Smart packaging for the monitoring of fish freshness
NASA Astrophysics Data System (ADS)
Pacquit, Alexis; Lau, King Tong; Diamond, Dermot
2005-06-01
The development of chromo-reactive sensor spots for real time monitoring of fish freshness is described. The on-package sensor spots incorporating an immobilized pH sensitive dye, respond through visible colour change to basic volatile spoilage compounds collectively known as Total Volatile Basic Nitrogen (TVB-N). Trials on fresh fish filets have verified that the sensor can be employed for real time monitoring of fish spoilage. The sensor response can be interrogated with a simple, inexpensive reflectance colorimeter that we have developed based on two LEDs and a photodetector.
Tsunoda, Ei; Gross, Josef J; Kawashima, Chiho; Bruckmaier, Rupert M; Kida, Katsuya; Miyamoto, Akio
2017-01-01
The present study investigated over 9 months the changes of fermentative quality of total mixed rations (TMR) containing grass silage (GS) as a major component, associated with changes in the volatile basic nitrogen (VBN) levels in an experimental dairy farm. Effects of VBN levels in TMR on metabolic parameters, reactive oxygen species (ROS) production by blood polymorphonuclear leukocytes (PMNs) and conception rates for dairy cows were analyzed. According to VBN levels in TMR during survey periods, three distinct phases were identified; phase A with low VBN; phase B with high VBN; and phase C with mid-VBN. Metabolic parameters in blood were all within normal range. However, during phases B and C, nitrogen metabolic indices such as blood urea nitrogen and milk urea nitrogen showed higher levels compared to those in phase A, and a simultaneous increase in ROS production by blood PMNs and the load on hepatic function in metabolic parameters was observed in the cows with a lower conception rate. This suggests that feeding TMR with elevated VBN levels due to poor fermented GS results in stimulation of ROS production by PMNs by ammonia, and negatively affects metabolism and reproductive performance in lactating dairy cow. © 2016 Japanese Society of Animal Science.
Effect of peach gum polysaccharides on quality changes of white shrimp.
Yao, Xing-Cun; Chang, Cheng-Fei; Wu, Sheng-Jun
2015-01-01
Peach gum polysaccharides (PGPs) have both antibacterial and antioxidant activities. In this study, the retardation effect of the PGPs on the quality changes of white shrimp (Penaeus vannamei) during refrigerated storage was investigated. Shrimp samples were untreated with different concentrations of the PGPs solution and then they were stored under refrigerated conditions for 10 days. During refrigerated storage, shrimp samples were taken periodically and their total viable count, pH value, total volatile basic nitrogen, and overall acceptability score were evaluated. Compared to the control, treatment of the PGPs solution effectively retarded bacterial growth and pH changes, reduced total volatile basic nitrogen, and increased overall acceptability score of white shrimp (P. vannamei) during refrigerated storage. The results indicate that treatment of PGPs could be a promising means to preserve white shrimp (P. vannamei). Copyright © 2014 Elsevier B.V. All rights reserved.
On-site detection of packaged squid freshness
NASA Astrophysics Data System (ADS)
Ahmad, Noor Azizah; Heng, Lee Yook; Salam, Faridah; Hanifah, Sharina Abu
2018-04-01
The development of indicator label for detection of total volatile basic nitrogen (TVB-N) is described. Dye extract from edible plants containing anthocyanins was immobilized onto iota-carrageenan as polymer matrix. TVB-N detection worked based on pH increase as the basic deterioration volatile amines generated in the package headspace. Results showed that the indicator label has changed color from blue to green after 12 hours of storage at ambient conditions. The TVB-N value was 38.9648 mg /100 g which is exceeded of acceptability level for seafood products. The pH value of squid flesh has also increased during storage. The colour values of L * and a * negative increases while b* negative decrease with increasing storage time. The indicator label is potentially used as freshness indicator for squid at ambient conditions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Volatile Solids and Nitrogen Removal... Pt. 98, Subpt. JJ, Table JJ-4 Table JJ-4 to Subpart JJ of Part 98—Volatile Solids and Nitrogen Removal through Solids Separation Type of solids separation Volatile solids removal (decimal) Nitrogen...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Volatile Solids and Nitrogen Removal... Pt. 98, Subpt. JJ, Table JJ-4 Table JJ-4 to Subpart JJ of Part 98—Volatile Solids and Nitrogen Removal through Solids Separation Type of solids separation Volatile solids removal (decimal) Nitrogen...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Volatile Solids and Nitrogen Removal... Pt. 98, Subpt. JJ, Table JJ-4 Table JJ-4 to Subpart JJ of Part 98—Volatile Solids and Nitrogen Removal through Solids Separation Type of solids separation Volatile solids removal (decimal) Nitrogen...
Synergistic Effect of Freezing and Irradiation on Bonito Fish ( Sarda sarda Bloch, 1793).
Altan, Can Okan; Turan, Hülya
2016-12-01
In this study, bonito fish ( Sarda sarda Bloch, 1793) were irradiated at 3 or 5 kGy, packaged, frozen, and stored at -20 ± 2°C for 12 months. During storage, the microbiological, physical, and chemical changes of the fish flesh were then assessed. Increasing the irradiation dose to 5 kGy provided greater inhibition of mesophilic and psychotropic aerobic bacteria (P < 0.05). Because fewer bacteria were detected in irradiated (3 and 5 kGy) as compared with unirradiated control fish suggests that freezing and irradiation yielded better results when combined. Irradiation at 3 and 5 kGy also positively impacted water activity, total volatile basic nitrogen, thiobarbituric acid-reactive substances, trimethylamine, and odor compared with the control group. However, a significant difference was not seen between the 3- and 5-kGy groups in terms of water activity, total volatile basic nitrogen, thiobarbituric acid-reactive substances, trimethylamine, and odor results (P > 0.05). Based on these findings, fish irradiated at 3 and 5 kGy remained within consumable limits during 12 months of frozen storage, while the control group was unacceptable after 9 months.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 21 2011-07-01 2011-07-01 false State-Specific Volatile Solids (VS) and Nitrogen (N) Excretion Rates for Cattle JJ Table JJ-3 to Subpart JJ of Part 98 Protection of... Volatile Solids (VS) and Nitrogen (N) Excretion Rates for Cattle State Volatile solids excretion rate (kg...
Nitrogen Trifluoride-Based Fluoride- Volatility Separations Process: Initial Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
McNamara, Bruce K.; Scheele, Randall D.; Casella, Andrew M.
2011-09-28
This document describes the results of our investigations on the potential use of nitrogen trifluoride as the fluorinating and oxidizing agent in fluoride volatility-based used nuclear fuel reprocessing. The conceptual process uses differences in reaction temperatures between nitrogen trifluoride and fuel constituents that produce volatile fluorides to achieve separations and recover valuable constituents. We provide results from our thermodynamic evaluations, thermo-analytical experiments, kinetic models, and provide a preliminary process flowsheet. The evaluations found that nitrogen trifluoride can effectively produce volatile fluorides at different temperatures dependent on the fuel constituent.
Hui, Guohua; Liu, Wei; Feng, Hailin; Li, Jian; Gao, Yuanyuan
2016-07-15
Effects of chitosan combined with different concentrations of nisin on quality enhancement of large yellow croaker (Pseudosciaena crocea) stored at 4 °C were evaluated for 8 days. Changes in sensory score and volatile spoilage products, total viable counts (TVC), and physiochemical indexes including weight loss, colour, pH, total volatile basic nitrogen (TVB-N), and K-value were examined. Results demonstrated that nisin-treated samples presented better quality preservation effects than chitosan alone. 1% chitosan combined with 0.6% nisin presented optimal quality enhancement effects, such as moisture loss control, volatile spoilage inhibition, TVB-N reduction, TVC growth control, and colour and sensory acceptability maintenance. Therefore, chitosan combined with nisin is promising in large yellow croaker shelf life extension. Copyright © 2016 Elsevier Ltd. All rights reserved.
Review of methods for determination of ammonia volatilization in farmland
NASA Astrophysics Data System (ADS)
Yang, J.; Jiao, Y.; Yang, W. Z.; Gu, P.; Bai, S. G.; Liu, L. J.
2018-02-01
Ammonia is one of the most abundant alkaline trace gases in the atmosphere, which is one of the important factors affecting atmospheric quality. Excessive application of nitrogen fertilizer is the main source of global ammonia emissions, which not only exacerbate greenhouse gas emissions, but also leads to eutrophication of water bodies. In this paper, the basic principle, the operation process, the advantages and disadvantages, and the previous research results of the method are summarized in detail, including the enclosure method, the venting method, the continuous airflow enclosure method, the wind tunnel method and the micro-meteorological method. So as to provide a theoretical basis for selecting the appropriate method for determination of ammonia volatilization.
Del Blanco, Alba; Caro, Irma; Quinto, Emiliano J; Mateo, Javier
2017-04-01
Meat spoilage greatly depends on meat composition and storage conditions. Microbial and biochemical changes in minced pork (100-g portions) wrapped with a polyvinyl chloride film during a 4-day refrigerated storage were studied. As glucose is the first substrate used by spoilage bacteria and when it is depleted bacteria could generate undesirable volatiles, the effect of the addition of glucose to minced meat was also studied. Three treatments were used: control (C), without added glucose, and low and high glucose concentration (L and H), 150mg and 750mg of glucose in 100g of meat, respectively. Spoilage bacteria, pH, redox potential, colour, basic volatile nitrogen, glucose, organic acids, and volatiles were analyzed in both recently prepared and stored pork samples. Storage resulted in increased levels of lactic acid bacteria and glucose-derived short chain alkyl volatiles, and a decrease in redox potential and volatile aldehyde levels. The addition of glucose to meat did not affect the biochemical characteristics of stored minced pork. Copyright © 2016 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Volatile Solids and Nitrogen Removal through Solids Separation JJ Table JJ-4 to Subpart JJ of Part 98 Protection of Environment ENVIRONMENTAL... Pt. 98, Subpt. JJ, Table JJ-4 Table JJ-4 to Subpart JJ of Part 98—Volatile Solids and Nitrogen...
Shelf-life extension of Pacific white shrimp using algae extracts during refrigerated storage.
Li, Yingchang; Yang, Zhongyan; Li, Jianrong
2017-01-01
Shrimp is a low-fat, high-protein aquatic product, and is susceptible to spoilage during storage. To establish an effective method for the quality control of Pacific white shrimp, the effects of polyphenols (PP) and polysaccharides (PS) from Porphyra yezoensis on the quality of Pacific white shrimp were assessed during refrigerated storage. Pacific white shrimp samples were treated with 5 g L -1 polyphenols, and 8 g L -1 polysaccharides, then stored at 4 ± 1 °C for 8 days. All samples were subjected to measurement of total viable count (TVC), pH, total volatile basic nitrogen (TVB-N), K-value, thiobarbituric acid (TBA), polyphenol oxidase (PPO) activity, and were also assessed by sensory evaluation. The results showed that PP, PS, and the mixture of polyphenols and polysaccharides (PP+PS) could inhibit the increase of total volatile basic nitrogen (TVB-N), thiobarbituric acid (TBA) and K-value, and reduce total viable count (TVC) compared with the control group. PP could also inhibit polyphenol oxidase (PPO) activity. Sensory evaluation proved the efficacy of PP and PS by maintaining the overall quality of Pacific white shrimp during refrigerated storage. Moreover, PP+PS could extend the shelf-life of shrimp by 3-4 days compared with the control group. PP+PS could more effectively maintain quality and extend shelf-life during refrigerated storage. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
On the use of thermal NF3 as the fluorination and oxidation agent in treatment of used nuclear fuels
NASA Astrophysics Data System (ADS)
Scheele, Randall; McNamara, Bruce; Casella, Andrew M.; Kozelisky, Anne
2012-05-01
This paper presents results of our investigation on the use of nitrogen trifluoride as a fluorination or fluorination/oxidation agent for separating valuable constituents from used nuclear fuels by exploiting the different volatilities of the constituent fission product and actinide fluorides. Our thermodynamic calculations show that nitrogen trifluoride has the potential to produce volatile fission product and actinide fluorides from oxides and metals that can form volatile fluorides. Simultaneous thermogravimetric and differential thermal analyses show that the oxides of lanthanum, cerium, rhodium, and plutonium are fluorinated but do not form volatile fluorides when treated with nitrogen trifluoride at temperatures up to 550 °C. However, depending on temperature, volatile fluorides or oxyfluorides can form from nitrogen trifluoride treatment of the oxides of niobium, molybdenum, ruthenium, tellurium, uranium, and neptunium. Thermoanalytical studies demonstrate near-quantitative separation of uranium from plutonium in a mixed 80% uranium and 20% plutonium oxide. Our studies of neat oxides and metals suggest that the reactivity of nitrogen trifluoride may be adjusted by temperature to selectively separate the major volatile fuel constituent uranium from minor volatile constituents, such as Mo, Tc, Ru and from the non-volatile fuel constituents based on differences in their reaction temperatures and kinetic behaviors. This reactivity is novel with respect to that reported for other fluorinating reagents F2, BrF5, ClF3.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-01
... Volatile Organic Compounds and Nitrogen Oxides AGENCY: Environmental Protection Agency (EPA). ACTION... requirements for stationary sources of volatile organic compounds (VOCs) and nitrogen oxides (NO X ). This... to 310 CMR 7.19, Reasonably Available Control Technology (RACT) for Sources of Oxides of Nitrogen (NO...
Sang, Meng-meng; Fan, Hui; Jiang, Shan-shan; Jiang, Jing-yan
2015-09-01
In order to better understand the characteristics of nitrogen loss through different pathways under conventional fertilization conditions, a field experiment was conducted to investigate the variations of N2O emission, NH3 volatilization, N losses through surface runoff and leaching caused by the application of nitrogen fertilizers during summer maize growing season in the Middle and Lower reaches of the Yangtze River, China. Our results showed that when compound fertilizer was used as basal fertilizer at the nitrogen rate of 150 kg.hm-2, and urea with the same level of fertilizing as topdressing, the N2O emission coefficient in the entire growing season was 3. 3%, NH3 volatilization loss rate was 10. 2%, and nitrogen loss rate by leaching and surface runoff was 11. 2% and 5. 1%, respectively. In addition, leaching was the main pathway of nitrogen loss after basal fertilizer, while NH, volatilization and nitrogen leaching accounted for the majority of nitrogen loss after topdressing, which suggested that nitrogen loss from different pathways mainly depended on the type of nitrogen fertilizer. Taken together, it appears to be effective to apply the new N fertilizer with low ammonia volatilization instead of urea when maize needs topdressing, so as to reduce N losses from N fertilizer.
Li, Miaoyun; Wang, Haibiao; Sun, Lingxia; Zhao, Gaiming; Huang, Xianqing
2016-04-01
The objective of this study was to predict the total viable counts (TVC) and total volatile basic nitrogen (TVB-N) in pork using an electronic nose (E-nose), and to assess the freshness of chilled pork during storage using different packaging methods, including pallet packaging (PP), vacuum packaging (VP), and modified atmosphere packaging (MAP, 40% O2 /40% CO2 /20% N2 ). Principal component analysis (PCA) was used to analyze the E-nose signals, and the results showed that the relationships between the freshness of chilled pork and E-nose signals could be distinguished in the loadings plots, and the freshness of chilled pork could be distributed along 2 first principal components. Multiple linear regression (MLR) was used to correlate TVC and TVB-N to E-nose signals. High F and R2 values were obtained in the MLR output of TVB-N (F = 32.1, 21.6, and 24.2 for PP [R2 = 0.93], VP [R2 = 0.94], and MAP [R2 = 0.95], respectively) and TVC (F = 34.2, 46.4, and 7.8 for PP [R2 = 0.98], VP [R2 = 0.89], and MAP [R2 = 0.85], respectively). The results of this study suggest that it is possible to use the E-nose technology to predict TVB-N and TVC for assessing the freshness of chilled pork during storage. © 2016 Institute of Food Technologists®
NASA Technical Reports Server (NTRS)
Protopapa, S.; Grundy, W. M.; Reuter, D. C.; Hamilton, D. P.; Dalle Ore, C. M.; Cook, J. C.; Cruikshank, D. P.; Schmitt, B.; Philippe, S.; Quirico, E.;
2016-01-01
On July 14th 2015, NASA's New Horizons mission gave us an unprecedented detailed view of the Pluto system. The complex compositional diversity of Pluto's encounter hemisphere was revealed by the Ralph/LEISA infrared spectrometer on board of New Horizons. We present compositional maps of Pluto defining the spatial distribution of the abundance and textural properties of the volatiles methane and nitrogen ices and non-volatiles water ice and tholin. These results are obtained by applying a pixel-by-pixel Hapke radiative transfer model to the LEISA scans. Our analysis focuses mainly on the large scale latitudinal variations of methane and nitrogen ices and aims at setting observational constraints to volatile transport models. Specifically, we find three latitudinal bands: the first, enriched in methane, extends from the pole to 55degN, the second dominated by nitrogen, continues south to 35 degN, and the third, com- posed again mainly of methane, reaches 20 degN. We demonstrate that the distribution of volatiles across these surface units can be explained by differences in insolation over the past few decades. The latitudinal pattern is broken by Sputnik Planitia, a large reservoir of volatiles, with nitrogen playing the most important role. The physical properties of methane and nitrogen in this region are suggestive of the presence of a cold trap or possible volatile stratification. Furthermore our modeling results point to a possible sublimation transport of nitrogen from the northwest edge of Sputnik Planitia toward the south.
NASA Astrophysics Data System (ADS)
Protopapa, S.; Grundy, W. M.; Reuter, D. C.; Hamilton, D. P.; Dalle Ore, C. M.; Cook, J. C.; Cruikshank, D. P.; Schmitt, B.; Philippe, S.; Quirico, E.; Binzel, R. P.; Earle, A. M.; Ennico, K.; Howett, C. J. A.; Lunsford, A. W.; Olkin, C. B.; Parker, A.; Singer, K. N.; Stern, A.; Verbiscer, A. J.; Weaver, H. A.; Young, L. A.; New Horizons Science Team
2017-05-01
On July 14th 2015, NASA's New Horizons mission gave us an unprecedented detailed view of the Pluto system. The complex compositional diversity of Pluto's encounter hemisphere was revealed by the Ralph/LEISA infrared spectrometer on board of New Horizons. We present compositional maps of Pluto defining the spatial distribution of the abundance and textural properties of the volatiles methane and nitrogen ices and non-volatiles water ice and tholin. These results are obtained by applying a pixel-by-pixel Hapke radiative transfer model to the LEISA scans. Our analysis focuses mainly on the large scale latitudinal variations of methane and nitrogen ices and aims at setting observational constraints to volatile transport models. Specifically, we find three latitudinal bands: the first, enriched in methane, extends from the pole to 55°N, the second dominated by nitrogen, continues south to 35°N, and the third, composed again mainly of methane, reaches 20°N. We demonstrate that the distribution of volatiles across these surface units can be explained by differences in insolation over the past few decades. The latitudinal pattern is broken by Sputnik Planitia, a large reservoir of volatiles, with nitrogen playing the most important role. The physical properties of methane and nitrogen in this region are suggestive of the presence of a cold trap or possible volatile stratification. Furthermore our modeling results point to a possible sublimation transport of nitrogen from the northwest edge of Sputnik Planitia toward the south.
Arrizon, J; Gschaedler, A
2007-04-01
To study the effect of the addition of different nitrogen sources at high sugar concentration in the tequila fermentation process. Fermentations were performed at high sugar concentration (170 g l(-1)) using Agave tequilana Weber blue variety with and without added nitrogen from different sources (ammonium sulfate; glutamic acid; a mixture of ammonium sulfate and amino acids) during the exponential phase of growth. All the additions increased the fermentation rate and alcohol efficiency. The level of synthesis of volatile compounds depended on the source added. The concentration of amyl alcohols and isobutanol were decreased while propanol and acetaldehyde concentration increased. The most efficient nitrogen sources for fermentation rate were ammonium sulfate and the mixture of ammonium sulfate and amino acids. The level of volatile compounds produced depended upon types of nitrogen. The synthesis of some volatile compounds increased while others decreased with nitrogen addition. The addition of nitrogen could be a strategy for improving the fermentation rate and efficiency in the tequila fermentation process at high sugar Agave tequilana concentration. Furthermore, the sensory quality of the final product may change because the synthesis of the volatile compounds is modified.
[Ammonia volatilization of slow release compound fertilizer in different soils water conditions].
Hu, Xiao-feng; Wang, Zheng-yin; You, Yuan; Li, Jing-chao
2010-08-01
By using venting method incubation experiment, we studied the ammonia volatilization and kinetics characteristics of uncoated slowed release compound fertilizer (SRF) under different soil water conditions and the growth and nitrogen utilization efficiency of rice in pot experiment. Results indicated that the ammonia volatilization of SRF under waterflooding reached the peak ahead of 3-4 days compared to the moist treatment. The peak and accumulation of ammonia volatilization in the waterflooding treatments were higher than those under the moist condition. SRF could significantly reduce total ammonia volatilization compared to the common compound fertilizer (CCF), reduced by 50.6% and 22.8% in the moist treatment and reduced by 24.2% and 10.4% in the waterflooding treatment,but the loss of ammonia volatilization of SRF was higher significantly than that of the coated fertilizer (CRF). Ammonia volatilization increased with the increasing of fertilizer application. The dynamics of ammonia volatilization of SRF could be quantitatively described with three equations: the first order kinetics equation, Elovich equation and parabola equation. Compared to moist condition, the biomass of rice plant in SRF, CCF and SRF treatments increased by 67.86%, 78.25% and 48.75%, and nitrogen utilization efficiency increased by 57.73%, 80.70% and 12.06% under waterflooding condition, respectively. Comparing with CCF, nitrogen utilization efficiency in SRF treatment improved by 59.10% and 10.40% under two soil moisture conditions. SRF could reduce ammonia volatilization and improve biomass and nitrogen utilization efficiency.
Distribution, movement, and evolution of the volatile elements in the lunar regolith
NASA Technical Reports Server (NTRS)
Gibson, E. K., Jr.
1975-01-01
The abundances and distributions of carbon, nitrogen, and sulfur in lunar soils are reviewed. Carbon and nitrogen have a predominantly extra-lunar origin in lunar soils and breccias, while sulfur is mostly indigeneous to the moon. The lunar processes which effect the movement, distribution, and evolution of carbon, nitrogen, and sulfur, along with the volatile alkali elements sodium, potassium, and rubidium during regolith processes are discussed. Possible mechanisms which may result in the addition to or loss from the moon of these volatile elements are considered.
Thermal NF3 fluorination/oxidation of cobalt, yttrium, zirconium, and selected lanthanide oxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scheele, Randall D.; McNamara, Bruce K.; Casella, Andrew M.
2013-02-01
This paper presents results of our continuing investigation on the use of nitrogen trifluoride as a fluorination or fluorination/oxidation agent for separating valuable constituents from used nuclear fuels by exploiting the different volatilities of the constituent fission product and actinide fluorides. This article focuses on fission products that do not have volatile fluorides or oxyfluorides at expected operations temperatures. Our thermodynamic calculations show that nitrogen trifluoride has the potential to completely fluorinate fission product oxides to their fluorides. Simultaneous thermogravimetric and differential thermal analyses show that the oxides of cobalt, zirconium, and the lanthanides are fluorinated but do not formmore » volatile fluorides when treated with nitrogen trifluoride at temperatures up to 550°C. Our studies of gadolinium-doped commercial nuclear fuel indicate that nitrogen trifluoride can extract uranium from the non-volatile gadolinium.« less
Jiang, Jishao; Huang, Yimei; Liu, Xueling; Huang, Hua
2014-09-01
The effects of additives such as apple pomace, bentonite and calcium superphosphate on swine manure composting were investigated in a self-built aerated static box (90 L) by assessing their influences on the transformation of nitrogen, carbon, phosphorous and compost maturity. The results showed that additives all prolonged the thermophilic stage in composting compared to control. Nitrogen losses amounted to 34-58% of the initial nitrogen, in which ammonia volatilization accounted for 0.3-4.6%. Calcium superphosphate was helpful in facilitating composting process as it significantly reduced the ammonia volatilization during thermophilic stage and increased the contents of total nitrogen and phosphorous in compost, but bentonite increased the ammonia volatilization and reduced the total nitrogen concentration. It suggested that calcium superphosphate is an effective additive for keeping nitrogen during swine manure composting. Copyright © 2014 Elsevier Ltd. All rights reserved.
Lei, Hongjie; Zhao, Haifeng; Yu, Zhimin; Zhao, Mouming
2012-03-01
Normal gravity wort and high gravity wort with different nitrogen levels were used to examine their effects on the fermentation performance of brewer's yeast and the formation of flavor volatiles. Results showed that both the wort gravity and nitrogen level had significant impacts on the growth rate, viability, flocculation, and gene expression of brewer's yeast and the levels of flavor volatiles. The sugar (glucose, maltose, and maltotriose) consumption rates and net cell growth decreased when high gravity worts were used, while these increased with increasing nitrogen level. Moreover, high gravity resulted in lower expression levels of ATF1, BAP2, BAT1, HSP12, and TDH, whereas the higher nitrogen level caused higher expression levels for these genes. Furthermore, the lower nitrogen level resulted in increases in the levels of higher alcohols and esters at high wort gravity. All these results demonstrated that yeast physiology and flavor balance during beer brewing were significantly affected by the wort gravity and nitrogen level.
On the Use of Thermal NF3 as the Fluorination and Oxidation Agent in Treatment of Used Nuclear Fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scheele, Randall D.; McNamara, Bruce K.; Casella, Andrew M.
2012-05-01
This paper presents results of our investigation on the use of nitrogen trifluoride as the fluorination or fluorination/oxidation agent for use in a process for separating valuable constituents from used nuclear fuels by employing the volatility of many transition metal and actinide fluorides. Nitrogen trifluoride is less chemically and reactively hazardous than the hazardous and aggressive fluorinating agents used to prepare uranium hexafluoride and considered for fluoride volatility based nuclear fuels reprocessing. In addition, nitrogen trifluoride’s less aggressive character may be used to separate the volatile fluorides from used fuel and from themselves based on the fluorination reaction’s temperature sensitivitymore » (thermal tunability) rather than relying on differences in sublimation/boiling temperature and sorbents. Our thermodynamic calculations found that nitrogen trifluoride has the potential to produce volatile fission product and actinide fluorides from candidate oxides and metals. Our simultaneous thermogravimetric and differential thermal analyses found that the oxides of lanthanum, cerium, rhodium, and plutonium fluorinated but did not form volatile fluorides and that depending on temperature volatile fluorides formed from the oxides of niobium, molybdenum, ruthenium, tellurium, uranium, and neptunium. We also demonstrated near-quantitative removal of uranium from plutonium in a mixed oxide.« less
Sakamoto, Hironari; Uchiyama, Shigehisa; Kihara, Akiko; Tsutake, Toyoshige; Bekki, Kanae; Inaba, Yohei; Nakagome, Hideki; Kunugita, Naoki
2015-01-01
Indoor air quality (IAQ) is a major concern, because people on average spend the vast majority of their time indoors and they are repeatedly exposed to indoor air pollutants. In this study, to assess indoor air quality in Chiba City, gaseous chemical compounds were surveyed using four types of diffusive sampler. Gaseous chemical compounds such as carbonyls, volatile organic compounds (VOC), acid gases, basic gases, and ozone were measured in indoor and outdoor air of 50 houses throughout Chiba City in winter and summer. Four types of diffusive sampler were used in this study: DSD-BPE/DNPH packed with 2,4-dinitrophenyl hydrazine and trans-1,2-bis(2-pyridyl)ethylene-coated silica for ozone and carbonyls; VOC-SD packed with Carboxen 564 particles for volatile organic compounds; DSD-TEA packed with triethanolamine-impregnated silica for acid gases; and DSD-NH3 packed with phosphoric acid-impregnated silica for basic gases. Almost all compounds in indoor air were detected at higher concentrations in summer than in winter. However, the nitrogen dioxide concentration in indoor air particularly increased only in winter, which well correlated with the formic acid concentration (correlation coefficient=0.974). The compound with the highest concentrations in indoor air was p-dichlorobenzene, with recorded levels of 13,000 μg m(-3) in summer and 1,100 μg m(-3) in winter in indoor air. p-Dichlorobenzene in summer and nitrogen dioxide in winter are detected at markedly high concentrations. Pollution control and continuous monitoring of IAQ are indispensable for human health.
NASA Astrophysics Data System (ADS)
Mbarki, Raouf; Sadok, Saloua; Barkallah, Insaf
2009-04-01
Pelagic fishes represent the main Mediterranean fisheries in terms of quantity. However, waste and spoilage of pelagic fish are substantial for a variety of reasons, such as their high perishability and the lack or inadequate supply of ice and freezing facilities. In this work, fresh Mediterranean horse mackerel ( Trachurus mediterraneus) were irradiated at 1 and 2 kGy and stored in ice for 18 days. Quality changes during storage were followed by the determination of microbial counts, trimethylamine (TMA) and volatile basic nitrogen contents. Similarly, lipid composition and sensory analysis were carried out. Irradiation treatment was effective in reducing total bacterial counts throughout storage. Total basic volatile nitrogen content (TVB-N) and TMA levels increased in all lots with storage time, their concentrations being significantly reduced by irradiation, even when the lower level (1 kGy) was used. According to the quality index method, the control lot had a sensory shelf-life of 4 days, whereas those of the irradiated lots were extended by 5 days. Also, low-dose irradiation had no adverse effect on the nutritionally important polyunsaturated fatty acids (PUFA) of Mediterranean horse mackerel. In the same way, thiobarbituric acid-reactive substances values increased with irradiation during the first day, but these values were lower at the end of storage, compared to the control. Results confirm the practical advantages of using γ irradiation as an additional process to chilled storage to enhance the microbiological quality and to extend the shelf-life of small pelagic species.
Wang, X D; Bohlscheid, J C; Edwards, C G
2003-01-01
To understand the impact of assimilable nitrogen and pantothenic acid on fermentation rate and synthesis of volatile compounds by Saccharomyces under fermentative conditions. A 2 x 3 factorial experimental design was employed with the concentrations of yeast assimilable nitrogen (YAN) (60 and 250 mg l(-1)) and pantothenic acid (10, 50 and 250 microg l(-1)) as variables. In media containing 250 microg l(-1) pantothenic acid, H2S production by two different species of Saccharomyces decreased when YAN was increased from 60 to 250 mg l(-1). Conversely, H2S production was significantly higher when the concentration of assimilable nitrogen was increased if pantothenic acid was deficient (10 or 50 microg l(-1)). Yeast synthesis of other volatile compounds were impacted by both assimilable nitrogen and pantothenic acid. While growth and fermentative rate of Saccharomyces was more influenced by nitrogen than by pantothenic acid, complicated interactions exist between these nutrients that affect the synthesis of volatile compounds including H2S. This study has important implications for the winemaking industry where a better understanding of the nutritional requirements of Saccharomyces is necessary to reduce fermentation problems and to improve final product quality.
Identification of a volatile phytotoxin from algae
NASA Technical Reports Server (NTRS)
Garavelli, J. S.; Fong, F.; Funkhouser, E. A.
1984-01-01
The objectives were to develop a trap system for isolating fractions of volatile algal phytotoxin and to characterize the major components of the isolated phytotoxin fractions. A bioassay using Phaseolus vulgaris seedlings was developed to aid in investigating the properties of the phytotoxin produced by cultures of Euglena gracilis var. bacillaris and Chlorella vulgaris. Two traps were found, 1.0 M hydrochloric acid and 0 C, which removed the phytotoxin from the algal effluent and which could be treated to release that phytotoxin as judged with the bioassay procedure. It was also determined that pretraps of 1.0 M sodium hydroxide and 1.0 M potassium biocarbonate could be used without lowering the phytotoxin effect. Ammonia was identified in trap solutions by ninhydrin reaction, indophenol reaction and derivatization with dansyl chloride and phenylisothiocyanate. Ammonia at the gaseous concentrations detected was found to have the same effects in the bioassay system as the volatile phytotoxin. It is possible that other basic, nitrogen containing compounds which augment the effects of ammonia were present at lower concentrations in the algal effluent.
Chang, Liang-Yu; Chuang, Ming-Yen; Zan, Hsiao-Wen; Meng, Hsin-Fei; Lu, Chia-Jung; Yeh, Ping-Hung; Chen, Jian-Nan
2017-04-28
In this work, we successfully demonstrate a fast method to determine the fish freshness by using a sensing system containing an ultrasensitive amine gas sensor to detect the volatile amine gas from the raw fish meat. When traditional titration method takes 4 h and complicated steps to test the total volatile basic nitrogen (TVB-N) as a worldwide standard for fish freshness, our sensor takes 1 min to deliver an electrical sensing response that is highly correlated with the TVB-N value. When detecting a fresh fish with a TVB-N as 18 mg/100 g, the sensor delivers an effective ammonia concentration as 100 ppb. For TVB-N as 28-35 mg/100 g, a well-accepted freshness limit, the effective ammonia concentration is as 200-300 ppb. The ppb-regime sensitivity of the sensor and the humidity control in the sensing system are the keys to realizing fast and accurate detection. It is expected that the results in this report enable the development of on-site freshness detection and real-time monitoring in a fish factory.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-05
... Kentucky, through the Kentucky Energy and Environment Cabinet, Division for Air Quality (DAQ), to... (MVEBs) for nitrogen oxides (NO X ) and volatile organic compounds (VOC) for Northern Kentucky. This... control, Incorporation by reference, Nitrogen dioxide, Ozone, Intergovernmental relations, and Volatile...
This study evaluates performance of nitrogen dioxide NO2 and volatile organic compounds (VOC) passive samplers with corresponding reference monitors at two sites in the Detroit, Michigan area during the summer of 2005.
Gobert, Antoine; Tourdot-Maréchal, Raphaëlle; Morge, Christophe; Sparrow, Céline; Liu, Youzhong; Quintanilla-Casas, Beatriz; Vichi, Stefania; Alexandre, Hervé
2017-01-01
Nitrogen sources in the must are important for yeast metabolism, growth, and performance, and wine volatile compounds profile. Yeast assimilable nitrogen (YAN) deficiencies in grape must are one of the main causes of stuck and sluggish fermentation. The nitrogen requirement of Saccharomyces cerevisiae metabolism has been described in detail. However, the YAN preferences of non-Saccharomyces yeasts remain unknown despite their increasingly widespread use in winemaking. Furthermore, the impact of nitrogen consumption by non-Saccharomyces yeasts on YAN availability, alcoholic performance and volatile compounds production by S. cerevisiae in sequential fermentation has been little studied. With a view to improving the use of non-Saccharomyces yeasts in winemaking, we studied the use of amino acids and ammonium by three strains of non-Saccharomyces yeasts (Starmerella bacillaris, Metschnikowia pulcherrima, and Pichia membranifaciens) in grape juice. We first determined which nitrogen sources were preferentially used by these yeasts in pure cultures at 28 and 20°C (because few data are available). We then carried out sequential fermentations at 20°C with S. cerevisiae, to assess the impact of the non-Saccharomyces yeasts on the availability of assimilable nitrogen for S. cerevisiae. Finally, 22 volatile compounds were quantified in sequential fermentation and their levels compared with those in pure cultures of S. cerevisiae. We report here, for the first time, that non-Saccharomyces yeasts have specific amino-acid consumption profiles. Histidine, methionine, threonine, and tyrosine were not consumed by S. bacillaris, aspartic acid was assimilated very slowly by M. pulcherrima, and glutamine was not assimilated by P. membranifaciens. By contrast, cysteine appeared to be a preferred nitrogen source for all non-Saccharomyces yeasts. In sequential fermentation, these specific profiles of amino-acid consumption by non-Saccharomyces yeasts may account for some of the interactions observed here, such as poorer performances of S. cerevisiae and volatile profile changes. PMID:29163451
Gobert, Antoine; Tourdot-Maréchal, Raphaëlle; Morge, Christophe; Sparrow, Céline; Liu, Youzhong; Quintanilla-Casas, Beatriz; Vichi, Stefania; Alexandre, Hervé
2017-01-01
Nitrogen sources in the must are important for yeast metabolism, growth, and performance, and wine volatile compounds profile. Yeast assimilable nitrogen (YAN) deficiencies in grape must are one of the main causes of stuck and sluggish fermentation. The nitrogen requirement of Saccharomyces cerevisiae metabolism has been described in detail. However, the YAN preferences of non- Saccharomyces yeasts remain unknown despite their increasingly widespread use in winemaking. Furthermore, the impact of nitrogen consumption by non- Saccharomyces yeasts on YAN availability, alcoholic performance and volatile compounds production by S. cerevisiae in sequential fermentation has been little studied. With a view to improving the use of non- Saccharomyces yeasts in winemaking, we studied the use of amino acids and ammonium by three strains of non- Saccharomyces yeasts ( Starmerella bacillaris, Metschnikowia pulcherrima , and Pichia membranifaciens ) in grape juice. We first determined which nitrogen sources were preferentially used by these yeasts in pure cultures at 28 and 20°C (because few data are available). We then carried out sequential fermentations at 20°C with S. cerevisiae , to assess the impact of the non- Saccharomyces yeasts on the availability of assimilable nitrogen for S. cerevisiae . Finally, 22 volatile compounds were quantified in sequential fermentation and their levels compared with those in pure cultures of S. cerevisiae . We report here, for the first time, that non- Saccharomyces yeasts have specific amino-acid consumption profiles. Histidine, methionine, threonine, and tyrosine were not consumed by S. bacillaris , aspartic acid was assimilated very slowly by M. pulcherrima , and glutamine was not assimilated by P. membranifaciens . By contrast, cysteine appeared to be a preferred nitrogen source for all non- Saccharomyces yeasts. In sequential fermentation, these specific profiles of amino-acid consumption by non- Saccharomyces yeasts may account for some of the interactions observed here, such as poorer performances of S. cerevisiae and volatile profile changes.
77 FR 44560 - Revisions to the Nevada State Implementation Plan, Washoe County Air Quality District
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-30
... emissions of criteria pollutants such as volatile organic compounds (VOC), oxides of nitrogen (NO X ), and... to, mass balance types of analysis, be made by the operator. Section 030.970A, Part 70 Permit... relations, Nitrogen dioxide, Ozone, Particulate matter, Reporting and recordkeeping requirements, Volatile...
This paper presents a GIS-based regression spatial method, known as land-use regression (LUR) modeling, to estimate ambient air pollution exposures used in the EPA El Paso Children's Health Study. Passive measurements of select volatile organic compounds (VOC) and nitrogen dioxi...
Moosavi-Nasab, Marzieh; Shad, Ehsan; Ziaee, Esmaeil; Yousefabad, Seyyed Hossein Asadi; Golmakani, Mohammad Taghi; Azizinia, Mehdi
2016-06-01
Chitosan (Ch) coating incorporated with black pepper essential oil (Ch+BPEO) was studied to extend the shelf life of common carp (Cyprinus carpio) during refrigerated storage at 4 ± 1°C. The chemical composition of BPEO was characterized using gas chromatography-mass spectrometry (GC-MS). Antibacterial properties of BPEO were determined by disk diffusion agar, MIC, and MBC. Ch (2% [wt/vol]) and Ch+BPEO (2% [wt/vol] Ch with 1.5% [vol/vol] BPEO) were used for common carp fillet coating. The samples were analyzed periodically for chemical (pH, total volatile basic nitrogen) and microbiological (aerobic plate count, psychrophilic bacteria count, lactic acid bacteria, and Enterobacteriaceae bacterial counts) characteristics during 16 days. The GC-MS results indicated that main components in BPEO were carene, caryophyllene, limonene, β-pinene, and α-pinene. The samples coated with Ch and Ch+BPEO resulted in lower pH and total volatile basic nitrogen values in comparison with the control. The microbiological analysis of fish fillets during refrigerated storage clearly indicated that Ch+BPEO coating significantly reduced the fish fillet microbial load. The aerobic plate count, psychrophilic bacteria count, lactic acid bacteria count, and Enterobacteriaceae bacterial count of samples coated with Ch+BPEO were reduced approximately 4.1, 3.9, 2.3, and 2.8 log CFU/g, respectively, at the end of the storage period. Finally, Ch and Ch+BPEO effectively improved the quality of fish fillet during refrigerated storage and extended the shelf life of fish fillets from 8 to 16 days. Black pepper; Chitosan; Common carp; Essential oil.
Unveiling Pluto's global surface composition through modeling of New Horizons Ralph/LEISA data
NASA Astrophysics Data System (ADS)
Protopapa, Silvia; Grundy, W. M.; Reuter, D. C.; Hamilton, D. P.; Dalle Ore, Cristina M.; Cook, Jason C.; Cruikshank, Dale P.; Philippe, Sylvain; Quirico, Eric; Schmitt, Bernard; Parker, Alex; Binzel, Richard; Earle, Alissa M.; Ennico, Kimberly; Howett, Carly; Lunsford, A. W.; Olkin, Catherine B.; Singer, Kelsi N.; Stern, S. Alan; Weaver, Harold A.; Young, Leslie; New Horizons Science Team
2016-10-01
We present compositional maps of Pluto derived from data collected with the Linear Etalon Imaging Spectral Array (LEISA), part of the New Horizons Ralph instrument (Reuter et al., 2008). Previous analysis of band depths, equivalent widths, and principal components have permitted qualitative analysis of the physical state of Pluto's surface (Grundy et al. 2016; Schmitt et al. 2016); the maps presented here are fully quantitative, generated by applying a complete pixel-by-pixel Hapke radiative transfer model to the near infrared LEISA spectral cubes. These maps quantify the spatial distribution of both the absolute abundances and textural properties of the volatiles methane and nitrogen ices and non volatiles water ice and tholin. Substantial reservoirs of methane and nitrogen ices cover the substratum which, in the absence of volatiles, reveals the presence of water ice, as expected given Pluto's size and temperature. We identify large scale latitudinal variations of methane and nitrogen ices which can help setting constraints to volatile transport models. To the north, by about 55 deg latitude, the nitrogen abundance smoothly tapers off to an expansive polar plain of predominantly methane ice. This transition well correlates with expectations of vigorous spring sublimation after a long polar winter. Continuous illumination northward of 75 deg over the past twenty years, and northward of 55 deg over the past ten years, seems to have sublimated the most volatile nitrogen into the atmosphere, with the best chance for redeposition occurring at points southward. This loss of surface nitrogen appears to have created the polar bald spot seen in our maps and also predicted by Hansen and Paige (1996). Regions that stands out for composition with respect to the latitudinal pattern described above are also going to be discussed. An example is given by informally named Sputnik Planum, where the physical properties of methane and nitrogen are suggestive of the presence of a cold trap or possible volatile stratification.This work was supported by NASA's New Horizons project. S. Protopapa thanks the NASA grant #NNX16AC83G.
Zheng, Bin; Liu, Yu; He, Xiaoxia; Hu, Shiwei; Li, Shijie; Chen, Meiling; Jiang, Wei
2017-10-01
A method of improving fish sauce quality during fermentation was investigated. Psychrobacter sp. SP-1, a halophilic protease-producing bacterium, was isolated from fish sauce with flavor-enhancing properties and non-biogenic amine-producing activity. The performance of Psychrobacter sp. SP-1 in Setipinna taty fish sauce fermentation was investigated further. The inoculation of Psychrobacter sp. SP-1 did not significantly affect pH or NaCl concentration changes (P > 0.05), although it significantly increased total moderately halophilic microbial count, protease activity, total soluble nitrogen content and amino acid nitrogen content, and also promoted the umami taste and meaty aroma (P < 0.05). Furthermore, the inoculation of Psychrobacter sp. SP-1 significantly decreased total volatile basic nitrogen content and biogenic amines content (P < 0.05), which were regarded as harmful compounds in foods. The results of the present study demonstrate that Psychrobacter sp. SP-1 can be used as a potential starter culture for improving fish sauce quality by fermentation. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Volatiles from roasted byproducts of the poultry-processing industry.
Wettasinghe, M; Vasanthan, T; Temelli, F; Swallow, K
2000-08-01
Volatiles of roasted chicken breast muscle and byproducts, such as backbones, breastbones, spent bones, and skin, were investigated. Total volatile concentrations ranged from 2030 ppb in the roasted backbones to 4049 ppb in the roasted skin. The major classes of volatile compounds detected in roasted samples were aldehydes (648-1532 ppb) and alcohols (336-1006 ppb). Nitrogen- and/or sulfur-containing compounds were also detected in appreciable quantities (161-706 ppb) in all samples. For all samples, hexanal and 2-methyl-2-buten-1-ol were dominant among the aldehydes and alcohols, respectively. Among the nitrogen- and sulfur-containing compounds, Maillard reaction products, such as tetrahydropyridazines, piperidines, and thiazoles, were the major contributors to the total volatile content in all samples. The composition of volatiles observed in roasted byproducts was markedly different from that of the roasted breast muscle. Therefore, the blending of the byproducts in appropriate proportions or blending of volatile flavor extracts from different byproducts may be necessary to obtain an aroma that mimics roasted chicken aroma.
USDA-ARS?s Scientific Manuscript database
The aim of this work was to evaluate the volatile composition of grape berries in vines subjected to varying levels of nitrogen (N), phosphorous (P) and potassium (K) supply. Pinot Noir grapevines were grown in a pot-in-pot system for three years and fertigated with varying levels of either N, P, or...
Solar system formation and the distribution of volatile species
NASA Technical Reports Server (NTRS)
Lunine, Jonathan I.
1994-01-01
To understand how the solar system formed we must understand the compositional distribution of the current system. Volatile species are particularly important in that their stability as condensed phases is limited in temperature-pressure space, and hence variations in their distribution at present potentially contain an imprint of processes by which temperature and pressure varied in the solar nebula. In this talk we restrict ourselves to species more volatile than water ice, and address issues related to processes in the outer solar system and the formation of bodies there; others in this conference will cover volatile species relevant to inner solar system processes. Study of the outer solar system is relevant both to understanding the interface between the solar nebula and the progenitor giant molecular cloud (since the chemical links to present-day observables in molecular clouds are species like methane, carbon monoxide, etc.), as well as the origin of terrestrial planet atmospheres and oceans (the latter to be covered by Owen). The wealth of compositional information on outer solar system bodies which has become available from spacecraft and ground-based observations challenges traditional simplistic views of the composition and hence dynamics of the solar nebula. The basic assumption of thermochemical equilibrium, promulgated in the 1950's, in which methane and ammonia dominate nitrogen- and carbon-bearing species, is demonstrably incorrect on both observational and theoretical grounds. However, the kinetic inhibition model which replaced it, in which carbon monoxide and molecular nitrogen dominate a nebula which is fully mixed and hence cycles outer solar system gases through a hot, chemically active zone near the disk center, is not supported either by observations. Instead, a picture of the outer solar system emerges in which the gas and grains are a mixture of relatively unaltered, or modestly altered, molecular cloud material, along with a fraction which has been chemically altered in the solar nebula itself (and perhaps giant planet nebulae).
NASA Technical Reports Server (NTRS)
Bodek, Itamar; Ehntholt, Daniel J.; Stolki, Thomas J.; Valentine, James R.; Trabanino, Rudy; Webb, Johanna V.; Sauer, Richard L.
1991-01-01
A breadboard concept of a volatile organics concentrator (VOC) is manufactured and tested for optimized water-quality analysis in a space environment. The VOC system is attached to a gas chromatograph/mass spectrometer to analyze the volatile chemicals relevant to the operation of Space Station Freedom. The preliminary tests include: (1) comparisons with analyses based on direct on-column injections of standards; (2) analyses of iodinated volatile organics; (3) comparisons of nitrogen vs helium as the chromatography carrier gas; and (4) measurements of collection efficiency. The VOC can analyze EPA method-624 analytes at comparable detection using flame-ionization detection and can analyze volatile iodinated compounds. The breadboard has good reproducibility and can use nitrogen as a carrier gas; good results are noted for the collection and concentration levels and for water removal.
Li, Sen; Luo, Xue Mei; Tu, Wei Guo; Fan, Hua; Gou, Xiao Lin; DU, Yu Long; Li, Ling; Wang, Qiong Yao
2017-04-18
To study the effects of nitrogen preserving agent (NPA) on composting process and nitrogen loss of Eichhornia crassipes, an aerobic composting was conducted for 35 days using four treatments. The NPA was prepared by mixing ferrous sulfate, humic acid sodium, and superphosphate (M:M:M=75:20:5). Four treatments were included with different mass ratios of NPA, including 0% (CK), 1% (PN1), 2% (PN2), and 3% (PN3). The physical and chemical properties, N fraction concentrations, ammonia volatilization, and N loss rates were measured and explored during composting process. The results showed that the pile temperature of NPA treatments were higher than that of CK in thermophillic period, however their water contents were significantly (P<0.05) lower than that in CK in cooling period. At the end of composting, the concentrations of total nitrogen and organic nitrogen increased significantly in NPA treatments (P<0.05), and their highest concentrations in the PN3 treatment were 16.3% and 13.2% higher than those in CK, respectively. The ammonia volatilization losses of PN1, PN2 and PN3 treatments were 25.9%, 31.5% and 42.4% lower than that of CK, respectively, however, their nitrogen fixation rates reached 31.3%, 40.7% and 72.2% respectively. Therefore, adding NPA could accelerate start-up speed, shorten composting time, and also could effectively reduce ammonia volatilizations and nitrogen loss in the composting process of E. crassipes. Therefore, PN3 showed the best effects of nitrogen preserving.
Deng, Jie; Yu, Hong-Jun; Li, Yun-Yun; Zhang, Xiao-Meng; Liu, Peng; Li, Qiang; Jiang, Wei-Jie
2016-01-01
Nitrogen (N) is an important macronutrient for plant growth and development, but the regulatory mechanism of volatile compounds in response to N deficiency is not well understood, especially in cucumber, which consumes excessive N during growth. In this study, the major volatile compounds from cucumber leaves subjected to N deficiency were analyzed by GC-MS. A total of 24 volatile components were identified including 15 aldehydes, two ketones, two alkenes, and five other volatile compounds in 9930 leaves. Principal component analysis using volatile compounds from cucumber leaves provided good separation between N-sufficient and N-deficient treatments. The main volatiles in cucumber leaves were found to be C6 and C9 aldehydes, especially (E)-2-hexanal and (E,Z)-2,6-nonadienal. (E)-2-hexanal belonged to the C6 aldehyde and was the most abundant compound, whereas (E,Z)-2,6-nonadienal was the chief component of C9 aldehydes. During N-deficient treatment, short-chain volatile content was significantly improved at 5 day, other volatiles displayed significant reduction or no significantly changes in all sampling points. Improvement of short-chain volatiles was confirmed in the six other inbred lines at 5 day after N-deficient treatments. The expression analysis of 12 cucumber LOX genes and two HPL genes revealed that CsLOX19, CsLOX20, and CsLOX22 had common up-regulated expression patterns in response to N-deficient stress in most inbred lines; meanwhile, most sample points of CsHPL1 also had significant up-regulated expression patterns. This research focused on the relationship between volatiles in cucumber and different nitrogen environments to provide valuable insight into the effect of cultivation and management of the quality of cucumber and contributes to further research on volatile metabolism in cucumber. PMID:27827841
Wang, Dong; Yu, Zhenwen; Yu, Wenming; Shi, Yu; Zhou, Zhongxin
2006-09-01
The study showed that during the period from sowing to pre-wintering, the soil nitrate in high-yielding wheat field moved down to deeper layers, and accumulated in the layers below 140 cm. An application rate of 96-168 kg N x hm(-2) increased the nitrate content in 0-60 cm soil layer and the wheat grain yield and its protein content, and decreased the proportion of apparent N loss to applied N and the ammonia volatilization loss from basal nitrogen. Applying 240 kg N x hm(-2) promoted the downward movement of soil nitrate and its accumulation in deeper layers, increased the proportion of apparent N loss to applied N and the ammonia volatilization loss from basal nitrogen, had no significant effect on the protein content of wheat grain, but decreased the grain yield. The appropriate application rate of nitrogen on high-yielding wheat field was 132-204 kg N x hm(-2).
Su, Chengguo; Yin, Bin; Zhu, Zhaoliang; Shen, Qirong
2003-11-01
Plot and field experiments showed that the NH3 volatilization loss from rice field reached its maximum in 1-3 days after N-fertilization, which was affected by the local climate conditions (e.g., sun illumination, temperature, humidity, wind speed, and rainfall), fertilization time, and ammonium concentration in surface water of the rice field. The wet deposition of atmospheric nitrogen was correlated with the application rate of N fertilizer and the rainfall. The amount of nitrogen brought into soil or surface water by the wet deposition in rice growing season reached 7.5 kg.hm-2. The percent of NH4(+)-N in the wet deposition was about 39.8%-73.2%, with an average of 55.5%. There was a significant correlation of total ammonia volatilization loss with the average concentration of NH4(+)-N in wet deposition and total amount of wet deposition in rice growing season.
Li, Pengfei; Lu, Jianwei; Hou, Wenfeng; Pan, Yonghui; Wang, Yang; Khan, Muhammad Rizwan; Ren, Tao; Cong, Rihuan; Li, Xiaokun
2017-04-01
Controlled release fertilizer can reduce nitrogen losses to the environment while increasing grain yield and improving apparent nitrogen recovery (ANR) of rice. However, few studies have evaluated the comparative efficacy of different polymer-coated urea products on nitrogen (N) losses, ANR, and N uptake of rice. A 2-year field experiment was conducted to compare the effects of three different types of polymer-coated urea fertilizer on nitrogen losses through NH 3 volatilization and surface runoff to the environment, ANR, grain yield, and N uptake as compared to conventional urea of rice. Six treatments including (1) control with 0 kg N ha -1 (CK), (2) basal application of urea (U b ), (3) split application (U s ) of urea (50% at transplanting, 25% at tillering, and 25% at panicle stages), (4) CRU-1 (polyurethane-coated urea), (5) CRU-2 (degradable polymer-coated urea), and (6) CRU-3 (water-based polymer-coated urea) all applied at 165 kg N ha -1 . It was found that CRU-2 resulted in the highest grain yield and panicle numbers among the N fertilization treatments in 2013 and 2014. Applying CRU could help increase N uptake in rice, reduce N losses through NH 3 volatilization and surface runoff, and hence improve ANR. Its single dose can meet the nutrient demand of the rice plant. Controlled release urea could be adopted as an effective mitigation alternative to retard N losses through NH 3 volatilization and surface runoff while improving ANR of double cropping of late rice.
NASA Astrophysics Data System (ADS)
Rafkin, Scot C. R.; Soto, Alejandro; Michaels, Timothy I.
2016-10-01
A newly developed general circulation model (GCM) for Pluto is used to investigate the impact of a heterogeneous distribution of nitrogen surface ice and large scale topography on Pluto's atmospheric circulation. The GCM is based on the GFDL Flexible Modeling System (FSM). Physics include a gray model radiative-conductive scheme, subsurface conduction, and a nitrogen volatile cycle. The radiative-conductive model takes into account the 2.3, 3.3 and 7.8 μm bands of CH4 and CO, including non-local thermodynamic equilibrium effects. including non-local thermodynamic equilibrium effects. The nitrogen volatile cycle is based on a vapor pressure equilibrium assumption between the atmosphere and surface. Prior to the arrival of the New Horizons spacecraft, the expectation was that the volatile ice distribution on the surface of Pluto would be strongly controlled by the latitudinal temperature gradient. If this were the case, then Pluto would have broad latitudinal bands of both ice covered surface and ice free surface, as dictated by the season. Further, the circulation, and the thus the transport of volatiles, was thought to be driven almost exclusively by sublimation and deposition flows associated with the volatile cycle. In contrast to expectations, images from New Horizon showed an extremely complex, heterogeneous distribution of surface ices draped over substantial and variable topography. To produce such an ice distribution, the atmospheric circulation and volatile transport must be more complex than previously envisioned. Simulations where topography, surface ice distributions, and volatile cycle physics are added individually and in various combinations are used to individually quantify the importance of the general circulation, topography, surface ice distributions, and condensation flows. It is shown that even regional patches of ice or large craters can have global impacts on the atmospheric circulation, the volatile cycle, and hence, the distribution of surface ices. The work demonstrates that explaining Pluto's volatile cycle and the expression of that cycle in the surface ice distributions requires consideration of atmospheric processes beyond simple vapor pressure equilibrium arguments.
Composition of the water-soluble fraction of different cheeses.
Taborda, Gonzalo; Molina, Elena; Martínez-Castro, Isabel; Ramos, Mercedes; Amigo, Lourdes
2003-01-01
Volatile and nonvolatile compounds present in the water-soluble fraction (WSF) and water-soluble fraction with molecular weight lower than 1000 Da (WSF < 1000 Da) of six Spanish cheeses, Cabrales, Idiazábal, Mahón, Manchego, Roncal, and a goat's milk cheese, were analyzed. Different nitrogen fractions (determined by Kjeldahl method), caseins (by capillary electrophoresis), peptides and amino acids (by HPLC), and volatile components (by dynamic headspace coupled to GC-MS) as well as mineral content in the cheese fractions were analyzed and compared. The different nitrogen and volatile compounds identified in the WSF were characteristic of each cheese variety. Cabrales cheese displayed the highest content of free amino acids and the highest quantity and variety of volatile compounds. The WSF < 1000 Da fraction was less representative, especially for volatile compounds, as some of the components were lost in the ultrafiltration. Alcohols were better recovered than ketones and esters.
Removal of basic nitrogen compounds from hydrocarbon liquids
Givens, Edwin N.; Hoover, David S.
1985-01-01
A method is provided for reducing the concentration of basic nitrogen compounds in hydrocarbonaceous feedstock fluids used in the refining industry by providing a solid particulate carbonaceous adsorbent/fuel material such as coal having active basic nitrogen complexing sites on the surface thereof and the coal with a hydrocarbonaceous feedstock containing basic nitrogen compounds to facilitate attraction of the basic nitrogen compounds to the complexing sites and the formation of complexes thereof on the surface of the coal. The adsorbent coal material and the complexes formed thereon are from the feedstock fluid to provide a hydrocarbonaceous fluid of reduced basic nitrogen compound concentration. The coal can then be used as fuel for boilers and the like.
Juhari, Nurul Hanisah; Petersen, Mikael Agerlin
2018-02-11
Milled Roselle ( Hibiscus sabdariffa L.) seeds of the UMKL cultivar were analyzed for proximate composition, water and oil absorption capacity, and the influence of storage conditions on storage stability. The storage stability was determined under four types of conditions: light/oxygen (air) (LO), light/nitrogen (LN), darkness/oxygen (air) (DO), and darkness/nitrogen (DN) while monitoring for seven consecutive months. During the storage period, the formation of volatiles was determined using dynamic headspace sampling and Gas Chromatography-Mass Spectrometry (GC-MS) analysis. In total, 85 volatiles were identified, mainly aldehydes, alcohols, ketones, furans, and acids indicating lipid oxidation. It is recommended that milled Roselle seeds should be flushed with nitrogen and stored in darkness. Under these conditions, the seeds can be stored for at least three months without changes in volatile profile. This is important to ensure the good quality of milled Roselle seeds for further commercialization.
Wang, Chao; Xue, Changhu; Xue, Yong; Li, Zhaojie; Lv, Yingchun; Zhang, Hao
2012-01-15
Sea urchin gonads are highly valued seafood that degenerates rapidly during the storage period. To study the influence of dissolved oxygen concentration on quality changes of sea urchin (Strongylocentrotus nudus) gonads, they were stored in artificial seawater saturated with oxygen, nitrogen or air at 5 ± 1 °C for 12 days. The sensory acceptability limit was 11-12, 6-7 and 7-8 days for gonads with oxygen, nitrogen or air packaging, respectively. Total volatile basic nitrogen (TVB-N) values reached 22.60 ± 1.32, 32.37 ± 1.37 and 24.91 ± 1.54 mg 100 g(-1) for gonads with oxygen, nitrogen or air packaging at the points of near to, exceeding and reaching the limit of sensory acceptability, indicating that TVB-N values of about 25 mg 100 g(-1) should be regarded as the limit of acceptability for sea urchin gonads. Relative ATP content values were 56.55%, 17.36% and 18.75% for gonads with oxygen, nitrogen or air packaging, respectively, on day 2. K-values were 19.37%, 25.05% and 29.02% for gonads with oxygen, nitrogen or air packaging, respectively, on day 2. Both pH and aerobic plate count values showed no significant difference (P > 0.05) for gonads with the three treatments. Gonads with oxygen packaging had lower sensory demerit point (P < 0.05) and TVB-N values (P < 0.05), and higher relative ATP content (P < 0.01) and K-values (P < 0.05), than that with nitrogen or air packaging, with an extended shelf life of 4-5 days during storage in artificial seawater at 5 ± 1 °C. Copyright © 2011 Society of Chemical Industry.
Gethins, Loughlin; Guneser, Onur; Demirkol, Aslı; Rea, Mary C; Stanton, Catherine; Ross, R Paul; Yuceer, Yonca; Morrissey, John P
2015-01-01
The yeast Kluyveromyces marxianus produces a range of volatile molecules with applications as fragrances or flavours. The purpose of this study was to establish how nutritional conditions influence the production of these metabolites. Four strains were grown on synthetic media, using a variety of carbon and nitrogen sources and volatile metabolites analysed using gas chromatography-mass spectrometry (GC-MS). The nitrogen source had pronounced effects on metabolite production: levels of the fusel alcohols 2-phenylethanol and isoamyl alcohol were highest when yeast extract was the nitrogen source, and ammonium had a strong repressing effect on production of 2-phenylethyl acetate. In contrast, the nitrogen source did not affect production of isoamyl acetate or ethyl acetate, indicating that more than one alcohol acetyl transferase activity is present in K. marxianus. Production of all acetate esters was low when cells were growing on lactose (as opposed to glucose or fructose), with a lower intracellular pool of acetyl CoA being one explanation for this observation. Bioinformatic and phylogenetic analysis of the known yeast alcohol acetyl transferases ATF1 and ATF2 suggests that the ancestral protein Atf2p may not be involved in synthesis of volatile acetate esters in K. marxianus, and raises interesting questions as to what other genes encode this activity in non-Saccharomyces yeasts. Identification of all the genes involved in ester synthesis will be important for development of the K. marxianus platform for flavour and fragrance production. Copyright © 2014 John Wiley & Sons, Ltd.
Mandal, Sanchita; Thangarajan, Ramya; Bolan, Nanthi S; Sarkar, Binoy; Khan, Naser; Ok, Yong Sik; Naidu, Ravi
2016-01-01
Ammonia (NH3) volatilization is a major nitrogen (N) loss from the soil, especially under tropical conditions, NH3 volatilization results in low N use efficiency by crops. Incubation experiments were conducted using five soils (pH 5.5-9.0), three N sources such as, urea, di-ammonium phosphate (DAP), and poultry manure (PM) and two biochars such as, poultry litter biochar (PL-BC) and macadamia nut shell biochar (MS-BC). Ammonia volatilization was higher at soil with higher pH (pH exceeding 8) due to the increased hydroxyl ions. Among the N sources, urea recorded the highest NH3 volatilization (151.6 mg kg(-1)soil) followed by PM (124.2 mg kg(-1)soil) and DAP (99 mg kg(-1)soil). Ammonia volatilization was reduced by approximately 70% with PL-BC and MS-BC. The decreased NH3 volatilization with biochars is attributed to multiple mechanisms such as NH3 adsorption/immobilization, and nitrification. Moreover, biochar increased wheat dry weight and N uptake as high as by 24.24% and 76.11%, respectively. This study unravels the immense potential of biochar in decreasing N volatilization from soils and simultaneously improving use efficiency by wheat. Copyright © 2015 Elsevier Ltd. All rights reserved.
