Sample records for volatile evolution induced

  1. Ozone and OH-induced oxidation of monoterpenes: Changes in the thermal properties of secondary organic aerosol (SOA)

    NASA Astrophysics Data System (ADS)

    Watne, Ågot K.; Westerlund, Jonathan; Hallquist, Åsa M.; Brune, William H.; Hallquist, Mattias

    2017-12-01

    The behaviour of secondary organic aerosols (SOA) in the atmosphere is highly dependent on their thermal properties. Here we investigate the volatility of SOA formed from alpha-pinene, beta-pinene and limonene upon ozone- and OH-induced oxidation, and the effect of OH-induced ageing on the initially produced SOA. For all three terpenes, the ozone-induced SOA was less volatile than the OH-induced SOA. The thermal properties of the SOA were described using three parameters extracted from the volatility measurements: the temperature at which 50 per cent of the volume has evaporated (TVFR0.5), which is used as a general volatility indicator; a slope factor (SVFR), which describes the volatility distribution; and TVFR0.1, which measures the volatility of the least volatile particle fraction. Limonene-derived SOA generally had higher TVFR0.5 values and shallower slopes than SOA derived from alpha- and beta-pinene. This was especially true for the ozone-induced SOA, partially because the ozonolysis of limonene has a strong tendency to cause SOA formation and to produce extremely low volatility VOCs (ELVOCs). Ageing by OH exposure did not reduce TVFR0.5 for any of the studied terpenes but did increase the breadth of the volatility distribution by increasing the aerosols heterogeneity and contents of substances with different vapour pressures, also leading to increases in TVFR0.1. This stands in contrast to previously reported results from smog chamber experiments, in which TVFR0.5 always increased with ageing. These results demonstrate that there are two opposing processes that influence the evolution of SOAs thermal properties as they age, and that results from both flow reactors and static chambers are needed to fully understand the temporal evolution of atmospheric SOA thermal properties.

  2. Effect of the type of oil on the evolution of volatile compounds of taralli during storage.

    PubMed

    Giarnetti, Mariagrazia; Caponio, Francesco; Paradiso, Vito M; Summo, Carmine; Gomes, Tommaso

    2012-03-01

    Baking process leads to a huge quantity of newly formed volatile compounds, which play a major role in developing the flavor of the final product. The aim of this work was to investigate on the evolution of the volatile profile of taralli as a function of both the kind of oil used in the dough and the storage time. The volatile compounds from the taralli were extracted by headspace solid-phase microextraction and analyzed by gas-chromatography/mass spectrometry (GC/MS). Forty-four volatile compounds were identified in taralli, most of which produced by thermically induced reactions occurring during baking process, such as volatiles deriving from Maillard reaction and/or sugar degradation and lipid oxidation. The results obtained demonstrated the essential role played by the type of oil on the formation and on the release of volatile compounds. The volatile compounds significantly increased during storage and their individual levels were in most cases significantly lower in taralli made with extra virgin olive oil than in those made with refined oils. Finally, the taralli made with extra virgin olive oil, compared with those prepared with other vegetable oils, showed to be more resistant to oxidation, probably due to the presence of natural antioxidants. © 2012 Institute of Food Technologists®

  3. Workshop on Evolution of Martian Volatiles. Part 2

    NASA Technical Reports Server (NTRS)

    Jakosky, B. (Editor); Treiman, A. (Editor)

    1996-01-01

    Different aspects of martian science are discussed. Topics covered include: early Mars volatile inventory, evolution through time, geological influences, present atmospheric properties, soils, exobiology, polar volatiles, and seasonal and diurnal cycles

  4. Scientific results of the NASA-sponsored study project on Mars: Evolution of volcanism, tectonics, and volatiles

    NASA Technical Reports Server (NTRS)

    Solomon, Sean C. (Editor); Sharpton, Virgil L. (Editor); Zimbelman, James R. (Editor)

    1990-01-01

    The objectives of the Mars: Evolution of Volcanism, Tectonics, and Volatiles (MEVTV) project are to outline the volcanic and tectonic history of Mars; to determine the influence of volatiles on Martian volcanic and tectonic processes; and to attempt to determine the compositional, thermal, and volatile history of Mars from its volcanic and tectonic evolution. Available data sets were used to test general models of the volcanic and tectonic history of Mars.

  5. To melt is not enough: Retention of volatile species through internal processing in icy bodies

    NASA Astrophysics Data System (ADS)

    Sarid, G.; Stewart-Mukhopadhyay, S.

    2014-07-01

    The outer Solar System hosts a vast population of small icy bodies, considered to be primitive remnants from the planet-formation epoch. Early thermal and collisional processes affected such planetesimals to varying degrees depending on the time scale and dynamics of early planet growth. Recent observations have revealed that many large (>˜1000 km in diameter) transneptunian objects (TNOs) exhibit features of crystalline water ice in their surface spectra [1], as well as spectral features of more volatile ices, such as methane or hydrated ammonia [2]. These telltale observations should be accounted for when considering the alteration history and bulk processing of dwarf planets and their icy progeny. We will discuss preliminary calculations of early evolution scenarios for small icy-rocky bodies formed beyond the water-ice snow line. Such objects should also contain non-negligible fractions of pre-organic volatile compounds. The volatile composition and interior structure of these objects may change considerably due to internal heating and/or collisional modification prior to settling in their current (relatively quiescent) dynamical niches. Our initial model for the objects in question is that of a porous aggregate of various volatile compounds (as ices or trapped gases) and refractory silicate-metal solid grains, comprising the bulk matrix [3]. Chemical compositions for these objects are taken from existing simulations of chemical and dynamical evolution of disk material [4]. The key volatile species (e.g., H_2O, CO, CO_2, NH_3, CH_4, and CH_3OH) are also the most commonly observed in comets [5], which are remnants of such an early planetesimal population. Thermal and chemical internal evolution is examined self-consistently, as the abundances and locations of all species evolve, and we record mass ratios, temperatures, pressures, and porosity variations. The presence of volatile species in the interior can affect the overall heat balance and accompanied phase transitions [6,7]. Another important factor involving volatiles, mostly water ice, is the effect of shock- induced melting and vaporization on the fragmentation and flow regimes within the body, during massive collision events [8]. To explore the effects of collisions on the internal distributions of volatiles, we conduct 3D numerical simulations of collisions between porous icy bodies using the CTH shock-physics code [9]. The spatially heterogeneous effects of shock-induced heating, pore compaction, and bulk brecciation and redistribution of materials are used to estimate the post-impact re-equilibration of internal volatiles following collisions between similarly-sized bodies. We follow a long-term thermal evolution calculation (> 700 Myr), through the bulk alteration of temperature, porosity and composition for icy dwarf planets (>1000 km in diameter). Some initial configurations result in a complex, differentiated structure, where the deep interior holds a few percent of water melt fraction, while there are shallower layers that can retain conditions for volatile-ice preservation (CO_2 and HCN, for this specific model). There exists a distinct separation between the warmer interior, which is much more compacted and hydrous, and the colder exterior, which is much more porous and stratified. If an evolved object, such as this, is subject to a massive collision, the effects of partial melting and porosity quenching may actually serve to trap more volatile species. We show that for massive collisions of icy bodies, the effect of melting may be grossly over-estimated, if extrapolated from that of cratering events. Interestingly, oblique impacts (> 45 deg) will result in less than half of the volume experiencing pressures corresponding to water-ice melting. This means that the deep interior will not necessarily experience extreme alteration. Such an effect could even be more pronounced for porous or partially-differentiated objects. We focus on understanding the effects of different collision regimes (e.g., merging, disruption, hit-and-run, and graze-and-merge) on early volatile preservation. These regimes include potential moon-forming collisions between large TNOs. In the future, such results can be used to estimate the cumulative effects of multiple impacts. For that purpose, we need to understand the survival of water and more volatile species, as a function of their initial phases, objects' size and density (porosity), and the relative timing of collisional and thermo-chemical evolution.

  6. Workshop on Evolution of Martian Volatiles. Part 1

    NASA Technical Reports Server (NTRS)

    Jakosky, B. (Editor); Treiman, A. (Editor)

    1996-01-01

    This volume contains papers that were presented on February 12-14, 1996 at the Evolution for Martian Volatiles Workshop. Topics in this volume include: returned Martian samples; acidic volatiles and the Mars soil; solar EUV Radiation; the ancient Mars Thermosphere; primitive methane atmospheres on Earth and Mars; the evolution of Martian water; the role of SO2 for the climate history of Mars; impact crater morphology; the formation of the Martian drainage system; atmospheric dust-water ice Interactions; volatiles and volcanos; accretion of interplanetary dust particles; Mars' ionosphere; simulations with the NASA Ames Mars General Circulation Model; modeling the Martian water cycle; the evolution of Martian atmosphere; isotopic composition; solar occultation; magnetic fields; photochemical weathering; NASA's Mars Surveyor Program; iron formations; measurements of Martian atmospheric water vapor; and the thermal evolution Models of Mars.

  7. New approach on volatile contents determination in silicate melt inclusions: A coupling X-ray microtomography and geochemical approach in Los Humeros caldera complex (Eastern Mexican Volcanic Belt)

    NASA Astrophysics Data System (ADS)

    Creon, L.; Levresse, G.; Carrasco Nuñez, G.

    2016-12-01

    Volatile contents and magma degassing behavior are known to affect the style, frequency, and intensity of near-surface magmatic processes. For this reason, much effort have been devoted to characterize the volatile evolution of shallow magmatic systems to better constrain volcanic history. Silicate melt inclusions (SMI) represent samples of melt that were isolated from the bulk magma at depth, thus preserving the PTX conditions of the pre-eruptive material. SMI are often affected by the formation of a bubble after trapping; this is a natural consequence of the PVTX properties of crystal-melt-volatile systems. Previous workers have recognized that bubble formation is an obstacle, which affects the interpretation of SMI trapping conditions based only on analysis of the glass phase. Indeed, they explained that bubbles can contain a significant percentage of the volatiles, particularly for those with low solubility in the melt (e.g. CO2). In this study, we propose to define the pre-eruptive PTX conditions of Los Humeros magma chamber using SMI from the various eruption events within 460 and 30 Ka. An innovative analytical coupling has been used in order to determine: (1) the volume of the SMI glass and bubble, using high resolution 3D X-ray microtomography; (2) the density and composition of the bubbles, using Raman spectroscopy; (3) the volatile element contents in glass, using NanoSIMS; and, (4) the major elements composition of the glass, using EPMA. The recalculated volatile concentrations of the total SMI (glass + bubble), illustrate clearly that the volatile content determinations using only the glass phase, underestimate drastically the total volatile content and therefore induce significant error on the determination of the pre-eruptive volcanic budget and on the constrain on the volcanic and thermal history. This study had moreover highlighted the complex evolution of Los Humeros composite magma chamber and, gave constrains for geothermal exploration purpose.

  8. Evolution of Volatile Compounds during the Distillation of Cognac Spirit.

    PubMed

    Awad, Pierre; Athès, Violaine; Decloux, Martine Esteban; Ferrari, Gérald; Snakkers, Guillaume; Raguenaud, Patrick; Giampaoli, Pierre

    2017-09-06

    Cognac wine spirit has a complex composition in volatile compounds which contributes to its organoleptic profile. This work focused on the batch distillation process and, in particular, on volatile compounds specifically produced by chemical reactions during the distillation of Cognac wine spirit, traditionally conducted in two steps with charentais pot stills. The aim of this study was to characterize these volatile compounds formed during distillation. Sampling has been performed on the distillates and inside the boiler during a typical Cognac distillation. The analysis of these samples allowed us to perform a mass balance and to point out several types of volatile compounds whose quantities strongly increased during the distillation process. These compounds were distinguished by their chemical family. It has been found that the first distillation step was decisive for the formation of volatile compounds. Moreover, 2 esters, 3 aldehydes, 12 norisoprenoids, and 3 terpenes were shown to be generated during the process. These results suggest that some volatile compounds found in Cognac spirit are formed during distillation due to chemical reactions induced by high temperature. These findings give important indications to professional distillers in order to enhance the product's quality.

  9. Martian stable isotopes: volatile evolution, climate change and exobiological implications

    NASA Technical Reports Server (NTRS)

    Jakosky, B. M.

    1999-01-01

    Measurements of the ratios of stable isotopes in the martian atmosphere and crust provide fundamental information about the evolution of the martian volatile and climate system. Current best estimates of the isotope ratios indicate that there has been substantial loss of gases to space and exchange of gases between the atmosphere and the crust throughout geologic time; exchange may have occurred through circulation of water in hydrothermal systems. Processes of volatile evolution and exchange will fractionate the isotopes in a manner that complicates the possible interpretation of isotopic data in terms of any fractionation that may have been caused by martian biota, and must be understood first. Key measurements are suggested that will enhance our understanding of the non-biological fractionation of the isotopes and of the evolution of the martian volatile system.

  10. Semiochemicals released by pecan alleviate physiological suppression in overwintering larvae of Acrobasis nuxvorella (Lepidoptera: Pyralidae).

    PubMed

    Vargas-Arispuro, I; Corella-Madueño, M A G; Harris, M K; Martínez-Téllez, M A; Gardea, A A; Fu-Castillo, A; Orozco-Avitia, A

    2013-10-01

    Acrobasis nuxvorella Neunzig (pecan nut casebearer) is a monophagous herbivore of Carya illinoinensis (Wang.) K. Koch (pecan); both are indigenous to North America, where Carya has evolved for ≈60 million years. We hypothesized that this close association may have resulted in a parallel evolution allowing casebearer to use pecan volatiles to synchronize seasonality. Casebearer overwinters in diapause as a first-instar larva in a hibernaculum attached to a dormant pecan bud. Larval emergence from this structure after diapause or postdiapause quiescence coincides with the onset of pecan bud growth in the spring, and this interaction was the subject of this study. Dormant pecan twigs with hibernacula-infested buds were exposed to a water control or pecan volatiles from 'Western Schley' cultivar, and monitored to observe larval response by using a microcalorimeter. Initial testing showed that metabolic heat produced by overwintering larvae remained low and unchanged when exposed to water vapor and significantly increased within a few hours after exposure to volatiles from new pecan foliage. This shows that these larvae in hibernacula are in a physiologically suppressed state of diapause or postdiapause quiescence, from which they detect and respond to these pecan volatiles. Further studies to quantify larval responses showed that 90 and 80% of the larvae became active and emerged from their hibernacula ≈6 d after exposure to Western Schley and 'Wichita' volatiles, respectively. Mixtures of 13 sesquiterpenes from those pecan volatiles were identified to induce physiological activity within larvae after hours of exposure, followed some days later by larval emergence from hibernacula. Host volatiles, to our knowledge, have not previously been reported to induce early instar larvae in hibernacula to rouse from a state of physiological arrest to resume normal growth and development. This also has potential for use in pest management.

  11. Landform Erosion and Volatile Redistribution on Ganymede and Callisto

    NASA Technical Reports Server (NTRS)

    Moore, Jeffrey Morgan; Howard, Alan D.; McKinnon, William B.; Schenk, Paul M.; Wood, Stephen E.

    2009-01-01

    We have been modeling landscape evolution on the Galilean satellites driven by volatile transport. Our work directly addresses some of the most fundamental issues pertinent to deciphering icy Galilean satellite geologic histories by employing techniques currently at the forefront of terrestrial, martian, and icy satellite landscape evolution studies [e.g., 1-6], including modeling of surface and subsurface energy and volatile exchanges, and computer simulation of long-term landform evolution by a variety of processes. A quantitative understanding of the expression and rates of landform erosion, and of volatile redistribution on landforms, is especially essential in interpreting endogenic landforms that have, in many cases, been significantly modified by erosion [e.g., 7-9].

  12. Molecular and genomic basis of volatile-mediated indirect defense against insects in rice.

    PubMed

    Yuan, Joshua S; Köllner, Tobias G; Wiggins, Greg; Grant, Jerome; Degenhardt, Jörg; Chen, Feng

    2008-08-01

    Rice plants fed on by fall armyworm (Spodoptera frugiperda, FAW) caterpillars emit a blend of volatiles dominated by terpenoids. These volatiles were highly attractive to females of the parasitoid Cotesia marginiventris. Microarray analysis identified 196 rice genes whose expression was significantly upregulated by FAW feeding, 18 of which encode metabolic enzymes potentially involved in volatile biosynthesis. Significant induction of expression of seven of the 11 terpene synthase (TPS) genes identified through the microarray experiments was confirmd using real-time RT-PCR. Enzymes encoded by three TPS genes, Os02g02930, Os08g07100 and Os08g04500, were biochemically characterized. Os02g02930 was found to encode a monoterpene synthase producing the single product S-linalool, which is the most abundant volatile emitted from FAW-damaged rice plants. Both Os08g07100 and Os08g04500 were found to encode sesquiterpene synthases, each producing multiple products. These three enzymes are responsible for production of the majority of the terpenes released from FAW-damaged rice plants. In addition to TPS genes, several key genes in the upstream terpenoid pathways were also found to be upregulated by FAW feeding. This paper provides a comprehensive analysis of FAW-induced volatiles and the corresponding volatile biosynthetic genes potentially involved in indirect defense in rice. Evolution of the genetic basis governing volatile terpenoid biosynthesis for indirect defense is discussed.

  13. Additive genetic variation in resistance traits of an exotic pine species: little evidence for constraints on evolution of resistance against native herbivores.

    PubMed

    Moreira, X; Zas, R; Sampedro, L

    2013-05-01

    The apparent failure of invasions by alien pines in Europe has been explained by the co-occurrence of native pine congeners supporting herbivores that might easily recognize the new plants as hosts. Previous studies have reported that exotic pines show reduced tolerance and capacity to induce resistance to those native herbivores. We hypothesize that limited genetic variation in resistance to native herbivores and the existence of evolutionary trade-offs between growth and resistance could represent additional potential constraints on the evolution of invasiveness of exotic pines outside their natural range. In this paper, we examined genetic variation for constitutive and induced chemical defences (measured as non-volatile resin in the stem and total phenolics in the needles) and resistance to two major native generalist herbivores of pines in cafeteria bioassays (the phloem-feeder Hylobius abietis and the defoliator Thaumetopoea pityocampa) using half-sib families drawn from a sample of the population of Pinus radiata introduced to Spain in the mid-19th century. We found (i) significant genetic variation, with moderate-to-high narrow-sense heritabilities for both the production of constitutive non-volatile resin and induced total phenolics, and for constitutive resistance against T. pityocampa in bioassays, (ii) no evolutionary trade-offs between plant resistance and growth traits or between the production of different quantitative chemical defences and (iii) a positive genetic correlation between constitutive resistance to the two studied herbivores. Overall, results of our study indicate that the exotic pine P. radiata has limited genetic constraints on the evolution of resistance against herbivores in its introduced range, suggesting that, at least in terms of interactions with these enemies, this pine species has potential to become invasive in the future.

  14. Evolution of Protein Domain Repeats in Metazoa

    PubMed Central

    Schüler, Andreas; Bornberg-Bauer, Erich

    2016-01-01

    Repeats are ubiquitous elements of proteins and they play important roles for cellular function and during evolution. Repeats are, however, also notoriously difficult to capture computationally and large scale studies so far had difficulties in linking genetic causes, structural properties and evolutionary trajectories of protein repeats. Here we apply recently developed methods for repeat detection and analysis to a large dataset comprising over hundred metazoan genomes. We find that repeats in larger protein families experience generally very few insertions or deletions (indels) of repeat units but there is also a significant fraction of noteworthy volatile outliers with very high indel rates. Analysis of structural data indicates that repeats with an open structure and independently folding units are more volatile and more likely to be intrinsically disordered. Such disordered repeats are also significantly enriched in sites with a high functional potential such as linear motifs. Furthermore, the most volatile repeats have a high sequence similarity between their units. Since many volatile repeats also show signs of recombination, we conclude they are often shaped by concerted evolution. Intriguingly, many of these conserved yet volatile repeats are involved in host-pathogen interactions where they might foster fast but subtle adaptation in biological arms races. Key Words: protein evolution, domain rearrangements, protein repeats, concerted evolution. PMID:27671125

  15. Extraction of oak volatiles and ellagitannins compounds and sensory profile of wine aged with French winewoods subjected to different toasting methods: behaviour during storage.

    PubMed

    Chira, Kleopatra; Teissedre, Pierre-Louis

    2013-09-01

    In Merlot wines the evolution of volatile and non-volatile (ellagitannins) compounds extracted from winewoods while being macerated for 12 months was studied. Seven types of winewoods subjected to different toasting methods were used. Different rates of extraction, depending mainly on wood compounds origin (toasting or naturally present in wood) and on the watering process during toasting, were observed, which were reflected in sensory differences. Globally, volatile phenols together with aldehydes, phenols and lactones showed an increase with increasing maceration time. Ellagitannins were extracted faster during the first 3 months; after 6 months an important decrease was observed. Wines with winewoods subjected to watering during toasting were lower in ellagitannins concentrations and demonstrated the greatest decrease of these compounds during maceration. Astringency and bitterness intensified with increasing ellagitannins. Lactones induced positive sweetness sensations, whereas furanic and guaiacol compounds influenced bitterness and astringency. Spicy and vanilla descriptors were related to eugenol, vanillin and other odorous chemicals. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Constraining Our Understanding of the Actions and Effects of Martian Volatiles Through the Study of Returned Samples

    NASA Astrophysics Data System (ADS)

    iMOST Team; Swindle, T. D.; Altieri, F.; Busemann, H.; Niles, P. B.; Shaheen, R.; Zorzano, M. P.; Amelin, Y.; Ammannito, E.; Anand, M.; Beaty, D. W.; Benning, L. G.; Bishop, J. L.; Borg, L. E.; Boucher, D.; Brucato, J. R.; Campbell, K. A.; Carrier, B. L.; Czaja, A. D.; Debaille, V.; Des Marais, D. J.; Dixon, M.; Ehlmann, B. L.; Farmer, J. D.; Fernandez-Remolar, D. C.; Fogarty, J.; Glavin, D. P.; Goreva, Y. S.; Grady, M. M.; Hallis, L. J.; Harrington, A. D.; Hausrath, E. M.; Herd, C. D. K.; Horgan, B.; Humayun, M.; Kleine, T.; Kleinhenz, J.; Mangold, N.; Mackelprang, R.; Mayhew, L. E.; McCubbin, F. M.; McCoy, J. T.; McLennan, S. M.; McSween, H. Y.; Moser, D. E.; Moynier, F.; Mustard, J. F.; Ori, G. G.; Raulin, F.; Rettberg, P.; Rucker, M. A.; Schmitz, N.; Sefton-Nash, E.; Sephton, M. A.; Shuster, D. L.; Siljestrom, S.; Smith, C. L.; Spry, J. A.; Steele, A.; ten Kate, I. L.; Tosca, N. J.; Usui, T.; Van Kranendonk, M. J.; Wadhwa, M.; Weiss, B. P.; Werner, S. C.; Westall, F.; Wheeler, R. M.; Zipfel, J.

    2018-04-01

    Volatiles play a key role in the evolution of Mars' atmosphere, hydrosphere, and geosphere, and returned samples of the atmosphere, sedimentary rocks, regolith, and secondary minerals will inform our understanding of that evolution.

  17. Conference on Planetary Volatiles

    NASA Technical Reports Server (NTRS)

    Hrametz, K.; Kofler, L.

    1982-01-01

    Initial and present volatile inventories and distributions in the Earth, other planets, meteorites, and comets; observational evidence on the time history of volatile transfer among reservoirs; and volatiles in planetary bodies, their mechanisms of transport, and their relation to thermal, chemical, geological and biological evolution were addressed.

  18. Conference on Planetary Volatiles

    NASA Astrophysics Data System (ADS)

    Hrametz, K.; Kofler, L.

    1982-10-01

    Initial and present volatile inventories and distributions in the Earth, other planets, meteorites, and comets; observational evidence on the time history of volatile transfer among reservoirs; and volatiles in planetary bodies, their mechanisms of transport, and their relation to thermal, chemical, geological and biological evolution were addressed.

  19. Conference on Planetary Volatiles

    NASA Astrophysics Data System (ADS)

    Pepin, R. O.; Oconnell, R.

    Initial and present volatile inventories and distributions in the Earth, other planets, meteorites, and comets; observational evidence on the time history of volatile transfer among reservoirs; and volatiles in planetary bodies, their mechanisms of transport, and their relation to thermal, chemical, geological and biological evolution are addressed.

  20. Conference on Planetary Volatiles

    NASA Technical Reports Server (NTRS)

    Pepin, R. O. (Compiler); Oconnell, R. (Compiler)

    1982-01-01

    Initial and present volatile inventories and distributions in the Earth, other planets, meteorites, and comets; observational evidence on the time history of volatile transfer among reservoirs; and volatiles in planetary bodies, their mechanisms of transport, and their relation to thermal, chemical, geological and biological evolution are addressed.

  1. Flash pyrolysis of coal, coal maceral, and coal-derived pyrite with on-line characterization of volatile sulfur compounds

    USGS Publications Warehouse

    Chou, I.-Ming; Lake, M.A.; Griffin, R.A.

    1988-01-01

    A Pyroprobe flash pyrolysis-gas chromatograph equipped with a flame photometric detector was used to study volatile sulfur compounds produced during the thermal decomposition of Illinois coal, coal macerals and coal-derived pyrite. Maximum evolution of volatile organic sulfur compounds from all coal samples occurred at a temperature of approximately 700??C. At this temperature, the evolution of thiophene, its alkyl isomers, and short-chain dialkyl sulfide compounds relative to the evolution of benzothiophene and dibenzothiophene compounds was greater from coal high in organic sulfur than from coal low in organic sulfur. The variation in the evolution of sulfur compounds observed for three separate coal macerals (exinite, vitrinite, and inertinite) was similar to that observed for whole coal samples. However, the variation trend for the macerals was much more pronounced. Decomposition of coal-derived pyrite with the evolution of elemental sulfur was detected at a temperature greater than 700??C. The results of this study indicated that the gas chromotographic profile of the volatile sulfur compounds produced during flash pyrolysis of coals and coal macerals varied as a function of the amount of organic sulfur that occurred in the samples. Characterization of these volatile sulfur compounds provides a better understanding of the behavior of sulfur in coal during the thermolysis process, which could be incorporated in the design for coal cleaning using flash pyrolysis techniques. ?? 1988.

  2. Volatile communication in plant-aphid interactions.

    PubMed

    de Vos, Martin; Jander, Georg

    2010-08-01

    Volatile communication plays an important role in mediating the interactions between plants, aphids, and other organisms in the environment. In response to aphid infestation, many plants initiate indirect defenses through the release of volatiles that attract ladybugs, parasitoid wasps, and other aphid-consuming predators. Aphid-induced volatile release in the model plant Arabidopsis thaliana requires the jasmonate signaling pathway. Volatile release is also induced by infection with aphid-transmitted viruses. Consistent with mathematical models of optimal transmission, viruses that are acquired rapidly by aphids induce volatile release to attract migratory aphids, but discourage long-term aphid feeding. Although the ecology of these interactions is well-studied, further research is needed to identify the molecular basis of aphid-induced and virus-induced changes in plant volatile release. Copyright 2010 Elsevier Ltd. All rights reserved.

  3. The role of Late Veneer impacts in the evolution of Venus

    NASA Astrophysics Data System (ADS)

    Gillmann, C.; Golabek, G.; Tackley, P.; Raymond, S.

    2017-09-01

    We study how different mechanisms contribute to changes in long term evolution. In particular, the primitive history (the first Gy) of terrestrial planets is heavily influenced by collisions. We investigate how the coupled evolution of Venus' atmosphere and mantle is modified by those impacts. We focus on volatile fluxes: atmospheric escape and mantle degassing. We observe that large impacts are unlikely to erode the atmosphere significantly. They are, on the contrary, an important source of volatiles for the primitive planet. Collisions also generate a lot of melting and rapidly dries the mantle through degassing. Without recycling of volatiles into the mantle (like in plate tectonics regime), the mantle is efficiently depleted.

  4. Hyperparasitoids Use Herbivore-Induced Plant Volatiles to Locate Their Parasitoid Host

    PubMed Central

    Poelman, Erik H.; Bruinsma, Maaike; Zhu, Feng; Weldegergis, Berhane T.; Boursault, Aline E.; Jongema, Yde; van Loon, Joop J. A.; Vet, Louise E. M.; Harvey, Jeffrey A.; Dicke, Marcel

    2012-01-01

    Plants respond to herbivory with the emission of induced plant volatiles. These volatiles may attract parasitic wasps (parasitoids) that attack the herbivores. Although in this sense the emission of volatiles has been hypothesized to be beneficial to the plant, it is still debated whether this is also the case under natural conditions because other organisms such as herbivores also respond to the emitted volatiles. One important group of organisms, the enemies of parasitoids, hyperparasitoids, has not been included in this debate because little is known about their foraging behaviour. Here, we address whether hyperparasitoids use herbivore-induced plant volatiles to locate their host. We show that hyperparasitoids find their victims through herbivore-induced plant volatiles emitted in response to attack by caterpillars that in turn had been parasitized by primary parasitoids. Moreover, only one of two species of parasitoids affected herbivore-induced plant volatiles resulting in the attraction of more hyperparasitoids than volatiles from plants damaged by healthy caterpillars. This resulted in higher levels of hyperparasitism of the parasitoid that indirectly gave away its presence through its effect on plant odours induced by its caterpillar host. Here, we provide evidence for a role of compounds in the oral secretion of parasitized caterpillars that induce these changes in plant volatile emission. Our results demonstrate that the effects of herbivore-induced plant volatiles should be placed in a community-wide perspective that includes species in the fourth trophic level to improve our understanding of the ecological functions of volatile release by plants. Furthermore, these findings suggest that the impact of species in the fourth trophic level should also be considered when developing Integrated Pest Management strategies aimed at optimizing the control of insect pests using parasitoids. PMID:23209379

  5. Volatile inventory and early evolution of the planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Marov, Mikhail Ya.; Ipatov, Sergei I.

    Formation of atmospheres of the inner planets involved the concurrent processes of mantle degassing and collisions that culminated during the heavy bombardment. Volatile-rich icy planetesimals impacting on the planets as a late veneer strongly contributed to the volatile inventory. Icy remnants of the outer planet accretion significantly complemented the accumulation of the lithophile and atmophile elements forced out onto the surface of the inner planets from silicate basaltic magma enriched in volatiles. Orbital dynamics of small bodies, including near-Earth asteroids, comets, and bodies from the Edgeworth-Kuiper belt evolving to become inner planet crossers, is addressed to examine different plausible amounts of volatile accretion. The relative importance of comets and chondrites in the delivery of volatiles is constrained by the observed fractionation pattern of noble gas abundances in the atmospheres of inner planets. The following development of the early atmospheres depended on the amount of volatiles expelled from the interiors and deposited by impactors, while the position of the planet relative to the Sun and its mass affected its climatic evolution.

  6. Controls on the organization of the plumbing system of subduction volcanoes : the roles of volatiles and edifice load

    NASA Astrophysics Data System (ADS)

    Roman, A. M.; Bergal-Kuvikas, O.; Shapiro, N.; Taisne, B.; Gordeev, E.; Jaupart, C. P.

    2017-12-01

    Geochemical data indicate that subduction zone magmas are extracted from the mantle and rises through the crust, with a wide range of volatile contents. The main controls on magma ascent, storage and location of eruptive vents are not well understood. Flow through a volcanic system depends on magma density and viscosity, which depend in turn on chemical composition and volatile content. Thus, one expects that changes of eruption sites in space and time are related to geochemical variations. To test this hypothesis, we have focussed on Klyuchevskoy volcano, Kamchatka, a very active island arc volcano which erupts lavas with a wide range of volatile contents (e.g. 3-7 H20 wt. %). The most primitive high-Mg magmas were able to erupt and build a sizable edifice in an initial phase of activity. As the edifice grew, eruption of these magmas was suppressed in the focal area and occurred in distal parts of the volcano whilst summit eruptions involved differentiated high alumina basalts. Here we propose a new model for the development of the Klyuchevskoy plumbing system which combines edifice load, far field tectonic stress and the presence of volatiles. We calculate dyke trajectories and overpressures by taking into account the exsolution of volatiles in the magma. The most striking result is the progressive deflection of dykes towards the axial area as the edifice size increases. In this model, the critical parameters are the depth of volatile exsolution and the edifice size. Volatile-rich magmas degas at depth and experience a large increase in buoyancy which may overcome edifice-induced stresses at shallow levels. However, as the volcano grows, the stress barrier migrates downwards and may eventually act to stall dykes before gas exsolution takes place. Such conditions are likely to induce the formation of a shallow central reseroir, in which further magma focussing, mixing and contamination may take place. This model accounts for the co-evolution of magma composition and eruptive pattern that is observed at Klychevskoy volcano and should be useful to interpret data from other subduction volcanoes where hydrous magmas play a major role.

  7. Emerald ash borer responses to induced plant volatiles

    Treesearch

    Cesar Rodriguez-Saona; Therese M. Poland; James Miller; Lukasz Stelinski; Linda Buchan; Gary Grant; Peter de Groot; Linda MacDonald

    2007-01-01

    Herbivore feeding and methyl jasmonate, a volatile derivative of the stress-eliciting plant hormone, jasmonic acid, induce responses in plants which include the synthesis and emission of volatiles. These induced volatiles can serve to attract or repel herbivores; therefore, they may have potential use in pest management programs. The exotic emerald ash borer (EAB),...

  8. Exploring the modulation of hypoxia-inducible factor (HIF)-1α by volatile anesthetics as a possible mechanism underlying volatile anesthetic-induced CNS injury.

    PubMed

    Giles, Emma K; Lawrence, Andrew J; Duncan, Jhodie R

    2014-09-01

    This review summarizes recent research on the potential cognitive and behavioural abnormalities induced by exposure to volatile anesthetics and suggests a role of hypoxia-inducible factor (HIF)-1α in mediating these events. Volatile anesthetics are widely utilized in clinical and research settings, yet the long-term safety of exposure to these agents is under debate. Findings from various animal models suggest volatile anesthetics induce widespread apoptosis in the central nervous system (CNS) that correlates with lasting deficits in learning and memory. Longitudinal analysis of clinical data highlight an increased risk of developmental disorders later in life when children are exposed to volatile anesthetics, particularly when exposures occur over multiple sessions. However, the mechanisms underlying these events have yet to be established. Considering the extensive use of volatile anesthetics, it is crucial that these events are better understood. The possible role of HIF-1α in volatile anesthetic-induced CNS abnormalities will be suggested and areas requiring urgent attention will be outlined.

  9. Jasmonic acid-induced volatiles of Brassica oleracea attract parasitoids: effects of time and dose, and comparison with induction by herbivores

    PubMed Central

    Bruinsma, Maaike; Posthumus, Maarten A.; Mumm, Roland; Mueller, Martin J.; van Loon, Joop J. A.; Dicke, Marcel

    2009-01-01

    Caterpillar feeding induces direct and indirect defences in brassicaceous plants. This study focused on the role of the octadecanoid pathway in induced indirect defence in Brassica oleracea. The effect of induction by exogenous application of jasmonic acid (JA) on the responses of Brussels sprouts plants and on host-location behaviour of associated parasitoid wasps was studied. Feeding by the biting–chewing herbivores Pieris rapae and Plutella xylostella resulted in significantly increased endogenous levels of JA, a central component in the octadecanoid signalling pathway that mediates induced plant defence. The levels of the intermediate 12-oxophyto-dienoic acid (OPDA) were significantly induced only after P. rapae feeding. Three species of parasitoid wasps, Cotesia glomerata, C. rubecula, and Diadegma semiclausum, differing in host range and host specificity, were tested for their behavioural responses to volatiles from herbivore-induced, JA-induced, and non-induced plants. All three species were attracted to volatiles from JA-induced plants compared with control plants; however, they preferred volatiles from herbivore-induced plants over volatiles from JA-induced plants. Attraction of C. glomerata depended on both timing and dose of JA application. JA-induced plants produced larger quantities of volatiles than herbivore-induced and control plants, indicating that not only quantity, but also quality of the volatile blend is important in the host-location behaviour of the wasps. PMID:19451186

  10. Distribution, movement, and evolution of the volatile elements in the lunar regolith

    NASA Technical Reports Server (NTRS)

    Gibson, E. K., Jr.

    1975-01-01

    The abundances and distributions of carbon, nitrogen, and sulfur in lunar soils are reviewed. Carbon and nitrogen have a predominantly extra-lunar origin in lunar soils and breccias, while sulfur is mostly indigeneous to the moon. The lunar processes which effect the movement, distribution, and evolution of carbon, nitrogen, and sulfur, along with the volatile alkali elements sodium, potassium, and rubidium during regolith processes are discussed. Possible mechanisms which may result in the addition to or loss from the moon of these volatile elements are considered.

  11. Volatile compound changes during shelf life of dried Boletus edulis: comparison between SPME-GC-MS and PTR-ToF-MS analysis.

    PubMed

    Aprea, Eugenio; Romano, Andrea; Betta, Emanuela; Biasioli, Franco; Cappellin, Luca; Fanti, Marco; Gasperi, Flavia

    2015-01-01

    Drying process is commonly used to allow long time storage of valuable porcini mushrooms (Boletus edulis). Although considered a stable product dried porcini flavour changes during storage. Monitoring of volatile compounds during shelf life may help to understand the nature of the observed changes. In the present work two mass spectrometric techniques were used to monitor the evolution of volatile compounds during commercial shelf life of dried porcini. Solid phase microextraction (SPME) coupled to gas chromatography - mass spectrometry (GC-MS) allowed the identification of 66 volatile compounds, 36 of which reported for the first time, monitored during the commercial shelf life of dried porcini. Proton transfer reaction - time of flight - mass spectrometry (PTR-ToF-MS) , a direct injection mass spectrometric technique, was shown to be a fast and sensitive instrument for the general monitoring of volatile compound evolution during storage of dried porcini. Furthermore, PTR-ToF-MS grants access to compounds whose determination would otherwise require lengthy pre-concentration and/or derivatization steps such as ammonia and small volatile amines. The two techniques, both used for the first time to study dried porcini, provided detailed description of time evolution of volatile compounds during shelf life. Alcohols, aldehydes, ketones and monoterpenes diminish during the storage while carboxylic acids, pyrazines, lactones and amines increase. The storage temperature modifies the rate of the observed changes influencing the final quality of the dried porcini. We showed the advantages of both techniques, suggesting a strategy to be adopted to follow time evolution of volatile compounds in food products during shelf life, based on the identification of compounds by GC-MS and the rapid time monitoring by PTR-ToF-MS measurements in order to maximize the advantages of both techniques. Copyright © 2015 John Wiley & Sons, Ltd.

  12. Volatile behavior and trace metal transport in the magmatic-geothermal system at Pūtauaki (Mt. Edgecumbe), New Zealand

    NASA Astrophysics Data System (ADS)

    Norling, B.; Rowe, M. C.; Chambefort, I.; Tepley, F. J.; Morrow, S.

    2016-05-01

    The present-day hydrothermal system beneath the Kawerau Geothermal Field, in the Taupo Volcanic Zone, New Zealand, is likely heated from the Pūtauaki (Mt. Edgecumbe) magma system. The aim of this work, as an analog for present day processes, is to identify whether or not earlier erupted Pūtauaki magmas show evidence for volatile exsolution. This may have led to the transfer of volatile components from the magmatic to hydrothermal systems. To accomplish this, minerals and melt inclusions from volcanic products were analyzed for abundances of volatile and ore-forming elements (S, Cl, Li, Cu, Sn, Mo, W, Sb, As, and Tl). The variations in abundance of these elements were used to assess magma evolution and volatile exsolution or fluxing in the magma system. Melt inclusions suggest the evolution of Pūtauaki andesite-dacite magmas is predominantly driven by crystallization processes resulting in rhyodacite-rhyolite glass compositions (although textural and geochemical evidence still indicate a role for magma mixing). Measured mineral-melt partition coefficients for trace metals of interest indicates that, with the exception of Tl in biotite, analyzed metals are all incompatible in Pūtauaki crystallization products. Excluding Li and Cu, other volatile and ore metals recorded in melt inclusions behave incompatibly, with concentrations increasing during evolution from rhyodacitic to rhyolitic melt compositions. Li and Cu appear to have increased mobility likely resulting from diffusive exchange post-crystallization, and may be related to late volatile fluxing. Although S and Cl concentrations decrease with melt evolution, no mineralogical evidence exists to indicate the exsolution and mobility of ore-forming metals from the magma at the time of crystallization. This observation cannot rule out the potential for post-crystallization volatile exsolution and ore-forming metal mobilization, which may only be recorded as diffusive re-equilibration of more rapidly diffusing elements (e.g., Li and Cu).

  13. Eco-evolutionary factors drive induced plant volatiles: a meta-analysis.

    PubMed

    Rowen, Elizabeth; Kaplan, Ian

    2016-04-01

    Herbivore-induced plant volatiles (HIPVs) mediate critical ecological functions, but no studies have quantitatively synthesized data published on HIPVs to evaluate broad patterns. We tested three hypotheses that use eco-evolutionary theory to predict volatile induction: feeding guild (chewing arthropods > sap feeders), diet breadth (specialist herbivores > generalists), and selection history (domesticated plants < wild species). To test these hypotheses, we extracted data from 236 experiments that report volatiles produced by herbivore-damaged and undamaged plants. These data were subjected to meta-analysis, including effects on total volatiles and major biochemical classes. Overall, we found that chewers induced more volatiles than sap feeders, for both total volatiles and most volatile classes (e.g. green leaf volatiles, monoterpenes). Although specialist herbivores induced more total volatiles than generalists, this was inconsistent across chemical classes. Contrary to our expectation, domesticated species induced stronger volatile responses than wild species, even when controlling for plant taxonomy. Surprisingly, this is the first quantitative synthesis of published studies on HIPVs. Our analysis provides support for perceptions in the published literature (chewers > sap feeders), while challenging other commonly held notions (wild > crop). Despite the large number of experiments, we identified several gaps in the existing literature that should guide future investigations. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  14. High pressure Raman spectroscopy of H2O-CH3OH mixtures.

    PubMed

    Hsieh, Wen-Pin; Chien, Yu-Hsiang

    2015-02-23

    Complex intra-molecular interactions and the hydrogen-bonding network in H2O-volatile mixtures play critical roles in many dynamics processes in physical chemistry, biology, and Earth and planetary sciences. We used high pressure Raman spectroscopy to study the pressure evolution of vibrational frequencies and bonding behavior in H2O-CH3OH mixtures. We found that the presence of low CH3OH content in H2O increases the transition pressure where water crystallizes to ice VI, but does not significantly change the pressure where ice VI transforms to ice VII. Furthermore, the stiffening rates of C-H stretching frequencies dω/dP in CH3OH significantly decrease upon the crystallization of water, and the softening rates of the O-H stretching frequencies of ice VII are suppressed over a narrow pressure range, after which the frequencies of these modes shift with pressure in ways similar to pure CH3OH and ice VII, respectively. Such complex pressure evolution of Raman frequencies along with pronounced variations in Raman intensities of CH3OH within the sample, and the hysteresis of the water-ice VI phase transition suggest pressure-induced segregation of low content CH3OH from ice VII. These findings indicate the significant influence of volatiles on the crystallization of sub-surface ocean and thermal evolution within large icy planets and satellites.

  15. Herbivore-induced blueberry volatiles and intra-plant signaling.

    PubMed

    Rodriguez-Saona, Cesar R

    2011-12-18

    Herbivore-induced plant volatiles (HIPVs) are commonly emitted from plants after herbivore attack. These HIPVs are mainly regulated by the defensive plant hormone jasmonic acid (JA) and its volatile derivative methyl jasmonate (MeJA). Over the past 3 decades researchers have documented that HIPVs can repel or attract herbivores, attract the natural enemies of herbivores, and in some cases they can induce or prime plant defenses prior to herbivore attack. In a recent paper, I reported that feeding by gypsy moth caterpillars, exogenous MeJA application, and mechanical damage induce the emissions of volatiles from blueberry plants, albeit differently. In addition, blueberry branches respond to HIPVs emitted from neighboring branches of the same plant by increasing the levels of JA and resistance to herbivores (i.e., direct plant defenses), and by priming volatile emissions (i.e., indirect plant defenses). Similar findings have been reported recently for sagebrush, poplar, and lima beans. Here, I describe a push-pull method for collecting blueberry volatiles induced by herbivore (gypsy moth) feeding, exogenous MeJA application, and mechanical damage. The volatile collection unit consists of a 4 L volatile collection chamber, a 2-piece guillotine, an air delivery system that purifies incoming air, and a vacuum system connected to a trap filled with Super-Q adsorbent to collect volatiles. Volatiles collected in Super-Q traps are eluted with dichloromethane and then separated and quantified using Gas Chromatography (GC). This volatile collection method was used in my study to investigate the volatile response of undamaged branches to exposure to volatiles from herbivore-damaged branches within blueberry plants. These methods are described here. Briefly, undamaged blueberry branches are exposed to HIPVs from neighboring branches within the same plant. Using the same techniques described above, volatiles emitted from branches after exposure to HIPVs are collected and analyzed.

  16. Functional characterization of nine Norway Spruce TPS genes and evolution of gymnosperm terpene synthases of the TPS-d subfamily.

    PubMed

    Martin, Diane M; Fäldt, Jenny; Bohlmann, Jörg

    2004-08-01

    Constitutive and induced terpenoids are important defense compounds for many plants against potential herbivores and pathogens. In Norway spruce (Picea abies L. Karst), treatment with methyl jasmonate induces complex chemical and biochemical terpenoid defense responses associated with traumatic resin duct development in stems and volatile terpenoid emissions in needles. The cloning of (+)-3-carene synthase was the first step in characterizing this system at the molecular genetic level. Here we report the isolation and functional characterization of nine additional terpene synthase (TPS) cDNAs from Norway spruce. These cDNAs encode four monoterpene synthases, myrcene synthase, (-)-limonene synthase, (-)-alpha/beta-pinene synthase, and (-)-linalool synthase; three sesquiterpene synthases, longifolene synthase, E,E-alpha-farnesene synthase, and E-alpha-bisabolene synthase; and two diterpene synthases, isopimara-7,15-diene synthase and levopimaradiene/abietadiene synthase, each with a unique product profile. To our knowledge, genes encoding isopimara-7,15-diene synthase and longifolene synthase have not been previously described, and this linalool synthase is the first described from a gymnosperm. These functionally diverse TPS account for much of the structural diversity of constitutive and methyl jasmonate-induced terpenoids in foliage, xylem, bark, and volatile emissions from needles of Norway spruce. Phylogenetic analyses based on the inclusion of these TPS into the TPS-d subfamily revealed that functional specialization of conifer TPS occurred before speciation of Pinaceae. Furthermore, based on TPS enclaves created by distinct branching patterns, the TPS-d subfamily is divided into three groups according to sequence similarities and functional assessment. Similarities of TPS evolution in angiosperms and modeling of TPS protein structures are discussed.

  17. MAVEN Atlas V Launch

    NASA Image and Video Library

    2013-11-18

    The United Launch Alliance Atlas V rocket with NASA’s Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft launches from the Cape Canaveral Air Force Station Space Launch Complex 41, Monday, Nov. 18, 2013, Cape Canaveral, Florida. NASA’s Mars-bound spacecraft, the Mars Atmosphere and Volatile EvolutioN, or MAVEN, is the first spacecraft devoted to exploring and understanding the Martian upper atmosphere. Photo Credit: (NASA/Bill Ingalls)

  18. Innate responses of the predatory mite Phytoseiulus persimilis to a herbivore-induced plant volatile.

    PubMed

    Sznajder, B; Sabelis, M W; Egas, M

    2011-06-01

    The responses of the predatory mite P. persimilis to herbivore-induced plant volatiles are at least partly genetically determined. Thus, there is potential for the evolution of this behaviour by natural selection. We tested whether distinct predator genotypes with contrasting responses to a specific herbivore-induced plant volatile, i.e. methyl salicylate (MeSa), could be found in a base population collected in the field (Sicily). To this end, we imposed purifying selection on individuals within iso-female lines of P. persimilis such that the lines were propagated only via the individual that showed either a preference or avoidance of MeSa. The responses of the lines were characterized as the mean proportion of individuals choosing MeSa when given a choice between MeSa and clean air. Significant variation in predator responses was detected among iso-female lines, thus confirming the presence of a genetic component for this behaviour. Nevertheless, we did not find a significant difference in the response to MeSa between the lines that were selected to avoid MeSa and the lines selected to prefer MeSa. Instead, in the course of selection the lines selected to avoid MeSa shifted their mean response towards a preference for MeSa. An inverse, albeit weaker, shift was detected for the lines selected to prefer MeSa. We discuss the factors that may have caused the apparent lack of a response to selection within iso-female line in this study and propose experimental approaches that address them.

  19. A Synthesis of Experimental Data Describing the Partitioning of Moderately Volatile Elements in Major Rock Forming Minerals: Implications for the Moon

    NASA Technical Reports Server (NTRS)

    Vander Kaaden, Kathleen E.; Draper, David S.; McCubbin, Francis M.; Neal, Clive R.; Taylor, G. Jeffrey

    2017-01-01

    Highly volatile elements [condensation temperatures below about 700 K] and water are highly informative about lunar bulk composition (hence origin), differentiation and magmatic evolution, and the role of impacts in delivering volatiles to the Moon. Fractionation of volatile elements compared to moderately volatile and refractory elements are informative about high-temperature conditions that operated in the proto-lunar disk. Existing data show clearly that the Moon is depleted in volatile elements compared to the bulk silicate Earth. For example, K/Th is 400-700 in the Moon compared to 2800-3000 in Earth. A complicating factor is that the abundances of the highly volatile elements in major lunar lithologies vary by approximately two orders of magnitude. Perhaps most interesting, H2O is not correlated with the concentration of volatile elements, indicating a decoupling of highly volatile elements from the even more volatile H2O. We contend that this decoupling could be a significant tracer of processes operating during lunar formation, differentiation, and bombardment, and the combination of analyzing both volatile elements and water is likely to provide significant insight into lunar geochemical history. This variation and lack of correlation raises the question: what were the relative contributions of crystallization in the magma ocean, subsequent mantle overturn, production of secondary magmas, and addition of volatiles by large impacts in producing this apparently large range in volatile abundances? This current study will produce new partitioning data relevant to the role and distribution of the volatile and non-volatile, yet geochemically significant elements (Co, Ni, Zn, Se, Rb, Sr, Mo, Ag, Cd, In, Sb, Ce, Yb, Tl, Pb, Bi) during the thermal and magmatic evolution of the Moon.

  20. Plant volatiles induced by herbivore egg deposition affect insects of different trophic levels.

    PubMed

    Fatouros, Nina E; Lucas-Barbosa, Dani; Weldegergis, Berhane T; Pashalidou, Foteini G; van Loon, Joop J A; Dicke, Marcel; Harvey, Jeffrey A; Gols, Rieta; Huigens, Martinus E

    2012-01-01

    Plants release volatiles induced by herbivore feeding that may affect the diversity and composition of plant-associated arthropod communities. However, the specificity and role of plant volatiles induced during the early phase of attack, i.e. egg deposition by herbivorous insects, and their consequences on insects of different trophic levels remain poorly explored. In olfactometer and wind tunnel set-ups, we investigated behavioural responses of a specialist cabbage butterfly (Pieris brassicae) and two of its parasitic wasps (Trichogramma brassicae and Cotesia glomerata) to volatiles of a wild crucifer (Brassica nigra) induced by oviposition of the specialist butterfly and an additional generalist moth (Mamestra brassicae). Gravid butterflies were repelled by volatiles from plants induced by cabbage white butterfly eggs, probably as a means of avoiding competition, whereas both parasitic wasp species were attracted. In contrast, volatiles from plants induced by eggs of the generalist moth did neither repel nor attract any of the tested community members. Analysis of the plant's volatile metabolomic profile by gas chromatography-mass spectrometry and the structure of the plant-egg interface by scanning electron microscopy confirmed that the plant responds differently to egg deposition by the two lepidopteran species. Our findings imply that prior to actual feeding damage, egg deposition can induce specific plant responses that significantly influence various members of higher trophic levels.

  1. The role of methyl salicylate in prey searching behavior of the predatory mite phytoseiulus persimilis.

    PubMed

    De Boer, Jetske G; Dicke, Marcel

    2004-02-01

    Many carnivorous arthropods use herbivore-induced plant volatiles to locate their prey. These plant volatiles are blends of up to hundreds of compounds. It is often unknown which compounds in such a complex volatile blend represent the signal to the foraging carnivore. We studied the role of methyl salicylate (MeSA) as part of the volatile blend in the foraging behavior of the predatory mite Phytoseiulus persimilis by using a Y-tube olfactometer. MeSA is one of the compounds released by lima bean, infested with Tetranychus urticae--a prey species of the predatory mite. MeSA attracted satiated predatory mites in a dose-dependent way with optimum attraction at a dose of 0.2 microg. Predatory mites did not discriminate between a prey-induced lima bean volatile blend (that contains MeSA) and a prey-induced volatile blend to which an extra amount of synthetic MeSA had been added. However, they preferred a MeSA-containing volatile blend (induced by T. urticae) to an otherwise similar but MeSA-free blend (induced by jasmonic acid). Adding synthetic MeSA to the MeSA-free blend significantly increased the mites' choice for this odor, suggesting an important role for MeSA. This study is a new step toward unraveling the role of herbivore-induced plant volatiles in the foraging behavior of predatory arthropods.

  2. Transfer Trajectory Design for the Mars Atmosphere and Volatile Evolution (MAVEN) Mission

    NASA Technical Reports Server (NTRS)

    Folta, David; Demcak, Stuart; Young, Brian; Berry, Kevin

    2013-01-01

    The Mars Atmosphere and Volatile Evolution (MAVEN) mission will determine the history of the loss of volatiles from the Martian atmosphere from a highly inclined elliptical orbit. MAVEN will launch from Cape Canaveral Air Force Station on an Atlas-V 401 during an extended 36-day launch period opening November 18, 2013. The MAVEN Navigation and Mission Design team performed a Monte Carlo analysis of the Type-II transfer to characterize; dispersions of the arrival B-Plane, trajectory correction maneuvers (TCMs), and the probability of Mars impact. This paper presents detailed analysis of critical MOI event coverage, maneuver constraints, deltaV-99 budgets, and Planetary Protection requirements.

  3. Herbivore-induced Blueberry Volatiles and Intra-plant Signaling

    PubMed Central

    Rodriguez-Saona, Cesar R.

    2011-01-01

    Herbivore-induced plant volatiles (HIPVs) are commonly emitted from plants after herbivore attack1,2. These HIPVs are mainly regulated by the defensive plant hormone jasmonic acid (JA) and its volatile derivative methyl jasmonate (MeJA)3,4,5. Over the past 3 decades researchers have documented that HIPVs can repel or attract herbivores, attract the natural enemies of herbivores, and in some cases they can induce or prime plant defenses prior to herbivore attack. In a recent paper6, I reported that feeding by gypsy moth caterpillars, exogenous MeJA application, and mechanical damage induce the emissions of volatiles from blueberry plants, albeit differently. In addition, blueberry branches respond to HIPVs emitted from neighboring branches of the same plant by increasing the levels of JA and resistance to herbivores (i.e., direct plant defenses), and by priming volatile emissions (i.e., indirect plant defenses). Similar findings have been reported recently for sagebrush7, poplar8, and lima beans9.. Here, I describe a push-pull method for collecting blueberry volatiles induced by herbivore (gypsy moth) feeding, exogenous MeJA application, and mechanical damage. The volatile collection unit consists of a 4 L volatile collection chamber, a 2-piece guillotine, an air delivery system that purifies incoming air, and a vacuum system connected to a trap filled with Super-Q adsorbent to collect volatiles5,6,10. Volatiles collected in Super-Q traps are eluted with dichloromethane and then separated and quantified using Gas Chromatography (GC). This volatile collection method was used n my study6 to investigate the volatile response of undamaged branches to exposure to volatiles from herbivore-damaged branches within blueberry plants. These methods are described here. Briefly, undamaged blueberry branches are exposed to HIPVs from neighboring branches within the same plant. Using the same techniques described above, volatiles emitted from branches after exposure to HIPVs are collected and analyzed. PMID:22214939

  4. Plant Volatiles Induced by Herbivore Egg Deposition Affect Insects of Different Trophic Levels

    PubMed Central

    Fatouros, Nina E.; Lucas-Barbosa, Dani; Weldegergis, Berhane T.; Pashalidou, Foteini G.; van Loon, Joop J. A.; Dicke, Marcel; Harvey, Jeffrey A.; Gols, Rieta; Huigens, Martinus E.

    2012-01-01

    Plants release volatiles induced by herbivore feeding that may affect the diversity and composition of plant-associated arthropod communities. However, the specificity and role of plant volatiles induced during the early phase of attack, i.e. egg deposition by herbivorous insects, and their consequences on insects of different trophic levels remain poorly explored. In olfactometer and wind tunnel set-ups, we investigated behavioural responses of a specialist cabbage butterfly (Pieris brassicae) and two of its parasitic wasps (Trichogramma brassicae and Cotesia glomerata) to volatiles of a wild crucifer (Brassica nigra) induced by oviposition of the specialist butterfly and an additional generalist moth (Mamestra brassicae). Gravid butterflies were repelled by volatiles from plants induced by cabbage white butterfly eggs, probably as a means of avoiding competition, whereas both parasitic wasp species were attracted. In contrast, volatiles from plants induced by eggs of the generalist moth did neither repel nor attract any of the tested community members. Analysis of the plant’s volatile metabolomic profile by gas chromatography-mass spectrometry and the structure of the plant-egg interface by scanning electron microscopy confirmed that the plant responds differently to egg deposition by the two lepidopteran species. Our findings imply that prior to actual feeding damage, egg deposition can induce specific plant responses that significantly influence various members of higher trophic levels. PMID:22912893

  5. Prey and Non-prey Arthropods Sharing a Host Plant: Effects on Induced Volatile Emission and Predator Attraction

    PubMed Central

    Hordijk, Cornelis A.; Posthumus, Maarten A.; Dicke, Marcel

    2008-01-01

    It is well established that plants infested with a single herbivore species can attract specific natural enemies through the emission of herbivore-induced volatiles. However, it is less clear what happens when plants are simultaneously attacked by more than one species. We analyzed volatile emissions of lima bean and cucumber plants upon multi-species herbivory by spider mites (Tetranychus urticae) and caterpillars (Spodoptera exigua) in comparison to single-species herbivory. Upon herbivory by single or multiple species, lima bean and cucumber plants emitted volatile blends that comprised mostly the same compounds. To detect additive, synergistic, or antagonistic effects, we compared the multi-species herbivory volatile blend with the sum of the volatile blends induced by each of the herbivore species feeding alone. In lima bean, the majority of compounds were more strongly induced by multi-species herbivory than expected based on the sum of volatile emissions by each of the herbivores separately, potentially caused by synergistic effects. In contrast, in cucumber, two compounds were suppressed by multi-species herbivory, suggesting the potential for antagonistic effects. We also studied the behavioral responses of the predatory mite Phytoseiulus persimilis, a specialized natural enemy of spider mites. Olfactometer experiments showed that P. persimilis preferred volatiles induced by multi-species herbivory to volatiles induced by S. exigua alone or by prey mites alone. We conclude that both lima bean and cucumber plants effectively attract predatory mites upon multi-species herbivory, but the underlying mechanisms appear different between these species. PMID:18185960

  6. Mars Atmosphere and Volatile Evolution (MAVEN) Mission Design

    NASA Technical Reports Server (NTRS)

    Folta, David C.

    2010-01-01

    The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission was selected as the second in the low-cost Mars Scout mission series. MAVEN will determine the role that loss of volatiles to space has played through time from a highly inclined elliptical orbit. The launch period opens November 18. 2013 with arrival September 16, 2014. After achieving a 35-hour capture orbit, maneuvers will reduce the period to 4.5-hours with periapsis near 150 kilometers and maintain the periapsis within a specified density corridor. MAVEN will also execute "Deep Dip" campaigns, with periapsis at an altitude near 125 kilometers. This paper presents the unique mission design challenges of the MAVEN mission.

  7. Volatile elements in Allende inclusions. [Mn, Na and Cl relation to meteorite evolution

    NASA Technical Reports Server (NTRS)

    Grossman, L.; Ganapathy, R.

    1975-01-01

    New data are presented on the relatively volatile elements (Mn, Na, and Cl) in coarse- and fine-grained Ca/Al-rich inclusions of different textures and mineralogy in the Allende meteorite. It is shown that the coarse-grained inclusions condensed from the solar nebula at high temperature and contained vanishingly small quantities of volatile elements at that time. Later, volatiles were added to these during the metamorphism of the Allende parent body. The fine-grained inclusions were also affected by the addition of volatiles during this metamorphism but, unlike the coarse-grained ones, they incorporated large amounts of volatiles when they condensed from the solar nebula, accounting for their higher volatile element contents.

  8. [Effects of azadirachtin on rice plant volatiles induced by Nilaparvata lugens].

    PubMed

    Lu, Hai-Yan; Liu, Fang; Zhu, Shu-De; Zhang, Qing

    2010-01-01

    With the method of solid phase microextraction (SPME), a total of twenty-five volatiles were collected from rice plants induced by Nilaparvata lugens, and after applying azadirachtin fourteen of them were qualitatively identified by gas chromatography coupled by mass spectrometry (GC-MS), mainly of nine kinds of sesquiterpenes. Comparing with healthy rice plants, the plants attacked by N. lugens had more kinds of volatiles, including limonene, linalool, methyl salicylate, unknown 6, unknown 7, zingiberene, nerolidol, and hexadecane. Applying azadirachtin did not result in the production of new kind volatiles, but affected the relative concentrations of the volatiles induced by N. lugens. The proportions of limonene, linalool, methyl salicylate, unknown 6, zingiberene, and hexadecane changed obviously with the concentration of applied azadirachtin, while those of methyl salicylate, unknown 6, unknown 7, zingiberene, and nerolidol changed significantly with the days after azadirachtin application. Azadirachtin concentration, rice variety, and N. lugens density had significant interactions on the relative concentrations of all test N. lugens-induced volatiles.

  9. Constraining the volatile fraction of planets from transit observations

    NASA Astrophysics Data System (ADS)

    Alibert, Y.

    2016-06-01

    Context. The determination of the abundance of volatiles in extrasolar planets is very important as it can provide constraints on transport in protoplanetary disks and on the formation location of planets. However, constraining the internal structure of low-mass planets from transit measurements is known to be a degenerate problem. Aims: Using planetary structure and evolution models, we show how observations of transiting planets can be used to constrain their internal composition, in particular the amount of volatiles in the planetary interior, and consequently the amount of gas (defined in this paper to be only H and He) that the planet harbors. We first explore planets that are located close enough to their star to have lost their gas envelope. We then concentrate on planets at larger distances and show that the observation of transiting planets at different evolutionary ages can provide statistical information on their internal composition, in particular on their volatile fraction. Methods: We computed the evolution of low-mass planets (super-Earths to Neptune-like) for different fractions of volatiles and gas. We used a four-layer model (core, silicate mantle, icy mantle, and gas envelope) and computed the internal structure of planets for different luminosities. With this internal structure model, we computed the internal and gravitational energy of planets, which was then used to derive the time evolution of the planet. Since the total energy of a planet depends on its heat capacity and density distribution and therefore on its composition, planets with different ice fractions have different evolution tracks. Results: We show for low-mass gas-poor planets that are located close to their central star that assuming evaporation has efficiently removed the entire gas envelope, it is possible to constrain the volatile fraction of close-in transiting planets. We illustrate this method on the example of 55 Cnc e and show that under the assumption of the absence of gas, the measured mass and radius imply at least 20% of volatiles in the interior. For planets at larger distances, we show that the observation of transiting planets at different evolutionary ages can be used to set statistical constraints on the volatile content of planets. Conclusions: These results can be used in the context of future missions like PLATO to better understand the internal composition of planets, and based on this, their formation process and potential habitability.

  10. KSC-2013-3979

    NASA Image and Video Library

    2013-11-16

    CAPE CANAVERAL, Fla. -- In the conference room of Operations Support Building II at NASA's Kennedy Space Center in Florida, social media participants listen to a briefing on the Mars Atmosphere and Volatile Evolution, or MAVEN, mission. The social media participants gathered at the Florida spaceport for the launch of the Mars Atmosphere and Volatile Evolution, or MAVEN, spacecraft. Their visit included tours of key facilities and participating in presentations by key NASA leaders who updated the space agency's current efforts. Photo credit: NASA/Jim Grossman

  11. KSC-2013-3990

    NASA Image and Video Library

    2013-11-16

    CAPE CANAVERAL, Fla. -- In the conference room of Operations Support Building II at NASA's Kennedy Space Center in Florida, social media participants listen to a briefing on the Mars Atmosphere and Volatile Evolution, or MAVEN, mission by, Ellen Stofan, the agency's chief scientist. The social media participants gathered at the Florida spaceport for the launch of the Mars Atmosphere and Volatile Evolution, or MAVEN, spacecraft. Their visit included tours of key facilities and participating in presentations by key NASA leaders who updated the space agency's current efforts. Photo credit: NASA/Jim Grossman

  12. KSC-2013-3977

    NASA Image and Video Library

    2013-11-16

    CAPE CANAVERAL, Fla. -- In the conference room of Operations Support Building II at NASA's Kennedy Space Center in Florida, social media participants listen to a briefing on the Mars Atmosphere and Volatile Evolution, or MAVEN, mission. The social media participants gathered at the Florida spaceport for the launch of the Mars Atmosphere and Volatile Evolution, or MAVEN, spacecraft. Their visit included tours of key facilities and participating in presentations by key NASA leaders who updated the space agency's current efforts. Photo credit: NASA/Jim Grossman

  13. UV–Vis Light-induced Aging of Titan’s Haze and Ice

    NASA Astrophysics Data System (ADS)

    Couturier-Tamburelli, Isabelle; Piétri, Nathalie; Le Letty, Vincent; Chiavassa, Thierry; Gudipati, Murthy

    2018-01-01

    The study of the photochemical aging of aerosols is an important tool for understanding Titan’s stratosphere/troposphere composition and evolution, particularly the haze. Laboratory simulations of the photoreactivity of the haze aerosol analogs provide insight into the photochemical evolution of Titan’s atmosphere at and below the haze layers. Here we use experimental simulations to investigate the evolution of the laboratory analogs of these organic aerosols under ultraviolet (UV)–visible (Vis) photons, which make it through the haze layers during their sedimentation process. We present experimental results for the aging of Titan’s aerosol analogs obtained from two dominant nitrogen-containing organics, HC3N and HCN, under simulated Titan atmospheric conditions (photons and temperature). We report that volatile nitriles condensed on haze particles could be incorporated through photochemistry and provide one such sink mechanism for nitrile compounds. We provide laboratory evidence that the organic aerosols could photochemically evolve during their sedimentation through Titan’s atmosphere.

  14. Subterranean, herbivore-induced plant volatile increases biological control activity of multiple beneficial nematode species in distinct habitats

    USDA-ARS?s Scientific Manuscript database

    While the role of herbivore-induced volatiles in plant-herbivore-natural enemy interactions is well documented aboveground, new evidence suggests that belowground volatile emissions can protect plants by attracting entomopathogenic nematodes (EPNs). However, due to methodological limitations, no stu...

  15. Effects of meteorite impacts on the atmospheric evolution of Mars.

    PubMed

    Pham, Lê Binh San; Karatekin, Ozgür; Dehant, Véronique

    2009-01-01

    Early in its history, Mars probably had a denser atmosphere with sufficient greenhouse gases to sustain the presence of stable liquid water at the surface. Impacts by asteroids and comets would have played a significant role in the evolution of the martian atmosphere, not only by causing atmospheric erosion but also by delivering material and volatiles to the planet. We investigate the atmospheric loss and the delivery of volatiles with an analytical model that takes into account the impact simulation results and the flux of impactors given in the literature. The atmospheric loss and the delivery of volatiles are calculated to obtain the atmospheric pressure evolution. Our results suggest that the impacts alone cannot satisfactorily explain the loss of significant atmospheric mass since the Late Noachian (approximately 3.7-4 Ga). A period with intense bombardment of meteorites could have increased the atmospheric loss; but to explain the loss of a speculative massive atmosphere in the Late Noachian, other factors of atmospheric erosion and replenishment also need to be taken into account.

  16. Evolution of the protolunar disk: Dynamics, cooling timescale and implantation of volatiles onto the Earth

    NASA Astrophysics Data System (ADS)

    Charnoz, Sébastien; Michaut, Chloé

    2015-11-01

    It is thought that the Moon accreted from the protolunar disk that was assembled after the last giant impact on Earth. Due to its high temperature, the protolunar disk may act as a thermochemical reactor in which the material is processed before being incorporated into the Moon. Outstanding issues like devolatilisation and istotopic evolution are tied to the disk evolution, however its lifetime, dynamics and thermodynamics are unknown. Here, we numerically explore the long term viscous evolution of the protolunar disk using a one dimensional model where the different phases (vapor and condensed) are vertically stratified. Viscous heating, radiative cooling, phase transitions and gravitational instability are accounted for whereas Moon's accretion is not considered for the moment. The viscosity of the gas, liquid and solid phases dictates the disk evolution. We find that (1) the vapor condenses into liquid in ∼10 years, (2) a large fraction of the disk mass flows inward forming a hot and compact liquid disk between 1 and 1.7 Earth's radii, a region where the liquid is gravitationally stable and can accumulate, (3) the disk finally solidifies in 103 to 105 years. Viscous heating is never balanced by radiative cooling. If the vapor phase is abnormally viscous, due to magneto-rotational instability for instance, most of the disk volatile components are transported to Earth leaving a disk enriched in refractory elements. This opens a way to form a volatile-depleted Moon and would suggest that the missing Moon's volatiles are buried today into the Earth. The disk cooling timescale may be long enough to allow for planet/disk isotopic equilibration. However large uncertainties on the disk physics remain because of the complexity of its multi-phased structure.

  17. Subduction on Venus and Implications for Volatile Cycling, Early Earth and Exoplanets

    NASA Astrophysics Data System (ADS)

    Smrekar, S. E.; Davaille, A.; Mueller, N. T.; Dyar, M. D.; Helbert, J.; Barnes, H.

    2017-12-01

    Plate tectonics plays a key role in long-term climate evolution by cycling volatiles between the interior, surface and atmosphere. Subduction is a critical process. It is the first step in transitioning between a stagnant and a mobile lid, a means for conveying volatiles into the mantle, and a mechanism for creating felsic crust. Laboratory experiments using realistic rheology illuminate the deformation produced by plume-induced subduction (Davaille abstract). Characteristics include internal rifting and volcanism, external rift branches, with a partial arc of subduction creating a trench on the margins of the plume head, and an exterior flexural bulge with small strain extension perpendicular to the trench. These characteristics, along with a consistent gravity signature, occur at the two largest coronae (quasi-circular volcano-tectonic features) on Venus (Davaille et al. Nature Geos. 2017). This interpretation resolves a long-standing debate about the dual plume and subduction characteristics of these features. Numerous coronae also show signs of plume-induced subduction. At Astkhik Planum, subduction appears to have migrated beyond the margins of Selu Corona to create a 1600 km-long, linear subduction zone, along Vaidilute Rupes. The fractures that define Selu Corona merge with the trench to the north and a rift zone to the east, consistent with plume-induced subduction migrating outward from the corona. The lithosphere and crust are much thinner here than in other potential subduction zones. Subduction appears to have generated massive volcanism which could explain the 400 m elevation of the plateau. Within the plateau there are low-viscosity flow sets nearly 1000 km that may be associated with near infrared low emissivity in VIRTIS data. Unusual lava compositions might be indicative of recycling of CO2 or other volatiles into the lithosphere. Little evidence exists to illustrate how plate tectonics initiated on Earth, but Venus' high surface temperature makes it a good analog of Earth's Archean. There is increasing evidence that Venus is a dynamic planet with possible active and/or recent volcanism and subduction. Studying these processes on Venus provides a window into both early Earth and offers constraints on the conditions needed to initiate plate tectonics on exoplanets.

  18. Melt focusing and geochemical evolution at mid-ocean ridges: simulations of reactive two-phase flow

    NASA Astrophysics Data System (ADS)

    Keller, T.; Katz, R. F.; Hirschmann, M. M.

    2017-12-01

    The geochemical character of MORB and related off-axis volcanic products reflects the signature of chemical reservoirs in the mantle, the processes of melt transport from source to surface, or both. Focusing of partial melt to the ridge axis controls the proportion of deep, volatile- and incompatible-rich melts that contribute to MORB formation. However, the effect of volatiles, including CO2 and H2O, on melt segregation and focusing remains poorly understood. We investigate this transport using 2-D numerical simulations of reactive two-phase flow. The phases are solid mantle and liquid magma. Major elements and volatiles are represented by a system with 4 or 6 pseudo-components. This captures accepted features of mantle melting with volatiles. The fluid-dynamical model is McKenzie's formulation [1], while melting and reactive transport use the R_DMC method [2,3]. Trace element transport is computed for 5 idealized elements between highly incompatible and compatible behavior. Our results indicate that volatiles cause channelized melt transport, which leads to fluctuations in volume and composition of melt focused to the axis. The volatile-induced expansion of the melting regime at depth, however, has no influence on melt focusing. Up to 50% of deep, volatile-rich melts are not focused to the axis, but are emplaced along the oceanic LAB. There, crystallization of accumulated melt leads to enrichment of volatiles and incompatibles in the deep lithosphere. This has implications for volatile recycling by subduction, seismic properties of the oceanic LAB, and potential sources for seamount volcanism. Results from a suite of simulations, constrained by catalogued observational data [4,5,6], enable prediction of global MORB and volatile output and systematic variations of major, volatile and trace element concentrations as a function of mantle conditions and dynamic properties. REFERENCES[1] McKenzie (1984), doi:10.1093/petrology/25.3.713.[2] Rudge, Bercovici & Spiegelman (2011), doi:10.1111/j.1365-246X.2010.04870.x.[3] Keller & Katz (2016), doi:10.1093/petrology/egw030.[4] Dalton, Langmuir & Gale (2014), doi:10.1126/science.1249466.[5] Gale, Langmuir & Dalton (2014), doi:10.1093/petrology/egu017.[6] White et al. (2001), doi:10.1093/petrology/42.6.1171.

  19. Long term evolution of surface conditions on Venus: effects of primordial and Late Heavy Bombardment impacts at different timescales.

    NASA Astrophysics Data System (ADS)

    Gillmann, Cedric; Golabek, Gregor; Tackley, Paul

    2015-04-01

    We investigate the influence of impacts on the history of terrestrial planets from the point of view of internal dynamics and surface conditions. Our work makes use of our previous studies on Venus' long term evolution through a coupled atmosphere/mantle numerical code. The solid part of the planet is simulated using the StagYY code (Armann and Tackley, 2012) and releases volatiles into the atmosphere through degassing. Coupling with the atmosphere is obtained by using surface temperature as a boundary condition. The evolution of surface temperature is calculated from CO2 and water concentrations in the atmosphere with a gray radiative-convective atmosphere model. These concentrations vary due to degassing and escape mechanisms. We take into account hydrodynamic escape, which is dominant during the first hundred million years, and non-thermal processes as observed by the ASPERA instrument and modeled in various works. Impacts can have different effects: they can bring (i) volatiles to the planet, (ii) erode its atmosphere and (iii) modify mantle dynamics due to the large amount of energy they release. A 2D distribution of the thermal anomaly due to the impact is used leading to melting and subjected to transport by the mantle convection. Volatile evolution is still strongly debated. We therefore test a wide range of impactor parameters (size, velocity, timing) and different assumptions related to impact erosion, from large eroding power to more moderate ones (Shuvalov, 2010). Atmospheric erosion appears to have significant effects only for massive impacts and to be mitigated by volatiles brought by the impactor. While small (0-10 km) meteorites have a negligible effect on the global scale, medium ones (50-150 km) are able to bring volatiles to the planet and generate melt, leading to strong short term influence. However, only larger impacts (300+ km) have lasting effects. They can cause volcanic event both immediately after the impact and later on. Additionally, the amount of volatiles released is large enough to modify normal evolution and surface temperatures (tens of Kelvins). This is enough to modify mantle convection patterns. Depending on when such an impact occurs, the surface conditions history can appear radically different. A key factor is thus the timing of the impact and how it interacts with other processes.

  20. Exogenous polyamines elicit herbivore-induced volatiles in lima bean leaves: involvement of calcium, H2O2 and Jasmonic acid.

    PubMed

    Ozawa, Rika; Bertea, Cinzia M; Foti, Maria; Narayana, Ravishankar; Arimura, Gen-Ichiro; Muroi, Atsushi; Horiuchi, Jun-Ichiro; Nishioka, Takaaki; Maffei, Massimo E; Takabayashi, Junji

    2009-12-01

    We investigated the role of polyamines (PAs) in lima bean (Phaseolus lunatus) leaves on the production of herbivorous mite (Tetranychus urticae)-induced plant volatiles that attract carnivorous natural enemies of the herbivores. To do this, we focused on the effects of the exogenous PAs [cadaverine, putrescine, spermidine and spermine (Spm)] on the production of volatiles, H(2)O(2) and jasmonic acid (JA) and the levels of defensive genes, cytosolic calcium and reactive oxygen species (ROS). Among the tested PAs, Spm was the most active in inducing the production of volatile terpenoids known to be induced by T. urticae. An increase in JA levels was also found after Spm treatment, indicating that Spm induces the biosynthesis of JA, which has been shown elsewhere to regulate the production of some volatile terpenoids. Further, treatment with JA and Spm together resulted in greater volatile emission than that with JA alone. In a Y-tube olfactometer, leaves treated with Spm + JA attracted more predatory mites (Phytoseiulus persimilis) than those treated with JA alone. After treatment with Spm + JA, no effects were found on the enzyme activity of polyamine oxidase and copper amine oxidase. However, induction of calcium influx and ROS production, and increased enzyme activities and gene expression for NADPH oxidase complex, superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase and glutathione peroxidase were found after treatment with Spm + JA. These results indicate that Spm plays an important role in the production of T. urticae-induced lima bean leaf volatiles.

  1. Attraction of Phytoseiulus persimilis (Acari: Phytoseiidae) towards volatiles from various Tetranychus urticae-infested plant species.

    PubMed

    van den Boom, C E M; van Beek, T A; Dicke, M

    2002-12-01

    Plants infested with the spider mite Tetranychus urticae Koch, may indirectly defend themselves by releasing volatiles that attract the predatory mite Phytoseiulus persimilis Athias-Henriot. Several plants from different plant families that varied in the level of spider mite acceptance were tested in an olfactometer. The predatory mites were significantly attracted to the spider mite-infested leaves of all test plant species. No differences in attractiveness of the infested plant leaves were found for predatory mites reared on spider mites on the different test plants or on lima bean. Thus, experience with the spider mite-induced plant volatiles did not affect the predatory mites. Jasmonic acid was applied to ginkgo leaves to induce a mimic of a spider mite-induced volatile blend, because the spider mites did not survive when incubated on ginkgo. The volatile blend induced in ginkgo by jasmonic acid was slightly attractive to predatory mites. Plants with a high degree of direct defence were thought to invest less in indirect defence than plants with a low degree of direct defence. However, plants that had a strong direct defence such as ginkgo and sweet pepper, did emit induced volatiles that attracted the predatory mite. This indicates that a combination of direct and indirect defence is to some extent compatible in plant species.

  2. KSC-2013-3978

    NASA Image and Video Library

    2013-11-16

    CAPE CANAVERAL, Fla. -- In the conference room of Operations Support Building II at NASA's Kennedy Space Center in Florida, social media participants listen to a briefing on the Mars Atmosphere and Volatile Evolution, or MAVEN, mission by Dr. Jim Green, the agency's Planetary Science director. The social media participants gathered at the Florida spaceport for the launch of the Mars Atmosphere and Volatile Evolution, or MAVEN, spacecraft. Their visit included tours of key facilities and participating in presentations by key NASA leaders who updated the space agency's current efforts. Photo credit: NASA/Jim Grossman

  3. KSC-2013-3985

    NASA Image and Video Library

    2013-11-16

    CAPE CANAVERAL, Fla. -- In the conference room of Operations Support Building II at NASA's Kennedy Space Center in Florida, social media participants listen to a briefing on the Mars Atmosphere and Volatile Evolution, or MAVEN, mission by, John Grunsfeld, the agency's associate administrator for the Science Mission Directorate. The social media participants gathered at the Florida spaceport for the launch of the Mars Atmosphere and Volatile Evolution, or MAVEN, spacecraft. Their visit included tours of key facilities and participating in presentations by key NASA leaders who updated the space agency's current efforts. Photo credit: NASA/Jim Grossman

  4. KSC-2013-3986

    NASA Image and Video Library

    2013-11-16

    CAPE CANAVERAL, Fla. -- In the conference room of Operations Support Building II at NASA's Kennedy Space Center in Florida, social media participants listen to a briefing on the Mars Atmosphere and Volatile Evolution, or MAVEN, mission by, John Grunsfeld, the agency's associate administrator for the Science Mission Directorate. The social media participants gathered at the Florida spaceport for the launch of the Mars Atmosphere and Volatile Evolution, or MAVEN, spacecraft. Their visit included tours of key facilities and participating in presentations by key NASA leaders who updated the space agency's current efforts. Photo credit: NASA/Jim Grossman

  5. Genetic variation in jasmonic acid- and spider mite-induced plant volatile emission of cucumber accessions and attraction of the predator Phytoseiulus persimilis.

    PubMed

    Kappers, Iris F; Verstappen, Francel W A; Luckerhoff, Ludo L P; Bouwmeester, Harro J; Dicke, Marcel

    2010-05-01

    Cucumber plants (Cucumis sativus L.) respond to spider-mite (Tetranychus urticae) damage with the release of specific volatiles that are exploited by predatory mites, the natural enemies of the spider mites, to locate their prey. The production of volatiles also can be induced by exposing plants to the plant hormone jasmonic acid. We analyzed volatile emissions from 15 cucumber accessions upon herbivory by spider mites and upon exposure to jasmonic acid using gas chromatography-mass spectrometry. Upon induction, cucumber plants emitted over 24 different compounds, and the blend of induced volatiles consisted predominantly of terpenoids. The total amount of volatiles was higher in plants treated with jasmonic acid than in those infested with spider mites, with (E)-4,8-dimethyl-1,3,7-nonatriene, (E,E)-alpha-farnesene, and (E)-beta-ocimene as the most abundant compounds in all accessions in both treatments. Significant variation among the accessions was found for the 24 major volatile compounds. The accessions differed strongly in total amount of volatiles emitted, and displayed very different odor profiles. Principal component analysis performed on the relative quantities of particular compounds within the blend revealed clusters of highly correlated volatiles, which is suggestive of common metabolic pathways. A number of cucumber accessions also were tested for their attractiveness to Phytoseiulus persimilis, a specialist predator of spider mites. Differences in the attraction of predatory mites by the various accessions correlated to differences in the individual chemical profiles of these accessions. The presence of genetic variation in induced plant volatile emission in cucumber shows that it is possible to breed for cucumber varieties that are more attractive to predatory mites and other biological control agents.

  6. Genetic Variation in Jasmonic Acid- and Spider Mite-Induced Plant Volatile Emission of Cucumber Accessions and Attraction of the Predator Phytoseiulus persimilis

    PubMed Central

    Verstappen, Francel W. A.; Luckerhoff, Ludo L. P.; Bouwmeester, Harro J.; Dicke, Marcel

    2010-01-01

    Cucumber plants (Cucumis sativus L.) respond to spider–mite (Tetranychus urticae) damage with the release of specific volatiles that are exploited by predatory mites, the natural enemies of the spider mites, to locate their prey. The production of volatiles also can be induced by exposing plants to the plant hormone jasmonic acid. We analyzed volatile emissions from 15 cucumber accessions upon herbivory by spider mites and upon exposure to jasmonic acid using gas chromatography—mass spectrometry. Upon induction, cucumber plants emitted over 24 different compounds, and the blend of induced volatiles consisted predominantly of terpenoids. The total amount of volatiles was higher in plants treated with jasmonic acid than in those infested with spider mites, with (E)-4,8-dimethyl-1,3,7-nonatriene, (E,E)-α-farnesene, and (E)-β-ocimene as the most abundant compounds in all accessions in both treatments. Significant variation among the accessions was found for the 24 major volatile compounds. The accessions differed strongly in total amount of volatiles emitted, and displayed very different odor profiles. Principal component analysis performed on the relative quantities of particular compounds within the blend revealed clusters of highly correlated volatiles, which is suggestive of common metabolic pathways. A number of cucumber accessions also were tested for their attractiveness to Phytoseiulus persimilis, a specialist predator of spider mites. Differences in the attraction of predatory mites by the various accessions correlated to differences in the individual chemical profiles of these accessions. The presence of genetic variation in induced plant volatile emission in cucumber shows that it is possible to breed for cucumber varieties that are more attractive to predatory mites and other biological control agents. PMID:20383796

  7. Raining a magma ocean: Thermodynamics of rocky planets after a giant impact

    NASA Astrophysics Data System (ADS)

    Stewart, S. T.; Lock, S. J.; Caracas, R.

