; Inohara, Hidenori
2016-11-01
To assess the angular velocity between the vocal folds just before the compression phase of throat clearing (TC) using high-speed digital imaging (HSDI) of the larynx. Twenty normal healthy adults (13 males and seven females) were enrolled in the study. Each participant underwent transnasal laryngo-fiberscopy, and was asked to perform weak/strong TC followed by a comfortable, sustained vowel phonation while recording an HSDI movie (4000 frames/s) of the larynx. Using a motion analysis, the changes in the vocal fold angle and angular velocity during vocal fold adduction were assessed. Subsequently, we calculated the average angular velocities in the ranges of 100-80%, 80-20%, and 20-0% from all of the angular changes. The motion analysis demonstrated that the changes in the angular velocity resulted in polynomial-like and sigmoid curves during TC and vowel phonation, respectively. The angular velocities during weak TC were significantly higher in the 20-0%, 80-20%, and 100-80% regions (in order); the 80-20% angular velocity in vocal fold adduction during phonation was highest. The 20-0% angular velocity during strong TC was more than twofold higher than 20-0% angular velocity during phonation. The present results confirmed that the closing motions of the vocal folds accelerate throughout the precompression closing phase of a TC episode, and decelerate just before the impact between the vocal folds at the onset of phonation, suggesting that the vocal fold velocity generated by TC is sufficient to damage the laryngeal tissues. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
Jet angularity measurements for single inclusive jet production
NASA Astrophysics Data System (ADS)
Kang, Zhong-Bo; Lee, Kyle; Ringer, Felix
2018-04-01
We study jet angularity measurements for single-inclusive jet production at the LHC. Jet angularities depend on a continuous parameter a allowing for a smooth interpolation between different traditional jet shape observables. We establish a factorization theorem within Soft Collinear Effective Theory (SCET) where we consistently take into account in- and out-of-jet radiation by making use of semi-inclusive jet functions. For comparison, we elaborate on the differences to jet angularities measured on an exclusive jet sample. All the necessary ingredients for the resummation at next-to-leading logarithmic (NLL) accuracy are presented within the effective field theory framework. We expect semiinclusive jet angularity measurements to be feasible at the LHC and we present theoretical predictions for the relevant kinematic range. In addition, we investigate the potential impact of jet angularities for quark-gluon discrimination.
A new open-loop fiber optic gyro error compensation method based on angular velocity error modeling.
Zhang, Yanshun; Guo, Yajing; Li, Chunyu; Wang, Yixin; Wang, Zhanqing
2015-02-27
With the open-loop fiber optic gyro (OFOG) model, output voltage and angular velocity can effectively compensate OFOG errors. However, the model cannot reflect the characteristics of OFOG errors well when it comes to pretty large dynamic angular velocities. This paper puts forward a modeling scheme with OFOG output voltage u and temperature T as the input variables and angular velocity error Δω as the output variable. Firstly, the angular velocity error Δω is extracted from OFOG output signals, and then the output voltage u, temperature T and angular velocity error Δω are used as the learning samples to train a Radial-Basis-Function (RBF) neural network model. Then the nonlinear mapping model over T, u and Δω is established and thus Δω can be calculated automatically to compensate OFOG errors according to T and u. The results of the experiments show that the established model can be used to compensate the nonlinear OFOG errors. The maximum, the minimum and the mean square error of OFOG angular velocity are decreased by 97.0%, 97.1% and 96.5% relative to their initial values, respectively. Compared with the direct modeling of gyro angular velocity, which we researched before, the experimental results of the compensating method proposed in this paper are further reduced by 1.6%, 1.4% and 1.42%, respectively, so the performance of this method is better than that of the direct modeling for gyro angular velocity.
A New Open-Loop Fiber Optic Gyro Error Compensation Method Based on Angular Velocity Error Modeling
Zhang, Yanshun; Guo, Yajing; Li, Chunyu; Wang, Yixin; Wang, Zhanqing
2015-01-01
With the open-loop fiber optic gyro (OFOG) model, output voltage and angular velocity can effectively compensate OFOG errors. However, the model cannot reflect the characteristics of OFOG errors well when it comes to pretty large dynamic angular velocities. This paper puts forward a modeling scheme with OFOG output voltage u and temperature T as the input variables and angular velocity error Δω as the output variable. Firstly, the angular velocity error Δω is extracted from OFOG output signals, and then the output voltage u, temperature T and angular velocity error Δω are used as the learning samples to train a Radial-Basis-Function (RBF) neural network model. Then the nonlinear mapping model over T, u and Δω is established and thus Δω can be calculated automatically to compensate OFOG errors according to T and u. The results of the experiments show that the established model can be used to compensate the nonlinear OFOG errors. The maximum, the minimum and the mean square error of OFOG angular velocity are decreased by 97.0%, 97.1% and 96.5% relative to their initial values, respectively. Compared with the direct modeling of gyro angular velocity, which we researched before, the experimental results of the compensating method proposed in this paper are further reduced by 1.6%, 1.4% and 1.2%, respectively, so the performance of this method is better than that of the direct modeling for gyro angular velocity. PMID:25734642
Closed-form integrator for the quaternion (euler angle) kinematics equations
NASA Technical Reports Server (NTRS)
Whitmore, Stephen A. (Inventor)
2000-01-01
The invention is embodied in a method of integrating kinematics equations for updating a set of vehicle attitude angles of a vehicle using 3-dimensional angular velocities of the vehicle, which includes computing an integrating factor matrix from quantities corresponding to the 3-dimensional angular velocities, computing a total integrated angular rate from the quantities corresponding to a 3-dimensional angular velocities, computing a state transition matrix as a sum of (a) a first complementary function of the total integrated angular rate and (b) the integrating factor matrix multiplied by a second complementary function of the total integrated angular rate, and updating the set of vehicle attitude angles using the state transition matrix. Preferably, the method further includes computing a quanternion vector from the quantities corresponding to the 3-dimensional angular velocities, in which case the updating of the set of vehicle attitude angles using the state transition matrix is carried out by (a) updating the quanternion vector by multiplying the quanternion vector by the state transition matrix to produce an updated quanternion vector and (b) computing an updated set of vehicle attitude angles from the updated quanternion vector. The first and second trigonometric functions are complementary, such as a sine and a cosine. The quantities corresponding to the 3-dimensional angular velocities include respective averages of the 3-dimensional angular velocities over plural time frames. The updating of the quanternion vector preserves the norm of the vector, whereby the updated set of vehicle attitude angles are virtually error-free.
Design and Calibration of the ARL Mach 3 High Reynolds Number Facility
1975-01-01
degrees Rankine. Test rhombus determinations included lateral and longitudinal Mach number distributions and flow angularity measurements. A...43 3. THE TUNNEL EMPTY MACH NUMBER DISTRIBUTION 45 4. THE CENTERLINE RMS MACH NUMBER 46 5. FLOW ANGULARITY MEASUREMENTS 46 6. BLOCKAGE TESTS... Angularity Wedge Scale Drawing of Flow Angularity Cone Normalized Surface Pressure Difference versus Angle of Attack at xp/xr = - 0.690 for po
DOE R&D Accomplishments Database
Schwinger, J.
1952-01-26
The commutation relations of an arbitrary angular momentum vector can be reduced to those of the harmonic oscillator. This provides a powerful method for constructing and developing the properties of angular momentum eigenvectors. In this paper many known theorems are derived in this way, and some new results obtained. Among the topics treated are the properties of the rotation matrices; the addition of two, three, and four angular momenta; and the theory of tensor operators.
GALACTIC ANGULAR MOMENTUM IN THE ILLUSTRIS SIMULATION: FEEDBACK AND THE HUBBLE SEQUENCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Genel, Shy; Fall, S. Michael; Snyder, Gregory F.
We study the stellar angular momentum of thousands of galaxies in the Illustris cosmological simulation, which captures gravitational and gas dynamics within galaxies, as well as feedback from stars and black holes. We find that the angular momentum of the simulated galaxies matches observations well, and in particular two distinct relations are found for late-type versus early-type galaxies. The relation for late-type galaxies corresponds to the value expected from full conservation of the specific angular momentum generated by cosmological tidal torques. The relation for early-type galaxies corresponds to retention of only ∼30% of that, but we find that those early-typemore » galaxies with low angular momentum at z = 0 nevertheless reside at high redshift on the late-type relation. Some of them abruptly lose angular momentum during major mergers. To gain further insight, we explore the scaling relations in simulations where the galaxy formation physics is modified with respect to the fiducial model. We find that galactic winds with high mass-loading factors are essential for obtaining the high angular momentum relation typical for late-type galaxies, while active galactic nucleus feedback largely operates in the opposite direction. Hence, feedback controls the stellar angular momentum of galaxies, and appears to be instrumental for establishing the Hubble sequence.« less
Zeng, Xiaozheng; McGough, Robert J.
