Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-01
... Volatile Organic Compounds and Nitrogen Oxides AGENCY: Environmental Protection Agency (EPA). ACTION... requirements for stationary sources of volatile organic compounds (VOCs) and nitrogen oxides (NO X ). This... to 310 CMR 7.19, Reasonably Available Control Technology (RACT) for Sources of Oxides of Nitrogen (NO...
Arrizon, J; Gschaedler, A
2007-04-01
To study the effect of the addition of different nitrogen sources at high sugar concentration in the tequila fermentation process. Fermentations were performed at high sugar concentration (170 g l(-1)) using Agave tequilana Weber blue variety with and without added nitrogen from different sources (ammonium sulfate; glutamic acid; a mixture of ammonium sulfate and amino acids) during the exponential phase of growth. All the additions increased the fermentation rate and alcohol efficiency. The level of synthesis of volatile compounds depended on the source added. The concentration of amyl alcohols and isobutanol were decreased while propanol and acetaldehyde concentration increased. The most efficient nitrogen sources for fermentation rate were ammonium sulfate and the mixture of ammonium sulfate and amino acids. The level of volatile compounds produced depended upon types of nitrogen. The synthesis of some volatile compounds increased while others decreased with nitrogen addition. The addition of nitrogen could be a strategy for improving the fermentation rate and efficiency in the tequila fermentation process at high sugar Agave tequilana concentration. Furthermore, the sensory quality of the final product may change because the synthesis of the volatile compounds is modified.
This study evaluates performance of nitrogen dioxide NO2 and volatile organic compounds (VOC) passive samplers with corresponding reference monitors at two sites in the Detroit, Michigan area during the summer of 2005.
Wang, X D; Bohlscheid, J C; Edwards, C G
2003-01-01
To understand the impact of assimilable nitrogen and pantothenic acid on fermentation rate and synthesis of volatile compounds by Saccharomyces under fermentative conditions. A 2 x 3 factorial experimental design was employed with the concentrations of yeast assimilable nitrogen (YAN) (60 and 250 mg l(-1)) and pantothenic acid (10, 50 and 250 microg l(-1)) as variables. In media containing 250 microg l(-1) pantothenic acid, H2S production by two different species of Saccharomyces decreased when YAN was increased from 60 to 250 mg l(-1). Conversely, H2S production was significantly higher when the concentration of assimilable nitrogen was increased if pantothenic acid was deficient (10 or 50 microg l(-1)). Yeast synthesis of other volatile compounds were impacted by both assimilable nitrogen and pantothenic acid. While growth and fermentative rate of Saccharomyces was more influenced by nitrogen than by pantothenic acid, complicated interactions exist between these nutrients that affect the synthesis of volatile compounds including H2S. This study has important implications for the winemaking industry where a better understanding of the nutritional requirements of Saccharomyces is necessary to reduce fermentation problems and to improve final product quality.
This paper presents a GIS-based regression spatial method, known as land-use regression (LUR) modeling, to estimate ambient air pollution exposures used in the EPA El Paso Children's Health Study. Passive measurements of select volatile organic compounds (VOC) and nitrogen dioxi...
Composition of the water-soluble fraction of different cheeses.
Taborda, Gonzalo; Molina, Elena; Martínez-Castro, Isabel; Ramos, Mercedes; Amigo, Lourdes
2003-01-01
Volatile and nonvolatile compounds present in the water-soluble fraction (WSF) and water-soluble fraction with molecular weight lower than 1000 Da (WSF < 1000 Da) of six Spanish cheeses, Cabrales, Idiazábal, Mahón, Manchego, Roncal, and a goat's milk cheese, were analyzed. Different nitrogen fractions (determined by Kjeldahl method), caseins (by capillary electrophoresis), peptides and amino acids (by HPLC), and volatile components (by dynamic headspace coupled to GC-MS) as well as mineral content in the cheese fractions were analyzed and compared. The different nitrogen and volatile compounds identified in the WSF were characteristic of each cheese variety. Cabrales cheese displayed the highest content of free amino acids and the highest quantity and variety of volatile compounds. The WSF < 1000 Da fraction was less representative, especially for volatile compounds, as some of the components were lost in the ultrafiltration. Alcohols were better recovered than ketones and esters.
[Ammonia volatilization of slow release compound fertilizer in different soils water conditions].
Hu, Xiao-feng; Wang, Zheng-yin; You, Yuan; Li, Jing-chao
2010-08-01
By using venting method incubation experiment, we studied the ammonia volatilization and kinetics characteristics of uncoated slowed release compound fertilizer (SRF) under different soil water conditions and the growth and nitrogen utilization efficiency of rice in pot experiment. Results indicated that the ammonia volatilization of SRF under waterflooding reached the peak ahead of 3-4 days compared to the moist treatment. The peak and accumulation of ammonia volatilization in the waterflooding treatments were higher than those under the moist condition. SRF could significantly reduce total ammonia volatilization compared to the common compound fertilizer (CCF), reduced by 50.6% and 22.8% in the moist treatment and reduced by 24.2% and 10.4% in the waterflooding treatment,but the loss of ammonia volatilization of SRF was higher significantly than that of the coated fertilizer (CRF). Ammonia volatilization increased with the increasing of fertilizer application. The dynamics of ammonia volatilization of SRF could be quantitatively described with three equations: the first order kinetics equation, Elovich equation and parabola equation. Compared to moist condition, the biomass of rice plant in SRF, CCF and SRF treatments increased by 67.86%, 78.25% and 48.75%, and nitrogen utilization efficiency increased by 57.73%, 80.70% and 12.06% under waterflooding condition, respectively. Comparing with CCF, nitrogen utilization efficiency in SRF treatment improved by 59.10% and 10.40% under two soil moisture conditions. SRF could reduce ammonia volatilization and improve biomass and nitrogen utilization efficiency.
Deng, Jie; Yu, Hong-Jun; Li, Yun-Yun; Zhang, Xiao-Meng; Liu, Peng; Li, Qiang; Jiang, Wei-Jie
2016-01-01
Nitrogen (N) is an important macronutrient for plant growth and development, but the regulatory mechanism of volatile compounds in response to N deficiency is not well understood, especially in cucumber, which consumes excessive N during growth. In this study, the major volatile compounds from cucumber leaves subjected to N deficiency were analyzed by GC-MS. A total of 24 volatile components were identified including 15 aldehydes, two ketones, two alkenes, and five other volatile compounds in 9930 leaves. Principal component analysis using volatile compounds from cucumber leaves provided good separation between N-sufficient and N-deficient treatments. The main volatiles in cucumber leaves were found to be C6 and C9 aldehydes, especially (E)-2-hexanal and (E,Z)-2,6-nonadienal. (E)-2-hexanal belonged to the C6 aldehyde and was the most abundant compound, whereas (E,Z)-2,6-nonadienal was the chief component of C9 aldehydes. During N-deficient treatment, short-chain volatile content was significantly improved at 5 day, other volatiles displayed significant reduction or no significantly changes in all sampling points. Improvement of short-chain volatiles was confirmed in the six other inbred lines at 5 day after N-deficient treatments. The expression analysis of 12 cucumber LOX genes and two HPL genes revealed that CsLOX19, CsLOX20, and CsLOX22 had common up-regulated expression patterns in response to N-deficient stress in most inbred lines; meanwhile, most sample points of CsHPL1 also had significant up-regulated expression patterns. This research focused on the relationship between volatiles in cucumber and different nitrogen environments to provide valuable insight into the effect of cultivation and management of the quality of cucumber and contributes to further research on volatile metabolism in cucumber. PMID:27827841
Volatiles from roasted byproducts of the poultry-processing industry.
Wettasinghe, M; Vasanthan, T; Temelli, F; Swallow, K
2000-08-01
Volatiles of roasted chicken breast muscle and byproducts, such as backbones, breastbones, spent bones, and skin, were investigated. Total volatile concentrations ranged from 2030 ppb in the roasted backbones to 4049 ppb in the roasted skin. The major classes of volatile compounds detected in roasted samples were aldehydes (648-1532 ppb) and alcohols (336-1006 ppb). Nitrogen- and/or sulfur-containing compounds were also detected in appreciable quantities (161-706 ppb) in all samples. For all samples, hexanal and 2-methyl-2-buten-1-ol were dominant among the aldehydes and alcohols, respectively. Among the nitrogen- and sulfur-containing compounds, Maillard reaction products, such as tetrahydropyridazines, piperidines, and thiazoles, were the major contributors to the total volatile content in all samples. The composition of volatiles observed in roasted byproducts was markedly different from that of the roasted breast muscle. Therefore, the blending of the byproducts in appropriate proportions or blending of volatile flavor extracts from different byproducts may be necessary to obtain an aroma that mimics roasted chicken aroma.
The magnitudes, distributions, controlling processes and uncertainties associated with North American natural emissions of oxidant precursors are reviewed. Natural emissions are repsonsible for a major portion of the compounds, including non-methane volatile organic compounds (N...
Gobert, Antoine; Tourdot-Maréchal, Raphaëlle; Morge, Christophe; Sparrow, Céline; Liu, Youzhong; Quintanilla-Casas, Beatriz; Vichi, Stefania; Alexandre, Hervé
2017-01-01
Nitrogen sources in the must are important for yeast metabolism, growth, and performance, and wine volatile compounds profile. Yeast assimilable nitrogen (YAN) deficiencies in grape must are one of the main causes of stuck and sluggish fermentation. The nitrogen requirement of Saccharomyces cerevisiae metabolism has been described in detail. However, the YAN preferences of non-Saccharomyces yeasts remain unknown despite their increasingly widespread use in winemaking. Furthermore, the impact of nitrogen consumption by non-Saccharomyces yeasts on YAN availability, alcoholic performance and volatile compounds production by S. cerevisiae in sequential fermentation has been little studied. With a view to improving the use of non-Saccharomyces yeasts in winemaking, we studied the use of amino acids and ammonium by three strains of non-Saccharomyces yeasts (Starmerella bacillaris, Metschnikowia pulcherrima, and Pichia membranifaciens) in grape juice. We first determined which nitrogen sources were preferentially used by these yeasts in pure cultures at 28 and 20°C (because few data are available). We then carried out sequential fermentations at 20°C with S. cerevisiae, to assess the impact of the non-Saccharomyces yeasts on the availability of assimilable nitrogen for S. cerevisiae. Finally, 22 volatile compounds were quantified in sequential fermentation and their levels compared with those in pure cultures of S. cerevisiae. We report here, for the first time, that non-Saccharomyces yeasts have specific amino-acid consumption profiles. Histidine, methionine, threonine, and tyrosine were not consumed by S. bacillaris, aspartic acid was assimilated very slowly by M. pulcherrima, and glutamine was not assimilated by P. membranifaciens. By contrast, cysteine appeared to be a preferred nitrogen source for all non-Saccharomyces yeasts. In sequential fermentation, these specific profiles of amino-acid consumption by non-Saccharomyces yeasts may account for some of the interactions observed here, such as poorer performances of S. cerevisiae and volatile profile changes. PMID:29163451
Gobert, Antoine; Tourdot-Maréchal, Raphaëlle; Morge, Christophe; Sparrow, Céline; Liu, Youzhong; Quintanilla-Casas, Beatriz; Vichi, Stefania; Alexandre, Hervé
2017-01-01
Nitrogen sources in the must are important for yeast metabolism, growth, and performance, and wine volatile compounds profile. Yeast assimilable nitrogen (YAN) deficiencies in grape must are one of the main causes of stuck and sluggish fermentation. The nitrogen requirement of Saccharomyces cerevisiae metabolism has been described in detail. However, the YAN preferences of non- Saccharomyces yeasts remain unknown despite their increasingly widespread use in winemaking. Furthermore, the impact of nitrogen consumption by non- Saccharomyces yeasts on YAN availability, alcoholic performance and volatile compounds production by S. cerevisiae in sequential fermentation has been little studied. With a view to improving the use of non- Saccharomyces yeasts in winemaking, we studied the use of amino acids and ammonium by three strains of non- Saccharomyces yeasts ( Starmerella bacillaris, Metschnikowia pulcherrima , and Pichia membranifaciens ) in grape juice. We first determined which nitrogen sources were preferentially used by these yeasts in pure cultures at 28 and 20°C (because few data are available). We then carried out sequential fermentations at 20°C with S. cerevisiae , to assess the impact of the non- Saccharomyces yeasts on the availability of assimilable nitrogen for S. cerevisiae . Finally, 22 volatile compounds were quantified in sequential fermentation and their levels compared with those in pure cultures of S. cerevisiae . We report here, for the first time, that non- Saccharomyces yeasts have specific amino-acid consumption profiles. Histidine, methionine, threonine, and tyrosine were not consumed by S. bacillaris , aspartic acid was assimilated very slowly by M. pulcherrima , and glutamine was not assimilated by P. membranifaciens . By contrast, cysteine appeared to be a preferred nitrogen source for all non- Saccharomyces yeasts. In sequential fermentation, these specific profiles of amino-acid consumption by non- Saccharomyces yeasts may account for some of the interactions observed here, such as poorer performances of S. cerevisiae and volatile profile changes.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-13
... ), volatile organic compounds (VOCs), ammonia (NH 3 ), and sulfur dioxide (SO 2 ). EPA has reviewed the... , coarse particles (PM 10 ), nitrogen oxides (NO X ), volatile organic compounds (VOCs), ammonia (NH 3...
Martínez-Gil, Ana M; Garde-Cerdán, Teresa; Lorenzo, Cándida; Lara, José Félix; Pardo, Francisco; Salinas, M Rosario
2012-01-01
The aim of this work was to study the influence of nitrogen compounds on the formation of volatile compounds during the alcoholic fermentation carried out with 4 nonaromatic grape varieties collected at 2 different maturation stages. To do this, Monastrell, Merlot, Syrah, and Petit Verdot grapes were collected 1 wk before harvest and at harvest. Then, the musts were inoculated with the same Saccharomyces cerevisiae yeast strain and were fermented in the same winemaking conditions. Amino acids that showed the highest and the lowest concentration in the must were the same, regardless of the grape variety and maturation stage. Moreover, the consumption of amino acids during the fermentation increased with their concentration in the must. The formation of volatile compounds was not nitrogen composition dependent. However, the concentration of amino acids in the must from grapes collected 1 wk before harvest can be used as a parameter to estimate the concentration of esters in wines from grapes collected at harvest and therefore to have more information to know the grape oenological capacity. Application of principal components analysis (PCA) confirmed the possibility to estimate the concentration of esters in the wines with the concentration of nitrogen compounds in the must. © 2011 Institute of Food Technologists®
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-04
... nitrogen oxides (NO X ), volatile organic compounds (VOCs), PM 2.5 , coarse particles (PM 10 ), ammonia (NH... X ), volatile organic compounds (VOCs), PM 2.5 , coarse particles (PM 10 ), ammonia (NH 3 ), and...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-11
... nitrogen oxides (NO X ), volatile organic compounds (VOCs), PM 2.5 , coarse particles (PM 10 ), ammonia (NH... oxides (NO X ), volatile organic compounds (VOCs), PM 2.5 , coarse particles (PM 10 ), ammonia (NH 3...
SUPERCRITICAL FLUID EXTRACTION OF SEMI-VOLATILE ORGANIC COMPOUNDS FROM PARTICLES
A nitrogen oxide flux chamber was modified to measure the flux of semi-volatile organic compounds (SVOCs). Part of the modification involved the development of methods to extract SVOCs from polyurethane foam (PUF), sand, and soil. Breakthroughs and extraction efficiencies were ...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-05
... Kentucky, through the Kentucky Energy and Environment Cabinet, Division for Air Quality (DAQ), to... (MVEBs) for nitrogen oxides (NO X ) and volatile organic compounds (VOC) for Northern Kentucky. This... control, Incorporation by reference, Nitrogen dioxide, Ozone, Intergovernmental relations, and Volatile...