    2017-12-01

    Rocky planets in exoplanetary systems have equilibrium temperatures up to a few 1000 K. The thermal evolution after a giant impact is sensitive to the equilibrium temperature. Post-impact rocky bodies are thermally stratified, with cooler, lower-entropy silicate overlain by vaporized, higher-entropy silicate. The radii of impact-vaporized rocky planets are much larger than the radii of equivalent condensed bodies. Furthermore, after some high-energy, high-angular momentum collisions, the post-impact body exceeds the corotation limit for a rocky planet and forms a synestia. Initially, volatiles and silicates are miscible at the high temperatures of the outer layer. If the equilibrium temperature with the star is lower than the silicate condensation temperature ( 2000 K), silicate droplets form at the photosphere and fall while volatile components remain in the vapor. Radiation and turbulent convection cool the vapor outer layer to the silicate vapor curve. A distinct magma ocean forms as the thermal profile crosses the silicate vapor curve and the critical curves for the volatiles. Near the temperatures and pressures of the critical curves, volatiles and silicates are partially soluble in each other. As the system continues cooling, the volatile vapor and silicate liquid separate toward the end member compositions, which are determined by the equilibrium temperature and the total vapor pressure of volatiles. If the equilibrium temperature with the star is near or above the condensation temperature for silicates, there would be limited condensation at the photosphere. Initially, the cooler lower mantle would slowly, diffusively equilibrate with the hotter upper mantle. In some cases, the thermal profile may cross the silicate vapor curve in the middle of the silicate layer, producing a silicate rain layer within the body. With continued evolution toward an adiabatic thermal profile, the body would separate into a silicate liquid layer underlying a silicate-volatile vapor layer. As the hottest rocky planets become tidally locked to their star, cooling progresses asymmetrically. The timing and degree of differentiation of rocky planets into silicate mantles and volatile atmospheres depends on the thermal evolution of vaporized rocky planets and may vary widely with equilibrium temperature.

  8. Late Veneer consequences on Venus' long term evolution

    NASA Astrophysics Data System (ADS)

    Gillmann, C.; Golabek, G.; Tackley, P. J.; Raymond, S. N.

    2017-12-01

    Modelling of Venus' evolution is able to produce scenarios consistent with present-day observation. These results are however heavily dependent on atmosphere escape and initial volatile inventory. This primordial history (the first 500 Myr) is heavily influenced by collisions. We investigate how Late Veneer impacts change the initial state of Venus and their consequences on its coupled mantle/atmosphere evolution. We focus on volatile fluxes: atmospheric escape and mantle degassing. Mantle dynamics is simulated using the StagYY code. Atmosphere escape covers both thermal and non-thermal processes. Surface conditions are calculated with a radiative-convective model. Feedback of the atmosphere on the mantle through surface temperature is included. Large impacts are capable of contributing to atmospheric escape, volatile replenishment and energy transfer. We use the SOVA hydrocode to take into account volatile loss and deposition during a collision. Large impacts are not numerous enough to substantially erode Venus' atmosphere. Single impacts don't have enough eroding power. Swarms of small bodies (<50km radius) might be a better candidate for this process. The amount of volatiles brought by large ordinary chondrite impactors is superior to losses and comparable to the degassing caused by the impact. Carbonaceous chondrite impactors are unlikely: they release too many volatiles, causing surface temperature to stay above 900K up to present-day. Mantle dynamics can also be modified by the heating caused by impacts. Heated material propagates by spreading across the upper mantle due to its buoyancy. Old crust is destroyed or remixed in the mantle. A large part of the upper mantle melts, leading to its depletion and degassing. With enough evenly distributed high energy impacts, the mantle can be depleted by more than 90% of its volatiles during Late Veneer. This drastically cuts down degassing in the late history of the planet and leads to lower present-day surface temperatures. Total depletion of the mantle seems unlikely, meaning either few large impacts (1 to 4) or low energy (slow, grazing…) collisions. Combined with the lack of plate tectonics and volatile recycling in the interior of Venus, Late Veneer collisions could help explain why Venus seems dry today.

  9. The history of Martian volatiles

    NASA Astrophysics Data System (ADS)

    Jakosky, Bruce M.; Jones, John H.

    The behavior of water and other volatiles on Mars is key to understanding the evolution of the climate. The early climate played a fundamental role in producing the observed surface morphology and possibly in enabling the existence of an early biosphere. Geochemical and isotopic data can be used to infer the history of volatiles. On the basis of the isotopic data from the atmosphere and from components of the surface (as measured in meteorites that come from Mars), there appear to be at least two reservoirs of volatiles, one that has undergone exchange with the atmosphere and has been isotopically fractionated, and a second that is unfractionated and may represent juvenile gases. The fractionation of the atmospheric component has occurred primarily through the escape of gas to space. In addition, the atmospheric gases have mixed substantially with crustal reservoirs of volatiles. Such exchange may have occurred in aqueous or hydrothermal environments. The history of escape to space, as driven by the properties of the Sun through time, is consistent with the surface geomorphology. Together, they suggest an early environment that was substantially different from the present one and the evolution through time to a colder, dryer climate.

  10. Martian geomorphology and its relation to subsurface volatiles

    NASA Technical Reports Server (NTRS)

    Clifford, Stephen M. (Editor); Rossbacher, Lisa A. (Editor); Zimbelman, James R. (Editor)

    1986-01-01

    Martian volatile inventory, planetary climatic and atmospheric evolution, and the interpretation of various remote sensing data were discussed. A number of morphologies that were cited as potential indicators of subsurface volatiles were reviewed. Rampart craters and terrain softening were the focus of more in-depth discussion because of the popular attention they have received and the fact that their areal distributions are by far the most extensive of all the proposed indicators.

  11. Caterpillar-induced plant volatiles attract conspecific adults in nature

    PubMed Central

    El-Sayed, Ashraf M.; Knight, Alan L.; Byers, John A.; Judd, Gary J. R.; Suckling, David M.

    2016-01-01

    Plants release volatiles in response to caterpillar feeding that attract natural enemies of the herbivores, a tri-trophic interaction which has been considered an indirect plant defence against herbivores. The caterpillar-induced plant volatiles have been reported to repel or attract conspecific adult herbivores. To date however, no volatile signals that either repel or attract conspecific adults under field conditions have been chemically identified. Apple seedlings uniquely released seven compounds including acetic acid, acetic anhydride, benzyl alcohol, benzyl nitrile, indole, 2-phenylethanol, and (E)-nerolidol only when infested by larvae of the light brown apple moth, Epiphyas postvittana. In field tests in New Zealand, a blend of two of these, benzyl nitrile and acetic acid, attracted a large number of conspecific male and female adult moths. In North America, male and female adults of the tortricid, oblique-banded leafroller, Choristoneura rosaceana, were most attracted to a blend of 2-phenylethanol and acetic acid. Both sexes of the eye-spotted bud moth, Spilonota ocellana, were highly attracted to a blend of benzyl nitrile and acetic acid. This study provides the first identification of caterpillar-induced plant volatiles that attract conspecific adult herbivores under natural conditions, challenging the expectation of herbivore avoidance of these induced volatiles. PMID:27892474

  12. Hidden in the Neutrons: Physical Evidence for Lunar True Polar Wander

    NASA Astrophysics Data System (ADS)

    Keane, J. T.; Siegler, M. A.; Miller, R. S.; Laneuville, M.; Paige, D. A.; Matsuyama, I.; Lawrence, D. J.; Crotts, A.; Poston, M.

    2015-12-01

    Airless bodies like the Moon are time capsules of planetary and solar system evolution. Lunar polar ices, in particular, record a history of volatile delivery, orbital dynamics, and solar system chemistry. However, despite two decades of orbital geochemistry measurements, the observed abundances and spatial distribution of lunar polar volatiles (likely water ice, as inferred by epithermal neutron deficits) remain unexplained. The observed deposits do not correlate with measured surface temperatures or thermal models of ice stability and are notably asymmetric about the lunar poles, with the peak abundance offset from the present-day pole by 5°. Here we show, for the first time, that polar volatile deposits at the North and South pole are antipodal, displaced equally from each each pole along opposite longitudes. These off-polar volatiles likely represent fossilized cold-traps, formed when the moon had a different spin pole. Reorientation of the Moon from this paleopole to the present pole (i.e. true polar wander) altered the locations of cold-traps and resulted in the asymmetric, but antipodal, polar hydrogen distribution. Since true polar wander results from changes in the distribution of mass within a planet, the direction and magnitude of this wander can be used to constrain the evolution of the lunar interior. We find a causal link between this paleopole and the unique thermal evolution of the nearside Procellarum KREEP Terrane (PKT). Radiogenic heating within this province not only resulted major mare volcanism, but also altered the Moon's moments of inertia. We use a combination of analytical, and numerical 3-D thermochemical convection models to show that the evolution of the PKT naturally produces the correct direction and magnitude of polar wander (albeit early in lunar history, when the PKT was most active). This work provides a self-consistent explanation for the spatial distribution of lunar polar volatiles and opens a deeper connection to the evolution of the lunar interior. Our hypothesis will be readily testable with forthcoming lunar missions, including high-resolution orbital geochemistry instruments, in-situ and returned sample analysis, and geophysical networks.

  13. Martian Surface and Atmosphere Workshop

    NASA Astrophysics Data System (ADS)

    Schuraytz, Benjamin C.

    The NASA-sponsored Martian Surface and Atmosphere Through Time Study Project convened its first major meeting at the University of Colorado in Boulder, September 23-25, 1991. The workshop, co-sponsored by the Lunar and Planetary Institute (LPI) and the Laboratory for Atmospheric and Space Physics at the University of Colorado, brought together an international group of 125 scientists to discuss a variety of issues relevant to the goals of the MSATT Program. The workshop program committee included co-convenors Robert Haberle, MSATT Steering Committee Chairman NASA Ames Research Center) and Bruce Jakosky (University of Colorado), and committee members Amos Banin (NASA Ames Research Center and Hebrew University), Benjamin Schuraytz (LPI), and Kenneth Tanaka (U.S. Geological Survey, Flagstaff, Ariz.).The purpose of the workshop was to begin exploring and defining the relationships between different aspects of Mars science—the evolution of the surface, the atmosphere, upper atmosphere, volatiles, and climate. Specific topics addressed in the 88 contributed abstracts included the current nature of the surface with respect to physical properties and photometric observations and interpretations; the history of geological processes, comprising water and ice-related geomorphology, impact cratering, and volcanism; and the geochemistry and mineralogy of the surface with emphasis on compositional and spectroscopic studies and weathering processes. Also addressed were the present atmosphere, focusing on structure and dynamics, volatile and dust distribution, and the upper atmosphere; long-term volatile evolution based on volatiles in SNC meteorites (certain meteorites thought to have come from Mars) and atmospheric evolution processes; climate history and volatile cycles in relation to early climate and the polar caps, ground ice, and regolith; and future mission concepts.

  14. Network of listed companies based on common shareholders and the prediction of market volatility

    NASA Astrophysics Data System (ADS)

    Li, Jie; Ren, Da; Feng, Xu; Zhang, Yongjie

    2016-11-01

    In this paper, we build a network of listed companies in the Chinese stock market based on common shareholding data from 2003 to 2013. We analyze the evolution of topological characteristics of the network (e.g., average degree, diameter, average path length and clustering coefficient) with respect to the time sequence. Additionally, we consider the economic implications of topological characteristic changes on market volatility and use them to make future predictions. Our study finds that the network diameter significantly predicts volatility. After adding control variables used in traditional financial studies (volume, turnover and previous volatility), network topology still significantly influences volatility and improves the predictive ability of the model.

  15. Application of stochastic differential geometry to the term structure of interst rates in developed markets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taranenko, Y.; Barnes, C.

    1996-12-31

    This paper deals with further developments of the new theory that applies stochastic differential geometry (SDG) to dynamics of interest rates. We examine mathematical constraints on the evolution of interest rate volatilities that arise from stochastic differential calculus under assumptions of an arbitrage free evolution of zero coupon bonds and developed markets (i.e., none of the party/factor can drive the whole market). The resulting new theory incorporates the Heath-Jarrow-Morton (HJM) model of interest rates and provides new equations for volatilities which makes the system of equations for interest rates and volatilities complete and self consistent. It results in much smallermore » amount of volatility data that should be guessed for the SDG model as compared to the HJM model. Limited analysis of the market volatility data suggests that the assumption of the developed market is violated around maturity of two years. Such maturities where the assumptions of the SDG model are violated are suggested to serve as boundaries at which volatilities should be specified independently from the model. Our numerical example with two boundaries (two years and five years) qualitatively resembles the market behavior. Under some conditions solutions of the SDG model become singular that may indicate market crashes. More detail comparison with the data is needed before the theory can be established or refuted.« less

  16. Impact induced dehydration of serpentine and the evolution of planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Lange, M. A.; Ahrens, T. J.

    1982-01-01

    Results of shock recovery experiments carried out on antigorite serpentine Mg3Si2O5(OH)4 are reported. The main objective of the present study is the determination of critical shock pressures for partial and complete dehydration of serpentine under shock loading. It is pointed out that serpentine and serpentine-like layer silicates are the major water-bearing phases in carbonaceous chondrites. It appears that these minerals, and a poorly defined cometary contribution, were the most likely water-bearing phases in accreting planetesimals which led to the formation of the terrestrial planets. The obtained results imply that the process of impact induced devolatilization of volatile bearing minerals during accretion is likely to have occurred on earth. The findings lend support to the model of a terrestrial atmosphere/hydrosphere forming during the later stages of accretion of the earth.

  17. Indole is an essential herbivore-induced volatile priming signal in maize

    PubMed Central

    Erb, Matthias; Veyrat, Nathalie; Robert, Christelle A. M.; Xu, Hao; Frey, Monika; Ton, Jurriaan; Turlings, Ted C. J.

    2015-01-01

    Herbivore-induced volatile organic compounds prime non-attacked plant tissues to respond more strongly to subsequent attacks. However, the key volatiles that trigger this primed state remain largely unidentified. In maize, the release of the aromatic compound indole is herbivore-specific and occurs earlier than other induced responses. We therefore hypothesized that indole may be involved in airborne priming. Using indole-deficient mutants and synthetic indole dispensers, we show that herbivore-induced indole enhances the induction of defensive volatiles in neighbouring maize plants in a species-specific manner. Furthermore, the release of indole is essential for priming of mono- and homoterpenes in systemic leaves of attacked plants. Indole exposure markedly increases the herbivore-induced production of the stress hormones jasmonate-isoleucine conjugate and abscisic acid, which represents a likely mechanism for indole-dependent priming. These results demonstrate that indole functions as a rapid and potent aerial priming agent that prepares systemic tissues and neighbouring plants for incoming attacks. PMID:25683900

  18. Diffusive retention of atmospheric gases in chert

    NASA Astrophysics Data System (ADS)

    Pettitt, E.; Cherniak, D. J.; Watson, E. B.; Schaller, M. F.

    2016-12-01

    Throughout Earth's history, the volatile contents (N2, CO2, Ar) of both deep and shallow terrestrial reservoirs has been dynamic. Volatiles are important chemical constituents because they play a significant role in regulating Earth's climate, mediating the evolution of complex life, and controlling the properties of minerals and rocks. Estimating levels of atmospheric volatiles in the deep geological past requires interrogation of materials that have acquired and retained a chemical memory from that time. Cherts have the potential to trap atmospheric components during formation and later release those gases for analysis in the laboratory. However, cherts have been underexploited in this regard, partly because their ability to retain a record of volatile components has not been adequately evaluated. Before cherts can be reliably used as indicators of past levels of major atmospheric gases, it is crucial that we understand the diffusive retentiveness of these cryptocrystalline silica phases. As the first step toward quantifying the diffusivity and solubility of carbon dioxide and nitrogen in chert, we have performed 1-atmosphere diffusive-uptake experiments at temperatures up to 450°C. Depth profiles of in-diffusing gases are measured by nuclear reaction analysis (NRA) to help us understand the molecular-scale transport of volatiles and thus the validity of using chert-bound volatiles to record information about Earth history. Data collected to date suggest that at least some cherts are ideal storage containers and can retain volatiles for a geologically long time. In addition to these diffusion experiments, preliminary online-crush fast-scan measurements using a quadrupole mass spectrometer indicate that atmospheric volatiles are released upon crushing various chert samples. By coupling such volatile-release measurements made by mass spectrometry with diffusion experiments, we are uniquely able to address the storage and fidelity of volatiles bound in crustal materials; an important step toward understanding atmospheric evolution over geologic history.

  19. Reactive trace gas emissions from stressed plants: a poorly characterized major source of atmospheric volatiles

    NASA Astrophysics Data System (ADS)

    Niinemets, Ülo

    2017-04-01

    Vegetation constitutes the greatest source of reactive volatile organic compounds in the atmosphere. The current emission estimates primarily rely on constitutive emissions that are present only in some plant species. However, all plant species can be induced to emit reactive volatiles by different abiotic and biotic stresses, but the stress-dependent emissions have been largely neglected in emission measurements and models. This presentation provides an overview of systematic screening of stress-dependent volatile emissions from a broad range of structurally and physiologically divergent plant species from temperate to tropical ecosystems. Ozone, heat, drought and wounding stress were the abiotic stresses considered in the screening, while biotic stress included herbivory, chemical elicitors simulating herbivory and fungal infections. The data suggest that any moderate to severe stress leads to significant emissions of a rich blend of volatiles, including methanol, green leaf volatiles (the lipoxygenase pathway volatiles, dominated by C6 aldehydes, alcohols and derivatives), different mono- and sesquiterpenes and benzenoids. The release of volatiles occurs in stress severity-dependent manner, although the emission responses are often non-linear with more severe stresses resulting in disproportionately greater emissions. Stress volatile release is induced in both non-constitutive and constitutive volatile emitters, whereas the rate of constitutive volatile emissions in constitutive emitters is often reduced under environmental and biotic stresses. Given that plants in natural conditions often experience stress, this analysis suggests that global volatile emissions have been significantly underestimated. Furthermore, in globally changing hotter climates, the frequency and severity of both abiotic and biotic stresses is expected to increase. Thus, the stress-induced volatile emissions are predicted to play a dominant role in plant-atmosphere interactions in near future. Quantitative models that link stress severity, plant volatile emissions and climatic feedbacks are currently being developed, and this presentation argues that incorporating stress-dependent feedbacks in Earth system models in inevitable to simulate future climates.

  20. Signals of speciation: Volatile organic compounds resolve closely related sagebrush taxa, suggesting their importance in evolution

    Treesearch

    Deidre M. Jaeger; Justin B. Runyon; Bryce A. Richardson

    2016-01-01

    Volatile organic compounds (VOCs) play important roles in the environmental adaptation and fitness of plants. Comparison of the qualitative and quantitative differences in VOCs among closely related taxa and assessing the effects of environment on their emissions are important steps to deducing VOC function and evolutionary importance.

  1. The Neutral Gas and Ion Mass Spectrometer on the Mars Atmosphere and Volatile Evolution Mission

    NASA Technical Reports Server (NTRS)

    Mahaffy, Paul R.; Benna, Mehdi; King, Todd; Harpold, Daniel N.; Arvey, Robert; Barciniak, Michael; Bendt, Mirl; Carrigan, Daniel; Errigo, Therese; Holmes, Vincent; hide

    2014-01-01

    The Neutral Gas and Ion Mass Spectrometer (NGIMS) of the Mars Atmosphere and Volatile Evolution Mission (MAVEN) is designed to measure the composition, structure, and variability of the upper atmosphere of Mars. The NGIMS complements two other instrument packages on the MAVEN spacecraft designed to characterize the neutral upper atmosphere and ionosphere of Mars and the solar wind input to this region of the atmosphere. The combined measurement set is designed to quantify atmosphere escape rates and provide input to models of the evolution of the martian atmosphere. The NGIMS is designed to measure both surface reactive and inert neutral species and ambient ions along the spacecraft track over the 125-500 km altitude region utilizing a dual ion source and a quadrupole analyzer.

  2. The Effects of Abiotic Factors on Induced Volatile Emissions in Corn Plants1

    PubMed Central

    Gouinguené, Sandrine P.; Turlings, Ted C.J.

    2002-01-01

    Many plants respond to herbivory by releasing a specific blend of volatiles that is attractive to natural enemies of the herbivores. In corn (Zea mays), this induced odor blend is mainly composed of terpenoids and indole. The induced signal varies with plant species and genotype, but little is known about the variation due to abiotic factors. Here, we tested the effect of soil humidity, air humidity, temperature, light, and fertilization rate on the emission of induced volatiles in young corn plants. Each factor was tested separately under constant conditions for the other factors. Plants released more when standing in dry soil than in wet soil, whereas for air humidity, the optimal release was found at around 60% relative humidity. Temperatures between 22°C and 27°C led to a higher emission than lower or higher temperatures. Light intensity had a dramatic effect. The emission of volatiles did not occur in the dark and increased steadily with an increase in the light intensity. An experiment with an unnatural light-dark cycle showed that the release was fully photophase dependent. Fertilization also had a strong positive effect; the emission of volatiles was minimal when plants were grown under low nutrition, even when results were corrected for plant biomass. Changes in all abiotic factors caused small but significant changes in the relative ratios among the different compounds (quality) in the induced odor blends, except for air humidity. Hence, climatic conditions and nutrient availability can be important factors in determining the intensity and variability in the release of induced plant volatiles. PMID:12114583

  3. Lunar Science Conference, 5th, Houston, Tex., March 18-22, 1974, Proceedings. Volume 1 - Mineralogy and petrology. Volume 2 Chemical and isotope analyses. Organic chemistry. Volume 3 - Physical properties

    NASA Technical Reports Server (NTRS)

    Gose, W. A.

    1974-01-01

    Numerous studies on the properties of the moon based on Apollo findings and samples are presented. Topics treated include ages of the lunar nearside light plains and maria, orange material in the Sulpicius Gallus formation at the southwestern edge of Mare Serenitatis, impact-induced fractionation in the lunar highlands, igneous rocks from Apollo 16 rake samples, experimental liquid line of descent and liquid immiscibility for basalt 70017, ion microprobe mass analysis of plagioclase from 'non-mare' lunar samples, grain size and the evolution of lunar soils, chemical composition of rocks and soils at Taurus-Littrow, the geochemical evolution of the moon, U-Th-Pb systematics of some Apollo 17 lunar samples and implications for a lunar basin excavation chronology, volatile-element systematics and green glass in Apollo 15 lunar soils, solar wind nitrogen and indigenous nitrogen in Apollo 17 lunar samples, lunar trapped xenon, solar flare and lunar surface process characterization at the Apollo 17 site, and the permanent and induced magnetic dipole moment of the moon. Individual items are announced in this issue.

  4. Rover Traverse Planning to Support a Lunar Polar Volatiles Mission

    NASA Technical Reports Server (NTRS)

    Heldmann, J.L.; Colaprete, A.C.; Elphic, R. C.; Bussey, B.; McGovern, A.; Beyer, R.; Lees, D.; Deans, M. C.; Otten, N.; Jones, H.; hide

    2015-01-01

    Studies of lunar polar volatile depositsare of interest for scientific purposes to understandthe nature and evolution of the volatiles, and alsofor exploration reasons as a possible in situ resource toenable long term exploration and settlement of theMoon. Both theoretical and observational studies havesuggested that significant quantities of volatiles exist inthe polar regions, although the lateral and horizontaldistribution remains unknown at the km scale and finerresolution. A lunar polar rover mission is required tofurther characterize the distribution, quantity, andcharacter of lunar polar volatile deposits at thesehigher spatial resolutions. Here we present two casestudies for NASA’s Resource Prospector (RP) missionconcept for a lunar polar rover and utilize this missionarchitecture and associated constraints to evaluatewhether a suitable landing site exists to support an RPflight mission.

  5. Nocturnal herbivore-induced plant volatiles attract the generalist predatory earwig Doru luteipes Scudder

    NASA Astrophysics Data System (ADS)

    Naranjo-Guevara, Natalia; Peñaflor, Maria Fernanda G. V.; Cabezas-Guerrero, Milton F.; Bento, José Maurício S.

    2017-10-01

    Numerous studies have demonstrated that entomophagous arthropods use herbivore-induced plant volatile (HIPV) blends to search for their prey or host. However, no study has yet focused on the response of nocturnal predators to volatile blends emitted by prey damaged plants. We investigated the olfactory behavioral responses of the night-active generalist predatory earwig Doru luteipes Scudder (Dermaptera: Forficulidae) to diurnal and nocturnal volatile blends emitted by maize plants ( Zea mays) attacked by either a stem borer ( Diatraea saccharalis) or a leaf-chewing caterpillar ( Spodoptera frugiperda), both suitable lepidopteran prey. Additionally, we examined whether the earwig preferred odors emitted from short- or long-term damaged maize. We first determined the earwig diel foraging rhythm and confirmed that D. luteipes is a nocturnal predator. Olfactometer assays showed that during the day, although the earwigs were walking actively, they did not discriminate the volatiles of undamaged maize plants from those of herbivore damaged maize plants. In contrast, at night, earwigs preferred volatiles emitted by maize plants attacked by D. saccharalis or S. frugiperda over undamaged plants and short- over long-term damaged maize. Our GC-MS analysis revealed that short-term damaged nocturnal plant volatile blends were comprised mainly of fatty acid derivatives (i.e., green leaf volatiles), while the long-term damaged plant volatile blend contained mostly terpenoids. We also observed distinct volatile blend composition emitted by maize damaged by the different caterpillars. Our results showed that D. luteipes innately uses nocturnal herbivore-induced plant volatiles to search for prey. Moreover, the attraction of the earwig to short-term damaged plants is likely mediated by fatty acid derivatives.

  6. Heating-Induced Evaporation of Nine Different Secondary Organic Aerosol Types

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolesar, Katheryn R.; Li, Ziyue; Wilson, Kevin R.

    The volatility of the compounds comprising organic aerosol (OA) determines their distribution between the gas and particle phases. However, there is a disconnect between volatility distributions as typically derived from secondary OA (SOA) growth experiments and the effective particle volatility as probed in evaporation experiments. Specifically, the evaporation experiments indicate an overall much less volatile SOA. This raises questions regarding the use of traditional volatility distributions in the simulation and prediction of atmospheric SOA concentrations. Here, we present results from measurements of thermally induced evaporation of SOA for nine different SOA types (i.e., distinct volatile organic compound and oxidant pairs)more » encompassing both anthropogenic and biogenic compounds and O 3 and OH to examine the extent to which the low effective volatility of SOA is a general phenomenon or specific to a subset of SOA types. The observed extents of evaporation with temperature were similar for all the SOA types and indicative of a low effective volatility. Furthermore, minimal variations in the composition of all the SOA types upon heating-induced evaporation were observed. These results suggest that oligomer decomposition likely plays a major role in controlling SOA evaporation, and since the SOA formation time scale in these measurements was less than a minute, the oligomer-forming reactions must be similarly rapid. Overall, these results emphasize the importance of accounting for the role of condensed phase reactions in altering the composition of SOA when assessing particle volatility.« less

  7. Heating-Induced Evaporation of Nine Different Secondary Organic Aerosol Types

    DOE PAGES

    Kolesar, Katheryn R.; Li, Ziyue; Wilson, Kevin R.; ...

    2015-09-22

    The volatility of the compounds comprising organic aerosol (OA) determines their distribution between the gas and particle phases. However, there is a disconnect between volatility distributions as typically derived from secondary OA (SOA) growth experiments and the effective particle volatility as probed in evaporation experiments. Specifically, the evaporation experiments indicate an overall much less volatile SOA. This raises questions regarding the use of traditional volatility distributions in the simulation and prediction of atmospheric SOA concentrations. Here, we present results from measurements of thermally induced evaporation of SOA for nine different SOA types (i.e., distinct volatile organic compound and oxidant pairs)more » encompassing both anthropogenic and biogenic compounds and O 3 and OH to examine the extent to which the low effective volatility of SOA is a general phenomenon or specific to a subset of SOA types. The observed extents of evaporation with temperature were similar for all the SOA types and indicative of a low effective volatility. Furthermore, minimal variations in the composition of all the SOA types upon heating-induced evaporation were observed. These results suggest that oligomer decomposition likely plays a major role in controlling SOA evaporation, and since the SOA formation time scale in these measurements was less than a minute, the oligomer-forming reactions must be similarly rapid. Overall, these results emphasize the importance of accounting for the role of condensed phase reactions in altering the composition of SOA when assessing particle volatility.« less

  8. The effect of genetically enriched (E)-β-ocimene and the role of floral scent in the attraction of the predatory mite Phytoseiulus persimilis to spider mite-induced volatile blends of torenia.

    PubMed

    Shimoda, Takeshi; Nishihara, Masahiro; Ozawa, Rika; Takabayashi, Junji; Arimura, Gen-ichiro

    2012-03-01

    Plants under herbivore attack emit mixtures of volatiles (herbivore-induced plant volatiles, HIPVs) that can attract predators of the herbivores. Although the composition of HIPVs should be critical for the attraction, most studies of transgenic plant-emitted volatiles have simply addressed the effect of trans-volatiles without embedding in other endogenous plant volatiles. We investigated the abilities of transgenic wishbone flower plants (Torenia hybrida and Torenia fournieri) infested with spider mites, emitting a trans-volatile ((E)-β-ocimene) in the presence or absence of endogenous volatiles (natural HIPVs and/or floral volatiles), to attract predatory mites (Phytoseiulus persimilis). In both olfactory- and glasshouse-based assays, P. persimilis females were attracted to natural HIPVs from infested wildtype (wt) plants of T. hybrida but not to those of T. fournieri. The trans-volatile enhanced the ability to attract P. persimilis only when added to an active HIPV blend from the infested transgenic T. hybrida plants, in comparison with the attraction by infested wt plants. Intriguingly, floral volatiles abolished the enhanced attractive ability of T. hybrida transformants, although floral volatiles themselves did not elicit any attraction or avoidance behavior. Predator responses to trans-volatiles were found to depend on various background volatiles (e.g. natural HIPVs and floral volatiles) endogenously emitted by the transgenic plants. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  9. Survey of conspecific herbivore-induced volatiles from apple as possible attractants for Pandemis pyrusana (Lepidoptera: Tortricidae)

    USDA-ARS?s Scientific Manuscript database

    Studies were conducted to identify volatiles released by apple, Malus domestica Borkhausen, foliage subjected to herbivore feeding. The volatiles released upon herbivore attack could be attractive to adult leafroller, Pandemis pyrusana Kearfott when combined with acetic acid. First, volatiles relea...

  10. Geologic Evolution of Eastern Hellas, Mars: Styles and Timing of Volatile-driven Activity

    NASA Technical Reports Server (NTRS)

    Crown, David A.; Bleamaster, Leslie F., III; Mest, Scott C.

    2004-01-01

    The east rim of the Hellas basin and the surrounding highlands comprise a geologically significant region for evaluating volatile abundance, volatile distribution and cycling, and potential changes in Martian environmental conditions. This region of the Martian surface exhibits landforms shaped by a diversity of geologic processes and has a well-preserved geologic record, with exposures of Noachian, Hesperian, and Amazonian units, as well as spans a wide range in both latitude and elevation due to the magnitude of Hellas basin. In addition, geologically contemporaneous volcanism and volatile-driven activity in the circum-Hellas highlands provide important ingredients for creating habitats for potential Martian life.

  11. Quantitative patterns between plant volatile emissions induced by biotic stresses and the degree of damage

    PubMed Central

    Niinemets, Ülo; Kännaste, Astrid; Copolovici, Lucian

    2013-01-01

    Plants have to cope with a plethora of biotic stresses such as herbivory and pathogen attacks throughout their life cycle. The biotic stresses typically trigger rapid emissions of volatile products of lipoxygenase (LOX) pathway (LOX products: various C6 aldehydes, alcohols, and derivatives, also called green leaf volatiles) associated with oxidative burst. Further a variety of defense pathways is activated, leading to induction of synthesis and emission of a complex blend of volatiles, often including methyl salicylate, indole, mono-, homo-, and sesquiterpenes. The airborne volatiles are involved in systemic responses leading to elicitation of emissions from non-damaged plant parts. For several abiotic stresses, it has been demonstrated that volatile emissions are quantitatively related to the stress dose. The biotic impacts under natural conditions vary in severity from mild to severe, but it is unclear whether volatile emissions also scale with the severity of biotic stresses in a dose-dependent manner. Furthermore, biotic impacts are typically recurrent, but it is poorly understood how direct stress-triggered and systemic emission responses are silenced during periods intervening sequential stress events. Here we review the information on induced emissions elicited in response to biotic attacks, and argue that biotic stress severity vs. emission rate relationships should follow principally the same dose–response relationships as previously demonstrated for different abiotic stresses. Analysis of several case studies investigating the elicitation of emissions in response to chewing herbivores, aphids, rust fungi, powdery mildew, and Botrytis, suggests that induced emissions do respond to stress severity in dose-dependent manner. Bi-phasic emission kinetics of several induced volatiles have been demonstrated in these experiments, suggesting that next to immediate stress-triggered emissions, biotic stress elicited emissions typically have a secondary induction response, possibly reflecting a systemic response. The dose–response relationships can also vary in dependence on plant genotype, herbivore feeding behavior, and plant pre-stress physiological status. Overall, the evidence suggests that there are quantitative relationships between the biotic stress severity and induced volatile emissions. These relationships constitute an encouraging platform to develop quantitative plant stress response models. PMID:23888161

  12. Asteroid and comet impacts on Mars and their influence on atmospheric mass evolution and habitability.

    NASA Astrophysics Data System (ADS)

    Karatekin, Özgür

    2015-04-01

    Impacts by asteroids and comets could have significant affects on the habitability and atmospheric evolution of terrestrial planets by removing part of its atmosphere, by delivering into it material and volatiles. Large impacts could have repeatedly destroyed the existing biosphere, but in the mean time new subsurface habitats have likely formed from impact induced hydrothermal systems. Early in its history, Mars could have a much denser atmosphere and higher surface temperatures to sustain the presence of stable liquid water or saline solution at the surface, as suggested by several studies. The environmental effects of a period of impact bombardment on terrestrial planets remain poorly constrained. In this study we revisit the atmospheric loss and delivery of volatiles on Mars between the end of the Noachian and present using numerical models. Following an impact, the quantity of escaped atmosphere, as well as impactor and target materials can be estimated using numerical simulations. Studies on the atmospheric loss and delivery due to impacts differ sometimes by orders of magnitude, mainly due to different equation of state and dynamical models used. The hydrocode simulations designed to simulate a single impact are not suitable to study the cumulative effect of impact erosion and delivery in the long term due to their extremely high computation costs. Instead, empirical approximations based on hydrocode simulations have been used to estimate atmospheric evolution. Comparison between different hydrocode results and atmospheric mass evolution upon impacts based on empirical models will be presented using revised model parameters. In addition, different delivery and lost mechanisms including volcanic outgassing and non-thermal escape, can be taken into account to study various atmospheric evolution scenarios. Our results suggest that impacts alone can hardly remove a significant amount of atmospheric mass over this period. Contribution of additional factors such as outgassing and non- thermal escape processes can not explain neither the presence of surface pressure larger than few hundreds of mbars 3.9 Gyr ago. Based on extreme case scenarios, maximum surface pressures at the end of the Noachian, could be as much as 0.25 bar or 1.9 bar, with and without CO2 storage into carbonate reservoirs, respectively.

  13. Non-pathogenic rhizobacteria interfere with the attraction of parasitoids to aphid-induced plant volatiles via jasmonic acid signalling.

    PubMed

    Pineda, Ana; Soler, Roxina; Weldegergis, Berhane T; Shimwela, Mpoki M; VAN Loon, Joop J A; Dicke, Marcel

    2013-02-01

    Beneficial soil-borne microbes, such as mycorrhizal fungi or rhizobacteria, can affect the interactions of plants with aboveground insects at several trophic levels. While the mechanisms of interactions with herbivorous insects, that is, the second trophic level, are starting to be understood, it remains unknown how plants mediate the interactions between soil microbes and carnivorous insects, that is, the third trophic level. Using Arabidopsis thaliana Col-0 and the aphid Myzus persicae, we evaluate here the underlying mechanisms involved in the plant-mediated interaction between the non-pathogenic rhizobacterium Pseudomonas fluorescens and the parasitoid Diaeretiella rapae, by combining ecological, chemical and molecular approaches. Rhizobacterial colonization modifies the composition of the blend of herbivore-induced plant volatiles. The volatile blend from rhizobacteria-treated aphid-infested plants is less attractive to an aphid parasitoid, in terms of both olfactory preference behaviour and oviposition, than the volatile blend from aphid-infested plants without rhizobacteria. Importantly, the effect of rhizobacteria on both the emission of herbivore-induced volatiles and parasitoid response to aphid-infested plants is lost in an Arabidopsis mutant (aos/dde2-2) that is impaired in jasmonic acid production. By modifying the blend of herbivore-induced plant volatiles that depend on the jasmonic acid-signalling pathway, root-colonizing microbes interfere with the attraction of parasitoids of leaf herbivores. © 2012 Blackwell Publishing Ltd.

  14. Menadione Sodium Bisulphite (MSB) enhances the resistance response of tomato, leading to repel mollusc pests.

    PubMed

    Carrillo-Perdomo, Estefanía; Jiménez-Arias, David; Aller, Ángel; Borges, Andrés A

    2016-05-01

    Snails and slugs are terrestrial gastropods representing an important biotic stress that adversely affects crop yields. These pests are typically controlled with molluscicides, which produce pollution and toxicity and further induce the evolution of resistance mechanisms, making pest management even more challenging. In our work, we have assessed the efficacy of two different plant defence activators, menadione sodium bisulphite (MSB) and 1,2,3-benzothiadiazole-7-thiocarboxylic acid S-methyl ester (BTH), as inducers of resistance mechanisms of the model plant for defence, Solanum lycopersicum, against the generalist mollusc Theba grasseti (Helicidae). The study was designed to test the feeding behaviour and choice of snails, and also to analyse the expression profile of different genes specifically involved in defence against herbivores and wounds. Our data suggest that, through the downregulation of the terpene volatile genes and the production of proteinase inhibitors, treated MSB plants may be less apparent to herbivores that use herbivore-induced plant volatiles for host location. By contrast, BTH was not effective in the treatment of the pest, probably owing to an antagonistic effect derived from the induction of both salicylic-acid-dependent and jasmonic-acid-dependent pathways. This information is crucial to determine the genetic basis of the choice of terrestrial gastropod herbivores in tomato, providing valuable insight into how the plant defence activators could control herbivore pests in plants. Our work not only reports for the first time the interaction between tomato and a mollusc pest but also presents the action of two plant defence inductors that seems to produce opposed responses by inducing resistance mechanisms through different defence pathways. © 2015 Society of Chemical Industry.

  15. Host suitability affects odor association in Cotesia marginiventris: implications in generalist parasitoid host-finding

    USDA-ARS?s Scientific Manuscript database

    Insect herbivores often induce plant volatile compounds that can attract natural enemies. Cotesia marginiventris (Hymenoptera: Braconidae) is a generalist parasitoid wasp of noctuid caterpillars and is highly attracted to Spodoptera exigua-induced plant volatiles. The plasticity of C. marginiventris...

  16. Study of the gas contents of rocks: An approach to the evolution of atmospheres on the earth and planets

    NASA Technical Reports Server (NTRS)

    Barker, C.

    1972-01-01

    A high vacuum system was built for extracting volatiles from rocks either by heating or crushing, and preliminary analyses of the volatiles were made for selected terrestrial basalts and granites. The apparatus and experimental procedures are described, and the major problems associated with water measurement and choice of argon to replace neon as the internal standard are discussed. Preliminary analyses of granites and basalts indicate the following: All analyses lie in the H2O-CO2-CO triangle on a C-H-O ternary diagram. The compositions of the volatiles plot in distinct, but overlapping, areas of the C-H-O diagram. Pre-Cambrian granites have a higher volatile content than younger granites. Continental basalts have a higher volatile content than oceanic basalts.

  17. Structure and Evolution of Kuiper Belt Objects and Dwarf Planets

    NASA Astrophysics Data System (ADS)

    McKinnon, W. B.; Prialnik, D.; Stern, S. A.; Coradini, A.

    Kuiper belt objects (KBOs) accreted from a mélange of volatile ices, carbonaceous matter, and rock of mixed interstellar and solar nebular provenance. The transneptunian region, where this accretion took place, was likely more radially compact than today. This and the influence of gas drag during the solar nebula epoch argue for more rapid KBO accretion than usually considered. Early evolution of KBOs was largely the result of heating due to radioactive decay, the most important potential source being 26Al, whereas long-term evolution of large bodies is controlled by the decay of U, Th, and 40K. Several studies are reviewed dealing with the evolution of KBO models, calculated by means of one-dimensional numerical codes that solve the heat and mass balance equations. It is shown that, depending on parameters (principally rock content and porous conductivity), KBO interiors may have reached relatively high temperatures. The models suggest that KBOs likely lost ices of very volatile species during early evolution, whereas ices of less-volatile species should be retained in cold, less-altered subsurface layers. Initially amorphous ice may have crystallized in KBO interiors, releasing volatiles trapped in the amorphous ice, and some objects may have lost part of these volatiles as well. Generally, the outer layers are far less affected by internal evolution than the inner part, which in the absence of other effects (such as collisions) predicts a stratified composition and altered porosity distribution. Kuiper belt objects are thus unlikely to be "the most pristine objects in the solar system," but they do contain key information as to how the early solar system accreted and dynamically evolved. For large (dwarf planet) KBOs, long-term radiogenic heating alone may lead to differentiated structures -- rock cores, ice mantles, volatile-ice-rich "crusts," and even oceans. Persistence of oceans and (potential) volcanism to the present day depends strongly on body size and the melting-point depression afforded by the presence of salts, ammonia, etc. (we review the case for Charon in particular). The surface color and compositional classes of KBOs are usually discussed in terms of "nature vs. nurture," i.e., a generic primordial composition vs. surface processing, but the true nature of KBOs also depends on how they have evolved. The broad range of albedos now found in the Kuiper belt, deep water-ice absorptions on some objects, evidence for differentiation of Pluto and 2003 EL61, and a range of densities incompatible with a single, primordial composition and variable porosity strongly imply significant, intrinsic compositional differences among KBOs. The interplay of formation zone (accretion rate), body size, and dynamical (collisional) history may yield KBO compositional classes (and their spectral correlates) that recall the different classes of asteroids in the inner solar system, but whose members are broadly distributed among the KBO dynamical subpopulations.

  18. Houttuynia cordata Thunb. volatile oil exhibited anti-inflammatory effects in vivo and inhibited nitric oxide and tumor necrosis factor-α production in LPS-stimulated mouse peritoneal macrophages in vitro.

    PubMed

    Li, Weifeng; Fan, Ting; Zhang, Yanmin; Fan, Te; Zhou, Ping; Niu, Xiaofeng; He, Langchong

    2013-11-01

    Houttuynia cordata Thunb. (HC) is a medicinal herb that generally used in traditional Chinese medicine for treating allergic inflammation. The present study investigated the inhibitory effect of the volatile oil from HC Thunb. on animal models of inflammation and the production of inflammatory mediators in vivo and in vitro. In vivo, xylene-induced mouse ear edema, formaldehyde-induced paw edema and carrageenan-induced mice paw edema were significantly decreased by HC volatile oil. HC volatile oil showed pronounced inhibition of prostaglandin (PG) E2 and malondialdehyde production in the edematous exudates. In vitro exposure of mouse resident peritoneal macrophages to 1, 10, 100 and 1000 µg/mL of HC volatile oil significantly suppressed lipopolysaccharide (LPS)-stimulated production of NO and tumor necrosis factor-α (TNF-α) in a dose-dependent manner. Exposure to HC volatile oil had no effect on cell viability and systemic toxicity. Furthermore, HC volatile oil inhibited the production of NO and TNF-α by down-regulating LPS-stimulated iNOS and TNF-α mRNA expression. Western blot analysis showed that HC volatile oil attenuated LPS-stimulated synthesis of iNOS and TNF-α protein in the macrophages, in parallel. These findings add a novel aspect to the biological profile of HC and clarify its anti-inflammatory mechanism. Copyright © 2012 John Wiley & Sons, Ltd.

  19. Maize pathogens suppress inducible phytoalexin production to thwart innate plant immunity

    USDA-ARS?s Scientific Manuscript database

    Kauralexins (KA) and zealexins (ZA) are newly described secondary metabolites in maize that serve as inducible chemical defenses against insects and pathogens. In contrast to the abundance of terpene volatiles in leaves, these non-volatile terpenoid phytoalexins are only mildly produced in response ...

  20. Maize pathogens suppress inducible phytoalexin production to thwart innate plant immunity

    USDA-ARS?s Scientific Manuscript database

    Kauralexins and zealexins are newly described secondary metabolites in maize that serve as inducible chemical defenses against insects and pathogens. In contrast to the abundance of terpene volatiles in leaves, these non-volatile terpenoid phytoalexins are only mildly produced in response to insect ...

  1. Maize terpene volatiles serve as precursors to an array of defensive phytoalexins following insect and pathogen attack

    USDA-ARS?s Scientific Manuscript database

    Phytoalexins are inducible biochemicals that locally protect plant tissues against biotic attack. Due to their agronomic significance, maize and rice have been extensively investigated for their terpenoid-based defenses which include insect-inducible monoterpene and sesquiterpene volatiles. ...

  2. Volatile Analysis by Pyrolysis of Regolith (Vapor) for Planetary Resource Prospecting

    NASA Technical Reports Server (NTRS)

    Glavin, D. P.; Malespin, C. A.; Ten Kate, I. L.; Mcadam, A.; Getty, S. A.; Mumm, E.; Franz, H. B.; Southard, A. E.; Bleacher, J. E.; Mahaffy, P. R.

    2016-01-01

    Measuring the chemical composition of planetary bodies and their atmospheres is key to understanding the formation of the Solar System and the evolution of the planets and their moons. In situ volatile measurements enable a ground-truth assessment of the distribution and abundance of resources such as water-ice and oxygen, important for a sustained human presence on the Moon and beyond. The Volatile Analysis by Pyrolysis of Regolith (VAPoR) instrument is a compact pyrolysis mass spectrometer designed to detect volatiles released from solid samples that are heated to elevated temperatures and is one technique that should be considered for resource prospecting on the Moon, Mars, and asteroids.

  3. Magma reservoirs and neutral buoyancy zones on Venus - Implications for the formation and evolution of volcanic landforms

    NASA Technical Reports Server (NTRS)

    Head, James W.; Wilson, Lionel

    1992-01-01

    The production of magma reservoirs and neutral buoyancy zones (NBZs) on Venus and the implications of their development for the formation and evolution of volcanic landforms are examined. The high atmospheric pressure on Venus reduces volatile exsolution and generally serves to inhibit the formation of NBZs and shallow magma reservoirs. For a range of common terrestrial magma-volatile contents, magma ascending and erupting near or below mean planetary radius (MPR) should not stall at shallow magma reservoirs; such eruptions are characterized by relatively high total volumes and effusion rates. For the same range of volatile contents at 2 km above MPR, about half of the cases result in the direct ascent of magma to the surface and half in the production of neutral buoyancy zones. NBZs and shallow magma reservoirs begin to appear as gas content increases and are nominally shallower on Venus than on earth. For a fixed volatile content, NBZs become deeper with increasing elevation: over the range of elevations treated in this study (-1 km to +4.4 km) depths differ by a factor of 2-4. Factors that may account for the low height of volcanoes on Venus are discussed.

  4. Frozen storage effects on anthocyanins and volatile compounds of raspberry fruit.

    PubMed

    de Ancos, B; Ibañez, E; Reglero, G; Cano, M P

    2000-03-01

    The quantitative and qualitative evolution of the anthocyanins and volatile compounds of four raspberry cultivars (cvs. Heritage, Autumn Bliss, Zeva, and Rubi) growing in Spain were analyzed raw, just frozen, and during long-term frozen storage at -20 degrees C for a 1 year period. HS-SPME coupled with GC-MS and HPLC techniques were employed to study the evolution of the volatile compounds and the individual anthocyanins, respectively. The volatile aroma composition changes produced by the freezing process and long-term frozen storage were minimal. Only a significant increase in extraction capacity was obtained for alpha-ionone (27%) and for caryophyllene (67%) in Heritage at 12 months of storage. The stability of anthocyanins to freezing and frozen storage depends on the seasonal period of harvest. Heritage and Autumn Bliss (early cultivars) were less affected by processing and long-term frozen storage (1 year), and the total pigment extracted showed the tendency to increase 17 and 5%, respectively. Rubi and Zeva (late cultivars) suffered a decreased trend on the total anthocyanin content of 4% for Rubi and 17.5% for Zeva. Cyanidin 3-glucoside most easily suffered the degradative reactions that take place during processing and the storage period.

  5. Intraspecific Signals Inducing Aggregation in Periplaneta americana (Insecta: Dictyoptera).

    PubMed

    Imen, Saïd; Christian, Malosse; Virginie, Durier; Colette, Rivault

    2015-06-01

    Chemical communication is necessary to induce aggregation and to maintain the cohesion of aggregates in Periplaneta americana (L.) cockroaches. We aimed to identify the chemical message inducing aggregation in this species. Two types of bioassays were used-binary choice tests in Petri dishes and tests in Y-olfactometer. Papers conditioned by direct contact of conspecifics induce aggregation when proposed in binary choice tests and were attractive in a Y-olfactometer. The identification of the molecules present on these conditioned papers indicated that dichloromethane extracts contained mainly cuticular hydrocarbons whereas methanol extracts contained more volatile molecules. Only a mixture of extracts in both solvents induced aggregation. High concentrations of cuticular hydrocarbons are necessary to induce aggregation when presented alone. When presented with volatile molecules present in methanol extracts, low concentrations of cuticular hydrocarbons are sufficient to induce aggregation if they are presented in contact. Among volatile molecules collected on filter paper, a mixture of three compounds-hexadecanoic acid, pentadecanoic acid, and pentaethylene glycol-induced aggregation. Our results provide evidence that aggregation processes in P. americana relies on a dual mechanism: attraction over long distances by three volatile molecules and maintenance on site by contact with cuticular hydrocarbons. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Induction of conidiation by endogenous volatile compounds in Trichoderma spp.

    PubMed

    Nemcovic, Marek; Jakubíková, Lucia; Víden, Ivan; Farkas, Vladimír

    2008-07-01

    Light and starvation are two principal environmental stimuli inducing conidiation in the soil micromycete Trichoderma spp. We observed that volatiles produced by conidiating colonies of Trichoderma spp. elicited conidiation in colonies that had not been induced previously by exposure to light. The inducing effect of volatiles was both intra- and interspecific. Chemical profiles of the volatile organic compounds (VOCs) produced by the nonconidiated colonies grown in the dark and by the conidiating colonies were compared using solid-phase microextraction of headspace samples followed by tandem GC-MS. The conidiation was accompanied by increased production of eight-carbon compounds 1-octen-3-ol and its analogs 3-octanol and 3-octanone. When vapors of these compounds were applied individually to dark-grown colonies, they elicited their conidiation already at submicromolar concentrations. It is concluded that the eight-carbon VOCs act as signaling molecules regulating development and mediating intercolony communication in Trichoderma.

  7. Analysis of volatiles induced by oviposition of elm leaf beetle Xanthogaleruca luteola on Ulmus minor.

    PubMed

    Wegener, R; Schulz, S; Meiners, T; Hadwich, K; Hilker, M

    2001-03-01

    Egg deposition of the elm leaf beetle Xanthogaleruca luteola causes the emission of volatiles from its food plant, Ulmus minor. These volatiles are exploited by the egg parasitoid, Oomyzus gallerucae, to locate its host. In contrast to other tritrophic systems, the release of volatiles is not induced by feeding but by egg deposition. Previous investigations showed that the release is systemic and can be triggered by jasmonic acid. Comparison of headspace analysis revealed similarities in the blend of volatiles emitted following egg deposition and feeding. The mixture consists of more than 40 compounds; most of the substances are terpenoids. Leaves next to those carrying eggs emit fewer compounds. When treated with jasmonic acid, leaves emit a blend that consists almost exclusively of terpenoids. Dichloromethane extracts of leaves treated with jasmonic acid were also investigated. After separation of extracts of jasmonate induced elm leaves on silica, we obtained a fraction of terpenoid hydrocarbons that was attractive to the parasitoids. This indicates that jasmonic acid stimulates the production of terpenoid hydrocarbons that convey information of egg deposition to the parasitoid.

  8. Chondritic xenon in the Earth’s mantle

    NASA Astrophysics Data System (ADS)

    Caracausi, Antonio; Avice, Guillaume; Burnard, Peter G.; Füri, Evelyn; Marty, Bernard

    2016-05-01

    Noble gas isotopes are powerful tracers of the origins of planetary volatiles, and the accretion and evolution of the Earth. The compositions of magmatic gases provide insights into the evolution of the Earth’s mantle and atmosphere. Despite recent analytical progress in the study of planetary materials and mantle-derived gases, the possible dual origin of the planetary gases in the mantle and the atmosphere remains unconstrained. Evidence relating to the relationship between the volatiles within our planet and the potential cosmochemical end-members is scarce. Here we show, using high-precision analysis of magmatic gas from the Eifel volcanic area (in Germany), that the light xenon isotopes identify a chondritic primordial component that differs from the precursor of atmospheric xenon. This is consistent with an asteroidal origin for the volatiles in the Earth’s mantle, and indicates that the volatiles in the atmosphere and mantle originated from distinct cosmochemical sources. Furthermore, our data are consistent with the origin of Eifel magmatism being a deep mantle plume. The corresponding mantle source has been isolated from the convective mantle since about 4.45 billion years ago, in agreement with models that predict the early isolation of mantle domains. Xenon isotope systematics support a clear distinction between mid-ocean-ridge and continental or oceanic plume sources, with chemical heterogeneities dating back to the Earth’s accretion. The deep reservoir now sampled by the Eifel gas had a lower volatile/refractory (iodine/plutonium) composition than the shallower mantle sampled by mid-ocean-ridge volcanism, highlighting the increasing contribution of volatile-rich material during the first tens of millions of years of terrestrial accretion.

  9. Chondritic xenon in the Earth's mantle.

    PubMed

    Caracausi, Antonio; Avice, Guillaume; Burnard, Peter G; Füri, Evelyn; Marty, Bernard

    2016-05-05

    Noble gas isotopes are powerful tracers of the origins of planetary volatiles, and the accretion and evolution of the Earth. The compositions of magmatic gases provide insights into the evolution of the Earth's mantle and atmosphere. Despite recent analytical progress in the study of planetary materials and mantle-derived gases, the possible dual origin of the planetary gases in the mantle and the atmosphere remains unconstrained. Evidence relating to the relationship between the volatiles within our planet and the potential cosmochemical end-members is scarce. Here we show, using high-precision analysis of magmatic gas from the Eifel volcanic area (in Germany), that the light xenon isotopes identify a chondritic primordial component that differs from the precursor of atmospheric xenon. This is consistent with an asteroidal origin for the volatiles in the Earth's mantle, and indicates that the volatiles in the atmosphere and mantle originated from distinct cosmochemical sources. Furthermore, our data are consistent with the origin of Eifel magmatism being a deep mantle plume. The corresponding mantle source has been isolated from the convective mantle since about 4.45 billion years ago, in agreement with models that predict the early isolation of mantle domains. Xenon isotope systematics support a clear distinction between mid-ocean-ridge and continental or oceanic plume sources, with chemical heterogeneities dating back to the Earth's accretion. The deep reservoir now sampled by the Eifel gas had a lower volatile/refractory (iodine/plutonium) composition than the shallower mantle sampled by mid-ocean-ridge volcanism, highlighting the increasing contribution of volatile-rich material during the first tens of millions of years of terrestrial accretion.

  10. Subterranean, Herbivore-Induced Plant Volatile Increases Biological Control Activity of Multiple Beneficial Nematode Species in Distinct Habitats

    PubMed Central

    Ali, Jared G.; Alborn, Hans T.; Campos-Herrera, Raquel; Kaplan, Fatma; Duncan, Larry W.; Rodriguez-Saona, Cesar; Koppenhöfer, Albrecht M.; Stelinski, Lukasz L.

    2012-01-01

    While the role of herbivore-induced volatiles in plant-herbivore-natural enemy interactions is well documented aboveground, new evidence suggests that belowground volatile emissions can protect plants by attracting entomopathogenic nematodes (EPNs). However, due to methodological limitations, no study has previously detected belowground herbivore-induced volatiles in the field or quantified their impact on attraction of diverse EPN species. Here we show how a belowground herbivore-induced volatile can enhance mortality of agriculturally significant root pests. First, in real time, we identified pregeijerene (1,5-dimethylcyclodeca-1,5,7-triene) from citrus roots 9–12 hours after initiation of larval Diaprepes abbreviatus feeding. This compound was also detected in the root zone of mature citrus trees in the field. Application of collected volatiles from weevil-damaged citrus roots attracted native EPNs and increased mortality of beetle larvae (D. abbreviatus) compared to controls in a citrus orchard. In addition, field applications of isolated pregeijerene caused similar results. Quantitative real-time PCR revealed that pregeijerene increased pest mortality by attracting four species of naturally occurring EPNs in the field. Finally, we tested the generality of this root-zone signal by application of pregeijerene in blueberry fields; mortality of larvae (Galleria mellonella and Anomala orientalis) again increased by attracting naturally occurring populations of an EPN. Thus, this specific belowground signal attracts natural enemies of widespread root pests in distinct agricultural systems and may have broad potential in biological control of root pests. PMID:22761668

  11. KSC-2013-3980

    NASA Image and Video Library

    2013-11-16

    CAPE CANAVERAL, Fla. -- In the conference room of Operations Support Building II at NASA's Kennedy Space Center in Florida, social media participants listen to a briefing on the Mars Atmosphere and Volatile Evolution, or MAVEN, mission by, from the left, Lisa May, MAVEN Program executive, Kelly Fast, Mars Program scientist, Sandra Cauffman, deputy project manager at the agency's Goddard Spaceflight Center, in Greenbelt, Md., and Chris Waters, systems design team lead at Lockheed Martin. The social media participants gathered at the Florida spaceport for the launch of the Mars Atmosphere and Volatile Evolution, or MAVEN, spacecraft. Their visit included tours of key facilities and participating in presentations by key NASA leaders who updated the space agency's current efforts. Photo credit: NASA/Jim Grossman

  12. KSC-2013-3981

    NASA Image and Video Library

    2013-11-16

    CAPE CANAVERAL, Fla. -- In the conference room of Operations Support Building II at NASA's Kennedy Space Center in Florida, social media participants listen to a briefing on the Mars Atmosphere and Volatile Evolution, or MAVEN, mission by, from the left, Lisa May, MAVEN Program executive, Kelly Fast, Mars Program scientist, Sandra Cauffman, deputy project manager at the agency's Goddard Spaceflight Center, in Greenbelt, Md., and Chris Waters, systems design team lead at Lockheed Martin. The social media participants gathered at the Florida spaceport for the launch of the Mars Atmosphere and Volatile Evolution, or MAVEN, spacecraft. Their visit included tours of key facilities and participating in presentations by key NASA leaders who updated the space agency's current efforts. Photo credit: NASA/Jim Grossman

  13. KSC-2013-3982

    NASA Image and Video Library

    2013-11-16

    CAPE CANAVERAL, Fla. -- In the conference room of Operations Support Building II at NASA's Kennedy Space Center in Florida, social media participants listen to a briefing on the Mars Atmosphere and Volatile Evolution, or MAVEN, mission by, from the left, Lisa May, MAVEN Program executive, Kelly Fast, Mars Program scientist, Sandra Cauffman, deputy project manager at the agency's Goddard Spaceflight Center, in Greenbelt, Md., and Chris Waters, systems design team lead at Lockheed Martin. The social media participants gathered at the Florida spaceport for the launch of the Mars Atmosphere and Volatile Evolution, or MAVEN, spacecraft. Their visit included tours of key facilities and participating in presentations by key NASA leaders who updated the space agency's current efforts. Photo credit: NASA/Jim Grossman

  14. MATRIX-VBS Condensing Organic Aerosols in an Aerosol Microphysics Model

    NASA Technical Reports Server (NTRS)

    Gao, Chloe Y.; Tsigaridis, Konstas; Bauer, Susanne E.

    2015-01-01

    The condensation of organic aerosols is represented in a newly developed box-model scheme, where its effect on the growth and composition of particles are examined. We implemented the volatility-basis set (VBS) framework into the aerosol mixing state resolving microphysical scheme Multiconfiguration Aerosol TRacker of mIXing state (MATRIX). This new scheme is unique and advances the representation of organic aerosols in models in that, contrary to the traditional treatment of organic aerosols as non-volatile in most climate models and in the original version of MATRIX, this new scheme treats them as semi-volatile. Such treatment is important because low-volatility organics contribute significantly to the growth of particles. The new scheme includes several classes of semi-volatile organic compounds from the VBS framework that can partition among aerosol populations in MATRIX, thus representing the growth of particles via condensation of low volatility organic vapors. Results from test cases representing Mexico City and a Finish forrest condistions show good representation of the time evolutions of concentration for VBS species in the gas phase and in the condensed particulate phase. Emitted semi-volatile primary organic aerosols evaporate almost completely in the high volatile range, and they condense more efficiently in the low volatility range.

  15. Chemical evolution of atmospheric organic carbon over multiple generations of oxidation

    NASA Astrophysics Data System (ADS)

    Isaacman-VanWertz, Gabriel; Massoli, Paola; O'Brien, Rachel; Lim, Christopher; Franklin, Jonathan P.; Moss, Joshua A.; Hunter, James F.; Nowak, John B.; Canagaratna, Manjula R.; Misztal, Pawel K.; Arata, Caleb; Roscioli, Joseph R.; Herndon, Scott T.; Onasch, Timothy B.; Lambe, Andrew T.; Jayne, John T.; Su, Luping; Knopf, Daniel A.; Goldstein, Allen H.; Worsnop, Douglas R.; Kroll, Jesse H.

    2018-02-01

    The evolution of atmospheric organic carbon as it undergoes oxidation has a controlling influence on concentrations of key atmospheric species, including particulate matter, ozone and oxidants. However, full characterization of organic carbon over hours to days of atmospheric processing has been stymied by its extreme chemical complexity. Here we study the multigenerational oxidation of α-pinene in the laboratory, characterizing products with several state-of-the-art analytical techniques. Although quantification of some early generation products remains elusive, full carbon closure is achieved (within measurement uncertainty) by the end of the experiments. These results provide new insights into the effects of oxidation on organic carbon properties (volatility, oxidation state and reactivity) and the atmospheric lifecycle of organic carbon. Following an initial period characterized by functionalization reactions and particle growth, fragmentation reactions dominate, forming smaller species. After approximately one day of atmospheric aging, most carbon is sequestered in two long-lived reservoirs—volatile oxidized gases and low-volatility particulate matter.

  16. Chemical evolution of atmospheric organic carbon over multiple generations of oxidation.

    PubMed

    Isaacman-VanWertz, Gabriel; Massoli, Paola; O'Brien, Rachel; Lim, Christopher; Franklin, Jonathan P; Moss, Joshua A; Hunter, James F; Nowak, John B; Canagaratna, Manjula R; Misztal, Pawel K; Arata, Caleb; Roscioli, Joseph R; Herndon, Scott T; Onasch, Timothy B; Lambe, Andrew T; Jayne, John T; Su, Luping; Knopf, Daniel A; Goldstein, Allen H; Worsnop, Douglas R; Kroll, Jesse H

    2018-04-01

    The evolution of atmospheric organic carbon as it undergoes oxidation has a controlling influence on concentrations of key atmospheric species, including particulate matter, ozone and oxidants. However, full characterization of organic carbon over hours to days of atmospheric processing has been stymied by its extreme chemical complexity. Here we study the multigenerational oxidation of α-pinene in the laboratory, characterizing products with several state-of-the-art analytical techniques. Although quantification of some early generation products remains elusive, full carbon closure is achieved (within measurement uncertainty) by the end of the experiments. These results provide new insights into the effects of oxidation on organic carbon properties (volatility, oxidation state and reactivity) and the atmospheric lifecycle of organic carbon. Following an initial period characterized by functionalization reactions and particle growth, fragmentation reactions dominate, forming smaller species. After approximately one day of atmospheric aging, most carbon is sequestered in two long-lived reservoirs-volatile oxidized gases and low-volatility particulate matter.

  17. Chemical mimicry of insect oviposition sites: a global analysis of convergence in angiosperms.

    PubMed

    Jürgens, Andreas; Wee, Suk-Ling; Shuttleworth, Adam; Johnson, Steven D

    2013-09-01

    Floral mimicry of decaying plant or animal material has evolved in many plant lineages and exploits, for the purpose of pollination, insects seeking oviposition sites. Existing studies suggest that volatile signals play a particularly important role in these mimicry systems. Here, we present the first large-scale phylogenetically informed study of patterns of evolution in the volatile emissions of plants that mimic insect oviposition sites. Multivariate analyses showed strong convergent evolution, represented by distinct clusters in chemical phenotype space of plants that mimic animal carrion, decaying plant material, herbivore dung and omnivore/carnivore faeces respectively. These plants deploy universal infochemicals that serve as indicators for the main nutrients utilised by saprophagous, coprophagous and necrophagous insects. The emission of oligosulphide-dominated volatile blends very similar to those emitted by carrion has evolved independently in at least five plant families (Annonaceae, Apocynaceae, Araceae, Orchidaceae and Rafflesiaceae) and characterises plants associated mainly with pollination by necrophagous flies and beetles. © 2013 John Wiley & Sons Ltd/CNRS.

  18. Two volatile organic compounds trigger plant self-defense against a bacterial pathogen and a sucking insect in cucumber under open field conditions.

    PubMed

    Song, Geun Cheol; Ryu, Choong-Min

    2013-05-08

    Systemic acquired resistance (SAR) is a plant self-defense mechanism against a broad-range of pathogens and insect pests. Among chemical SAR triggers, plant and bacterial volatiles are promising candidates for use in pest management, as these volatiles are highly effective, inexpensive, and can be employed at relatively low concentrations compared with agrochemicals. However, such volatiles have some drawbacks, including the high evaporation rate of these compounds after application in the open field, their negative effects on plant growth, and their inconsistent levels of effectiveness. Here, we demonstrate the effectiveness of volatile organic compound (VOC)-mediated induced resistance against both the bacterial angular leaf spot pathogen, Pseudononas syringae pv. lachrymans, and the sucking insect aphid, Myzus persicae, in the open field. Using the VOCs 3-pentanol and 2-butanone where fruit yields increased gave unexpectedly, a significant increase in the number of ladybird beetles, Coccinella septempunctata, a natural enemy of aphids. The defense-related gene CsLOX was induced by VOC treatment, indicating that triggering the oxylipin pathway in response to the emission of green leaf volatiles can recruit the natural enemy of aphids. These results demonstrate that VOCs may help prevent plant disease and insect damage by eliciting induced resistance, even in open fields.

  19. Herbivore-induced volatiles in the perennial shrub, Vaccinium corymbosum, and their role in inter-branch signaling.

    PubMed

    Rodriguez-Saona, Cesar R; Rodriguez-Saona, Luis E; Frost, Christopher J

    2009-02-01

    Herbivore feeding activates plant defenses at the site of damage as well as systemically. Systemic defenses can be induced internally by signals transported via phloem or xylem, or externally transmitted by volatiles emitted from the damaged tissues. We investigated the role of herbivore-induced plant volatiles (HIPVs) in activating a defense response between branches in blueberry plants. Blueberries are perennial shrubs that grow by initiating adventitious shoots from a basal crown, which produce new lateral branches. This type of growth constrains vascular connections between shoots and branches within plants. While we found that leaves within a branch were highly connected, vascular connectivity was limited between branches within shoots and absent between branches from different shoots. Larval feeding by gypsy moth, exogenous methyl jasmonate, and mechanical damage differentially induced volatile emissions in blueberry plants, and there was a positive correlation between amount of insect damage and volatile emission rates. Herbivore damage did not affect systemic defense induction when we isolated systemic branches from external exposure to HIPVs. Thus, internal signals were not capable of triggering systemic defenses among branches. However, exposure of branches to HIPVs from an adjacent branch decreased larval consumption by 70% compared to those exposed to volatiles from undamaged branches. This reduction in leaf consumption did not result in decreased volatile emissions, indicating that leaves became more responsive to herbivory (or "primed") after being exposed to HIPVs. Chemical profiles of leaves damaged by gypsy moth caterpillars, exposed to HIPVs, or non-damaged controls revealed that HIPV-exposed leaves had greater chemical similarities to damaged leaves than to control leaves. Insect-damaged leaves and young HIPV-exposed leaves had higher amounts of endogenous cis-jasmonic acid compared to undamaged and non-exposed leaves, respectively. Our results show that exposure to HIPVs triggered systemic induction of direct defenses against gypsy moth and primed volatile emissions, which can be an indirect defense. Blueberry plants appear to rely on HIPVs as external signals for inter-branch communication.

  20. Combined use of herbivore-induced plant volatiles and sex pheromones for mate location in braconid parasitoids

    USDA-ARS?s Scientific Manuscript database

    Herbivore-induced plant volatiles (HIPVs) are important cues for female parasitic wasps to find hosts. Here, we investigated the possibility that HIPVs may also serve parasitoids as cues to locate mates. To test this, the odor preferences of four braconid wasps – the gregarious parasitoid Cotesia gl...

  1. Herbivore-induced plant volatiles accurately predict history of coexistence, diet breadth, and feeding mode of herbivores

    USDA-ARS?s Scientific Manuscript database

    Herbivore induced plant volatiles (HIPVs) serve as specific cues to higher trophic levels. Novel, exotic herbivores entering foodwebs with a common co-existence history may disrupt the native infochemical network due to changes in HIPV profiles. Here we analyzed HIPV blends of native Brassica rapa p...

  2. Investigating the present and past glacial and frost activity on Pluto with a volatile transport model

    NASA Astrophysics Data System (ADS)

    Bertrand, Tanguy; Forget, Francois

    2016-10-01

    The high obliquity and eccentricity of the orbit of Pluto induce seasonal cycles of condensation and sublimation of the main volatile ices: N2, CH4, and CO. The New Horizons spacecraft, which flew by Pluto in July 2015, revealed a complex surface composition including a thousand-kilometre nitrogen glacier in the "Sputnik Planum" plain near the Anti-Charon longitude, extensive methane frosts at mid and high latitudes, and equatorial ice-free regions. We present numerical simulations designed to model the evolution of Pluto's volatiles over thousands of years on the basis of straightforward universal physical equations.Our results explain the observed distribution of ices on the surface and the quantities of volatiles in the atmosphere. In particular the model predicts the N2 ice accumulation in the deepest low-latitude basin and the 3-fold increase of pressure observed to occur since 1988. This points to atmospheric-topographic processes at the origin of the Sputnik Planum's nitrogen glacier. The same simulations also show frosts of methane, and sometimes nitrogen, that seasonally cover the mid and high latitudes, explaining the bright northern polar cap reported in the 1990s and the observed ice distribution in 2015. The model also predicts that most of these seasonal frosts should disappear in the next decade, and thus could be tested observationally in the near future.Using prior orbital parameters of Pluto and a realistic glacial flow parametrization, we also simulate past climates of Pluto. The results show that Pluto undergoes cycles of glacial activity (over timescales of few million years) that may explain the rugged eroded-mountain landscapes surrounding Sputnik Planum and the "bladed" methane terrains east of "Tombaugh Regio".

  3. Temporal evolution of magma flow and degassing conditions during dome growth, insights from 2D numerical modeling

    NASA Astrophysics Data System (ADS)

    Chevalier, Laure; Collombet, Marielle; Pinel, Virginie

    2017-03-01

    Understanding magma degassing evolution during an eruption is essential to improving forecasting of effusive/explosive regime transitions at andesitic volcanoes. Lava domes frequently form during effusive phases, inducing a pressure increase both within the conduit and within the surrounding rocks. To quantify the influence of dome height on magma flow and degassing, we couple magma and gas flow in a 2D numerical model. The deformation induced by magma flow evolution is also quantified. From realistic initial magma flow conditions in effusive regime (Collombet, 2009), we apply increasing pressure at the conduit top as the dome grows. Since volatile solubility increases with pressure, dome growth is then associated with an increase in magma dissolved water content at a given depth, which corresponds with a decrease in magma porosity and permeability. Magma flow evolution is associated with ground deflation of a few μrad in the near field. However this signal is not detectable as it is hidden by dome subsidence (a few mrad). A Darcy flow model is used to study the impact of pressure and permeability conditions on gas flow in the conduit and surrounding rock. We show that dome permeability has almost no influence on magma degassing. However, increasing pressure in the surrounding rock, due to dome loading, as well as decreasing magma permeability in the conduit limit permeable gas loss at the conduit walls, thus causing gas pressurization in the upper conduit by a few tens of MPa. Decreasing magma permeability and increasing gas pressure increase the likelihood of magma explosivity and hazard in the case of a rapid decompression due to dome collapse.

  4. Volatile components and continental material of planets

    NASA Technical Reports Server (NTRS)

    Florenskiy, K. P.; Nikolayeva, O. V.

    1986-01-01

    It is shown that the continental material of the terrestrial planets varies in composition from planet to planet according to the abundances and composition of true volatiles (H20, CO2, etc.) in the outer shells of the planets. The formation of these shells occurs very early in a planet's evolution when the role of endogenous processes is indistinct and continental materials are subject to melting and vaporizing in the absence of an atmosphere. As a result, the chemical properties of continental materials are related not only to fractionation processes but also to meltability and volatility. For planets retaining a certain quantity of true volatile components, the chemical transformation of continental material is characterized by a close interaction between impact melting vaporization and endogeneous geological processes.

  5. Large impacts and the evolution of Venus; an atmosphere/mantle coupled model.

    NASA Astrophysics Data System (ADS)

    Gillmann, Cedric; Tackley, Paul; Golabek, Gregor

    2014-05-01

    We investigate the evolution of atmosphere and surface conditions on Venus through a coupled model of mantle/atmosphere evolution by including meteoritic impacts mechanisms. Our main focuses are mechanisms that deplete or replenish the atmosphere: volcanic degassing, atmospheric escape and impacts. The coupling is obtained using feedback of the atmosphere on the mantle evolution. Atmospheric escape modeling involves two different aspects: hydrodynamic escape (dominant during the first few hundred million years) and non-thermal escape mechanisms as observed by the ASPERA instrument. Post 4 Ga escape is low. The atmosphere is replenished by volcanic degassing, using an adapted version of the StagYY mantle dynamics model (Armann and Tackley, 2012) and including episodic lithospheric overturn. Volatile fluxes are estimated for different mantle compositions and partitioning ratios. The evolving surface temperature is calculated from CO2 and water in the atmosphere with a gray radiative-convective atmosphere model. This surface temperature in turn acts as a boundary condition for the mantle dynamics model and has an influence on the convection, volcanism and subsequent degassing. We take into account the effects of meteorites in our simulations by adapting each relevant part of the model. They can bring volatiles as well as erode the atmosphere. Mantle dynamics are modified since the impact itself can also bring large amounts of energy to the mantle. A 2D distribution of the thermal anomaly due to the impact is used and can lead to melting. Volatile evolution due to impacts (especially the large ones) is heavily debated so we test a broad range of impactor parameters (size, velocity, timing) and test different assumptions related to impact erosion going from large eroding power (Ahrens 1993) to recent parameterization (Shuvalov, 2009, 2010). We are able to produce models leading to present-day-like conditions through episodic volcanic activity consistent with Venus observations. Without any impact, CO2 pressure only slightly increases due to degassing. On the other hand, water pressure varies rapidly leading to variations in surface temperatures of up to 200K, which have been identified to have an effect on volcanic activity. We observe a clear correlation between low temperature and mobile lid regime. We observe short term and long term effects of the impacts on planetary evolution. While small (less than kilometer scale) meteorites have a negligible effect, large ones (up to around 100 km) are able to bring volatiles to the planet and generate melt both at the impact and later on, due to volcanic events they triggered due to the changes they make to mantle dynamics. A significant amount of volatiles can be released on a short timescale. Depending on the timing of the impact, this can have significant long term effects on the surface condition evolution. Atmospheric erosion caused by impacts, on the other hand, and according to recent studies seems to have a marginal effect on the simulations, although the effects of the largest impactors is still debatable.

  6. Remarkable preservation of terpenoids and record of volatile signalling in plant-animal interactions from Miocene amber.

    PubMed

    Dutta, Suryendu; Mehrotra, Rakesh C; Paul, Swagata; Tiwari, R P; Bhattacharya, Sharmila; Srivastava, Gaurav; Ralte, V Z; Zoramthara, C

    2017-09-08

    Plants produce and release a large array of volatile organic compounds that play many ecological functions. These volatile plant metabolites serve as pollinator attractants, herbivore and pathogen repellents and protect plants from abiotic stresses. To date, the geological evolution of these organic compounds remains unknown. The preservation potential of these metabolites in the fossil record is very poor due to their low boiling points. Here we report a series of volatile sesquiterpenoids, including δ-elemene, α-copaene, β-elemene, β-caryophyllene, α-humulene, germacrene D, δ-cadiene and spathunenol, from early Miocene (~17 million year) amber from eastern India. The survival of these unaltered bioterpenoids can be attributed to the existence of extraordinary taphonomic conditions conducive to the preservation of volatile biomolecules through deep time. Furthermore, the occurrence of these volatiles in the early Miocene amber suggests that the plants from this period had evolved metabolic pathways to synthesize these organic molecules to play an active role in forest ecology, especially in plant-animal interactions.

  7. Ripening and storage conditions of Chétoui and Arbequina olives: Part I. Effect on olive oils volatiles profile.

    PubMed

    Hachicha Hbaieb, Rim; Kotti, Faten; Gargouri, Mohamed; Msallem, Monji; Vichi, Stefania

    2016-07-15

    The distinctive aroma of virgin olive oil is mainly attributed to its volatile profile including components responsible for positive attributes and others for sensory defects resulting from chemical oxidation and exogenous enzymes. For this reason, the evolution of volatile compounds from Chétoui and Arbequina virgin olive oils during olive ripening and storage (at 4 and 25 °C during 4 weeks) was investigated. The profile of volatile phenols during olive storage was also studied. Quantitative differences in the volatile compounds during olive storage at 4 and 25 °C according to olive cultivar was determined. Concerning the volatile phenols, the Arbequina olives were the most affected by high storage temperature, as the formation of these compounds, especially 4-ethyl and 4-vinyl derivatives of phenol and guaiacol were more noticeable in Arbequina oils extracted from stored fruits at 25 °C. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Late-stage magmatic outgassing from a volatile-depleted Moon

    PubMed Central

    Moynier, Frédéric; Shearer, Charles K.

    2017-01-01

    The abundance of volatile elements and compounds, such as zinc, potassium, chlorine, and water, provide key evidence for how Earth and the Moon formed and evolved. Currently, evidence exists for a Moon depleted in volatile elements, as well as reservoirs within the Moon with volatile abundances like Earth’s depleted upper mantle. Volatile depletion is consistent with catastrophic formation, such as a giant impact, whereas a Moon with Earth-like volatile abundances suggests preservation of these volatiles, or addition through late accretion. We show, using the “Rusty Rock” impact melt breccia, 66095, that volatile enrichment on the lunar surface occurred through vapor condensation. Isotopically light Zn (δ66Zn = −13.7‰), heavy Cl (δ37Cl = +15‰), and high U/Pb supports the origin of condensates from a volatile-poor internal source formed during thermomagmatic evolution of the Moon, with long-term depletion in incompatible Cl and Pb, and lesser depletion of more-compatible Zn. Leaching experiments on mare basalt 14053 demonstrate that isotopically light Zn condensates also occur on some mare basalts after their crystallization, confirming a volatile-depleted lunar interior source with homogeneous δ66Zn ≈ +1.4‰. Our results show that much of the lunar interior must be significantly depleted in volatile elements and compounds and that volatile-rich rocks on the lunar surface formed through vapor condensation. Volatiles detected by remote sensing on the surface of the Moon likely have a partially condensate origin from its interior. PMID:28827322

  9. Late-stage magmatic outgassing from a volatile-depleted Moon.

    PubMed

    Day, James M D; Moynier, Frédéric; Shearer, Charles K

    2017-09-05

    The abundance of volatile elements and compounds, such as zinc, potassium, chlorine, and water, provide key evidence for how Earth and the Moon formed and evolved. Currently, evidence exists for a Moon depleted in volatile elements, as well as reservoirs within the Moon with volatile abundances like Earth's depleted upper mantle. Volatile depletion is consistent with catastrophic formation, such as a giant impact, whereas a Moon with Earth-like volatile abundances suggests preservation of these volatiles, or addition through late accretion. We show, using the "Rusty Rock" impact melt breccia, 66095, that volatile enrichment on the lunar surface occurred through vapor condensation. Isotopically light Zn (δ 66 Zn = -13.7‰), heavy Cl (δ 37 Cl = +15‰), and high U/Pb supports the origin of condensates from a volatile-poor internal source formed during thermomagmatic evolution of the Moon, with long-term depletion in incompatible Cl and Pb, and lesser depletion of more-compatible Zn. Leaching experiments on mare basalt 14053 demonstrate that isotopically light Zn condensates also occur on some mare basalts after their crystallization, confirming a volatile-depleted lunar interior source with homogeneous δ 66 Zn ≈ +1.4‰. Our results show that much of the lunar interior must be significantly depleted in volatile elements and compounds and that volatile-rich rocks on the lunar surface formed through vapor condensation. Volatiles detected by remote sensing on the surface of the Moon likely have a partially condensate origin from its interior.

  10. Late-stage magmatic outgassing from a volatile-depleted Moon

    NASA Astrophysics Data System (ADS)

    Day, James M. D.; Moynier, Frédéric; Shearer, Charles K.

    2017-09-01

    The abundance of volatile elements and compounds, such as zinc, potassium, chlorine, and water, provide key evidence for how Earth and the Moon formed and evolved. Currently, evidence exists for a Moon depleted in volatile elements, as well as reservoirs within the Moon with volatile abundances like Earth’s depleted upper mantle. Volatile depletion is consistent with catastrophic formation, such as a giant impact, whereas a Moon with Earth-like volatile abundances suggests preservation of these volatiles, or addition through late accretion. We show, using the “Rusty Rock” impact melt breccia, 66095, that volatile enrichment on the lunar surface occurred through vapor condensation. Isotopically light Zn (δ66Zn = -13.7‰), heavy Cl (δ37Cl = +15‰), and high U/Pb supports the origin of condensates from a volatile-poor internal source formed during thermomagmatic evolution of the Moon, with long-term depletion in incompatible Cl and Pb, and lesser depletion of more-compatible Zn. Leaching experiments on mare basalt 14053 demonstrate that isotopically light Zn condensates also occur on some mare basalts after their crystallization, confirming a volatile-depleted lunar interior source with homogeneous δ66Zn ≈ +1.4‰. Our results show that much of the lunar interior must be significantly depleted in volatile elements and compounds and that volatile-rich rocks on the lunar surface formed through vapor condensation. Volatiles detected by remote sensing on the surface of the Moon likely have a partially condensate origin from its interior.

  11. Headspace volatiles from 52 oak species advertise induction, species identity, and evolution, but not defense.

    PubMed

    Pearse, Ian S; Gee, Wai S; Beck, John J

    2013-01-01

    Leaf volatiles convey information about a plant to other organisms in their proximity. Despite increasing interest in understanding the relevance of volatile emissions for particular ecological interactions, there has been relatively little effort to assess generally what information volatile profiles transmit. We surveyed the volatile profiles of wounded and unwounded leaves of 52 oak (Quercus) species. We used phylogenetic comparison and multivariate techniques to assess in what circumstances oak individuals advertised their species identity, evolutionary history, direct defenses, or damage. We found that both species identity and evolutionary history were advertised when leaves were wounded, but species could not be differentiated by odor when leaves were not wounded. Various fatty-acid derivative compounds showed the strongest phylogenetic signal suggesting that they may best disclose taxonomic affiliations in oaks. We tested whether oak volatile composition or diversity advertised high defensive investment, but we found no evidence for this. Wounded leaves disclose much about an oak species' identity and taxonomic affiliation, but unwounded leaves do not. This is consistent with the idea that volatile information is targeted toward natural enemy recruitment.

  12. A method for observing gas evolution during plastic laminate cure

    NASA Technical Reports Server (NTRS)

    Nicholls, A. H.

    1969-01-01

    Polyimide, phenolic, and other resins which develop volatiles during laminating or molding cure are studied using optimum cure cycles. The specimen is placed on a platen and sealed in a plastic bag, then heated and observed for gas evolution using a binocular microscope. A cover plate is added to sumulate an autoclave.

  13. Concept for a research project in early crustal genesis

    NASA Technical Reports Server (NTRS)

    Phillips, R. J. (Compiler); Ashwal, L. (Compiler)

    1983-01-01

    Planetary volatiles, physical and chemical planetary evolution, surface processes, planetary formation, metallogenesis, crustal features and their development, tectonics, and paleobiology are discussed.