2009-01-01
The angular spectrum approach is evaluated for the simulation of focused ultrasound fields produced by large thermal therapy arrays. For an input pressure or normal particle velocity distribution in a plane, the angular spectrum approach rapidly computes the output pressure field in a three dimensional volume. To determine the optimal combination of simulation parameters for angular spectrum calculations, the effect of the size, location, and the numerical accuracy of the input plane on the computed output pressure is evaluated. Simulation results demonstrate that angular spectrum calculations performed with an input pressure plane are more accurate than calculations with an input velocity plane. Results also indicate that when the input pressure plane is slightly larger than the array aperture and is located approximately one wavelength from the array, angular spectrum simulations have very small numerical errors for two dimensional planar arrays. Furthermore, the root mean squared error from angular spectrum simulations asymptotically approaches a nonzero lower limit as the error in the input plane decreases. Overall, the angular spectrum approach is an accurate and robust method for thermal therapy simulations of large ultrasound phased arrays when the input pressure plane is computed with the fast nearfield method and an optimal combination of input parameters. PMID:19425640
Demonstrating the conservation of angular momentum using spherical magnets
NASA Astrophysics Data System (ADS)
Lindén, Johan; Slotte, Joakim; Källman, Kjell-Mikael
2018-01-01
An experimental setup for demonstrating the conservation of angular momentum of rotating spherical magnets is described. Two spherical Nd-Fe-B magnets are placed on a double inclined plane and projected towards each other with pre-selected impact parameters ranging from zero to a few tens of millimeters. After impact, the two magnets either revolve vigorously around the common center of mass or stop immediately, depending on the value of the impact parameter. Using a pick-up coil connected to an oscilloscope, the angular frequency for the rotating magnets was measured, and an estimate for the angular momentum was obtained. A high-speed video camera captured the impact and was used for measuring linear and angular velocities of the magnets. A very good agreement between the initial angular momentum before the impact and the final angular momentum of the revolving dumbbell is observed. The two rotating magnets, and the rotating electromagnetic field emanating from them, can also be viewed as a toy model for the newly discovered gravitational waves, where two black holes collide after revolving around each other. (Enhanced online)
Martin, Caroline; Kulpa, Richard; Delamarche, Paul; Bideau, Benoit
2013-03-01
The purpose of the study was to identify the relationships between segmental angular momentum and ball velocity between the following events: ball toss, maximal elbow flexion (MEF), racket lowest point (RLP), maximal shoulder external rotation (MER), and ball impact (BI). Ten tennis players performed serves recorded with a real-time motion capture. Mean angular momentums of the trunk, upper arm, forearm, and the hand-racket were calculated. The anteroposterior axis angular momentum of the trunk was significantly related with ball velocity during the MEF-RLP, RLP-MER, and MER-BI phases. The strongest relationships between the transverse-axis angular momentums and ball velocity followed a proximal-to-distal timing sequence that allows the transfer of angular momentum from the trunk (MEF-RLP and RLP-MER phases) to the upper arm (RLP-MER phase), forearm (RLP-MER and MER-BI phases), and the hand-racket (MER-BI phase). Since sequence is crucial for ball velocity, players should increase angular momentums of the trunk during MEF-MER, upper arm during RLP-MER, forearm during RLP-BI, and the hand-racket during MER-BI.
Angular Rate Sensing with GyroWheel Using Genetic Algorithm Optimized Neural Networks.
Zhao, Yuyu; Zhao, Hui; Huo, Xin; Yao, Yu
2017-07-22
GyroWheel is an integrated device that can provide three-axis control torques and two-axis angular rate sensing for small spacecrafts. Large tilt angle of its rotor and de-tuned spin rate lead to a complex and non-linear dynamics as well as difficulties in measuring angular rates. In this paper, the problem of angular rate sensing with the GyroWheel is investigated. Firstly, a simplified rate sensing equation is introduced, and the error characteristics of the method are analyzed. According to the analysis results, a rate sensing principle based on torque balance theory is developed, and a practical way to estimate the angular rates within the whole operating range of GyroWheel is provided by using explicit genetic algorithm optimized neural networks. The angular rates can be determined by the measurable values of the GyroWheel (including tilt angles, spin rate and torque coil currents), the weights and the biases of the neural networks. Finally, the simulation results are presented to illustrate the effectiveness of the proposed angular rate sensing method with GyroWheel.
Forming Disc Galaxies In Major Mergers: Radial Density Profiles And Angular Momentum
NASA Astrophysics Data System (ADS)
Peschken, Nicolas; Athanassoula, E.; Rodionov, S. A.; Lambert, J. C.
2017-06-01
In Athanassoula et al. (2016), we used high resolution N-body hydrodynamical simulations to model the major merger between two disc galaxies with a hot gaseous halo each, and showed that the remnant is a spiral galaxy. The two discs are destroyed by the collision, but after the merger, accretion from the surrounding gaseous halo allows the building of a new disc in the remnant galaxy. In Peschken et al. (2017), we used these simulations to study the radial surface density profiles of the remnant galaxies with downbending profiles (type II), i.e. composed of an inner and an outer exponential disc separated by a break. We analyzed the effect of angular momentum on these profiles, and found that the inner and outer disc scalelengths, as well as the break radius, all increase linearly with the total angular momentum of the initial merging system. Following the angular momentum redistribution in our simulations, we find that the disc angular momentum is acquired via accretion from the gaseous halo. Furthermore, high angular momentum systems give more angular momentum to their discs, which affects directly their radial density profile.
Toward Active X-ray Telescopes II
NASA Technical Reports Server (NTRS)
O'Dell, Stephen L.; Aldroft, Thomas L.; Atkins, Carolyn; Button, Timothy W.; Cotroneo, Vincenzo; Davis, William N.; Doel, Peter; Feldman, Charlotte H.; Freeman, Mark D.; Gubarev, Mikhail V.;
2012-01-01
In the half century since the initial discovery of an astronomical (non-solar) x-ray source, the sensitivity for detection of cosmic x-ray sources has improved by ten orders of magnitude. Largely responsible for this dramatic progress has been the refinement of the (grazing-incidence) focusing x-ray telescope. The future of x-ray astronomy relies upon the development of x-ray telescopes with larger aperture areas (greater than 1 m2) and finer angular resolution (less than 1.). Combined with the special requirements of grazing-incidence optics, the mass and envelope constraints of space-borne telescopes render such advances technologically challenging.requiring precision fabrication, alignment, and assembly of large areas (greater than 100 m2) of lightweight (approximately 1 kg m2 areal density) mirrors. Achieving precise and stable alignment and figure control may entail active (in-space adjustable) x-ray optics. This paper discusses relevant programmatic and technological issues and summarizes progress toward active x-ray telescopes.
Sitnikov cyclic configuration of N+1-body problem
NASA Astrophysics Data System (ADS)
Shahbaz Ullah, M.; Hassan, M. R.
2014-12-01
This manuscript deals with the generalisation of all previous works on series solutions and linear stability of equilibrium points of the Sitnikov problem. Following Giacaglia (1967), in Sect. 2 we have derived the equation of motion of the infinitesimal mass moving along the z-axis about which the plane of motion is rotating with unit angular velocity. In Sects. 3, 4 and 5 the series solutions of the Sitnikov problem have been developed by the method of MacMillan, Lindstedt-Poincaré and iteration of Green's function respectively. In Sect. 6 the three series solutions have been compared graphically by putting N=2, 3, 4. In Sect. 7 the coordinates of equilibrium points have been calculated. In Sect. 8 the linear stability of equilibrium points has been examined by the method of Murray and Dermott (Solar System Dynamics, Cambridge University Press, Cambridge, 1999) and it was found that the equilibrium points are stable in Sitnikov problem.
Dibaryons with Strangeness in Quark Models
NASA Astrophysics Data System (ADS)
Chen, Mei; Gong, Fang; Huang, Hongxia; Ping, Jialun
The extended quark delocalization color screening model, which incorporates Goldstone-boson-exchange with soft cutoff, and chiral quark model are employed to do a systematic dynamical calculation of six-quark systems with strangeness. The two models give similar results, although they have different attraction mechanisms. Comparing with the previous calculation of the extended quark delocalization color screening model, in which the Goldstone-bosons are introduced with hard cutoff, the present calculation obtains a little large binding energies for most of the states. However, the conclusions are the same. The calculations show that NΩ state with IJ = 1/2, 2 is a good dibaryon candidate with narrow width, and ΩΩ state with IJ = 00 is a stable dibaryon against the strong interaction. The calculations also reveal several other possible dibaryon candidates with high angular momentum, ΔΣ*(1/2, 3), ΔΞ*(1, 3), etc. These states may have too wide width to be observed experimentally.