77 FR 44560 - Revisions to the Nevada State Implementation Plan, Washoe County Air Quality District
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-30
... emissions of criteria pollutants such as volatile organic compounds (VOC), oxides of nitrogen (NO X ), and... to, mass balance types of analysis, be made by the operator. Section 030.970A, Part 70 Permit... relations, Nitrogen dioxide, Ozone, Particulate matter, Reporting and recordkeeping requirements, Volatile...
USDA-ARS?s Scientific Manuscript database
Agricultural emissions impact particulate mass concentrations through both primary and secondary processes. Evidence from laboratory and field work suggest that not only does ammonia produce secondary particulate matter, but nitrogen and sulfur containing volatile organic compounds also contribute. ...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-27
... reasonably available control technology (RACT) for oxides of nitrogen (NO X ) and volatile organic compounds.... I. Background and Purpose II. Connecticut's Reasonably Available Control Technology Certification... controlling volatile organic compound emissions that Connecticut submitted to EPA on July 20, 2007. \\1\\ The...
The magnitudes, distributions, controlling processes and uncertainties associated with North American natural emissions of oxidant precursors are reviewed. Natural emissions are responsible for a major portion of the compounds, including non-methane volatile o...
Fairbairn, Samantha; McKinnon, Alexander; Musarurwa, Hannibal T.; Ferreira, António C.; Bauer, Florian F.
2017-01-01
Nitrogen availability and utilization by Saccharomyces cerevisiae significantly influence fermentation kinetics and the production of volatile compounds important for wine aroma. Amino acids are the most important nitrogen source and have been classified based on how well they support growth. This study evaluated the effect of single amino acids on growth kinetics and major volatile production of two phenotypically different commercial wine yeast strains in synthetic grape must. Four growth parameters, lag phase, maximum growth rate, total biomass formation and time to complete fermentation were evaluated. In contrast with previous findings, in fermentative conditions, phenylalanine and valine supported growth well and asparagine supported it poorly. The four parameters showed good correlations for most amino acid treatments, with some notable exceptions. Single amino acid treatments resulted in the predictable production of aromatic compounds, with a linear correlation between amino acid concentration and the concentration of aromatic compounds that are directly derived from these amino acids. With the increased complexity of nitrogen sources, linear correlations were lost and aroma production became unpredictable. However, even in complex medium minor changes in amino acid concentration continued to directly impact the formation of aromatic compounds, suggesting that the relative concentration of individual amino acids remains a predictor of aromatic outputs, independently of the complexity of metabolic interactions between carbon and nitrogen metabolism and between amino acid degradation and utilization pathways. PMID:29312237
Fairbairn, Samantha; McKinnon, Alexander; Musarurwa, Hannibal T; Ferreira, António C; Bauer, Florian F
2017-01-01
Nitrogen availability and utilization by Saccharomyces cerevisiae significantly influence fermentation kinetics and the production of volatile compounds important for wine aroma. Amino acids are the most important nitrogen source and have been classified based on how well they support growth. This study evaluated the effect of single amino acids on growth kinetics and major volatile production of two phenotypically different commercial wine yeast strains in synthetic grape must. Four growth parameters, lag phase, maximum growth rate, total biomass formation and time to complete fermentation were evaluated. In contrast with previous findings, in fermentative conditions, phenylalanine and valine supported growth well and asparagine supported it poorly. The four parameters showed good correlations for most amino acid treatments, with some notable exceptions. Single amino acid treatments resulted in the predictable production of aromatic compounds, with a linear correlation between amino acid concentration and the concentration of aromatic compounds that are directly derived from these amino acids. With the increased complexity of nitrogen sources, linear correlations were lost and aroma production became unpredictable. However, even in complex medium minor changes in amino acid concentration continued to directly impact the formation of aromatic compounds, suggesting that the relative concentration of individual amino acids remains a predictor of aromatic outputs, independently of the complexity of metabolic interactions between carbon and nitrogen metabolism and between amino acid degradation and utilization pathways.
A microfluidic device for open loop stripping of volatile organic compounds.
Cvetković, Benjamin Z; Dittrich, Petra S
2013-03-01
The detection of volatile organic compounds is of great importance for assessing the quality of water. In this contribution, we describe a miniaturized stripping device that allows fast online detection of organic solvents in water. The core component is a glass microfluidic chip that facilitates the creation of an annular-flowing stream of water and nitrogen gas. Volatile compounds are transferred efficiently from the water into the gas phase along the microfluidic pathway at room temperature within less than 5 s. Before exiting the microchip, the liquid phase is separated from the enriched gas phase by incorporating side capillaries through which the hydrophilic water phase is withdrawn. The gas phase is conveniently collected at the outlet reservoir by tubing. Finally, a semiconductor gas sensor analyzes the concentration of (volatile) organic compounds in the nitrogen gas. The operation and use of the stripping device is demonstrated for the organic solvents THF, 1-propanol, toluene, ethylbenzene, benzaldehyde, and methanol. The mobile, inexpensive, and continuously operating system with liquid flow rates in the low range of microliters per minute can be connected to other detectors or implemented in chemical production line for process control.
Fernandes, Annabel; Coelho, João; Ciríaco, Lurdes; Pacheco, Maria José; Lopes, Ana
2016-12-01
Boron-doped diamond (BDD) and Ti/Pt/PbO 2 anodes were utilized to perform the electrodegradation of synthetic samples containing humic acid in the presence of different organic and inorganic carbon-containing and nitrogen-containing compounds. The influence of the chloride ion in the degradation process of the different synthetic samples was also assessed. The results showed that the anodic oxidation process can efficiently degrade recalcitrant compounds such as humic acid. The presence of carbonate in solution enhances the nitrogen removal, whereas it hinders the oxidation of the organic compounds. When organic nitrogen is present, it is converted to NH 4 + , which in turn is oxidized to nitrate and to volatile nitrogen compounds. Hydroxyl radicals are more prone to oxidize the organic nitrogen than the ammonium nitrogen. The presence of chloride enhances the organic matter and nitrogen removal rates, BDD being the anode material that yields the highest removals.
Volatile composition and sensory profile of shiitake mushrooms as affected by drying method.
Politowicz, Joanna; Lech, Krzysztof; Lipan, Leontina; Figiel, Adam; Carbonell-Barrachina, Ángel A
2018-03-01
One of the best preservation method for long-term storage is drying. In this work, the influence of different drying methods on aroma and sensory profile of shiitake mushroom was evaluated. The drying methods tested were: convective drying (CD), freeze-drying (FD), vacuum-microwave drying (VMD), and a combination of convective pre-drying and vacuum-microwave finish-drying (CPD-VMFD). The volatile composition of fresh and dried shiitake mushrooms was analysed by SPME, GC-MS and GC-FID, and showed the presence of 71 volatile compounds, most of them present in all dried samples but with quantitative variation. The major volatile compounds in fresh shiitake were 1-octen-3-ol (20.2%), 2-octanone (20.7%), 1,2,4-trithiolane (9.8%), and 1,2,3,5,6-pentathiepane (8.2%). Drying of shiitake mushrooms caused significant losses of C8 compounds and cyclic sulfur compounds, such as 1,2,4-trithiolane (V31) and 1,2,4,5-tetrathiane (V57). Samples dried at CD 80 °C implied a relative short drying time (120 min), had the highest contents of total volatiles (1594 μg 100 g -1 ) and cyclic sulfur compounds (e.g. V57 126 μg 100 g -1 ), and the highest intensity of most of the key positive sensory attributes, such as inner colour (7.0), fresh shiitake flavour (6.7), and sponginess (6.2). The best dehydration methods, resulting in the highest total concentrations of volatile compounds and high intensity of key sensory attributes were FD (if vacuum and liquid nitrogen facilities are available) and CD at 80 °C (for companies with vacuum and liquid nitrogen facilities). © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
NASA Technical Reports Server (NTRS)
Coleman, R. A.; Cofer, W. R., III; Edahl, R. A., Jr.
1985-01-01
An analytical technique for the determination of trace (sub-ppbv) quantities of volatile organic compounds in air was developed. A liquid nitrogen-cooled trap operated at reduced pressures in series with a Dupont Nafion-based drying tube and a gas chromatograph was utilized. The technique is capable of analyzing a variety of organic compounds, from simple alkanes to alcohols, while offering a high level of precision, peak sharpness, and sensitivity.
NASA Technical Reports Server (NTRS)
Kong, Suk Bin
2001-01-01
Volatile organic compound(VOC), ethylene gas, was characterized and quantified by GC/FID. 20-50 ppb levels were detected during the growth stages of radish. SPME could be a good analytical tool for the purpose. Low temperature trapping method using dry ice/diethyl ether and liquid nitrogen bath was recommended for the sampling process for GC/PID and GC/MS analysis.
Aerosol from Organic Nitrogen in the Southeast United States
Biogenic volatile organic compounds (BVOCs) contribute significantly to organic aerosol in the southeastern United States. During the Southern Oxidant and Aerosol Study (SOAS), a portion of ambient organic aerosol was attributed to isoprene oxidation and organic nitrogen from BVO...
Pozo-Bayón, Maria Angeles; Andujar-Ortiz, Inmaculada; Alcaide-Hidalgo, Juan María; Martín-Alvarez, Pedro J; Moreno-Arribas, M Victoria
2009-11-25
The characterization of commercial enological inactive dry yeast (IDY) with different applications in wine production has been carried out. This study was based on the yeast's ability to release soluble compounds (high molecular weight nitrogen, free amino nitrogen, peptidic nitrogen, free amino acids, and polysaccharides) into model wines and on its behavior toward the volatility of seven wine aroma compounds. Important differences in soluble compounds released into the model wines supplemented with commercial IDY were found, with the free amino acids being among the most released. The volatility of most of the aroma compounds was affected by the addition of IDY preparations at a concentration usually employed during winemaking. The extent of this effect was dependent on the physicochemical characteristics of the aroma compound and on the length of time the IDY preparations remained in contact with the model wines. Whereas shorter contact times (2, 4, and 6 days) mainly promoted a "salting-out" effect, longer exposure (9 and 13 days) provoked a retention effect, with the consequent reduction of aroma compounds in the headspace. The use of different commercial preparations also promoted different effects toward the aroma compounds that may be at least in part due to differences in their ability to release soluble compounds of yeast origin into the wines.
Sang, Meng-meng; Fan, Hui; Jiang, Shan-shan; Jiang, Jing-yan
2015-09-01
In order to better understand the characteristics of nitrogen loss through different pathways under conventional fertilization conditions, a field experiment was conducted to investigate the variations of N2O emission, NH3 volatilization, N losses through surface runoff and leaching caused by the application of nitrogen fertilizers during summer maize growing season in the Middle and Lower reaches of the Yangtze River, China. Our results showed that when compound fertilizer was used as basal fertilizer at the nitrogen rate of 150 kg.hm-2, and urea with the same level of fertilizing as topdressing, the N2O emission coefficient in the entire growing season was 3. 3%, NH3 volatilization loss rate was 10. 2%, and nitrogen loss rate by leaching and surface runoff was 11. 2% and 5. 1%, respectively. In addition, leaching was the main pathway of nitrogen loss after basal fertilizer, while NH, volatilization and nitrogen leaching accounted for the majority of nitrogen loss after topdressing, which suggested that nitrogen loss from different pathways mainly depended on the type of nitrogen fertilizer. Taken together, it appears to be effective to apply the new N fertilizer with low ammonia volatilization instead of urea when maize needs topdressing, so as to reduce N losses from N fertilizer.
Oxidation-reduction catalyst and its process of use
NASA Technical Reports Server (NTRS)
Schryer, Jacqueline L. (Inventor); Oglesby, Donald M. (Inventor); Jordan, Jeffrey D. (Inventor); Watkins, Anthony Neal (Inventor)
2008-01-01
This invention relates generally to a ruthenium stabilized oxidation-reduction catalyst useful for oxidizing carbon monoxide, and volatile organic compounds, and reducing nitrogen oxide species in oxidizing environments, substantially without the formation of toxic and volatile ruthenium oxide species upon said oxidizing environment being at high temperatures.
NASA Astrophysics Data System (ADS)
Chang, Yufei; Hou, Hu; Li, Bafang
2016-06-01
Codfish is a kind of abyssal fish species with a great value in food industry. However, the flavor of codfish, especially the unpleasant odor, has caused serious problems in its processing. To accurately identify the volatile compounds in codfish, a combination of solid phase micro-extraction (SPME) method and simultaneous distillation extraction (SDE) method was used to extract the volatiles. Gas chromatography-mass spectrometry (GC-MS) along with Kovats indices (KI) and authentic standard compounds were used to identify the volatiles. The results showed that a total of 86 volatile compounds were identified in codfish, of them 24 were extracted by SDE, 69 compounds by SPME, and 10 compounds by both SDE and SPME. Seventy volatile compounds were found to have specific odors, of them 7 typical compounds contributed significantly to the flavor of codfish. Alcohols ( i.e., (E)-2-penten-1-ol and 2-octanol), esters ( i.e., ethyl butyrate and methyl geranate), aldehydes ( i.e., 2-dodecenal and pentadecanal) contributed the most to fresh flavor while nitrogen compounds, sulphur compounds, furans, as well as some ketones ( i.e., 2-hydroxy-3-pentanone) brought unpleasant odor, such as fishy and earthy odor. It was indicated that the combination of multiple extraction methods and GC-MS analysis can enhance the accuracy of identification, and provide a reference for the further study on flavor of aquatic products.
Huang, Zhongping; Zhang, Jie; Zhang, Peipei; Wang, Hong; Pan, Zaifa; Wang, Lili
2016-07-01
Headspace solid-phase microextraction coupled with cryotrap gas chromatography and mass spectrometry was applied to the analysis of volatile organic compounds in pleural effusions. The highly volatile organic compounds were separated successfully with high sensitivity by the employment of a cryotrap device, with the construction of a cold column head by freezing a segment of metal capillary with liquid nitrogen. A total of 76 volatile organic compounds were identified in 50 pleural effusion samples (20 malignant effusions and 30 benign effusions). Among them, 34 more volatile organic compounds were detected with the retention time less than 8 min, by comparing with the normal headspace solid-phase microextraction coupled with gas chromatography and mass spectrometry method. Furthermore, 24 volatile organic compounds with high occurrence frequency in pleural effusion samples, 18 of which with the retention time less than 8 min, were selected for the comparative analysis. The results of average peak area comparison and box-plot analysis showed that except for cyclohexanone, 2-ethyl-1-hexanol, and tetramethylbenzene, which have been reported as potential cancer biomarkers, cyclohexanol, dichloromethane, ethyl acetate, n-heptane, ethylbenzene, and xylene also had differential expression between malignant and benign effusions. Therefore, the proposed approach was valuable for the comprehensive characterization of volatile organic compounds in pleural effusions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Bodek, Itamar; Ehntholt, Daniel J.; Stolki, Thomas J.; Valentine, James R.; Trabanino, Rudy; Webb, Johanna V.; Sauer, Richard L.
1991-01-01
A breadboard concept of a volatile organics concentrator (VOC) is manufactured and tested for optimized water-quality analysis in a space environment. The VOC system is attached to a gas chromatograph/mass spectrometer to analyze the volatile chemicals relevant to the operation of Space Station Freedom. The preliminary tests include: (1) comparisons with analyses based on direct on-column injections of standards; (2) analyses of iodinated volatile organics; (3) comparisons of nitrogen vs helium as the chromatography carrier gas; and (4) measurements of collection efficiency. The VOC can analyze EPA method-624 analytes at comparable detection using flame-ionization detection and can analyze volatile iodinated compounds. The breadboard has good reproducibility and can use nitrogen as a carrier gas; good results are noted for the collection and concentration levels and for water removal.