  14. Stochastic volatility models and Kelvin waves

    NASA Astrophysics Data System (ADS)

    Lipton, Alex; Sepp, Artur

    2008-08-01

    We use stochastic volatility models to describe the evolution of an asset price, its instantaneous volatility and its realized volatility. In particular, we concentrate on the Stein and Stein model (SSM) (1991) for the stochastic asset volatility and the Heston model (HM) (1993) for the stochastic asset variance. By construction, the volatility is not sign definite in SSM and is non-negative in HM. It is well known that both models produce closed-form expressions for the prices of vanilla option via the Lewis-Lipton formula. However, the numerical pricing of exotic options by means of the finite difference and Monte Carlo methods is much more complex for HM than for SSM. Until now, this complexity was considered to be an acceptable price to pay for ensuring that the asset volatility is non-negative. We argue that having negative stochastic volatility is a psychological rather than financial or mathematical problem, and advocate using SSM rather than HM in most applications. We extend SSM by adding volatility jumps and obtain a closed-form expression for the density of the asset price and its realized volatility. We also show that the current method of choice for solving pricing problems with stochastic volatility (via the affine ansatz for the Fourier-transformed density function) can be traced back to the Kelvin method designed in the 19th century for studying wave motion problems arising in fluid dynamics.

  15. Melt Inclusion Constraints on the Evolving Volatile Budget of the Deccan Traps

    NASA Astrophysics Data System (ADS)

    Hernandez Nava, A.; Black, B. A.; Vanderkluysen, L.; Renne, P. R.; Self, S.

    2017-12-01

    Determining the volatile budgets of Large Igneous Provinces (LIPs) is critical to understanding their environmental consequences. Prior work on glassy melt inclusions from the Deccan Traps revealed melt concentrations of up to 1400 ppm S and 900 ppm Cl (Self et al., 2008). Callegaro et al. (2014) applied clinopyroxene-melt partitioning relationships to infer sulfur concentrations of up to 1900 ppm in Deccan Traps lavas from the Mahabaleshwar Formation. However, constraints on the variability and temporal evolution of Deccan volatiles remain sparse. We present preliminary data from a new suite of plagioclase, olivine and pyroxene hosted melt inclusions that spans the Deccan volcanic stratigraphy. We include data from olivine and clinopyroxene-hosted inclusions from high (>14 wt%) MgO flows sampled in the Wadhwan, Dhandhuka and Botad drill cores of Gujarat (NW Deccan), which are interpreted as among the earliest products of Deccan volcanism (e.g., Peng and Mahoney, 1995). We have performed initial microprobe analyses of glassy and reheated inclusions to determine S, Cl, and F concentrations. Future work will include analyses using secondary ion mass spectrometry to determine H2O, CO2, S, Cl, and F concentrations. Microthermometry will be used to understand the fluid inclusion record. This suite of techniques will allow us to place improved constraints on the overall volatile budget of the Deccan Traps and the evolution of magmatic volatile loads, with implications for the environmental consequences of magmatism before, during, and after the end-Cretaceous mass extinction.

  16. Correlation and volatility in an Indian stock market: A random matrix approach

    NASA Astrophysics Data System (ADS)

    Kulkarni, Varsha; Deo, Nivedita

    2007-11-01

    We examine the volatility of an Indian stock market in terms of correlation of stocks and quantify the volatility using the random matrix approach. First we discuss trends observed in the pattern of stock prices in the Bombay Stock Exchange for the three-year period 2000 2002. Random matrix analysis is then applied to study the relationship between the coupling of stocks and volatility. The study uses daily returns of 70 stocks for successive time windows of length 85 days for the year 2001. We compare the properties of matrix C of correlations between price fluctuations in time regimes characterized by different volatilities. Our analyses reveal that (i) the largest (deviating) eigenvalue of C correlates highly with the volatility of the index, (ii) there is a shift in the distribution of the components of the eigenvector corresponding to the largest eigenvalue across regimes of different volatilities, (iii) the inverse participation ratio for this eigenvector anti-correlates significantly with the market fluctuations and finally, (iv) this eigenvector of C can be used to set up a Correlation Index, CI whose temporal evolution is significantly correlated with the volatility of the overall market index.

  17. Differential response of a local population of entomopathogenic nematodes to non-native herbivore induced plant volatiles (HIPV) in the laboratory and field

    USDA-ARS?s Scientific Manuscript database

    Recent work has shown the potential for enhanced efficacy of entomopathogenic nematodes (EPN) through their attraction to herbivore induced plant volatiles. However, there has been little investigation into the utilization of these attractants in systems other than in those in which the compounds we...

  18. Herbivore-induced plant volatiles and tritrophic interactions across spatial scales.

    PubMed

    Aartsma, Yavanna; Bianchi, Felix J J A; van der Werf, Wopke; Poelman, Erik H; Dicke, Marcel

    2017-12-01

    Herbivore-induced plant volatiles (HIPVs) are an important cue used in herbivore location by carnivorous arthropods such as parasitoids. The effects of plant volatiles on parasitoids have been well characterised at small spatial scales, but little research has been done on their effects at larger spatial scales. The spatial matrix of volatiles ('volatile mosaic') within which parasitoids locate their hosts is dynamic and heterogeneous. It is shaped by the spatial pattern of HIPV-emitting plants, the concentration, chemical composition and breakdown of the emitted HIPV blends, and by environmental factors such as wind, turbulence and vegetation that affect transport and mixing of odour plumes. The volatile mosaic may be exploited differentially by different parasitoid species, in relation to species traits such as sensory ability to perceive volatiles and the physical ability to move towards the source. Understanding how HIPVs influence parasitoids at larger spatial scales is crucial for our understanding of tritrophic interactions and sustainable pest management in agriculture. However, there is a large gap in our knowledge on how volatiles influence the process of host location by parasitoids at the landscape scale. Future studies should bridge the gap between the chemical and behavioural ecology of tritrophic interactions and landscape ecology. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  19. Heterogeneously entrapped, vapor-rich melt inclusions record pre-eruptive magmatic volatile contents

    NASA Astrophysics Data System (ADS)

    Steele-MacInnis, Matthew; Esposito, Rosario; Moore, Lowell R.; Hartley, Margaret E.

    2017-04-01

    Silicate melt inclusions (MI) commonly provide the best record of pre-eruptive H2O and CO2 contents of subvolcanic melts, but the concentrations of CO2 and H2O in the melt (glass) phase within MI can be modified by partitioning into a vapor bubble after trapping. Melt inclusions may also enclose vapor bubbles together with the melt (i.e., heterogeneous entrapment), affecting the bulk volatile composition of the MI, and its post-entrapment evolution. In this study, we use numerical modeling to examine the systematics of post-entrapment volatile evolution within MI containing various proportions of trapped vapor from zero to 95 volume percent. Modeling indicates that inclusions that trap only a vapor-saturated melt exhibit significant decrease in CO2 and moderate increase in H2O concentrations in the melt upon nucleation and growth of a vapor bubble. In contrast, inclusions that trap melt plus vapor exhibit subdued CO2 depletion at equivalent conditions. In the extreme case of inclusions that trap mostly the vapor phase (i.e., CO2-H2O fluid inclusions containing trapped melt), degassing of CO2 from the melt is negligible. In the latter scenario, the large fraction of vapor enclosed in the MI during trapping essentially serves as a buffer, preventing post-entrapment modification of volatile concentrations in the melt. Hence, the glass phase within such heterogeneously entrapped, vapor-rich MI records the volatile concentrations of the melt at the time of trapping. These numerical modeling results suggest that heterogeneously entrapped MI containing large vapor bubbles represent amenable samples for constraining pre-eruptive volatile concentrations of subvolcanic melts.

  20. Explaining evolution of plant communication by airborne signals.

    PubMed

    Heil, Martin; Karban, Richard

    2010-03-01

    In spite of initial doubts about the reality of 'talking trees', plant resistance expression mediated by volatile compounds that come from neighboring plants is now well described. Airborne signals usually improve the resistance of the receiver, but without obvious benefits for the emitter, thus making the evolutionary explanation of this phenomenon problematic. Here, we discuss four possible non-exclusive explanations involving the role of volatiles: in direct defense, as within-plant signals, as traits that synergistically interact with other defenses, and as cues among kin. Unfortunately, there is a lack of knowledge on the fitness consequences of plant communication for both emitter and receiver. This information is crucial to understanding the ecology and evolution of plant communication via airborne cues.

  1. Elevated carbon dioxide reduces emission of herbivore-induced volatiles in Zea mays.

    PubMed

    Block, Anna; Vaughan, Martha M; Christensen, Shawn A; Alborn, Hans T; Tumlinson, James H

    2017-09-01

    Terpene volatiles produced by sweet corn (Zea mays) upon infestation with pests such as beet armyworm (Spodoptera exigua) function as part of an indirect defence mechanism by attracting parasitoid wasps; yet little is known about the impact of climate change on this form of plant defence. To investigate how a central component of climate change affects indirect defence, we measured herbivore-induced volatile emissions in plants grown under elevated carbon dioxide (CO 2 ). We found that S. exigua infested or elicitor-treated Z. mays grown at elevated CO 2 had decreased emission of its major sesquiterpene, (E)-β-caryophyllene and two homoterpenes, (3E)-4,8-dimethyl-1,3,7-nonatriene and (3E,7E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene. In contrast, inside the leaves, elicitor-induced (E)-β-caryophyllene hyper-accumulated at elevated CO 2 , while levels of homoterpenes were unaffected. Furthermore, gene expression analysis revealed that the induction of terpene synthase genes following treatment was lower in plants grown at elevated CO 2 . Our data indicate that elevated CO 2 leads both to a repression of volatile synthesis at the transcriptional level and to limitation of volatile release through effects of CO 2 on stomatal conductance. These findings suggest that elevated CO 2 may alter the ability of Z. mays to utilize volatile terpenes to mediate indirect defenses. © 2017 John Wiley & Sons Ltd.

  2. Volatile reservoirs below the surface of the Elysium region of Mars: Geomorphic evidence

    NASA Technical Reports Server (NTRS)

    Christiansen, Eric H.; Hopler, Jennifer A.

    1987-01-01

    The Elysium volcanic province contains a variety of geomorphic evidence for the existence of large volatile reservoirs of subsurface volatiles. Study of these landforms yields insight into the distribution and size of these reservoirs and how they interact with the surface environment and will ultimately place constraints on the geometry, constitution, origin, time of formation, and temporal evolution of these important components of the Martian crust. Three principal types of landforms appear to be related to subsurface volatile reservoirs in the Elysium region of Mars: small outflow channels; large lahars; and vast expanses of knobby terranes around the margins of the Elysium dome. The evidence provided by these landforms is internally consistent with the presence of a large relatively shallow volatile reservoir in the Elysium region. If the geologic features described are reliable indicators of subsurface volatiles, they imply that: volatile reservoirs lie relatively close to the surface and underlie millions of sq km in this region; there is no apparent latitudinal variation in the depth or thickness of the volatile reservoirs; the precursors of the knobby terranes are or were important volatile reservoirs; volatiles may be lost in a variety of ways from these reservoirs; and volatiles were incorporated in an easily eroded surficial deposit in the middle history of Mars. The ultimate origin of water in this reservoir is uncertain. A model to explain the preferential entrapment of volatiles into the region's surface materials may be required.

  3. Biogenic volatile organic compound emissions from vegetation fires

    PubMed Central

    CICCIOLI, PAOLO; CENTRITTO, MAURO; LORETO, FRANCESCO

    2014-01-01

    The aim of this paper was to provide an overview of the current state of the art on research into the emission of biogenic volatile organic compounds (BVOCs) from vegetation fires. Significant amounts of VOCs are emitted from vegetation fires, including several reactive compounds, the majority belonging to the isoprenoid family, which rapidly disappear in the plume to yield pollutants such as secondary organic aerosol and ozone. This makes determination of fire-induced BVOC emission difficult, particularly in areas where the ratio between VOCs and anthropogenic NOx is favourable to the production of ozone, such as Mediterranean areas and highly anthropic temperate (and fire-prone) regions of the Earth. Fire emissions affecting relatively pristine areas, such as the Amazon and the African savannah, are representative of emissions of undisturbed plant communities. We also examined expected BVOC emissions at different stages of fire development and combustion, from drying to flaming, and from heatwaves coming into contact with unburned vegetation at the edge of fires. We conclude that forest fires may dramatically change emission factors and the profile of emitted BVOCs, thereby influencing the chemistry and physics of the atmosphere, the physiology of plants and the evolution of plant communities within the ecosystem. PMID:24689733

  4. Origin and evolution of planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Lewis, John S.

    1992-01-01

    This report concerns several research tasks related to the origin and evolution of planetary atmospheres and the large-scale distribution of volatile elements in the Solar System. These tasks and their present status are as follows: (1) we have conducted an analysis of the volatility and condensation behavior of compounds of iron, aluminum, and phosphorus in the atmosphere of Venus in response to publish interpretations of the Soviet Venera probe XRF experiment data, to investigate the chemistry of volcanic gases, injection of volatiles by cometary and asteroidal impactors, and reactions in the troposphere; (2) we have completed and are now writing up our research on condensation-accretion modeling of the terrestrial planets; (3) we have laid the groundwork for a detailed study of the effects of water transport in the solar nebula on the bulk composition, oxidation state, and volatile content of preplanetary solids; (4) we have completed an extensive laboratory study of cryovolcanic materials in the outer solar system; (5) we have begun to study the impact erosion and shock alteration of the atmosphere of Mars resulting from cometary and asteroidal bombardment; and (6) we have developed a new Monte Carlo model of the cometary and asteroidal bombardment flux on the terrestrial planets, including all relevant chemical and physical processes associated with atmospheric entry and impact, to assess both the hazards posed by this bombardment to life on Earth and the degree of cross-correlation between the various phenomena (NO(x) production, explosive yield, crater production, iridium signature, etc.) that characterize this bombardment. The purpose of these investigations has been to contribute to the developing understanding of both the dynamics of long-term planetary atmosphere evolution and the short-term stability of planetary surface environments.

  5. Cold-trapped organic compounds at the poles of the Moon and Mercury: Implications for origins

    NASA Astrophysics Data System (ADS)

    Zhang, Jo Ann; Paige, David A.

    2009-08-01

    We have calculated evaporation rates for a range of organic compounds that may be cold-trapped at the poles of the Moon and Mercury. Organics vary widely in their volatilities and thus can be stable to evaporation at higher and lower temperatures than water. The detection of cold-trapped organics would point to volatile delivery by impacts, as comets and asteroids are the only plausible sources for organic molecules. The characterization of cold-trapped organics on both bodies may provide constraints on the thermal evolution of cold traps over time and the history of volatiles in the inner solar system.

  6. New 3D thermal evolution model for icy bodies application to trans-Neptunian objects

    NASA Astrophysics Data System (ADS)

    Guilbert-Lepoutre, A.; Lasue, J.; Federico, C.; Coradini, A.; Orosei, R.; Rosenberg, E. D.

    2011-05-01

    Context. Thermal evolution models have been developed over the years to investigate the evolution of thermal properties based on the transfer of heat fluxes or transport of gas through a porous matrix, among others. Applications of such models to trans-Neptunian objects (TNOs) and Centaurs has shown that these bodies could be strongly differentiated from the point of view of chemistry (i.e. loss of most volatile ices), as well as from physics (e.g. melting of water ice), resulting in stratified internal structures with differentiated cores and potential pristine material close to the surface. In this context, some observational results, such as the detection of crystalline water ice or volatiles, remain puzzling. Aims: In this paper, we would like to present a new fully three-dimensional thermal evolution model. With this model, we aim to improve determination of the temperature distribution inside icy bodies such as TNOs by accounting for lateral heat fluxes, which have been proven to be important for accurate simulations. We also would like to be able to account for heterogeneous boundary conditions at the surface through various albedo properties, for example, that might induce different local temperature distributions. Methods: In a departure from published modeling approaches, the heat diffusion problem and its boundary conditions are represented in terms of real spherical harmonics, increasing the numerical efficiency by roughly an order of magnitude. We then compare this new model and another 3D model recently published to illustrate the advantages and limits of the new model. We try to put some constraints on the presence of crystalline water ice at the surface of TNOs. Results: The results obtained with this new model are in excellent agreement with results obtained by different groups with various models. Small TNOs could remain primitive unless they are formed quickly (less than 2 Myr) or are debris from the disruption of larger bodies. We find that, for large objects with a thermal evolution dominated by the decay of long-lived isotopes (objects with a formation period greater than 2 to 3 Myr), the presence of crystalline water ice would require both a large radius (>300 km) and high density (>1500 kg m-3). In particular, objects with intermediate radii and densities would be an interesting transitory population deserving a detailed study of individual fates.

  7. Proceedings of the MECA Workshop on The Evoluation of the Martian Atmosphere

    NASA Technical Reports Server (NTRS)

    Carr, M. (Editor); James, P. (Editor); Conway, L. (Editor); Pepin, R. (Editor); Pollack, J. (Editor)

    1985-01-01

    Topics addressed include: Mars' volatile budget; climatic implications of martian channels; bulk composition of Mars; accreted water inventory; evolution of CO2; dust storms; nonlinear frost albedo feedback on Mars; martian atmospheric evolution; effects of asteroidal and cometary impacts; and water exchange between the regolith and the atmosphere/cap system over obliquity timescales.

  8. Origin and timescale of volatile element depletion in crustal and mantle reservoirs

    NASA Astrophysics Data System (ADS)

    Moynier, Frederic; Day, James M. D.

    2014-05-01

    Volatile elements play a fundamental role in the evolution of planets. Understanding of how volatile budgets were set in planets, and how and to what extent planetary bodies became volatile-depleted during the earliest stages of Earth and Solar System formation remain poorly understood, however. It has been proposed that the depletion is due to incomplete condensation (volatile elements were not there in the first place, in which case the timing would have to be fast, <1Myr), or that planetary bodies lost volatile elements through evaporation (post-accretion volatilization). Volatilization is known to fractionate isotopes, thus comparing isotope ratios of volatile element between samples is a powerful tool for understanding the origin of volatile element abundance variations. For example, recent work has shown that lunar basalts are enriched in the heavier isotopes of Zn (~1 ‰ for 66Zn/64Zn) compared to chondrites, terrestrial and martian basalts. We will discuss these Zn isotopic data of crustal and mantle rocks, as well as other stable isotopic systems (e.g., Si) in relation with the giant impact theory of lunar origin, as well as the lunar magma ocean and expand to other parent bodies (e.g., angrites). The timescale of depletion in volatile elements of Solar System material is estimated by using radiogenic systems for which the parent and daughter elements have different volatility. Here we focus on the Rb-Sr and Mn-Cr isotopic systems and discuss the timescales and implications for the origin of volatile element depletion (solar nebula stage vs. planetary stage).

  9. Floral Scent Mimicry and Vector-Pathogen Associations in a Pseudoflower-Inducing Plant Pathogen System

    PubMed Central

    McArt, Scott H.; Miles, Timothy D.; Rodriguez-Saona, Cesar; Schilder, Annemiek; Adler, Lynn S.; Grieshop, Matthew J.

    2016-01-01

    Several fungal plant pathogens induce ‘pseudoflowers’ on their hosts to facilitate insect-mediated transmission of gametes and spores. When spores must be transmitted to host flowers to complete the fungal life cycle, we predict that pseudoflowers should evolve traits that mimic flowers and attract the most effective vectors in the flower-visiting community. We quantified insect visitation to flowers, healthy leaves and leaves infected with Monilinia vaccinii-corymbosi (Mvc), the causative agent of mummy berry disease of blueberry. We developed a nested PCR assay for detecting Mvc spores on bees, flies and other potential insect vectors. We also collected volatiles from blueberry flowers, healthy leaves and leaves infected with Mvc, and experimentally manipulated specific pathogen-induced volatiles to assess attractiveness to potential vectors. Bees and flies accounted for the majority of contacts with flowers, leaves infected with Mvc and healthy leaves. Flowers were contacted most often, while there was no difference between bee or fly contacts with healthy and infected leaves. While bees contacted flowers more often than flies, flies contacted infected leaves more often than bees. Bees were more likely to have Mvc spores on their bodies than flies, suggesting that bees may be more effective vectors than flies for transmitting Mvc spores to flowers. Leaves infected with Mvc had volatile profiles distinct from healthy leaves but similar to flowers. Two volatiles produced by flowers and infected leaves, cinnamyl alcohol and cinnamic aldehyde, were attractive to bees, while no volatiles manipulated were attractive to flies or any other insects. These results suggest that Mvc infection of leaves induces mimicry of floral volatiles, and that transmission occurs primarily via bees, which had the highest likelihood of carrying Mvc spores and visited flowers most frequently. PMID:27851747

  10. Floral Scent Mimicry and Vector-Pathogen Associations in a Pseudoflower-Inducing Plant Pathogen System.

    PubMed

    McArt, Scott H; Miles, Timothy D; Rodriguez-Saona, Cesar; Schilder, Annemiek; Adler, Lynn S; Grieshop, Matthew J

    2016-01-01

    Several fungal plant pathogens induce 'pseudoflowers' on their hosts to facilitate insect-mediated transmission of gametes and spores. When spores must be transmitted to host flowers to complete the fungal life cycle, we predict that pseudoflowers should evolve traits that mimic flowers and attract the most effective vectors in the flower-visiting community. We quantified insect visitation to flowers, healthy leaves and leaves infected with Monilinia vaccinii-corymbosi (Mvc), the causative agent of mummy berry disease of blueberry. We developed a nested PCR assay for detecting Mvc spores on bees, flies and other potential insect vectors. We also collected volatiles from blueberry flowers, healthy leaves and leaves infected with Mvc, and experimentally manipulated specific pathogen-induced volatiles to assess attractiveness to potential vectors. Bees and flies accounted for the majority of contacts with flowers, leaves infected with Mvc and healthy leaves. Flowers were contacted most often, while there was no difference between bee or fly contacts with healthy and infected leaves. While bees contacted flowers more often than flies, flies contacted infected leaves more often than bees. Bees were more likely to have Mvc spores on their bodies than flies, suggesting that bees may be more effective vectors than flies for transmitting Mvc spores to flowers. Leaves infected with Mvc had volatile profiles distinct from healthy leaves but similar to flowers. Two volatiles produced by flowers and infected leaves, cinnamyl alcohol and cinnamic aldehyde, were attractive to bees, while no volatiles manipulated were attractive to flies or any other insects. These results suggest that Mvc infection of leaves induces mimicry of floral volatiles, and that transmission occurs primarily via bees, which had the highest likelihood of carrying Mvc spores and visited flowers most frequently.

  11. Evolution of selected volatiles in chitosan-coated strawberries ( Fragaria x ananassa ) during refrigerated storage.

    PubMed

    Almenar, Eva; Hernández-Muñoz, Pilar; Gavara, Rafael

    2009-02-11

    The effect of chitosan coating on the evolution of several volatile compounds relevant to the strawberry ( Fragaria x ananassa cv. Camarosa) aroma profile has been investigated. Strawberries dipped in chitosan acetate solution at 1 or 1.5% (w/w) and uncoated controls were stored at 10 degrees C for 1 week. Significant differences in aroma profile between coated and uncoated samples were observed. Most importantly, the buildup of the off-flavors acetaldehyde and ethanol was largely delayed in coated berries. With regard to the effect of chitosan on ester evolution, the levels of ethyl butanoate and ethyl hexanoate, important contributors to strawberry aroma related to fruity and sweet notes, were found to be enhanced in coated fruit. Acetate esters also increased during storage but more markedly in uncoated strawberries. These results show the potential of chitosan coatings in maintaining strawberry flavor during storage, something difficult to achieve with current conservation technologies. Moreover, differences in results for different coating concentrations are reported.

  12. Volatile element chemistry of selected lunar, meteoritic, and terrestrial samples

    NASA Technical Reports Server (NTRS)

    Simoneit, B. R.; Christiansen, P. C.; Burlingame, A. L.

    1973-01-01

    Using vacuum pyrolysis and high resolution mass spectrometry, a study is made of the gas release patterns of representative lunar samples, meteorites, terrestrial samples, and synthetic samples doped with various sources of carbon and nitrogen. The pyrolytic gas evolution patterns were intercorrelated, allowing an assessment of the possible sources of the volatilizable material in the lunar samples to be made. Lightly surface adsorbed species and more strongly chemisorbed species are released from ambient to 300 C and from 300 to 500 C, respectively. The low-temperature volatiles (less than 500 C) derived from various chondrites correlate well with the gas evolution patterns of volatile-rich samples, as for example 74220 and 61221. Solar wind entrapped species and molecules derived from reactions probably in the grain surfaces are evolved from about 500 to 700 C, respectively. Solar wind implanted C, N, and S species are generated from 750 to 1150 C, probably by reaction with the mineral matrix during the annealing process. Possible indigenous and/or refractory carbide, nitride, and sulfide C, N, and S are released in the region from 1200 C to fusion.

  13. Laboratory studies of monoterpene secondary organic aerosol formation and evolution

    NASA Astrophysics Data System (ADS)

    Thornton, J. A.; D'Ambro, E.; Zhao, Y.; Lee, B. H.; Pye, H. O. T.; Schobesberger, S.; Shilling, J.; Liu, J.

    2017-12-01

    We have conducted a series of chamber experiments to study the molecular composition and properties of secondary organic aerosol (SOA) formed from monoterpenes under a range of photochemical and dark conditions. We connect variations in the SOA mass yield to molecular composition and volatility, and use a detailed Master Chemical Mechanism (MCM) based chemical box model with dynamic gas-particle partitioning to examine the importance of various peroxy radical reaction mechanisms in setting the SOA yield and properties. We compare the volatility distribution predicted by the model to that inferred from isothermal room-temperature evaporation experiments using the FIGAERO-CIMS where SOA particles collected on a filter are allowed to evaporate under humidified pure nitrogen flow stream for up to 24 hours. We show that the combination of results requires prompt formation of low volatility SOA from predominantly gas-phase mechanisms, with important differences between monoterpenes (alpha-Pinene and delta-3-Carene) followed by slower non-radical particle phase chemistry that modulates both the chemical and physical properties of the SOA. Implications for the regional evolution of atmospheric monoterpene SOA are also discussed.

  14. Inventory of the volatiles on comet 67P/Churyumov-Gerasimenko from Rosetta/ROSINA

    NASA Astrophysics Data System (ADS)

    Le Roy, Léna; Altwegg, Kathrin; Balsiger, Hans; Berthelier, Jean-Jacques; Bieler, Andre; Briois, Christelle; Calmonte, Ursina; Combi, Michael R.; De Keyser, Johan; Dhooghe, Frederik; Fiethe, Björn; Fuselier, Stephen A.; Gasc, Sébastien; Gombosi, Tamas I.; Hässig, Myrtha; Jäckel, Annette; Rubin, Martin; Tzou, Chia-Yu

    2015-11-01

    Context. The ESA Rosetta spacecraft (S/C) is tracking comet 67P/Churyumov-Gerasimenko in close vicinity. This prolonged encounter enables studying the evolution of the volatile coma composition. Aims: Our work aims at comparing the diversity of the coma of 67P/Churyumov-Gerasimenko at large heliocentric distance to study the evolution of the comet during its passage around the Sun and at trying to classify it relative to other comets. Methods: We used the Double Focussing Mass Spectrometer (DFMS) of the ROSINA experiment on ESA's Rosetta mission to determine relative abundances of major and minor volatile species. This study is restricted to species that have previously been detected elsewhere. Results: We detect almost all species currently known to be present in cometary coma with ROSINA DFMS. As DFMS measured the composition locally, we cannot derive a global abundance, but we compare measurements from the summer and the winter hemisphere with known abundances from other comets. Differences between relative abundances between summer and winter hemispheres are large, which points to a possible evolution of the cometary surface. This comet appears to be very rich in CO2 and ethane. Heavy oxygenated compounds such as ethylene glycol are underabundant at 3 AU, probably due to their high sublimation temperatures, but nevertheless, their presence proves that Kuiper belt comets also contain complex organic molecules.

  15. Volatiles in the Earth and Moon: Constraints on planetary formation and evolution

    NASA Astrophysics Data System (ADS)

    Parai, Rita

    The volatile inventories of the Earth and Moon reflect unique histories of volatile acquisition and loss in the early Solar System. The terrestrial volatile inventory was established after the giant impact phase of accretion, and the planet subsequently settled into a regime of long-term volatile exchange between the mantle and surface reservoirs in association with plate tectonics. Therefore, volatiles in the Earth and Moon shed light on a diverse array of processes that shaped planetary bodies in the Solar System as they evolved to their present-day states. Here we investigate new constraints on volatile depletion in the early Solar System, early outgassing of the terrestrial mantle, and the long-term evolution of the deep Earth volatile budget. We develop a Monte Carlo model of long-term water exchange between the mantle and surface reservoirs. Previous estimates of the deep Earth return flux of water are up to an order of magnitude too large, and incorporation of recycled slabs on average rehydrates the upper mantle but dehydrates the plume source. We find evidence for heterogeneous recycling of atmospheric argon and xenon into the upper mantle from noble gases in Southwest Indian Ridge basalts. Xenon isotope systematics indicate that xenon budgets of mid-ocean ridge and plume-related mantle sources are dominated by recycled atmospheric xenon, though the two sources have experienced different degrees of degassing. Differences between the mid-ocean ridge and plume sources were initiated within the first 100 million years of Earth history, and the two sources have never subsequently been homogenized. New high-precision xenon isotopic data contribute to an emerging portrait of two mantle reservoirs with distinct histories of outgassing and incorporation of recycled material in association with plate tectonics. Xenon isotopes indicate that the Moon likely formed within ˜70 million years of the start of the Solar System. To further investigate early Solar System chronology, we determined strontium isotopic compositions in a suite of planetary materials. If the Moon is derived from proto-Earth material, then rubidium-strontium systematics in the lunar anorthosite 60025 and Moore County plagioclase indicate that Moon formation occurred within ~62 million years of the start of the Solar System.

  16. Inbreeding alters volatile signalling phenotypes and influences tri-trophic interactions in horsenettle (Solanum carolinense L.).

    PubMed

    Kariyat, Rupesh R; Mauck, Kerry E; De Moraes, Consuelo M; Stephenson, Andrew G; Mescher, Mark C

    2012-04-01

    The ecological consequences of inter-individual variation in plant volatile emissions remain largely unexplored. We examined the effects of inbreeding on constitutive and herbivore-induced volatile emissions in horsenettle (Solanum carolinense L.) and on the composition of the insect community attracted to herbivore-damaged and undamaged plants in the field. Inbred plants exhibited higher constitutive emissions, but weaker induction of volatiles following herbivory. Moreover, many individual compounds previously implicated in the recruitment of predators and parasitoids (e.g. terpenes) were induced relatively weakly (or not at all) in inbred plants. In trapping experiments, undamaged inbred plants attracted greater numbers of generalist insect herbivores than undamaged outcrossed plants. But inbred plants recruited fewer herbivore natural enemies (predators and parasitoids) when damaged. Taken together, these findings suggest that inbreeding depression negatively impacts the overall pattern of volatile emissions - increasing the apparency of undamaged plants to herbivores, while reducing the recruitment of predatory insects to herbivore-damaged plants. © 2012 Blackwell Publishing Ltd/CNRS.

  17. Behavioral and electrophysiological responses of the emerald ash borer, Agrilus planipennis, to induced volatiles of Manchurian ash, Fraxinus mandshurica

    Treesearch

    Cesar Rodriguez-Saona; Therese M. Poland; James R. Miller; Lukasz L. Stelinski; Gary G. Grant; Peter de Groot; Linda Buchan; Linda Mac Donald

    2006-01-01

    We investigated the volatile emissions of Manchurian ash seedlings, Fraxinus mandshurica, in response to feeding by the emerald ash borer, Agrilus planipennis, and to exogenous application of methyl jasmonate (MeJA). Feeding damage by adult A. planipennis and MeJA treatment increased volatile emissions compared...

  18. Queen-specific volatile in a higher termite Nasutitermes takasagoensis (Isoptera: Termitidae).

    PubMed

    Himuro, Chihiro; Yokoi, Tomoyuki; Matsuura, Kenji

    2011-07-01

    In social insect colonies, queen-produced pheromones have important functions in social regulation. These substances influence the behavior and physiology of colony members. A queen-produced volatile that inhibits differentiation of new neotenic reproductives was recently identified in the lower termite Reticulitermes speratus. However, there are no known queen-specific volatiles of this type in any other termite species. Here, we report volatile compounds emitted by live queens of the higher termite Nasutitermes takasagoensis. We used headspace gas chromatography mass spectroscopy (HS GC-MS) to analyze volatiles emitted by live primary queens, workers, soldiers, alates, and eggs collected in a Japanese subtropical forest. Among 14 detected compounds, 7 were soldier-specific, 1 was alate-specific, 1 was egg-specific, and 1 was queen-specific. The queen-specific volatile was phenylethanol, which is different than the compound identified in R. speratus. The identification of this queen-specific volatile is the first step in determining its functions in higher termite social regulation. Comparisons of queen pheromone substances regulating caste differentiation among various termite taxa will contribute to a better understanding of the evolution of social systems in termites. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Ambulatory responses of Laricobius nigrinus (Coleoptera: Derodontidae), a hemlock woolly adelgid predator, to odors from prey, host foliage, and feeding conspecifics.

    Treesearch

    Arielle Arsenault; Albert (Bud) Mayfield; Kimberly Wallin

    2015-01-01

    Behavioral interactions between insects and their environments are often mediated by volatile cues. Plant-produced chemical cues induced by herbivore activity are often more effective at attracting predators than are cues produced by the herbivore alone (Dicke and van Loon 2000). The presence of herbivore-induced plant volatiles makes foraging by predators more...

  20. Early accretion of water and volatile elements to the inner Solar System: evidence from angrites

    NASA Astrophysics Data System (ADS)

    Sarafian, Adam R.; Hauri, Erik H.; McCubbin, Francis M.; Lapen, Thomas J.; Berger, Eve L.; Nielsen, Sune G.; Marschall, Horst R.; Gaetani, Glenn A.; Righter, Kevin; Sarafian, Emily

    2017-04-01

    Inner Solar System bodies are depleted in volatile elements relative to chondrite meteorites, yet the source(s) and mechanism(s) of volatile-element depletion and/or enrichment are poorly constrained. The timing, mechanisms and quantities of volatile elements present in the early inner Solar System have vast implications for diverse processes, from planetary differentiation to the emergence of life. We report major, trace and volatile-element contents of a glass bead derived from the D'Orbigny angrite, the hydrogen isotopic composition of this glass bead and that of coexisting olivine and silicophosphates, and the 207Pb-206Pb age of the silicophosphates, 4568 ± 20 Ma. We use volatile saturation models to demonstrate that the angrite parent body must have been a major body in the early inner Solar System. We further show via mixing calculations that all inner Solar System bodies accreted volatile elements with carbonaceous chondrite H and N isotope signatures extremely early in Solar System history. Only a small portion (if any) of comets and gaseous nebular H species contributed to the volatile content of the inner Solar System bodies. This article is part of the themed issue 'The origin, history and role of water in the evolution of the inner Solar System'.

  1. Early accretion of water and volatile elements to the inner Solar System: evidence from angrites.

    PubMed

    Sarafian, Adam R; Hauri, Erik H; McCubbin, Francis M; Lapen, Thomas J; Berger, Eve L; Nielsen, Sune G; Marschall, Horst R; Gaetani, Glenn A; Righter, Kevin; Sarafian, Emily

    2017-05-28

    Inner Solar System bodies are depleted in volatile elements relative to chondrite meteorites, yet the source(s) and mechanism(s) of volatile-element depletion and/or enrichment are poorly constrained. The timing, mechanisms and quantities of volatile elements present in the early inner Solar System have vast implications for diverse processes, from planetary differentiation to the emergence of life. We report major, trace and volatile-element contents of a glass bead derived from the D'Orbigny angrite, the hydrogen isotopic composition of this glass bead and that of coexisting olivine and silicophosphates, and the 207 Pb- 206 Pb age of the silicophosphates, 4568 ± 20 Ma. We use volatile saturation models to demonstrate that the angrite parent body must have been a major body in the early inner Solar System. We further show via mixing calculations that all inner Solar System bodies accreted volatile elements with carbonaceous chondrite H and N isotope signatures extremely early in Solar System history. Only a small portion (if any) of comets and gaseous nebular H species contributed to the volatile content of the inner Solar System bodies.This article is part of the themed issue 'The origin, history and role of water in the evolution of the inner Solar System'. © 2017 The Author(s).

  2. Green Leaf Volatile Emissions during High Temperature and Drought Stress in a Central Amazon Rainforest

    PubMed Central

    Jardine, Kolby J.; Chambers, Jeffrey Q.; Holm, Jennifer; Jardine, Angela B.; Fontes, Clarissa G.; Zorzanelli, Raquel F.; Meyers, Kimberly T.; de Souza, Vinicius Fernadez; Garcia, Sabrina; Gimenez, Bruno O.; de O. Piva, Luani R.; Higuchi, Niro; Artaxo, Paulo; Martin, Scot; Manzi, Antônio O.

    2015-01-01

    Prolonged drought stress combined with high leaf temperatures can induce programmed leaf senescence involving lipid peroxidation, and the loss of net carbon assimilation during early stages of tree mortality. Periodic droughts are known to induce widespread tree mortality in the Amazon rainforest, but little is known about the role of lipid peroxidation during drought-induced leaf senescence. In this study, we present observations of green leaf volatile (GLV) emissions during membrane peroxidation processes associated with the combined effects of high leaf temperatures and drought-induced leaf senescence from individual detached leaves and a rainforest ecosystem in the central Amazon. Temperature-dependent leaf emissions of volatile terpenoids were observed during the morning, and together with transpiration and net photosynthesis, showed a post-midday depression. This post-midday depression was associated with a stimulation of C5 and C6 GLV emissions, which continued to increase throughout the late afternoon in a temperature-independent fashion. During the 2010 drought in the Amazon Basin, which resulted in widespread tree mortality, green leaf volatile emissions (C6 GLVs) were observed to build up within the forest canopy atmosphere, likely associated with high leaf temperatures and enhanced drought-induced leaf senescence processes. The results suggest that observations of GLVs in the tropical boundary layer could be used as a chemical sensor of reduced ecosystem productivity associated with drought stress. PMID:27135346

  3. Green Leaf Volatile Emissions during High Temperature and Drought Stress in a Central Amazon Rainforest.

    PubMed

    Jardine, Kolby J; Chambers, Jeffrey Q; Holm, Jennifer; Jardine, Angela B; Fontes, Clarissa G; Zorzanelli, Raquel F; Meyers, Kimberly T; de Souza, Vinicius Fernadez; Garcia, Sabrina; Gimenez, Bruno O; Piva, Luani R de O; Higuchi, Niro; Artaxo, Paulo; Martin, Scot; Manzi, Antônio O

    2015-09-15

    Prolonged drought stress combined with high leaf temperatures can induce programmed leaf senescence involving lipid peroxidation, and the loss of net carbon assimilation during early stages of tree mortality. Periodic droughts are known to induce widespread tree mortality in the Amazon rainforest, but little is known about the role of lipid peroxidation during drought-induced leaf senescence. In this study, we present observations of green leaf volatile (GLV) emissions during membrane peroxidation processes associated with the combined effects of high leaf temperatures and drought-induced leaf senescence from individual detached leaves and a rainforest ecosystem in the central Amazon. Temperature-dependent leaf emissions of volatile terpenoids were observed during the morning, and together with transpiration and net photosynthesis, showed a post-midday depression. This post-midday depression was associated with a stimulation of C₅ and C₆ GLV emissions, which continued to increase throughout the late afternoon in a temperature-independent fashion. During the 2010 drought in the Amazon Basin, which resulted in widespread tree mortality, green leaf volatile emissions (C₆ GLVs) were observed to build up within the forest canopy atmosphere, likely associated with high leaf temperatures and enhanced drought-induced leaf senescence processes. The results suggest that observations of GLVs in the tropical boundary layer could be used as a chemical sensor of reduced ecosystem productivity associated with drought stress.

  4. Pyrazine Analogues Are Active Components of Wolf Urine That Induce Avoidance and Freezing Behaviours in Mice

    PubMed Central

    Osada, Kazumi; Kurihara, Kenzo; Izumi, Hiroshi; Kashiwayanagi, Makoto

    2013-01-01

    Background The common grey wolf (Canis lupus) is found throughout the entire Northern hemisphere and preys on many kinds of mammals. The urine of the wolf contains a number of volatile constituents that can potentially be used for predator–prey chemosignalling. Although wolf urine is put to practical use to keep rabbits, rodents, deer and so on at bay, we are unaware of any prior behavioural studies or chemical analyses regarding the fear-inducing impact of wolf urine on laboratory mice. Methodology/Principal Findings Three wolf urine samples harvested at different times were used in this study. All of them induced stereotypical fear-associated behaviors (i.e., avoidance and freezing) in female mice. The levels of certain urinary volatiles varied widely among the samples. To identify the volatiles that provoked avoidance and freezing, behavioural, chemical, and immunohistochemical analyses were performed. One of the urine samples (sample C) had higher levels of 2,6-dimethylpyrazine (DMP), trimethylpyrazine (TMP), and 3-ethyl-2,5-dimethyl pyrazine (EDMP) compared with the other two urine samples (samples A and B). In addition, sample C induced avoidance and freezing behaviours more effectively than samples A and B. Moreover, only sample C led to pronounced expression of Fos-immunoreactive cells in the accessory olfactory bulb (AOB) of female mice. Freezing behaviour and Fos immunoreactivity were markedly enhanced when the mice were confronted with a mixture of purified DMP, TMP, and EDMP vs. any one pyrazine alone. Conclusions/Significance The current results suggest that wolf urinary volatiles can engender aversive and fear-related responses in mice. Pyrazine analogues were identified as the predominant active components among these volatiles to induce avoidance and freezing behaviours via stimulation of the murine AOB. PMID:23637901

  5. The Influence of Local Geometric Effects on Mars Polar Processes

    NASA Technical Reports Server (NTRS)

    Hecht, M. H.

    2005-01-01

    Using simple, qualitative heat balance models, this paper addresses textures and structures that will result from the evolution of volatile layers by accretion and by ablation. Such phenomena may have global implications that are not apparent when only flat or sloped surfaces are modeled. In general, structures such as mounds or depressions formed out of volatile materials will evolve in shape such that the growth or retreat of any particular surface will be maximized. It can be shown that the local radius of curvature is proportional to the growth or retreat rate. For example, icy surfaces will tend to form facets that face the dominant sun direction. Two such cases are evaluated: a) Features associated with condensation of volatiles, include cold-trapping and redistribution, such as the concentration of frost around the Viking 2 lander [1]. Here I will focus on textures that likely result from the formation of seasonal CO2 deposits. b) Features associated with sublimation of volatiles, such as those described by Ingersoll et. al. [2] result in textured surfaces that affect both the apparent emissivity and albedo. Similar calculations have been performed with respect to the "Swiss cheese" features on the South Polar Cap [3]. Here, I evaluate the likely sublimation rates from optimal ice scarp structures and their implications for the long-term evolution of the polar caps and formation of layered terrain.

  6. Direct Measurements of Gas/Particle Partitioning and Mass Accommodation Coefficients in Environmental Chambers.

    PubMed

    Krechmer, Jordan E; Day, Douglas A; Ziemann, Paul J; Jimenez, Jose L

    2017-10-17

    Secondary organic aerosols (SOA) are a major contributor to fine particulate mass and wield substantial influences on the Earth's climate and human health. Despite extensive research in recent years, many of the fundamental processes of SOA formation and evolution remain poorly understood. Most atmospheric aerosol models use gas/particle equilibrium partitioning theory as a default treatment of gas-aerosol transfer, despite questions about potentially large kinetic effects. We have conducted fundamental SOA formation experiments in a Teflon environmental chamber using a novel method. A simple chemical system produces a very fast burst of low-volatility gas-phase products, which are competitively taken up by liquid organic seed particles and Teflon chamber walls. Clear changes in the species time evolution with differing amounts of seed allow us to quantify the particle uptake processes. We reproduce gas- and aerosol-phase observations using a kinetic box model, from which we quantify the aerosol mass accommodation coefficient (α) as 0.7 on average, with values near unity especially for low volatility species. α appears to decrease as volatility increases. α has historically been a very difficult parameter to measure with reported values varying over 3 orders of magnitude. We use the experimentally constrained model to evaluate the correction factor (Φ) needed for chamber SOA mass yields due to losses of vapors to walls as a function of species volatility and particle condensational sink. Φ ranges from 1-4.

  7. Volatile Profile of Raw Lamb Meat Stored at 4 ± 1 °C: The Potential of Specific Aldehyde Ratios as Indicators of Lamb Meat Quality

    PubMed Central

    2018-01-01

    The objectives of the present study were: (a) to evaluate the aroma evolution of raw lamb packaged in multi-layer coating film and stored at 4 ± 1 °C, with respect to storage time and (b) to investigate whether specific aldehyde ratios could serve as markers of lamb meat freshness and degree of oxidation. Volatile compounds were determined using headspace solid phase microextraction coupled to gas chromatography/mass spectrometry. Results showed that the most dominant volatiles were 2,2,4,6,6-pentamethyl-heptane, hexanal, 1-octen-3-ol, 1-hexanol, carbon disulfide and p-cymene. Volatile compound content was increased during storage time. However, statistically significant differences were recorded only for hexanal, heptanal, and nonanal (p < 0.05). Additionally, the evolution of aldehydes during storage recorded a positive Pearson’s correlation (r) (p < 0.05), whereas hexanal to nonanal, heptanal to nonanal, octanal to nonanal ratios, along with the sum of aldehydes to nonanal ratio, were positively correlated (r = 0.83–1.00) with the degree of oxidation (mg malonic dialdehyde per kg of lamb meat). A perfect Pearson’s correlation (r = 1) was obtained for the ratio hexanal to nonanal. Therefore, this ratio is proposed as an indicator of lamb meat freshness and overall quality. PMID:29547528

  8. Volatility of organic aerosol and its components in the Megacity of Paris

    NASA Astrophysics Data System (ADS)

    Paciga, A.; Karnezi, E.; Kostenidou, E.; Hildebrandt, L.; Psichoudaki, M.; Engelhart, G. J.; Lee, B.-H.; Crippa, M.; Prévôt, A. S. H.; Baltensperger, U.; Pandis, S. N.

    2015-08-01

    Using a mass transfer model and the volatility basis set, we estimate the volatility distribution for the organic aerosol (OA) components during summer and winter in Paris, France as part of the collaborative project MEGAPOLI. The concentrations of the OA components as a function of temperature were measured combining data from a thermodenuder and an aerosol mass spectrometer (AMS) with Positive Matrix Factorization (PMF) analysis. The hydrocarbon-like organic aerosol (HOA) had similar volatility distributions for the summer and winter campaigns with half of the material in the saturation concentration bin of 10 μg m-3 and another 35-40 % consisting of low and extremely low volatility organic compounds (LVOCs and ELVOCs, respectively). The winter cooking OA (COA) was more than an order of magnitude less volatile than the summer COA. The low volatility oxygenated OA (LV-OOA) factor detected in the summer had the lowest volatility of all the derived factors and consisted almost exclusively of ELVOCs. The volatility for the semi-volatile oxygenated OA (SV-OOA) was significantly higher than that of the LV-OOA, containing both semi-volatile organic components (SVOCs) and LVOCs. The oxygenated OA (OOA) factor in winter consisted of SVOCs (45 %), LVOCs (25 %) and ELVOCs (30 %). The volatility of marine OA (MOA) was higher than that of the other factors containing around 60 % SVOCs. The biomass burning OA (BBOA) factor contained components with a wide range of volatilities with significant contributions from both SVOCs (50 %) and LVOCs (30 %). Finally, combining the O : C ratio and volatility distributions of the various factors, we incorporated our results into the two-dimensional volatility basis set (2D-VBS). Our results show that the factors cover a broad spectrum of volatilities with no direct link between the average volatility and average O : C of the OA components. Agreement between our findings and previous publications is encouraging for our understanding of the evolution of atmospheric OA.

  9. Field-based Evaluation of a Novel SPME-GC-MS Method for Investigation of Below-ground Interaction between Brassica Roots and Larvae of Cabbage Root Fly, Delia radicum L.

    PubMed

    Deasy, William; Shepherd, Tom; Alexander, Colin J; Birch, A Nicholas E; Evans, K Andrew

    2016-11-01

    Collection of volatiles from plant roots poses technical challenges due to difficulties accessing the soil environment without damaging the roots. To validate a new non-invasive method for passive sampling of root volatiles in situ, from plants grown under field conditions, using solid phase micro-extraction (SPME). SPME fibres were inserted into perforated polytetrafluoroethene (PTFE) tubes positioned in the soil next to broccoli plants for collection of root volatiles pre- and post-infestation with Delia radicum larvae. After sample analysis by gas chromatography-mass spectrometry (GC-MS), principal component analysis (PCA) was applied to determine differences in the profiles of volatiles between samples. GC-MS analysis revealed that this method can detect temporal changes in root volatiles emitted before and after Delia radicum damage. PCA showed that samples collected pre- and post-infestation were compositionally different due to the presence of root volatiles induced by D. radicum feeding. Sulphur containing compounds, in particular, accounted for the differences observed. Root volatiles emission patterns post-infestation are thought to follow the feeding and developmental progress of larvae. This study shows that volatiles released by broccoli roots can be collected in situ using SPME fibres within perforated PTFE tubes under field conditions. Plants damaged by Delia radicum larvae could be distinguished from plants sampled pre-infestation and soil controls on the basis of larval feeding-induced sulphur-containing volatiles. These results show that this new method is a powerful tool for non-invasive sampling of root volatiles below-ground. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Asarone from Acori Tatarinowii Rhizoma Potentiates the Nerve Growth Factor-Induced Neuronal Differentiation in Cultured PC12 Cells: A Signaling Mediated by Protein Kinase A

    PubMed Central

    Lam, Kelly Y. C.; Chen, Jianping; Lam, Candy T. W.; Wu, Qiyun; Yao, Ping; Dong, Tina T. X.; Lin, Huangquan; Tsim, Karl W. K.

    2016-01-01

    Acori Tatarinowii Rhizoma (ATR), the rhizome of Acorus tatarinowii Schott, is being used clinically to treat neurological disorders. The volatile oil of ATR is being considered as an active ingredient. Here, α-asarone and β-asarone, accounting about 95% of ATR oil, were evaluated for its function in stimulating neurogenesis. In cultured PC12 cells, application of ATR volatile oil, α-asarone or β-asarone, stimulated the expression of neurofilaments, a bio-marker for neurite outgrowth, in a concentration-dependent manner. The co-treatment of ATR volatile oil, α-asarone or β-asarone, with low concentration of nerve growth factor (NGF) potentiated the NGF-induced neuronal differentiation in cultured PC12 cells. In addition, application of protein kinase A inhibitors, H89 and KT5720, in cultures blocked the ATR-induced neurofilament expression, as well as the phosphorylation of cAMP-responsive element binding protein (CREB). In the potentiation of NGF-induced signaling in cultured PC12 cells, α-asarone and β-asarone showed synergistic effects. These results proposed the neurite-promoting asarone, or ATR volatile oil, could be useful in finding potential drugs for treating various neurodegenerative diseases, in which neurotrophin deficiency is normally involved. PMID:27685847

  11. Volatile anesthetic post-treatment induces protection via inhibition of glycogen synthase kinase 3β in human neuron-like cells.

    PubMed

    Lin, D; Li, G; Zuo, Z

    2011-04-14

    Application of the volatile anesthetic isoflurane during the early phase of reperfusion reduces ischemic heart and brain injury (anesthetic post-conditioning). We hypothesize that inhibition of glycogen synthase kinase 3β (GSK3β), a protein whose activation can lead to cell death, participates in anesthetic post-conditioning-induced neuroprotection. SH-SY5Y cells, a human neuroblastoma cell line, were induced by retinoic acid to differentiate into terminal neuron-like cells. The cells were then subjected to a 1-h oxygen-glucose deprivation (OGD), a condition to simulate ischemia in vitro, and a 20-h simulated reperfusion. Isoflurane, sevoflurane or desflurane, three commonly used volatile anesthetics, were applied for 1 h during the early phase of simulated reperfusion. Cell injury was quantified by lactate dehydrogenase (LDH) release. Phospho-GSK3β at Ser9 and total GSK3β were quantified at 1 or 3 h after the OGD. OGD increased LDH release, suggesting that OGD induced cell injury. Post-treatment with isoflurane, sevoflurane or desflurane reduced this cell injury. This protection was apparent when 2% isoflurane was applied within 1 h after the onset of reperfusion. Isoflurane post-treatment also significantly increased the phosphorylation of GSK3β at Ser9 at 1 h after the OGD. GSK3β inhibitors reduced OGD and simulated reperfusion-induced LDH release. The combination of GSK3β inhibitors and isoflurane post-conditioning did not cause a greater protection than isoflurane post-conditioning alone. These results suggest that volatile anesthetic post-conditioning reduces OGD and simulated reperfusion-induced cell injury. Since phospho-GSK3β at Ser9 decreases GSK3β activity, our results suggest that volatile anesthetic post-conditioning in human neuron-like cells may be mediated by GSK3β inhibition. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Plant host finding by parasitic plants: a new perspective on plant to plant communication.

    PubMed

    Mescher, Mark C; Runyon, Justin B; De Moraes, Consuelo M

    2006-11-01

    Plants release airborne chemicals that can convey ecologically relevant information to other organisms. These plant volatiles are known to mediate a large array of, often complex, interactions between plants and insects. It has been suggested that plant volatiles may have similar importance in mediating interactions among plant species, but there are few well-documented examples of plant-to-plant communication via volatiles, and the ecological significance of such interactions has been much debated. To date, nearly all studies of volatile-mediated interactions among plant species have focused on the reception of herbivore-induced volatiles by neighboring plants. We recently documented volatile effects in another system, demonstrating that the parasitic plant Cuscuta pentagona uses volatile cues to locate its hosts. This finding may broaden the discussion regarding plant-to-plant communication, and suggests that new classes of volatile-meditated interactions among plant species await discovery.

  13. Boreal forest fire emissions in fresh Canadian smoke plumes: C1-C10 volatile organic compounds (VOCs), CO2, CO, NO2, NO, HCN and CH3CN

    Treesearch

    I. J. Simpson; S. K. Akagi; B. Barletta; N. J. Blake; Y. Choi; G. S. Diskin; A. Fried; H. E. Fuelberg; S. Meinardi; F. S. Rowland; S. A. Vay; A. J. Weinheimer; P. O. Wennberg; P. Wiebring; A. Wisthaler; M. Yang; R. J. Yokelson; D. R. Blake

    2011-01-01

    Boreal regions comprise about 17% of the global land area, and they both affect and are influenced by climate change. To better understand boreal forest fire emissions and plume evolution, 947 whole air samples were collected aboard the NASA DC-8 research aircraft in summer 2008 as part of the ARCTAS-B field mission, and analyzed for 79 non-methane volatile organic...

  14. MAVEN at Mars Artist Concept

    NASA Image and Video Library

    2011-11-18

    This artist concept depicts NASA Mars Atmosphere and Volatile EvolutioN MAVEN spacecraft near Mars. MAVEN is in development for launch in 2013 and will be the first mission devoted to understanding the Martian upper atmosphere.

  15. The evolution of volcanism, tectonics, and volatiles on Mars - An overview of recent progress

    NASA Technical Reports Server (NTRS)

    Zimbelman, James R.; Solomon, Sean C.; Sharpton, Virgil L.

    1991-01-01

    Significant results of the 'Mars: Evolution of Volcanism, Tectonics, and Volatiles' (MEVTV) project are presented. The data for the project are based on geological mapping from the Viking images, petrologic and chemical analyses of SNC meteorites, and both mapping and temporal grouping of major fault systems. The origin of the planet's crustal dichotomy is examined in detail, the kinematics and formation of wrinkle ridges are discussed, and some new theories are set forth. Because the SNC meteorites vary petrologically and isotopically, the sources of the parental Martian magma are heterogeneous. Transcurrent faulting coupled with the extensional strains that form Valles Marineris suggest early horizontal movement of lithospheric blocks. A theory which connects the formation of the crustal dichotomy to the Tharsis region associates the horizontal motions with plate tectonics that generated a new lithosphere.

  16. Gall volatiles defend aphids against a browsing mammal

    PubMed Central

    2013-01-01

    Background Plants have evolved an astonishing array of survival strategies. To defend against insects, for example, damaged plants emit volatile organic compounds that attract the herbivore’s natural enemies. So far, plant volatile responses have been studied extensively in conjunction with leaf chewing and sap sucking insects, yet little is known about the relationship between plant volatiles and gall-inducers, the most sophisticated herbivores. Here we describe a new role for volatiles as gall-insects were found to benefit from this plant defence. Results Chemical analyses of galls triggered by the gregarious aphid Slavum wertheimae on wild pistachio trees showed that these structures contained and emitted considerably higher quantities of plant terpenes than neighbouring leaves and fruits. Behavioural assays using goats as a generalist herbivore confirmed that the accumulated terpenes acted as olfactory signals and feeding deterrents, thus enabling the gall-inducers to escape from inadvertent predation by mammals. Conclusions Increased emission of plant volatiles in response to insect activity is commonly looked upon as a “cry for help” by the plant to attract the insect’s natural enemies. In contrast, we show that such volatiles can serve as a first line of insect defences that extends the ‘extended phenotype’ represented by galls, beyond physical boundaries. Our data support the Enemy hypothesis insofar that high levels of gall secondary metabolites confer protection against natural enemies. PMID:24020365

  17. Estimation of the year-on-year volatility and the unpredictability of the United States energy system

    NASA Astrophysics Data System (ADS)

    Sherwin, Evan D.; Henrion, Max; Azevedo, Inês M. L.

    2018-04-01

    Long-term projections of energy consumption, supply and prices heavily influence decisions regarding long-lived energy infrastructure. Predicting the evolution of these quantities over multiple years to decades is a difficult task. Here, we estimate year-on-year volatility and unpredictability over multi-decade time frames for many quantities in the US energy system using historical projections. We determine the distribution over time of the most extreme projection errors (unpredictability) from 1985 to 2014, and the largest year-over-year changes (volatility) in the quantities themselves from 1949 to 2014. Our results show that both volatility and unpredictability have increased in the past decade, compared to the three and two decades before it. These findings may be useful for energy decision-makers to consider as they invest in and regulate long-lived energy infrastructure in a deeply uncertain world.

  18. Theoretical studies of volatile processes in the outer solar system

    NASA Technical Reports Server (NTRS)

    Lunine, Jonathan I.

    1991-01-01

    Four studies of volatile processes in the outer solar system are discussed. Researchers suggest that the convective and conductive regions of Triton's atmosphere join at the tropopause near 10 km. A model of volatile transport on Triton's surface was constructed that predicts that Triton's surface north of 15 degrees north latitude is experiencing deposition of nitrogen frosts, as are the bright portions of the south polar cap near the equator. Also discussed are numerical models of the evolution of Titan's surface and atmosphere. Results of a study of the rheology of ammonia-water liquids were applied to the icy satellites of the outer solar system. Finally, the researchers examined the frictional heating, sublimation, and re-condensation of grains free-falling into the solar nebula from a surrounding interstellar cloud. The sublimation model includes the effect of various volatile species and accounts for the poor radiating properties of small grains using Mie theory.

  19. Effect of immobilized Lactobacillus casei on the evolution of flavor compounds in probiotic dry-fermented sausages during ripening.

    PubMed

    Sidira, Marianthi; Kandylis, Panagiotis; Kanellaki, Maria; Kourkoutas, Yiannis

    2015-02-01

    The effect of immobilized Lactobacillus casei ATCC 393 on wheat grains on the generation of volatile compounds in probiotic dry-fermented sausages during ripening was investigated. For comparison reasons, sausages containing free L. casei cells or no starter culture were also included in the study. Samples were collected after 1, 28 and 45days of ripening and subjected to SPME GC/MS analysis. Both the probiotic culture and the ripening process affected significantly the concentration of all volatile compounds. The significantly highest content of total volatiles, esters, alcohols and miscellaneous compounds was observed in sausages containing the highest amount of immobilized culture (300g/kg of stuffing mixture) ripened for 45days. Principal component analysis of the semi-quantitative data revealed that primarily the concentration of the immobilized probiotic culture affected the volatile composition. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Wine phenolic compounds influence the production of volatile phenols by wine-related lactic acid bacteria.

    PubMed

    Silva, I; Campos, F M; Hogg, T; Couto, J A

    2011-08-01

    To evaluate the effect of wine phenolic compounds on the production of volatile phenols (4-vinylphenol [4VP] and 4-ethylphenol [4EP]) from the metabolism of p-coumaric acid by lactic acid bacteria (LAB). Lactobacillus plantarum, Lactobacillus collinoides and Pediococcus pentosaceus were grown in MRS medium supplemented with p-coumaric acid, in the presence of different phenolic compounds: nonflavonoids (hydroxycinnamic and benzoic acids) and flavonoids (flavonols and flavanols). The inducibility of the enzymes involved in the p-coumaric acid metabolism was studied in resting cells. The hydroxycinnamic acids tested stimulated the capacity of LAB to synthesize volatile phenols. Growth in the presence of hydroxycinnamic acids, especially caffeic acid, induced the production of 4VP by resting cells. The hydroxybenzoic acids did not significantly affect the behaviour of the studied strains. Some of the flavonoids showed an effect on the production of volatile phenols, although strongly dependent on the bacterial species. Relatively high concentrations (1 g l(-1) ) of tannins inhibited the synthesis of 4VP by Lact. plantarum. Hydroxycinnamic acids were the main compounds stimulating the production of volatile phenols by LAB. The results suggest that caffeic and ferulic acids induce the synthesis of the cinnamate decarboxylase involved in the metabolism of p-coumaric acid. On the other hand, tannins exert an inhibitory effect. This study highlights the capacity of LAB to produce volatile phenols and that this activity is markedly influenced by the phenolic composition of the medium. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  1. Three odorant binding proteins may regulate the behavioural response of Chrysopa pallens to plant volatiles and the aphid alarm pheromone (E)-β-farnesene.

    PubMed

    Li, Z-Q; Zhang, S; Cai, X-M; Luo, J-Y; Dong, S-L; Cui, J-J; Chen, Z-M

    2017-06-01

    Artificial Chrysopa pallens release is a well-known method for suppressing aphids, but it is difficult to establish lacewing populations in the field. Understanding the functions of C. pallens odorant-binding proteins (CpalOBPs) and behavioural responses of C. pallens to plant volatiles and aphid alarm pheromone (E)-ß-farnesene has important implications for population establishment after lacewing release. Based on our previous study, five antennae-enriched CpalOBPs were selected. Sequence alignment and phylogenetic analysis revealed that these five CpalOBPs were Classic OBPs and separated into different clades. Of them, CpalOBP10 clustered in the same clade with aphid OBP7, which mediates the perception of green leaf volatiles and (E)-ß-farnesene. Ligand-binding assays showed 31 compounds, including plant-derived compounds, pest-induced volatiles and (E)-ß-farnesene, had high binding affinities for at least one of these five CpalOBPs. Of the 31 compounds, the pest-induced volatiles (Z)-3-hexenyl hexanoate and 2-hexyl-1-decanol, used in host location by the black bean aphid, elicited significant attractive behavioural responses from C. pallens. Conversely, (E)-ß-farnesene elicited strongly repellent behavioural responses. It is conceivable that C. pallens utilizes plant-derived compounds, pest-induced volatiles and (E)-ß-farnesene as foraging cues. Our studies provide new insights into the interrelationships amongst C. pallens, its prey and the host plants. Compounds that elicited significant behavioural responses from C. pallens were also identified. © 2017 The Royal Entomological Society.

  2. Activation of Pathogenesis-related Genes by the Rhizobacterium, Bacillus sp. JS, Which Induces Systemic Resistance in Tobacco Plants.

    PubMed

    Kim, Ji-Seong; Lee, Jeongeun; Lee, Chan-Hui; Woo, Su Young; Kang, Hoduck; Seo, Sang-Gyu; Kim, Sun-Hyung

    2015-06-01

    Plant growth promoting rhizobacteria (PGPR) are known to confer disease resistance to plants. Bacillus sp. JS demonstrated antifungal activities against five fungal pathogens in in vitro assays. To verify whether the volatiles of Bacillus sp. JS confer disease resistance, tobacco leaves pre-treated with the volatiles were damaged by the fungal pathogen, Rhizoctonia solani and oomycete Phytophthora nicotianae. Pre-treated tobacco leaves had smaller lesion than the control plant leaves. In pathogenesis-related (PR) gene expression analysis, volatiles of Bacillus sp. JS caused the up-regulation of PR-2 encoding β-1,3-glucanase and acidic PR-3 encoding chitinase. Expression of acidic PR-4 encoding chitinase and acidic PR-9 encoding peroxidase increased gradually after exposure of the volatiles to Bacillus sp. JS. Basic PR-14 encoding lipid transfer protein was also increased. However, PR-1 genes, as markers of salicylic acid (SA) induced resistance, were not expressed. These results suggested that the volatiles of Bacillus sp. JS confer disease resistance against fungal and oomycete pathogens through PR genes expression.

  3. Light-induced alterations of pineapple (Ananas comosus [L.] Merr.) juice volatiles during accelerated ageing and mass spectrometric studies into their precursors.

    PubMed

    Steingass, Christof Björn; Glock, Mona Pia; Lieb, Veronika Maria; Carle, Reinhold

    2017-10-01

    Alterations of volatiles during accelerated light-induced ageing of pineapple juice were assessed by HS-SPME-GC-MS in a non-targeted profiling analysis over a 16-week period. Multivariate statistics permitted to reveal substantial chemical markers generally describing the effect of light storage. Volatiles generated comprised phenylpropenes, carbonyls, 2-methylthiophene, toluene, and furfural, while concentrations of methyl and ethyl esters, terpenes, and furanones decreased. In addition, the qualitative composition of phenolic compounds and glycoside-bound volatiles in selected samples was characterized by HPLC-DAD-ESI-MS n as well as HR-ESI-MS. The fresh juice contained unique pineapple metabolites such as S-p-coumaryl, S-coniferyl, S-sinapylglutathione, and structurally related derivatives. Among others, the presence of p-coumaroyl, feruloyl, and caffeoylisocitrate as well as three 4-hydroxy-2,5-dimethyl-3(2H)-furanone glycosides in pineapples could be substantiated by the HR-ESI-MS experiment. Mass spectrometric assignments of selected metabolites are presented, and putative linkages between volatiles and their precursors are established. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Controlled production of Camembert-type cheeses. Part II. Changes in the concentration of the more volatile compounds.

    PubMed

    Leclercq-Perlat, Marie-Noëlle; Latrille, Eric; Corrieu, Georges; Spinnler, Henry-Eric

    2004-08-01

    Flavour generation in cheese is a major aspect of ripening. In order to enhance aromatic qualities it is necessary to better understand the chemical and microbiological changes. Experimental Camembert-type cheeses were prepared in duplicate from pasteurized milk inoculated with Kluyveromyces lactis, Geotrichum candidum, Penicillium camemberti and Brevibacterium linens under aseptic conditions. Two replicates performed under controlled conditions of temperature (12 degrees C), relative humidity (95 +/- 2%), and atmosphere showed similar ripening characteristics. The evolutions of metabolite concentrations were studied during ripening. The volatile components were extracted by dynamic headspace extraction, separated and quantified by gas chromatography and identified by mass spectrometry. For each cheese the volatile concentrations varied with the part considered (rind or core). Except for ethyl acetate and 2-pentanone, the volatile quantities observed were higher than their perception thresholds. The flavour component production was best correlated with the starter strains. During the first 10 days the ester formations (ethyl, butyl and isoamyl acetates) were associated with the concentrations of K. lactis and G. candidum. The rind quantity of esters was lower than that observed in core probably due to (1) a diffusion from the core to the surface and (2) evaporation from the surface to the chamber atmosphere. G. candidum and Brev. linens association produced 3 methyl butanol and methyl 3-butanal from leucine, respectively. DMDS came from the methionine catabolism due to Brev. linens. Styrene production was attributed to Pen. camemberti. 2-Pentanone evolution was associated with Pen. camemberti spores and G. candidum. 2-Heptanone changes were not directly related to flora activities while 2-octanone production was essentially due to G. candidum. This study also demonstrates the determining role of volatile component diffusion.

  5. Implications of Low Volatility SOA and Gas-Phase Fragmentation Reactions on SOA Loadings and their Spatial and Temporal Evolution in the Atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shrivastava, ManishKumar B.; Zelenyuk, Alla; Imre, Dan

    2013-04-27

    Recent laboratory and field measurements by a number of groups show that secondary organic aerosol (SOA) evaporates orders of magnitude slower than traditional models assume. In addition, chemical transport models using volatility basis set (VBS) SOA schemes neglect gas-phase fragmentation reactions, which are known to be extremely important. In this work, we present modeling studies to investigate the implications of non-evaporating SOA and gas-phase fragmentation reactions. Using the 3-D chemical transport model, WRF-Chem, we show that previous parameterizations, which neglect fragmentation during multi-generational gas-phase chemistry of semi-volatile/inter-mediate volatility organics ("aging SIVOC"), significantly over-predict SOA as compared to aircraft measurements downwindmore » of Mexico City. In sharp contrast, the revised models, which include gas-phase fragmentation, show much better agreement with measurements downwind of Mexico City. We also demonstrate complex differences in spatial SOA distributions when we transform SOA to non-volatile secondary organic aerosol (NVSOA) to account for experimental observations. Using a simple box model, we show that for same amount of SOA precursors, earlier models that do not employ multi-generation gas-phase chemistry of precursors ("non-aging SIVOC"), produce orders of magnitude lower SOA than "aging SIVOC" parameterizations both with and without fragmentation. In addition, traditional absorptive partitioning models predict almost complete SOA evaporation at farther downwind locations for both "non-aging SIVOC" and "aging SIVOC" with fragmentation. In contrast, in our revised approach, SOA transformed to NVSOA implies significantly higher background concentrations as it remains in particle phase even under highly dilute conditions. This work has significant implications on understanding the role of multi-generational chemistry and NVSOA formation on SOA evolution in the atmosphere.« less

  6. Long-term evolution of biodegradation and volatilization rates in a crude oil-contaminated aquifer

    USGS Publications Warehouse

    Chaplin, B.P.; Delin, G.N.; Baker, R.J.; Lahvis, M.A.

    2002-01-01

    Volatilization and subsequent biodegradation near the water Table make up a coupled natural attenuation pathway that results in significant mass loss of hydrocarbons. Rates of biodegradation and volatilization were documented twice 12 years apart at a crude-oil spill site near Bemidji, Minnesota. Biodegradation rates were determined by calibrating a gas transport model to O2, CO2, and CH4 gas-concentration data in the unsaturated zone. Reaction stoichiometry was assumed in converting O2 and CO2 gas-flux estimates to rates of aerobic biodegradation and CH4 gas-flux estimates to rates of methanogenesis. Model results indicate that the coupled pathway has resulted in significant hydrocarbon mass loss at the site, and it was estimated that approximately 10.52 kg/day were lost in 1985 and 1.99 kg/day in 1997. In 1985 3% of total volatile hydrocarbons diffusing from the floating oil were biodegraded in the lower 1 m of the unsaturated zone and increased to 52% by 1997. Rates of hydrocarbon biodegradation above the center of the floating oil were relatively stable from 1985 to 1997, as the primary metabolic pathway shifted from aerobic to methanogenic biodegradation. Model results indicate that in 1997 biodegradation under methanogenenic conditions represented approximately one-half of total hydrocarbon biodegradation in the lower 1 m of the unsaturated zone. Further downgradient, where substrate concentrations have greatly increased, total biodegradation rates increased by greater than an order of magnitude from 0.04 to 0.43 g/m2-day. It appears that volatilization is the primary mechanism for attenuation in early stages of plume evolution, while biodegradation dominates in later stages.

  7. Semiochemicals from herbivory induced cotton plants enhance the foraging behavior of the cotton boll weevil, Anthonomus grandis.

    PubMed

    Magalhães, D M; Borges, M; Laumann, R A; Sujii, E R; Mayon, P; Caulfield, J C; Midega, C A O; Khan, Z R; Pickett, J A; Birkett, M A; Blassioli-Moraes, M C

    2012-12-01

    The boll weevil, Anthonomus grandis, has been monitored through deployment of traps baited with aggregation pheromone components. However, field studies have shown that the number of insects caught in these traps is significantly reduced during cotton squaring, suggesting that volatiles produced by plants at this phenological stage may be involved in attraction. Here, we evaluated the chemical profile of volatile organic compounds (VOCs) emitted by undamaged or damaged cotton plants at different phenological stages, under different infestation conditions, and determined the attractiveness of these VOCs to adults of A. grandis. In addition, we investigated whether or not VOCs released by cotton plants enhanced the attractiveness of the aggregation pheromone emitted by male boll weevils. Behavioral responses of A. grandis to VOCs from conspecific-damaged, heterospecific-damaged (Spodoptera frugiperda and Euschistus heros) and undamaged cotton plants, at different phenological stages, were assessed in Y-tube olfactometers. The results showed that volatiles emitted from reproductive cotton plants damaged by conspecifics were attractive to adults boll weevils, whereas volatiles induced by heterospecific herbivores were not as attractive. Additionally, addition of boll weevil-induced volatiles from reproductive cotton plants to aggregation pheromone gave increased attraction, relative to the pheromone alone. The VOC profiles of undamaged and mechanically damaged cotton plants, in both phenological stages, were not different. Chemical analysis showed that cotton plants produced qualitatively similar volatile profiles regardless of damage type, but the quantities produced differed according to the plant's phenological stage and the herbivore species. Notably, vegetative cotton plants released higher amounts of VOCs compared to reproductive plants. At both stages, the highest rate of VOC release was observed in A. grandis-damaged plants. Results show that A. grandis uses conspecific herbivore-induced volatiles in host location, and that homoterpene compounds, such as (E)-4,8-dimethylnona-1,3,7-triene and (E,E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene and the monoterpene (E)-ocimene, may be involved in preference for host plants at the reproductive stage.

  8. Cranberry Resistance to Dodder Parasitism: Induced Chemical Defenses and Behavior of a Parasitic Plant.

    PubMed

    Tjiurutue, Muvari Connie; Sandler, Hilary A; Kersch-Becker, Monica F; Theis, Nina; Adler, Lynn A

    2016-02-01

    Parasitic plants are common in many ecosystems, where they can structure community interactions and cause major economic damage. For example, parasitic dodder (Cuscuta spp.) can cause up to 80-100 % yield loss in heavily infested cranberry (Vaccinium macrocarpon) patches. Despite their ecological and economic importance, remarkably little is known about how parasitic plants affect, or are affected by, host chemistry. To examine chemically-mediated interactions between dodder and its cranberry host, we conducted a greenhouse experiment asking whether: (1) dodder performance varies with cranberry cultivar; (2) cultivars differ in levels of phytohormones, volatiles, or phenolics, and whether such variation correlates with dodder parasitism; (3) dodder parasitism induced changes in phytohormones, volatiles, or phenolics, and whether the level of inducible response varied among cultivars. We used five cranberry cultivars to assess host attractiveness to dodder and dodder performance. Dodder performance did not differ across cultivars, but there were marginally significant differences in host attractiveness to dodder, with fewer dodder attaching to Early Black than to any other cultivar. Dodder parasitism induced higher levels of salicylic acid (SA) across cultivars. Cultivars differed in overall levels of flavonols and volatile profiles, but not phenolic acids or proanthocyanidins, and dodder attachment induced changes in several flavonols and volatiles. While cultivars differed slightly in resistance to dodder attachment, we did not find evidence of chemical defenses that mediate these interactions. However, induction of several defenses indicates that parasitism alters traits that could influence subsequent interactions with other species, thus shaping community dynamics.

  9. Evolutions of volatile sulfur compounds of Cabernet Sauvignon wines during aging in different oak barrels.

    PubMed

    Ye, Dong-Qing; Zheng, Xiao-Tian; Xu, Xiao-Qing; Wang, Yun-He; Duan, Chang-Qing; Liu, Yan-Lin

    2016-07-01

    The evolution of volatile sulfur compounds (VSCs) in Cabernet Sauvignon wines from seven regions of China during maturation in oak barrels was investigated. The barrels were made of different wood grains (fine and medium) and toasting levels (light and medium). Twelve VSCs were quantified by GC/FPD, with dimethyl sulfide (DMS) and methionol exceeding their sensory thresholds. Most VSCs tended to decline during the aging, while DMS was found to increase. After one year aging, the levels of DMS, 2-methyltetrahy-drothiophen-3-one and sulfur-containing esters were lower in the wines aged in oak barrels than in stainless steel tanks. The wood grain and toasting level of oak barrels significantly influenced the concentration of S-methyl thioacetate and 2-methyltetrahy-drothiophen-3-one. This study reported the evolution of VSCs in wines during oak barrel aging for the first time and evaluated the influence of barrel types, which would provide wine-makers with references in making proposals about wine aging. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Use of activated carbon inside modified atmosphere packages to maintain tomato fruit quality during cold storage.

    PubMed

    Bailén, Gloria; Guillén, Fabián; Castillo, Salvador; Serrano, María; Valero, Daniel; Martínez-Romero, Domingo

    2006-03-22

    Ethylene triggers the ripening process of tomato affecting the storage durability and shelf life (loss of quality) and inducing fruit decay. In this paper, an active packaging has been developed on the basis of the combination of modified atmosphere packaging (MAP) and the addition of granular-activated carbon (GAC) alone or impregnated with palladium as a catalyst (GAC-Pd). A steady-state atmosphere was 4 and 10 kPa for O2 and CO2 in control packages, while it was 8 and 7 kPa for O2 and CO2 in treated ones. The addition of GAC-Pd led to the lower ethylene accumulation inside packages, while the higher was obtained in controls. The parameters related to ripening showed that treated tomatoes exhibited a reduction in color evolution, softening, and weight loss, especially for GAC-Pd treatment. Moreover, these treatments were also effective in delaying tomato decay. After sensorial panel, tomatoes treated with GAC-Pd received the higher scores in terms of sweetness, firmness, juiciness, color, odor, and flavor. Results from the GC-MS analysis of the MAP headspace showed that 23 volatile compounds were identified in control packages, with these volatiles being significantly reduced in MAP-treated packages, which was correlated to the odor intensity detected by panelists after bag opening.

  11. Biogenic volatile organic compound emissions from vegetation fires.

    PubMed

    Ciccioli, Paolo; Centritto, Mauro; Loreto, Francesco

    2014-08-01

    The aim of this paper was to provide an overview of the current state of the art on research into the emission of biogenic volatile organic compounds (BVOCs) from vegetation fires. Significant amounts of VOCs are emitted from vegetation fires, including several reactive compounds, the majority belonging to the isoprenoid family, which rapidly disappear in the plume to yield pollutants such as secondary organic aerosol and ozone. This makes determination of fire-induced BVOC emission difficult, particularly in areas where the ratio between VOCs and anthropogenic NOx is favourable to the production of ozone, such as Mediterranean areas and highly anthropic temperate (and fire-prone) regions of the Earth. Fire emissions affecting relatively pristine areas, such as the Amazon and the African savannah, are representative of emissions of undisturbed plant communities. We also examined expected BVOC emissions at different stages of fire development and combustion, from drying to flaming, and from heatwaves coming into contact with unburned vegetation at the edge of fires. We conclude that forest fires may dramatically change emission factors and the profile of emitted BVOCs, thereby influencing the chemistry and physics of the atmosphere, the physiology of plants and the evolution of plant communities within the ecosystem. © 2014 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.

  12. Plant age, communication, and resistance to herbivores: young sagebrush plants are better emitters and receivers.

    PubMed

    Shiojiri, Kaori; Karban, Richard

    2006-08-01

    Plants progress through a series of distinct stages during development, although the role of plant ontogeny in their defenses against herbivores is poorly understood. Recent work indicates that many plants activate systemic induced resistance after herbivore attack, although the relationship between resistance and ontogeny has not been a focus of this work. In addition, for sagebrush and a few other species, individuals near neighbors that experience simulated herbivory become more resistant to subsequent attack. Volatile, airborne cues are required for both systemic induced resistance among branches and for communication among individuals. We conducted experiments in stands of sagebrush of mixed ages to determine effects of plant age on volatile signaling between branches and individuals. Young and old control plants did not differ in levels of chewing damage that they experienced. Systemic induced resistance among branches was only observed for young plants. Young plants showed strong evidence of systemic resistance only if airflow was permitted among branches; plants with only vascular connections showed no systemic resistance. We also found evidence for volatile communication between individuals. For airborne communication, young plants were more effective emitters of cues as well as more responsive receivers of volatile cues.

  13. More lessons from linalool: insights gained from a ubiquitous floral volatile.

    PubMed

    Raguso, Robert A

    2016-08-01

    Linalool (3,7-dimethyl-1,6-octadien-3-ol) is a common floral volatile with two distinct enantiomers and related metabolites involved in the full spectrum of plant-pollinator interactions. Recent studies reveal a complex interplay between pollinator attraction and plant defense mediated by linalool and its derivatives, from the smallest (Arabidopsis, Mitella) to the largest (Datura) flowers studied. Accordingly, fig wasps, fungus gnats and moths of all sizes show remarkable electrophysiological, neural and behavioral sensitivity to different enantiomers and quantitative ratios of linalool in floral bouquets. The diverse functions of linalool, ranging from toxin to long distance pollinator attractant are discussed in the broader context of floral volatile ecology and evolution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. MATRIX-VBS (v1.0): Implementing an Evolving Organic Aerosol Volatility in an Aerosol Microphysics Model

    NASA Technical Reports Server (NTRS)

    Gao, Chloe Y.; Tsigaridis, Kostas; Bauer, Susanne E.

    2017-01-01

    The gas-particle partitioning and chemical aging of semi-volatile organic aerosol are presented in a newly developed box model scheme, where its effect on the growth, composition, and mixing state of particles is examined. The volatility-basis set (VBS) framework is implemented into the aerosol microphysical scheme MATRIX (Multiconfiguration Aerosol TRacker of mIXing state), which resolves mass and number aerosol concentrations and in multiple mixing-state classes. The new scheme, MATRIX-VBS, has the potential to significantly advance the representation of organic aerosols in Earth system models by improving upon the conventional representation as non-volatile particulate organic matter, often also with an assumed fixed size distribution. We present results from idealized cases representing Beijing, Mexico City, a Finnish forest, and a southeastern US forest, and investigate the evolution of mass concentrations and volatility distributions for organic species across the gas and particle phases, as well as assessing their mixing state among aerosol populations. Emitted semi-volatile primary organic aerosols evaporate almost completely in the intermediate-volatility range, while they remain in the particle phase in the low-volatility range. Their volatility distribution at any point in time depends on the applied emission factors, oxidation by OH radicals, and temperature. We also compare against parallel simulations with the original scheme, which represented only the particulate and non-volatile component of the organic aerosol, examining how differently the condensed-phase organic matter is distributed across the mixing states in the model. The results demonstrate the importance of representing organic aerosol as a semi-volatile aerosol, and explicitly calculating the partitioning of organic species between the gas and particulate phases.

  15. Validation of the RAGE Hydrocode for Impacts into Volatile-Rich Targets

    NASA Astrophysics Data System (ADS)

    Plesko, C. S.; Asphaug, E.; Coker, R. F.; Wohletz, K. H.; Korycansky, D. G.; Gisler, G. R.

    2007-12-01

    In preparation for a detailed study of large-scale impacts into the Martian surface, we have validated the RAGE hydrocode (Gittings et al., in press, CSD) against a suite of experiments and statistical models. We present comparisons of hydrocode models to centimeter-scale gas gun impacts (Nakazawa et al. 2002), an underground nuclear test (Perret, 1971), and crater scaling laws (Holsapple 1993, O'Keefe and Ahrens 1993). We have also conducted model convergence and uncertainty analyses which will be presented. Results to date are encouraging for our current model goals, and indicate areas where the hydrocode may be extended in the future. This validation work is focused on questions related to the specific problem of large impacts into volatile-rich targets. The overall goal of this effort is to be able to realistically model large-scale Noachian, and possibly post- Noachian, impacts on Mars not so much to model the crater morphology as to understand the evolution of target volatiles in the post-impact regime, to explore how large craters might set the stage for post-impact hydro- geologic evolution both locally (in the crater subsurface) and globally, due to the redistribution of volatiles from the surface and subsurface into the atmosphere. This work is performed under the auspices of IGPP and the DOE at LANL under contracts W-7405-ENG-36 and DE-AC52-06NA25396. Effort by DK and EA is sponsored by NASA's Mars Fundamental Research Program.

  16. Deciphering the History of Martian Volatiles: A Multi-Component Space Exploration Program

    NASA Astrophysics Data System (ADS)

    Chassefiere, E.