Ku-Band Traveling Wave Slot Array Using Simple Scanning Control
NASA Technical Reports Server (NTRS)
Host, Nicholas K.; Chen, Chi-Chih; Volakis, John L.; Miranda, Felix A.
2015-01-01
This poster introduces a feeding concept aimed at simplifying the backend (phase shifters) of traditional phased arrays. As an alternative to traditional phased arrays, we employ a traveling wave array (TWA) using a single feedline whose propagation constant is controlled via a single, small mechanical movement without a need for phase shifters to enable scanning. Specifically, a dielectric plunger is positioned within a parallel plate waveguide (PPW) transmission line (TL) that feeds the TWA. By adjusting the position of the dielectric plunger within the PPW feeding the TWA, beam steering is achieved. A 20-element array is designed at 13 gigaherz shown to give stable realized gain across the angular range of minus 25 degrees less than or equal to theta and less than or equal to 25 degrees. A proof of concept array is fabricated and measured to demonstrate and validate the concept's operation.
Cosmic Dawn Intensity Mapper (CDIM): Instrument and Mission Design
NASA Astrophysics Data System (ADS)
Unwin, Stephen C.; CDIM Team
2018-01-01
CDIM is the Cosmic Dawn Intensity Mapper, one of the probe-class missions currently under study for NASA. A detailed Report from the study will be submitted to NASA and for consideration by the Decadal Survey. The flight system will comprise a wide-field cryogenic telescope with a large focal plane array providing complete coverage from optical through mid-IR. The system will be deployed to L2 or Earth-trailing orbit, to provide a stable thermal environment and allow extended observations of fields selected to be cross-correlated with deep surveys in other wavebands. Spectra with will be measured for every point in each target field, using linear variable filters (LVFs). These filters eliminate the need for a spectrometer in the focal plane. Spectra are built up through simple imaging of a series of telescope pointings separated by small angular offsets. This poster presents the initial concept for the instrument and mission design.
NASA Astrophysics Data System (ADS)
Alesemi, Meshari
2018-04-01
The objective of this research is to illustrate the effectiveness of the thermal relaxation time based on the theory of Lord-Shulman (L-S), Coriolis and Centrifugal Forces on the reflection coefficients of plane waves in an anisotropic magneto-thermoelastic medium. Assuming the elastic medium is rotating with stable angular velocity and the imposed magnetic field is parallel to the boundary of the half-space. The basic equations of a transversely isotropic rotating magneto-thermoelastic medium are formulated according to thermoelasticity theory of Lord-Shulman (L-S). Next to that, getting the velocity equation which is illustrated to show existence of three quasi-plane waves propagating in the medium. The amplitude ratios coefficients of these plane waves have been given and then computed numerically and plotted graphically to demonstrate the influences of the rotation on the Zinc material.
Pauling, L
1990-06-01
Values of m, the number of nucleons in the revolving cluster, and of R, the radius of revolution of the cluster about the center of mass of the spherical part of the nucleus, are calculated from the observed values of the energy for the ground-state bands of all nuclei with neutron number N >/= 126 on the basis of the assumptions (i) that both m and R change in a reasonable way with increase in the angular momentum quantum number J and with change in the proton number Z and the neutron number N, (ii) that m is usually an even integer, (iii) that certain clusters are especially stable, and (iv) that there is a special stability of the doubly magic sphere p82n126.
Sign of coupling in barrier-separated Bose-Einstein condensates and stability of double-ring systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brand, J.; Haigh, T. J.; Zuelicke, U.
We revisit recent claims about the instability of nonrotating tunnel coupled annular Bose-Einstein condensates leading to the emergence of angular momentum Josephson oscillation [Phys. Rev. Lett. 98, 050401 (2007)]. It was predicted that all stationary states with uniform density become unstable in certain parameter regimes. By careful analysis, we arrive at a different conclusion. We show that there is a stable nonrotating and uniform ground state for any value of the tunnel coupling and repulsive interactions. The instability of an excited state with {pi} phase difference between the condensates can be interpreted in terms of the familiar snake instability. Wemore » further discuss the sign of the tunnel coupling through a separating barrier, which carries significance for the nature of the stationary states. It is found to always be negative for physical reasons.« less
Pauling, L
1990-01-01
Values of m, the number of nucleons in the revolving cluster, and of R, the radius of revolution of the cluster about the center of mass of the spherical part of the nucleus, are calculated from the observed values of the energy for the ground-state bands of all nuclei with neutron number N >/= 126 on the basis of the assumptions (i) that both m and R change in a reasonable way with increase in the angular momentum quantum number J and with change in the proton number Z and the neutron number N, (ii) that m is usually an even integer, (iii) that certain clusters are especially stable, and (iv) that there is a special stability of the doubly magic sphere p82n126. PMID:11607085
The concept of a Space-Space interferometer for observations in mm and sub-mm wavebands
NASA Astrophysics Data System (ADS)
Andreyanov, V. V.
2007-12-01
At present, space radio astronomers and engineers study the prospects of design of the second-generation ground-space interferometers for astrophysical research with the microsecond angular resolution of sources. The implemented Japanese VSOP project (1998 2003) and the Russian Radioastron project (under preparation for space flight) are related to the first generation. In this paper, the ideology and configuration of the Space-Space interferometer are considered. It would allow one to obtain principally new capabilities: to exclude the Earth’s atmosphere influence, to realize a quasi-phase-stable interferometer, and to remove the problems of electromagnetic compatibility with other services. Moreover, a capability will appear to carry out preliminary correlation processing onboard the spacecraft due to achievement of small residual uncertainties in signal delay and frequency and, owing to this, to realize onboard data compression in order to transmit data to the Earth by usual space communication channel.
Ku-Band Traveling Wave Slot Array Using Simple Scanning Control
NASA Technical Reports Server (NTRS)
Host, Nicholas K.; Chen, Chi-Chih; Volakis, John L.; Miranda, Felix A.
2015-01-01
This paper introduces a feeding concept aimed at simplifying the backend (phase shifters) of traditional phased arrays. As an alternative to traditional phased arrays, we employ a traveling wave array (TWA) using a single feedline whose propagation constant is controlled via a single, small mechanical movement without a need for phase shifters to enable scanning. Specifically, a dielectric plunger is positioned within a parallel plate waveguide (PPW) transmission line (TL) that feeds the TWA. By adjusting the position of the dielectric plunger within the PPW feeding the TWA, beam steering is achieved. A 20 element array is designed at 13GHz shown to give stable realized gain across the angular range of -25 deg. less than or equal to theta less than or equal to 25 deg. A proof of concept array is fabricated and measured to demonstrate and validate the concept's operation.
High-efficency stable 213-nm generation for LASIK application
NASA Astrophysics Data System (ADS)
Wang, Zhenglin; Alameh, Kamal; Zheng, Rong
2005-01-01
213nm Solid-state laser technology provides an alternative method to replace toxic excimer laser in LASIK system. In this paper, we report a compact fifth harmonic generation system to generate high pulse energy 213nm laser from Q-switched Nd:YAG laser for LASIK application based on three stages harmonic generation procedures. A novel crystal housing was specifically designed to hold the three crystals with each crystal has independent, precise angular adjustment structure and automatic tuning control. The crystal temperature is well maintained at ~130°C to improve harmonic generation stability and crystal operation lifetime. An output pulse energy 35mJ is obtained at 213nm, corresponding to total conversion efficiency ~10% from 1064nm pump laser. In system verification tests, the 213nm output power drops less than 5% after 5 millions pulse shots and no significant damage appears in the crystals.
Directional detection of dark matter in universal bound states
Laha, Ranjan
2015-10-06
It has been suggested that several small-scale structure anomalies in Λ CDM cosmology can be solved by strong self-interaction between dark matter particles. It was shown in Ref. [1] that the presence of a near threshold S-wave resonance can make the scattering cross section at nonrelativistic speeds come close to saturating the unitarity bound. This can result in the formation of a stable bound state of two asymmetric dark matter particles (which we call darkonium). Ref. [2] studied the nuclear recoil energy spectrum in dark matter direct detection experiments due to this incident bound state. Here we study the angularmore » recoil spectrum, and show that it is uniquely determined up to normalization by the S-wave scattering length. Furthermore, observing this angular recoil spectrum in a dark matter directional detection experiment will uniquely determine many of the low-energy properties of dark matter independent of the underlying dark matter microphysics.« less
NASA Astrophysics Data System (ADS)
Seki, Hirokazu; Tadakuma, Susumu
This paper describes a novel straight and circular road driving control scheme for electric power assisted wheelchairs. “Electric power assisted wheelchair” which assists the driving force by electric motors is expected to be widely used as a mobility support system for elderly people and disabled people, however, the performance of the straight and circular road driving must be further improved because the two wheels drive independently. This paper proposes a novel driving control scheme based on fuzzy algorithm to realize the stable and reliable driving on straight and circular roads. The suitable assisted torque of the right and left wheels is determined by fuzzy algorithm based on the posture angular velocity of the wheelchair and the human input torque proportion of the right and left wheels. Some experiments on the practical roads show the effectiveness of the proposed control system.