Luck, Katrin; Jirschitzka, Jan; Irmisch, Sandra; Huber, Meret; Gershenzon, Jonathan; Köllner, Tobias G
2016-10-04
Amino acid-derived aldoximes and nitriles play important roles in plant defence. They are well-known as precursors for constitutive defence compounds such as cyanogenic glucosides and glucosinolates, but are also released as volatiles after insect feeding. Cytochrome P450 monooxygenases (CYP) of the CYP79 family catalyze the formation of aldoximes from the corresponding amino acids. However, the majority of CYP79s characterized so far are involved in cyanogenic glucoside or glucosinolate biosynthesis and only a few have been reported to be responsible for nitrogenous volatile production. In this study we analysed and compared the jasmonic acid-induced volatile blends of two Erythroxylum species, the cultivated South American crop species E. coca and the African wild species E. fischeri. Both species produced different nitrogenous compounds including aliphatic aldoximes and an aromatic nitrile. Four isolated CYP79 genes (two from each species) were heterologously expressed in yeast and biochemically characterized. CYP79D62 from E. coca and CYP79D61 and CYP79D60 from E. fischeri showed broad substrate specificity in vitro and converted L-phenylalanine, L-isoleucine, L-leucine, L-tryptophan, and L-tyrosine into the respective aldoximes. In contrast, recombinant CYP79D63 from E. coca exclusively accepted L-tryptophan as substrate. Quantitative real-time PCR revealed that CYP79D60, CYP79D61, and CYP79D62 were significantly upregulated in jasmonic acid-treated Erythroxylum leaves. The kinetic parameters of the enzymes expressed in vitro coupled with the expression patterns of the corresponding genes and the accumulation and emission of (E/Z)-phenylacetaldoxime, (E/Z)-indole-3-acetaldoxime, (E/Z)-3-methylbutyraldoxime, and (E/Z)-2-methylbutyraldoxime in jasmonic acid-treated leaves suggest that CYP79D60, CYP79D61, and CYP79D62 accept L-phenylalanine, L-leucine, L-isoleucine, and L-tryptophan as substrates in vivo and contribute to the production of volatile and semi-volatile nitrogenous defence compounds in E. coca and E. fischeri.
Ontañon, I; Sanz, J; Escudero, A; de Marcos, S; Ferreira, V; Galbán, J
2015-04-03
A homemade flow cell attached to a commercial Gas Chromatograph equipped with a Flame Ionization Detector (FID) has been designed for the continuous monitoring of volatile compounds released during heating edible oils. Analytical parameters such as mass of sample, temperature and flow rates have been optimized and the obtained results have been compared with the corresponding thermographs from standard TG systems. Results show that under optimum conditions, the profiles of volatiles released upon heating are comparable to the profiles of TG curves, suggesting that the FID based system could be an alternative to TGA. Additionally, volatiles have been retained in a Lichrolut EN(®) resin, eluted and analyzed by Gas Chromatography-Mass Spectrometry. In this case, forty five compounds have been identified (acids, alcohols, alkanes, aldehydes, ketones and furans) and compared with the FID signals, working both in air or nitrogen atmosphere. It has been concluded that the oxidative thermal degradation is prevented in the presence of a nitrogen atmosphere. Copyright © 2015 Elsevier B.V. All rights reserved.
Code of Federal Regulations, 2011 CFR
2011-07-01
... different users. RFP baseline means the total of actual volatile organic compounds or nitrogen oxides..., industrial equipment, construction vehicles, off-road motorcycles, and marine vessels). National ambient air...
Spatial analysis studies have included application of land use regression models (LURs) for health and air quality assessments. Recent LUR studies have collected nitrogen dioxide (NO2) and volatile organic compounds (VOCs) using passive samplers at urban air monitoring networks ...
Lightning-induced nitrogen oxides (LNOX), in the presence of sunlight, volatile organic compounds and water, can be a relatively large but uncertain source for ozone (O3) and hydroxyl radical (OH) in the atmosphere. Using lightning flash data from the National Lightning Detection...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-11
... twofold. The first is to reduce emissions of nitrogen oxide (NO X ) and volatile organic compound (VOC..., Incorporation by reference, Intergovernmental relations, Nitrogen dioxide, Ozone, Reporting and recordkeeping... begins]. 26.11.34.07 Initial NMOG Credit 12/17/07 6/11/13; [Insert page Account Balances. number where...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-26
... ), nitrogen oxides (NO X ), volatile organic compounds (VOC), and ammonia. An analysis of the baseline year... Idaho Transportation Department agreed to use straight salt and liquid salt brine throughout Franklin.... List of Subjects in 40 CFR Part 52 Environmental protection, Air pollution control, Nitrogen dioxide...
Molecular characterization of nitrogen and sulfur containing compounds in night-time SOA
NASA Astrophysics Data System (ADS)
Iinuma, Yoshiteru; Mutzel, Anke; Rodigast, Maria; Böge, Olaf; Herrmann, Hartmut
2014-05-01
The oxidation of volatile organic compounds (VOCs) leads to the formation of low volatile organic compounds that can form secondary organic aerosol (SOA). Studies in the past showed that laboratory generated and ambient SOA are made of polar molecules with O/C ratios generally greater than 0.5. More recent studies have shown that SOA compounds can contain heteroatoms mainly sulfur and nitrogen atoms. Offline chemical analysis with high-resolution mass spectrometers and fragmentation experiments has shown that sulphur containing compounds are mainly organosulfates and nitrogen containing species are aromatic heterocyclic compounds such as imidazole and nitrated aromatic compounds such as nitrophenols. In addition to these, SOA compounds containing both sulfur and nitrogen have been reported from the analysis of ambient organic aerosol, rainwater, fog and cloud samples. Based on the mass spectrometric evidence these compounds are attributed to nitrooxy-organosulfates originating from isoprene and monoterpenes. Although these compounds are ubiquitously detected in the ambient samples, reports about their detection in laboratory generated SOA are scares and their formation mechanisms are not well understood. In the present study, we investigated the formation of sulfur and nitrogen containing SOA species in the oxidation of biogenic VOCs. Photooxidation and night-time oxidation experiments were performed in a smog chamber to produce SOA samples. The laboratory generated SOA samples were analysed with UPLC-IMS-TOFMS (Ultra Performance Liquid Chromatography coupled to Ion Mobility Spectrometry and Time of Flight Mass Spectrometry). The presence of highly acidic sulphate seed particles (pH0) did not promote the formation of compounds with chemical formula of C10H17NO7S- and m/z value of 294.0653, indicating that the formation mechanisms of these compounds unlikely involve the ring opening reactions of epoxides and subsequent sulfation reactions. On the other hand, their formation was significantly enhanced when the night-time oxidation was performed in the presence of both neutral seed particle and gas-phase SO2, suggesting that the presence of gas-phase SO2 is a key for their formation.
Gas and aerosol fluxes. [emphasizing sulfur, nitrogen, and carbon
NASA Technical Reports Server (NTRS)
Martens, C. S.
1980-01-01
The development of remote sensing techniques to address the global need for accurate distribution and flux determinations of both man made and natural materials which affect the chemical composition of the atmosphere, the heat budget of the Earth, and the depletion, of stratospheric ozone is considered. Specifically, trace gas fluxes, sea salt aerosol production, and the effect of sea surface microlayer on gas and aerosol fluxes are examined. Volatile sulfur, carbon, nitrogen, and halocarbon compounds are discussed including a statement of the problem associated with each compound or group of compounds, a brief summary of current understanding, and suggestions for needed research.
Corral, Sara; Leitner, Erich; Siegmund, Barbara; Flores, Mónica
2016-01-01
The identification of odor-active sulfur and nitrogen compounds formed during the processing of dry fermented sausages was the objective of this study. In order to elucidate their possible origin, free amino acids (FAAs) were also determined. The volatile compounds present in the dry sausages were extracted using solvent assisted flavor evaporation (SAFE) and monitored by one and two-dimensional gas chromatography with different detectors: mass spectrometry (MS), nitrogen phosphorous (NPD), flame photometric (FPD) detectors, as well as gas chromatography-olfactometry. A total of seventeen sulfur and nitrogen compounds were identified and quantified. Among them, 2-acetyl-1-pyrroline was the most potent odor active compound, followed by methional, ethylpyrazine and 2,3-dihydrothiophene characterized by toasted, cooked potato, and nutty notes. The degradation of FAAs, generated during processing, was related to the production of aroma compounds, such as methionine forming methional and benzothiazole while ornithine was the precursor compound for 2-acetyl-1-pyrroline and glycine for ethylpyrazine. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lightning-induced nitrogen oxides (LNOX), in the presence of sunlight, volatile organic compounds and water, can be a relatively large but uncertain source for ozone (O3) and hydroxyl radical (OH) in the atmosphere. Using lightning flash data from the National Lightning Detection...
Ozone is produced by chemical interactions involving nitrogen oxides (NOx) and Volatile Organic Compounds (VOCs) in the presence of sunlight. At high concentrations, ground-level ozone has been shown to be harmful to human health and the environment. It has been reco...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-12
... replaced with low oxide of nitrogen burners. We are proposing to approve R307-401-4(1) and (3) because they... , 4 tons per year for volatile organic compounds (VOCs), nitrogen dioxide (NO 2 ), and sulfur dioxide... levels represent a reasonable balance between environmental protection and economic growth (76 FR 38758...
Known as tropospheric or ground-level ozone, this gas is harmful to human heath and the environment. Since it forms from emissions of volatile organic compounds (VOCs) and nitrogen oxides (NOx), these pollutants are regulated under air quality standards.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-07
... Louisiana L.L.C, National Petrochemical & Refiners Association (``NPRA''), PCS Nitrogen Fertilizer, Shell... requirements, Volatile organic compounds. Dated: June 23, 2011. Al Armendariz, Regional Administrator, Region 6...
75 FR 57390 - Approval and Promulgation of Implementation Plans; Alabama: Volatile Organic Compounds
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-21
... Tropospheric ozone, commonly known as smog, occurs when VOCs and nitrogen oxides (NO X ) react in the... contribution to tropospheric ozone formation. EPA is approving revisions to the Alabama SIP submitted on March... the VOC definition on the basis that these compounds make a negligible contribution to tropospheric...
Rhoderick, George C; Yen, James H
2006-05-01
Primary gravimetric gas cylinder standards containing 30 volatile organic compounds (VOCs) in nitrogen were prepared using a procedure previously developed to prepare gas mixture cylinder standards of VOCs at the 5 nmol/mol level. This set of primary standards was intercompared to existing gas cylinder standards, containing as many as 19 of the 30 volatile organics present in these new primaries, using gas chromatography with a hydrogen flame ionization detector coupled with cryogenic preconcentration. The linear regression analysis showed excellent agreement among the standards for each compound. Similar mixtures containing many of these compounds in treated aluminum gas cylinders have been evaluated over time and have shown stability for as much as 10 years. The development of these 30-component primary standards led to the preparation and certification of a reissue of Standard Reference Material (SRM) 1804 at the nominal amount-of-substance fraction of 5 nmol/mol for each analyte. A lot of 20 cylinders containing the mixture was prepared at NIST following previously demonstrated protocols for preparation of the cylinders. Each cylinder was analyzed against one cylinder from the lot, designated as the "lot standard," for each of the 30 compounds. As a result of the uncertainty analysis, the data showed that rather than declaring the lot homogeneous with a much higher uncertainty, each cylinder could be individually certified. The expanded uncertainty limits ranged from 1.5 to 10% for 28 of the 30 analytes, with two of the analytes having uncertainties as high as 19% in those SRM cylinders certified. Due to stability issues and some high uncertainties for a few analytes in 2 of the samples, 18 of the 20 candidate SRM samples were certified. These volatile organic gas mixtures represent the most complex gas SRMs developed at NIST.
Suinyuy, Terence N; Donaldson, John S; Johnson, Steven D
2013-01-01
Volatiles play a key role in attraction of pollinators to cycad cones, but the extent to which volatile chemistry varies among cycad species is still poorly documented. Volatile composition of male and female cones of nineteen African cycad species (Encephalartos; Zamiaceae) was analysed using headspace technique and gas chromatography-mass spectrometry (GC-MS). A total of 152 compounds were identified among the species included in this study, the most common of which were monoterpenes, nitrogen-containing compounds and unsaturated hydrocarbons. Male and female cones emitted similar volatile compounds which varied in relative amounts with two unsaturated hydrocarbons (3E)-1,3-octadiene and (3E,5Z)-1,3,5-octatriene present in the volatile profile of most species. In a multivariate analysis of volatile profiles using non-metric multidimensional scaling (NMDS), a number of species clusters were identified according to shared emission of unsaturated hydrocarbons, pyrazines, benzenoids, aldehydes, alkanes and terpenoids. In comparison, terpenoids are common in Zamia and dominant in Macrozamia species (both in the family Zamiaceae) while benzenoids, esters, and alcohols are dominant in Cycas (Cycadaceae) and in Stangeria (Stangeriaceae). It is likely that volatile variation among Encephalartos species reflects both phylogeny and adaptations to specific beetle pollinators. Copyright © 2012 Elsevier Ltd. All rights reserved.
Zhu, H B; Su, C J; Tang, H F; Ruan, Z; Liu, D H; Wang, H; Qian, Y L
2017-10-20
Objective: To establish a method for rapid determination of 47 volatile organic compounds in the air of workplace using portable gas chromatography - mass spectrometer(GC - MS). Methods: The mixed standard gas with different concentration levels was made by using the static gas distribution method with the high purity nitrogen as dilution gas. The samples were injected into the GC - MS by a hand - held probe. Retention time and characteristic ion were used for qualitative analysis,and the internal standard method was usd for quantitation. Results: The 47 poisonous substances were separated and determined well. The linear range of this method was 0.2 - 16.0 mg/m(3),and the relative standard deviation of 45 volatile ovganic compounds was 3.8% - 15.8%. The average recovery was 79.3% - 119.0%. Conclusion: The method is simple,accurate,sensitive,has good separation effect,short analysis period, can be used for qualitative and quantitative analysis of volatile organic compounds in the workplace, and also supports the rapid identification and detection of occupational hazards.
NASA Technical Reports Server (NTRS)
Pizzarello, S.; Feng, X.; Epstein, S.; Cronin, J. R.
1994-01-01
The combined volatile bases (ammonia, aliphatic amines, and possibly other bases), ammonia, amino acids, and polar hydrocarbons were prepared from the Murchison meteorite for isotopic analyses. The volatile bases were obtained by cryogenic transfer after acid-hydrolysis of a hot-water extract and analyzed by combined gas chromatography-mass spectrometry of pentafluoropropionyl derivatives. The aliphatic amines present in this preparation comprise a mixture that includes both primary and secondary isomers through C5 at a total concentration of > or = 100 nmoles g-1. As commonly observed for meteoritic organic compounds, almost all isomers through C5 are present, and the concentrations within homologous series decrease with increasing chain length. Ammonia was chromatographically separated from the other volatile bases and found at a concentration of 1.1-1.3 micromoles g-1 meteorite. The ammonia analyzed includes contributions from ammonium salts and the hydrolysis of extractable organic compounds, e.g., carboxamides. Stable isotope analyses showed the volatile bases to be substantially enriched in the heavier isotopes, relative to comparable terrestrial compounds delta D < or = +1221%; delta 13C = +22%; delta 15N = +93%). Ammonia, per se, was found to have a somewhat lower delta 15N value (+69%) than the total volatile bases; consequently, a higher delta 15N (>93%) can be inferred for the other bases, which include the amines. Solvent-extractable polar hydrocarbons obtained separately were found to be enriched in 15N (delta 15N = +104%). Total amino acids, prepared from a hydrolyzed hot-water extract by cation exchange chromatography, gave a delta 15N of +94%, a value in good agreement with that obtained previously. Nitrogen isotopic data are also given for amino acid fractions separated chromatographically. The delta 15N values of the Murchison soluble organic compounds analyzed to date fall within a rather narrow range (delta 15N = +94 +/- 8%), an observation consistent with their formation, or formation of their precursors, by interstellar chemistry.