Liu, Yu; Zhang, Ying; Yang, Wen-ting; Li, Zhi-xian; Guan, Ao-mei
2015-03-01
A four-year (2010-2013) field experiment was carried out to explore the effects of three planting patterns (sugarcane, soybean monoculture and sugarcane-soybean 1:2 intercropping) with two nitrogen input levels (300 and 525 kg . hm-2) on soybean nitrogen fixation, sugarcane and soybean nitrogen accumulation, and ammonia volatilization and nitrogen leaching in sugarcane field. The results showed that the soybean nitrogen fixation efficiency (NFE) of sugarcane-soybean inter-cropping was lower than that of soybean monoculture. There was no significant difference in NFE among the treatments with the two nitrogen application rates. The nitrogen application rate and inter-cropping did not remarkably affect nitrogen accumulation of sugarcane and soybean. The ammonia volatilization of the reduced nitrogen input treatment was significantly lower than that of the conventional nitrogen input treatment. Furthermore, there was no significant difference in nitrogen leaching at different nitrogen input levels and among different planting patterns. The sugarcane field nitrogen balance analysis indicated that the nitrogen application rate dominated the nitrogen budget of sugarcane field. During the four-year experiment, all treatments leaved a nitrogen surplus (from 73.10 to 400.03 kg . hm-2) , except a nitrogen deficit of 66.22 kg . hm-2 in 2011 in the treatment of sugarcane monoculture with the reduced nitrogen application. The excessive nitrogen surplus might increase the risk of nitrogen pollution in the field. In conclusion, sugarcane-soybean intercropping with reduced nitrogen application is feasible to practice in consideration of enriching the soil fertility, reducing nitrogen pollution and saving production cost in sugarcane field.
Gong, Wei-Wei; Zhang, Yi-Sheng; He, Ling-Yan; Luan, Sheng-Ji
2011-02-01
In order to obtain ammonia volatilization flux and volatilization loss rate in the vegetable field and investigate their relationship with environmental factors, an on-line monitoring system was used to measure the ammonia volatilization in the vegetable (Brassica rapa L. and lettuce) field after urea application during January to September, 2009. The system included a wind tunnel system, a gas collector and an online analyzer system with ion chromatography. The time resolution of measurement was 15 min. The recovery of the system was (92.6 +/- 3.4)%; the accumulated ammonia volatilization within 15 d continuous sampling after fertilization was regarded as the total loss. The accumulated ammonia volatilization of 12 d continuous sampling after fertilization accounted for (85.4 +/- 5.2)% of the total volatilization. The ammonia volatilization loss of broadcasting basal dressing and top dressing for Brassica rapa L. were 23.6% and 21.3%, respectively. The ammonia volatilization loss of holing basal dressing and top dressing for lettuce were 17.6% and 24.0%, respectively. The ammonia volatilization in the vegetable field mostly occurred in the first 2-3 weeks after fertilization. The ammonia volatilization flux had significant positive correlation with the nitrogen application rate, while the ammonia volatilization loss rate had negative correlation with the nitrogen application rate. The ammonia volatilization flux was positively correlated with the soil temperature (r = 0.041, p < 0.05) and the air temperature (r = 0.049, p < 0.01), while not significantly associated with the air humidity and the soil moisture. Temperature was found to be a main factor influencing the ammonia volatilization in the vegetable field.
San Francisco, Sara; Urrutia, Oscar; Martin, Vincent; Peristeropoulos, Angelos; Garcia-Mina, Jose Maria
2011-07-01
Some authors suggest that the absence of tillage in agricultural soils might have an influence on the efficiency of nitrogen applied in the soil surface. In this study we investigate the influence of no-tillage and soil characteristics on the efficiency of a urease inhibitor (N-(n-butyl)thiophosphoric triamide, NBPT) and a nitrification inhibitor (diciandiamide, DCD) in decreasing ammonia volatilization from urea and ammonium nitrate (AN), respectively. The results indicate that ammonia volatilization in soils amended with urea was significantly higher than in those fertilized with AN. Likewise, the main soil factors affecting ammonia volatilization from urea are clay and sand soil contents. While clay impedes ammonia volatilization, sand favours it. The presence of organic residues on soil surface (no-tillage) tends to increase ammonia volatilization from urea, although this fact depended on soil type. The presence of NBPT in urea fertilizer significantly reduced soil ammonia volatilization. This action of NBPT was negatively affected by acid soil pH and favoured by soil clay content. The presence of organic residues on soil surface amended with urea increased ammonia volatilization, and was particularly high in sandy compared with clay soils. Application of NBPT reduced ammonia volatilization although its efficiency is reduced in acid soils. Concerning AN fertilization, there were no differences in ammonia volatilization with or without DCD in no-tillage soils. Copyright © 2011 Society of Chemical Industry.
Shan, Linan; He, Yunfeng; Chen, Jie; Huang, Qian; Wang, Hongcai
2015-12-01
Ammonia (NH3) volatilization is a major pathway of nitrogen (N) loss from soil-crop systems. As vegetable cultivation is one of the most important agricultural land uses worldwide, a deeper understanding of NH3 volatilization is necessary in vegetable production systems. We therefore conducted a 3-year (2010-2012) field experiment to characterize NH3 volatilization and evaluate the effect of different N fertilizer treatments on this process during the growth period of Chinese cabbage. Ammonia volatilization rate, rainfall, soil water content, pH, and soil NH4(+) were measured during the growth period. The results showed that NH3 volatilization was significantly and positively correlated to topsoil pH and NH4(+) concentration. Climate factors and fertilization method also significantly affected NH3 volatilization. Specifically, organic fertilizer (OF) increased NH3 volatilization by 11.77%-18.46%, compared to conventional fertilizer (CF, urea), while organic-inorganic compound fertilizer (OIF) reduced NH3 volatilization by 8.82%-12.67% compared to CF. Furthermore, slow-release fertilizers had significantly positive effects on controlling NH3 volatilization, with a 60.73%-68.80% reduction for sulfur-coated urea (SCU), a 71.85%-78.97% reduction for biological Carbon Power® urea (BCU), and a 77.66%-83.12% reduction for bulk-blend controlled-release fertilizer (BBCRF) relative to CF. This study provides much needed baseline information, which will help in fertilizer choice and management practices to reduce NH3 volatilization and encourage the development of new strategies for vegetable planting. Copyright © 2015. Published by Elsevier B.V.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-13
... ), volatile organic compounds (VOCs), ammonia (NH 3 ), and sulfur dioxide (SO 2 ). EPA has reviewed the... , coarse particles (PM 10 ), nitrogen oxides (NO X ), volatile organic compounds (VOCs), ammonia (NH 3...
Characteristics of fundamental combustion and NOx emission using various rank coals.
Kim, Sung Su; Kang, Youn Suk; Lee, Hyun Dong; Kim, Jae-Kwan; Hong, Sung Chang
2011-03-01
Eight types of coals of different rank were selected and their fundamental combustion characteristics were examined along with the conversion of volatile nitrogen (N) to nitrogen oxides (NOx)/fuel N to NOx. The activation energy, onset temperature, and burnout temperature were obtained from the differential thermogravimetry curve and Arrhenius plot, which were derived through thermo-gravimetric analysis. In addition, to derive the combustion of volatile N to NOx/fuel N to NOx, the coal sample, which was pretreated at various temperatures, was burned, and the results were compared with previously derived fundamental combustion characteristics. The authors' experimental results confirmed that coal rank was highly correlated with the combustion of volatile N to NOx/fuel N to NOx.
Triton: The Connection between Rosetta, New Horizons and a future Ice Giants Mission
NASA Astrophysics Data System (ADS)
Mandt, K.; Luspay-Kuti, A.; Mousis, O.
2017-12-01
Several planetary missions have made observations intended to evaluate the origin and evolution of volatiles in solar system atmospheres. This is an important topic that connects how planets, moons and small bodies formed to the question of past or present habitability. Comet isotope observations have been ongoing and have played a crucial role in this research. Measurements of the D/H in cometary water and 14N/15N in NH3, in particular, have been critical for evaluating the origin of water and nitrogen in the terrestrial planet atmospheres and for that of Saturn's moon Titan. We have conducted comparative studies modeling the escape, photochemistry and evolution of the atmospheres of Titan and Pluto to try to understand whether the nitrogen in these atmospheres originated as N2 or NH3 in the protosolar nebula. The origin of Titan's nitrogen has been well constrained, but uncertainties about isotope processes in Pluto's atmosphere leave the origin of Pluto's nitrogen difficult to resolve. Because of their similarities, Triton is subject to the same uncertainties and is of particular interest for understanding the origin of Triton's and Pluto's volatiles as well as of Kuiper Belt Objects in general. We will discuss how Rosetta, New Horizons and a future Ice Giants mission will each contribute to understanding the origin of nitrogen in these atmospheres and to the origin of volatiles in atmospheres throughout outer solar system.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-04
... nitrogen oxides (NO X ), volatile organic compounds (VOCs), PM 2.5 , coarse particles (PM 10 ), ammonia (NH... X ), volatile organic compounds (VOCs), PM 2.5 , coarse particles (PM 10 ), ammonia (NH 3 ), and...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-11
... nitrogen oxides (NO X ), volatile organic compounds (VOCs), PM 2.5 , coarse particles (PM 10 ), ammonia (NH... oxides (NO X ), volatile organic compounds (VOCs), PM 2.5 , coarse particles (PM 10 ), ammonia (NH 3...
SUPERCRITICAL FLUID EXTRACTION OF SEMI-VOLATILE ORGANIC COMPOUNDS FROM PARTICLES
A nitrogen oxide flux chamber was modified to measure the flux of semi-volatile organic compounds (SVOCs). Part of the modification involved the development of methods to extract SVOCs from polyurethane foam (PUF), sand, and soil. Breakthroughs and extraction efficiencies were ...
New Observations of Molecular Nitrogen by the Imaging Ultraviolet Spectrograph on MAVEN
NASA Astrophysics Data System (ADS)
Stevens, Michael H.; Evans, J. S.; Schneider, Nicholas M.; Stewart, A. I. F.; Deighan, Justin; Jain, Sonal K.; Crismani, Matteo M. J.; Stiepen, Arnaud; Chaffin, Michael S.; McClintock, William E.; Holsclaw, Greg M.; Lefevre, Franck; Montmessin, Franck; Lo, Daniel Y.; Clarke, John T.; Bougher, Stephen W.; Jakosky, Bruce M.
2015-11-01
The Martian ultraviolet dayglow provides information on the basic state of the Martian upper atmosphere. The Imaging Ultraviolet Spectrograph (IUVS) on NASA’s Mars Atmosphere and Volatile Evolution (MAVEN) mission has observed Mars at mid and far-UV wavelengths since its arrival in September 2014. In this work, we describe a linear regression method used to extract components of UV spectra from IUVS limb observations and focus in particular on molecular nitrogen (N2) photoelectron excited emissions. We identify N2 Lyman-Birge-Hopfield (LBH) emissions for the first time at Mars and we also confirm the tentative identification of N2 Vegard-Kaplan (VK) emissions. We compare observed VK and LBH limb radiance profiles to model results between 90 and 210 km. Finally, we compare retrieved N2 density profiles to general circulation (GCM) model results. Contrary to earlier analyses using other satellite data that indicated N2 densities were a factor of three less than predictions, we find that N2 abundances exceed GCM results by about a factor of two at 130 km but are in agreement at 150 km.
Code of Federal Regulations, 2010 CFR
2010-07-01
...)(5)(ii)(D) of this section, and the amount of any supplemental fertilizer applied during the previous... of land application; and volatilization of nitrogen and mineralization of organic nitrogen. (B) The...
Martínez-Gil, Ana M; Garde-Cerdán, Teresa; Lorenzo, Cándida; Lara, José Félix; Pardo, Francisco; Salinas, M Rosario
2012-01-01
The aim of this work was to study the influence of nitrogen compounds on the formation of volatile compounds during the alcoholic fermentation carried out with 4 nonaromatic grape varieties collected at 2 different maturation stages. To do this, Monastrell, Merlot, Syrah, and Petit Verdot grapes were collected 1 wk before harvest and at harvest. Then, the musts were inoculated with the same Saccharomyces cerevisiae yeast strain and were fermented in the same winemaking conditions. Amino acids that showed the highest and the lowest concentration in the must were the same, regardless of the grape variety and maturation stage. Moreover, the consumption of amino acids during the fermentation increased with their concentration in the must. The formation of volatile compounds was not nitrogen composition dependent. However, the concentration of amino acids in the must from grapes collected 1 wk before harvest can be used as a parameter to estimate the concentration of esters in wines from grapes collected at harvest and therefore to have more information to know the grape oenological capacity. Application of principal components analysis (PCA) confirmed the possibility to estimate the concentration of esters in the wines with the concentration of nitrogen compounds in the must. © 2011 Institute of Food Technologists®
The magnitudes, distributions, controlling processes and uncertainties associated with North American natural emissions of oxidant precursors are reviewed. Natural emissions are repsonsible for a major portion of the compounds, including non-methane volatile organic compounds (N...
40 CFR 52.770 - Identification of plan.
Code of Federal Regulations, 2014 CFR
2014-07-01
.../1980 11/5/1981, 46 FR 54943. 1-2-88 “Vapor balance system″ defined 9/26/1980 11/5/1981, 46 FR 54943. 1... Specific testing procedures; particulate matter; PM10; PM2.5; sulfur dioxide; nitrogen oxides; volatile.../2002 11/30/2004, 69 FR 69531. Article 10. Nitrogen Oxides Rules 10-1 Nitrogen Oxides Control in Clark...
Sun, Haijun; Min, Ju; Zhang, Hailin; Feng, Yanfang; Lu, Kouping; Shi, Weiming; Yu, Min; Li, Xuewen
2017-07-11
Impacts of biochar application mode on nitrogen (N) leaching, ammonia (NH 3 ) volatilization, rice grain yield and N use efficiency (NUE) are not well understood. Therefore, a field experiment was conducted to evaluate those impacts in a rice paddy soil received 225 kg N ha -1 from either urea or N-rich wastewater. One treatment received 10 t ha -1 biochar with the basal fertilization, and the other received same total amount of biochar but split applied with the three split N applications with same ratio as N fertilizer split ratio (40%, 30% and 30%). Results showed that N leaching loads were 4.20-6.22 kg ha -1 . Biochar one-time application reduced N leaching by 23.1%, and biochar split application further reduced N leaching by 32.4%. Total NH 3 volatilization loss was 15.5-24.5 kg ha -1 . Biochar one-time application did not influence the NH 3 volatilization, but biochar split application stimulated the cumulative NH 3 volatilization by 57.7%. Both biochar treatments had no influence on NUE and rice grain yield. In conclusion, biochar application mode indeed influences the N leaching and NH 3 volatilization in rice paddy soils, and biochar one-time application should be recommended for reducing N leaching without increasing NH 3 volatilization.
Luck, Katrin; Jirschitzka, Jan; Irmisch, Sandra; Huber, Meret; Gershenzon, Jonathan; Köllner, Tobias G
2016-10-04
Amino acid-derived aldoximes and nitriles play important roles in plant defence. They are well-known as precursors for constitutive defence compounds such as cyanogenic glucosides and glucosinolates, but are also released as volatiles after insect feeding. Cytochrome P450 monooxygenases (CYP) of the CYP79 family catalyze the formation of aldoximes from the corresponding amino acids. However, the majority of CYP79s characterized so far are involved in cyanogenic glucoside or glucosinolate biosynthesis and only a few have been reported to be responsible for nitrogenous volatile production. In this study we analysed and compared the jasmonic acid-induced volatile blends of two Erythroxylum species, the cultivated South American crop species E. coca and the African wild species E. fischeri. Both species produced different nitrogenous compounds including aliphatic aldoximes and an aromatic nitrile. Four isolated CYP79 genes (two from each species) were heterologously expressed in yeast and biochemically characterized. CYP79D62 from E. coca and CYP79D61 and CYP79D60 from E. fischeri showed broad substrate specificity in vitro and converted L-phenylalanine, L-isoleucine, L-leucine, L-tryptophan, and L-tyrosine into the respective aldoximes. In contrast, recombinant CYP79D63 from E. coca exclusively accepted L-tryptophan as substrate. Quantitative real-time PCR revealed that CYP79D60, CYP79D61, and CYP79D62 were significantly upregulated in jasmonic acid-treated Erythroxylum leaves. The kinetic parameters of the enzymes expressed in vitro coupled with the expression patterns of the corresponding genes and the accumulation and emission of (E/Z)-phenylacetaldoxime, (E/Z)-indole-3-acetaldoxime, (E/Z)-3-methylbutyraldoxime, and (E/Z)-2-methylbutyraldoxime in jasmonic acid-treated leaves suggest that CYP79D60, CYP79D61, and CYP79D62 accept L-phenylalanine, L-leucine, L-isoleucine, and L-tryptophan as substrates in vivo and contribute to the production of volatile and semi-volatile nitrogenous defence compounds in E. coca and E. fischeri.
Aerosol from Organic Nitrogen in the Southeast United States
Biogenic volatile organic compounds (BVOCs) contribute significantly to organic aerosol in the southeastern United States. During the Southern Oxidant and Aerosol Study (SOAS), a portion of ambient organic aerosol was attributed to isoprene oxidation and organic nitrogen from BVO...
Oxidation-reduction catalyst and its process of use
NASA Technical Reports Server (NTRS)
Schryer, Jacqueline L. (Inventor); Oglesby, Donald M. (Inventor); Jordan, Jeffrey D. (Inventor); Watkins, Anthony Neal (Inventor)
2008-01-01
This invention relates generally to a ruthenium stabilized oxidation-reduction catalyst useful for oxidizing carbon monoxide, and volatile organic compounds, and reducing nitrogen oxide species in oxidizing environments, substantially without the formation of toxic and volatile ruthenium oxide species upon said oxidizing environment being at high temperatures.
Fang, Jong-Yi; Wetten, Andrew; Johnston, Jason
2008-03-01
The mechanisms that reduce the viability of plant somatic embryos following cryopreservation are not known. The objective of the present study was to evaluate the sensitivity of cocoa (Theobroma cacao L.) somatic embryos at different stages of an encapsulation-dehydration protocol using stress-related volatile hydrocarbons as markers of injury and recovery. The plant stress hormone ethylene and volatile hydrocarbons derived from hydroxyl radicals (methane) and lipid peroxidation (ethane) were determined using gas chromatography headspace analysis. Ethylene and methane were the only volatiles detected, with both being produced after each step of the cryogenic protocol. Ethylene production was significantly reduced following exposure to liquid nitrogen, but then increased in parallel with embryo recovery. In contrast, the production of methane was cyclic during recovery, with the first cycle occurring earlier for embryos recovered from liquid nitrogen and desiccation than those recovered from earlier steps in the protocol. These results suggest that loss of somatic embryo viability during cryopreservation may be related to the oxidative status of the tissue, and its capacity to produce ethylene. This study has demonstrated that headspace volatile analysis provides a robust non-destructive analytical approach for assessing the survival and recovery of plant somatic embryos following cryopreservation.
Bohlscheid, J C; Fellman, J K; Wang, X D; Ansen, D; Edwards, C G
2007-02-01
To study the impact of assimilable nitrogen, biotin and their interaction on growth, fermentation rate and volatile formation by Saccharomyces. Fermentations of synthetic grape juice media were conducted in a factorial design with yeast assimilable nitrogen (YAN) (60 or 250 mg l(-1)) and biotin (0, 1 or 10 microg l(-1)) as variables. All media contained 240 g l(-1) glucose + fructose (1 : 1) and were fermented using biotin-depleted Saccharomyces cerevisiae strains EC1118 or UCD 522. Both strains exhibited weak growth and sluggish fermentation rates without biotin. Increased nitrogen concentration resulted in higher maximum fermentation rates, while adjusting biotin from 1 to 10 microg l(-1) had no effect. Nitrogen x biotin interactions influenced fermentation time, production of higher alcohols and hydrogen sulfide (H(2)S). Maximum H(2)S production occurred in the medium containing 60 mg l(-1) YAN and 1 microg l(-1) biotin. Nitrogen x biotin interactions affect fermentation time and volatile production by Saccharomyces depending on strain. Biotin concentrations sufficient to complete fermentation may affect the organoleptic impact of wine. This study demonstrates the necessity to consider nutrient interactions when diagnosing problem fermentations.
USDA-ARS?s Scientific Manuscript database
Agricultural emissions impact particulate mass concentrations through both primary and secondary processes. Evidence from laboratory and field work suggest that not only does ammonia produce secondary particulate matter, but nitrogen and sulfur containing volatile organic compounds also contribute. ...
Watershed nitrogen and phosphorus balance: The upper Potomac River basin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaworski, N.A.; Groffman, P.M.; Keller, A.A.
1992-01-01
Nitrogen and phosphorus mass balances were estimated for the portion of the Potomac River basin watershed located above Washington, D.C. The total nitrogen (N) balance included seven input source terms, six sinks, and one 'change-in-storage' term, but was simplified to five input terms and three output terms. The phosphorus (P) baance had four input and three output terms. The estimated balances are based on watershed data from seven information sources. Major sources of nitrogen are animal waste and atmospheric deposition. The major sources of phosphorus are animal waste and fertilizer. The major sink for nitrogen is combined denitrification, volatilization, andmore » change-in-storage. The major sink for phosphorus is change-in-storage. River exports of N and P were 17% and 8%, respectively, of the total N and P inputs. Over 60% of the N and P were volatilized or stored. The major input and output terms on the budget are estimated from direct measurements, but the change-in-storage term is calculated by difference. The factors regulating retention and storage processes are discussed and research needs are identified.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-27
... reasonably available control technology (RACT) for oxides of nitrogen (NO X ) and volatile organic compounds.... I. Background and Purpose II. Connecticut's Reasonably Available Control Technology Certification... controlling volatile organic compound emissions that Connecticut submitted to EPA on July 20, 2007. \\1\\ The...
The magnitudes, distributions, controlling processes and uncertainties associated with North American natural emissions of oxidant precursors are reviewed. Natural emissions are responsible for a major portion of the compounds, including non-methane volatile o...
Beck, John J; Smith, Lincoln; Baig, Nausheena
2014-01-01
The technology for the collection and analysis of plant-emitted volatiles for understanding chemical cues of plant-plant, plant-insect or plant-microbe interactions has increased over the years. Consequently, the in situ collection, analysis and identification of volatiles are considered integral to elucidation of complex plant communications. Due to the complexity and range of emissions the conditions for consistent emission of volatiles are difficult to standardise. To discuss: evaluation of emitted volatile metabolites as a means of screening potential target- and non-target weeds/plants for insect biological control agents; plant volatile metabolomics to analyse resultant data; importance of considering volatiles from damaged plants; and use of a database for reporting experimental conditions and results. Recent literature relating to plant volatiles and plant volatile metabolomics are summarised to provide a basic understanding of how metabolomics can be applied to the study of plant volatiles. An overview of plant secondary metabolites, plant volatile metabolomics, analysis of plant volatile metabolomics data and the subsequent input into a database, the roles of plant volatiles, volatile emission as a function of treatment, and the application of plant volatile metabolomics to biological control of invasive weeds. It is recommended that in addition to a non-damaged treatment, plants be damaged prior to collecting volatiles to provide the greatest diversity of odours. For the model system provided, optimal volatile emission occurred when the leaf was punctured with a needle. Results stored in a database should include basic environmental conditions or treatments. Copyright © 2013 John Wiley & Sons, Ltd.
Hall, D.W.; Risser, D.W.
1993-01-01
Nitrogen inputs to, and outputs from, a 55-acre site in Lancaster County, Pennsylvania, were estimated to determine the pathways and relative magnitude of loads of nitrogen entering and leaving the site, and to compare the loads of nitrogen before and after the implementation of nutrient management. Inputs of nitrogen to the site were manure fertilizer, commercial fertilizer, nitrogen in precipitation, and nitrogen in ground-water inflow; and these sources averaged 93, 4, 2, and 1 percent of average annual nitrogen additions, respectively. Outputs of nitrogen from the site were nitrogen in harvested crops, loads of nitrogen in surface runoff, volatilization of nitrogen, and loads of nitrogen in ground-water discharge, which averaged 37, less than 1,25, and 38 percent of average annual nitrogen removals from the site, respectively. Virtually all of the nitrogen leaving the site that was not removed in harvested crops or by volatilization was discharged in the ground water. Applications of manure and fertilizer nitrogen to 47.5 acres of cropped fields decreased about 33 percent, from an average of 22,700 pounds per year (480 pounds per acre per year) before nutrient management to 15,175 pounds of nitrogen per year (320 pounds per acre per year) after the implementation of nutrient management practices. Nitrogen loads in ground-water discharged from the site decreased about 30 percent, from an average of 292 pounds of nitrogen per million gallons of ground water before nutrient management to an average of 203 pounds of nitrogen per million gallons as a result of the decreased manure and commercial fertilizer applications. Reductions in manure and commercial fertilizer applications caused a reduction of approximately 11,000 pounds (3,760 pounds per year, 70 pounds per acre per year) in the load of nitrogen discharged in ground water from the 55-acre site during the three-year period 1987-1990.
Measurement of ammonia emissions from temperate and sub-polar seabird colonies
NASA Astrophysics Data System (ADS)
Riddick, S. N.; Blackall, T. D.; Dragosits, U.; Daunt, F.; Newell, M.; Braban, C. F.; Tang, Y. S.; Schmale, J.; Hill, P. W.; Wanless, S.; Trathan, P.; Sutton, M. A.
2016-06-01
The chemical breakdown of marine derived reactive nitrogen transported to the land as seabird guano represents a significant source of ammonia (NH3) in areas far from other NH3 sources. Measurements made at tropical and temperate seabird colonies indicate substantial NH3 emissions, with emission rates larger than many anthropogenic point sources. However, several studies indicate that thermodynamic processes limit the amount of NH3 emitted from guano, suggesting that the percentage of guano volatilizing as NH3 may be considerably lower in colder climates. This study undertook high resolution temporal ammonia measurements in the field and coupled results with modelling to estimate NH3 emissions at a temperate puffin colony and two sub-polar penguin colonies (Signy Island, South Orkney Islands and Bird Island, South Georgia) during the breeding season. These emission rates are then compared with NH3 volatilization rates from other climates. Ammonia emissions were calculated using a Lagrangian atmospheric dispersion model, resulting in mean emissions of 5 μg m-2 s-1 at the Isle of May, 12 μg m-2 s-1 at Signy Island and 9 μg m-2 s-1 at Bird Island. The estimated percentage of total guano nitrogen volatilized was 5% on the Isle of May, 3% on Signy and 2% on Bird Island. These values are much smaller than the percentage of guano nitrogen volatilized in tropical contexts (31-65%). The study confirmed temperature, wind speed and water availability have a significant influence on the magnitude of NH3 emissions, which has implications for reactive nitrogen in both modern remote regions and pre-industrial atmospheric composition and ecosystem interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kilpinen, P.; Kallio, S.; Hupa, M.
1999-07-01
This paper describes work-in-progress aimed at developing an emission model for circulating fluidized bed combustors using detailed homogeneous and heterogeneous chemical kinetics. The main emphasis is on nitrogen oxides (NO{sub x}, N{sub 2}O) but also unburned gases (CO, C{sub x}H{sub y}) and sulfur dioxide (SO{sub 2}) will be investigated in the long run. The hydrodynamics is described by a 1.5-dimensional model where the riser is divided into three regions: a dense bubbling bed at the bottom, a vigorously mixed splash zone, and a transport zone. The two latter zones are horizontally split into a core region and an annular region.more » The solids circulation rate is calculated from the known solids inventory and the pressure and mass balances over the entire circulation loop. The solids are divided into classes according to size and type or particle. The model assumes instantaneous fuel devolatilization at the bottom and an even distribution of volatiles in the suspension phase of the dense bed. For addition of secondary air, a complete penetration and an instantaneous mixing with the combustor gases in the core region is assumed. The temperature distribution is assumed to be known, and no energy balance is solved. A comprehensive kinetic scheme of about 300 elementary gas-phase reactions is used to describe the homogeneous oxidation of the volatiles including both hydrocarbon and volatile-nitrogen components (NH{sub 3}, HCN). Heterogeneous char combustion to CO and CO{sub 2}, and char-nitrogen conversion to NO, N{sub 2}O, and N{sub 2} are described by a single particle model that includes 15 reaction steps given in the form of 6 net reaction paths. In the paper, the model is briefly described. A special emphasis is put on the evaluation of chemistry submodels. Modeling results on nitrogen oxides' formation are compared with measured concentration profiles in a 12 MW CFBC riser from literature. The importance of accurate chemistry description on predictions is illustrated by comparing modeling results using detailed kinetics to those obtained when hydrocarbon and volatile-nitrogen oxidation are described with empirical, global kinetic rate expressions from literature. Submodels that need further improvements are discussed.« less
Further contributions to the understanding of nitrogen removal in waste stabilization ponds.
Bastos, R K X; Rios, E N; Sánchez, I A
2018-06-01
A set of experiments were conducted in Brazil in a pilot-scale waste stabilization pond (WSP) system (a four-maturation-pond series) treating an upflow anaerobic sludge blanket (UASB) reactor effluent. Over a year and a half the pond series was monitored under two flow rate conditions, hence also different hydraulic retention times and surface loading rates. On-site and laboratory trials were carried out to assess: (i) ammonia losses by volatilization using acrylic capture chambers placed at the surface of the ponds; (ii) organic nitrogen sedimentation rates using metal buckets placed at the bottom of the ponds for collecting settled particulate matter; (iii) nitrogen removal by algal uptake based on the nitrogen content of the suspended particulate matter in samples from the ponds' water column. In addition, nitrification and denitrification rates were measured in laboratory-based experiments using pond water and sediment samples. The pond system achieved high nitrogen removal (69% total nitrogen and 92% ammonia removal). The average total nitrogen removal rates varied from 10,098 to 3,849 g N/ha·d in the first and the last ponds, respectively, with the following fractions associated with the various removal pathways: (i) 23.5-45.6% sedimentation of organic nitrogen; (ii) 13.1-27.8% algal uptake; (iii) 1.2-3.1% ammonia volatilization; and (iv) 0.15-0.34% nitrification-denitrification.
Volatile elements - water, carbon, nitrogen, noble gases - on Earth
NASA Astrophysics Data System (ADS)
Marty, B.
2017-12-01
Understanding the origin and evolution of life-bearing volatile elements (water, carbon, nitrogen) on Earth is a fruitful and debated area of research. In his pioneering work, W.W. Rubey inferred that the terrestrial atmosphere and the oceans formed from degassing of the mantle through geological periods of time. Early works on noble gas isotopes were consistent with this view and proposed a catastrophic event of mantle degassing early in Earth's history. We now have evidence, mainly from noble gas isotopes, that several cosmochemical sources contributed water and other volatiles at different stages of Earth's accretion. Potential contributors include the protosolar nebula gas that equilibrated with magma oceans, inner solar system bodies now represented by chondrites, and comets. Stable isotope ratios suggest volatiles where primarily sourced by planetary bodies from the inner solar system. However, recent measurements by the European Space Agency Rosetta probe on the coma of Comet 67P/Churyumov-Gerasimenko permit to set quantitative constraints on the cometary contribution to the surface of our planet. The surface and mantle reservoirs volatile elements exchanged volatile elements through time, with rates that are still uncertain. Some mantle regions remained isolated from whole mantle convection within the first tens to hundreds million years after start of solar system formation. These regions, now sampled by some mantle plumes (e.g., Iceland, Eifel) preserved their volatile load, as indicated by extinct and extant radioactivity systems. The abundance of volatile elements in the mantle is still not well known. Different approaches, such as high pressure experimental petrology, noble gas geochemistry, modelling, resulted in somewhat contrasted estimates, varying over one order of magnitude for water. Comparative planetology, that is, the study of volatiles on the Moon, Venus, Mars, Vesta, will shed light on the sources and strengths of these elements in the inner solar system.
Wang, Jun; Wang, De-Jian; Zhang, Gang; Wang, Yuan
2013-01-01
An experiment using monolith lysimeter was conducted to compare the characteristic of N loss by ammonia (NH3) volatilization between the gleyed paddy soil (G soil) and hydromorphic paddy soil (H soil) the Changshu National Agro-ecological Experimental Station of the Chinese Academy of Sciences(31 degrees 33' N, 123 degrees 38' E). Three treatments were designed for each soil type, i. e. control (no urea and straw applied), nitrogen solely and nitrogen plus wheat straw. Ammonia volatilization, flood water NH4(+) -N concentration, pH and top soil Eh were measured during the rice-growing season. Results showed that the NH3 volatilization flux and cumulative N losses by NH3 volatilization from G soil were significantly higher than those from H soil, the average cumulative N losses being about 41.8 kg x hm(-2) and 11.2 kg x hm(-2), or 15.2% and 3.8% of the fertilizer N, respectively. The average N loss by NH3 volatilization during the tillering stage was the highest among the three fertilization stages, accounting for 29.4% and 8.3% of the fertilizer N for G soil and H soil, respectively. Wheat straw returning significantly increased paddy filed NH3 volatilization losses. Comparing with the sole application of fertilizer-N, the cumulative N loss by NH3 volatilization of fertilizer-N in combination with wheat straw was increased by 19.8% and 20.6% for G soil and H soil, respectively. In addition, ammonia volatilization fluxes showed a positive relationship with the flood water NH4(+) -N concentration and pH for both soils, but the relationship with top soil Eh still needs further study.
Microalgae biofilm in soil: Greenhouse gas emissions, ammonia volatilization and plant growth.
Castro, Jackeline de Siqueira; Calijuri, Maria Lúcia; Assemany, Paula Peixoto; Cecon, Paulo Roberto; de Assis, Igor Rodrigues; Ribeiro, Vinícius José
2017-01-01
Microalgal biofilm in soils represents an alternative fertilization method for agricultural sustainability. In the present study, greenhouse gas emission, soil ammonia volatilization, and the growth of Pennisetum glaucum were evaluated under the effect of a microalgal biofilm, commercial urea, and a control (without application of a nitrogen source). CH 4 emissions were equal for the three treatments (p>0.05). CO 2 emissions significantly increased in microalgal biofilm treatment (p<0.01), which was also responsible for the highest N 2 O emissions (p<0.01). The ammonia (NNH 3 ) volatilization losses were 4.63%, 18.98%, and 0.82% for the microalgal biofilm, urea, and control treatments, respectively. The main differences in soil characteristics were an increase in nitrogen and an increase in cation exchange capacity (p<0.01) caused by the algal biomass application to the soil. The soil organic matter content significantly differed (p<0.05) among the three treatments, with the microalgal biofilm treatment having the greatest increase in soil organic matter. Significant differences were observed for shoot dry matter mass and nitrogen content in the plants from both treatments where nitrogen sources were applied. All treatments differed from each other in leaf dry matter mass, with the urea treatment increasing the most. Chlorella vulgaris was the dominant microalgal specie in the soil. Copyright © 2016 Elsevier B.V. All rights reserved.
Fairbairn, Samantha; McKinnon, Alexander; Musarurwa, Hannibal T.; Ferreira, António C.; Bauer, Florian F.
2017-01-01
Nitrogen availability and utilization by Saccharomyces cerevisiae significantly influence fermentation kinetics and the production of volatile compounds important for wine aroma. Amino acids are the most important nitrogen source and have been classified based on how well they support growth. This study evaluated the effect of single amino acids on growth kinetics and major volatile production of two phenotypically different commercial wine yeast strains in synthetic grape must. Four growth parameters, lag phase, maximum growth rate, total biomass formation and time to complete fermentation were evaluated. In contrast with previous findings, in fermentative conditions, phenylalanine and valine supported growth well and asparagine supported it poorly. The four parameters showed good correlations for most amino acid treatments, with some notable exceptions. Single amino acid treatments resulted in the predictable production of aromatic compounds, with a linear correlation between amino acid concentration and the concentration of aromatic compounds that are directly derived from these amino acids. With the increased complexity of nitrogen sources, linear correlations were lost and aroma production became unpredictable. However, even in complex medium minor changes in amino acid concentration continued to directly impact the formation of aromatic compounds, suggesting that the relative concentration of individual amino acids remains a predictor of aromatic outputs, independently of the complexity of metabolic interactions between carbon and nitrogen metabolism and between amino acid degradation and utilization pathways. PMID:29312237
Fairbairn, Samantha; McKinnon, Alexander; Musarurwa, Hannibal T; Ferreira, António C; Bauer, Florian F
2017-01-01
Nitrogen availability and utilization by Saccharomyces cerevisiae significantly influence fermentation kinetics and the production of volatile compounds important for wine aroma. Amino acids are the most important nitrogen source and have been classified based on how well they support growth. This study evaluated the effect of single amino acids on growth kinetics and major volatile production of two phenotypically different commercial wine yeast strains in synthetic grape must. Four growth parameters, lag phase, maximum growth rate, total biomass formation and time to complete fermentation were evaluated. In contrast with previous findings, in fermentative conditions, phenylalanine and valine supported growth well and asparagine supported it poorly. The four parameters showed good correlations for most amino acid treatments, with some notable exceptions. Single amino acid treatments resulted in the predictable production of aromatic compounds, with a linear correlation between amino acid concentration and the concentration of aromatic compounds that are directly derived from these amino acids. With the increased complexity of nitrogen sources, linear correlations were lost and aroma production became unpredictable. However, even in complex medium minor changes in amino acid concentration continued to directly impact the formation of aromatic compounds, suggesting that the relative concentration of individual amino acids remains a predictor of aromatic outputs, independently of the complexity of metabolic interactions between carbon and nitrogen metabolism and between amino acid degradation and utilization pathways.
Code of Federal Regulations, 2012 CFR
2012-07-01
... VS/day/1000 kg animal mass) Dairy cows Dairy heifers Feedlot steer Feedlot heifers Nitrogen excretion rate (kg VS/day/1000 kg animal mass) Dairy cows Dairy heifers Feedlot steer Feedlot heifers Alabama 8...
Code of Federal Regulations, 2014 CFR
2014-07-01
... VS/day/1000 kg animal mass) Dairy cows Dairy heifers Feedlot steer Feedlot heifers Nitrogen excretion rate (kg VS/day/1000 kg animal mass) Dairy cows Dairy heifers Feedlot steer Feedlot heifers Alabama 8...
Code of Federal Regulations, 2013 CFR
2013-07-01
... VS/day/1000 kg animal mass) Dairy cows Dairy heifers Feedlot steer Feedlot heifers Nitrogen excretion rate (kg VS/day/1000 kg animal mass) Dairy cows Dairy heifers Feedlot steer Feedlot heifers Alabama 8...
Nitro-treatment of composted poultry litter, effects on Salmonella, E. coli and nitrogen
USDA-ARS?s Scientific Manuscript database
Poultry litter is a potentially valuable crude protein feed for ruminants whose gut microbes transform the nitrogen in uric acid into microbial protein. However, poultry litter must be treated to kill pathogens before feeding. Composting effectively kills pathogens but risks volatilization losses ...
Ontañon, I; Sanz, J; Escudero, A; de Marcos, S; Ferreira, V; Galbán, J
2015-04-03
A homemade flow cell attached to a commercial Gas Chromatograph equipped with a Flame Ionization Detector (FID) has been designed for the continuous monitoring of volatile compounds released during heating edible oils. Analytical parameters such as mass of sample, temperature and flow rates have been optimized and the obtained results have been compared with the corresponding thermographs from standard TG systems. Results show that under optimum conditions, the profiles of volatiles released upon heating are comparable to the profiles of TG curves, suggesting that the FID based system could be an alternative to TGA. Additionally, volatiles have been retained in a Lichrolut EN(®) resin, eluted and analyzed by Gas Chromatography-Mass Spectrometry. In this case, forty five compounds have been identified (acids, alcohols, alkanes, aldehydes, ketones and furans) and compared with the FID signals, working both in air or nitrogen atmosphere. It has been concluded that the oxidative thermal degradation is prevented in the presence of a nitrogen atmosphere. Copyright © 2015 Elsevier B.V. All rights reserved.
Feng, Yanfang; Sun, Haijun; Xue, Lihong; Wang, Yueman; Yang, Linzhang; Shi, Weiming; Xing, Baoshan
2018-03-01
Sawdust biochar (SDB) was for the first time applied to rice paddy field to evaluate its effects on potential nitrogen (N) runoff and ammonia (NH 3 ) volatilization losses in a soil column experimental system. Results showed that total N concentration of surface floodwater under SDB treatments was reduced by 7.29-35.16, 16.34-32.35, and 12.21-28.12% after three split N fertilizations, respectively. Particularly, NH 4 + -N was decreased by 11.84-27.08, 14.29-36.50, and 2.97-19.64%, respectively. However, SDB addition has no significant influence on NO 3 - -N concentration. Meanwhile, SDB application increased NH 4 + -N and total N content of top (0-15 cm) soil. Furthermore, these SDB-induced influences were more pronounced for 3 wt% SDB treatments. SDB treatments recorded 3.56-5.78 kg ha -1 higher NH 3 volatilization than urea control treatment, which was attributed to the elevated pH values of floodwater and top soil induced by SDB. Fortunately, the yield-scale NH 3 volatilization was not increased dramatically.
Zhao, Bin; Dong, Shu-Ting; Wang, Kong-Jun; Zhang, Ji-Wang; Liu, Peng
2009-11-01
A field experiment with colophony-coated fertilizer (CRF) and sulfur-coated fertilizer (SCF) showed that under the same application rates of N, P and K, applying CRF and SCF increased the summer maize grain yield by 13.15% and 14.15%, respectively, compared to the application of common compound fertilizer CCF. When the applied amount of CRF and SCF was decreased by 25%, the yield increment was 9.69% and 10.04%, respectively; and when the applied amount of CRF and SCF was decreased by 50%, the yield had less difference with that under CCF application. The field ammonia volatilization rate in treatments CRF and SCF increased slowly, with a peak appeared 7 days later than that in treatment CCF, and the total amount of ammonia volatilization in treatments CRF and SCF was ranged from 0.78 kg N x hm(-2) to 4.43 kg N x hm(-2), with a decrement of 51.34%-91.34% compared to that in treatment CCF. The fertilizer nitrogen use efficiency and agronomic nitrogen use efficiency of CRF and SCF were also significantly higher than those of CCF.
Shim, Jae Min; Lee, Kang Wook; Yao, Zhuang; Kim, Jeong A; Kim, Hyun-Jin; Kim, Jeong Hwan
2017-10-28
Myeolchi jeotgals (MJs) were prepared with purified salt (PS), solar salt aged for 1 year (SS), and bamboo salt (BS) melted 3 times at 10% and 20% (w/w) concentrations, and fermented for 28 weeks at 15°C. BS MJ showed higher pH and lower titratable acidities than the other samples because of the alkalinity of bamboo salt. Lactic acid bacteria counts increased until 4-6 weeks and then decreased gradually, and were not detected after 20 weeks from MJs with 10% salt. Yeast counts of PS MJs were higher than those of BS and SS MJs. Bacilli were detected in relatively higher numbers throughout the 28 weeks, like marine bacteria, but archae were detected in lower numbers during the first 10 weeks. When 16S rRNA genes were amplified from total DNA from PS MJ (10% salt) at 12 weeks, Tetragenococcus halophilus was the major species. However, Staphylococcus epidermidis was the dominant species for BS MJ at the same time point. In SS MJ, T. halophilus was the dominant species and S. epidermidis was the next dominant species. BS and SS MJs showed higher amino-type nitrogen, ammonia-type nitrogen, and volatile basic nitrogen contents than PS MJs. SS and BS were better than PS for the production of high-quality MJs.
Enhanced Basicity of Push-Pull Nitrogen Bases in the Gas Phase.
Raczyńska, Ewa D; Gal, Jean-François; Maria, Pierre-Charles
2016-11-23
Nitrogen bases containing one or more pushing amino-group(s) directly linked to a pulling cyano, imino, or phosphoimino group, as well as those in which the pushing and pulling moieties are separated by a conjugated spacer (C═X) n , where X is CH or N, display an exceptionally strong basicity. The n-π conjugation between the pushing and pulling groups in such systems lowers the basicity of the pushing amino-group(s) and increases the basicity of the pulling cyano, imino, or phosphoimino group. In the gas phase, most of the so-called push-pull nitrogen bases exhibit a very high basicity. This paper presents an analysis of the exceptional gas-phase basicity, mostly in terms of experimental data, in relation with structure and conjugation of various subfamilies of push-pull nitrogen bases: nitriles, azoles, azines, amidines, guanidines, vinamidines, biguanides, and phosphazenes. The strong basicity of biomolecules containing a push-pull nitrogen substructure, such as bioamines, amino acids, and peptides containing push-pull side chains, nucleobases, and their nucleosides and nucleotides, is also analyzed. Progress and perspectives of experimental determinations of GBs and PAs of highly basic compounds, termed as "superbases", are presented and benchmarked on the basis of theoretical calculations on existing or hypothetical molecules.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-04
..., from the State of Tennessee, through the Tennessee Department of Environment and Conservation (TDEC..., 2009, 2017, and 2021 motor vehicle emission budgets (MVEBs) for nitrogen oxides (NO X ) and volatile... protection, Air pollution control, Intergovernmental relations, Incorporation by reference, Nitrogen dioxide...
Spatial analysis studies have included application of land use regression models (LURs) for health and air quality assessments. Recent LUR studies have collected nitrogen dioxide (NO2) and volatile organic compounds (VOCs) using passive samplers at urban air monitoring networks ...
Convection in a volatile nitrogen-ice-rich layer drives Pluto's geological vigour
NASA Astrophysics Data System (ADS)
McKinnon, William B.; Nimmo, Francis; Wong, Teresa; Schenk, Paul M.; White, Oliver L.; Roberts, J. H.; Moore, J. M.; Spencer, J. R.; Howard, A. D.; Umurhan, O. M.; Stern, S. A.; Weaver, H. A.; Olkin, C. B.; Young, L. A.; Smith, K. E.; Moore, J. M.; McKinnon, W. B.; Spencer, J. R.; Beyer, R.; Buie, M.; Buratti, B.; Cheng, A.; Cruikshank, D.; Dalle Ore, C.; Gladstone, R.; Grundy, W.; Howard, A.; Lauer, T.; Linscott, I.; Nimmo, F.; Olkin, C.; Parker, J.; Porter, S.; Reitsema, H.; Reuter, D.; Roberts, J. H.; Robbins, S.; Schenk, P. M.; Showalter, M.; Singer, K.; Strobel, D.; Summers, M.; Tyler, L.; Weaver, H.; White, O. L.; Umurhan, O. M.; Banks, M.; Barnouin, O.; Bray, V.; Carcich, B.; Chaikin, A.; Chavez, C.; Conrad, C.; Hamilton, D.; Howett, C.; Hofgartner, J.; Kammer, J.; Lisse, C.; Marcotte, A.; Parker, A.; Retherford, K.; Saina, M.; Runyon, K.; Schindhelm, E.; Stansberry, J.; Steffl, A.; Stryk, T.; Throop, H.; Tsang, C.; Verbiscer, A.; Winters, H.; Zangari, A.; New Horizons Geology, Geophysics and Imaging Theme Team
2016-06-01
The vast, deep, volatile-ice-filled basin informally named Sputnik Planum is central to Pluto's vigorous geological activity. Composed of molecular nitrogen, methane, and carbon monoxide ices, but dominated by nitrogen ice, this layer is organized into cells or polygons, typically about 10 to 40 kilometres across, that resemble the surface manifestation of solid-state convection. Here we report, on the basis of available rheological measurements, that solid layers of nitrogen ice with a thickness in excess of about one kilometre should undergo convection for estimated present-day heat-flow conditions on Pluto. More importantly, we show numerically that convective overturn in a several-kilometre-thick layer of solid nitrogen can explain the great lateral width of the cells. The temperature dependence of nitrogen-ice viscosity implies that the ice layer convects in the so-called sluggish lid regime, a unique convective mode not previously definitively observed in the Solar System. Average surface horizontal velocities of a few centimetres a year imply surface transport or renewal times of about 500,000 years, well under the ten-million-year upper-limit crater retention age for Sputnik Planum. Similar convective surface renewal may also occur on other dwarf planets in the Kuiper belt, which may help to explain the high albedos shown by some of these bodies.
Convection in a volatile nitrogen-ice-rich layer drives Pluto's geological vigour.
McKinnon, William B; Nimmo, Francis; Wong, Teresa; Schenk, Paul M; White, Oliver L; Roberts, J H; Moore, J M; Spencer, J R; Howard, A D; Umurhan, O M; Stern, S A; Weaver, H A; Olkin, C B; Young, L A; Smith, K E
2016-06-02
The vast, deep, volatile-ice-filled basin informally named Sputnik Planum is central to Pluto's vigorous geological activity. Composed of molecular nitrogen, methane, and carbon monoxide ices, but dominated by nitrogen ice, this layer is organized into cells or polygons, typically about 10 to 40 kilometres across, that resemble the surface manifestation of solid-state convection. Here we report, on the basis of available rheological measurements, that solid layers of nitrogen ice with a thickness in excess of about one kilometre should undergo convection for estimated present-day heat-flow conditions on Pluto. More importantly, we show numerically that convective overturn in a several-kilometre-thick layer of solid nitrogen can explain the great lateral width of the cells. The temperature dependence of nitrogen-ice viscosity implies that the ice layer convects in the so-called sluggish lid regime, a unique convective mode not previously definitively observed in the Solar System. Average surface horizontal velocities of a few centimetres a year imply surface transport or renewal times of about 500,000 years, well under the ten-million-year upper-limit crater retention age for Sputnik Planum. Similar convective surface renewal may also occur on other dwarf planets in the Kuiper belt, which may help to explain the high albedos shown by some of these bodies.
Solar nebula chemistry - Implications for volatiles in the solar system
NASA Technical Reports Server (NTRS)
Fegley, Bruce, Jr.; Prinn, Ronald G.
1989-01-01
Current theoretical models of solar nebula chemistry which take into account the interplay between chemistry and dynamics are presented for the abundant reactive volatile elements including hydrogen, carbon, nitrogen, oxygen, and sulfur. Results of these models indicate that, in the solar nebula, the dominant carbon and nitrogen gases were CO and NO, whereas, in giant planet subnebulae, the dominant carbon and nitrogen gases were CH4 and NH3; in the solar nebula, the Fe metal grains catalyzed the formation of organic compounds from CO and H2 via the Fischer-Tropsch-type reaction. It was also found that, in solar nebula, bulk FeS formation was kinetically favorable, while FeO incorporation into silicates and bulk Fe3O4 formation were kinetically inhibited. Furthermore, clathrate formation was kinetically inhibited in the solar nebula, while it was kinetically favorable in giant planet subnebulae.
Nitrogen availability in composted poultry litter using natural amendments.
Turan, N Gamze
2009-02-01
Poultry litter compost is used as fertilizer on agricultural land because of its high nutrient content. A major limitation of land application of poultry litter compost is the loss of nitrogen via NH3 volatilization. The present work was conducted to monitor nitrogen availability during composting of poultry litter with natural zeolite, expanded perlite, pumice and expanded vermiculite. Poultry litter was composted for 100 days using five in-vessel composting simulators with a volumetric ratio of natural materials:poultry litter of 1:10. It was found that natural materials significantly reduced NH3 volatilization. At the end of the process, the control treatment without any natural materials had the lowest rate of total N: 72% of the initial total N was lost from the compost made with no amendment, while 53, 42, 26 and 16% of initial total N was lost from compost containing expandable perlite, expandable vermiculite, pumice and natural zeolite, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bland, Alan E.; Sellakumar, Kumar Muthusami; Newcomer, Jesse D.
Efficient coal pre-processing systems (69) integrated with gasification, oxy-combustion, and power plant systems include a drying chamber (28), a volatile metal removal chamber (30), recirculated gases, including recycled carbon dioxide (21), nitrogen (6), and gaseous exhaust (60) for increasing the efficiencies and lowering emissions in various coal processing systems.
USDA-ARS?s Scientific Manuscript database
The use of swine manure as a nutrient source for pastures is increasingly common in Brazil, due to its low cost. However, this practice can cause nitrogen (N) losses in agricultural soil, where ammonia volatilization may be the main drawback, generating undesirable economic and environmental consequ...
Turan, Hülya; Sönmez, Gülşah
2007-11-01
Surimi was prepared from the thornback ray (Raja clavata L. 1758) and divided into two groups. The first group was prepared with 4% sorbitol, 4% sucrose and 0.3% sodium tripolyphosphate as a cryoprotectant, while surimi in second group was prepared with 8% sorbitol and 0.3% sodium tripolyphosphate. The frozen surimi samples were stored at 23.8 +/- 2 degrees C for 6 months. The total volatile basic nitrogen (8.40 mg/100 g for group A, 6.30 mg/100 g for group B), trimethylamine nitrogen (2.55 mg/100 g for group A, 2.38 mg/100 g for group B), thiobarbituric acid (1.29 mg malondialdehyde/100 g for group A, 1.17 mg malondialdehyde/ 100 g for group B), and pH values (7.34 for group A, 6.98 for group B) of surimi increased during frozen storage but remained within the acceptable limits. Total psychrophilic aerobic bacteria counts and sensory evaluation points in both groups decreased during frozen storage. The results of this study showed that thornback ray was found to be suitable for surimi production and the surimis were still acceptable at the end of the 6-month storage period.
Modeling of nitrogen transformation in an integrated multi-trophic aquaculture (IMTA)
NASA Astrophysics Data System (ADS)
Silfiana; Widowati; Putro, S. P.; Udjiani, T.
2018-03-01
The dynamic model of nitrogen transformation in IMTA (Integrated Multi-Trophic Aquaculture) is purposed. IMTA is a polyculture with several biotas maintained in it to optimize waste recycling as a food source. The purpose of this paper is to predict nitrogen decrease and nitrogen transformation in IMTA consisting of ammonia (NH3), Nitrite (NO2) and Nitrate (NO3). Nitrogen transformation of several processes, nitrification, assimilation, and volatilization. Numerical simulations are performed by providing initial parameters and values based on a review of previous research. The numerical results show that the rate of change in nitrogen concentration in IMTA decrease and reaches stable at different times.
Ammonia volatilization from crop residues and frozen green manure crops
NASA Astrophysics Data System (ADS)
de Ruijter, F. J.; Huijsmans, J. F. M.; Rutgers, B.
2010-09-01
Agricultural systems can lose substantial amounts of nitrogen (N). To protect the environment, the European Union (EU) has adopted several directives that set goals to limit N losses. National Emission Ceilings (NEC) are prescribed in the NEC directive for nitrogen oxides and ammonia. Crop residues may contribute to ammonia volatilization, but sufficient information on their contribution to the national ammonia volatilization is lacking. Experiments were carried out with the aim to assess the ammonia volatilization of crop residues left on the soil surface or incorporated into the soil under the conditions met in practice in the Netherlands during late autumn and winter. Ammonia emission from residues of broccoli, leek, sugar beet, cut grass, fodder radish (fresh and frozen) and yellow mustard (frozen) was studied during two winter seasons using volatilization chambers. Residues were either placed on top of soil or mixed with soil. Mixing residues with soil gave insignificant ammonia volatilization, whereas volatilization was 5-16 percent of the N content of residues when placed on top of soil. Ammonia volatilization started after at least 4 days. Total ammonia volatilization was related to C/N-ratio and N concentration of the plant material. After 37 days, cumulative ammonia volatilization was negligible from plant material with N concentration below 2 percent, and was 10 percent of the N content of plant material with 4 percent N. These observations can be explained by decomposition of plant material by micro-organisms. After an initial built up of the microbial population, NH 4+ that is not needed for their own growth is released and can easily emit as NH 3 at the soil surface. The results of the experiments were used to estimate the contribution of crop residues to ammonia volatilization in the Netherlands. Crop residues of arable crops and residues of pasture topping may contribute more than 3 million kg NH 3-N to the national ammonia volatilization of the Netherlands, being more than 3 percent of the national emissions in 2005. This contribution should therefore be considered when focusing on the national ceilings for ammonia emissions.
2008-10-01
Quality Standards NEPA National Environmental Policy Act of 1969 NOx Nitrogen Oxides OO-ALC Ogden Air Logistics Center OSHA Occupational Safety...current NAAQS. These standards regulate six common pollutants: carbon monoxide, lead, nitrogen oxides, sulfur oxides, ozone, and particulate matter...with the state plan. The conformity threshold emission level for ozone in maintenance areas is 100 tons per year for nitrogen oxide (NOx) and volatile
Lightning-induced nitrogen oxides (LNOX), in the presence of sunlight, volatile organic compounds and water, can be a relatively large but uncertain source for ozone (O3) and hydroxyl radical (OH) in the atmosphere. Using lightning flash data from the National Lightning Detection...
USDA-ARS?s Scientific Manuscript database
Incorporating manures into soil with conventional tillage is an effective means to reduce ammonia volatilization and conserve manure nitrogen. However, it is not possible in pasture and is not readily compatible with high-residue soil conservation practices for rowcrops. A variety of manure injecto...
USDA-ARS?s Scientific Manuscript database
Manure injection provides for soil incorporation of manures in no-till and perennial forage production. Injection is expected to substantially reduce nitrogen loss due to ammonia volatilization, but a portion of that N conservation may be offset by greater denitrification and leaching losses. This ...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-11
... twofold. The first is to reduce emissions of nitrogen oxide (NO X ) and volatile organic compound (VOC..., Incorporation by reference, Intergovernmental relations, Nitrogen dioxide, Ozone, Reporting and recordkeeping... begins]. 26.11.34.07 Initial NMOG Credit 12/17/07 6/11/13; [Insert page Account Balances. number where...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-26
... ), nitrogen oxides (NO X ), volatile organic compounds (VOC), and ammonia. An analysis of the baseline year... Idaho Transportation Department agreed to use straight salt and liquid salt brine throughout Franklin.... List of Subjects in 40 CFR Part 52 Environmental protection, Air pollution control, Nitrogen dioxide...
Ammonia losses and nitrogen partitioning at the southern High Plains open lot dairy
USDA-ARS?s Scientific Manuscript database
Animal agriculture is a significant source of ammonia (NH3). Cattle excrete most ingested nitrogen (N); most urinary N is converted to NH3, volatilized and lost to the atmosphere. Open lot dairies on the southern High Plains are a growing industry and face environmental challenges as well as reporti...
Yuan, Shuai; Chen, Xue-li; Li, Wei-feng; Liu, Hai-feng; Wang, Fu-chen
2011-11-01
Rapid pyrolysis of two types of aquatic biomass (blue-green algae and water hyacinth), and their blends with two coals (bituminous and anthracite) was carried out in a high-frequency furnace. Nitrogen conversions during rapid pyrolysis of the two biomass and the interactions between the biomass and coals on nitrogen conversions were investigated. Results show that little nitrogen retained in char after the biomass pyrolysis, and NH(3) yields were higher than HCN. During co-pyrolysis of biomass and coal, interactions between biomass and coal decreased char-N yields and increased volatile-N yields, but the total yields of NH(3)+HCN in volatile-N were decreased in which HCN formations were decreased consistently, while NH(3) formations were only decreased in the high-temperature range but promoted in the low-temperature range. Interactions between blue-green algae and coals are stronger than those between water hyacinth and coal, and interactions between biomass and bituminous are stronger than those between biomass and anthracite. Copyright © 2011 Elsevier Ltd. All rights reserved.
METHANE AND NITROGEN ABUNDANCES ON PLUTO AND ERIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tegler, S. C.; Cornelison, D. M.; Abernathy, M. R.
We present spectra of Eris from the MMT 6.5 m Telescope and Red Channel Spectrograph (5700-9800 A, 5 A pixel{sup -1}) on Mt. Hopkins, AZ, and of Pluto from the Steward Observatory 2.3 m Telescope and Boller and Chivens Spectrograph (7100-9400 A, 2 A pixel{sup -1}) on Kitt Peak, AZ. In addition, we present laboratory transmission spectra of methane-nitrogen and methane-argon ice mixtures. By anchoring our analysis in methane and nitrogen solubilities in one another as expressed in the phase diagram of Prokhvatilov and Yantsevich, and comparing methane bands in our Eris and Pluto spectra and methane bands in ourmore » laboratory spectra of methane and nitrogen ice mixtures, we find Eris' bulk methane and nitrogen abundances are {approx}10% and {approx}90% and Pluto's bulk methane and nitrogen abundances are {approx}3% and {approx}97%. Such abundances for Pluto are consistent with values reported in the literature. It appears that the bulk volatile composition of Eris is similar to the bulk volatile composition of Pluto. Both objects appear to be dominated by nitrogen ice. Our analysis also suggests, unlike previous work reported in the literature, that the methane and nitrogen stoichiometry is constant with depth into the surface of Eris. Finally, we point out that our Eris spectrum is also consistent with a laboratory ice mixture consisting of 40% methane and 60% argon. Although we cannot rule out an argon-rich surface, it seems more likely that nitrogen is the dominant species on Eris because the nitrogen ice 2.15 {mu}m band is seen in spectra of Pluto and Triton.« less
A microfluidic device for open loop stripping of volatile organic compounds.
Cvetković, Benjamin Z; Dittrich, Petra S
2013-03-01
The detection of volatile organic compounds is of great importance for assessing the quality of water. In this contribution, we describe a miniaturized stripping device that allows fast online detection of organic solvents in water. The core component is a glass microfluidic chip that facilitates the creation of an annular-flowing stream of water and nitrogen gas. Volatile compounds are transferred efficiently from the water into the gas phase along the microfluidic pathway at room temperature within less than 5 s. Before exiting the microchip, the liquid phase is separated from the enriched gas phase by incorporating side capillaries through which the hydrophilic water phase is withdrawn. The gas phase is conveniently collected at the outlet reservoir by tubing. Finally, a semiconductor gas sensor analyzes the concentration of (volatile) organic compounds in the nitrogen gas. The operation and use of the stripping device is demonstrated for the organic solvents THF, 1-propanol, toluene, ethylbenzene, benzaldehyde, and methanol. The mobile, inexpensive, and continuously operating system with liquid flow rates in the low range of microliters per minute can be connected to other detectors or implemented in chemical production line for process control.
Zhou, Wei; Lyu, Teng Fei; Yang, Zhi Ping; Sun, Hong; Yang, Liang Jie; Chen, Yong; Ren, Wan Jun
2016-09-01
Unreasonable application of nitrogen fertilizer to cropland decreases nitrogen use efficiency of crop. A large amount of nitrogen loss to environment through runoff, leaching, ammonia volati-lization, nitrification-denitrification, etc., causes water and atmospheric pollution, poses serious environmental problems and threatens human health. The type of nitrogen fertilizer and its application rate, time, and method have significant effects on nitrogen loss. The primary reason for nitrogen loss is attributed to the supersaturated soil nitrogen concentration. Making full use of environmental nitrogen sources, reducing the application rate of chemical nitrogen fertilizers, applying deep placement fertilizing method, and applying organic fertilizers with chemical nitrogen fertilizers, are effective practices for reducing nitrogen loss and improving nitrogen use efficiency. It is suggested that deve-loping new high efficiency nitrogen fertilizers, enhancing nitrogen management, and strengthening the monitoring and use of environmental nitrogen sources are the powerful tools to decrease nitrogen application rate and increase efficiency of cropland.
Sawamoto, Takuji; Nakamura, Megumi; Nekomoto, Kenji; Hoshiba, Shinji; Minato, Keiko; Nakayama, Motoo; Osada, Takashi
2016-06-01
In order to refine the national estimate of methane emission from stored cattle slurry, it is important to comprehend the basic characteristics of methane production. Two dairy cattle slurries were obtained from livestock farms located in Hokkaido (a northern island) and Kyushu (a southern island). The slurries were diluted with water into three levels: undiluted, three times diluted, and 10 times diluted. Three hundred mL of the slurries were put into a bottle with a headspace volume of 2.0 L, which was filled with nitrogen gas and then sealed by butyl rubber. Four levels of temperature were used for incubation: 35, 25, 15 and 5 °C. The time course of the cumulative methane production per volatile solid (VS) was satisfactorily expressed by an asymptotic regression model. The effect of dilution on the methane production per VS was not distinctive, but that of temperature was of primary importance. In particular, higher temperature yields a higher potential production and a shorter time when the cumulative production reaches half of the potential production. The inclusive and simple models obtained in this study indicate that the cumulative methane production from stored cattle slurry can be explained by VS, temperature and length of storage. © 2015 Japanese Society of Animal Science.