NASA Astrophysics Data System (ADS)
Murakami, Hiroki; Seki, Hirokazu; Minakata, Hideaki; Tadakuma, Susumu
This paper describes a novel operationality improvement control for electric power assisted wheelchairs. “Electric power assisted wheelchair” which assists the driving force by electric motors is expected to be widely used as a mobility support system for elderly people and disabled people, however, the performance of the straight and circular road driving must be further improved because the two wheels drive independently. This paper proposes a novel operationality improvement control by fuzzy algorithm to realize the stable driving on straight and circular roads. The suitable assisted torque of the right and left wheels is determined by fuzzy algorithm based on the posture angular velocity, the posture angle of the wheelchair, the human input torque proportion and the total human torque of the right and left wheels. Some experiments on the practical roads show the effectiveness of the proposed control system.
Integration of the GET electronics for the CHIMERA and FARCOS devices
NASA Astrophysics Data System (ADS)
De Filippo, E.; Acosta, L.; Auditore, L.; Boiano, C.; Cardella, G.; Castoldi, A.; D’Andrea, M.; De Luca, S.; Favela, F.; Fichera, F.; Giudice, N.; Gnoffo, B.; Grimaldi, A.; Guazzoni, C.; Lanzalone, G.; Librizzi, F.; Litrico, P.; Maiolino, C.; Maffesanti, S.; Martorana, NS; Pagano, A.; Pagano, EV; Papa, M.; Parsani, T.; Passaro, G.; Pirrone, S.; Politi, G.; Previdi, F.; Quattrocchi, L.; Rizzo, F.; Russotto, P.; Saccà, G.; Salemi, G.; Sciliberto, D.; Trifirò, A.; Trimarchi, M.
2018-05-01
A new front-end based on digital GET electronics has been adopted for the readout of the CsI(Tl) detectors of the CHIMERA 4π multi-detector and for the new modular Femtoscopy Array for Correlation and Spectroscopy (FARCOS). It is expected that the coupling of CHIMERA with the FARCOS array, featuring high angular and energy resolution, and the adoption of the new digital electronics will be well suited for improving specific future data analysis, with the full shape storage of the signals, in the field of heavy ion reactions with stable and exotic beams around the Fermi energies domain. Integration of the GET electronics with CHIMERA and FARCOS devices and with the local analog data acquisition will be briefly discussed. We present some results from previous experimental tests and from the first in-beam experiment (Hoyle-Gamma) with the coupled GET+CHIMERA data acquisition.
The Stellar Imager (SI) "Vision Mission"
NASA Technical Reports Server (NTRS)
Carpenter, K.; Danchi, W.; Leitner, J.; Liu, A.; Lyon, R.; Mazzuca, L.; Moe, R.; Chenette, D.; Schrijver, C.; Kilston, S.
2004-01-01
The Stellar Imager (SI) is a Vision Mission in the Sun-Earth Connection (SEC) NASA Roadmap, conceived for the purpose of understanding the effects of stellar magnetic fields, the dynamos that generate them, and the internal structure and dynamics of the stars in which they exist. The ultimate goal is to achieve the best possible forecasting of solar/stellar activity and its impact on life in the Universe. The science goals of SI require an ultra-high angular resolution, at ultraviolet wavelengths, on the order of 100 micro-arcsec and baselines on the order of 0.5 km. These requirements call for a large, multi-spacecraft (greater than 20) imaging interferometer, utilizing precision formation flying in a stable environment, such as in a Lissajous orbit around the Sun-Earth L2 point. In this paper, we present an update on the ongoing SI mission concept and technology development studies.
The Stellar Imager (SI) "Vision Mission"
NASA Technical Reports Server (NTRS)
Carpenter, K.; Danchi, W.; Leitner, J.; Liu, A.; Lyon, R.; Mazzuca, L.; Moe, R.; Chenette, D.; Schrijver, C.; Kilston, S.
2004-01-01
The Stellar Imager (SI) is a Vision Mission in the Sun-Earth Connection (SEC) NASA Roadmap, conceived for the purpose of understanding the effects of stellar magnetic fields, the dynamos that generate them, and the internal structure and dynamics of the stars in which they exist. The ultimate goal is to achieve the best possible forecasting of solar/stellar activity and its impact on life in the Universe. The science goals of SI require an ultra-high angular resolution, a t ultraviolet wavelengths, on the order of 100 micro-arcsec and baselines on the order of 0.5 km. These requirements call for a large, multi-spacecraft (>20) imaging interferometer, utilizing precision formation flying in a stable environment, such as in a Lissajous orbit around the Sun-Earth L2 point. In this paper, we present an update on the ongoing SI mission concept and technology development studies.
Dual-wavelength vortex beam with high stability in a diode-pumped Yb:CaGdAlO4 laser
NASA Astrophysics Data System (ADS)
Shen, Yijie; Meng, Yuan; Fu, Xing; Gong, Mali
2018-05-01
We present a stable dual-wavelength vortex beam carrying orbital angular momentum (OAM) with two spectral peaks separated by a few terahertz in a diode-pumped Yb:CaGdAlO4 (CALGO) laser. The dual-wavelength spectrum is controlled by the pump power and off-axis loss in a laser resonator, arising from the broad emission bandwidth of Yb:CALGO. The OAM beam is obtained by a pair of cylindrical lenses serving as a π/2 convertor for high-order Hermite–Gaussian modes. The stability is verified by the fact that a 1\\hbar OAM beam with two spectral peaks at 1046.1 nm and 1057.2 nm (3.01 THz interval) can steadily operate for more than 3 h. It has great potential for scaling the application of OAM beams in terahertz spectroscopy, high-resolution interferometry, and so on.
NASA Astrophysics Data System (ADS)
Zhang, Hu; Zhang, Xiaoguang; Li, Hui; Deng, Yifan; Zhang, Xia; Xi, Lixia; Tang, Xianfeng; Zhang, Wenbo
2017-08-01
Based on 5 requirements which are essential for stable OAM mode transmission, we propose an OAM fiber family based on a structure of circular photonic crystal fiber (C-PCF). The proposed C-PCF in the family is made of pure silica, with a big round air hole at the center, several rings of air-hole array as the cladding, and a ring shaped silica area in between as the core where the OAM modes propagate. We also provide a design strategy with which the optimized C-PCF can be obtained with optimum number of high quality OAM modes (up to 42 OAM modes), large effective index separation for corresponding vector modes over a wide bandwidth, relative small and flat dispersion, and low nonlinear coefficient compared with a conventional single mode fiber. The designed fiber can be used in MDM communications and other OAM applications in fibers.
A New Equilibrium State for Singly Synchronous Binary Asteroids
NASA Astrophysics Data System (ADS)
Golubov, Oleksiy; Unukovych, Vladyslav; Scheeres, Daniel J.
2018-04-01
The evolution of rotation states of small asteroids is governed by the Yarkovsky–O’Keefe–Radzievskii–Paddack (YORP) effect, nonetheless some asteroids can stop their YORP evolution by attaining a stable equilibrium. The same is true for binary asteroids subjected to the binary YORP (BYORP) effect. Here we discuss a new type of equilibrium that combines these two, which is possible in a singly synchronous binary system. This equilibrium occurs when the normal YORP, the tangential YORP, and the BYORP compensate each other, and tidal torques distribute the angular momentum between the components of the system and dissipate energy. If unperturbed, such a system would remain singly synchronous in perpetuity with constant spin and orbit rates, as the tidal torques dissipate the incoming energy from impinging sunlight at the same rate. The probability of the existence of this kind of equilibrium in a binary system is found to be on the order of a few percent.
Phase change in liquid face seals
NASA Technical Reports Server (NTRS)
Hughes, W. F.; Winowich, N. S.; Birchak, M. J.; Kennedy, W. C.
1978-01-01
A study is made of boiling (or phase change) in liquid face seals. An appropriate model is set up and approximate solutions obtained. Some practical illustrative examples are given. Major conclusions are that (1) boiling may occur more often than has been suspected particularly when the sealed liquid is near saturation conditions, (2) the temperature variation in a seal clearance region may not be very great and the main reason for boiling is the flashing which occurs as the pressure decreases through the seal clearance, and (3) there are two separate values of the parameter film-thickness/angular-velocity-squared (and associated radii where phase change takes place) which provide the same separating force under a given set of operating conditions. For a given speed seal face excursions about the larger spacing are stable, but excursions about the smaller spacing are unstable, leading to a growth to the larger spacing or a catastrophic collapse.