Region 6: Texas Adequate Letter (4/16/2010)
This letter from EPA to Texas Commission on Environmental Quality determined 2021 motor vehicle emission budgets for nitrogen oxides (NOx) and volatile organic compounds (VOCs) for Beaumont/Port Arthur area adequate for transportation conformity purposes
COMBUSTION AREA SOURCES: DATA SOURCES
The report identifies, documents, and evaluates data sources for stationary area source emissions, including solid waste and agricultural burning. Area source emissions of particulate matter, sulfur dioxide, oxides of nitrogen, reactive volatile organic compounds, and carbon mon...
76 FR 39899 - Notice of Lodging of Consent Decree Under the Clean Air Act
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-07
... emissions of nitrogen oxides, sulfur dioxide, volatile organic compounds, and benzene. Among other things... refinery's benzene monitoring program is enhanced, and the refinery's leak-detection-and-repair (LDAR...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moran, James J.; Kreuzer, Helen W.; Carman, April J.
Acid scavengers are frequently used as stabilizer compounds in a variety of applications. When used to stabilize volatile compounds such as nerve agents, the lower volatility and higher stability of acid scavengers make them more persistent in a post-event forensic setting. We are employing compound-specific stable isotope analysis of the carbon, nitrogen, and hydrogen components of three acid scavenging compounds (N,N-diethylaniline, tributylamine, and triethylamine) as a tool for distinguishing between different samples of the stabilizers. Combined analysis of three stable isotopes in these samples improves the technique’s resolving potential, enhancing sample matching capabilities. The compound specific methods developed here canmore » be applied to instances where these compounds are not pure, such as when mixed with an agent or when found as a residue at an event site. Effective sample matching can be crucial for linking compounds at multiple event sites or linking a supply inventory to an event.« less
NASA Astrophysics Data System (ADS)
Coggon, Matthew M.; Veres, Patrick R.; Yuan, Bin; Koss, Abigail; Warneke, Carsten; Gilman, Jessica B.; Lerner, Brian M.; Peischl, Jeff; Aikin, Kenneth C.; Stockwell, Chelsea E.; Hatch, Lindsay E.; Ryerson, Thomas B.; Roberts, James M.; Yokelson, Robert J.; Gouw, Joost A.
2016-09-01
Volatile organic compounds (VOCs) emitted from residential wood and crop residue burning were measured in Colorado, U.S. When compared to the emissions from crop burning, residential wood burning exhibited markedly lower concentrations of acetonitrile, a commonly used biomass burning tracer. For both herbaceous and arboraceous fuels, the emissions of nitrogen-containing VOCs (NVOCs) strongly depend on the fuel nitrogen content; therefore, low NVOC emissions from residential wood burning result from the combustion of low-nitrogen fuel. Consequently, the emissions of compounds hazardous to human health, such as HNCO and HCN, and the formation of secondary pollutants, such as ozone generated by NOx, are likely to depend on fuel nitrogen. These results also demonstrate that acetonitrile may not be a suitable tracer for domestic burning in urban areas. Wood burning emissions may be best identified through analysis of the emissions profile rather than reliance on a single tracer species.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-12
... implementation plan revisions, submitted by the North Carolina Department of Environment and Natural Resources... for the motor vehicle emissions budgets (MVEB) for volatile organic compounds and nitrogen oxides that...
Region 5: Indiana Adequate Letter (7/15/2005)
This letter from EPA to the Indiana Department of Environmental Management determined the 2015 motor vehicle emission budgets (MVEBs) for volatile organic compounds (VOCs) and oxides of nitrogen (NOx) for Evansville, Indiana's 8-hour ozone nonattainment
Olson, Joelle F; Vers, Leonard M Ver; Moon, Roger D; Kells, Stephen A
2017-01-01
After feeding, bed bugs aggregate in cracks and crevices near a host. Aggregation and arrestment are mediated by tactile and chemical stimuli associated with the bugs' feces and exuviae. Volatiles derived from fecally stained filter papers were analyzed by solid-phase microextraction (SPME) and evaluated using a multichoice behavioral assay to determine their impact on bed bug aggregation. In addition, crude fecal extracts were collected in methanol, analyzed by gas chromatography coupled with electroantennogram detection (GC-EAD) and mass spectrometry (GC-MS) and evaluated in open-air multichoice behavioral assays. The SPME method was used to detect (E)-2-hexenal and (E)-2-octenal in heated bed bug feces. The presence of these two volatile components did not affect aggregation. Analysis of the crude fecal extracts revealed several semi-volatile nitrogenous compounds, a carboxylic acid and a sulfur-based compound. Adult antennae responded to compounds eluted from three regions of the crude extract using GC-EAD. A combination of two compounds, dimethyl trisulfide and methyldiethanolamine, resulted in aggregation responses equivalent to the original crude extract. Bed bug aggregation is mediated by semi-volatile compounds derived from fecal extracts, and two compounds are sufficient to elicit aggregation. The two compounds identified here could be used to enhance the effectiveness of insecticidal applications or improve monitoring techniques. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
ECONOMIC GROWTH ANALYSIS SYSTEM: USER'S GUIDE
The two-volume report describes the development of, and provides information needed to operate, a prototype Economic Growth Analysis System (E-GAS) modeling system. The model will be used to project emissions inventories of volatile organic compounds (VOCs), oxides of nitrogen (...
ECONOMIC GROWTH ANALYSIS SYSTEM: REFERENCE MANUAL
The two-volume report describes the development of, and provides information needed to operate, a prototype Economic Growth Analysis System (E-GAS) modeling system. The model will be used to project emissions inventories of volatile organic compounds (VOCs), oxides of nitrogen (...
The PerkinElmer Elm (formerly the AirBase CanarIT) is a multi-sensor air quality monitoring device that measures particulate matter (PM), total volatile organic compounds (VOCs), nitrogen dioxide (NO2), and several other atmospheric components. PM, VOCs, and NO2
Region 5: Wisconsin Adequate Letter (5/21/2010)
This letter from EPA to the Wisconsin Department of Natural Resources, determined the 2012 and 2020 motor vehicle emission budgets (MVEBs) for volatile organic compounds (VOCs) and oxides of nitrogen (NOx) for the Milwaukee-Racine, Door County, Manitowoe
Clement, T.; Perez, M.; Mouret, J. R.; Sanchez, I.; Sablayrolles, J. M.
2013-01-01
Nitrogen supplementation, which is widely used in winemaking to improve fermentation kinetics, also affects the products of fermentation, including volatile compounds. However, the mechanisms underlying the metabolic response of yeast to nitrogen additions remain unclear. We studied the consequences for Saccharomyces cerevisiae metabolism of valine and ammonium pulses during the stationary phase of four-stage continuous fermentation (FSCF). This culture technique provides cells at steady state similar to that of the stationary phase of batch wine fermentation. Thus, the FSCF device is an appropriate and reliable tool for individual analysis of the metabolic rerouting associated with nutrient additions, in isolation from the continuous evolution of the environment in batch processes. Nitrogen additions, irrespective of the nitrogen-containing compound added, substantially modified the formation of fermentation metabolites, including glycerol, succinate, isoamyl alcohol, propanol, and ethyl esters. This flux redistribution, fulfilling the requirements for precursors of amino acids, was consistent with increased protein synthesis resulting from increased nitrogen availability. Valine pulses, less efficient than ammonium addition in increasing the fermentation rate, were followed by a massive conversion of this amino acid in isobutanol and isobutyl acetate through the Ehrlich pathway. However, additional routes were involved in valine assimilation when added in stationary phase. Overall, we found that particular metabolic changes may be triggered according to the nature of the amino acid supplied, in addition to the common response. Both these shared and specific modifications should be considered when designing strategies to modulate the production of volatile compounds, a current challenge for winemakers. PMID:23417007
Clement, T; Perez, M; Mouret, J R; Sanchez, I; Sablayrolles, J M; Camarasa, C
2013-04-01
Nitrogen supplementation, which is widely used in winemaking to improve fermentation kinetics, also affects the products of fermentation, including volatile compounds. However, the mechanisms underlying the metabolic response of yeast to nitrogen additions remain unclear. We studied the consequences for Saccharomyces cerevisiae metabolism of valine and ammonium pulses during the stationary phase of four-stage continuous fermentation (FSCF). This culture technique provides cells at steady state similar to that of the stationary phase of batch wine fermentation. Thus, the FSCF device is an appropriate and reliable tool for individual analysis of the metabolic rerouting associated with nutrient additions, in isolation from the continuous evolution of the environment in batch processes. Nitrogen additions, irrespective of the nitrogen-containing compound added, substantially modified the formation of fermentation metabolites, including glycerol, succinate, isoamyl alcohol, propanol, and ethyl esters. This flux redistribution, fulfilling the requirements for precursors of amino acids, was consistent with increased protein synthesis resulting from increased nitrogen availability. Valine pulses, less efficient than ammonium addition in increasing the fermentation rate, were followed by a massive conversion of this amino acid in isobutanol and isobutyl acetate through the Ehrlich pathway. However, additional routes were involved in valine assimilation when added in stationary phase. Overall, we found that particular metabolic changes may be triggered according to the nature of the amino acid supplied, in addition to the common response. Both these shared and specific modifications should be considered when designing strategies to modulate the production of volatile compounds, a current challenge for winemakers.
Modeling impacts of cold climates on vehicle emissions : final report.
DOT National Transportation Integrated Search
2017-01-20
Vehicle emissions include carbon monoxide (CO), nitrogen oxides (NOx = NO + NO2), volatile organic compounds (VOCs), and air toxics such as benzene. Each of these pollutants is linked to adverse human health effects. To evaluate the contributions of ...
Region 5: Ohio Columbus Adequate Letter (8/23/2016)
Letter from EPA to State of Ohio determined the 2008 8-hour ozone standard plan for years 2020 and 2030 Motor Vehicle Emissions Budgets for volatile organic compounds and nitrogen oxides for Columbus area adequate for transportation conformity purposes.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-18
...); letter dated June 16, 2011. 2. Tim Shesteck, American Chemistry Council (ACC); letter dated June 17, 2011..., Intergovernmental relations, Nitrogen dioxide, Ozone, Volatile organic compounds. Dated: October 3, 2012. Jared...
Region 5: Ohio Lima and Wheeling Adequate Letter (4/18/2007)
This letter from EPA to the Ohio Environmental Protection Agency determined the 2009 and 2018 motor vehicle emission budgets (MVEBs) for volatile organic compounds (VOCs) and oxides of nitrogen (NOx) for the Allen County (Lima), Belmont County (Wheeling),
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-08
...-approved Motor Vehicle Emissions Budgets (MVEBs) for nitrogen oxides (NO X ) and volatile organic compounds... interested in commenting on this action should do so at this time. DATES: Comments must be received in...
7 CFR 1466.4 - National priorities.
Code of Federal Regulations, 2010 CFR
2010-01-01
... statutory resource concerns that include soil, water, wildlife, air quality, and related resource concerns..., nitrogen oxides, volatile organic compounds, and ozone precursors and depleters that contribute to air quality impairment violations of National Ambient Air Quality Standards; (4) Reduction in soil erosion and...
7 CFR 1466.4 - National priorities.
Code of Federal Regulations, 2014 CFR
2014-01-01
... statutory resource concerns that include soil, water, wildlife, air quality, and related resource concerns..., nitrogen oxides, volatile organic compounds, and ozone precursors and depleters that contribute to air quality impairment violations of National Ambient Air Quality Standards; (4) Reduction in soil erosion and...
7 CFR 1466.4 - National priorities.
Code of Federal Regulations, 2011 CFR
2011-01-01
... statutory resource concerns that include soil, water, wildlife, air quality, and related resource concerns..., nitrogen oxides, volatile organic compounds, and ozone precursors and depleters that contribute to air quality impairment violations of National Ambient Air Quality Standards; (4) Reduction in soil erosion and...
7 CFR 1466.4 - National priorities.
Code of Federal Regulations, 2013 CFR
2013-01-01
... statutory resource concerns that include soil, water, wildlife, air quality, and related resource concerns..., nitrogen oxides, volatile organic compounds, and ozone precursors and depleters that contribute to air quality impairment violations of National Ambient Air Quality Standards; (4) Reduction in soil erosion and...
7 CFR 1466.4 - National priorities.
Code of Federal Regulations, 2012 CFR
2012-01-01
... statutory resource concerns that include soil, water, wildlife, air quality, and related resource concerns..., nitrogen oxides, volatile organic compounds, and ozone precursors and depleters that contribute to air quality impairment violations of National Ambient Air Quality Standards; (4) Reduction in soil erosion and...
Diel rhythms in the volatile emission of apple and grape foliage.
Giacomuzzi, Valentino; Cappellin, Luca; Nones, Stefano; Khomenko, Iuliia; Biasioli, Franco; Knight, Alan L; Angeli, Sergio
2017-06-01
This study investigated the diel emission of volatile organic compounds (VOCs) from intact apple (Malus x domestica Borkh., cv. Golden Delicious) and grape (Vitis vinifera L., cv. Pinot Noir) foliage. Volatiles were monitored continuously for 48 h by proton transfer reaction - time of flight - mass spectrometry (PTR-ToF-MS). In addition, volatiles were collected by closed-loop-stripping-analysis (CLSA) and characterized by gas chromatography-mass spectrometry (GC-MS) after 1 h and again 24 and 48 h later. Fourteen and ten volatiles were characterized by GC-MS in apple and grape, respectively. The majority of these were terpenes, followed by green leaf volatiles, and aromatic compounds. The PTR-ToF-MS identified 10 additional compounds and established their diel emission rhythms. The most abundant volatiles displaying a diel rhythm included methanol and dimethyl sulfide in both plants, acetone in grape, and mono-, homo- and sesquiterpenes in apple. The majority of volatiles were released from both plants during the photophase; whereas methanol, CO 2 , methyl-butenol and benzeneacetaldehyde were released at significantly higher levels during the scotophase. Acetaldehyde, ethanol, and some green leaf volatiles showed distinct emission bursts in both plants following the daily light switch-off. These new results obtained with a combined analytical approach broaden our understanding of the rhythms of constitutive volatile release from two important horticultural crops. In particular, diel emission of sulfur and nitrogen-containing volatiles are reported here for the first time in these two crops. Copyright © 2017. Published by Elsevier Ltd.
Dekeirsschieter, Jessica; Stefanuto, Pierre-Hugues; Brasseur, Catherine; Haubruge, Eric; Focant, Jean-François
2012-01-01
Soon after death, the decay process of mammalian soft tissues begins and leads to the release of cadaveric volatile compounds in the surrounding environment. The study of postmortem decomposition products is an emerging field of study in forensic science. However, a better knowledge of the smell of death and its volatile constituents may have many applications in forensic sciences. Domestic pigs are the most widely used human body analogues in forensic experiments, mainly due to ethical restrictions. Indeed, decomposition trials on human corpses are restricted in many countries worldwide. This article reports on the use of comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GCxGC-TOFMS) for thanatochemistry applications. A total of 832 VOCs released by a decaying pig carcass in terrestrial ecosystem, i.e. a forest biotope, were identified by GCxGC-TOFMS. These postmortem compounds belong to many kinds of chemical class, mainly oxygen compounds (alcohols, acids, ketones, aldehydes, esters), sulfur and nitrogen compounds, aromatic compounds such as phenolic molecules and hydrocarbons. The use of GCxGC-TOFMS in study of postmortem volatile compounds instead of conventional GC-MS was successful. PMID:22723918
Characterization of kerosene-heater emissions inside two mobile homes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burton, R.M.; Seila, R.A.; Wilson, W.E.