    2000-07-01

    To characterize Mars climate evolution requires to trace back the history of volatile species, including water. Indeed, atmospheric gases control, through UV-visible absorption and IR radiative transfer, the thermal structure of the atmosphere, the surface temperature, and ultimately the global hydrological system, which is a major component of the present Earth climate system. The composition and mass of the atmosphere is controlled by physical/chemical processes acting as sources (outgassing) or sinks (atmospheric escape, surface weathering, physical trapping in the subsurface). The history of volatiles is influenced by inner planet processes, like core convection which may give rise to a planetary-scale magnetic field able to withhold the atmosphere from the solar wind, inhibiting escape, or mantle convection, through outgassing and recycling of gas by geochemical cycles. Conversely, atmosphere may possibly retroact on the inner planet dynamical regime, for example if large amounts of liquid water are maintained at the surface by greenhouse effect, which could favour specific tectonism styles (like plate tectonism). The history of volatiles may therefore be related, not only to climate, but also to the thermal history of the inner planet, through a complicated chain of causes and effects. It is an essential link for reconstructing the global evolution of the Mars system. Focusing on climate, it appears that, provided the present climate system is understood and modelled, it must be possible to extrapolate to the past, provided the way the atmosphere evolved is known, as well as solar emission fluxes controlling thermal structure and escape.

  17. Proceedings of the MEVTV Workshop on The Evolution of Magma Bodies on Mars

    NASA Technical Reports Server (NTRS)

    Mouginis-Mark, P. (Editor); Holloway, J. (Editor)

    1990-01-01

    The workshop focused on many of the diverse approaches related to the evolution of magma bodies on Mars that have been pursued during the course of the Mars Evolution of Volcanism, Tectonism, and Volatiles (MEVTV) Program. Approximately 35 scientists from the Mars volcanology, petrology, geochemistry, and modeling communities attended. Segments of the meeting concentrated of laboratory analyses and investigations of SNC meteorites, the interpretation of Viking Orbiter and Lander datasets, and the interpretation of computer codes that model volcanic and tectonic processes on Mars. Abstracts of these reports are presented.

  18. Comparison of cultivars of ornamental crop Gerbera jamesonii on production of spider mite-induced volatiles, and their attractiveness to the predator Phytoseiulus persimilis.

    PubMed

    Krips, O E; Willems, P E; Gols, R; Posthumus, M A; Gort, G; Dicke, M

    2001-07-01

    We investigated whether volatiles produced by spider mite-damaged plants of four gerbera cultivars differ in attractiveness to Phytoseiulus persimilis, a specialist predator of spider mites, and how the mite-induced odor blends differ in chemical composition. The gerbera cultivars differed in resistance, as expressed in terms of spider mite intrinsic rate of population increase (rm). In order of increasing resistance these were Sirtaki, Rondena, Fame, and Bianca. To correct for differences in damage inflicted on the cultivars, we developed a method to compare the attractiveness of the blends, based on the assumption that a larger amount of spider mite damage leads to higher attraction of P persimilis. Spider mite-induced volatiles of cultivars Rondena and Bianca were preferred over those of cultivar Sirtaki. Spider mite-induced volatiles of cultivars Sirtaki and Fame did not differ in attractiveness to P. persimilis. Sirtaki plants had a lower relative production of terpenes than the other three cultivars. This was attributed to a low production of cis-alpha-bergamotene, trans-alpha-bergamotene, trans-beta-bergamotene, and (E)-beta-farnesene. The emission of (E)-beta-ocimene and linalool was lower in Sirtaki and Fame leaves than in Bianca and Rondena. The importance of these chemical differences in the differential attraction of predatory mites is discussed.

  19. Photochemical Aging of Organic Aerosols: A Laboratory Study

    NASA Astrophysics Data System (ADS)

    Papanastasiou, Dimitrios K.; Kostenidou, Evangelia; Gkatzelis, Georgios I.; Psichoudaki, Magdalini; Louvaris, Evangelos; Pandis, Spyros N.

    2014-05-01

    Organic aerosols (OA) are either emitted directly (primary OA) or formed (secondary OA) in the atmosphere and consist of an extremely complex mixture of thousands of organic compounds. Although the scientific community has put significant effort, in the past few decades, to understand organic aerosol (OA) formation, evolution and fate in the atmosphere, traditional models often fail to reproduce the ambient OA levels. Secondary organic aerosol (SOA) formed, in traditional laboratory chamber experiments, from the gas phase oxidation of known precursors, such as α-pinene, is semi-volatile and with an O:C ratio of around 0.4. In contrast, OA found in the atmosphere is significantly less volatile, while the O:C ratio often ranges from 0.5 to 1. In conclusion, there is a significant gap of knowledge in our understanding of OA formation and photochemical transformation in the atmosphere. There is increased evidence that homogeneous gas phase aging by OH radicals might be able to explain, at least in part, the significantly higher OA mass loadings observed and also the oxidation state and volatility of OA in the atmosphere. In this study, laboratory chamber experiments were performed to study the role of the continued oxidation of first generation volatile and semi-volatile species by OH radicals in the evolution of the SOA characteristics (mass concentration, volatility, and oxidation state). Ambient air mixtures or freshly formed SOA from α-pinene ozonolysis were used as the source of organic aerosols and semi-volatile species. The initial mixture of organic aerosols and gas phase species (volatile and semi-volatile) was then exposed to atmospheric concentrations of OH radicals to study the aging of aerosols. Experiments were performed with various OH radical sources (H2O2 or HONO) and under various NOx conditions. A suite of instruments was employed to characterize both the gas and the aerosol phase. A Scanning Mobility Particle Sizer (SMPS) and a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) were used to measure the organic aerosol mass production and oxidation degree (O:C ratio) following OH aging. A thermodenuder system was used to measure the volatility distribution change as organic aerosol aged upon continuous oxidation. Organic gas phase species were characterized with a Proton Transfer Reaction - Mass Spectrometer (PTR-MS) while NOx and O3 were measured with the use of corresponding analyzers. Results from this study show that organic mass production occurs upon exposure to OH radicals indicating that continuous OH aging of semi-volatile is probably responsible for at least some of the gap between observed and modeled OA levels in the atmosphere. Additionally, this chemical aging process leads to a decrease in volatility and an increase in O:C ratio while the level of change in both properties depends on OH exposure. The atmospheric implications of this study are discussed.

  20. Extreme-volatility dynamics in crude oil markets

    NASA Astrophysics Data System (ADS)

    Jiang, Xiong-Fei; Zheng, Bo; Qiu, Tian; Ren, Fei

    2017-02-01

    Based on concepts and methods from statistical physics, we investigate extreme-volatility dynamics in the crude oil markets, using the high-frequency data from 2006 to 2010 and the daily data from 1986 to 2016. The dynamic relaxation of extreme volatilities is described by a power law, whose exponents usually depend on the magnitude of extreme volatilities. In particular, the relaxation before and after extreme volatilities is time-reversal symmetric at the high-frequency time scale, but time-reversal asymmetric at the daily time scale. This time-reversal asymmetry is mainly induced by exogenous events. However, the dynamic relaxation after exogenous events exhibits the same characteristics as that after endogenous events. An interacting herding model both with and without exogenous driving forces could qualitatively describe the extreme-volatility dynamics.

  1. Insect-Induced Conifer Defense. White Pine Weevil and Methyl Jasmonate Induce Traumatic Resinosis, de Novo Formed Volatile Emissions, and Accumulation of Terpenoid Synthase and Putative Octadecanoid Pathway Transcripts in Sitka Spruce1[w

    PubMed Central

    Miller, Barbara; Madilao, Lufiani L.; Ralph, Steven; Bohlmann, Jörg

    2005-01-01

    Stem-boring insects and methyl jasmonate (MeJA) are thought to induce similar complex chemical and anatomical defenses in conifers. To compare insect- and MeJA-induced terpenoid responses, we analyzed traumatic oleoresin mixtures, emissions of terpenoid volatiles, and expression of terpenoid synthase (TPS) genes in Sitka spruce (Picea sitchensis) following attack by white pine weevils (Pissodes strobi) or application of MeJA. Both insects and MeJA caused traumatic resin accumulation in stems, with more accumulation induced by the weevils. Weevil-induced terpenoid emission profiles were also more complex than emissions induced by MeJA. Weevil feeding caused a rapid release of a blend of monoterpene olefins, presumably by passive evaporation of resin compounds from stem feeding sites. These compounds were not found in MeJA-induced emissions. Both weevils and MeJA caused delayed, diurnal emissions of (−)-linalool, indicating induced de novo biosynthesis of this compound. TPS transcripts strongly increased in stems upon insect attack or MeJA treatment. Time courses and intensity of induced TPS transcripts were different for monoterpene synthases, sesquiterpene synthases, and diterpene synthases. Increased levels of weevil- and MeJA-induced TPS transcripts accompanied major changes in terpenoid accumulation in stems. Induced TPS expression profiles in needles were less complex than those in stems and matched induced de novo emissions of (−)-linalool. Overall, weevils and MeJA induced similar, but not identical, terpenoid defense responses in Sitka spruce. Findings of insect- and MeJA-induced accumulation of allene oxide synthase-like and allene oxide cyclase-like transcripts are discussed in the context of traumatic resinosis and induced volatile emissions in this gymnosperm system. PMID:15618433

  2. Plasma membrane potential depolarization and cytosolic calcium flux are early events involved in tomato (Solanum lycopersicon) plant-to-plant communication.

    PubMed

    Zebelo, Simon A; Matsui, Kenji; Ozawa, Rika; Maffei, Massimo E

    2012-11-01

    Tomato plants respond to herbivory by emitting volatile organic compounds (VOCs), which are released into the surrounding atmosphere. We analyzed the tomato herbivore-induced VOCs and tested the ability of tomato receiver plants to detect tomato donor volatiles by analyzing early responses, including plasma membrane potential (V(m)) variations and cytosolic calcium ([Ca²⁺](cyt)) fluxes. Receiver tomato plants responded within seconds to herbivore-induced VOCs with a strong V(m) depolarization, which was only partly recovered by fluxing receiver plants with clean air. Among emitted volatiles, we identified by GC-MS some green leaf volatiles (GLVs) such as (E)-2-hexenal, (Z)-3-hexenal, (Z)-3-hexenyl acetate, the monoterpene α-pinene, and the sesquiterpene β-caryophyllene. GLVs were found to exert the stronger V(m) depolarization, when compared to α-pinene and β-caryophyllene. Furthermore, V(m) depolarization was found to increase with increasing GLVs concentration. GLVs were also found to induce a strong [Ca²⁺](cyt) increase, particularly when (Z)-3-hexenyl acetate was tested both in solution and with a gas. On the other hand, α-pinene and β-caryophyllene, which also induced a significant V(m) depolarization with respect to controls, did not exert any significant effect on [Ca²⁺](cyt) homeostasis. Our results show for the first time that plant perception of volatile cues (especially GLVs) from the surrounding environment is mediated by early events, occurring within seconds and involving the alteration of the plasma membrane potential and the [Ca²⁺](cyt) flux. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  3. Monitoring of volatile and non-volatile urban air genotoxins using bacteria, human cells and plants.

    PubMed

    Ceretti, E; Zani, C; Zerbini, I; Viola, G; Moretti, M; Villarini, M; Dominici, L; Monarca, S; Feretti, D

    2015-02-01

    Urban air contains many mutagenic pollutants. This research aimed to investigate the presence of mutagens in the air by short-term mutagenicity tests using bacteria, human cells and plants. Inflorescences of Tradescantia were exposed to air in situ for 6h, once a month from January to May, to monitor volatile compounds and micronuclei frequency was computed. On the same days PM10 was collected continuously for 24h. Half of each filter was extracted with organic solvents and studied by means of the Ames test, using Salmonella typhimurium TA98 and TA100 strains, and the comet assay on human leukocytes. A quarter of each filter was extracted with distilled water in which Tradescantia was exposed. PM10 concentration was particularly high in the winter season (> 50 μg/m(3)). In situ exposure of inflorescences to urban air induced a significant increase in micronuclei frequency at all the sites considered, but only in January (p < 0.01). Aqueous extracts collected in January and February induced genotoxic effects in Tradescantia exposed in the laboratory (p < 0.01). Ames test showed that organic extracts of winter urban air were able to induce genetic mutations in S. typhimurium TA98 strain (± S9), but not in TA100 strain, with a revertants/plate number nine times higher than the negative control. Comet assay showed that winter extracts were more toxic and genotoxic than spring extracts. All the mutagenicity tests performed confirmed that urban air in North Italy in winter contains both volatile and non-volatile genotoxic substances able to induce genetic damage in bacteria, human cells and plants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. The Herbivore-Induced Plant Volatile Methyl Salicylate Negatively Affects Attraction of the Parasitoid Diadegma semiclausum

    PubMed Central

    Mumm, Roland; Poelman, Erik H.; Yang, Yue; Pichersky, Eran; Dicke, Marcel

    2010-01-01

    The indirect defense mechanisms of plants comprise the production of herbivore-induced plant volatiles that can attract natural enemies of plant attackers. One of the often emitted compounds after herbivory is methyl salicylate (MeSA). Here, we studied the importance of this caterpillar-induced compound in the attraction of the parasitoid wasp Diadegma semiclausum by using a mutant Arabidopsis line. Pieris rapae infested AtBSMT1-KO mutant Arabidopsis plants, compromised in the biosynthesis of MeSA, were more attractive to parasitoids than infested wild-type plants. This suggests that the presence of MeSA has negative effects on parasitoid host-finding behavior when exposed to wild-type production of herbivore-induced Arabidopsis volatiles. Furthermore, in line with this, we recorded a positive correlation between MeSA dose and repellence of D. semiclausum when supplementing the headspace of caterpillar-infested AtBSMT1-KO plants with synthetic MeSA. Electronic supplementary material The online version of this article (doi:10.1007/s10886-010-9787-1) contains supplementary material, which is available to authorized users. PMID:20407809

  5. The Accessory Olfactory System Facilitates the Recovery of the Attraction to Familiar Volatile Female Odors in Male Mice.

    PubMed

    Muroi, Yoshikage; Nishimura, Masakazu; Ishii, Toshiaki

    2017-10-31

    Odors in female mice induce sexual arousal in male mice. Repeated exposure to female odors attenuates male attraction, which recovers when the odors are removed. The neuronal mechanisms for the recovery of male attraction have not been clarified. In this study, we examined how olfactory systems are involved in the recovery of male attraction to female odors following habituation in mice. Presentation with volatile female odors for 5 min induced habituation in males. To evaluate male attraction to familiar volatile female odors, we measured the duration for investigating volatile female odors from the same female mouse, which was presented twice for 5 min with 1-, 3-, or 5-min interval. Intranasal irrigation with ZnSO4 solution almost completely suppressed investigating behavior, indicating that the main olfactory system is indispensable for inducing the attraction to volatile female odors. In contrast, removal of the vomeronasal organ, bilateral lesions of the accessory olfactory bulb (AOB), or pharmacological blockage of neurotransmission in the AOB did not affect the investigation time at the first odor presentation. However, each one of the treatments decreased the investigation time in the second presentation, compared to that in the first presentation, at longer intervals than control treatment, indicating that the disturbance of neurotransmission in the accessory olfactory system delayed the recovery of the attraction attenuated by the first presentation. These results suggest that the accessory olfactory system facilitates the recovery of the attraction to familiar volatile female odors in male mice. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. On the attempts to measure water (and other volatiles) directly at the surface of a comet

    PubMed Central

    Sheridan, S.; Morgan, G. H.; Barber, S. J.; Morse, A. D.

    2017-01-01

    The Ptolemy instrument on the Philae lander (of the Rosetta space mission) was able to make measurements of the major volatiles, water, carbon monoxide and carbon dioxide, directly at the surface of comet 67P/Churyumov–Gerasimenko. We give some background to the mission and highlight those instruments that have already given insights into the notion of water in comets, and which will continue to do so as more results are either acquired or more fully interpreted. On the basis of our results, we show how comets may in fact be heterogeneous over their surface, and how surface measurements can be used in a quest to comprehend the daily cycles of processes that affect the evolution of comets. This article is part of the themed issue ‘The origin, history and role of water in the evolution of the inner Solar System’. PMID:28416724

  7. On the attempts to measure water (and other volatiles) directly at the surface of a comet

    NASA Astrophysics Data System (ADS)

    Wright, I. P.; Sheridan, S.; Morgan, G. H.; Barber, S. J.; Morse, A. D.

    2017-04-01

    The Ptolemy instrument on the Philae lander (of the Rosetta space mission) was able to make measurements of the major volatiles, water, carbon monoxide and carbon dioxide, directly at the surface of comet 67P/Churyumov-Gerasimenko. We give some background to the mission and highlight those instruments that have already given insights into the notion of water in comets, and which will continue to do so as more results are either acquired or more fully interpreted. On the basis of our results, we show how comets may in fact be heterogeneous over their surface, and how surface measurements can be used in a quest to comprehend the daily cycles of processes that affect the evolution of comets. This article is part of the themed issue 'The origin, history and role of water in the evolution of the inner Solar System'.

  8. Atmospheric Modeling Using Accelerometer Data During Mars Atmosphere and Volatile Evolution (MAVEN) Flight Operations

    NASA Technical Reports Server (NTRS)

    Tolson, Robert H.; Lugo, Rafael A.; Baird, Darren T.; Cianciolo, Alicia D.; Bougher, Stephen W.; Zurek, Richard M.

    2017-01-01

    The Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft is a NASA orbiter designed to explore the Mars upper atmosphere, typically from 140 to 160 km altitude. In addition to the nominal science mission, MAVEN has performed several Deep Dip campaigns in which the orbit's closest point of approach, also called periapsis, was lowered to an altitude range of 115 to 135 km. MAVEN accelerometer data were used during mission operations to estimate atmospheric parameters such as density, scale height, along-track gradients, and wave structures. Density and scale height estimates were compared against those obtained from the Mars Global Reference Atmospheric Model and used to aid the MAVEN navigation team in planning maneuvers to raise and lower periapsis during Deep Dip operations. This paper describes the processes used to reconstruct atmosphere parameters from accelerometers data and presents the results of their comparison to model and navigation-derived values.

  9. Virus Infection of Plants Alters Pollinator Preference: A Payback for Susceptible Hosts?

    PubMed Central

    Davey, Matthew P.; Bruce, Toby J. A.; Caulfield, John C.; Furzer, Oliver J.; Reed, Alison; Robinson, Sophie I.; Miller, Elizabeth; Davis, Christopher N.; Pickett, John A.; Whitney, Heather M.; Glover, Beverley J.; Carr, John P.

    2016-01-01

    Plant volatiles play important roles in attraction of certain pollinators and in host location by herbivorous insects. Virus infection induces changes in plant volatile emission profiles, and this can make plants more attractive to insect herbivores, such as aphids, that act as viral vectors. However, it is unknown if virus-induced alterations in volatile production affect plant-pollinator interactions. We found that volatiles emitted by cucumber mosaic virus (CMV)-infected tomato (Solanum lycopersicum) and Arabidopsis thaliana plants altered the foraging behaviour of bumblebees (Bombus terrestris). Virus-induced quantitative and qualitative changes in blends of volatile organic compounds emitted by tomato plants were identified by gas chromatography-coupled mass spectrometry. Experiments with a CMV mutant unable to express the 2b RNA silencing suppressor protein and with Arabidopsis silencing mutants implicate microRNAs in regulating emission of pollinator-perceivable volatiles. In tomato, CMV infection made plants emit volatiles attractive to bumblebees. Bumblebees pollinate tomato by ‘buzzing’ (sonicating) the flowers, which releases pollen and enhances self-fertilization and seed production as well as pollen export. Without buzz-pollination, CMV infection decreased seed yield, but when flowers of mock-inoculated and CMV-infected plants were buzz-pollinated, the increased seed yield for CMV-infected plants was similar to that for mock-inoculated plants. Increased pollinator preference can potentially increase plant reproductive success in two ways: i) as female parents, by increasing the probability that ovules are fertilized; ii) as male parents, by increasing pollen export. Mathematical modeling suggested that over a wide range of conditions in the wild, these increases to the number of offspring of infected susceptible plants resulting from increased pollinator preference could outweigh underlying strong selection pressures favoring pathogen resistance, allowing genes for disease susceptibility to persist in plant populations. We speculate that enhanced pollinator service for infected individuals in wild plant populations might provide mutual benefits to the virus and its susceptible hosts. PMID:27513727

  10. Diaphorina citri Induces Huanglongbing-Infected Citrus Plant Volatiles to Repel and Reduce the Performance of Propylaea japonica.

    PubMed

    Lin, Yongwen; Lin, Sheng; Akutse, Komivi S; Hussain, Mubasher; Wang, Liande

    2016-01-01

    Transmission of plant pathogens through insect vectors is a complex biological process involving interactions between the host plants, insects, and pathogens. Simultaneous impact of the insect damage and pathogenic bacteria in infected host plants induce volatiles that modify not only the behavior of its insect vector but also of their natural enemies, such as parasitoid wasps. Therefore, it is essential to understand how insects such as the predator ladybird beetle responds to volatiles emitted from a host plant and how the disease transmission alters the interactions between predators, vector, pathogens, and plants. In this study, we investigated the response of Propylaea japonica to volatiles from citrus plants damaged by Diaphorina citri and Candidatus Liberibacter asiaticus through olfactometer bioassays. Synthetic chemical blends were also used to determine the active compounds in the plant volatile. The results showed that volatiles emitted by healthy plants attracted more P. japonica than other treatments, due to the presence of high quantities of D-limonene and beta-ocimene, and the lack of methyl salicylate. When using synthetic chemicals in the olfactory tests, we found that D-limonene attracted P. japonica while methyl salicylate repelled the predator. However, beta-ocimene attracted the insects at lower concentrations but repelled them at higher concentrations. These results indicate that P. japonica could not efficiently search for its host by using volatile cues emitted from psyllids- and Las bacteria-infected citrus plants.

  11. Two Herbivore-Induced Cytochrome P450 Enzymes CYP79D6 and CYP79D7 Catalyze the Formation of Volatile Aldoximes Involved in Poplar Defense[C][W

    PubMed Central

    Irmisch, Sandra; Clavijo McCormick, Andrea; Boeckler, G. Andreas; Schmidt, Axel; Reichelt, Michael; Schneider, Bernd; Block, Katja; Schnitzler, Jörg-Peter; Gershenzon, Jonathan; Unsicker, Sybille B.; Köllner, Tobias G.

    2013-01-01

    Aldoximes are known as floral and vegetative plant volatiles but also as biosynthetic intermediates for other plant defense compounds. While the cytochrome P450 monooxygenases (CYP) from the CYP79 family forming aldoximes as biosynthetic intermediates have been intensively studied, little is known about the enzymology of volatile aldoxime formation. We characterized two P450 enzymes, CYP79D6v3 and CYP79D7v2, which are involved in herbivore-induced aldoxime formation in western balsam poplar (Populus trichocarpa). Heterologous expression in Saccharomyces cerevisiae revealed that both enzymes produce a mixture of different aldoximes. Knockdown lines of CYP79D6/7 in gray poplar (Populus × canescens) exhibited a decreased emission of aldoximes, nitriles, and alcohols, emphasizing that the CYP79s catalyze the first step in the formation of a complex volatile blend. Aldoxime emission was found to be restricted to herbivore-damaged leaves and is closely correlated with CYP79D6 and CYP79D7 gene expression. The semi-volatile phenylacetaldoxime decreased survival and weight gain of gypsy moth (Lymantria dispar) caterpillars, suggesting that aldoximes may be involved in direct defense. The wide distribution of volatile aldoximes throughout the plant kingdom and the presence of CYP79 genes in all sequenced genomes of angiosperms suggest that volatile formation mediated by CYP79s is a general phenomenon in the plant kingdom. PMID:24220631

  12. Herbivore-induced maize leaf volatiles affect attraction and feeding behavior of Spodoptera littoralis caterpillars

    PubMed Central

    von Mérey, Georg E.; Veyrat, Nathalie; D'Alessandro, Marco; Turlings, Ted C. J.

    2013-01-01

    Plants under herbivore attack emit volatile organic compounds (VOCs) that can serve as foraging cues for natural enemies. Adult females of Lepidoptera, when foraging for host plants to deposit eggs, are commonly repelled by herbivore-induced VOCs, probably to avoid competition and natural enemies. Their larval stages, on the other hand, have been shown to be attracted to inducible VOCs. We speculate that this contradicting behavior of lepidopteran larvae is due to a need to quickly find a new suitable host plant if they have fallen to the ground. However, once they are on a plant they might avoid the sites with fresh damage to limit competition and risk of cannibalism by conspecifics, as well as exposure to natural enemies. To test this we studied the effect of herbivore-induced VOCs on the attraction of larvae of the moth Spodoptera littoralis and on their feeding behavior. The experiments further considered the importance of previous feeding experience on the responses of the larvae. It was confirmed that herbivore-induced VOCs emitted by maize plants are attractive to the larvae, but exposure to the volatiles decreased the growth rate of caterpillars at early developmental stages. Larvae that had fed on maize previously were more attracted by VOCs of induced maize than larvae that had fed on artificial diet. At relatively high concentrations synthetic green leaf volatiles, indicative of fresh damage, also negatively affected the growth rate of caterpillars, but not at low concentrations. In all cases, feeding by the later stages of the larvae was not affected by the VOCs. The results are discussed in the context of larval foraging behavior under natural conditions, where there may be a trade-off between using available host plant signals and avoiding competitors and natural enemies. PMID:23825475

  13. Dynamics of belowground diffusion and degradation of plant volatiles

    USDA-ARS?s Scientific Manuscript database

    It is well established that above ground herbivory induced plant volatiles (HIPVs) attract natural enemies of the herbivores. We now know that also roots can release HIPVs and that these compounds attract beneficial organisms such as entomopathogenic nematodes (EPNs). Unlike their aboveground counte...

  14. Interfacial charge-mediated non-volatile magnetoelectric coupling in Co 0.3Fe 0.7/Ba 0.6Sr 0.4TiO 3/Nb:SrTiO 3 multiferroic heterostructures

    DOE PAGES

    Zhou, Ziyao; Howe, Brandon M.; Liu, Ming; ...

    2015-01-13

    The central challenge in realizing non-volatile, E-field manipulation of magnetism lies in finding an energy efficient means to switch between the distinct magnetic states in a stable and reversible manner. In this work, we demonstrate using electrical polarization-induced charge screening to change the ground state of magnetic ordering in order to non-volatilely tune magnetic properties in ultra-thin Co 0.3Fe 0.7/Ba 0.6Sr 0.4TiO 3/Nb:SrTiO 3 (001) multiferroic heterostructures. A robust, voltage-induced, non-volatile manipulation of out-of-plane magnetic anisotropy up to 40 Oe is demonstrated and confirmed by ferromagnetic resonance measurements. This discovery provides a framework for realizing charge-sensitive order parameter tuning inmore » ultra-thin multiferroic heterostructures, demonstrating great potential for delivering compact, lightweight, reconfigurable, and energy-efficient electronic devices.« less

  15. Hypnotic hypersensitivity to volatile anesthetics and dexmedetomidine in dopamine β-hydroxylase knockout mice.

    PubMed

    Hu, Frances Y; Hanna, George M; Han, Wei; Mardini, Feras; Thomas, Steven A; Wyner, Abraham J; Kelz, Max B

    2012-11-01

    Multiple lines of evidence suggest that the adrenergic system can modulate sensitivity to anesthetic-induced immobility and anesthetic-induced hypnosis as well. However, several considerations prevent the conclusion that the endogenous adrenergic ligands norepinephrine and epinephrine alter anesthetic sensitivity. Using dopamine β-hydroxylase knockout (Dbh) mice genetically engineered to lack the adrenergic ligands and their siblings with normal adrenergic levels, we test the contribution of the adrenergic ligands upon volatile anesthetic induction and emergence. Moreover, we investigate the effects of intravenous dexmedetomidine in adrenergic-deficient mice and their siblings using both righting reflex and processed electroencephalographic measures of anesthetic hypnosis. We demonstrate that the loss of norepinephrine and epinephrine and not other neuromodulators co-packaged in adrenergic neurons is sufficient to cause hypersensitivity to induction of volatile anesthesia. However, the most profound effect of adrenergic deficiency is retarding emergence from anesthesia, which takes two to three times as long in Dbh mice for sevoflurane, isoflurane, and halothane. Having shown that Dbh mice are hypersensitive to volatile anesthetics, we further demonstrate that their hypnotic hypersensitivity persists at multiple doses of dexmedetomidine. Dbh mice exhibit up to 67% shorter latencies to loss of righting reflex and up to 545% longer durations of dexmedetomidine-induced general anesthesia. Central rescue of adrenergic signaling restores control-like dexmedetomidine sensitivity. A novel continuous electroencephalographic analysis illustrates that the longer duration of dexmedetomidine-induced hypnosis is not due to a motor confound, but occurs because of impaired anesthetic emergence. Adrenergic signaling is essential for normal emergence from general anesthesia. Dexmedetomidine-induced general anesthesia does not depend on inhibition of adrenergic neurotransmission.

  16. In Planta Recapitulation of Isoprene Synthase Evolution from Ocimene Synthases.

    PubMed

    Li, Mingai; Xu, Jia; Algarra Alarcon, Alberto; Carlin, Silvia; Barbaro, Enrico; Cappellin, Luca; Velikova, Violeta; Vrhovsek, Urska; Loreto, Francesco; Varotto, Claudio

    2017-10-01

    Isoprene is the most abundant biogenic volatile hydrocarbon compound naturally emitted by plants and plays a major role in atmospheric chemistry. It has been proposed that isoprene synthases (IspS) may readily evolve from other terpene synthases, but this hypothesis has not been experimentally investigated. We isolated and functionally validated in Arabidopsis the first isoprene synthase gene, AdoIspS, from a monocotyledonous species (Arundo donax L., Poaceae). Phylogenetic reconstruction indicates that AdoIspS and dicots isoprene synthases most likely originated by parallel evolution from TPS-b monoterpene synthases. Site-directed mutagenesis demonstrated invivo the functional and evolutionary relevance of the residues considered diagnostic for IspS function. One of these positions was identified by saturating mutagenesis as a major determinant of substrate specificity in AdoIspS able to cause invivo a dramatic change in total volatile emission from hemi- to monoterpenes and supporting evolution of isoprene synthases from ocimene synthases. The mechanism responsible for IspS neofunctionalization by active site size modulation by a single amino acid mutation demonstrated in this study might be general, as the very same amino acidic position is implicated in the parallel evolution of different short-chain terpene synthases from both angiosperms and gymnosperms. Based on these results, we present a model reconciling in a unified conceptual framework the apparently contrasting patterns previously observed for isoprene synthase evolution in plants. These results indicate that parallel evolution may be driven by relatively simple biophysical constraints, and illustrate the intimate molecular evolutionary links between the structural and functional bases of traits with global relevance. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  17. In Planta Recapitulation of Isoprene Synthase Evolution from Ocimene Synthases

    PubMed Central

    Li, Mingai; Xu, Jia; Algarra Alarcon, Alberto; Carlin, Silvia; Barbaro, Enrico; Cappellin, Luca; Velikova, Violeta; Vrhovsek, Urska; Loreto, Francesco; Varotto, Claudio

    2017-01-01

    Abstract Isoprene is the most abundant biogenic volatile hydrocarbon compound naturally emitted by plants and plays a major role in atmospheric chemistry. It has been proposed that isoprene synthases (IspS) may readily evolve from other terpene synthases, but this hypothesis has not been experimentally investigated. We isolated and functionally validated in Arabidopsis the first isoprene synthase gene, AdoIspS, from a monocotyledonous species (Arundo donax L., Poaceae). Phylogenetic reconstruction indicates that AdoIspS and dicots isoprene synthases most likely originated by parallel evolution from TPS-b monoterpene synthases. Site-directed mutagenesis demonstrated invivo the functional and evolutionary relevance of the residues considered diagnostic for IspS function. One of these positions was identified by saturating mutagenesis as a major determinant of substrate specificity in AdoIspS able to cause invivo a dramatic change in total volatile emission from hemi- to monoterpenes and supporting evolution of isoprene synthases from ocimene synthases. The mechanism responsible for IspS neofunctionalization by active site size modulation by a single amino acid mutation demonstrated in this study might be general, as the very same amino acidic position is implicated in the parallel evolution of different short-chain terpene synthases from both angiosperms and gymnosperms. Based on these results, we present a model reconciling in a unified conceptual framework the apparently contrasting patterns previously observed for isoprene synthase evolution in plants. These results indicate that parallel evolution may be driven by relatively simple biophysical constraints, and illustrate the intimate molecular evolutionary links between the structural and functional bases of traits with global relevance. PMID:28637270

  18. Enhanced performance of the microalga Chlorella sorokiniana remotely induced by the plant growth-promoting bacteria Azospirillum brasilense and Bacillus pumilus

    PubMed Central

    Amavizca, Edgar; Bashan, Yoav; Ryu, Choong-Min; Farag, Mohamed A.; Bebout, Brad M.; de-Bashan, Luz E.

    2017-01-01

    Remote effects (occurring without physical contact) of two plant growth-promoting bacteria (PGPB) Azospirillum brasilense Cd and Bacilus pumilus ES4 on growth of the green microalga Chlorella sorokiniana UTEX 2714 were studied. The two PGPB remotely enhanced the growth of the microalga, up to six-fold, and its cell volume by about three-fold. In addition to phenotypic changes, both bacteria remotely induced increases in the amounts of total lipids, total carbohydrates, and chlorophyll a in the cells of the microalga, indicating an alteration of the microalga’s physiology. The two bacteria produced large amounts of volatile compounds, including CO2, and the known plant growth-promoting volatile 2,3-butanediol and acetoin. Several other volatiles having biological functions in other organisms, as well as numerous volatile compounds with undefined biological roles, were detected. Together, these bacteria-derived volatiles can positively affect growth and metabolic parameters in green microalgae without physical attachment of the bacteria to the microalgae. This is a new paradigm on how PGPB promote growth of microalgae which may serve to improve performance of Chlorella spp. for biotechnological applications. PMID:28145473

  19. Predatory Mite Attraction to Herbivore-induced Plant Odors is not a Consequence of Attraction to Individual Herbivore-induced Plant Volatiles

    PubMed Central

    De Bruijn, Paulien J. A.; Sabelis, Maurice W.

    2008-01-01

    Predatory mites locate herbivorous mites, their prey, by the aid of herbivore-induced plant volatiles (HIPV). These HIPV differ with plant and/or herbivore species, and it is not well understood how predators cope with this variation. We hypothesized that predators are attracted to specific compounds in HIPV, and that they can identify these compounds in odor mixtures not previously experienced. To test this, we assessed the olfactory response of Phytoseiulus persimilis, a predatory mite that preys on the highly polyphagous herbivore Tetranychus urticae. The responses of the predatory mite to a dilution series of each of 30 structurally different compounds were tested. They mites responded to most of these compounds, but usually in an aversive way. Individual HIPV were no more attractive (or less repellent) than out-group compounds, i.e., volatiles not induced in plants fed upon by spider-mites. Only three samples were significantly attractive to the mites: octan-1-ol, not involved in indirect defense, and cis-3-hexen-1-ol and methyl salicylate, which are both induced by herbivory, but not specific for the herbivore that infests the plant. Attraction to individual compounds was low compared to the full HIPV blend from Lima bean. These results indicate that individual HIPV have no a priori meaning to the mites. Hence, there is no reason why they could profit from an ability to identify individual compounds in odor mixtures. Subsequent experiments confirmed that naive predatory mites do not prefer tomato HIPV, which included the attractive compound methyl salicylate, over the odor of an uninfested bean. However, upon associating each of these odors with food over a period of 15 min, both are preferred. The memory to this association wanes within 24 hr. We conclude that P. persimilis possesses a limited ability to identify individual spider mite-induced plant volatiles in odor mixtures. We suggest that predatory mites instead learn to respond to prey-associated mixtures of volatiles and, thus, to odor blends as a whole. PMID:18521678

  20. Translational diffusion coefficients of volatile compounds in various aqueous solutions at low and subzero temperatures.

    PubMed

    Covarrubias-Cervantes, Marco; Champion, Dominique; Debeaufort, Frédéric; Voilley, Andrée

    2005-08-24

    Translational diffusion coefficients (D(12)) of volatile compounds were measured in model media with the profile concentration method. The influence of sample temperature (from 25 to -10 degrees C) was studied on translational diffusion in sucrose or maltodextrin solutions at various concentrations. Results show that diffusivity of volatile compounds in sucrose solutions is controlled by temperature, molecule size, and the viscosity of the liquid phase as expected with the Stokes-Einstein equation; moreover, physicochemical interactions between volatile compounds and the medium are determinant for diffusion estimation. At negative temperature, the winding path induced by an ice crystal content of >70% lowered volatile compound diffusion. On the contrary, no influence on translational diffusion coefficients was observed for lower ice content.

  1. Qualitative and Quantitative Differences in Herbivore-Induced Plant Volatile Blends from Tomato Plants Infested by Either Tuta absoluta or Bemisia tabaci.

    PubMed

    Silva, Diego B; Weldegergis, Berhane T; Van Loon, Joop J A; Bueno, Vanda H P

    2017-01-01

    Plants release a variety of volatile organic compounds that play multiple roles in the interactions with other plants and animals. Natural enemies of plant-feeding insects use these volatiles as cues to find their prey or host. Here, we report differences between the volatile blends of tomato plants infested with the whitefly Bemisia tabaci or the tomato borer Tuta absoluta. We compared the volatile emission of: (1) clean tomato plants; (2) tomato plants infested with T. absoluta larvae; and (3) tomato plants infested with B. tabaci adults, nymphs, and eggs. A total of 80 volatiles were recorded of which 10 occurred consistently only in the headspace of T. absoluta-infested plants. Many of the compounds detected in the headspace of the two herbivory treatments were emitted at different rates. Plants damaged by T. absoluta emitted at least 10 times higher levels of many compounds compared to plants damaged by B. tabaci and intact plants. The multivariate separation of T. absoluta-infested plants from those infested with B. tabaci was due largely to the chorismate-derived compounds as well as volatile metabolites of C 18 -fatty acids and branched chain amino acids that had higher emission rates from T. absoluta-infested plants, whereas the cyclic sesquiterpenes α- and β-copaene, valencene, and aristolochene were emitted at significantly higher levels from B. tabaci-infested plants. Our findings imply that feeding by T. absoluta and B. tabaci induced emission of volatile blends that differ quantitatively and qualitatively, providing a chemical basis for the recently documented behavioral discrimination by two generalist predatory mirid species, natural enemies of T. absoluta and B. tabaci employed in biological control.

  2. Ozone-induced foliar damage and release of stress volatiles is highly dependent on stomatal openness and priming by low-level ozone exposure in Phaseolus vulgaris.

    PubMed

    Li, Shuai; Harley, Peter C; Niinemets, Ülo

    2017-09-01

    Acute ozone exposure triggers major emissions of volatile organic compounds (VOCs), but quantitatively, it is unclear how different ozone doses alter the start and the total amount of these emissions, and the induction rate of different stress volatiles. It is also unclear whether priming (i.e. pre-exposure to lower O 3 concentrations) can modify the magnitude and kinetics of volatile emissions. We investigated photosynthetic characteristics and VOC emissions in Phaseolus vulgaris following acute ozone exposure (600 nmol mol -1 for 30 min) under illumination and in darkness and after priming with 200 nmol mol -1 O 3 for 30 min. Methanol and lipoxygenase (LOX) pathway product emissions were induced rapidly, followed by moderate emissions of methyl salicylate (MeSA). Stomatal conductance prior to acute exposure was lower in darkness and after low O 3 priming than in light and without priming. After low O 3 priming, no MeSA and lower LOX emissions were detected under acute exposure. Overall, maximum emission rates and the total amount of emitted LOX products and methanol were quantitatively correlated with total stomatal ozone uptake. These results indicate that different stress volatiles scale differently with ozone dose and highlight the key role of stomatal conductance in controlling ozone uptake, leaf injury and volatile release. © 2017 John Wiley & Sons Ltd.

  3. Ozone-induced foliar damage and release of stress volatiles is highly dependent on stomatal openness and priming by low-level ozone exposure in Phaseolus vulgaris

    PubMed Central

    Li, Shuai; Harley, Peter C.; Niinemets, Ülo

    2018-01-01

    Acute ozone exposure triggers major emissions of volatile organic compounds (VOC), but quantitatively, it is unclear how different ozone doses alter the start and the total amount of these emissions, and the induction rate of different stress volatiles. It is also unclear whether priming (i.e., pre-exposure to lower O3 concentrations) can modify the magnitude and kinetics of volatile emissions. We investigated photosynthetic characteristics and VOC emissions in Phaseolus vulgaris following acute ozone exposure (600 nmol mol-1 for 30 min) under illumination and in darkness and after priming with 200 nmol mol-1 O3 for 30 min. Methanol and lipoxygenase (LOX) pathway product emissions were induced rapidly, followed by moderate emissions of methyl salicylate (MeSA). Stomatal conductance prior to acute exposure was lower in darkness and after low O3 priming than in light and without priming. After low O3 priming, no MeSA and lower LOX emissions were detected under acute exposure. Overall, maximum emission rates and the total amount of emitted LOX products and methanol were quantitatively correlated with total stomatal ozone uptake. These results indicate that different stress volatiles scale differently with ozone dose and highlight the key role of stomatal conductance in controlling ozone uptake, leaf injury and volatile release. PMID:28623868

  4. Modeling the formation and properties of traditional and non-traditional secondary organic aerosol: problem formulation and application to aircraft exhaust

    NASA Astrophysics Data System (ADS)

    Jathar, S. H.; Miracolo, M. A.; Presto, A. A.; Donahue, N. M.; Adams, P. J.; Robinson, A. L.

    2012-10-01

    We present a methodology to model secondary organic aerosol (SOA) formation from the photo-oxidation of unspeciated low-volatility organics (semi-volatile and intermediate volatile organic compounds) emitted by combustion systems. It is formulated using the volatility basis-set approach. Unspeciated low-volatility organics are classified by volatility and then allowed to react with the hydroxyl radical. The new methodology allows for larger reductions in volatility with each oxidation step than previous volatility basis set models, which is more consistent with the addition of common functional groups and similar to those used by traditional SOA models. The methodology is illustrated using data collected during two field campaigns that characterized the atmospheric evolution of dilute gas-turbine engine emissions using a smog chamber. In those experiments, photo-oxidation formed a significant amount of SOA, much of which could not be explained based on the emissions of traditional speciated precursors; we refer to the unexplained SOA as non-traditional SOA (NT-SOA). The NT-SOA can be explained by emissions of unspeciated low-volatility organics measured using sorbents. We show that the parameterization proposed by Robinson et al. (2007) is unable to explain the timing of the NT-SOA formation in the aircraft experiments because it assumes a very modest reduction in volatility of the precursors with every oxidation reaction. In contrast the new method better reproduces the NT-SOA formation. The NT-SOA yields estimated for the unspeciated low-volatility organic emissions in aircraft exhaust are similar to literature data for large n-alkanes and other low-volatility organics. The estimated yields vary with fuel composition (Jet Propellent-8 versus Fischer-Tropsch) and engine load (ground idle versus non-ground idle). The framework developed here is suitable for modeling SOA formation from emissions from other combustion systems.

  5. Volatiles in Inter-Specific Bacterial Interactions

    PubMed Central

    Tyc, Olaf; Zweers, Hans; de Boer, Wietse; Garbeva, Paolina

    2015-01-01

    The importance of volatile organic compounds for functioning of microbes is receiving increased research attention. However, to date very little is known on how inter-specific bacterial interactions effect volatiles production as most studies have been focused on volatiles produced by monocultures of well-described bacterial genera. In this study we aimed to understand how inter-specific bacterial interactions affect the composition, production and activity of volatiles. Four phylogenetically different bacterial species namely: Chryseobacterium, Dyella, Janthinobacterium, and Tsukamurella were selected. Earlier results had shown that pairwise combinations of these bacteria induced antimicrobial activity in agar media whereas this was not the case for monocultures. In the current study, we examined if these observations were also reflected by the production of antimicrobial volatiles. Thus, the identity and antimicrobial activity of volatiles produced by the bacteria were determined in monoculture as well in pairwise combinations. Antimicrobial activity of the volatiles was assessed against fungal, oomycetal, and bacterial model organisms. Our results revealed that inter-specific bacterial interactions affected volatiles blend composition. Fungi and oomycetes showed high sensitivity to bacterial volatiles whereas the effect of volatiles on bacteria varied between no effects, growth inhibition to growth promotion depending on the volatile blend composition. In total 35 volatile compounds were detected most of which were sulfur-containing compounds. Two commonly produced sulfur-containing volatile compounds (dimethyl disulfide and dimethyl trisulfide) were tested for their effect on three target bacteria. Here, we display the importance of inter-specific interactions on bacterial volatiles production and their antimicrobial activities. PMID:26733959

  6. Lunar volatiles: a clue for understanding the evolution of the Moon and a resource to its exploration

    NASA Astrophysics Data System (ADS)

    Gerasimov, Mikhail

    Introduction: The discovery of noticeable hydrogen concentration (believed to be in the form of water) in the polar regions was among the most exciting recent events in the exploration of the Moon. Concentration of water in polar regolith was estimated at a level of 4-6 wt.% [1,2]. Such high concentration of water in polar regolith on volatiles depleted Moon is probably a result of migration of water molecules from its hot equatorial latitudes to cold traps of the northern and southern polar regions. These depositions of volatiles on one hand contain important information on the evolution of the Moon and on the other hand their utilization can be a bases for the future human exploration. The question about diversity and source of the volatiles is still open. Sources of lunar volatiles: Three main possible sources of the Lunar polar volatiles are: Degassing of the interior. Endogenous source of volatiles is provided by degassing of heated interior of planetary bodies. In this case chemical composition of released gases reflects thermodynamic equilibrium of gases over typical magmas at temperatures around 1000°C. The composition of such gas mixtures is characterized by domination of H2O, CO2, and SO2 over other H, C, and S containing components. CO/CO2 ratio here is typically far below 0.1 level. Hydrocarbons are mainly aromatic hydrocarbons, alkanes, and cycloalkanes. Sulfur containing gases are mainly SO2, H2S, and Sx. Isotopic ratios of volatile elements should be the same as for the bulk Moon. Interaction of solar wind protons with surface rocks. Energetic solar wind protons with the absence of an atmospheric shield can react with oxygen of surface rocks and produce water molecules as end product. Such a mechanism provides a source of mainly water on the Moon with solar hydrogen isotopes and Moon rocks oxygen isotopes. Degassing of impacting meteorites and comets. Volatiles of impacting meteorites and comets are released into transient atmosphere. It was shown experimentally [3] that the forming gases are qualitatively similar for various rocky materials including meteorites of different classes. Such gas mixtures have the following characteristics: the CO/CO2 ratio is ³1, hydrocarbons are presented mainly by alkenes and PAHs, sulfur containing gases are presented by SO2, CS2, H2S, and COS in decreasing sequence, production of HCN, and noticeable release of water. Isotopic composition of volatile elements reflects the projectile to target proportion of their source. Gas-analytic package (GAP) of the Lunar-Resource mission: It is very important to investigate all the inventory of polar volatiles as well as isotopic composition of volatile elements to understand the real source of lunar volatiles and to evaluate their validity as a resource for the Moon exploration. The GAP is aimed on comprehensive investigation of the inventory of volatiles in the regolith of polar regions. It consists of three instruments: 1) Thermal Analyzer; 2) Gas Chromatograph with Tunable Diode Laser Absorption Spectrometer for isotopic measurements of H, O, and C in evolved gases; and 3) Neutral Gas Mass-Spectrometer. References: [1] Mitrofanov, I. G. et al. 2010. Science 330: 483-486. [2] Colaprete, A. et al. 2010. Science 330: 463-468. [3] Gerasimov, M.V. 2002. Geological Society of America Special Paper 356: 705-716. Acknowledgements: This work was supported by P-22 Program of the RAS.

  7. Airborne ultrafine particles in a naturally ventilated metro station: Dominant sources and mixing state determined by particle size distribution and volatility measurements.

    PubMed

    Mendes, Luís; Gini, Maria I; Biskos, George; Colbeck, Ian; Eleftheriadis, Konstantinos

    2018-08-01

    Ultrafine particle number concentrations and size distributions were measured on the platform of a metro station in Athens, Greece, and compared with those recorded at an urban background station. The volatility of the sampled particles was measured in parallel, providing further insights on the mixing state and composition of the sampled particles. Particle concentration exhibited a mean value of 1.2 × 10 4 # cm -3 and showed a weak correlation with train passage frequency, but exhibited a strong correlation with urban background particle concentrations. The size distribution appears to be strongly influenced by outdoor conditions, such as the morning traffic rush hour and new particle formation events observed at noon. The aerosol in the metro was externally mixed throughout the day, with particle populations being identified (1) as fully refractory particles being more dominant during the morning traffic rush hours, (2) as core-shell structure particles having a non-volatile core coated with volatile material, and (3) fully volatile particles. The evolution of particle volatility and size throughout the day provide additional support that most nanoparticles in the metro station originate from outdoor urban air. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. High temperature polymer degradation: Rapid IR flow-through method for volatile quantification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giron, Nicholas H.; Celina, Mathew C.

    Accelerated aging of polymers at elevated temperatures often involves the generation of volatiles. These can be formed as the products of oxidative degradation reactions or intrinsic pyrolytic decomposition as part of polymer scission reactions. A simple analytical method for the quantification of water, CO 2, and CO as fundamental signatures of degradation kinetics is required. Here, we describe an analytical framework and develops a rapid mid-IR based gas analysis methodology to quantify volatiles that are contained in small ampoules after aging exposures. The approach requires identification of unique spectral signatures, systematic calibration with known concentrations of volatiles, and a rapidmore » acquisition FTIR spectrometer for time resolved successive spectra. Furthermore, the volatiles are flushed out from the ampoule with dry N2 carrier gas and are then quantified through spectral and time integration. This method is sufficiently sensitive to determine absolute yields of ~50 μg water or CO 2, which relates to probing mass losses of less than 0.01% for a 1 g sample, i.e. the early stages in the degradation process. Such quantitative gas analysis is not easily achieved with other approaches. Our approach opens up the possibility of quantitative monitoring of volatile evolution as an avenue to explore polymer degradation kinetics and its dependence on time and temperature.« less

  9. High temperature polymer degradation: Rapid IR flow-through method for volatile quantification

    DOE PAGES

    Giron, Nicholas H.; Celina, Mathew C.

    2017-05-19

    Accelerated aging of polymers at elevated temperatures often involves the generation of volatiles. These can be formed as the products of oxidative degradation reactions or intrinsic pyrolytic decomposition as part of polymer scission reactions. A simple analytical method for the quantification of water, CO 2, and CO as fundamental signatures of degradation kinetics is required. Here, we describe an analytical framework and develops a rapid mid-IR based gas analysis methodology to quantify volatiles that are contained in small ampoules after aging exposures. The approach requires identification of unique spectral signatures, systematic calibration with known concentrations of volatiles, and a rapidmore » acquisition FTIR spectrometer for time resolved successive spectra. Furthermore, the volatiles are flushed out from the ampoule with dry N2 carrier gas and are then quantified through spectral and time integration. This method is sufficiently sensitive to determine absolute yields of ~50 μg water or CO 2, which relates to probing mass losses of less than 0.01% for a 1 g sample, i.e. the early stages in the degradation process. Such quantitative gas analysis is not easily achieved with other approaches. Our approach opens up the possibility of quantitative monitoring of volatile evolution as an avenue to explore polymer degradation kinetics and its dependence on time and temperature.« less

  10. Volatile profile of Madeira wines submitted to traditional accelerated ageing.

    PubMed

    Pereira, Vanda; Cacho, Juan; Marques, José C

    2014-11-01

    The evolution of monovarietal fortified Madeira wines forced-aged by traditional thermal processing (estufagem) were studied in terms of volatiles. SPE extracts were analysed by GC-MS before and after heating at 45 °C for 3 months (standard) and at 70 °C for 1 month (overheating). One hundred and ninety volatile compounds were identified, 53 of which were only encountered in baked wines. Most chemical families increased after standard heating, especially furans and esters, up to 61 and 3-fold, respectively. On the contrary, alcohols, acetates and fatty acids decreased after heating. Varietal aromas, such as Malvasia's monoterpenic alcohols were not detected after baking. The accelerated ageing favoured the development of some volatiles previously reported as typical aromas of finest Madeira wines, particularly phenylacetaldeyde, β-damascenone and 5-ethoxymethylfurfural. Additionally, ethyl butyrate, ethyl 2-methylbutyrate, ethyl caproate, ethyl isovalerate, guaiacol, 5-hydroxymethylfurfural and γ-decalactone were also found as potential contributors to the global aroma of baked wines. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Effect of selected strains of Debaryomyces hansenii on the volatile compound production of dry fermented sausage "salchichón".

    PubMed

    Andrade, M A Jesús; Córdoba, Juan José; Casado, Eva M A; Córdoba, María G; Rodríguez, Mar

    2010-06-01

    Different biotypes of Debaryomyces hansenii, characterized by mitochondrial DNA (mtDNA) restriction analysis, were inoculated in dry fermented sausages to evaluate their influence as single starter culture on volatile compound generation throughout the ripening process. Similar evolution of physicochemical parameters and microbial population was observed in both uninoculated and inoculated sausages. The tested biotypes modified the volatile compound profile of sausages specially in esters, branched alcohols and aldehydes. The biotype of D. hansenii with the E mtDNA restriction pattern is the most suitable to be used as starter culture since it produced volatile compounds involved in flavour development of dry-cured meat products such as 3-methylbutanol, 3-methylbutanal and 2-propanone. Moreover, the use of D. hansenii strains with the B, C2 and E mtDNA restriction patterns, as a mixed starter culture, should be also considered to generate low amount of sulphur compounds in dry-cured meat products. Copyright 2010 Elsevier Ltd. All rights reserved.

  12. Influence of some packaging materials and of natural tocopherols on the sensory properties of breakfast cereals.

    PubMed

    Paradiso, Vito M; Caponio, Francesco; Summo, Carmine; Gomes, Tommaso

    2014-04-01

    The combined effect of natural antioxidants and packaging materials on the quality decay of breakfast cereals during storage was evaluated. Corn flakes were produced on industrial scale, using different packages and adding natural tocopherols to the ingredients, and stored for 1 year. The samples were then submitted to sensory analysis and HS-solid phase microextraction/gas chromatography/mass spectrometry (SPME/GC/MS) analysis. The packaging had a significant influence on the sensory profile of the aged product: metallized polypropylene gave the highest levels of oxidation compounds and sensory defects. The sensory profile was improved using polypropylene and especially high-density polyethylene. Natural tocopherols reduced the sensory decay of the flakes and the oxidative evolution of the volatile profile. They gave the most remarkable improvement in polypropylene (either metallized or not) packs. Polypropylene showed a barrier effect on the scalping of volatiles outside of the pack. This led to higher levels of oxidation volatiles and faster rates of the further oxidative processes involving the volatiles.

  13. Characterisation of volatile profile and sensory analysis of fresh-cut "Radicchio di Chioggia" stored in air or modified atmosphere.

    PubMed

    Cozzolino, Rosaria; Martignetti, Antonella; Pellicano, Mario Paolo; Stocchero, Matteo; Cefola, Maria; Pace, Bernardo; De Giulio, Beatrice

    2016-02-01

    The volatile profile of two hybrids of "Radicchio di Chioggia", Corelli and Botticelli, stored in air or passive modified atmosphere (MAP) during 12 days of cold storage, was monitored by solid phase micro-extraction (SPME) GC-MS. Botticelli samples were also subjected to sensory analysis. Totally, 61 volatile organic compounds (VOCs) were identified in the headspace of radicchio samples. Principal component analysis (PCA) showed that fresh product possessed a metabolic content similar to that of the MAP samples after 5 and 8 days of storage. Projection to latent structures by partial least squares (PLS) regression analysis showed the volatiles content of the samples varied depending only on the packaging conditions. Specifically, 12 metabolites describing the time evolution and explaining the effects of the different storage conditions were highlighted. Finally, a PCA analysis revealed that VOCs profile significantly correlated with sensory attributes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Option pricing for stochastic volatility model with infinite activity Lévy jumps

    NASA Astrophysics Data System (ADS)

    Gong, Xiaoli; Zhuang, Xintian

    2016-08-01

    The purpose of this paper is to apply the stochastic volatility model driven by infinite activity Lévy processes to option pricing which displays infinite activity jumps behaviors and time varying volatility that is consistent with the phenomenon observed in underlying asset dynamics. We specially pay attention to three typical Lévy processes that replace the compound Poisson jumps in Bates model, aiming to capture the leptokurtic feature in asset returns and volatility clustering effect in returns variance. By utilizing the analytical characteristic function and fast Fourier transform technique, the closed form formula of option pricing can be derived. The intelligent global optimization search algorithm called Differential Evolution is introduced into the above highly dimensional models for parameters calibration so as to improve the calibration quality of fitted option models. Finally, we perform empirical researches using both time series data and options data on financial markets to illustrate the effectiveness and superiority of the proposed method.

  15. Experience-induced habituation and preference towards non-host plant odors in ovipositing females of a moth.

    PubMed

    Wang, Hua; Guo, Wen-Fei; Zhang, Peng-Jun; Wu, Zhi-Yi; Liu, Shu-Sheng

    2008-03-01

    In phytophagous insects, experience can increase positive responses towards non-host plant extracts or induce oviposition on non-host plants, but the underlying chemical and behavioral mechanisms are poorly understood. By using the diamondback moth, Plutella xylostella, its host plant Chinese cabbage, and a non-host plant Chrysanthemum morifolium, as a model system, we observed the experience-altered olfactory responses of ovipositing females towards volatiles of the non-host plant, volatiles of pure chemicals (p-cymene and alpha-terpinene) found in the non-host plant, and volatiles of host plants treated with these chemicals. We assessed the experience-altered oviposition preference towards host plants treated with p-cymene. Naive females showed aversion to the odors of the non-host plant, the pure chemicals, and the pure chemical-treated host plants. In contrast, experienced females either became attracted by these non-host odors or were no longer repelled by these odors. Similarly, naive females laid a significantly lower proportion of eggs on pure chemical-treated host plants than on untreated host plants, but experienced females laid a similar or higher proportion of eggs on pure chemical-treated host plants compared to untreated host plants. Chemical analysis indicated that application of the non-host pure chemicals on Chinese cabbage induced emissions of volatiles by this host plant. We conclude that induced preference for previously repellent compounds is a major mechanism that leads to behavioral changes of this moth towards non-host plants or their extracts.

  16. Comparison of odor and mating-induced glomerular activation in the main olfactory bulb of estrous female ferrets.

    PubMed

    Batterton, M N; Robarts, D; Woodley, S K; Baum, M J

    2006-06-12

    Previously [S.K. Woodley, M.J. Baum, Differential activation of glomeruli in the ferret's main olfactory bulb by anal scent gland odors from males and females: an early step in mate identification, Eur. J. Neurosci. 20 (2004) 1025-1032], the receipt of intromission from a male activated glomeruli (indexed by Fos immunoreactivity in juxtaglomerular cells) in the main olfactory bulb (MOB) of estrous female ferrets which exceeded the activation seen after exposure to male anal scent gland odorants alone. We asked whether centrifugal inputs (e.g., from the locus coeruleus to the MOB) generated by the receipt of vaginal-cervical stimulation influence odor-induced MOB glomerular activation. We compared the activation of MOB glomeruli in estrous female ferrets which received a unilateral naris occlusion prior to exposure to: unscented air, volatile odorants from an anesthetized male, volatile + non-volatile odorants from direct physical contact with an anesthetized male, or mating stimulation. Little glomerular activation was observed in the MOB ipsilateral to an occluded naris, including females which received intromission. An equivalent distribution of activated glomeruli was observed in the ventral MOB of estrous females which either received mating stimulation or had direct physical contact with an anesthetized male. Considerably less glomerular activation occurred in females exposed only to volatile male odors. The MOB of female ferrets responded to body odorants from the opposite sex; however, there was no evidence that mating-induced centrifugal inputs directly activated MOB glomeruli or modified odor-induced glomerular activation.

  17. Late Coupled Evolution of Venus' Atmosphere and the Effects of Meteoritic Impacts

    NASA Astrophysics Data System (ADS)

    Gillmann, C.; Tackley, P. J.; Golabek, G.

    2013-12-01

    We investigate what mechanisms and events could have led to the divergent evolution of Venus and Earth. We propose develop our investigation of the post-magma-ocean history of the atmosphere and surface conditions on Venus through a coupled model of mantle/atmosphere evolution by including meteoritic impacts in our previous work. Our main focuses are mechanisms that deplete or replenish the atmosphere: volcanic degassing, atmospheric escape and impacts. Atmospheric escape modeling involves two different aspects. During the first few hundreds of million years, hydrodynamic escape is dominant. A significant portion of the early atmosphere can be thus removed. For later evolution, on the other hand, non-thermal escape becomes the main process as observed by the ASPERA instrument and modeled in various recent numerical studies. The atmosphere is replenished by volcanic degassing, using an adapted version of the StagYY mantle dynamics model (Armann and Tackley, 2012) and including episodic lithospheric overturn. The evolving surface temperature is calculated from CO2 and water in the atmosphere with a gray radiative-convective atmosphere model. This surface temperature in turn acts as a boundary condition for the mantle dynamics model and has an influence on the convection, volcanism and subsequent degassing. We take into account the effects of meteorites in our simulations by adapting each relevant part of the model. They can bring volatiles as well as erode the atmosphere. Mantle dynamics are modified since the impact itself can also bring large amounts of energy to the mantle. A 2D distribution of the thermal anomaly due to the impact is used and can lead to melting. Volatile evolution due to impacts (especially the large ones) is heavily debated so we test a broad range of impactor parameters (size, velocity, timing) and test different assumptions related to impact erosion going from large eroding power (Ahrens 1993) to recent parameterization (Shuvalov, 2009, 2010). We obtain a Venus-like behavior for the solid planet and atmospheric evolution leading to present-day conditions. Without any impact, CO2 pressure seems unlikely to vary much over the history of the planet, only slightly increasing due to degassing. A late build-up of the atmosphere with several resurfacing events seems unlikely. On the other hand, water pressure is strongly sensitive to volcanic activity and varies rapidly leading to variations in surface temperatures of up to 200K, which have been identified to have an effect on volcanic activity. We observe a clear correlation between low temperature and mobile lid regime. Impacts can strongly change this picture. While small (less than kilometer scale) meteorites have a negligible effect, medium ones are able to bring volatiles to the planet and generate melt both at the impact and later on, due to volcanic events they triggered due to the changes they make to mantle dynamics. A significant amount of volatiles (compared to present-day atmosphere) can be released on a short timescale, which can increase the surface temperature by tens of Kelvin. Larger impactors (~100 km) have even stronger effects as they can blow upwards of 10% of the atmosphere away, depending on the parameters. Removing more than 80% of the atmosphere on the impact is clearly feasible. In these cases, later degassing is also massive, which mitigates the volatile sink.

  18. Fabrication of microspheres via solvent volatization induced aggregation of self-assembled nanomicellar structures and their use as a pH-dependent drug release system.

    PubMed

    Zhang, Lidong; Jeong, Young-Il; Zheng, Sudan; Suh, Hongsuk; Kang, Dae Hwan; Kim, Il

    2013-01-08

    A series of oleamide derivatives, (C(18)H(34)NO)(2)(CH(2))(n) [n = 2 (1a), 3 (1b), 4 (1c), or 6 (1d); C(18)H(34)NO = oleic amide fragment] and (C(18)H(34)NO)(CH(2))(6)NH(2) (2), have been synthesized and their self-assembly is investigated in ethanol/water media. Self-assembly of 1a and 1b in ethanol/water (1/0.1 v/v) solution (5 mg mL(-1)) yields microspheres (MSs) with the average diameter ∼10 μm via a gradual temperature reduction and solvent volatilization process. Under the same self-assembly conditions, microrods (average diameter ∼6 μm and several tens of micrometers in length), micronecklace-like, and shape-irregular microparticles are formed from the self-assembly of 1c, 1d, and 2, respectively. The kinetics of evolution for their self-assemblies by dynamic light scattering technique and in situ observation by optical microscopy reveals that the microstructures formation is from a well-behaved aggregation of nanoscale micelles induced by solvent volatilization. The FT-IR and temperature-dependent (1)H-NMR spectra demonstrate the hydrogen bonding force and π-π stacking, which drove the self-assembly of all oleamide derivatives in ethanol/water. Among the fabricated microstructures, the MSs from 1a exhibit the best dispersity, which thus have been used as a scaffold for the in vitro release of doxorubicin. The results demonstrate a pH-sensitive release process, enhanced release specifically at low pH 5.2.

  19. E-field induced resistive switch in metal/praseodymium calcium manganite interfaces: A model for future nonvolatile memory devices

    NASA Astrophysics Data System (ADS)

    Das, Nilanjan

    Among the various candidates for non-volatile random access memory (RAM), interfacial resistive switch in Ag/Pr0.7Ca0.3 MnO3 (PCMO) configuration has drawn major attention in recent years due to its potential as a high storage density (˜ terabyte) device. However, the diverse nature of the resistive switch in different systems makes the development of a unifying model for its underlying physics very difficult. This dissertation will address both issues, namely, characterization of switches for device applications and development of a system-independent generic model, in detail. In our work, we have studied the properties electric pulse induced interfacial switch in electrode/PCMO system. A very fast speed ("write speed") of 100 ns, threshold ("programming voltage") as low as 2 V (for micro electrodes), and non-volatility ("data retention") of switched states have been achieved. A clear distinction between fast switch and sub-threshold slow quasistatic-dc switch has been made. Results obtained from time-dependence studies and impedance spectroscopy suggest that defect creation/annihilation, such as broken bonds (under very high field at interface, 107V/cm), is likely the mechanism for the sub-micros fast switching. On the other hand, slow accumulative process, such as electromigration of point defects, are responsible for the subthreshold quasi-dc switch. Scanning probe imaging has revealed the nanoscale inhomogeneity of the switched surfaces, essential for observing a resistive switch. Evolution of such structures has been observed under surface pre-training. Device scalability has been tested by creating reversible modification of surface conductivities with atomic force microscopy, thus creating the "nano-switch" (limited to a region of 10--100 nm).

  20. Contribution of early impact events to metal-silicate separation, thermal annealing, and volatile redistribution: Evidence in the Pułtusk H chondrite

    NASA Astrophysics Data System (ADS)

    Krzesińska, Agata M.

    2017-11-01

    Three-dimensional X-ray tomographic reconstructions and petrologic studies reveal voluminous accumulations of metal in Pułtusk H chondrite. At the contact of these accumulations, the chondritic rock is enriched in troilite. The rock contains plagioclase-rich bands, with textures suggesting crystallization from melt. Unusually large phosphates are associated with the plagioclase and consist of assemblages of merrillite, and fluorapatite and chlorapatite. The metal accumulations were formed by impact melting, rapid segregation of metal-sulfide melt and the incorporation of this melt into the fractured crater basement. The impact most likely occurred in the early evolution of the H chondrite parent body, when post-impact heat overlapped with radiogenic heat. This enabled slow cooling and separation of the metallic melt into metal-rich and sulfide-rich fractions. This led to recrystallization of chondritic rock in contact with the metal accumulations and the crystallization of shock melts. Phosphorus was liberated from the metal and subsumed by the silicate shock melt, owing to oxidative conditions upon slow cooling. The melt was also a host for volatiles. Upon further cooling, phosphorus reacted with silicates leading to the formation of merrillite, while volatiles partitioned into the residual halogen-rich, dry fluid. In the late stages, the fluid altered merrillite to patchy Cl/F-apatite. The above sequence of alterations demonstrates that impact during the early evolution of chondritic parent bodies might have contributed to local metal segregation and silicate melting. In addition, postshock conditions supported secondary processes: compositional/textural equilibration, redistribution of volatiles, and fluid alterations.

  1. Comparison of subarachnoid anesthetic effect of emulsified volatile anesthetics in rats.

    PubMed

    Guo, Jiao; Zhou, Cheng; Liang, Peng; Huang, Han; Li, Fengshan; Chen, Xiangdong; Liu, Jin

    2014-01-01

    Spinal cord is an important target of volatile anesthetics in particular for the effect of immobility. Intrathecal injection of volatile anesthetics has been found to produce subarachnoid anesthesia. The present study was designed to compare spinal anesthetic effects of emulsified volatile anesthetics, and to investigate the correlation between their spinal effects and general effect of immobility. In this study, halothane, isoflurane, enflurane and sevoflurane were emulsified by 30% Intralipid. These emulsified volatile anesthetics were intravenously and intrathecally injected, respectively. ED50 of general anesthesia and EC50 of spinal anesthesia were determined. The durations of general and spinal anesthesia were recorded. Correlation analysis was applied to evaluate the anesthetic potency of volatile anesthetics between their spinal and general effects. ED50 of general anesthesia induced by emulsified halothane, isoflurane, enflurane and sevoflurane were 0.41 ± 0.07, 0.54 ± 0.07, 0.74 ± 0.11 and 0.78 ± 0.08 mmol/kg, respectively, with significant correlation to their inhaled MAC (R(2) = 0.8620, P = 0.047). For intrathecal injection, EC50 of spinal anesthesia induced by emulsified halothane, isoflurane, enflurane and sevoflurane were 0.35, 0.27, 0.33 and 0.26 mol/L, respectively, which could be predicted by the product of inhaled MAC and olive oil/gas partition coefficients (R(2) = 0.9627, P = 0.013). In conclusion, potency and efficacy of the four emulsified volatile anesthetics in spinal anesthesia were similar and could be predicted by the product of inhaled MAC and olive oil/gas partition coefficients (MAC × olive oil/gas partition coefficients).

  2. Comparison of subarachnoid anesthetic effect of emulsified volatile anesthetics in rats

    PubMed Central

    Guo, Jiao; Zhou, Cheng; Liang, Peng; Huang, Han; Li, Fengshan; Chen, Xiangdong; Liu, Jin

    2014-01-01

    Spinal cord is an important target of volatile anesthetics in particular for the effect of immobility. Intrathecal injection of volatile anesthetics has been found to produce subarachnoid anesthesia. The present study was designed to compare spinal anesthetic effects of emulsified volatile anesthetics, and to investigate the correlation between their spinal effects and general effect of immobility. In this study, halothane, isoflurane, enflurane and sevoflurane were emulsified by 30% Intralipid. These emulsified volatile anesthetics were intravenously and intrathecally injected, respectively. ED50 of general anesthesia and EC50 of spinal anesthesia were determined. The durations of general and spinal anesthesia were recorded. Correlation analysis was applied to evaluate the anesthetic potency of volatile anesthetics between their spinal and general effects. ED50 of general anesthesia induced by emulsified halothane, isoflurane, enflurane and sevoflurane were 0.41 ± 0.07, 0.54 ± 0.07, 0.74 ± 0.11 and 0.78 ± 0.08 mmol/kg, respectively, with significant correlation to their inhaled MAC (R2 = 0.8620, P = 0.047). For intrathecal injection, EC50 of spinal anesthesia induced by emulsified halothane, isoflurane, enflurane and sevoflurane were 0.35, 0.27, 0.33 and 0.26 mol/L, respectively, which could be predicted by the product of inhaled MAC and olive oil/gas partition coefficients (R2 = 0.9627, P = 0.013). In conclusion, potency and efficacy of the four emulsified volatile anesthetics in spinal anesthesia were similar and could be predicted by the product of inhaled MAC and olive oil/gas partition coefficients (MAC × olive oil/gas partition coefficients). PMID:25674241

  3. Late Veneer collisions and their impact on the evolution of Venus (PS Division Outstanding ECS Award Lecture)

    NASA Astrophysics Data System (ADS)

    Gillmann, Cedric; Golabek, Gregor; Tackley, Paul; Raymond, Sean

    2017-04-01

    During the end of the accretion, the so-called Late Veneer phase, while the bulk of the mass of terrestrial planets is already in place, a substantial number of large collisions can still occur. Those impacts are thought to be responsible for the repartition of the Highly Siderophile Elements. They are also susceptible to have a strong effect on volatile repartition and mantle convection. We study how Late Veneer impacts modify the evolution of Venus and its atmosphere, using a coupled numerical simulation. We focus on volatile exchanges and their effects on surface conditions. Mantle dynamics, volcanism and degassing processes lead to an input of gases in the atmosphere and are modeled using the StagYY mantle convection code. Volatile losses are estimated through atmospheric escape modeling. It involves two different aspects: hydrodynamic escape (0-500 Myr) and non-thermal escape. Hydrodynamic escape is massive but occurs only when the solar energy input is strong. Post 4 Ga escape from non-thermal processes is comparatively low but long-lived. The resulting state of the atmosphere is used to the calculate greenhouse effect and surface temperature, through a one-dimensional gray radiative-convective model. Large impacts are capable of contributing to (i) atmospheric escape, (ii) volatile replenishment and (iii) energy transfer to the mantle. We test various impactor compositions, impact parameters (velocity, location, size, and timing) and eroding power. Scenarios we tested are adapted from numerical stochastic simulations (Raymond et al., 2013). Impactor sizes are dominated by large bodies (R>500 km). Erosion of the atmosphere by a few large impacts appears limited. Swarms of smaller more mass-effective impactors seem required for this effect to be significant. Large impactors have two main effects on the atmosphere. They can (i) create a large input of volatile from the melting they cause during the impact and through the volatiles they carry. This leads to an increase in atmosphere density and surface temperatures. However, early impacts can also (ii) deplete the mantle of Venus and (assuming strong early escape) ultimately remove volatiles from the system, leading to lower late degassing and lower surface temperatures. The competition between those effects depends on the time of the impact, which directly governs the strength of atmospheric losses.

  4. Effects of soy sauce and packaging method on volatile compounds and lipid oxidation of cooked irradiated beef patties

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Wook; Lee, Soo-Yeon; Hwang, Ko-Eun; Song, Dong-Heon; Kim, Yong-Jae; Ham, Yun-Kyung; Lee, Choong-Hee; Choi, Yun-Sang; Lee, Ju-Woon; Kim, Cheon-Jei

    2014-10-01

    The objective of this study is to determine the effect of soy sauce on volatile compounds and lipid oxidation of cooked irradiated beef patties. Sulfur-containing volatile components, which are produced by irradiation, were not found in all treatments. Volatile components derived from soy sauce, such as 3-hydroxy-2-butanone, acetic acid, 3-methyl-1-butanol and 2-methyl-1-butanol, were detected in beef patties containing soy sauce regardless of irradiation and packaging method. Volatile aldehydes, including hexanal, significantly decreased the irradiated beef patty prepared with soy sauce compared to those of irradiated beef patty made with NaCl at 1 day and 5 days after irradiation. In addition, combined use of vacuum packaging and soy sauce treatments could inhibit the formation of volatile compounds and 2-thiobarbituric acid reactive substances during chilled storage. Therefore, the use of soy sauce in cooked and irradiated beef could reduce the production of volatile components associated with the irradiation-induced off-flavor and lipid oxidation.

  5. Bioactivity of volatile organic compounds produced by Pseudomonas tolaasii

    PubMed Central

    Lo Cantore, Pietro; Giorgio, Annalisa; Iacobellis, Nicola S.

    2015-01-01

    Pseudomonas tolaasii is the main bacterial pathogen of several mushroom species. In this paper we report that strains of P. tolaasii produce volatile substances inducing in vitro mycelia growth inhibition of Pleurotus ostreatus and P. eryngii, and Agaricus bisporus and P. ostreatus basidiome tissue blocks brown discoloration. P. tolaasii strains produced the volatile ammonia but not hydrogen cyanide. Among the volatiles detected by GC–MS, methanethiol, dimethyl disulfide (DMDS), and 1-undecene were identified. The latter, when assayed individually as pure compounds, led to similar effects noticed when P. tolaasii volatiles natural blend was used on mushrooms mycelia and basidiome tissue blocks. Furthermore, the natural volatile mixture resulted toxic toward lettuce and broccoli seedling growth. In contrast, pure volatiles showed different activity according to their nature and/or doses applied. Indeed, methanethiol resulted toxic at all the doses used, while DMDS toxicity was assessed till a quantity of 1.25 μg, below which it caused, together with 1-undecene (≥10 μg), broccoli growth increase. PMID:26500627

  6. Electrophysiological Responses and Reproductive Behavior of Fall Webworm Moths (Hyphantria cunea Drury) are Influenced by Volatile Compounds from Its Mulberry Host (Morus alba L.)

    PubMed Central

    Tang, Rui; Zhang, Feng; Zhang, Zhong-Ning

    2016-01-01

    Hyphantria cunea (Drury) is an invasive pest of Morus alba L. in China. β-ocimene and cis-2-penten-1-ol among eleven electro-physiologically active leaf volatiles from M. alba have been reported to influence captures of Hyphantria cunea moths when added into sex pheromone traps. This study further investigated influences of volatile types and their dosages on the electro-physiological responses in the antennae of male and female moths, as well as on mating and oviposition behaviors. Females were, regardless of dosages, more sensitive to β-ocimene and cis-2-penten-1-ol in electro-physiological response tests than males. For males, a dose response was detected, i.e., a dosage of 10 μg and 100 μg of either chemical stimulated higher electric response in their antennae than 1 μg. Moth pairs either exposed respectively to a herbivore-induced M. alba volatile blend (HIPV), to a mechanically-damaged M. alba volatile blend (MDV), to β-ocimene, to cis-2-penten-1-ol, or to pentane as a control showed that pairs exposed to β-ocimene most likely mated, followed by HIPV blends and least by the other volatiles or the control. In contrast, β-ocimene induced about 70% of the female oviposition behaviors and was nearly 4.5 times the oviposition rate than cis-2-penten-1-ol and 2 times than the control. However, none of the chemicals had any effect on the 48 h fecundity or on egg sizes. In conclusion, β-ocimene from mulberry plants alone could promote mating and oviposition in H. cunea at a dosage of 1 mg. The results indicate that reproductive behaviors of H. cunea moths can be enhanced through HIPV blends and β-ocimene induced by feeding of larvae. This contra phenomenon has revealed a different ecology in this moth during colonizing China as local pests would commonly be repelled by herbivore induced chemicals. These chemicals can be used for the development of biological control approaches such as being used together with sex pheromone traps. PMID:27153095

  7. Electrophysiological Responses and Reproductive Behavior of Fall Webworm Moths (Hyphantria cunea Drury) are Influenced by Volatile Compounds from Its Mulberry Host (Morus alba L.).

    PubMed

    Tang, Rui; Zhang, Feng; Zhang, Zhong-Ning

    2016-05-03

    Hyphantria cunea (Drury) is an invasive pest of Morus alba L. in China. β-ocimene and cis-2-penten-1-ol among eleven electro-physiologically active leaf volatiles from M. alba have been reported to influence captures of Hyphantria cunea moths when added into sex pheromone traps. This study further investigated influences of volatile types and their dosages on the electro-physiological responses in the antennae of male and female moths, as well as on mating and oviposition behaviors. Females were, regardless of dosages, more sensitive to β-ocimene and cis-2-penten-1-ol in electro-physiological response tests than males. For males, a dose response was detected, i.e., a dosage of 10 μg and 100 μg of either chemical stimulated higher electric response in their antennae than 1 μg. Moth pairs either exposed respectively to a herbivore-induced M. alba volatile blend (HIPV), to a mechanically-damaged M. alba volatile blend (MDV), to β-ocimene, to cis-2-penten-1-ol, or to pentane as a control showed that pairs exposed to β-ocimene most likely mated, followed by HIPV blends and least by the other volatiles or the control. In contrast, β-ocimene induced about 70% of the female oviposition behaviors and was nearly 4.5 times the oviposition rate than cis-2-penten-1-ol and 2 times than the control. However, none of the chemicals had any effect on the 48 h fecundity or on egg sizes. In conclusion, β-ocimene from mulberry plants alone could promote mating and oviposition in H. cunea at a dosage of 1 mg. The results indicate that reproductive behaviors of H. cunea moths can be enhanced through HIPV blends and β-ocimene induced by feeding of larvae. This contra phenomenon has revealed a different ecology in this moth during colonizing China as local pests would commonly be repelled by herbivore induced chemicals. These chemicals can be used for the development of biological control approaches such as being used together with sex pheromone traps.

  8. The evolution of an impact-generated atmosphere

    NASA Technical Reports Server (NTRS)

    Lange, M. A.; Ahrens, T. J.

    1982-01-01

    The minimum impact velocities and pressures required to form a primary H2O atmosphere during planetary accretion from chondritelike planetessimals are determined by means of shock wave and thermodynamic data for rock-forming and volatile-bearing minerals. Attenuation of impact-induced shock pressure is modelled to the extent that the amount of released water can be estimated as a function of projectile radius, impact velocity, weight fraction of target water, target porosity, and dehydration efficiency. The two primary processes considered are the impact release of water bound in such hydrous minerals as serpentine, and the subsequent reincorporation of free water by hydration of forsterite and enstatite. These processes are described in terms of model calculations for the accretion of the earth. It is concluded that the concept of dehydration efficiency is of dominant importance in determining the degree to which an accreting planet acquires an atmosphere during its formation.

  9. Hypnotic Hypersensitivity to Volatile Anesthetics and Dexmedetomidine in Dopamine β-Hydroxylase Knockout Mice

    PubMed Central

    Hu, Frances Y.; Hanna, George M.; Han, Wei; Mardini, Feras; Thomas, Steven A.; Wyner, Abraham J.; Kelz, Max B.

    2012-01-01

    BACKGROUND Multiple lines of evidence suggest that the adrenergic system can modulate sensitivity to anesthetic-induced immobility and anesthetic-induced hypnosis as well. However, several considerations prevent the conclusion that the endogenous adrenergic ligands norepinephrine and epinephrine alter anesthetic sensitivity. METHODS Using dopamine β-hydroxylase (Dbh−/−) mice genetically engineered to lack the adrenergic ligands and their siblings with normal adrenergic levels, we test the contribution of the adrenergic ligands upon volatile anesthetic induction and emergence. Moreover, we investigate the effects of intravenous dexmedetomidine in adrenergic-deficient mice and their siblings using both righting reflex and processed electroencephalographic measures of anesthetic hypnosis. RESULTS We demonstrate that the loss of norepinephrine and epinephrine and not other neuromodulators copackaged in adrenergic neurons is sufficient to cause hypersensitivity to induction of volatile anesthesia. However, the most profound effect of adrenergic deficiency is retarding emergence from anesthesia, which takes two to three times as long in Dbh−/− mice for sevoflurane, isoflurane, and halothane. Having shown that Dbh−/− mice are hypersensitive to volatile anesthetics, we further demonstrate that their hypnotic hypersensitivity persists at multiple doses of dexmedetomidine. Dbh−/− mice exhibit up to 67% shorter latencies to loss of righting reflex and up to 545% longer durations of dexmedetomidine-induced general anesthesia. Central rescue of adrenergic signaling restores control-like dexmedetomidine sensitivity. A novel continuous electroencephalographic analysis illustrates that the longer duration of dexmedetomidine-induced hypnosis is not due to a motor confound, but occurs because of impaired anesthetic emergence. CONCLUSIONS Adrenergic signaling is essential for normal emergence from general anesthesia. Dexmedetomidine-induced general anesthesia does not depend upon inhibition of adrenergic neurotransmission. PMID:23042227

  10. Modeling the formation and properties of traditional and non-traditional secondary organic aerosol: problem formulation and application to aircraft exhaust

    NASA Astrophysics Data System (ADS)

    Jathar, S. H.; Miracolo, M. A.; Presto, A. A.; Adams, P. J.; Robinson, A. L.

    2012-04-01

    We present a methodology to model secondary organic aerosol (SOA) formation from the photo-oxidation of low-volatility organics (semi-volatile and intermediate volatility organic compounds). The model is parameterized and tested using SOA data collected during two field campaigns that characterized the atmospheric evolution of dilute gas-turbine engine emissions using a smog chamber. Photo-oxidation formed a significant amount of SOA, much of which cannot be explained based on the emissions of traditional, speciated precursors; we refer to this as non-traditional SOA (NT-SOA). The NT-SOA can be explained by emissions of low-volatility organic vapors measured using sorbents. Since these vapors could not be speciated, we employ a volatility-based approach to model NT-SOA formation. We show that the method proposed by Robinson et al. (2007) is unable to explain the timing of NT-SOA formation because it assumes a very modest reduction in volatility of the precursors with every oxidation reaction. In contrast, a Hybrid method, similar to models of traditional SOA formation, assumes a larger reduction in volatility with each oxidation step and results in a better reproduction of NT-SOA formation. The NT-SOA yields estimated for the low-volatility organic vapor emissions are similar to literature data for large n-alkanes and other low-volatility organics. The yields vary with fuel composition (JP8 versus Fischer-Tropsch) and engine load (idle versus non-idle). These differences are consistent with the expected contribution of high (aromatics and n-alkanes) and low (branched alkanes and oxygenated species) SOA forming species to the exhaust.

  11. Volatile elements - water, carbon, nitrogen, noble gases - on Earth

    NASA Astrophysics Data System (ADS)

    Marty, B.