Re-evaluating reaction rates relevant to nova nucleosynthesis from a nuclear structure perspective
NASA Astrophysics Data System (ADS)
Jenkins, D. G.; Lister, C. J.; Janssens, R. V. F.; Khoo, T. L.; Moore, E. F.; Rehm, K. E.; Seweryniak, D.; Wuosmaa, A. H.; Davinson, T.; Woods, P. J.; Jokinen, A.; Penttila, H.; Martınez-Pinedo, G.; Jose, J.
2006-03-01
Conventionally, reaction rates relevant to nova nucleosynthesis are determined by performing the relevant proton capture reactions directly for stable species, or as has become possible more recently in inverse kinematics using short-lived accelerated radioactive beams with recoil separators. A secondary approach is to compile information on the properties of levels in the Gamow window using transfer reactions. We present a complementary technique where the states of interest are populated in a heavy-ion fusion reaction and their gamma decay studied with a state-of-the-art array of high-purity germanium detectors. The advantages of this approach, including the ability to determine resonance energies with high precision and the possibility of determining spins and parities from gamma-ray angular distributions are discussed. Two specific examples related to the 22Na(p,γ) and 30P(p,γ) reactions are presented.
RESPONSE OF GRANULATION TO SMALL-SCALE BRIGHT FEATURES IN THE QUIET SUN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andic, A.; Chae, J.; Goode, P. R.
2011-04-10
We detected 2.8 bright points (BPs) per Mm{sup 2} in the quiet Sun with the New Solar Telescope at Big Bear Solar Observatory, using the TiO 705.68 nm spectral line at an angular resolution {approx}0.''1 to obtain a 30 minute data sequence. Some BPs formed knots that were stable in time and influenced the properties of the granulation pattern around them. The observed granulation pattern within {approx}3'' of knots presents smaller granules than those observed in a normal granulation pattern, i.e., around the knots a suppressed convection is detected. Observed BPs covered {approx}5% of the solar surface and were notmore » homogeneously distributed. BPs had an average size of 0.''22, they were detectable for 4.28 minutes on average, and had an averaged contrast of 0.1% in the deep red TiO spectral line.« less
Anthropic selection for the Moon's mass.
Waltham, Dave
2004-01-01
This paper investigates whether anthropic selection explains the unusually large size of our Moon. It is shown that obliquity stability of the Earth is possible across a wide range of different starting conditions for the Earth-Moon system. However, the lunar mass and angular momentum from the actual Earth-Moon system are remarkable in that they very nearly produce an unstable obliquity. This may be because the particular properties of our Earth-Moon system simultaneously allow a stable obliquity and a slow rotation rate. A slow rotation rate may have been anthropically selected because it minimizes the equator-pole temperature difference, thus minimizing climatic fluctuations. The great merit of this idea is that it can be tested using extrasolar planet search programs planned for the near future. If correct, such anthropic selection predicts that most extrasolar planetary systems will have significantly larger perturbation frequencies than our own Solar System.
Broadband optical switch based on liquid crystal dynamic scattering.
Geis, M W; Bos, P J; Liberman, V; Rothschild, M
2016-06-27
This work demonstrates a novel broadband optical switch, based on dynamic-scattering effect in liquid crystals (LCs). Dynamic-scattering-mode technology was developed for display applications over four decades ago, but was displaced in favor of the twisted-nematic LCs. However, with the recent development of more stable LCs, dynamic scattering provides advantages over other technologies for optical switching. We demonstrate broadband polarization-insensitive attenuation of light directly passing thought the cell by 4 to 5 orders of magnitude at 633 nm. The attenuation is accomplished by light scattering to higher angles. Switching times of 150 μs to 10% transmission have been demonstrated. No degradation of devices is found after hundreds of switching cycles. The light-rejection mechanism is due to scattering, induced by disruption of LC director orientation with dopant ion motion with an applied electric field. Angular dependence of scattering is characterized as a function of bias voltage.
Effects of aggregate angularity on mix design characteristics and pavement performance.
DOT National Transportation Integrated Search
2009-12-01
This research targeted two primary purposes: to estimate current aggregate angularity test methods and to evaluate current : aggregate angularity requirements in the Nebraska asphalt mixture/pavement specification. To meet the first research : object...
Thermal Ion Upwelling in the High-Altitude Ionosphere
1990-01-01
hard sphere collisions) while Vst is the momentum transfer collision frequency between all the other species t and a single s species particle. For... angular dimensions of day side entrance region off of Od degrees towards evening Od angular dimensions of day side entrance region off of 0d...degrees towards morning + angular dimensions of night side exit region off of on towards degrees On degre morning On angular dimensions of night side exit
Angular width of the Cherenkov radiation with inclusion of multiple scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Jian, E-mail: jzheng@ustc.edu.cn
2016-06-15
Visible Cherenkov radiation can offer a method of the measurement of the velocity of charged particles. The angular width of the radiation is important since it determines the resolution of the velocity measurement. In this article, the angular width of Cherenkov radiation with inclusion of multiple scattering is calculated through the path-integral method, and the analytical expressions are presented. The condition that multiple scattering processes dominate the angular distribution is obtained.
Grinter, Roger; Jones, Garth A
2018-02-01
The transfer of angular momentum between a quadrupole emitter and a dipole acceptor is investigated theoretically. Vector spherical harmonics are used to describe the angular part of the field of the mediating photon. Analytical results are presented for predicting angular momentum transfer between the emitter and absorber within a quantum electrodynamical framework. We interpret the allowability of such a process, which appears to violate conservation of angular momentum, in terms of the breakdown of the isotropy of space at the point of photon absorption (detection). That is, collapse of the wavefunction results in loss of all angular momentum information. This is consistent with Noether's Theorem and demystifies some common misconceptions about the nature of the photon. The results have implications for interpreting the detection of photons from multipole sources and offers insight into limits on information that can be extracted from quantum measurements in photonic systems.
Creating high-purity angular-momentum-state Rydberg atoms by a pair of unipolar laser pulses
NASA Astrophysics Data System (ADS)
Xin, PeiPei; Cheng, Hong; Zhang, ShanShan; Wang, HanMu; Xu, ZiShan; Liu, HongPing
2018-04-01
We propose a method of producing high-purity angular-momentum-state Rydberg atoms by a pair of unipolar laser pulses. The first positive-polarity optical half-cycle pulse is used to prepare an excited-state wave packet while the second one is less intense, but with opposite polarity and time delayed, and is employed to drag back the escaping free electron and clip the shape of the bound Rydberg wave packet, selectively increasing or decreasing a fraction of the angular-momentum components. An intelligent choice of laser parameters such as phase and amplitude helps us to control the orbital-angular-momentum composition of an electron wave packet with more facility; thus, a specified angular-momentum state with high purity can be achieved. This scheme of producing high-purity angular-momentum-state Rydberg atoms has significant application in quantum-information processing.
Angular momentum conservation law in light-front quantum field theory
Chiu, Kelly Yu-Ju; Brodsky, Stanley J.
2017-03-31
We prove the Lorentz invariance of the angular momentum conservation law and the helicity sum rule for relativistic composite systems in the light-front formulation. We explicitly show that j 3, the z -component of the angular momentum remains unchanged under Lorentz transformations generated by the light-front kinematical boost operators. The invariance of j 3 under Lorentz transformations is a feature unique to the front form. Applying the Lorentz invariance of the angular quantum number in the front form, we obtain a selection rule for the orbital angular momentum which can be used to eliminate certain interaction vertices in QED andmore » QCD. We also generalize the selection rule to any renormalizable theory and show that there exists an upper bound on the change of orbital angular momentum in scattering processes at any fixed order in perturbation theory.« less
Aliasing Detection and Reduction Scheme on Angularly Undersampled Light Fields.
Xiao, Zhaolin; Wang, Qing; Zhou, Guoqing; Yu, Jingyi
2017-05-01
When using plenoptic camera for digital refocusing, angular undersampling can cause severe (angular) aliasing artifacts. Previous approaches have focused on avoiding aliasing by pre-processing the acquired light field via prefiltering, demosaicing, reparameterization, and so on. In this paper, we present a different solution that first detects and then removes angular aliasing at the light field refocusing stage. Different from previous frequency domain aliasing analysis, we carry out a spatial domain analysis to reveal whether the angular aliasing would occur and uncover where in the image it would occur. The spatial analysis also facilitates easy separation of the aliasing versus non-aliasing regions and angular aliasing removal. Experiments on both synthetic scene and real light field data sets (camera array and Lytro camera) demonstrate that our approach has a number of advantages over the classical prefiltering and depth-dependent light field rendering techniques.