1990-03-01
In an effort to determine the impact of kerosene heater emissions on indoor air quality, measurements were made in and around two mobile homes at a rural mobile home park near Apex, NC. The sampling was performed at two single-wide mobile homes equipped with kerosene heaters. The concentrations of acidic aerosols and gases, fine and coarse particulate aerosol mass, carbon monoxide, nitrogen oxides, volatile organic compounds and semivolatiles, were determined for periods of heater operation and for periods in which heaters were not operated. Simultaneous outdoor measurements of acid aerosols and gases, fine and coarse aerosol mass, and volatile organicmore » compounds were conducted to determine the contribution of outdoor pollutants to the indoor concentrations. Comparisons between the concentrations obtained from the analysis of outdoor, heater-on, and heater-off samples allowed the authors to examine the impacts of the kerosene emissions on indoor concentrations. Concentrations of sulfates, aerosol strong acidity, fine and coarse aerosol mass, carbon monoxide, and sulfur dioxide were found to be higher when the heater was operated; however, these heater-on concentrations were comparable to those observed in moderately polluted atmospheres. Indoor concentrations of nitrous acid and nitrogen oxides during heater operation were found to be considerably higher than those observed in polluted atmospheres. Finally, use of kerosene heaters was found to be responsible for increased concentrations of non-methane volatile and semi-volatile organic compounds indoors. Acid aerosol indoor concentrations were quite variable during the study and were found to exist in the presence of excess ammonia.« less
May 6, 2005, Transportation Conformity Rule That Addresses PM2.5 Precursors
This final rule, published by EPA on May 6, 2005, adds the following transportation-related PM2.5 precursors to the transportation conformity regulations: nitrogen oxides (NOx), volatile organic compounds (VOCs), sulfur oxides (SOx), and ammonia (NH3).
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-02
... by the reaction of volatile organic compounds (VOC) and oxides of nitrogen (NO X ) in the atmosphere... own motion, submit to the Administrator a revised designation of any area or portion thereof within...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-26
... nitrogen oxides (NO X ) and volatile organic compounds (VOCs) for the 1997 8-Hour Ozone National Ambient... second comment period. Any parties interested in commenting on this action should do so at this time...
IDENTIFICATION AND CHARACTERIZATION OF MISSING AND UNACCOUNTED FOR AREA SOURCE CATEGORIES
The report identifies and characterizes missing or unaccounted for area source categories. Area source emissions of particulate matter (TSP), sulfur dioxide (SO2), oxides of nitrogen (NOx), reactive volatile organic compounds (VOCs), and carbon monoxide (CO) are estimated annuall...
USDA-ARS?s Scientific Manuscript database
Tropospheric ozone (O3) is a pollutant that is generated by volatile organic compounds, nitrogen oxides and sunlight. When plants take in O3 through stomata, harmful reactive oxygen species (ROS) are produced that induce the production of ROS scavenging antioxidants. Climate change predictions indic...
USDA-ARS?s Scientific Manuscript database
Wet distiller’s grains with solubles (WDGS) are a common feed ingredient in beef feedlot diets, but the excess nitrogen in these diets creates air quality issues, primarily due to the aromatic compounds emitted during fermentation of excreted protein. Use of high-moisture corn (HMC) instead of dry-r...
Removal of nitrogen oxides from gas streams by biofiltration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barrett, K.B.; Barnes, J.M.; Apel, W.A.
1994-12-31
Nitrogen oxides (NO{sub x}) are primary air pollutants and, as such, there is considerable interest in the development of efficient, cost effective technologies to remediate NO{sub x} containing emissions. Biofiltration involves the venting of contaminated gas streams through biologically active material such as soil or compost. This technology has been used successfully to control odors as well as volatile organic compounds from a variety of industrial and public sources. The purpose of this study was to evaluate the feasibility of using biofiltration to convert NO{sub x} to nitrogen gas.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-12
... , coarse particles (PM 10 ), ammonia (NH 3 ) and sulfur dioxide (SO 2 ). WVDEP selected the year 2002 as... nitrogen oxides (NO X ), volatile organic compounds (VOCs), PM 2.5 , coarse particles (PM 10 ), ammonia (NH...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-16
... (PM 10 ), nitrogen oxides (NO X ), volatile organic compounds (VOC), ammonia (NH 3 ), and sulfur... , coarse particles (PM 10 ), ammonia (NH 3 ), and sulfur dioxide (SO 2 ). [FR Doc. 2013-08835 Filed 4-15-13...
76 FR 5609 - Notice of Proposed Consent Decree Under the Clean Air Act
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-01
... injunctive relief to reduce emissions of nitrogen oxides, sulfur dioxide, volatile organic compounds, and... Assistant Attorney General, Environment and Natural Resources Division, and either e-mailed to pubcomment.... Treasury. Maureen Katz, Assistant Chief, Environmental Enforcement Section, Environment and Natural...
ECONOMIC GROWTH ANALYSIS SYSTEM: USER'S GUIDE VERSION 2.0
The two-volume report describes the development of and provides information needed to operate, the Economic Growth Analysis System (E-GAS) Version 2.0 model. The model will be used to project emissions inventories of volatile organic compounds (VOCs), oxides of nitrogen (NOx), a...
ECONOMIC GROWTH ANALYSIS SYSTEM: REFERENCE MANUAL VERSION 2.0
The two-volume report describes the development of and provides information needed to operate, the Economic Growth Analysis System (E-GAS) Version 2.0 model. The model will be used to project emissions inventories of volatile organic compounds (VOCs), oxides of nitrogen (NOx), a...
ECONOMIC GROWTH ANALYSIS SYSTEM: USER'S GUIDE - VERSION 3.0
The two-volume report describes the development of, and provides information needed to operate, the Economic Growth Analysis System (E-GAS) Version 3.0 model. The model will be used to project emissions inventories of volatile organic compounds, oxides of nitrogen, and carbon mon...
ECONOMIC GROWTH ANALYSIS SYSTEM: REFERENCE MANUAL VERSION 3.0
The two-volume report describes the development of, and provides information needed to operate, the Economic Growth Analysis System (E-GAS) Version 3.0 model. The model will be used to project emissions inventories of volatile organic compounds, oxides of nitrogen, and carbon mon...
Air Pollution Monitoring Site Selection by Multiple Criteria Decision Analysis
Criteria air pollutants (particulate matter, sulfur dioxide, oxides of nitrogen, volatile organic compounds, and carbon monoxide) as well as toxic air pollutants are a global concern. A particular scenario that is receiving increased attention in the research is the exposure to t...
76 FR 41731 - Air Quality: Widespread Use for Onboard Refueling Vapor Recovery and Stage II Waiver
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-15
... sunlight, nitrogen oxides and other volatile organic compounds to form ozone. In order to prevent this, the...) regulations at 13 CFR 121.201;) (2) a small governmental jurisdiction that is a government of a city, county...
Biogenic volatile organic compounds from the urban forest of the Metropolitan Region, Chile.
Préndez, Margarita; Carvajal, Virginia; Corada, Karina; Morales, Johanna; Alarcón, Francis; Peralta, Hugo
2013-12-01
Tropospheric ozone is a secondary pollutant whose primary sources are volatile organic compounds and nitrogen oxides. The national standard is exceeded on a third of summer days in some areas of the Chilean Metropolitan Region (MR). This study reports normalized springtime experimental emissions factors (EF) for biogenic volatile organic compounds from tree species corresponding to approximately 31% of urban trees in the MR. A Photochemical Ozone Creation Index (POCI) was calculated using Photochemical Ozone Creation Potential of quantified terpenes. Ten species, natives and exotics, were analysed using static enclosure technique. Terpene quantification was performed using GC-FID, thermal desorption, cryogenic concentration and automatic injection. Observed EF and POCI values for terpenes from exotic species were 78 times greater than native values; within the same family, exotic EF and POCI values were 28 and 26 times greater than natives. These results support reforestation with native species for improved urban pollution management. Copyright © 2013 Elsevier Ltd. All rights reserved.
Solar nebula chemistry - Implications for volatiles in the solar system
NASA Technical Reports Server (NTRS)
Fegley, Bruce, Jr.; Prinn, Ronald G.
1989-01-01
Current theoretical models of solar nebula chemistry which take into account the interplay between chemistry and dynamics are presented for the abundant reactive volatile elements including hydrogen, carbon, nitrogen, oxygen, and sulfur. Results of these models indicate that, in the solar nebula, the dominant carbon and nitrogen gases were CO and NO, whereas, in giant planet subnebulae, the dominant carbon and nitrogen gases were CH4 and NH3; in the solar nebula, the Fe metal grains catalyzed the formation of organic compounds from CO and H2 via the Fischer-Tropsch-type reaction. It was also found that, in solar nebula, bulk FeS formation was kinetically favorable, while FeO incorporation into silicates and bulk Fe3O4 formation were kinetically inhibited. Furthermore, clathrate formation was kinetically inhibited in the solar nebula, while it was kinetically favorable in giant planet subnebulae.
Saka, Boualem; Djouahri, Abderrahmane; Djerrad, Zineb; Terfi, Souhila; Aberrane, Sihem; Sabaou, Nasserdine; Baaliouamer, Aoumeur; Boudarene, Lynda
2017-06-01
In the present work, the Brassica rapa var. rapifera parts essential oils and their antioxidant and antimicrobial activities were investigated for the first time depending on geographic origin and extraction technique. Gas-chromatography (GC) and GC/mass spectrometry (MS) analyses showed several constituents, including alcohols, aldehydes, esters, ketones, norisoprenoids, terpenic, nitrogen and sulphur compounds, totalizing 38 and 41 compounds in leaves and root essential oils, respectively. Nitrogen compounds were the main volatiles in leaves essential oils and sulphur compounds were the main volatiles in root essential oils. Qualitative and quantitative differences were found among B. rapa var. rapifera parts essential oils collected from different locations and extracted by hydrodistillation and microwave-assisted hydrodistillation techniques. Furthermore, our findings showed a high variability for both antioxidant and antimicrobial activities. The highlighted variability reflects the high impact of plant part, geographic variation and extraction technique on chemical composition and biological activities, which led to conclude that we should select essential oils to be investigated carefully depending on these factors, in order to isolate the bioactive components or to have the best quality of essential oil in terms of biological activities and preventive effects in food. © 2017 Wiley-VHCA AG, Zurich, Switzerland.
Duporté, Geoffroy; Parshintsev, Jevgeni; Barreira, Luís M F; Hartonen, Kari; Kulmala, Markku; Riekkola, Marja-Liisa
2016-05-03
Pinonaldehyde, which is among the most abundant oxidation products of α-pinene, and dimethylamine were selected to study the formation of N-containing low volatile compounds from aldehyde-amine reactions in the atmosphere. Gas phase reactions took place in a Tedlar bag, which was connected to a mass spectrometer ionization source via a short deactivated fused silica column. In addition to on-line analysis, abundance of gaseous precursors and reaction products were monitored off-line. Condensable products were extracted from the bag's walls with a suitable solvent and analyzed by gas chromatography coupled to chemical ionization high-resolution quadrupole time-of-flight mass spectrometry and by ultra-high-performance liquid chromatography coupled to electrospray ionization Orbitrap mass spectrometry. The reactions carried out resulted in several mid-low vapor pressure nitrogen-containing compounds that are potentially important for the formation of secondary organic aerosols in the atmosphere. Further, the presence of brown carbon, confirmed by liquid chromatography-UV-vis-mass spectrometry, was observed. Some of the compounds identified in the laboratory study were also observed in aerosol samples collected at SMEAR II station (Hyytiälä, Finland) in August 2015 suggesting the importance of aldehyde-amine reactions for the aerosol formation and growth.
Manimaran, Uthaman; Shakila, Robinson Jeya; Shalini, Rajendran; Sivaraman, Balasubramanian; Sumathi, Ganesan; Selvaganapathi, Rajendran; Jeyasekaran, Geevarathnam
2016-02-01
In this study, the effect of commercial additives viz. cafodos and altesa employed to treat Indian octopus (Cistopus indicus) was examined during chilled and frozen storage. Shelf lives of treated and untreated octopus in ice were 6 and 8 days, respectively in ice. Treated and untreated frozen octopus had a shelf life of 40 days. Autolytic and microbiological changes were not controlled by the additives, as evidenced through rapid reduction in non-protein nitrogen (NPN) and α-amino nitrogen (α-AN) compounds; as well as accumulation of water soluble ammoniacal nitrogen and total volatile base- nitrogen (TVB-N) compounds. Loss of texture and colour were the major quality defects noticed in treated octopus as a result of enhanced protein solubility. Therefore, the additives approved for use in octopus neither enhanced the shelf life nor improved the sensory quality.
MODULATING EMISSIONS FROM ELECTRIC GENERATING UNITS AS A FUNCTION OF METEOROLOGICAL VARIABLES
Electric Generating Units (EGUs) are an important source of emissions of nitrogen oxides (NOx), which react with volatile organic compounds (VOCs) in the presence of sunlight to form ozone. Emissions from EGUs are believed to vary depending on short-term demands for electricity;...
Indoor Air Quality in Schools (IAQ): The Importance of Monitoring Carbon Dioxide Levels.
ERIC Educational Resources Information Center
Sundersingh, David; Bearg, David W.
This article highlights indoor air quality and exposure to pollutants at school. Typical air pollutants within schools include environmental tobacco smoke, formaldehyde, volatile organic compounds, nitrogen oxides, carbon monoxide, carbon dioxide, allergens, pathogens, radon, pesticides, lead, and dust. Inadequate ventilation, inefficient…
Rollero, Stéphanie; Bloem, Audrey; Ortiz-Julien, Anne; Camarasa, Carole; Divol, Benoit
2018-05-07
Saccharomyces cerevisiae is currently the most important yeast involved in food fermentations, particularly in oenology. However, several other yeast species occur naturally in grape must that are highly promising for diversifying and improving the aromatic profile of wines. If the nitrogen requirement of S. cerevisiae has been described in detail, those of non-Saccharomyces yeasts remain poorly studied despite their increasingly widespread use in winemaking. With a view to improving the use of non-Saccharomyces yeasts in winemaking, we explored the fermentation performances, the utilization of nitrogen sources and the volatile compound production of ten strains of non-conventional yeasts in pure culture. Two different conditions were tested: one mimicking the grape juice's nitrogen composition and one with all the nitrogen sources at the same level. We highlighted the diversity in terms of nitrogen preference and amount consumed among the yeast strains. Some nitrogen sources (arginine, glutamate, glycine, tryptophan and GABA) displayed the largest variations between strains throughout the fermentation. Several non-Saccharomyces strains produced important aroma compounds such as higher alcohols, acetate and ethyl esters in significantly higher quantities than S. cerevisiae.
40 CFR 52.2052 - Motor vehicle emissions budgets for Pennsylvania ozone areas.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Pennsylvania ozone areas. 52.2052 Section 52.2052 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...) Pennsylvania § 52.2052 Motor vehicle emissions budgets for Pennsylvania ozone areas. (a) As of December 26... nitrogen oxides (NOX) and volatile organic compounds (VOCs) for the Lancaster 1997 8-Hour Ozone Maintenance...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-13
... Promulgation of Air Quality Implementation Plans; Maryland; Reasonably Available Control Technology for the... control technology (RACT) for oxides of nitrogen (NO X ) and volatile organic compounds (VOCs) for the... business information (CBI) or other information whose disclosure is restricted by statute. Certain other...
77 FR 25750 - Notice of Lodging of Proposed Consent Decree Under the Clean Air Act
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-01
... injunctive relief to reduce emission of nitrogen oxides and volatile organic compounds. The Department of... to the Consent Decree. Comments should be addressed to the Assistant Attorney General, Environment... the address given above. Robert Brook, Assistant Chief, Environmental Enforcement Section, Environment...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-28
... modifies Delaware's PSD program at 7 DE Admin. Code 1125 to establish appropriate emission thresholds for..., Sulfur oxides, Volatile organic compounds. Dated: February 8, 2013. W.C. Early, Acting Regional...-approved baseline dates for sulfur dioxide, particulate matter, and nitrogen dioxide in the definition of...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-29
... the motor vehicle emissions budgets (MVEB) for volatile organic compounds and nitrogen oxides that..., Pesticides and Toxics Management Division, U.S. Environmental Protection Agency, Region 4, 61 Forsyth Street... Development Section, Air Planning Branch, Air, Pesticides and Toxics Management Division, U.S. Environmental...