Evaluation of the spoilage potential of bacteria isolated from chilled chicken in vitro and in situ.
Wang, Guang-Yu; Wang, Hu-Hu; Han, Yi-Wei; Xing, Tong; Ye, Ke-Ping; Xu, Xing-Lian; Zhou, Guang-Hong
2017-05-01
Microorganisms play an important role in the spoilage of chilled chicken. In this study, a total of 53 isolates, belonging to 7 species of 3 genera, were isolated using a selective medium based on the capacity to spoil chicken juice. Four isolates, namely Aeromonas salmonicida 35, Pseudomonas fluorescens H5, Pseudomonas fragi H8 and Serratia liquefaciens 17, were further characterized to assess their proteolytic activities in vitro using meat protein extracts and to evaluate their spoilage potential in situ. The in vitro studies showed that A. salmonicida 35 displayed the strongest proteolytic activity against both sarcoplasmic and myofibrillar proteins. However, the major spoilage isolate in situ was P. fragi H8, which exhibited a fast growth rate, slime formation and increased pH and total volatile basic nitrogen (TVBN) on chicken breast fillets. The relative amounts of volatile organic compounds (VOCs) originating from the microorganisms, including alcohols, aldehydes, ketones and several sulfur compounds, increased during storage. In sum, this study demonstrated the characteristics of 4 potential spoilage bacteria on chilled yellow-feather chicken and provides a simple and convenient method to assess spoilage bacteria during quality management. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nitrogen emissions from broilers measured by mass balance over eighteen consecutive flocks.
Coufal, C D; Chavez, C; Niemeyer, P R; Carey, J B
2006-03-01
Emission of nitrogen in the form of ammonia from poultry rearing facilities has been an important topic for the poultry industry because of concerns regarding the effects of ammonia on the environment. Sound scientific data is needed to accurately estimate air emissions from poultry operations. Many factors, such as season of the year, ambient temperature and humidity, bird health, and management practices can influence ammonia volatilization from broiler rearing facilities. Precise results are often difficult to attain from commercial facilities, particularly over long periods of time. Therefore, an experiment was conducted to determine nitrogen loss from broilers in a research facility under conditions simulating commercial production for 18 consecutive flocks. Broilers were reared to 40 to 42 d of age and fed diets obtained from a commercial broiler integrator. New rice hulls were used for litter for the first flock, and the same litter was recycled for all subsequent flocks with caked litter removed between flocks. All birds, feeds, and litter materials entering and leaving the facility were quantified, sampled, and analyzed for total nitrogen content. Nitrogen loss was calculated by the mass balance method in which loss was equal to the difference between the nitrogen inputs and the nitrogen outputs. Nitrogen partitioning as a percentage of inputs averaged 15.29, 6.84, 55.52, 1.27, and 21.08% for litter, caked litter, broiler carcasses, mortalities, and nitrogen loss, respectively, over all eighteen flocks. During the production of 18 flocks of broilers on the same recycled litter, the average nitrogen emission rate was calculated to range from 4.13 to 19.74 g of N/ kg of marketed broiler (grams of nitrogen per kilogram) and averaged 11.07 g of N/kg. Nitrogen loss was significantly (P < 0.05) greater for flocks reared in summer vs. winter. Results of this experiment have demonstrated that the rate of nitrogen volatilization from broiler grow-out facilities varies significantly on a flock-to-flock basis.
Zhao, Xu; Yan, Xiaoyuan; Xie, Yingxin; Wang, Shenqiang; Xing, Guangxi; Zhu, Zhaoliang
2016-04-20
The nitrogen (N) isotope method reveals that application of fertilizer N can increase crop uptake or denitrification and leaching losses of native soil N via the "added N interaction". However, there is currently little evidence of the impact of added N on soil N losses through NH3 volatilization using (15)N methodologies. In the present study, a three-year rice/wheat rotated experiment with 30% (15)N-labeled urea applied in the first rice season and unlabeled urea added in the following five crop seasons was performed to investigate volatilization of NH3 from fertilizer and soil N. We found 9.28% of NH3 loss from (15)N urea and 2.88-7.70% declines in (15)N-NH3 abundance occurred during the first rice season, whereas 0.11% of NH3 loss from (15)N urea and 0.02-0.21% enrichments in (15)N-NH3 abundance happened in the subsequent seasons. The contributions of fertilizer- and soil-derived N to NH3 volatilization from a rice/wheat rotation were 75.8-88.4 and 11.6-24.2%, respectively. These distinct variations in (15)N-NH3 and substantial soil-derived NH3 suggest that added N clearly interacts with the soil source contributing to NH3 volatilization.
NASA Astrophysics Data System (ADS)
Kim, Hyun-Wook; Choi, Ji-Hun; Choi, Yun-Sang; Kim, Hack-Youn; Hwang, Ko-Eun; Song, Dong-Heon; Lee, Ju-Woon; Kim, Cheon-Jei
2012-05-01
The effect of electron beam irradiated hog and sheep casings (1, 3, and 8 kGy) on the physicochemical properties and shelf stability of emulsion sausage was evaluated. There were no significant differences in pH, instrumental color, sensory properties (overall acceptability), and hardness between all the samples. The cooking yields for the irradiated treated samples were larger than that of the yields obtained for the non-irradiated samples for both the hog and sheep casing. The irradiated natural casings accelerated lipid oxidation, and inhibited the formation of volatile basic nitrogen and the increase in total aerobic bacteria. In conclusion, the natural casings irradiated below at a dose of 3 kGy had no effect on physicochemical and sensory properties of the emulsion sausages, however, that improved the shelf-stability over 5 weeks. Therefore, natural casings irradiated at moderate doses are suitable for sausage production.
Gamma radiation combined with cinnamon oil to maintain fish quality
NASA Astrophysics Data System (ADS)
Lyu, Fei; Zhang, Jing; Wei, Qianqian; Gao, Fei; Ding, Yuting; Liu, Shulai
2017-12-01
Effects of gamma radiation combined with cinnamon oil on quality of Northern Snakehead fish fillets were observed during storage at 4 °C. Fish fillets were treated with 1-5 kGy gamma radiation, 0.05-0.5% cinnamon oil or the combination of radiation and cinnamon oil. The antimicrobial activity increased with radiation dose and cinnamon oil concentration. During storage, the combination of 1 kGy radiation and 0.5% cinnamon oil displayed better inhibiting activities on aerobic plate counts, total volatile basic nitrogen, thiobarbituric acid reaction substances than 1 kGy radiation or 0.5% cinnamon oil used alone. Moreover, the combination could arrive at the similar inhibiting activities of cinnamon oil with higher concentration of 0.5% or radiation with higher dose of 5 kGy. Thus, the combination could decrease the radiation dose and cinnamon oil concentration without decreasing the effect of them on maintaining fish quality.
Qiu, Xujian; Chen, Shengjun; Liu, Guangming; Yang, Qiuming
2014-11-01
The preserving effects of chitosan, chitosan and citric acid, chitosan and licorice extract on fresh Japanese sea bass fillets stored at 4 °C for 12 days were studied. Results showed that citric acid or licorice extract can enhance the preserving function of chitosan significantly by retarding lipid oxidation and inhibiting microbial growth as reflected in thiobarbituric acid reactive substances and total plate count, respectively. Both total volatile basic nitrogen values and sensory scores indicated chitosan and citric acid or licorice extract can significantly reduce the quality loss and extend the shelf life of Japanese sea bass fish fillets during refrigerated storage. Citric acid or licorice extract with chitosan could thus be applied in the seafood industry to enhance quality of fish fillets as natural preservatives. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Pramono, H.; Pujiastuti, D. Y.; Sahidu, A. M.
2018-04-01
The effect of acid- and alkali-process on biochemical and physicochemical characteristics of fish protein isolate from red snapper (Lutjanus sp) by-product was evaluated. Protein recovered by alkali process (16.79%) was higher compared to acid process (13.75%). Reduction of lipid content and total volatile basic nitrogen (TVB-N) exhibited in both treatments indicated both process improved fish protein isolate recovered from red snapper by-product. In addition, the increasing of water holding capacity and oil binding capacity were observed. However, high peroxide value of fish protein isolate was showed in both treatment. This finding indicated that acid and alkali process can be used as a useful method to recover proteins from red snapper by-product. Alkali process gave a protein isolate with better overall quality compared to acid process.
Urea hydrolysis and calcium carbonate precipitation in gypsum-amended broiler litter.
USDA-ARS?s Scientific Manuscript database
Broiler litter (BL) contains significant amounts of organic nitrogen (N) in the form of urea which is subject to ammonia (NH3) volatilization. Previous work has shown that the addition of gypsum to BL can increase nitrogen (N) mineralization, and decrease NH3 losses due to a decrease in pH but the ...
USDA-ARS?s Scientific Manuscript database
Nitrogen (N) loss from fertilization in agricultural fields has an unavoidable negative impact on the environment, and a better understanding of the major pathways can assist in developing best management practices. The aim of this study was to evaluate the fate of N fertilizers applied to acidic re...
Lightning-induced nitrogen oxides (LNOX), in the presence of sunlight, volatile organic compounds and water, can be a relatively large but uncertain source for ozone (O3) and hydroxyl radical (OH) in the atmosphere. Using lightning flash data from the National Lightning Detection...
Ozone is produced by chemical interactions involving nitrogen oxides (NOx) and Volatile Organic Compounds (VOCs) in the presence of sunlight. At high concentrations, ground-level ozone has been shown to be harmful to human health and the environment. It has been reco...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-12
... replaced with low oxide of nitrogen burners. We are proposing to approve R307-401-4(1) and (3) because they... , 4 tons per year for volatile organic compounds (VOCs), nitrogen dioxide (NO 2 ), and sulfur dioxide... levels represent a reasonable balance between environmental protection and economic growth (76 FR 38758...
USDA-ARS?s Scientific Manuscript database
Corn production can be often limited by the loss of nitrogen (N) due to leaching, volatilization and denitrification. The use of canopy sensors for making in-season N fertilizer applications has been proven effective in matching plant N requirements with periods of rapid N uptake (V7-V11), reducing ...
Code of Federal Regulations, 2011 CFR
2011-07-01
... different users. RFP baseline means the total of actual volatile organic compounds or nitrogen oxides..., industrial equipment, construction vehicles, off-road motorcycles, and marine vessels). National ambient air...
NASA Astrophysics Data System (ADS)
Bertrand, Tanguy; Forget, Francois
2016-10-01
The high obliquity and eccentricity of the orbit of Pluto induce seasonal cycles of condensation and sublimation of the main volatile ices: N2, CH4, and CO. The New Horizons spacecraft, which flew by Pluto in July 2015, revealed a complex surface composition including a thousand-kilometre nitrogen glacier in the "Sputnik Planum" plain near the Anti-Charon longitude, extensive methane frosts at mid and high latitudes, and equatorial ice-free regions. We present numerical simulations designed to model the evolution of Pluto's volatiles over thousands of years on the basis of straightforward universal physical equations.Our results explain the observed distribution of ices on the surface and the quantities of volatiles in the atmosphere. In particular the model predicts the N2 ice accumulation in the deepest low-latitude basin and the 3-fold increase of pressure observed to occur since 1988. This points to atmospheric-topographic processes at the origin of the Sputnik Planum's nitrogen glacier. The same simulations also show frosts of methane, and sometimes nitrogen, that seasonally cover the mid and high latitudes, explaining the bright northern polar cap reported in the 1990s and the observed ice distribution in 2015. The model also predicts that most of these seasonal frosts should disappear in the next decade, and thus could be tested observationally in the near future.Using prior orbital parameters of Pluto and a realistic glacial flow parametrization, we also simulate past climates of Pluto. The results show that Pluto undergoes cycles of glacial activity (over timescales of few million years) that may explain the rugged eroded-mountain landscapes surrounding Sputnik Planum and the "bladed" methane terrains east of "Tombaugh Regio".
NASA Technical Reports Server (NTRS)
Kong, Suk Bin
2001-01-01
Volatile organic compound(VOC), ethylene gas, was characterized and quantified by GC/FID. 20-50 ppb levels were detected during the growth stages of radish. SPME could be a good analytical tool for the purpose. Low temperature trapping method using dry ice/diethyl ether and liquid nitrogen bath was recommended for the sampling process for GC/PID and GC/MS analysis.
Pluto and Triton: Interactions Between Volatiles and Dynamics
NASA Astrophysics Data System (ADS)
Rubincam, D. P.
2001-01-01
Volatiles moving across the surfaces of Pluto and Triton can give rise to interesting dynamical consequences. Conversely, measurement of dynamical states can help constrain the movement of volatiles and interior structure of both bodies. Polar wander may theoretically occur on both Triton and Pluto. Triton's obliquity is low, so that the equatorial regions receive more insolation than the poles. Hence there is a tendency for nitrogen ice to sublime at the equator and condense at the poles, creating polar caps. If the nitrogen supply is large enough, then these caps could move in approximately 105 years the global equivalent of 200 m of ice to the poles. At this point the equatorial moment of inertia becomes larger than the moment of inertia measured about the rotation axis, so that Triton overbalances and becomes dynamically unstable. The satellite then undergoes polar wander, restoring stability when the new equator contains the excess matter. Hence the pole may be continually wandering. Neptune raises a permanent tidal bulge on Triton, so that the satellite's surface is elongated like a football, with the long axis pointing at Neptune. This is expected to be the axis about which the pole wanders. Volatile migration would resurface the satellite to some depth and wandering would disturb leading side/trailing side crater statistics. Additional information is contained in the original extended abstract.
NASA Astrophysics Data System (ADS)
Mousis, Olivier; Guilbert-Lepoutre, A.; Lunine, J. I.; Cochran, A. L.; Waite, J. H.; Petit, J.; Rousselot, P.
2012-10-01
We propose a scenario that explains the apparent nitrogen deficiency in comets in a way consistent with the presence of this molecule in the atmospheres of Pluto and Triton. We use a statistical thermodynamic model to investigate the composition of the successive multiple guest clathrates that may have formed during the cooling of the primordial nebula from the most abundant volatiles present in the gas phase. These clathrates agglomerated with the other ices (pure condensates or stoechiometric hydrates) and formed the building blocks of comets. We report that molecular nitrogen is a poor clathrate former, when we consider a plausible gas phase composition of the primordial nebula. This implies that its trapping into cometesimals requires a low disk temperature (about 20 K) in order to allow the formation of its pure condensate. We find that it is possible to explain the lack of molecular nitrogen in comets as a consequence of their postformation internal heating engendered by the decay of radiogenic nuclides. This scenario is found to be consistent with the presence of nitrogen-rich atmospheres around Pluto and Triton. Our model predicts that comets should present xenon-to-water and krypton-to-water ratios close to solar xenon-to-oxygen and krypton-to-oxygen ratios, respectively. In contrast, the argon-to-water ratio is predicted to be depleted by a factor of about 300 in comets compared to solar argon-to-oxygen, as a consequence of the nitrogen outgassing.
Zhang, Xuelin; Wang, Qun; Xu, Jun; Gilliam, Frank S; Tremblay, Nicolas; Li, Chaohai
2015-01-01
Nitrogen (N) fertilization potentially affects soil N mineralization and leaching, and can enhance NH3 volatilization, thus impacting crop production. A fertilizer experiment with five levels of N addition (0, 79, 147, 215 and 375 kg N ha(-1)) was performed in 2009 and 2010 in a maize field in Huanghuaihai region, China, where > 300 kg N ha(-1) has been routinely applied to soil during maize growth period of 120 days. Responses of net N mineralization, inorganic N flux (0-10 cm), NH3 volatilization, and maize yield to N fertilization were measured. During the growth period, net N mineralization and nitrification varied seasonally, with higher rates occurring in August and coinciding with the R1 stage of maize growth. Soil NO3(-)-N contributed to more than 60% of inorganic N flux during maize growth. Cumulative NH3 volatilization increased with N additions, with total NH3 volatilization during maize growth accounting for about 4% of added N. Relative to the control, mean maize yield in the fertilizer treatments increased by 17% and 20% in 2009 and 2010, respectively. However, grain yield, aboveground biomass, and plant N accumulation did not increase with added N at levels > 215 kg N ha(-1). These results suggest that the current N rate of 300 kg N ha(-1) is not only excessive, but also reduces fertilizer efficacy and may contribute to environmental problems such as global warming and eutrophication of ground water and streams.
Chang, Hung-Chia; Wong, Ren-Xian
2012-06-01
The present study investigated the tenderisation effects ultrasound processing (UT) on farmed cobia sashimi. Age-treated cobia trunk muscles (AT) were used as the control. The pH, total volatile base nitrogen, trimethylamine nitrogen, thiobarbituric acid reactive substances, ATP catabolism components, K 1 value, and texture were evaluated. The texture of AT sashimi reached the optimal firmness range with 8.53N at day 7. However, AT samples could not be served raw after day 7 because of their poor freshness indexes, including a TVBN value of 18.53g/100g, a TMAN value of 3.25mg/100g, and a TBARS value 0.983MDAmg/100g. Moreover, the K 1 value of AT sashimi was 20.21% at day 5. UT was employed to efficiently tenderise cobia sashimi with an initial firmness of 9.70-7.82N after 90min of treatment. The results of this study indicate that UT accelerates the biochemical reaction rate, as evidenced by the increases in the TVBN, TMAN, and TBARS contents; however, these values were very low. The results of this study could provide basic information for the development of a novel ultrasonic tenderisation technique in raw seafood designed for restaurants and consumers. Copyright © 2011 Elsevier Ltd. All rights reserved.
Pyrgotou, Nikoletta; Giatrakou, Vasiliki; Ntzimani, Athina; Savvaidis, Ioannis N
2010-09-01
The present study evaluated the effect of oregano essential oil (EO) on fresh salted, packaged (45%CO(2)/5%O(2)/50%N(2)) rainbow trout fillets and stored for a period of 21 d at 4 °C. Treatments included the following: M1 (control without added EO), M2 (EO 0.2%, v/w), and M3 (0.4%, v/w). Populations of lactic acid bacteria (LAB), H(2)S-producing bacteria (including Shewanella putrefaciens), Enterobacteriaceae, and Pseudomonas spp. reached higher final numbers in control (M1) than for M2 and M3 samples. Under treatments M2 and M3, total volatile basic nitrogen (TVBN) and trimethylamine nitrogen (TMAN) values were lower than for M1 samples, whereas lipid oxidation, as judged by determination of thiobarbituric acid values (TBA), did not occur during the refrigerated storage period. Interestingly, treatment M2 resulted in a shelf-life extension of 7 to 8 d for the fresh trout fillets, whereas treatment M3 proved unsuitable (due to strong odor) for trout fillet preservation, as determined by sensory evaluation. The use of an essential oil such as oregano oil in fresh fish preservation may be considered an alternative "natural" additive, enhancing the sensory characteristics and extending the shelf life of the product.
Li, Nan; Chen, Chen; Wang, Bin; Li, Shaojie; Yang, Chaohe; Chen, Xiaobo
Untreated shale oil, shale oil treated with HCl aqueous solution and shale oil treated with HCl and furfural were used to do comparative experiments in fixed bed reactors. Nitrogen compounds and condensed aromatics extracted by HCl and furfural were characterized by electrospray ionization Fourier transform cyclotron resonance mass spectrometry and gas chromatography and mass spectrometry, respectively. Compared with untreated shale oil, the conversion and yield of liquid products increased considerably after removing basic nitrogen compounds by HCl extraction. Furthermore, after removing nitrogen compounds and condensed aromatics by both HCl and furfural, the conversion and yield of liquid products further increased. In addition, N 1 class species are predominant in both basic and non-basic nitrogen compounds, and they are probably indole, carbazole, cycloalkyl-carbazole, pyridine and cycloalkyl-pyridine. As for the condensed aromatics, most of them possess aromatic rings with two to three rings and zero to four carbon atom.
Lincoln, D E; Couvet, D
1989-01-01
The carbon supply of peppermint plants was manipulated by growing clonal propagules under three carbon dioxide regimes (350, 500 and 650 μl l -1 ). Feeding by fourth instar caterpillars of Spodoptera eridania increased with elevated CO 2 hostplant regime, as well as with low leaf nitrogen content and by a high proportion of leaf volatile terpenoids. Leaf weight increased significantly with the increased carbon supply, but the amount of nitrogen per leaf did not change. The amount of volatile leaf mono-and sesquiterpenes increased proportionately with total leaf dry weight and hence was not influenced by CO 2 supply. These results are consistent with ecological hypotheses which assume that allocation to defense is closely regulated and not sensitive to carbon supply per se.
Particle circulation and solids transport in large bubbling fluidized beds. Progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Homsy, G.M.
1982-04-01
We have undertaken a theoretical study of the possibility of the formation of plumes or channeling when coal particles volatilize upon introduction to a fluidized bed, Fitzgerald (1980). We have completed the analysis of the basic state of uniform flow and are currently completing a stability analysis. We have modified the continuum equations of fluidization, Homsy et al. (1980), to include the source of gas due to volatilization, which we assume to be uniformly distributed spatially. Simplifying these equations and solving leads to the prediction of a basic state analogous to the state of uniform fluidization found when no sourcemore » is present within the medium. We are currently completing a stability analysis of this basic state which will give the critical volatilization rate above which the above simple basic state is unstable. Because of the experimental evidence of Jewett and Lawless (1981), who observed regularly spaced plume-like instabilities upon drying a bed of saturated silica gel, we are considering two-dimensional periodic disturbances. The analysis is similar to that given by Homsy, et al. (1980) and Medlin et al. (1974). We hope to determine the stability limits for this system shortly.« less
Fire effects on carbon and nitrogen cycling in forests of the Sierra Nevada
D.W. Johnson; M.E. Fenn; W.W. Miller; C.T. Hunsaker
2009-01-01
Fire removes substantial quantities of nitrogen (N) by volatilization, and prescribed fire, over time, can remove as much as or more N than wildfire. This lost N can be quickly made up if fire is followed by N2-fixing vegetation. Wildfire often has short-term deleterious effects on water quality because of N mobilization, but long-term fire...
Volatile composition and sensory profile of shiitake mushrooms as affected by drying method.
Politowicz, Joanna; Lech, Krzysztof; Lipan, Leontina; Figiel, Adam; Carbonell-Barrachina, Ángel A
2018-03-01
One of the best preservation method for long-term storage is drying. In this work, the influence of different drying methods on aroma and sensory profile of shiitake mushroom was evaluated. The drying methods tested were: convective drying (CD), freeze-drying (FD), vacuum-microwave drying (VMD), and a combination of convective pre-drying and vacuum-microwave finish-drying (CPD-VMFD). The volatile composition of fresh and dried shiitake mushrooms was analysed by SPME, GC-MS and GC-FID, and showed the presence of 71 volatile compounds, most of them present in all dried samples but with quantitative variation. The major volatile compounds in fresh shiitake were 1-octen-3-ol (20.2%), 2-octanone (20.7%), 1,2,4-trithiolane (9.8%), and 1,2,3,5,6-pentathiepane (8.2%). Drying of shiitake mushrooms caused significant losses of C8 compounds and cyclic sulfur compounds, such as 1,2,4-trithiolane (V31) and 1,2,4,5-tetrathiane (V57). Samples dried at CD 80 °C implied a relative short drying time (120 min), had the highest contents of total volatiles (1594 μg 100 g -1 ) and cyclic sulfur compounds (e.g. V57 126 μg 100 g -1 ), and the highest intensity of most of the key positive sensory attributes, such as inner colour (7.0), fresh shiitake flavour (6.7), and sponginess (6.2). The best dehydration methods, resulting in the highest total concentrations of volatile compounds and high intensity of key sensory attributes were FD (if vacuum and liquid nitrogen facilities are available) and CD at 80 °C (for companies with vacuum and liquid nitrogen facilities). © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Fernandes, Annabel; Coelho, João; Ciríaco, Lurdes; Pacheco, Maria José; Lopes, Ana
2016-12-01
Boron-doped diamond (BDD) and Ti/Pt/PbO 2 anodes were utilized to perform the electrodegradation of synthetic samples containing humic acid in the presence of different organic and inorganic carbon-containing and nitrogen-containing compounds. The influence of the chloride ion in the degradation process of the different synthetic samples was also assessed. The results showed that the anodic oxidation process can efficiently degrade recalcitrant compounds such as humic acid. The presence of carbonate in solution enhances the nitrogen removal, whereas it hinders the oxidation of the organic compounds. When organic nitrogen is present, it is converted to NH 4 + , which in turn is oxidized to nitrate and to volatile nitrogen compounds. Hydroxyl radicals are more prone to oxidize the organic nitrogen than the ammonium nitrogen. The presence of chloride enhances the organic matter and nitrogen removal rates, BDD being the anode material that yields the highest removals.
Kiontke, Andreas; Oliveira-Birkmeier, Ariana; Opitz, Andreas
2016-01-01
Over the past decades, electrospray ionization for mass spectrometry (ESI-MS) has become one of the most commonly employed techniques in analytical chemistry, mainly due to its broad applicability to polar and semipolar compounds and the superior selectivity which is achieved in combination with high resolution separation techniques. However, responsiveness of an analytical method also determines its suitability for the quantitation of chemical compounds; and in electrospray ionization for mass spectrometry, it can vary significantly among different analytes with identical solution concentrations. Therefore, we investigated the ESI-response behavior of 56 nitrogen-containing compounds including aromatic amines and pyridines, two compound classes of high importance to both, synthetic organic chemistry as well as to pharmaceutical sciences. These compounds are increasingly analyzed employing ESI mass spectrometry detection due to their polar, basic character. Signal intensities of the peaks from the protonated molecular ion (MH+) were acquired under different conditions and related to compound properties such as basicity, polarity, volatility and molecular size exploring their quantitative impact on ionization efficiency. As a result, we found that though solution basicity of a compound is the main factor initially determining the ESI response of the protonated molecular ion, other factors such as polarity and vaporability become more important under acidic solvent conditions and may nearly outweigh the importance of basicity under these conditions. Moreover, we show that different molecular descriptors may become important when using different types of instruments for such investigations, a fact not detailed so far in the available literature. PMID:27907110
Removal of nitrogen oxides from gas streams by biofiltration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barrett, K.B.; Barnes, J.M.; Apel, W.A.
1994-12-31
Nitrogen oxides (NO{sub x}) are primary air pollutants and, as such, there is considerable interest in the development of efficient, cost effective technologies to remediate NO{sub x} containing emissions. Biofiltration involves the venting of contaminated gas streams through biologically active material such as soil or compost. This technology has been used successfully to control odors as well as volatile organic compounds from a variety of industrial and public sources. The purpose of this study was to evaluate the feasibility of using biofiltration to convert NO{sub x} to nitrogen gas.
Fuel cell electrolyte membrane with basic polymer
Larson, James M.; Pham, Phat T.; Frey, Matthew H.; Hamrock, Steven J.; Haugen, Gregory M.; Lamanna, William M.
2012-12-04
The present invention is an electrolyte membrane comprising an acid and a basic polymer, where the acid is a low-volatile acid that is fluorinated and is either oligomeric or non-polymeric, and where the basic polymer is protonated by the acid and is stable to hydrolysis.
Fuel cell electrolyte membrane with basic polymer
Larson, James M.; Pham, Phat T.; Frey, Matthew H.; Hamrock, Steven J.; Haugen, Gregory M.; Lamanna, William M.
2010-11-23
The present invention is an electrolyte membrane comprising an acid and a basic polymer, where the acid is a low-volatile acid that is fluorinated and is either oligomeric or non-polymeric, and where the basic polymer is protonated by the acid and is stable to hydrolysis.
Lusebrink, Inka; Girling, Robbie D; Farthing, Emily; Newman, Tracey A; Jackson, Chris W; Poppy, Guy M
2015-10-01
There is growing evidence of a substantial decline in pollinators within Europe and North America, most likely caused by multiple factors such as diseases, poor nutrition, habitat loss, insecticides, and environmental pollution. Diesel exhaust could be a contributing factor to this decline, since we found that diesel exhaust rapidly degrades floral volatiles, which honey bees require for flower recognition. In this study, we exposed eight of the most common floral volatiles to diesel exhaust in order to investigate whether it can affect volatile mediated plant-pollinator interaction. Exposure to diesel exhaust altered the blend of common flower volatiles significantly: myrcene was considerably reduced, β-ocimene became undetectable, and β-caryophyllene was transformed into its cis-isomer isocaryophyllene. Proboscis extension response (PER) assays showed that the alterations of the blend reduced the ability of honey bees to recognize it. The chemically reactive nitrogen oxides fraction of diesel exhaust gas was identified as capable of causing degradation of floral volatiles.
Development of a food spoilage indicator for monitoring freshness of skinless chicken breast.
Rukchon, Chompoonoot; Nopwinyuwong, Atchareeya; Trevanich, Sudsai; Jinkarn, Tunyarut; Suppakul, Panuwat
2014-12-01
A colorimetric mixed-pH dye-based indicator with potential for the development of intelligent packaging, as a "chemical barcode" for real-time monitoring of skinless chicken breast spoilage, is described. Also investigated was the relationship between the numbers of microorganisms and the amount of volatile compounds. This on-package indicator contains two groups of pH-sensitive dyes, one of which is a mixture of bromothymol blue and methyl red, while the other is a mixture of bromothymol blue, bromocresol green and phenol red. Carbon dioxide (CO2) was used as a spoilage metabolite because the degree of spoilage was related to the amount of increased CO2, and which was more than the level of total volatile basic nitrogen (TVB-N) during the storage period. Characteristics of the two groups of indicator solutions were studied, as well as their response to CO2. A kinetic approach was used to correlate the response of the indicator label to the changes in skinless chicken breast spoilage. Color changes, in terms of total color difference of a mixed-pH dye-based indicator, correlated well with CO2 levels of skinless chicken breast. Trials on skinless chicken breast samples have verified that the indicator response correlates with microbial growth patterns, thus enabling real-time monitoring of spoilage either at various constant temperatures or with temperature fluctuation. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mousis, Olivier; Petit, Jean-Marc; Rousselot, Philippe
We propose a scenario that explains the apparent nitrogen deficiency in comets in a way that is consistent with the fact that the surfaces of Pluto and Triton are dominated by nitrogen-rich ice. We use a statistical thermodynamic model to investigate the composition of the successive multiple guest clathrates that may have formed during the cooling of the primordial nebula from the most abundant volatiles present in the gas phase. These clathrates agglomerated with the other ices (pure condensates or stoichiometric hydrates) and formed the building blocks of comets. We report that molecular nitrogen is a poor clathrate former, whenmore » we consider a plausible gas-phase composition of the primordial nebula. This implies that its trapping into cometesimals requires a low disk temperature ({approx}20 K) in order to allow the formation of its pure condensate. We find that it is possible to explain the lack of molecular nitrogen in comets as a consequence of their postformation internal heating engendered by the decay of short-lived radiogenic nuclides. This scenario is found to be consistent with the presence of nitrogen-rich ice covers on Pluto and Triton. Our model predicts that comets should present xenon-to-water and krypton-to-water ratios close to solar xenon-to-oxygen and krypton-to-oxygen ratios, respectively. In contrast, the argon-to-water ratio is predicted to be depleted by a factor of {approx}300 in comets compared to solar argon-to-oxygen, as a consequence of poor trapping efficiency and radiogenic heating.« less
NASA Astrophysics Data System (ADS)
Mousis, Olivier; Guilbert-Lepoutre, Aurélie; Lunine, Jonathan I.; Cochran, Anita L.; Waite, J. Hunter; Petit, Jean-Marc; Rousselot, Philippe
2012-10-01
We propose a scenario that explains the apparent nitrogen deficiency in comets in a way that is consistent with the fact that the surfaces of Pluto and Triton are dominated by nitrogen-rich ice. We use a statistical thermodynamic model to investigate the composition of the successive multiple guest clathrates that may have formed during the cooling of the primordial nebula from the most abundant volatiles present in the gas phase. These clathrates agglomerated with the other ices (pure condensates or stoichiometric hydrates) and formed the building blocks of comets. We report that molecular nitrogen is a poor clathrate former, when we consider a plausible gas-phase composition of the primordial nebula. This implies that its trapping into cometesimals requires a low disk temperature (~20 K) in order to allow the formation of its pure condensate. We find that it is possible to explain the lack of molecular nitrogen in comets as a consequence of their postformation internal heating engendered by the decay of short-lived radiogenic nuclides. This scenario is found to be consistent with the presence of nitrogen-rich ice covers on Pluto and Triton. Our model predicts that comets should present xenon-to-water and krypton-to-water ratios close to solar xenon-to-oxygen and krypton-to-oxygen ratios, respectively. In contrast, the argon-to-water ratio is predicted to be depleted by a factor of ~300 in comets compared to solar argon-to-oxygen, as a consequence of poor trapping efficiency and radiogenic heating.
Selective enrichment of volatiles confirmed
NASA Astrophysics Data System (ADS)
de Pater, Imke
2018-04-01
Hydrogen sulfide gas is detected above Uranus's main cloud deck, confirming the prevalence of H2S ice particles as the main cloud component and a strongly unbalanced nitrogen/sulfur ratio in the planet's deep atmosphere.
Known as tropospheric or ground-level ozone, this gas is harmful to human heath and the environment. Since it forms from emissions of volatile organic compounds (VOCs) and nitrogen oxides (NOx), these pollutants are regulated under air quality standards.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-07
... Louisiana L.L.C, National Petrochemical & Refiners Association (``NPRA''), PCS Nitrogen Fertilizer, Shell... requirements, Volatile organic compounds. Dated: June 23, 2011. Al Armendariz, Regional Administrator, Region 6...
Selective enrichment of volatiles confirmed
NASA Astrophysics Data System (ADS)
de Pater, Imke
2018-05-01
Hydrogen sulfide gas is detected above Uranus's main cloud deck, confirming the prevalence of H2S ice particles as the main cloud component and a strongly unbalanced nitrogen/sulfur ratio in the planet's deep atmosphere.
Zhang, Xuelin; Wang, Qun; Xu, Jun; Gilliam, Frank S.; Tremblay, Nicolas; Li, Chaohai
2015-01-01
Nitrogen (N) fertilization potentially affects soil N mineralization and leaching, and can enhance NH3 volatilization, thus impacting crop production. A fertilizer experiment with five levels of N addition (0, 79, 147, 215 and 375 kg N ha-1) was performed in 2009 and 2010 in a maize field in Huanghuaihai region, China, where > 300 kg N ha-1 has been routinely applied to soil during maize growth period of 120 days. Responses of net N mineralization, inorganic N flux (0–10cm), NH3 volatilization, and maize yield to N fertilization were measured. During the growth period, net N mineralization and nitrification varied seasonally, with higher rates occurring in August and coinciding with the R1 stage of maize growth. Soil NO3 −-N contributed to more than 60% of inorganic N flux during maize growth. Cumulative NH3 volatilization increased with N additions, with total NH3 volatilization during maize growth accounting for about 4% of added N. Relative to the control, mean maize yield in the fertilizer treatments increased by 17% and 20% in 2009 and 2010, respectively. However, grain yield, aboveground biomass, and plant N accumulation did not increase with added N at levels > 215 kg N ha-1. These results suggest that the current N rate of 300 kg N ha-1 is not only excessive, but also reduces fertilizer efficacy and may contribute to environmental problems such as global warming and eutrophication of ground water and streams. PMID:25635864
Pluto and Triton: Interactions Between Volatiles and Dynamics
NASA Technical Reports Server (NTRS)
Rubincam, D. P.
2001-01-01
Volatiles moving across the surfaces of Pluto and Triton can give rise to interesting dynamical consequences. Conversely, measurement of dynamical states can help constrain the movement of volatiles and interior structure of both bodies. Polar wander may theoretically occur on both Triton and Pluto. Triton's obliquity is low, so that the equatorial regions receive more insolation than the poles. Hence there is a tendency for nitrogen ice to sublime at the equator and condense at the poles, creating polar caps. If the nitrogen supply is large enough, then these caps could move in approximately 10(exp 5) years the global equivalent of 200 m of ice to the poles. At this point the equatorial moment of inertia becomes larger than the moment of inertia measured about the rotation axis, so that Triton overbalances and becomes dynamically unstable. The satellite then undergoes polar wander, restoring stability when the new equator contains the excess matter. Hence the pole may be continually wandering. Neptune raises a permanent tidal bulge on Triton, so that the satellite's surface is elongated like a football, with the long axis pointing at Neptune. This is expected to be the axis about which the pole wanders. Volatile migration would resurface the satellite to some depth and wandering would disturb leading side/trailing side crater statistics. Additional information is contained in the original extended abstract.
Advances in fruit aroma volatile research.
El Hadi, Muna Ahmed Mohamed; Zhang, Feng-Jie; Wu, Fei-Fei; Zhou, Chun-Hua; Tao, Jun
2013-07-11
Fruits produce a range of volatile compounds that make up their characteristic aromas and contribute to their flavor. Fruit volatile compounds are mainly comprised of esters, alcohols, aldehydes, ketones, lactones, terpenoids and apocarotenoids. Many factors affect volatile composition, including the genetic makeup, degree of maturity, environmental conditions, postharvest handling and storage. There are several pathways involved in volatile biosynthesis starting from lipids, amino acids, terpenoids and carotenoids. Once the basic skeletons are produced via these pathways, the diversity of volatiles is achieved via additional modification reactions such as acylation, methylation, oxidation/reduction and cyclic ring closure. In this paper, we review the composition of fruit aroma, the characteristic aroma compounds of several representative fruits, the factors affecting aroma volatile, and the biosynthetic pathways of volatile aroma compounds. We anticipate that this review would provide some critical information for profound research on fruit aroma components and their manipulation during development and storage.
Pyta, Krystian; Klich, Katarzyna; Domagalska, Joanna; Przybylski, Piotr
2014-09-12
Thirty four novel derivatives of 3-formylrifamycin SV were synthesized via reductive alkylation and copper(I)-catalysed azide-alkyne cycloaddition. According to the obtained results, 'click chemistry' can be successfully applied for modification of structurally complex antibiotics such as rifamycins, with the formation of desired 1,2,3-triazole products. However, when azide-alkyne cycloaddition on 3-formylrifamycin SV derivatives demanded higher amount of catalyst, lower temperature and longer reaction time because of the high volatility of substrates, an unexpected intramolecular condensation with the formation of 3,4-dihydrobenzo[g]quinazoline heterocyclic system took place. Structures of new derivatives in solution were determined using one- and two-dimensional NMR methods and FT-IR spectroscopy. Computational DFT and PM6 methods were employed to correlate their conformation and acid-base properties to biological activity and establish SAR of the novel compounds. Microbiological, physico-chemical (logP, solubility) and structural studies of newly synthesised rifamycins indicated that for the presence of relatively high antibacterial (MIC ~0.01 nmol/mL) and antitubercular (MIC ~0.006 nmol/mL) activities, a rigid and basic substituent at C(3) arm, containing a protonated nitrogen atom "open" toward intermolecular interactions, is required. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
The nitrogen cycles on Pluto over seasonal and astronomical timescales
NASA Astrophysics Data System (ADS)
Bertrand, T.; Forget, F.; Umurhan, O. M.; Grundy, W. M.; Schmitt, B.; Protopapa, S.; Zangari, A. M.; White, O. L.; Schenk, P. M.; Singer, K. N.; Stern, A.; Weaver, H. A.; Young, L. A.; Ennico, K.; Olkin, C. B.
2018-07-01
Pluto's landscape is shaped by the endless condensation and sublimation cycles of the volatile ices covering its surface. In particular, the Sputnik Planitia ice sheet, which is thought to be the main reservoir of nitrogen ice, displays a large diversity of terrains, with bright and dark plains, small pits and troughs, topographic depressions and evidences of recent and past glacial flows. Outside Sputnik Planitia, New Horizons also revealed numerous nitrogen ice deposits, in the eastern side of Tombaugh Regio and at mid-northern latitudes. These observations suggest a complex history involving volatile and glacial processes occurring on different timescales. We present numerical simulations of volatile transport on Pluto performed with a model designed to simulate the nitrogen cycle over millions of years, taking into account the changes of obliquity, solar longitude of perihelion and eccentricity as experienced by Pluto. Using this model, we first explore how the volatile and glacial activity of nitrogen within Sputnik Planitia has been impacted by the diurnal, seasonal and astronomical cycles of Pluto. Results show that the obliquity dominates the N2 cycle and that over one obliquity cycle, the latitudes of Sputnik Planitia between 25°S-30°N are dominated by N2 condensation, while the northern regions between 30°N and -50°N are dominated by N2 sublimation. We find that a net amount of 1 km of ice has sublimed at the northern edge of Sputnik Planitia during the last 2 millions of years. It must have been compensated by a viscous flow of the thick ice sheet. By comparing these results with the observed geology of Sputnik Planitia, we can relate the formation of the small pits and the brightness of the ice at the center of Sputnik Planitia to the sublimation and condensation of ice occurring at the annual timescale, while the glacial flows at its eastern edge and the erosion of the water ice mountains all around the ice sheet are instead related to the astronomical timescale. We also perform simulations including a glacial flow scheme which shows that the Sputnik Planitia ice sheet is currently at its minimum extent at the northern and southern edges. We also explore the stability of N2 ice deposits outside the latitudes and longitudes of the Sputnik Planitia basin. Results show that N2 ice is not stable at the poles but rather in the equatorial regions, in particular in depressions, where thick deposits may persist over tens of millions of years, before being trapped in Sputnik Planitia. Finally, another key result is that the minimum and maximum surface pressures obtained over the simulated millions of years remain in the range of milli-Pascals and Pascals, respectively. This suggests that Pluto never encountered conditions allowing liquid nitrogen to flow directly on its surface. Instead, we suggest that the numerous geomorphological evidences of past liquid flow observed on Pluto's surface are the result of liquid nitrogen that flowed at the base of thick ancient nitrogen glaciers, which have since disappeared.
ENHANCED BIODEGRADATION THROUGH IN-SITU AERATION
This presentation provided an overview of enhanced aerobic bioremediation using in-situ aeration or venting. The following topics were covered: (1) Basic discussion on biodegradation and respiration testing; (2) Basic discussion on volatilization, rate-limited mass transport, an...
Short-term effects of tidal flooding on soil nitrogen mineralization in a Chinese tidal salt marsh
NASA Astrophysics Data System (ADS)
Gao, Haifeng; Bai, Junhong; Deng, Xiaoya; Lu, Qiongqiong; Ye, Xiaofei
2018-02-01
Tidal flooding is an important control of nitrogen biogeochemistry in wetland ecosystems of Yellow River Delta, China. Variations in hydrology could change soil redox dynamics and conditions for microorganisms living. A tidal simulation experiment was designed to extract tidal flooding effect on nitrogen mineralization of salt marsh soil. Inorganic nitrogen and relevant enzyme were measured during the 20-day incubation period. Considering the variation of both inorganic N and enzymes, nitrogen mineralization process in tidal salt marsh could be divided into 2 phases of short term response and longtime adaption by around 12th incubation day as the inflection point. Soil ammonium nitrogen (NH4+-N) and volatilized ammonia (NH3) occupied the mineralization process since nitrate nitrogen (NO3--N) was not detected over whole incubation period. NH4+-N varied fluctuant and increased significantly after 12 day's incubation. Released NH3 reached to peak value of 14.24 mg m-2 d-1 at the inflection point and declined thereafter. Inorganic nitrogen released according to net nitrogen mineralization rate (RM) under the tidal flooding condition without plant uptake except first 2 days. However, during the transitional period of 6-12 days, RM decreased notably to almost 0 and increased again after inflection point with the value of 0.182 mg kg-1 d-1. It might be due to the change of microbial composition and function when soil shifted from oxic to anoxic, which were reflected by arylamidase, urease and fluorescein diacetate. Fluorescein diacetate hydrolysis and arylamidase had the similar variation of U style with decreasing activities before 12 days' incubation. All the enzymes measured in this experiment increased after inflection point. Whereas, urease activity kept constant from 2 to 12 days. Alternant oxidation reduction condition would increase N loss through denitrification and ammonia volatilization during the transitional period, while more inorganic nitrogen would be available in reductive environment of long-term tidal flooding. Therefore, hydrological process regulation has great influence on nitrogen cycling and further influence on wetland productivity.
Region 6: Texas Adequate Letter (4/16/2010)
This letter from EPA to Texas Commission on Environmental Quality determined 2021 motor vehicle emission budgets for nitrogen oxides (NOx) and volatile organic compounds (VOCs) for Beaumont/Port Arthur area adequate for transportation conformity purposes
COMBUSTION AREA SOURCES: DATA SOURCES
The report identifies, documents, and evaluates data sources for stationary area source emissions, including solid waste and agricultural burning. Area source emissions of particulate matter, sulfur dioxide, oxides of nitrogen, reactive volatile organic compounds, and carbon mon...
76 FR 39899 - Notice of Lodging of Consent Decree Under the Clean Air Act
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-07
... emissions of nitrogen oxides, sulfur dioxide, volatile organic compounds, and benzene. Among other things... refinery's benzene monitoring program is enhanced, and the refinery's leak-detection-and-repair (LDAR...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-02
... chemical precursors are sulfur dioxide (SO 2 ), nitrogen oxides (NO X ), ammonia (NH 3 ), and volatile... emulsified asphalt paving; cement kilns; glass furnaces; industrial, commercial, and institutional (ICI...
Environmental Compliance Assessment System (ECAS). Rhode Island Supplement
1994-07-01
of Sedm aSW e• mr•iqlie 1W an e-1m 1 G srW aaOS dOme uoaw of dOM I a m 1 gpe• 0 ae sk ow -, Ig -i kaeudeni. to Washmnp Heafmii Sendo - , reoalm for h...dioxide Hg mercury NO, nitrogen oxide SO 2 sulfur dioxide NO2 nitrogen dioxide I - vii - -viii - Metric Conversion Table I in. = 25.4 mm Ift = 0.305 m I...for volatile organic compounds (VOCs) or nitrogen oxides (NO,) will be considered significant for ozone. A physical change or change in the method of
A study of volatile contaminants in recovered water
NASA Technical Reports Server (NTRS)
Mckee, H. C.; Marek, R., Jr.
1972-01-01
The recovery and reuse of water during long term space flight is discussed. Particular attention was given to obtaining basic information on the volatile impurities in urine samples and in water recovered from urine by distillation. Data also cover laboratory distillation tests to determine the nature and extent of volatile constituents in the distillate and an evaluation of possible problems in distillation due to iodine used for control of microbial contamination. Efforts made to develop design criteria for distillation equipment to minimize the problems of volatile contaminants various methods which might be used for purification subsequent to recovery are included.
Yu, Dawei; Jiang, Qixing; Xu, Yanshun; Xia, Wenshui
2017-08-01
A novel chitosan-based coating solution was prepared by combining glycerol monolaurate (GML) for shelf life extension of refrigerated grass carp fillets. The control and coated fillets were analyzed periodically for physicochemical (pH, thiobarbituric acid (TBA) value, total volatile basic nitrogen (TVB-N) value, K value, and shear force), microbiological (total viable counts (TVC), psychrophilic bacteria counts (PTC), Pseudomonads and H 2 S-producing bacteria) and sensorial characteristics. The results showed that chitosan-GML coated samples presented better quality preservation effects than chitosan coating alone. In addition, 2% chitosan enriched with 0.3% GML showed the significant (P<0.05) effectiveness in inhibiting microbial growth, nucleotide breakdown, the formation of alkaline components and texture deterioration, and maintaining sensory acceptability among the groups. These findings confirmed that chitosan coating enriched with GML was a promising method to extend the shelf life of refrigerated fillets. Copyright © 2017. Published by Elsevier B.V.
Effect of a traditional marinating on properties of rainbow trout fillet during chilled storage.
Maktabi, Siavash; Zarei, Mehdi; Chadorbaf, Milad
2016-01-01
In recent years, there has been an increasing interest in using food additives from natural sources to improve taste and also extend the shelf-life of semi-preserved foodstuffs. The aim of this study was to examine the chemical and microbiological changes promoted by a local marinating process in rainbow trout fillets during chilled storage. Fish fillets were immersed in marinades and stored at 4 ˚C for 10 days and were analyzed for total volatile basic nitrogen (TVN), thiobarbitoric acid (TBA), water holding capacity (WHC), pH, mesophilic and psychrophilic bacterial count every two days. Variations in TBA and WHC were not statistically significant between marinated and control groups. The values of TVN, pH, total psychrophilic bacteria count (TPC) and total mesophilic bacteria count (TMC) in marinated samples were significantly lower than controls. The most obvious finding of this study was that traditional marinated rainbow trout fillet stored in 4 ˚C had no undesirable changes at least for eight days.
Effect of a traditional marinating on properties of rainbow trout fillet during chilled storage
Maktabi, Siavash; Zarei, Mehdi; Chadorbaf, Milad
2016-01-01
In recent years, there has been an increasing interest in using food additives from natural sources to improve taste and also extend the shelf-life of semi-preserved foodstuffs. The aim of this study was to examine the chemical and microbiological changes promoted by a local marinating process in rainbow trout fillets during chilled storage. Fish fillets were immersed in marinades and stored at 4 ˚C for 10 days and were analyzed for total volatile basic nitrogen (TVN), thiobarbitoric acid (TBA), water holding capacity (WHC), pH, mesophilic and psychrophilic bacterial count every two days. Variations in TBA and WHC were not statistically significant between marinated and control groups. The values of TVN, pH, total psychrophilic bacteria count (TPC) and total mesophilic bacteria count (TMC) in marinated samples were significantly lower than controls. The most obvious finding of this study was that traditional marinated rainbow trout fillet stored in 4 ˚C had no undesirable changes at least for eight days. PMID:28144420
Nondestructive prediction of pork freshness parameters using multispectral scattering images
NASA Astrophysics Data System (ADS)
Tang, Xiuying; Li, Cuiling; Peng, Yankun; Chao, Kuanglin; Wang, Mingwu
2012-05-01
Optical technology is an important and immerging technology for non-destructive and rapid detection of pork freshness. This paper studied on the possibility of using multispectral imaging technique and scattering characteristics to predict the freshness parameters of pork meat. The pork freshness parameters selected for prediction included total volatile basic nitrogen (TVB-N), color parameters (L *, a *, b *), and pH value. Multispectral scattering images were obtained from pork sample surface by a multispectral imaging system developed by ourselves; they were acquired at the selected narrow wavebands whose center wavelengths were 517,550, 560, 580, 600, 760, 810 and 910nm. In order to extract scattering characteristics from multispectral images at multiple wavelengths, a Lorentzian distribution (LD) function with four parameters (a: scattering asymptotic value; b: scattering peak; c: scattering width; d: scattering slope) was used to fit the scattering curves at the selected wavelengths. The results show that the multispectral imaging technique combined with scattering characteristics is promising for predicting the freshness parameters of pork meat.
Lee, Yi-Chen; Kung, Hsien-Feng; Huang, Ya-Ling; Wu, Chien-Hui; Huang, Yu-Ru; Tsai, Yung-Hsiang
2016-09-01
Lactobacillus plantarum D-103 isolated from a miso product that possesses amine-degrading activity was used as a starter culture in miso fermentation (25°C for 120 days) in this study. The salt content in control samples (without starter culture) and inoculated samples (inoculated with L. plantarum D-103) remained constant at 10.4% of the original salt concentration throughout fermentation, whereas the pH value decreased from 6.2 to 4.6 during fermentation. The inoculated samples had significantly lower (P < 0.05) levels of total volatile basic nitrogen than control samples after 40 days of fermentation. After 120 days of fermentation, the histamine and overall biogenic amine contents in inoculated samples were reduced by 58 and 27%, respectively, compared with control samples. To our knowledge, this is the first report to demonstrate that application of a starter culture with amine-degrading activity in miso products was effective in reducing the accumulation of biogenic amines.
Kim, Hyoun Wook; Jeong, Jin Young; Seol, Kuk-Hwan; Seong, Pil-Nam; Ham, Jun-Sang
2016-01-01
Procyanidins, which are natural antioxidants and antimicrobials found in grapes, enhance the quality and extend the shelf life of meat. We explored the effects of edible films incorporating procyanidins on pork loin stored for various times. Procyanidins (0, 0.1, and 0.3%, w/w) were incorporated into the edible films. We assessed meat color, pH, levels of volatile basic nitrogen (VBN) and 2-thiobarbituric acid-reactive substances (TBARS), and microbial populations for 14 d. The chromaticities and pH values of pork loin wrapped in film containing procyanidins (0.1% and 0.3%) generally increased (p<0.05) with storage time. VBN and TBARS levels, and total bacterial and Escherichia coli (E. coli) counts, significantly decreased (p<0.05) in the procyanidin groups. In particular, procyanidins strongly inhibited TBARS formation. Thus, our findings suggest that edible film impregnated with procyanidins inhibits lipid oxidation and microbial growth, thereby enhancing the quality and shelf life of pork meat.
2016-01-01
Procyanidins, which are natural antioxidants and antimicrobials found in grapes, enhance the quality and extend the shelf life of meat. We explored the effects of edible films incorporating procyanidins on pork loin stored for various times. Procyanidins (0, 0.1, and 0.3%, w/w) were incorporated into the edible films. We assessed meat color, pH, levels of volatile basic nitrogen (VBN) and 2-thiobarbituric acid-reactive substances (TBARS), and microbial populations for 14 d. The chromaticities and pH values of pork loin wrapped in film containing procyanidins (0.1% and 0.3%) generally increased (p<0.05) with storage time. VBN and TBARS levels, and total bacterial and Escherichia coli (E. coli) counts, significantly decreased (p<0.05) in the procyanidin groups. In particular, procyanidins strongly inhibited TBARS formation. Thus, our findings suggest that edible film impregnated with procyanidins inhibits lipid oxidation and microbial growth, thereby enhancing the quality and shelf life of pork meat. PMID:27194932
Huff, J.B.
1962-03-13
A furnace apparatus is designed for treating a nuclear reactor waste solution. The solution is sprayed onto a bed of burning petroleum coke which expels water, the more volatile fission products, and nitrogen oxides. Next, chlorine gas is introduced from below which causes aluminum to volatilize as aluminum chloride and along with it certain fission products including Nb/sup 95/ and Zr/sup 95/. These lose their radioactivity within four years and the long- lived radioactivity remains with the ash, which is stored. (AEC) V) nitrate. (P.C.H.)
NASA Technical Reports Server (NTRS)
Coleman, R. A.; Cofer, W. R., III; Edahl, R. A., Jr.
1985-01-01
An analytical technique for the determination of trace (sub-ppbv) quantities of volatile organic compounds in air was developed. A liquid nitrogen-cooled trap operated at reduced pressures in series with a Dupont Nafion-based drying tube and a gas chromatograph was utilized. The technique is capable of analyzing a variety of organic compounds, from simple alkanes to alcohols, while offering a high level of precision, peak sharpness, and sensitivity.
Song, Yang; Zemlyanov, Dmitry; Chen, Xin; Nie, Haichen; Su, Ziyang; Fang, Ke; Yang, Xinghao; Smith, Daniel; Byrn, Stephen; Lubach, Joseph W
2016-02-01
This study investigates the potential drug-excipient interactions of polystyrene sulfonic acid (PSSA) and two weakly basic anticancer drugs, lapatinib (LB) and gefitinib (GB), in amorphous solid dispersions. Based on the strong acidity of the sulfonic acid functional group, PSSA was hypothesized to exhibit specific intermolecular acid-base interactions with both model basic drugs. Ultraviolet (UV) spectroscopy identified red shifts, which correlated well with the color change observed in lapatinib-PSSA solutions. Fourier transform infrared (FTIR) spectra suggest the protonation of the quinazoline nitrogen atom in both model compounds, which agrees well with data from the crystalline ditosylate salt of lapatinib. X-ray photoelectron spectroscopy (XPS) detected increases in binding energy of the basic nitrogen atoms in both lapatinib and gefitinib, strongly indicating protonation of these nitrogen atoms. (15)N solid-state NMR spectroscopy provided direct spectroscopic evidence for protonation of the quinazoline nitrogen atoms in both LB and GB, as well as the secondary amine nitrogen atom in LB and the tertiary amine nitrogen atom in GB. The observed chemical shifts in the LB-PSSA (15)N spectrum also agree very well with the lapatinib ditosylate salt where proton transfer is known. Additionally, the dissolution and physical stability behaviors of both amorphous solid dispersions were examined. PSSA was found to significantly improve the dissolution of LB and GB and effectively inhibit the crystallization of LB and GB under accelerated storage conditions due to the beneficial strong intermolecular acid-base interaction between the sulfonic acid groups and basic nitrogen centers.
Orchard nitrogen management: Which nitrogen source is best?
USDA-ARS?s Scientific Manuscript database
Suboptimal management of nitrogen fertility in pecan orchards leads to a loss of nutmeat yield and quality, but also a waste of natural resources and money. This article reviews several basic guiding principles useful to orchard managers when developing nitrogen management strategies, and determini...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-12
... implementation plan revisions, submitted by the North Carolina Department of Environment and Natural Resources... for the motor vehicle emissions budgets (MVEB) for volatile organic compounds and nitrogen oxides that...
Region 5: Indiana Adequate Letter (7/15/2005)
This letter from EPA to the Indiana Department of Environmental Management determined the 2015 motor vehicle emission budgets (MVEBs) for volatile organic compounds (VOCs) and oxides of nitrogen (NOx) for Evansville, Indiana's 8-hour ozone nonattainment
Alexander, C M O'D; Bowden, R; Fogel, M L; Howard, K T; Herd, C D K; Nittler, L R
2012-08-10
Determining the source(s) of hydrogen, carbon, and nitrogen accreted by Earth is important for understanding the origins of water and life and for constraining dynamical processes that operated during planet formation. Chondritic meteorites are asteroidal fragments that retain records of the first few million years of solar system history. The deuterium/hydrogen (D/H) values of water in carbonaceous chondrites are distinct from those in comets and Saturn's moon Enceladus, implying that they formed in a different region of the solar system, contrary to predictions of recent dynamical models. The D/H values of water in carbonaceous chondrites also argue against an influx of water ice from the outer solar system, which has been invoked to explain the nonsolar oxygen isotopic composition of the inner solar system. The bulk hydrogen and nitrogen isotopic compositions of CI chondrites suggest that they were the principal source of Earth's volatiles.
Controlling nitrogen migration through micro-nano networks
NASA Astrophysics Data System (ADS)
Cai, Dongqing; Wu, Zhengyan; Jiang, Jiang; Wu, Yuejin; Feng, Huiyun; Brown, Ian G.; Chu, Paul K.; Yu, Zengliang
2014-01-01
Nitrogen fertilizer unabsorbed by crops eventually discharges into the environment through runoff, leaching and volatilization, resulting in three-dimensional (3D) pollution spanning from underground into space. Here we describe an approach for controlling nitrogen loss, developed using loss control fertilizer (LCF) prepared by adding modified natural nanoclay (attapulgite) to traditional fertilizer. In the aqueous phase, LCF self-assembles to form 3D micro/nano networks via hydrogen bonds and other weak interactions, obtaining a higher nitrogen spatial scale so that it is retained by a soil filtering layer. Thus nitrogen loss is reduced and sufficient nutrition for crops is supplied, while the pollution risk of the fertilizer is substantially lowered. As such, self-fabrication of nano-material was used to manipulate the nitrogen spatial scale, which provides a novel and promising approach for the research and control of the migration of other micro-scaled pollutants in environmental medium.
Controlling nitrogen migration through micro-nano networks.
Cai, Dongqing; Wu, Zhengyan; Jiang, Jiang; Wu, Yuejin; Feng, Huiyun; Brown, Ian G; Chu, Paul K; Yu, Zengliang
2014-01-14
Nitrogen fertilizer unabsorbed by crops eventually discharges into the environment through runoff, leaching and volatilization, resulting in three-dimensional (3D) pollution spanning from underground into space. Here we describe an approach for controlling nitrogen loss, developed using loss control fertilizer (LCF) prepared by adding modified natural nanoclay (attapulgite) to traditional fertilizer. In the aqueous phase, LCF self-assembles to form 3D micro/nano networks via hydrogen bonds and other weak interactions, obtaining a higher nitrogen spatial scale so that it is retained by a soil filtering layer. Thus nitrogen loss is reduced and sufficient nutrition for crops is supplied, while the pollution risk of the fertilizer is substantially lowered. As such, self-fabrication of nano-material was used to manipulate the nitrogen spatial scale, which provides a novel and promising approach for the research and control of the migration of other micro-scaled pollutants in environmental medium.
Controlling nitrogen migration through micro-nano networks
Cai, Dongqing; Wu, Zhengyan; Jiang, Jiang; Wu, Yuejin; Feng, Huiyun; Brown, Ian G.; Chu, Paul K.; Yu, Zengliang
2014-01-01
Nitrogen fertilizer unabsorbed by crops eventually discharges into the environment through runoff, leaching and volatilization, resulting in three-dimensional (3D) pollution spanning from underground into space. Here we describe an approach for controlling nitrogen loss, developed using loss control fertilizer (LCF) prepared by adding modified natural nanoclay (attapulgite) to traditional fertilizer. In the aqueous phase, LCF self-assembles to form 3D micro/nano networks via hydrogen bonds and other weak interactions, obtaining a higher nitrogen spatial scale so that it is retained by a soil filtering layer. Thus nitrogen loss is reduced and sufficient nutrition for crops is supplied, while the pollution risk of the fertilizer is substantially lowered. As such, self-fabrication of nano-material was used to manipulate the nitrogen spatial scale, which provides a novel and promising approach for the research and control of the migration of other micro-scaled pollutants in environmental medium. PMID:24419037
Atrea, I; Papavergou, A; Amvrosiadis, I; Savvaidis, I N
2009-04-01
The present study evaluated the use of vacuum packaging (alone) or with addition of oregano essential oil (EO), as an antimicrobial treatment for shelf-life extension of fresh Mediterranean octopus stored under refrigeration for a period of 23 days. Four different treatments were tested: A, control sample; under aerobic storage in the absence of oregano essential oil; VP, under vacuum packaging in the absence of oregano essential oil; and VO1, VO2, treated samples with oregano essential oil 0.2 and 0.4% (v/w), respectively, under VP. Of all the microorganisms enumerated, Pseudomonas spp., H2S-producing bacteria and lactic acid bacteria (LAB) were the groups that prevailed in octopus samples, irrespective of antimicrobial treatment. With regard to the chemical freshness indices determined, thiobarbituric acid (TBA) values were low in all octopus samples, as could have been expected from the low fat content of the product. Both trimethylamine nitrogen (TMA-N) and total volatile basic nitrogen (TVB-N) values of oregano treated under VP octopus samples were significantly lower compared to control samples during the entire refrigerated storage period. Based primarily on sensory evaluation (odor), the use of VP, VO1 and VO2 extended the shelf-life of fresh Mediterranean octopus by ca. 3, 11 and 20 days, respectively.
Plant volatiles in a polluted atmosphere: stress response and signal degradation
Blande, James D.; Holopainen, Jarmo K.; Niinemets, Ülo
2014-01-01
Plants emit a plethora of volatile organic compounds, which provide detailed information on the physiological condition of emitters. Volatiles induced by herbivore-feeding are among the best studied plant responses to stress and may constitute an informative message to the surrounding community and function in the process of plant defence. However, under natural conditions, plants are potentially exposed to multiple concurrent stresses, which can have complex effects on the volatile emissions. Atmospheric pollutants are an important facet of the abiotic environment and can impinge on a plant’s volatile-mediated defences in multiple ways at multiple temporal scales. They can exert changes in volatile emissions through oxidative stress, as is the case with ozone pollution. They may also react with volatiles in the atmosphere; such is the case for ozone, nitrogen oxides, hydroxyl radicals and other oxidizing atmospheric species. These reactions result in breakdown products, which may themselves be perceived by community members as informative signals. In this review we demonstrate the complex interplay between stress, emitted signals and modification in signal strength and composition by the atmosphere, collectively determining the responses of the biotic community to elicited signals. PMID:24738697
Identification of combustion intermediates in low-pressure premixed pyridine/oxygen/argon flames.