    2017-12-01

    Understanding the origin and evolution of life-bearing volatile elements (water, carbon, nitrogen) on Earth is a fruitful and debated area of research. In his pioneering work, W.W. Rubey inferred that the terrestrial atmosphere and the oceans formed from degassing of the mantle through geological periods of time. Early works on noble gas isotopes were consistent with this view and proposed a catastrophic event of mantle degassing early in Earth's history. We now have evidence, mainly from noble gas isotopes, that several cosmochemical sources contributed water and other volatiles at different stages of Earth's accretion. Potential contributors include the protosolar nebula gas that equilibrated with magma oceans, inner solar system bodies now represented by chondrites, and comets. Stable isotope ratios suggest volatiles where primarily sourced by planetary bodies from the inner solar system. However, recent measurements by the European Space Agency Rosetta probe on the coma of Comet 67P/Churyumov-Gerasimenko permit to set quantitative constraints on the cometary contribution to the surface of our planet. The surface and mantle reservoirs volatile elements exchanged volatile elements through time, with rates that are still uncertain. Some mantle regions remained isolated from whole mantle convection within the first tens to hundreds million years after start of solar system formation. These regions, now sampled by some mantle plumes (e.g., Iceland, Eifel) preserved their volatile load, as indicated by extinct and extant radioactivity systems. The abundance of volatile elements in the mantle is still not well known. Different approaches, such as high pressure experimental petrology, noble gas geochemistry, modelling, resulted in somewhat contrasted estimates, varying over one order of magnitude for water. Comparative planetology, that is, the study of volatiles on the Moon, Venus, Mars, Vesta, will shed light on the sources and strengths of these elements in the inner solar system.

  12. Endogenous Lunar Volatiles: Insights into the Abundances of Volatiles in the Moon from Lunar Apatite

    NASA Technical Reports Server (NTRS)

    McCubbin, Francis

    2016-01-01

    At the time of publication of New Views of the Moon, it was thought that the Moon was bone dry with less than about 1 ppb H2O. However in 2007, initial reports at the 38th Lunar and Planetary Science Conference speculated that H-species were present in both apatites and pyroclastic volcanic lunar glasses. These early reports were later confirmed through peer-review, which motivated many subsequent studies on magmatic volatiles in and on the Moon within the last decade. Some of these studies have cast into question the post-Apollo view of lunar formation, the distribution and sources of volatiles in the Earth-Moon system, and the thermal and magmatic evolution of the Moon. The mineral apatite has been one of the pillars of this new field of study, and it will be the primary focus of this abstract. Although apatite has been used both to understand the abundances of volatiles in lunar systems as well as the isotopic compositions of those volatiles, the focus here will be on the abundances of F, Cl, and H2O. This work demonstrates the utility of apatite in advancing our understanding of lunar volatiles, hence apatite should be among the topics covered in the endogenous lunar volatile chapter in NVM II. Truncated ternary plot of apatite X-site occupancy (mol%) from highlands apatite and mare basalt apatite plotted on the relative volatile abundance diagram from. The solid black lines delineate fields of relative abundances of F, Cl, and H2O (on a weight basis) in the melt from which the apatite crystallized. The diagram was constructed using available apatite/melt partitioning data for fluorine, chlorine, and hydroxyl.

  13. Light Quality Dependent Changes in Morphology, Antioxidant Capacity, and Volatile Production in Sweet Basil (Ocimum basilicum)

    PubMed Central

    Carvalho, Sofia D.; Schwieterman, Michael L.; Abrahan, Carolina E.; Colquhoun, Thomas A.; Folta, Kevin M.

    2016-01-01

    Narrow-bandwidth light treatments may be used to manipulate plant growth, development and metabolism. In this report LED-based light treatments were used to affect yield and metabolic content of sweet basil (Ocimum basilicum L. cv “Ceasar”) grown in controlled environments. This culinary herb produces an aroma highly appreciated by consumers, primarily composed of terpenes/terpenoids, phenylpropanoids, and fatty-acid- derived volatile molecules. Basil plants were grown under narrow-bandwidth light conditions, and leaf area, height, mass, antioxidant capacity and volatile emissions were measured at various time points. The results indicate reproducible significant differences in specific volatiles, and in biochemical classes of volatiles, compared to greenhouse grown plants. For example, basil plants grown under blue/red/yellow or blue/red/green wavelengths emit higher levels of a subset of monoterpenoid volatiles, while a blue/red/far-red treatment leads to higher levels of most sesquiterpenoid volatile molecules. Specific light treatments increase volatile content, mass, and antioxidant capacity. The results show that narrow-bandwidth illumination can induce discrete suites of volatile classes that affect sensory quality in commercial herbs, and may be a useful tool in improving commercial production. PMID:27635127

  14. Light Quality Dependent Changes in Morphology, Antioxidant Capacity, and Volatile Production in Sweet Basil (Ocimum basilicum).

    PubMed

    Carvalho, Sofia D; Schwieterman, Michael L; Abrahan, Carolina E; Colquhoun, Thomas A; Folta, Kevin M

    2016-01-01

    Narrow-bandwidth light treatments may be used to manipulate plant growth, development and metabolism. In this report LED-based light treatments were used to affect yield and metabolic content of sweet basil (Ocimum basilicum L. cv "Ceasar") grown in controlled environments. This culinary herb produces an aroma highly appreciated by consumers, primarily composed of terpenes/terpenoids, phenylpropanoids, and fatty-acid- derived volatile molecules. Basil plants were grown under narrow-bandwidth light conditions, and leaf area, height, mass, antioxidant capacity and volatile emissions were measured at various time points. The results indicate reproducible significant differences in specific volatiles, and in biochemical classes of volatiles, compared to greenhouse grown plants. For example, basil plants grown under blue/red/yellow or blue/red/green wavelengths emit higher levels of a subset of monoterpenoid volatiles, while a blue/red/far-red treatment leads to higher levels of most sesquiterpenoid volatile molecules. Specific light treatments increase volatile content, mass, and antioxidant capacity. The results show that narrow-bandwidth illumination can induce discrete suites of volatile classes that affect sensory quality in commercial herbs, and may be a useful tool in improving commercial production.

  15. Molecular characterization and volatility evolution of α-pinene ozonolysis SOA during isothermal evaporations

    NASA Astrophysics Data System (ADS)

    D'Ambro, E.; Schobesberger, S.; Lopez-Hilfiker, F.; Shilling, J. E.; Lee, B. H.; Thornton, J. A.

    2017-12-01

    α-Pinene (C10H16), the most abundantly emitted monoterpene, is a large contributor to global biogenic secondary organic aerosol (SOA) budgets due to its high SOA yields upon oxidation. We probe the volatility and evaporation behavior upon dilution of α-pinene SOA to further our understanding of the nascent volatility distribution, viscosity, and how these evolve in time absent photochemical oxidation. We present molecular composition measurements of the gas and particle phases of α-pinene ozonolysis SOA formed at 0% and 50% relative humidity (RH), followed by room-temperature evaporation in ultra-high purity N2 humidified to 20-90% RH. Experiments were performed in the Pacific Northwest National Laboratory 10.6 m3 and the University of Washington 0.7 m3 environmental chambers utilizing a Filter Inlet for Gases and AEROsols (FIGAERO) coupled to a high-resolution time of flight chemical ionization mass spectrometer utilizing iodide adduct ionization. We present novel insights into the total mass that evaporates as a function of time from 10 min to 24 hours without heating, the molecular speciation of the evaporate, as well as the effective volatility and composition of the SOA mass remaining. Consistent with previous studies, we find two stages of evaporation: a rapid loss of a large portion of the total signal over the course of ≤3 hours, followed by a stage of much slower evaporation over the proceeding 21 hours. Varying the RH of formation effects evaporation rate on timescales ≤3 hours, however the mass fraction remaining after 24 hours converges to 30-50% under all formation and evaporation RHs. We simulate the evaporation behavior and remaining fractions desorbed via temperature programmed thermal desorption to derive effective saturation vapor concentrations, mass accommodation coefficients, and rates of chemical evolution producing both higher and lower volatility components during the evaporation time period.

  16. Introductory lecture: atmospheric organic aerosols: insights from the combination of measurements and chemical transport models.

    PubMed

    Pandis, Spyros N; Donahue, Neil M; Murphy, Benjamin N; Riipinen, Ilona; Fountoukis, Christos; Karnezi, Eleni; Patoulias, David; Skyllakou, Ksakousti

    2013-01-01

    The formation, atmospheric evolution, properties, and removal of organic particulate matter remain some of the least understood aspects of atmospheric chemistry despite the importance of organic aerosol (OA) for both human health and climate change. Here, we summarize our recent efforts to deal with the chemical complexity of the tens of thousands of organic compounds in the atmosphere using the volatility-oxygen content framework (often called the 2D-Volatility Basis Set, 2D-VBS). Our current ability to measure the ambient OA concentration as a function of its volatility and oxygen to carbon (O:C) ratio is evaluated. The combination of a thermodenuder, isothermal dilution and Aerosol Mass Spectrometry (AMS) together with a mathematical aerosol dynamics model is a promising approach. The development of computational modules based on the 2D-VBS that can be used in chemical transport models (CTMs) is described. Approaches of different complexity are tested against ambient observations, showing the challenge of simulating the complex chemical evolution of atmospheric OA. The results of the simplest approach describing the net change due to functionalization and fragmentation are quite encouraging, reproducing both the observed OA levels and O : C in a variety of conditions. The same CTM coupled with source-apportionment algorithms can be used to gain insights into the travel distances and age of atmospheric OA. We estimate that the average age of OA near the ground in continental locations is 1-2 days and most of it was emitted (either as precursor vapors or particles) hundreds of kilometers away. Condensation of organic vapors on fresh particles is critical for the growth of these new particles to larger sizes and eventually to cloud condensation nuclei (CCN) sizes. The semivolatile organics currently simulated by CTMs are too volatile to condense on these tiny particles with high curvature. We show that chemical aging reactions converting these semivolatile compounds to extremely low volatility compounds can explain the observed growth rates of new particles in rural environments.

  17. MEVTV Workshop on Nature and Composition of Surface Units on Mars

    NASA Technical Reports Server (NTRS)

    Zimbelman, J. R. (Editor); Solomon, S. C. (Editor); Sharpton, V. L. (Editor)

    1987-01-01

    Topics addressed include: SNC meteorites and their potential for providing information about the geochemical evolution of Mars; remote sensing; photogeological inferences of Martian surface compositions; and interactions of the surface with volatiles in either the surface or the atmosphere.

  18. MAVEN Briefing

    NASA Image and Video Library

    2014-09-17

    Dwayne Brown, NASA public affairs officer, moderates a media briefing where panelist outlined activities around the Sunday, Sept. 21 orbital insertion at Mars of the agency’s Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft, Wednesday, Sept. 17, 2014 at NASA Headquarters in Washington. (Photo credit: NASA/Bill Ingalls)

  19. Molecular cloning and expression of Hedychium coronarium farnesyl pyrophosphate synthase gene and its possible involvement in the biosynthesis of floral and wounding/herbivory induced leaf volatile sesquiterpenoids.

    PubMed

    Lan, Jian-bin; Yu, Rang-cai; Yu, Yun-yi; Fan, Yan-ping

    2013-04-15

    Farnesyl pyrophosphate synthase (FPPS EC 2.5.1.10) catalyzes the production of farnesyl pyrophosphate (FPP), which is a key precursor for many sesquiterpenoids such as floral scent and defense volatiles against herbivore attack. Here we report a new full-length cDNA encoding farnesyl diphosphate synthase from Hedychium coronarium. The open reading frame for full-length HcFPPS encodes a protein of 356 amino acids, which is 1068 nucleotides long with calculated molecular mass of 40.7 kDa. Phylogenetic tree analysis indicates that HcFPPS belongs to the plant FPPS super-family and has strong relationship with FPPS from Musa acuminata. Expression of the HcFPPS gene in Escherichia coli yielded FPPS activity. Tissue-specific and developmental analyses of the HcFPPS mRNA and corresponding volatile sesquiterpenoid levels in H. coronarium flowers revealed that the HcFPPS might play a regulatory role in floral volatile sesquiterpenoid biosynthesis. The emission of the FPP-derived volatile terpenoid correlates with strong expression of HcFPPS induced by mechanical wounding and Udaspes folus-damage in leaves, which suggests that HcFPPS may have an important ecological function in H. coronarium vegetative organ. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Improving our chemistry: challenges and opportunities in the interdisciplinary study of floral volatiles.

    PubMed

    Raguso, R A; Thompson, J N; Campbell, D R

    2015-07-01

    The field of chemical ecology was established, in large part, through collaborative studies between biologists and chemists with common interests in the mechanisms that mediate chemical communication in ecological and evolutionary contexts. Pollination is one highly diverse and important category of such interactions, and there is growing evidence that floral volatiles play important roles in mediating pollinator behaviour and its consequences for plant reproductive ecology and evolution. Here we outline next-generation questions emerging in the study of plants and pollinators, and discuss the potential for strengthening collaboration between biologists and chemists in answering such questions.

  1. Language of plants: Where is the word?

    PubMed

    Šimpraga, Maja; Takabayashi, Junji; Holopainen, Jarmo K

    2016-04-01

    Plants emit biogenic volatile organic compounds (BVOCs) causing transcriptomic, metabolomic and behavioral responses in receiver organisms. Volatiles involved in such responses are often called "plant language". Arthropods having sensitive chemoreceptors can recognize language released by plants. Insect herbivores, pollinators and natural enemies respond to composition of volatiles from plants with specialized receptors responding to different types of compounds. In contrast, the mechanism of how plants "hear" volatiles has remained obscured. In a plant-plant communication, several individually emitted compounds are known to prime defense response in receiver plants with a specific manner according to the chemical structure of each volatile compound. Further, composition and ratio of volatile compounds in the plant-released plume is important in plant-insect and plant-plant interactions mediated by plant volatiles. Studies on volatile-mediated plant-plant signaling indicate that the signaling distances are rather short, usually not longer than one meter. Volatile communication from plants to insects such as pollinators could be across distances of hundreds of meters. As many of the herbivore induced VOCs have rather short atmospheric life times, we suggest that in long-distant communications with plant volatiles, reaction products in the original emitted compounds may have additional information value of the distance to emission source together with the original plant-emitted compounds. © 2015 Institute of Botany, Chinese Academy of Sciences.

  2. A mini-review on econophysics: Comparative study of Chinese and western financial markets

    NASA Astrophysics Data System (ADS)

    Zheng, Bo; Jiang, Xiong-Fei; Ni, Peng-Yun

    2014-07-01

    We present a review of our recent research in econophysics, and focus on the comparative study of Chinese and western financial markets. By virtue of concepts and methods in statistical physics, we investigate the time correlations and spatial structure of financial markets based on empirical high-frequency data. We discover that the Chinese stock market shares common basic properties with the western stock markets, such as the fat-tail probability distribution of price returns, the long-range auto-correlation of volatilities, and the persistence probability of volatilities, while it exhibits very different higher-order time correlations of price returns and volatilities, spatial correlations of individual stock prices, and large-fluctuation dynamic behaviors. Furthermore, multi-agent-based models are developed to simulate the microscopic interaction and dynamic evolution of the stock markets.

  3. Using Schumann Resonance Measurements for Constraining the Water Abundance on the Giant Planets - Implications for the Solar System Formation

    NASA Technical Reports Server (NTRS)

    Simoes, Fernando; Pfaff, Robert; Hamelin, Michel; Klenzing, Jeffrey; Freudenreich, Henry; Beghin, Christian; Berthelier, Jean-Jacques; Bromund, Kenneth; Grard, Rejean; Lebreton, Jean-Pierre; hide

    2012-01-01

    The formation and evolution of the Solar System is closely related to the abundance of volatiles, namely water, ammonia, and methane in the protoplanetary disk. Accurate measurement of volatiles in the Solar System is therefore important to understand not only the nebular hypothesis and origin of life but also planetary cosmogony as a whole. In this work, we propose a new, remote sensing technique to infer the outer planets water content by measuring Tremendously and Extremely Low Frequency (TLF-ELF) electromagnetic wave characteristics (Schumann resonances) excited by lightning in their gaseous envelopes. Schumann resonance detection can be potentially used for constraining the uncertainty of volatiles of the giant planets, mainly Uranus and Neptune, because such TLF-ELF wave signatures are closely related to the electric conductivity profile and water content.

  4. Elevated carbon dioxide reduces emission of herbivore induced volatiles in Zea mays

    USDA-ARS?s Scientific Manuscript database

    Terpene volatiles produced by sweet corn (Zea mays) upon infestation with pests such as beet armyworm (Spodoptera exigua) function as part of an indirect defense mechanism by attracting parasitoid wasps; yet little is known about the impact of atmospheric changes on this form of plant defense. To in...

  5. Powdery mildew suppresses herbivore-induced plant volatiles and interferes with parasitoid attraction in Brassica rapa

    USDA-ARS?s Scientific Manuscript database

    The co-occurrence of different antagonists on a plant can greatly affect infochemicals with ecological consequences for higher trophic levels. Here we investigated how the presence of a plant pathogen, the powdery mildew Erysiphe cruciferarum, on Brassica rapa affects 1) plant volatiles emitted in r...

  6. EPN Chemical ecology and new techniques for below ground sampling and analyses of volatile semiochemicals

    USDA-ARS?s Scientific Manuscript database

    It is well established that herbivory induced plant volatiles (HIPVs) attract natural enemies of the herbivores. Utilizing this plant response has become a fundamental part of above ground IPM programs. We now know that also roots can release HIPVs and that these compounds attract beneficial organis...

  7. Trapping female Pandemis limitata (Lepidoptera: Tortricidae) moths with mixtures of acetic acid, benzenoid apple leaf volatiles, and sex pheromones

    USDA-ARS?s Scientific Manuscript database

    Pandemis limitata (Robinson) is one of several leaf-feeding caterpillar pests of commercial tree-fruit crops in British Columbia. Recent discovery that European Pandemis spp. are attracted to lures containing acetic acid (AA) and caterpillar-induced benzenoid apple leaf volatiles, 2-phenylethanol a...

  8. Chilling-induced tomato flavor loss is associated with altered volatile synthesis and transient changes in DNA methylation

    USDA-ARS?s Scientific Manuscript database

    Commercial tomatoes are widely perceived by consumers as lacking flavor. A major part of that problem is a postharvest handling system that chills fruit. Low-temperature storage is widely used to slow ripening and reduce decay. However, chilling results in loss of flavor. Flavor-associated volatiles...

  9. Meligethes aeneus pollen-feeding suppresses, and oviposition induces, Brassica napus volatiles: beetle attraction/repellence to lilac aldehydes and veratrole

    USDA-ARS?s Scientific Manuscript database

    Insect pollination and pollen-feeding can reduce plant volatile emissions and future insect floral attraction, with oviposition having different effects. Meligethes aeneus F. (Coleoptera: Nitidulidae), is a pollen-feeding pest beetle of oilseed rape, Brassica napus L. (Brassicaceae). We measured pla...

  10. Sawdust biochar application to rice paddy field: reduced nitrogen loss in floodwater accompanied with increased NH3 volatilization.

    PubMed

    Feng, Yanfang; Sun, Haijun; Xue, Lihong; Wang, Yueman; Yang, Linzhang; Shi, Weiming; Xing, Baoshan

    2018-03-01

    Sawdust biochar (SDB) was for the first time applied to rice paddy field to evaluate its effects on potential nitrogen (N) runoff and ammonia (NH 3 ) volatilization losses in a soil column experimental system. Results showed that total N concentration of surface floodwater under SDB treatments was reduced by 7.29-35.16, 16.34-32.35, and 12.21-28.12% after three split N fertilizations, respectively. Particularly, NH 4 + -N was decreased by 11.84-27.08, 14.29-36.50, and 2.97-19.64%, respectively. However, SDB addition has no significant influence on NO 3 - -N concentration. Meanwhile, SDB application increased NH 4 + -N and total N content of top (0-15 cm) soil. Furthermore, these SDB-induced influences were more pronounced for 3 wt% SDB treatments. SDB treatments recorded 3.56-5.78 kg ha -1 higher NH 3 volatilization than urea control treatment, which was attributed to the elevated pH values of floodwater and top soil induced by SDB. Fortunately, the yield-scale NH 3 volatilization was not increased dramatically.

  11. Chilling Stress Upregulates α-Linolenic Acid-Oxidation Pathway and Induces Volatiles of C6 and C9 Aldehydes in Mango Fruit.

    PubMed

    Sivankalyani, Velu; Maoz, Itay; Feygenberg, Oleg; Maurer, Dalia; Alkan, Noam

    2017-01-25

    Mango-fruit storage period and shelf life are prolonged by cold storage. However, chilling temperature induces physiological and molecular changes, compromising fruit quality. In our previous transcriptomic study of mango fruit, cold storage at suboptimal temperature (5 °C) activated the α-linolenic acid metabolic pathway. To evaluate changes in fruit quality during chilling, we analyzed mango "Keitt" fruit peel volatiles. GC-MS analysis revealed significant modulations in fruit volatiles during storage at suboptimal temperature. Fewer changes were seen in response to the time of storage. The mango volatiles related to aroma, such as δ-3-carene, (Z)-β-ocimene, and terpinolene, were downregulated during the storage at suboptimal temperature. In contrast, C 6 and C 9 aldehydes and alcohols-α-linolenic acid derivatives 1-hexanal, (Z)-3-hexenal, (Z)-3-hexenol, (E)-2-hexenal, and nonanal-were elevated during suboptimal-temperature storage, before chilling-injury symptoms appeared. Detection of those molecules before chilling symptoms could lead to a new agro-technology to avoid chilling injuries and maintain fruit quality during cold storage at the lowest possible temperature.

  12. Anti-acetylcholinesterase and Antioxidant Activities of Inhaled Juniper Oil on Amyloid Beta (1-42)-Induced Oxidative Stress in the Rat Hippocampus.

    PubMed

    Cioanca, Oana; Hancianu, Monica; Mihasan, Marius; Hritcu, Lucian

    2015-05-01

    Juniper volatile oil is extracted from Juniperus communis L., of the Cupressaceae family, also known as common juniper. Also, in aromatherapy the juniper volatile oil is used against anxiety, nervous tension and stress-related conditions. In the present study, we identified the effects of the juniper volatile oil on amyloid beta (1-42)-induced oxidative stress in the rat hippocampus. Rats received a single intracerebroventricular injection of amyloid beta (1-42) (400 pmol/rat) and then were exposed to juniper volatile oil (200 μl, either 1 or 3 %) for controlled 60 min period, daily, for 21 continuous days. Also, the antioxidant activity in the hippocampus was assessed using superoxide dismutase, glutathione peroxidase and catalase specific activities, the total content of the reduced glutathione, protein carbonyl and malondialdehyde levels. Additionally, the acetylcholinesterase activity in the hippocampus was assessed. The amyloid beta (1-42)-treated rats exhibited the following: increase of the acetylcholinesterase, superoxide dismutase and catalase specific activities, decrease of glutathione peroxidase specific activity and the total content of the reduced glutathione along with an elevation of malondialdehyde and protein carbonyl levels. Inhalation of the juniper volatile oil significantly decreases the acetylcholinesterase activity and exhibited antioxidant potential. These findings suggest that the juniper volatile oil may be a potential candidate for the development of therapeutic agents to manage oxidative stress associated with Alzheimer's disease through decreasing the activity of acetylcholinesterase and anti-oxidative mechanism.

  13. Dynamics of Metabolite Induction in Fungal Co-cultures by Metabolomics at Both Volatile and Non-volatile Levels

    PubMed Central

    Azzollini, Antonio; Boggia, Lorenzo; Boccard, Julien; Sgorbini, Barbara; Lecoultre, Nicole; Allard, Pierre-Marie; Rubiolo, Patrizia; Rudaz, Serge; Gindro, Katia; Bicchi, Carlo; Wolfender, Jean-Luc

    2018-01-01

    Fungal co-cultivation has emerged as a promising way for activating cryptic biosynthetic pathways and discovering novel antimicrobial metabolites. For the success of such studies, a key element remains the development of standardized co-cultivation methods compatible with high-throughput analytical procedures. To efficiently highlight induction processes, it is crucial to acquire a holistic view of intermicrobial communication at the molecular level. To tackle this issue, a strategy was developed based on the miniaturization of fungal cultures that allows for a concomitant survey of induction phenomena in volatile and non-volatile metabolomes. Fungi were directly grown in vials, and each sample was profiled by head space solid phase microextraction gas chromatography mass spectrometry (HS-SPME-GC-MS), while the corresponding solid culture medium was analyzed by liquid chromatography high resolution mass spectrometry (LC-HRMS) after solvent extraction. This strategy was implemented for the screening of volatile and non-volatile metabolite inductions in an ecologically relevant fungal co-culture of Eutypa lata (Pers.) Tul. & C. Tul. (Diatrypaceae) and Botryosphaeria obtusa (Schwein.) Shoemaker (Botryosphaeriaceae), two wood-decaying fungi interacting in the context of esca disease of grapevine. For a comprehensive evaluation of the results, a multivariate data analysis combining Analysis of Variance and Partial Least Squares approaches, namely AMOPLS, was used to explore the complex LC-HRMS and GC-MS datasets and highlight dynamically induced compounds. A time-series study was carried out over 9 days, showing characteristic metabolite induction patterns in both volatile and non-volatile dimensions. Relevant links between the dynamics of expression of specific metabolite production were observed. In addition, the antifungal activity of 2-nonanone, a metabolite incrementally produced over time in the volatile fraction, was assessed against Eutypa lata and Botryosphaeria obtusa in an adapted bioassay set for volatile compounds. This compound has shown antifungal activity on both fungi and was found to be co-expressed with a known antifungal compound, O-methylmellein, induced in solid media. This strategy could help elucidate microbial inter- and intra-species cross-talk at various levels. Moreover, it supports the study of concerted defense/communication mechanisms for efficiently identifying original antimicrobials. PMID:29459851

  14. Innate and Learned Prey-Searching Behavior in a Generalist Predator.

    PubMed

    Ardanuy, Agnès; Albajes, Ramon; Turlings, Ted C J

    2016-06-01

    Early colonization by Zyginidia scutellaris leafhoppers might be a key factor in the attraction and settling of generalist predators, such as Orius spp., in maize fields. In this paper, we aimed to determine whether our observations of early season increases in field populations of Orius spp. reflect a specific attraction to Z. scutellaris-induced maize volatiles, and how the responses of Orius predators to herbivore-induced volatiles (HIPVs) might be affected by previous experiences on plants infested by herbivorous prey. Therefore, we examined the innate and learned preferences of Orius majusculus toward volatiles from maize plants attacked by three potential herbivores with different feeding strategies: the leafhopper Z. scutellaris (mesophyll feeder), the lepidopteran Spodoptera littoralis (chewer), and another leafhopper Dalbulus maidis (phloem feeder). In addition, we examined the volatile profiles emitted by maize plants infested by the three herbivores. Our results show that predators exhibit a strong innate attraction to volatiles from maize plants infested with Z. scutellaris or S. littoralis. Previous predation experience in the presence of HIPVs influences the predator's odor preferences. The innate preference for plants with cell or tissue damage may be explained by these plants releasing far more volatiles than plants infested by the phloem-sucking D. maidis. However, a predation experience on D. maidis-infested plants increased the preference for D. maidis-induced maize volatiles. After O. majusculus experienced L3-L4 larvae (too large to serve as prey) on S. littoralis-infested plants, they showed reduced attraction toward these plants and an increased attraction toward D. maidis-infested plants. When offered young larvae of S. littoralis, which are more suitable prey, preference toward HIPVs was similar to that of naive individuals. The HIPVs from plants infested by herbivores with distinctly different feeding strategies showed distinguishable quantitative differences in (Z)-3-hexenal, (E)-2-hexenal, and methyl salicylate. These compounds might serve as reliable indicators of prey presence and identity for the predator. Our results support the idea that feeding by Z. scutellaris results in the emission of maize's HIPVs that initially recruit Orius spp. into maize fields.

  15. Variation of Herbivore-Induced Volatile Terpenes among Arabidopsis Ecotypes Depends on Allelic Differences and Subcellular Targeting of Two Terpene Synthases, TPS02 and TPS031[W][OA

    PubMed Central

    Huang, Mengsu; Abel, Christian; Sohrabi, Reza; Petri, Jana; Haupt, Ina; Cosimano, John; Gershenzon, Jonathan; Tholl, Dorothea

    2010-01-01

    When attacked by insects, plants release mixtures of volatile compounds that are beneficial for direct or indirect defense. Natural variation of volatile emissions frequently occurs between and within plant species, but knowledge of the underlying molecular mechanisms is limited. We investigated intraspecific differences of volatile emissions induced from rosette leaves of 27 accessions of Arabidopsis (Arabidopsis thaliana) upon treatment with coronalon, a jasmonate mimic eliciting responses similar to those caused by insect feeding. Quantitative variation was found for the emission of the monoterpene (E)-β-ocimene, the sesquiterpene (E,E)-α-farnesene, the irregular homoterpene 4,8,12-trimethyltridecatetra-1,3,7,11-ene, and the benzenoid compound methyl salicylate. Differences in the relative emissions of (E)-β-ocimene and (E,E)-α-farnesene from accession Wassilewskija (Ws), a high-(E)-β-ocimene emitter, and accession Columbia (Col-0), a trace-(E)-β-ocimene emitter, were attributed to allelic variation of two closely related, tandem-duplicated terpene synthase genes, TPS02 and TPS03. The Ws genome contains a functional allele of TPS02 but not of TPS03, while the opposite is the case for Col-0. Recombinant proteins of the functional Ws TPS02 and Col-0 TPS03 genes both showed (E)-β-ocimene and (E,E)-α-farnesene synthase activities. However, differential subcellular compartmentalization of the two enzymes in plastids and the cytosol was found to be responsible for the ecotype-specific differences in (E)-β-ocimene/(E,E)-α-farnesene emission. Expression of the functional TPS02 and TPS03 alleles is induced in leaves by elicitor and insect treatment and occurs constitutively in floral tissues. Our studies show that both pseudogenization in the TPS family and subcellular segregation of functional TPS enzymes control the variation and plasticity of induced volatile emissions in wild plant species. PMID:20463089

  16. Can forest trees compensate for stress-generated growth losses by induced production of volatile compounds?

    PubMed

    Holopainen, Jarmo K

    2011-12-01

    Plants produce a variety of volatile organic compounds (VOCs). Under abiotic and biotic stresses, the number and amount of produced compounds can increase. Due to their long life span and large size, trees can produce biogenic VOCs (BVOCs) in much higher amounts than many other plants. It has been suggested that at cellular and tree physiological levels, induced production of VOCs is aimed at improving plant resistance to damage by reactive oxygen species generated by multiple abiotic stresses. In the few reported cases when biosynthesis of plant volatiles is inhibited or enhanced, the observed response to stress can be attributed to plant volatiles. Reported increase, e.g., in photosynthesis has mostly ranged between 5 and 50%. A comprehensive model to explain similar induction of VOCs under multiple biotic stresses is not yet available. As a result of pathogen or herbivore attack on forest trees, the induced production of VOCs is localized to the damage site but systemic induction of emissions has also been detected. These volatiles can affect fungal pathogens and the arrival rate of herbivorous insects on damaged trees, but also act as signalling compounds to maintain the trophic cascades that may improve tree fitness by improved efficiency of herbivore natural enemies. On the forest scale, biotic induction of VOC synthesis and release leads to an amplified flow of BVOCs in atmospheric reactions, which in atmospheres rich in oxides of nitrogen (NOx) results in ozone formation, and in low NOx atmospheres results in oxidation of VOCs, removal in ozone from the troposphere and the resulting formation of biogenic secondary organic aerosol (SOA) particles. I will summarize recent advances in the understanding of stress-induced VOC emissions from trees, with special focus on Populus spp. Particular importance is given to the ecological and atmospheric feedback systems based on BVOCs and biogenic SOA formation.

  17. The role of semi-volatile organic compounds in the mesoscale evolution of biomass burning aerosol: a modelling case study of the 2010 mega-fire event in Russia

    NASA Astrophysics Data System (ADS)

    Konovalov, I. B.; Beekmann, M.; Berezin, E. V.; Petetin, H.; Mielonen, T.; Kuznetsova, I. N.; Andreae, M. O.

    2015-03-01

    Chemistry transport models (CTMs) are an indispensable tool for studying and predicting atmospheric and climate effects associated with carbonaceous aerosol from open biomass burning (BB); this type of aerosol is known to contribute significantly to both global radiative forcing and to episodes of air pollution in regions affected by wildfires. Improving model performance requires systematic comparison of simulation results with measurements of BB aerosol and elucidating possible reasons for discrepancies between them, which, "by default", are frequently attributed in the literature to uncertainties in emission data. Based on published laboratory data regarding atmospheric evolution of BB aerosol and by using the volatility basis set (VBS) approach to organic aerosol modeling along with a "conventional" approach, we examined the importance of taking gas-particle partitioning and oxidation of semi-volatile organic compounds (SVOCs) into account in simulations of the mesoscale evolution of smoke plumes from intense wildfires that occurred in western Russia in 2010. BB emissions of primary aerosol components were constrained with the PM10 and CO data from the air pollution monitoring network in the Moscow region. The results of the simulations performed with the CHIMERE CTM were evaluated by considering, in particular, the ratio of smoke-related enhancements in PM10 and CO concentrations (ΔPM10 and ΔCO) measured in Finland (in the city of Kuopio), nearly 1000 km downstream of the fire emission sources. It is found that while the conventional approach (disregarding oxidation of SVOCs and assuming organic aerosol material to be non-volatile) strongly underestimates values of ΔPM10/ΔCO observed in Kuopio (by almost a factor of two), the VBS approach is capable to bring the simulations to a reasonable agreement with the ground measurements both in Moscow and in Kuopio. Using the VBS instead of the conventional approach is also found to result in a major improvement of the agreement of simulations and satellite measurements of aerosol optical depth, as well as in considerable changes in predicted aerosol composition and top-down BB aerosol emission estimates derived from AOD measurements.

  18. The role of semi-volatile organic compounds in the mesoscale evolution of biomass burning aerosol: a modeling case study of the 2010 mega-fire event in Russia

    NASA Astrophysics Data System (ADS)

    Konovalov, I. B.; Beekmann, M.; Berezin, E. V.; Petetin, H.; Mielonen, T.; Kuznetsova, I. N.; Andreae, M. O.

    2015-12-01

    Chemistry transport models (CTMs) are an indispensable tool for studying and predicting atmospheric and climate effects associated with carbonaceous aerosol from open biomass burning (BB); this type of aerosol is known to contribute significantly to both global radiative forcing and to episodes of air pollution in regions affected by wildfires. Improving model performance requires systematic comparison of simulation results with measurements of BB aerosol and elucidation of possible reasons for discrepancies between them, which, by default, are frequently attributed in the literature to uncertainties in emission data. Based on published laboratory data on the atmospheric evolution of BB aerosol and using the volatility basis set (VBS) framework for organic aerosol modeling, we examined the importance of taking gas-particle partitioning and oxidation of semi-volatile organic compounds (SVOCs) into account in simulations of the mesoscale evolution of smoke plumes from intense wildfires that occurred in western Russia in 2010. Biomass burning emissions of primary aerosol components were constrained with PM10 and CO data from the air pollution monitoring network in the Moscow region. The results of the simulations performed with the CHIMERE CTM were evaluated by considering, in particular, the ratio of smoke-related enhancements in PM10 and CO concentrations (ΔPM10 and ΔCO) measured in Finland (in the city of Kuopio), nearly 1000 km downstream of the fire emission sources. It is found that while the simulations based on a "conventional" approach to BB aerosol modeling (disregarding oxidation of SVOCs and assuming organic aerosol material to be non-volatile) strongly underestimated values of ΔPM10/ΔCO observed in Kuopio (by a factor of 2), employing the "advanced" representation of atmospheric processing of organic aerosol material resulted in bringing the simulations to a much closer agreement with the ground measurements. Furthermore, taking gas-particle partitioning and oxidation of SVOCs into account is found to result in a major improvement of the agreement of simulations and satellite measurements of aerosol optical depth, as well as in considerable changes in predicted aerosol composition and top-down BB aerosol emission estimates derived from AOD measurements.

  19. Observational Constraints on Modeling Growth and Evaporation Kinetics of Isoprene SOA

    NASA Astrophysics Data System (ADS)

    Zaveri, R. A.; Shilling, J. E.; Zelenyuk, A.; Liu, J.; Wilson, J. M.; Laskin, A.; Wang, B.; Fast, J. D.; Easter, R. C.; Wang, J.; Kuang, C.; Thornton, J. A.; Setyan, A.; Zhang, Q.; Onasch, T. B.; Worsnop, D. R.

    2014-12-01

    Isoprene is thought to be a major contributor to the global secondary organic aerosol (SOA) budget, and therefore has the potential to exert a significant influence on earth's climate via aerosol direct and indirect radiative effects. Both aerosol optical and cloud condensation nuclei properties are quite sensitive to aerosol number size distribution, as opposed to the total aerosol mass concentration. Recent studies suggest that SOA particles can be highly viscous, which can affect the kinetics of SOA partitioning and size distribution evolution when the condensing organic vapors are semi-volatile. In this study, we examine the growth kinetics of SOA formed from isoprene photooxidation in the presence of pre-existing Aitken and accumulation mode aerosols in: (a) the ambient atmosphere during the CARES field campaign, and (b) the environmental chamber at PNNL. Each growth episode is analyzed and interpreted with the updated MOSAIC aerosol box model, which performs kinetic gas-particle partitioning of SOA and takes into account diffusion and chemical reaction within the particle phase. The model is initialized with the observed aerosol size distribution and composition at the beginning of the experiment, and the total amount of SOA formed in the model at any given time is constrained by the observed total amount of SOA formed. The variable model parameters include the number of condensing organic species, their gas-phase formation rates, their effective volatilities, and their bulk diffusivities in the Aitken and accumulation modes. The objective of the constrained modeling exercise is then to determine which model configuration is able to best reproduce the observed size distribution evolution, thus providing valuable insights into the possible mechanism of SOA formation. We also examine the evaporation kinetics of size-selected particles formed in the environmental chamber to provide additional constraints on the effective volatility and bulk diffusivity of the organic species. Our results suggest that SOA formed from isoprene photooxidation is semi-volatile, and the resulting size distribution evolution is highly sensitive to the phase state (bulk diffusivity) of the pre-existing aerosol. Implications of these findings on further SOA model development and evaluation strategy will be discussed.

  20. Sediment Transport and Landscape Evolution on Comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Birch, S.; Umurhan, O. M.; Hayes, A.; Tang, Y.; Moore, J. M.; White, O. L.

    2017-12-01

    New observations from ESA's Rosetta orbiter of comet 67P/Churyumov-Gerasimenko (67P) have revolutionized our understanding of these primitive bodies and the processes that act to modify their surfaces. Centimeter to meter scale images of the surface of 67P have revealed a diverse sedimentary world, where the dominant landforms consist of vertical, consolidated cliffs and pits interspersed, and in the northern hemisphere buried, by smooth, decameter thick sedimentary deposits. Sublimation erosion, in the form of jets, from exposed cliff faces acts to break off parts of the weakened bedrock material, which then accumulate as mass wasting deposits at the cliff bases. The large boulders within these deposits may also contribute to the jets, as volatiles in exposed faces of the boulders, previously hidden from the Sun, can sublimate away. During a jet event, the less volatile material that does not escape the comet falls back and drapes the rocky surface as smooth deposits. This is particularly evident in the northern hemisphere of 67P and within gravitational lows, where the underlying consolidated material appears to outcrop from underneath a vast cover of sedimentary deposits. These sedimentary materials, having a low thermal inertia, counteracts the erosive process, and allows for the surface of 67P to retain a relatively primitive form to the current day. To understand this process quantitatively, and constrain over what timescale(s) the surface of 67P evolves, we utilized high-resolution photoclinometry digital terrain models ( 14 cm/pixel), and the MARSSIM landscape evolution model, adapted for a low, and variable gravity environment. Perfectly suited to model sublimation erosion and mass-wasting, MARSSIM also allows us to track the re-condensation of non-volatile materials to accurately account for the important feedback played by the sedimentary deposits. These simulations will allow for us to constrain the rates of landscape evolution on 67P, to compare directly to observations of dynamic changes on the nucleus. Through this work, we will also be able to assess the question of whether 67P is primitive or not, using reasonable assumptions as to the volatility and strength of the bedrock materials.

  1. Sequence Comparisons of Odorant Receptors among Tortricid Moths Reveal Different Rates of Molecular Evolution among Family Members

    PubMed Central

    Carraher, Colm; Authier, Astrid; Steinwender, Bernd; Newcomb, Richard D.

    2012-01-01

    In insects, odorant receptors detect volatile cues involved in behaviours such as mate recognition, food location and oviposition. We have investigated the evolution of three odorant receptors from five species within the moth genera Ctenopseustis and Planotrotrix, family Tortricidae, which fall into distinct clades within the odorant receptor multigene family. One receptor is the orthologue of the co-receptor Or83b, now known as Orco (OR2), and encodes the obligate ion channel subunit of the receptor complex. In comparison, the other two receptors, OR1 and OR3, are ligand-binding receptor subunits, activated by volatile compounds produced by plants - methyl salicylate and citral, respectively. Rates of sequence evolution at non-synonymous sites were significantly higher in OR1 compared with OR2 and OR3. Within the dataset OR1 contains 109 variable amino acid positions that are distributed evenly across the entire protein including transmembrane helices, loop regions and termini, while OR2 and OR3 contain 18 and 16 variable sites, respectively. OR2 shows a high level of amino acid conservation as expected due to its essential role in odour detection; however we found unexpected differences in the rate of evolution between two ligand-binding odorant receptors, OR1 and OR3. OR3 shows high sequence conservation suggestive of a conserved role in odour reception, whereas the higher rate of evolution observed in OR1, particularly at non-synonymous sites, may be suggestive of relaxed constraint, perhaps associated with the loss of an ancestral role in sex pheromone reception. PMID:22701634

  2. Signaling epicenters: The role of caveolae and caveolins in volatile anesthetic induced cardiac protection

    PubMed Central

    Horikawa, Yousuke T.; Tsutsumi, Yasuo M.; Patel, Hemal H.; Roth, David M.

    2014-01-01

    Caveolae are flask-like invaginations of the cell surface that have been identified as signaling epicenters. Within these microdomains, caveolins are structural proteins of caveolae, which are able to interact with numerous signaling molecules affecting temporal and spatial dimensions required in cardiac protection. This complex moiety is essential to the mechanisms involved in volatile anesthetics. In this review, we will outline a general overview of caveolae and caveolins and their role in protective signaling, with a focus on the effects of volatile anesthetics. These recent developments have allowed us to better understand the mechanistic effect of volatile anesthetics and their potential in cardiac protection. PMID:24502576

  3. Dynamic chemical communication between plants and bacteria through airborne signals: induced resistance by bacterial volatiles.

    PubMed

    Farag, Mohamed A; Zhang, Huiming; Ryu, Choong-Min

    2013-07-01

    Certain plant growth-promoting rhizobacteria (PGPR) elicit induced systemic resistance (ISR) and plant growth promotion in the absence of physical contact with plants via volatile organic compound (VOC) emissions. In this article, we review the recent progess made by research into the interactions between PGPR VOCs and plants, focusing on VOC emission by PGPR strains in plants. Particular attention is given to the mechanisms by which these bacterial VOCs elicit ISR. We provide an overview of recent progress in the elucidation of PGPR VOC interactions from studies utilizing transcriptome, metabolome, and proteome analyses. By monitoring defense gene expression patterns, performing 2-dimensional electrophoresis, and studying defense signaling null mutants, salicylic acid and ethylene have been found to be key players in plant signaling pathways involved in the ISR response. Bacterial VOCs also confer induced systemic tolerance to abiotic stresses, such as drought and heavy metals. A review of current analytical approaches for PGPR volatile profiling is also provided with needed future developments emphasized. To assess potential utilization of PGPR VOCs for crop plants, volatile suspensions have been applied to pepper and cucumber roots and found to be effective at protecting plants against plant pathogens and insect pests in the field. Taken together, these studies provide further insight into the biological and ecological potential of PGPR VOCs for enhancing plant self-immunity and/or adaptation to biotic and abiotic stresses in modern agriculture.

  4. Lunar sample analysis

    NASA Technical Reports Server (NTRS)

    Housley, R. M.

    1978-01-01

    Flameless atomic abosrption, X-ray photoemission spectroscopy, ferromagnetic resonance, scanning electron microscopy, and Moessbauer spectroscopy were used to investigate the evolution of the lunar regolith, the transport of volatile trace metals, and the surface composition of lunar samples. The development of a model for lunar volcanic eruptions is also discussed.

  5. Physical mechanisms leading to two-dimensional gas content evolution within a volcanic conduit

    NASA Astrophysics Data System (ADS)

    Collombet, M.; Burgisser, A.; Chevalier, L. A. C.

    2017-12-01

    The eruption of viscous magma at the Earth's surface often gives rise to abrupt regime changes. The transition from the gentle effusion of a lava dome to brief but powerful explosions is a common regime change. This transition is often preceded by the sealing of the shallow part of the volcanic conduit and the accumulation of volatile-rich magma underneath, a situation that collects the energy to be brutally released during the subsequent explosion. While conduit sealing is well-documented, volatile accumulation has proven harder to characterize. In this study, we use a 2D conduit flow numerical model including gas loss within the magma and into the wallrock to follow the evolution of gas content during a regime transition. Using various initial porosity distributions, permeability laws and boundary conditions, we track the physical parameters that prevent or enhance gas escape from the magma. Our approach aims to identify the physical processes controlling eruptive transitions and to highlight the importance of using field data observations to constrain numerical models.

  6. Brettanomyces bruxellensis evolution and volatile phenols production in red wines during storage in bottles.

    PubMed

    Coulon, J; Perello, M C; Lonvaud-Funel, A; de Revel, G; Renouf, V

    2010-04-01

    The presence of Brettanomyces bruxellensis is an important issue during winemaking because of its volatile phenols production capacities. The aim of this study is to provide information on the ability of residual B. bruxellensis populations to multiply and spoil finished wines during storage in bottles. Several finished wines were studied. Brettanomyces bruxellensis populations were monitored during two and a half months, and volatile phenols as well as chemical parameters regularly determined. Variable growth and volatile phenols synthesis capacities were evidenced, in particularly when cells are in a noncultivable state. In addition, the volatile phenol production was clearly shown to be a two-step procedure that could strongly be correlated to the physiological state of the yeast population. This study underlines the importance of minimizing B. bruxellensis populations at the end of wine ageing to reduce volatile phenols production risk once the wine in bottle. Moreover, the physiological state of the yeast seems to have an important impact on ethyl-phenols production, hence demonstrating the importance of taking into account this parameter when analysing wine spoilage risks. Little data exist about the survival of B. bruxellensis once the wine in bottle. This study provides information on the alteration risks encountered during wine storage in bottle and reveals the importance of carrying on further studies to increase the knowledge on B. bruxellensis physiology.

  7. MEVTV Workshop on Early Tectonic and Volcanic Evolution of Mars

    NASA Technical Reports Server (NTRS)

    Frey, H. (Editor)

    1988-01-01

    Although not ignored, the problems of the early tectonic and volcanic evolution of Mars have generally received less attention than those later in the evolution of the planet. Specifically, much attention was devoted to the evolution of the Tharsis region of Mars and to the planet itself at the time following the establishment of this major tectonic and volcanic province. By contrast, little attention was directed at fundamental questions, such as the conditions that led to the development of Tharsis and the cause of the basic fundamental dichotomy of the Martian crust. It was to address these and related questions of the earliest evolution of Mars that a workshop was organized under the auspices of the Mars: Evolution of Volcanism, Tectonism, and Volatiles (MEVTV) Program. Four sessions were held: crustal dichotomy; crustal differentiation/volcanism; Tharsis, Elysium, and Valles Marineris; and ridges and fault tectonics.

  8. Reactive multiphase flow at the pore-scale: the melting of a crystalline framework during the injection of buoyant hot volatiles

    NASA Astrophysics Data System (ADS)

    Andrea, P.; Huber, C.; Bachmann, O.; Chopard, B.

    2010-12-01

    Multiphase reactive flows occur naturally in various environments in the shallow subsurface, e.g. CO2 injections in saturated reservoirs, exsolved methane flux in shallow sediments and H20-CO2 volatiles in magmatic systems. Because of their multiphase nature together with the nonlinear feedbacks between reactions (dissolution/melting or precipitation) and the flow field at the pore-scale, the study of these dynamical processes remains a great challenge. In this study we focus on the injection of buoyant hot volatiles exsolved from a magmatic intrusion underplating a crystal-rich magma (porous medium). We use some simple theoretical models and a pore-scale multiphase reactive lattice Boltzmann model to investigate how the heat carried by the volatile phase affects the evolution of the porous medium spatially and temporally. We find that when the reaction rate is relatively slow and when the injection rate of volatiles is large (high injection Capillary number), the dissolution of the porous medium can be described by a local Peclet number (ratio of advective to diffusive flux of heat/reactant in the main gas channel). When the injection rate of volatile is reduced, or when the reaction rate is large, the dynamics transition to more complex regimes, where subvertical gas channels are no longer stable and can break into disconnected gas slugs. For the case of the injection of hot volatiles in crystal-rich magmatic systems, we find that the excess enthalpy advected by buoyant volatiles penetrates the porous medium over distances ~r Pe, where r is the average radius of the volatile channel (~pore size). The transport of heat by buoyant gases through a crystal mush is therefore in most cases limited to distances < meters. Our results also suggest that buoyant volatiles can carry chemical species (Li,F, Cl) far into a mush as their corresponding local Peclet number is several orders of magnitude greater than that for heat, owing to their low diffusion coefficients.

  9. Brain Injury Alters Volatile Metabolome

    PubMed Central

    Cohen, Akiva S.; Gordon, Amy R.; Opiekun, Maryanne; Martin, Talia; Elkind, Jaclynn; Lundström, Johan N.; Beauchamp, Gary K.

    2016-01-01

    Chemical signals arising from body secretions and excretions communicate information about health status as have been reported in a range of animal models of disease. A potential common pathway for diseases to alter chemical signals is via activation of immune function—which is known to be intimately involved in modulation of chemical signals in several species. Based on our prior findings that both immunization and inflammation alter volatile body odors, we hypothesized that injury accompanied by inflammation might correspondingly modify the volatile metabolome to create a signature endophenotype. In particular, we investigated alteration of the volatile metabolome as a result of traumatic brain injury. Here, we demonstrate that mice could be trained in a behavioral assay to discriminate mouse models subjected to lateral fluid percussion injury from appropriate surgical sham controls on the basis of volatile urinary metabolites. Chemical analyses of the urine samples similarly demonstrated that brain injury altered urine volatile profiles. Behavioral and chemical analyses further indicated that alteration of the volatile metabolome induced by brain injury and alteration resulting from lipopolysaccharide-associated inflammation were not synonymous. Monitoring of alterations in the volatile metabolome may be a useful tool for rapid brain trauma diagnosis and for monitoring recovery. PMID:26926034

  10. Multidimensional analysis of cannabis volatile constituents: identification of 5,5-dimethyl-1-vinylbicyclo[2.1.1]hexane as a volatile marker of hashish, the resin of Cannabis sativa L.

    PubMed

    Marchini, Marie; Charvoz, Céline; Dujourdy, Laurence; Baldovini, Nicolas; Filippi, Jean-Jacques

    2014-11-28

    The volatile constituents of drug samples derived from Cannabis sativa L. were investigated by means of headspace solid phase microextraction (HS-SPME) and gas chromatography techniques (GC-MS, GC×GC-MS). Samples of cannabis herb and hashish showed clear differences in their volatile chemical profiles, mostly resulting from photo-oxidation processes occurring during the transformation of fresh cannabis herb into hashish. Most unexpectedly, we could demonstrate hashish samples as containing remarkable amounts of a rare and unusual monoterpene - 5,5-dimethyl-1-vinylbicyclo[2.1.1]hexane - among the volatile compounds detected in their headspaces. We gave evidence for the formation of this compound from the light induced rearrangement of β-myrcene during the manufacture of hashish. In view of its high abundance among volatile constituents of cannabis resin and its scarce occurrence in other natural volatile extracts, we propose to rename this specific monoterpene hashishene. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. The maize lipoxygenase, ZmLOX10, mediates green leaf volatile, jasmonate, and herbivore-induced plant volatile production for defense against insect attack

    USDA-ARS?s Scientific Manuscript database

    Fatty acid derivatives are of central importance for plant immunity against insect herbivores. However, major regulatory genes and the signals that modulate these defense metabolites are vastly understudied, especially in important agro-economic monocot species. Here we show that products and sign...

  12. Reduced stomatal conductance in plants grown under elevated carbon dioxide leads to lower emission of herbivore induced volatiles.

    USDA-ARS?s Scientific Manuscript database

    Terpene volatiles produced by sweet corn (Zea Mays) upon infestation with pests such as Beet armyworm (Spodoptera exigua) function as part of an indirect plant defense mechanism by attracting parasitoid wasps. To investigate the effect of climate change on this indirect defense, we determined the im...

  13. Dock leaf beetle, Gastrophysa viridula Deg., herbivory on Mossy Sorrel, Rumex confertus Willd: Induced plant volatiles and beetle orientation responses

    USDA-ARS?s Scientific Manuscript database

    The invasive weed Rumex confertus Willd. (mossy sorrel) is fed upon and severely defoliated by Gastrophysa viridula Deg. (dock leaf beetle), a highly promising biological control agent for this weed. We report volatile organic compound (VOC) induction when one leaf on R. confertus was damaged by G. ...

  14. Herbivore induced plant volatiles

    PubMed Central

    War, Abdul Rashid; Sharma, Hari Chand; Paulraj, Michael Gabriel; War, Mohd Yousf; Ignacimuthu, Savarimuthu

    2011-01-01

    Plants respond to herbivory through different defensive mechanisms. The induction of volatile emission is one of the important and immediate response of plants to herbivory. Herbivore-induced plant volatiles (HIPVs) are involved in plant communication with natural enemies of the insect herbivores, neighboring plants, and different parts of the damaged plant. Release of a wide variety of HIPVs in response to herbivore damage and their role in plant-plant, plant-carnivore and intraplant communications represents a new facet of the complex interactions among different trophic levels. HIPVs are released from leaves, flowers, and fruits into the atmosphere or into the soil from roots in response to herbivore attack. Moreover, HIPVs act as feeding and/or oviposition deterrents to insect pests. HIPVs also mediate the interactions between the plants and the microorganisms. This review presents an overview of HIPVs emitted by plants, their role in plant defense against herbivores and their implications for pest management. PMID:22105032

  15. Noise-induced volatility of collective dynamics

    NASA Astrophysics Data System (ADS)

    Harras, Georges; Tessone, Claudio J.; Sornette, Didier

    2012-01-01

    Noise-induced volatility refers to a phenomenon of increased level of fluctuations in the collective dynamics of bistable units in the presence of a rapidly varying external signal, and intermediate noise levels. The archetypical signature of this phenomenon is that—beyond the increase in the level of fluctuations—the response of the system becomes uncorrelated with the external driving force, making it different from stochastic resonance. Numerical simulations and an analytical theory of a stochastic dynamical version of the Ising model on regular and random networks demonstrate the ubiquity and robustness of this phenomenon, which is argued to be a possible cause of excess volatility in financial markets, of enhanced effective temperatures in a variety of out-of-equilibrium systems, and of strong selective responses of immune systems of complex biological organisms. Extensive numerical simulations are compared with a mean-field theory for different network topologies.

  16. Attraction of Three Mirid Predators to Tomato Infested by Both the Tomato Leaf Mining Moth Tuta absoluta and the Whitefly Bemisia tabaci.

    PubMed

    Silva, Diego B; Bueno, Vanda H P; Van Loon, Joop J A; Peñaflor, Maria Fernanda G V; Bento, José Maurício S; Van Lenteren, Joop C

    2018-01-01

    Plants emit volatile compounds in response to insect herbivory, which may play multiple roles as defensive compounds and mediators of interactions with other plants, microorganisms and animals. Herbivore-induced plant volatiles (HIPVs) may act as indirect plant defenses by attracting natural enemies of the attacking herbivore. We report here the first evidence of the attraction of three Neotropical mirid predators (Macrolophus basicornis, Engytatus varians and Campyloneuropsis infumatus) toward plants emitting volatiles induced upon feeding by two tomato pests, the leaf miner Tuta absoluta and the phloem feeder Bemisia tabaci, in olfactometer bioassays. Subsequently, we compared the composition of volatile blends emitted by insect-infested tomato plants by collecting headspace samples and analyzing them with GC-FID and GC-MS. Egg deposition by T. absoluta did not make tomato plants more attractive to the mirid predators than uninfested tomato plants. Macrolophus basicornis is attracted to tomato plants infested with either T. absoluta larvae or by a mixture of B. tabaci eggs, nymphs and adults. Engytatus varians and C. infumatus responded to volatile blends released by tomato plants infested with T. absoluta larvae over uninfested plants. Also, multiple herbivory by T. absoluta and B. tabaci did not increase the attraction of the mirids compared to infestation with T. absoluta alone. Terpenoids represented the most important class of compounds in the volatile blends and there were significant differences between the volatile blends emitted by tomato plants in response to attack by T. absoluta, B. tabaci, or by both insects. We, therefore, conclude that all three mirids use tomato plant volatiles to find T. absoluta larvae. Multiple herbivory did neither increase, nor decrease attraction of C. infumatus, E. varians and M. basicornis. By breeding for higher rates of emission of selected terpenes, increased attractiveness of tomato plants to natural enemies may improve the effectiveness of biological control.

  17. Triton: The Connection between Rosetta, New Horizons and a future Ice Giants Mission

    NASA Astrophysics Data System (ADS)

    Mandt, K.; Luspay-Kuti, A.; Mousis, O.

    2017-12-01

    Several planetary missions have made observations intended to evaluate the origin and evolution of volatiles in solar system atmospheres. This is an important topic that connects how planets, moons and small bodies formed to the question of past or present habitability. Comet isotope observations have been ongoing and have played a crucial role in this research. Measurements of the D/H in cometary water and 14N/15N in NH3, in particular, have been critical for evaluating the origin of water and nitrogen in the terrestrial planet atmospheres and for that of Saturn's moon Titan. We have conducted comparative studies modeling the escape, photochemistry and evolution of the atmospheres of Titan and Pluto to try to understand whether the nitrogen in these atmospheres originated as N2 or NH3 in the protosolar nebula. The origin of Titan's nitrogen has been well constrained, but uncertainties about isotope processes in Pluto's atmosphere leave the origin of Pluto's nitrogen difficult to resolve. Because of their similarities, Triton is subject to the same uncertainties and is of particular interest for understanding the origin of Triton's and Pluto's volatiles as well as of Kuiper Belt Objects in general. We will discuss how Rosetta, New Horizons and a future Ice Giants mission will each contribute to understanding the origin of nitrogen in these atmospheres and to the origin of volatiles in atmospheres throughout outer solar system.

  18. Three-dimensional illumination and thermal model of the Abydos region on comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Kömle, Norbert I.; Macher, Wolfgang; Tiefenbacher, Patrick; Kargl, Günter; Pelivan, Ivanka; Knollenberg, Jörg; Spohn, Tilman; Jorda, Laurent; Capanna, Claire; Lommatsch, Valentina; Cozzoni, Barbara; Finke, Felix

    2017-07-01

    On 2014 November 12 Rosetta's comet lander Philae arrived on the surface of Comet 67P/Churyumov-Gerasimenko. Among the data collected by the instruments on board are images from the panorama camera CIVA and the down looking camera ROLIS, as well as temperature measurements recorded by the sensors of the MUPUS experiment and by various housekeeping sensors. In combination with remote observations by the cameras OSIRIS and NAVCAM and other instruments on the Rosetta Orbiter, it was possible to construct a reasonable model of the terrain in the close vicinity of the landing site Abydos. We have collected all available information on the position and orientation of Philae, as well as on Abydos, where the terrain can be partially reconstructed with a resolution in the decimetre range. On this basis, a 3D model for the determination of solar irradiation and thermal evolution of the region was developed. Our calculations comprise the heating and cooling process of the local surface features around Philae. Two different scenarios are studied: non-volatile material (dust mantle) covering the whole surface, and a non-volatile surface containing spots of volatile water ice where free sublimation is possible. The presented 3D model also has the potential to be applied to thermal evolution studies of other regions on the comet, for which high-resolution digital terrain models are available.

  19. Influence of different salting processes on the evolution of the volatile metabolites of vacuum-packed fillets of farmed and wild sea bass (Dicentrarchus labrax) stored under refrigeration conditions: a study by SPME-GC/MS.

    PubMed

    Vidal, Natalia P; Manzanos, María J; Goicoechea, Encarnación; Guillén, María D

    2017-02-01

    Fish shelf-life extension is a topic of great interest. In this study the behaviour of salted and unsalted farmed and wild European sea bass (Dicentrarchus labrax) fillets during storage was analysed through the evolution of their volatile metabolites. Farmed and wild sea bass fillets were brine-salted for 15 or 75 min, or dry-salted, vacuum-packed and stored at 4 °C for up to 1 month, and their headspaces were studied by Solid Phase Micro extraction-Gas Chromatography/Mass Spectrometry (SPME-GC/MS). At the same storage time, unsalted wild fillets contained, in general, a higher number and abundance of volatile compounds coming from microbiological or endogenous enzymatic activity than unsalted farmed ones. The more intense the salting, the lower the number and abundance of microbiological spoilage metabolites, especially in wild samples. The appearance of oxidation metabolites only in dry-salted wild samples evidences that this kind of salting provokes a certain oxidation in these samples. The better performance of farmed than wild fillets suggests that salted farmed fillets, vacuum-packed and stored under refrigeration conditions, could be a successful alternative to diversify the presence of sea bass in the market. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  20. Market-oriented ethanol and corn-trade policies can reduce climate-induced US corn price volatility

    NASA Astrophysics Data System (ADS)

    Verma, Monika; Hertel, Thomas; Diffenbaugh, Noah

    2014-05-01

    Agriculture is closely affected by climate. Over the past decade, biofuels have emerged as another important factor shaping the agricultural sector. We ask whether the presence of the US ethanol sector can play a role in moderating increases in US corn price variability, projected to occur in response to near-term global warming. Our findings suggest that the answer to this question depends heavily on the underlying forces shaping the ethanol industry. If mandate-driven, there is little doubt that the presence of the corn-ethanol sector will exacerbate price volatility. However, if market-driven, then the emergence of the corn-ethanol sector can be a double-edged sword for corn price volatility, possibly cushioning the impact of increased climate driven supply volatility, but also inheriting volatility from the newly integrated energy markets via crude oil price fluctuations. We find that empirically the former effect dominates, reducing price volatility by 27%. In contrast, mandates on ethanol production increase future price volatility by 54% in under future climate after 2020. We also consider the potential for liberalized international corn trade to cushion corn price volatility in the US. Our results suggest that allowing corn to move freely internationally serves to reduce the impact of near-term climate change on US corn price volatility by 8%.

  1. Silicon isotopes in angrites and volatile loss in planetesimals

    PubMed Central

    Moynier, Frédéric; Savage, Paul S.; Badro, James; Barrat, Jean-Alix

    2014-01-01

    Inner solar system bodies, including the Earth, Moon, and asteroids, are depleted in volatile elements relative to chondrites. Hypotheses for this volatile element depletion include incomplete condensation from the solar nebula and volatile loss during energetic impacts. These processes are expected to each produce characteristic stable isotope signatures. However, processes of planetary differentiation may also modify the isotopic composition of geochemical reservoirs. Angrites are rare meteorites that crystallized only a few million years after calcium–aluminum-rich inclusions and exhibit extreme depletions in volatile elements relative to chondrites, making them ideal samples with which to study volatile element depletion in the early solar system. Here we present high-precision Si isotope data that show angrites are enriched in the heavy isotopes of Si relative to chondritic meteorites by 50–100 ppm/amu. Silicon is sufficiently volatile such that it may be isotopically fractionated during incomplete condensation or evaporative mass loss, but theoretical calculations and experimental results also predict isotope fractionation under specific conditions of metal–silicate differentiation. We show that the Si isotope composition of angrites cannot be explained by any plausible core formation scenario, but rather reflects isotope fractionation during impact-induced evaporation. Our results indicate planetesimals initially formed from volatile-rich material and were subsequently depleted in volatile elements during accretion. PMID:25404309

  2. Xe isotopic constraints on cycling of deep Earth volatiles

    NASA Astrophysics Data System (ADS)

    Parai, R.; Mukhopadhyay, S.

    2017-12-01

    The modern deep Earth volatile budget reflects primordial volatiles delivered during accretion, radiogenic ingrowth of volatile species (e.g., 40Ar produced by 40K decay), outgassing in association with mantle processing, and regassing via subduction. The noble gases are unique volatile tracers in that they are chemically inert, but are thought to be trapped within hydrous alteration phases in downwelling lithologies. Noble gases thus provide a tracer of volatile transport between the deep Earth and surface reservoirs. Constraints on the fluxes of noble gases between deep Earth and surface reservoirs over time can accordingly be used to provide insight into temperature conditions at subduction zones, limits on volatile cycling, and the evolving distribution of major volatile species in terrestrial reservoirs over time. Xe isotope systematics in mantle-derived rocks show that 80-90% of the mantle Xe budget is derived from recycling of atmospheric Xe, indicating that atmospheric Xe is retained in subducting slabs beyond depths of magma generation in subduction zones over Earth history. We present an integrated model of Xe cycling between the mantle and atmosphere in association with mantle processing over Earth history. We test a wide variety of outgassing and regassing rates and take the evolution of the atmospheric Xe isotopic composition [e.g., 1] into account. Models in which the deep Earth transitions from a net outgassing to net regassing regime best satisfy Xe isotopic constraints from mantle-derived rocks [2-6]. [1] Avice et al., 2017; Nature Communications, 8; [2] Mukhopadhyay, 2012, Nature 486, 101-104; [3] Parai et al., 2012, EPSL 359-360, 227-239; [4] Parai and Mukhopadhay, 2015, G-cubed 16, 719-735; [5] Peto et al., 2013, EPSL 369-370, 13-23; [6] Tucker et al., 2012, EPSL 355-356, 244-254.

  3. Melt inclusion constraints on volatile systematics and degassing history of the 2014-2015 Holuhraun eruption, Iceland

    NASA Astrophysics Data System (ADS)

    Bali, E.; Hartley, M. E.; Halldórsson, S. A.; Gudfinnsson, G. H.; Jakobsson, S.

    2018-02-01

    The mass of volatiles emitted during volcanic eruptions is often estimated by comparing the volatile contents of undegassed melt inclusions, trapped in crystals at an early stage of magmatic evolution, with that of the degassed matrix glass. Here we present detailed characterisation of magmatic volatiles (H2O, CO2, S, Fl and Cl) of crystal-hosted melt and fluid inclusions from the 2014-2015 Holuhraun eruption of the Bárðarbunga volcanic system, Iceland. Based on the ratios of magmatic volatiles to similarly incompatible trace elements, the undegassed primary volatile contents of the Holuhraun parental melt are estimated at 1500-1700 ppm CO2, 0.13-0.16 wt% H2O, 60-80 ppm Cl, 130-240 ppm F and 500-800 ppm S. High-density fluid inclusions indicate onset of crystallisation at pressures ≥ 0.4 GPa ( 12 km depth) promoting deep degassing of CO2. Prior to the onset of degassing, the melt CO2 content may have reached 3000-4000 ppm, with the total magmatic CO2 budget estimated at 23-55 Mt. SO2 release commenced at 0.12 GPa ( 3.6 km depth), eventually leading to entrapment of SO2 vapour in low-density fluid inclusions. We calculate the syn-eruptive volatile release as 22.2 Mt of magmatic H2O, 5.9-7.7 Mt CO2, and 11.3 Mt of SO2 over the course of the eruption; F and Cl release were insignificant. Melt inclusion constraints on syn-eruptive volatile release are similar to estimates made during in situ field monitoring, with the exception of H2O, where field measurements may be heavily biased by the incorporation of meteoric water.

  4. Measurement of the temperature dependent partitioning of semi-volatile organics onto aerosol near roadways

    NASA Astrophysics Data System (ADS)

    Wentzell, J. J.; Liggio, J.; Li, S.; Brook, J.; Staebler, R. M.; Evans, G. J.; Jeong, C.; Sheppard, A.; Lu, G.; Gordon, M.; Mihele, C.

    2010-12-01

    The volatility of the organic aerosol fraction has received a great deal of attention recently in light of new volatility-based modelling approaches and due to the inability of current models to fully account for secondary organic aerosol (SOA). In this regard, evaporation of primary organic aerosol species and their subsequent oxidation may contribute significantly to SOA downwind of sources. This implies that moderate ambient temperature fluctuations can significantly increase or decrease the aerosol bound fraction of semi-volatile and intermediate volatility (SVOC + IVOC) compounds. In order to examine the importance of these more volatile organic components, a temperature controlled inlet was developed with the ability to heat and cool the aerosol in 2 C increments to 15 C above or below ambient temperature. The inlet was coupled to an Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and deployed on a mobile platform upwind and downwind of a major Southern Ontario highway as part of the Fast Evolution of Vehicle Emissions near Roadways (FEVER 2010) campaign. Preliminary results suggest that changes in temperature of 5-10 C can alter the partitioning of volatile organic aerosol components by up to 30%. Although the largest affect was observed 10-13 meters downwind of the vehicle emissions, a measurable affect was observed beyond 500 m and in aerosol upwind of the highway. These results suggest that a significant pool of semi-volatile organics exist, which can condense onto particles at slightly lower temperatures or evaporate to the gas phase and be further oxidized. The nature of these organic species at locations upwind and downwind of vehicle emissions will be discussed.

  5. Organic emissions from coal pyrolysis: mutagenic effects.

    PubMed Central

    Braun, A G; Wornat, M J; Mitra, A; Sarofim, A F

    1987-01-01

    Four different types of coal have been pyrolyzed in a laminar flow, drop tube furnace in order to establish a relationship between polycyclic aromatic compound (PAC) evolution and mutagenicity. Temperatures of 900K to 1700K and particle residence times up to 0.3 sec were chosen to best simulate conditions of rapid rate pyrolysis in pulverized (44-53 microns) coal combustion. The specific mutagenic activity (i.e., the activity per unit sample weight) of extracts from particulates and volatiles captured on XAD-2 resin varied with coal type according to the order: subbituminous greater than high volatile bituminous greater than lignite greater than anthracite. Total mutagenic activity (the activity per gram of coal pyrolyzed), however, varied with coal type according to the order: high volatile bituminous much greater than subbituminous = lignite much greater than anthracite, due primarily to high organic yield during high volatile bituminous coal pyrolysis. Specific mutagenic activity peaked in a temperature range of 1300K to 1500K and generally appeared at higher temperatures and longer residence times than peak PAC production. PMID:3311724

  6. Ammonia Volatilization from Urea-Application Influenced Germination and Early Seedling Growth of Dry Direct-Seeded Rice

    PubMed Central

    Qi, Xiaoli; Wu, Wei; Shah, Farooq; Peng, Shaobing; Huang, Jianliang; Cui, Kehui; Liu, Hongyan; Nie, Lixiao

    2012-01-01

    Poor seed germination and early seedling growth associated with urea-induced soil ammonia volatilization are major constraints in the adoption of dry direct-seeded rice. To directly examine soil ammonia volatilization and its damage to seed germination and early seedling growth of dry direct-seeded rice when urea is applied at seeding, two Petri-dish incubation experiments and a field experiment were conducted. Ammonia volatilization due to urea application significantly reduced seed germination and early seedling growth of dry direct-seedling rice. NBPT significantly reduced ammonia volatilization following urea application. The application of ammonium sulfate, instead of urea at seeding, may mitigate poor crop establishment of dry direct-seeded rice. Root growth of dry direct-seeded rice was more seriously inhibited by soil ammonia volatilization than that of shoot. Results suggest that roots are more sensitive to soil ammonia toxicity than shoots in dry direct-seeded rice system when N is applied as urea at seeding. PMID:22454611

  7. A specialist root herbivore reduces plant resistance and uses an induced plant volatile to aggregate in a density dependent manner

    USDA-ARS?s Scientific Manuscript database

    1. Leaf-herbivore attack often triggers induced resistance in plants. However, certain specialist herbivores can also take advantage of the induced metabolic changes. In some cases, they even manipulate plant resistance, leading to a phenomenon called induced susceptibility. Compared to above-ground...

  8. Dynamical Analysis of Stock Market Instability by Cross-correlation Matrix

    NASA Astrophysics Data System (ADS)

    Takaishi, Tetsuya

    2016-08-01

    We study stock market instability by using cross-correlations constructed from the return time series of 366 stocks traded on the Tokyo Stock Exchange from January 5, 1998 to December 30, 2013. To investigate the dynamical evolution of the cross-correlations, crosscorrelation matrices are calculated with a rolling window of 400 days. To quantify the volatile market stages where the potential risk is high, we apply the principal components analysis and measure the cumulative risk fraction (CRF), which is the system variance associated with the first few principal components. From the CRF, we detected three volatile market stages corresponding to the bankruptcy of Lehman Brothers, the 2011 Tohoku Region Pacific Coast Earthquake, and the FRB QE3 reduction observation in the study period. We further apply the random matrix theory for the risk analysis and find that the first eigenvector is more equally de-localized when the market is volatile.

  9. Meta-Analysis of the Core Aroma Components of Grape and Wine Aroma

    PubMed Central

    Ilc, Tina; Werck-Reichhart, Danièle; Navrot, Nicolas

    2016-01-01

    Wine aroma strongly influences wine quality, yet its composition and its evolution during the winemaking process are poorly understood. Volatile compounds that constitute wine aroma are traditionally divided into three classes according to their origin: grape, fermentation, and maturation aroma. We challenge this view with meta-analysis and review of grape and wine volatiles and their precursors from 82 profiling experiments. We compiled a list of 141 common grape and wine volatiles and quantitatively compared 43 of them. Our work offers insight into complex relationships between biosynthesis of aroma in grapes and the changes during the winemaking process. Monoterpenes are one of the largest and most researched wine aroma compounds. We show that their diversity in wines is mainly due to the oxidative metabolism of linalool in grapes. Furthermore, we demonstrate that most of the linalool produced in grapes is converted to these oxidized derivatives. PMID:27746799

  10. On evolutionary climate tracks in deep mantle volatile cycle computed from numerical mantle convection simulations and its impact on the habitability of the Earth-like planets

    NASA Astrophysics Data System (ADS)

    Nakagawa, T.; Tajika, E.; Kadoya, S.

    2017-12-01

    Discussing an impact of evolution and dynamics in the Earth's deep interior on the surface climate change for the last few decades (see review by Ehlmann et al., 2016), the mantle volatile (particularly carbon) degassing in the mid-oceanic ridges seems to play a key role in understanding the evolutionary climate track for Earth-like planets (e.g. Kadoya and Tajika, 2015). However, since the mantle degassing occurs not only in the mid-oceanic ridges but also in the wedge mantle (island arc volcanism) and hotspots, to incorporate more accurate estimate of mantle degassing flux into the climate evolution framework, we developed a coupled model of surface climate-deep Earth evolution in numerical mantle convection simulations, including more accurate deep water and carbon cycle (e.g. Nakagawa and Spiegelman, 2017) with an energy balance theory of climate change. Modeling results suggest that the evolution of planetary climate computed from a developed model is basically consistent with an evolutionary climate track in simplified mantle degassing model (Kadoya and Tajika, 2015), but an occurrence timing of global (snowball) glaciation is strongly dependent on mantle degassing rate occurred with activities of surface plate motions. With this implication, the surface plate motion driven by deep mantle dynamics would play an important role in the planetary habitability of such as the Earth and Earth-like planets over geologic time-scale.

  11. Time-dependent permeability evolution in compacting volcanic fracture systems and implications for gas overpressure

    NASA Astrophysics Data System (ADS)

    Farquharson, Jamie I.; Wadsworth, Fabian B.; Heap, Michael J.; Baud, Patrick

    2017-06-01

    Volcanic eruptions are driven by the ascent of volatile-laden magma. The capacity of a volcano system to outgas these volatiles-its permeability-controls the explosive potential, and fractures at volcanic conduit margins play a crucial role in tempering eruption explosivity by acting as outgassing pathways. However, these fractures are often filled with hot volcanic debris that welds and compacts over time, meaning that these permeable pathways have a finite lifetime. While numerous studies emphasize that permeability evolution is important for regulating pressure in shallow volcanic systems, how and when this occurs remains an outstanding question in volcanology. In this contribution, we show that different pressure evolution regimes can be expected across a range of silicic systems as a function of the width and distribution of fractures in the system, the timescales over which they can outgas (a function of depth and temperature), and the permeability of the host material. We define outgassing, diffusive relaxation, and pressure increase regimes, which are distinguished by comparing the characteristic timescales over which they operate. Moreover, we define a critical permeability threshold, which determines (in concert with characteristic timescales of diffusive mass exchange between the pore and melt phases) whether systems fracture and outgas efficiently, or if a volcano will be prone to pressure increases, incomplete healing, and explosive failure.

  12. The rational design of a Au(I) precursor for focused electron beam induced deposition

    PubMed Central

    Marashdeh, Ali; Tiesma, Thiadrik; van Velzen, Niels J C; Harder, Sjoerd; Havenith, Remco W A; De Hosson, Jeff T M

    2017-01-01

    Au(I) complexes are studied as precursors for focused electron beam induced processing (FEBIP). FEBIP is an advanced direct-write technique for nanometer-scale chemical synthesis. The stability and volatility of the complexes are characterized to design an improved precursor for pure Au deposition. Aurophilic interactions are found to play a key role. The short lifetime of ClAuCO in vacuum is explained by strong, destabilizing Au–Au interactions in the solid phase. While aurophilic interactions do not affect the stability of ClAuPMe3, they leave the complex non-volatile. Comparison of crystal structures of ClAuPMe3 and MeAuPMe3 shows that Au–Au interactions are much weaker or partially even absent for the latter structure. This explains its high volatility. However, MeAuPMe3 dissociates unfavorably during FEBIP, making it an unsuitable precursor. The study shows that Me groups reduce aurophilic interactions, compared to Cl groups, which we attribute to electronic rather than steric effects. Therefore we propose MeAuCO as a potential FEBIP precursor. It is expected to have weak Au–Au interactions, making it volatile. It is stable enough to act as a volatile source for Au deposition, being stabilized by 6.5 kcal/mol. Finally, MeAuCO is likely to dissociate in a single step to pure Au. PMID:29354346

  13. Exposure to Anacardiaceae volatile oils and their constituents induces lipid peroxidation within food-borne bacteria cells.

    PubMed

    Montanari, Ricardo M; Barbosa, Luiz C A; Demuner, Antonio J; Silva, Cleber J; Andrade, Nelio J; Ismail, Fyaz M D; Barbosa, Maria C A

    2012-08-14

    The chemical composition of the volatile oils from five Anacardiaceae species and their activities against Gram positive and negative bacteria were assessed. The peroxidative damage within bacterial cell membranes was determined through the breakdown product malondialdehyde (MDA). The major constituents in Anacardium humile leaves oil were (E)-caryophyllene (31.0%) and α-pinene (22.0%), and in Anacardium occidentale oil they were (E)-caryophyllene (15.4%) and germacrene-D (11.5%). Volatile oil from Astronium fraxinifolium leaves were dominated by (E)-β-ocimene (44.1%) and α-terpinolene (15.2%), whilst the oil from Myracrodruon urundeuva contained an abundance of δ-3-carene (78.8%). However, Schinus terebinthifolius leaves oil collected in March and July presented different chemical compositions. The oils from all species, except the one from A. occidentale, exhibited varying levels of antibacterial activity against Staphylococcus aureus, Bacillus cereus and Escherichia coli. Oil extracted in July from S. terebinthifolius was more active against all bacterial strains than the corresponding oil extracted in March. The high antibacterial activity of the M. urundeuva oil could be ascribed to its high δ-3-carene content. The amounts of MDA generated within bacterial cells indicate that the volatile oils induce lipid peroxidation. The results suggest that one putative mechanism of antibacterial action of these volatile oils is pro-oxidant damage within bacterial cell membrane explaining in part their preservative properties.

  14. The rational design of a Au(I) precursor for focused electron beam induced deposition.

    PubMed

    Marashdeh, Ali; Tiesma, Thiadrik; van Velzen, Niels J C; Harder, Sjoerd; Havenith, Remco W A; De Hosson, Jeff T M; van Dorp, Willem F

    2017-01-01

    Au(I) complexes are studied as precursors for focused electron beam induced processing (FEBIP). FEBIP is an advanced direct-write technique for nanometer-scale chemical synthesis. The stability and volatility of the complexes are characterized to design an improved precursor for pure Au deposition. Aurophilic interactions are found to play a key role. The short lifetime of ClAuCO in vacuum is explained by strong, destabilizing Au-Au interactions in the solid phase. While aurophilic interactions do not affect the stability of ClAuPMe 3 , they leave the complex non-volatile. Comparison of crystal structures of ClAuPMe 3 and MeAuPMe 3 shows that Au-Au interactions are much weaker or partially even absent for the latter structure. This explains its high volatility. However, MeAuPMe 3 dissociates unfavorably during FEBIP, making it an unsuitable precursor. The study shows that Me groups reduce aurophilic interactions, compared to Cl groups, which we attribute to electronic rather than steric effects. Therefore we propose MeAuCO as a potential FEBIP precursor. It is expected to have weak Au-Au interactions, making it volatile. It is stable enough to act as a volatile source for Au deposition, being stabilized by 6.5 kcal/mol. Finally, MeAuCO is likely to dissociate in a single step to pure Au.

  15. Constraining the Volatility Distributions and Possible Diffusion Limitations of Secondary Organic Aerosols Using Laboratory Dilution Experiments

    NASA Astrophysics Data System (ADS)

    Ye, Q.; Robinson, E. S.; Mahfouz, N.; Sullivan, R. C.; Donahue, N. M.

    2016-12-01

    Secondary organic aerosols (SOA) dominate the mass of fine particles in the atmosphere. Their formation involves both oxidation of volatile organics from various sources that produce products with uncertain volatilities, and diffusion of these products into the condensed phase. Therefore, constraining volatility distribution and diffusion timescales of the constituents in SOA are important in predicting size, concentration and composition of SOA, as well as how these properties of SOA evolve in the atmosphere. In this work, we demonstrate how carefully designed laboratory isothermal dilution experiments in smog chambers can shed light into the volatility distribution and any diffusion barriers of common types of SOA over time scales relevant to atmospheric transport and diurnal cycling. We choose SOA made from mono-terpenes (alpha-pinene and limonene) and toluene to represent biogenic and anthropogenic SOA. We look into how moisture content can alter any evaporation behaviors of SOA by varying relative humidity during SOA generation and during dilution process. This provides insight into whether diffusion in the condensed phase is rate limiting in reaching gas/particle equilibrium of semi-volatile organic compounds. Our preliminary results show that SOA from alpha-pinene evaporates continuously over several hours of experiments, and there is no substantial discernible differences over wide ranges of the chamber humidity. SOA from toluene oxidation shows slower evaporation. We fit these experimental data using absorptive partitioning theory and a particle dynamic model to obtain volatility distributions and to predict particle size evolution. This in the end will help us to improve representation of SOA in large scale chemical transport models.

  16. In Planta Variation of Volatile Biosynthesis: An Alternative Biosynthetic Route to the Formation of the Pathogen-Induced Volatile Homoterpene DMNT via Triterpene Degradation in Arabidopsis Roots

    PubMed Central

    Sohrabi, Reza; Huh, Jung-Hyun; Badieyan, Somayesadat; Rakotondraibe, Liva Harinantenaina; Kliebenstein, Daniel J.; Sobrado, Pablo; Tholl, Dorothea

    2015-01-01

    Plant-derived volatile compounds such as terpenes exhibit substantial structural variation and serve multiple ecological functions. Despite their structural diversity, volatile terpenes are generally produced from a small number of core 5- to 20-carbon intermediates. Here, we present unexpected plasticity in volatile terpene biosynthesis by showing that irregular homo/norterpenes can arise from different biosynthetic routes in a tissue specific manner. While Arabidopsis thaliana and other angiosperms are known to produce the homoterpene (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) or its C16-analog (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene by the breakdown of sesquiterpene and diterpene tertiary alcohols in aboveground tissues, we demonstrate that Arabidopsis roots biosynthesize DMNT by the degradation of the C30 triterpene diol, arabidiol. The reaction is catalyzed by the Brassicaceae-specific cytochrome P450 monooxygenase CYP705A1 and is transiently induced in a jasmonate-dependent manner by infection with the root-rot pathogen Pythium irregulare. CYP705A1 clusters with the arabidiol synthase gene ABDS, and both genes are coexpressed constitutively in the root stele and meristematic tissue. We further provide in vitro and in vivo evidence for the role of the DMNT biosynthetic pathway in resistance against P. irregulare. Our results show biosynthetic plasticity in DMNT biosynthesis in land plants via the assembly of triterpene gene clusters and present biochemical and genetic evidence for volatile compound formation via triterpene degradation in plants. PMID:25724638

  17. Parasitic wasp females are attracted to blends of host-induced plant volatiles: do qualitative and quantitative differences in the blend matter?