Shan, Linan; He, Yunfeng; Chen, Jie; Huang, Qian; Wang, Hongcai
2015-12-01
Ammonia (NH3) volatilization is a major pathway of nitrogen (N) loss from soil-crop systems. As vegetable cultivation is one of the most important agricultural land uses worldwide, a deeper understanding of NH3 volatilization is necessary in vegetable production systems. We therefore conducted a 3-year (2010-2012) field experiment to characterize NH3 volatilization and evaluate the effect of different N fertilizer treatments on this process during the growth period of Chinese cabbage. Ammonia volatilization rate, rainfall, soil water content, pH, and soil NH4(+) were measured during the growth period. The results showed that NH3 volatilization was significantly and positively correlated to topsoil pH and NH4(+) concentration. Climate factors and fertilization method also significantly affected NH3 volatilization. Specifically, organic fertilizer (OF) increased NH3 volatilization by 11.77%-18.46%, compared to conventional fertilizer (CF, urea), while organic-inorganic compound fertilizer (OIF) reduced NH3 volatilization by 8.82%-12.67% compared to CF. Furthermore, slow-release fertilizers had significantly positive effects on controlling NH3 volatilization, with a 60.73%-68.80% reduction for sulfur-coated urea (SCU), a 71.85%-78.97% reduction for biological Carbon Power® urea (BCU), and a 77.66%-83.12% reduction for bulk-blend controlled-release fertilizer (BBCRF) relative to CF. This study provides much needed baseline information, which will help in fertilizer choice and management practices to reduce NH3 volatilization and encourage the development of new strategies for vegetable planting. Copyright © 2015. Published by Elsevier B.V.
Caporaso, Nicola; Whitworth, Martin B; Cui, Chenhao; Fisk, Ian D
2018-06-01
We report on the analysis of volatile compounds by SPME-GC-MS for individual roasted coffee beans. The aim was to understand the relative abundance and variability of volatile compounds between individual roasted coffee beans at constant roasting conditions. Twenty-five batches of Arabica and robusta species were sampled from 13 countries, and 10 single coffee beans randomly selected from each batch were individually roasted in a fluidised-bed roaster at 210 °C for 3 min. High variability (CV = 14.0-53.3%) of 50 volatile compounds in roasted coffee was obtained within batches (10 beans per batch). Phenols and heterocyclic nitrogen compounds generally had higher intra-batch variation, while ketones were the most uniform compounds (CV < 20%). The variation between batches was much higher, with the CV ranging from 15.6 to 179.3%. The highest variation was observed for 2,3-butanediol, 3-ethylpyridine and hexanal. It was also possible to build classification models based on geographical origin, obtaining 99.5% and 90.8% accuracy using LDA or MLR classifiers respectively, and classification between Arabica and robusta beans. These results give further insight into natural variation of coffee aroma and could be used to obtain higher quality and more consistent final products. Our results suggest that coffee volatile concentration is also influenced by other factors than simply the roasting degree, especially green coffee composition, which is in turn influenced by the coffee species, geographical origin, ripening stage and pre- and post-harvest processing. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Environmental Compliance Assessment System (ECAS). Rhode Island Supplement
1994-07-01
of Sedm aSW e• mr•iqlie 1W an e-1m 1 G srW aaOS dOme uoaw of dOM I a m 1 gpe• 0 ae sk ow -, Ig -i kaeudeni. to Washmnp Heafmii Sendo - , reoalm for h...dioxide Hg mercury NO, nitrogen oxide SO 2 sulfur dioxide NO2 nitrogen dioxide I - vii - -viii - Metric Conversion Table I in. = 25.4 mm Ift = 0.305 m I...for volatile organic compounds (VOCs) or nitrogen oxides (NO,) will be considered significant for ozone. A physical change or change in the method of
Pérez-Álvarez, Eva P; Garde-Cerdán, Teresa; García-Escudero, Enrique; Martínez-Vidaurre, José María
2017-06-01
Nitrogen affects grapevine growth and also yeast metabolism, which have a direct influence on fermentation kinetics and the formation of different volatile compounds. Throughout the grapevine cycle, soil nitrogen availability and grape nitrogen composition can vary because of different factors. Nitrogen foliar applications can contribute toward enhancing grapevine nitrogen status and minimize the problem of leaching that traditional nitrogen-soil applications can provoke. The present study aimed to evaluate the influence of urea foliar applications on grapevine nitrogen status and grape amino acid content. Accordingly, two different doses of urea were applied over the leaves of a 'Tempranillo' vineyard. The highest urea doses affected nitrogen content on blade leaf tissues after veraison. Must amino acid profiles were modified by urea application and some of the compounds increased their concentrations. The effect of year on the increase of must total amino acid concentrations was more important than the effect of the doses applied. Urea foliar applications can be an interesting tool for decreasing grapevine nitrogen deficiencies. This method of nitrogen implementation in the vineyard could avoid sluggish fermentation problems during winemaking, enhance must nitrogen composition, and contribute to improving wine quality. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Zhao, Bin; Dong, Shu-Ting; Wang, Kong-Jun; Zhang, Ji-Wang; Liu, Peng
2009-11-01
A field experiment with colophony-coated fertilizer (CRF) and sulfur-coated fertilizer (SCF) showed that under the same application rates of N, P and K, applying CRF and SCF increased the summer maize grain yield by 13.15% and 14.15%, respectively, compared to the application of common compound fertilizer CCF. When the applied amount of CRF and SCF was decreased by 25%, the yield increment was 9.69% and 10.04%, respectively; and when the applied amount of CRF and SCF was decreased by 50%, the yield had less difference with that under CCF application. The field ammonia volatilization rate in treatments CRF and SCF increased slowly, with a peak appeared 7 days later than that in treatment CCF, and the total amount of ammonia volatilization in treatments CRF and SCF was ranged from 0.78 kg N x hm(-2) to 4.43 kg N x hm(-2), with a decrement of 51.34%-91.34% compared to that in treatment CCF. The fertilizer nitrogen use efficiency and agronomic nitrogen use efficiency of CRF and SCF were also significantly higher than those of CCF.
Sakamoto, Hironari; Uchiyama, Shigehisa; Kihara, Akiko; Tsutake, Toyoshige; Bekki, Kanae; Inaba, Yohei; Nakagome, Hideki; Kunugita, Naoki
2015-01-01
Indoor air quality (IAQ) is a major concern, because people on average spend the vast majority of their time indoors and they are repeatedly exposed to indoor air pollutants. In this study, to assess indoor air quality in Chiba City, gaseous chemical compounds were surveyed using four types of diffusive sampler. Gaseous chemical compounds such as carbonyls, volatile organic compounds (VOC), acid gases, basic gases, and ozone were measured in indoor and outdoor air of 50 houses throughout Chiba City in winter and summer. Four types of diffusive sampler were used in this study: DSD-BPE/DNPH packed with 2,4-dinitrophenyl hydrazine and trans-1,2-bis(2-pyridyl)ethylene-coated silica for ozone and carbonyls; VOC-SD packed with Carboxen 564 particles for volatile organic compounds; DSD-TEA packed with triethanolamine-impregnated silica for acid gases; and DSD-NH3 packed with phosphoric acid-impregnated silica for basic gases. Almost all compounds in indoor air were detected at higher concentrations in summer than in winter. However, the nitrogen dioxide concentration in indoor air particularly increased only in winter, which well correlated with the formic acid concentration (correlation coefficient=0.974). The compound with the highest concentrations in indoor air was p-dichlorobenzene, with recorded levels of 13,000 μg m(-3) in summer and 1,100 μg m(-3) in winter in indoor air. p-Dichlorobenzene in summer and nitrogen dioxide in winter are detected at markedly high concentrations. Pollution control and continuous monitoring of IAQ are indispensable for human health.
Miller, Daniel N; Berry, Elaine D
2005-01-01
Beef cattle feedlots face serious environmental challenges associated with manure management, including greenhouse gas, odor, NH3, and dust emissions. Conditions affecting emissions are poorly characterized, but likely relate to the variability of feedlot surface moisture and manure contents, which affect microbial processes. Odor compounds, greenhouse gases, nitrogen losses, and dust potential were monitored at six moisture contents (0.11, 0.25, 0.43, 0.67, 1.00, and 1.50 g H2O g(-1) dry matter [DM]) in three artificial feedlot soil mixtures containing 50, 250, and 750 g manure kg(-1) total (manure + soil) DM over a two-week period. Moisture addition produced three microbial metabolisms: inactive, aerobic, and fermentative at low, moderate, and high moisture, respectively. Manure content acted to modulate the effect of moisture and enhanced some microbial processes. Greenhouse gas (CO2, N2O, and CH4) emissions were dynamic at moderate to high moisture. Malodorous volatile fatty acid (VFA) compounds did not accumulate in any treatments, but their persistence and volatility varied depending on pH and aerobic metabolism. Starch was the dominant substrate fueling both aerobic and fermentative metabolism. Nitrogen losses were observed in all metabolically active treatments; however, there was evidence for limited microbial nitrogen uptake. Finally, potential dust production was observed below defined moisture thresholds, which were related to manure content of the soil. Managing feedlot surface moisture within a narrow moisture range (0.2-0.4 g H2O g(-1) DM) and minimizing the accumulation of manure produced the optimum conditions that minimized the environmental impact from cattle feedlot production.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-10
... National Technology Transfer and Advancement Act of 1995 (15 U.S.C. 272 note) because application of those... Technology Under the 8-Hour Ozone National Ambient Air Quality Standard AGENCY: Environmental Protection... reasonably available control technology (RACT) for nitrogen oxides (NO X ) and volatile organic compounds...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-09
... requirements of Section 12(d) of the National Technology Transfer and Advancement Act of 1995 (15 U.S.C. 272... Technology for the 1997 8- Hour Ozone Standard AGENCY: Environmental Protection Agency (EPA). ACTION: Final... reasonably available control technology (RACT) for oxides of nitrogen (NO X ) and volatile organic compounds...
USER'S GUIDE TO THE PERSONAL COMPUTER VERSION OF THE BIOGENIC EMISSIONS INVENTORY SYSTEM (PC-BEIS2)
The document is a user's guide for an updated Personal Computer version of the Biogenic Emissions Inventory System (PC-BEIS2), allowing users to estimate hourly emissions of biogenic volatile organic compounds (BVOCs) and soil nitrogen oxide emissions for any county in the contig...
Spatial Analysis and Land Use Regression of VOCs and NO2 in Dallas, Texas during Two Seasons
Passive air sampling for nitrogen dioxide (NO2) and select volatile organic compounds (VOCs) was conducted at 24 fire stations and a compliance monitoring site in Dallas, Texas, USA during summer 2006 and winter 2008. This ambient air monitoring network was established...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-13
... precursors. They also establish nitrogen oxides (NO X ) and sulfur dioxide (SO 2 ) as precursors to PM 2.5... recordkeeping requirements, Sulfur oxides, Volatile organic compounds. Dated: June 26, 2012. W.C. Early, Acting..., modified document begins]. definitions of ``regulated NSR pollutant'' and ``significant,'' and removed...
The Mechanistic Indicators of Childhood Asthma (MICA) study in Detroit, Michigan introduced a participant-based approach to reduce the resource burden associated with collection of indoor and outdoor residential air sampling data. A subset of participants designated as MICA-Air c...
40 CFR 52.2585 - Control strategy: Ozone.
Code of Federal Regulations, 2010 CFR
2010-07-01
... serious nonattainment for ozone is approved, based on Wisconsin's demonstration through photochemical grid... are 0.74 tons of volatile organic compounds (VOC) per day and 1.17 tons of oxides of nitrogen (NOX... section 182(2)(3)(A) of the Clean Air Act as amended in 1990. (s) Approval—On January 31, 2003, Wisconsin...
USDA-ARS?s Scientific Manuscript database
Tropospheric ozone (O3) is a pollutant that is generated by volatile organic compounds, nitrogen oxides and sunlight. When plants take in O3 through stomata, harmful reactive oxygen species (ROS) are produced that induce the production of ROS scavenging antioxidants. Climate change predictions indic...
Anthropogenic nitrogen oxides (NOx) are emitted when fossil fuels are combusted. In the atmosphere, NOx reacts with volatile organic compounds (VOCs) to produce tropospheric ozone, a component of photochemical smog. In most parts of the country, strategies for reducing ozone gene...
Smart packaging for the monitoring of fish freshness
NASA Astrophysics Data System (ADS)
Pacquit, Alexis; Lau, King Tong; Diamond, Dermot
2005-06-01
The development of chromo-reactive sensor spots for real time monitoring of fish freshness is described. The on-package sensor spots incorporating an immobilized pH sensitive dye, respond through visible colour change to basic volatile spoilage compounds collectively known as Total Volatile Basic Nitrogen (TVB-N). Trials on fresh fish filets have verified that the sensor can be employed for real time monitoring of fish spoilage. The sensor response can be interrogated with a simple, inexpensive reflectance colorimeter that we have developed based on two LEDs and a photodetector.
Photochemical Assessment Monitoring Stations (PAMS)
Photochemical Assessment Monitoring Stations (PAMS). This file provides information on the numbers and distribution (latitude/longitude) of air monitoring sites which measure ozone precursors (approximately 60 volatile hydrocarbons and carbonyl), as required by the 1990 Clean Air Act Amendments, in areas with persistently high ozone levels (mostly large metropolitan areas). In these areas, the States have established ambient air monitoring sites which collect and report detailed data for volatile organic compounds, nitrogen oxides, ozone and meteorological parameters. This file displays 199 monitoring sites reporting measurements for 2010. A wide range of related monitoring site attributes is also provided.
Heterogeneous photocatalytic oxidation of atmospheric trace contaminants
NASA Technical Reports Server (NTRS)
Ollis, David F.; Peral, Jose
1992-01-01
A two year study to examine the feasibility of using heterogeneous photocatalysis for spacecraft air purification was begun at North Carolina State University on November 1, 1990. The original grant proposal included examination of the rates of destruction of anticipated spacecraft-generated air contaminants, including alcohols, aldehydes, chlorinated compounds, as well as trace levels of volatile compounds containing nitrogen, sulfur, and silicon. The progress made in the second six month period of 5/1/91-11/1/91 is discussed.
Wang, Huanyuan; Han, Jichang; Tong, Wei; Cheng, Jie; Zhang, Haiou
2017-06-01
Maize was grown on compound soils constituted from mixtures of soft rock and sand at different ratios, and water use efficiency (WUE), nitrogen use efficiency (NUE) and fertilizer nitrogen use efficiency (FNUE) were quantified. The data were used to assist in designing strategies for optimizing water and nitrogen management practices for maize on the substrates used. Maize was sown in composite soil prepared at three ratios of soft rock and sand (1:1, 1:2 and 1:5 v/v) in Mu Us Sandy Land, Yuyang district, Yulin city, China. Yields, amount of drainage, nitrogen (N) leaching, WUE and NUE were calculated. Then a water and nitrogen management model (WNMM) was calibrated and validated. No significant difference in evapotranspiration of maize was found among compound soils with soft rock/sand ratios of 1:1, 1:2 and 1:5, while water drainage increased significantly with increasing soft rock/sand ratio. WUE increased to 1.30 kg m -3 in compound soil with 1:2 soft rock/sand ratio. Nitrogen leaching and ammonia volatilization were the main reason for nitrogen loss, and N reduction mainly relied on crop uptake. NUE and FNUE could reach 33.1 and 24.9 kg kg -1 N respectively. Water drainage and nitrogen leaching occurred mostly during heavy rainfall or irrigation. Through a scenario analysis of different rainfall types, water and fertilizer management systems were formulated each year. This study shows that soft rock plays a key role in improving the WUE, NUE and FNUE of maize. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Hayaloglu, A A; Cakmakci, S; Brechany, E Y; Deegan, K C; McSweeney, P L H
2007-03-01
Tulum cheeses were manufactured from raw ewe's milk and ripened in goat's skin bags (tulums) or plastic containers to understand the effect of ripening container on the chemical composition, biochemistry, microbiology, and volatile composition of Tulum cheeses during 150 d of ripening. Chemical compositions of the cheeses ripened in tulums were significantly different and the moisture contents decreased rapidly in those cheeses because of the porous structure of the tulum. Higher microbial counts were detected in the cheeses ripened in plastic than in cheeses ripened in tulums. Differences in nitrogenous compounds and total free AA of the cheeses were not significant. Total concentrations of free AA in cheeses increased with age and Glu, Ala, Val, Leu, and Phe were the most abundant AA in the cheeses. Urea-PAGE of pH 4.6-insoluble fractions of the cheeses during ripening showed similar degradation patterns in all cheeses. Peptide profiles by reversed-phase HPLC of pH 4.6- and ethanol-soluble or ethanol-insoluble fractions of the cheeses revealed only minor differences in the concentrations of some peptides among the cheeses; however, age-related changes in peptide concentrations were significantly different among the cheeses. Cheeses were analyzed at 90 d of ripening for volatile compounds by solid-phase microextraction gas chromatography-mass spectrometry. One hundred volatile components were identified, including 11 acids, 16 esters, 12 methyl ketones, 7 aldehydes, 22 alcohols, 7 sulfur compounds, 6 terpenes, and 19 miscellaneous compounds. The main components were short-chain fatty acids, 2-butanone, diacetyl, and primary alcohols. Quantitative differences in several volatile compounds were evident among the cheeses. Cheeses ripened in tulums or plastic had similar aroma patterns, but the concentrations of some components were different.