Tian, Zhenyu; Li, Yuyang; Zhang, Taichang; Zhu, Aiguo; Qi, Fei
2008-12-25
Combustion intermediates of two low-pressure premixed pyridine/oxygen flames with respective equivalence ratios of 0.56 (C/O/N = 1:4.83:0.20) and 2.10 (C/O/N = 1:1.29:0.20) have been identified with tunable synchrotron vacuum ultraviolet (VUV) photoionization and molecular-beam mass spectrometry techniques. About 80 intermediates in the rich flame and 60 intermediates in the lean flame, including nitrogenous, oxygenated, and hydrocarbon intermediates, have been identified by measurements of photoionization mass spectra and photoionization efficiency spectra. Some radicals and new nitrogenous intermediates are identified in the present work. The experimental results are useful for studying the conversion of volatile nitrogen compounds and understanding the formation mechanism of NO(x) in flames of nitrogenous fuels.
Desulfurizing Coal With an Alkali Treatment
NASA Technical Reports Server (NTRS)
Ravindram, M.; Kalvinskas, J. J.
1987-01-01
Experimental coal-desulfurization process uses alkalies and steam in fluidized-bed reactor. With highly volatile, high-sulfur bituminous coal, process removed 98 percent of pyritic sulfur and 47 percent of organic sulfur. Used in coal liquefaction and in production of clean solid fuels and synthetic liquid fuels. Nitrogen or steam flows through bed of coal in reactor. Alkalies react with sulfur, removing it from coal. Nitrogen flow fluidizes bed while heating or cooling; steam is fluidizing medium during reaction.
Suinyuy, Terence N; Donaldson, John S; Johnson, Steven D
2013-01-01
Volatiles play a key role in attraction of pollinators to cycad cones, but the extent to which volatile chemistry varies among cycad species is still poorly documented. Volatile composition of male and female cones of nineteen African cycad species (Encephalartos; Zamiaceae) was analysed using headspace technique and gas chromatography-mass spectrometry (GC-MS). A total of 152 compounds were identified among the species included in this study, the most common of which were monoterpenes, nitrogen-containing compounds and unsaturated hydrocarbons. Male and female cones emitted similar volatile compounds which varied in relative amounts with two unsaturated hydrocarbons (3E)-1,3-octadiene and (3E,5Z)-1,3,5-octatriene present in the volatile profile of most species. In a multivariate analysis of volatile profiles using non-metric multidimensional scaling (NMDS), a number of species clusters were identified according to shared emission of unsaturated hydrocarbons, pyrazines, benzenoids, aldehydes, alkanes and terpenoids. In comparison, terpenoids are common in Zamia and dominant in Macrozamia species (both in the family Zamiaceae) while benzenoids, esters, and alcohols are dominant in Cycas (Cycadaceae) and in Stangeria (Stangeriaceae). It is likely that volatile variation among Encephalartos species reflects both phylogeny and adaptations to specific beetle pollinators. Copyright © 2012 Elsevier Ltd. All rights reserved.
Liu, Tianqi; Huang, Jinfeng; Chai, Kaibin; Cao, Cougui; Li, Chengfang
2018-01-01
Tillage practices and nitrogen (N) sources are important factors affecting rice production. Few studies, however, have examined the interactions between tillage practices and N fertilizer sources on NH3 volatilization, nitrogen use efficiency (NUE), and rice grain yield. This study aimed to investigate the effects of N fertilizer sources (no N fertilizer, inorganic N fertilizer, organic N fertilizer alone, organic N fertilizer plus inorganic N fertilizer, and slow-release N fertilizer plus inorganic N fertilizer) and tillage practices (no-tillage [NT] and conventional intensive tillage [CT]) on NH3 flux, grain yield, and NUE in the rice field of central China. N sources significantly affected NH3 volatilization, as the cumulative volatilization from the treatments of inorganic N fertilizer, organic N fertilizer, organic N fertilizer plus inorganic N fertilizer, slow-release N fertilizer plus inorganic N fertilizer was 4.19, 2.13, 3.42, and 2.23 folds in 2013, and 2.49, 1.68, 2.08, and 1.85 folds in 2014 compared with that under no N fertilizer treatment, respectively. The organic N fertilizer treatment had the lowest grain yield and NUE among all N fertilizer treatments, while slow-release N fertilizer plus inorganic N fertilizer treatment led to relatively higher grain yield and the greatest N use efficiency. Moreover, NT only markedly increased NH3 volatilization from basal fertilizer by 10–14% in average compared with CT, but had no obvious effects on total volatilization during the whole seasons. Tillage practices had no significant effects on grain yield and NUE. Our study suggested that the combination of slow-release N fertilizer plus inorganic N fertilizer and NT might be a sustainable method for mitigating greenhouse gas and NH3 emissions and improving grain yield and NUE in paddy fields of central China. PMID:29623086
ECONOMIC GROWTH ANALYSIS SYSTEM: USER'S GUIDE
The two-volume report describes the development of, and provides information needed to operate, a prototype Economic Growth Analysis System (E-GAS) modeling system. The model will be used to project emissions inventories of volatile organic compounds (VOCs), oxides of nitrogen (...
ECONOMIC GROWTH ANALYSIS SYSTEM: REFERENCE MANUAL
The two-volume report describes the development of, and provides information needed to operate, a prototype Economic Growth Analysis System (E-GAS) modeling system. The model will be used to project emissions inventories of volatile organic compounds (VOCs), oxides of nitrogen (...
The PerkinElmer Elm (formerly the AirBase CanarIT) is a multi-sensor air quality monitoring device that measures particulate matter (PM), total volatile organic compounds (VOCs), nitrogen dioxide (NO2), and several other atmospheric components. PM, VOCs, and NO2
Region 5: Wisconsin Adequate Letter (5/21/2010)
This letter from EPA to the Wisconsin Department of Natural Resources, determined the 2012 and 2020 motor vehicle emission budgets (MVEBs) for volatile organic compounds (VOCs) and oxides of nitrogen (NOx) for the Milwaukee-Racine, Door County, Manitowoe
Ryu, Byung-Gon; Kim, Woong; Heo, Sung-Woon; Kim, Donghyun; Choi, Gang-Guk; Yang, Ji-Won
2015-09-01
This work describes the development of a microalga-mediated process for simultaneous removal of residual ammonium nitrogen (NH4(+)-N) and production of lipids from biologically treated coke effluent. Four species of green algae were tested using a sequential mixotrophic process. In the first phase-CO2-supplied mixotrophic condition-all microalgae assimilated NH4(+)-N with no evident inhibition. In second phase-volatile fatty acids (VFAs)-supplied mixotrophic condition-removal rates of NH4(+)-N and biomass significantly increased. Among the microalgae used, Arctic Chlorella sp. ArM0029B had the highest rate of NH4(+)-N removal (0.97 mg/L/h) and fatty acid production (24.9 mg/L/d) which were 3.6- and 2.1-fold higher than those observed under the CO2-supplied mixotrophic condition. Redundancy analysis (RDA) indicated that acetate and butyrate were decisive factors for increasing NH4(+)-N removal and fatty acid production. These results demonstrate that microalgae can be used in a sequential process for treatment of residual nitrogen after initial treatment of activated sludge. Copyright © 2015 Elsevier Ltd. All rights reserved.
Yang, Jun-gang; Xu, Kai; Tong, Er-jian; Cao, Bing; Ni, Xiao-hui; Xu, Jun-xiang
2010-12-01
An open field experiment was conducted to study the effects of applying controlled-release fertilizer blended with rapidly available chemical N fertilizer on Chinese cabbage yield and quality as well as nitrogen losses, including ammonia volatilization and NO3- -N accumulation and leaching in Beijing suburb. The results showed that a combined application of 2:1 controlled-release fertilizer and urea fertilizer (total N rate 150 kg x hm(-2)) did not induce the reduction of Chinese cabbage yield, and decreased the leaf nitrate and organic acid contents significantly, compared with conventional urea N application (300 kg x hm(-2)), and had no significant difference in the cabbage yield and leaf nitrate content, compared with applying 150 kg x hm(-2) of urea N. The combined application of 2:1 controlled-release fertilizer and urea fertilizer improved the N use efficiency of Chinese cabbage, and reduced the ammonia volatilization and NO3- -N leaching. At harvest, the NO3- -N concentrations in 20-40, 60-80 and 80-100 cm soil layers were significantly lower in the combined application treatment than in urea N treatment.
[Nitrogen flow in Huizhou region].
Ma, Xiaobo; Wang, Zhaoyin; Koenig, Albert; Deng, Jiaquan
2006-06-01
Eutrophication is a serious problem of water body pollution. By the method of material flow accounting, this paper studied the human activities- related nitrogen flow in the system of environment and anthroposphere in Huizhou region. The non-point source pollution was quantified by export coefficient method, and the domestic discharge was estimated by demand-supply method. The statistic and dynamic analyses based on the investigation data of 1998 showed that the major nitrogen flows in this region were river loads, fertilizer and feedstuff imports, atmospheric deposition, animal excretes' degradation and volatilization, and the processes relating to burning and other emissions. In 1998, about 40% of nitrogen was detained in the system, which could be accumulated and yield potential environmental problems. The nitrogen export in this region was mainly by rivers, accounted for about 57%. A comparison of Huizhou region with the Danube and Changjiang basins showed that the unit area nitrogen exports in these three regions were of the same magnitude, and the per capita nitrogen exports were comparable.
Theoretical studies of volatile processes in the outer solar system
NASA Technical Reports Server (NTRS)
Lunine, Jonathan I.
1991-01-01
Four studies of volatile processes in the outer solar system are discussed. Researchers suggest that the convective and conductive regions of Triton's atmosphere join at the tropopause near 10 km. A model of volatile transport on Triton's surface was constructed that predicts that Triton's surface north of 15 degrees north latitude is experiencing deposition of nitrogen frosts, as are the bright portions of the south polar cap near the equator. Also discussed are numerical models of the evolution of Titan's surface and atmosphere. Results of a study of the rheology of ammonia-water liquids were applied to the icy satellites of the outer solar system. Finally, the researchers examined the frictional heating, sublimation, and re-condensation of grains free-falling into the solar nebula from a surrounding interstellar cloud. The sublimation model includes the effect of various volatile species and accounts for the poor radiating properties of small grains using Mie theory.
Clement, T.; Perez, M.; Mouret, J. R.; Sanchez, I.; Sablayrolles, J. M.
2013-01-01
Nitrogen supplementation, which is widely used in winemaking to improve fermentation kinetics, also affects the products of fermentation, including volatile compounds. However, the mechanisms underlying the metabolic response of yeast to nitrogen additions remain unclear. We studied the consequences for Saccharomyces cerevisiae metabolism of valine and ammonium pulses during the stationary phase of four-stage continuous fermentation (FSCF). This culture technique provides cells at steady state similar to that of the stationary phase of batch wine fermentation. Thus, the FSCF device is an appropriate and reliable tool for individual analysis of the metabolic rerouting associated with nutrient additions, in isolation from the continuous evolution of the environment in batch processes. Nitrogen additions, irrespective of the nitrogen-containing compound added, substantially modified the formation of fermentation metabolites, including glycerol, succinate, isoamyl alcohol, propanol, and ethyl esters. This flux redistribution, fulfilling the requirements for precursors of amino acids, was consistent with increased protein synthesis resulting from increased nitrogen availability. Valine pulses, less efficient than ammonium addition in increasing the fermentation rate, were followed by a massive conversion of this amino acid in isobutanol and isobutyl acetate through the Ehrlich pathway. However, additional routes were involved in valine assimilation when added in stationary phase. Overall, we found that particular metabolic changes may be triggered according to the nature of the amino acid supplied, in addition to the common response. Both these shared and specific modifications should be considered when designing strategies to modulate the production of volatile compounds, a current challenge for winemakers. PMID:23417007
Clement, T; Perez, M; Mouret, J R; Sanchez, I; Sablayrolles, J M; Camarasa, C
2013-04-01
Nitrogen supplementation, which is widely used in winemaking to improve fermentation kinetics, also affects the products of fermentation, including volatile compounds. However, the mechanisms underlying the metabolic response of yeast to nitrogen additions remain unclear. We studied the consequences for Saccharomyces cerevisiae metabolism of valine and ammonium pulses during the stationary phase of four-stage continuous fermentation (FSCF). This culture technique provides cells at steady state similar to that of the stationary phase of batch wine fermentation. Thus, the FSCF device is an appropriate and reliable tool for individual analysis of the metabolic rerouting associated with nutrient additions, in isolation from the continuous evolution of the environment in batch processes. Nitrogen additions, irrespective of the nitrogen-containing compound added, substantially modified the formation of fermentation metabolites, including glycerol, succinate, isoamyl alcohol, propanol, and ethyl esters. This flux redistribution, fulfilling the requirements for precursors of amino acids, was consistent with increased protein synthesis resulting from increased nitrogen availability. Valine pulses, less efficient than ammonium addition in increasing the fermentation rate, were followed by a massive conversion of this amino acid in isobutanol and isobutyl acetate through the Ehrlich pathway. However, additional routes were involved in valine assimilation when added in stationary phase. Overall, we found that particular metabolic changes may be triggered according to the nature of the amino acid supplied, in addition to the common response. Both these shared and specific modifications should be considered when designing strategies to modulate the production of volatile compounds, a current challenge for winemakers.
NASA Astrophysics Data System (ADS)
Tseng, C.; Lin, Y.
2013-12-01
Nitrogen balance involves many mechanisms and plays an important role to maintain the function of nature. Fertilizer application in agriculture activity is usually seen as a common and significant nitrogen input to environment. Improper fertilizer application on paddy field can result in great amount of various types of nitrogen losses. Hence, it is essential to understand and quantify the nitrogen dynamics in paddy field for fertilizer management and pollution control. In this study, we develop a model which considers major transformation processes of nitrogen (e.g. volatilization, nitrification, denitrification and plant uptake). In addition, we measured different types of nitrogen in plants, soil and water at plant growth stages in an experimental-scale paddy field in Taiwan. The measurement includes total nitrogen in plants and soil, and ammonium-N (NH4+-N), nitrate-N (NO3--N) and organic nitrogen in water. The measured data were used to calibrate the model parameters and validate the model for nitrogen balance simulation. The results showed that the model can accurately estimate the temporal dynamics of nitrogen balance in paddy field during the whole growth stage. This model might be helpful and useful for future fertilizer management and pollution control in paddy field.
Modeling impacts of cold climates on vehicle emissions : final report.
DOT National Transportation Integrated Search
2017-01-20
Vehicle emissions include carbon monoxide (CO), nitrogen oxides (NOx = NO + NO2), volatile organic compounds (VOCs), and air toxics such as benzene. Each of these pollutants is linked to adverse human health effects. To evaluate the contributions of ...
Region 5: Ohio Columbus Adequate Letter (8/23/2016)
Letter from EPA to State of Ohio determined the 2008 8-hour ozone standard plan for years 2020 and 2030 Motor Vehicle Emissions Budgets for volatile organic compounds and nitrogen oxides for Columbus area adequate for transportation conformity purposes.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-18
...); letter dated June 16, 2011. 2. Tim Shesteck, American Chemistry Council (ACC); letter dated June 17, 2011..., Intergovernmental relations, Nitrogen dioxide, Ozone, Volatile organic compounds. Dated: October 3, 2012. Jared...
Region 5: Ohio Lima and Wheeling Adequate Letter (4/18/2007)
This letter from EPA to the Ohio Environmental Protection Agency determined the 2009 and 2018 motor vehicle emission budgets (MVEBs) for volatile organic compounds (VOCs) and oxides of nitrogen (NOx) for the Allen County (Lima), Belmont County (Wheeling),
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-08
...-approved Motor Vehicle Emissions Budgets (MVEBs) for nitrogen oxides (NO X ) and volatile organic compounds... interested in commenting on this action should do so at this time. DATES: Comments must be received in...
7 CFR 1466.4 - National priorities.
Code of Federal Regulations, 2010 CFR
2010-01-01
... statutory resource concerns that include soil, water, wildlife, air quality, and related resource concerns..., nitrogen oxides, volatile organic compounds, and ozone precursors and depleters that contribute to air quality impairment violations of National Ambient Air Quality Standards; (4) Reduction in soil erosion and...
7 CFR 1466.4 - National priorities.
Code of Federal Regulations, 2014 CFR
2014-01-01
... statutory resource concerns that include soil, water, wildlife, air quality, and related resource concerns..., nitrogen oxides, volatile organic compounds, and ozone precursors and depleters that contribute to air quality impairment violations of National Ambient Air Quality Standards; (4) Reduction in soil erosion and...
7 CFR 1466.4 - National priorities.
Code of Federal Regulations, 2011 CFR
2011-01-01
... statutory resource concerns that include soil, water, wildlife, air quality, and related resource concerns..., nitrogen oxides, volatile organic compounds, and ozone precursors and depleters that contribute to air quality impairment violations of National Ambient Air Quality Standards; (4) Reduction in soil erosion and...
7 CFR 1466.4 - National priorities.
Code of Federal Regulations, 2013 CFR
2013-01-01
... statutory resource concerns that include soil, water, wildlife, air quality, and related resource concerns..., nitrogen oxides, volatile organic compounds, and ozone precursors and depleters that contribute to air quality impairment violations of National Ambient Air Quality Standards; (4) Reduction in soil erosion and...
7 CFR 1466.4 - National priorities.
Code of Federal Regulations, 2012 CFR
2012-01-01
... statutory resource concerns that include soil, water, wildlife, air quality, and related resource concerns..., nitrogen oxides, volatile organic compounds, and ozone precursors and depleters that contribute to air quality impairment violations of National Ambient Air Quality Standards; (4) Reduction in soil erosion and...
Warroad Channel Project. Section 107. Detailed Project Report Warroad, Minnesota.
1980-07-01
I’low\\lr , :it re dowe.l onmenUt of su1ch a basil ’tl have a serious i::pci t on shorel2 i ne wet lands. The protcct ive t t icht create ’ d shore...Coppr, Cyanide, Lead, Mercury, Total KJeldahl Nitrogen, Ammonium Nitrogen, Total Volatile Solids, and Zinc. Several pesticides were measured and PCB’s...unlikely that industrial discharges or ac:ricultural runoff would enter the marina. Therefore, excessive levels of nutrients, pesticides , sediment, or
Enhanced saturation of sputtered amorphous SiN film frameworks using He- and Ne-Penning effects
NASA Astrophysics Data System (ADS)
Sugimoto, Iwao; Nakano, Satoko; Kuwano, Hiroki
1994-06-01
Optical emission spectroscopy reveals that helium and neon gases enhance the nitridation reactivity of the nitrogen plasma by Penning effects during magnetron sputtering of the silicon target. These excited nitrogen plasmas promote the saturation of frameworks of the resultant silicon nitride films. X-ray photoelectron spectroscopy, electron spin resonance, and x-ray diffraction analyses provide insight into the structure of these films, and thermal desorption mass spectroscopy reveals the behavior of volatile species in these films.
Photochemical Assessment Monitoring Stations (PAMS)
Photochemical Assessment Monitoring Stations (PAMS). This file provides information on the numbers and distribution (latitude/longitude) of air monitoring sites which measure ozone precursors (approximately 60 volatile hydrocarbons and carbonyl), as required by the 1990 Clean Air Act Amendments, in areas with persistently high ozone levels (mostly large metropolitan areas). In these areas, the States have established ambient air monitoring sites which collect and report detailed data for volatile organic compounds, nitrogen oxides, ozone and meteorological parameters. This file displays 199 monitoring sites reporting measurements for 2010. A wide range of related monitoring site attributes is also provided.
Diel rhythms in the volatile emission of apple and grape foliage.
Giacomuzzi, Valentino; Cappellin, Luca; Nones, Stefano; Khomenko, Iuliia; Biasioli, Franco; Knight, Alan L; Angeli, Sergio
2017-06-01
This study investigated the diel emission of volatile organic compounds (VOCs) from intact apple (Malus x domestica Borkh., cv. Golden Delicious) and grape (Vitis vinifera L., cv. Pinot Noir) foliage. Volatiles were monitored continuously for 48 h by proton transfer reaction - time of flight - mass spectrometry (PTR-ToF-MS). In addition, volatiles were collected by closed-loop-stripping-analysis (CLSA) and characterized by gas chromatography-mass spectrometry (GC-MS) after 1 h and again 24 and 48 h later. Fourteen and ten volatiles were characterized by GC-MS in apple and grape, respectively. The majority of these were terpenes, followed by green leaf volatiles, and aromatic compounds. The PTR-ToF-MS identified 10 additional compounds and established their diel emission rhythms. The most abundant volatiles displaying a diel rhythm included methanol and dimethyl sulfide in both plants, acetone in grape, and mono-, homo- and sesquiterpenes in apple. The majority of volatiles were released from both plants during the photophase; whereas methanol, CO 2 , methyl-butenol and benzeneacetaldehyde were released at significantly higher levels during the scotophase. Acetaldehyde, ethanol, and some green leaf volatiles showed distinct emission bursts in both plants following the daily light switch-off. These new results obtained with a combined analytical approach broaden our understanding of the rhythms of constitutive volatile release from two important horticultural crops. In particular, diel emission of sulfur and nitrogen-containing volatiles are reported here for the first time in these two crops. Copyright © 2017. Published by Elsevier Ltd.
Terrestrial nitrogen and noble gases in lunar soils.
Ozima, M; Seki, K; Terada, N; Miura, Y N; Podosek, F A; Shinagawa, H
2005-08-04
The nitrogen in lunar soils is correlated to the surface and therefore clearly implanted from outside. The straightforward interpretation is that the nitrogen is implanted by the solar wind, but this explanation has difficulties accounting for both the abundance of nitrogen and a variation of the order of 30 per cent in the 15N/14N ratio. Here we propose that most of the nitrogen and some of the other volatile elements in lunar soils may actually have come from the Earth's atmosphere rather than the solar wind. We infer that this hypothesis is quantitatively reasonable if the escape of atmospheric gases, and implantation into lunar soil grains, occurred at a time when the Earth had essentially no geomagnetic field. Thus, evidence preserved in lunar soils might be useful in constraining when the geomagnetic field first appeared. This hypothesis could be tested by examination of lunar farside soils, which should lack the terrestrial component.
May 6, 2005, Transportation Conformity Rule That Addresses PM2.5 Precursors
This final rule, published by EPA on May 6, 2005, adds the following transportation-related PM2.5 precursors to the transportation conformity regulations: nitrogen oxides (NOx), volatile organic compounds (VOCs), sulfur oxides (SOx), and ammonia (NH3).
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-02
... by the reaction of volatile organic compounds (VOC) and oxides of nitrogen (NO X ) in the atmosphere... own motion, submit to the Administrator a revised designation of any area or portion thereof within...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-26
... nitrogen oxides (NO X ) and volatile organic compounds (VOCs) for the 1997 8-Hour Ozone National Ambient... second comment period. Any parties interested in commenting on this action should do so at this time...
Nitrous oxide and ammonia emissions from injected and broadcast applied dairy slurry
USDA-ARS?s Scientific Manuscript database
Trade-offs associated with surface application or injection of manure pose important environmental and agronomic concerns. Manure injection can conserve nitrogen (N) by decreasing ammonia volatilization. However, the injection band also creates conditions, which potentially favor nitrous oxide produ...
IDENTIFICATION AND CHARACTERIZATION OF MISSING AND UNACCOUNTED FOR AREA SOURCE CATEGORIES
The report identifies and characterizes missing or unaccounted for area source categories. Area source emissions of particulate matter (TSP), sulfur dioxide (SO2), oxides of nitrogen (NOx), reactive volatile organic compounds (VOCs), and carbon monoxide (CO) are estimated annuall...
Pérez-Álvarez, Eva P; Garde-Cerdán, Teresa; García-Escudero, Enrique; Martínez-Vidaurre, José María
2017-06-01
Nitrogen affects grapevine growth and also yeast metabolism, which have a direct influence on fermentation kinetics and the formation of different volatile compounds. Throughout the grapevine cycle, soil nitrogen availability and grape nitrogen composition can vary because of different factors. Nitrogen foliar applications can contribute toward enhancing grapevine nitrogen status and minimize the problem of leaching that traditional nitrogen-soil applications can provoke. The present study aimed to evaluate the influence of urea foliar applications on grapevine nitrogen status and grape amino acid content. Accordingly, two different doses of urea were applied over the leaves of a 'Tempranillo' vineyard. The highest urea doses affected nitrogen content on blade leaf tissues after veraison. Must amino acid profiles were modified by urea application and some of the compounds increased their concentrations. The effect of year on the increase of must total amino acid concentrations was more important than the effect of the doses applied. Urea foliar applications can be an interesting tool for decreasing grapevine nitrogen deficiencies. This method of nitrogen implementation in the vineyard could avoid sluggish fermentation problems during winemaking, enhance must nitrogen composition, and contribute to improving wine quality. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Characterization of kerosene-heater emissions inside two mobile homes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burton, R.M.; Seila, R.A.; Wilson, W.E.
1990-03-01
In an effort to determine the impact of kerosene heater emissions on indoor air quality, measurements were made in and around two mobile homes at a rural mobile home park near Apex, NC. The sampling was performed at two single-wide mobile homes equipped with kerosene heaters. The concentrations of acidic aerosols and gases, fine and coarse particulate aerosol mass, carbon monoxide, nitrogen oxides, volatile organic compounds and semivolatiles, were determined for periods of heater operation and for periods in which heaters were not operated. Simultaneous outdoor measurements of acid aerosols and gases, fine and coarse aerosol mass, and volatile organicmore » compounds were conducted to determine the contribution of outdoor pollutants to the indoor concentrations. Comparisons between the concentrations obtained from the analysis of outdoor, heater-on, and heater-off samples allowed the authors to examine the impacts of the kerosene emissions on indoor concentrations. Concentrations of sulfates, aerosol strong acidity, fine and coarse aerosol mass, carbon monoxide, and sulfur dioxide were found to be higher when the heater was operated; however, these heater-on concentrations were comparable to those observed in moderately polluted atmospheres. Indoor concentrations of nitrous acid and nitrogen oxides during heater operation were found to be considerably higher than those observed in polluted atmospheres. Finally, use of kerosene heaters was found to be responsible for increased concentrations of non-methane volatile and semi-volatile organic compounds indoors. Acid aerosol indoor concentrations were quite variable during the study and were found to exist in the presence of excess ammonia.« less
NASA Astrophysics Data System (ADS)
Kato, Tetsuya; Usami, Tsuyoshi; Tsukada, Takeshi; Shibata, Yuki; Kodama, Takashi
2016-10-01
In a cooling malfunction accident of a high-level liquid waste (HLLW) tank, behavior of ruthenium (Ru) attracts much attention, since Ru could be oxidized to a volatile chemical form in the boiling and drying of HLLW, and part of radioactive Ru can potentially be released to the environment. In this study, nitrosyl Ru nitrate (Ru(NO)(NO3)3) dissolved in nitric acid (HNO3), which is commonly contained in a simulated HLLW, was dried and heated up to 723 K, and the evolved gas was introduced into a mass spectrometer. The well-known volatile species, ruthenium tetroxide (RuO4) was detected in a temperature range between 390 K and 500 K with the peak top around 440 K. Various gases such as HNO3, nitrogen dioxide (NO2), nitrogen monoxide (NO) also evolved due to evaporation of the nitric acid and decomposition of the nitrate ions. The ion current of RuO4 seems to increase with the increasing decomposition of nitrate, while the evaporation of HNO3 decreases. More volatilization of RuO4 was observed from the HNO3 solution containing not only Ru(NO)(NO3)3 but also cerium nitrate (Ce(NO3)3·6H2O) which was added for extra supply of nitrate ion, compared with that from the HNO3 solution containing only Ru(NO)(NO3)3. These experimental results suggest that Ru could be oxidized to form RuO4 by the nitrate ion as well as HNO3.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-12
... , coarse particles (PM 10 ), ammonia (NH 3 ) and sulfur dioxide (SO 2 ). WVDEP selected the year 2002 as... nitrogen oxides (NO X ), volatile organic compounds (VOCs), PM 2.5 , coarse particles (PM 10 ), ammonia (NH...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-16
... (PM 10 ), nitrogen oxides (NO X ), volatile organic compounds (VOC), ammonia (NH 3 ), and sulfur... , coarse particles (PM 10 ), ammonia (NH 3 ), and sulfur dioxide (SO 2 ). [FR Doc. 2013-08835 Filed 4-15-13...
76 FR 5609 - Notice of Proposed Consent Decree Under the Clean Air Act
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-01
... injunctive relief to reduce emissions of nitrogen oxides, sulfur dioxide, volatile organic compounds, and... Assistant Attorney General, Environment and Natural Resources Division, and either e-mailed to pubcomment.... Treasury. Maureen Katz, Assistant Chief, Environmental Enforcement Section, Environment and Natural...
Mechanisms of Nitrogen Oxide Formation During Ensiling
Silage (ensiled feed), as a dairy’s greatest operational cost, is its most critical feed commodity. The continued use of silage is essential to a highly productive and economically viable industry. Our previous work has shown that silages are a major source of volatile organic co...
ECONOMIC GROWTH ANALYSIS SYSTEM: USER'S GUIDE VERSION 2.0
The two-volume report describes the development of and provides information needed to operate, the Economic Growth Analysis System (E-GAS) Version 2.0 model. The model will be used to project emissions inventories of volatile organic compounds (VOCs), oxides of nitrogen (NOx), a...
ECONOMIC GROWTH ANALYSIS SYSTEM: REFERENCE MANUAL VERSION 2.0
The two-volume report describes the development of and provides information needed to operate, the Economic Growth Analysis System (E-GAS) Version 2.0 model. The model will be used to project emissions inventories of volatile organic compounds (VOCs), oxides of nitrogen (NOx), a...
ECONOMIC GROWTH ANALYSIS SYSTEM: USER'S GUIDE - VERSION 3.0
The two-volume report describes the development of, and provides information needed to operate, the Economic Growth Analysis System (E-GAS) Version 3.0 model. The model will be used to project emissions inventories of volatile organic compounds, oxides of nitrogen, and carbon mon...
ECONOMIC GROWTH ANALYSIS SYSTEM: REFERENCE MANUAL VERSION 3.0
The two-volume report describes the development of, and provides information needed to operate, the Economic Growth Analysis System (E-GAS) Version 3.0 model. The model will be used to project emissions inventories of volatile organic compounds, oxides of nitrogen, and carbon mon...
Air Pollution Monitoring Site Selection by Multiple Criteria Decision Analysis
Criteria air pollutants (particulate matter, sulfur dioxide, oxides of nitrogen, volatile organic compounds, and carbon monoxide) as well as toxic air pollutants are a global concern. A particular scenario that is receiving increased attention in the research is the exposure to t...
76 FR 41731 - Air Quality: Widespread Use for Onboard Refueling Vapor Recovery and Stage II Waiver
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-15
... sunlight, nitrogen oxides and other volatile organic compounds to form ozone. In order to prevent this, the...) regulations at 13 CFR 121.201;) (2) a small governmental jurisdiction that is a government of a city, county...
Liu, Jia; Liu, Jia-Nan; Yuan, Ming; Shen, Zi-Heng; Peng, Kai-Ming; Lu, Li-Jun; Huang, Xiang-Feng
2016-07-01
Pure volatile fatty acid (VFA) solution derived from waste activated sludge (WAS) was used to produce microbial lipids as culture medium in this study, which aimed to realize the resource recovery of WAS and provide low-cost feedstock for biodiesel production simultaneously. Cryptococcus curvatus was selected among three oleaginous yeast to produce lipids with VFAs derived from WAS. In batch cultivation, lipid contents increased from 10.2% to 16.8% when carbon to nitrogen ratio increased from about 3.5 to 165 after removal of ammonia nitrogen by struvite precipitation. The lipid content further increased to 39.6% and the biomass increased from 1.56g/L to 4.53g/L after cultivation for five cycles using sequencing batch culture (SBC) strategy. The lipids produced from WAS-derived VFA solution contained nearly 50% of monounsaturated fatty acids, including palmitic acid, heptadecanoic acid, ginkgolic acid, stearic acid, oleic acid, and linoleic acid, which showed the adequacy of biodiesel production. Copyright © 2016 Elsevier Ltd. All rights reserved.
Liu, Shugen; Zhu, Nanwen; Li, Loretta Y
2012-01-01
Batch experiment was carried out in a simulated thermophilic aerobic digester to investigate the digestion process of one-stage autothermal thermophilic aerobic digester and to explore the sludge stabilization mechanism. Volatile solids removal was 38.4% at 408 h and 45.0% at 552 h. Chemical oxidation demand, total nitrogen, and ammonia nitrogen in supernatant increased rapidly up to 168 h, and all of them fluctuated moderately after 360 h. Volatile fatty acid (VFA) accumulated rapidly up to 24 to 168 h, then declined sharply, reaching a low concentration after 312 h. Propionic, iso-valeric, and iso-butyric acids, in addition to acetic acids, were also the major components of VFA. As the biochemical metabolic process was inhibited under oxygen-deficiency condition, the digestion system can produce acetic, propionic, butyric acids and other VFA constituents to meet the demand for NAD(+) and maximize ATP generation. The ORP affected the VFA production and depletion as well as sulfate levels. Copyright © 2011 Elsevier Ltd. All rights reserved.
Cho, Seonghyeon; Kim, Jinsoo; Kim, Sungchul; Lee, Sang-Seob
2017-06-22
We screened and identified a NH 3 -N-removing bacterial strain, Bacillus sp. KGN1, and a [Formula: see text] removing strain, Vibrio sp. KGP1, from 960 indigenous marine isolates from seawater and marine sediment from Tongyeong, South Korea. We developed eco-friendly high-efficiency marine sludge (eco-HEMS), and inoculated these marine bacterial strains into the marine sediment. A laboratory-scale sequencing batch reactor (SBR) system using the eco-HEMS for marine wastewater from land-based fish farms improved the treatment performance as indicated by 88.2% removal efficiency (RE) of total nitrogen (initial: 5.6 mg/L) and 90.6% RE of total phosphorus (initial: 1.2 mg/L) under the optimal operation conditions (food and microorganism (F/M) ratio, 0.35 g SCOD Cr /g mixed liquor volatile suspended solids (MLVSS)·d; dissolved oxygen (DO) 1.0 ± 0.2 mg/L; hydraulic retention time (HRT), 6.6 h; solids retention time (SRT), 12 d). The following kinetic parameters were obtained: cell yield (Y), 0.29 g MLVSS/g SCOD Cr ; specific growth rate (µ), 0.06 d -1 ; specific nitrification rate (SNR), 0.49 mg NH 3 -N/g MLVSS·h; specific denitrification rate (SDNR), 0.005 mg [Formula: see text]/g MLVSS·h; specific phosphorus uptake rate (SPUR), 0.12 mg [Formula: see text]/g MLVSS·h. The nitrogen- and phosphorus-removing bacterial strains comprised 18.4% of distribution rate in the microbial community of eco-HEMS under the optimal operation conditions. Therefore, eco-HEMS effectively removed nitrogen and phosphorus from highly saline marine wastewater from land-based fish farms with improving SNR, SDNR, and SPUR values in more diverse microbial communities. DO: dissolved oxygen; Eco-HEMS: eco-friendly high efficiency marine sludge; F/M: food and microorganism ratio; HRT: hydraulic retention time; ML(V)SS: mixed liquor (volatile) suspended solids; NCBI: National Center for Biotechnology Information; ND: not determined; qPCR: quantitative real-time polymerase chain reaction; RE: removal efficiency; SBR: sequencing batch reactor; SD: standard deviation; SDNR: specific denitrification rate; SNR: specific nitrification rate; SPUR: specific phosphate uptake rate; SRT: solids retention time; T-N: total nitrogen; T-P: total phosphorus; (V)SS: (volatile) suspended solids; w.w.: wet weight.
Rollero, Stéphanie; Bloem, Audrey; Ortiz-Julien, Anne; Camarasa, Carole; Divol, Benoit
2018-05-07
Saccharomyces cerevisiae is currently the most important yeast involved in food fermentations, particularly in oenology. However, several other yeast species occur naturally in grape must that are highly promising for diversifying and improving the aromatic profile of wines. If the nitrogen requirement of S. cerevisiae has been described in detail, those of non-Saccharomyces yeasts remain poorly studied despite their increasingly widespread use in winemaking. With a view to improving the use of non-Saccharomyces yeasts in winemaking, we explored the fermentation performances, the utilization of nitrogen sources and the volatile compound production of ten strains of non-conventional yeasts in pure culture. Two different conditions were tested: one mimicking the grape juice's nitrogen composition and one with all the nitrogen sources at the same level. We highlighted the diversity in terms of nitrogen preference and amount consumed among the yeast strains. Some nitrogen sources (arginine, glutamate, glycine, tryptophan and GABA) displayed the largest variations between strains throughout the fermentation. Several non-Saccharomyces strains produced important aroma compounds such as higher alcohols, acetate and ethyl esters in significantly higher quantities than S. cerevisiae.
Modelling ammonia volatilization from animal slurry applied with trail hoses to cereals
NASA Astrophysics Data System (ADS)
Sommer, S. G.; Olesen, J. E.
In Europe ammonia (NH 3), volatilization from animal manure is the major source of NH 3 in the atmosphere. From March to July 1997, NH 3 volatilization from trail hose applied slurry was measured for seven days after application in six experiments. A statistical analysis of data showed that NH 3 volatilization rate during the first 4-5 h after slurry application increased significantly ( P<5%) with wind speed and soil slurry surface water content. NH 3 volatilization in the six measuring periods during the experiments increased significantly ( P<5%) with relative water content of the soil slurry surface, global radiation, pH, and decreased with increasing rainfall during each measuring period and rainfall accumulated from onset of each experiment. A mechanistic model of NH 3 volatilization was developed. Model inputs are climate variables, soil characteristics and total ammoniacal nitrogen (TAN=ammonium+ammonia) in the soil surface layer. A pH submodel for predicting pH at the surface of the soil slurry liquid was developed. The measured NH 3 volatilization was compared with model simulations. The simulated results explained 27% of the variation in measured NH 3 volatilization rates during all seven days, but 48% of measured volatilization rates during the first 24 h. Calculations with the model showed that applying slurry in the morning or in the afternoon reduced volatilization by 50% compared with a noon application. Spreading the slurry with trail hoses to a 60 cm high crop reduced losses by 75% compared with a spreading onto bare soil. Ammonia volatilization was 50% lower when the soil had dried out after slurry application compared with a wet slurry surface.
NASA Technical Reports Server (NTRS)
Simoneit, B. R.; Schnoes, H. K.; Haug, P.; Burlingame, A. L.
1971-01-01
Basic nitrogenous compounds isolated from extracts of Green River Formation oil shale were analyzed. The major homologous constituents found were the compositional types - namely, quinolines, tetrahydrequinolines with minor amounts of pyridines and indoles series and traces of more aromatized nitrogen compounds. These results are correlated with nitrogen compounds isolated from Green River Formation retort oil and are a survey of the unaltered nitrogen compounds indigeneous to the shale.
Changes in the quality of superchilled rabbit meat stored at different temperatures.
Lan, Yang; Shang, Yongbiao; Song, Ying; Dong, Quan
2016-07-01
This work studied the effects of a superchilling process at two different temperatures on the shelf life and selected quality parameters of rabbit meat. As the storage time increased, the rates at which the total aerobic count, total volatile basic nitrogen, thiobarbituric acid-reactive substances and pH value increased were significantly lower in superchilled rabbit meat stored at -4°C compared to those in rabbit meat stored at -2.5°C and 4°C. SDS-PAGE analysis indicated that the decrease in storage temperature could significantly reduce the degree of protein degradation. The lightness, redness, shear force, the integrity of muscle microstructure and water holding capacity decreased with increasing storage time. Compared with the samples frozen at -18°C, superchilled rabbit meat shows a marked reduction in microstructure deterioration. These results suggest that shelf life of good-quality rabbit meat was 20d under superchilling at -2.5°C and at least 36d under superchilling at -4°C, compared with less than 6d under traditional chilled storage. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effect of black pepper essential oil on the quality of fresh pork during storage.
Zhang, Jing; Wang, Ying; Pan, Dao-Dong; Cao, Jin-Xuan; Shao, Xing-Feng; Chen, Yin-Ji; Sun, Yang-Ying; Ou, Chang-Rong
2016-07-01
The effect of different concentrations (0, 0.1 and 0.5%, v/v) of black pepper essential oil (BPEO) on thiobarbituric acid reactive substances (TBARS), meat color, the percentage of metmyoglobin (MetMb%), microbiological parameters and total volatile basic nitrogen (TVB-N) of pork loins stored at 4°C for 9days was evaluated. BPEO treatments showed lower TBARS, MetMb%, yellowness (b*) values, Pseudomonas spp. and Enterobacteriaceae count and TVB-N values and higher lightness (L*) and redness (a*) values than the control during storage; the effectiveness of BPEO was dose-dependent. The retardation of the formation of MetMb by adding BPEO ensured higher L* and a* values and lower b* values than the control at 6 and 9days; the MetMb content has a similar trend to the lipid oxidation. The lower TVB-N value of BPEO treatments than the control could be attributed to the inhibition of Pseudomonas spp. and Enterobacteriaceae. Gram-negative bacteria were more sensitive than Gram-positive bacteria to BPEO. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chaggu, Esnati J; Sanders, Wendy; Lettinga, Gatze
2007-11-01
The anaerobic digestion of "human waste" was studied at Mlalakuwa residential settlement in Dar-es-Salaam, Tanzania at ambient tropical temperatures (24-31 degrees C). This settlement experiences a high water table with flooding during the rainy season, resulting in a very costly emptying of the latrines once per month. To improve the situation, two plastic tanks (while one is in use, the other one is on stand-by) of 3000 l capacity each, named as Improved Pit-Latrines Without Urine Separation (IMPLWUS), were used as latrine pits. They received faeces+urine+wash water; basically, an accumulation system. Septic tank seed sludge was used. The dissolved chemical oxygen demand (COD(dis)) remaining when the reactor was closed after 380 days was about 8 g COD/l, volatile fatty acids were 100 mg COD/l and total ammonium nitrogen was about 2.8 g N/l, implying the possibility of methanogenesis inhibition. Stability results indicated a need for more degradation time after reactor closure. Estimated biogas production from wastewater generated by 10 people was 544 g COD-CH(4)/day, not enough for cooking purposes.
Wang, Qianyun; Lei, Jun; Ma, Junjie; Yuan, Gaofeng; Sun, Haiyan
2018-01-01
This study aimed to investigate the effect of chitosan-carvacrol coating with or without caprylic acid (CAP) on the quality of Pacific white shrimp (Litopenaeus vannamei) during 10days of iced storage. The result showed that chitosan-carvacrol coating significantly inhibited the increase in total aerobic plate count (TPC), pH and total volatile basic nitrogen content (TVB-N) of shrimp in comparison with the control. Chitosan-carvacrol coating also delayed the melanosis formation and changes of ΔE values, and improved the texture and sensory properties of shrimp. Moreover, incorporation of CAP potentiated the efficacy of chitosan-carvacrol coating in retarding the increase of TPC and TVB-N. Incorporation of CAP into chitosan-carvacrol coating also enabled the texture characteristics of shrimp to be retained greater degrees. These results suggested that chitosan-carvacrol coating may be promising to be used as active packaging for extending the shelf life, and incorporation of CAP may enhance the efficacy of the coating. Copyright © 2017 Elsevier B.V. All rights reserved.
Effects of high-voltage electrostatic fields on the quality of tilapia meat during refrigeration.
Hsieh, Chang-Wei; Lai, Cheng-Hung; Lee, Chia-Hsin; Ko, Wen-Ching
2011-08-01
Fresh fish is typically brought to market refrigerated at approximately 4 °C, R-storage. A storage method has been devised that combines refrigeration with a high-voltage electrostatic field (100 kV/m; E-storage). It was developed to improve the quality and prolong the shelf life of foods. This study investigated changes in the freshness of tilapia meat under E-storage conditions. The total viable count of tilapia reached 10⁷ CFU/g on the 7th d of refrigeration in R-storage. By the 6th d, K-value had increased from 20% to 61.7% for E-storage and to 94.7% for R-storage. Volatile basic nitrogen had increased from 12.54 mg/100 g to about 24.34 and 25.03 mg/100 g for R- and E-storage (on the 7th and 10th d), respectively. The sensory assessment also indicated that E-storage yielded an improvement in quality over that of R-storage. Practical application of the study model has the potential to prolong the freshness of fish. © 2011 Institute of Food Technologists®
Kung, Hsien-Feng; Lee, Yi-Chen; Lin, Chiang-Wei; Huang, Yu-Ru; Cheng, Chao-An; Lin, Chia-Min; Tsai, Yung-Hsiang
2017-10-01
The effects of polyethylene packaging (PEP) (in air) and vacuum packaging (VP) on the histamine related quality of milkfish sticks stored at different temperatures (-20°C, 4°C, 15°C, and 25°C) were studied. The results showed that the aerobic plate count (APC), pH, total volatile basic nitrogen (TVBN), and histamine contents increased as storage time increased when the PEP and VP samples were stored at 25°C. At below 15°C, the APC, TVBN, pH, and histamine levels in PEP and VP samples were retarded, but the VP samples had considerably lower levels of APC, TVBN, and histamine than PEP samples. Once the frozen fish samples stored at -20°C for 2 months were thawed and stored at 25°C, VP retarded the increase of histamine in milkfish sticks as compared to PEP. In summary, this result suggested the milkfish sticks packed with VP and stored below 4°C could prevent deterioration of product quality and extend shelf-life. Copyright © 2017. Published by Elsevier B.V.
Calibrations between the variables of microbial TTI response and ground pork qualities.
Kim, Eunji; Choi, Dong Yeol; Kim, Hyun Chul; Kim, Keehyuk; Lee, Seung Ju
2013-10-01
A time-temperature indicator (TTI) based on a lactic acid bacterium, Weissella cibaria CIFP009, was applied to ground pork packaging. Calibration curves between TTI response and pork qualities were obtained from storage tests at 2°C, 10°C, and 13°C. The curves of the TTI vs. total cell number at different temperatures coincided to the greatest extent, indicating the highest representativeness of calibration, by showing the least coefficient of variance (CV=11%) of the quality variables at a given TTI response (titratable acidity) on the curves, followed by pH (23%), volatile basic nitrogen (VBN) (25%), and thiobarbituric acid-reactive substances (TBARS) (47%). Similarity of Arrhenius activation energy (Ea) could also reflect the representativeness of calibration. The total cell number (104.9 kJ/mol) was found to be the most similar to that of the TTI response (106.2 kJ/mol), followed by pH (113.6 kJ/mol), VBN (77.4 kJ/mol), and TBARS (55.0 kJ/mol). Copyright © 2013 Elsevier Ltd. All rights reserved.
Jin, Sang-Keun; Ha, So-Ra; Choi, Jung-Seok
2015-12-01
This study was performed to investigate the effect of extract from heart wood of Caesalpinia sappan on the physico-chemical properties and to find the appropriate addition level in the emulsion-type pork sausage during cold storage. The pH of treatments with C. sappan extract was significantly lower than control and T1 during cold storage periods (P<0.05). Also, the reduction of moisture content, and the increase of cooking loss significantly occurred by the addition of 0.2% C. sappan extract. Also, the texture properties and sensory of sausages containing C. sappan extract were decreased compared to control. Inclusion of the C. sappan extract in sausages resulted in lower lightness and higher yellowness, chroma and hue values. However, the antioxidant, antimicrobial activity, and volatile basic nitrogen in the emulsion-type pork sausages with C. sappan extract showed increased quality characteristics during cold storage. In conclusion, the proper addition level of C. sappan extract was 0.1% on the processing of emulsion-type pork sausage. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hwang, Chiu-Chu; Lin, Chia-Min; Kung, Hsien-Feng; Huang, Ya-Ling; Hwang, Deng-Fwu; Su, Yi-Cheng; Tsai, Yung-Hsiang
2012-11-15
The effects of salt concentrations (0-15.0%) and drying methods on the quality of dried milkfish were studied. The results showed that the levels of aerobic plate counts, total coliform, water activity, moisture contents, total volatile basic nitrogen (TVBN) and thiobarbituric acid (TBA) of the dried milkfish samples prepared with the same drying method decreased with increased salt concentrations. The samples prepared with the cold-air drying method had better quality in term of lower TVBN and TBA values than those of samples prepared with other drying methods. The histamine contents in all samples, except two, prepared with various salt concentrations by different drying methods were less than 1.9 mg/100 g. Two unsalted samples prepared with hot-air drying at 35 °C and sun drying methods were found to contain histamine at levels of 249.7 and 67.4 mg/100 g, respectively, which were higher than the potential hazard level of 50 mg/100 g. Copyright © 2012 Elsevier Ltd. All rights reserved.
Ammonia emissions from land application of manures
USDA-ARS?s Scientific Manuscript database
Ammonia volatilization can be a major nitrogen (N) loss process for surface-applied manures. There is concern that current manure management practices are contributing to ammonia losses in the Mid-Atlantic region with subsequent reductions in air quality and increases in N losses to streams and est...
MODULATING EMISSIONS FROM ELECTRIC GENERATING UNITS AS A FUNCTION OF METEOROLOGICAL VARIABLES
Electric Generating Units (EGUs) are an important source of emissions of nitrogen oxides (NOx), which react with volatile organic compounds (VOCs) in the presence of sunlight to form ozone. Emissions from EGUs are believed to vary depending on short-term demands for electricity;...
Corn response and soil nutrient concentration from subsurface application of poultry litter
USDA-ARS?s Scientific Manuscript database
Nitrogen fertilizer management is vital to corn (Zea mays L.) production from financial and environmental perspectives. Poultry litter as a nutrient source in this cropping system is generally surface broadcast, potentially causing volatilization of NH3. Recently a new application method was devel...
Indoor Air Quality in Schools (IAQ): The Importance of Monitoring Carbon Dioxide Levels.
ERIC Educational Resources Information Center
Sundersingh, David; Bearg, David W.
This article highlights indoor air quality and exposure to pollutants at school. Typical air pollutants within schools include environmental tobacco smoke, formaldehyde, volatile organic compounds, nitrogen oxides, carbon monoxide, carbon dioxide, allergens, pathogens, radon, pesticides, lead, and dust. Inadequate ventilation, inefficient…
Microbial mineralization of organic nitrogen forms in poultry litters
USDA-ARS?s Scientific Manuscript database
Ammonia volatilization from the mineralization of uric acid and urea has a major impact on the poultry industry and the environment. Dry acids are a common management practice to reduce ammonia emissions from poultry houses, however little is known about how acidification affects the litter biologic...
Morphology and composition of condensates on Apollo 17 orange and black glass
NASA Technical Reports Server (NTRS)
Mckay, David S.; Wentworth, Sue J.
1992-01-01
Lunar soil sample 74220 and core samples 74001/2 consist mainly of orange glass droplets, droplet fragments, and their crystallized equivalents. These samples are now generally accepted to be pyroclastic ejecta from early lunar volcanic eruptions. It has been known since early examination of these samples that they contain surface coatings and material rich in volatile condensible phases, including S, Zn, F, Cl, and many volatile metals. The volatiles associated with these orange and black glasses (and the Apollo 15 green glasses) may provide important clues in understanding the differentiation and volcanic history of the Moon. In addition, condensible volatiles can be mobilized and concentrated by volcanic processes. We have reviewed many of our existing photomicrographs and energy dispersive analysis (EDXA) of grain surfaces and have reexamined some of our older SEM mounts using an improved EDXA system capable of light-element detection and analysis (oxygen, nitrogen, and carbon). The results from these investigations are presented.
Ammonia volatilization and nitrogen retention: how deep to incorporate urea?
Rochette, Philippe; Angers, Denis A; Chantigny, Martin H; Gasser, Marc-Olivier; MacDonald, J Douglas; Pelster, David E; Bertrand, Normand
2013-11-01
Incorporation of urea decreases ammonia (NH) volatilization, but field measurements are needed to better quantify the impact of placement depth. In this study, we measured the volatilization losses after banding of urea at depths of 0, 2.5, 5, 7.5, and 10 cm in a slightly acidic (pH 6) silt loam soil using wind tunnels. Mineral nitrogen (N) concentration and pH were measured in the top 2 cm of soil to determine the extent of urea N migration and the influence of placement depth on the availability of ammoniacal N for volatilization near the soil surface. Ammonia volatilization losses were 50% of applied N when urea was banded at the surface, and incorporation of the band decreased emissions by an average of 7% cm (14% cm when expressed as a percentage of losses after surface banding). Incorporating urea at depths >7.5 cm therefore resulted in negligible NH emissions and maximum N retention. Cumulative losses increased exponentially with increasing maximum NH-N and pH values measured in the surface soil during the experiment. However, temporal variations in these soil properties were poorly related to the temporal variations in NH emission rates, likely as a result of interactions with other factors (e.g., water content and NH-N adsorption) on, and fixation by, soil particles. Laboratory and field volatilization data from the literature were summarized and used to determine a relationship between NH losses and depth of urea incorporation. When emissions were expressed as a percentage of losses for a surface application, the mean reduction after urea incorporation was approximately 12.5% cm. Although we agree that the efficiency of urea incorporation to reduce NH losses varies depending on several soil properties, management practices, and climatic conditions, we propose that this value represents an estimate of the mean impact of incorporation depth that could be used when site-specific information is unavailable. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
NASA Technical Reports Server (NTRS)
Pizzarello, S.; Feng, X.; Epstein, S.; Cronin, J. R.
1994-01-01
The combined volatile bases (ammonia, aliphatic amines, and possibly other bases), ammonia, amino acids, and polar hydrocarbons were prepared from the Murchison meteorite for isotopic analyses. The volatile bases were obtained by cryogenic transfer after acid-hydrolysis of a hot-water extract and analyzed by combined gas chromatography-mass spectrometry of pentafluoropropionyl derivatives. The aliphatic amines present in this preparation comprise a mixture that includes both primary and secondary isomers through C5 at a total concentration of > or = 100 nmoles g-1. As commonly observed for meteoritic organic compounds, almost all isomers through C5 are present, and the concentrations within homologous series decrease with increasing chain length. Ammonia was chromatographically separated from the other volatile bases and found at a concentration of 1.1-1.3 micromoles g-1 meteorite. The ammonia analyzed includes contributions from ammonium salts and the hydrolysis of extractable organic compounds, e.g., carboxamides. Stable isotope analyses showed the volatile bases to be substantially enriched in the heavier isotopes, relative to comparable terrestrial compounds delta D < or = +1221%; delta 13C = +22%; delta 15N = +93%). Ammonia, per se, was found to have a somewhat lower delta 15N value (+69%) than the total volatile bases; consequently, a higher delta 15N (>93%) can be inferred for the other bases, which include the amines. Solvent-extractable polar hydrocarbons obtained separately were found to be enriched in 15N (delta 15N = +104%). Total amino acids, prepared from a hydrolyzed hot-water extract by cation exchange chromatography, gave a delta 15N of +94%, a value in good agreement with that obtained previously. Nitrogen isotopic data are also given for amino acid fractions separated chromatographically. The delta 15N values of the Murchison soluble organic compounds analyzed to date fall within a rather narrow range (delta 15N = +94 +/- 8%), an observation consistent with their formation, or formation of their precursors, by interstellar chemistry.
Rapid estimation of organic nitrogen in oil shale waste waters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, B.M.; Daughton, C.G.; Harris, G.J.
1984-04-01
Many of the characteristics of oil shale process waste waters (e.g., malodors, color, and resistance to biotreatment) are imparted by numerous nitrogenous heterocycles and aromatic amines. For the frequent performance assessment of waste treatment processes designed to remove these nitrogenous organic compounds, a rapid and colligative measurement of organic nitrogen is essential. Quantification of organic nitrogen in biological and agricultural samples is usually accomplished using the time-consuming, wet-chemical Kjeldahl method. For oil shale waste waters, whose primary inorganic nitorgen constituent is amonia, organic Kjeldahl nitrogen (OKN) is determined by first eliminating the endogenous ammonia by distillation and then digesting themore » sample in boiling H/sub 2/SO/sub 4/. The organic material is oxidized, and most forms of organically bound nitrogen are released as ammonium ion. After the addition of base, the ammonia is separated from the digestate by distillation and quantified by acidimetric titrimetry or colorimetry. The major failings of this method are the loss of volatile species such as aliphatic amines (during predistillation) and the inability to completely recover nitrogen from many nitrogenous heterocycles (during digestion). Within the last decade, a new approach has been developed for the quantification of total nitrogen (TN). The sample is first combusted, a« less
Thermo-chemical modelling of a village cookstove for design improvement
NASA Astrophysics Data System (ADS)
Honkalaskar, Vijay H.; Sohoni, Milind; Bhandarkar, Upendra V.
2014-05-01
Cookstove operation comprises three basic processes, namely combustion of firewood, natural air draft due to the buoyancy induced by the temperature difference between the hearth and its surroundings, and heat transfer to the pot, stove body and surrounding atmosphere. Owing to the heterogenous and unsteady burning of solid fuel, there exist nonlinear and dynamic interrelationships among these process parameters. A steady-state analytical model of the cookstove operation is developed for its design improvement by splitting the hearth into three zones to study char combustion, volatile combustion and heat transfer to the pot bottom separately. It comprises a total of seven relations corresponding to a thorough analysis of the three basic processes. A novel method is proposed to model the combustion of wood to mimic the realities closely. Combustion space above the fuel bed is split into 1000 discrete parts to study the combustion of volatiles by considering a set of representative volatile gases. Model results are validated by comparing them with a set of water boiling tests carried on a traditional cookstove in the laboratory. It is found that the major thrust areas to improve the thermal performance are combustion of volatiles and the heat transfer to the pot. It is revealed that the existing design dimensions of the traditional cookstove are close to their optimal values. Addition of twisted-tape inserts in the hearth of the cookstove shows an improvement in the thermal performance due to increase in the heat transfer coefficient to the pot bottom and improved combustion of volatiles.
Huang, Zhongping; Zhang, Jie; Zhang, Peipei; Wang, Hong; Pan, Zaifa; Wang, Lili
2016-07-01
Headspace solid-phase microextraction coupled with cryotrap gas chromatography and mass spectrometry was applied to the analysis of volatile organic compounds in pleural effusions. The highly volatile organic compounds were separated successfully with high sensitivity by the employment of a cryotrap device, with the construction of a cold column head by freezing a segment of metal capillary with liquid nitrogen. A total of 76 volatile organic compounds were identified in 50 pleural effusion samples (20 malignant effusions and 30 benign effusions). Among them, 34 more volatile organic compounds were detected with the retention time less than 8 min, by comparing with the normal headspace solid-phase microextraction coupled with gas chromatography and mass spectrometry method. Furthermore, 24 volatile organic compounds with high occurrence frequency in pleural effusion samples, 18 of which with the retention time less than 8 min, were selected for the comparative analysis. The results of average peak area comparison and box-plot analysis showed that except for cyclohexanone, 2-ethyl-1-hexanol, and tetramethylbenzene, which have been reported as potential cancer biomarkers, cyclohexanol, dichloromethane, ethyl acetate, n-heptane, ethylbenzene, and xylene also had differential expression between malignant and benign effusions. Therefore, the proposed approach was valuable for the comprehensive characterization of volatile organic compounds in pleural effusions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Theory of Financial Risk and Derivative Pricing
NASA Astrophysics Data System (ADS)
Bouchaud, Jean-Philippe; Potters, Marc
2009-01-01
Foreword; Preface; 1. Probability theory: basic notions; 2. Maximum and addition of random variables; 3. Continuous time limit, Ito calculus and path integrals; 4. Analysis of empirical data; 5. Financial products and financial markets; 6. Statistics of real prices: basic results; 7. Non-linear correlations and volatility fluctuations; 8. Skewness and price-volatility correlations; 9. Cross-correlations; 10. Risk measures; 11. Extreme correlations and variety; 12. Optimal portfolios; 13. Futures and options: fundamental concepts; 14. Options: hedging and residual risk; 15. Options: the role of drift and correlations; 16. Options: the Black and Scholes model; 17. Options: some more specific problems; 18. Options: minimum variance Monte-Carlo; 19. The yield curve; 20. Simple mechanisms for anomalous price statistics; Index of most important symbols; Index.
Theory of Financial Risk and Derivative Pricing - 2nd Edition
NASA Astrophysics Data System (ADS)
Bouchaud, Jean-Philippe; Potters, Marc
2003-12-01
Foreword; Preface; 1. Probability theory: basic notions; 2. Maximum and addition of random variables; 3. Continuous time limit, Ito calculus and path integrals; 4. Analysis of empirical data; 5. Financial products and financial markets; 6. Statistics of real prices: basic results; 7. Non-linear correlations and volatility fluctuations; 8. Skewness and price-volatility correlations; 9. Cross-correlations; 10. Risk measures; 11. Extreme correlations and variety; 12. Optimal portfolios; 13. Futures and options: fundamental concepts; 14. Options: hedging and residual risk; 15. Options: the role of drift and correlations; 16. Options: the Black and Scholes model; 17. Options: some more specific problems; 18. Options: minimum variance Monte-Carlo; 19. The yield curve; 20. Simple mechanisms for anomalous price statistics; Index of most important symbols; Index.
Majdinasab, Marjan; Hosseini, Seyed Mohammad Hashem; Sepidname, Marziyeh; Negahdarifar, Manizheh; Li, Peiwu
2018-05-01
Alginate is a non-toxic, renewable, and linear copolymer obtained from the brown algae Laminaria digitata that can be easily shaped into beads. Its good gel forming properties have made it useful for entrapping food and pharmaceutical ingredients. In this study, alginate beads were used in a novel application as a colorimetric sensor in food intelligent packaging. Colorimetric sensor was developed through entrapping red cabbage extract as a pH indicator in alginate beads. The pH indicator beads were used in rainbow trout packaging for monitoring fillets spoilage. Color change of beads during fish storage was measured using the CIELab method. The alginate bead colorimetric sensor is validated by measuring total volatile basic nitrogen (TVB-N) levels and microbial populations in fish samples. Moreover, peroxide value (PV) and thiobarbituric acid reactive substances (TBARS) were evaluated during storage. Results indicated that increasing the bacterial population during storage and production of proteolytic enzymes resulted in protein degradation, accumulation of volatile amine compounds, increase in the pH and finally color change of alginate beads. The values of TVB-N, pH, PV and TBARS increased with time of storage. The results of TVB-N and microbial growth were in accordance with color change of beads and CIELab data. Therefore, the proposed system enjoys a high sensitivity to pH variations and is capable of monitoring the spoilage of fish or other protein-rich products through its wide range of color changes. The alginate beads containing the red cabbage extract can, thus, be used as a low-cost colorimetric sensor for intelligent packaging applications.
In situ degradability and selected ruminal constituents of sheep fed with peanut forage hay.
Fernandes, Gisele Machado; Possenti, Rosana Aparecida; Teixeira de Mattos, Waldssimiler; Schammass, Eliana Aparecida; Junior, Evaldo Ferrari
2013-01-01
Because legumes are a very important feed source for ruminants, the aim of this study was to evaluate the ideal inclusion level of hay Arachis pintoi cv. Belmonte in sheep diets by measuring the dry matter intake (DMI), concentration of volatile fatty acids, ammonia-nitrogen concentration, ruminal pH and the in situ degradability of dry matter (DM) and crude protein (CP). In the experiment with four sheep, a 4 × 4 Latin Square design was used with four periods and four treatments (0%, 30%, 60% and 100% Arachis replacing grass hay). Significant interactions were observed between treatments and sampling times for ammonia-nitrogen and acetate, propionate and butyrate concentration and the acetate:propionate ratio. The ruminal pH and total volatile fatty acids concentration were not affected by interaction between treatments and sampling time. The degradation of DM and CP was similar, rising with the increasing content of Arachis, showing a linear effect. The treatment containing 60% of Arachis showed best results, with good levels of daily weight gain and higher ruminal concentrations of volatile fatty acids. The legume showed high levels of CP, high digestibility and appropriate levels of fibre, with excellent standards of degradation and ruminal characteristics. The use of the legume Arachis for ruminants is a promising option of nutrient supply to meet production demands of these animals.