Jasiewicz, Jan M; Allum, John H J; Middleton, James W; Barriskill, Andrew; Condie, Peter; Purcell, Brendan; Li, Raymond Che Tin
2006-12-01
We report on three different methods of gait event detection (toe-off and heel strike) using miniature linear accelerometers and angular velocity transducers in comparison to using standard pressure-sensitive foot switches. Detection was performed with normal and spinal-cord injured subjects. The detection of end contact (EC), normally toe-off, and initial contact (IC) normally, heel strike was based on either foot linear accelerations or foot sagittal angular velocity or shank sagittal angular velocity. The results showed that all three methods were as accurate as foot switches in estimating times of IC and EC for normal gait patterns. In spinal-cord injured subjects, shank angular velocity was significantly less accurate (p<0.02). We conclude that detection based on foot linear accelerations or foot angular velocity can correctly identify the timing of IC and EC events in both normal and spinal-cord injured subjects.
Angular momentum conservation law in light-front quantum field theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiu, Kelly Yu-Ju; Brodsky, Stanley J.
We prove the Lorentz invariance of the angular momentum conservation law and the helicity sum rule for relativistic composite systems in the light-front formulation. We explicitly show that j 3, the z -component of the angular momentum remains unchanged under Lorentz transformations generated by the light-front kinematical boost operators. The invariance of j 3 under Lorentz transformations is a feature unique to the front form. Applying the Lorentz invariance of the angular quantum number in the front form, we obtain a selection rule for the orbital angular momentum which can be used to eliminate certain interaction vertices in QED andmore » QCD. We also generalize the selection rule to any renormalizable theory and show that there exists an upper bound on the change of orbital angular momentum in scattering processes at any fixed order in perturbation theory.« less
Angular momentum conservation law in light-front quantum field theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiu, Kelly Yu-Ju; Brodsky, Stanley J.
We prove the Lorentz invariance of the angular momentum conservation law and the helicity sum rule for relativistic composite systems in the light-front formulation. We explicitly show that j 3 , the z -component of the angular momentum remains unchanged under Lorentz transformations generated by the light-front kinematical boost operators. The invariance of j 3 under Lorentz transformations is a feature unique to the front form. Applying the Lorentz invariance of the angular quantum number in the front form, we obtain a selection rule for the orbital angular momentum which can be used to eliminate certain interaction vertices in QEDmore » and QCD. We also generalize the selection rule to any renormalizable theory and show that there exists an upper bound on the change of orbital angular momentum in scattering processes at any fixed order in perturbation theory.« less
Padgett, Miles [University of Glasgow, Glasgow, Scotland
2017-12-09
Optical vortices and orbital angular momentum are currently topical subjects in the optics literature. Although seemingly esoteric, they are, in fact, the generic state of light and arise whenever three or more plane waves interfere. To be observed by eye the light must be monochromatic. Laser speckle is one such example, where the optical energy circulates around each black spot, giving a local orbital angular momentum. This talk with report three on-going studies. First, when considering a volume of interfering waves, the laser specs map out threads of complete darkness embedded in the light. Do these threads form loops? Links? Or even knots? Second, when looking through a rapidly spinning window, the image of the world on the other side is rotated: true or false? Finally, the entanglement of orbital angular momentum states means measuring how the angular position of one photons sets the angular momentum of another: is this an angular version of the EPR (Einstein, Podolsky, and Rosen) paradox?
Wang, Wanlin; Zhang, Wang; Chen, Weixin; Gu, Jiajun; Liu, Qinglei; Deng, Tao; Zhang, Di
2013-01-15
The wide angular range of the treelike structure in Morpho butterfly scales was investigated by finite-difference time-domain (FDTD)/particle-swarm-optimization (PSO) analysis. Using the FDTD method, different parameters in the Morpho butterflies' treelike structure were studied and their contributions to the angular dependence were analyzed. Then a wide angular range was realized by the PSO method from quantitatively designing the lamellae deviation (Δy), which was a crucial parameter with angular range. The field map of the wide-range reflection in a large area was given to confirm the wide angular range. The tristimulus values and corresponding color coordinates for various viewing directions were calculated to confirm the blue color in different observation angles. The wide angular range realized by the FDTD/PSO method will assist us in understanding the scientific principles involved and also in designing artificial optical materials.
Windolf, Markus; Klos, Kajetan; Wähnert, Dirk; van der Pol, Bas; Radtke, Roman; Schwieger, Karsten; Jakob, Roland P
2010-05-21
Angle-stable locking plates have improved the surgical management of fractures. However, locking implants are costly and removal can be difficult. The aim of this in vitro study was to evaluate the biomechanical performance of a newly proposed crossed-screw concept ("Fence") utilizing conventional (non-locked) implants in comparison to conventional LC-DCP (limited contact dynamic compression plate) and LCP (locking compression plate) stabilization, in a human cadaveric diaphyseal gap model. In eight pairs of human cadaveric femora, one femur per pair was randomly assigned to receive a Fence construct with either elevated or non-elevated plate, while the contralateral femur received either an LCP or LC-DCP instrumentation. Fracture gap motion and fatigue performance under cyclic loading was evaluated successively in axial compression and in torsion. Results were statistically compared in a pairwise setting. The elevated Fence constructs allowed significantly higher gap motion compared to the LCP instrumentations (axial compression: p
Admiralty Inlet Advanced Turbulence Measurements: May 2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kilcher, Levi
This data is from measurements at Admiralty Head, in Admiralty Inlet (Puget Sound) in May of 2015. The measurements were made using Inertial Motion Unit (IMU) equipped ADVs mounted on a 'StableMoor' (Manufacturer: DeepWater Buoyancy) buoy and a Tidal Turbulence Mooring (TTM). These platforms position ADV heads above the seafloor to make mid-depth turbulence measurements. The inertial measurements from the IMU allows for removal of mooring motion in post processing. The mooring and buoy motion has been removed from the stream-wise and vertical velocity signals (u, w). The lateral (v) velocity has some 'persistent motion contamination' due to mooring sway.more » The TTM was deployed with one ADV, it's position was: 48 09.145', -122 41.209' The StableMoor was deployed twice, the first time it was deployed in 'wing-mode' with two ADVs ('Port' and 'Star') at: 48 09.166', -122 41.173' The second StableMoor deployment was in 'Nose' mode with one ADV at: 48 09.166', -122 41.174' Units ----- - Velocity data (_u, urot, uacc) is in m/s. - Acceleration (Accel) data is in m/s^2. - Angular rate (AngRt) data is in rad/s. - The components of all vectors are in 'ENU' orientation. That is, the first index is True East, the second is True North, and the third is Up (vertical). - All other quantities are in the units defined in the Nortek Manual. Motion correction and rotation into the ENU earth reference frame was performed using the Python-based open source DOLfYN library (http://lkilcher.github.io/dolfyn/). Details on motion correction can be found there. Additional details on TTM measurements at this site can be found in the included Marine Energy Technology Symposium paper.« less
Whole-body angular momentum during stair walking using passive and powered lower-limb prostheses.
Pickle, Nathaniel T; Wilken, Jason M; Aldridge, Jennifer M; Neptune, Richard R; Silverman, Anne K
2014-10-17
Individuals with a unilateral transtibial amputation have a greater risk of falling compared to able-bodied individuals, and falling on stairs can lead to serious injuries. Individuals with transtibial amputations have lost ankle plantarflexor muscle function, which is critical for regulating whole-body angular momentum to maintain dynamic balance. Recently, powered prostheses have been designed to provide active ankle power generation with the goal of restoring biological ankle function. However, the effects of using a powered prosthesis on the regulation of whole-body angular momentum are unknown. The purpose of this study was to use angular momentum to evaluate dynamic balance in individuals with a transtibial amputation using powered and passive prostheses relative to able-bodied individuals during stair ascent and descent. Ground reaction forces, external moment arms, and joint powers were also investigated to interpret the angular momentum results. A key result was that individuals with an amputation had a larger range of sagittal-plane angular momentum during prosthetic limb stance compared to able-bodied individuals during stair ascent. There were no significant differences in the frontal, transverse, or sagittal-plane ranges of angular momentum or maximum magnitude of the angular momentum vector between the passive and powered prostheses during stair ascent or descent. These results indicate that individuals with an amputation have altered angular momentum trajectories during stair walking compared to able-bodied individuals, which may contribute to an increased fall risk. The results also suggest that a powered prosthesis provides no distinct advantage over a passive prosthesis in maintaining dynamic balance during stair walking. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Peschken, N.; Athanassoula, E.; Rodionov, S. A.