Global consequences of afforestation and bioenergy cultivation on ecosystem service indicators
NASA Astrophysics Data System (ADS)
Krause, Andreas; Pugh, Thomas A. M.; Bayer, Anita D.; Doelman, Jonathan C.; Humpenöder, Florian; Anthoni, Peter; Olin, Stefan; Bodirsky, Benjamin L.; Popp, Alexander; Stehfest, Elke; Arneth, Almut
2017-11-01
Land management for carbon storage is discussed as being indispensable for climate change mitigation because of its large potential to remove carbon dioxide from the atmosphere, and to avoid further emissions from deforestation. However, the acceptance and feasibility of land-based mitigation projects depends on potential side effects on other important ecosystem functions and their services. Here, we use projections of future land use and land cover for different land-based mitigation options from two land-use models (IMAGE and MAgPIE) and evaluate their effects with a global dynamic vegetation model (LPJ-GUESS). In the land-use models, carbon removal was achieved either via growth of bioenergy crops combined with carbon capture and storage, via avoided deforestation and afforestation, or via a combination of both. We compare these scenarios to a reference scenario without land-based mitigation and analyse the LPJ-GUESS simulations with the aim of assessing synergies and trade-offs across a range of ecosystem service indicators: carbon storage, surface albedo, evapotranspiration, water runoff, crop production, nitrogen loss, and emissions of biogenic volatile organic compounds. In our mitigation simulations cumulative carbon storage by year 2099 ranged between 55 and 89 GtC. Other ecosystem service indicators were influenced heterogeneously both positively and negatively, with large variability across regions and land-use scenarios. Avoided deforestation and afforestation led to an increase in evapotranspiration and enhanced emissions of biogenic volatile organic compounds, and to a decrease in albedo, runoff, and nitrogen loss. Crop production could also decrease in the afforestation scenarios as a result of reduced crop area, especially for MAgPIE land-use patterns, if assumed increases in crop yields cannot be realized. Bioenergy-based climate change mitigation was projected to affect less area globally than in the forest expansion scenarios, and resulted in less pronounced changes in most ecosystem service indicators than forest-based mitigation, but included a possible decrease in nitrogen loss, crop production, and biogenic volatile organic compounds emissions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Volatile Solids and Nitrogen Removal... Pt. 98, Subpt. JJ, Table JJ-4 Table JJ-4 to Subpart JJ of Part 98—Volatile Solids and Nitrogen Removal through Solids Separation Type of solids separation Volatile solids removal (decimal) Nitrogen...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Volatile Solids and Nitrogen Removal... Pt. 98, Subpt. JJ, Table JJ-4 Table JJ-4 to Subpart JJ of Part 98—Volatile Solids and Nitrogen Removal through Solids Separation Type of solids separation Volatile solids removal (decimal) Nitrogen...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Volatile Solids and Nitrogen Removal... Pt. 98, Subpt. JJ, Table JJ-4 Table JJ-4 to Subpart JJ of Part 98—Volatile Solids and Nitrogen Removal through Solids Separation Type of solids separation Volatile solids removal (decimal) Nitrogen...
First-principles Study of Phonons in Structural Phase Change of Ge-Sb-Te Compounds
NASA Astrophysics Data System (ADS)
Song, Young-Sun; Kim, Jeongwoo; Kim, Minjae; Jhi, Seung-Hoon
Ge-Sb-Te (GST) compounds, exhibiting substantial electrical and optical contrast at extremely fast switching modes, have attracted great attention for application as non-volatile memory devices. Despite extensive studies of GST compounds, the underlying mechanism for fast transitions between amorphous and crystalline phases is yet to be revealed. We study the vibrational property of various GST compounds and the role of nitrogen doping on phase-change processes using first-principles calculations. We find that a certain vibrational mode (Eu) plays a crucial role to determine transition temperatures, and that its frequency depends on the amount of Ge in GST. We also find that the nitrogen doping drives crystalline-amorphous transition at low power consumption modes. In addition, we discuss the effect of the spin-orbit coupling on vibration modes, which is known essential for correct description of the electrical property of GST. Our understanding of phonon modes in GST compounds paves the way for the improving the device performance especially in terms of switching speed and operating voltage.
Wang, Shao-Yang; Li, Yi-Qing; Li, Teng; Yang, Hang-Yu; Ren, Jie; Zhang, Bo-Lin; Zhu, Bao-Qing
2016-12-29
A nitrogen deficiency always causes bog bilberry syrup wine to have a poor sensory feature. This study investigated the effect of nitrogen source addition on volatile compounds during bog bilberry syrup wine fermentation. The syrup was supplemented with 60, 90, 120 or 150 mg/L dibasic ammonium phosphate (DAP) before fermentation. Results showed that an increase of DAP amounts accelerated fermentation rate, increased alcohol content, and decreased sugar level. Total phenol and total flavonoid content were also enhanced with the increase of DAP amounts. A total of 91 volatile compounds were detected in the wine and their concentrations were significantly enhanced with the increase of DAP. Ethyl acetate, isoamyl acetate, phenethyl acetate, ethyl butanoate, ethyl hexanoate, ethyl octanoate, ethyl decanoate, isobutanol, isoamyl alcohol, levo -2,3-butanediol, 2-phenylethanol, meso -2,3-butanediol, isobutyric acid, hexanoic acid, and octanoic acid exhibited a significant increase of their odor activity value (OAV) with the increase of DAP amounts. Bog bilberry syrup wine possessed fruity, fatty, and caramel flavors as its major aroma, whereas a balsamic note was the least present. The increase of DAP amounts significantly improved the global aroma attributes, thereby indicating that DAP supplementation could promote wine fermentation performance and enhance the sensory quality of bog bilberry syrup wine.
Zuo, Zhaojiang; Yang, Lin; Chen, Silan; Ye, Chaolin; Han, Yujie; Wang, Sutong; Ma, Yuandan
2018-06-06
Cyanobacteria release abundant volatile organic compounds (VOCs), which can poison other algae and cause water odor. To uncover the effects of nitrogen (N) nutrients on the formation of cyanobacteria VOCs, the cell growth, VOC emission and the expression of genes involving in VOC formation in Microcystis aeruginosa were investigated under different N conditions. With the supplement of NaNO 3 , NaNO 2 , NH 4 Cl, urea, Serine (Ser) and Arginine (Arg) as the sole N source, NaNO 3 , urea and Arg showed the best effects on M. aeruginosa cell growth, and limited N supply inhibited the cell growth. M. aeruginosa released 26, 25, 23, 27, 23 and 25 compounds, respectively, in response to different N forms, including furans, sulfocompounds, terpenoids, benzenes, hydrocarbons, aldehydes, and esters. Low-N especially Non-N condition markedly promoted the VOC emission. Under Non-N condition, four up-regulated genes involving in VOC precursor formation were identified, including the genes of pyruvate kinase, malic enzyme and phosphotransacetylase for terpenoids, the gene of aspartate aminotransferase for benzenes and sulfocompounds. In eutrophic water, cyanobacteria release different VOC blends using various N forms, and the reduction of N amount caused by cyanobacteria massive growth can promote algal VOC emission by up-regulating the gene expression. Copyright © 2018 Elsevier Inc. All rights reserved.
Lazdovica, K; Liepina, L; Kampars, V
2016-05-01
Pyrolysis of wheat bran with or without catalysts was investigated using TGA-FTIR method in order to determine the influence of zeolite and noble metal catalysts on the evolution profile and relative yield of the volatile compounds. The addition of all catalysts decreased the volatile matter of wheat bran from 76.3% to 75.9%, 73.9%, 73.5%, 69.7% and increased the solid residue from 18.0% to 18.4%, 20.4%, 20.8%, 24.6% under the catalyst of ZSM-5, 5% Pd/C, MCM-41, and 5% Pt/C. Noble-metal catalysts had higher activity for deoxygenation of compounds containing carbonyl, carboxyl, and hydroxyl groups than zeolites. Degradation of nitrogen containing compounds atom proceeded better in presence of zeolites. Noble-metal catalysts promoted formation of aromatics and changed the profiles of evolved compounds whereas zeolites advanced formation of aliphatics and olefins. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yin, Shu-Min
Atmospheric pressure capillary non-thermal plasma (AP-CNTP) has been investigated as a potential technology far the removal of volatile organic compounds (VOCs) in Advanced Life Support Systems (ALS). AP-CNTP is a destructive technology far the removal of VOCs from air streams by active plasma species, such as electrons, ions, and excited molecules. Complete VOC destruction ideally results in the formation of water, carbon dioxide (CO2), and other by-product's may also form, including ozone (O3), nitrous oxide (N2O), nitrogen dioxide (NO2), and decomposed hydrocarbons. Several organic compounds, such as BTEX, ethylene, n-heptane, isooctane, methanol and NH3, were tested in an AP-CNTP system. Parametric experiments were carried out by varying plasma discharge power, flowrates, and initial concentrations. The degradation efficiency varied depending on the chemical nature of the compounds. A plasmochemical kinetic model was derived for toluene, ethylbenzene, and m-xylene and n-heptane.
Chan, A. W. H.; Kreisberg, N. M.; Hohaus, T.; ...
2016-02-02
Understanding organic composition of gases and particles is essential to identifying sources and atmospheric processing leading to organic aerosols (OA), but atmospheric chemical complexity and the analytical techniques available often limit such analysis. Here we present speciated measurements of semivolatile and intermediate volatility organic compounds (S/IVOCs) using a novel dual-use instrument (SV-TAG-AMS) deployed at Manitou Forest, CO, during the Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H 2O, Organics & Nitrogen – Rocky Mountain Biogenic Aerosol Study (BEACHON-RoMBAS) 2011 campaign. This instrument provides on-line speciation of ambient organic compounds with 2 h time resolution. The species in this volatility range aremore » complex in composition, but their chemical identities reveal potential sources. Observed compounds of biogenic origin include sesquiterpenes with molecular formula C 15H 24 (e.g., β-caryophyllene and longifolene), which were most abundant at night. A variety of other biogenic compounds were observed, including sesquiterpenoids with molecular formula C 15H 22, abietatriene and other terpenoid compounds. Many of these compounds have been identified in essential oils and branch enclosure studies but were observed in ambient air for the first time in our study. Semivolatile polycyclic aromatic hydrocarbons (PAHs) and alkanes were observed with highest concentrations during the day and the dependence on temperature suggests the role of an evaporative source. Using statistical analysis by positive matrix factorization (PMF), we classify observed S/IVOCs by their likely sources and processes, and characterize them based on chemical composition. The total mass concentration of elutable S/IVOCs was estimated to be on the order of 0.7 µg m –3 and their volatility distributions are estimated for modeling aerosol formation chemistry.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, A. W. H.; Kreisberg, N. M.; Hohaus, T.
Understanding organic composition of gases and particles is essential to identifying sources and atmospheric processing leading to organic aerosols (OA), but atmospheric chemical complexity and the analytical techniques available often limit such analysis. Here we present speciated measurements of semivolatile and intermediate volatility organic compounds (S/IVOCs) using a novel dual-use instrument (SV-TAG-AMS) deployed at Manitou Forest, CO, during the Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H 2O, Organics & Nitrogen – Rocky Mountain Biogenic Aerosol Study (BEACHON-RoMBAS) 2011 campaign. This instrument provides on-line speciation of ambient organic compounds with 2 h time resolution. The species in this volatility range aremore » complex in composition, but their chemical identities reveal potential sources. Observed compounds of biogenic origin include sesquiterpenes with molecular formula C 15H 24 (e.g., β-caryophyllene and longifolene), which were most abundant at night. A variety of other biogenic compounds were observed, including sesquiterpenoids with molecular formula C 15H 22, abietatriene and other terpenoid compounds. Many of these compounds have been identified in essential oils and branch enclosure studies but were observed in ambient air for the first time in our study. Semivolatile polycyclic aromatic hydrocarbons (PAHs) and alkanes were observed with highest concentrations during the day and the dependence on temperature suggests the role of an evaporative source. Using statistical analysis by positive matrix factorization (PMF), we classify observed S/IVOCs by their likely sources and processes, and characterize them based on chemical composition. The total mass concentration of elutable S/IVOCs was estimated to be on the order of 0.7 µg m –3 and their volatility distributions are estimated for modeling aerosol formation chemistry.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-17
... tropospheric ozone formation. The compounds were added by EPA through a rulemaking action which provided for... consistent with federal law. Tropospheric ozone, commonly known as smog, occurs when VOC and nitrogen oxide (NO X ) react in the atmosphere. Because of the harmful health effects of ozone, EPA limits the amount...
Identification of combustion intermediates in low-pressure premixed pyridine/oxygen/argon flames.
Tian, Zhenyu; Li, Yuyang; Zhang, Taichang; Zhu, Aiguo; Qi, Fei
2008-12-25
Combustion intermediates of two low-pressure premixed pyridine/oxygen flames with respective equivalence ratios of 0.56 (C/O/N = 1:4.83:0.20) and 2.10 (C/O/N = 1:1.29:0.20) have been identified with tunable synchrotron vacuum ultraviolet (VUV) photoionization and molecular-beam mass spectrometry techniques. About 80 intermediates in the rich flame and 60 intermediates in the lean flame, including nitrogenous, oxygenated, and hydrocarbon intermediates, have been identified by measurements of photoionization mass spectra and photoionization efficiency spectra. Some radicals and new nitrogenous intermediates are identified in the present work. The experimental results are useful for studying the conversion of volatile nitrogen compounds and understanding the formation mechanism of NO(x) in flames of nitrogenous fuels.
Vilanova, M; Rodríguez, I; Canosa, P; Otero, I; Gamero, E; Moreno, D; Talaverano, I; Valdés, E
2015-02-15
A chemical study was conducted from 2009 to 2012 to examine spatial and seasonal variability of red Vitis vinifera Mencía located in different geographic areas (Amandi, Chantada, Quiroga-Bibei, Ribeiras do Sil and Ribeiras do Miño) from NW Spain. Mencía samples were analysed for phenolic, (flavan-3-ols, flavonols, anthocyanins, acids and resveratrol), nitrogen (TAC, TAN, YAN and TAS) and volatiles compounds (alcohols, C6 compounds, ethyl esters, terpenes, aldehydes, acids, lactones, volatile phenols and carbonyl compounds) by GC-MS and HPLC. Results showed that the composition of Mencía cultivar was more affected by the vintage than the geographic area. The amino acid composition was less affected by both geographic origin and vintage, showing more varietal stability. Application of Principal Component Analysis (PCA) to experimental data showed a good separation of Mencía grape according to geographical origin and vintages. PCA also showed high correlations between the ripening ratio and C6 compounds, resveratrol and carbonyl compounds. Copyright © 2014 Elsevier Ltd. All rights reserved.