Nitrogen Dioxide (NO2) and other nitrogen oxides (NOx) damage the human respiratory system and contribute to acid rain. These air pollutants are regulated as part of EPA's National Ambient Air Quality Standards (NAAQS).
40 CFR 52.2052 - Motor vehicle emissions budgets for Pennsylvania ozone areas.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Pennsylvania ozone areas. 52.2052 Section 52.2052 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...) Pennsylvania § 52.2052 Motor vehicle emissions budgets for Pennsylvania ozone areas. (a) As of December 26... nitrogen oxides (NOX) and volatile organic compounds (VOCs) for the Lancaster 1997 8-Hour Ozone Maintenance...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-13
... Promulgation of Air Quality Implementation Plans; Maryland; Reasonably Available Control Technology for the... control technology (RACT) for oxides of nitrogen (NO X ) and volatile organic compounds (VOCs) for the... business information (CBI) or other information whose disclosure is restricted by statute. Certain other...
77 FR 25750 - Notice of Lodging of Proposed Consent Decree Under the Clean Air Act
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-01
... injunctive relief to reduce emission of nitrogen oxides and volatile organic compounds. The Department of... to the Consent Decree. Comments should be addressed to the Assistant Attorney General, Environment... the address given above. Robert Brook, Assistant Chief, Environmental Enforcement Section, Environment...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-28
... modifies Delaware's PSD program at 7 DE Admin. Code 1125 to establish appropriate emission thresholds for..., Sulfur oxides, Volatile organic compounds. Dated: February 8, 2013. W.C. Early, Acting Regional...-approved baseline dates for sulfur dioxide, particulate matter, and nitrogen dioxide in the definition of...
USDA-ARS?s Scientific Manuscript database
Poultry litter is a common organic amendment in agricultural production systems, but nutrient losses can reduce the effectiveness as a fertilizer. Three studies were conducted to determine differences in nutrient availability and loss when comparing injection and surface application. These investi...
Can surface-applied zeolite reduce ammonia losses from feedyard manure? A laboratory study
USDA-ARS?s Scientific Manuscript database
Ammonia emission from beef cattle feedyard manure results in losses of nitrogen (N), which may negatively affect environmental quality. The magnitude and rate of ammonia volatilization from feedyards partially depends on the amount of urinary urea excreted and ionization of ammonium into ammonia fol...
Can surface-applied zeolite reduce ammonia losses from feedyard manure? A laboratory study
USDA-ARS?s Scientific Manuscript database
Ammonia emission from beef cattle feedyard manure results in losses of nitrogen (N), which may negatively affect air, soil, and water quality. The magnitude and rate of ammonia volatilization from feedyards partially depends on the amount of urinary urea excreted and dissociation of ionic ammonium ...
Method of chemical vapor deposition of boron nitride using polymeric cyanoborane
Maya, Leon
1994-01-01
Polymeric cyanoborane is volatilized, decomposed by thermal or microwave plasma energy, and deposited on a substrate as an amorphous film containing boron, nitrogen and carbon. Residual carbon present in the film is removed by ammonia treatment at an increased temperature, producing an adherent, essentially stoichiometric boron nitride film.
No-till corn response and soil nutrient concentrations from subsurface banding of poultry litter
USDA-ARS?s Scientific Manuscript database
Nitrogen fertilizer management is vital to no-till corn (Zea mays) production from financial and environmental perspectives. Poultry litter as a nutrient source in this cropping system is generally land applied by surface broadcast, potentially causing volatilization of ammonia (NH3)-N. Recently a...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-29
... the motor vehicle emissions budgets (MVEB) for volatile organic compounds and nitrogen oxides that..., Pesticides and Toxics Management Division, U.S. Environmental Protection Agency, Region 4, 61 Forsyth Street... Development Section, Air Planning Branch, Air, Pesticides and Toxics Management Division, U.S. Environmental...
Comparative Analysis of Flower Volatiles from Nine Citrus at Three Blooming Stages
Azam, Muhammad; Song, Min; Fan, Fangjuan; Zhang, Bo; Xu, Yaying; Xu, Changjie; Chen, Kunsong
2013-01-01
Volatiles from flowers at three blooming stages of nine citrus cultivars were analyzed by headspace-solid phase microextraction (HS-SPME)-GC-MS. Up to 110 volatiles were detected, with 42 tentatively identified from citrus flowers for the first time. Highest amounts of volatiles were present in fully opened flowers of most citrus, except for pomelos. All cultivars were characterized by a high percentage of either oxygenated monoterpenes or monoterpene hydrocarbons, and the presence of a high percentage of nitrogen containing compounds was also observed. Flower volatiles varied qualitatively and quantitatively among citrus types during blooming. Limonene was the most abundant flower volatile only in citrons; α-citral and β-citral ranked 2nd and 3rd only for Bergamot, and unopened flowers of Ponkan had a higher amount of linalool and β-pinene while much lower amount of γ-terpinene and p-cymene than Satsuma. Taking the average of all cultivars, linalool and limonene were the top two volatiles for all blooming stages; β-pinene ranked 3rd in unopened flowers, while indole ranked 3rd for half opened and fully opened flower volatiles. As flowers bloomed, methyl anthranilate increased while 2-hexenal and p-cymene decreased. In some cases, a volatile could be high in both unopened and fully opened flowers but low in half opened ones. Through multivariate analysis, the nine citrus cultivars were clustered into three groups, consistent with the three true citrus types. Furthermore, an influence of blooming stages on clustering was observed, especially with hybrids Satsuma and Huyou. Altogether, it was suggested that flower volatiles can be suitable markers for revealing the genetic relationships between citrus cultivars but the same blooming stage needs to be strictly controlled. PMID:24232454
Comparative analysis of flower volatiles from nine citrus at three blooming stages.
Azam, Muhammad; Song, Min; Fan, Fangjuan; Zhang, Bo; Xu, Yaying; Xu, Changjie; Chen, Kunsong
2013-11-13
Volatiles from flowers at three blooming stages of nine citrus cultivars were analyzed by headspace-solid phase microextraction (HS-SPME)-GC-MS. Up to 110 volatiles were detected, with 42 tentatively identified from citrus flowers for the first time. Highest amounts of volatiles were present in fully opened flowers of most citrus, except for pomelos. All cultivars were characterized by a high percentage of either oxygenated monoterpenes or monoterpene hydrocarbons, and the presence of a high percentage of nitrogen containing compounds was also observed. Flower volatiles varied qualitatively and quantitatively among citrus types during blooming. Limonene was the most abundant flower volatile only in citrons; α-citral and β-citral ranked 2nd and 3rd only for Bergamot, and unopened flowers of Ponkan had a higher amount of linalool and β-pinene while much lower amount of γ-terpinene and p-cymene than Satsuma. Taking the average of all cultivars, linalool and limonene were the top two volatiles for all blooming stages; β-pinene ranked 3rd in unopened flowers, while indole ranked 3rd for half opened and fully opened flower volatiles. As flowers bloomed, methyl anthranilate increased while 2-hexenal and p-cymene decreased. In some cases, a volatile could be high in both unopened and fully opened flowers but low in half opened ones. Through multivariate analysis, the nine citrus cultivars were clustered into three groups, consistent with the three true citrus types. Furthermore, an influence of blooming stages on clustering was observed, especially with hybrids Satsuma and Huyou. Altogether, it was suggested that flower volatiles can be suitable markers for revealing the genetic relationships between citrus cultivars but the same blooming stage needs to be strictly controlled.
NASA Astrophysics Data System (ADS)
Young, Leslie
2012-10-01
Pluto's varying subsolar latitude and heliocentric distance leads to large variations in the surface volatile distribution and surface pressure. I present results of new volatile transport models (Young 2012a, b). The models include insolation, thermal emission, subsurface conduction, heating of a volatile slab, internal heat flux, latent heat of sublimation, and strict global mass balance. Numeric advances include initial conditions that allow for rapid convergence, efficient computation with matrix arithmetic, and stable Crank-Nicholson timesteps for both bare and volatile-covered areas. Runs of the model show six distinct seasons on Pluto. (1) As Pluto approaches perihelion, the volatiles on the old winter pole (the Rotational North Pole, RNP) becomes more directly illuminated , and the pressure and albedo rise rapidly. (2) When a new ice cap forms on the Rotational South Pole, RSP, volatiles are exchanged between poles. The pressure and albedo change more slowly. (3) When all volatiles have sublimed from the RNP, the albedo and pressure drop rapidly. (4-6) A similar pattern is repeated near aphelion with a reversal of the roles and the poles. I will compare results with earlier Pluto models of Hansen and Paige (1996), show the dependence on parameters such as substrate inertia, and make predictions for the New Horizons flyby of Pluto in 2015. This work was supported, in part, by funding from NASA Planetary Atmospheres Grant NNG06GF32G and the Spitzer project (JPL research support Agreement 1368573). Hansen, C. J. and D. A. Paige 1996. Seasonal Nitrogen Cycles on Pluto. Icarus 120, 247-265. Young, L. A. 2012a. Volatile transport on inhomogeneous surfaces: I - Analytic expressions, with application to Pluto’s day. Icarus, in press Young, L. A. 2012b. Volatile transport on inhomogeneous surfaces: II. Numerical calculations, with application to Pluto's season. In preparation.
The Cosmochemistry of Pluto: A Primordial Origin of Volatiles?
NASA Astrophysics Data System (ADS)
Glein, C. R.; Waite, J. H., Jr.
2017-12-01
Pluto is a wonderland of volatiles. Nitrogen, methane, and carbon monoxide are the principal volatiles that maintain its tenuous atmosphere, and they have also created a mesmerizing landscape of icy geological features, including Pluto's iconic "heart". Recent data, particularly those returned by the New Horizons mission [1-3], allow us to begin testing hypotheses for the cosmochemical origins of these world-shaping species on Pluto. Here, we investigate if Pluto's volatiles could have been accreted in its building blocks. We take both bottom-up and top-down approaches in testing this hypothesis in terms of mass balance. We estimate Pluto's primordial inventory of volatiles by scaling a range of cometary abundances up to the ice mass fraction of Pluto. We also make estimates of the present and lost inventories of volatiles based on surface observations and interpretations, as well as different scenarios of atmospheric photochemistry and escape. We find that, if primordial Pluto resembled a giant comet with respect to volatile abundances, then the initial volatile inventory would have been sufficient to account for the estimated present and lost inventories. This consistency supports a primordial origin for Pluto's volatiles. However, the observed ratio of CO/N2 in Pluto's atmosphere [4] is several orders of magnitude lower than the nominal cometary value. We are currently using phase equilibrium and rate models to explore if volatile layering in Sputnik Planitia, or the destruction of CO in a past or present subsurface ocean of liquid water could explain the apparent depletion of CO on Pluto. References: [1] Moore et al. (2016) Science 351, 1284. [2] Grundy et al. (2016) Science 351, aad9189. [3] Gladstone et al. (2016) Science 351, aad8866. [4] Lellouch et al. (2017) Icarus 286, 289.
Rhoderick, George C; Yen, James H
2006-05-01
Primary gravimetric gas cylinder standards containing 30 volatile organic compounds (VOCs) in nitrogen were prepared using a procedure previously developed to prepare gas mixture cylinder standards of VOCs at the 5 nmol/mol level. This set of primary standards was intercompared to existing gas cylinder standards, containing as many as 19 of the 30 volatile organics present in these new primaries, using gas chromatography with a hydrogen flame ionization detector coupled with cryogenic preconcentration. The linear regression analysis showed excellent agreement among the standards for each compound. Similar mixtures containing many of these compounds in treated aluminum gas cylinders have been evaluated over time and have shown stability for as much as 10 years. The development of these 30-component primary standards led to the preparation and certification of a reissue of Standard Reference Material (SRM) 1804 at the nominal amount-of-substance fraction of 5 nmol/mol for each analyte. A lot of 20 cylinders containing the mixture was prepared at NIST following previously demonstrated protocols for preparation of the cylinders. Each cylinder was analyzed against one cylinder from the lot, designated as the "lot standard," for each of the 30 compounds. As a result of the uncertainty analysis, the data showed that rather than declaring the lot homogeneous with a much higher uncertainty, each cylinder could be individually certified. The expanded uncertainty limits ranged from 1.5 to 10% for 28 of the 30 analytes, with two of the analytes having uncertainties as high as 19% in those SRM cylinders certified. Due to stability issues and some high uncertainties for a few analytes in 2 of the samples, 18 of the 20 candidate SRM samples were certified. These volatile organic gas mixtures represent the most complex gas SRMs developed at NIST.
Nakamura, Maya; Wright, Jonathan C
2013-01-01
A key evolutionary development facilitating land colonization in terrestrial isopods (Isopoda: Oniscidea) is the intermittent liberation of waste nitrogen as volatile ammonia. Intermittent ammonia release exploits glutamine (Gln) as an intermediary nitrogen store. Here, we explore the relationship between temporal patterns of ammonia release and Gln accumulation in three littoral oniscideans from Southern California. Results are interpreted in terms of water availability, habitat, activity patterns, and ancestry. A two-way experimental design was used to test whether ammonia excretion and Gln accumulation follow a tidal or diel periodicity. Ammonia excretion was studied in the laboratory using chambers with or without available seawater and using an acid trap to collect volatile ammonia. Ligia occidentalis releases ammonia directly into seawater and accumulates Gln during low tide (48.9 ± 6.5 μmol g⁻¹ at low tide, 24.1 ± 3.0 μmol g⁻¹ at high tide), indicating that excretion is tidally constrained. Alloniscus perconvexus and Tylos punctatus can excrete ammonia directly into seawater or utilize volatilization. Both species burrow in sand by day and show a diel excretory pattern, accumulating Gln nocturnally (31.8 ± 2.7 μmol g⁻¹ at dawn and 21.8 ± 2.3 μmol g⁻¹ at dusk for A. perconvexus; 85.7 ± 15.1 μmol g⁻¹ at dawn and 25.4 ± 2.9 μmol g⁻¹ at dusk for T. punctatus) and liberating ammonia diurnally. Glutaminase shows higher activity in terrestrial (0.54-0.86 U g⁻¹) compared to intertidal (0.25-0.31 U g⁻¹) species, consistent with the need to generate high PNH₃ for volatilization. The predominant isoform in Armadillidium vulgare is phosphate dependent and maleate independent; phosphate is a plausible regulator in vivo.
Parnaudeau, V; Génermont, S; Hénault, C; Farrugia, A; Robert, P; Nicolardot, B
2009-01-01
The aims of this study were to (i) assess N fluxes (mineralization, volatilization, denitrification, leaching) caused by spreading various organic wastes from food-processing industries during a field experiment, and (ii) to identify the main factors affecting N transformation processes after field spreading. Experimental treatments including the spreading of six types of waste and a control soil were set up in August 2000 and studied for 22 mo under bare soil conditions. Ammonia and nitrous oxide emissions, and nitrogen mineralization were measured in experimental devices and extrapolated to field conditions or computed in calculation models. The ammonia emissions varied from 80 to 580 g kg(-1) NH4+-N applied, representing 0 to 90 g N kg(-1) total N applied. Under these meteorologically favorable conditions (dry and warm weather), waste pH was the main factor affecting volatilization rates. Cumulated N2O-N fluxes were estimated at 2 to 5 g kg(-1) total N applied, which was quite low due to the low soil water content during the experimental period; water-filled pore space (WFPS) was confirmed as the main factor affecting N2O fluxes. Nitrogen mineralization from wastes represented 126 to 723 g N kg(-1) organic N added from the incorporation date to 14 May 2001 and was not related to the organic C to organic N ratio of wastes. Nitrogen lost by leaching during the equivalent period ranged from 30 to 890 g kg(-1) total N applied. The highest values were obtained for wastes having the highest inorganic N content and mineralization rates.
NASA Astrophysics Data System (ADS)
Maeda, Koki; Toyoda, Sakae; Yano, Midori; Hattori, Shohei; Fukasawa, Makoto; Nakajima, Keiichi; Yoshida, Naohiro
2016-03-01
Nitrogen isotope ratios (δ15N) of NH4+ in dairy manure compost piles with and without bulking agent (10 % w/w) were compared to understand the effects of the use of bulking agent on nitrogen conversion during manure composting. The δ15N-NH4+ values in each of three pile zones (top, side and core) were also compared. At the end of the process, piles with bulking agent showed significantly higher δ15N values (17.7 ± 1.3 ‰) than piles without bulking agent (11.8 ± 0.9 ‰), reflecting the significantly higher nitrogen conversion and NH3 loss in the former. The samples from the top zone, especially in the piles with bulking agent, showed very high NH4+ concentrations with significantly high 15N (δ15N: 12.7-29.8 ‰) values, indicating that extremely high nitrogen conversion, nitrification-denitrification activity of the microbes and NH3 volatilization occurred in this zone.
NASA Astrophysics Data System (ADS)
Coggon, Matthew M.; Veres, Patrick R.; Yuan, Bin; Koss, Abigail; Warneke, Carsten; Gilman, Jessica B.; Lerner, Brian M.; Peischl, Jeff; Aikin, Kenneth C.; Stockwell, Chelsea E.; Hatch, Lindsay E.; Ryerson, Thomas B.; Roberts, James M.; Yokelson, Robert J.; Gouw, Joost A.
2016-09-01
Volatile organic compounds (VOCs) emitted from residential wood and crop residue burning were measured in Colorado, U.S. When compared to the emissions from crop burning, residential wood burning exhibited markedly lower concentrations of acetonitrile, a commonly used biomass burning tracer. For both herbaceous and arboraceous fuels, the emissions of nitrogen-containing VOCs (NVOCs) strongly depend on the fuel nitrogen content; therefore, low NVOC emissions from residential wood burning result from the combustion of low-nitrogen fuel. Consequently, the emissions of compounds hazardous to human health, such as HNCO and HCN, and the formation of secondary pollutants, such as ozone generated by NOx, are likely to depend on fuel nitrogen. These results also demonstrate that acetonitrile may not be a suitable tracer for domestic burning in urban areas. Wood burning emissions may be best identified through analysis of the emissions profile rather than reliance on a single tracer species.
Manimaran, Uthaman; Shakila, Robinson Jeya; Shalini, Rajendran; Sivaraman, Balasubramanian; Sumathi, Ganesan; Selvaganapathi, Rajendran; Jeyasekaran, Geevarathnam
2016-02-01
In this study, the effect of commercial additives viz. cafodos and altesa employed to treat Indian octopus (Cistopus indicus) was examined during chilled and frozen storage. Shelf lives of treated and untreated octopus in ice were 6 and 8 days, respectively in ice. Treated and untreated frozen octopus had a shelf life of 40 days. Autolytic and microbiological changes were not controlled by the additives, as evidenced through rapid reduction in non-protein nitrogen (NPN) and α-amino nitrogen (α-AN) compounds; as well as accumulation of water soluble ammoniacal nitrogen and total volatile base- nitrogen (TVB-N) compounds. Loss of texture and colour were the major quality defects noticed in treated octopus as a result of enhanced protein solubility. Therefore, the additives approved for use in octopus neither enhanced the shelf life nor improved the sensory quality.
Connectedness between US industry level credit markets and determinants
NASA Astrophysics Data System (ADS)
Shahzad, Syed Jawad Hussain; Kayani, Ghulam Mujtaba; Raza, Syed Ali; Shah, Nida; Al-Yahyaee, Khamis H.
2018-02-01
We examine the connectedness between US industry-level credit markets, using both Credit Default Spread (CDS) changes and volatilities, over the period from December 17, 2007, to November 13, 2015. The total, net directional and pairwise spillovers are estimated based on the generalized VAR framework developed by Diebold and Yilmaz (2012). The empirical analysis shows strong interactions for CDS spread change and volatility among all ten industries. Consumer Services and Basic Materials are the significant risk transmitters. Economic policy uncertainty and different market volatilities significantly determine credit market risk spillovers which also increase during market turbulence situations indicating a possible contagion effect. Implications of the findings are discussed.
NASA Technical Reports Server (NTRS)
Whipple, Fred L.
1992-01-01
The variations in total brightness of a comet when it is most active, near perihelion, are presently used as the bases of a volatility index (VI) for short-period (SP) and long-period (LP) comets. Volatility does not correlate with period among the LP comets, and thereby shows no 'aging' effect; similarly, the VI measurements are the same for SP and for LP comets and exhibit no correlation with (1) absolute magnitude near perihelion, (2) orbital inclination, or (3) activity index measuring the intrinsic brightness change from great solar distances to the maximum near perihelion. Active comets are shown to be basically alike irrespective of their orbits or 'ages'.
Pozo-Bayón, Maria Angeles; Andujar-Ortiz, Inmaculada; Alcaide-Hidalgo, Juan María; Martín-Alvarez, Pedro J; Moreno-Arribas, M Victoria
2009-11-25
The characterization of commercial enological inactive dry yeast (IDY) with different applications in wine production has been carried out. This study was based on the yeast's ability to release soluble compounds (high molecular weight nitrogen, free amino nitrogen, peptidic nitrogen, free amino acids, and polysaccharides) into model wines and on its behavior toward the volatility of seven wine aroma compounds. Important differences in soluble compounds released into the model wines supplemented with commercial IDY were found, with the free amino acids being among the most released. The volatility of most of the aroma compounds was affected by the addition of IDY preparations at a concentration usually employed during winemaking. The extent of this effect was dependent on the physicochemical characteristics of the aroma compound and on the length of time the IDY preparations remained in contact with the model wines. Whereas shorter contact times (2, 4, and 6 days) mainly promoted a "salting-out" effect, longer exposure (9 and 13 days) provoked a retention effect, with the consequent reduction of aroma compounds in the headspace. The use of different commercial preparations also promoted different effects toward the aroma compounds that may be at least in part due to differences in their ability to release soluble compounds of yeast origin into the wines.
AIRBORNE REDUCED NITROGEN: AMMONIA EMISSIONS FROM AGRICULTURE AND OTHER SOURCES. (R826371C006)
Ammonia is a basic gas and one of the most abundant nitrogen-containing compounds in the atmosphere. When emitted, ammonia reacts with oxides of nitrogen and sulfur to form particles, typically in the fine particle size range. Roughly half of the PM2.5 mass in easte...
Becher, Kent D.; Kalkhoff, Stephen J.; Schnoebelen, Douglas J.; Barnes, Kimberlee K.; Miller, Von E.
2001-01-01
Synoptic samples collected during low and high base flow had nitrogen, phosphorus, and organic-carbon concentrations that varied spatially and seasonally. Comparisons of water-quality data from six basic-fixed sampling sites and 19 other synoptic sites suggest that the water-quality data from basic-fixed sampling sites were representative of the entire study unit during periods of low and high base flow when most streamflow originates from ground water.
Hydrodesulfurization of chlorinized coal
NASA Technical Reports Server (NTRS)
Kalvinskas, J. J.; Rohatgi, N. K. (Inventor)
1983-01-01
A method of desulfurization is described in which high sulfur coals are desulfurized by low temperature chlorinolysis of coal in liquid media, preferably water, followed by hydrodesulfurization at a temperature above 500 C. The coals are desulfurized to an extent of up to 90% by weight and simultaneously dechlorinated to a chlorine content below 0.1% by weight. The product coals have lower volatiles loss, lower oxygen and nitrogen content and higher fixed carbon than raw coals treated with hydrogen under the same conditions. Heating the chlorinated coal to a temperature above 500 C. in inert gas such as nitrogen results in significantly less desulfurization.
Gas and aerosol fluxes. [emphasizing sulfur, nitrogen, and carbon
NASA Technical Reports Server (NTRS)
Martens, C. S.
1980-01-01
The development of remote sensing techniques to address the global need for accurate distribution and flux determinations of both man made and natural materials which affect the chemical composition of the atmosphere, the heat budget of the Earth, and the depletion, of stratospheric ozone is considered. Specifically, trace gas fluxes, sea salt aerosol production, and the effect of sea surface microlayer on gas and aerosol fluxes are examined. Volatile sulfur, carbon, nitrogen, and halocarbon compounds are discussed including a statement of the problem associated with each compound or group of compounds, a brief summary of current understanding, and suggestions for needed research.
USDA-ARS?s Scientific Manuscript database
Soil amendment with biochar has shown the potential to improve nitrogen (N) availability for plant uptake and reduce environmental losses via ammonia (NH3) and nitrous oxide (N2O) emissions. There are still many unknowns on how biochar type and soil conditions affect N dynamics and processes associa...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-10
... National Technology Transfer and Advancement Act of 1995 (15 U.S.C. 272 note) because application of those... Technology Under the 8-Hour Ozone National Ambient Air Quality Standard AGENCY: Environmental Protection... reasonably available control technology (RACT) for nitrogen oxides (NO X ) and volatile organic compounds...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-09
... requirements of Section 12(d) of the National Technology Transfer and Advancement Act of 1995 (15 U.S.C. 272... Technology for the 1997 8- Hour Ozone Standard AGENCY: Environmental Protection Agency (EPA). ACTION: Final... reasonably available control technology (RACT) for oxides of nitrogen (NO X ) and volatile organic compounds...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-23
... program has two objectives. The first is to reduce emissions of nitrogen oxides (NO X ) and volatile.... Maryland's regulations established initial NMOG credit balances for manufacturer credit account balances to... established ZEV credit account balances to provide parity between California and Maryland with respect to the...
USER'S GUIDE TO THE PERSONAL COMPUTER VERSION OF THE BIOGENIC EMISSIONS INVENTORY SYSTEM (PC-BEIS2)
The document is a user's guide for an updated Personal Computer version of the Biogenic Emissions Inventory System (PC-BEIS2), allowing users to estimate hourly emissions of biogenic volatile organic compounds (BVOCs) and soil nitrogen oxide emissions for any county in the contig...
Spatial Analysis and Land Use Regression of VOCs and NO2 in Dallas, Texas during Two Seasons
Passive air sampling for nitrogen dioxide (NO2) and select volatile organic compounds (VOCs) was conducted at 24 fire stations and a compliance monitoring site in Dallas, Texas, USA during summer 2006 and winter 2008. This ambient air monitoring network was established...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-13
... precursors. They also establish nitrogen oxides (NO X ) and sulfur dioxide (SO 2 ) as precursors to PM 2.5... recordkeeping requirements, Sulfur oxides, Volatile organic compounds. Dated: June 26, 2012. W.C. Early, Acting..., modified document begins]. definitions of ``regulated NSR pollutant'' and ``significant,'' and removed...
The Mechanistic Indicators of Childhood Asthma (MICA) study in Detroit, Michigan introduced a participant-based approach to reduce the resource burden associated with collection of indoor and outdoor residential air sampling data. A subset of participants designated as MICA-Air c...
40 CFR 52.2585 - Control strategy: Ozone.
Code of Federal Regulations, 2010 CFR
2010-07-01
... serious nonattainment for ozone is approved, based on Wisconsin's demonstration through photochemical grid... are 0.74 tons of volatile organic compounds (VOC) per day and 1.17 tons of oxides of nitrogen (NOX... section 182(2)(3)(A) of the Clean Air Act as amended in 1990. (s) Approval—On January 31, 2003, Wisconsin...
75 FR 57390 - Approval and Promulgation of Implementation Plans; Alabama: Volatile Organic Compounds
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-21
... Tropospheric ozone, commonly known as smog, occurs when VOCs and nitrogen oxides (NO X ) react in the... contribution to tropospheric ozone formation. EPA is approving revisions to the Alabama SIP submitted on March... the VOC definition on the basis that these compounds make a negligible contribution to tropospheric...
USDA-ARS?s Scientific Manuscript database
Tropospheric ozone (O3) is a pollutant that is generated by volatile organic compounds, nitrogen oxides and sunlight. When plants take in O3 through stomata, harmful reactive oxygen species (ROS) are produced that induce the production of ROS scavenging antioxidants. Climate change predictions indic...
Ammonia losses from a southern high plains dairy during summer
USDA-ARS?s Scientific Manuscript database
Animal agriculture is a significant source of ammonia (NH3). Cattle excrete a large amount of nitrogen (N); most urinary N is converted to NH3, volatilized and lost to the atmosphere. Open lot dairies on the southern High Plains are a growing industry and face environmental challenges including repo...
Method of chemical vapor deposition of boron nitride using polymeric cyanoborane
Maya, L.
1994-06-14
Polymeric cyanoborane is volatilized, decomposed by thermal or microwave plasma energy, and deposited on a substrate as an amorphous film containing boron, nitrogen and carbon. Residual carbon present in the film is removed by ammonia treatment at an increased temperature, producing an adherent, essentially stoichiometric boron nitride film. 11 figs.
Anthropogenic nitrogen oxides (NOx) are emitted when fossil fuels are combusted. In the atmosphere, NOx reacts with volatile organic compounds (VOCs) to produce tropospheric ozone, a component of photochemical smog. In most parts of the country, strategies for reducing ozone gene...
Each year, over 18 million vehicles cross the international border between El Paso, TX (USA) and Ciudad Juarez (Mexico). The border traffic congestion, as well as the more typical intra-urban and interstate traffic, provide an opportunity to investigate the health effects of PM ...
Characteristics of nitrogen balance in open-air and greenhouse vegetable cropping systems of China.
Ti, Chaopu; Luo, Yongxia; Yan, Xiaoyuan
2015-12-01
Nitrogen (N) loss from vegetable cropping systems has become a significant environmental issue in China. In this study, estimation of N balances in both open-air and greenhouse vegetable cropping systems in China was established. Results showed that the total N input in open-air and greenhouse vegetable cropping systems in 2010 was 5.44 and 2.60 Tg, respectively. Chemical fertilizer N input in the two cropping systems was 201 kg N ha(-1) per season (open-air) and 478 kg N ha(-1) per season (greenhouse). The N use efficiency (NUE) was 25.9 ± 13.3 and 19.7 ± 9.4% for open-air and greenhouse vegetable cropping systems, respectively, significantly lower than that of maize, wheat, and rice. Approximately 30.6% of total N input was accumulated in soils and 0.8% was lost by ammonia volatilization in greenhouse vegetable system, while N accumulation and ammonia volatilization accounted for 19.1 and 11.1%, respectively, of total N input in open-air vegetable systems.
Janke, Leandro; Leite, Athaydes; Batista, Karla; Weinrich, Sören; Sträuber, Heike; Nikolausz, Marcell; Nelles, Michael; Stinner, Walter
2016-01-01
Different methods for optimization the anaerobic digestion (AD) of sugarcane filter cake (FC) with a special focus on volatile fatty acids (VFA) production were studied. Sodium hydroxide (NaOH) pretreatment at different concentrations was investigated in batch experiments and the cumulative methane yields fitted to a dual-pool two-step model to provide an initial assessment on AD. The effects of nitrogen supplementation in form of urea and NaOH pretreatment for improved VFA production were evaluated in a semi-continuously operated reactor as well. The results indicated that higher NaOH concentrations during pretreatment accelerated the AD process and increased methane production in batch experiments. Nitrogen supplementation resulted in a VFA loss due to methane formation by buffering the pH value at nearly neutral conditions (∼ 6.7). However, the alkaline pretreatment with 6g NaOH/100g FCFM improved both the COD solubilization and the VFA yield by 37%, mainly consisted by n-butyric and acetic acids. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Ingebo, R. D.; Norgren, C. T.
1975-01-01
The effect of fuel properties on exhaust emissions and blowout limits of a high-pressure combustor segment is evaluated using a splash-groove air-atomizing fuel injector and a pressure-atomizing simplex fuel nozzle to burn both diesel number 2 and Jet A fuels. Exhaust emissions and blowout data are obtained and compared on the basis of the aromatic content and volatility of the two fuels. Exhaust smoke number and emission indices for oxides of nitrogen, carbon monoxide, and unburned hydrocarbons are determined for comparison. As compared to the pressure-atomizing nozzle, the air-atomizing nozzle is found to reduce nitrogen oxides by 20%, smoke number by 30%, carbon monoxide by 70%, and unburned hydrocarbons by 50% when used with diesel number 2 fuel. The higher concentration of aromatics and lower volatility of diesel number 2 fuel as compared to Jet A fuel appears to have the most detrimental effect on exhaust emissions. Smoke number and unburned hydrocarbons are twice as high with diesel number 2 as with Jet A fuel.
NASA Astrophysics Data System (ADS)
Susanty, W.; Helwani, Z.; Zulfansyah
2018-04-01
Oil palm frond can be used as alternative energy source by torrefaction process. Torrefaction is a treatment process of biomass into solid fuel by heating within temperature range of 200-300°C in an inert environment. This research aims to result solid fuel through torrefaction and to study the effect of process variable interaction. Torrefaction of oil palm frond was using fixed bed horizontal reactor with operation condition of temperature (225-275 °C), time (15-45 minutes) and nitrogen flow rate (50-150 ml/min). Responses resulted were calorific value and proximate (moisture, ash, volatile matter and fixed carbon). Analysis result was processed by using Design Expert v7.0.0. Result obtained for calorific value was 17.700-19.600 kJ/kg and for the proximate were moisture range of 3-4%; ash range of 1.5-4%; volatile matter of 45-55% and fixed carbon of 37-46%. The most affecting factor signficantly towards the responses was temperature then followed by time and nitrogen flow rate.
Liu, Feng; Tian, Yu; Ding, Yi; Li, Zhipeng
2016-11-01
Wastewater primary sedimentation sludge was prepared into fermentation liquid as denitrification carbon source, and the main components of fermentation liquid was short-chain volatile fatty acids. Meanwhile, the acetic acid and propionic acid respectively accounted for about 29.36% and 26.56% in short-chain volatile fatty acids. The performance of fermentation liquid, methanol, acetic acid, propionic acid and glucose used as sole carbon source were compared. It was found that the denitrification rate with fermentation liquid as carbon source was 0.17mgNO3(-)-N/mg mixed liquor suspended solid d, faster than that with methanol, acetic acid, and propionic acid as sole carbon source, and lower than that with glucose as sole carbon source. For the fermentation liquid as carbon source, the transient accumulation of nitrite was insignificantly under different initial total nitrogen concentration. Therefore, the use of fermentation liquid for nitrogen removal could improve denitrification rate, and reduce nitrite accumulation in denitrification process. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wang, Xia; Xu, Shengjun; Wu, Shanghua; Feng, Shugeng; Bai, Zhihui; Zhuang, Guoqiang; Zhuang, Xuliang
2018-04-01
Ammonia (NH 3 ) volatilization is one of the primary pathways of nitrogen (N) loss from soils after chemical fertilizer is applied, especially from the alkaline soils in Northern China, which results in lower efficiency for chemical fertilizers. Therefore, we conducted an incubation experiment using an alkaline soil from Tianjin (pH8.37-8.43) to evaluate the suppression effect of Trichoderma viride (T. viride) biofertilizer on NH 3 volatilization, and compared the differences in microbial community structure among all samples. The results showed that viable T. viride biofertilizer (T) decreased NH 3 volatilization by 42.21% compared with conventional fertilizer ((CK), urea), while nonviable T. viride biofertilizer (TS) decreased NH 3 volatilization by 32.42%. NH 3 volatilization was significantly higher in CK and sweet potato starch wastewater (SPSW) treatments during the peak period. T. viride biofertilizer also improved the transfer of ammonium from soil to sweet sorghum. Plant dry weights increased 91.23% and 61.08% for T and TS, respectively, compared to CK. Moreover, T. viride biofertilizer enhanced nitrification by increasing the abundance of ammonium-oxidizing archaea (AOA) and ammonium-oxidizing bacteria (AOB). The results of high-throughput sequencing indicated that the microbial community structure and composition were significantly changed by the application of T. viride biofertilizer. This study demonstrated the immense potential of T. viride biofertilizer in reducing NH 3 volatilization from alkaline soil and simultaneously improving the utilization of fertilizer N by sweet sorghum. Copyright © 2017. Published by Elsevier B.V.
Infrared Spectral Observations While Drilling into a Frozen Lunar Simulant
NASA Technical Reports Server (NTRS)
Roush, Ted L.; Colaprete, Anthony; Thompson, Sarah; Cook, Amanda; Kleinhenz, Julie
2014-01-01
Past and continuing observations indicate an enrichment of volatile materials in lunar polar regions. While these volatiles may be located near the surface, access to them will likely require subsurface sampling, during which it is desirable to monitor the volatile content. In a simulation of such activities, a multilayer lunar simulant was prepared with differing water content, and placed inside a thermal vacuum chamber at Glenn Research Center (GRC). The soil profile was cooled using liquid nitrogen. In addition to the soil, a drill and infrared (IR) spectrometer (1600-3400 nm) were also located in the GRC chamber. We report the spectral observations obtained during a sequence where the drill was repeatedly inserted and extracted, to different depths, at the same location. We observe an overall increase in the spectral signature of water ice over the duration of the test. Additionally, we observe variations in the water ice spectral signature as the drill encounters different layers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spencer, Barry B.; Bruffey, Stephanie H.; Jordan, Jacob A.
US regulations will require the removal of iodine and tritium, along with other volatile and semi-volatile radionuclides, from the off-gas streams of nuclear fuel reprocessing plants. Advanced tritium pretreatment (TPT) is an additional head-end operation that could be incorporated within nuclear fuel reprocessing plants. It utilizes nitrogen dioxide (NOR2R) as an oxidant to convert UOR2R to UR3ROR8R prior to traditional aqueous dissolution. Advanced TPT can result in the quantitative volatilization of both tritium and iodine. Up-front removal of iodine is of significant advantage because otherwise it distributes to several unit operations and the associated off-gas streams. The off-gas streams willmore » then require treatment to comply with US regulations. Advanced TPT is currently under development at Oak Ridge National Laboratory, and a kilogram-scale hot cell demonstration with used nuclear fuel (UNF) is planned for fiscal year (FY) 2018.« less
Wang, Sai-Jun; Wu, Zhen-Feng; Yang, Ming; Wang, Ya-Qi; Hu, Peng-Yi; Jie, Xiao-Lu; Han, Fei; Wang, Fang
2014-09-01
Aromatic traditional Chinese medicines have a long history in China, with wide varieties. Volatile oils are active ingredients extracted from aromatic herbal medicines, which usually contain tens or hundreds of ingredients, with many biological activities. Therefore, volatile oils are often used in combined prescriptions and made into various efficient preparations for oral administration or external use. Based on the sources from the database of Newly Edited National Chinese Traditional Patent Medicines (the second edition), the author selected 266 Chinese patent medicines containing volatile oils in this paper, and then established an information sheet covering such items as name, dosage, dosage form, specification and usage, and main functions. Subsequently, on the basis of the multidisciplinary knowledge of pharmaceutics, traditional Chinese pharmacology and basic theory of traditional Chinese medicine, efforts were also made in the statistics of the dosage form and usage, variety of volatile oils and main functions, as well as the status analysis on volatile oils in terms of the dosage form development, prescription development, drug instruction and quality control, in order to lay a foundation for the further exploration of the market development situations of volatile oils and the future development orientation.
Global consequences of afforestation and bioenergy cultivation on ecosystem service indicators
NASA Astrophysics Data System (ADS)
Krause, Andreas; Pugh, Thomas A. M.; Bayer, Anita D.; Doelman, Jonathan C.; Humpenöder, Florian; Anthoni, Peter; Olin, Stefan; Bodirsky, Benjamin L.; Popp, Alexander; Stehfest, Elke; Arneth, Almut
2017-11-01
Land management for carbon storage is discussed as being indispensable for climate change mitigation because of its large potential to remove carbon dioxide from the atmosphere, and to avoid further emissions from deforestation. However, the acceptance and feasibility of land-based mitigation projects depends on potential side effects on other important ecosystem functions and their services. Here, we use projections of future land use and land cover for different land-based mitigation options from two land-use models (IMAGE and MAgPIE) and evaluate their effects with a global dynamic vegetation model (LPJ-GUESS). In the land-use models, carbon removal was achieved either via growth of bioenergy crops combined with carbon capture and storage, via avoided deforestation and afforestation, or via a combination of both. We compare these scenarios to a reference scenario without land-based mitigation and analyse the LPJ-GUESS simulations with the aim of assessing synergies and trade-offs across a range of ecosystem service indicators: carbon storage, surface albedo, evapotranspiration, water runoff, crop production, nitrogen loss, and emissions of biogenic volatile organic compounds. In our mitigation simulations cumulative carbon storage by year 2099 ranged between 55 and 89 GtC. Other ecosystem service indicators were influenced heterogeneously both positively and negatively, with large variability across regions and land-use scenarios. Avoided deforestation and afforestation led to an increase in evapotranspiration and enhanced emissions of biogenic volatile organic compounds, and to a decrease in albedo, runoff, and nitrogen loss. Crop production could also decrease in the afforestation scenarios as a result of reduced crop area, especially for MAgPIE land-use patterns, if assumed increases in crop yields cannot be realized. Bioenergy-based climate change mitigation was projected to affect less area globally than in the forest expansion scenarios, and resulted in less pronounced changes in most ecosystem service indicators than forest-based mitigation, but included a possible decrease in nitrogen loss, crop production, and biogenic volatile organic compounds emissions.
Zhu, H B; Su, C J; Tang, H F; Ruan, Z; Liu, D H; Wang, H; Qian, Y L
2017-10-20
Objective: To establish a method for rapid determination of 47 volatile organic compounds in the air of workplace using portable gas chromatography - mass spectrometer(GC - MS). Methods: The mixed standard gas with different concentration levels was made by using the static gas distribution method with the high purity nitrogen as dilution gas. The samples were injected into the GC - MS by a hand - held probe. Retention time and characteristic ion were used for qualitative analysis,and the internal standard method was usd for quantitation. Results: The 47 poisonous substances were separated and determined well. The linear range of this method was 0.2 - 16.0 mg/m(3),and the relative standard deviation of 45 volatile ovganic compounds was 3.8% - 15.8%. The average recovery was 79.3% - 119.0%. Conclusion: The method is simple,accurate,sensitive,has good separation effect,short analysis period, can be used for qualitative and quantitative analysis of volatile organic compounds in the workplace, and also supports the rapid identification and detection of occupational hazards.
New constraints on subduction inputs and volatile outputs along the Aleutian Arc
NASA Astrophysics Data System (ADS)
Lopez, T. M.; Fischer, T. P.; Plank, T. A.; Rizzo, A. L.; Rasmussen, D. J.; Cottrell, E.; Werner, C. A.; Kern, C.; Ilanko, T.; Buff, L.; Andrys, J.; Kelley, K. A.
2017-12-01
Volatile cycling drives volcanism in subduction zone settings. At arcs, volatiles can originate from the subducted slab, mantle wedge and/or crust. Each region has characteristic isotopic signatures, which can be used to fingerprint volatile provenance. We speculate that differences in subduction parameters, such as convergence angle, plate coupling and subducted sediment fluxes, may lead to differences in volatile provenance, which may in turn influence volcanic eruption style and frequency. Here we combine updated constraints on subduction inputs and volatile outputs to provide new insights into volatile cycling within the Aleutian Arc. The high proportion of organic carbon (80-100% to total carbon) in sediments subducting at the Aleutian trench stands out globally and predicts a light carbon isotopic composition of recycled volcanic fluids. We assess volatile outputs on volcanic timescales and along the arc by combining carbon (C), nitrogen (N) and helium (He) isotopic compositions of volcanic gases and new analyses of He and, where possible, C isotopes in olivine-hosted fluid inclusions. From our preliminary isotopic analyses of volcanic gases, we find a greater proportion of mantle-derived volatiles released from the Western segment of the Aleutian Arc (>40% mantle) compared with other volcanic arcs around the world (<30% mantle), where volatiles are sourced primarily from subducted or upper crustal carbonates. This trend may be due to the oblique convergence and low subducted sediment input in this region. The Aleutian Arc also exhibits among the lightest carbon isotope ratios of arcs worldwide (δ13C = -10 to -15‰), especially in the central part of the arc, where organic-bearing terrigneous sediment fills the trench and the convergence rate is high. New constraints on subduction inputs and outputs presented here will help discriminate between upper crustal and subducted carbon sources, and provide further insights into volatile cycling and subduction processes within the Aleutian Arc.
Vidal, Natalia P; Manzanos, María J; Goicoechea, Encarnación; Guillén, María D
2016-03-15
Farmed and wild European sea bass (Dicentrarchus labrax) could be distinguished by its volatile metabolites, an issue not addressed until now. The aim of this work was to study these metabolites by solid-phase microextraction followed by gas chromatography/mass spectrometry (SPME-GC/MS). Both farmed and wild sea bass have a great number of volatile metabolites, most of them being in low concentrations. These include alcohols, aldehydes, ketones, alkylfurans, acids, aliphatic and aromatic hydrocarbons, terpenes, sulfur and nitrogen derivatives, 2,6-di-tert-butyl-4-methylphenol and one derived compound, as well as 2,4,7,9-tetramethyl-5-decyne-4,7-diol, this latter compound presumably resulting from environmental contamination. Important differences have been detected between both types of sea bass, and also among individuals inside each group. Farmed specimens are richer in volatile metabolites than the wild counterparts; however, these latter, in general, contain a high number and abundance of metabolites resulting from microbial and enzymatic non-oxidative activity than the former. Clear differences in the volatile metabolites of wild and farmed sea bass have been found. A great deal of valuable information on sea bass volatile metabolites has been obtained, which can be useful in understanding certain aspects of the quality and safety of raw and processed sea bass. © 2015 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Chang, Yufei; Hou, Hu; Li, Bafang
2016-06-01
Codfish is a kind of abyssal fish species with a great value in food industry. However, the flavor of codfish, especially the unpleasant odor, has caused serious problems in its processing. To accurately identify the volatile compounds in codfish, a combination of solid phase micro-extraction (SPME) method and simultaneous distillation extraction (SDE) method was used to extract the volatiles. Gas chromatography-mass spectrometry (GC-MS) along with Kovats indices (KI) and authentic standard compounds were used to identify the volatiles. The results showed that a total of 86 volatile compounds were identified in codfish, of them 24 were extracted by SDE, 69 compounds by SPME, and 10 compounds by both SDE and SPME. Seventy volatile compounds were found to have specific odors, of them 7 typical compounds contributed significantly to the flavor of codfish. Alcohols ( i.e., (E)-2-penten-1-ol and 2-octanol), esters ( i.e., ethyl butyrate and methyl geranate), aldehydes ( i.e., 2-dodecenal and pentadecanal) contributed the most to fresh flavor while nitrogen compounds, sulphur compounds, furans, as well as some ketones ( i.e., 2-hydroxy-3-pentanone) brought unpleasant odor, such as fishy and earthy odor. It was indicated that the combination of multiple extraction methods and GC-MS analysis can enhance the accuracy of identification, and provide a reference for the further study on flavor of aquatic products.
Limited effect of anthropogenic nitrogen oxides on Secondary Organic Aerosol formation
NASA Astrophysics Data System (ADS)
Zheng, Y.; Unger, N.; Hodzic, A.; Emmons, L.; Knote, C.; Tilmes, S.; Lamarque, J.-F.; Yu, P.
2015-08-01
Globally, secondary organic aerosol (SOA) is mostly formed from emissions of biogenic volatile organic compounds (VOCs) by vegetation, but can be modified by human activities as demonstrated in recent research. Specifically, nitrogen oxides (NOx = NO + NO2) have been shown to play a critical role in the chemical formation of low volatility compounds. We have updated the SOA scheme in the global NCAR Community Atmospheric Model version 4 with chemistry (CAM4-chem) by implementing a 4-product Volatility Basis Set (VBS) scheme, including NOx-dependent SOA yields and aging parameterizations. The predicted organic aerosol amounts capture both the magnitude and distribution of US surface annual mean measurements from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network by 50 %, and the simulated vertical profiles are within a factor of two compared to Aerosol Mass Spectrometer (AMS) measurements from 13 aircraft-based field campaigns across different region and seasons. We then perform sensitivity experiments to examine how the SOA loading responds to a 50 % reduction in anthropogenic nitric oxide (NO) emissions in different regions. We find limited SOA reductions of 0.9 to 5.6, 6.4 to 12.0 and 0.9 to 2.8 % for global, the southeast US and the Amazon NOx perturbations, respectively. The fact that SOA formation is almost unaffected by changes in NOx can be largely attributed to buffering in chemical pathways (low- and high-NOx pathways, O3 versus NO3-initiated oxidation) and to offsetting tendencies in the biogenic versus anthropogenic SOA responses.
Jensen, Morten Bang; Møller, Jacob; Scheutz, Charlotte
2017-08-01
The fate of total solids, volatile solids, total organic carbon, fossil carbon, biogenic carbon and 17 substances (As, Ca, CaCO 3 , Cd, Cl, Cr, Cu, H, Hg, K, Mg, N, Ni, O, P, Pb, S, Zn) in a combined dry anaerobic digestion and post-composting facility were assessed. Mass balances showed good results with low uncertainties for non-volatile substances, while balances for nitrogen, carbon, volatile solids and total organic carbon showed larger but reasonable uncertainties, due to volatilisation and emissions into the air. Material and substance flow analyses were performed in order to obtain transfer coefficients for a combined dry anaerobic digestion and post-composting facility. All metals passed through the facility and ended up in compost or residues, but all concentrations of metals in the compost complied with legislation. About 23% of the carbon content of the organic waste was transferred to the biogas, 24% to the compost, 13% to residues and 40% into the atmosphere. For nitrogen, 69% was transferred to the compost, 10% volatilised to the biofilter, 11% directly into the atmosphere and 10% to residues. Finally, a full life cycle inventory was conducted for the combined dry anaerobic digestion and post-composting facility, including waste received, fuel consumption, energy use, gaseous emissions, products, energy production and chemical composition of the compost produced. Copyright © 2017. Published by Elsevier Ltd.
The Chemical Composition of an Extrasolar Kuiper-Belt-Object
NASA Astrophysics Data System (ADS)
Xu, S.; Zuckerman, B.; Dufour, P.; Young, E. D.; Klein, B.; Jura, M.
2017-02-01
The Kuiper Belt of our solar system is a source of short-period comets that may have delivered water and other volatiles to Earth and the other terrestrial planets. However, the distribution of water and other volatiles in extrasolar planetary systems is largely unknown. We report the discovery of an accretion of a Kuiper-Belt-Object analog onto the atmosphere of the white dwarf WD 1425+540. The heavy elements C, N, O, Mg, Si, S, Ca, Fe, and Ni are detected, with nitrogen observed for the first time in extrasolar planetary debris. The nitrogen mass fraction is ∼2%, comparable to that in comet Halley and higher than in any other known solar system object. The lower limit to the accreted mass is ∼1022 g, which is about one hundred thousand times the typical mass of a short-period comet. In addition, WD 1425+540 has a wide binary companion, which could facilitate perturbing a Kuiper-Belt-Object analog into the white dwarf’s tidal radius. This finding shows that analogs to objects in our Kuiper Belt exist around other stars and could be responsible for the delivery of volatiles to terrestrial planets beyond the solar system. Part of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among Caltech, the University of California and NASA. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.
Generation and characterization of gasoline engine exhaust inhalation exposure atmospheres.
McDonald, Jacob D; Barr, Edward B; White, Richard K; Kracko, Dean; Chow, Judith C; Zielinska, Barbara; Grosjean, Eric
2008-10-01
Exposure atmospheres for a rodent inhalation toxicology study were generated from the exhaust of a 4.3-L gasoline engine coupled to a dynamometer and operated on an adapted California Unified Driving Cycle. Exposure levels were maintained at three different dilution rates. One chamber at the lowest dilution had particles removed by filtration. Each exposure atmosphere was characterized for particle mass, particle number, particle size distribution, and detailed chemical speciation. The majority of the mass in the exposure atmospheres was gaseous carbon monoxide, nitrogen oxides, and volatile organics, with small amounts of particle-bound carbon/ions and metals. The atmospheres varied according to the cycle, with the largest spikes in volatile organic and inorganic species shown during the "cold start" portion of the cycle. Ammonia present from the exhaust and rodents interacted with the gasoline exhaust to form secondary inorganic particles, and an increase in exhaust resulted in higher proportions of secondary inorganics as a portion of the total particle mass. Particle size had a median of 10-20 nm by number and approximately 150 nm by mass. Volatile organics matched the composition of the fuel, with large proportions of aliphatic and aromatic hydrocarbons coupled to low amounts of oxygenated organics. A new measurement technique revealed organics reacting with nitrogen oxides have likely resulted in measurement bias in previous studies of combustion emissions. Identified and measured particle organic species accounted for about 10% of total organic particle mass and were mostly aliphatic acids and polycyclic aromatic hydrocarbons.
NASA Astrophysics Data System (ADS)
Warneke, C.; Schwarz, J. P.; Yokelson, R. J.; Roberts, J. M.; Koss, A.; Coggon, M.; Yuan, B.; Sekimoto, K.
2017-12-01
A combination of a warmer, drier climate with fire-control practices over the last century have produced a situation in which we can expect more frequent fires and fires of larger magnitude in the Western U.S. and Canada. There are urgent needs to better understand the impacts of wildfire and biomass burning (BB) on the atmosphere and climate system, and for policy-relevant science to aid in the process of managing fires. The FIREX (Fire Influence on Regional and Global Environment Experiment) research effort is a multi-year, multi-agency measurement campaign focused on the impact of BB on climate and air quality from western North American wild fires, where research takes place on scales ranging from the flame-front to the global atmosphere. FIREX includes methods development and small- and large-scale laboratory and field experiments. FIREX will include: emission factor measurements from typical North American fuels in the fire science laboratory in Missoula, Montana; mobile laboratory deployments; ground site measurements at sites influenced by BB from several western states. The main FIREX effort will be a large field study with multiple aircraft and mobile labs in the fire season of 2019. One of the main advances of FIREX is the availability of various new measurement techniques that allows for smoke evaluation in unprecedented detail. The first major effort of FIREX was the fire science laboratory measurements in October 2016, where a large number of previously understudied Nitrogen containing volatile organic compounds (NVOCs) were measured using H3O+CIMS and I-CIMS instruments. The contribution of NVOCs to the total reactive Nitrogen budget and the relationship to the Nitrogen content of the fuel are investigated.
Miller, Daniel N; Berry, Elaine D
2005-01-01
Beef cattle feedlots face serious environmental challenges associated with manure management, including greenhouse gas, odor, NH3, and dust emissions. Conditions affecting emissions are poorly characterized, but likely relate to the variability of feedlot surface moisture and manure contents, which affect microbial processes. Odor compounds, greenhouse gases, nitrogen losses, and dust potential were monitored at six moisture contents (0.11, 0.25, 0.43, 0.67, 1.00, and 1.50 g H2O g(-1) dry matter [DM]) in three artificial feedlot soil mixtures containing 50, 250, and 750 g manure kg(-1) total (manure + soil) DM over a two-week period. Moisture addition produced three microbial metabolisms: inactive, aerobic, and fermentative at low, moderate, and high moisture, respectively. Manure content acted to modulate the effect of moisture and enhanced some microbial processes. Greenhouse gas (CO2, N2O, and CH4) emissions were dynamic at moderate to high moisture. Malodorous volatile fatty acid (VFA) compounds did not accumulate in any treatments, but their persistence and volatility varied depending on pH and aerobic metabolism. Starch was the dominant substrate fueling both aerobic and fermentative metabolism. Nitrogen losses were observed in all metabolically active treatments; however, there was evidence for limited microbial nitrogen uptake. Finally, potential dust production was observed below defined moisture thresholds, which were related to manure content of the soil. Managing feedlot surface moisture within a narrow moisture range (0.2-0.4 g H2O g(-1) DM) and minimizing the accumulation of manure produced the optimum conditions that minimized the environmental impact from cattle feedlot production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chirone, R.; Marzocchella, A.; Salatino, P.
1999-07-01
A simple lumped-parameter model of a bubbling fluidized bed combustor fueled with high-volatile solid fuels is presented. The combustor is divided into three sections: the dense bed, the splashing region and the freeboard. Material balances on fixed carbon, volatile matter and oxygen are set up, taking into account fuel particle fragmentation and attrition, volatile matter segregation as well as postcombustion of both carbon fines and volatiles escaping the bed. A basic assumption of the model is that the combustion pathway that foes from the raw fuel to the combustion products proceeds via the formation of three phases: volatile matter, relativelymore » large non-elutriable char particles and fine char particles of elutriable size. The study is complemented by a simplified thermal balance on the splashing zone taking into account volatiles and elutriated fines postcombustion and radiative and convective heat fluxes to the bed and the freeboard. Results from calculations with either low- or high-volatile solid fuels indicate that low-volatile bituminous coal combustion takes place essentially in the bed mostly via coarse char particles combustion, while high-volatile biomass fuel combustion occurs to comparable extents both in the bed and in the splashing region of the combustor. Depending on the extent of volatile matter segregation with respect to the bed, a significant fraction of the heat is released into the splashing region of the combustor and this results into an increase of temperature in this region. Extensive bed solids recirculation associated to bubble bursting/solids ejection at the bed surface together with effective gas-solids heat transfer promotes thermal feedback from this region to the bed of as much as 90% of the heat release by volatile matter and elutriated fines afterburning.« less
Tanahashi, Masahiko; Ikeda, Hiroshi; Kubota, Kôhei
2018-05-03
Wood degradation by insects plays important roles for the forest matter cycling. Since wood is deficient in nitrogen compared to the insect body, wood-feeding insects need to assimilate the nitrogen selectively and discard an excess carbon. Such a stoichiometric imbalance between food and body will cause high metabolic cost; therefore, wood-feeding insects may somehow alleviate the stoichiometric imbalance. Here, we investigated the carbon and nitrogen budgets of the larvae of stag beetle, Dorcus rectus, which feed on decaying wood. Assimilation efficiency of ingested wood was 22%, and those values based on the carbon and nitrogen were 27 and 45%, respectively, suggesting the selective digestion of nitrogen in wood. Element-based gross growth efficiency was much higher for nitrogen (45%) than for carbon (3%). As a result, the larvae released 24% of the ingested carbon as volatile, whereas almost no gaseous exchange was observed for nitrogen. Moreover, solubility-based elementary analysis revealed that the larvae mainly utilized alkaline-soluble-water-insoluble fraction of wood, which is rich in nitrogen. Actually, the midgut of the larvae was highly alkaline (pH 10.3). Stag beetle larvae are known to exhibit coprophagy, and here we also confirmed that alkaline-soluble-water-insoluble nitrogen increased again from fresh feces to old feces in the field. Stable isotope analysis suggested the utilization of aerial nitrogen by larvae; however, its actual contribution is still disputable. Those results suggest that D. rectus larvae selectively utilize alkaline-soluble nitrogenous substrates by using their highly alkaline midgut, and perhaps associate with microbes that enhance the nitrogen recycling in feces.
NASA Astrophysics Data System (ADS)
Tanahashi, Masahiko; Ikeda, Hiroshi; Kubota, Kôhei
2018-06-01
Wood degradation by insects plays important roles for the forest matter cycling. Since wood is deficient in nitrogen compared to the insect body, wood-feeding insects need to assimilate the nitrogen selectively and discard an excess carbon. Such a stoichiometric imbalance between food and body will cause high metabolic cost; therefore, wood-feeding insects may somehow alleviate the stoichiometric imbalance. Here, we investigated the carbon and nitrogen budgets of the larvae of stag beetle, Dorcus rectus, which feed on decaying wood. Assimilation efficiency of ingested wood was 22%, and those values based on the carbon and nitrogen were 27 and 45%, respectively, suggesting the selective digestion of nitrogen in wood. Element-based gross growth efficiency was much higher for nitrogen (45%) than for carbon (3%). As a result, the larvae released 24% of the ingested carbon as volatile, whereas almost no gaseous exchange was observed for nitrogen. Moreover, solubility-based elementary analysis revealed that the larvae mainly utilized alkaline-soluble-water-insoluble fraction of wood, which is rich in nitrogen. Actually, the midgut of the larvae was highly alkaline (pH 10.3). Stag beetle larvae are known to exhibit coprophagy, and here we also confirmed that alkaline-soluble-water-insoluble nitrogen increased again from fresh feces to old feces in the field. Stable isotope analysis suggested the utilization of aerial nitrogen by larvae; however, its actual contribution is still disputable. Those results suggest that D. rectus larvae selectively utilize alkaline-soluble nitrogenous substrates by using their highly alkaline midgut, and perhaps associate with microbes that enhance the nitrogen recycling in feces.
Modifying the University of Missouri corn canopy sensor algorithm using soil and weather information
USDA-ARS?s Scientific Manuscript database
Corn production across the U.S. Corn belt can be often limited by the loss of nitrogen (N) due to leaching, volatilization and denitrification. The use of canopy sensors for making in-season N fertilizer applications has been proven effective in matching plant N requirements with periods of rapid N ...
USDA-ARS?s Scientific Manuscript database
Corn production across the U.S. Corn belt can be often limited by the loss of nitrogen (N) due to leaching, volatilization and denitrification. The use of canopy sensors for making in-season N fertilizer applications has been proven effective in matching plant N requirements with periods of rapid N ...
76 FR 65653 - New Source Performance Standards (NSPS) Review
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-24
..., PM 2.5 , PM 10 ), nitrogen oxides (NO X ), carbon monoxide (CO), lead (Pb), volatile organic... Refineries Ja 06/24/2008 (73FR35867) 12/22/2008 \\4\\ (73FR78552) (Stay) Phosphate Fertilizers--Diammonium V 08/06/1975 (40FR33155) 10/17/2000 3 4 (65FR61757) Phosphate Plants. Phosphate Fertilizers--Granular X 08...
USDA-ARS?s Scientific Manuscript database
Ammonia volatilization is a major component of the nitrogen balance of a feedyard, and the effects of ammonia loss range from the economic (loss of manure fertilizer value) to the environmental (air quality degradation, overfertilization of ecosystems). Seven years of research at the USDA-ARS Conser...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-04
... found that the motor vehicle emissions budgets for nitrogen oxides (NO X ) and volatile organic...) on June 18, 2009, by James B. Martin, Director, Colorado Department of Public Health and Environment.... EPA sent a letter to the Colorado Department of Public Health and Environment (CDPHE) on January 21...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-17
... tropospheric ozone formation. The compounds were added by EPA through a rulemaking action which provided for... consistent with federal law. Tropospheric ozone, commonly known as smog, occurs when VOC and nitrogen oxide (NO X ) react in the atmosphere. Because of the harmful health effects of ozone, EPA limits the amount...
NASA Astrophysics Data System (ADS)
Li, Yuan; Dasgupta, Rajdeep; Tsuno, Kyusei; Monteleone, Brian; Shimizu, Nobumichi
2016-10-01
The abundances of volatile elements in the Earth's mantle have been attributed to the delivery of volatile-rich material after the main phase of accretion. However, no known meteorites could deliver the volatile elements, such as carbon, nitrogen, hydrogen and sulfur, at the relative abundances observed for the silicate Earth. Alternatively, Earth could have acquired its volatile inventory during accretion and differentiation, but the fate of volatile elements during core formation is known only for a limited set of conditions. Here we present constraints from laboratory experiments on the partitioning of carbon and sulfur between metallic cores and silicate mantles under conditions relevant for rocky planetary bodies. We find that carbon remains more siderophile than sulfur over a range of oxygen fugacities; however, our experiments suggest that in reduced or sulfur-rich bodies, carbon is expelled from the segregating core. Combined with previous constraints, we propose that the ratio of carbon to sulfur in the silicate Earth could have been established by differentiation of a planetary embryo that was then accreted to the proto-Earth. We suggest that the accretion of a Mercury-like (reduced) or a sulfur-rich (oxidized) differentiated body--in which carbon has been preferentially partitioned into the mantle--may explain the Earth's carbon and sulfur budgets.
Ozone disintegration of excess biomass and application to nitrogen removal.