2017-06-01
We study the effect of angular momentum on the surface density profiles of disc galaxies, using high-resolution simulations of major mergers whose remnants have downbending radial density profiles (type II). As described in the previous papers of this series, in this scenario, most of the disc mass is acquired after the collision via accretion from a hot gaseous halo. We find that the inner and outer disc scalelengths, as well as the break radius, correlate with the total angular momentum of the initial merging system, and are larger for high-angular momentum systems. We follow the angular momentum redistribution in our simulated galaxies, and find that like the mass, the disc angular momentum is acquired via accretion, I.e. to the detriment of the gaseous halo. Furthermore, high-angular momentum systems give more angular momentum to their discs, which directly affects their radial density profile. Adding simulations of isolated galaxies to our sample, we find that the correlations are valid also for disc galaxies evolved in isolation. We show that the outer part of the disc at the end of the simulation is populated mainly by inside-out stellar migration, and that in galaxies with higher angular momentum, stars travel radially further out. This, however, does not mean that outer disc stars (in type II discs) were mostly born in the inner disc. Indeed, generally the break radius increases over time, and not taking this into account leads to overestimating the number of stars born in the inner disc.
Demonstrating the Direction of Angular Velocity in Circular Motion
NASA Astrophysics Data System (ADS)
Demircioglu, Salih; Yurumezoglu, Kemal; Isik, Hakan
2015-09-01
Rotational motion is ubiquitous in nature, from astronomical systems to household devices in everyday life to elementary models of atoms. Unlike the tangential velocity vector that represents the instantaneous linear velocity (magnitude and direction), an angular velocity vector is conceptually more challenging for students to grasp. In physics classrooms, the direction of an angular velocity vector is taught by the right-hand rule, a mnemonic tool intended to aid memory. A setup constructed for instructional purposes may provide students with a more easily understood and concrete method to observe the direction of the angular velocity. This article attempts to demonstrate the angular velocity vector using the observable motion of a screw mounted to a remotely operated toy car.
Fabrication of the planar angular rotator using the CMOS process
NASA Astrophysics Data System (ADS)
Dai, Ching-Liang; Chang, Chien-Liu; Chen, Hung-Lin; Chang, Pei-Zen
2002-05-01
In this investigation we propose a novel planar angular rotator fabricated by the conventional complementary metal-oxide semiconductor (CMOS) process. Following the 0.6 μm single poly triple metal (SPTM) CMOS process, the device is completed by a simple maskless, post-process etching step. The rotor of the planar angular rotator rotates around its geometric center with electrostatic actuation. The proposed design adopts an intelligent mechanism including the slider-crank system to permit simultaneous motion. The CMOS planar angular rotator could be driven with driving voltages of around 40 V. The design proposed here has a shorter response time and longer life, without problems of friction and wear, compared to the more common planar angular micromotor.
Method and system for controlling start of a permanent magnet machine
Walters, James E.; Krefta, Ronald John
2003-10-28
Method and system for controlling a permanent magnet machine are provided. The method provides a sensor assembly for sensing rotor sector position relative to a plurality of angular sectors. The method further provides a sensor for sensing angular increments in rotor position. The method allows starting the machine in a brushless direct current mode of operation using a calculated initial rotor position based on an initial angular sector position information from the sensor assembly. Upon determining a transition from the initial angular sector to the next angular sector, the method allows switching to a sinusoidal mode of operation using rotor position based on rotor position information from the incremental sensor.
Angular motion estimation using dynamic models in a gyro-free inertial measurement unit.
Edwan, Ezzaldeen; Knedlik, Stefan; Loffeld, Otmar
2012-01-01
In this paper, we summarize the results of using dynamic models borrowed from tracking theory in describing the time evolution of the state vector to have an estimate of the angular motion in a gyro-free inertial measurement unit (GF-IMU). The GF-IMU is a special type inertial measurement unit (IMU) that uses only a set of accelerometers in inferring the angular motion. Using distributed accelerometers, we get an angular information vector (AIV) composed of angular acceleration and quadratic angular velocity terms. We use a Kalman filter approach to estimate the angular velocity vector since it is not expressed explicitly within the AIV. The bias parameters inherent in the accelerometers measurements' produce a biased AIV and hence the AIV bias parameters are estimated within an augmented state vector. Using dynamic models, the appended bias parameters of the AIV become observable and hence we can have unbiased angular motion estimate. Moreover, a good model is required to extract the maximum amount of information from the observation. Observability analysis is done to determine the conditions for having an observable state space model. For higher grades of accelerometers and under relatively higher sampling frequency, the error of accelerometer measurements is dominated by the noise error. Consequently, simulations are conducted on two models, one has bias parameters appended in the state space model and the other is a reduced model without bias parameters.
Angular Motion Estimation Using Dynamic Models in a Gyro-Free Inertial Measurement Unit
Edwan, Ezzaldeen; Knedlik, Stefan; Loffeld, Otmar
2012-01-01
In this paper, we summarize the results of using dynamic models borrowed from tracking theory in describing the time evolution of the state vector to have an estimate of the angular motion in a gyro-free inertial measurement unit (GF-IMU). The GF-IMU is a special type inertial measurement unit (IMU) that uses only a set of accelerometers in inferring the angular motion. Using distributed accelerometers, we get an angular information vector (AIV) composed of angular acceleration and quadratic angular velocity terms. We use a Kalman filter approach to estimate the angular velocity vector since it is not expressed explicitly within the AIV. The bias parameters inherent in the accelerometers measurements' produce a biased AIV and hence the AIV bias parameters are estimated within an augmented state vector. Using dynamic models, the appended bias parameters of the AIV become observable and hence we can have unbiased angular motion estimate. Moreover, a good model is required to extract the maximum amount of information from the observation. Observability analysis is done to determine the conditions for having an observable state space model. For higher grades of accelerometers and under relatively higher sampling frequency, the error of accelerometer measurements is dominated by the noise error. Consequently, simulations are conducted on two models, one has bias parameters appended in the state space model and the other is a reduced model without bias parameters. PMID:22778586
A Missile-Borne Angular Velocity Sensor Based on Triaxial Electromagnetic Induction Coils
Li, Jian; Wu, Dan; Han, Yan
2016-01-01
Aiming to solve the problem of the limited measuring range for angular motion parameters of high-speed rotating projectiles in the field of guidance and control, a self-adaptive measurement method for angular motion parameters based on the electromagnetic induction principle is proposed. First, a framework with type bent “I-shape” is used to design triaxial coils in a mutually orthogonal way. Under the condition of high rotational speed of a projectile, the induction signal of the projectile moving across a geomagnetic field is acquired by using coils. Second, the frequency of the pulse signal is adjusted self-adaptively. Angular velocity and angular displacement are calculated in the form of periodic pulse counting and pulse accumulation, respectively. Finally, on the basis of that principle prototype of the sensor is researched and developed, performance of measuring angular motion parameters are tested on the sensor by semi-physical and physical simulation experiments, respectively. Experimental results demonstrate that the sensor has a wide measuring range of angular velocity from 1 rps to 100 rps with a measurement error of less than 0.3%, and the angular displacement measurement error is lower than 0.2°. The proposed method satisfies measurement requirements for high-speed rotating projectiles with an extremely high dynamic range of rotational speed and high precision, and has definite value to engineering applications in the fields of attitude determination and geomagnetic navigation. PMID:27706039
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goffin, Mark A., E-mail: mark.a.goffin@gmail.com; Buchan, Andrew G.; Dargaville, Steven
2015-01-15
A method for applying goal-based adaptive methods to the angular resolution of the neutral particle transport equation is presented. The methods are applied to an octahedral wavelet discretisation of the spherical angular domain which allows for anisotropic resolution. The angular resolution is adapted across both the spatial and energy dimensions. The spatial domain is discretised using an inner-element sub-grid scale finite element method. The goal-based adaptive methods optimise the angular discretisation to minimise the error in a specific functional of the solution. The goal-based error estimators require the solution of an adjoint system to determine the importance to the specifiedmore » functional. The error estimators and the novel methods to calculate them are described. Several examples are presented to demonstrate the effectiveness of the methods. It is shown that the methods can significantly reduce the number of unknowns and computational time required to obtain a given error. The novelty of the work is the use of goal-based adaptive methods to obtain anisotropic resolution in the angular domain for solving the transport equation. -- Highlights: •Wavelet angular discretisation used to solve transport equation. •Adaptive method developed for the wavelet discretisation. •Anisotropic angular resolution demonstrated through the adaptive method. •Adaptive method provides improvements in computational efficiency.« less
A Missile-Borne Angular Velocity Sensor Based on Triaxial Electromagnetic Induction Coils.