    PubMed Central

    Uefune, Masayoshi; Kugimiya, Soichi; Ozawa, Rika; Takabayashi, Junji

    2013-01-01

    Naïve Cotesia vestalis wasps, parasitoids of diamondback moth (DBM) larvae, are attracted to a synthetic blend (Blend A) of host-induced plant volatiles composed of sabinene, n-heptanal, α-pinene, and ( Z)-3-hexenyl acetate, in a ratio of 1.8:1.3:2.0:3.0. We studied whether qualitative (adding ( R)-limonene: Blend B) or quantitative changes (changing ratios: Blend C) to Blend A affected the olfactory response of C. vestalis in the background of intact komatsuna plant volatiles. Naïve wasps showed equal preference to Blends A and B and Blends A and C in two-choice tests. Wasps with oviposition experience in the presence of Blend B preferred Blend B over Blend A, while wasps that had oviposited without a volatile blend showed no preference between the two. Likewise, wasps that had starvation experience in the presence of Blend B preferred Blend A over Blend B, while wasps that had starved without a volatile blend showed no preference between the two. Wasps that had oviposition experience either with or without Blend A showed equal preferences between Blends C and A. However, wasps that had starvation experience in the presence of Blend A preferred Blend C over Blend A, while those that starved without a volatile blend showed equal preferences between the two. By manipulating quality and quantity of the synthetic attractants, we showed to what extent C. vestalis could discriminate/learn slight differences between blends that were all, in principle, attractive. PMID:24358892

  18. Impact of uncertainty in expected return estimation on stock price volatility

    NASA Astrophysics Data System (ADS)

    Kostanjcar, Zvonko; Jeren, Branko; Juretic, Zeljan

    2012-11-01

    We investigate the origin of volatility in financial markets by defining an analytical model for time evolution of stock share prices. The defined model is similar to the GARCH class of models, but can additionally exhibit bimodal behaviour in the supply-demand structure of the market. Moreover, it differs from existing Ising-type models. It turns out that the constructed model is a solution of a thermodynamic limit of a Gibbs probability measure when the number of traders and the number of stock shares approaches infinity. The energy functional of the Gibbs probability measure is derived from the Nash equilibrium of the underlying game.

  19. Assessing market uncertainty by means of a time-varying intermittency parameter for asset price fluctuations

    NASA Astrophysics Data System (ADS)

    Rypdal, Martin; Sirnes, Espen; Løvsletten, Ola; Rypdal, Kristoffer

    2013-08-01

    Maximum likelihood estimation techniques for multifractal processes are applied to high-frequency data in order to quantify intermittency in the fluctuations of asset prices. From time records as short as one month these methods permit extraction of a meaningful intermittency parameter λ characterising the degree of volatility clustering. We can therefore study the time evolution of volatility clustering and test the statistical significance of this variability. By analysing data from the Oslo Stock Exchange, and comparing the results with the investment grade spread, we find that the estimates of λ are lower at times of high market uncertainty.

  20. MECA Symposium on Mars: Evolution of its Climate and Atmosphere

    NASA Technical Reports Server (NTRS)

    Baker, Victor (Editor); Carr, Michael (Editor); Fanale, Fraser (Editor); Greeley, Ronald (Editor); Haberle, Robert (Editor); Leovy, Conway (Editor); Maxwell, Ted (Editor)

    1987-01-01

    The geological, atmospheric, and climatic history of Mars is explored in reviews and reports of recent observational and interpretive investigations. Topics addressed include evidence for a warm wet climate on early Mars, volatiles on Earth and on Mars, CO2 adsorption on palagonite and its implications for Martian regolith partitioning, and the effect of spatial resolution on interpretations of Martian subsurface volatiles. Consideration is given to high resolution observations of rampart craters, ring furrows in highland terrains, the interannual variability of the south polar cap, telescopic observations of the north polar cap and circumpolar clouds, and dynamical modeling of a planetary wave polar warming mechanism.

  1. Effect of chitosan-lemon essential oil coatings on volatile profile of strawberries during storage.

    PubMed

    Perdones, Ángela; Escriche, Isabel; Chiralt, Amparo; Vargas, Maria

    2016-04-15

    Chitosan coatings containing lemon essential oils were described as effective at controlling fruit fungal decay at 20°C during 7 days. In this work, GC-MS was used to characterise the volatile compounds of strawberries during cold storage in order to analyse the influence of fruit coatings with chitosan, containing or not containing lemon essential oil, on the volatile profile of the fruits. The coatings affected the metabolic pathways and volatile profile of the fruits. Pure chitosan promoted the formation of esters and dimethyl furfural in very short time after coating, while coatings containing lemon essential oil incorporated terpenes (limonene, γ-terpinene, p-cymene and α-citral) to the fruit volatiles and enhanced the fermentative process, modifying the typical fruit aroma composition. No effect of chitosan coatings was sensorially perceived, the changes induced by lemon essential oil were notably appreciated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Oxidation/volatilization rates in air for candidate fusion reactor blanket materials, PCA and HT-9

    NASA Astrophysics Data System (ADS)

    Piet, S. J.; Kraus, H. G.; Neilson, R. M.; Jones, J. L.

    1986-11-01

    Large uncertainties exist in the quantity of neutron-induced activation products that can be mobilized in potential fusion accidents. The accidental combination of high temperatures and oxidizing conditions might lead to mobilization of a significant amount of activation products from structural materials. Here, the volatilization of constituents of PCA and HT-9 resulting form oxidation in air was investigated. Tests were conducted in flowing air at temperatures from 600 to 1300°C for 1, 5, or 20 h. Elemental volatility was calculated in terms of the weight fraction of the element volatilized from the initial alloy. Molybdenum and manganese were the radiologically significant primary constituents most volatilized, suggesting that molybdenum and manganese should be minimized in fusion steel compositions. Higher chromium content appears beneficial in reducing hazards from mobile activation products. Scanning electron microscopy and energy dispersive spectroscopy were used to study the oxide layer on samples.

  3. Practicality of Evaluating Soft Errors in Commercial sub-90 nm CMOS for Space Applications

    NASA Technical Reports Server (NTRS)

    Pellish, Jonathan A.; LaBel, Kenneth A.

    2010-01-01

    The purpose of this presentation is to: Highlight space memory evaluation evolution, Review recent developments regarding low-energy proton direct ionization soft errors, Assess current space memory evaluation challenges, including increase of non-volatile technology choices, and Discuss related testing and evaluation complexities.

  4. SOA VOLATILITY EVOLUTION: FORMATION AND OXIDATION OVER THE LIFECYCLE OF PM2.5

    EPA Science Inventory

    Secondary Organic Aerosols are a major, possibly dominant, source of organic PM2.5 that remain enigmatic. Enormous progress has been made in the past 15 years regarding SOA formation, starting with recognition that most SOA products are semivolatile, continuing to a...

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madden, Jill A.; Hoyer, Patricia B.; Devine, Patrick J.

    The finite ovarian follicle reserve can be negatively impacted by exposure to chemicals including the anti-neoplastic agent, cyclophosphamide (CPA). CPA requires bioactivation to phosphoramide mustard (PM) to elicit its therapeutic effects however; in addition to being the tumor-targeting metabolite, PM is also ovotoxic. In addition, PM can break down to a cytotoxic, volatile metabolite, chloroethylaziridine (CEZ). The aim of this study was initially to characterize PM-induced ovotoxicity in growing follicles. Using PND4 Fisher 344 rats, ovaries were cultured for 4 days before being exposed once to PM (10 or 30 μM). Following eight additional days in culture, relative to controlmore » (1% DMSO), PM had no impact on primordial, small primary or large primary follicle number, but both PM concentrations induced secondary follicle depletion (P < 0.05). Interestingly, a reduction in follicle number in the control-treated ovaries was observed. Thus, the involvement of a volatile, cytotoxic PM metabolite (VC) in PM-induced ovotoxicity was explored in cultured rat ovaries, with control ovaries physically separated from PM-treated ovaries during culture. Direct PM (60 μM) exposure destroyed all stage follicles after 4 days (P < 0.05). VC from nearby wells depleted primordial follicles after 4 days (P < 0.05), temporarily reduced secondary follicle number after 2 days, and did not impact other stage follicles at any other time point. VC was determined to spontaneously liberate from PM, which could contribute to degradation of PM during storage. Taken together, this study demonstrates that PM and VC are ovotoxicants, with different follicular targets, and that the VC may be a major player during PM-induced ovotoxicity observed in cancer survivors. - Highlights: • PM depletes all stage ovarian follicles in a temporal pattern. • A volatile ovotoxic compound is liberated from PM. • The volatile metabolite depletes primordial follicles.« less

  6. Growth promotion of Lactuca sativa in response to volatile organic compounds emitted from diverse bacterial species.

    PubMed

    Fincheira, Paola; Venthur, Herbert; Mutis, Ana; Parada, Maribel; Quiroz, Andrés

    2016-12-01

    Agrochemicals are currently used in horticulture to increase crop production. Nevertheless, their indiscriminate use is a relevant issue for environmental and legal aspects. Alternative tools for reducing fertilizers and synthetic phytohormones are being investigated, such as the use of volatile organic compounds (VOCs) as growth inducers. Some soil bacteria, such as Pseudomonas and Bacillus, stimulate Arabidopsis and tobacco growth by releasing VOCs, but their effects on vegetables have not been investigated. Lactuca sativa was used as model vegetable to investigate bacterial VOCs as growth inducers. We selected 10 bacteria strains, belonging to Bacillus, Staphylococcus and Serratia genera that are able to produce 3-hydroxy-2-butanone (acetoin), a compound with proven growth promoting activity. Two-day old-seedlings of L. sativa were exposed to VOCs emitted by the selected bacteria grown in different media cultures for 7 days. The results showed that the VOCs released from the bacteria elicited an increase in the number of lateral roots, dry weight, root growth and shoot length, depending on the media used. Three Bacillus strains, BCT53, BCT9 and BCT4, were selected according to its their growth inducing capacity. The BCT9 strain elicited the greatest increases in dry weight and primary root length when L. sativa seedlings were subjected to a 10-day experiment. Finally, because acetoin only stimulated root growth, we suggest that other volatiles could be responsible for the growth promotion of L. sativa. In conclusion, our results strongly suggest that bacteria volatiles can be used as growth-inducers as alternative or complementary strategies for application in horticulture species. Copyright © 2016 Elsevier GmbH. All rights reserved.

  7. Ontogeny and Season Constrain the Production of Herbivore-Inducible Plant Volatiles in the Field

    PubMed Central

    2010-01-01

    Herbivores may induce plants to produce an array of volatile organic compounds (herbivore-induced plant volatiles, or HIPVs) after damage, and some natural enemies of herbivores are attracted by those HIPVs. The production of HIPVs by the undomesticated species Datura wrightii was quantified in response to damage by its natural community of herbivores or the plant hormone methyl jasmonate (MeJA) over plant’s 6-month growing season. Patterns of HIPV production were compared to the seasonal abundance of D. wrightii’s two most abundant herbivores, the chrysomelid beetle Lema daturaphila and the mirid bug Tupiocoris notatus, and their shared generalist predator, the lygaeid bug Geocoris pallens. HIPV production was especially high in the spring, when plants were growing vegetatively, but HIPV production declined after plants began to flower and produce fruit, and these volatiles no longer were inducible by September. The composition of the HIPV blends also changed seasonally. HIPV production and composition were partially restored by “rejuvenating” plants back to the vegetative growth stage independently of season by cutting them back and allowing them to resprout and regrow vegetatively. HIPV production of D. wrightii in the field is limited to the earlier ontogenetic stages of growth, despite the fact that both herbivores and their shared natural enemy inhabited plants throughout the full season. The adaptive value of HIPV production in D. wrightii may be constrained by plant ontogeny to the vegetative stages of plant growth. Electronic supplementary material The online version of this article (doi:10.1007/s10886-010-9878-z) contains supplementary material, which is available to authorized users. PMID:21058044

  8. Non-volatile resistive switching in the Mott insulator (V1-xCrx)2O3

    NASA Astrophysics Data System (ADS)

    Querré, M.; Tranchant, J.; Corraze, B.; Cordier, S.; Bouquet, V.; Députier, S.; Guilloux-Viry, M.; Besland, M.-P.; Janod, E.; Cario, L.

    2018-05-01

    The discovery of non-volatile resistive switching in Mott insulators related to an electric-field-induced insulator to metal transition (IMT) has paved the way for their use in a new type of non-volatile memories, the Mott memories. While most of the previous studies were dedicated to uncover the resistive switching mechanism and explore the memory potential of chalcogenide Mott insulators, we present here a comprehensive study of resistive switching in the canonical oxide Mott insulator (V1-xCrx)2O3. Our work demonstrates that this compound undergoes a non-volatile resistive switching under electric field. This resistive switching is induced by a Mott transition at the local scale which creates metallic domains closely related to existing phases of the temperature-pressure phase diagram of (V1-xCrx)2O3. Our work demonstrates also reversible resistive switching in (V1-xCrx)2O3 crystals and thin film devices. Preliminary performances obtained on 880 nm thick layers with 500 nm electrodes show the strong potential of Mott memories based on the Mott insulator (V1-xCrx)2O3.

  9. Transcriptome characterization by deep-RNA-sequencing underlies the mechanisms of butyrate-induced epigenomic regulation in bovine cells

    USDA-ARS?s Scientific Manuscript database

    Volatile short-chain fatty acids (SCFAs, acetate, propionate, and butyrate), especially butyrate, alter cell differentiation, proliferation, motility, and in particular, induce cell cycle arrest and apoptosis through its histone deacetylase (HDAC) inhibition activity. Butyrate is a great inducer of ...

  10. Electrophysiological and Behavioral Responses of Male Fall Webworm Moths (Hyphantria cunea) to Herbivory-Induced Mulberry (Morus alba) Leaf Volatiles

    PubMed Central

    Tang, Rui; Zhang, Jin Ping; Zhang, Zhong Ning

    2012-01-01

    Volatile organic compounds (VOCs) were collected from damaged and intact mulberry leaves (Morus alba L., Moraceae) and from Hyphantria cunea larvae by headspace absorption with Super Q columns. We identified their constituents using gas chromatography-mass spectrometry, and evaluated the responses of male H. cunea antennae to the compounds using gas chromatography-flame ionization detection coupled with electroantennographic detection. Eleven VOC constituents were found to stimulate antennae of male H. cunea moths: β-ocimene, hexanal, cis-3-hexenal, limonene, trans-2-hexenal, cyclohexanone, cis-2-penten-1-ol, 6-methyl-5-hepten-2-one, 4-hydroxy-4-methyl-2-pentanone, trans-3-hexen-1-ol, and 2,4-dimethyl-3-pentanol. Nine of these chemicals were released by intact, mechanically-damaged, and herbivore-damaged leaves, while cis-2-penten-1-ol was released only by intact and mechanically-damaged leaves and β-ocimene was released only by herbivore-damaged leaves. Results from wind tunnel experiments conducted with volatile components indicated that male moths were significantly more attracted to herbivory-induced volatiles than the solvent control. Furthermore, male moths' attraction to a sex pheromone lure was increased by herbivory-induced compounds and β-ocimene, but reduced by cis-2-penten-1-ol. A proof long-range field trapping experiment showed that the efficiency of sex pheromone lures in trapping male moths was increased by β-ocimene and reduced by cis-2-penten-1-ol. PMID:23166622

  11. Real-time divergent evolution in plants driven by pollinators

    PubMed Central

    Gervasi, Daniel D. L.; Schiestl, Florian P

    2017-01-01

    Pollinator-driven diversification is thought to be a major source of floral variation in plants. Our knowledge of this process is, however, limited to indirect assessments of evolutionary changes. Here, we employ experimental evolution with fast cycling Brassica rapa plants to demonstrate adaptive evolution driven by different pollinators. Our study shows pollinator-driven divergent selection as well as divergent evolution in plant traits. Plants pollinated by bumblebees evolved taller size and more fragrant flowers with increased ultraviolet reflection. Bumblebees preferred bumblebee-pollinated plants over hoverfly-pollinated plants at the end of the experiment, showing that plants had adapted to the bumblebees' preferences. Plants with hoverfly pollination became shorter, had reduced emission of some floral volatiles, but increased fitness through augmented autonomous self-pollination. Our study demonstrates that changes in pollinator communities can have rapid consequences on the evolution of plant traits and mating system. PMID:28291771

  12. Expression of the ubiE gene of Geobacillus stearothermophilus V in Escherichia coli K-12 mediates the evolution of selenium compounds into the headspace of selenite- and selenate-amended cultures.

    PubMed

    Swearingen, J W; Fuentes, D E; Araya, M A; Plishker, M F; Saavedra, C P; Chasteen, T G; Vásquez, C C

    2006-01-01

    The ubiE gene of Geobacillus stearothermophilus V, with its own promoter, was cloned and introduced into Escherichia coli. The cloned gene complemented the ubiE gene deficiency of E. coli AN70. In addition, the expression of this gene in E. coli JM109 resulted in the evolution of volatile selenium compounds when these cells were grown in selenite- or selenate-amended media. These compounds were dimethyl selenide and dimethyl diselenide.

  13. Melt solidification and late-stage evaporation in the evolution of a FUN inclusion from the Vigarano C3V chondrite

    NASA Technical Reports Server (NTRS)

    Davis, Andrew M.; Clayton, Robert N.; Mayeda, Toshiko K.; Sylvester, Paul J.; Macpherson, Glenn J.

    1991-01-01

    Results are presented on a detailed petrologic, chemical, and isotopic study of the so-called FUN inclusion (1623-5) from the Vigarano C3V chondrite. It is shown that the precursor material from which the Vigarano 1623-5 has formed contained some nuclear isotopic anomalies; this precursor was composed of melted and crystallized spinel, olivine, fassaite, and melilite. The results on the petrologic and isotopic properties of 1623-5 indicate unambiguously the action of volatilization in the evolution of this inclusion.

  14. Biochar-induced concomitant decrease in ammonia volatilization and increase in nitrogen use efficiency by wheat.

    PubMed

    Mandal, Sanchita; Thangarajan, Ramya; Bolan, Nanthi S; Sarkar, Binoy; Khan, Naser; Ok, Yong Sik; Naidu, Ravi

    2016-01-01

    Ammonia (NH3) volatilization is a major nitrogen (N) loss from the soil, especially under tropical conditions, NH3 volatilization results in low N use efficiency by crops. Incubation experiments were conducted using five soils (pH 5.5-9.0), three N sources such as, urea, di-ammonium phosphate (DAP), and poultry manure (PM) and two biochars such as, poultry litter biochar (PL-BC) and macadamia nut shell biochar (MS-BC). Ammonia volatilization was higher at soil with higher pH (pH exceeding 8) due to the increased hydroxyl ions. Among the N sources, urea recorded the highest NH3 volatilization (151.6 mg kg(-1)soil) followed by PM (124.2 mg kg(-1)soil) and DAP (99 mg kg(-1)soil). Ammonia volatilization was reduced by approximately 70% with PL-BC and MS-BC. The decreased NH3 volatilization with biochars is attributed to multiple mechanisms such as NH3 adsorption/immobilization, and nitrification. Moreover, biochar increased wheat dry weight and N uptake as high as by 24.24% and 76.11%, respectively. This study unravels the immense potential of biochar in decreasing N volatilization from soils and simultaneously improving use efficiency by wheat. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. EOBII, a Gene Encoding a Flower-Specific Regulator of Phenylpropanoid Volatiles' Biosynthesis in Petunia[C][W

    PubMed Central

    Spitzer-Rimon, Ben; Marhevka, Elena; Barkai, Oren; Marton, Ira; Edelbaum, Orit; Masci, Tania; Prathapani, Naveen-Kumar; Shklarman, Elena; Ovadis, Marianna; Vainstein, Alexander

    2010-01-01

    Floral scent, which is determined by a complex mixture of low molecular weight volatile molecules, plays a major role in the plant's life cycle. Phenylpropanoid volatiles are the main determinants of floral scent in petunia (Petunia hybrida). A screen using virus-induced gene silencing for regulators of scent production in petunia flowers yielded a novel R2R3-MYB–like regulatory factor of phenylpropanoid volatile biosynthesis, EMISSION OF BENZENOIDS II (EOBII). This factor was localized to the nucleus and its expression was found to be flower specific and temporally and spatially associated with scent production/emission. Suppression of EOBII expression led to significant reduction in the levels of volatiles accumulating in and emitted by flowers, such as benzaldehyde, phenylethyl alcohol, benzylbenzoate, and isoeugenol. Up/downregulation of EOBII affected transcript levels of several biosynthetic floral scent-related genes encoding enzymes from the phenylpropanoid pathway that are directly involved in the production of these volatiles and enzymes from the shikimate pathway that determine substrate availability. Due to its coordinated wide-ranging effect on the production of floral volatiles, and its lack of effect on anthocyanin production, a central regulatory role is proposed for EOBII in the biosynthesis of phenylpropanoid volatiles. PMID:20543029

  16. Does Enzymatic Hydrolysis of Glycosidically Bound Volatile Compounds Really Contribute to the Formation of Volatile Compounds During the Oolong Tea Manufacturing Process?

    PubMed

    Gui, Jiadong; Fu, Xiumin; Zhou, Ying; Katsuno, Tsuyoshi; Mei, Xin; Deng, Rufang; Xu, Xinlan; Zhang, Linyun; Dong, Fang; Watanabe, Naoharu; Yang, Ziyin

    2015-08-12

    It was generally thought that aroma of oolong tea resulted from hydrolysis of glycosidically bound volatiles (GBVs). In this study, most GBVs showed no reduction during the oolong tea manufacturing process. β-Glycosidases either at protein or gene level were not activated during the manufacturing process. Subcellular localization of β-primeverosidase provided evidence that β-primeverosidase was located in the leaf cell wall. The cell wall remained intact during the enzyme-active manufacturing process. After the leaf cell disruption, GBV content was reduced. These findings reveal that, during the enzyme-active process of oolong tea, nondisruption of the leaf cell walls resulted in impossibility of interaction of GBVs and β-glycosidases. Indole, jasmine lactone, and trans-nerolidol were characteristic volatiles produced from the manufacturing process. Interestingly, the contents of the three volatiles was reduced after the leaf cell disruption, suggesting that mechanical damage with the cell disruption, which is similar to black tea manufacturing, did not induce accumulation of the three volatiles. In addition, 11 volatiles with flavor dilution factor ≥4(4) were identified as relatively potent odorants in the oolong tea. These results suggest that enzymatic hydrolysis of GBVs was not involved in the formation of volatiles of oolong tea, and some characteristic volatiles with potent odorants were produced from the manufacturing process.

  17. Production of plant growth modulating volatiles is widespread among rhizosphere bacteria and strongly depends on culture conditions.

    PubMed

    Blom, D; Fabbri, C; Connor, E C; Schiestl, F P; Klauser, D R; Boller, T; Eberl, L; Weisskopf, L

    2011-11-01

    Recent studies have suggested that bacterial volatiles play an important role in bacterial-plant interactions. However, few reports of bacterial species that produce plant growth modulating volatiles have been published, raising the question whether this is just an anecdotal phenomenon. To address this question, we performed a large screen of strains originating from the soil for volatile-mediated effects on Arabidopsis thaliana. All of the 42 strains tested showed significant volatile-mediated plant growth modulation, with effects ranging from plant death to a sixfold increase in plant biomass. The effects of bacterial volatiles were highly dependent on the cultivation medium and the inoculum quantity. GC-MS analysis of the tested strains revealed over 130 bacterial volatile compounds. Indole, 1-hexanol and pentadecane were selected for further studies because they appeared to promote plant growth. None of these compounds triggered a typical defence response, using production of ethylene and of reactive oxygen species (ROS) as read-outs. However, when plants were challenged with the flg-22 epitope of bacterial flagellin, a prototypical elicitor of defence responses, additional exposure to the volatiles reduced the flg-22-induced production of ethylene and ROS in a dose-dependent manner, suggesting that bacterial volatiles may act as effectors to inhibit the plant's defence response. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  18. Volatile-Mediated within-Plant Signaling in Hybrid Aspen: Required for Systemic Responses.

    PubMed

    Li, Tao; Blande, James D

    2017-04-01

    Plant volatiles play crucial roles in signaling between plants and their associated community members, but their role in within-plant signaling remains largely unexplored, particularly under field conditions. Using a system comprising the hybrid aspen (Populus tremula x tremuloides) and the specialized herbivorous leaf beetle (Phratora laticollis) and, combining field, greenhouse and laboratory experiments, we examined whether local damage triggered systemic responses in undamaged branches that lack vascular connection to the damaged branches, and to what extent this was caused by airborne volatile signals versus internal signals. An experiment tracing dye through the vasculature of saplings revealed no downward movement of the dye from upper to lower branches, suggesting a lack of vascular connectivity among branches. However, we found under both field and laboratory conditions that herbivore feeding on upper branches elicited volatile emissions by undamaged lower branches. Greenhouse experiments manipulating air contact between damaged and undamaged branches showed that systemic induction of volatiles was almost eliminated when air contact was interrupted. Our findings clearly demonstrate that herbivore-induced volatiles overcome vascular constraints and mediate within-plant signaling. Further, we found that volatile signaling led to induction of different classes of volatiles under field and environment controlled conditions, with a weaker response observed in the field. This difference not only reflects the dose- and time-dependent nature of volatile signaling, but also points out that future studies should focus more on field observations to better understand the ecological role of volatile-mediated within-plant signaling.

  19. Plant volatiles in a polluted atmosphere: stress response and signal degradation

    PubMed Central

    Blande, James D.; Holopainen, Jarmo K.; Niinemets, Ülo

    2014-01-01

    Plants emit a plethora of volatile organic compounds, which provide detailed information on the physiological condition of emitters. Volatiles induced by herbivore-feeding are among the best studied plant responses to stress and may constitute an informative message to the surrounding community and function in the process of plant defence. However, under natural conditions, plants are potentially exposed to multiple concurrent stresses, which can have complex effects on the volatile emissions. Atmospheric pollutants are an important facet of the abiotic environment and can impinge on a plant’s volatile-mediated defences in multiple ways at multiple temporal scales. They can exert changes in volatile emissions through oxidative stress, as is the case with ozone pollution. They may also react with volatiles in the atmosphere; such is the case for ozone, nitrogen oxides, hydroxyl radicals and other oxidizing atmospheric species. These reactions result in breakdown products, which may themselves be perceived by community members as informative signals. In this review we demonstrate the complex interplay between stress, emitted signals and modification in signal strength and composition by the atmosphere, collectively determining the responses of the biotic community to elicited signals. PMID:24738697

  20. Proteome analysis of Arabidopsis seedlings exposed to bacterial volatiles.

    PubMed

    Kwon, Young Sang; Ryu, Choong-Min; Lee, Soohyun; Park, Hyo Bee; Han, Ki Soo; Lee, Jung Han; Lee, Kyunghee; Chung, Woo Sik; Jeong, Mi-Jeong; Kim, Hee Kyu; Bae, Dong-Won

    2010-11-01

    Plant root-associated bacteria (rhizobacteria) elicit plant basal immunity referred to as induced systemic resistance (ISR) against multiple pathogens. Among multi-bacterial determinants involving such ISR, the induction of ISR and promotion of growth by bacterial volatile compounds was previously reported. To exploit global de novo expression of plant proteins by bacterial volatiles, proteomic analysis was performed after exposure of Arabidopsis plants to the rhizobacterium Bacillus subtilis GB03. Ethylene biosynthesis enzymes were significantly up-regulated. Analysis by quantitative reverse transcriptase polymerase chain reaction confirmed that ethylene biosynthesis-related genes SAM-2, ACS4, ACS12, and ACO2 as well as ethylene response genes, ERF1, GST2, and CHIB were up-regulated by the exposure to bacterial volatiles. More interestingly, the emission of bacterial volatiles significantly up-regulated both key defense mechanisms mediated by jasmonic acid and salicylic acid signaling pathways. In addition, high accumulation of antioxidant proteins also provided evidence of decreased sensitivity to reactive oxygen species during the elicitation of ISR by bacterial volatiles. The present results suggest that the proteomic analysis of plant defense responses in bacterial volatile-mediated ISR can reveal the mechanisms of plant basal defenses orchestrated by endogenous ethylene production pathways and the generation of reactive oxygen species.

  1. Impact of heat stress on the emissions of monoterpenes, sesquiterpenes, phenolic BVOC and green leaf volatiles from several tree species

    NASA Astrophysics Data System (ADS)

    Kleist, E.; Mentel, T. F.; Andres, S.; Bohne, A.; Folkers, A.; Kiendler-Scharr, A.; Rudich, Y.; Springer, M.; Tillmann, R.; Wildt, J.

    2012-07-01

    Changes in the biogenic volatile organic compound (BVOC) emissions from European beech, Palestine oak, Scots pine, and Norway spruce exposed to heat stress were measured in a laboratory setup. In general, heat stress decreased the de novo emissions of monoterpenes, sesquiterpenes and phenolic BVOC. Decreasing emission strength with heat stress was independent of the tree species and whether the de novo emissions being constitutive or induced by biotic stress. In contrast, heat stress induced emissions of green leaf volatiles. It also amplified the release of monoterpenes stored in resin ducts of conifers probably due to heat-induced damage of these resin ducts. The increased release of monoterpenes could be strong and long lasting. But, despite of such strong monoterpene emission pulses, the net effect of heat stress on BVOC emissions from conifers can be an overall decrease. In particular during insect attack on conifers the plants showed de novo emissions of sesquiterpenes and phenolic BVOC which exceeded constitutive monoterpene emissions from pools. The heat stress induced decrease of these de novo emissions was larger than the increased release caused by damage of resin ducts. We project that global change induced heat waves may cause increased BVOC emissions only in cases where the respective areas are predominantly covered with conifers that do not emit high amounts of sesquiterpenes and phenolic BVOC. Otherwise the overall effect of heat stress will be a decrease in BVOC emissions.

  2. The Lidnis Instrument: Atmosphere And Surface Studies

    NASA Astrophysics Data System (ADS)

    Leblanc, F.; Chassefiere, E.; Porteneuve, J.; Berthelier, J.-J.; Sarkissian, A.; Meftha, M.; Johnson, R. E.; Chaussidon, M.; Jambon, A.

    LIDNIS is a surface instrument for rocky planetary bodies (in particular for Mercury, Mars, the Moon or asteroids) which simultaneously studies the chemical composi- tion of surface material, its gaseous environment and the nature and importance of the atmosphere/surface interaction. A multipurpose mass spectrometer (called NIS for Neutral and Ion spectrometer) placed at the surface of a planetary body would first of all give us information on the local atmosphere, its elementary and isotopic compo- sition and temporal variation. It will also give us the access to the precipitation from the interplanetary space and the products due to this precipitation. The association to NIS of a laser induced desorption (LID) system strong enough to desorb and volatilize the first few tens micro meters of the surface will allow the analysis of the different species present in this layer that is the atmospheric species (volatiles, refractories and products of the interior outgassing), the energetic implanted species along the history of this body (Solar Wind, Solar Energetic Particles and Cosmic Rays) and the inter- nal composition. In the same way as it is usually done in laboratories for the Moon samples, LIDNIS, through a progressive outgassing of the regolith or the rock at the surface, will measure these different groups of species. The purpose of this poster is to describe such an instrument and to show its capabilities with low mass and power to measure efficiently fundamental parameters for our understanding of the origin and evolution of planetary bodies in the solar system.

  3. Wells for In Situ Extraction of Volatiles from Regolith (WIEVR)

    NASA Technical Reports Server (NTRS)

    Walton, Otis R.

    2013-01-01

    A document discusses WIEVRs, a means to extract water ice more efficiently than previous approaches. This water may exist in subsurface deposits on the Moon, in many NEOs (Near- Earth Objects), and on Mars. The WIEVR approach utilizes heat from the Sun to vaporize subsurface ice; the water (or other volatile) vapor is transported to a surface collection vessel where it is condensed (and collected). The method does not involve mining and extracting regolith before removing the frozen volatiles, so it uses less energy and is less costly than approaches that require mining of regolith. The only drilling required for establishing the WIEVR collection/recovery system is a well-bore drill hole. In its simplest form, the WIEVRs will function without pumps, compressors, or other gas-moving equipment, relying instead on diffusive transport and thermally induced convection of the vaporized volatiles for transport to the collection location(s). These volatile extraction wells could represent a significant advance in extraction efficiency for recovery of frozen volatiles in subsurface deposits on the Moon, Mars, or other extraterrestrial bodies.

  4. Maize Chlorotic Mottle Virus Induces Changes in Host Plant Volatiles that Attract Vector Thrips Species.

    PubMed

    Mwando, Nelson L; Tamiru, Amanuel; Nyasani, Johnson O; Obonyo, Meshack A O; Caulfield, John C; Bruce, Toby J A; Subramanian, Sevgan

    2018-06-02

    Maize lethal necrosis is one of the most devastating diseases of maize causing yield losses reaching up to 90% in sub-Saharan Africa. The disease is caused by a combination of maize chlorotic mottle virus (MCMV) and any one of cereal viruses in the Potyviridae group such as sugarcane mosaic virus. MCMV has been reported to be transmitted mainly by maize thrips (Frankliniella williamsi) and onion thrips (Thrips tabaci). To better understand the role of thrips vectors in the epidemiology of the disease, we investigated behavioral responses of F. williamsi and T. tabaci, to volatiles collected from maize seedlings infected with MCMV in a four-arm olfactometer bioassay. Volatile profiles from MCMV-infected and healthy maize plants were compared by gas chromatography (GC) and GC coupled mass spectrometry analyses. In the bioassays, both sexes of F. williamsi and male T. tabaci were significantly attracted to volatiles from maize plants infected with MCMV compared to healthy plants and solvent controls. Moreover, volatile analysis revealed strong induction of (E)-4,8-dimethyl-1,3,7-nonatriene, methyl salicylate and (E,E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene in MCMV-infected maize seedlings. Our findings demonstrate MCMV induces changes in volatile profiles of host plants to elicit attraction of thrips vectors. The increased vector contact rates with MCMV-infected host plants could enhance virus transmission if thrips feed on the infected plants and acquire the pathogen prior to dispersal. Uncovering the mechanisms mediating interactions between vectors, host plants and pathogens provides useful insights for understanding the vector ecology and disease epidemiology, which in turn may contribute in designing integrated vector management strategies.

  5. High hydrostatic pressure treatments enhance volatile components of pre-germinated brown rice revealed by aromatic fingerprinting based on HS-SPME/GC-MS and chemometric methods.

    PubMed

    Xia, Qiang; Mei, Jun; Yu, Wenjuan; Li, Yunfei

    2017-01-01

    Germination favors to significantly enhance functional components and health attributes of whole-grain brown rice (BR), but the production of germinated BR (GBR) compromises the typical rice flavor perception due to soaking process. Simultaneously, high hydrostatic pressure (HHP) is considered as an effective processing technique to enhance micronutrients utilization efficiency of GBR and improve products flavor, but no information about the effects of HHP treatments on volatile fingerprinting of GBR has been reported. Therefore, the objective of this work was to apply HHP to improve the flavor and odor of GBR grains by exploring HHP-induced changes in aroma compounds. GBR grains were obtained by incubating at 37°C for 36h, and subsequently subjected to HHP treatments at pressures 100, 300 and 500MPa for 15min, using 0.1MPa as control. Headspace solid-phase micro extraction coupled to gas chromatography mass spectrometry was used to characterize process-induced shifts of volatile organic compounds fingerprinting, followed by multivariate analysis. Our results confirmed the significant reduction of total volatile fractions derived from germination process. Contrarily, the following HHP treatments greatly enhanced the flavor components of GBR, particularly characteristic odorants including aldehydes, ketones, and alcohols. Principal component analysis further indicated the different influence of germination and high pressure on the changes in volatile components. Partial least square-discrimination analysis suggested that 4-vinylguaiacol was closely linked to germination, whereas E,E-2,4-decadienal, E-2-hexenal, E,E-2,4-heptadienal and benzyl alcohol could be considered as volatile biomarkers of high pressure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Downwind evolution of the volatility and mixing state of near-road aerosols near a US interstate highway

    NASA Astrophysics Data System (ADS)

    Saha, Provat K.; Khlystov, Andrey; Grieshop, Andrew P.

    2018-02-01

    We present spatial measurements of particle volatility and mixing state at a site near a North Carolina interstate highway (I-40) applying several heating (thermodenuder; TD) experimental approaches. Measurements were conducted in summer 2015 and winter 2016 in a roadside trailer (10 m from road edge) and during downwind transects at different distances from the highway under favorable wind conditions using a mobile platform. Results show that the relative abundance of semi-volatile species (SVOCs) in ultrafine particles decreases with downwind distance, which is consistent with the dilution and mixing of traffic-sourced particles with background air and evaporation of semi-volatile species during downwind transport. An evaporation kinetics model was used to derive particle volatility distributions by fitting TD data. While the TD-derived distribution apportions about 20-30 % of particle mass as semi-volatile (SVOCs; effective saturation concentration, C∗ ≥ 1µm-3) at 10 m from the road edge, approximately 10 % of particle mass is attributed to SVOCs at 220 m, showing that the particle-phase semi-volatile fraction decreases with downwind distance. The relative abundance of semi-volatile material in the particle phase increased during winter. Downwind spatial gradients of the less volatile particle fraction (that remaining after heating at 180 °C) were strongly correlated with black carbon (BC). BC size distribution and mixing state measured using a single-particle soot photometer (SP2) at the roadside trailer showed that a large fraction (70-80 %) of BC particles were externally mixed. Heating experiments with a volatility tandem differential mobility analyzer (V-TDMA) also showed that the nonvolatile fraction in roadside aerosols is mostly externally mixed. V-TDMA measurements at different distances downwind from the highway indicate that the mixing state of roadside aerosols does not change significantly (e.g., BC mostly remains externally mixed) within a few hundred meters from the highway. Our analysis indicates that a superposition of volatility distributions measured in laboratory vehicle tests and of background aerosol can be used to represent the observed partitioning of near-road particles. The results from this study show that exposures and impacts of BC and semi-volatile organics-containing particles in a roadside microenvironment may differ across seasons and under changing ambient conditions.

  7. Volatile Solvents as Drugs of Abuse: Focus on the Cortico-Mesolimbic Circuitry

    PubMed Central

    Beckley, Jacob T; Woodward, John J

    2013-01-01

    Volatile solvents such as those found in fuels, paints, and thinners are found throughout the world and are used in a variety of industrial applications. However, these compounds are also often intentionally inhaled at high concentrations to produce intoxication. While solvent use has been recognized as a potential drug problem for many years, research on the sites and mechanisms of action of these compounds lags behind that of other drugs of abuse. In this review, we first discuss the epidemiology of voluntary solvent use throughout the world and then consider what is known about their basic pharmacology and how this may explain their use as drugs of abuse. We next present data from preclinical and clinical studies indicating that these substances induce common addiction sequelae such as dependence, withdrawal, and cognitive impairments. We describe how toluene, the most commonly studied psychoactive volatile solvent, alters synaptic transmission in key brain circuits such as the mesolimbic dopamine system and medial prefrontal cortex (mPFC) that are thought to underlie addiction pathology. Finally, we make the case that activity in mPFC circuits is a critical regulator of the mesolimbic dopamine system's ability to respond to volatile solvents like toluene. Overall, this review provides evidence that volatile solvents have high abuse liability because of their selective effects on critical nodes of the addiction neurocircuitry, and underscores the need for more research into how these compounds induce adaptations in neural circuits that underlie addiction pathology. PMID:23954847

  8. Formation and evolution of molecular products in α-pinene secondary organic aerosol.

    PubMed

    Zhang, Xuan; McVay, Renee C; Huang, Dan D; Dalleska, Nathan F; Aumont, Bernard; Flagan, Richard C; Seinfeld, John H

    2015-11-17

    Much of our understanding of atmospheric secondary organic aerosol (SOA) formation from volatile organic compounds derives from laboratory chamber measurements, including mass yield and elemental composition. These measurements alone are insufficient to identify the chemical mechanisms of SOA production. We present here a comprehensive dataset on the molecular identity, abundance, and kinetics of α-pinene SOA, a canonical system that has received much attention owing to its importance as an organic aerosol source in the pristine atmosphere. Identified organic species account for ∼58-72% of the α-pinene SOA mass, and are characterized as semivolatile/low-volatility monomers and extremely low volatility dimers, which exhibit comparable oxidation states yet different functionalities. Features of the α-pinene SOA formation process are revealed for the first time, to our knowledge, from the dynamics of individual particle-phase components. Although monomeric products dominate the overall aerosol mass, rapid production of dimers plays a key role in initiating particle growth. Continuous production of monomers is observed after the parent α-pinene is consumed, which cannot be explained solely by gas-phase photochemical production. Additionally, distinct responses of monomers and dimers to α-pinene oxidation by ozone vs. hydroxyl radicals, temperature, and relative humidity are observed. Gas-phase radical combination reactions together with condensed phase rearrangement of labile molecules potentially explain the newly characterized SOA features, thereby opening up further avenues for understanding formation and evolution mechanisms of α-pinene SOA.

  9. Computer Interactives for the Mars Atmospheric and Volatile Evolution (MAVEN) Mission through NASA's "Project Spectra!"

    NASA Astrophysics Data System (ADS)

    Wood, E. L.

    2014-12-01

    "Project Spectra!" is a standards-based E-M spectrum and engineering program that includes paper and pencil activities as well as Flash-based computer games that help students solidify understanding of high-level planetary and solar physics. Using computer interactive games, students experience and manipulate information making abstract concepts accessible, solidifying understanding and enhancing retention of knowledge. Since students can choose what to watch and explore, the interactives accommodate a broad range of learning styles. Students can go back and forth through the interactives if they've missed a concept or wish to view something again. In the end, students are asked critical thinking questions and conduct web-based research. As part of the Mars Atmospheric and Volatile EvolutioN (MAVEN) mission education programming, we've developed two new interactives. The MAVEN mission will study volatiles in the upper atmosphere to help piece together Mars' climate history. In the first interactive, students explore black body radiation, albedo, and a simplified greenhouse effect to establish what factors contribute to overall planetary temperature. Students design a planet that is able to maintain liquid water on the surface. In the second interactive, students are asked to consider conditions needed for Mars to support water on the surface, keeping some variables fixed. Ideally, students will walk away with the very basic and critical elements required for climate studies, which has far-reaching implications beyond the study of Mars. These interactives were pilot tested at Arvada High School in Colorado.

  10. MAVEN Briefing

    NASA Image and Video Library

    2014-09-17

    Dr. Jim Green, NASA‘s Planetary Science Division Director and Head of Mars Program, gives opening remarks at a media briefing where panelist outlined activities around the Sunday, Sept. 21 orbital insertion at Mars of the agency’s Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft, Wednesday, Sept. 17, 2014 at NASA Headquarters in Washington. (Photo credit: NASA/Bill Ingalls)

  11. The PH gene determines fruit acidity and contributes to the evolution of sweet melons

    USDA-ARS?s Scientific Manuscript database

    Acids are one of the three major components of fleshy fruit taste, together with sugars and volatile flavor compounds. However, the molecular-genetic control of acid accumulation in fruit is poorly understood and, to date, no genes responsible for acid accumulation in fleshy fruit have been function...

  12. Orbitally-Induced, Quasi-Periodic Climate Change on Mars: Modelling Changes in the Global Cycling of Water and Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Mischna, M. A.; Richardson, M. I.; Wilson, R. J.

    2002-12-01

    Mars' orbital parameters (obliquity, eccentricity and argument of perihelion) are thought to have varied substantially on time scales >105 years. Such variations, especially in obliquity, may drastically affect the circulation of the atmosphere and volatile cycling. In this study, we focus on the response of the water and carbon dioxide cycles to changes in these orbital parameters, chiefly obliquity. The study employs the Geophysical Fluid Dynamics Laboratory Mars General Circulation Model, conducting simulations over a range of orbital states to examine changes in the cycling and deposition of these volatiles. This model contains full 3D accounting of atmospheric water and carbon dioxide as well as a basic dust cycle. The present martian obliquity is 25°, though it is believed to have recently varied between 15 and 45 degrees. Our simulations look at present martian conditions, only with obliquity varying between 5 and 60 degrees. Simulations are run out until water and carbon dioxide budgets have reached equilibrium--typically 30-40 years. As expected, volatile cycling on Mars increases with obliquity, as the polar caps are exposed to increased insolation, leading to greater seasonal ice caps and ultimately development of surface water ice in the now thermally favorible low latitudes. By 45°, water ice is stable in a broad band just north of the equator. Such an ice distribution has potential implications for the surface wind pattern through the ice-albedo effect on surface heating. Permanent polar CO2 caps are not stable under present conditions, but we find CO2 cap growth and corresponding atmospheric deflation to be evident at very low obliquities. We find that for most choices of orbital conditions, the northern hemisphere remains the stable pole for water ice, a result of the martian topographic dichotomy. We have begun to look at the impact of desorbed CO2 and H2O ice from the regolith on climatic conditions. Present estimates of the volatile abundance in the regolith vary greatly, but recent Mars Odyssey results hint at large abundances of water ice in the martian high-latitude regolith. The results of this study should better define models of polar volatile evolution, specifically those of layered terrain formation. The radiative feedback effects of increased atmospheric CO2 and H2O from the polar caps and regoliths has yet to be examined. Future plans include more accurate representations of dust injection and radiative transfer to tackle this problem.

  13. SULFURIZATION OF IRON IN THE DYNAMIC SOLAR NEBULA AND IMPLICATIONS FOR PLANETARY COMPOSITIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciesla, Fred J., E-mail: fciesla@uchicago.edu

    One explanation for the enhanced ratio of volatiles to hydrogen in Jupiter’s atmosphere compared to a a gas of solar composition is that the planet accreted volatile-bearing clathrates during its formation. Models, however, suggest that S would be over abundant if clathrates were the primary carrier of Jupiter’s volatiles. This led to the suggestion that S was depleted in the outer nebula due to the formation troilite (FeS). Here, this depletion is quantitatively explored by modeling the coupled dynamical and chemical evolution of Fe grains in the solar nebula. It is found that disks that undergo rapid radial expansion frommore » an initially compact state may allow sufficient production of FeS and carry H{sub 2}S-depleted gas outward where ices would form, providing the conditions needed for S-depleted clathrates to form. However, this expansion would also carry FeS grains to this region, which could also be incorporated into planetesimals. Thus for clathrates to be a viable source of volatiles, models must account for the presence of both H{sub 2}S in FeS in the outer solar nebula.« less

  14. Optical fiber Fabry-Perot interferometer with pH sensitive hydrogel film for hazardous gases sensing

    NASA Astrophysics Data System (ADS)

    Zheng, Yangzi; Chen, Li Han; Chan, Chi Chiu; Dong, Xinyong; Yang, Jingyi; Tou, Zhi Qiang; So, Ping Lam

    2015-09-01

    An optical fiber Fabry-Perot interferometer (FPI) coated with polyvinyl alcohol/poly-acrylic acid (PVA/PAA) hydrogel film for toxic gases measurement has been developed. Splicing a short section of hollow core fiber between two single mode fibers forms the FPI. Dip-coated pH-sensitive PVA/PAA hydrogel film on the fiber end performs as a receptor for binding of volatile acids or ammonia, which makes the sensing film swelling or shrinking and results in the dip wavelength shift of the FPI. By demodulating the evolution of reflection spectrum for various concentrations of volatile acids, a sensitivity of 20.8 nm/ppm is achieved with uniform linearity.

  15. Monitoring volatilization products using Residual Gas Analyzers during MeV ion beam irradiations

    NASA Astrophysics Data System (ADS)

    Wetteland, C. J.; Kriewaldt, K.; Taylor, L. A.; McSween, H. Y.; Sickafus, K. E.

    2018-03-01

    The use of Residual Gas Analyzers (RGAs) during irradiation experiments can provide valuable information when incorporated into experimental end-stations. The instruments can track the volatilization products of beam-sensitive materials, which may ultimately aid researchers in selecting appropriate flux values for conducting experiments. Furthermore, the type of gaseous species released during an irradiation can be monitored directly, which may lead to new insights into the radiolysis and/or heating mechanisms responsible for gas evolution. A survey of several classes of materials exposed to extremes in particle flux is presented to show how RGA instrumentation can be incorporated to qualitatively assess ion-solid interactions in a variety of fields.

  16. 2 years with comet 67P/Churyumov-Gerasimenko: H2O, CO2, CO as seen by ROSINA RTOF

    NASA Astrophysics Data System (ADS)

    Hoang, M.; Garnier, P.; Lasue, J.; Reme, H.; Altwegg, K.; Balsiger, H. R.; Bieler, A. M.; Calmonte, U.; Capria, M. T.; Combi, M. R.; De Keyser, J. M.; Fiethe, B.; Fougere, N.; Fuselier, S. A.; Galli, A.; Gasc, S.; Gombosi, T. I.; Hansen, K. C.; Jäckel, A.; Korth, A.; Mall, U.; Migliorini, A.; Rubin, M.; Sémon, T.; Tzou, C. Y.; Waite, J. H., Jr.; Wurz, P.

    2017-12-01

    The Rosetta space mission investigated comet 67P/Churyumov-Gerasimenko (67P) over two years from August 2014 to September 2016. Onboard the spacecraft, the ROSINA experiment included two mass spectrometers to derive the composition of neutrals and ions, and a COmet Pressure Sensor (COPS) to monitor the density and velocity of the neutrals in the coma. We will here analyse and discuss data from the Reflectron-type Time-Of-Flight instrument during the comet escort phase. The RTOF mass spectrometer possessed a wide mass range and a high temporal resolution (Balsiger et al., 2007). The analysis of 67P/C-G's coma major molecules over the mission showed strong variability of the comet coma's main volatiles concentrations (H2O, CO2, CO) and their relative abundances. The 2 years long Rosetta mission allowed us to observe the seasonal evolution in the atmosphere of 67P, in particular the change occurring during the equinoxes and at perihelion. In this work, we analyze the asymmetry in the outgassing rate before and after the perihelion (13/08/2015), the evolution of abundance ratios through the whole mission, and in particular the behavior of the very volatile CO molecules. Density maps projected on the surface of 67P demonstrate the evolution of the three main coma species after the outbound equinox. We will present first results of our comet nucleus thermal modelling used to simulate the internal structure and temperature evolution of 67P at characteristic surface areas. These results will be compared with the coma composition measurements obtained by ROSINA.

  17. To See a World in a Grain of Sand: Insights into Solar System Formation and Evolution from Isotopic Analyses of Planetary Materials

    NASA Astrophysics Data System (ADS)

    Wadhwa, M.

    2016-12-01

    The last few decades have seen revolutionary advances in the planetary sciences through remote observations (by spacecraft and Earth-based observatories) of many Solar System destinations and, in more recent years, even exoplanets around other stars. In parallel with this, ground-breaking developments in analytical capabilities and access to a greater variety of Solar System materials (through systematic and sustained meteorite collection programs as well as sample return missions) have led to significant insights that are complementary to those from remote observations and measurements. I will discuss two examples where the combination of remote observations and sample analyses has the potential to provide a more holistic picture of Solar System formation and evolution: 1) High-precision analyses of radiogenic isotopes in primitive and differentiated meteoritic materials, which are yielding a detailed high-resolution chronology of the first 10 million years of Solar System history. Such investigations are providing the chronological framework for the formation and evolution of small bodies (including comets, asteroids and Kuiper Belt Objects) in our Solar System that are the targets of recent spacecraft missions such as NASA's Dawn and New Horizons missions and ESA's Rosetta mission. 2) In-situ analyses of hydrogen isotope compositions and H2O abundances in meteorites from Mars and Vesta, which are giving constraints on the inventory and source of water and other volatiles in these planetary bodies. These studies are providing insights complementary to those about Mars from NASA's Mars Science Laboratory and Mars Atmosphere and Volatile Evolution (MAVEN) missions, and about Vesta from NASA's Dawn mission.

  18. Modeling volatility using state space models.

    PubMed

    Timmer, J; Weigend, A S

    1997-08-01

    In time series problems, noise can be divided into two categories: dynamic noise which drives the process, and observational noise which is added in the measurement process, but does not influence future values of the system. In this framework, we show that empirical volatilities (the squared relative returns of prices) exhibit a significant amount of observational noise. To model and predict their time evolution adequately, we estimate state space models that explicitly include observational noise. We obtain relaxation times for shocks in the logarithm of volatility ranging from three weeks (for foreign exchange) to three to five months (for stock indices). In most cases, a two-dimensional hidden state is required to yield residuals that are consistent with white noise. We compare these results with ordinary autoregressive models (without a hidden state) and find that autoregressive models underestimate the relaxation times by about two orders of magnitude since they do not distinguish between observational and dynamic noise. This new interpretation of the dynamics of volatility in terms of relaxators in a state space model carries over to stochastic volatility models and to GARCH models, and is useful for several problems in finance, including risk management and the pricing of derivative securities. Data sets used: Olsen & Associates high frequency DEM/USD foreign exchange rates (8 years). Nikkei 225 index (40 years). Dow Jones Industrial Average (25 years).

  19. Dynamic compression and volatile release of carbonates

    NASA Technical Reports Server (NTRS)

    Tyburczy, J. A.; Ahrens, T. J.

    1984-01-01

    Particle velocity profiles upon shock compression and isentropic releases were measured for polycrystalline calcite. The Solenhofen limestone release paths lie, close to the Hugoniot. Calcite 3 to 2 transition, upon release, was observed, but rarefaction shocks were not detected. The equation of state is used to predict the fraction of material devolatilized upon isentropic release as a function of shock pressure. The effect of ambient partial pressure of CO2 on the calculations is demonstrated and considered in models of atmospheric evolution by impact induced mineral devolatilization. The radiative characteristics of shocked calcite indicate that localization of thermal energy occurs under shock compression. Shock entropy calculations result in a minimum estimate of 90% devolatilization upon complete release from 10 GPa. Isentropic release paths from calculated continuum Hugoniot temperatures cross into the CaO (solid) + CO2 (vapor) field at improbably low pressures. It is found that release paths from measured shock temperatures cross into the melt plus vapor field at pressures greater than .5 GPa, which suggests that devolatilization is initiated at the shear banding sites.

  20. A Comet Engulfs Mars: MAVEN Observations of Comet Siding Spring's Influence on the Martian Magnetosphere

    NASA Technical Reports Server (NTRS)

    Espley, Jared R.; Dibraccio, Gina A.; Connerney, John E. P.; Brain, David; Gruesbeck, Jacob; Soobiah, Yasir; Halekas, Jasper S.; Combi, Michael; Luhmann, Janet; Ma, Yingjuan

    2015-01-01

    The nucleus of comet C/2013 A1 (Siding Spring) passed within 141,000?km of Mars on 19 October 2014. Thus, the cometary coma and the plasma it produces washed over Mars for several hours producing significant effects in the Martian magnetosphere and upper atmosphere. We present observations from Mars Atmosphere and Volatile EvolutioN's (MAVEN's) particles and field's instruments that show the Martian magnetosphere was severely distorted during the comet's passage. We note four specific major effects: (1) a variable induced magnetospheric boundary, (2) a strong rotation of the magnetic field as the comet approached, (3) severely distorted and disordered ionospheric magnetic fields during the comet's closest approach, and (4) unusually strong magnetosheath turbulence lasting hours after the comet left. We argue that the comet produced effects comparable to that of a large solar storm (in terms of incident energy) and that our results are therefore important for future studies of atmospheric escape, MAVEN's primary science objective.

  1. Physico-Chemical Evolution of Organic Aerosol from Wildfire Emissions

    NASA Astrophysics Data System (ADS)

    Croteau, P.; Jathar, S.; Akherati, A.; Galang, A.; Tarun, S.; Onasch, T. B.; Lewane, L.; Herndon, S. C.; Roscioli, J. R.; Yacovitch, T. I.; Fortner, E.; Xu, W.; Daube, C.; Knighton, W. B.; Werden, B.; Wood, E.

    2017-12-01

    Wildfires are the largest combustion-related source of carbonaceous emissions to the atmosphere; these include direct emissions of black carbon (BC), primary organic aerosol (POA) and semi-volatile, intermediate-volatility, and volatile organic compounds (SVOCs, IVOCs, and VOCs). However, there are large uncertainties surrounding the evolution of these carbonaceous emissions as they are physically and chemically transformed in the atmosphere. To understand these transformations, we performed sixteen experiments using an environmental chamber to simulate day- and night-time chemistry of gas- and aerosol-phase emissions from 6 different fuels at the Fire Laboratory in Missoula, MT. Across the test matrix, the experiments simulated 2 to 8 hours of equivalent day-time aging (with the hydroxyl radical and ozone) or several hours of night-time aging (with the nitrate radical). Aging resulted in an average organic aerosol (OA) mass enhancement of 28% although the full range of OA mass enhancements varied between -10% and 254%. These enhancement findings were consistent with chamber and flow reactor experiments performed at the Fire Laboratory in 2010 and 2012 but, similar to previous studies, offered no evidence to link the OA mass enhancement to fuel type or oxidant exposure. Experiments simulating night-time aging resulted in an average OA mass enhancement of 10% and subsequent day-time aging resulted in a decrease in OA mass of 8%. While small, for the first time, these experiments highlighted the continuous nature of the OA evolution as the wildfire smoke cycled through night- and day-time processes. Ongoing work is focussed on (i) quantifying bulk compositional changes in OA, (ii) comparing the near-field aging simulated in this work with far-field aging simulated during the same campaign (via a mini chamber and flow tube) and (iii) integrating wildfire smoke aging datasets over the past decade to examine the relationship between OA mass enhancement ratios, modified combustion efficiency, initial aerosol concentrations and composition, aerosol size, oxidant exposure, VOC:NOx ratios, and emissions and speciation of SOA precursors.

  2. Erosion, Transportation, and Deposition on Outer Solar System Satellites: Landform Evolution Modeling Studies

    NASA Technical Reports Server (NTRS)

    Moore, Jeffrey Morgan; Howard, Alan D.; Schenk, Paul M.

    2013-01-01

    Mass movement and landform degradation reduces topographic relief by moving surface materials to a lower gravitational potential. In addition to the obvious role of gravity, abrasive mechanical erosion plays a role, often in combination with the lowering of cohesion, which allows disaggregation of the relief-forming material. The identification of specific landform types associated with mass movement and landform degradation provides information about local sediment particle size and abundance and transportation processes. Generally, mass movements can be classified in terms of the particle sizes of the transported material and the speed the material moved during transport. Most degradation on outer planet satellites appears consistent with sliding or slumping, impact erosion, and regolith evolution. Some satellites, such as Callisto and perhaps Hyperion and Iapetus, have an appearance that implies that some additional process is at work, most likely sublimation-driven landform modification and mass wasting. A variant on this process is thermally driven frost segregation as seen on all three icy Galilean satellites and perhaps elsewhere. Titan is unique among outer planet satellites in that Aeolian and fluvial processes also operate to erode, transport, and deposit material. We will evaluate the sequence and extent of various landform-modifying erosional and volatile redistribution processes that have shaped these icy satellites using a 3-D model that simulates the following surface and subsurface processes: 1) sublimation and re-condensation of volatiles; 2) development of refractory lag deposits; 3) disaggregation and downward sloughing of surficial material; 4) radiative heating/cooling of the surface (including reflection, emission, and shadowing by other surface elements); 5) thermal diffusion; and 6) vapor diffusion. The model will provide explicit simulations of landform development and thusly predicts the topographic and volatile evolution of the surface and final landscape form as constrained by DEMs. We have also simulated fluvial and lacustrine modification of icy satellites landscapes to evaluate the degree to which fluvial erosion of representative initial landscapes can replicate the present Titan landscape.

  3. Risk management in the competitive electric power industry

    NASA Astrophysics Data System (ADS)

    Dahlgren, Robert William

    From 1990 until present day, the electric power industry has experienced dramatic changes worldwide. This recent evolution of the power industry has included creation and multiple iterations of competitive wholesale markets in many different forms. The creation of these competitive markets has resulted in increased short-term volatility of power prices. Vertically integrated utilities emerged from years of regulatory controls to now experience the need to perform risk assessment. The goal of this dissertation is to provide background and details of the evolution of market structures combined with examples of how to apply price risk assessment techniques such as Value-at-Risk (VaR). In Chapter 1, the history and evolution of three selected regional markets, PJM, California, and England and Wales is presented. A summary of the commonalities and differences is presented to provide an overview of the rate of transformation of the industry in recent years. The broad area of risk management in the power industry is also explored through a State-of-the-Art Literature Survey. In Chapter 2, an illustration of risk assessment to power trading is presented. The techniques of Value-at-Risk and Conditional Value-at-Risk are introduced and applied to a common scenario. The advantages and limitations of the techniques are compared through observation of their results against the common example. Volatility in the California Power Markets is presented in Chapter 3. This analysis explores the California markets in the summer of 2000 including the application of VaR analysis to the extreme volatility observed during this period. In Chapter 4, CVaR is applied to the same California historical data used in Chapter 3. In addition, the unique application of minimizing the risk of a power portfolio by minimizing CVaR is presented. The application relies on recent research into CVaR whereby the portfolio optimization problem can be reduced to a Linear Programming problem.

  4. Chemical consequences of compaction within the freezing front of a crystallizing magma ocean

    NASA Astrophysics Data System (ADS)

    Hier-Majumder, S.; Hirschmann, M. M.

    2013-12-01

    The thermal and compositional evolution of planetary magma oceans have profound influences on the early development and differentiation of terrestrial planets. During crystallization, rejection of elements incompatible in precipitating solids leads to petrologic and geochemical planetary differentiation, including potentially development of a compositionally stratified early mantle and evolution of thick overlying atmospheres. In cases of extremely efficient segregation of melt and crystals, solidified early mantles can be nearly devoid of key incompatible species including heat-producing (U, Th, K) and volatile (H,C,N,& noble gas) elements. A key structural component of a crystallizing magma ocean is the partially molten freezing front. The dynamics of this region influences the distribution of incompatible elements between the earliest mantle and the initial surficial reservoirs. It also can be the locus of heating owing to the dissipation of large amounts of tidal energy potentially available from the early Moon. The dynamics are influenced by the solidification rate, which is coupled to the liberation of volatiles owing to the modulating greenhouse effects in the overlying thick atmosphere. Compaction and melt retention in the freezing front of a magma ocean has received little previous attention. While the front advances during the course of crystallization, coupled conservation of mass, momentum, and energy within the front controls distribution and retention of melt within this layer. Due to compaction within this layer, melt distribution is far from uniform, and the fraction of melt trapped within this front depends on the rate of freezing of the magma ocean. During phases of rapid freezing, high amount of trapped melt within the freezing front retains a larger quantity of dissolved volatiles and the reverse is true during slow periods of crystallization. Similar effects are known from inferred trapped liquid fractions in layered mafic intrusions. Here we develop a simple 1-D model of melt retention in the freezing front of a crystallizing magma ocean, and apply it to the thermal and chemical evolution of the early Earth.

  5. Structure and Evolution of Kuiper Belt Objects: The Case for Compositional Classes

    NASA Astrophysics Data System (ADS)

    McKinnon, William B.; Prialnik, D.; Stern, S. A.

    2007-10-01

    Kuiper belt objects (KBOs) accreted from a mélange of ices, carbonaceous matter, and rock of mixed interstellar and solar nebular provenance. The transneptunian region, where this accretion took place, was likely more radially compact than today. This and the influence of gas drag during the solar nebula epoch argue for more rapid KBO accretion than usually considered. Early evolution of KBOs was largely the result of radiogenic heating, with both short-term and long-term contributions being potentially important. Depending on rock content and porous conductivity, KBO interiors may have reached relatively high temperatures. Models suggest that KBOs likely lost very volatile ices during early evolution, whereas less volatile ices should be retained in cold, less altered subsurface layers; initially amorphous ice may have crystallized in the interior as well, releasing trapped volatiles. Generally, KBOs should be stratified in terms of composition and porosity, albeit subject to impact disruption and collisional stripping. KBOs are thus unlikely to be "the most pristine objects in the Solar System.” Large (dwarf planet) KBOs may be fully differentiated. KBO surface color and compositional classes are usually discussed in terms of "nature vs. nurture,” i.e., a generic primordial composition vs. surface processing, but the true nature of KBOs also depends on how they have evolved. The broad range of albedos now found in the Kuiper belt, deep water-ice absorptions on some objects, evidence for differentiation of Pluto and 2003 EL61, and a range of densities incompatible with a single, primordial composition and variable porosity strongly imply significant, intrinsic compositional differences among KBOs. The interplay of formation zone (accretion rate), body size, and dynamical (collisional) history may yield KBO compositional classes (and their spectral correlates) that recall the different classes of asteroids in the inner Solar System, but whose members are broadly distributed among the KBO dynamical subpopulations.

  6. Induced Release of a Plant-Defense Volatile ‘Deceptively’ Attracts Insect Vectors to Plants Infected with a Bacterial Pathogen

    PubMed Central

    Mann, Rajinder S.; Ali, Jared G.; Hermann, Sara L.; Tiwari, Siddharth; Pelz-Stelinski, Kirsten S.; Alborn, Hans T.; Stelinski, Lukasz L.

    2012-01-01

    Transmission of plant pathogens by insect vectors is a complex biological process involving interactions between the plant, insect, and pathogen. Pathogen-induced plant responses can include changes in volatile and nonvolatile secondary metabolites as well as major plant nutrients. Experiments were conducted to understand how a plant pathogenic bacterium, Candidatus Liberibacter asiaticus (Las), affects host preference behavior of its psyllid (Diaphorina citri Kuwayama) vector. D. citri were attracted to volatiles from pathogen-infected plants more than to those from non-infected counterparts. Las-infected plants were more attractive to D. citri adults than non-infected plants initially; however after feeding, psyllids subsequently dispersed to non-infected rather than infected plants as their preferred settling point. Experiments with Las-infected and non-infected plants under complete darkness yielded similar results to those recorded under light. The behavior of psyllids in response to infected versus non-infected plants was not influenced by whether or not they were carriers of the pathogen. Quantification of volatile release from non-infected and infected plants supported the hypothesis that odorants mediate psyllid preference. Significantly more methyl salicylate, yet less methyl anthranilate and D-limonene, was released by infected than non-infected plants. Methyl salicylate was attractive to psyllids, while methyl anthranilate did not affect their behavior. Feeding on citrus by D. citri adults also induced release of methyl salicylate, suggesting that it may be a cue revealing location of conspecifics on host plants. Infected plants were characterized by lower levels of nitrogen, phosphorus, sulfur, zinc, and iron, as well as, higher levels of potassium and boron than non-infected plants. Collectively, our results suggest that host selection behavior of D. citri may be modified by bacterial infection of plants, which alters release of specific headspace volatiles and plant nutritional contents. Furthermore, we show in a laboratory setting that this apparent pathogen-mediated manipulation of vector behavior may facilitate pathogen spread. PMID:22457628

  7. Induced release of a plant-defense volatile 'deceptively' attracts insect vectors to plants infected with a bacterial pathogen.

    PubMed

    Mann, Rajinder S; Ali, Jared G; Hermann, Sara L; Tiwari, Siddharth; Pelz-Stelinski, Kirsten S; Alborn, Hans T; Stelinski, Lukasz L

    2012-01-01

    Transmission of plant pathogens by insect vectors is a complex biological process involving interactions between the plant, insect, and pathogen. Pathogen-induced plant responses can include changes in volatile and nonvolatile secondary metabolites as well as major plant nutrients. Experiments were conducted to understand how a plant pathogenic bacterium, Candidatus Liberibacter asiaticus (Las), affects host preference behavior of its psyllid (Diaphorina citri Kuwayama) vector. D. citri were attracted to volatiles from pathogen-infected plants more than to those from non-infected counterparts. Las-infected plants were more attractive to D. citri adults than non-infected plants initially; however after feeding, psyllids subsequently dispersed to non-infected rather than infected plants as their preferred settling point. Experiments with Las-infected and non-infected plants under complete darkness yielded similar results to those recorded under light. The behavior of psyllids in response to infected versus non-infected plants was not influenced by whether or not they were carriers of the pathogen. Quantification of volatile release from non-infected and infected plants supported the hypothesis that odorants mediate psyllid preference. Significantly more methyl salicylate, yet less methyl anthranilate and D-limonene, was released by infected than non-infected plants. Methyl salicylate was attractive to psyllids, while methyl anthranilate did not affect their behavior. Feeding on citrus by D. citri adults also induced release of methyl salicylate, suggesting that it may be a cue revealing location of conspecifics on host plants. Infected plants were characterized by lower levels of nitrogen, phosphorus, sulfur, zinc, and iron, as well as, higher levels of potassium and boron than non-infected plants. Collectively, our results suggest that host selection behavior of D. citri may be modified by bacterial infection of plants, which alters release of specific headspace volatiles and plant nutritional contents. Furthermore, we show in a laboratory setting that this apparent pathogen-mediated manipulation of vector behavior may facilitate pathogen spread.

  8. Disproportionate photosynthetic decline and inverse relationship between constitutive and induced volatile emissions upon feeding of Quercus robur leaves by large larvae of gypsy moth (Lymantria dispar)

    PubMed Central

    Copolovici, Lucian; Pag, Andreea; Kännaste, Astrid; Bodescu, Adina; Tomescu, Daniel; Copolovici, Dana; Soran, Maria-Loredana; Niinemets, Ülo

    2018-01-01

    Gypsy moth (Lymantria dispar L., Lymantriinae) is a major pest of pedunculate oak (Quercus robur) forests in Europe, but how its infections scale with foliage physiological characteristics, in particular with photosynthesis rates and emissions of volatile organic compounds has not been studied. Differently from the majority of insect herbivores, large larvae of L. dispar rapidly consume leaf area, and can also bite through tough tissues, including secondary and primary leaf veins. Given the rapid and devastating feeding responses, we hypothesized that infection of Q. robur leaves by L. dispar leads to disproportionate scaling of leaf photosynthesis and constitutive isoprene emissions with damaged leaf area, and to less prominent enhancements of induced volatile release. Leaves with 0% (control) to 50% of leaf area removed by larvae were studied. Across this range of infection severity, all physiological characteristics were quantitatively correlated with the degree of damage, but all these traits changed disproportionately with the degree of damage. The net assimilation rate was reduced by almost 10-fold and constitutive isoprene emissions by more than 7-fold, whereas the emissions of green leaf volatiles, monoterpenes, methyl salicylate and the homoterpene (3E)-4,8-dimethy-1,3,7-nonatriene scaled negatively and almost linearly with net assimilation rate through damage treatments. This study demonstrates that feeding by large insect herbivores disproportionately alters photosynthetic rate and constitutive isoprene emissions. Furthermore, the leaves have a surprisingly large capacity for enhancement of induced emissions even when foliage photosynthetic function is severely impaired. PMID:29367792

  9. Plant strengtheners enhance parasitoid attraction to herbivore-damaged cotton via qualitative and quantitative changes in induced volatiles.

    PubMed

    Sobhy, Islam S; Erb, Matthias; Turlings, Ted C J

    2015-05-01

    Herbivore-damaged plants release a blend of volatile organic compounds (VOCs) that differs from undamaged plants. These induced changes are known to attract the natural enemies of the herbivores and therefore are expected to be important determinants of the effectiveness of biological control in agriculture. One way of boosting this phenomenon is the application of plant strengtheners, which has been shown to enhance parasitoid attraction in maize. It is unclear whether this is also the case for other important crops. The plant strengtheners BTH [benzo (1,2,3) thiadiazole-7-carbothioic acid S-methyl ester] and laminarin were applied to cotton plants, and the effects on volatile releases and the attraction of three hymenopteran parasitoids, Cotesia marginiventris, Campoletis sonorensis and Microplitis rufiventris, were studied. After treated and untreated plants were induced by real or simulated caterpillar feeding, it was found that BTH treatment increased the attraction of the parasitoids, whereas laminarin had no significant effect. BTH treatment selectively increased the release of two homoterpenes and reduced the emission of indole, the latter of which had been shown to interfere with parasitoid attraction in earlier studies. Canonical variate analyses of the data show that the parasitoid responses were dependent on the quality rather than the quantity of volatile emission in this tritrophic interaction. Overall, these results strengthen the emerging paradigm that induction of plant defences with chemical elicitors such as BTH could provide a sustainable and environmentally friendly strategy for biological control of pests by enhancing the attractiveness of cultivated plants to natural enemies of insect herbivores. © 2014 Society of Chemical Industry.

  10. How to recover from the financial market flu.

    PubMed

    Doody, Dennis

    2008-05-01

    The widely publicized subprime mortgage crisis and soaring crude oil prices have contributed to considerable market volatility in recent months, inducing queasiness among institutional investors. A four-layer approach to asset allocation that carefully considers assets, liquidity, currency, and risk may be the best strategy for maintaining an institution's financial health through today's volatile market. Perhaps the biggest challenge in such financially turbulent times is keeping fear in check.

  11. Evolution of Titan's atmosphere during the Late Heavy Bombardment

    NASA Astrophysics Data System (ADS)

    Marounina, Nadejda; Tobie, Gabriel; Carpy, Sabrina; Monteux, Julien; Charnay, Benjamin; Grasset, Olivier

    2015-09-01

    The mass and composition of Titan's massive atmosphere, which is dominated by N2 and CH4 at present, have probably varied all along its history owing to a combination of exogenous and endogenous processes. In the present study, we investigate its fate during the Late Heavy Bombardment (LHB) by modeling the competitive loss and supply of volatiles by cometary impacts and their consequences on the atmospheric balance. For surface albedos ranging between 0.1 and 0.7, we examine the emergence of an atmosphere during the LHB as well as the evolution of a primitive atmosphere with various masses and compositions prior to this event, accounting for impact-induced crustal NH3-N2 conversion and subsequent outgassing as well as impact-induced atmospheric erosion. By considering an impactor population characteristic of the LHB, we show that the generation of a N2-rich atmosphere with a mass equivalent to the present-day one requires ammonia mass fraction of 2-5%, depending on surface albedos, in an icy layer of at least 50 km below the surface, implying an undifferentiated interior at the time of LHB. Except for high surface albedos (AS ⩾ 0.7) where most of the released N2 remain frozen at the surface, our calculations indicate that the high-velocity impacts led to a strong atmospheric erosion. For a differentiated Titan with a thin ammonia-enriched crust (⩽5 km) and AS < 0.6 , any atmosphere preexisting before the LHB should be more than 5 times more massive than at present, in order to sustain an atmosphere equivalent to the present-day one. This implies that either a massive atmosphere was formed on Titan during its accretion or that the nitrogen-rich atmosphere was generated after the LHB.

  12. In Vitro Toxicity Screening Technique for Volatile Substances ...

    EPA Pesticide Factsheets

    In 2007 the National Research Council envisioned the need for inexpensive, high throughput, cell based toxicity testing methods relevant to human health. High Throughput Screening (HTS) in vitro screening approaches have addressed these problems by using robotics. However the challenge is that many of these chemicals are volatile and not amenable to HTS robotic liquid handling applications. We assembled an in vitro cell culture apparatus capable of screening volatile chemicals for toxicity with potential for miniaturization for high throughput. BEAS-2B lung cells were grown in an enclosed culture apparatus under air-liquid interface (ALI) conditions, and exposed to an array of xenobiotics in 5% CO2. Use of ALI conditions allows direct contact of cells with a gas xenobiotic, as well as release of endogenous gaseous molecules without interference by medium on the apical surface. To identify potential xenobiotic-induced perturbations in cell homeostasis, we monitored for alterations of endogenously-produced gaseous molecules in air directly above the cells, termed “headspace”. Alterations in specific endogenously-produced gaseous molecules (e.g., signaling molecules nitric oxide (NO) and carbon monoxide (CO) in headspace is indicative of xenobiotic-induced perturbations of specific cellular processes. Additionally, endogenously produced volatile organic compounds (VOCs) may be monitored in a nonspecific, discovery manner to determine whether cell processes are

  13. Deformation pathways and breakup modes in acoustically levitated bicomponent droplets under external heating

    NASA Astrophysics Data System (ADS)

    Pathak, Binita; Basu, Saptarshi

    2016-03-01

    Controlled breakup of droplets using heat or acoustics is pivotal in applications such as pharmaceutics, nanoparticle production, and combustion. In the current work we have identified distinct thermal acoustics-induced deformation regimes (ligaments and bubbles) and breakup dynamics in externally heated acoustically levitated bicomponent (benzene-dodecane) droplets with a wide variation in volatility of the two components (benzene is significantly more volatile than dodecane). We showcase the physical mechanism and universal behavior of droplet surface caving in leading to the inception and growth of ligaments. The caving of the top surface is governed by a balance between the acoustic pressure field and the restrictive surface tension of the droplet. The universal collapse of caving profiles for different benzene concentration (<70 % by volume) is shown by using an appropriate time scale obtained from force balance. Continuous caving leads to the formation of a liquid membrane-type structure which undergoes radial extension due to inertia gained during the precursor phase. The membrane subsequently closes at the rim and the kinetic energy leads to ligament formation and growth. Subsequent ligament breakup is primarily Rayleigh-Plateau type. The breakup mode shifts to diffusional entrapment-induced boiling with an increase in concentration of the volatile component (benzene >70 % by volume). The findings are portable to any similar bicomponent systems with differential volatility.

  14. Volatile arsenic species released from Escherichia coli expressing the AsIII S-adenosylmethionine methyltransferase gene.

    PubMed

    Yuan, Chungang; Lu, Xiufen; Qin, Jie; Rosen, Barry P; Le, X Chris

    2008-05-01

    Biological systems, ranging from bacteria and fungi to humans, can methylate arsenic. Recent studies have suggested that the AsIII S-adenosylmethionine methyltransferase (arsM) gene in bacteria was responsible for the removal of arsenic as the volatile arsines from the bacteria. However, there has been no direct measure of the arsines released from bacteria cultures. We describe here an integrated system incorporating the bacterial incubation and volatile arsenic species analysis, and we demonstrate its application to the identification of the volatile arsines produced in bacterial cultures. The headspace of the bacterial cultures was purged with helium, and the volatile arsenic species were trapped in a chromatographic column immersed in liquid nitrogen. The cryogenically trapped arsines [AsH3, (CH3)AsH2, (CH3)2AsH, and (CH3)3As] were separated by gas chromatography and were detected by inductively coupled plasma mass spectrometry. A hydride generation system was coupled to the bacterial culture system, allowing for spiking standards and for generating calibration arsines necessary for quantitative analysis. Both bacteria containing the arsM gene or its variant arsMC2 gene were able to produce 400-500 ng of trimethylarsine. No trimethylarsine was detectable in bacteria lacking the arsM gene (containing the vector plasmid as negative control). These results confirm that arsM is responsible for releasing arsenic as volatile species from the arsenic-resistant bacteria. Our results also show traces of AsH3, CH3AsH2, and (CH3)2AsH in cultures of bacteria expressing arsM. The method detection limits for AsH3, CH3AsH2, (CH3)2AsH, and (CH3)3As were 0.5, 0.5, 0.7, and 0.6 pg, respectively. The ability to quantify trace levels of these volatile arsenic species makes it possible to study the biotransformation and biochemical roles of the evolution of these volatile arsenic species by biological systems.

  15. Induction of direct and indirect plant responses by jasmonic acid, low spider mite densities, or a combination of jasmonic acid treatment and spider mite infestation.

    PubMed

    Gols, Rieta; Roosjen, Mara; Dijkman, Herman; Dicke, Marcel

    2003-12-01

    Jasmonic acid (JA) and the octadecanoid pathway are involved in both induced direct and induced indirect plant responses. In this study, the herbivorous mite, Tetranychus urticae, and its predator, Phytoseiulus persimilis, were given a choice between Lima bean plants induced by JA or spider mites and uninduced control plants. Infestation densities resulting in the induction of predator attractants were much lower than thus far assumed, i.e., predatory mites were significantly attracted to plants that were infested for 2 days with only one or four spider mites per plant. Phytoseiulus persimilis showed a density-dependent response to volatiles from plants that were infested with different numbers of spider mites. Similarly, treating plants with increasing concentrations of JA also led to increased attraction of P. persimilis. Moreover, the duration of spider mite infestation was positively correlated with the proportion of predators that were attracted to mite-infested plants. A pretreatment of the plants with JA followed by a spider mite infestation enhanced the attraction of P. persimilis to plant volatiles compared to attraction to volatiles from plants that were only infested with spider mites and did not receive a pretreatment with JA. The herbivore, T. urticae preferred leaf tissue that previously had been infested with conspecifics to uninfested leaf tissue. In the case of choice tests with JA-induced and control leaf tissue, spider mites slightly preferred control leaf tissue. When spider mites were given a choice between leaf discs induced by JA and leaf discs damaged by spider mite feeding, they preferred the latter. The presence of herbivore induced chemicals and/or spider mite products enhanced settlement of the mites, whereas treatment with JA seemed to impede settlement.

  16. A genetically-based latitudinal cline in the emission of herbivore-induced plant volatile organic compounds.

    PubMed

    Wason, Elizabeth L; Agrawal, Anurag A; Hunter, Mark D

    2013-08-01

    The existence of predictable latitudinal variation in plant defense against herbivores remains controversial. A prevailing view holds that higher levels of plant defense evolve at low latitudes compared to high latitudes as an adaptive plant response to higher herbivore pressure on low-latitude plants. To date, this prediction has not been examined with respect to volatile organic compounds (VOCs) that many plants emit, often thus attracting the natural enemies of herbivores. Here, we compared genetically-based constitutive and herbivore-induced aboveground vegetative VOC emissions from plants originating across a gradient of more than 10° of latitude (>1,500 km). We collected headspace VOCs from Asclepias syriaca (common milkweed) originating from 20 populations across its natural range and grown in a common garden near the range center. Feeding by specialist Danaus plexippus (monarch) larvae induced VOCs, and field environmental conditions (temperature, light, and humidity) also influenced emissions. Monarch damage increased plant VOC concentrations and altered VOC blends. We found that genetically-based induced VOC emissions varied with the latitude of plant population origin, although the pattern followed the reverse of that predicted-induced VOC concentration increased with increasing latitude. This pattern appeared to be driven by a greater induction of sesquiterpenoids at higher latitudes. In contrast, constitutive VOC emission did not vary systematically with latitude, and the induction of green leafy volatiles declined with latitude. Our results do not support the prevailing view that plant defense is greater at lower than at higher latitudes. That the pattern holds only for herbivore-induced VOC emission, and not constitutive emission, suggests that latitudinal variation in VOCs is not a simple adaptive response to climatic factors.

  17. Volatility measurement of atmospheric submicron aerosols in an urban atmosphere in southern China

    NASA Astrophysics Data System (ADS)

    Cao, Li-Ming; Huang, Xiao-Feng; Li, Yuan-Yuan; Hu, Min; He, Ling-Yan

    2018-02-01

    Aerosol pollution has been a very serious environmental problem in China for many years. The volatility of aerosols can affect the distribution of compounds in the gas and aerosol phases, the atmospheric fates of the corresponding components, and the measurement of the concentration of aerosols. Compared to the characterization of chemical composition, few studies have focused on the volatility of aerosols in China. In this study, a thermodenuder aerosol mass spectrometer (TD-AMS) system was deployed to study the volatility of non-refractory submicron particulate matter (PM1) species during winter in Shenzhen. To our knowledge, this paper is the first report of the volatilities of aerosol chemical components based on a TD-AMS system in China. The average PM1 mass concentration during the experiment was 42.7±20.1 µg m-3, with organic aerosol (OA) being the most abundant component (43.2 % of the total mass). The volatility of chemical species measured by the AMS varied, with nitrate showing the highest volatility, with a mass fraction remaining (MFR) of 0.57 at 50 °C. Organics showed semi-volatile characteristics (the MFR was 0.88 at 50 °C), and the volatility had a relatively linear correlation with the TD temperature (from the ambient temperature to 200 °C), with an evaporation rate of 0.45 % °C-1. Five subtypes of OA were resolved from total OA using positive matrix factorization (PMF) for data obtained under both ambient temperature and high temperatures through the TD, including a hydrocarbon-like OA (HOA, accounting for 13.5 %), a cooking OA (COA, 20.6 %), a biomass-burning OA (BBOA, 8.9 %), and two oxygenated OAs (OOAs): a less-oxidized OOA (LO-OOA, 39.1 %) and a more-oxidized OOA (MO-OOA, 17.9 %). Different OA factors presented different volatilities, and the volatility sequence of the OA factors at 50 °C was HOA (MFR of 0.56) > LO-OOA (0.70) > COA (0.85) ≈ BBOA (0.87) > MO-OOA (0.99), which was not completely consistent with the sequence of their O / C ratios. The high volatility of HOA implied that it had a high potential to be oxidized to secondary species in the gas phase. The aerosol volatility measurement results in this study provide useful parameters for the modeling work of aerosol evolution in China and are also helpful in understanding the formation mechanisms of secondary aerosols.

  18. Monitoring the evolution of volatile compounds using gas chromatography during the stages of production of Moscatel sparkling wine.