Park, Ki Young; Lee, Jae Woo; Ahn, Kyu-Hong; Maeng, Sung Kyu; Hwang, Jong Hyuk; Song, Kyung-Guen
2004-01-01
A pilot-scale facility integrated with an ozonation unit was built to investigate the feasibility of using ozone-disintegration byproducts of wasted biomass as a carbon source for denitrification. Ozonation of biomass resulted in mass reduction by mineralization as well as by ozone-disintegrated biosolids recycling. Approximately 50% of wasted solids were recovered as available organic matter (ozonolysate), which included nonsettleable microparticles and soluble fractions. Microparticles were observed in abundance at relatively low levels of ozone doses, while soluble fractions became dominant at higher levels of ozone doses in ozone-disintegrated organics. Batch denitrification experiments showed that the ozonolysate could be used as a carbon source with a maximum denitrification rate of 3.66 mg nitrogen (N)/g volatile suspended solids (VSS) x h. Ozonolysate was also proven to enhance total nitrogen removal efficiency in the pilot-scale treatment facility. An optimal chemical oxygen demand (COD)-to-nitrogen ratio for complete denitrification was estimated as 5.13 g COD/g N. The nitrogen-removal performance of the modified intermittently decanted extended aeration process dependent on an external carbon supply could be described as a function of solids retention time.
METHOD FOR THE PREPARATION OF BINARY NITROGEN-FLUORINE COMPOUNDS
Frazer, J.W.
1962-05-01
A process is given for preparing binary nitrogenfluorine compounds, in particular, tetrafluorohydrazine (N/sub 2/F/sub 4/) and difluorodiazine (N/sub 2/ F/sub 2/), The process comprises subjecting gaseous nitrogen trifluoride to the action of an alternating current electrical glow discharge in the presence of mercury vapors. By the action of the electrical discharge, the nitrogen trifluoride is converted into a gaseous product comprising a mixture of tetrafluorohydrazine, the isomers of difluorodiazine, and other impurities including nitrogen, nitrogen oxides, silicon tetrafiuoride, and unreacted nitrogen trifluoride. The gaseous products and impurities are passed into a trap maintained at about - 196 deg C to freeze out the desired products and impurities with the exception of nitregen gas which passes off from the trap and is discarded. Subsequently, the desired products and remaining impurities are warmed to the gaseous state and passed through a silica gel trap maintained at about - 55DEC, wherein the desired tetrafluorohydrazine and difluorodiazine products are retained while the remaining gaseous impurities pass therethrough. The desired products are volatilized from the silica gel trap by heating and then separated by gas chrounatography means into the respective tetrafluorohydrazine and difluorodiazine products. (A.e.C)
Sekito, Takayuki; Chardwiriyapreecha, Soracom; Sugimoto, Naoko; Ishimoto, Masaya; Kawano-Kawada, Miyuki; Kakinuma, Yoshimi
2014-01-01
Basic amino acids (lysine, histidine and arginine) accumulated in Saccharomyces cerevisiae vacuoles should be mobilized to cytosolic nitrogen metabolism under starvation. We found that the decrease of vacuolar basic amino acids in response to nitrogen starvation was impaired by the deletion of AVT4 gene encoding a vacuolar transporter. In addition, overexpression of AVT4 reduced the accumulation of basic amino acids in vacuoles under nutrient-rich condition. In contrast to AVT4, the deletion and overexpression of AVT3, which encodes the closest homologue of Avt4p, did not affect the contents of vacuolar basic amino acids. Consistent with these, arginine uptake into vacuolar membrane vesicles was decreased by Avt4p-, but not by Avt3p-overproduction, whereas various neutral amino acids were excreted from vacuolar membrane vesicles in a manner dependent on either Avt4p or Avt3p. These results suggest that Avt4p is a vacuolar amino acid exporter involving in the recycling of basic amino acids.
ERIC Educational Resources Information Center
Nolan, William T.; Gish, Thaddeus J.
1996-01-01
Presents 6 short experiments with liquid nitrogen that 12- and 13-year-old students can safely perform under close supervision. Helps the students in learning a number of basic chemical principles while spurring their curiosity and showing them how much fun chemistry can be. (JRH)
Li, Hui-lin; Han, Yong; Cai, Zu-cong
2008-04-01
The ammonia volatilization on the Typic Gleyi-stagnic Anthrosol with application of common urea and controlled release urea (LP-S100) fertilizers in the rice seasons in paddy soil of Taihui region of China was modeled by Jayaweera-Mikkelsen model. Results showed great difference of ammonia volatilization from two type fertilizers was detected with lysimeter experiment in the rice season. Nitrogen loss via ammonia volatilization after common urea application with conventional ways was 29%-35%, while only 5% of controlled release urea-N was volatilized. The Jayaweera-Mikkelsen model was over estimated the total amount of ammonia volatilization in the whole season, and great deviation from the measured data was obvious for the higher volatilization from common urea fertilizer. The estimated data were 2.95-4.19 times of the measures one for common urea treatments, while they were 1.19-1.40 times of those measured for LP-S100 treatments. The order of magnitude quotient was one of the indicators to evaluate the model estimation. The value of it was 0.8, which indicated the estimation of the model need improvement. Though sensitive analysis for the five parameters in the model was tested and amended the parameter of the concentration of NH4+ -N, a limited term was inducted in the model operation. The amended model got better results as the ratio of estimation to measured data was decreased to 1.12-1.28. The alga activity in the paddy field influenced ammonia volatilization and might make the failure of the model estimation of the original model.
Diffusive retention of atmospheric gases in chert
NASA Astrophysics Data System (ADS)
Pettitt, E.; Cherniak, D. J.; Watson, E. B.; Schaller, M. F.
2016-12-01
Throughout Earth's history, the volatile contents (N2, CO2, Ar) of both deep and shallow terrestrial reservoirs has been dynamic. Volatiles are important chemical constituents because they play a significant role in regulating Earth's climate, mediating the evolution of complex life, and controlling the properties of minerals and rocks. Estimating levels of atmospheric volatiles in the deep geological past requires interrogation of materials that have acquired and retained a chemical memory from that time. Cherts have the potential to trap atmospheric components during formation and later release those gases for analysis in the laboratory. However, cherts have been underexploited in this regard, partly because their ability to retain a record of volatile components has not been adequately evaluated. Before cherts can be reliably used as indicators of past levels of major atmospheric gases, it is crucial that we understand the diffusive retentiveness of these cryptocrystalline silica phases. As the first step toward quantifying the diffusivity and solubility of carbon dioxide and nitrogen in chert, we have performed 1-atmosphere diffusive-uptake experiments at temperatures up to 450°C. Depth profiles of in-diffusing gases are measured by nuclear reaction analysis (NRA) to help us understand the molecular-scale transport of volatiles and thus the validity of using chert-bound volatiles to record information about Earth history. Data collected to date suggest that at least some cherts are ideal storage containers and can retain volatiles for a geologically long time. In addition to these diffusion experiments, preliminary online-crush fast-scan measurements using a quadrupole mass spectrometer indicate that atmospheric volatiles are released upon crushing various chert samples. By coupling such volatile-release measurements made by mass spectrometry with diffusion experiments, we are uniquely able to address the storage and fidelity of volatiles bound in crustal materials; an important step toward understanding atmospheric evolution over geologic history.
NASA Astrophysics Data System (ADS)
Cai, X.; Yang, Z.-L.; Fisher, J. B.; Zhang, X.; Barlage, M.; Chen, F.
2016-01-01
Climate and terrestrial biosphere models consider nitrogen an important factor in limiting plant carbon uptake, while operational environmental models view nitrogen as the leading pollutant causing eutrophication in water bodies. The community Noah land surface model with multi-parameterization options (Noah-MP) is unique in that it is the next-generation land surface model for the Weather Research and Forecasting meteorological model and for the operational weather/climate models in the National Centers for Environmental Prediction. In this study, we add a capability to Noah-MP to simulate nitrogen dynamics by coupling the Fixation and Uptake of Nitrogen (FUN) plant model and the Soil and Water Assessment Tool (SWAT) soil nitrogen dynamics. This model development incorporates FUN's state-of-the-art concept of carbon cost theory and SWAT's strength in representing the impacts of agricultural management on the nitrogen cycle. Parameterizations for direct root and mycorrhizal-associated nitrogen uptake, leaf retranslocation, and symbiotic biological nitrogen fixation are employed from FUN, while parameterizations for nitrogen mineralization, nitrification, immobilization, volatilization, atmospheric deposition, and leaching are based on SWAT. The coupled model is then evaluated at the Kellogg Biological Station - a Long Term Ecological Research site within the US Corn Belt. Results show that the model performs well in capturing the major nitrogen state/flux variables (e.g., soil nitrate and nitrate leaching). Furthermore, the addition of nitrogen dynamics improves the modeling of net primary productivity and evapotranspiration. The model improvement is expected to advance the capability of Noah-MP to simultaneously predict weather and water quality in fully coupled Earth system models.
Lawrence, Stephen J.
2006-01-01
This report provides abridged information describing the most salient properties and biodegradation of 27 chlorinated volatile organic compounds detected during ground-water studies in the United States. This information is condensed from an extensive list of reports, papers, and literature published by the U.S. Government, various State governments, and peer-reviewed journals. The list includes literature reviews, compilations, and summaries describing volatile organic compounds in ground water. This report cross-references common names and synonyms associated with volatile organic compounds with the naming conventions supported by the International Union of Pure and Applied Chemistry. In addition, the report describes basic physical characteristics of those compounds such as Henry's Law constant, water solubility, density, octanol-water partition (log Kow), and organic carbon partition (log Koc) coefficients. Descriptions and illustrations are provided for natural and laboratory biodegradation rates, chemical by-products, and degradation pathways.
Shi, Ce; Qian, Jianping; Han, Shuai; Fan, Beilei; Yang, Xinting; Wu, Xiaoming
2018-03-15
The study assessed the feasibility of developing a machine vision system based on pupil and gill color changes in tilapia for simultaneous prediction of total volatile basic nitrogen (TVB-N), thiobarbituric acid (TBA) and total viable counts (TVC) during storage at 4°C. The pupils and gills were chosen and color space conversion among RGB, HSI and L ∗ a ∗ b ∗ color spaces was performed automatically by an image processing algorithm. Multiple regression models were established by correlating pupil and gill color parameters with TVB-N, TVC and TBA (R 2 =0.989-0.999). However, assessment of freshness based on gill color is destructive and time-consuming because gill cover must be removed before images are captured. Finally, visualization maps of spoilage based on pupil color were achieved using image algorithms. The results show that assessment of tilapia pupil color parameters using machine vision can be used as a low-cost, on-line method for predicting freshness during 4°C storage. Copyright © 2017 Elsevier Ltd. All rights reserved.
Jung, Ji-Taek; Lee, Jin-kyu; Choi, Yeong-Seok; Lee, Ju-Ho; Choi, Jung-Seok; Choi, Yang-Il; Chung, Yoon-Kyung
2018-01-01
Abstract This study investigated the effect of rice bran fiber (RBF) and wheat fibers (WF) on microbiological and physicochemical properties of fermented sausages during ripening and storage. The experimental design included three treatments: Control, no addition; RBF, 1.5%; and WF, 1.5%. During the ripening periods, the addition of dietary fibers rapidly decreased pH and maintained high water activity values of fermented sausages (p<0.05). Lactic acid bacteria were more prevalent in fermented sausages with rice bran fiber than control and sausages with added wheat fiber. During cold storage, lower pH was observed in sausages with dietary fibers (p<0.05), and the water activity and color values were reduced as the storage period lengthened. Fermented sausages containing dietary fibers were higher in lactic acid bacteria counts, volatile basic nitrogen and 2-thiobarbituric acid reactive substance values compared to the control (p<0.05). The results indicate that, the addition of dietary fibers in the fermented sausages promotes the growth of lactic bacteria and fermentation, and suggests that development of functional fermented sausages is possible. PMID:29805280
Chen, Jing; Deng, Shanggui; Li, Jianrong
2013-06-01
A novel botanic biopreservative was successfully prepared by the combination of the bamboo leaves extracts and ebony extracts, designated as ebony-bamboo leaves complex extracts (EBLCE), whose antimicrobial activity was assessed according to an inhibition zone method against 10 common pathogenic and spoilage microorganisms. It was found that EBLCE was more effective from all the chosen microorganisms, as compared by potassium sorbate. Due to its excellent antimicrobial activity, and some additional properties like edibility, safety and economy, EBLCE was selected for further study to evaluate the efficacy in prolonging shelf life and improving the quality of peeled Penaeus vannamei during storage at 4 °C, based on periodical microbiological, chemical and sensory analysis. As a result, EBLCE was observed to prevent spoilage of peeled P. vannamei efficiently as reflected by a distinct decrease in total viable count, pH and total volatile basic nitrogen, as well as a slower decline in the sensory evaluation scores. Therefore, a prolonged shelf life of 16 days was obtained for EBLCE pre-treated peeled shrimps with comparison of 6 days for the control group, demonstrating EBLCE as a promising alternative for preserving food.
Choi, Soee; Puligundla, Pradeep; Mok, Chulkyoon
2016-04-01
Nonthermal techniques for microbial decontamination are becoming more common for ensuring food safety. In this study, a corona discharge plasma jet (CDPJ) was used for inactivation of microbial contaminants of dried Alaska pollock shreds. Corona plasma jet was generated at a current strength of 1.5 A, and a span length of 25 mm was maintained between the electrode tip and the sample. Upon the CDPJ treatment (0 to 3 min) of dried shreds, microbial contaminants namely aerobic and marine bacteria, and Staphylococcus aureus were inactivated by 2.5, 1.5, and >1.0 log units, respectively. Also, a one-log reduction of molds and yeasts contaminants was observed. The inactivation patterns are fitted well to the pseudo-first-order kinetics or Singh-Heldman model. The CDPJ treatment did not exert statistically significant (P > 0.05) changes in physicochemical properties, namely color characteristics, volatile basic nitrogen, and peroxide value of dried fish shreds, with some exceptions, as compared to untreated controls. Furthermore, CDPJ treatment had no significant impact on the sensory characteristics of dried fish shreds. © 2016 Institute of Food Technologists®
Wang, Yongli; Li, Feng; Zhuang, Hong; Li, Lianghao; Chen, Xiao; Zhang, Jianhao
2015-03-01
Effects of plant polyphenols (tea polyphenol [TP], grape seed extract [GSE], and gingerol) and α-tocopherol on physicochemical parameters, microbiological counts, and biogenic amines were determined in dry-cured bacons at the end of ripening. Results showed that plant polyphenols and α-tocopherol significantly decreased pH, thiobarbituric acid reactive substances content, and total volatile basic nitrogen (TVBN) compared with the control (P < 0.05). Microbial counts and biogenic amine contents in dry-cured bacons were affected by plant polyphenols or α-tocopherol, with TP being the most effective (P < 0.05) in reducing aerobic plate counts, Enterobacteriaceae, Micrococcaceae, yeast, and molds, as well as in inhibiting formation of putrescine, cadaverine, tyramine, and spermine. Principal component analysis indicated that the first 2 principal components (PC) explained about 85.5% of the total variation. PC1 was related with physicochemical factors, parts of biogenic amines, and spoilage microorganisms, whereas PC2 grouped the TVBN, tyramine, 2-phenylethylamine, yeast, and molds. These findings suggest that plant polyphenols, especially TP, could be used to process dry-cured bacons to improve the quality and safety of finished products. © 2015 Institute of Food Technologists®
Jeong, Kiyoung; O, Hyeonbin; Shin, So Yeon; Kim, Young-Soon
2018-04-10
This study evaluated the influence of different factors on pork hams cooked by sous-vide method. The quality and structural and microbiological properties of the treated samples were compared with those of controls. Samples were subjected to treatment at different combinations of temperature (61 °C or 71 °C), time (45 or 90 min), and vacuum degree (98.81% or 96.58%). The control sample was air packaged and boiled for 45 min in boiling water. Temperature and vacuum degree affected quality properties, while the effect of time was limited. Samples cooked at 61 °C showed higher moisture content, redness, and pink color of the meat juice, whereas samples cooked at 71 °C showed higher cooking loss rate, lightness, and volatile basic nitrogen values. Texture analysis indicated tenderer meat for the treatment group than the control. No microbial growth was detected in any treatment groups. Meat cooked at 61 °C and 98.81% vacuum showed more spacious arrangement of meat fiber. Copyright © 2018 Elsevier Ltd. All rights reserved.
Integrating forest ecosystem services into the farming landscape: A stochastic economic assessment.
Monge, Juan J; Parker, Warren J; Richardson, James W
2016-06-01
The objective of this study was to assess how payments for ecosystem services could assist plantation forestry's integration into pastoral dairy farming in order to improve environmental outcomes and increase business resilience to both price uncertainty and production limits imposed by environmental policies. Stochastic Dominance (SD) criteria and portfolio analysis, accounting for farmers' risk aversion levels, were used to rank different land-use alternatives and landscapes with different levels of plantation forestry integration. The study was focused on a modal 200-ha dairy farm in the Lake Rotorua Catchment of the Central North Island region of New Zealand, where national environmental policies are being implemented to improve water quality and reduce greenhouse gas emissions. Nitrogen and carbon payments would help farmers improve early cash flows for forestry, provide financial leverage to undertake afforestation projects and contribute to improved environmental outcomes for the catchment. The SD criteria demonstrated that although dairy farming generates the highest returns, plantation forestry with nitrogen and carbon payments would be a preferred alternative for landowners with relatively low risk aversion levels who consider return volatility and environmental limits within their land-use change criteria. Using the confidence premium concept, environmental payments to encourage plantation forestry into the landscape were shown to be lower when the majority of landowners are risk averse. The certainty equivalence approach helped to identify the optimal dairy-forestry portfolio arrangements for landowners of different levels of risk aversion, intensities of dairy farming (status quo and intensified) and nitrogen prices. At low nitrogen prices, risk neutral farmers would choose to afforest less than half of the farm and operate at the maximum nitrogen allowance, because dairy farming at both intensities provides the highest return among the different land uses available. However, at relatively low risk aversion levels, farmers would operate at levels below the maximum nitrogen allowance by including plantation forestry to a greater extent, compared to risk neutral farmers, due to its more certain returns. At a high nitrogen price of $400/kg, plantation forestry would completely subsume dairying, across risk aversion and intensity levels. These results confirm that plantation forestry as well as being an environmentally sound land-use alternative, also reduces uncertainty for landowners that are exposed to volatile international markets for dairy commodities. Copyright © 2016 Elsevier Ltd. All rights reserved.
The Preparation of (Al2O3)x(SiO2)y Thin Films Using (Al(OSiEt3)3)2 as a Single Source Precursor
1992-05-12
point AI(OSiEt 3)3(NH3 ) cannot itself readily be used as a volatile precursor. If, however, NH 3 is used as the carrier gas [AI(OSiEt3)3]2 rapidly melts ...situ formation of the low melting Lewis acid-base adduct Al(OSiEt 3)3(NH 3), however, no nitrogen incorporation was observed in these deposited films...in situ formation of the low melting Lewis acid-base adduct AI(OSiEt3)3(NH3), however, no nitrogen incorporation was observed in these deposited
Kim, Jongmin; Novak, John T
2011-09-01
A combined anaerobic/aerobic sludge digestion system was studied to determine the effect of aerobic solids retention time (SRT) on its solids and nitrogen removal efficiencies. After the anaerobic digester reached steady state, effluent from the anaerobic digester was fed to aerobic digesters that were operated at 2- to 5-day SRTs. The anaerobic system was fed with a mixture of primary and secondary sludge from a local municipal wastewater treatment plant. Both systems were fed once per a day. The aerobic reactor was continuously aerated with ambient air, maintaining dissolved oxygen level at 1.1 +/- 0.3 mg/L. At a 4-day or longer SRT, more than 11% additional volatile solids and 90% or greater ammonia were removed in the aerobic digester, while 32.8 mg-N/L or more nitrite/nitrate also was measured. Most total Kjeldahl nitrogen removal was via ammonia removal, while little organic nitrogen was removed in the aerobic digester.
Uncertainties in the measurements of water-soluble organic nitrogen in the aerosol
NASA Astrophysics Data System (ADS)
Matsumoto, Kiyoshi; Yamato, Koki
2016-11-01
In order to evaluate the positive and negative artifacts in the measurements of the water-soluble organic nitrogen (WSON) in the aerosols by filter sampling, comparative experiments between the filter sampling and denuder-filter sampling were conducted during both the warm and cold seasons. The results suggest that the traditional filter sampling underestimates the concentrations of the particulate WSON due to its volatilization loss, but this effect on the ratio of the WSON to the water-soluble total nitrogen (WSTN) was small probably because inorganic nitrogen species were also lost during the filter sampling. Approximately 32.5% of the WSON in the PM2.5 was estimated to be lost during the filter sampling. The denuder-filter sampling also demonstrated the existence of the WSON in the gas phase with approximately quarter concentrations of the WSON in the PM2.5. On the other hand, the filter sampling would overestimate the gaseous WSON concentration due to the loss of the WSON from the aerosol collection filter.
Gu, Wenjie; Sun, Wen; Lu, Yusheng; Li, Xia; Xu, Peizhi; Xie, Kaizhi; Sun, Lili; Wu, Hangtao
2018-02-01
The effects of sulphur and Thiobacillus thioparus 1904 on odour emissions during composting were studied. Results indicated that the sulphur addition reduced the pH and decreased cumulative emission of ammonia and the nitrogen loss by 47.80% and 44.23%, respectively, but the amount of volatile sulphur compounds (VSCs) and the sulphur loss increased. The addition of T. thioparus 1904 effectively reduced the cumulative emissions of H 2 S, methyl sulphide, methanethiol, dimethyl disulphide and the sulphur loss by 33.24%, 81.24%, 32.70%, 54.22% and 54.24%, respectively. T. thioparus 1904 also limited the nitrogen loss. The combined application of sulphur and T. thioparus 1904 resulted in the greatest amount of nitrogen retention. The accumulation of ammonia emissions was reduced by 63.33%, and the nitrogen loss was reduced by 71.93%. The combined treatment did not increase the emission of VSCs. The application of sulphur and T. thioparus 1904 may help to control the odour of compost. Copyright © 2017. Published by Elsevier Ltd.
Salminen, Esa A; Rintala, Jukka A
2002-07-01
We studied the effect of hydraulic retention time (HRT) and loading on anaerobic digestion of poultry slaughterhouse wastes, using semi-continuously fed, laboratory-scale digesters at 31 degrees C. The effect on process performance was highly significant: Anaerobic digestion appeared feasible with a loading of up to 0.8 kg volatile solids (VS)/m3 d and an HRT of 50-100 days. The specific methane yield was high, from 0.52 to 0.55 m3/kg VS(added). On the other hand, at a higher loading, in the range from 1.0 to 2.1 kg VS/m3 d, and a shorter HRT, in the range from 25 to 13 days, the process appeared inhibited and/or overloaded, as indicated by the accumulation of volatile fatty acids and long-chain fatty acids and the decline in the methane yield. However, the inhibition was reversible. The nitrogen in the feed, ca. 7.8% of total solids (TS), was organic nitrogen with little ammonia present, whereas in the digested material ammonia accounted for 52-67% (up to 3.8 g/l) of total nitrogen. The TS and VS removals amounted to 76% and 64%, respectively. Our results show that on a continuous basis under the studied conditions and with a loading of up to 0.8 kg VS/m3 d metric ton (wet weight) of the studied waste mixture could yield up to 140 m3 of methane.
Potential of derived lunar volatiles for life support
NASA Technical Reports Server (NTRS)
Bula, R. J.; Wittenberg, L. J.; Tibbitts, T. W.; Kulcinski, G. L.
1992-01-01
The lunar regolith contains small quantities of solar wind implanted volatile compounds that have vital, basic uses for maintaining life support systems of lunar or space settlements. Recent proposals to utilize the helium-3 isotope (He-3) derived from the lunar regolith as a fuel for fusion reactors would result in the availability of large quantities of other lunar volatile compounds. The quantities obtained would provide the annual life support replacement requirements of 1150 to 23,000 inhabitants per ton of He-3 recovered, depending on the volatile compound. Utilization of the lunar volatile compounds for life support depends on the costs, in terms of materials and energy, associated with their extraction from the lunar regolith as compared to the delivery costs of these compounds from Earth resources. Considering today's conservative estimated transportation costs ($10,000 dollars per kilogram) and regolith mining costs ($5 dollars per ton), the life support replacement requirements could be more economically supplied by recovering the lunar volatile compounds than transporting these materials from Earth resources, even before He-3 will be utilized as a fusion fuel. In addition, availability of lunar volatile compounds could have a significant cost impact on maintaining the life support systems of the space station and a Mars base.
RESOLVE Projects: Lunar Water Resource Demonstration and Regolith Volatile Characterization
NASA Technical Reports Server (NTRS)
2008-01-01
To sustain affordable human and robotic space exploration, the ability to live off the land at the exploration site will be essential. NASA calls this ability in situ resource utilization (ISRU) and is focusing on finding ways to sustain missions first on the Moon and then on Mars. The ISRU project aims to develop capabilities to technology readiness level 6 for the Robotic Lunar Exploration Program and early human missions returning to the Moon. NASA is concentrating on three primary areas of ISRU: (1) excavating, handling, and moving lunar regolith, (2) extracting oxygen from lunar regolith, and (3) finding, characterizing, extracting, separating, and storing volatile lunar resources, especially in the permanently shadowed polar craters. To meet the challenges related to technology development for these three primary focus areas, the Regolith and Environment Science and Oxygen and Lunar Volatile Extraction (RESOLVE) project was initiated in February 2005, through funding by the Exploration Systems Mission Directorate. RESOLVE's objectives are to develop requirements and conceptual designs and to perform breadboard concept verification testing of each experiment module. The final goal is to deliver a flight prototype unit that has been tested in a relevant lunar polar environment. Here we report progress toward the third primary area creating ways to find, characterize, extract, separate, and store volatile lunar resources. The tasks include studying thermal, chemical, and electrical ways to collect such volatile resources as hydrogen, water, nitrogen, methane, and ammonia. We approached this effort through two subtasks: lunar water resource demonstration (LWRD) and regolith volatile characterization (RVC).
Uncovering the Chemistry of Earth-like Planets
NASA Astrophysics Data System (ADS)
Zeng, Li; Jacobsen, Stein; Sasselov, Dimitar D.
2015-01-01
We propose to use evidence from our solar system to understand exoplanets, and in particular, to predict their surface chemistry and thereby the possibility of life. An Earth-like planet, born from the same nebula as its host star, is composed primarily of silicate rocks and an iron-nickel metal core, and depleted in volatile content in a systematic manner. The more volatile (easier to vaporize or dissociate into gas form) an element is in an Earth-like planet, the more depleted the element is compared to its host star. After depletion, an Earth-like planet would go through the process of core formation due to heat from radioactive decay and collisions. Core formation depletes a planet's rocky mantle of siderophile (iron-loving) elements, in addition to the volatile depletion. After that, Earth-like planets likely accrete some volatile-rich materials, called 'late veneer'. The late veneer could be essential to the origins of life on Earth and Earth-like planets, as it also delivers the volatiles such as nitrogen, sulfur, carbon and water to the planet's surface, which are crucial for life to occur. We plan to build an integrative model of Earth-like planets from the bottom up. We would like to infer their chemical compositions from their mass-radius relations and their host stars' elemental abundances, and understand the origins of volatile contents (especially water) on their surfaces, and thereby shed light on the origins of life on them.
Tang, Rongnian; Chen, Xupeng; Li, Chuang
2018-05-01
Near-infrared spectroscopy is an efficient, low-cost technology that has potential as an accurate method in detecting the nitrogen content of natural rubber leaves. Successive projections algorithm (SPA) is a widely used variable selection method for multivariate calibration, which uses projection operations to select a variable subset with minimum multi-collinearity. However, due to the fluctuation of correlation between variables, high collinearity may still exist in non-adjacent variables of subset obtained by basic SPA. Based on analysis to the correlation matrix of the spectra data, this paper proposed a correlation-based SPA (CB-SPA) to apply the successive projections algorithm in regions with consistent correlation. The result shows that CB-SPA can select variable subsets with more valuable variables and less multi-collinearity. Meanwhile, models established by the CB-SPA subset outperform basic SPA subsets in predicting nitrogen content in terms of both cross-validation and external prediction. Moreover, CB-SPA is assured to be more efficient, for the time cost in its selection procedure is one-twelfth that of the basic SPA.
NASA Astrophysics Data System (ADS)
Sun, Liying; Wu, Zhen; Ma, Yuchun; Liu, Yinglie; Xiong, Zhengqin
2018-05-01
Ammonia is a vital component of the nitrogen (N) cycle of terrestrial ecosystems in terms of volatilization and deposition. Here, a field experiment was undertaken to simultaneously investigate the effects of rice straw and urea incorporation on ammonia volatilization, atmospheric N deposition, yields and agronomic nitrogen use efficiency (NUE) under a rice-wheat system in China. The experiment involved four treatments: control (0 N, 0 straw), NS0 (250 kg N ha-1 season-1, 0 straw), NS1 (250 kg N ha-1 season-1, 3 t ha-1 yr-1 straw), and NS2 (250 kg N ha-1 season-1, 6 t ha-1 yr-1 straw) in the rice-wheat annual rotation system. The results indicated that the NS0, NS1 and NS2 treatments emitted cumulative ammonia of 14.0%, 16.4%, and 19.2%, respectively in the rice season and 7.6%, 11.1%, and 12.3%, respectively in the wheat season among the total urea-N application. Compared to the NS0 treatment, the NS1 and NS2 treatments significantly increased the cumulative ammonia emissions by 15.5% (p < 0.05) and 33.5% (p < 0.05), respectively in the rice season and 39.9% (p < 0.05) and 53.1% (p < 0.05), respectively in the wheat season. There was no significant difference between the NS2 and NS1 treatments during the wheat season. The amount of NH4+-N deposition accounted for 56.1% of the total inorganic N deposition during the whole rice-wheat system. The bulk NH4+-N deposition during the period of fertilization contributed 73.9% and 5.7% to the total NH4+-N deposition in the rice and wheat season, respectively. Overall, straw incorporation increased ammonia volatilization, not affecting the crop grain yield or NUE. The seasonal variation in NH4+-N bulk deposition was closely related to N fertilizer application.
Brow, Richard K.; Watkins, Randall D.
1995-07-04
Titanium is prenitrided by being heated in a nitrogen environment under conditions which give rise to the formation of a titanium-nitride surface layer on the titanium. Titanium thus prenitrided may be used in electrical components which are hermetically sealed using silicate glasses and standard glass sealing techniques. According to the method of the invention, alkali volatilization and formation of deleterious interfacial silicide are inhibited.
Brow, Richard K.; Watkins, Randall D.
1995-01-01
Titanium is prenitrided by being heated in a nitrogen environment under conditions which give rise to the formation of a titanium-nitride surface layer on the titanium. Titanium thus prenitrided may be used in electrical components which are hermetically sealed using silicate glasses and standard glass sealing techniques. According to the method of the invention, alkali volatilization and formation of deleterious interfacial silicide are inhibited.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-19
... exclusion list for VOC on the basis that they have a negligible effect on tropospheric ozone formation. Tropospheric ozone, commonly known as smog, occurs when VOC and nitrogen oxide (NO X ) react in the atmosphere. Because of the harmful health effects of ozone, EPA limits the amount of VOC and NO X that can be released...
Role of nitrite in the photochemical formation of radicals in the snow.
Jacobi, Hans-Werner; Kleffmann, Jörg; Villena, Guillermo; Wiesen, Peter; King, Martin; France, James; Anastasio, Cort; Staebler, Ralf
2014-01-01
Photochemical reactions in snow can have an important impact on the composition of the atmosphere over snow-covered areas as well as on the composition of the snow itself. One of the major photochemical processes is the photolysis of nitrate leading to the formation of volatile nitrogen compounds. We report nitrite concentrations determined together with nitrate and hydrogen peroxide in surface snow collected at the coastal site of Barrow, Alaska. The results demonstrate that nitrite likely plays a significant role as a precursor for reactive hydroxyl radicals as well as volatile nitrogen oxides in the snow. Pollution events leading to high concentrations of nitrous acid in the atmosphere contributed to an observed increase in nitrite in the surface snow layer during nighttime. Observed daytime nitrite concentrations are much higher than values predicted from steady-state concentrations based on photolysis of nitrate and nitrite indicating that we do not fully understand the production of nitrite and nitrous acid in snow. The discrepancy between observed and expected nitrite concentrations is probably due to a combination of factors, including an incomplete understanding of the reactive environment and chemical processes in snow, and a lack of consideration of the vertical structure of snow.
NASA Astrophysics Data System (ADS)
Mikhalchenko, V. V.; Rubanik, Yu T.
2016-10-01
The work is devoted to the problem of cost-effective adaptation of coal mines to the volatile and uncertain market conditions. Conceptually it can be achieved through alignment of the dynamic characteristics of the coal mining system and power spectrum of market demand for coal product. In practical terms, this ensures the viability and competitiveness of coal mines. Transformation of dynamic characteristics is to be done by changing the structure of production system as well as corporate, logistics and management processes. The proposed methods and algorithms of control are aimed at the development of the theoretical foundations of adaptive optimization as basic methodology for coal mine enterprise management in conditions of high variability and uncertainty of economic and natural environment. Implementation of the proposed methodology requires a revision of the basic principles of open coal mining enterprises design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McNamara, Bruce K.; Buck, Edgar C.; Soderquist, Chuck Z.
2014-03-23
Nitrogen trifluoride (NF 3) was used to fluorinate the metallic residue from the dissolution of a high burnup, boiling water reactor fuel (~70 MWd/kgU). The metallic residue included the noble metal phase (containing ruthenium, rhodium, palladium, technetium, and molybdenum), and smaller amounts of zirconium, selenium, tellurium, and silver. Exposing the noble metal phase to 10% NF 3 in argon between 400 and 550°C, removed molybdenum and technetium near 400°C as their volatile fluorides, and ruthenium near 500C as its volatile fluoride. The events were thermally and temporally distinct and the conditions specified are a recipe to separate these transition metalsmore » from each other and from the noble metal phase nonvolatile residue. Depletion of the volatile fluorides resulted in substantial exothermicity. Thermal excursion behavior was recorded under non-adiabatic, isothermal conditions that typically minimize heat release. Physical characterization of the metallic noble phase and its thermal behavior are consistent with high kinetic velocity reactions encouraged by the nanoparticulate phase or perhaps catalytic influences of the mixed platinum metals with nearly pure phase structure. Post-fluorination, only two phases were present in the residual nonvolatile fraction. These were identified as a nano-crystalline, metallic palladium cubic phase and a hexagonal rhodium trifluoride (RhF 3) phase. The two phases were distinct as the sub-µm crystallites of metallic palladium were in contrast to the RhF 3 phase, which grew from the parent nano-crystalline noble-metal phase during fluorination, to acicular crystals exceeding 20-µm in length.« less
Limited effect of anthropogenic nitrogen oxides on Secondary Organic Aerosol formation
Zheng, Y.; Unger, N.; Hodzic, A.; ...
2015-08-28
Globally, secondary organic aerosol (SOA) is mostly formed from emissions of biogenic volatile organic compounds (VOCs) by vegetation, but can be modified by human activities as demonstrated in recent research. Specifically, nitrogen oxides (NO x = NO + NO 2) have been shown to play a critical role in the chemical formation of low volatility compounds. We have updated the SOA scheme in the global NCAR Community Atmospheric Model version 4 with chemistry (CAM4-chem) by implementing a 4-product Volatility Basis Set (VBS) scheme, including NO x-dependent SOA yields and aging parameterizations. The predicted organic aerosol amounts capture both the magnitudemore » and distribution of US surface annual mean measurements from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network by 50 %, and the simulated vertical profiles are within a factor of two compared to Aerosol Mass Spectrometer (AMS) measurements from 13 aircraft-based field campaigns across different region and seasons. We then perform sensitivity experiments to examine how the SOA loading responds to a 50 % reduction in anthropogenic nitric oxide (NO) emissions in different regions. We find limited SOA reductions of 0.9 to 5.6, 6.4 to 12.0 and 0.9 to 2.8 % for global, the southeast US and the Amazon NO x perturbations, respectively. The fact that SOA formation is almost unaffected by changes in NO x can be largely attributed to buffering in chemical pathways (low- and high-NO x pathways, O 3 versus NO 3-initiated oxidation) and to offsetting tendencies in the biogenic versus anthropogenic SOA responses.« less
NASA Astrophysics Data System (ADS)
Stewart, Elaine M.; Coan, Mary R.; Captain, Janine; Santiago-Bond, Josephine
2016-09-01
In-Situ Resource Utilization (ISRU) is a key NASA initiative to exploit resources at the site of planetary exploration for mission-critical consumables, propellants, and other supplies. The Resource Prospector mission, part of ISRU, is scheduled to launch in 2020 and will include a rover and lander hosting the Regolith and Environment Science and Oxygen and Lunar Volatile Extraction (RESOLVE) payload for extracting and analyzing lunar resources, particularly low molecular weight volatiles for fuel, air, and water. RESOLVE contains the Lunar Advanced Volatile Analysis (LAVA) subsystem with a Gas Chromatograph-Mass Spectrometer (GC-MS). RESOLVE subsystems, including the RP15 rover and LAVA, are in NASA's Engineering Test Unit (ETU) phase to assure that all vital components of the payload are space-flight rated and will perform as expected during the mission. Integration and testing of LAVA mass spectrometry verified reproducibility and accuracy of the candidate MS for detecting nitrogen, oxygen, and carbon dioxide. The RP15 testing comprised volatile analysis of water-doped simulant regolith to enhance integration of the RESOLVE payload with the rover. Multiple tests show the efficacy of the GC to detect 2% and 5% water-doped samples.
Kim, Ji-Seong; Lee, Jeongeun; Lee, Chan-Hui; Woo, Su Young; Kang, Hoduck; Seo, Sang-Gyu; Kim, Sun-Hyung
2015-06-01
Plant growth promoting rhizobacteria (PGPR) are known to confer disease resistance to plants. Bacillus sp. JS demonstrated antifungal activities against five fungal pathogens in in vitro assays. To verify whether the volatiles of Bacillus sp. JS confer disease resistance, tobacco leaves pre-treated with the volatiles were damaged by the fungal pathogen, Rhizoctonia solani and oomycete Phytophthora nicotianae. Pre-treated tobacco leaves had smaller lesion than the control plant leaves. In pathogenesis-related (PR) gene expression analysis, volatiles of Bacillus sp. JS caused the up-regulation of PR-2 encoding β-1,3-glucanase and acidic PR-3 encoding chitinase. Expression of acidic PR-4 encoding chitinase and acidic PR-9 encoding peroxidase increased gradually after exposure of the volatiles to Bacillus sp. JS. Basic PR-14 encoding lipid transfer protein was also increased. However, PR-1 genes, as markers of salicylic acid (SA) induced resistance, were not expressed. These results suggested that the volatiles of Bacillus sp. JS confer disease resistance against fungal and oomycete pathogens through PR genes expression.
The adjuvant activity of aliphatic nitrogenous bases
Gall, D.
1966-01-01
By the use of diphtheria toxoid in guinea-pigs, high adjuvant activity has been found in a number of aliphatic nitrogenous bases including amines, quaternary ammonium compounds, guanidines, benzamidines and thiouroniums. Activity appears to depend on a combination of basicity and a long aliphatic chain of twelve or more carbon atoms. Such adjuvants tend to be haemolytic, and cause damage to tissue culture monolayers. It is suggested that their activity is connected with their surface activity and hence their ability to alter cell membranes, but that the basicity plays a further as yet undetermined role. ImagesFIG. 1-2FIG. 3-4 PMID:5924622
Biogenic volatile organic compounds from the urban forest of the Metropolitan Region, Chile.
Préndez, Margarita; Carvajal, Virginia; Corada, Karina; Morales, Johanna; Alarcón, Francis; Peralta, Hugo
2013-12-01
Tropospheric ozone is a secondary pollutant whose primary sources are volatile organic compounds and nitrogen oxides. The national standard is exceeded on a third of summer days in some areas of the Chilean Metropolitan Region (MR). This study reports normalized springtime experimental emissions factors (EF) for biogenic volatile organic compounds from tree species corresponding to approximately 31% of urban trees in the MR. A Photochemical Ozone Creation Index (POCI) was calculated using Photochemical Ozone Creation Potential of quantified terpenes. Ten species, natives and exotics, were analysed using static enclosure technique. Terpene quantification was performed using GC-FID, thermal desorption, cryogenic concentration and automatic injection. Observed EF and POCI values for terpenes from exotic species were 78 times greater than native values; within the same family, exotic EF and POCI values were 28 and 26 times greater than natives. These results support reforestation with native species for improved urban pollution management. Copyright © 2013 Elsevier Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-19
... balance various interests including: (i) Providing for the basic maintenance requirements of organic... methionine in poultry diets reduced greenhouse gas production, reduced nitrogen waste and required less land... nitrogen excretion and an increase in ammonia levels in poultry houses. To address these concerns...
Design and Construction of Simple, Nitrogen-Laser-Pumped, Tunable Dye Lasers
ERIC Educational Resources Information Center
Hilborn, Robert C.
1978-01-01
The basic physical principles of dye lasers are discussed and used to analyze the design and operation of tunable dye lasers pumped by pulsed nitrogen lasers. Details of the design and construction of these dye lasers are presented. Some simple demonstration experiments are described. (BB)
Reducing Nitrogen Oxide Emissions: 1996 Compliance with Title IV Limits
1998-01-01
The purpose of this article is to summarize the existing federal nitrogen oxide (Nox) regulations and the 1996 performance of the 239 Title IV generating units. It also reviews the basics of low-Nox burner technology and presents cost and performance data for retrofits at Title IV units.
Palma, Adriano; Salvatori, Elisabetta; Basile, Adriana; Maresca, Viviana; Asadi Karam, Elham; Manes, Fausto
2017-01-01
The effects of nitrogen (N) deposition, tropospheric ozone (O3) and their interaction were investigated in two Mediterranean tree species, Fraxinus ornus L. (deciduous) and Quercus ilex L. (evergreen), having different leaf habits and resource use strategies. An experiment was conducted under controlled condition to analyse how nitrogen deposition affects the ecophysiological and biochemical traits, and to explore how the nitrogen-induced changes influence the response to O3. For both factors we selected realistic exposures (20 kg N ha-1 yr-1 and 80 ppb h for nitrogen and O3, respectively), in order to elucidate the mechanisms implemented by the plants. Nitrogen addition resulted in higher nitrogen concentration at the leaf level in F. ornus, whereas a slight increase was detected in Q. ilex. Nitrogen enhanced the maximum rate of assimilation and ribulose 1,5-bisphosphate regeneration in both species, whereas it influenced the light harvesting complex only in the deciduous F. ornus that was also affected by O3 (reduced assimilation rate and accelerated senescence-related processes). Conversely, Q. ilex developed an avoidance mechanism to cope with O3, confirming a substantial O3 tolerance of this species. Nitrogen seemed to ameliorate the harmful effects of O3 in F. ornus: the hypothesized mechanism of action involved the production of nitrogen oxide as the first antioxidant barrier, followed by enzymatic antioxidant response. In Q. ilex, the interaction was not detected on gas exchange and photosystem functionality; however, in this species, nitrogen might stimulate an alternative antioxidant response such as the emission of volatile organic compounds. Antioxidant enzyme activity was lower in plants treated with both O3 and nitrogen even though reactive oxygen species production did not differ between the treatments. PMID:28973038
Cai, X.; Yang, Z. -L.; Fisher, J. B.; ...
2016-01-15
Climate and terrestrial biosphere models consider nitrogen an important factor in limiting plant carbon uptake, while operational environmental models view nitrogen as the leading pollutant causing eutrophication in water bodies. The community Noah land surface model with multi-parameterization options (Noah-MP) is unique in that it is the next-generation land surface model for the Weather Research and Forecasting meteorological model and for the operational weather/climate models in the National Centers for Environmental Prediction. Here in this study, we add a capability to Noah-MP to simulate nitrogen dynamics by coupling the Fixation and Uptake of Nitrogen (FUN) plant model and the Soilmore » and Water Assessment Tool (SWAT) soil nitrogen dynamics. This model development incorporates FUN's state-of-the-art concept of carbon cost theory and SWAT's strength in representing the impacts of agricultural management on the nitrogen cycle. Parameterizations for direct root and mycorrhizal-associated nitrogen uptake, leaf retranslocation, and symbiotic biological nitrogen fixation are employed from FUN, while parameterizations for nitrogen mineralization, nitrification, immobilization, volatilization, atmospheric deposition, and leaching are based on SWAT. The coupled model is then evaluated at the Kellogg Biological Station – a Long Term Ecological Research site within the US Corn Belt. Results show that the model performs well in capturing the major nitrogen state/flux variables (e.g., soil nitrate and nitrate leaching). Furthermore, the addition of nitrogen dynamics improves the modeling of net primary productivity and evapotranspiration. The model improvement is expected to advance the capability of Noah-MP to simultaneously predict weather and water quality in fully coupled Earth system models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, X.; Yang, Z. -L.; Fisher, J. B.
Climate and terrestrial biosphere models consider nitrogen an important factor in limiting plant carbon uptake, while operational environmental models view nitrogen as the leading pollutant causing eutrophication in water bodies. The community Noah land surface model with multi-parameterization options (Noah-MP) is unique in that it is the next-generation land surface model for the Weather Research and Forecasting meteorological model and for the operational weather/climate models in the National Centers for Environmental Prediction. Here in this study, we add a capability to Noah-MP to simulate nitrogen dynamics by coupling the Fixation and Uptake of Nitrogen (FUN) plant model and the Soilmore » and Water Assessment Tool (SWAT) soil nitrogen dynamics. This model development incorporates FUN's state-of-the-art concept of carbon cost theory and SWAT's strength in representing the impacts of agricultural management on the nitrogen cycle. Parameterizations for direct root and mycorrhizal-associated nitrogen uptake, leaf retranslocation, and symbiotic biological nitrogen fixation are employed from FUN, while parameterizations for nitrogen mineralization, nitrification, immobilization, volatilization, atmospheric deposition, and leaching are based on SWAT. The coupled model is then evaluated at the Kellogg Biological Station – a Long Term Ecological Research site within the US Corn Belt. Results show that the model performs well in capturing the major nitrogen state/flux variables (e.g., soil nitrate and nitrate leaching). Furthermore, the addition of nitrogen dynamics improves the modeling of net primary productivity and evapotranspiration. The model improvement is expected to advance the capability of Noah-MP to simultaneously predict weather and water quality in fully coupled Earth system models.« less
Fusaro, Lina; Palma, Adriano; Salvatori, Elisabetta; Basile, Adriana; Maresca, Viviana; Asadi Karam, Elham; Manes, Fausto
2017-01-01
The effects of nitrogen (N) deposition, tropospheric ozone (O3) and their interaction were investigated in two Mediterranean tree species, Fraxinus ornus L. (deciduous) and Quercus ilex L. (evergreen), having different leaf habits and resource use strategies. An experiment was conducted under controlled condition to analyse how nitrogen deposition affects the ecophysiological and biochemical traits, and to explore how the nitrogen-induced changes influence the response to O3. For both factors we selected realistic exposures (20 kg N ha-1 yr-1 and 80 ppb h for nitrogen and O3, respectively), in order to elucidate the mechanisms implemented by the plants. Nitrogen addition resulted in higher nitrogen concentration at the leaf level in F. ornus, whereas a slight increase was detected in Q. ilex. Nitrogen enhanced the maximum rate of assimilation and ribulose 1,5-bisphosphate regeneration in both species, whereas it influenced the light harvesting complex only in the deciduous F. ornus that was also affected by O3 (reduced assimilation rate and accelerated senescence-related processes). Conversely, Q. ilex developed an avoidance mechanism to cope with O3, confirming a substantial O3 tolerance of this species. Nitrogen seemed to ameliorate the harmful effects of O3 in F. ornus: the hypothesized mechanism of action involved the production of nitrogen oxide as the first antioxidant barrier, followed by enzymatic antioxidant response. In Q. ilex, the interaction was not detected on gas exchange and photosystem functionality; however, in this species, nitrogen might stimulate an alternative antioxidant response such as the emission of volatile organic compounds. Antioxidant enzyme activity was lower in plants treated with both O3 and nitrogen even though reactive oxygen species production did not differ between the treatments.
Sawoszczuk, Tomasz; Syguła-Cholewińska, Justyna; Del Hoyo-Meléndez, Julio M
2017-02-01
The goal of this work was to determine the microbial volatile organic compounds emitted by moulds growing on wool in search of particular volatiles mentioned in the literature as indicators of active mould growth. The keratinolytically active fungi were inoculated on two types of media: (1) samples of wool placed on broths, and (2) on broths containing amino acids that are elements of the structure of keratin. All samples were prepared inside 20 mL vials (closed system). In the first case (1) the broths did not contain any sources of organic carbon, nitrogen, or sulfur, i.e. wool was the only nutrient for the moulds. A third type of sample was historical wool prepared in a Petri dish without a broth and inoculated with a keratinolytically active mould (open system). The microbial volatiles emitted by moulds were sampled with the headspace solid-phase microextraction method. Volatiles extracted on solid-phase microextraction fibers were analyzed in a gas chromatography with mass spectrometry system. Qualitative and quantitative analyses of chromatograms were carried out in search of indicators of metabolic activity. The results showed that there are three groups of volatiles that can be used for the detection of active forms of moulds on woollen objects. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Combined anaerobic and aerobic digestion for increased solids reduction and nitrogen removal.
Novak, John T; Banjade, Sarita; Murthy, Sudhir N
2011-01-01
A unique sludge digestion system consisting of anaerobic digestion followed by aerobic digestion and then a recycle step where thickened sludge from the aerobic digester was recirculated back to the anaerobic unit was studied to determine the impact on volatile solids (VS) reduction and nitrogen removal. It was found that the combined anaerobic/aerobic/anaerobic (ANA/AER/ANA) system provided 70% VS reduction compared to 50% for conventional mesophilic anaerobic digestion with a 20 day SRT and 62% for combined anaerobic/aerobic (ANA/AER) digestion with a 15 day anaerobic and a 5 day aerobic SRT. Total Kjeldahl nitrogen (TKN) removal for the ANA/AER/ANA system was 70% for sludge wasted from the aerobic unit and 43.7% when wasted from the anaerobic unit. TKN removal was 64.5% for the ANA/AER system. Copyright © 2010 Elsevier Ltd. All rights reserved.
Methane production by anaerobic digestion of Bermuda grass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klass, D.L.; Ghosh, S.
1979-01-01
Bermuda grass (Cynodon dactylon) is one of the high-yield warm-season grasses that has been suggested as a promising raw material for conversion to methane. Experimental work performed with laboratory digesters to study the anaerobic digestion of Coastal Bermuda grass harvested in Louisiana and having a C/N ratio of 24 is described. Methane yields of about 1.9 SCF/lb of volatile solids( VS) added were observed under conventional mesophilic high-rate conditions. When supplemental nitrogen additions were made, the yields increased up to 3.5 SCF/lb of VS added indicating that the nitrogen content of the grass examined was insufficient to sustain high-rate digestionmore » at the higher yield level. Thermophilic digestion with supplemental nitrogen additions afforded methane yields of about 2.7 SCF/lb VS added. Carbon and energy balances were calculated and the relative biodegradabilities of the organics were estimated.« less
Effect of added nitrogen fertilizer on pyrazines of roasted chicory.
Jouquand, Céline; Niquet-Léridon, Céline; Loaec, Grégory; Tessier, Frédéric Jacques
2017-03-01
Coffee substitutes made of roasted chicory are affected by the formation of acrylamide whose main precursor is asparagine. One strategy for limiting the formation of acrylamide is to reduce free asparagine in the chicory roots by lessening the supply of nitrogen in the field. However, decreasing nitrogen fertilizer could affect the formation of the volatile compounds and, consequently, the sensory characteristics of the roasted chicory. The present study aimed to investigate the impact of the nitrogen supply in five commercial varieties on their aroma profile. The addition of 120 kg ha -1 of nitrogen fertilizer in the field resulted in a greater amount of pyrazines in the roasted chicory. Triangle tests were performed to determine the effect of the nitrogen level on the sensory quality of the five varieties. The results revealed that the chicory aroma was modified in two out of five varieties. The results of the present study suggest that a strategy aiming to limit the amount of acrylamide could affect the sensory quality of some varieties of chicory. Further acceptance tests need to be conducted to assess the effect (whether favourable or otherwise) on the sensory quality of the coffee substitutes. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Stabilization of waste-activated sludge through the anoxic-aerobic digestion process.
Hashimoto, S; Fujita, M; Terai, K
1982-08-01
During the aerobic digestion process, the nitrogen which had been embedded in the activated sludge is solubilized to form ammoniacal and nitric nitrogen which are in turn transferred to the liquor and cause the increase of nitrogen loading in the sewage treatment plant. In this study, the anoxic-aerobic sludge digestion system which is a modified form of the conventional aerobic sludge digestion is made up of aerobic and anoxic tanks and are designed to remove both the volatile suspended solids and the total nitrogen (TN) simultaneously. The removal efficiencies of both VSS and TN were investigated by feeding waste-activated sludge continuously and semicontinuously. The maximum percent reduction of both VSS and TN was achieved at a Q(r)/Q(s) ratio of 2 in the continuous process. The semicontinuous process was used to improve the nitrogen removal efficiency further. In the semicontinuous process, the VSS reduction efficiency as well as the nitrogen removal efficiency increased remarkably under a constant Q(r)/Q(s) ratio of 2. This process also achieved a VSS reduction efficiency higher than the aerobic digestion process (control). It was suggested that the additional anoxic tank enhanced the sludge digestion. Furthermore, the anoxic-aerobic digestion system can be applied to other treatment media like the primary sludge, industrial sludge, animal manure, etc.
Franklin, Oskar; Näsholm, Torgny; Högberg, Peter; Högberg, Mona N
2014-07-01
Ectomycorrhizal symbiosis is omnipresent in boreal forests, where it is assumed to benefit plant growth. However, experiments show inconsistent benefits for plants and volatility of individual partnerships, which calls for a re-evaluation of the presumed role of this symbiosis. We reconcile these inconsistencies by developing a model that demonstrates how mycorrhizal networking and market mechanisms shape the strategies of individual plants and fungi to promote symbiotic stability at the ecosystem level. The model predicts that plants switch abruptly from a mixed strategy with both mycorrhizal and nonmycorrhizal roots to a purely mycorrhizal strategy as soil nitrogen availability declines, in agreement with the frequency distribution of ectomycorrhizal colonization intensity across a wide-ranging data set. In line with observations in field-scale isotope labeling experiments, the model explains why ectomycorrhizal symbiosis does not alleviate plant nitrogen limitation. Instead, market mechanisms may generate self-stabilization of the mycorrhizal strategy via nitrogen depletion feedback, even if plant growth is ultimately reduced. We suggest that this feedback mechanism maintains the strong nitrogen limitation ubiquitous in boreal forests. The mechanism may also have the capacity to eliminate or even reverse the expected positive effect of rising CO2 on tree growth in strongly nitrogen-limited boreal forests. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
Franklin, Oskar; Näsholm, Torgny; Högberg, Peter; Högberg, Mona N
2014-01-01
Ectomycorrhizal symbiosis is omnipresent in boreal forests, where it is assumed to benefit plant growth. However, experiments show inconsistent benefits for plants and volatility of individual partnerships, which calls for a re-evaluation of the presumed role of this symbiosis. We reconcile these inconsistencies by developing a model that demonstrates how mycorrhizal networking and market mechanisms shape the strategies of individual plants and fungi to promote symbiotic stability at the ecosystem level. The model predicts that plants switch abruptly from a mixed strategy with both mycorrhizal and nonmycorrhizal roots to a purely mycorrhizal strategy as soil nitrogen availability declines, in agreement with the frequency distribution of ectomycorrhizal colonization intensity across a wide-ranging data set. In line with observations in field-scale isotope labeling experiments, the model explains why ectomycorrhizal symbiosis does not alleviate plant nitrogen limitation. Instead, market mechanisms may generate self-stabilization of the mycorrhizal strategy via nitrogen depletion feedback, even if plant growth is ultimately reduced. We suggest that this feedback mechanism maintains the strong nitrogen limitation ubiquitous in boreal forests. The mechanism may also have the capacity to eliminate or even reverse the expected positive effect of rising CO2 on tree growth in strongly nitrogen-limited boreal forests. PMID:24824576
Giatrakou, V; Kykkidou, S; Papavergou, A; Kontominas, M G; Savvaidis, I N
2008-05-01
The present study evaluated the effect of modified atmosphere packaging (MAP, 5% O(2)/50% CO(2)/45% N(2); treatment M), the addition of oregano oil (0.1%, v/w; treatment AO) as a natural preservative, as well as their combination (treatment MO) on the quality and shelf life extension of fresh Mediterranean swordfish fillets during a refrigerated storage (4 degrees C) period of 18 d. Simultaneously, swordfish fillets were stored under aerobic conditions (control treatment A, 4 degrees C) and on ice (usual commercial method of preservation, treatment I, 0 degrees C). Among the 5 treatments examined in the present study, the most effective one to inhibit the microbial and sensory spoilage proved to be the MO treatment, achieving a shelf life extension of 8 to 9 d. The dominant bacteria in the microflora of swordfish, irrespective of treatment, were the Pseudomonads and the H(2)S-producing bacteria, while both lactic acid bacteria (LAB) and the Enterobacteriaceae produced the lowest populations in swordfish samples kept on ice. Among the chemical indices examined, thiobarbituric acid (TBA) values showed no specific trend of lipid oxidation for swordfish, irrespective of treatment. Final trimethylamine nitrogen (TMA-N) and total volatile basic nitrogen (TVB-N) values for treatments, A, AO, M, and MO ranged between 1.33 and 14.29 mg N/100 g and 14.11 to 55.52 mg N/100 g, respectively, whereas for I samples they remained almost unchanged during storage. Sensory analysis (taste attribute) correlated well with microbiological analysis, indicating a shelf life of approximately 5 to 6 d for control, 10 to 11 d for AO, 12 d for I, 13 d for M, and 14 d for MO samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oliveira, Fernando J.V.E.; Melo, Maurício A.; Airoldi, Claudio, E-mail: airoldi@iqm.unicamp.br
2013-03-15
Highlights: ► Mesoporous SBA-15 silicas were organofunctionalized with new silylant agents. ► Thiocarbamate was used to enhance the silylating agent chains and basic centers. ► The synthesized pendant chains contain nitrogen and sulfur basic centers. ► The new hybrids sorb toxic cations from aqueous solutions with high efficiency. ► The thermodynamic data demonstrated favorable cation/basic center interactions. - Abstract: Mesoporous SBA-15 samples were organofunctionalized with mono, di- and tri-aminosilanes that previously reacted with thiocarbamide to enhance the organic chains and attach nitrogen and sulfur basic centers to the surface of the solids. These new organosilanes were synthesized through a non-solventmore » approach to reduce both cost and hazardous wastes. The high affinities for both hard and soft Lewis acids due to the combination of nitrogen and sulfur atoms attached to the same pendant chain enabled favorable sorption capacities for Cu{sup 2+}, Cd{sup 2+} and Pb{sup 2+} cations, with maximum capacities of 1.90, 3.48 and 5.30 mmol g{sup −1}, respectively, for the most efficient mesoporous silica. Microcalorimetric investigations allowed the calculation of the thermodynamic data at the solid/liquid interface. All Gibbs energy are negative as expected for spontaneous cation/basic center interactions and the positive entropic values from 49 ± 3 to 108 ± 5 J K{sup −1} mol{sup −1}, also reinforced this favorable interactive process in heterogeneous system. The designed organosilanes covalently bonded to the inorganic siliceous skeleton can be suggested as new materials for toxic metal removal from a wastewater with high efficiency.« less
Tuning the acid/base properties of nanocarbons by functionalization via amination.
Arrigo, Rosa; Hävecker, Michael; Wrabetz, Sabine; Blume, Raoul; Lerch, Martin; McGregor, James; Parrott, Edward P J; Zeitler, J Axel; Gladden, Lynn F; Knop-Gericke, Axel; Schlögl, Robert; Su, Dang Sheng
2010-07-21
The surface chemical properties and the electronic properties of vapor grown carbon nanofibers (VGCNFs) have been modified by treatment of the oxidized CNFs with NH(3). The effect of treatment temperature on the types of nitrogen functionalities introduced was evaluated by synchrotron based X-ray photoelectron spectroscopy (XPS), while the impact of the preparation methods on the surface acid-base properties was investigated by potentiometric titration, microcalorimetry, and zeta potential measurements. The impact of the N-functionalization on the electronic properties was measured by THz-Time Domain spectroscopy. The samples functionalized via amination are characterized by the coexistence of acidic and basic O and N sites. The population of O and N species is temperature dependent. In particular, at 873 K nitrogen is stabilized in substitutional positions within the graphitic structure, as heterocyclic-like moieties. The surface presents heterogeneously distributed and energetically different basic sites. A small amount of strong basic sites gives rise to a differential heat of CO(2) adsorption of 150 kJ mol(-1). However, when functionalization is carried out at 473 K, nitrogen moieties with basic character are introduced and the maximum heat of adsorption is significantly lower, at approximately 90 kJ mol(-1). In the latter sample, energetically different basic sites coexist with acidic oxygen groups introduced during the oxidative step. Under these conditions, a bifunctional acidic and basic surface is obtained with high hydrophilic character. N-functionalization carried out at higher temperature changes the electronic properties of the CNFs as evaluated by THz-TDS. The functionalization procedure presented in this work allows high versatility and flexibility in tailoring the surface chemistry of nanocarbon material to specific needs. This work shows the potential of the N-containing nanocarbon materials obtained via amination in catalysis as well as electronic device materials.
Ging, P.B.; Judd, L.J.; Wynn, K.H.
1997-01-01
The study area of the South-Central Texas study unit of the National Water-Quality Assessment Program comprises the Edwards aquifer in the San Antonio region and its catchment area. The first phase of the assessment includes evaluation of existing water-quality data for surface water and ground water, including volatile organic compounds, to determine the scope of planned monitoring. Most analyses of volatile organic compounds in surface water are from the National Pollutant Discharge Elimination System sites in San Antonio, Texas. Nine volatile organic compounds were detected at the six sites. The three compounds with the most detections at National Pollutant Discharge Elimination System sites are 1,2,4-trimethylbenzene, toluene, and xylene. Analysis of volatile organic compounds in ground water was limited to Edwards aquifer wells. Twenty-eight volatile organic compounds were detected in samples from 89 wells. The five most commonly detected compounds in samples from wells, in descending order, are tetrachloroethene, trichloroethene, bromoform, chloroform, and dibromochloromethane. Detections of volatile organic compounds in surface water and ground water within the South-Central Texas study area are limited to site-specific sources associated with development; therefore, planned monitoring for possible detections of volatile organic compounds as part of the National Water-Quality Assessment Program will emphasize areas of expanding population and development. Monitoring of volatile organic compounds is planned at National Pollutant Discharge Elimination System sites, at basic fixed surface-water sites, and in the ground-water study-unit surveys.
Isotopic compositions of cometary matter returned by Stardust.