Li, Jian; Wu, Dan; Han, Yan
2016-09-30
Aiming to solve the problem of the limited measuring range for angular motion parameters of high-speed rotating projectiles in the field of guidance and control, a self-adaptive measurement method for angular motion parameters based on the electromagnetic induction principle is proposed. First, a framework with type bent "I-shape" is used to design triaxial coils in a mutually orthogonal way. Under the condition of high rotational speed of a projectile, the induction signal of the projectile moving across a geomagnetic field is acquired by using coils. Second, the frequency of the pulse signal is adjusted self-adaptively. Angular velocity and angular displacement are calculated in the form of periodic pulse counting and pulse accumulation, respectively. Finally, on the basis of that principle prototype of the sensor is researched and developed, performance of measuring angular motion parameters are tested on the sensor by semi-physical and physical simulation experiments, respectively. Experimental results demonstrate that the sensor has a wide measuring range of angular velocity from 1 rps to 100 rps with a measurement error of less than 0.3%, and the angular displacement measurement error is lower than 0.2°. The proposed method satisfies measurement requirements for high-speed rotating projectiles with an extremely high dynamic range of rotational speed and high precision, and has definite value to engineering applications in the fields of attitude determination and geomagnetic navigation.
The Angular Momentum of Baryons and Dark Matter Halos Revisited
NASA Technical Reports Server (NTRS)
Kimm, Taysun; Devriendt, Julien; Slyz, Adrianne; Pichon, Christophe; Kassin, Susan A.; Dubois, Yohan
2011-01-01
Recent theoretical studies have shown that galaxies at high redshift are fed by cold, dense gas filaments, suggesting angular momentum transport by gas differs from that by dark matter. Revisiting this issue using high-resolution cosmological hydrodynamics simulations with adaptive-mesh refinement (AMR), we find that at the time of accretion, gas and dark matter do carry a similar amount of specific angular momentum, but that it is systematically higher than that of the dark matter halo as a whole. At high redshift, freshly accreted gas rapidly streams into the central region of the halo, directly depositing this large amount of angular momentum within a sphere of radius r = 0.1R(sub vir). In contrast, dark matter particles pass through the central region unscathed, and a fraction of them ends up populating the outer regions of the halo (r/R(sub vir) > 0.1), redistributing angular momentum in the process. As a result, large-scale motions of the cosmic web have to be considered as the origin of gas angular momentum rather than its virialised dark matter halo host. This generic result holds for halos of all masses at all redshifts, as radiative cooling ensures that a significant fraction of baryons remain trapped at the centre of the halos. Despite this injection of angular momentum enriched gas, we predict an amount for stellar discs which is in fair agreement with observations at z=0. This arises because the total specific angular momentum of the baryons (gas and stars) remains close to that of dark matter halos. Indeed, our simulations indicate that any differential loss of angular momentum amplitude between the two components is minor even though dark matter halos continuously lose between half and two-thirds of their specific angular momentum modulus as they evolve. In light of our results, a substantial revision of the standard theory of disc formation seems to be required. We propose a new scenario where gas efficiently carries the angular momentum generated by large-scale structure motions deep inside dark matter halos, redistributing it only in the vicinity of the disc.
NASA Astrophysics Data System (ADS)
Mirizzi, Alessandro
2013-10-01
The flavor evolution of neutrinos emitted by a supernova (SN) core is strongly affected by the refractive effects associated with the neutrino-neutrino interactions in the deepest stellar regions. Till now, all numerical studies have assumed the axial symmetry for the “multi-angle effects” associated with the neutrino-neutrino interactions. Recently, it has been pointed out in Raffelt, Sarikas, and Seixas [Phys. Rev. Lett. 111, 091101 (2013)] that if this assumption is removed, a new multi-azimuthal-angle (MAA) instability emerges in the flavor evolution of the dense SN neutrino gas, in addition to the one caused by multi-zenith-angle effects. Inspired by this result, for the first time we numerically solve the nonlinear neutrino propagation equations in SN, introducing the azimuthal angle as an angular variable in addition to the usual zenith angle. We consider simple energy spectra with an excess of νe over ν¯e. We find that even starting with a complete axial symmetric neutrino emission, the MAA effects would lead to significant flavor conversions in normal mass hierarchy, in cases otherwise stable under the only multi-zenith-angle effects. The final outcome of the flavor conversions, triggered by the MAA instability, depends on the initial asymmetry between νe and ν¯e spectra. If it is sufficiently large, final spectra would show an ordered behavior with spectral swaps and splits. Conversely, for small flavor asymmetries flavor decoherence among angular modes develops, also affecting the flavor evolution in the inverted mass hierarchy.
Characterization of proximal femoral anatomy in the skeletally-immature patient.
Beutel, B G; Girdler, S J; Collins, J A; Otsuka, N Y; Chu, A
2018-04-01
The morphology of the proximal femur has been extensively studied in the adult population. However, no literature providing a comprehensive evaluation of the anatomy in paediatric patients exists. The current study aims to characterize such anatomy in skeletally-immature patients, examine potential differences between genders, and analyze how these anatomical parameters change with age. Cadaveric femurs from the Hamann-Todd Osteological Collection were examined. Specimens with open physes and no skeletal disease or deformity were included for analysis. Age and gender were recorded for each specimen. Each femur was photographed in standardized modified axial and anteroposterior views. In all, 14 proximal femoral anatomical parameters were measured from these photographs. Comparisons between genders and age were calculated. A total of 43 femurs from ages four to 17 years met inclusion criteria. The majority were female (56%); no difference existed in age between genders (p = 0.62). The specimens had a neutral mean neck-shaft angle (130.7º) and anteversion (12.8º), and the sphericity of the ossified femoral heads was symmetrical. Male specimens had significantly higher alpha angles (p = 0.01), posterior offset (p = 0.02), neck width (p = 0.04) and head-neck length ratio (p = 0.02) values than female specimens. Strong positive correlations exist between length/size parameters and age, while negligible correlations were noted for angular measurements. This study establishes reference values for a comprehensive list of anatomical parameters for the skeletally-immature ossified proximal femur. It highlights gender differences in morphology and demonstrates that angular characteristics remain relatively stable while length parameters generally increase with age. Level III Diagnostic.
Jiang, Zhi Hao; Cui, Zheng; Yue, Taiwei; Zhu, Yong; Werner, Douglas H
2017-08-01
A compact and flexible circularly polarized (CP) wearable antenna is introduced for wireless body-area network systems at the 2.4 GHz industrial, scientific, and medical (ISM) band, which is implemented by employing a low-loss composite of polydimethylsiloxane (PDMS) and silver nanowires (AgNWs). The circularly polarized radiation is enabled by placing a planar linearly polarized loop monopole above a finite anisotropic artificial ground plane. By truncating the anisotropic artificial ground plane to contain only 2 by 2 unit cells, an integrated antenna with a compact form factor of 0.41λ 0 × 0.41λ 0 × 0.045λ 0 is obtained, all while possessing an improved angular coverage of CP radiation. A flexible prototype was fabricated and characterized, experimentally achieving S 11 <- 15 dB, an axial ratio of less than 3 dB, a gain of around 5.2 dBi, and a wide CP angular coverage in the targeted ISM band. Furthermore, this antenna is compared to a conventional CP patch antenna of the same physical size, which is also comprised of the same PDMS and AgNW composite. The results of this comparison reveal that the proposed antenna has much more stable performance under bending and human body loading, as well as a lower specific absorption rate. In all, the demonstrated wearable antenna offers a compact, flexible, and robust solution which makes it a strong candidate for future integration into body-area networks that require efficient off-body communications.
Extremely stable piezo mechanisms for the new gravitational wave observatory
NASA Astrophysics Data System (ADS)
Pijnenburg, Joep; Rijnveld, Niek; Hogenhuis, Harm
2017-11-01
Detection and observation of gravitational waves requires extreme stability in the frequency range 3e-5 Hz to 1 Hz. NGO/LISA will attain this by creating a giant interferometer in space, based on free floating proof masses in three spacecrafts. To operate NGO/LISA, the following piezo mechanisms are developed: 1. A piezo stack mechanism (Point Angle Ahead Mechanism) Due to time delay in the interferometer arms, the beam angle needs to be corrected. A mechanism rotating a mirror with a piezo stack performs this task. The critical requirements are the contribution to the optical path difference (less than 1.4 pm/√Hz) and the angular jitter (less than 8 nrad/√Hz). 2. A piezo sliding mechanism (Fiber Switching Unit Actuator) To switch from primary to the redundant laser source, a Fiber Switching Unit Actuator (FSUA) is developed. The critical requirements are the coalignment of outgoing beams of <+/-1 micro radian and <+/-1 micro meter. A redundant piezo sliding mechanism rotates a wave plate over 45 degrees. 3. A piezo stepping mechanism (In Field Pointing Mechanism) Due to seasonal orbit evolution effects, beams have to be corrected over a stroke of +/-2.5 degrees. The critical requirements are the contribution to the optical path difference (less than 3.0 pm/√Hz) and the angular jitter (less than 1 nrad/√Hz). Due to the large stroke, a piezo stepping concept was selected. Dedicated control algorithms have been implemented to achieve these challenging requirements. This paper gives description of the designs and the ongoing process of qualifying the mechanisms for space applications.