    PubMed

    Soares, Rafael Dutra; Welke, Juliane Elisa; Nicolli, Karine Primieri; Zanus, Mauro; Caramão, Elina Bastos; Manfroi, Vitor; Zini, Cláudia Alcaraz

    2015-09-15

    This study reports, for the first time, the main changes that occur with some important aroma compounds of Moscatel sparkling wines during winemaking, measured using headspace solid-phase microextraction, one-dimensional and comprehensive two-dimensional gas chromatography (GC×GC) with mass spectrometry detection (MS). The best conditions of volatile extraction included the use of PDMS/DVB fibre, 2mL of wine, 30% of NaCl, 40°C for 30min. The chromatographic profile of sparkling wines showed decreasing amounts of monoterpenes (limonene, 4-terpineol, terpinolene, citronellol, α-terpineol, linalool, hotrienol, and nerol oxide), increasing amounts of esters (terpenyl esters, ethyl octanoate, ethyl decanoate and hexyl acetate) and alcohols (1-nonanol and 2-phenylethanol). Sixty-nine compounds co-eluted in the first dimension; only six co-eluted in the second dimension. GC×GC/TOFMS allows more detailed study of the volatile profile of sparkling wines. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. A Water Recovery System Evolved for Exploration

    NASA Technical Reports Server (NTRS)

    ORourke, Mary Jane E.; Perry, Jay L.; Carter, Donald L.

    2006-01-01

    A new water recovery system designed towards fulfillment of NASA's Vision for Space Exploration is presented. This water recovery system is an evolution of the current state-of-the-art system. Through novel integration of proven technologies for air and water purification, this system promises to elevate existing technology to higher levels of optimization. The novel aspect of the system is twofold: Volatile organic contaminants will be removed from the cabin air via catalytic oxidation in the vapor phase, prior to their absorption into the aqueous phase, and vapor compression distillation technology will be used to process the condensate and hygiene waste streams in addition to the urine waste stream. Oxidation kinetics dictate that removal of volatile organic contaminants from the vapor phase is more efficient. Treatment of the various waste streams by VCD will reduce the load on the expendable ion exchange and adsorption media which follow, and on the aqueous-phase volatile removal assembly further downstream. Incorporating these advantages will reduce the weight, volume, and power requirements of the system, as well as resupply.

  20. The Chlorine Isotopic Composition Of Lunar UrKREEP

    NASA Technical Reports Server (NTRS)

    Barnes, J. J.; Tartese, R.; Anand, M.; McCubbin, F. M.; Neal, C. R.; Franchi, I. A.

    2016-01-01

    Since the long standing paradigm of an anhydrous Moon was challenged there has been a renewed focus on investigating volatiles in a variety of lunar samples. However, the current models for the Moon’s formation have yet to fully account for its thermal evolution in the presence of H2O and other volatiles. When compared to chondritic meteorites and terrestrial rocks, lunar samples have exotic chlorine isotope compositions, which are difficult to explain in light of the abundance and isotopic composition of other volatile species, especially H, and the current estimates for chlorine and H2O in the bulk silicate Moon. In order to better understand the processes involved in giving rise to the heavy chlorine isotope compositions of lunar samples, we have performed a comprehensive in situ high precision study of chlorine isotopes, using NanoSIMS (Nanoscale Secondary Ion Mass Spectrometry) of lunar apatite from a suite of Apollo samples covering a range of geochemical characteristics and petrologic types.

  1. Investigation on the fates of vanadium and nickel during co-gasification of petroleum coke with biomass.

    PubMed

    Li, Jiazhou; Wang, Xiaoyu; Wang, Bing; Zhao, Jiantao; Fang, Yitian

    2018-06-01

    This study investigates the volatilization behaviors and mineral transformation of vanadium and nickel during co-gasification of petroleum coke with biomass. Moreover, the evolution of occurrence modes of vanadium and nickel was also determined by the method of sequential chemical extraction. The results show that the volatilities of vanadium and nickel in petroleum coke have a certain level of growth with an increase in the temperature. With the addition of biomass, their volatilities both show an obvious decrease. Organic matter and stable forms are the dominant chemical forms of vanadium and nickel. After gasification, organic-bound vanadium and nickel decompose completely and convert into other chemical forms. The crystalline phases of vanadium trioxide, coulsonite, nickel sulfide, and elemental nickel are clearly present in petroleum coke and biomass gasification ashes. When the addition of biomass reaches 60 wt%, the diffraction peaks of orthovanadate are found while that of vanadium trioxide disappear. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Volatile oils of Chinese crude medicines exhibit antiparasitic activity against human Demodex with no adverse effects in vivo.

    PubMed

    Liu, Ji-Xin; Sun, Yan-Hong; Li, Chao-Pin

    2015-04-01

    Demodex is a type of permanent obligatory parasite, which can be found on the human body surface. Currently, drugs targeting Demodex usually result in adverse effects and have a poor therapeutic effect. Thus, the aim of the present study was to investigate the use of Chinese crude medicine volatile oils for targeting and inhibiting Demodex in vitro . The volatile oils of six Chinese crude medicines were investigated, including clove, orange fruit, Manchurian wildginger, cinnamon bark, Rhizome Alpiniae Officinarum and pricklyash peel, which were extracted using a distillation method. The exercise status of Demodex folliculorum and Demodex brevis and the antiparasitic effects of the volatile oils against the two species were observed using microscopy. A skin irritation test was used to examine the irritation intensity of the volatile oils. In addition, an acute toxicity test was utilized to observe the toxicity effects of the volatile oils on the skin. Xin Fumanling ointment was employed as a positive control to identify the therapeutic effects of the volatile oils. The results indicated that all six volatile oils were able to kill Demodex efficiently. In particular, the clove volatile oil was effective in inducing optimized anti- Demodex activity. The lethal times of the volatile oils were significantly decreased compared with the Xin Fumanling ointment (P<0.05). Furthermore, the skin irritation test results indicated that the clove volatile oil did not trigger any irritation (0.2 and 0.3 points for intact and scratched skin, respectively), and had a safety equal to that of distilled water. There were not any adverse effects observed following application of the clove volatile oil on the intact or scratched skin. In conclusion, the volatile oils of Chinese crude medicines, particularly that of clove, demonstrated an evident anti- Demodex activity and were able to kill Demodex effectively and safely in vivo .

  3. Habitable Zone Evolution

    NASA Astrophysics Data System (ADS)

    Waltham, D.; Lota, J.

    2012-12-01

    The location of the habitable zone around a star depends upon stellar luminosity and upon the properties of a potentially habitable planet such as its mass and near-surface volatile inventory. Stellar luminosity generally increases as a star ages whilst planetary properties change through time as a consequence of biological and geological evolution. Hence, the location of the habitable zone changes through time as a result of both stellar evolution and planetary evolution. Using the Earth's Phanerozoic temperature history as a constraint, it is shown that changes in our own habitable zone over the last 540 My have been dominated by planetary evolution rather than solar evolution. Furthermore, sparse data from earlier times suggests that planetary evolution may have dominated habitable zone development throughout our biosphere's history. Hence, the existence of a continuously habitable zone depends upon accidents of complex bio-geochemical evolution more than it does upon relatively simple stellar-evolution. Evolution of the inner margin of the habitable zone through time using three different estimates for climate sensitivity. The dashed line shows a typical predicted evolution assuming this was driven simply by a steady increase in solar luminosity. Solar evolution does not account for the observations. Evolution of the outer margin of the habitable zone through time using three different estimates for climate sensitivity. The dashed line shows a typical predicted evolution assuming this was driven simply by a steady increase in solar luminosity. Solar evolution does not account for the observations.

  4. Plant elicitor peptides are conserved signals regulating direct and indirect antiherbivore defense

    PubMed Central

    Huffaker, Alisa; Pearce, Gregory; Veyrat, Nathalie; Erb, Matthias; Turlings, Ted C. J.; Sartor, Ryan; Shen, Zhouxin; Briggs, Steven P.; Vaughan, Martha M.; Alborn, Hans T.; Teal, Peter E. A.; Schmelz, Eric A.

    2013-01-01

    Insect-induced defenses occur in nearly all plants and are regulated by conserved signaling pathways. As the first described plant peptide signal, systemin regulates antiherbivore defenses in the Solanaceae, but in other plant families, peptides with analogous activity have remained elusive. In the current study, we demonstrate that a member of the maize (Zea mays) plant elicitor peptide (Pep) family, ZmPep3, regulates responses against herbivores. Consistent with being a signal, expression of the ZmPROPEP3 precursor gene is rapidly induced by Spodoptera exigua oral secretions. At concentrations starting at 5 pmol per leaf, ZmPep3 stimulates production of jasmonic acid, ethylene, and increased expression of genes encoding proteins associated with herbivory defense. These include proteinase inhibitors and biosynthetic enzymes for production of volatile terpenes and benzoxazinoids. In accordance with gene expression data, plants treated with ZmPep3 emit volatiles similar to those from plants subjected to herbivory. ZmPep3-treated plants also exhibit induced accumulation of the benzoxazinoid phytoalexin 2-hydroxy-4,7-dimethoxy-1,4-benzoxazin-3-one glucoside. Direct and indirect defenses induced by ZmPep3 contribute to resistance against S. exigua through significant reduction of larval growth and attraction of Cotesia marginiventris parasitoids. ZmPep3 activity is specific to Poaceous species; however, peptides derived from PROPEP orthologs identified in Solanaceous and Fabaceous plants also induce herbivory-associated volatiles in their respective species. These studies demonstrate that Peps are conserved signals across diverse plant families regulating antiherbivore defenses and are likely to be the missing functional homologs of systemin outside of the Solanaceae. PMID:23509266

  5. Constraining the Volatile Regime of Primitive Somma-Vesuvius Magmas Based on the Compositions of Phenocrysts and Melt Inclusions

    NASA Astrophysics Data System (ADS)

    Danyushevsky, L. V.; Esposito, R.; De Vivo, B.; Redi, D.; Lima, A.; Bodnar, R. J.; Gurenko, A.

    2017-12-01

    The volcanic complex of Mt. Somma-Vesuvius is located in the Campanian Plain on east of Naples. We present the results of a mineralogical and melt inclusion studies of primitive volcanic products erupted during the last 2 magmatic cycles of Soma-Vesuvius, aimed at better understanding the volatile fluxes and eruptive behaviour of the volcano. Our results suggest that despite large differences in the compositions of the erupted magmas (from olivine-bearing basaltic lavas to leucite-bearing phonolites) and the eruption style (from plinian to strombolian), there was very little change in the nature of the parental magmas. Melt inclusions in olivine phenocrysts in all volcanic products and styles reveal the highest volatile contents in the most magnesian, early formed crystals (Fo90; H2O 4-5 wt%; CO2 3,000-4,000 ppm), decreasing to near 0 levels of concentrations in olivine Fo70. Major and trace element compositions of the clinopyroxene phenocrysts (Mg#92-70) also suggest a similar parental magma composition and similar liquid lines of decent for all Somma-Vesuvius eruptions. Our results are best explained by a model which relates the eruption style to the intensity of melt supply under the volcano. High intensity plinian eruptions occur after a prolonged repose time, whereas strombolian eruptions occur during periods of more frequent volcanic activity [1]. We will also discuss possible implications for the role of carbonate assimilation during magma evolution of Somma-Vesuvius and for total volatile budget of the SOmma-Vesuvius eruptions. [1] [42] Lima, A., Danyushevsky, L.V., De Vivo, B. and Fedele, L. 2003: A model for the evolution of the Mt. Somma-Vesuvius magmatic system based on fluid and melt inclusion investigations. In: Melt Inclusions in volcanic systems: Methods, applications and Problems (B. De Vivo & R.J. Bodnar, Eds), Series: Developments in Volcanology. No. 5 Elsevier, Amsterdam, 227-251

  6. Venus: Our Misunderstood Sister

    NASA Astrophysics Data System (ADS)

    Dyar, Darby; Smrekar, Suzanne E.

    2018-01-01

    Of all known bodies in the galaxy, Venus is the most Earth-like in size, composition, surface age, and incoming energy. As we search for habitable planets around other stars, learning how Venus works is critical to understanding how Earth evolved to host life, and whether rocky exoplanets in stars’ habitable zones are faraway Earths or Venuses. What caused Venus’ path to its present hostile environment, devoid of oceans, magnetic field, and plate tectonics? This talk reviews recent mission results, presents key unresolved science questions, and describes proposed missions to answer these questions.Despite its importance in understanding habitability, Venus is the least-explored rocky planet, last visited by NASA in 1994. Fundamental, unanswered questions for Venus include: 1. How did Venus evolve differently? 2. How have volatiles shaped its evolution? 3. Did Venus catastrophically resurface? 4. What geologic processes are active today? 5. Why does Venus lack plate tectonics?On Earth, plate tectonics supports long-term climate stability and habitability by cycling volatiles in and out of the mantle. New information on planetary volatiles disputes the long-held notion that Venus’ interior is dry; several lines of evidence indicate that planets start out wet, creating long-term atmospheres by outgassing. ESA’s Venus Express mission provided evidence for recent and ongoing volcanism and for Si-rich crust like Earth’s continents. New hypotheses suggest that lithospheric temperature can explain why Venus lacks tectonics, and are consistent with present-day initiation of subduction on Venus.New data are needed to answer these key questions of rocky planet evolution. Orbital IR data can be acquired through windows in Venus’ CO2-rich atmosphere, informing surface mineralogy, rock types, cloud variations, and active volcanism. High resolution gravity, radar, and topography data along with mineralogical constraints must be obtained. Mineralogy and geochemistry data acquisition on the surface is feasible with current technology, though challenging. Orbital measurements of noble gases/stable isotopes are needed to constrain volatile sources, escape processes, and the history of volcanic outgassing in Venus’ atmosphere.

  7. C-O-H-S magmatic fluid system in shrinkage bubbles of melt inclusions

    NASA Astrophysics Data System (ADS)

    Robidoux, P.; Frezzotti, M. L.; Hauri, E. H.; Aiuppa, A.

    2016-12-01

    Magmatic volatiles include multiple phases in the C-O-H-S system of shrinkage bubbles for which a conceptual model is still unclear during melt inclusion formation [1,2,3,4]. The present study aims to qualitatively explore the evolution of the volatile migration, during and after the formation of the shrinkage bubble in melt inclusions trapped by olivines from Holocene to present at San Cristóbal volcano (Nicaragua), Central American Volcanic Arc (CAVA). Combined scanning electron microscope (SEM) and Raman spectroscopy observations allow to define the mineral-fluid phases inside typical shrinkage bubbles at ambient temperature. The existence of residual liquid water is demonstrated in the shrinkage bubbles of naturally quenched melt inclusion and this water could represents the principal agent for chemical reactions with other dissolved ionic species (SO42-, CO32-, etc.) and major elements (Mg, Fe, Cu, etc.) [4,5]. With the objective of following the cooling story of the bubble-inclusion system, the new methodological approach here estimate the interval of equilibrium temperatures for each SEM-Raman identified mineral phase (carbonates, hydrous carbonates, sulfurs, sulfates, etc.). Finally, two distinct mechanisms are proposed to describe the evolution of this heterogeneous fluid system in bubble samples at San Cristóbal which imply a close re-examination for similar volcanoes in subduction zone settings: (1) bubbles are already contracted and filled by volatiles by diffusion processes from the glass and leading to a C-O-H-S fluid-glass reaction enriched in Mg-Fe-Cu elements (2) bubbles are formed by oversaturation of the volatiles from the magma which is producing an immiscible metal-rich fluid. [1]Moore et al. (2015). Am. Mineral. 100, 806-823 [2]Wallace et al. (2015). Am. Mineral. 100, 787-794 [3]Lowenstern (2015). Am. Mineral. 100, 672-673 [4]Esposito, et al. (2016). Am. Mineral. 101, 1691-1708 [5]Kamenetsky et al. (2001). Earth Planet. Sci. Lett. 184, 685-702

  8. Sending mixed messages: a trophic cascade produced by a belowground herbivore-induced cue

    USDA-ARS?s Scientific Manuscript database

    Plants defend themselves against herbivores both directly (chemical toxins and physical barriers) and indirectly (attracting natural enemies of their herbivores). Previous work has shown that roots of citrus defend themselves against root herbivores by releasing an herbivore induced plant volatile (...

  9. Ammonia Released by Streptomyces aburaviensis Induces Droplet Formation in Streptomyces violaceoruber.

    PubMed

    Schmidt, Kathrin; Spiteller, Dieter

    2017-08-01

    Streptomyces violaceoruber grown in co-culture with Streptomyces aburaviensis produces an about 17-fold higher volume of droplets on its aerial mycelium than in single-culture. Physical separation of the Streptomyces strains by either a plastic barrier or by a dialysis membrane, which allowed communication only by the exchange of volatile compounds or diffusible compounds in the medium, respectively, still resulted in enhanced droplet formation. The application of molecular sieves to bioassays resulted in the attenuation of the droplet-inducing effect of S. aburaviensis indicating the absorption of the compound. 1 H-NMR analysis of molecular-sieve extracts and the selective indophenol-blue reaction revealed that the volatile droplet-inducing compound is ammonia. The external supply of ammonia in biologically relevant concentrations of ≥8 mM enhanced droplet formation in S. violaceoruber in a similar way to S. aburaviensis. Ammonia appears to trigger droplet production in many Streptomyces strains because four out of six Streptomyces strains exposed to ammonia exhibited induced droplet production.

  10. Dollar’s Vulnerability and the Implications for National Security

    DTIC Science & Technology

    2009-12-01

    higher inflation leads to exchange - rate depreciation as well as increased volatility. 36 This indicates that expansionary monetary policy would also...resulted in debasement and depreciation.7 Thus, exchange rate and currency convertibility problems...creation and evolution of international currencies. The problems of establishing and maintaining exchange rates and retaining value led to a system

  11. Chaos Theory as a Model for Managing Issues and Crises.

    ERIC Educational Resources Information Center

    Murphy, Priscilla

    1996-01-01

    Uses chaos theory to model public relations situations in which the salient feature is volatility of public perceptions. Discusses the premises of chaos theory and applies them to issues management, the evolution of interest groups, crises, and rumors. Concludes that chaos theory is useful as an analogy to structure image problems and to raise…

  12. Reports of planetary geology program, 1976 - 1977. [abstracts

    NASA Technical Reports Server (NTRS)

    Arvidson, R. (Compiler); Wahmann, R. (Compiler); Howard, J. H., III

    1977-01-01

    One hundred seventeen investigations undertaken in the NASA Planetary Geology Program in 1976-1977 are reported in abstract form. Topics discussed include solar system formation; planetary interiors; planetary evolution; asteroids, comets and moons; cratering; volcanic, eolian, fluvial and mass wasting processes; volatiles and the Martian regolith; mapping; and instrument development and techniques. An author index is provided.

  13. MAVEN Press Briefing

    NASA Image and Video Library

    2013-10-28

    Jim Green, director, Planetary Science Division, NASA Headquarters, discusses the upcoming launch of the Mars Atmosphere and Volatile Evolution (MAVEN) mission, at a press conference at NASA Headquarters in Washington on Monday, Oct. 28th, 2013. MAVEN is the agency's next mission to Mars and the first devoted to understanding the upper atmosphere of the Red Planet. (Photo credit: NASA/Jay Westcott)

  14. MAVEN Press Briefing

    NASA Image and Video Library

    2013-10-28

    Kelly Fast, MAVEN program scientist, NASA Headquarters, discusses the upcoming launch of the Mars Atmosphere and Volatile Evolution (MAVEN) mission, at a press conference at NASA Headquarters in Washington on Monday, Oct. 28th, 2013. MAVEN is the agency's next mission to Mars and the first devoted to understanding the upper atmosphere of the Red Planet. (Photo credit: NASA/Jay Westcott)

  15. A specific area of olfactory cortex involved in stress hormone responses to predator odours.

    PubMed

    Kondoh, Kunio; Lu, Zhonghua; Ye, Xiaolan; Olson, David P; Lowell, Bradford B; Buck, Linda B

    2016-04-07

    Instinctive reactions to danger are critical to the perpetuation of species and are observed throughout the animal kingdom. The scent of predators induces an instinctive fear response in mice that includes behavioural changes, as well as a surge in blood stress hormones that mobilizes multiple body systems to escape impending danger. How the olfactory system routes predator signals detected in the nose to achieve these effects is unknown. Here we identify a specific area of the olfactory cortex in mice that induces stress hormone responses to volatile predator odours. Using monosynaptic and polysynaptic viral tracers, we found that multiple olfactory cortical areas transmit signals to hypothalamic corticotropin-releasing hormone (CRH) neurons, which control stress hormone levels. However, only one minor cortical area, the amygdalo-piriform transition area (AmPir), contained neurons upstream of CRH neurons that were activated by volatile predator odours. Chemogenetic stimulation of AmPir activated CRH neurons and induced an increase in blood stress hormones, mimicking an instinctive fear response. Moreover, chemogenetic silencing of AmPir markedly reduced the stress hormone response to predator odours without affecting a fear behaviour. These findings suggest that AmPir, a small area comprising <5% of the olfactory cortex, plays a key part in the hormonal component of the instinctive fear response to volatile predator scents.

  16. A review of the contrasting behavior of two magmatic volatiles: Chlorine and carbon dioxide

    USGS Publications Warehouse

    Lowenstern, J. B.

    2000-01-01

    Chlorine (Cl) and carbon dioxide (CO2) are common magmatic volatiles with contrasting behaviors. CO2 solubility increases with pressure whereas Cl solubility shows relatively little pressure or temperature effect. CO2 speciation changes with silicate melt composition, dissolving as carbonate in basaltic magmas and molecular CO2 in more silicic compositions. In H2O-bearing systems, the strongly non-ideal behavior of alkali chlorides causes unmixing of the volatile phase to form a H2O-rich vapor and a hydrosaline phase with important implications for the maximum concentration of Cl in magmas. Addition of CO2 to magma hastens immiscibility at crustal pressures (<500 MPa), inducing the formation of CO2-rich vapors and Cl-rich hydrosaline melts. (C) 2000 Elsevier Science B.V. All rights reserved.Chlorine (Cl) and carbon dioxide (CO2) are common magmatic volatiles with contrasting behaviors. CO2 solubility increases with pressure whereas Cl solubility shows relatively little pressure or temperature effect. CO2 speciation changes with silicate melt composition, dissolving as carbonate in basaltic magmas and molecular CO2 in more silicic compositions. In H2O-bearing systems, the strongly non-ideal behavior of alkali chlorides causes unmixing of the volatile phase to form a H2O-rich vapor and a hydrosaline phase with important implications for the maximum concentration of Cl in magmas. Addition of CO2 to magma hastens immiscibility at crustal pressures (<500 MPa), inducing the formation of CO2-rich vapors and Cl-rich hydrosaline melts.

  17. Chilling-induced tomato flavor loss is associated with altered volatile synthesis and transient changes in DNA methylation.

    PubMed

    Zhang, Bo; Tieman, Denise M; Jiao, Chen; Xu, Yimin; Chen, Kunsong; Fei, Zhangjun; Giovannoni, James J; Klee, Harry J

    2016-11-01

    Commercial tomatoes are widely perceived by consumers as lacking flavor. A major part of that problem is a postharvest handling system that chills fruit. Low-temperature storage is widely used to slow ripening and reduce decay. However, chilling results in loss of flavor. Flavor-associated volatiles are sensitive to temperatures below 12 °C, and their loss greatly reduces flavor quality. Here, we provide a comprehensive view of the effects of chilling on flavor and volatiles associated with consumer liking. Reduced levels of specific volatiles are associated with significant reductions in transcripts encoding key volatile synthesis enzymes. Although expression of some genes critical to volatile synthesis recovers after a return to 20 °C, some genes do not. RNAs encoding transcription factors essential for ripening, including RIPENING INHIBITOR (RIN), NONRIPENING, and COLORLESS NONRIPENING are reduced in response to chilling and may be responsible for reduced transcript levels in many downstream genes during chilling. Those reductions are accompanied by major changes in the methylation status of promoters, including RIN Methylation changes are transient and may contribute to the fidelity of gene expression required to provide maximal beneficial environmental response with minimal tangential influence on broader fruit developmental biology.

  18. A Model of Volcanic Outgassing for Earth's Early Atmosphere

    NASA Astrophysics Data System (ADS)

    Dhaliwal, J. K.; Kasting, J. F.; Zhang, Z.

    2017-12-01

    We build on historical paradigms of volcanic degassing [1] to account for non-linear relations among C-O-H-S volatiles, their speciation, solubility and concentrations in magmatic melts, and the resulting contribution to atmospheric volatile inventories. We focus on the build-up of greenhouse-relevant carbon species (CO2 and CH4) and molecular oxygen to better understand the environments of early life and the Great Oxygenation Event [2,3,4]. The mantle is an important reservoir of C-O-H-S volatiles [5], and melt concentrations depend on temperature, pressure and oxygen fugacity. We present a preliminary chemical model that simulates volatile concentrations released into the Earth's atmosphere at 1 bar, or pressures corresponding to the early Earth prior to 2.4 Ga. We maintain redox balance in the system using H+ [2, 6] because the melt oxidation state evolves with volatile melt concentrations [7] and affects the composition of degassed compounds. For example, low fO2 in the melt degasses CO, CH4, H2S and H2 while high fO2 yields CO2, SO2 and H2O [1,8,9]. Our calculations incorporate empirical relations from experimental petrology studies [e.g., 10, 11] to account for inter-dependencies among volatile element solubility trends. This model has implications for exploring planetary atmospheric evolution and potential greenhouse effects on Venus and Mars [12]­, and possibly exoplanets. A future direction of this work would be to link this chemical degassing model with different tectonic regimes [13] to account for degassing and ingassing, such as during subduction. References: [1] Holland, H. D. (1984) The chemical evolution of the atmosphere and oceans [2] Kasting, J. F. (2013) Chem. Geo. 362, 13-25 [3] Kasting, J.F. (1993) Sci. 259, 920-926 [4] Duncan, M.S. & Dasgupta, R. (2017) Nat. Geoscience 10, 387-392. [5] Hier-Majumder, S. & Hirschmann, M.M. (2017) G3, doi: 10.1002/2017GC006937 [6] Gaillard, F. et al. (2003) GCA 67, 2427- 2441 [7] Moussalam, Y. et al. (2014) EPSL 393, 200-209 [8] Holloway, J. R. & Blank, J. G. (1994) Rev. in Min. 30, 187-187 [9] Hirschmann, M. M. (2012) EPSL 341, 48-57 [10] Iacono-Marziano, G. et al. (2012) GCA 97, 1-23 [11] O'Neill, H. St. C. & Mavrogenes, J.A. (2002) J. of Pet. 6, 1049-1087 [12] Gaillard, F. & Scaillet, B. (2014) EPSL 403, 307-316. [13] Rozel, A.B. et al. (2017) Nature 545, 332-335.

  19. The volatile emission of Eurosta solidaginis primes herbivore-induced volatile production in Solidago altissima and does not directly deter insect feeding

    PubMed Central

    2014-01-01

    Background The induction of plant defenses in response to herbivory is well documented. In addition, many plants prime their anti-herbivore defenses following exposure to environmental cues associated with increased risk of subsequent attack, including induced volatile emissions from herbivore-damaged plant tissues. Recently, we showed in both field and laboratory settings that tall goldenrod plants (Solidago altissima) exposed to the putative sex attractant of a specialist gall-inducing fly (Eurosta solidaginis) experienced less herbivory than unexposed plants. Furthermore, we observed stronger induction of the defense phytohormone jasmonic acid in exposed plants compared to controls. These findings document a novel class of plant-insect interactions mediated by the direct perception, by plants, of insect-derived olfactory cues. However, our previous study did not exclude the possibility that the fly emission (or its residue) might also deter insect feeding via direct effects on the herbivores. Results Here we show that the E. solidaginis emission does not (directly) deter herbivore feeding on Cucurbita pepo or Symphyotrichum lateriflorum plants—which have no co-evolutionary relationship with E. solidaginis and thus are not expected to exhibit priming responses to the fly emission. We also document stronger induction of herbivore-induced plant volatiles (HIPV) in S. altissima plants given previous exposure to the fly emission relative to unexposed controls. No similar effect was observed in maize plants (Zea mays), which have no co-evolutionary relationship with E. solidaginis. Conclusions Together with our previous findings, these results provide compelling evidence that reduced herbivory on S. altissima plants exposed to the emission of male E. solidaginis reflects an evolved plant response to olfactory cues associated with its specialist herbivore and does not involve direct effects of the fly emission on herbivore feeding behavior. We further discuss mechanisms by which the priming of HIPV responses documented here might contribute to enhanced S. altissima defense against galling. PMID:24947749

  20. Odor Signals of Immune Activation and CNS Inflammation

    DTIC Science & Technology

    2014-12-01

    inflammation results in detectable alteration of body odor and that traumatic brain injury (TBI) might similarly produce volatile metabolites specific to...Because both LPS and TBI elicit inflammatory processes and LPS-induced inflammation induces body odor changes, we hypothesized that (1) TBI would...induce a distinct change in body odor and (2) this change would resemble the change induced by LPS. Mice receiving surgery and lateral fluid percussion

  1. Removing volatile contaminants from the unsaturated zone by inducing advective air-phase transport

    USGS Publications Warehouse

    Baehr, A.L.; Hoag, G.E.; Marley, M.C.

    1989-01-01

    Organic liquids inadvertently spilled and then distributed in the unsaturated zone can pose a long-term threat to ground water. Many of these substances have significant volatility, and thereby establish a premise for contaminant removal from the unsaturated zone by inducing advective air-phase transport with wells screened in the unsaturated zone. In order to focus attention on the rates of mass transfer from liquid to vapour phases, sand columns were partially saturated with gasoline and vented under steady air-flow conditions. The ability of an equilibrium-based transport model to predict the hydrocarbon vapor flux from the columns implies an efficient rate of local phase transfer for reasonably high air-phase velocities. Thus the success of venting remediations will depend primarily on the ability to induce an air-flow field in a heterogeneous unsaturated zone that will intersect the distributed contaminant. To analyze this aspect of the technique, a mathematical model was developed to predict radially symmetric air flow induced by venting from a single well. This model allows for in-situ determinations of air-phase permeability, which is the fundamental design parameter, and for the analysis of the limitations of a single well design. A successful application of the technique at a site once contaminated by gasoline supports the optimism derived from the experimental and modeliing phases of this study, and illustrates the well construction and field methods used to document the volatile contaminant recovery. ?? 1989.

  2. Maize terpene volatiles serve as precursors to an array of defensive phytoalexins following insect and pathogen attack

    USDA-ARS?s Scientific Manuscript database

    Phytoalexins are inducible biochemicals that locally protect plant tissues against biotic attack. Due to their agronomic significance, maize and rice have been extensively investigated for their terpenoid-based defenses which include insect-inducible monoterpene and sesquiterpene vol...

  3. In Situ Missions For Investigation of the Climate, Geology and Evolution of Venus

    NASA Astrophysics Data System (ADS)

    Grinspoon, David

    2017-10-01

    In situ Exploration of Venus has been recommended by the Decadal Study of the National Research Council. Many high priority measurements, addressing outstanding first-order, fundamental questions about current processes and evolution of Venus can only be made from in situ platforms such as entry probes, balloons or landers. These include: measuring noble gases and their isotopes to constrain origin and evolution; measuring stable isotopes to constrain the history of water and other volatiles; measuring trace gas profiles and sulfur compounds for chemical cycles and surface-atmosphere interactions, constraining the coupling of radiation, dynamics and chemistry, making visible and infrared descent images, and measuring surface and sub-surface composition. Such measurements will allow us deepen our understanding of the origin and evolution of Venus in the context of the terrestrial planets and extrasolar planets, to determine the level and style of current geological activity and to characterize the divergent climate evolution of Venus and Earth and extend our knowledge of the limits of habitability on hot terrestrial planets.

  4. Statistical Study of Relations Between the Induced Magnetosphere, Ion Composition, and Pressure Balance Boundaries Around Mars Based On MAVEN Observations

    NASA Astrophysics Data System (ADS)

    Matsunaga, Kazunari; Seki, Kanako; Brain, David A.; Hara, Takuya; Masunaga, Kei; Mcfadden, James P.; Halekas, Jasper S.; Mitchell, David L.; Mazelle, Christian; Espley, J. R.; Gruesbeck, Jacob; Jakosky, Bruce M.

    2017-09-01

    Direct interaction between the solar wind (SW) and the Martian upper atmosphere forms a characteristic region, called the induced magnetosphere between the magnetosheath and the ionosphere. Since the SW deceleration due to increasing mass loading by heavy ions plays an important role in the induced magnetosphere formation, the ion composition is also expected to change around the induced magnetosphere boundary (IMB). Here we report on relations of the IMB, the ion composition boundary (ICB), and the pressure balance boundary based on a statistical analysis of about 8 months of simultaneous ion, electron, and magnetic field observations by Mars Atmosphere and Volatile EvolutioN (MAVEN) mission. We chose the period when MAVEN observed the SW directly near its apoapsis to investigate their dependence on SW parameters. Results show that IMBs almost coincide with ICBs on the dayside and locations of all three boundaries are affected by the SW dynamic pressure. A remarkable feature is that all boundaries tend to locate at higher altitudes in the southern hemisphere than in the northern hemisphere on the nightside. This clear geographical asymmetry is permanently seen regardless of locations of the strong crustal B fields in the southern hemisphere, while the boundary locations become higher when the crustal B fields locate on the dayside. On the nightside, IMBs usually locate at higher altitude than ICBs. However, ICBs are likely to be located above IMBs in the nightside, southern, and downward ESW hemisphere when the strong crustal B fields locate on the dayside.

  5. A composite system approach to aircraft cabin fire safety

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Parker, J. A.; Gilwee, W. J., Jr.; Lerner, N. R.; Hilado, C. J.; Labossiere, L. A.; Hsu, M.-T.

    1976-01-01

    The thermochemical and flammability characteristics of two polymeric composites currently in use and seven others being considered for use as aircraft interior panels are described. The properties studied included: (1) limiting oxygen index of the composite constituents; (2) fire containment capability of the composite; (3) smoke evolution from the composite; (4) thermogravimetric analysis; (5) composition of the volatile products of thermal degradation; and (6) relative toxicity of the volatile products of pyrolysis. The performance of high-temperature laminating resins such as bismaleimides is compared with the performance of phenolics and epoxies. The relationship of increased fire safety with the use of polymers with high anaerobic char yield is shown. Processing parameters of one of the bismaleimide composites is detailed.

  6. A composite system approach to aircraft cabin fire safety

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Parker, J. A.; Gilwee, W. J., Jr.; Lerner, N. R.; Hilado, C. J.; Labossiere, L. A.; Hsu, M. T. S.

    1976-01-01

    The thermochemical and flammability characteristics of two polymeric composites currently in use and seven others being considered for use as aircraft interior panels are described. The properties studied included: (1) limiting oxygen index of the composite constituents; (2) fire containment capability of the composite; (3) smoke evolution from the composite; (4) thermogravimetric analysis; (5) composition of the volatile products of thermal degradation; and (6) relative toxicity of the volatile products of pyrolysis. The performance of high temperature laminating resins such as bismaleimides is compared with the performance of phenolics and epoxies. The relationship of increased fire safety with the use of polymers with high anaerobic char yield is shown. Processing parameters of one of the baremaleimide composites are detailed.

  7. Materials research for aircraft fire safety

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Parker, J. A.; Bricker, R. W.

    1976-01-01

    The thermochemical and flammability characteristics of two polymeric composites currently in use and seven others being considered for use as aircraft interior panels are described. The properties studied included: (1) limiting oxygen index of the composite constituents; (2) fire containment capability of the composite; (3) smoke evolution from the composite; (4) thermogravimetric analysis; (5) composition of the volatile products of thermal degradation; and (6) relative toxicity of the volatile products of pyrolysis. The performance of high-temperature laminating resins such as bismaleimides is compared with the performance of phenolics and epoxies. The relationship of increased fire safety with the use of polymers with high anaerobic char yield is shown. Processing parameters of the state-of-the-art and the advanced bismaleimide composites are detailed.

  8. Escape and fractionation of volatiles and noble gases: from Mars-sized planetary embryos to growing protoplanets

    NASA Astrophysics Data System (ADS)

    Odert, Petra; Lammer, Helmut; Erkaev, Nikolai V.; Nikolaou, Athanasia; Lichtenegger, Herbert I. M.; Johnstone, Colin P.; Kislyakova, Kristina G.; Leitzinger, Martin; Tosi, Nicola

    2017-04-01

    Planetary embryos form larger planetary objects via collisions. Such Moon- to Mars-sized bodies can have magma oceans. During the solidification of their magma oceans planetary embryos may therefore degas significant amounts of their volatiles, forming H2O/CO2 dominated steam atmospheres. Such atmospheres may escape efficiently due to the low gravity of these objects and the high EUV emission of the young host star. Planets forming from such building blocks could therefore be drier than expected. We model the energy-limited outflow of hydrogen which is able to drag along heavier species such as O and CO2. We take into account different stellar EUV evolution tracks to investigate the loss of steam atmospheres from Mars-sized planetary embryos at different orbital distances. We find that the estimated envelopes are typically lost within a few to a few tens of Myr. Moreover, we address the influence on protoplanet evolution using Venus as an example. We investigate different early evolution scenarios and constrain realistic cases by comparing modeled noble gas isotope ratios with presently observed ones. We are able to reproduce current ratios by assuming either a pure steam atmosphere or a mixture with accreted hydrogen from the protoplanetary nebula. Despite being able to find solutions for different parameter combinations, our results favor a low-activity Sun with possibly a small amount of residual H from the protoplanetary nebula. In other cases too much CO2 is lost during evolution, which is inconsistent with Venus' present atmosphere. A critical issue is likely the time at which the initial steam atmosphere is outgassed.

  9. A Monte-Carlo Analysis of Organic Volatility with Aerosol Microphysics

    NASA Astrophysics Data System (ADS)

    Gao, Chloe; Tsigaridis, Kostas; Bauer, Susanne E.

    2017-04-01

    A newly developed box model, MATRIX-VBS, includes the volatility-basis set (VBS) framework in an aerosol microphysical scheme MATRIX (Multiconfiguration Aerosol TRacker of mIXing state), which resolves aerosol mass and number concentrations and aerosol mixing state. The new scheme advanced the representation of organic aerosols in models by improving the traditional and simplistic treatment of organic aerosols as non-volatile and with a fixed size distribution. Further development includes adding the condensation of organics on coarse mode aerosols - dust and sea salt, thus making all organics in the system semi-volatile. To test and simplify the model, a Monte-Carlo analysis is performed to pin point which processes affect organics the most under varied chemical and meteorological conditions. Since the model's parameterizations have the ability to capture a very wide range of conditions, all possible scenarios on Earth across the whole parameter space, including temperature, humidity, location, emissions and oxidant levels, are examined. The Monte-Carlo simulations provide quantitative information on the sensitivity of the newly developed model and help us understand how organics are affecting the size distribution, mixing state and volatility distribution at varying levels of meteorological conditions and pollution levels. In addition, these simulations give information on which parameters play a critical role in the aerosol distribution and evolution in the atmosphere and which do not, that will facilitate the simplification of the box model, an important step in its implementation in the global model GISS ModelE as a module.

  10. Effect of Surface-mantle Water Exchange Parameterizations on Exoplanet Ocean Depths

    NASA Astrophysics Data System (ADS)

    Komacek, Thaddeus D.; Abbot, Dorian S.

    2016-11-01

    Terrestrial exoplanets in the canonical habitable zone may have a variety of initial water fractions due to random volatile delivery by planetesimals. If the total planetary water complement is high, the entire surface may be covered in water, forming a “waterworld.” On a planet with active tectonics, competing mechanisms act to regulate the abundance of water on the surface by determining the partitioning of water between interior and surface. Here we explore how the incorporation of different mechanisms for the degassing and regassing of water changes the volatile evolution of a planet. For all of the models considered, volatile cycling reaches an approximate steady state after ∼ 2 {Gyr}. Using these steady states, we find that if volatile cycling is either solely dependent on temperature or seafloor pressure, exoplanets require a high abundance (≳ 0.3 % of total mass) of water to have fully inundated surfaces. However, if degassing is more dependent on seafloor pressure and regassing mainly dependent on mantle temperature, the degassing rate is relatively large at late times and a steady state between degassing and regassing is reached with a substantial surface water fraction. If this hybrid model is physical, super-Earths with a total water fraction similar to that of the Earth can become waterworlds. As a result, further understanding of the processes that drive volatile cycling on terrestrial planets is needed to determine the water fraction at which they are likely to become waterworlds.

  11. Dose-dependent changes of chemical attributes in irradiated sausages.

    PubMed

    Nam, K C; Lee, E J; Ahn, D U; Kwon, J H

    2011-05-01

    To determine the effects of irradiation on the chemical attributes of sausages, TBARS values, volatile compounds, gaseous compounds, and hydrocarbons of vacuum-packaged sausages were analyzed during 60 d of refrigerated storage. A sulfur-containing volatile (dimethyl disulfide), a gas (methane), and radiation-induced hydrocarbons (1-tetradecene, pentadecane, heptadecane, 8-heptadecene, eicosane, 1, 7-hexadecadiene, hexadecane) were mainly detected in irradiated sausages and the concentrations of these compounds were irradiation dose-dependent with R(2) = 0.9585, 0.9431, and 0.9091-0.9977, respectively. Especially methane and a few hydrocarbons were detected only in irradiated sausages and their amounts were dose-dependent. On the other hand, TBARS values, other off-odor volatiles (carbon disulfide, hexanal), and gases (carbon monoxide, carbon dioxide) were found both in irradiated and nonirradiated sausages. Therefore, it is suggested that radiation-induced hydrocarbons (1-tetradecene, pentadecane, heptadecane, 8-heptadecene, eicosane, 1, 7-hexadecadiene, hexadecane), dimethyl disulfide, and methane can be used as markers for irradiated sausages. Copyright © 2010 The American Meat Science Association. Published by Elsevier Ltd. All rights reserved.

  12. The effects of volatile anesthetics on the extracellular accumulation of [(3)H]GABA in rat brain cortical slices.

    PubMed

    Diniz, Paulo H C; Guatimosim, Cristina; Binda, Nancy S; Costa, Flávia L P; Gomez, Marcus V; Gomez, Renato S

    2014-01-01

    GABA is an inhibitory neurotransmitter that appears to be associated with the action of volatile anesthetics. These anesthetics potentiate GABA-induced postsynaptic currents by synaptic GABAA receptors, although recent evidence suggests that these agents also significantly affect extrasynaptic GABA receptors. However, the effect of volatile anesthetics on the extracellular concentration of GABA in the central nervous system has not been fully established. In the present study, rat brain cortical slices loaded with [(3)H]GABA were used to investigate the effect of halothane and sevoflurane on the extracellular accumulation of this neurotransmitter. The accumulation of [(3)H]GABA was significantly increased by sevoflurane (0.058, 0.11, 0.23, 0.46, and 0.93 mM) and halothane (0.006, 0.012, 0.024, 0.048, 0072, and 0.096 mM) with an EC50 of 0.26 mM and 35 μM, respectively. TTX (blocker of voltage-dependent Na(+) channels), EGTA (an extracellular Ca(2+) chelator) and BAPTA-AM (an intracellular Ca(2+) chelator) did not interfere with the accumulation of [(3)H]GABA induced by 0.23 mM sevoflurane and 0.048 mM halothane. SKF 89976A, a GABA transporter type 1 (GAT-1) inhibitor, reduced the sevoflurane- and halothane-induced increase in the accumulation of GABA by 57 and 63 %, respectively. Incubation of brain cortical slices at low temperature (17 °C), a condition that inhibits GAT function and reduces GABA release through reverse transport, reduced the sevoflurane- and halothane-induced increase in the accumulation of [(3)H]GABA by 82 and 75 %, respectively, relative to that at normal temperature (37 °C). Ouabain, a Na(+)/K(+) ATPase pump inhibitor, which is known to induce GABA release through reverse transport, abolished the sevoflurane and halothane effects on the accumulation of [(3)H]GABA. The effect of sevoflurane and halothane did not involve glial transporters because β-alanine, a blocker of GAT-2 and GAT-3, did not inhibit the effect of the anesthetics. In conclusion, the present study suggests that sevoflurane and halothane increase the accumulation of GABA by inducing the reverse transport of this neurotransmitter. Therefore, volatile anesthetics could interfere with neuronal excitability by increasing the action of GABA on synaptic and extrasynaptic GABA receptors.

  13. Constraining a hybrid volatility basis-set model for aging of wood-burning emissions using smog chamber experiments: a box-model study based on the VBS scheme of the CAMx model (v5.40)

    NASA Astrophysics Data System (ADS)

    Ciarelli, Giancarlo; El Haddad, Imad; Bruns, Emily; Aksoyoglu, Sebnem; Möhler, Ottmar; Baltensperger, Urs; Prévôt, André S. H.

    2017-06-01

    In this study, novel wood combustion aging experiments performed at different temperatures (263 and 288 K) in a ˜ 7 m3 smog chamber were modelled using a hybrid volatility basis set (VBS) box model, representing the emission partitioning and their oxidation against OH. We combine aerosol-chemistry box-model simulations with unprecedented measurements of non-traditional volatile organic compounds (NTVOCs) from a high-resolution proton transfer reaction mass spectrometer (PTR-MS) and with organic aerosol measurements from an aerosol mass spectrometer (AMS). Due to this, we are able to observationally constrain the amounts of different NTVOC aerosol precursors (in the model) relative to low volatility and semi-volatile primary organic material (OMsv), which is partitioned based on current published volatility distribution data. By comparing the NTVOC / OMsv ratios at different temperatures, we determine the enthalpies of vaporization of primary biomass-burning organic aerosols. Further, the developed model allows for evaluating the evolution of oxidation products of the semi-volatile and volatile precursors with aging. More than 30 000 box-model simulations were performed to retrieve the combination of parameters that best fit the observed organic aerosol mass and O : C ratios. The parameters investigated include the NTVOC reaction rates and yields as well as enthalpies of vaporization and the O : C of secondary organic aerosol surrogates. Our results suggest an average ratio of NTVOCs to the sum of non-volatile and semi-volatile organic compounds of ˜ 4.75. The mass yields of these compounds determined for a wide range of atmospherically relevant temperatures and organic aerosol (OA) concentrations were predicted to vary between 8 and 30 % after 5 h of continuous aging. Based on the reaction scheme used, reaction rates of the NTVOC mixture range from 3.0 × 10-11 to 4. 0 × 10-11 cm3 molec-1 s-1. The average enthalpy of vaporization of secondary organic aerosol (SOA) surrogates was determined to be between 55 000 and 35 000 J mol-1, which implies a yield increase of 0.03-0.06 % K-1 with decreasing temperature. The improved VBS scheme is suitable for implementation into chemical transport models to predict the burden and oxidation state of primary and secondary biomass-burning aerosols.

  14. Site selection and traverse planning to support a lunar polar rover mission: A case study at Haworth Crater

    NASA Astrophysics Data System (ADS)

    Heldmann, Jennifer L.; Colaprete, Anthony; Elphic, Richard C.; Bussey, Ben; McGovern, Andrew; Beyer, Ross; Lees, David; Deans, Matt

    2016-10-01

    Studies of lunar polar volatile deposits are of interest for scientific purposes to understand the nature and evolution of the volatiles, and also for exploration reasons as a possible in situ resource to enable long term human exploration and settlement of the Moon. Both theoretical and observational studies have suggested that significant quantities of volatiles exist in the polar regions, although the lateral and horizontal distribution remains unknown at the km scale and finer resolution. A lunar polar rover mission is required to further characterize the distribution, quantity, and character of lunar polar volatile deposits at these higher spatial resolutions. Here we present a case study for NASA's Resource Prospector (RP) mission concept for a lunar polar rover and utilize this mission architecture and associated constraints to evaluate whether a suitable landing site exists to support an RP flight mission. We evaluate the landing site criteria to characterize the Haworth Crater region in terms of expected hydrogen abundance, surface topography, and prevalence of shadowed regions, as well as solar illumination and direct to Earth communications as a function of time to develop a notional rover traverse plan that addresses both science and engineering requirements. We also present lessons-learned regarding lunar traverse path planning focusing on the critical nature of landing site selection, the influence of illumination patterns on traverse planning, the effects of performing shadowed rover operations, the influence of communications coverage on traverse plan development, and strategic planning to maximize rover lifetime and science at end of mission. Here we present a detailed traverse path scenario for a lunar polar volatiles rover mission and find that the particular site north of Haworth Crater studied here is suitable for further characterization of polar volatile deposits.

  15. Ischemia-Reperfusion Injury and Volatile Anesthetics

    PubMed Central

    Erturk, Engin

    2014-01-01

    Ischemia-reperfusion injury (IRI) is induced as a result of reentry of the blood and oxygen to ischemic tissue. Antioxidant and some other drugs have protective effect on IRI. In many surgeries and clinical conditions IRI is counteract inevitable. Some anesthetic agents may have a protective role in this procedure. It is known that inhalational anesthetics possess protective effects against IRI. In this review the mechanism of preventive effects of volatile anesthetics and different ischemia-reperfusion models are discussed. PMID:24524079

  16. Origin and evolution of the atmospheres of early Venus, Earth and Mars

    NASA Astrophysics Data System (ADS)

    Lammer, Helmut; Zerkle, Aubrey L.; Gebauer, Stefanie; Tosi, Nicola; Noack, Lena; Scherf, Manuel; Pilat-Lohinger, Elke; Güdel, Manuel; Grenfell, John Lee; Godolt, Mareike; Nikolaou, Athanasia

    2018-05-01

    We review the origin and evolution of the atmospheres of Earth, Venus and Mars from the time when their accreting bodies were released from the protoplanetary disk a few million years after the origin of the Sun. If the accreting planetary cores reached masses ≥ 0.5 M_Earth before the gas in the disk disappeared, primordial atmospheres consisting mainly of H_2 form around the young planetary body, contrary to late-stage planet formation, where terrestrial planets accrete material after the nebula phase of the disk. The differences between these two scenarios are explored by investigating non-radiogenic atmospheric noble gas isotope anomalies observed on the three terrestrial planets. The role of the young Sun's more efficient EUV radiation and of the plasma environment into the escape of early atmospheres is also addressed. We discuss the catastrophic outgassing of volatiles and the formation and cooling of steam atmospheres after the solidification of magma oceans and we describe the geochemical evidence for additional delivery of volatile-rich chondritic materials during the main stages of terrestrial planet formation. The evolution scenario of early Earth is then compared with the atmospheric evolution of planets where no active plate tectonics emerged like on Venus and Mars. We look at the diversity between early Earth, Venus and Mars, which is found to be related to their differing geochemical, geodynamical and geophysical conditions, including plate tectonics, crust and mantle oxidation processes and their involvement in degassing processes of secondary N_2 atmospheres. The buildup of atmospheric N_2, O_2, and the role of greenhouse gases such as CO_2 and CH_4 to counter the Faint Young Sun Paradox (FYSP), when the earliest life forms on Earth originated until the Great Oxidation Event ≈ 2.3 Gyr ago, are addressed. This review concludes with a discussion on the implications of understanding Earth's geophysical and related atmospheric evolution in relation to the discovery of potential habitable terrestrial exoplanets.

  17. Maven Observations of Electron-Induced Whistler Mode Waves in the Martian Magnetosphere

    NASA Technical Reports Server (NTRS)

    Harada, Y.; Andersson, L.; Fowler, C. M.; Mitchell, D. L.; Halekas, J. S.; Mazelle, C.; Espley, J.; DiBraccio, G. A.; McFadden, J. P.; Brian, D. A.; hide

    2016-01-01

    We report on narrowband electromagnetic waves at frequencies between the local electron cyclotron and lower hybrid frequencies observed by the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft in the Martian induced magnetosphere. The peaked electric field wave spectra below the electron cyclotron frequency were first observed by Phobos-2 in the Martian magnetosphere, but the lack of magnetic field wave data prevented definitive identification of the wave mode and their generation mechanisms remain unclear. Analysis of electric and magnetic field wave spectra obtained by MAVEN demonstrates that the observed narrowband waves have properties consistent with the whistler mode. Linear growth rates computed from the measured electron velocity distributions suggest that these whistler mode waves can be generated by cyclotron resonance with anisotropic electrons. Large electron anisotropy in the Martian magnetosphere is caused by absorption of parallel electrons by the collisional atmosphere. The narrowband whistler mode waves and anisotropic electrons are observed on both open and closed field lines and have similar spatial distributions in MSO and planetary coordinates. Some of the waves on closed field lines exhibit complex frequency-time structures such as discrete elements of rising tones and two bands above and below half the electron cyclotron frequency. These MAVEN observations indicate that whistler mode waves driven by anisotropic electrons, which are commonly observed in intrinsic magnetospheres and at unmagnetized airless bodies, are also present at Mars. The wave-induced electron precipitation into the Martian atmosphere should be evaluated in future studies.

  18. Oxygen Ion Energization at Mars: Comparison of MAVEN and Mars Express Observations to Global Hybrid Simulation

    NASA Astrophysics Data System (ADS)

    Jarvinen, R.; Brain, D. A.; Modolo, R.; Fedorov, A.; Holmström, M.

    2018-02-01

    We study oxygen ion energization in the Mars-solar wind interaction by comparing particle and magnetic field observations on the Mars Atmosphere and Volatile EvolutioN (MAVEN) and Mars Express missions to a global hybrid simulation. We find that large-scale structures of the Martian-induced magnetosphere and plasma environment as well as the Mars heavy ion plume as seen by multispacecraft observations are reproduced by the model. Using the simulation, we estimate the dynamics of escaping oxygen ions by analyzing their distance and time of flight as a function of the gained kinetic energy along spacecraft trajectories. In the upstream region the heavy ion energization resembles single-particle solar wind ion pickup acceleration as expected, while within the induced magnetosphere the energization displays other features including the heavy ion plume from the ionosphere. Oxygen ions take up to 80 s and travel the distance of 20,000 km after their emission from the ionosphere to the induced magnetosphere or photoionization from the neutral exosphere before they have reached energies of 10 keV in the plume along the analyzed spacecraft orbits. Lower oxygen ion energies of 100 eV are reached faster in 10-20 s over the distance of 100-200 km in the plume. Our finding suggests that oxygen ions are typically observed within the first half of their gyrophase if the spacecraft periapsis is on the hemisphere where the solar wind convection electric field points away from Mars.

  19. Peroxide induced volatile and non-volatile switching behavior in ZnO-based electrochemical metallization memory cell

    NASA Astrophysics Data System (ADS)

    Mangasa Simanjuntak, Firman; Chandrasekaran, Sridhar; Pattanayak, Bhaskar; Lin, Chun-Chieh; Tseng, Tseung-Yuen

    2017-09-01

    We explore the use of cubic-zinc peroxide (ZnO2) as a switching material for electrochemical metallization memory (ECM) cell. The ZnO2 was synthesized with a simple peroxide surface treatment. Devices made without surface treatment exhibits a high leakage current due to the self-doped nature of the hexagonal-ZnO material. Thus, its switching behavior can only be observed when a very high current compliance is employed. The synthetic ZnO2 layer provides a sufficient resistivity to the Cu/ZnO2/ZnO/ITO devices. The high resistivity of ZnO2 encourages the formation of a conducting bridge to activate the switching behavior at a lower operation current. Volatile and non-volatile switching behaviors with sufficient endurance and an adequate memory window are observed in the surface-treated devices. The room temperature retention of more than 104 s confirms the non-volatility behavior of the devices. In addition, our proposed device structure is able to work at a lower operation current among other reported ZnO-based ECM cells.

  20. Analysis of volatile compounds by open-air ionization mass spectrometry.

    PubMed

    Meher, Anil Kumar; Chen, Yu-Chie

    2017-05-08

    This study demonstrates a simple method for rapid and in situ identification of volatile and endogenous compounds in culinary spice samples through mass spectrometry (MS). This method only requires a holder for solid spice sample (2-3 mm) that is placed close to a mass spectrometer inlet, which is applied with a high voltage. Volatile species responsible for the aroma of the spice samples can be readily detected by the mass spectrometer. Sample pretreatment is not required prior to MS analysis, and no solvent was used during MS analysis. The high voltage applied to the inlet of the mass spectrometer induces the ionization of volatile compounds released from the solid spice samples. Furthermore, moisture in the air also contributes to the ionization of volatile compounds. Dried spices including cinnamon and cloves are used as the model sample to demonstrate this straightforward MS analysis, which can be completed within few seconds. Furthermore, we also demonstrate the suitability of the current method for rapid screening of cinnamon quality through detection of the presence of a hepatotoxic agent, i.e. coumarin. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Influence of foam structure on the release kinetics of volatiles from espresso coffee prior to consumption.

    PubMed

    Dold, Susanne; Lindinger, Christian; Kolodziejczyk, Eric; Pollien, Philippe; Ali, Santo; Germain, Juan Carlos; Perin, Sonia Garcia; Pineau, Nicolas; Folmer, Britta; Engel, Karl-Heinz; Barron, Denis; Hartmann, Christoph

    2011-10-26

    The relationship between the physical structure of espresso coffee foam, called crema, and the above-the-cup aroma release was studied. Espresso coffee samples were produced using the Nespresso extraction system. The samples were extracted with water with different levels of mineral content, which resulted in liquid phases with similar volatile profiles but foams with different structure properties. The structure parameters foam volume, foam drainage, and lamella film thickness at the foam surface were quantified using computer-assisted microscopic image analysis and a digital caliper. The above-the-cup volatile concentration was measured online by using PTR-MS and headspace sampling. A correlation study was done between crema structure parameters and above-the-cup volatile concentration. In the first 2.5 min after the start of the coffee extraction, the presence of foam induced an increase of concentration of selected volatile markers, independently if the crema was of high or low stability. At times longer than 2.5 min, the aroma marker concentration depends on both the stability of the crema and the volatility of the specific aroma compounds. Mechanisms of above-the-cup volatile release involved gas bubble stability, evaporation, and diffusion. It was concluded that after the initial aroma burst (during the first 2-3 min after the beginning of extraction), for the present sample space a crema of high stability provides a stronger aroma barrier over several minutes.

  2. Topography of Power Relations in Slovak Preschool Sector Based on Bourdieu's Field Theory

    ERIC Educational Resources Information Center

    Kašcák, Ondrej; Pupala, Branislav

    2017-01-01

    The article analyses the Slovak preschool education sector using Bourdieu's field theory. It describes stable and volatile points in the evolution of preschool education in terms of the power games occurring within the specific social field of power relations shaped during these games. It explores the groups of powerful players that represent the…

  3. MAVEN Press Briefing

    NASA Image and Video Library

    2013-10-28

    Dwayne Brown, NASA Public Affairs Officer, takes a question from a member of the press on theupcoming launch of the Mars Atmosphere and Volatile Evolution (MAVEN) mission, at a press conference at NASA Headquarters in Washington on Monday, Oct. 28th, 2013. MAVEN is the agency's next mission to Mars and the first devoted to understanding the upper atmosphere of the Red Planet. (Photo credit: NASA/Jay Westcott)

  4. Spectroscopy of Mars Atmosphere from Orbiting and Ground-based Observatories: Recent Results and Implications for Evolution

    NASA Astrophysics Data System (ADS)

    Krasnopolsky, V. A.

    2003-07-01

    This is a review of the ground-based and Earth-orbiting studies of Mars atmosphere in the last decade that resulted in the detections of HDO, D, H2, He, and detailed mapping of O3, O2(delta), and CO. These studies provide new insights on the history of volatiles and climate on Mars.

  5. MAVEN Press Briefing

    NASA Image and Video Library

    2013-10-28

    John Grunsfeld, associate administrator for the Science Mission Directorate, NASA Headquarters, Washington, discusses the upcoming launch of the Mars Atmosphere and Volatile Evolution (MAVEN) mission, at a press conference at NASA Headquarters in Washington on Monday, Oct. 28th, 2013. MAVEN is the agency's next mission to Mars and the first devoted to understanding the upper atmosphere of the Red Planet. (Photo credit: NASA/Jay Westcott)

  6. Heterogeneous water content in the lunar interior: insights from orbital detection of water in lunar pyroclastic deposits and silicic rich domes

    NASA Astrophysics Data System (ADS)

    Li, S.; Milliken, R.

    2015-12-01

    Constraining the distribution and abundance of water (H2O and/or OH) in the lunar interior is crucial for assessing the formation and evolution of the Moon. Deriving such information from returned lunar samples is the most direct approach, but only a few regions have been sampled. Reflectance spectra for the 3μm region, remotely sensed by the Moon Mineralogy Mapper (M3), provide an alternative way to characterize lunar water at a global scale. Though such methods only probe the optical surface, hydration in some materials may result from internal processes instead of interaction with the solar wind. Constraining the volatile content of pyroclastic deposits and silicic rich domes, for example, can provide insight into volatile distribution and evolution related to magmatic processes. Thermally-corrected M3 data, constrained by Diviner temperatures and laboratory data, enable us to estimate the amount of water in these deposits. We find evidence for increased hydration signatures at nearly all large pyroclastic deposits relative to background values for surrounding terrains, suggestive of H2O-bearing magmas. Water contents for these deposits exhibit a linear correlation with the deposit range, largely consistent with lunar magma eruption models. In addition, the water content at inferred high-Ti deposits is higher than that of low-Ti pyroclastics for the same deposit range, which may reflect inherent differences in the water content or degassing history of the associated magmas. Our results also suggest that over half of the examined silicic-rich domes are very dry (no detectable water signature), which suggests either a volatile-poor source or a very different degassing history compared to pyroclastic deposits. Potential silicic-rich domes are inferred to have formed due to ascension of immiscible silicic melts in which volatiles may have been concentrated. Those silicic melts might cool slowly and allow extensive diffusion of water, whereas quenched glasses in pyroclastics may favor volatile retention. Current work is focused on the morphologic and compositional characteristics of these deposits as well as improved quantitative estimates of their water content. Latest results will be presented in the context of how these orbital observations may inform us of lunar interior processes.

  7. MAVEN - Mars Atmosphere and Volatile EvolutioN Mission

    NASA Technical Reports Server (NTRS)

    Grebowsky, Joseph M.; Jakosky, Bruce M.

    2011-01-01

    NASA's MAVEN mission (to be launched in late 2013) is the first mission to Mars devoted to sampling all of the upper atmosphere neutral and plasma environments, including the well-mixed atmosphere, the exosphere, ionosphere, outer magnetosphere and near-Mars solar wind. It will fill in some measurement gaps remaining from the successful Mars Global Surveyor and the on-going Mars Express missions. The primary science objectives of MAVEN are: 1. Provide a comprehensive picture of the present state of the upper atmosphere and ionosphere of Mars; 2. Understand the processes controlling the present state; and 3. Determine how loss of volatiles to outer space in the present epoch varies with changing solar condition - EUY, solar wind and interplanetary magnetic field measurements will provide the varying solar energy inputs into the system. Knowing how these processes respond to the Sun's energy inputs in the current epoch will provide a framework for projecting atmospheric processes back in time to profile MARS' atmospheric evolution and to explore "where the water went", A description will be given of the science objectives, the instruments, and the current status of the project, emphasizing the value of having collaborations between the MAVEN project and the Mars upper atmosphere science community.

  8. Effect of volatile compounds produced by Ralstonia solanacearum on plant growth promoting and systemic resistance inducing potential of Bacillus volatiles.

    PubMed

    Tahir, Hafiz Abdul Samad; Gu, Qin; Wu, Huijun; Raza, Waseem; Safdar, Asma; Huang, Ziyang; Rajer, Faheem Uddin; Gao, Xuewen

    2017-08-02

    Microbial volatiles play an expedient role in the agricultural ecological system by enhancing plant growth and inducing systemic resistance against plant pathogens, without causing hazardous effects on the environment. To explore the effects of VOCs of Ralstonia solanacearum TBBS1 (Rs) on tobacco plant growth and on plant growth promoting efficiency of VOCs produced by Bacillus subtilis SYST2, experiments were conducted both in vitro and in planta. The VOCs produced by SYST2 significantly enhanced the plant growth and induced the systemic resistance (ISR) against wilt pathogen Rs in all experiments. The SYST2-VOCs significantly increased PPO and PAL activity and over-expressed the genes relating to expansin, wilt resistance, and plant defense while repressed the genes relating to ethylene production. More interestingly, VOCs produced by pathogen, Rs had no significant effect on plant growth; however, Rs-VOCs decreased the growth promoting potential of SYST2-VOCs when plants were exposed to VOCs produced by both SYST2 and Rs. The co-culture of SYST2 and Rs revealed that they inhibited the growth of each other; however, the inhibition of Rs by SYST2-VOCs appeared to be greater than that of SYST2 by Rs-VOCs. Our findings provide new insights regarding the interaction among SYST2-VOCs, Rs-VOCs and plant, resulting in growth promotion and induced systemic resistance against the bacterial wilt pathogen Rs. This is the first report of the effect of VOCs produced by pathogenic microorganism on plant growth and on plant growth-promoting and systemic resistance-inducing potential of PGPR strain SYST2.

  9. Whole planet coupling between climate, mantle, and core: Implications for rocky planet evolution

    NASA Astrophysics Data System (ADS)

    Foley, Bradford J.; Driscoll, Peter E.

    2016-05-01

    Earth's climate, mantle, and core interact over geologic time scales. Climate influences whether plate tectonics can take place on a planet, with cool climates being favorable for plate tectonics because they enhance stresses in the lithosphere, suppress plate boundary annealing, and promote hydration and weakening of the lithosphere. Plate tectonics plays a vital role in the long-term carbon cycle, which helps to maintain a temperate climate. Plate tectonics provides long-term cooling of the core, which is vital for generating a magnetic field, and the magnetic field is capable of shielding atmospheric volatiles from the solar wind. Coupling between climate, mantle, and core can potentially explain the divergent evolution of Earth and Venus. As Venus lies too close to the sun for liquid water to exist, there is no long-term carbon cycle and thus an extremely hot climate. Therefore, plate tectonics cannot operate and a long-lived core dynamo cannot be sustained due to insufficient core cooling. On planets within the habitable zone where liquid water is possible, a wide range of evolutionary scenarios can take place depending on initial atmospheric composition, bulk volatile content, or the timing of when plate tectonics initiates, among other factors. Many of these evolutionary trajectories would render the planet uninhabitable. However, there is still significant uncertainty over the nature of the coupling between climate, mantle, and core. Future work is needed to constrain potential evolutionary scenarios and the likelihood of an Earth-like evolution.

  10. Styles and timing of volatile-driven activity in the eastern Hellas region of Mars

    NASA Astrophysics Data System (ADS)

    Crown, David A.; Bleamaster, Leslie F.; Mest, Scott C.

    2005-12-01

    Recent analyses of Mars Global Surveyor and Mars Odyssey data sets provide new insights into the geologic evolution of the eastern Hellas region of Mars, in particular, the role of volatiles. Here, we present results of our recent work and integrate these with previous studies by various investigators to provide a synthesis of the history of volatile-driven activity of the region. We utilize high-resolution images from the Mars Orbiter Camera and Thermal Emission Imaging System combined with Mars Orbiter Laser Altimeter digital elevation models and profiles to examine fluvial systems that dissect the circum-Hellas highlands, to characterize stages in the development of the Dao, Niger, Harmakhis, and Reull Valles canyon systems, and to evaluate evidence for ancient lakes in Hellas Planitia. The occurrence of valley networks, dissected highland crater rims, and crater interior deposits such as layered plateaus suggests widespread ancient degradation of the circum-Hellas highlands. Canyon development, which represents subsequent more localized activity, may have included an early fluvial phase followed by the collapse and sapping dominated stages that, along with recent wall erosion and floor resurfacing, produced the currently observed morphologies. The prominent role of collapse and sapping along the east rim of Hellas, along with the presence of numerous channels extending toward the basin and sequences of finely layered deposits along the basin rim, suggests a volatile-rich substrate across a broad depositional shelf. The east rim of the basin was an accumulation zone for atmospheric volatiles and/or the edge of volatile-rich deposits associated with the basin floor. This evidence combined with topographic data and cratered terrain preservation around the basin is consistent with a lacustrine period or periods in early Martian history. The style, magnitude, and spatial extent of volatile-driven activity in eastern Hellas have varied considerably with time, and these variations may represent a transition from a water- to an ice-dominated surface environment.

  11. Chondritic Mn/Na ratio and limited post-nebular volatile loss of the Earth

    NASA Astrophysics Data System (ADS)

    Siebert, Julien; Sossi, Paolo A.; Blanchard, Ingrid; Mahan, Brandon; Badro, James; Moynier, Frédéric

    2018-03-01

    The depletion pattern of volatile elements on Earth and other differentiated terrestrial bodies provides a unique insight as to the nature and origin of planetary building blocks. The processes responsible for the depletion of volatile elements range from the early incomplete condensation in the solar nebula to the late de-volatilization induced by heating and impacting during planetary accretion after the dispersion of the H2-rich nebular gas. Furthermore, as many volatile elements are also siderophile (metal-loving), it is often difficult to deconvolve the effect of volatility from core formation. With the notable exception of the Earth, all the differentiated terrestrial bodies for which we have samples have non-chondritic Mn/Na ratios, taken as a signature of post-nebular volatilization. The bulk silicate Earth (BSE) is unique in that its Mn/Na ratio is chondritic, which points to a nebular origin for the depletion; unless the Mn/Na in the BSE is not that of the bulk Earth (BE), and has been affected by core formation through the partitioning of Mn in Earth's core. Here we quantify the metal-silicate partitioning behavior of Mn at deep magma ocean pressure and temperature conditions directly applicable to core formation. The experiments show that Mn becomes more siderophile with increasing pressure and temperature. Modeling the partitioning of Mn during core formation by combining our results with previous data at lower P-T conditions, we show that the core likely contains a significant fraction (20 to 35%) of Earth's Mn budget. However, we show that the derived Mn/Na value of the bulk Earth still lies on the volatile-depleted end of a trend defined by chondritic meteorites in a Mn/Na vs Mn/Mg plot, which tend to higher Mn/Na with increasing volatile depletion. This suggests that the material that formed the Earth recorded similar chemical fractionation processes for moderately volatile elements as chondrites in the solar nebula, and experienced limited post nebular volatilization.

  12. α-Farnesene and ocimene induce metabolite changes by volatile signaling in neighboring tea (Camellia sinensis) plants.

    PubMed

    Zeng, Lanting; Liao, Yinyin; Li, Jianlong; Zhou, Ying; Tang, Jinchi; Dong, Fang; Yang, Ziyin

    2017-11-01

    Herbivore-induced plant volatiles (HIPVs) act as direct defenses against herbivores and as indirect defenses by attracting herbivore enemies. However, the involvement of HIPVs in within-plant or plant-to-plant signaling is not fully clarified. Furthermore, in contrast to model plants, HIPV signaling roles in crops have hardly been reported. Here, we investigated HIPVs emitted from tea (Camellia sinensis) plants, an important crop used for beverages, and their involvement in tea plant-to-plant signaling. To ensure uniform and sufficient exposure to HIPVs, jasmonic acid combined with mechanical damage (JAMD) was used to simulate herbivore attacks. Metabonomics techniques based on ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry and gas chromatography-mass spectrometry were employed to determine metabolite changes in undamaged tea plants exposed to JAMD-stimulated volatiles. JAMD-stimulated volatiles mainly enhanced the amounts of 1-O-galloyl-6-O-luteoyl-α-d-glucose, assamicain C, 2,3,4,5-tetrahydroxy-6-oxohexyl gallate, quercetagitrin, 2-(2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4-oxo-4H-chromen-8-yl)-4,5-dihydroxy-6-(hydroxymethyl)-tetrahydro-2H-pyran-3-yl, 3,4-dimethoxybenzoate, 1,3,4,5,6,7-hexahydroxyheptan-2-one, and methyl gallate in neighboring undamaged tea leaves. Furthermore, α-farnesene and β-ocimene, which were produced after JAMD treatments, were identified as two main JAMD-stimulated volatiles altering metabolite profiles of the neighboring undamaged tea leaves. This research advances our understanding of the ecological functions of HIPVs and can be used to develop crop biological control agents against pest insects in the future. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Transient Receptor Potential Channels Encode Volatile Chemicals Sensed by Rat Trigeminal Ganglion Neurons

    PubMed Central

    Schöbel, Nicole; Beltrán, Leopoldo; Wetzel, Christian Horst; Hatt, Hanns

    2013-01-01

    Primary sensory afferents of the dorsal root and trigeminal ganglia constantly transmit sensory information depicting the individual’s physical and chemical environment to higher brain regions. Beyond the typical trigeminal stimuli (e.g. irritants), environmental stimuli comprise a plethora of volatile chemicals with olfactory components (odorants). In spite of a complete loss of their sense of smell, anosmic patients may retain the ability to roughly discriminate between different volatile compounds. While the detailed mechanisms remain elusive, sensory structures belonging to the trigeminal system seem to be responsible for this phenomenon. In order to gain a better understanding of the mechanisms underlying the activation of the trigeminal system by volatile chemicals, we investigated odorant-induced membrane potential changes in cultured rat trigeminal neurons induced by the odorants vanillin, heliotropyl acetone, helional, and geraniol. We observed the dose-dependent depolarization of trigeminal neurons upon application of these substances occurring in a stimulus-specific manner and could show that distinct neuronal populations respond to different odorants. Using specific antagonists, we found evidence that TRPA1, TRPM8, and/or TRPV1 contribute to the activation. In order to further test this hypothesis, we used recombinantly expressed rat and human variants of these channels to investigate whether they are indeed activated by the odorants tested. We additionally found that the odorants dose-dependently inhibit two-pore potassium channels TASK1 and TASK3 heterologously expressed In Xenopus laevis oocytes. We suggest that the capability of various odorants to activate different TRP channels and to inhibit potassium channels causes neuronal depolarization and activation of distinct subpopulations of trigeminal sensory neurons, forming the basis for a specific representation of volatile chemicals in the trigeminal ganglia. PMID:24205061

  14. [Mind the explosion? The evolution of safety at work in anaesthesiology].

    PubMed

    Petermann, Heike

    2015-11-01

    The evolution of safety in anaesthesiology is characterized by 2 aspects: exposure of anaesthetic staff by volatile anaesthetics and fire as well as explosions in combination with those. In the 20th century, the exposure of staff in the operating room became more and more important. Trigger for the fatal complications were gas lights in combination with chloroform. Later oxygen and inhalation anaesthetics caused explosions and fires. Therefore safety rules were implemented in the 1980s in the Federal Republic of Germany. These were valid for application anaesthetics including apparatus and configuration of operating rooms. The only imponderability is still the human factor.

  15. Significant achievements in the Planetary Geology Program. [geologic processes, comparative planetology, and solar system evolution

    NASA Technical Reports Server (NTRS)

    Head, J. W. (Editor)

    1978-01-01

    Developments reported at a meeting of principal investigators for NASA's planetology geology program are summarized. Topics covered include: constraints on solar system formation; asteriods, comets, and satellites; constraints on planetary interiors; volatiles and regoliths; instrument development techniques; planetary cartography; geological and geochemical constraints on planetary evolution; fluvial processes and channel formation; volcanic processes; Eolian processes; radar studies of planetary surfaces; cratering as a process, landform, and dating method; and the Tharsis region of Mars. Activities at a planetary geology field conference on Eolian processes are reported and techniques recommended for the presentation and analysis of crater size-frequency data are included.

  16. Coupled atmosphere-ocean models of Titan's past

    NASA Technical Reports Server (NTRS)

    Mckay, Christopher P.; Pollack, James B.; Lunine, Jonathan I.; Courtin, Regis

    1993-01-01

    The behavior and possible past evolution of fully coupled atmosphere and ocean model of Titan are investigated. It is found that Titan's surface temperature was about 20 K cooler at 4 Gyr ago and will be about 5 K warmer 0.5 Gyr in the future. The change in solar luminosity and the conversion of oceanic CH4 to C2H6 drive the evolution of the ocean and atmosphere over time. Titan appears to have experienced a frozen epoch about 3 Gyr ago independent of whether an ocean is present or not. This finding may have important implications for understanding the inventory of Titan's volatile compounds.

  17. Evolution of Icy Dust Grains in the Vicinity of a Cometary Nucleus

    NASA Astrophysics Data System (ADS)

    Hilchenbach, M.

    2009-12-01

    From late 2014 onwards, ESA's cornerstone mission ROSETTA will orbit the comet 67P/Churyumov-Gerasimenko. One instrument, COSIMA, will collect cometary dust grains and analyze the grains via secondary mass spectrometry. Models of the evolution of icy dust, accelerated by drag forces of subliming gas and exposed to solar radiation, should set constrains on the detection limits of the COSIMA instrument for volatile icy components. A straightforward modeling approach is applied as a baseline for the observational planing schedule of the instrument operations in the years 2014/2015 as ROSETTA escorts the comet nucleus up to perihelion and beyond.

  18. MAVEN observations of the Mars upper atmosphere, ionosphere, and solar wind interactions

    NASA Astrophysics Data System (ADS)

    Jakosky, Bruce M.

    2017-09-01

    The Mars Atmosphere and Volatile Evolution (MAVEN) mission to Mars has been operating in orbit for more than a full Martian year. Observations are dramatically changing our view of the Mars upper atmosphere system, which includes the upper atmosphere, ionosphere, coupling to the lower atmosphere, magnetosphere, and interactions with the Sun and the solar wind. The data are allowing us to understand the processes controlling the present-day structure of the upper atmosphere and the rates of escape of gas to space. These will tell us the role that escape to space has played in the evolution of the Mars atmosphere and climate.

  19. A behavioral perspective on fishing-induced evolution.

    PubMed

    Uusi-Heikkilä, Silva; Wolter, Christian; Klefoth, Thomas; Arlinghaus, Robert

    2008-08-01

    The potential for excessive and/or selective fishing to act as an evolutionary force has been emphasized recently. However, most studies have focused on evolution of life-history traits in response to size-selective harvesting. Here we draw attention to fishing-induced evolution of behavioral and underlying physiological traits. We contend that fishing-induced selection directly acting on behavioral rather than on life-history traits per se can be expected in all fisheries that operate with passive gears such as trapping, angling and gill-netting. Recent artificial selection experiments in the nest-guarding largemouth bass Micropterus salmoides suggest that fishing-induced evolution of behavioral traits that reduce exposure to fishing gear might be maladaptive, potentially reducing natural recruitment. To improve understanding and management of fisheries-induced evolution, we encourage greater application of methods from behavioral ecology, physiological ecology and behavioral genetics.

  20. Chilling-induced tomato flavor loss is associated with altered volatile synthesis and transient changes in DNA methylation

    PubMed Central

    Zhang, Bo; Tieman, Denise M.; Jiao, Chen; Xu, Yimin; Chen, Kunsong; Fei, Zhangjun; Giovannoni, James J.; Klee, Harry J.

    2016-01-01

    Commercial tomatoes are widely perceived by consumers as lacking flavor. A major part of that problem is a postharvest handling system that chills fruit. Low-temperature storage is widely used to slow ripening and reduce decay. However, chilling results in loss of flavor. Flavor-associated volatiles are sensitive to temperatures below 12 °C, and their loss greatly reduces flavor quality. Here, we provide a comprehensive view of the effects of chilling on flavor and volatiles associated with consumer liking. Reduced levels of specific volatiles are associated with significant reductions in transcripts encoding key volatile synthesis enzymes. Although expression of some genes critical to volatile synthesis recovers after a return to 20 °C, some genes do not. RNAs encoding transcription factors essential for ripening, including RIPENING INHIBITOR (RIN), NONRIPENING, and COLORLESS NONRIPENING are reduced in response to chilling and may be responsible for reduced transcript levels in many downstream genes during chilling. Those reductions are accompanied by major changes in the methylation status of promoters, including RIN. Methylation changes are transient and may contribute to the fidelity of gene expression required to provide maximal beneficial environmental response with minimal tangential influence on broader fruit developmental biology. PMID:27791156

  1. Studying volatility from composition, dilution, and heating measurements of secondary organic aerosols formed during α-pinene ozonolysis

    NASA Astrophysics Data System (ADS)

    Sato, Kei; Fujitani, Yuji; Inomata, Satoshi; Morino, Yu; Tanabe, Kiyoshi; Ramasamy, Sathiyamurthi; Hikida, Toshihide; Shimono, Akio; Takami, Akinori; Fushimi, Akihiro; Kondo, Yoshinori; Imamura, Takashi; Tanimoto, Hiroshi; Sugata, Seiji

    2018-04-01

    Traditional yield curve analysis shows that semi-volatile organic compounds are a major component of secondary organic aerosols (SOAs). We investigated the volatility distribution of SOAs from α-pinene ozonolysis using positive electrospray ionization mass analysis and dilution- and heat-induced evaporation measurements. Laboratory chamber experiments were conducted on α-pinene ozonolysis, in the presence and absence of OH scavengers. Among these, we identified not only semi-volatile products, but also less volatile highly oxygenated molecules (HOMs) and dimers. Ozonolysis products were further exposed to OH radicals to check the effects of photochemical aging. HOMs were also formed during OH-initiated photochemical aging. Most HOMs that formed from ozonolysis and photochemical aging had 10 or fewer carbons. SOA particle evaporation after instantaneous dilution was measured at < 1 and ˜ 40 % relative humidity. The volume fraction remaining of SOAs decreased with time and the equilibration timescale was determined to be 24-46 min for SOA evaporation. The experimental results of the equilibration timescale can be explained when the mass accommodation coefficient is assumed to be 0.1, suggesting that the existence of low-volatility materials in SOAs, kinetic inhibition, or some combined effect may affect the equilibration timescale measured in this study.

  2. Canopy light cues affect emission of constitutive and methyl jasmonate-induced volatile organic compounds in Arabidopsis thaliana.

    PubMed

    Kegge, Wouter; Weldegergis, Berhane T; Soler, Roxina; Vergeer-Van Eijk, Marleen; Dicke, Marcel; Voesenek, Laurentius A C J; Pierik, Ronald

    2013-11-01

    The effects of plant competition for light on the emission of plant volatile organic compounds (VOCs) were studied by investigating how different light qualities that occur in dense vegetation affect the emission of constitutive and methyl-jasmonate-induced VOCs. Arabidopsis thaliana Columbia (Col-0) plants and Pieris brassicae caterpillars were used as a biological system to study the effects of light quality manipulations on VOC emissions and attraction of herbivores. VOCs were analysed using gas chromatography-mass spectrometry and the effects of light quality, notably the red : far red light ratio (R : FR), on expression of genes associated with VOC production were studied using reverse transcriptase-quantitative PCR. The emissions of both constitutive and methyl-jasmonate-induced green leaf volatiles and terpenoids were partially suppressed under low R : FR and severe shading conditions. Accordingly, the VOC-based preference of neonates of the specialist lepidopteran herbivore P. brassicae was significantly affected by the R : FR ratio. We conclude that VOC-mediated interactions among plants and between plants and organisms at higher trophic levels probably depend on light alterations caused by nearby vegetation. Studies on plant-plant and plant-insect interactions through VOCs should take into account the light quality within dense stands when extrapolating to natural and agricultural field conditions. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  3. Apatite: A New Tool For Understanding The Temporal Variability Of Magmatic Volatile Contents

    NASA Astrophysics Data System (ADS)

    Stock, M. J.; Humphreys, M.; Smith, V.; Pyle, D. M.; Isaia, R.

    2015-12-01

    The apatite crystal structure is capable of incorporating H2O, F and Cl, as well as trace CO2 and sulphur. These can be related to parental magma compositions through application of a series of pressure and temperature-dependent exchange reactions (Piccoli and Candela, 1994), permitting apatite crystals to preserve a record of all major volatile species in the melt. Furthermore, due to the general incompatibility of P in other rock-forming minerals, apatite is ubiquitous in igneous systems and often begins crystallising early, such that apatite inclusions within phenocrysts record melt volatile contents throughout magmatic differentiation. In this work, we compare the compositions of apatite inclusions and microphenocrysts with pyroxene-hosted melt inclusions from the Astroni 1 eruption of Campi Flegrei, Italy. These data are coupled with magmatic differentiation models (Gualda et al., 2012), experimental volatile solubility data (Webster et al., 2014) and thermodynamic models of apatite compositional variations (Piccoli and Candela, 1994) to determine a time-series of magmatic volatile evolution in the build-up to eruption. We find that apatite halogen/OH ratios decreased through magmatic differentiation, while melt inclusion F and Cl concentrations increased. Melt inclusion H2O contents are constant at ~2.5 wt%. These data are best explained by volatile-undersaturated differentiation over most of the crystallisation history of the Astroni 1 melt, with melt inclusion H2O contents reset during ascent, due to rapid H diffusion through the phenocryst hosts (Woods et al., 2000). Given the rapid diffusivity of volatiles in apatite (Brenan, 1993), preservation of undersaturated compositions in microphenocrysts suggests that saturation was only achieved a few days to months before eruption and that it may have been the transition into a volatile-saturated state that ultimately triggered eruption. Piccoli and Candela, 1994. Am. J. of Sc., 294, 92-135. Gualda et al., 2012. J. Pet., 53, 875-890. Webster et al., 2014. J. Pet., 55, 2217-2248. Woods et al., 2000. Am. Min., 85, 480-487. Brenan, 1993. Chem. Geol., 110, 195-210.