McKeegan, Kevin D; Aléon, Jerome; Bradley, John; Brownlee, Donald; Busemann, Henner; Butterworth, Anna; Chaussidon, Marc; Fallon, Stewart; Floss, Christine; Gilmour, Jamie; Gounelle, Matthieu; Graham, Giles; Guan, Yunbin; Heck, Philipp R; Hoppe, Peter; Hutcheon, Ian D; Huth, Joachim; Ishii, Hope; Ito, Motoo; Jacobsen, Stein B; Kearsley, Anton; Leshin, Laurie A; Liu, Ming-Chang; Lyon, Ian; Marhas, Kuljeet; Marty, Bernard; Matrajt, Graciela; Meibom, Anders; Messenger, Scott; Mostefaoui, Smail; Mukhopadhyay, Sujoy; Nakamura-Messenger, Keiko; Nittler, Larry; Palma, Russ; Pepin, Robert O; Papanastassiou, Dimitri A; Robert, François; Schlutter, Dennis; Snead, Christopher J; Stadermann, Frank J; Stroud, Rhonda; Tsou, Peter; Westphal, Andrew; Young, Edward D; Ziegler, Karen; Zimmermann, Laurent; Zinner, Ernst
2006-12-15
Hydrogen, carbon, nitrogen, and oxygen isotopic compositions are heterogeneous among comet 81P/Wild 2 particle fragments; however, extreme isotopic anomalies are rare, indicating that the comet is not a pristine aggregate of presolar materials. Nonterrestrial nitrogen and neon isotope ratios suggest that indigenous organic matter and highly volatile materials were successfully collected. Except for a single (17)O-enriched circumstellar stardust grain, silicate and oxide minerals have oxygen isotopic compositions consistent with solar system origin. One refractory grain is (16)O-enriched, like refractory inclusions in meteorites, suggesting that Wild 2 contains material formed at high temperature in the inner solar system and transported to the Kuiper belt before comet accretion.
Mechanism of nitrogen removal in wastewater lagoon: a case study.
Vendramelli, Richard A; Vijay, Saloni; Yuan, Qiuyan
2017-06-01
Ammonia being a nutrient facilitates the growth of algae in wastewater and causes eutrophication. Nitrate poses health risk if it is present in drinking water. Hence, nitrogen removal from wastewater is required. Lagoon wastewater treatment systems have become common in Canada these days. The study was conducted to understand the nitrogen removal mechanisms from the existing wastewater treatment lagoon system in the town of Lorette, Manitoba. The lagoon system consists of two primary aerated cells and two secondary unaerated cells. Surface samples were collected periodically from lagoon cells and analysed from 5 May 2015 to 9 November 2015. The windward and leeward sides of the ponds were sampled and the results were averaged. It was found that the free ammonia volatilization to the atmosphere is responsible for most of the ammonia removal. Ammonia and nitrate assimilation into biomass and biological growth in the cells appears to be the other mechanisms of nitrogen removal over the monitoring period. Factors affecting the nitrogen removal efficiency were found to be pH, temperature and hydraulic residence time. Also, the ammonia concentration in the effluent from the wastewater treatment lagoon was compared with the regulatory standard.
NASA Astrophysics Data System (ADS)
Grewal, D. S.; Dasgupta, R.; Sun, C.; Tsuno, K.
2017-12-01
Constraining the origin, distribution and evolution of volatiles such as carbon (C), nitrogen (N) and sulfur (S) in terrestrial planets is essential to understand planetary differentiation, habitability and comparative planetology [1]. C/N ratio of Bulk Silicate Earth (BSE) is superchondritic (40 ± 8), while C/S ratio is nearly chondritic (0.49 ± 0.14) [2]. Accretion, core formation, and magma ocean (MO) crystallization are the key processes that could have set the relative budgets of C, N and S in different planetary reservoirs [3]. However, experiments using either C-N or C-S-bearing systems have shown that C is more siderophile than N and S, consequently core formation would have left behind subchondritic C/N and C/S ratios in BSE [4-6]. Accretion of extremely C-rich bodies during core formation or/and as a late veneer along with an early atmospheric blow-off are amongst the scenarios that have been suggested to explain C/N ratio while the addition of a differentiated body with a C-rich mantle has been suggested to explain C/S ratio in BSE [4-6]. However, no internally consistent explanations exist on the origin of all the volatile elements. We performed piston cylinder and multi-anvil experiments, using Fe-Ni-N-C±S alloy with variable amounts of S and mafic-ultramafic silicate mixtures in graphite saturated conditions at 1-7 GPa, 1600-1800 °C, and fO2 ranging from ΔIW of -1.1 to -0.3. EPMA and SIMS were used to determine major elements and volatile abundances in the coexisting alloy and silicate melt phases, while the speciation of the volatiles was determined using Raman spectroscopy. Our experimental data reveals that C becomes less siderophile in the presence of N and S during core-mantle differentiation involving an S-rich alloy. Using a set of inverse Monte-Carlo simulations, we propose that a disequilibrium merger of a Mars-sized planetary embryo with a C-saturated, S-rich core to a volatile-depleted proto-Earth during the main stage of accretion could have simultaneously satisfied C-N-S abundances and ratios in BSE along with setting up the stage of for the presence of NH3 and HCN in the Earth's early atmosphere via MO degassing. [1] Zahnle et al. (2007) Space Sci. Rev. [2] Marty (2012) EPSL. [3] Dasgupta et al. (2013) GCA. [4] Hirschmann (2016) AM. [5] Dalou et al. (2017) EPSL. [6] Li et al. (2016) Nat. Geosci.
Nitrogen isotope geochemistry as a volatile tracer of the deep mantle: insights from Iceland
NASA Astrophysics Data System (ADS)
Prade, K. C.; Fischer, T. P.; Sharp, Z. D.; Hilton, D. R.; Gronvold, K.; Fueri, E.; Halldorsson, S.; Barry, P. H.
2009-12-01
Nitrogen isotope geochemistry can be used to identify sedimentary input (δ15N=+8‰) in volcanic arc systems, but its use as an indicator of deep mantle volatile contributions is limited. Consequently, we target the neovolcanic zones of Iceland where He isotope work has revealed a distinct region of elevated 3He/4He ratios (>20RA, where RA=air 3He/4He) correlated to the presumed location of the plume in central Iceland (Breddam et al., 2000). In contrast, the rift zones are characterized by intermediate (10-20RA; Western Rift Zone) and MORB-like (8RA; Northern Rift Zone) 3He/4He ratios indicating these regions sample plume He increasingly dominated by MORB-like He. One principal objective is to investigate the relationship between nitrogen and helium isotope systematics throughout Iceland in order to apply nitrogen isotopes to non-arc volcanic systems and constrain the relative contributions of volatiles from the deep and shallow (MORB) mantle. A predominantly positive δ15N may imply a surface-derived N component in the source of deep mantle volatiles (Marty and Dauphas, 2003) whereas shallow mantle is characterized by δ15N=-5±3‰. We report data obtained using geothermal gas and water samples collected in 2006, 2007 and 2008. Samples show variations in gas content, notably CO2, N2 and H2. Some samples contain no CO2, while others have values ranging from 122 to 997 mmol/mol dry gas. All samples contain N2, with values ranging from 2 to 987 mmol/mol dry gas. Most samples had insignificant amounts of H2 but some had large quantities up to 690 mmol/mol dry gas. The δ15N and 3He/4He ratios range from -7.2‰ to +3.4‰ and 2.2RA to 26.4RA, respectively and show no linear correlation. For example, Krafla had a MORB-like 3He/4He of 8.9RA and δ15N=-2.4‰, and Theistareykir with 8.6RA has δ15N=+1.3‰. Additionally, there was no systematic variation in δ15N along the rift zones in contrast to He. The only distinctly positive δ15N value (3.4‰) is in the SISZ, where the highest 3He/4He ratios are found. Almost all negative δ15N were measured in the ERZ (as low as -5.2‰), and WRZ (-5.6‰). Extremely high 3He/4He ratios (up to 37RA) are also prominent in the northwest peninsula of Iceland, a region with no recent volcanism (Hilton et al., 1999). In this region the gas chemistry and N isotopes are dominated by air-like signatures, consistent with extensive mixing of any mantle component and the atmosphere. The relationship between 3He/4He vs. δ15N data can be explained by mixing of MORB-like values (8RA and δ15N=-5‰), air (1RA and δ15N=0‰) and a component with high 3He/4He ratios and positive δ15N. Therefore, our results are consistent with the presence of surface-derived nitrogen in the relatively undegassed mantle beneath Iceland. References: Breddam, K. et al. Earth Planet. Sci. Lett. 176 (2000) 45-55.; Hilton, D.R. et al. Earth Planet. Sci. Lett. 173 (1999) 53-60.; Marty, B. & Dauphas, N. Earth Planet. Sci. Lett. 206 (2003) 397-410.
USDA-ARS?s Scientific Manuscript database
Tropospheric ozone (O3) is a pollutant that is generated by volatile organic compounds, nitrogen oxides and sunlight. When plants take in O3 through stomata, harmful reactive oxygen species (ROS) are produced that induce the production of ROS scavenging antioxidants. Climate change predictions indic...
Advances and challenges in the field of plasma polymer nanoparticles
Pleskunov, Pavel; Nikitin, Daniil; Titov, Valerii; Shelemin, Artem; Vaidulych, Mykhailo; Kuzminova, Anna; Solař, Pavel; Hanuš, Jan; Kousal, Jaroslav; Kylián, Ondřej; Slavínská, Danka; Biederman, Hynek
2017-01-01
This contribution reviews plasma polymer nanoparticles produced by gas aggregation cluster sources either via plasma polymerization of volatile monomers or via radio frequency (RF) magnetron sputtering of conventional polymers. The formation of hydrocarbon, fluorocarbon, silicon- and nitrogen-containing plasma polymer nanoparticles as well as core@shell nanoparticles based on plasma polymers is discussed with a focus on the development of novel nanostructured surfaces. PMID:29046847
USDA-ARS?s Scientific Manuscript database
Wet distiller’s grains with solubles (WDGS) are a common feed ingredient in beef feedlot diets, but the excess nitrogen in these diets creates air quality issues, primarily due to the aromatic compounds emitted during fermentation of excreted protein. Use of high-moisture corn (HMC) instead of dry-r...
Advances and challenges in the field of plasma polymer nanoparticles.
Choukourov, Andrei; Pleskunov, Pavel; Nikitin, Daniil; Titov, Valerii; Shelemin, Artem; Vaidulych, Mykhailo; Kuzminova, Anna; Solař, Pavel; Hanuš, Jan; Kousal, Jaroslav; Kylián, Ondřej; Slavínská, Danka; Biederman, Hynek
2017-01-01
This contribution reviews plasma polymer nanoparticles produced by gas aggregation cluster sources either via plasma polymerization of volatile monomers or via radio frequency (RF) magnetron sputtering of conventional polymers. The formation of hydrocarbon, fluorocarbon, silicon- and nitrogen-containing plasma polymer nanoparticles as well as core@shell nanoparticles based on plasma polymers is discussed with a focus on the development of novel nanostructured surfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nichols, A.; Harrison, D.
1994-07-01
This report is the first product of a study being conducted by National Economic Research Associates for the Electric Power Research Institute to evaluate various market-based alternatives for managing emissions of nitrogen oxides (NO{sub x}) as part of strategies to achieve the ambient ozone standard. The report focuses on choices in the design of relatively broad, ambitious emission trading programs, rather than on more modest programs designed to generate offsets within a regulatory framework that continues to rely primarily on traditional emission standards and nontransferable permits. After a brief introductory chapter, Chapter 2 reviews both the conceptual underpinnings of emissionmore » trading and prior experience. This review suggests the need for clear initial allocations-generally based on emission caps-to simplify trading while assuring the achievement of emission-reduction goals. Chapter 3 lays out the basic choices required in establishing an emission trading program. For concreteness, the basic design is discussed in terms of trading among utilities and other large stationary sources of NO{sub x}, generally the most promising candidates for trading. Chapter 4 discusses various ways in which a basic trading program could be extended to other source categories and to volatile organic compounds (VOCs), the other major precursor of ozone. Chapter 5 analyzes various ways in which trading programs can be refined to focus control efforts on those times and at those locations where ozone problems are most severe. Although highly refined targeting programs are unlikely to be worth the effort, modest differentials can be implemented by making the number of allowances required for each ton of emissions vary with the time and location of emissions. Chapter 6 reviews various alternatives for making the initial allocation of emission allowances among sources in the trading program, breaking the process into two components, an emission rate and an activity level.« less
Growth of Desulfovibrio on the surface of agar media.
Iverson, W P
1966-07-01
Growth of Desulfovibrio desulfuricans (API strain) was found to take place in an atmosphere of hydrogen on the agar surface of complex media, including yeast extract (Difco), and Trypticase Soy Agar (BBL) without any added reducing agents. For growth on a 2% yeast extract-agar surface in the absence of hydrogen (nitrogen atmosphere), sodium lactate was required in the medium. Growth on the surface of Trypticase Soy Agar (TSA) under nitrogen took place readily in the absence of an added hydrogen donor. A medium (TSA plus salts) is described based upon the addition of sodium lactate (4 ml per liter), magnesium sulfate (2 g per liter), and ferrous ammonium sulfate (0.05%) to TSA, which appears suitable for the isolation and growth of Desulfovibrio on the surface of agar plates in an atmosphere of hydrogen. Sodium lactate does not appear to be essential in this medium for good growth and sulfate reduction in a hydrogen atmosphere, but is essential in a nitrogen atmosphere. Growth of Desulfovibrio (hydrogen atmosphere) on the agar surface of media commonly used for its cultivation as well as on an inorganic medium containing bicarbonate as a source of carbon is poor and erratic unless inoculated (Desulfovibrio) plates of TSA plus salts are incubated in the same container with plates of these media. This stimulatory effect of incubation with inoculated plates of TSA plus salts medium appears to be due to as yet unidentified volatile material produced by D. desulfuricans when growing on this medium. Another volatile material, or possibly the identical material, appears to act similarly to a hydrogen donor.
Xu, Qinghuan; Yang, Lin; Yang, Wangting; Bai, Yan; Hou, Ping; Zhao, Jingxian; Zhou, Lv; Zuo, Zhaojiang
2017-01-01
Eutrophication promotes massive growth of cyanobacteria and algal blooms, which can poison other algae and reduce biodiversity. To investigate the differences in multiple nitrogen (N) sources in eutrophicated water on the emission of volatile organic compounds (VOCs) from cyanobacteria, and their toxic effects on other algal growth, we analyzed VOCs emitted from Microcystis flos-aquae with different types and concentrations of nitrogen, and determined the effects under Normal-N and Non-N conditions on Chlorella vulgaris. M. flos-aquae released 27, 22, 20, 27, 19, 25 and 17 compounds, respectively, with NaNO 3 , NaNO 2 , NH 4 Cl, urea, Ser, Lys and Arg as the sole N source. With the reduction in N amount, the emission of VOCs was increased markedly, and the most VOCs were found under Non-N condition. C. vulgaris cell propagation, photosynthetic pigment and Fv/Fm declined significantly following exposure to M. flos-aquae VOCs under Non-N condition, but not under Normal-N condition. When C. vulgaris cells were treated with two terpenoids, eucalyptol and limonene, the inhibitory effects were enhanced with increasing concentrations. Therefore, multiple N sources in eutrophicated water induce different VOC emissions from cyanobacteria, and reduction in N can cause nutrient competition, which can result in emissions of more VOCs. Those VOCs released from M. flos-aquae cells under Non-N for nutrient competition can inhibit other algal growth. Among those VOCs, eucalyptol and limonene are the major toxic agents. Copyright © 2016 Elsevier Inc. All rights reserved.
Molecular characterization of nitrogen and sulfur containing compounds in night-time SOA
NASA Astrophysics Data System (ADS)
Iinuma, Yoshiteru; Mutzel, Anke; Rodigast, Maria; Böge, Olaf; Herrmann, Hartmut
2014-05-01
The oxidation of volatile organic compounds (VOCs) leads to the formation of low volatile organic compounds that can form secondary organic aerosol (SOA). Studies in the past showed that laboratory generated and ambient SOA are made of polar molecules with O/C ratios generally greater than 0.5. More recent studies have shown that SOA compounds can contain heteroatoms mainly sulfur and nitrogen atoms. Offline chemical analysis with high-resolution mass spectrometers and fragmentation experiments has shown that sulphur containing compounds are mainly organosulfates and nitrogen containing species are aromatic heterocyclic compounds such as imidazole and nitrated aromatic compounds such as nitrophenols. In addition to these, SOA compounds containing both sulfur and nitrogen have been reported from the analysis of ambient organic aerosol, rainwater, fog and cloud samples. Based on the mass spectrometric evidence these compounds are attributed to nitrooxy-organosulfates originating from isoprene and monoterpenes. Although these compounds are ubiquitously detected in the ambient samples, reports about their detection in laboratory generated SOA are scares and their formation mechanisms are not well understood. In the present study, we investigated the formation of sulfur and nitrogen containing SOA species in the oxidation of biogenic VOCs. Photooxidation and night-time oxidation experiments were performed in a smog chamber to produce SOA samples. The laboratory generated SOA samples were analysed with UPLC-IMS-TOFMS (Ultra Performance Liquid Chromatography coupled to Ion Mobility Spectrometry and Time of Flight Mass Spectrometry). The presence of highly acidic sulphate seed particles (pH0) did not promote the formation of compounds with chemical formula of C10H17NO7S- and m/z value of 294.0653, indicating that the formation mechanisms of these compounds unlikely involve the ring opening reactions of epoxides and subsequent sulfation reactions. On the other hand, their formation was significantly enhanced when the night-time oxidation was performed in the presence of both neutral seed particle and gas-phase SO2, suggesting that the presence of gas-phase SO2 is a key for their formation.
Uncovering the Chemistry of Earth-like Planets
NASA Astrophysics Data System (ADS)
Zeng, Li; Sasselov, Dimitar; Jacobsen, Stein
2015-08-01
We propose to use the evidence from our solar system to understand exoplanets, and in particular, to predict their surface chemistry and thereby the possibility of life. An Earth-like planet, born from the same nebula as its host star, is composed primarily of silicate rocks and an iron-nickel metal core, and depleted in volatile content in a systematic manner. The more volatile (easier to vaporize or dissociate into gas form) an element is in an Earth-like planet, the more depleted the element is compared to its host star. After depletion, an Earth-like planet would go through the process of core formation due to heat from radioactive decay and collisions. Core formation depletes a planet’s rocky mantle of siderophile (iron-loving) elements, in addition to the volatile depletion. After that, Earth-like planets likely accrete some volatile-rich materials, called “late veneer”. The late veneer could be essential to the origins of life on Earth and Earth-like planets, as it also delivers the volatiles such as nitrogen, sulfur, carbon and water to the planet’s surface, which are crucial for life to occur. Here we build an integrative model of Earth-like planets from the bottom up. Thus the chemical compositions of Earth-like planets could be inferred from their mass-radius relations and their host stars’ elemental abundances, and the origins of volatile contents (especially water) on their surfaces could be understood, and thereby shed light on the origins of life on them. This elemental abundance model could be applied to other rocky exoplanets in exoplanet systems.
Uncovering the Chemistry of Earth-like Planets
NASA Astrophysics Data System (ADS)
Zeng, L.; Jacobsen, S. B.; Sasselov, D. D.
2015-12-01
We propose to use the evidence from our solar system to understand exoplanets, and in particular, to predict their surface chemistry and thereby the possibility of life. An Earth-like planet, born from the same nebula as its host star, is composed primarily of silicate rocks and an iron-nickel metal core, and depleted in volatile content in a systematic manner. The more volatile (easier to vaporize or dissociate into gas form) an element is in an Earth-like planet, the more depleted the element is compared to its host star. After depletion, an Earth-like planet would go through the process of core formation due to heat from radioactive decay and collisions. Core formation depletes a planet's rocky mantle of siderophile (iron-loving) elements, in addition to the volatile depletion. After that, Earth-like planets likely accrete some volatile-rich materials, called "late veneer". The late veneer could be essential to the origins of life on Earth and Earth-like planets, as it also delivers the volatiles such as nitrogen, sulfur, carbon and water to the planet's surface, which are crucial for life to occur. Here we build an integrative model of Earth-like planets from the bottom up. Thus the chemical compositions of Earth-like planets could be inferred from their mass-radius relations and their host stars' elemental abundances, and the origins of volatile contents (especially water) on their surfaces could be understood, and thereby shed light on the origins of life on them. This elemental abundance model could be applied to other rocky exoplanets in exoplanet systems.
NASA Astrophysics Data System (ADS)
Hong, U.; Park, S.; Lim, J.; Lee, W.; Kwon, S.; Kim, Y.
2009-12-01
In this study, we examined the removal efficiency of a volatile compound (e.g. toluene) and a less volatile compound [e.g. total petroleum hydrocarbon (TPH)] using an air stripping packed bed combined with a biofilm-type biological process. We hypothesized that this system might be effective and economical to simultaneously remove both volatile and less volatile compounds. The gas-tight reactor has 5.9-inch-diameter and 48.8-inch-height. A spray nozzle was installed at the top cover to distribute the liquid evenly through reactor. The reactor was filled with polypropylene packing media for the increase of volatilization surface area and the growth of TPH degrading facultative aerobic bacteria on the surface of the packing media. In air stripping experiments, 45.6%, 71.7%, 72.0%, and 75.4% of toluene was removed at air injection rates of 0 L/min, 2.5 L/min, 4 L/min, and 6 L/min, respectively. Through the result, we confirmed that toluene removal efficiency increased by injecting higher amounts of air. TPH removal by stripping was minimal. To remove a less volatile TPH by commercial TPH degrading culture (BIO-ZYME B-52), 15-times diluted culture was circulated through the reactor for 2-3 days to build up a biofilm on the surface of packing media with 1 mg-soluble nitrogen source /L-water per 1 ppm of TPH. Experiments evaluating the degree of TPH biodegradation in this system are carrying out.
Mullaney, John R.; Grady, Stephen J.
1997-01-01
The quality of water along flowpaths in a surficial aquifer system in Manchester, Connecticut, was studied during 1993-95 as part of the National Water Quality Assessment program. The flowpath study examined the relations among hydrogeology, land-use patterns, and the presence of contaminants in a surficial aquifer in an urban area, and evaluated ground water as a source of contamination to surface water. A two-dimensional, finite-difference groundwater- flow model was used to estimate travel distance, which ranged from about 50 to 11,000 feet, from the source areas to the sampled observation wells. Land use, land cover, and population density were determined in the source areas delineated by the ground-water-flow simulation. Source areas to the wells contained either high- or medium-density residential areas, and population density ranged from 629 to 8,895 people per square mile. Concentrations of selected inorganic constituents, including sodium, chloride, and nitrite plus nitrate nitrogen, were higher in the flowpath study wells than in wells in undeveloped areas with similar aquifer materials. One or more of 9 volatile organic compounds were detected at 12 of 14 wells. The three most commonly detected volatile organic compounds were chloroform, methyl-tert-butyl ether, and trichloroethene. Trichloroethene was detected at concentrations greater than the maximum contaminant level for drinking water (5 micrograms per liter) in samples from one well. Four pesticides, including dichloro diphenyl dichloroethylene, dieldrin, dichloroprop, and simazine were detected at low concentrations. Concentrations of sodium and chloride were higher in samples collected from wells screened in the top of the saturated zone than in samples collected from deeper zones. Volatile organic compounds and elevated concentrations of nitrite plus nitrate as nitrogen were detected at depths of as much as 60 feet below the water table, indicating that the effects of human activities on the ground-water quality extends to the bottom of the surficial aquifer. The age of ground water, as determined by tritium and 3helium concentrations, was 0.9 to 22.6 years. pH, alkalinity, and calcium were higher and concentrations of dissolved oxygen were lower in ground-water samples with ages of 10 years or more than in samples younger than 10 years. In addition, concentrations of sodium, chloride, and nitrite plus nitrate nitrogen were low in ground-water samples with ages of 10 years or more, indicating that concentrations of these compounds may be increasing with time or that the recharge areas to these wells may have had less intensive urban land use. Methyl-tert-butyl ether was detected only in wells with ground water ages of less than 11 years, which is consistent with the date of introduction of this compound as a gasoline additive in Connecticut. Analysis of additional samples collected for analysis of stable nitrogen isotopes indicated that the most likely source of elevated concentrations of nitrate nitrogen was lawn and garden fertilizers, but other sources, including wastewater effluents, soil organic nitrogen, and atmospheric deposition, may contribute to the total. Population density was positively correlated (at the 97 percent confidence level) to concentrations of nitrite plus nitrate as nitrogen. Water quality in the Hockanum River aquifer has been degraded by human activities, and, after discharge to surface water, affects the water quality in the Hockanum River. On an annual basis, ground-water discharge from the study area to the river (as measured at a downstream continuous-record gaging station) contributes about 5 percent of the annual load of nitrite plus nitrate nitrogen, but, during low flow, contributes 11 percent of the nitrite plus nitrate nitrogen, 32 percent of the calcium, and 16 percent of the chloride to the river.
Siriskar, Dipty A; Khedkar, Gulab Dattarao; Lior, David
2013-12-01
Present study deals with the production of low cost salted and dried product from anchovy fish (Stolephorus spp.) using traditional technology application of different inhibitory factors to achieve a reasonable shelf life at ambient tropical temperature. Microbial safety, nutrient retention and product quality in terms of flavor and texture after rehydration have been tested. This product has been subjected to storage studies, with respect to product quality and microbial status. It can be kept well for a period of 5 weeks. The quality changes during storage are; decrease in sensory scores for the overall acceptance and also for the individual attributes. Increase in nitrogenous components such as Total Volatile Bases Nitrogen (TVB-N), Tri Methyl Amine Nitrogen (TMA-N) and Alpha Amino Nitrogen (AAN) was obtained with the advancement of the storage period. The lipid quality of the fish showed gradual increase in Preoxide Value (PV) and Free Fatty Acid (FFA) accompanied by decrease in flavor and odor scores. Activity of microorganisms showed a marginal increase with increase in storage period.
Corral, Sara; Leitner, Erich; Siegmund, Barbara; Flores, Mónica
2016-01-01
The identification of odor-active sulfur and nitrogen compounds formed during the processing of dry fermented sausages was the objective of this study. In order to elucidate their possible origin, free amino acids (FAAs) were also determined. The volatile compounds present in the dry sausages were extracted using solvent assisted flavor evaporation (SAFE) and monitored by one and two-dimensional gas chromatography with different detectors: mass spectrometry (MS), nitrogen phosphorous (NPD), flame photometric (FPD) detectors, as well as gas chromatography-olfactometry. A total of seventeen sulfur and nitrogen compounds were identified and quantified. Among them, 2-acetyl-1-pyrroline was the most potent odor active compound, followed by methional, ethylpyrazine and 2,3-dihydrothiophene characterized by toasted, cooked potato, and nutty notes. The degradation of FAAs, generated during processing, was related to the production of aroma compounds, such as methionine forming methional and benzothiazole while ornithine was the precursor compound for 2-acetyl-1-pyrroline and glycine for ethylpyrazine. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Xia, Longlong; Xia, Yongqiu; Ma, Shutan; Wang, Jinyang; Wang, Shuwei; Zhou, Wei; Yan, Xiaoyuan
2016-08-01
Impacts of simultaneous inputs of crop straw and nitrogen (N) fertilizer on greenhouse gas (GHG) emissions and N losses from rice production are not well understood. A 2-year field experiment was established in a rice-wheat cropping system in the Taihu Lake region (TLR) of China to evaluate the GHG intensity (GHGI) as well as reactive N intensity (NrI) of rice production with inputs of wheat straw and N fertilizer. The field experiment included five treatments of different N fertilization rates for rice production: 0 (RN0), 120 (RN120), 180 (RN180), 240 (RN240), and 300 kg N ha-1 (RN300, traditional N application rate in the TLR). Wheat straws were fully incorporated into soil before rice transplantation. The meta-analytic technique was employed to evaluate various Nr losses. Results showed that the response of rice yield to N rate successfully fitted a quadratic model, while N fertilization promoted Nr discharges exponentially (nitrous oxide emission, N leaching, and runoff) or linearly (ammonia volatilization). The GHGI of rice production ranged from 1.20 (RN240) to 1.61 kg CO2 equivalent (CO2 eq) kg-1 (RN0), while NrI varied from 2.14 (RN0) to 10.92 g N kg-1 (RN300). Methane (CH4) emission dominated the GHGI with a proportion of 70.2-88.6 % due to direct straw incorporation, while ammonia (NH3) volatilization dominated the NrI with proportion of 53.5-57.4 %. Damage costs to environment incurred by GHG and Nr releases from current rice production (RN300) accounted for 8.8 and 4.9 % of farmers' incomes, respectively. Cutting N application rate from 300 (traditional N rate) to 240 kg N ha-1 could improve rice yield and nitrogen use efficiency by 2.14 and 10.30 %, respectively, while simultaneously reducing GHGI by 13 %, NrI by 23 %, and total environmental costs by 16 %. Moreover, the reduction of 60 kg N ha-1 improved farmers' income by CNY 639 ha-1, which would provide them with an incentive to change the current N application rate. Our study suggests that GHG and Nr releases, especially for CH4 emission and NH3 volatilization, from rice production in the TLR could be further reduced, considering the current incorporation pattern of wheat straw and N fertilizer.
Yuan, Chungang; Lu, Xiufen; Qin, Jie; Rosen, Barry P; Le, X Chris
2008-05-01
Biological systems, ranging from bacteria and fungi to humans, can methylate arsenic. Recent studies have suggested that the AsIII S-adenosylmethionine methyltransferase (arsM) gene in bacteria was responsible for the removal of arsenic as the volatile arsines from the bacteria. However, there has been no direct measure of the arsines released from bacteria cultures. We describe here an integrated system incorporating the bacterial incubation and volatile arsenic species analysis, and we demonstrate its application to the identification of the volatile arsines produced in bacterial cultures. The headspace of the bacterial cultures was purged with helium, and the volatile arsenic species were trapped in a chromatographic column immersed in liquid nitrogen. The cryogenically trapped arsines [AsH3, (CH3)AsH2, (CH3)2AsH, and (CH3)3As] were separated by gas chromatography and were detected by inductively coupled plasma mass spectrometry. A hydride generation system was coupled to the bacterial culture system, allowing for spiking standards and for generating calibration arsines necessary for quantitative analysis. Both bacteria containing the arsM gene or its variant arsMC2 gene were able to produce 400-500 ng of trimethylarsine. No trimethylarsine was detectable in bacteria lacking the arsM gene (containing the vector plasmid as negative control). These results confirm that arsM is responsible for releasing arsenic as volatile species from the arsenic-resistant bacteria. Our results also show traces of AsH3, CH3AsH2, and (CH3)2AsH in cultures of bacteria expressing arsM. The method detection limits for AsH3, CH3AsH2, (CH3)2AsH, and (CH3)3As were 0.5, 0.5, 0.7, and 0.6 pg, respectively. The ability to quantify trace levels of these volatile arsenic species makes it possible to study the biotransformation and biochemical roles of the evolution of these volatile arsenic species by biological systems.
Deposit formation in liquid fuels. III - The effect of selected nitrogen compounds on diesel fuel
NASA Technical Reports Server (NTRS)
Worstell, J. H.; Daniel, S. R.; Frauenhoff, G.
1981-01-01
The influence of substituted quinolines, pyrroles, indoles, and pyridines on deposit formation in a diesel fuel is evaluated. Significant increases in deposition rate are found which are dependent upon the basicity of the nitrogen compound within a given compound class. These effects correspond closely with those produced in a Jet A fuel. Removal of highly polar fuel components renders the nitrogen compound influence inoperative. These components are therefore participants in deposit-forming reactions.
Limited effect of anthropogenic nitrogen oxides on secondary organic aerosol formation
NASA Astrophysics Data System (ADS)
Zheng, Y.; Unger, N.; Hodzic, A.; Emmons, L.; Knote, C.; Tilmes, S.; Lamarque, J.-F.; Yu, P.
2015-12-01
Globally, secondary organic aerosol (SOA) is mostly formed from emissions of biogenic volatile organic compounds (VOCs) by vegetation, but it can be modified by human activities as demonstrated in recent research. Specifically, nitrogen oxides (NOx = NO + NO2) have been shown to play a critical role in the chemical formation of low volatility compounds. We have updated the SOA scheme in the global NCAR (National Center for Atmospheric Research) Community Atmospheric Model version 4 with chemistry (CAM4-chem) by implementing a 4-product volatility basis set (VBS) scheme, including NOx-dependent SOA yields and aging parameterizations. Small differences are found for the no-aging VBS and 2-product schemes; large increases in SOA production and the SOA-to-OA ratio are found for the aging scheme. The predicted organic aerosol amounts capture both the magnitude and distribution of US surface annual mean measurements from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network by 50 %, and the simulated vertical profiles are within a factor of 2 compared to aerosol mass spectrometer (AMS) measurements from 13 aircraft-based field campaigns across different regions and seasons. We then perform sensitivity experiments to examine how the SOA loading responds to a 50 % reduction in anthropogenic nitric oxide (NO) emissions in different regions. We find limited SOA reductions of 0.9-5.6, 6.4-12.0 and 0.9-2.8 % for global, southeast US and Amazon NOx perturbations, respectively. The fact that SOA formation is almost unaffected by changes in NOx can be largely attributed to a limited shift in chemical regime, to buffering in chemical pathways (low- and high-NOx pathways, O3 versus NO3-initiated oxidation) and to offsetting tendencies in the biogenic versus anthropogenic SOA responses.
Liu, Xiao-Ming; Yong, Tai-Wen; Liu, Wen-Yu; Su, Ben-Ying; Song, Chun; Yang, Feng; Wang, Xiao-Chun; Yang, Wen-Yu
2014-08-01
A field experiment was conducted in 2012, including three planting pattern (maize-soybean relay strip intercropping, mono-cultured maize and soybean) and three nitrogen application level [0 kg N x hm(-2), 180 kg N x hm(-2) (reduced N) and 240 kg N x hm(-2) (normal N)]. Fields were assigned to different treatments in a randomized block design with three replicates. The objective of this work was to analyze the effects of planting patterns and nitrogen application rates on plant N uptake, soil N residue and N loss. After fertilization applications, NH4(+)-N and NO3(-)-N levels increased in the soil of intercropped maize but decreased in the soil of intercropped soybean. Compared with mono-crops, the soil N residue and loss of intercropped soybean were reduced, while those of intercropped maize were increased and decreased, respectively. With the reduced rate of N application, N residue rate, N loss rate and ammonia volatilization loss rate of the maize-soybean intercropping relay strip system were decreased by 17.7%, 21.5% and 0.4% compared to mono-cultured maize, but increased by 2.0%, 19.8% and 0.1% compared to mono-cultured soybean, respectively. Likewise, the reduced N application resulted in reductions in N residue, N loss, and the N loss via ammonia volatilization in the maize-soybean relay strip intercropping system compared with the conventional rate of N application adopted by local farmers, and the N residue rate, N loss rate and ammonia volatilization loss rate reduced by 12.0%, 15.4% and 1.2%, respectively.
Carbon-nitrogen interactions in idealized simulations with JSBACH (version 3.10)
NASA Astrophysics Data System (ADS)
Goll, Daniel S.; Winkler, Alexander J.; Raddatz, Thomas; Dong, Ning; Prentice, Ian Colin; Ciais, Philippe; Brovkin, Victor
2017-05-01
Recent advances in the representation of soil carbon decomposition and carbon-nitrogen interactions implemented previously into separate versions of the land surface scheme JSBACH are here combined in a single version, which is set to be used in the upcoming 6th phase of coupled model intercomparison project (CMIP6).Here we demonstrate that the new version of JSBACH is able to reproduce the spatial variability in the reactive nitrogen-loss pathways as derived from a compilation of δ15N data (R = 0. 76, root mean square error (RMSE) = 0. 2, Taylor score = 0. 83). The inclusion of carbon-nitrogen interactions leads to a moderate reduction (-10 %) of the carbon-concentration feedback (βL) and has a negligible effect on the sensitivity of the land carbon cycle to warming (γL) compared to the same version of the model without carbon-nitrogen interactions in idealized simulations (1 % increase in atmospheric carbon dioxide per year). In line with evidence from elevated carbon dioxide manipulation experiments, pronounced nitrogen scarcity is alleviated by (1) the accumulation of nitrogen due to enhanced nitrogen inputs by biological nitrogen fixation and reduced losses by leaching and volatilization. Warming stimulated turnover of organic nitrogen further counteracts scarcity.The strengths of the land carbon feedbacks of the recent version of JSBACH, with βL = 0. 61 Pg ppm-1 and γL = -27. 5 Pg °C-1, are 34 and 53 % less than the averages of CMIP5 models, although the CMIP5 version of JSBACH simulated βL and γL, which are 59 and 42 % higher than multi-model average. These changes are primarily due to the new decomposition model, indicating the importance of soil organic matter decomposition for land carbon feedbacks.
Spin torque switching of 20 nm magnetic tunnel junctions with perpendicular anisotropy
NASA Astrophysics Data System (ADS)
Gajek, M.; Nowak, J. J.; Sun, J. Z.; Trouilloud, P. L.; O'Sullivan, E. J.; Abraham, D. W.; Gaidis, M. C.; Hu, G.; Brown, S.; Zhu, Y.; Robertazzi, R. P.; Gallagher, W. J.; Worledge, D. C.
2012-03-01
Spin-transfer torque magnetic random access memory (STT-MRAM) is one of the most promising emerging non-volatile memory technologies. MRAM has so far been demonstrated with a unique combination of density, speed, and non-volatility in a single chip, however, without the capability to replace any single mainstream memory. In this paper, we demonstrate the basic physics of spin torque switching in 20 nm diameter magnetic tunnel junctions with perpendicular magnetic anisotropy materials. This deep scaling capability clearly indicates the STT MRAM device itself may be suitable for integration at much higher densities than previously proven.
Maskrey, Joshua R; Insley, Allison L; Hynds, Erin S; Panko, Julie M
2016-07-01
A 3-month air monitoring study was conducted in Washington County, Pennsylvania, at the request of local community members regarding the potential risks resulting from air emissions of pollutants related to hydraulic fracturing operations. Continuous air monitoring for total volatile organic compounds was performed at two sampling sites, including a school and a residence, located within 900 m of a hydraulic fracturing well pad that had been drilled prior to the study. Intermittent 24-hour air samples for 62 individual volatile organic compounds were also collected. The ambient air at both sites was monitored during four distinct periods of unconventional natural gas extraction activity: an inactive period prior to fracturing operations, during fracturing operations, during flaring operations, and during another inactive period after operations. The results of the continuous monitoring during fracturing and flaring sampling periods for total volatile organic compounds were similar to the results obtained during inactive periods. Total volatile organic compound 24-hour average concentrations ranged between 0.16 and 80 ppb during all sampling periods. Several individual volatile compounds were detected in the 24-hour samples, but they were consistent with background atmospheric levels measured previously at nearby sampling sites and in other areas in Washington County. Furthermore, a basic yet conservative screening level evaluation demonstrated that the detected volatile organic compounds were well below health-protective levels. The primary finding of this study was that the operation of a hydraulic fracturing well pad in Washington County did not substantially affect local air concentrations of total and individual volatile organic compounds.
USDA-ARS?s Scientific Manuscript database
This lysimeter experiment was designed to investigate the effects of dietary crude protein (CP) concentration on nitrate-N (NO3-N) and ammonia (NH3) losses from dairy manure applied to soil and manure N use for plant growth. Lactating dairy cows were fed diets with 16.7 (HighCP) or 14.8% (LowCP) cru...
Wang, Shao-Yang; Li, Yi-Qing; Li, Teng; Yang, Hang-Yu; Ren, Jie; Zhang, Bo-Lin; Zhu, Bao-Qing
2016-12-29
A nitrogen deficiency always causes bog bilberry syrup wine to have a poor sensory feature. This study investigated the effect of nitrogen source addition on volatile compounds during bog bilberry syrup wine fermentation. The syrup was supplemented with 60, 90, 120 or 150 mg/L dibasic ammonium phosphate (DAP) before fermentation. Results showed that an increase of DAP amounts accelerated fermentation rate, increased alcohol content, and decreased sugar level. Total phenol and total flavonoid content were also enhanced with the increase of DAP amounts. A total of 91 volatile compounds were detected in the wine and their concentrations were significantly enhanced with the increase of DAP. Ethyl acetate, isoamyl acetate, phenethyl acetate, ethyl butanoate, ethyl hexanoate, ethyl octanoate, ethyl decanoate, isobutanol, isoamyl alcohol, levo -2,3-butanediol, 2-phenylethanol, meso -2,3-butanediol, isobutyric acid, hexanoic acid, and octanoic acid exhibited a significant increase of their odor activity value (OAV) with the increase of DAP amounts. Bog bilberry syrup wine possessed fruity, fatty, and caramel flavors as its major aroma, whereas a balsamic note was the least present. The increase of DAP amounts significantly improved the global aroma attributes, thereby indicating that DAP supplementation could promote wine fermentation performance and enhance the sensory quality of bog bilberry syrup wine.
Saka, Boualem; Djouahri, Abderrahmane; Djerrad, Zineb; Terfi, Souhila; Aberrane, Sihem; Sabaou, Nasserdine; Baaliouamer, Aoumeur; Boudarene, Lynda
2017-06-01
In the present work, the Brassica rapa var. rapifera parts essential oils and their antioxidant and antimicrobial activities were investigated for the first time depending on geographic origin and extraction technique. Gas-chromatography (GC) and GC/mass spectrometry (MS) analyses showed several constituents, including alcohols, aldehydes, esters, ketones, norisoprenoids, terpenic, nitrogen and sulphur compounds, totalizing 38 and 41 compounds in leaves and root essential oils, respectively. Nitrogen compounds were the main volatiles in leaves essential oils and sulphur compounds were the main volatiles in root essential oils. Qualitative and quantitative differences were found among B. rapa var. rapifera parts essential oils collected from different locations and extracted by hydrodistillation and microwave-assisted hydrodistillation techniques. Furthermore, our findings showed a high variability for both antioxidant and antimicrobial activities. The highlighted variability reflects the high impact of plant part, geographic variation and extraction technique on chemical composition and biological activities, which led to conclude that we should select essential oils to be investigated carefully depending on these factors, in order to isolate the bioactive components or to have the best quality of essential oil in terms of biological activities and preventive effects in food. © 2017 Wiley-VHCA AG, Zurich, Switzerland.
Duporté, Geoffroy; Parshintsev, Jevgeni; Barreira, Luís M F; Hartonen, Kari; Kulmala, Markku; Riekkola, Marja-Liisa
2016-05-03
Pinonaldehyde, which is among the most abundant oxidation products of α-pinene, and dimethylamine were selected to study the formation of N-containing low volatile compounds from aldehyde-amine reactions in the atmosphere. Gas phase reactions took place in a Tedlar bag, which was connected to a mass spectrometer ionization source via a short deactivated fused silica column. In addition to on-line analysis, abundance of gaseous precursors and reaction products were monitored off-line. Condensable products were extracted from the bag's walls with a suitable solvent and analyzed by gas chromatography coupled to chemical ionization high-resolution quadrupole time-of-flight mass spectrometry and by ultra-high-performance liquid chromatography coupled to electrospray ionization Orbitrap mass spectrometry. The reactions carried out resulted in several mid-low vapor pressure nitrogen-containing compounds that are potentially important for the formation of secondary organic aerosols in the atmosphere. Further, the presence of brown carbon, confirmed by liquid chromatography-UV-vis-mass spectrometry, was observed. Some of the compounds identified in the laboratory study were also observed in aerosol samples collected at SMEAR II station (Hyytiälä, Finland) in August 2015 suggesting the importance of aldehyde-amine reactions for the aerosol formation and growth.
Zuo, Zhaojiang; Yang, Lin; Chen, Silan; Ye, Chaolin; Han, Yujie; Wang, Sutong; Ma, Yuandan
2018-06-06
Cyanobacteria release abundant volatile organic compounds (VOCs), which can poison other algae and cause water odor. To uncover the effects of nitrogen (N) nutrients on the formation of cyanobacteria VOCs, the cell growth, VOC emission and the expression of genes involving in VOC formation in Microcystis aeruginosa were investigated under different N conditions. With the supplement of NaNO 3 , NaNO 2 , NH 4 Cl, urea, Serine (Ser) and Arginine (Arg) as the sole N source, NaNO 3 , urea and Arg showed the best effects on M. aeruginosa cell growth, and limited N supply inhibited the cell growth. M. aeruginosa released 26, 25, 23, 27, 23 and 25 compounds, respectively, in response to different N forms, including furans, sulfocompounds, terpenoids, benzenes, hydrocarbons, aldehydes, and esters. Low-N especially Non-N condition markedly promoted the VOC emission. Under Non-N condition, four up-regulated genes involving in VOC precursor formation were identified, including the genes of pyruvate kinase, malic enzyme and phosphotransacetylase for terpenoids, the gene of aspartate aminotransferase for benzenes and sulfocompounds. In eutrophic water, cyanobacteria release different VOC blends using various N forms, and the reduction of N amount caused by cyanobacteria massive growth can promote algal VOC emission by up-regulating the gene expression. Copyright © 2018 Elsevier Inc. All rights reserved.
A mini-review on econophysics: Comparative study of Chinese and western financial markets
NASA Astrophysics Data System (ADS)
Zheng, Bo; Jiang, Xiong-Fei; Ni, Peng-Yun
2014-07-01
We present a review of our recent research in econophysics, and focus on the comparative study of Chinese and western financial markets. By virtue of concepts and methods in statistical physics, we investigate the time correlations and spatial structure of financial markets based on empirical high-frequency data. We discover that the Chinese stock market shares common basic properties with the western stock markets, such as the fat-tail probability distribution of price returns, the long-range auto-correlation of volatilities, and the persistence probability of volatilities, while it exhibits very different higher-order time correlations of price returns and volatilities, spatial correlations of individual stock prices, and large-fluctuation dynamic behaviors. Furthermore, multi-agent-based models are developed to simulate the microscopic interaction and dynamic evolution of the stock markets.
Smith, Aaron D; Holtzapple, Mark T
2010-12-01
The MixAlco process is a biorefinery based on the production of carboxylic acids via mixed-culture fermentation. Nitrogen is essential for microbial growth and metabolism, and may exist in soluble (e.g., ammonia) or insoluble forms (e.g., cells). Understanding the dynamics of nitrogen flow in a countercurrent fermentation is necessary to develop control strategies to maximize performance. To estimate nitrogen concentration profiles in a four-stage fermentation train, a mass balance-based segregated-nitrogen model was developed, which uses separate balances for solid- and liquid-phase nitrogen with nitrogen reaction flux between phases assumed to be zero. Comparison of predictions with measured nitrogen profiles from five trains, each with a different nutrient contacting pattern, shows the segregated-nitrogen model captures basic behavior and is a reasonable tool for estimating nitrogen profiles. The segregated-nitrogen model may be used to (1) estimate optimal nitrogen loading patterns, (2) develop a reaction-based model, (3) understand influence of model inputs (e.g., operating parameters, feedstock properties, nutrient loading pattern) on the steady-state nitrogen profile, and (4) determine the direction of the nitrogen reaction flux between liquid and solid phases. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Airborne reduced nitrogen: ammonia emissions from agriculture and other sources.
Anderson, Natalie; Strader, Ross; Davidson, Cliff
2003-06-01
Ammonia is a basic gas and one of the most abundant nitrogen-containing compounds in the atmosphere. When emitted, ammonia reacts with oxides of nitrogen and sulfur to form particles, typically in the fine particle size range. Roughly half of the PM(2.5) mass in eastern United States is ammonium sulfate, according to the US EPA. Results from recent studies of PM(2.5) show that these fine particles are typically deposited deep in the lungs and may lead to increased morbidity and/or mortality. Also, these particles are in the size range that will degrade visibility. Ammonia emission inventories are usually constructed by multiplying an activity level by an experimentally determined emission factor for each source category. Typical sources of ammonia include livestock, fertilizer, soils, forest fires and slash burning, industry, vehicles, the oceans, humans, pets, wild animals, and waste disposal and recycling activities. Livestock is the largest source category in the United States, with waste from livestock responsible for about 3x10(9) kg of ammonia in 1995. Volatilization of ammonia from livestock waste is dependent on many parameters, and thus emission factors are difficult to predict. Despite a seasonal variation in these values, the emission factors for general livestock categories are usually annually averaged in current inventories. Activity levels for livestock are from the USDA Census of Agriculture, which does not give information about animal raising practices such as housing types and grazing times, waste handling systems, and approximate animal slurry spreading times or methods. Ammonia emissions in the United States in 1995 from sources other than livestock are much lower; for example, annual emissions are roughly 8x10(8) kg from fertilizer, 7x10(7) kg from industry, 5x10(7) kg from vehicles and 1x10(8) kg from humans. There is considerable uncertainty in the emissions from soil and vegetation, although this category may also be significant. Recommendations for future directions in ammonia research include designing experiments to improve emission factors and their resolution in all significant source categories, developing mass balance models, and refining of the livestock activity level data by eliciting judgment from experts in this field.
Mi, Hongbo; Qian, Chunlu; Mao, Linchun
2012-12-01
The aim of this study was to explore the artificial hibernation of crucian carp for waterless preservation and to characterize the quality and biochemical properties during and after the hibernation. Anesthetized crucian carp using eugenol were stored at 8 °C with 90 % oxygen and 95-100 % relative humidity for 38 h and then transferred to fresh water to recover. Liquid loss and cooking loss had no significant changes (p > 0.05). The total volatile basic nitrogen content and 2-thiobarbituric acid value in hibernated fish were significantly higher (p < 0.05) than fresh and recovered groups. Serum cortisol, glutamic-oxaloacetic transaminase (GOT), alkaline phosphatase (AKP), and acid phosphatase (ACP) activities significantly increased (p < 0.05) during hibernation, while glutamic-pyruvic transaminase (GPT) had no significant change (p > 0.05). Both ACP and AKP activities decreased upon the fish recovered, but only the ACP activity returned to normal. However, there were increased serum glucose concentration, GOT and GPT activities in recovered fish. On the basis of these findings, it can be concluded that the artificially hibernated life of crucian carp was 38 h by the combination of anaesthetizing and low temperature. The muscle quality would not be influenced, and most of the stress responses would disappear after hibernated fish recovered.
Bou, Ricard; Claret, Anna; Stamatakis, Antonios; Martínez, Brigitte; Guerrero, Luis
2017-12-01
Citric acid is commonly used as a flavoring and preservative in food and beverages. The effect of adding citric acid directly or encapsulated (each at 1 and 2 g kg -1 ) on the quality and shelf-life of ready-to-eat sea bass patties was evaluated during storage at 4 °C in vacuum skin packaging. Microbial growth and total basic volatile nitrogen were maintained at relatively low levels up to 8 weeks of storage. With respect to oxidative stability, the addition of encapsulated citric acid minimized secondary oxidation values more efficiently than its direct addition, regardless of the concentration. This is in agreement with the decreased fishy odor observed in those patties containing encapsulated citric acid. Accordingly, sensory analysis showed that the addition of encapsulated citric acid at 1 g kg -1 resulted in lower scores in fish aroma compared to that of the control. Sourness is dependent on the amount of citric acid added, regardless of the form (direct or encapsulated). The form of citric acid addition, rather than the amount of citric acid added, caused changes in texture. Therefore, the use of encapsulated citric acid represents a suitable strategy that is of great interest in the seafood industry. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
A pilot study of indoor air quality in screen golf courses.
Goung, Sun-Ju Nam; Yang, Jinho; Kim, Yoon Shin; Lee, Cheol Min
2015-05-01
The aims of this study were to provide basic data for determining policies on air quality for multi-user facilities, including the legal enrollment of the indoor air quality regulation as designated by the Ministry of Environment, and to establish control plans. To this end, concentrations of ten pollutants (PM10, carbon monoxide (CO), carbon dioxide (CO2), nitrogen dioxide (NO2), formaldehyde (HCHO), total volatile organic compounds (TVOCs), radon (Rn), oxone (O3), total bacteria counts (TBC), and asbestos) in addition to nicotine, a smoking index material used to determine the impact of smoking on the air quality, were investigated in indoor game rooms and lobbies of 64 screen golf courses. The average concentration of none of the ten pollutants in the game rooms and lobbies of screen golf courses was found to exceed the limit set by the law. There were, however, pollutant concentrations exceeding limits in some screen golf courses, in order to establish a control plan for the indoor air quality of screen golf courses, a study on the emission sources of each pollutant was conducted. The major emission sources were found to be facility users' activities such as smoking and the use of combustion appliances, building materials, and finishing materials.
Silbande, A; Cornet, J; Cardinal, M; Chevalier, F; Rochefort, K; Smith-Ravin, J; Adenet, S; Leroi, F
2018-02-01
The spoilage potential of 28 bacterial strains isolated from spoiled raw yellowfin tuna was evaluated. Bacterial species were inoculated in irradiated tuna matrix. Chemical changes, bacterial growth and sensory quality were monitored during aerobic storage at 8°C. Pseudomonas spp., Enterobacter spp. and Escherichia hermanii had no spoiling effect. Brochothrix thermosphacta and Carnobacterium divergens/maltaromaticum developed moderate unpleasant odours. Hafnia paralvei and Serratia spp. released strong off-odours (pyrrolidine, sulphur/cabbage). No bacterial group (except H. paralvei) combined with Pseudomonas spp. deteriorated the sensory quality of tuna. When C. divergens/maltaromaticum was associated with H. paralvei or B. thermosphacta, the odour is close to the naturally contaminated tuna stored on the same conditions. The pH, total volatile basic nitrogen (TVBN) and trimethylamine (TMA) were not correlated with the spoilage. The bacterial species had a different impact on the sensory quality of the fish. The bacterial interactions lead to an enhancement or an inhibition of the spoilage potential and the bacterial growth. The specific spoilage organism (SSO) appears to be an association of lactic acid bacteria (LAB) with Enterobacteriaceae or B. thermosphacta. Pseudomonas, often dominant at the sensory rejection time, is not a good quality indicator. © 2017 The Society for Applied Microbiology.
Effects of Various Kinds of Salt on the Quality and Storage Characteristics of Tteokgalbi.
Lee, Hyun-Joo; Lee, Jae-Joon
2014-01-01
This study was carried out to evaluate the effects of various kinds of salt on the quality and storage characteristics of tteokgalbi. The tteokgalbi was prepared using four types of salt: 1.5% purified salt (control, C), 1.5% five-year-old solar salt (FS), 1.5% Topan solar salt (TS), and 1.5% French Guérande solar salt (GS). The moisture, crude lipid, crude ash, crude protein and calorie contents, water holding capacity, and cooking loss were not significantly different between control and all other treatments. As for the textural characteristics, the use of GS increased the hardness of the tteokgalbi. According to the sensory evaluation, the use of TS had the best score in springiness. Tteokgalbi made with TS and GS had the two highest scores in flavor and total acceptability. During 15 d of storage, the contents of 2-thiobarbituric acid (TBA) value, volatile basic nitrogen (VBN) and the total microbial counts increased, while the pH decreased. The TBA values of the tteokgalbi containing TS and GS were lower than that of C. Lightness (L) and yellowness (b) values decreased during storage, but redness (a) displayed no significant difference during storage. Overall, the best results, in terms of TBA value and sensory attributes, were obtained for the tteokgalbi containing TS and GS.
Design of a microbial contamination detector and analysis of error sources in its optical path.
Zhang, Chao; Yu, Xiang; Liu, Xingju; Zhang, Lei
2014-05-01
Microbial contamination is a growing concern in the food safety today. To effectively control the types and degree of microbial contamination during food production, this paper introduces a design for a microbial contamination detector that can be used for quick in-situ examination. The designed detector can identify the category of microbial contamination by locating its characteristic absorption peak and then can calculate the concentration of the microbial contamination by fitting the absorbance vs. concentration lines of standard samples with gradient concentrations. Based on traditional scanning grating detection system, this design improves the light splitting unit to expand the scanning range and enhance the accuracy of output wavelength. The motor rotation angle φ is designed to have a linear relationship with the output wavelength angle λ, which simplifies the conversion of output spectral curves into wavelength vs. light intensity curves. In this study, we also derive the relationship between the device's major sources of errors and cumulative error of the output wavelengths, and suggest a simple correction for these errors. The proposed design was applied to test pigments and volatile basic nitrogen (VBN) which evaluated microbial contamination degrees of meats, and the deviations between the measured values and the pre-set values were only in a low range of 1.15% - 1.27%.
Lee, Soo-Yoen; Kim, Hyun-Wook; Hwang, Ko-Eun; Song, Dong-Heon; Choi, Min-Sung; Ham, Youn-Kyung; Choi, Yun-Sang; Lee, Ju-Woon; Lee, Si-Kyung; Kim, Cheon-Jei
2015-01-01
This study was conducted to investigate the effects of kimchi powder and onion peel extract on the quality characteristics of emulsion sausage manufactured with irradiated pork. The emulsion sausages were formulated with 2% kimchi powder and/or 0.05% onion peel extract. The changes in pH value of all treatments were similar, depending on storage periods. The addition of kimchi powder increased the redness and yellowness of the emulsion sausage. The addition of onion peel extract decreased the thiobarbituric acid reactive substances value of the emulsion sausages prepared with irradiated pork. The volatile basic nitrogen value of the emulsion sausage prepared with kimchi powder was the highest, whereas that of the emulsion sausage prepared with onion peel extract was the lowest. The treatment without kimchi powder or onion peel extract and the treatments prepared with onion peel extract showed lower microbial populations than the other treatment. Sensory evaluations indicated that a higher acceptability was attained when kimchi powder was added to the emulsion sausages manufactured with irradiated pork. In conclusion, our results suggest that combined use of kimchi powder and onion peel extract could improve quality characteristics and shelf stability of the emulsion sausage formulated with irradiated pork during chilled storage.
Choi, Yun-Sang; Lee, Ju-Woon; Lee, Si-Kyung
2015-01-01
This study was conducted to investigate the effects of kimchi powder and onion peel extract on the quality characteristics of emulsion sausage manufactured with irradiated pork. The emulsion sausages were formulated with 2% kimchi powder and/or 0.05% onion peel extract. The changes in pH value of all treatments were similar, depending on storage periods. The addition of kimchi powder increased the redness and yellowness of the emulsion sausage. The addition of onion peel extract decreased the thiobarbituric acid reactive substances value of the emulsion sausages prepared with irradiated pork. The volatile basic nitrogen value of the emulsion sausage prepared with kimchi powder was the highest, whereas that of the emulsion sausage prepared with onion peel extract was the lowest. The treatment without kimchi powder or onion peel extract and the treatments prepared with onion peel extract showed lower microbial populations than the other treatment. Sensory evaluations indicated that a higher acceptability was attained when kimchi powder was added to the emulsion sausages manufactured with irradiated pork. In conclusion, our results suggest that combined use of kimchi powder and onion peel extract could improve quality characteristics and shelf stability of the emulsion sausage formulated with irradiated pork during chilled storage. PMID:26761840
Kruk, Zbigniew A; Kim, Hyun Joo; Kim, Yun Ji; Rutley, David L; Jung, Samooel; Lee, Soo Kee; Jo, Cheorun
2014-02-01
This study was conducted to evaluate the combined effect of high pressure (HP) with the addition of soy sauce and/or olive oil on the quality and safety of chicken breast meats. Samples were cut into 100 g pieces and 10% (w/w) of soy sauce (SS), 10% (w/w) of olive oil (OO), and a mixture of both 5% of soy sauce and 5% olive oil (w/w) (SO) were pressurized into meat with high pressure at 300 or 600 MPa. Cooking loss was lower in OO samples than SS samples. With increased pressure to 600 MPa, the oleic acid content of OO samples increased. The total unsaturated fatty acids were the highest in SO and OO 600 MPa samples. Lipid oxidation was retarded by addition of olive oil combined with HP. The addition of olive oil and soy sauce followed by HP decreased the amount of volatile basic nitrogen during storage and reduced the population of pathogens. Sensory evaluation indicated that the addition of olive oil enhanced the overall acceptance and willingness to buy. In conclusion, the combination of HP with the addition of soy sauce and/or olive oil is an effective technology that can improve chemical, health, sensory qualities and safety of chicken breast.
Lim, Ki-Won
2015-01-01
Chicken breast dipped with citric acid (CA) was treated by sous vide processing and stored in a refrigerated state for 0, 3, 6, 9, and 14 d. A non-dipped control group (CON) and three groups dipped in different concentrations of citric acid concentration were analyzed (0.5%, 0.5CIT; 2.0%, 2CIT and 5.0%, 5CIT; w/v). Cooking yield and moisture content increased due to the citric acid. While the redness of the juice and meat in all groups showed significant increase during storage, the redness of the citric acid groups was reduced compared to the control group (p<0.05). The percentage of myoglobin denaturation (PMD) of the CA groups was also increased according to the level of CA during storage. Total aerobic counts, Enterobacteriaceae counts, volatile basic nitrogen and thiobarbituric acid reactive substances (TBARS) were generally lower in the citric acid-treated samples than in untreated ones, indicating extended shelf life of the cooked chicken breast dipped in citric acid solution. The shear force of the 2CIT and 5CIT groups was significantly lower (p<0.05). The findings indicated positive effects in the physicochemical properties and storage ability of sous vide chicken breast at 2% and 5% citric acid concentrations. PMID:26761885
Al-Bachir, Mahfouz
2016-04-15
The effect on microbial, chemical and sensorial properties of sesame seeds was determined after irradiation and storage. The sesame seeds were analyzed before and after irradiation with 3, 6 and 9 kGy of gamma irradiation, and after 6 and 12 months of storage. The results showed that gamma irradiation had no significant (p>0.05) effect on the moisture, ash and fat content on sesame seeds. While, small differences, but sometimes significant (p<0.05), on protein and sugar contents were recorded between irradiated and non-irradiated samples. Total acidity percentage decreased significantly (p<0.05), while total volatile basic nitrogen (TVBN) increased significantly (p<0.05) due to irradiation. During storage, total acidity increased (p<0.05) and TVBN decreased (p<0.05). Gamma irradiation reduced the microorganisms of sesame seeds. Samples treated with 3 kGy or more remained completely free of fungi throughout the storage. While, only the samples treated with 9 kGy remained completely free of bacteria at the end of storage period (after 12 months). The scores for taste, flavor, color and texture of irradiated samples were higher, but not significantly (p>0.05) than those of non-irradiated samples. Copyright © 2015 Elsevier Ltd. All rights reserved.
Monitoring the freshness of fish: development of a qPCR method applied to MAP chilled whiting.
Dehaut, Alexandre; Krzewinski, Frédéric; Grard, Thierry; Chollet, Marlène; Jacques, Philippe; Brisabois, Anne; Duflos, Guillaume
2016-04-01
Monitoring of early stages of freshness decay is a major issue for the fishery industry to guarantee the best quality for this highly perishable food matrix. Numerous techniques have been developed, but most of them have the disadvantage of being reliable only either in the last stages of fish freshness or for the analysis of whole fish. This study describes the development of a qPCR method targeting the torA gene harboured by fish spoilage microorganisms. torA encodes an enzyme that leads to the production of trimethylamine responsible for the characteristic spoiled-fish odour. A degenerate primer pair was designed. It amplified torA gene of both Vibrio and Photobacterium with good efficiencies on 7-log DNA dilutions. The primer pair was used during a shelf-life monitoring study achieved on modified atmosphere packed, chilled, whiting (Merlangius merlangus) fillets. The qPCR approach allows the detection of an increase of torA copies throughout the storage of fillets in correlation with the evolution of both total volatile basic nitrogen (-0.86) and trimethylamine concentrations (-0.81), known as spoilage markers. This study described a very promising, sensitive, reliable, time-effective, technique in the field of freshness characterisation of processed fish. © 2015 Society of Chemical Industry.
Na, Soyoung; Kim, Jin-Hee; Jang, Hye-Jin; Park, Hee Jung; Oh, Se-Wook
2018-05-01
In this study, we examined the effects of an ε-polylysine (PL) and chitosan (CH) coating on the quality of shrimp under refrigeration. Pacific white shrimp (Litopenaeus vannamei) were coated with PL, CH, or CH + PL and stored at 4 °C for 15 days. The quality of shrimp was measured by observing changes in microbiota, pH, total volatile basic nitrogen (TVB-N), and sensory characteristics. Among the coating films, the CH + PL coating most effectively inhibited the growth of mesophilic and psychrotrophic bacteria, Pseudomonas spp., and H 2 S-producing bacteria. This coating increased the shelf life of shrimp by decreasing the amount of mesophilic and psychrotrophic bacteria, with inhibition greater than three log cycles on the ninth day of storage. In addition, the CH and CH + PL coatings effectively suppressed the formation of TVB-N compared with that in the control by 43% and 30%, respectively. The pH of all treated samples increased slowly compared with that of the control, but no significant difference was observed. Sensory quality was similar to microbial and physicochemical properties, and the acceptability of all treated samples gradually decreased. Copyright © 2018. Published by Elsevier B.V.
Yu, Hwan Hee; Song, Myung Wook; Kim, Tae-Kyung; Choi, Yun-Sang; Cho, Gyu Yong; Lee, Na-Kyoung; Paik, Hyun-Dong
2018-01-01
Abstract The objective of this study was to investigate comparison of physicochemical, microbiological, and sensory characteristics of Hanwoo eye of round by various packaging methods [wrapped packaging (WP), modified atmosphere packaging (MAP), vacuum packaging (VP) with three different vacuum films, and vacuum skin packaging (VSP)] at a small scale. Packaged Hanwoo beef samples were stored in refrigerated conditions (4±1°C) for 28 days. Packaged beef was sampled on days 0, 7, 14, 21, and 28. Physicochemical [pH, surface color, thiobarbituric acid reactive substances (TBARS), and volatile basic nitrogen (VBN) values], microbiological, and sensory analysis of packaged beef samples were performed. VP and VSP samples showed low TBARS and VBN values, and pH and surface color did not change substantially during the 28-day period. For VSP, total viable bacteria, psychrotrophic bacteria, lactic acid bacteria, and coliform counts were lower than those for other packaging systems. Salmonella spp. and Escherichia coli O157:H7 were not detected in any packaged beef samples. A sensory analysis showed that the scores for appearance, flavor, color, and overall acceptability did not change significantly until day 7. In total, VSP was effective with respect to significantly higher a* values, physicochemical stability, and microbial safety in Hanwoo packaging (p<0.05). PMID:29805283
Effect of tea polyphenols on microbiological and biochemical quality of Collichthys fish ball.
Yi, Shumin; Li, Jianrong; Zhu, Junli; Lin, Yi; Fu, Linglin; Chen, Wei; Li, Xuepeng
2011-07-01
Tea polyphenols (TP), as the most active constituents of tea, are considered natural food additives. This study examined the preservative properties of TP for Collichthys fish ball in well storage. Vacuum-packed Collichthys fish balls were treated with 0, 0.1, 0.15, 0.20, 0.25, and 0.30 g kg(-1) TP and stored at 0 °C for 17 days. Microbiological results were obtained using a biochemical test, API system kit, and 16S rDNA sequence analysis. Results confirmed that the dominant bacteria in Collichthys fish balls are the genera Serratia and Pseudomonas. Total viable counts dropped two orders of magnitude in Collichthys fish balls with 0.25 g kg(-1) TP compared with the control. The advantages of total volatile basic nitrogen value, 2-thiobarbituric acid value and texture value were clearly observed, whereas pH and whiteness value exhibited no significant decrease for the group treated with 0.25 g kg(-1) TP. More than 0.25 g kg(-1) TP added could retain excellent fish ball characteristics in terms of sensory assessment after 17 days. The shelf life of Collichthys fish balls supplemented with tea polyphenols can be prolonged for an additional 6 days in good condition at 0 °C storage. Copyright © 2011 Society of Chemical Industry.
Rapid non-destructive assessment of pork edible quality by using VIS/NIR spectroscopic technique
NASA Astrophysics Data System (ADS)
Zhang, Leilei; Peng, Yankun; Dhakal, Sagar; Song, Yulin; Zhao, Juan; Zhao, Songwei
2013-05-01
The objectives of this research were to develop a rapid non-destructive method to evaluate the edible quality of chilled pork. A total of 42 samples were packed in seal plastic bags and stored at 4°C for 1 to 21 days. Reflectance spectra were collected from visible/near-infrared spectroscopy system in the range of 400nm to 1100nm. Microbiological, physicochemical and organoleptic characteristics such as the total viable counts (TVC), total volatile basic-nitrogen (TVB-N), pH value and color parameters L* were determined to appraise pork edible quality. Savitzky-Golay (SG) based on five and eleven smoothing points, Multiple Scattering Correlation (MSC) and first derivative pre-processing methods were employed to eliminate the spectra noise. The support vector machines (SVM) and partial least square regression (PLSR) were applied to establish prediction models using the de-noised spectra. A linear correlation was developed between the VIS/NIR spectroscopy and parameters such as TVC, TVB-N, pH and color parameter L* indexes, which could gain prediction results with Rv of 0.931, 0.844, 0.805 and 0.852, respectively. The results demonstrated that VIS/NIR spectroscopy technique combined with SVM possesses a powerful assessment capability. It can provide a potential tool for detecting pork edible quality rapidly and non-destructively.
A Novel Hyperspectral Microscopic Imaging System for Evaluating Fresh Degree of Pork.
Xu, Yi; Chen, Quansheng; Liu, Yan; Sun, Xin; Huang, Qiping; Ouyang, Qin; Zhao, Jiewen
2018-04-01
This study proposed a rapid microscopic examination method for pork freshness evaluation by using the self-assembled hyperspectral microscopic imaging (HMI) system with the help of feature extraction algorithm and pattern recognition methods. Pork samples were stored for different days ranging from 0 to 5 days and the freshness of samples was divided into three levels which were determined by total volatile basic nitrogen (TVB-N) content. Meanwhile, hyperspectral microscopic images of samples were acquired by HMI system and processed by the following steps for the further analysis. Firstly, characteristic hyperspectral microscopic images were extracted by using principal component analysis (PCA) and then texture features were selected based on the gray level co-occurrence matrix (GLCM). Next, features data were reduced dimensionality by fisher discriminant analysis (FDA) for further building classification model. Finally, compared with linear discriminant analysis (LDA) model and support vector machine (SVM) model, good back propagation artificial neural network (BP-ANN) model obtained the best freshness classification with a 100 % accuracy rating based on the extracted data. The results confirm that the fabricated HMI system combined with multivariate algorithms has ability to evaluate the fresh degree of pork accurately in the microscopic level, which plays an important role in animal food quality control.
A Novel Hyperspectral Microscopic Imaging System for Evaluating Fresh Degree of Pork
Xu, Yi; Chen, Quansheng; Liu, Yan; Sun, Xin; Huang, Qiping; Ouyang, Qin; Zhao, Jiewen
2018-01-01
Abstract This study proposed a rapid microscopic examination method for pork freshness evaluation by using the self-assembled hyperspectral microscopic imaging (HMI) system with the help of feature extraction algorithm and pattern recognition methods. Pork samples were stored for different days ranging from 0 to 5 days and the freshness of samples was divided into three levels which were determined by total volatile basic nitrogen (TVB-N) content. Meanwhile, hyperspectral microscopic images of samples were acquired by HMI system and processed by the following steps for the further analysis. Firstly, characteristic hyperspectral microscopic images were extracted by using principal component analysis (PCA) and then texture features were selected based on the gray level co-occurrence matrix (GLCM). Next, features data were reduced dimensionality by fisher discriminant analysis (FDA) for further building classification model. Finally, compared with linear discriminant analysis (LDA) model and support vector machine (SVM) model, good back propagation artificial neural network (BP-ANN) model obtained the best freshness classification with a 100 % accuracy rating based on the extracted data. The results confirm that the fabricated HMI system combined with multivariate algorithms has ability to evaluate the fresh degree of pork accurately in the microscopic level, which plays an important role in animal food quality control. PMID:29805285
Commercial-scale utilization of greenhouse residues.
Maroušek, Josef; Kondo, Yoshikazu; Ueno, Masami; Kawamitsu, Yoshinobu
2013-01-01
Development of techniques utilizing waste without any additional energy or rare catalysts is a starting point for becoming sustainable. In the present work, the complex utilization of greenhouse residues was studied on a commercial scale. Only the energy produced by the process (8%) was used to run the technology, thanks to multilevel heat recuperation and high methane yields (over 340 m(3) volatile solid t(-1) ). Manifestations of labile carbon in relation to available nitrogen, methane yields, and the formation of inhibitors were investigated in detail. The results sweep away many false beliefs about the ratios of carbon to nitrogen and highlight the role of the availability of carbon in phytomass utilization. © 2013 International Union of Biochemistry and Molecular Biology, Inc.
IT-strategy and major aspects of quality management on the market of goods and services
NASA Astrophysics Data System (ADS)
Khafizov, I. I.; Galimov, A. N.
2017-09-01
The article deals with the basic provisions of the formation of IT-strategies and interaction with management quality. Formation of the IT-strategy in a volatile, changing marketing environment is a prerequisite for efficient operation of the company.
Canty, Russell; Gonzalez, Edwin; MacDonald, Caleb; Osswald, Sebastian; Zea, Hugo; Luhrs, Claudia C.
2015-01-01
Graphene sheets doped with nitrogen were produced by the reduction-expansion (RES) method utilizing graphite oxide (GO) and urea as precursor materials. The simultaneous graphene generation and nitrogen insertion reactions are based on the fact that urea decomposes upon heating to release reducing gases. The volatile byproducts perform two primary functions: (i) promoting the reduction of the GO and (ii) providing the nitrogen to be inserted in situ as the graphene structure is created. Samples with diverse urea/GO mass ratios were treated at 800 °C in inert atmosphere to generate graphene with diverse microstructural characteristics and levels of nitrogen doping. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to study the microstructural features of the products. The effects of doping on the samples structure and surface area were studied by X-ray diffraction (XRD), Raman Spectroscopy, and Brunauer Emmet Teller (BET). The GO and urea decomposition-reduction process as well as nitrogen-doped graphene stability were studied by thermogravimetric analysis (TGA) coupled with mass spectroscopy (MS) analysis of the evolved gases. Results show that the proposed method offers a high level of control over the amount of nitrogen inserted in the graphene and may be used alternatively to control its surface area. To demonstrate the practical relevance of these findings, as-produced samples were used as electrodes in supercapacitor and battery devices and compared with conventional, thermally exfoliated graphene. PMID:28793618
Stabilization of waste-activated sludge through the anoxic-aerobic digestion process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hashimoto, S.; Fujita, M.; Terai, K.
1982-08-01
During the aerobic digestion process, the nitrogen which had been embedded in the activated sludge is solubilized to form ammoniacal and nitric nitrogen which are in turn transferred to the liquor and cause the increase of nitrogen loading in the sewage treatment plant. In this study, the anoxic-aerobic sludge digestion system which is a modified form of the conventional aerobic sludge digestion is made up of aerobic and anoxic tanks and are designed to remove both the volatile suspended solids and the total nitrogen (TN) simultaneously. The removal efficiencies of both VSS and TN were investigated by feeding waste-activated sludgemore » continuously and semicontinuously. The maximum percent reduction of both VSS and TN was achieved at a Q /SUB r/ /Q /SUB s/ ratio of 2 in the continuous process. The semicontinuous process was used to improve the nitrogen removal efficiency further. In the semicontinuous process, the VSS reduction efficiency as well as the nitrogen removal efficiency increased remarkably under a constant Q /SUB r/ /Q /SUB s/ ratio of 2. This process also achieved a VSS reduction efficiency higher than the aerobic digestion process (control). It was suggested that the additional anoxic tank enhanced the sludge digestion. Furthermore, the anoxic-aerobic digestion system can be applied to other treatment media like the primary sludge, industrial sludge, animal manure, etc.« less
Arginase Inhibitor in the Pharmacological Correction of Endothelial Dysfunction
Pokrovskiy, Mihail V.; Korokin, Mihail V.; Tsepeleva, Svetlana A.; Pokrovskaya, Tatyana G.; Gureev, Vladimir V.; Konovalova, Elena A.; Gudyrev, Oleg S.; Kochkarov, Vladimir I.; Korokina, Liliya V.; Dudina, Eleonora N.; Babko, Anna V.; Terehova, Elena G.
2011-01-01
This paper is about a way of correction of endothelial dysfunction with the inhibitor of arginase: L-norvaline. There is an imbalance between vasoconstriction and vasodilatation factors of endothelium on the basis of endothelial dysfunction. Among vasodilatation agents, nitrogen oxide plays the basic role. Amino acid L-arginine serves as a source of molecules of nitrogen oxide in an organism. Because of the high activity of arginase enzyme which catalyzes the hydrolysis of L-arginine into ornithine and urea, the bioavailability of nitrogen oxide decreases. The inhibitors of arginase suppress the activity of the given enzyme, raising and production of nitrogen oxide, preventing the development of endothelial dysfunction. PMID:21747978
Ma, Q L; Hamid, N; Bekhit, A E D; Robertson, J; Law, T F
2012-12-01
This research was carried out to determine the effects of pre-rigor injection of beef semimembranosus muscle with nine proteases from plant and microbial sources, on the volatile profile of cooked beef after 1 day and 21 days post-mortem (PM) storage using Solid-phase microextraction gas chromatography mass spectrometry analysis. A total of 23 aldehydes, 5 ketones, 3 furans, 8 nitrogen and sulphur compounds, 4 alkanes, 7 alcohols and 6 terpenes were detected. Eleven volatile compounds characteristic of ginger flavour were detected in zingibain-treated meat. Benzaldehyde significantly increased (p<0.05) only in kiwifruit juice (KJ), fungal 31 protease and Asparagus protease (ASP) treated samples from 1 day to 21 days PM storage. A significant increase (p<0.05) in 3-methylbutanal was observed in KJ, bacterial and fungal protease treated samples at 21 days PM storage. Treatments with bromelain, papain, ASP, actinidin, and KJ (except KJ 21 days) proteases resulted in flavour profiles closer to that of the control beef sample. Copyright © 2012 Elsevier Ltd. All rights reserved.
Volatile element chemistry of selected lunar, meteoritic, and terrestrial samples
NASA Technical Reports Server (NTRS)
Simoneit, B. R.; Christiansen, P. C.; Burlingame, A. L.
1973-01-01
Using vacuum pyrolysis and high resolution mass spectrometry, a study is made of the gas release patterns of representative lunar samples, meteorites, terrestrial samples, and synthetic samples doped with various sources of carbon and nitrogen. The pyrolytic gas evolution patterns were intercorrelated, allowing an assessment of the possible sources of the volatilizable material in the lunar samples to be made. Lightly surface adsorbed species and more strongly chemisorbed species are released from ambient to 300 C and from 300 to 500 C, respectively. The low-temperature volatiles (less than 500 C) derived from various chondrites correlate well with the gas evolution patterns of volatile-rich samples, as for example 74220 and 61221. Solar wind entrapped species and molecules derived from reactions probably in the grain surfaces are evolved from about 500 to 700 C, respectively. Solar wind implanted C, N, and S species are generated from 750 to 1150 C, probably by reaction with the mineral matrix during the annealing process. Possible indigenous and/or refractory carbide, nitride, and sulfide C, N, and S are released in the region from 1200 C to fusion.
Guo, Xiangyang; Song, Chuankui; Ho, Chi-Tang; Wan, Xiaochun
2018-10-15
l-Theanine, the most abundant amino acid in tea, is widely believed to be associated with the tea taste, however, its contribution to the formation of tea aroma is still unknown. Volatiles were determined and nitrogen-containing compounds formed during manufacturing processes were quantified. Lower levels of total sugar and l-theanine were detected in the Oolong tea product undergoing full fire processing (FFOT) suggesting that l-theanine probably involved in the volatile formation during manufacturing processes. Methylpyrazine and 2,5-dimethylpyrazine, two newly formed compounds in FFOT, together with other volatiles were successfully detected in a model thermal reaction of d-glucose and l-theanine (GT-MTR) but not detectable in thermal reactions with single d-glucose (G-MTR) or l-theanine (T-MTR). The concentration of 2,5-dimethylpyrazine increased significantly by adding additional l-theanine to 2nd roasted tea. Our study demonstrated that l-theanine, at least partly, contributed to the formation of 2,5-dimethylpyrazine, a key roasted peanutty flavor in Oolong tea. Copyright © 2018. Published by Elsevier Ltd.
Geological Mapping of Pluto and Charon Using New Horizons Data
NASA Astrophysics Data System (ADS)
Moore, J. M.; Spencer, J. R.; McKinnon, W. B.; Howard, A. D.; White, O. M.; Umurhan, O. M.; Schenk, P. M.; Beyer, R. A.; Singer, K.; Stern, S. A.; Weaver, H. A.; Young, L. A.; Ennico Smith, K.; Olkin, C.; Horizons Geology, New; Geophysics Imaging Team
2016-06-01
Pluto and Charon exhibit strikingly different surface appearances, despite their similar densities and presumed bulk compositions. Systematic mapping has revealed that much of Pluto's surface can be attributed to surface-atmosphere interactions and the mobilization of volatile ices by insolation. Many mapped valley systems appear to be the consequence of glaciation involving nitrogen ice. Other geological activity requires or required internal heating. The convection and advection of volatile ices in Sputnik Planum can be powered by present-day radiogenic heat loss. On the other hand, the prominent mountains at the western margin of Sputnik Planum, and the strange, multi-km-high mound features to the south, probably composed of H2O, are young geologically as inferred by light cratering and superposition relationships. Their origin, and what drove their formation so late in Solar System history, is under investigation. The dynamic remolding of landscapes by volatile transport seen on Pluto is not unambiguously evident in the mapping of Charon. Charon does, however, display a large resurfaced plain and globally engirdling extensional tectonic network attesting to its early endogenic vigor.
The Geology of Pluto and Charon as Revealed by New Horizons
NASA Astrophysics Data System (ADS)
Moore, Jeffrey M.; Spencer, John R.; McKinnon, William B.; Stern, S. Alan; Young, Leslie A.; Weaver, Harold A.; Olkin, Cathy B.; Ennico, Kim; New Horizons GGI Team
2016-04-01
NASA's New Horizons spacecraft has revealed that Pluto and Charon exhibit strikingly different surface appearances, despite their similar densities and presumed bulk compositions. Much of Pluto's surface can be attributed to surface-atmosphere interactions and the mobilization of volatile ices by insolation. Many valley systems appear to be the consequence of glaciation involving nitrogen ice. Other geological activity requires or required internal heating. The convection and advection of volatile ices in Sputnik Planum can be powered by present-day radiogenic heat loss. On the other hand, the prominent mountains at the western margin of Sputnik Planum, and the strange, multi-km-high mound features to the south, probably composed of H2O, are young geologically as inferred by light cratering and superposition relationships. Their origin, and what drove their formation so late in Solar System history, is under investigation. The dynamic remolding of landscapes by volatile transport seen on Pluto is not unambiguously evident on Charon. Charon does, however, display a large resurfaced plain and globally engirdling extensional tectonic network attesting to its early endogenic vigor.
The Geology of Pluto and Charon as Revealed by New Horizons
NASA Technical Reports Server (NTRS)
Moore, Jeffrey M.; Spencer, John R.; McKinnon, William B.; Stern, S. Alan; Young, Leslie A.; Weaver, Harold A.; Olkin, Cathy B.; Ennico, Kim
2016-01-01
NASA's New Horizons spacecraft has revealed that Pluto and Charon exhibit strikingly different surface appearances, despite their similar densities and presumed bulk compositions. Much of Pluto's surface can be attributed to surface-atmosphere interactions and the mobilization of volatile ices by insolation. Many valley systems appear to be the consequence of glaciation involving nitrogen ice. Other geological activity requires or required internal heating. The convection and advection of volatile ices in Sputnik Planum can be powered by present-day radiogenic heat loss. On the other hand, the prominent mountains at the western margin of Sputnik Planum, and the strange, multi-km-high mound features to the south, probably composed of H2O, are young geologically as inferred by light cratering and superposition relationships. Their origin, and what drove their formation so late in Solar System history, is under investigation. The dynamic remolding of landscapes by volatile transport seen on Pluto is not unambiguously evident on Charon. Charon does, however, display a large resurfaced plain and globally engirdling extensional tectonic network attesting to its early endogenic vigor.
Laboratory studies of monoterpene secondary organic aerosol formation and evolution
NASA Astrophysics Data System (ADS)
Thornton, J. A.; D'Ambro, E.; Zhao, Y.; Lee, B. H.; Pye, H. O. T.; Schobesberger, S.; Shilling, J.; Liu, J.
2017-12-01
We have conducted a series of chamber experiments to study the molecular composition and properties of secondary organic aerosol (SOA) formed from monoterpenes under a range of photochemical and dark conditions. We connect variations in the SOA mass yield to molecular composition and volatility, and use a detailed Master Chemical Mechanism (MCM) based chemical box model with dynamic gas-particle partitioning to examine the importance of various peroxy radical reaction mechanisms in setting the SOA yield and properties. We compare the volatility distribution predicted by the model to that inferred from isothermal room-temperature evaporation experiments using the FIGAERO-CIMS where SOA particles collected on a filter are allowed to evaporate under humidified pure nitrogen flow stream for up to 24 hours. We show that the combination of results requires prompt formation of low volatility SOA from predominantly gas-phase mechanisms, with important differences between monoterpenes (alpha-Pinene and delta-3-Carene) followed by slower non-radical particle phase chemistry that modulates both the chemical and physical properties of the SOA. Implications for the regional evolution of atmospheric monoterpene SOA are also discussed.
Zhu, Chao-Zhi; Zhao, Jing-Li; Tian, Wei; Liu, Yan-Xia; Li, Miao-Yun; Zhao, Gai-Ming
2018-01-01
To evaluate the role of Maillard reactions in the generation of flavor compounds in Jinhua ham, the reactions of glucose and ethanal with histidine and lysine, respectively, were studied by simulating the ripening conditions of Jinhua ham. The volatile products produced were analyzed using solid phase microextraction-gas chromatography/mass spectrometry. The results showed that 8 volatile compounds were generated by the reaction of glucose and histidine and 10 volatile compounds were generated by the reaction of glucose and lysine. Reactions of ethanal with lysine and with histidine both generated 31 volatile compounds that contributed to the flavor of Jinhua ham. This indicates that histidine and lysine related to Maillard reactions possibly play important roles in the generation of the unique flavor compounds in Jinhua ham. This research demonstrates that free amino acids participate in the generation of volatile compounds from Jinhua ham via the Maillard reaction and provides a basic mechanism to explain flavor formation in Jinhua ham. Jinhua ham is a well-known traditional Chinese dry-cured meat product. However, the formation of the compounds comprising its special flavor is not well understood. Our results indicate that Maillard reactions occur in Jinhua ham under ripening conditions. This work illustrates the contribution of Maillard reactions to the flavor of Jinhua ham. © 2017 Institute of Food Technologists®.
NASA Astrophysics Data System (ADS)
Mysen, Bjorn
2018-12-01
Understanding what governs the speciation in the C-O-H-N system aids our knowledge of how volatiles affect mass transfer processes in the Earth's interior. Experiments with aluminosilicate melt + C-O-H-N volatiles were, therefore, carried out with Raman and infrared spectroscopy to 800 °C and near 700 MPa in situ in hydrothermal diamond anvil cells. The measurements were conducted in situ with the samples at the desired temperatures and pressures in order to avoid possible structural and compositional changes resulting from quenching to ambient conditions prior to analysis. Experiments were conducted without any reducing agent and with volatiles added as H2O, CO2, and N2 because both carbon and nitrogen can occur in different oxidation states. Volatiles dissolved in melt comprise H2O, CO3 2-, HCO3 -, and molecular N2, whereas in the coexisting fluid, the species are H2O, CO2, CO3 2-, and N2. The HCO3 -/CO3 2- equilibrium in melts shift toward CO3 2- groups with increasing temperature with ΔH = 114 ± 22 kJ/mol. In fluids, the CO2 abundance is essentially invariant with temperature and pressure. For fluid/melt partitioning, those of H2O and N2 are greater than 1 with temperature-dependence that yields ΔH values of - 6.5 ± 1.5 and - 19.6 ± 3.7 kJ/mol, respectively. Carbonate groups, CO3 2- are favored by melt over fluid. Where redox conditions in the Earth's interior exceed that near the QFM oxygen buffer (between NNO and MW buffers), N2 is the stable nitrogen species and as such acts as a diluent of both fluids and melts. For fluids, this lower silicate solubility, in turn, enhances alkalinity. This means that in such environments, the transport of components such as high field strength cations, will be enhanced. Effects of dissolved N2 on melt structure are considerably less than on fluid structure.[Figure not available: see fulltext.
Horikoshi, Satoshi; Shirasaka, Yutaro; Uchida, Hiroshi; Horikoshi, Natsuko; Serpone, Nick
2016-08-04
To date syntheses of nitrogen-doped TiO2 photocatalysts (TiO2-xNx) have been carried out under high temperatures and high pressures with either NH3 or urea as the nitrogen sources. This article reports for the first time the facile preparation of N-doped TiO2 (P25 titania) in aqueous media at ambient temperature and pressure under inert conditions (Ar- and N2-purged dispersions) with 4-nitrophenol (or 4-nitrobenzaldehyde) as the nitrogen source. The resulting N-doped P25 TiO2 materials were characterized by UV/Vis and X-ray photoelectron spectroscopies (XPS) that confirmed the presence of nitrogen within the photocatalyst; X-ray diffraction (XRD) techniques confirmed the crystalline phases of the doped material. The photocatalytic activity of N-doped TiO2 was assessed through examining the photodegradation of 4-chlorophenol in aqueous media and iso-propanol as a volatile pollutant under UV/Vis and visible-light irradiation. Under visible light irradiation, undoped P25 was inactive contrary to N-doped P25 that successfully degraded 95% of the 4-chlorophenol (after 10 h) and 23% of iso-propanol (after 2.5 h).
Wang, Huanyuan; Han, Jichang; Tong, Wei; Cheng, Jie; Zhang, Haiou
2017-06-01
Maize was grown on compound soils constituted from mixtures of soft rock and sand at different ratios, and water use efficiency (WUE), nitrogen use efficiency (NUE) and fertilizer nitrogen use efficiency (FNUE) were quantified. The data were used to assist in designing strategies for optimizing water and nitrogen management practices for maize on the substrates used. Maize was sown in composite soil prepared at three ratios of soft rock and sand (1:1, 1:2 and 1:5 v/v) in Mu Us Sandy Land, Yuyang district, Yulin city, China. Yields, amount of drainage, nitrogen (N) leaching, WUE and NUE were calculated. Then a water and nitrogen management model (WNMM) was calibrated and validated. No significant difference in evapotranspiration of maize was found among compound soils with soft rock/sand ratios of 1:1, 1:2 and 1:5, while water drainage increased significantly with increasing soft rock/sand ratio. WUE increased to 1.30 kg m -3 in compound soil with 1:2 soft rock/sand ratio. Nitrogen leaching and ammonia volatilization were the main reason for nitrogen loss, and N reduction mainly relied on crop uptake. NUE and FNUE could reach 33.1 and 24.9 kg kg -1 N respectively. Water drainage and nitrogen leaching occurred mostly during heavy rainfall or irrigation. Through a scenario analysis of different rainfall types, water and fertilizer management systems were formulated each year. This study shows that soft rock plays a key role in improving the WUE, NUE and FNUE of maize. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Zhou, Minghua; Zhu, Bo; Butterbach-Bahl, klaus; Brüggemann, Nicolas
2016-04-01
Balancing nitrogen (N) budgets of agricultural systems is essential for sustaining yields at lower environmental costs. The knowledge, however, of total N budgets of agricultural systems including all N fluxes is still rare in the literature. Here, we applied a combination of monitoring in situ N fluxes and field 15N tracer and 15N isotope dilution techniques to investigate the effects of different N fertilizers (control, synthetic fertilizer, 60% synthetic fertilizer N plus 40% pig manure N, pig manure only applied at the same N rate 280 kg N ha-1 yr-1) on N pools, cycling processes, fluxes and total N balances in a subtropical wheat-maize rotation system of China. Nitrate leaching and NH3 volatilization were main hydrological and gaseous N loss pathways, respectively. The warm and wet maize season was associated with significantly larger environmental N losses than the cooler and drier wheat season. The field 15N tracing experiment showed that the wheat system had high N retention capacity (˜50% of 15N application) but with short residence time. I.e. 90% of soil residual 15N labelled fertilizer in the wheat system were utilized by plants or lost to the environment in the subsequent maize season. Our annual total N balances of the different treatments revealed that combined synthetic and organic fertilization or manure only maintained the same level of yields and led to significantly lower N losses and higher N retention, even though larger NH3 volatilization losses were caused by manure incorporation. Thus, our study suggests that a combination of synthetic and organic N fertilizers is suitable for sustaining agricultural productivity while reducing environmental N losses through fostering interactions between the soil C and N cycle.
Measurement of ammonia emissions from tropical seabird colonies
NASA Astrophysics Data System (ADS)
Riddick, S. N.; Blackall, T. D.; Dragosits, U.; Daunt, F.; Braban, C. F.; Tang, Y. S.; MacFarlane, W.; Taylor, S.; Wanless, S.; Sutton, M. A.
2014-06-01
The excreta (guano) of seabirds at their breeding colonies represents a notable source of ammonia (NH3) emission to the atmosphere, with effects on surrounding ecosystems through nitrogen compounds being thereby transported from sea to land. Previous measurements in temperate UK conditions quantified emission hotspots and allowed preliminary global upscaling. However, thermodynamic processes and water availability limit NH3 formation from guano, which suggests that the proportion of excreted nitrogen that volatilizes as NH3 may potentially be higher at tropical seabird colonies than similar colonies in temperate or sub-polar regions. To investigate such differences, we measured NH3 concentrations and environmental conditions at two tropical seabird colonies during the breeding season: a colony of 20,000 tern spp. and noddies on Michaelmas Cay, Great Barrier Reef, and a colony of 200,000 Sooty terns on Ascension Island, Atlantic Ocean. At both sites time-integrated NH3 concentrations and meteorological parameters were measured. In addition, at Ascension Island, semi-continuous hourly NH3 concentrations and micrometeorological parameters were measured throughout the campaign. Ammonia emissions, quantified using a backwards Lagrangian atmospheric dispersion model, were estimated at 21.8 μg m-2 s-1 and 18.9 μg m-2 s-1 from Michaelmas Cay and Ascension Island, respectively. High temporal resolution NH3 data at Ascension Island estimated peak hourly emissions up to 377 μg NH3 m2 s-1. The estimated percentage fraction of total guano nitrogen volatilized was 67% at Michaelmas Cay and 32% at Ascension Island, with the larger value at the former site attributed to higher water availability. These values are much larger than published data for sub-polar locations, pointing to a substantial climatic dependence on emission of atmospheric NH3 from seabird colonies.
Growth of Desulfovibrio on the Surface of Agar Media
Iverson, Warren P.
1966-01-01
Growth of Desulfovibrio desulfuricans (API strain) was found to take place in an atmosphere of hydrogen on the agar surface of complex media, including yeast extract (Difco), and Trypticase Soy Agar (BBL) without any added reducing agents. For growth on a 2% yeast extract-agar surface in the absence of hydrogen (nitrogen atmosphere), sodium lactate was required in the medium. Growth on the surface of Trypticase Soy Agar (TSA) under nitrogen took place readily in the absence of an added hydrogen donor. A medium (TSA plus salts) is described based upon the addition of sodium lactate (4 ml per liter), magnesium sulfate (2 g per liter), and ferrous ammonium sulfate (0.05%) to TSA, which appears suitable for the isolation and growth of Desulfovibrio on the surface of agar plates in an atmosphere of hydrogen. Sodium lactate does not appear to be essential in this medium for good growth and sulfate reduction in a hydrogen atmosphere, but is essential in a nitrogen atmosphere. Growth of Desulfovibrio (hydrogen atmosphere) on the agar surface of media commonly used for its cultivation as well as on an inorganic medium containing bicarbonate as a source of carbon is poor and erratic unless inoculated (Desulfovibrio) plates of TSA plus salts are incubated in the same container with plates of these media. This stimulatory effect of incubation with inoculated plates of TSA plus salts medium appears to be due to as yet unidentified volatile material produced by D. desulfuricans when growing on this medium. Another volatile material, or possibly the identical material, appears to act similarly to a hydrogen donor. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:5955798
Navarro-González, Rafael; Iñiguez, Enrique; de la Rosa, José; McKay, Christopher P
2009-10-01
A key goal for astrobiology is the search for evidence of life on Mars. Because liquid water is a fundamental environmental requirement for life, the recent set of missions to Mars have focused on a strategy known as "follow the water." Since life is made of organic molecules, a logical next step is "follow the organics." However, organics are expected to be present at very low levels on Mars, which would make their detection challenging. Viking was unable to detect organics at parts per billion (ppb), but the effective upper limit could be higher due to the low efficiency of the thermal volatilization (TV) step in releasing organics. Due to its ease of use, TV is still the method selected for current and future NASA and ESA missions. Here, we show that when organics are present in the soil at levels above 1500 parts per million (ppm), there are several characteristic organic fragments detected by TV-mass spectrometry; however, when the levels are below <150 ppm, TV oxidizes them, and no organic fragments are released. Instead, nitric oxide (NO) is produced and can be used to determine quantitatively the organic content if the C/N ratio is determined. Any atmospheric NO sorbed or mineral nitrogen (e.g., nitrates) present in the soil would release NO by TV at distinctive temperature regimes that would not overlap with the organic nitrogen source. Therefore, we suggest that monitoring NO provides the best chance for Phoenix and other future Mars missions to detect nitrogen-containing organics in the soil or ice.
Liu, Hui; Chen, Yinguang; Wu, Jiang
2017-11-01
Carbon substrate is required by biological nutrient removal (BNR) microorganism, but it is usually insufficient in the influent of many municipal wastewater treatment plants. In this study the use of ethanol-enriched fermentation liquid, which was derived from dairy wastewater, as the preferred carbon substrate of BNR was reported. First, the application of dairy wastewater and food processing wastewater and their fermentation liquid as the carbon substrate of BNR was compared in the short-term tests. The fermented wastewater showed higher BNR performance than the unfermented one, and the fermentation liquid of dairy wastewater (FL-DW), which was obtained under pH 8 and fermentation time of 6 day, exhibited the highest phosphorus (95.5%) and total nitrogen (97.6%) removal efficiencies due to its high ethanol content (57.9%). Then, the long-term performance of FL-DW acting as the carbon substrate of BNR was compared with that of acetate and ethanol, and the FL-DW showed the greatest phosphorus and total nitrogen removal. Further investigation showed that the use of FL-DW caused the highest polyhydroxyalkanoates (PHAs) synthesis in BNR microbial cells, and more PHAs were used for phosphorus uptake and denitrification rather than glycogen synthesis and microbial growth. The FL-DW can be used as a preferred carbon substrate for BNR microbes. AB: aerobic end sludge active biomass; BNR: biological nutrient removal; DW: dairy wastewater; FL-DW: fermentation liquid of dairy wastewater; FPW: food processing wastewater; FL-FPW: fermentation liquid of food processing wastewater; PHAs: polyhydroxyalkanoates; PHB: poly-3-hydroxybutyrate; PHV: poly-3-hydroxyvalerate; PH2MV: poly-3-hydroxy-2- methylvalerate; PAOs: phosphorus accumulating organisms; SBR: sequencing batch reactor; SOP: soluble ortho-phosphorus; TN: total nitrogen; TSS: total suspended solids; VSS: volatile suspended solids; VFAs: volatile fatty acids; WWTPs: wastewater treatment plants.
Preparation of Bismuth- and Thallium-Based Cuprate Superconductors
1991-10-01
heating times, the use of gold foil wrappings, and, possibly most impor- tantly, a decrease in thallium volatility according to the principle of Le ... Chatelier (27). If the reactions are carried out in nonporous sleeves with exiting gases passed through multiple traps filled with basic peroxide
Administrative Segregation for Mentally Ill Inmates
ERIC Educational Resources Information Center
O'Keefe, Maureen L.
2007-01-01
Largely the result of prison officials needing to safely and efficiently manage a volatile inmate population, administrative segregation or supermax facilities are criticized as violating basic human needs, particularly for mentally ill inmates. The present study compared Colorado offenders with mental illness (OMIs) to nonOMIs in segregated and…
GROUND WATER ISSUE: STEAM INJECTION FOR SOIL AND AQUIFER REMEDIATION
The purpose of this Issue Paper is to provide to those involved in assessing remediation technologies for specific sites basic technical information on the use of steam injection for the remediation of soils and aquifers that are contaminated by volatile or semivolatile organic c...
Liu, Zhen; Du, Zhenyu; Song, Hao; Wang, Chuangye; Subhan, Fazle; Xing, Wei; Yan, Zifeng
2014-02-15
N-doped carbon material constitutes abundant of micropores and basic nitrogen species that have potential implementation for CO2 capture. In this paper, porous carbon material with high nitrogen content was simply fabricated by carbonizing low cost and widely available urea formaldehyde resin, and then followed by KOH activation. CO2 capture experiment showed high adsorption capacity of 3.21 mmol g(-1) at 25 °C under 1 atm for UFCA-2-600. XRD, SEM, XPS and FT-IR analysis confirmed that a graphitic-like structure was retained even after high temperature carbonization and strong base activation. Textural property analysis revealed that narrow micropores, especially below 0.8 nm, were effective for CO2 adsorption by physical adsorption mechanism. Chemical evolved investigation revealed that graphitic-like embedded basic nitrogen groups are generated from bridged and terminal amines of urea formaldehyde resin from thermal carbonization and KOH activation treatment, which is responsible for the enrichment of CO2 capacity by chemical adsorption mechanism. The relationship between CO2 adsorption capacity and pore size or basic N species was also studied, which turned out that both of them played crucial role by physical and chemical adsorption mechanism, respectively. Copyright © 2013 Elsevier Inc. All rights reserved.
Sex and Aggregation-Sex Pheromones of Cerambycid Beetles: Basic Science and Practical Applications.
Hanks, Lawrence M; Millar, Jocelyn G
2016-07-01
Research since 2004 has shown that the use of volatile attractants and pheromones is widespread in the large beetle family Cerambycidae, with pheromones now identified from more than 100 species, and likely pheromones for many more. The pheromones identified to date from species in the subfamilies Cerambycinae, Spondylidinae, and Lamiinae are all male-produced aggregation-sex pheromones that attract both sexes, whereas all known examples for species in the subfamilies Prioninae and Lepturinae are female-produced sex pheromones that attract only males. Here, we summarize the chemistry of the known pheromones, and the optimal methods for their collection, analysis, and synthesis. Attraction of cerambycids to host plant volatiles, interactions between their pheromones and host plant volatiles, and the implications of pheromone chemistry for invasion biology are discussed. We also describe optimized traps, lures, and operational parameters for practical applications of the pheromones in detection, sampling, and management of cerambycids.
Xu, Liang; Liu, Haiping; Ma, Yucui; Wu, Cui; Li, Ruiqi; Chao, Zhimao
2018-06-13
The differences of volatile components in male (MFB) and female flower buds (FFB) of Populus × tomentosa were analysed and compared by HS-SPME with GC-MS for the first time. A total of 34 compounds were identified. Two clusters were clearly divided into male and female by hierarchical clustering analysis. Both the male and female flower buds showed methyl salicylate (22.83 and 24.09%, respectively) and 2-hydroxy-benzaldehyde (10.05 and 12.41%, respectively) as the main volatile constituents. The content of 2-cyclohexen-1-one, benzyl benzoate, and methyl benzoate in FFB was remarkably higher than in MFB. In contrast, the content of ethyl benzoate in MFB was greater than that in FFB. The phenomena showed the characteristic differences between MFB and FFB of P. × tomentosa, which enriched the basic studies on dioecious plant.
Deshpande, P M; Dawande, S D
2013-04-01
The petroleum products have wide range of volatility and are required to be stored in bulk. The evaporation losses are significant and it is a economic as well as environmental concern, since evaporative losses of petroleum products cause increased VOC in ambient air. Control of these losses poses a major problem for the storage tank designers. Ever rising cost of petroleum products further adds to the gravity of the problem. Condensation is one of the technologies for reducing volatile organic compounds emissions. Condensation is effected by condenser, which is basically a heat exchanger and the heat exchanger configuration plays an important role. The horizontal spiral coil heat exchanger is a promising configuration that finds an application in VOC control. This paper attempts to understand underlying causes of emissions and analyse the option of horizontal spiral coil heat exchanger as vent condenser.
NASA Astrophysics Data System (ADS)
Park, Jun-Yong; Ryu, Jae Wook; Sohn, Il
2014-08-01
The in situ crystallization behavior of highly volatile commercial mold fluxes for medium carbon steels was investigated using the confocal laser scanning microscope (CLSM) equipped with an optimized isolated observation system. The highly volatile compounds of the mold flux were suppressed during heating allowing direct observation in the CLSM. Cooling rates of 25, 50, 100, 400, and 800 K/min were incorporated and continuous cooling transformation (CCT) diagrams of 4 different commercial mold fluxes for medium carbon steels were developed. Identification of the crystalline phase was conducted with XRD and SEM-EDS analysis. A cuspidine crystalline was observed in all samples at various cooling rates. With higher basicity, CaF2, and NaF, the crystallization of the fluxes was enhanced according to the CCT diagram. As the slag structure becomes depolymerized, the diffusion rate of the cathodic ions seems to increase.
A Brief User's Guide to the Excel ® -Based DF Calculator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jubin, Robert T.
2016-06-01
To understand the importance of capturing penetrating forms of iodine as well as the other volatile radionuclides, a calculation tool was developed in the form of an Excel ® spreadsheet to estimate the overall plant decontamination factor (DF). The tool requires the user to estimate splits of the volatile radionuclides within the major portions of the reprocessing plant, speciation of iodine and individual DFs for each off-gas stream within the Used Nuclear Fuel reprocessing plant. The Impact to the overall plant DF for each volatile radionuclide is then calculated by the tool based on the specific user choices. The Excelmore » ® spreadsheet tracks both elemental and penetrating forms of iodine separately and allows changes in the speciation of iodine at each processing step. It also tracks 3H, 14C and 85Kr. This document provides a basic user's guide to the manipulation of this tool.« less
The volatile composition of comets
NASA Technical Reports Server (NTRS)
Weaver, H. A.
1988-01-01
Comets may be our best probes of the physical and chemical conditions in the outer regions of the solar nebula during that crucial period when the planets formed. The volatile composition of cometary nuclei can be used to decide whether comets are the product of a condensation sequence similar to that invoked to explain the compositions of the planets and asteroids, or if comets are simply agglomerations of interstellar grains which have been insignificantly modified by the events that shaped the other bodies in the solar system. Although cometary nuclei are not generally accessible to observation, observations of cometary comae can illuminate at least some of the mysteries of the nuclei provided one has a detailed knowledge of the excitation conditions in the coma and also has access to basic atomic and molecular data on the many species present in comets. Examined here is the status of our knowledge of the volatile composition of cometary nuclei and how these data are obtained.
Crespo, Elena; Devasena, Samudrala; Sikkens, Cor; Centeno, Raymund; Cristescu, Simona M; Harren, Frans J M
2012-04-30
When performing trace gas analysis, it is not always possible to bring the source of volatiles and the gas analyzer together. In these cases, volatile storage containers, such as thermal desorption (TD) tubes, can be used for off-line measurement. TD is routinely combined with gas chromatography/mass spectrometry (GC/MS), but so far not with proton-transfer reaction mass spectrometry (PTRMS), which has a faster response. A PTR-quadrupole-MS instrument and a PTR-ion-trap-MS instrument were separately coupled to a TD unit for off-line analysis of trace volatiles in air. Carbograph 1TD/Carbopack X sorbent tubes were filled with different concentrations of a trace gas mixture containing low molecular weight volatiles (32 g/mol up to 136 g/mol) and measured with the above-mentioned combinations. The carrier gas in the TD unit was changed from helium to nitrogen to be able to combine this instrument with the mass spectrometer. Good linearity and reproducibility with the amount of gas stored were obtained. The storage capacity over time (up to 14 days) showed larger variability (<11% for all compounds, except for acetone 27%). Several tubes were filled with breath of different persons, and the breath of a smoker showed increased levels of acetonitrile and benzene. The combination of the PTR ion-trap instrument with the TD unit was also investigated. Due to its higher sampling rate, the ion-trap system showed higher throughput capabilities than the quadrupole system. The combination of TD with PTRMS using both a quadrupole and an ion trap for off-line volatile analysis has been validated. TD tubes can be a robust and compact volatile storage method when the mass spectrometry and the sampling cannot be performed in the same place, for example in large screening studies. In addition, a higher measurement throughput than with GC/MS could be obtained. Copyright © 2012 John Wiley & Sons, Ltd.
Selective Fluorination and Separation of Metals with NF3 for Mass Spectrometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, Richard A.; Barinaga, Charles J.; McNamara, Bruce K.
2016-03-01
We report recent progress on the development of a new methodology based on the generation of volatile metal fluorides through the use of nitrogen trifluoride (NF3), and the separation and measurement of these metal fluorides by electron ionization mass spectrometry. Though unreactive under ambient conditions, NF3 reacts selectively at specified temperatures with various metal-containing species to form volatile metal fluorides. Utilizing these species-dependent traits, elements of a sample may be sequentially produced and thus separated on-line. Metals were reacted inside a thermogravimetric analyzer, the gas outlet of which was directly coupled to a quadrupole mass spectrometer with an electron impactmore » ionization source via a molecular leak valve. We present results of this project including the electron ionization mass spectrum of gaseous tellurium hexafluoride.« less
NASA Astrophysics Data System (ADS)
Riddick, S. N.; Ward, D. S.; Hess, P.; Mahowald, N.; Massad, R. S.; Holland, E. A.
2015-09-01
Nitrogen applied to the surface of the land for agricultural purposes represents a significant source of reactive nitrogen (Nr) that can be emitted as a gaseous Nr species, be denitrified to atmospheric nitrogen (N2), run-off during rain events or form plant useable nitrogen in the soil. To investigate the magnitude, temporal variability and spatial heterogeneity of nitrogen pathways on a global scale from sources of animal manure and synthetic fertilizer, we developed a mechanistic parameterization of these pathways within a global terrestrial model. The parameterization uses a climate dependent approach whereby the relationships between meteorological variables and biogeochemical processes are used to calculate the volatilization of ammonia (NH3), nitrification and run-off of Nr following manure or fertilizer application. For the year 2000, we estimate global NH3 emission and Nr dissolved during rain events from manure at 21 and 11 Tg N yr-1, respectively; for synthetic fertilizer we estimate the NH3 emission and Nr run-off during rain events at 12 and 5 Tg N yr-1, respectively. The parameterization was implemented in the Community Land Model from 1850 to 2000 using a transient simulation which predicted that, even though absolute values of all nitrogen pathways are increasing with increased manure and synthetic fertilizer application, partitioning of nitrogen to NH3 emissions from manure is increasing on a percentage basis, from 14 % of nitrogen applied (3 Tg NH3 yr-1) in 1850 to 18 % of nitrogen applied in 2000 (22 Tg NH3 yr-1). While the model confirms earlier estimates of nitrogen fluxes made in a range of studies, its key purpose is to provide a theoretical framework that can be employed within a biogeochemical model, that can explicitly respond to climate and that can evolve and improve with further observation.
Fan, Changhua; Li, Bo; Xiong, Zhengqin
2018-01-15
Nitrification inhibitors, a promising tool for reducing nitrous oxide (N 2 O) losses and promoting nitrogen use efficiency by slowing nitrification, have gained extensive attention worldwide. However, there have been few attempts to explore the broad responses of multiple reactive gaseous nitrogen emissions of N 2 O, nitric oxide (NO) and ammonia (NH 3 ) and vegetable yield to nitrification inhibitor applications across intensive vegetable soils in China. A greenhouse pot experiment with five consecutive vegetable crops was performed to assess the efficacies of two nitrification inhibitors, namely, nitrapyrin and dicyandiamide on reactive gaseous nitrogen emissions, vegetable yield and reactive gaseous nitrogen intensity in four typical vegetable soils representing the intensive vegetable cropping systems across mainland China: an Acrisol from Hunan Province, an Anthrosol from Shanxi Province, a Cambisol from Shandong Province and a Phaeozem from Heilongjiang Province. The results showed soil type had significant influences on reactive gaseous nitrogen intensity, with reactive gaseous nitrogen emissions and yield mainly driven by soil factors: pH, nitrate, C:N ratio, cation exchange capacity and microbial biomass carbon. The highest reactive gaseous nitrogen emissions and reactive gaseous nitrogen intensity were in Acrisol while the highest vegetable yield occurred in Phaeozem. Nitrification inhibitor applications decreased N 2 O and NO emissions by 1.8-61.0% and 0.8-79.5%, respectively, but promoted NH 3 volatilization by 3.2-44.6% across all soils. Furthermore, significant positive correlations were observed between inhibited N 2 O+NO and stimulated NH 3 emissions with nitrification inhibitor additions across all soils, indicating that reduced nitrification posed the threat of NH 3 losses. Additionally, reactive gaseous nitrogen intensity was significantly reduced in the Anthrosol and Cambisol due to the reduced reactive gaseous nitrogen emissions and increased yield, respectively. Our findings highlight the benefits of nitrification inhibitors for integrating environment and agronomy in intensive vegetable ecosystems in China. Copyright © 2017. Published by Elsevier B.V.
Boudreau, Thomas F; Peck, Gregory M; O'Keefe, Sean F; Stewart, Amanda C
2018-01-01
Yeast assimilable nitrogen (YAN) is essential for yeast growth and metabolism during apple ( Malus x domestica Borkh.) cider fermentation. YAN concentration and composition can impact cider fermentation kinetics and the formation of volatile aroma compounds by yeast. The YAN concentration and composition of apples grown in Virginia, USA over the course of two seasons was determined through analysis of both free amino nitrogen (FAN) and ammonium ion concentration. FAN was the largest fraction of YAN, with a mean value of 51 mg N L -1 FAN compared to 9 mg N L -1 ammonium. Observed YAN values ranged from nine to 249 mg N L -1 , with a mean value of 59 mg N L -1 . Ninety-four percent of all samples analyzed in this study contained <140 mg N L -1 YAN, a concentration generally considered the minimum level needed in grape-based wines for yeast to fully utilize all of the fermentable sugars. FAN concentration was correlated with total YAN concentration, but ammonium concentration was not. Likewise, there was no correlation between FAN and ammonium concentration.
[Effect of Tween 80 on yuxingcao injection and volatile oils from Houttuynia cordata].
Tan, Zhigao; Chao, Zhimao; Sui, Yu; Liu, Haiping; Wu, Xiaoyi; Sun, Jian; Yan, Han
2011-01-01
To research the effect of polysorbate 80 (Tween 80) on Yuxingcao injection and volatile oils from Houttuynia cordata. 1H-NMR spectra of aldehydic and new matter in Yuxingcao injection, volatile oils of H. cordata, and solutions of Tween 80 and volatile oil of H. cordata are determined and compared from various angles of growing origin, storage temperature, and storage time. Three aldehydic singlets in 1H-NMR spectra of every volatile oil from 4 aerial part of H. cordata were observed. These aldehydic peaks were basically disappeared and a new peak at delta 8.30 was found in 1H-NMR spectra of the volatile oil solutions in tween 80. Any obvious aldehydic peak in 1H-NMR spectra did not be observed in Yuxincao injection. A weak peak at 8 8.30 was found in 1H-NMR spectra in Yuxincao injection, and the peak high of delta 8.30 was remarked gone up when the injection was stored in 40 degrees C for 1 to 3 months. Tween 80 might cause the obvious reduce of aldehydic compounds contents and the production of a novel singal at delta 8.30 in 1H-NMR spectra when it was mixed with the volatile oil from the aerial part of H. cordata. The novel signal at delta 8.30 in 1H-NMR spectra existed in Yuxincao injection and was very small, but was increased remarkably when the Yuxincao injection was stored at 40 degrees C for 1 month at least.
Kuhlmann, F E; Apffel, A; Fischer, S M; Goldberg, G; Goodley, P C
1995-12-01
Trifluoroacetic acid (TFA) and other volatile strong acids, used as modifiers in reverse-phase high-performance liquid chromatography, cause signal suppression for basic compounds when analyzed by electrospray ionization mass spectrometry (ESI-MS). Evidence is presented that signal suppression is caused by strong ion pairing between the TFA anion and the protonated sample cation of basic sample molecules. The ion-pairing process "masks" the protonated sample cations from the ESI-MS electric fields by rendering them "neutral. " Weakly basic molecules are not suppressed by this process. The TFA signal suppression effect is independent from the well-known spray problem that electrospray has with highly aqueous solutions that contain TFA. This previously reported spray problem is caused by the high conductivity and surface tension of aqueous TFA solutions. A practical method to enhance the signal for most basic analytes in the presence of signal-suppressing volatile strong acids has been developed. The method employs postcolumn addition of a solution of 75% propionic acid and 25% isopropanol in a ratio 1:2 to the column flow. Signal enhancement is typically 10-50 times for peptides and other small basic molecules. Thus, peptide maps that use ESI-MS for detection can be performed at lower levels, with conventional columns, without the need to use capillary chromatography or reduced mass spectral resolution to achieve satisfactory sensitivity. The method may be used with similar results for heptafluorobutyric acid and hydrochloric acid. A mechanism for TFA signal suppression and signal enhancement by the foregoing method, is proposed.
NASA Technical Reports Server (NTRS)
Worstell, J. H.; Daniel, S. R.
1981-01-01
The influence of substituted pyridines, pyrroles, indoles, and quinolines on the storage stability of conventional Jet A turbine fuel is evaluated. Significant increases in the amount of deposit formed in accelerated storage tests are found upon addition of these compounds at levels as low as one ppm nitrogen. While the effect is correlated with basicity of the nitrogen compound within a given compound class, the correlation does not hold between classes (pyridines, quinolines, etc.). Steric hindrance at the nitrogen atom greatly inhibits deposit promotion. The characteristics, but not the elemental composition, of deposits vary with the identity of the added nitrogen compound and with deposition temperature.
The Nature and Origin of Interplanetary Dust: High Temperature Components
NASA Technical Reports Server (NTRS)
Keller, L. P.; Messenger, S.
2004-01-01
The specific parent bodies of individual interplanetary dust particles (IDPs) are un-known, but the anhydrous chondritic-porous (CP) sub-set has been linked directly to cometary sources [1]. The CP IDPs escaped the thermal processing and water-rock interactions that have severely modified or destroyed the original mineralogy of primitive meteorites. Their origin in the outer regions of the solar system suggests they should retain primitive chemical and physical characteristics from the earliest stages of solar system formation (including abundant presolar materials). Indeed, CP IDPs are the most primitive extraterrestrial materials available for laboratory studies based on their unequilibrated mineralogy [2], high concentrations of carbon, nitrogen and volatile trace elements relative to CI chondrites [3, 4, 5], presolar hydrogen and nitrogen isotopic signatures [6, 7] and abundant presolar silicates [8].
NASA Technical Reports Server (NTRS)
Weisberg, M. K.; Kimura, M.
2004-01-01
The CB chondrites are metal-rich chondritic meteorites having characteristics that sharply distinguish them from other chondrites [1], including (1) high metal abundances (60-80 vol.% metal), (2) most chondrules have cryptocrystalline or barred textures, (3) moderately volatile lithophile elements are highly depleted and (4) nitrogen is enriched in the heavy isotope. Similarities in mineral composition, as well as oxygen and nitrogen isotopic compositions of the CB to CR and CH chondrites are consistent with derivation of these chondrite groups from a common nebular reservoir, hence their grouping in the CR clan [1, 2, 3, 4]. CB chondrites have been divided into CBa (Gujba, Bencubbin, Weatherford) and CBb (Hammadah al Hamra 237 and QUE 94411) subgroups based on petrologic characteristics.
Global distribution and sources of volatile and nonvolatile aerosol in the remote troposphere
NASA Astrophysics Data System (ADS)
Singh, Hanwant B.; Anderson, B. E.; Avery, M. A.; Viezee, W.; Chen, Y.; Tabazadeh, A.; Hamill, P.; Pueschel, R.; Fuelberg, H. E.; Hannan, J. R.
2002-06-01
Airborne measurements of aerosol (condensation nuclei, CN) and selected trace gases made over areas of the North Atlantic Ocean during Subsonic Assessment (SASS) Ozone and Nitrogen Oxide Experiment (SONEX) (October/November 1997), the south tropical Pacific Ocean during Pacific Exploratory Mission (PEM)-Tropics A (September/October 1996), and PEM-Tropics B (March/April 1999) have been analyzed. The emphasis is on interpreting variations in the number densities of fine (>17 nm) and ultrafine (>8 nm) aerosol in the upper troposphere (8-12 km). These data suggest that large number densities of highly volatile CN (104 - 105 cm-3) are present in the upper troposphere and particularly over the tropical/subtropical region. CN number densities in all regions are largest when the atmosphere is devoid of nonvolatile particles. Through marine convection and long-distance horizontal transport, volatile CN originating from the tropical/subtropical regions can frequently impact the abundance of aerosol in the middle and upper troposphere at mid to high latitudes. Nonvolatile aerosols behave in a manner similar to tracers of combustion (CO) and photochemical pollution (peroxyacetylnitrate (PAN)), implying a continental pollution source from industrial emissions or biomass burning. In the upper troposphere we find that volatile and nonvolatile aerosol number densities are inversely correlated. Results from an aerosol microphysical model suggest that the coagulation of fine volatile particles with fewer but larger nonvolatile particles, of principally anthropogenic origin, is one possible explanation for this relationship. In some instances the larger nonvolatile particles may also directly remove precursors (e.g., H2SO4) and effectively stop nucleation.
Olson, Joelle F; Vers, Leonard M Ver; Moon, Roger D; Kells, Stephen A
2017-01-01
After feeding, bed bugs aggregate in cracks and crevices near a host. Aggregation and arrestment are mediated by tactile and chemical stimuli associated with the bugs' feces and exuviae. Volatiles derived from fecally stained filter papers were analyzed by solid-phase microextraction (SPME) and evaluated using a multichoice behavioral assay to determine their impact on bed bug aggregation. In addition, crude fecal extracts were collected in methanol, analyzed by gas chromatography coupled with electroantennogram detection (GC-EAD) and mass spectrometry (GC-MS) and evaluated in open-air multichoice behavioral assays. The SPME method was used to detect (E)-2-hexenal and (E)-2-octenal in heated bed bug feces. The presence of these two volatile components did not affect aggregation. Analysis of the crude fecal extracts revealed several semi-volatile nitrogenous compounds, a carboxylic acid and a sulfur-based compound. Adult antennae responded to compounds eluted from three regions of the crude extract using GC-EAD. A combination of two compounds, dimethyl trisulfide and methyldiethanolamine, resulted in aggregation responses equivalent to the original crude extract. Bed bug aggregation is mediated by semi-volatile compounds derived from fecal extracts, and two compounds are sufficient to elicit aggregation. The two compounds identified here could be used to enhance the effectiveness of insecticidal applications or improve monitoring techniques. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
[Nitrogen and water cycling of typical cropland in the North China Plain].
Pei, Hong-wei; Shen, Yan-jun; Liu, Chang-ming
2015-01-01
Intensive fertilization and irrigation associated increasing grain production has led to serious groundwater depletion and soil/water pollution in the North China Plain (NCP). Intensive agriculture changes the initial mass and energy balance, and also results in huge risks to the water/soil resources and food security regionally. Based on the research reports on the nitrogen cycle and water cycle in typical cropland (winter wheat and summer corn) in the NCP during the past 20 years, and the meteorological data, field experiments and surveys, we calculated the nitrogen cycle and water-cycle for this typical cropland. Annual total nitrogen input were 632 kg N . hm-2, including 523 kg N . hm-2 from commercial fertilizer, 74 kg N . hm-2 from manure, 23 kg N . hm-2 from atmosphere, and 12 kg N . hm-2 from irrigation. All of annual outputs summed to 532 kg N . hm-2 including 289 kg N . hm-2 for crop, 77 kg N . hm-2 staying in soil profile, leaching 104 kg N . hm-2, 52 kg N . hm-2 for ammonia volatilization, 10 kg N . hm-2 loss in nitrification and denitrification. Uncertainties of the individual cases and the summary process lead to the unbalance of nitrogen. For the dominant parts of the field water cycle, annual precipitation was 557 mm, irrigation was 340 mm, while 762 mm was for evapotranspiration and 135 mm was for deep percolation. Considering uncertainties in the nitrogen and water cycles, coupled experiments based on multi-disciplines would be useful for understanding mechanisms for nitrogen and water transfer processes in the soil-plant-atmosphere-continuum (SPAC) , and the interaction between nitrogen and water, as well as determining the critical threshold values for sustainability of soil and water resources in the NCP.
YUAN, CHUNGANG; LU, XIUFEN; QIN, JIE; ROSEN, BARRY P.; LE, X. CHRIS
2015-01-01
Biological systems, ranging from bacteria and fungi to humans, can methylate arsenic. Recent studies have suggested that the AsIII S-adenosylmethionine methyltransferase (arsM) gene in bacteria was responsible for the removal of arsenic as the volatile arsines from the bacteria. However, there has been no direct measure of the arsines released from bacteria cultures. We describe here an integrated system incorporating the bacterial incubation and volatile arsenic species analysis, and we demonstrate its application to the identification of the volatile arsines produced in bacterial cultures. The headspace of the bacterial cultures was purged with helium, and the volatile arsenic species were trapped in a chromatographic column immersed in liquid nitrogen. The cryogenically trapped arsines [AsH3, (CH3)AsH2, (CH3)2AsH, and (CH3)3As] were separated by gas chromatography and were detected by inductively coupled plasma mass spectrometry. A hydride generation system was coupled to the bacterial culture system, allowing for spiking standards and for generating calibration arsines necessary for quantitative analysis. Both bacteria containing the arsM gene or its variant arsMC2 gene were able to produce 400–500 ng of trimethylarsine. No trimethylarsine was detectable in bacteria lacking the arsM gene (containing the vector plasmid as negative control). These results confirm that arsM is responsible for releasing arsenic as volatile species from the arsenic-resistant bacteria. Our results also show traces of AsH3, CH3AsH2, and (CH3)2AsH in cultures of bacteria expressing arsM. The method detection limits for AsH3, CH3AsH2, (CH3)2AsH, and (CH3)3As were 0.5, 0.5, 0.7, and 0.6 pg, respectively. The ability to quantify trace levels of these volatile arsenic species makes it possible to study the biotransformation and biochemical roles of the evolution of these volatile arsenic species by biological systems. PMID:18522094
Hayashi, Kentaro; Nishimura, Seiichi; Yagi, Kazuyuki
2008-02-15
Ammonia (NH(3)) volatilization from a paddy field following applications of urea was measured. Two lysimeters of Gray Lowland soil with a pH (H(2)O) of 5.7 were used for the experiment. Urea was applied at a rate of 50 kg N ha(-1) by incorporation as the basal fertilization (BF) and at rates of 30 and 10 kg N ha(-1) by top-dressing as the first (SF1) and second (SF2) supplemental fertilizations, respectively. Two wind tunnels per lysimeter were installed just after BF; one was transplanted with rice plants (PR plot), and the other was without rice plants (NR plot). Weak volatilization was observed at the PR plots after BF. By contrast, strong volatilization was observed at the PR plots after SF1 with a maximum flux of 150 g N ha(-1) h(-1); however, almost no volatilization was observed after SF2. The NH(3) volatilization loss accounted for 2.1%, 20.9%, 0.5%, and 8.2% of the applied urea at each application, BF, SF1, SF2, and the total application, respectively, for which only the net fluxes as volatilization were accumulated. The NH(3) volatilization fluxes from the paddy water surface (F(vol)) at the NR plots were estimated using a film model for its verification. After confirmation of good correlation, the film model was applied to estimate F(vol) at the PR plots. The NH(3) exchange fluxes by rice plants (F(ric)) were obtained by subtracting F(vol) from the observed net NH(3) flux. The derived F(ric) showed that the rice plants emitted NH(3) remarkably just after SF1 when a relatively high rate of urea was applied, although they absorbed atmospheric NH(3) in the other periods. In conclusion, rice plants are essentially an absorber of atmospheric NH(3); however, they turn into an emitter of NH(3) under excess nutrition of ammoniacal nitrogen.