  4. Volatile Arsenic Species Released from Escherichia coli Expressing the AsIII S-adenosylmethionine Methyltransferase Gene

    PubMed Central

    YUAN, CHUNGANG; LU, XIUFEN; QIN, JIE; ROSEN, BARRY P.; LE, X. CHRIS

    2015-01-01

    Biological systems, ranging from bacteria and fungi to humans, can methylate arsenic. Recent studies have suggested that the AsIII S-adenosylmethionine methyltransferase (arsM) gene in bacteria was responsible for the removal of arsenic as the volatile arsines from the bacteria. However, there has been no direct measure of the arsines released from bacteria cultures. We describe here an integrated system incorporating the bacterial incubation and volatile arsenic species analysis, and we demonstrate its application to the identification of the volatile arsines produced in bacterial cultures. The headspace of the bacterial cultures was purged with helium, and the volatile arsenic species were trapped in a chromatographic column immersed in liquid nitrogen. The cryogenically trapped arsines [AsH3, (CH3)AsH2, (CH3)2AsH, and (CH3)3As] were separated by gas chromatography and were detected by inductively coupled plasma mass spectrometry. A hydride generation system was coupled to the bacterial culture system, allowing for spiking standards and for generating calibration arsines necessary for quantitative analysis. Both bacteria containing the arsM gene or its variant arsMC2 gene were able to produce 400–500 ng of trimethylarsine. No trimethylarsine was detectable in bacteria lacking the arsM gene (containing the vector plasmid as negative control). These results confirm that arsM is responsible for releasing arsenic as volatile species from the arsenic-resistant bacteria. Our results also show traces of AsH3, CH3AsH2, and (CH3)2AsH in cultures of bacteria expressing arsM. The method detection limits for AsH3, CH3AsH2, (CH3)2AsH, and (CH3)3As were 0.5, 0.5, 0.7, and 0.6 pg, respectively. The ability to quantify trace levels of these volatile arsenic species makes it possible to study the biotransformation and biochemical roles of the evolution of these volatile arsenic species by biological systems. PMID:18522094

  5. Reconstructing mantle volatile contents through the veil of degassing

    NASA Astrophysics Data System (ADS)

    Tucker, J.; Mukhopadhyay, S.; Gonnermann, H. M.

    2014-12-01

    The abundance of volatile elements in the mantle reveals critical information about the Earth's origin and evolution such as the chemical constituents that built the Earth and material exchange between the mantle and exosphere. However, due to magmatic degassing, volatile element abundances measured in basalts usually do not represent those in undegassed magmas and hence in the mantle source of the basalts. While estimates of average mantle concentrations of some volatile species can be obtained, such as from the 3He flux into the oceans, volatile element variability within the mantle remains poorly constrained. Here, we use CO2-He-Ne-Ar-Xe measurements in basalts and a new degassing model to reconstruct the initial volatile contents of 8 MORBs from the Mid-Atlantic Ridge and Southwest Indian Ridge that span a wide geochemical range from depleted to enriched MORBs. We first show that equilibrium degassing (e.g. Rayleigh degassing), cannot simultaneously fit the measured CO2-He-Ne-Ar-Xe compositions in MORBs and argue that kinetic fractionation between bubbles and melt lowers the dissolved ratios of light to heavy noble gas species in the melt from that expected at equilibrium. We present a degassing model (after Gonnermann and Mukhopadhyay, 2007) that explicitly accounts for diffusive fractionation between melt and bubbles. The model computes the degassed composition based on an initial volatile composition and a diffusive timescale. To reconstruct the undegassed volatile content of a sample, we find the initial composition and degassing timescale which minimize the misfit between predicted and measured degassed compositions. Initial 3He contents calculated for the 8 MORB samples vary by a factor of ~7. We observe a correlation between initial 3He and CO2 contents, indicating relatively constant CO2/3He ratios despite the geochemical diversity and variable gas content in the basalts. Importantly, the gas-rich popping rock from the North Atlantic, as well as the average mantle ratio computed from the ridge 3He flux and independently estimated CO2 content fall along the same correlation. This observation suggests that undegassed CO2 and noble gas concentrations can be reconstructed in individual samples through measurement of noble gases and CO2 in erupted basalts.

  6. Volatile Release from the Siberian Traps Inferred from Melt Inclusions

    NASA Astrophysics Data System (ADS)

    Black, B. A.; Elkins-Tanton, L. T.; Rowe, M. C.; Ukstins Peate, I.

    2009-12-01

    The Siberian Traps Large Igneous Province is one of the largest known continental flood volcanic provinces in the Phanerozoic. The quantification of volatile degassing is particularly important because the Siberian Traps have often been invoked as a possible trigger for the end-Permian mass extinction (e.g. Campbell et al., 1992; Wignall, 2001). Volatile degassing provides a crucial mechanism to link mafic volcanic eruption to global environmental change. Mafic flood basalt magmas are expected to have low volatile contents (similar to mid-ocean ridge basalts). However, Siberian Traps magmas were chambered in and erupted through a thick sedimentary basin and may have interacted with, and obtained volatiles from, sedimentary lithologies such as limestone, coal, and evaporite. Melt inclusions from the Siberian Traps provide insight into the potential total volatile budget throughout the evolution of the large igneous province. These droplets of trapped melt may preserve volatile species that would otherwise have degassed at the time of eruption (Thordarson et al., 1996). Mafic pyroclastic deposits from the lowermost Arydzhangsky suite (basal Siberian Traps) contain clinopyroxene phenocrysts hosting melt inclusions. Electron microprobe analysis of clinopyroxene-hosted re-homogenized melt inclusions indicates maximum measured concentrations of up to 1500 - 2000 ppm sulfur, 500 - 760 ppm chlorine, and 1900 - 2400 ppm fluorine. Olivines from the Maymechinsky suite, recognized as the last extrusive products of Siberian Traps volcanism, contain melt inclusions with maximum sulfur concentrations in the range of 5000 ppm, and less substantial concentrations of chlorine and fluorine. Intrusive igneous rocks from the province also display significant volatile contents. A sill from the Ust-Ilimsk region yielded plagioclase-hosted melt inclusions which contain chlorine and fluorine concentrations nearing one weight percent. Visscher et al. (2004) proposed that chlorofluorocarbon compounds (CFCs) may have played a major role in the terrestrial end-Permian extinction. These CFCs are powerful catalysts for the breakdown of ozone, a process which can expose the biosphere to increased ultraviolet radiation. Measurements of elevated chlorine and fluorine from the Siberian Traps may thus provide a concrete source for CFCs that could have triggered this kill mechanism.

  7. Quantification of Lightning-induced Nitrogen Oxides in CMAQ and the Assessment of its impact on Ground-level Air Quality

    EPA Science Inventory

    Lightning-induced nitrogen oxides (LNOX), in the presence of sunlight, volatile organic compounds and water, can be a relatively large but uncertain source for ozone (O3) and hydroxyl radical (OH) in the atmosphere. Using lightning flash data from the National Lightning Detection...

  8. Ag Isotopic Evolution of the Mantle During Accretion: New Constraints from Pd and Ag Metal-Silicate Partitioning

    NASA Technical Reports Server (NTRS)

    Righter, K.; Schonbachler, M.

    2018-01-01

    Decay of (sup 107) Pd to (sup 107) Ag has a half-life of 6.5 times 10 (sup 6) mega-annums. Because these elements are siderophile but also volatile, they offer potential constraints on the timing of core formation as well as volatile addition. Initial modelling has shown that the Ag isotopic composition of the bulk silicate Earth (BSE) can be explained if accretion occurs with late volatile addition. These arguments were tested for sensitivity for pre-cursor Pd/Ag contents, and for a fixed Pd/Ag ratio of the BSE of 0.1. New Ag and Pd partitioning data has allowed a better understanding of the partitioning behavior of Pd and Ag during core formation. The effects of S, C and Si, and the effect of high temperature and pressure has been evaluated. We can now calculate D(Ag) and D(Pd) over the wide range of PT conditions and variable metallic liquid compositions that are known during accretion. We then use this new partitioning information to revisit the Ag isotopic composition of the BSE during accretion.

  9. Evolution of Volatile Emission in Rhus coriaria Organs During Different Stages of Growth and Evaluation of the Essential Oil Composition.

    PubMed

    Reidel, Rose Vanessa Bandeira; Cioni, Pier Luigi; Majo, Luigi; Pistelli, Luisa

    2017-11-01

    Rhus coriaria, also known as Sumac, has been traditionally used in many countries as spice, condiment, dying agent, and medicinal herb. The chemical composition of essential oils (EOs) and the volatile emissions from different organs of this species collected in Sicily (Italy) were analyzed by gas chromatography-flame ionization detection and gas chromatography/mass spectrometry. Monoterpene and sesquiterpene hydrocarbons were the most abundant class in the volatile emissions with β-caryophyllene and α-pinene were the main constituents in the majority of the examined samples. The EO composition was characterized by high amount of monoterpene and sesquiterpene hydrocarbons together with diterpenes. The main compounds in the EO obtained from the leaves and both stages of fruit maturation were cembrene and β-caryophyllene, while α-pinene and tridecanoic acid were the key compounds in the flower EO. All the data were submitted to multivariate statistical analysis showing many differences among the different plant parts and their ontogenetic stages. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  10. Early MAVEN Deep Dip campaign reveals thermosphere and ionosphere variability.

    PubMed

    Bougher, S; Jakosky, B; Halekas, J; Grebowsky, J; Luhmann, J; Mahaffy, P; Connerney, J; Eparvier, F; Ergun, R; Larson, D; McFadden, J; Mitchell, D; Schneider, N; Zurek, R; Mazelle, C; Andersson, L; Andrews, D; Baird, D; Baker, D N; Bell, J M; Benna, M; Brain, D; Chaffin, M; Chamberlin, P; Chaufray, J-Y; Clarke, J; Collinson, G; Combi, M; Crary, F; Cravens, T; Crismani, M; Curry, S; Curtis, D; Deighan, J; Delory, G; Dewey, R; DiBraccio, G; Dong, C; Dong, Y; Dunn, P; Elrod, M; England, S; Eriksson, A; Espley, J; Evans, S; Fang, X; Fillingim, M; Fortier, K; Fowler, C M; Fox, J; Gröller, H; Guzewich, S; Hara, T; Harada, Y; Holsclaw, G; Jain, S K; Jolitz, R; Leblanc, F; Lee, C O; Lee, Y; Lefevre, F; Lillis, R; Livi, R; Lo, D; Ma, Y; Mayyasi, M; McClintock, W; McEnulty, T; Modolo, R; Montmessin, F; Morooka, M; Nagy, A; Olsen, K; Peterson, W; Rahmati, A; Ruhunusiri, S; Russell, C T; Sakai, S; Sauvaud, J-A; Seki, K; Steckiewicz, M; Stevens, M; Stewart, A I F; Stiepen, A; Stone, S; Tenishev, V; Thiemann, E; Tolson, R; Toublanc, D; Vogt, M; Weber, T; Withers, P; Woods, T; Yelle, R

    2015-11-06

    The Mars Atmosphere and Volatile Evolution (MAVEN) mission, during the second of its Deep Dip campaigns, made comprehensive measurements of martian thermosphere and ionosphere composition, structure, and variability at altitudes down to ~130 kilometers in the subsolar region. This altitude range contains the diffusively separated upper atmosphere just above the well-mixed atmosphere, the layer of peak extreme ultraviolet heating and primary reservoir for atmospheric escape. In situ measurements of the upper atmosphere reveal previously unmeasured populations of neutral and charged particles, the homopause altitude at approximately 130 kilometers, and an unexpected level of variability both on an orbit-to-orbit basis and within individual orbits. These observations help constrain volatile escape processes controlled by thermosphere and ionosphere structure and variability. Copyright © 2015, American Association for the Advancement of Science.

  11. Radioactive elements on Mercury's surface from MESSENGER: implications for the planet's formation and evolution.

    PubMed

    Peplowski, Patrick N; Evans, Larry G; Hauck, Steven A; McCoy, Timothy J; Boynton, William V; Gillis-Davis, Jeffery J; Ebel, Denton S; Goldsten, John O; Hamara, David K; Lawrence, David J; McNutt, Ralph L; Nittler, Larry R; Solomon, Sean C; Rhodes, Edgar A; Sprague, Ann L; Starr, Richard D; Stockstill-Cahill, Karen R

    2011-09-30

    The MESSENGER Gamma-Ray Spectrometer measured the average surface abundances of the radioactive elements potassium (K, 1150 ± 220 parts per million), thorium (Th, 220 ± 60 parts per billion), and uranium (U, 90 ± 20 parts per billion) in Mercury's northern hemisphere. The abundance of the moderately volatile element K, relative to Th and U, is inconsistent with physical models for the formation of Mercury requiring extreme heating of the planet or its precursor materials, and supports formation from volatile-containing material comparable to chondritic meteorites. Abundances of K, Th, and U indicate that internal heat production has declined substantially since Mercury's formation, consistent with widespread volcanism shortly after the end of late heavy bombardment 3.8 billion years ago and limited, isolated volcanic activity since.

  12. Feasibility studies for the treatment and reuse of contaminated marine sediments.

    PubMed

    Bonomoa, L; Careghini, A; Dastoli, S; De Propris, L; Ferrari, G; Gabellini, M; Saponaro, S

    2009-07-01

    This paper presents preliminary results of laboratory tests aimed at evaluating the easibility of the remediation of marine sediments, which are polluted by mercury and petroleum hydrocarbons, dredged at the bay of Augusta (SR, Italy). The treatment is composed of two sequential steps: in the first, a cement-based granular material is produced (based on a high performance concrete approach); then, the volatile and the semi-volatile compounds in the granular material are removed by a thermal desorption step. Treated materials could be reused or put into caissons, according to their mechanical properties and environmental compatibility. The experiments were focused on evaluating the effect of the process parameter values on: (i) the evolution of cement hydration reactions, (ii) thermal desorption removal efficiencies, (iii) leaching behaviour of the treated material.

  13. Herbivore-induced phenylacetonitrile is biosynthesized from de novo-synthesized L-phenylalanine in the giant knotweed, Fallopia sachalinensis.

    PubMed

    Noge, Koji; Tamogami, Shigeru

    2013-06-19

    Plants emit a series of characteristic volatile blends when damaged by insect feeding. Phenylacetonitrile is one of the volatiles from the leaves of the giant knotweed, Fallopia sachalinensis, infested by the Japanese beetle, Popillia japonica, or treated with exogenous airborne methyl jasmonate (MeJA). We examined the precursor of the nitrile and its origin in this system. L-Phenylalanine was determined to be a precursor of the nitrile in F. sachalinensis leaves, and the phenylalanine was also induced by beetle feeding and MeJA treatment. We also found that exogenous MeJA enhanced the biosynthesis of several amino acids in F. sachalinensis leaves. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  14. Streptomyces Exploration: Competition, Volatile Communication and New Bacterial Behaviours.

    PubMed

    Jones, Stephanie E; Elliot, Marie A

    2017-07-01

    Streptomyces bacteria are prolific producers of specialized metabolites, and have a well studied, complex life cycle. Recent work has revealed a new type of Streptomyces growth termed 'exploration' - so named for the ability of explorer cells to rapidly traverse solid surfaces. Streptomyces exploration is stimulated by fungal interactions, and is associated with the production of an alkaline volatile organic compound (VOC) capable of inducing exploration by other streptomycetes. Here, we examine Streptomyces exploration from the perspectives of interkingdom interactions, pH-induced morphological switches, and VOC-mediated communication. The phenotypic diversity that can be revealed through microbial interactions and VOC exposure is providing us with insight into novel modes of microbial development, and an opportunity to exploit VOCs to stimulate desired microbial behaviours. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. NASA MEVTV Program Working Group Meeting: Volcanism on Mars

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The purpose of this working group meeting is to focus predominantly on volcanism on Mars, prior to considering the more complex issues of interactions between volcanism and tectonism or between volcanism and global or regional volatile evolution. It is also hoped that the topical areas of research identified will aid the planetary geology community in understanding volcanism on Mars and its relationship to other physical processes.

  16. MAVEN Press Briefing

    NASA Image and Video Library

    2013-10-28

    John Grunsfeld, associate administrator for the Science Mission Directorate, NASA Headquarters, Washington, introduces a panel to discuss the upcoming launch of the Mars Atmosphere and Volatile Evolution (MAVEN) mission, at a press conference at NASA Headquarters in Washington on Monday, Oct. 28th, 2013. MAVEN is the agency's next mission to Mars and the first devoted to understanding the upper atmosphere of the Red Planet. (Photo credit: NASA/Jay Westcott)

  17. Irreversible impacts of heat on the emissions of monoterpenes, sesquiterpenes, phenolic BVOC and green leaf volatiles from several tree species

    NASA Astrophysics Data System (ADS)

    Kleist, E.; Mentel, T. F.; Andres, S.; Bohne, A.; Folkers, A.; Kiendler-Scharr, A.; Rudich, Y.; Springer, M.; Tillmann, R.; Wildt, J.

    2012-12-01

    Climate change will induce extended heat waves to parts of the vegetation more frequently. High temperatures may act as stress (thermal stress) on plants changing emissions of biogenic volatile organic compounds (BVOCs). As BVOCs impact the atmospheric oxidation cycle and aerosol formation, it is important to explore possible alterations of BVOC emissions under high temperature conditions. Applying heat to European beech, Palestine oak, Scots pine, and Norway spruce in a laboratory setup either caused the well-known exponential increases of BVOC emissions or induced irreversible changes of BVOC emissions. Considering only irreversible changes of BVOC emissions as stress impacts, we found that high temperatures decreased the de novo emissions of monoterpenes, sesquiterpenes and phenolic BVOC. This behaviour was independent of the tree species and whether the de novo emissions were constitutive or induced by biotic stress. In contrast, application of thermal stress to conifers amplified the release of monoterpenes stored in resin ducts of conifers and induced emissions of green leaf volatiles. In particular during insect attack on conifers, the plants showed de novo emissions of sesquiterpenes and phenolic BVOCs, which exceeded constitutive monoterpene emissions from pools. The heat-induced decrease of de novo emissions was larger than the increased monoterpene release caused by damage of resin ducts. For insect-infested conifers the net effect of thermal stress on BVOC emissions could be an overall decrease. Global change-induced heat waves may put hard thermal stress on plants. If so, we project that BVOC emissions increase is more than predicted by models only in areas predominantly covered with conifers that do not emit high amounts of sesquiterpenes and phenolic BVOCs. Otherwise overall effects of high temperature stress will be lower increases of BVOC emissions than predicted by algorithms that do not consider stress impacts.

  18. Cigarette smoke-induced reduction in binding of the salivary translocator protein is not mediated by free radicals.

    PubMed

    Nagler, R; Savulescu, D; Gavish, M

    2016-02-01

    Oral cancer is the most common malignancy of the head and neck and its main inducer is exposure to cigarette smoke (CS) in the presence of saliva. It is commonly accepted that CS contributes to the pathogenesis of oral cancer via reactive free radicals and volatile aldehydes. The 18 kDa translocator protein (TSPO) is an intracellular receptor involved in proliferation and apoptosis, and has been linked to various types of cancer. The presence of TSPO in human saliva has been linked to oral cancer, and its binding affinity to its ligand is reduced following exposure to CS. In the present study we wished to further investigate the mechanism behind the CS-induced reduction of TSPO binding by exploring the possible mediatory role of reactive oxygen species (ROS) and volatile aldehydes in this process. We first analyzed TSPO binding in control saliva and in saliva exposed to CS in the presence and absence of various antioxidants. These experiments found that TSPO binding ability was not reversed by any of the antioxidants added, suggesting that CS exerts its effect on TSPO via mechanisms that do not involve volatile aldehydes and free radicals tested. Next, we analyzed TSPO binding in saliva following addition of exogenous ROS in the form of H2O2. These experiments found that TSPO binding was enhanced due to the treatment, once again showing that the CS-induced TSPO binding reduction is not mediated by this common form of ROS. However, the previously reported CS-induced reduction in salivary TSPO binding together with the role of TSPO in cells and its link to cancer strongly suggest that TSPO has a critical role in the pathogenesis of CS-induced oral cancer. The importance of further elucidating the mechanisms behind it should be emphasized. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  19. Scaling and efficiency determine the irreversible evolution of a market

    PubMed Central

    Baldovin, F.; Stella, A. L.

    2007-01-01

    In setting up a stochastic description of the time evolution of a financial index, the challenge consists in devising a model compatible with all stylized facts emerging from the analysis of financial time series and providing a reliable basis for simulating such series. Based on constraints imposed by market efficiency and on an inhomogeneous-time generalization of standard simple scaling, we propose an analytical model which accounts simultaneously for empirical results like the linear decorrelation of successive returns, the power law dependence on time of the volatility autocorrelation function, and the multiscaling associated to this dependence. In addition, our approach gives a justification and a quantitative assessment of the irreversible character of the index dynamics. This irreversibility enters as a key ingredient in a novel simulation strategy of index evolution which demonstrates the predictive potential of the model.

  20. Influence of extrusion rate and magma rheology on the growth of lava domes: Insights from particle-dynamics modeling

    NASA Astrophysics Data System (ADS)

    Husain, Taha; Elsworth, Derek; Voight, Barry; Mattioli, Glen; Jansma, Pamela

    2014-09-01

    Lava domes are structures that grow by the extrusion of viscous silicic or intermediate composition magma from a central volcanic conduit. Repeated cycles of growth are punctuated by collapse, as the structure becomes oversized for the strength of the composite magma that rheologically stiffens and strengthens at its surface. Here we explore lava dome growth and failure mechanics using a two-dimensional particle-dynamics model. The model follows the evolution of fractured lava, with solidification driven by degassing induced crystallization of magma. The particle-dynamics model emulates the natural development of dome growth and rearrangement of the lava dome which is difficult in mesh-based analyses due to mesh entanglement effects. The deformable talus evolves naturally as a frictional carapace that caps a ductile magma core. Extrusion rate and magma rheology together with crystallization temperature and volatile content govern the distribution of strength in the composite structure. This new model is calibrated against existing observational models of lava dome growth. Results show that the shape and extent of the ductile core and the overall structure of the lava dome are strongly controlled by the infusion rate. The effects of extrusion rate on magma rheology are sensitive to material stiffness, which in turn is a function of volatile content and crystallinity. Material stiffness and material strength are key model parameters which govern magma rheology and subsequently the morphological character of the lava dome and in turn stability. Degassing induced crystallization causes material stiffening and enhances material strength reflected in non-Newtonian magma behavior. The increase in stiffness and strength of the injected magma causes a transition in the style of dome growth, from endogenous expansion of a ductile core, to stiffer and stronger intruding material capable of punching through the overlying material and resulting in the development of a spine or possibly inducing dome collapse. Simulation results mimic development of a megaspine upon the influx of fresh magma which leads to the re-direction of magma flow, creating a new shear zone and the switching of dome growth from one side to the other. Our model shows similar dome growth dynamics as observed at Soufriere Hills Volcano, Montserrat, indicating a strong correlation between extrusion rate and its subsequent effect on mechanical properties and variations in magma rheology.

  1. Melting and reactive flow of a volatilized mantle beneath mid-ocean ridges: theory and numerical models

    NASA Astrophysics Data System (ADS)

    Keller, Tobias; Katz, Richard F.

    2015-04-01

    Laboratory experiments indicate that even small concentrations volatiles (H2O or CO2) in the upper mantle significantly affect the silicate melting behavior [HK96,DH06]. The presence of volatiles stabilizes volatile-rich melt at high pressure, thus vastly increasing the volume of the upper mantle expected to be partially molten [H10,DH10]. These small-degree melts have important consequences for chemical differentiation and could affect the dynamics of mantle flow. We have developed theory and numerical implementation to simulate thermo-chemically coupled magma/mantle dynamics in terms of a two-phase (rock+melt), three component (dunite+MORB+volatilized MORB) physical model. The fluid dynamics is based on McKenzie's equations [McK84], while the thermo-chemical formulation of the system is represented by a novel disequilibrium multi-component melting model based on thermo-dynamic theory [RBS11]. This physical model is implemented as a parallel, two-dimensional, finite-volume code that leverages tools from the PETSc toolkit. Application of this simulation code to a mid-ocean ridge system suggests that the methodology captures the leading-order features of both hydrated and carbonated mantle melting, including deep, low-degree, volatile-rich melt formation. Melt segregation leads to continuous dynamic thermo-chemical dis-equilibration, while phenomenological reaction rates are applied to continually move the system towards re-equilibration. The simulations will be used first to characterize volatile extraction from the MOR system assuming a chemically homogeneous mantle. Subsequently, simulations will be extended to investigate the consequences of heterogeneity in lithology [KW12] and volatile content. These studies will advance our understanding of the role of volatiles in the dynamic and chemical evolution of the upper mantle. Moreover, they will help to gauge the significance of the coupling between the deep carbon cycle and the ocean/atmosphere system. REFERENCES HK96 Hirth & Kohlstedt (1996), Earth Planet Sci Lett DH06 Dasgupta & Hirschmann (2006), doi:10.1038/nature04612. H10 Hirschmann (2010), doi:10.1016/j.pepi.2009.12.003. DH10 Dasgupta & Hirschmann (2010), doi:10.1016/j.epsl.2010.06.039. McK84 McKenzie (1984), J Pet KW12 Katz & Weatherley (2012), doi: 10.1016/j.epsl.2012.04.042. RBS11 Rudge, Bercovici & Spiegelman (2011), doi: 10.1111/j.1365-246X.2010.04870.x

  2. Sedimentary halogens and noble gases within Western Antarctic xenoliths: Implications of extensive volatile recycling to the sub continental lithospheric mantle

    NASA Astrophysics Data System (ADS)

    Broadley, Michael W.; Ballentine, Chris J.; Chavrit, Déborah; Dallai, Luigi; Burgess, Ray

    2016-03-01

    Recycling of marine volatiles back into the mantle at subduction zones has a profound, yet poorly constrained impact on the geochemical evolution of the Earth's mantle. Here we present a combined noble gas and halogen study on mantle xenoliths from the Western Antarctic Rift System (WARS) to better understand the flux of subducted volatiles to the sub continental lithospheric mantle (SCLM) and assess the impact this has on mantle chemistry. The xenoliths are extremely enriched in the heavy halogens (Br and I), with I concentrations up to 1 ppm and maximum measured I/Cl ratios (85.2 × 10-3) being ∼2000 times greater than mid ocean ridge basalts (MORB). The Br/Cl and I/Cl ratios of the xenoliths span a range from MORB-like ratios to values similar to marine pore fluids and serpentinites, whilst the 84Kr/36Ar and 130Xe/36Ar ratios range from modern atmosphere to oceanic sediments. This indicates that marine derived volatiles have been incorporated into the SCLM during an episode of subduction related metasomatism. Helium isotopic analysis of the xenoliths show average 3He/4He ratios of 7.5 ± 0.5 RA (where RA is the 3He/4He ratio of air = 1.39 × 10-6), similar to that of MORB. The 3He/4He ratios within the xenoliths are higher than expected for the xenoliths originating from the SCLM which has been extensively modified by the addition of subducted volatiles, indicating that the SCLM beneath the WARS must have seen a secondary alteration from the infiltration and rise of asthenospheric fluids/melts as a consequence of rifting and lithospheric thinning. Noble gases and halogens within these xenoliths have recorded past episodes of volatile interaction within the SCLM and can be used to reconstruct a tectonic history of the WARS. Marine halogen and noble gas signatures within the SCLM xenoliths provide evidence for the introduction and retention of recycled volatiles within the SCLM by subduction related metasomatism, signifying that not all volatiles that survive subduction are mixed efficiently through the convecting mantle. The global SCLM therefore represents a potentially important reservoir for the long term residence of subducted volatiles.

  3. The origin of volatiles in the Earth's mantle

    NASA Astrophysics Data System (ADS)

    Hier-Majumder, Saswata; Hirschmann, Marc M.

    2017-08-01

    The Earth's deep interior contains significant reservoirs of volatiles such as H, C, and N. Due to the incompatible nature of these volatile species, it has been difficult to reconcile their storage in the residual mantle immediately following crystallization of the terrestrial magma ocean (MO). As the magma ocean freezes, it is commonly assumed that very small amounts of melt are retained in the residual mantle, limiting the trapped volatile concentration in the primordial mantle. In this article, we show that inefficient melt drainage out of the freezing front can retain large amounts of volatiles hosted in the trapped melt in the residual mantle while creating a thick early atmosphere. Using a two-phase flow model, we demonstrate that compaction within the moving freezing front is inefficient over time scales characteristic of magma ocean solidification. We employ a scaling relation between the trapped melt fraction, the rate of compaction, and the rate of freezing in our magma ocean evolution model. For cosmochemically plausible fractions of volatiles delivered during the later stages of accretion, our calculations suggest that up to 77% of total H2O and 12% of CO2 could have been trapped in the mantle during magma ocean crystallization. The assumption of a constant trapped melt fraction underestimates the mass of volatiles in the residual mantle by more than an order of magnitude.Plain Language SummaryThe Earth's deep interior contains substantial amounts of volatile elements like C, H, and N. How these elements got sequestered in the Earth's interior has long been a topic of debate. It is generally assumed that most of these elements escaped the interior of the Earth during the first few hundred thousand years to create a primitive atmosphere, leaving the mantle reservoir nearly empty. In this work, we show that the key to this paradox involves the very early stages of crystallization of the mantle from a global magma ocean. Using numerical models, we show that the mantle stored substantially higher amounts of volatiles than previously thought, thanks to large quantities of melt trapped in the mantle due to rapid freezing of the magma ocean. Our models show that up to 77% of the total planetary budget of water and 12% of CO2 can be stored in the mantle due to this previously unaccounted process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018FrCh....6...66S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018FrCh....6...66S"><span>Norisoprenoids, sesquiterpenes and terpenoids content of Valpolicella wines during ageing: investigating aroma potential in relationship to evolution of tobacco and balsamic aroma in aged wine</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Slaghenaufi, Davide; Ugliano, Maurizio</p> <p>2018-03-01</p> <p>During wine ageing, tobacco and balsamic aroma notes appear. In this paper, volatile compounds directly or potentially related to those aromas have been investigated in Corvina and Corvinone wines during aging. Corvina and Corvinone are two northern-Italy autochthonous red grape varieties, used to produce Valpolicella Classico and Amarone wines, both characterized by tobacco and balsamic aroma notes. Wines were analysed shortly after bottling or following model ageing at 60 °C for 48, 72, and 168 hours. Volatile compounds were analysed by HS-SPME-GC-MS. Results showed that compounds related to tobacco aroma (β-damascenone, 3-oxo-α-ionol, (E)-1-(2,3,6-Trimethylphenyl)-buta-1,3-diene (TPB) and megastigmatrienones) increased in relationship to storage time with different patterns. β-Damascenone and 3-oxo-α-ionol rapidly increased to reach a plateau in the first 48-72 hours of model ageing. Instead, TPB and megastigmatrienones concentration showed a linear correlation with ageing time. During model ageing, several cyclic terpenes tended to increase. Among them 1,8-cineole and 1,4-cineole, previously reported to contribute to red wine eucalyptus notes increased proportionally to storage time, and this behavior was clearly associated with reactions involving α-terpineol, limonene and terpinolene, as confirmed by studies with model wine solutions. Among other relevant volatile compounds, sesquiterpenes appear to contribute potentially balsamic and spicy aroma notes. In this study, linear sesquiterpenes (nerolidol, farnesol) underwent acid hydrolysis during long wine ageing, while cyclic sesquiterpenes seemed to increase with time. The chemical pathways associated with evolution of some of the compounds investigated have been studied in model wine.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016isms.confEWK06H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016isms.confEWK06H"><span>Millimeter-Wave Spectroscopy for Analytical Chemistry: Thermal Evolution of Low Volatility Impurities and Detection with a Fourier Transform Molecular Rotational Resonance Spectrometer (tev Ft-Mrr</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Harris, Brent; Fields, Shelby S.; Neill, Justin L.; Pulliam, Robin; Muckle, Matt; Pate, Brooks</p> <p>2016-06-01</p> <p>Recent advances in Fourier transform millimeter-wave spectroscopy techniques have renewed the application reach of molecular rotational spectroscopy for analytical chemistry. We present a sampling method for sub ppm analysis of low volatility impurities by thermal evolution from solid powders using a millimeter-wave Fourier transform molecular rotational resonance (FT-MRR) spectrometer for detection. This application of FT-MRR is relevant to the manufacturing of safe oral pharmaceuticals. Low volatility impurities can be challenging to detect at 1 ppm levels with chromatographic techniques. One such example of a potentially mutagenic impurity is acetamide (v.p. 1 Torr at 40 C, m.p. 80 C). We measured the pure reference spectrum of acetamide by flowing the sublimated vapor pressure of acetamide crystals through the FT-MRR spectrometer. The spectrometer lower detection level (LDL) for a broadband (> 20 GHz, 10 min.) spectrum is 300 nTorr, 30 pmol, or 2 ng. For a 50 mg powder, perfect sample transfer efficiency can yield a w/w % detection limit of 35 ppb. We extended the sampling method for the acetamide reference measurement to an acetaminophen sample spiked with 5000 ppm acetamide in order to test the sample transfer efficiency when liberated from an pharmaceutical powder. A spectral reference matching algorithm detected the presence of several impurities including acetaldehyde, acetic acid, and acetonitrile that evolved at the melting point of acetaminophen, demonstrating the capability of FT-MRR for identification without a routine chemical standard. The method detection limit (MDL) without further development is less than 10 ppm w/w %. Resolved FT-MRR mixture spectra will be presented with a description of sampling methods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMED53G..03C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMED53G..03C"><span>Computer simulations for the Mars Atmospheric and Volatile EvolutioN (MAVEN) mission through NASA's "Project Spectra!"</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Christofferson, R.; Wood, E. L.; Euler, G.</p> <p>2012-12-01</p> <p>"Project Spectra!" is a standards-based light science and engineering program on solar system exploration that includes both hands-on paper and pencil activities as well as Flash-based computer games that help students solidify understanding of high-level planetary and solar physics. Using computer interactive games where students experience and manipulate the information makes abstract concepts accessible. Visualizing lessons with multi-media tools solidifies understanding and retention of knowledge. Since students can choose what to watch and explore, the interactives accommodate a broad range of learning styles. Students can go back and forth through the interactives if they've missed a concept or wish to view something again. In the end, students are asked critical thinking questions and conduct web-based research. As a part of the Mars Atmospheric and Volatile EvolutioN (MAVEN) mission education programming, we've developed two new "Project Spectra!" interactives that go hand-in-hand with a paper and pencil activity. The MAVEN mission will study volatiles in the upper atmosphere to help piece together Mars' climate history. In the first interactive, students explore black body radiation, albedo, and a simplified greenhouse effect to establish what factors contribute to overall planetary temperature and how they contribute. Students are asked to create a scenario in which a planet they build and design is able to maintain liquid water on the surface. In the second interactive, students are asked to consider Mars and the conditions needed for Mars to support water on the surface, keeping some variables fixed. Ideally, students will walk away with the very basic and critical elements required for climate studies, which has far-reaching implications beyond the study of Mars. These interactives are currently being pilot tested at Arvada High School in Colorado.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRE..122.1458S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRE..122.1458S"><span>The relative influence of H2O and CO2 on the primitive surface conditions and evolution of rocky planets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Salvador, A.; Massol, H.; Davaille, A.; Marcq, E.; Sarda, P.; Chassefière, E.</p> <p>2017-07-01</p> <p>How the volatile content influences the primordial surface conditions of terrestrial planets and, thus, their future geodynamic evolution is an important question to answer. We simulate the secular convective cooling of a 1-D magma ocean (MO) in interaction with its outgassed atmosphere. The heat transfer in the atmosphere is computed either using the grey approximation or using a k-correlated method. We vary the initial CO2 and H2O contents (respectively from 0.1 × 10-2 to 14 × 10-2 wt % and from 0.03 to 1.4 times the Earth Ocean current mass) and the solar distance—from 0.63 to 1.30 AU. A first rapid cooling stage, where efficient MO cooling and degassing take place, producing the atmosphere, is followed by a second quasi steady state where the heat flux balance is dominated by the solar flux. The end of the rapid cooling stage (ERCS) is reached when the mantle heat flux becomes negligible compared to the absorbed solar flux. The resulting surface conditions at ERCS, including water ocean's formation, strongly depend both on the initial volatile content and solar distance D. For D > DC, the "critical distance," the volatile content controls water condensation and a new scaling law is derived for the water condensation limit. Although today's Venus is located beyond DC due to its high albedo, its high CO2/H2O ratio prevents any water ocean formation. Depending on the formation time of its cloud cover and resulting albedo, only 0.3 Earth ocean mass might be sufficient to form a water ocean on early Venus.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMED13H..03W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMED13H..03W"><span>Computer simulations for the Mars Atmospheric and Volatile EvolutioN (MAVEN) mission through NASA's 'Project Spectra!'</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wood, E. L.</p> <p>2013-12-01</p> <p>'Project Spectra!' is a standards-based light science and engineering program on solar system exploration that includes both hands-on paper and pencil activities as well as Flash-based computer games that help students solidify understanding of high-level planetary and solar physics. Using computer interactive games where students experience and manipulate the information makes abstract concepts accessible. Visualizing lessons with multi-media tools solidifies understanding and retention of knowledge. Since students can choose what to watch and explore, the interactives accommodate a broad range of learning styles. Students can go back and forth through the interactives if they've missed a concept or wish to view something again. In the end, students are asked critical thinking questions and conduct web-based research. As a part of the Mars Atmospheric and Volatile EvolutioN (MAVEN) mission education programming, we've developed two new 'Project Spectra!' interactives that go hand-in-hand with a paper and pencil activity. The MAVEN mission will study volatiles in the upper atmosphere to help piece together Mars' climate history. In the first interactive, students explore black body radiation, albedo, and a simplified greenhouse effect to establish what factors contribute to overall planetary temperature and how they contribute. Students are asked to create a scenario in which a planet they build and design is able to maintain liquid water on the surface. In the second interactive, students are asked to consider Mars and the conditions needed for Mars to support water on the surface, keeping some variables fixed. Ideally, students will walk away with the very basic and critical elements required for climate studies, which has far-reaching implications beyond the study of Mars. These interactives were pilot tested at Arvada High School in Colorado.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.4863L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.4863L"><span>Tracing Archean sulfur across stitched lithospheric blocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>LaFlamme, Crystal; Fiorentini, Marco; Lindsay, Mark; Wing, Boswell; Selvaraja, Vikraman; Occhipinti, Sandra; Johnson, Simon; Bui, Hao Thi</p> <p>2017-04-01</p> <p>Craton margins are loci for volatile exchange among lithospheric geochemical reservoirs during crust formation processes. Here, we seek to revolutionise the current understanding of the planetary flux and lithospheric transfer of volatiles during supercontinent formation by tracing sulfur from the atmosphere-hydrosphere through to the lithosphere during crust formation. To do so, we trace the transfer of sulfur by following mass independently fractionated sulfur at ancient tectonic boundaries has the potential to. Mass independent fractionation of sulfur (MIF-S) is a signature (quantified as Δ33S and Δ36S) that is unique to the Archean sedimentary rock record and imparted to sulfur reservoirs that interacted with the oxygen-poor atmosphere before the Great Oxidation Event (GOE) at ca. 2.4 Ga. Here we present multiple sulfur isotopes from across a Proterozoic post-GOE orogenic belt, formed when Archean cratons were stitched together during supercontinent amalgamation. For the first time, multiple sulfur isotope data are presented spatially to elucidate volatile pathways across lithospheric blocks. Across the orogenic belt, the Proterozoic granitoid and hydrothermal rock records proximal to Archean cratons preserve values of Δ33S up to +0.8\\permil and a Δ33S-Δ36S array of -1.2, whereas magmatic and hydrothermal systems located more distally from the margin do not display any evidence of MIF-S. This is the first study to identify MIF-S in a Proterozoic orogen indicates that tectonic processes controlling lithospheric evolution and crust formation at tectonic boundaries are able to transfer sulfur from Archean supracrustal rock reservoirs to newly formed Proterozoic granitoid crust. The observation of MIF-S in the Proterozoic granitoid rock record has the potential to revolutionise our understanding of secular changes in the evolution of crust formation mechanisms through time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.A33H0339G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.A33H0339G"><span>A Monte-Carlo Analysis of Organic Aerosol Volatility with Aerosol Microphysics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gao, C. Y.; Tsigaridis, K.; Bauer, S. E.</p> <p>2016-12-01</p> <p>A newly developed box model scheme, MATRIX-VBS, includes the volatility-basis set (VBS) framework in an aerosol microphysical scheme MATRIX (Multiconfiguration Aerosol TRacker of mIXing state), which resolves aerosol mass and number concentrations and aerosol mixing state. The new scheme advanced the representation of organic aerosols in Earth system models by improving the traditional and simplistic treatment of organic aerosols as non-volatile and with a fixed size distribution. Further development includes adding the condensation of organics on coarse mode aerosols - dust and sea salt, thus making all organics in the system semi-volatile. To test and simplify the model, a Monte-Carlo analysis is performed to pin point which processes affect organics the most under which chemical and meteorological conditions. Since the model's parameterizations have the ability to capture a very wide range of conditions, from very clean to very polluted and for a wide range of meteorological conditions, all possible scenarios on Earth across the whole parameter space, including temperature, location, emissions and oxidant levels, are examined. The Monte-Carlo simulations provide quantitative information on the sensitivity of the newly developed model and help us understand how organics are affecting the size distribution, mixing state and volatility distribution at varying levels of meteorological conditions and pollution levels. In addition, these simulations give information on which parameters play a critical role in the aerosol distribution and evolution in the atmosphere and which do not, that will facilitate the simplification of the box model, an important step in its implementation in the global model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16834976','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16834976"><span>[Effects of Rhizoma kaempferiae volatile oil on tumor growth and cell cycle of MKN-45 human gastric cancer cells orthotopically transplanted in nude mice].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xiao, Yan; Wei, Pin-Kang; Li, Jun; Shi, Jun; Yu, Zhi-Hong; Lin, Hui-Ming</p> <p>2006-07-01</p> <p>To evaluate the effects of Rhizoma kaempferiae volatile oil on tumor growth and cell cycle of MKN-45 human gastric cancer cells orthotopically transplanted in nude mice. One hundred and five nude mice orthotopically transplanted with MKN-45 human gastric cancer cells were randomly divided into seven groups: untreated group, normal saline-treated group, dissolvant-treated group, cyclophosphamide (CTX)-treated group and high-, medium-, and low-dose Rhizoma kaempferiae volatile oil-treated groups. Corresponding interventions were implemented in each group except the untreated group. The antitumor effects in vivo were evaluated. Cell cycle distribution and apoptosis of MKN-45 human gastric cancer cells were determined by using flow cytometry (FCM). The ultrastructure of MKN-45 gastric cancer cells was observed by a transmission electron microscope. In the high-, medium-, and low-dose Rhizoma kaempferiae volatile oil-treated groups, the growth inhibition rates of gastric cancer were 57.2%, 28.0% and 5.0% respectively, and the gastric cancer cells were arrested at G(0)/G(1) phase. This antitumor effect was dose-dependent. The apoptotic cells occurred more frequently in the high-dose Rhizoma kaempferiae volatile oil-treated group and the CTX-treated group than those in the medium- and low-dose Rhizoma kaempferiae volatile oil-treated groups. The Rhizoma kaempferiae volatile oil is an effective composition for growth inhibition of gastric cancer, and its mechanism may be related to regulating the cell cycle and inducing apoptosis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.T34C..03K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.T34C..03K"><span>He isotope ratios in the Nankai Trough and Costa Rica subduction zones - implications for volatile cycling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kastner, M.; Hilton, D. R.; Jenkins, W. J.; Solomon, E. A.; Spivack, A. J.</p> <p>2013-12-01</p> <p>The noble gas 3He is a clear indicator of primordial volatile flux from the mantle, thus providing important insights on the interaction between Earth's interior and exterior reservoirs. Volatile cycling at ridge-crests and its impact on the evolution of seawater chemistry is rather well known as constrained by the 3He flux, whereas the impact of volatile cycling at subduction zones (SZs) on seawater chemistry is as yet poorly known. Constraining chemical and isotopic cycling at SZs is important for understanding the evolution of the mantle-crust and ocean-atmosphere systems. To gain insights on volatile cycling in SZs, pore fluids were sampled for He concentration and isotopic analyses at two tectonically contrasting SZs, Nankai Trough (offshore Japan, Muroto and Kumano transects), an accretionary SZ, and Costa Rica (Offshore Osa Peninsula), an erosional SZ. Sampling for He was achieved by rapidly subsampling core sediments, cleaning and transferring these samples into Ti squeezers in a glove bag, and storing the squeezed pore fluids in crimped Cu tubes for shore-based He concentration and isotope ratio analyses. At the Nankai Trough SZ there is a remarkable range of He isotopic values. The 3He/4He ratios relative to atmospheric ratio (RA) range from mostly crustal 0.47 RA to 4.30 RA which is ~55% of the MORB value of 8 RA. Whereas at the Costa Rica SZ, offshore Osa Peninsula, the ratios range from 0.86 to 1.14 RA, indicating the dominance of crustal radiogenic 4He that is from U and Th decay. The distribution of the He isotope values at Nankai Trough is most interesting, fluids that contain significant mantle 3He components (3He/4He >1) were sampled along and adjacent to fluid conduits that were identified by several chemical and isotopic data (i.e. Cl, B, and Li), including the presence of thermogenic hydrocarbons. Whereas the fluids dominated by 4He (3He/4He ≤1) were obtained from sediment sections that were between the fluid conduits. At Costa Rica, however, even along conduits, the fluids were not greatly enriched in 3He, hence there is no evidence for fluid advection from the subducting Cocos Ridge and numerous seamounts into the sediments, suggesting greatly diminished hydrothermal activity. Focused flow along faults, the décollement, splay and out of sequence faults, and fractured and permeable horizons at SZs play a key role in controlling fluid and heat transport, including mantle He, whereas diffuse flow plays a minor role; mud volcanoes and seeps as well play some role in volatile cycling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27283713','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27283713"><span>Modulation of coffee aroma via the fermentation of green coffee beans with Rhizopus oligosporus: I. Green coffee.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lee, Liang Wei; Cheong, Mun Wai; Curran, Philip; Yu, Bin; Liu, Shao Quan</p> <p>2016-11-15</p> <p>Modulation of coffee aroma via the biotransformation/fermentation of different coffee matrices during post-harvest remains sparingly explored despite some studies showing their positive impacts on coffee aroma. Therefore, this is an unprecedented study aimed at modulating coffee aroma via the fermentation of green coffee beans with a food-grade fungus Rhizopus oligosporus. The objective of part I of this two-part study was to characterize the volatile and non-volatile profiles of green coffee beans after fermentation. Proteolysis during fermentation resulted in 1.5-fold increase in the concentrations of proline and aspartic acid which exhibited high Maillard reactivity. Extensive degradation of ferulic and caffeic acids led to 2-fold increase in the total concentrations of volatile phenolic derivatives. 36% of the total volatiles detected in fermented green coffee beans were generated during fermentation. Hence, the work presented demonstrated that R. oligosporus fermentation of green coffee beans could induce modification of the aroma precursors of green coffees. Copyright © 2016 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29330694','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29330694"><span>Volatile compounds from beneficial or pathogenic bacteria differentially regulate root exudation, transcription of iron transporters, and defense signaling pathways in Sorghum bicolor.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hernández-Calderón, Erasto; Aviles-Garcia, Maria Elizabeth; Castulo-Rubio, Diana Yazmín; Macías-Rodríguez, Lourdes; Ramírez, Vicente Montejano; Santoyo, Gustavo; López-Bucio, José; Valencia-Cantero, Eduardo</p> <p>2018-02-01</p> <p>Our results show that Sorghum bicolor is able to recognize bacteria through its volatile compounds and differentially respond to beneficial or pathogens via eliciting nutritional or defense adaptive traits. Plants establish beneficial, harmful, or neutral relationships with bacteria. Plant growth promoting rhizobacteria (PGPR) emit volatile compounds (VCs), which may act as molecular cues influencing plant development, nutrition, and/or defense. In this study, we compared the effects of VCs produced by bacteria with different lifestyles, including Arthrobacter agilis UMCV2, Bacillus methylotrophicus M4-96, Sinorhizobium meliloti 1021, the plant pathogen Pseudomonas aeruginosa PAO1, and the commensal rhizobacterium Bacillus sp. L2-64, on S. bicolor. We show that VCs from all tested bacteria, except Bacillus sp. L2-64, increased biomass and chlorophyll content, and improved root architecture, but notheworthy A. agilis induced the release of attractant molecules, whereas P. aeruginosa activated the exudation of growth inhibitory compounds by roots. An analysis of the expression of iron-transporters SbIRT1, SbIRT2, SbYS1, and SbYS2 and genes related to plant defense pathways COI1 and PR-1 indicated that beneficial, pathogenic, and commensal bacteria could up-regulate iron transporters, whereas only beneficial and pathogenic species could induce a defense response. These results show how S. bicolor could recognize bacteria through their volatiles profiles and highlight that PGPR or pathogens can elicit nutritional or defensive traits in plants.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26265576','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26265576"><span>(Chemotaxonomic) Implications of Postharvest/Storage-Induced Changes in Plant Volatile Profiles--the Case of Artemisia absinthium L. Essential Oil.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Blagojević, Polina D; Radulović, Niko S; Skropeta, Danielle</p> <p>2015-08-01</p> <p>The plant volatile profile and the essential-oil chemical composition change during the storage of plant material. The objective of this study was to develop a mathematical model able to predict, explain, and quantify these changes. Mathematical equations, derived under the assumption that the essential oil contained within plant material could be treated as an ideal solution (Raoult's law), were applied for tracking of postharvest changes in the volatile profile of Artemisia absinthium L. (the essential oils were analyzed by GC-FID and GC/MS). Starting from a specific chemical composition of an essential-oil sample obtained from plant material after a short drying period (typically 5-10 d), and by using the equations derived from this model, one could easily predict evaporation-induced changes in the volatile profile of the plant material. Based on the composition of the essential-oil sample obtained after a given storage time t, it is possible to identify those components that were involved in chemical reactions, both as reactants and possible products. The established model even allowed the recognition of pairs of transformation, i.e., 'daughter' products and their 'parent' compounds. The obtained results highlight that the essential-oil composition is highly dependent on the storage period of any plant material and urges caution in different types of phytochemical studies, especially chemotaxonomic ones, or practical application. Copyright © 2015 Verlag Helvetica Chimica Acta AG, Zürich.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008APS..MARX35014O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008APS..MARX35014O"><span>Electrical Characterization of Critical Phase Change Conditions in Nanoscale Ge2Sb2Te5 Pillars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ozatay, Ozhan; Stipe, Barry; Katine, Jordan; Terris, Bruce</p> <p>2008-03-01</p> <p>Following the original work of Ovshinsky on disordered semiconductors that exhibit ovonic threshold switching (OTS) there has been substantial interest in the electronic reversible switching properties of chalcogenides^1. The current induced phase transitions between polycrystalline and amorphous states in these materials offer orders of magnitude changes in the conductance which makes them an ideal candidate for non-volatile data storage applications. In this work we investigate the scaling of critical programming conditions required to observe such transitions between highly resistive (disordered) and highly conductive (ordered) states by constructing a resistance map with various pulse widths and amplitudes under different cooling conditions (as a function of pulse trailing edge). We study the evolution of critical phase change conditions as a function of contact size (50nm-1μm) and shape (circle-square-rectangle). We compare the resulting switching behaviour with the predictions of a finite-element model of the electro-thermal physics to analyze the nature of the switching dynamics at the nanoscale. ^1 S-H. Lee, Y. Jung, R. Agarwal, Nature Nanotechnology; doi:10:1038/nnano.2007.291</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12744683','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12744683"><span>The effect of SO2 on the production of ethanol, acetaldehyde, organic acids, and flavor volatiles during industrial cider fermentation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Herrero, Mónica; García, Luis A; Díaz, Mario</p> <p>2003-05-21</p> <p>SO(2) is widely used in cider fermentation but also in other alcoholic beverages such as wine. Although the authorized limit is 200 ppm total SO(2), the International Organizations recommend its total elimination or at least reduction due to health concerns. Addition of SO(2) to apple juice at levels frequently used in industrial cidermaking (100 mg/L) induced significantly higher acetaldehyde production by yeast than that obtained without SO(2). Although the practical implications of acetaldehyde evolution under cidermaking conditions has been overcome by research and few data are available, this compound reached levels in two 2000 L bioreactors that may have prevented the occurrence of simultaneous alcoholic and malolactic fermentation. It was observed that malolactic fermentation had a positive effect promoting reduction of acetaldehyde levels in cider fermented with juice, SO(2)-treated or not. The addition of SO(2) clearly delayed malolactic fermentation comparing to the control, affecting not the onset of the malolactic fermentation but the rate of malic acid degradation. This compound, however, had a stimulatory effect on alcoholic fermentation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040182234','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040182234"><span>Impact Processes in the Solar System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ahrens, Thomas J.</p> <p>2004-01-01</p> <p>The three main topics of this program as described initially in our May 2003 proposal are: 1) Shock-induced damage and attenuation in planetary materials. 2 ) Shock-induced melting and phase changes. 3) Impact-induced volatilization and vapor speciation of planetary materials Topic 4 has been the subject of a continuing investigation since approximately 1990. On Topic 5, we have a paper in preparation and have submitted a proposal to Astrobiology. 4) Responses of planetary atmospheres to giant impact, 5) Effects of impact-induced shock waves on microbial life</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3784599','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3784599"><span>NON-SMOKY GLYCOSYLTRANSFERASE1 Prevents the Release of Smoky Aroma from Tomato Fruit[W][OPEN</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Tikunov, Yury M.; Molthoff, Jos; de Vos, Ric C.H.; Beekwilder, Jules; van Houwelingen, Adele; van der Hooft, Justin J.J.; Nijenhuis-de Vries, Mariska; Labrie, Caroline W.; Verkerke, Wouter; van de Geest, Henri; Viquez Zamora, Marcela; Presa, Silvia; Rambla, Jose Luis; Granell, Antonio; Hall, Robert D.; Bovy, Arnaud G.</p> <p>2013-01-01</p> <p>Phenylpropanoid volatiles are responsible for the key tomato fruit (Solanum lycopersicum) aroma attribute termed “smoky.” Release of these volatiles from their glycosylated precursors, rather than their biosynthesis, is the major determinant of smoky aroma in cultivated tomato. Using a combinatorial omics approach, we identified the NON-SMOKY GLYCOSYLTRANSFERASE1 (NSGT1) gene. Expression of NSGT1 is induced during fruit ripening, and the encoded enzyme converts the cleavable diglycosides of the smoky-related phenylpropanoid volatiles into noncleavable triglycosides, thereby preventing their deglycosylation and release from tomato fruit upon tissue disruption. In an nsgt1/nsgt1 background, further glycosylation of phenylpropanoid volatile diglycosides does not occur, thereby enabling their cleavage and the release of corresponding volatiles. Using reverse genetics approaches, the NSGT1-mediated glycosylation was shown to be the molecular mechanism underlying the major quantitative trait locus for smoky aroma. Sensory trials with transgenic fruits, in which the inactive nsgt1 was complemented with the functional NSGT1, showed a significant and perceivable reduction in smoky aroma. NSGT1 may be used in a precision breeding strategy toward development of tomato fruits with distinct flavor phenotypes. PMID:23956261</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28134284','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28134284"><span>Weeding volatiles reduce leaf and seed damage to field-grown soybeans and increase seed isoflavones.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shiojiri, Kaori; Ozawa, Rika; Yamashita, Ken-Ichi; Uefune, Masayoshi; Matsui, Kenji; Tsukamoto, Chigen; Tokumaru, Susumu; Takabayashi, Junji</p> <p>2017-01-30</p> <p>Field experiments were conducted over 3 years (2012, 2013, and 2015), in which half of the young stage soybean plants were exposed to volatiles from cut goldenrods three times over 2-3 weeks, while the other half remained unexposed. There was a significant reduction in the level of the total leaf damage on exposed soybean plants compared with unexposed ones. In 2015, the proportion of damage to plants by Spodoptera litura larvae, a dominant herbivore, was significantly less in the exposed field plots than in the unexposed plots. Under laboratory conditions, cut goldenrod volatiles induced the direct defenses of soybean plants against S. litura larvae and at least three major compounds, α-pinene, β-myrcene, and limonene, of cut goldenrod volatiles were involved in the induction. The number of undamaged seeds from the exposed plants was significantly higher than that from unexposed ones. Concentrations of isoflavones in the seeds were significantly higher in seeds from the exposed plants than in those from the unexposed plants. Future research evaluating the utility of weeding volatiles, as a form of plant-plant communications, in pest management programs is necessary.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29680974','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29680974"><span>Birds Bug on Indirect Plant Defenses to Locate Insect Prey.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hiltpold, Ivan; Shriver, W Gregory</p> <p>2018-06-01</p> <p>It has long been thought that most birds do not use volatile cues to perceive their environment. Aside from some scavenging birds, this large group of vertebrates was believed to mostly rely on highly developed vision while foraging and there are relatively few studies exploring bird response to volatile organic compounds. In response to insect herbivory, plants release volatile organic compounds to attract parasitoids and predators of the pests. To test if insectivorous birds use herbivore-induced plant volatiles (HIPV), dispensers emitting a synthetic blend of HIPV typically emitted after insect herbivory were deployed in a maize field along with imitation clay caterpillars. Significantly more imitation insects were attacked by birds when located close to dispensers releasing HIPV than close to dispenser with organic solvent only. Seven times more peck marks, an index of avian predation, were counted on caterpillars in the vicinity of the HIPV dispensers than on insects close to control dispensers. This is the first field demonstration that insectivorous birds cue on HIPV to locate prey in agricultural settings. These results support the growing evidence that foraging birds exploit volatile cues. This more accurate understanding of their behavior will be important when implementing pest management program involving insectivorous birds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28428873','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28428873"><span>A maize landrace that emits defense volatiles in response to herbivore eggs possesses a strongly inducible terpene synthase gene.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tamiru, Amanuel; Bruce, Toby J A; Richter, Annett; Woodcock, Christine M; Midega, Charles A O; Degenhardt, Jörg; Kelemu, Segenet; Pickett, John A; Khan, Zeyaur R</p> <p>2017-04-01</p> <p>Maize ( Zea mays ) emits volatile terpenes in response to insect feeding and egg deposition to defend itself against harmful pests. However, maize cultivars differ strongly in their ability to produce the defense signal. To further understand the agroecological role and underlying genetic mechanisms for variation in terpene emission among maize cultivars, we studied the production of an important signaling component ( E )-caryophyllene in a South American maize landrace Braz1006 possessing stemborer Chilo partellus egg inducible defense trait, in comparison with the European maize line Delprim and North American inbred line B73. The ( E) - caryophyllene production level and transcript abundance of TPS23, terpene synthase responsible for ( E) - caryophyllene formation, were compared between Braz1006, Delprim, and B73 after mimicked herbivory. Braz1006-TPS23 was heterologously expressed in E. coli , and amino acid sequences were determined. Furthermore, electrophysiological and behavioral responses of a key parasitic wasp Cotesia sesamiae to C .  partellus egg-induced Braz1006 volatiles were determined using coupled gas chromatography electroantennography and olfactometer bioassay studies. After elicitor treatment, Braz1006 released eightfold higher ( E) -caryophyllene than Delprim, whereas no ( E) -caryophyllene was detected in B73. The superior (E)- caryophyllene production by Braz1006 was positively correlated with high transcript levels of TPS23 in the landrace compared to Delprim. TPS23 alleles from Braz1006 showed dissimilarities at different sequence positions with Delprim and B73 and encodes an active enzyme. Cotesia sesamiae was attracted to egg-induced volatiles from Braz1006 and synthetic (E)- caryophyllene. The variation in ( E) -caryophyllene emission between Braz1006 and Delprim is positively correlated with induced levels of TPS23 transcripts. The enhanced TPS23 activity and corresponding ( E) -caryophyllene production by the maize landrace could be attributed to the differences in amino acid sequence with the other maize lines. This study suggested that the same analogous genes could have contrasting expression patterns in different maize genetic backgrounds. The current findings provide valuable insight not only into genetic mechanisms underlying variation in defense signal production but also the prospect of introgressing the novel defense traits into elite maize varieties for effective and ecologically sound protection of crops against damaging insect pests.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1817704F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1817704F"><span>Role of fluid in the mechanism of formation of volcaniclastic and coherent kimberlite facies: a diamond perspective</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fedortchouk, Yana; Chinn, Ingrid</p> <p>2016-04-01</p> <p>Dissolution features on diamonds recovered from kimberlites vary depending on the dissolution conditions and can be used as a reliable proxy for volatiles and their role in kimberlite emplacement. Volatiles determine the mechanism of magma emplacement; variation in volatile content and CO2/CO2+H2O ratio may affect the geology of kimberlite bodies and formation of coherent vs. volcaniclastic kimberlite facies. Here we examine the evolution of a kimberlite system during ascent using the resorption morphology of its diamond population. We use 655 macro-diamonds from a complex kimberlite pipe in the Orapa kimberlite field (Botswana) to examine the role of volatiles in the formation of the three facies comprising this pipe: two coherent kimberlite facies (CKA and CKB) and one massive volcaniclastic facies (MVK). The diamonds come from three drillholes through each of the studied kimberlite facies. Separate diamond samples derived from 2 - 13 m intervals were combined into 40 m depth intervals for statistical purposes. Four independent morphological methods allowed us to reliably discriminate products of resorption in kimberlite magma from resorption in the mantle, and use the former in our study. We found that the proportion of diamonds with kimberlitic resorption is the lowest in CKA - 22%, medium in MVK - 50%, and highest in CKB - 73%, and it increases with depth in each of the drillholes. Each kimberlite facies shows its own style of kimberlite-induced resorption on rounded tetrahexahedron (THH) diamonds: glossy surfaces in MVK, rough corroded surfaces in CKB, and combination of glossy surfaces with chains of circular pits in CKA, where these pits represent the initial stages of development of corrosive features observed on CKB diamonds. Based on the results of our previous experimental studies we propose that resorption of MVK diamonds is a product of interaction with COH fluid, resorption of CKB diamonds is a product of interaction with a volatile-undersaturated melt (possibly carbonatitic), and CKA diamonds show an overprint of melt-controlled resorption over a fluid-controlled resorption. We propose an early separation of the fluid phase during the ascent of this kimberlite magma, segregation of this fluid and rise towards the top of the magma column. Over-pressurisation caused by the expansion of this fluid worked as a driving force for the magma ascent acceleration. The magma column has separated into two parts: (1) the bubble-rich magma towards the top, explosive emplacement of which formed the MVK facies, followed by the "tailing" bubble-poor magma quietly arriving to form the CKA facies, and (2) magma that lost volatiles to the upwardly escaping bubbles, in which a slower ascent caused more intensive diamond resorption and delayed emplacement, forming the CKB facie. It is possible that formation, buoyancy, and growth of fluid bubbles controls the ascent of the kimberlite magma, where emplacement of bubble-rich magma forms volcaniclastic kimberlite facies, while fast rise of the bubbles through the magma column separates the fluid-rich phase that moves up preparing the conduit in the surrounding rocks and forms an explosive pipe at the surface, from a volatile-depleted magma, which slowly rises and fills the pipe with CK kimberlite facies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3493648','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3493648"><span>Evolution of the human-specific microRNA miR-941</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Hu, Hai Yang; He, Liu; Fominykh, Kseniya; Yan, Zheng; Guo, Song; Zhang, Xiaoyu; Taylor, Martin S.; Tang, Lin; Li, Jie; Liu, Jianmei; Wang, Wen; Yu, Haijing; Khaitovich, Philipp</p> <p>2012-01-01</p> <p>MicroRNA-mediated gene regulation is important in many physiological processes. Here we explore the roles of a microRNA, miR-941, in human evolution. We find that miR-941 emerged de novo in the human lineage, between six and one million years ago, from an evolutionarily volatile tandem repeat sequence. Its copy-number remains polymorphic in humans and shows a trend for decreasing copy-number with migration out of Africa. Emergence of miR-941 was accompanied by accelerated loss of miR-941-binding sites, presumably to escape regulation. We further show that miR-941 is highly expressed in pluripotent cells, repressed upon differentiation and preferentially targets genes in hedgehog- and insulin-signalling pathways, thus suggesting roles in cellular differentiation. Human-specific effects of miR-941 regulation are detectable in the brain and affect genes involved in neurotransmitter signalling. Taken together, these results implicate miR-941 in human evolution, and provide an example of rapid regulatory evolution in the human linage. PMID:23093182</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27115034','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27115034"><span>Modelling component evaporation and composition change of traffic-induced ultrafine particles during travel from street canyon to urban background.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nikolova, Irina; MacKenzie, A Rob; Cai, Xiaoming; Alam, Mohammed S; Harrison, Roy M</p> <p>2016-07-18</p> <p>We developed a model (CiTTy-Street-UFP) of traffic-related particle behaviour in a street canyon and in the nearby downwind urban background that accounts for aerosol dynamics and the variable vapour pressure of component organics. The model simulates the evolution and fate of traffic generated multicomponent ultrafine particles (UFP) composed of a non-volatile core and 17 Semi-Volatile Organic Compounds (SVOC, modelled as n-alkane proxies). A two-stage modelling approach is adopted: (1) a steady state simulation inside the street canyon is achieved, in which there exists a balance between traffic emissions, condensation/evaporation, deposition, coagulation and exchange with the air above roof-level; and (2) a continuing simulation of the above-roof air parcel advected to the nearby urban park during which evaporation is dominant. We evaluate the component evaporation and associated composition changes of multicomponent organic particles in realistic atmospheric conditions and compare our results with observations from London (UK) in a street canyon and an urban park. With plausible input conditions and parameter settings, the model can reproduce, with reasonable fidelity, size distributions in central London in 2007. The modelled nucleation-mode peak diameter, which is 23 nm in the steady-state street canyon, decreases to 9 nm in a travel time of just 120 s. All modelled SVOC in the sub-10 nm particle size range have evaporated leaving behind only non-volatile material, whereas modelled particle composition in the Aitken mode contains SVOC between C26H54 and C32H66. No data on particle composition are available in the study used for validation, or elsewhere. Measurements addressing in detail the size resolved composition of the traffic emitted UFP in the atmosphere are a high priority for future research. Such data would improve the representation of these particles in dispersion models and provide the data essential for model validation. Enhanced knowledge of the chemical composition of nucleation-mode particles from diesel engine exhaust is needed to predict both their atmospheric behaviour and their implications for human health.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4775789','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4775789"><span>VOCs-Mediated Location of Olive Fly Larvae by the Braconid Parasitoid Psyttalia concolor: A Multivariate Comparison among VOC Bouquets from Three Olive Cultivars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Giunti, Giulia; Benelli, Giovanni; Conte, Giuseppe; Mele, Marcello; Caruso, Giovanni; Gucci, Riccardo; Flamini, Guido; Canale, Angelo</p> <p>2016-01-01</p> <p>Herbivorous activity induces plant indirect defenses, as the emission of herbivorous-induced plant volatiles (HIPVs), which could be used by parasitoids for host location. Psyttalia concolor is a larval pupal endoparasitoid, attacking a number of tephritid flies including B. oleae. In this research, we investigated the olfactory cues routing host location behavior of P. concolor towards B. oleae larvae infesting three different olive cultivars. VOCs from infested and healthy fruits were identified using GC-MS analyses. In two-choice behavioral assays, P. concolor females preferred infested olive cues, which also evoked ovipositional probing by female wasps. GC-MS analysis showed qualitative and quantitative differences among volatiles emitted by infested and healthy olives. Volatile emissions were peculiar for each cultivar analyzed. Two putative HIPVs were detected in infested fruits, regardless of the cultivar, the monoterpene (E)-β-ocimene, and the sesquiterpene (E-E)-α-farnesene. Our study adds basic knowledge to the behavioral ecology of P. concolor. From an applied point of view, the field application of the above-mentioned VOCs may help to enhance effectiveness of biological control programs and parasitoid mass-rearing techniques. PMID:26989691</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=429400','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=429400"><span>Differential Timing of Spider Mite-Induced Direct and Indirect Defenses in Tomato Plants1[w</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Kant, Merijn R.; Ament, Kai; Sabelis, Maurice W.; Haring, Michel A.; Schuurink, Robert C.</p> <p>2004-01-01</p> <p>Through a combined metabolomics and transcriptomics approach we analyzed the events that took place during the first 5 d of infesting intact tomato (Lycopersicon esculentum) plants with spider mites (Tetranychus urticae). Although the spider mites had caused little visible damage to the leaves after 1 d, they had already induced direct defense responses. For example, proteinase inhibitor activity had doubled and the transcription of genes involved in jasmonate-, salicylate-, and ethylene-regulated defenses had been activated. On day four, proteinase inhibitor activity and particularly transcript levels of salicylate-regulated genes were still maintained. In addition, genes involved in phospholipid metabolism were up-regulated on day one and those in the secondary metabolism on day four. Although transcriptional up-regulation of the enzymes involved in the biosynthesis of monoterpenes and diterpenes already occurred on day one, a significant increase in the emission of volatile terpenoids was delayed until day four. This increase in volatile production coincided with the increased olfactory preference of predatory mites (Phytoseiulus persimilis) for infested plants. Our results indicate that tomato activates its indirect defenses (volatile production) to complement the direct defense response against spider mites. PMID:15122016</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=338087&Lab=NERL&keyword=forensics&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=338087&Lab=NERL&keyword=forensics&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>The Load of Lightning-induced Nitrogen Oxides and Its Impact on the Ground-level Ozone during Summertime over the Mountain West States</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Lightning-induced nitrogen oxides (LNOX), in the presence of sunlight, volatile organic compounds and water, can be a relatively large but uncertain source for ozone (O3) and hydroxyl radical (OH) in the atmosphere. Using lightning flash data from the National Lightning Detection...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1008949-tomographic-location-potential-melt-bearing-phenocrysts-lunar-glass-spherules','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1008949-tomographic-location-potential-melt-bearing-phenocrysts-lunar-glass-spherules"><span>Tomographic location of potential melt-bearing phenocrysts in lunar glass spherules</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ebel, D.S.; Fogel, R.A.; Rivers, M.L.</p> <p>2005-02-04</p> <p>Apollo 17 orange glass spherules contain olivine phenocrysts with melt inclusions from depth. Tomography (<2micron/pxl) of >200 spherules located 1 phenocryst. We will try to find melt inclusions and obtain original magma volatiles and compositions. In 1971, Apollo 17 astronauts collected a 10 cm soil sample (74220) comprised almost entirely of orange glass spherules. Below this, a double drive-tube core sampled a 68 cm thick horizon comprised of orange glass and black beads (crystallized equivalents of orange glass). Primitive lunar glass spherules (e.g.-A17 orange glasses) are thought to represent ejecta from lunar mare fire fountains. The fire-fountains were apparently drivenmore » by a combination of C-O gas exsolution from orange glass melt and the oxidation of graphite. Upon eruption, magmas lost their volatiles (e.g., S, CO, CO{sub 2}) to space. Evidence for volatile escape remains as volatile-rich coatings on the exteriors of many spherules. Moreover, it showed that Type I and II Fe-Ni-rich metal particles found within orange glass olivine phenocrysts, or free-floating in the glass itself, are powerful evidence for the volatile driving force for lunar fire fountains. More direct evidence for the volatile mechanism has yet to be uncovered. Issues remaining include: the exact composition of magmatic volatiles; the hypothesized existence of graphite in the magma; the oxygen fugacity of the magma and of the lunar interior. In 1996 reported a single {approx}450 micron, equant olivine phenocryst, containing four glassy melt inclusions (or inclusion cores), the largest {approx}30micron in size, in a thin section of the 74001/2 drill core. The melt is assumed to sample the parent magma of the lunar basalts at depth, evidenced by the S content of the inclusion (600 ppm) which is 400 ppm greater than that of the orange glass host. Such melts potentially contain a full complement of the volatile components of the parent magma, which can be analyzed by infrared spectroscopy. Although the A17 orange glass magma is thought to derive from {approx} 400 km depth, the calculations imply a 4 km depth of graphite oxidation (and melt saturation in C-O volatiles) during ascent. We have imaged several hundred similar orange glass spherules, from sample 74220,764, using synchrotron x-ray computer-aided microtomography (XRCMT). Our goals: (1) locate similar phenocrysts containing melt inclusions; (2) analyze phenocrysts to understand the evolution of the magma; (3) analyze melt and fluid inclusions using EPMA and FTIR to obtain direct evidence of magmatic volatiles and pristine bulk compositions.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018A%26A...611A..79G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018A%26A...611A..79G"><span>Measurements of Forbush decreases at Mars: both by MSL on ground and by MAVEN in orbit</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guo, Jingnan; Lillis, Robert; Wimmer-Schweingruber, Robert F.; Zeitlin, Cary; Simonson, Patrick; Rahmati, Ali; Posner, Arik; Papaioannou, Athanasios; Lundt, Niklas; Lee, Christina O.; Larson, Davin; Halekas, Jasper; Hassler, Donald M.; Ehresmann, Bent; Dunn, Patrick; Böttcher, Stephan</p> <p>2018-04-01</p> <p>The Radiation Assessment Detector (RAD), on board Mars Science Laboratory's (MSL) Curiosity rover, has been measuring ground level particle fluxes along with the radiation dose rate at the surface of Mars since August 2012. Similar to neutron monitors at Earth, RAD sees many Forbush decreases (FDs) in the galactic cosmic ray (GCR) induced surface fluxes and dose rates. These FDs are associated with coronal mass ejections (CMEs) and/or stream/corotating interaction regions (SIRs/CIRs). Orbiting above the Martian atmosphere, the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft has also been monitoring space weather conditions at Mars since September 2014. The penetrating particle flux channels in the solar energetic particle (SEP) instrument onboard MAVEN can also be employed to detect FDs. For the first time, we study the statistics and properties of a list of FDs observed in-situ at Mars, seen both on the surface by MSL/RAD and in orbit detected by the MAVEN/SEP instrument. Such a list of FDs can be used for studying interplanetary coronal mass ejections (ICME) propagation and SIR evolution through the inner heliosphere. The magnitudes of different FDs can be well-fitted by a power-law distribution. The systematic difference between the magnitudes of the FDs within and outside the Martian atmosphere may be mostly attributed to the energy-dependent modulation of the GCR particles by both the pass-by ICMEs/SIRs and the Martian atmosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2754628','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2754628"><span>Involvement of a Broccoli COQ5 Methyltransferase in the Production of Volatile Selenium Compounds[C][OA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zhou, Xin; Yuan, Youxi; Yang, Yong; Rutzke, Michael; Thannhauser, Theodore W.; Kochian, Leon V.; Li, Li</p> <p>2009-01-01</p> <p>Selenium (Se) is an essential micronutrient for animals and humans but becomes toxic at high dosage. Biologically based Se volatilization, which converts Se into volatile compounds, provides an important means for cleanup of Se-polluted environments. To identify novel genes whose products are involved in Se volatilization from plants, a broccoli (Brassica oleracea var italica) cDNA encoding COQ5 methyltransferase (BoCOQ5-2) in the ubiquinone biosynthetic pathway was isolated. Its function was authenticated by complementing a yeast coq5 mutant and by detecting increased cellular ubiquinone levels in the BoCOQ5-2-transformed bacteria. BoCOQ5-2 was found to promote Se volatilization in both bacteria and transgenic Arabidopsis (Arabidopsis thaliana) plants. Bacteria expressing BoCOQ5-2 produced an over 160-fold increase in volatile Se compounds when they were exposed to selenate. Consequently, the BoCOQ5-2-transformed bacteria had dramatically enhanced tolerance to selenate and a reduced level of Se accumulation. Transgenic Arabidopsis expressing BoCOQ5-2 volatilized three times more Se than the vector-only control plants when treated with selenite and exhibited an increased tolerance to Se. In addition, the BoCOQ5-2 transgenic plants suppressed the generation of reactive oxygen species induced by selenite. BoCOQ5-2 represents, to our knowledge, the first plant enzyme that is not known to be directly involved in sulfur/Se metabolism yet was found to mediate Se volatilization. This discovery opens up new prospects regarding our understanding of the complete metabolism of Se and may lead to ways to modify Se-accumulator plants with increased efficiency for phytoremediation of Se-contaminated environments. PMID:19656903</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4981348','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4981348"><span>Comparative Digital Gene Expression Analysis of the Arabidopsis Response to Volatiles Emitted by Bacillus amyloliquefaciens</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Hao, Hai-Ting; Zhao, Xia; Shang, Qian-Han; Wang, Yun; Guo, Zhi-Hong; Zhang, Yu-Bao; Xie, Zhong-Kui; Wang, Ruo-Yu</p> <p>2016-01-01</p> <p>Some plant growth-promoting rhizobacteria (PGPR) regulated plant growth and elicited plant basal immunity by volatiles. The response mechanism to the Bacillus amyloliquefaciens volatiles in plant has not been well studied. We conducted global gene expression profiling in Arabidopsis after treatment with Bacillus amyloliquefaciens FZB42 volatiles by Illumina Digital Gene Expression (DGE) profiling of different growth stages (seedling and mature) and tissues (leaves and roots). Compared with the control, 1,507 and 820 differentially expressed genes (DEGs) were identified in leaves and roots at the seedling stage, respectively, while 1,512 and 367 DEGs were identified in leaves and roots at the mature stage. Seventeen genes with different regulatory patterns were validated using quantitative RT-PCR. Numerous DEGs were enriched for plant hormones, cell wall modifications, and protection against stress situations, which suggests that volatiles have effects on plant growth and immunity. Moreover, analyzes of transcriptome difference in tissues and growth stage using DGE profiling showed that the plant response might be tissue-specific and/or growth stage-specific. Thus, genes encoding flavonoid biosynthesis were downregulated in leaves and upregulated in roots, thereby indicating tissue-specific responses to volatiles. Genes related to photosynthesis were downregulated at the seedling stage and upregulated at the mature stage, respectively, thereby suggesting growth period-specific responses. In addition, the emission of bacterial volatiles significantly induced killing of cells of other organism pathway with up-regulated genes in leaves and the other three pathways (defense response to nematode, cell morphogenesis involved in differentiation and trichoblast differentiation) with up-regulated genes were significantly enriched in roots. Interestingly, some important alterations in the expression of growth-related genes, metabolic pathways, defense response to biotic stress and hormone-related genes were firstly founded response to FZB42 volatiles. PMID:27513952</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012RaPC...81.1103L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012RaPC...81.1103L"><span>Volatile compounds and odor preferences of ground beef added with garlic and red wine, and irradiated with charcoal pack</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, Kyung Haeng; Yun, Hyejeong; Lee, Ju Woon; Ahn, Dong Uk; Lee, Eun Joo; Jo, Cheorun</p> <p>2012-08-01</p> <p>Irradiation is the most efficient non-thermal technology for improving hygienic quality and extending the shelf-life of food products. One of the adverse effects of food irradiation, however, is off-flavor production, which significantly affects the sensory preferences for certain foods. In this study, garlic (5%, w/w) and red wine (1:1, w/w) were added to ground beef to increase the radiation sensitivity of pathogens and improve meat odor/flavor. Samples were irradiated at 0 or 5 kGy in the presence of charcoal pack. SPME-GC-MS analysis was performed to measure the changes in the volatile compounds and sensory characteristics of the samples. The amount of total volatile compounds produced from ground beef was greater when the sample was irradiated. When garlic and red wine were added to the ground beef, the amount of volatile compounds significantly increased, and the amount of volatile compounds increased even further after irradiation. However, when the samples were irradiated with charcoal pack, the amount of volatile compounds decreased significantly. Sensory evaluation indicated that charcoal pack significantly increased the odor preferences for both irradiated and non-irradiated ground beef added with garlic. These results indicated that addition of charcoal pack to ground beef could reduce off-odor problems induced by irradiation, and this effect was consistent even when certain additives such as garlic and red wine were added.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22737683','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22737683"><span>Global detection and analysis of volatile components from sun-dried and sulfur-fumigated herbal medicine by comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cao, Gang; Cai, Hao; Cong, Xiaodong; Liu, Xiao; Ma, Xiaoqing; Lou, Yajing; Qin, Kunming; Cai, Baochang</p> <p>2012-08-21</p> <p>The sulfur-fumigation process can induce changes in the contents of volatile compounds and the chemical transformation of herbal medicines. Although literature has reported many methods for analyzing volatile target compounds from herbal medicine, all of them are largely limited to target compounds and sun-dried samples. This study provides a comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry (GC×GC-TOF/MS) method based on a chemical profiling approach to identify non-target and target volatile compounds from sun-dried and sulfur-fumigated herbal medicine. Using Chrysanthemum morifolium as a model herbal medicine, the combined power of this approach is illustrated by the identification of 209 and 111 volatile compounds with match quality >80% from sun-dried and sulfur-fumigated Chrysanthemum morifolium, respectively. The study has also shown that sulfur-fumigated samples showed a significant loss of the main active compounds and a more destructive fingerprint profile compared to the sun-dried ones. 50 volatile compounds were lost in the sulfur-fumigated Chrysanthemum morifolium sample. The approach and methodology reported in this paper would be useful for identifying complicated target and non-target components from various complex mixtures such as herbal medicine and its preparations, biological and environmental samples. Furthermore, it can be applied for the intrinsic quality control of herbal medicine and its preparations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19880031517&hterms=rules+origin&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Drules%2Borigin','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19880031517&hterms=rules+origin&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Drules%2Borigin"><span>Origin of the moon - The collision hypothesis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stevenson, D. J.</p> <p>1987-01-01</p> <p>Theoretical models of lunar origin involving one or more collisions between the earth and other large sun-orbiting bodies are examined in a critical review. Ten basic propositions of the collision hypothesis (CH) are listed; observational data on mass and angular momentum, bulk chemistry, volatile depletion, trace elements, primordial high temperatures, and orbital evolution are summarized; and the basic tenets of alternative models (fission, capture, and coformation) are reviewed. Consideration is given to the thermodynamics of large impacts, rheological and dynamical problems, numerical simulations based on the CH, disk evolution models, and the chemical implications of the CH. It is concluded that the sound arguments and evidence supporting the CH are not (yet) sufficient to rule out other hypotheses.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1993GeoRL..20..851T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1993GeoRL..20..851T"><span>Evolution of seafloor spreading rate based on Ar-40 degassing history</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tajika, Eiichi; Matsui, Takafumi</p> <p>1993-05-01</p> <p>A new degassing model of Ar-40 coupled with thermal evolution of the mantle is constructed to constrain the temporal variation of seafloor spreading rate. In this model, we take into account the effects of elemental partition and solubility during melt generation and bubble formation, and changes in both seafloor spreading rate and melt generation depth in the mantle. It is suggested that the seafloor spreading rate would have been almost the same as that of today over the history of the earth in order to explain the present amount of Ar-40 in the atmosphere. This result may also imply the mild degassing history of volatiles from the mantle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-KSC-2013-3866.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-KSC-2013-3866.html"><span>KSC-2013-3866</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2013-11-06</p> <p>CAPE CANAVERAL, Fla. – Engineers and technicians move NASA's MAVEN spacecraft, inside payload fairing inside the Payload Hazardous Servicing Facility, or PHSF, into the airlock for mounting to a trailer for transport to Space Launch Complex 41 where it will be hoisted atop a United Launch Alliance Atlas V rocket that will lift it into space and on to Mars. MAVEN is short for Mars Atmosphere and Volatile Evolution. Photo credit: NASA/Kim Shiflett</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-KSC-2013-3867.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-KSC-2013-3867.html"><span>KSC-2013-3867</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2013-11-06</p> <p>CAPE CANAVERAL, Fla. – Engineers and technicians move NASA's MAVEN spacecraft, inside payload fairing inside the Payload Hazardous Servicing Facility, or PHSF, into the airlock for mounting to a trailer for transport to Space Launch Complex 41 where it will be hoisted atop a United Launch Alliance Atlas V rocket that will lift it into space and on to Mars. MAVEN is short for Mars Atmosphere and Volatile Evolution. Photo credit: NASA/Kim Shiflett</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-KSC-2013-3864.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-KSC-2013-3864.html"><span>KSC-2013-3864</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2013-11-06</p> <p>CAPE CANAVERAL, Fla. – Engineers and technicians move NASA's MAVEN spacecraft, inside payload fairing inside the Payload Hazardous Servicing Facility, or PHSF, into the airlock for mounting to a trailer for transport to Space Launch Complex 41 where it will be hoisted atop a United Launch Alliance Atlas V rocket that will lift it into space and on to Mars. MAVEN is short for Mars Atmosphere and Volatile Evolution. Photo credit: NASA/Kim Shiflett</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-KSC-2013-3865.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-KSC-2013-3865.html"><span>KSC-2013-3865</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2013-11-06</p> <p>CAPE CANAVERAL, Fla. – Engineers and technicians move NASA's MAVEN spacecraft, inside payload fairing inside the Payload Hazardous Servicing Facility, or PHSF, into the airlock for mounting to a trailer for transport to Space Launch Complex 41 where it will be hoisted atop a United Launch Alliance Atlas V rocket that will lift it into space and on to Mars. MAVEN is short for Mars Atmosphere and Volatile Evolution. Photo credit: NASA/Kim Shiflett</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>