Xu, Qinghuan; Yang, Lin; Yang, Wangting; Bai, Yan; Hou, Ping; Zhao, Jingxian; Zhou, Lv; Zuo, Zhaojiang
2017-01-01
Eutrophication promotes massive growth of cyanobacteria and algal blooms, which can poison other algae and reduce biodiversity. To investigate the differences in multiple nitrogen (N) sources in eutrophicated water on the emission of volatile organic compounds (VOCs) from cyanobacteria, and their toxic effects on other algal growth, we analyzed VOCs emitted from Microcystis flos-aquae with different types and concentrations of nitrogen, and determined the effects under Normal-N and Non-N conditions on Chlorella vulgaris. M. flos-aquae released 27, 22, 20, 27, 19, 25 and 17 compounds, respectively, with NaNO 3 , NaNO 2 , NH 4 Cl, urea, Ser, Lys and Arg as the sole N source. With the reduction in N amount, the emission of VOCs was increased markedly, and the most VOCs were found under Non-N condition. C. vulgaris cell propagation, photosynthetic pigment and Fv/Fm declined significantly following exposure to M. flos-aquae VOCs under Non-N condition, but not under Normal-N condition. When C. vulgaris cells were treated with two terpenoids, eucalyptol and limonene, the inhibitory effects were enhanced with increasing concentrations. Therefore, multiple N sources in eutrophicated water induce different VOC emissions from cyanobacteria, and reduction in N can cause nutrient competition, which can result in emissions of more VOCs. Those VOCs released from M. flos-aquae cells under Non-N for nutrient competition can inhibit other algal growth. Among those VOCs, eucalyptol and limonene are the major toxic agents. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Hong, U.; Park, S.; Lim, J.; Lee, W.; Kwon, S.; Kim, Y.
2009-12-01
In this study, we examined the removal efficiency of a volatile compound (e.g. toluene) and a less volatile compound [e.g. total petroleum hydrocarbon (TPH)] using an air stripping packed bed combined with a biofilm-type biological process. We hypothesized that this system might be effective and economical to simultaneously remove both volatile and less volatile compounds. The gas-tight reactor has 5.9-inch-diameter and 48.8-inch-height. A spray nozzle was installed at the top cover to distribute the liquid evenly through reactor. The reactor was filled with polypropylene packing media for the increase of volatilization surface area and the growth of TPH degrading facultative aerobic bacteria on the surface of the packing media. In air stripping experiments, 45.6%, 71.7%, 72.0%, and 75.4% of toluene was removed at air injection rates of 0 L/min, 2.5 L/min, 4 L/min, and 6 L/min, respectively. Through the result, we confirmed that toluene removal efficiency increased by injecting higher amounts of air. TPH removal by stripping was minimal. To remove a less volatile TPH by commercial TPH degrading culture (BIO-ZYME B-52), 15-times diluted culture was circulated through the reactor for 2-3 days to build up a biofilm on the surface of packing media with 1 mg-soluble nitrogen source /L-water per 1 ppm of TPH. Experiments evaluating the degree of TPH biodegradation in this system are carrying out.
METHOD FOR THE PREPARATION OF BINARY NITROGEN-FLUORINE COMPOUNDS
Frazer, J.W.
1962-05-01
A process is given for preparing binary nitrogenfluorine compounds, in particular, tetrafluorohydrazine (N/sub 2/F/sub 4/) and difluorodiazine (N/sub 2/ F/sub 2/), The process comprises subjecting gaseous nitrogen trifluoride to the action of an alternating current electrical glow discharge in the presence of mercury vapors. By the action of the electrical discharge, the nitrogen trifluoride is converted into a gaseous product comprising a mixture of tetrafluorohydrazine, the isomers of difluorodiazine, and other impurities including nitrogen, nitrogen oxides, silicon tetrafiuoride, and unreacted nitrogen trifluoride. The gaseous products and impurities are passed into a trap maintained at about - 196 deg C to freeze out the desired products and impurities with the exception of nitregen gas which passes off from the trap and is discarded. Subsequently, the desired products and remaining impurities are warmed to the gaseous state and passed through a silica gel trap maintained at about - 55DEC, wherein the desired tetrafluorohydrazine and difluorodiazine products are retained while the remaining gaseous impurities pass therethrough. The desired products are volatilized from the silica gel trap by heating and then separated by gas chrounatography means into the respective tetrafluorohydrazine and difluorodiazine products. (A.e.C)
Martin, Valentina; Boido, Eduardo; Giorello, Facundo; Mas, Albert; Dellacassa, Eduardo; Carrau, Francisco
2016-07-01
In several grape varieties, the dominating aryl alkyl alcohols found are the volatile group of phenylpropanoid-related compounds, such as glycosylated benzyl and 2-phenylethyl alcohol, which contribute to wine with floral and fruity aromas after being hydrolysed during fermentation. Saccharomyces cerevisiae is largely recognized as the main agent in grape must fermentation, but yeast strains belonging to other genera, including Hanseniaspora, are known to predominate during the first stages of alcoholic fermentation. Although non-Saccharomyces yeast strains have a well-recognized genetic diversity, understanding of their impact on wine flavour richness is still emerging. In this study, 11 Hansenisapora vineae strains were used to ferment a chemically defined simil-grape fermentation medium, resembling the nutrient composition of grape juice but devoid of grape-derived secondary metabolites. GC-MS analysis was performed to determine volatile compounds in the produced wines. Our results showed that benzyl alcohol, benzyl acetate and 2-phenylethyl acetate are significantly synthesized by H. vineae strains. Levels of these compounds found in fermentations with 11 H. vineae different strains were one or two orders of magnitude higher than those measured in fermentations with a known S. cerevisiae wine strain. The implications for winemaking in response to the negative correlation of benzyl alcohol, benzyl acetate and 2-phenylethyl acetate production with yeast assimilable nitrogen concentrations are discussed. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Rollero, Stéphanie; Bloem, Audrey; Camarasa, Carole; Sanchez, Isabelle; Ortiz-Julien, Anne; Sablayrolles, Jean-Marie; Dequin, Sylvie; Mouret, Jean-Roch
2015-03-01
Volatile compounds produced by yeast during fermentation greatly influence the organoleptic qualities of wine. We developed a model to predict the combined effects of initial nitrogen and phytosterol content and fermentation temperature on the production of volatile compounds. We used a Box-Behnken design and response surface modeling to study the response of Lalvin EC1118® to these environmental conditions. Initial nitrogen content had the greatest influence on most compounds; however, there were differences in the value of fermentation parameters required for the maximal production of the various compounds. Fermentation parameters affected differently the production of isobutanol and isoamyl alcohol, although their synthesis involve the same enzymes and intermediate. We found differences in regulation of the synthesis of acetates of higher alcohols and ethyl esters, suggesting that fatty acid availability is the main factor influencing the synthesis of ethyl esters whereas the production of acetates depends on the activity of alcohol acetyltransferases. We also evaluated the effect of temperature on the total production of three esters by determining gas-liquid balances. Evaporation largely accounted for the effect of temperature on the accumulation of esters in liquid. Nonetheless, the metabolism of isoamyl acetate and ethyl octanoate was significantly affected by this parameter. We extended this study to other strains. Environmental parameters had a similar effect on aroma production in most strains. Nevertheless, the regulation of the synthesis of fermentative aromas was atypical in two strains: Lalvin K1M® and Affinity™ ECA5, which produces a high amount of aromatic compounds and was obtained by experimental evolution.
Vidal, Natalia P; Manzanos, María J; Goicoechea, Encarnación; Guillén, María D
2016-03-15
Farmed and wild European sea bass (Dicentrarchus labrax) could be distinguished by its volatile metabolites, an issue not addressed until now. The aim of this work was to study these metabolites by solid-phase microextraction followed by gas chromatography/mass spectrometry (SPME-GC/MS). Both farmed and wild sea bass have a great number of volatile metabolites, most of them being in low concentrations. These include alcohols, aldehydes, ketones, alkylfurans, acids, aliphatic and aromatic hydrocarbons, terpenes, sulfur and nitrogen derivatives, 2,6-di-tert-butyl-4-methylphenol and one derived compound, as well as 2,4,7,9-tetramethyl-5-decyne-4,7-diol, this latter compound presumably resulting from environmental contamination. Important differences have been detected between both types of sea bass, and also among individuals inside each group. Farmed specimens are richer in volatile metabolites than the wild counterparts; however, these latter, in general, contain a high number and abundance of metabolites resulting from microbial and enzymatic non-oxidative activity than the former. Clear differences in the volatile metabolites of wild and farmed sea bass have been found. A great deal of valuable information on sea bass volatile metabolites has been obtained, which can be useful in understanding certain aspects of the quality and safety of raw and processed sea bass. © 2015 Society of Chemical Industry.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 21 2011-07-01 2011-07-01 false State-Specific Volatile Solids (VS) and Nitrogen (N) Excretion Rates for Cattle JJ Table JJ-3 to Subpart JJ of Part 98 Protection of... Volatile Solids (VS) and Nitrogen (N) Excretion Rates for Cattle State Volatile solids excretion rate (kg...
Limited effect of anthropogenic nitrogen oxides on Secondary Organic Aerosol formation
NASA Astrophysics Data System (ADS)
Zheng, Y.; Unger, N.; Hodzic, A.; Emmons, L.; Knote, C.; Tilmes, S.; Lamarque, J.-F.; Yu, P.
2015-08-01
Globally, secondary organic aerosol (SOA) is mostly formed from emissions of biogenic volatile organic compounds (VOCs) by vegetation, but can be modified by human activities as demonstrated in recent research. Specifically, nitrogen oxides (NOx = NO + NO2) have been shown to play a critical role in the chemical formation of low volatility compounds. We have updated the SOA scheme in the global NCAR Community Atmospheric Model version 4 with chemistry (CAM4-chem) by implementing a 4-product Volatility Basis Set (VBS) scheme, including NOx-dependent SOA yields and aging parameterizations. The predicted organic aerosol amounts capture both the magnitude and distribution of US surface annual mean measurements from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network by 50 %, and the simulated vertical profiles are within a factor of two compared to Aerosol Mass Spectrometer (AMS) measurements from 13 aircraft-based field campaigns across different region and seasons. We then perform sensitivity experiments to examine how the SOA loading responds to a 50 % reduction in anthropogenic nitric oxide (NO) emissions in different regions. We find limited SOA reductions of 0.9 to 5.6, 6.4 to 12.0 and 0.9 to 2.8 % for global, the southeast US and the Amazon NOx perturbations, respectively. The fact that SOA formation is almost unaffected by changes in NOx can be largely attributed to buffering in chemical pathways (low- and high-NOx pathways, O3 versus NO3-initiated oxidation) and to offsetting tendencies in the biogenic versus anthropogenic SOA responses.
Sabo, Martin; Matejčík, Štefan
2012-06-19
We demonstrate the application of corona discharge ion mobility spectrometry with orthogonal acceleration time of flight mass spectrometry (CD IMS-oaTOF) for volatile organic compounds (VOCs) monitoring. Two-dimensional (2D) IMS-oaTOF spectra of VOCs were recorded in nearly real time. The corona discharge atmospheric pressure chemical ionization (APCI) source was operated in positive mode in nitrogen and air. The CD ion source generates in air H(3)O(+)(H(2)O)(n) and NO(+). The NO(+) offers additional possibility for selective ionization and for an increase of the sensitivity of monoaromatic compounds. In addition to H(3)O(+)(H(2)O)(n) and NO(+), we have carried out ionization of VOCs using acetone as dopant gas ((CH(3))(2)COH(+)). Sixteen model VOCs (tetrahydrofuran, butanol, n-propanol, iso-propano, acetone, methanol, ethanol, toluene, benzene, amomnia, dioxan, triethylamine, acetonitrile, formaldehyde, m-xylene, 2,2,2-trifluoroethylamine) were tested using these ionization techniques.
Organic compounds in indoor air—their relevance for perceived indoor air quality?
NASA Astrophysics Data System (ADS)
Wolkoff, Peder; Nielsen, Gunnar D.
It is generally believed that indoor air pollution, one way or another may cause indoor air complaints. However, any association between volatile organic compounds (VOCs) concentrations and increase of indoor climate complaints, like the sick-building syndrome symptoms, is not straightforward. The reported symptom rates of, in particular, eye and upper airway irritation cannot generally be explained by our present knowledge of common chemically non-reactive VOCs measured indoors. Recently, experimental evidence has shown those chemical reactions between ozone (either with or without nitrogen dioxide) and unsaturated organic compounds (e.g. from citrus and pine oils) produce strong eye and airway irritating species. These have not yet been well characterised by conventional sampling and analytical techniques. The chemical reactions can occur indoors, and there is indirect evidence that they are associated with eye and airway irritation. However, many other volatile and non-volatile organic compounds have not generally been measured which could equally well have potent biological effects and cause an increase of complaint rates, and posses a health/comfort risk. As a consequence, it is recommended to use a broader analytical window of organic compounds than the classic VOC window as defined by the World Health Organisation. It may include hitherto not yet sampled or identified intermediary species (e.g., radicals, hydroperoxides and ionic compounds like detergents) as well as species deposited onto particles. Additionally, sampling strategies including emission testing of building products should carefully be linked to the measurement of organic compounds that are expected, based on the best available toxicological knowledge, to have biological effects at indoor concentrations.
Water quality in the eastern Iowa basins, Iowa and Minnesota, 1996-98
Kalkhoff, Stephen J.; Barnes, Kimberlee K.; Becher, Kent D.; Savoca, Mark E.; Schnoebelen, Douglas J.; Sadorf, Eric M.; Porter, Stephen D.; Sullivan, Daniel J.
2000-01-01
The water quality in rivers and streams and in selected aquifers in eastern Iowa and part of southern Minnesota is described and illustrated. Major ions, nitrogen and other nutrients, and pesticides and some of their breakdown compounds were analyzed in both surface and ground water. Biological communities that included fish, invertebrates, and algae, were described in relation to stream water quality. Volatile organic compounds that originate from fuels, solvent, and industry were analyzed from ground-water samples. Agricultural and urban land-use effects on shallow ground-water compared and contrasted.
Nitrogen Trifluoride-Based Fluoride- Volatility Separations Process: Initial Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
McNamara, Bruce K.; Scheele, Randall D.; Casella, Andrew M.
2011-09-28
This document describes the results of our investigations on the potential use of nitrogen trifluoride as the fluorinating and oxidizing agent in fluoride volatility-based used nuclear fuel reprocessing. The conceptual process uses differences in reaction temperatures between nitrogen trifluoride and fuel constituents that produce volatile fluorides to achieve separations and recover valuable constituents. We provide results from our thermodynamic evaluations, thermo-analytical experiments, kinetic models, and provide a preliminary process flowsheet. The evaluations found that nitrogen trifluoride can effectively produce volatile fluorides at different temperatures dependent on the fuel constituent.
Chemical characterization of territorial marking fluid of male Bengal tiger, Panthera tigris.
Burger, B V; Viviers, M Z; Bekker, J P I; le Roux, M; Fish, N; Fourie, W B; Weibchen, G
2008-05-01
The territorial marking fluid of the male Bengal tiger, Panthera tigris, consists of a mixture of urine and a small quantity of lipid material that may act as a controlled-release carrier for the volatile constituents of the fluid. Using gas chromatography and gas chromatography-mass spectrometry, 98 volatile compounds and elemental sulfur were identified in the marking fluid. Another 16 volatiles were tentatively identified. The majority of these compounds were alkanols, alkanals, 2-alkanones, branched and unbranched alkanoic acids, dimethyl esters of dicarboxylic acids, gamma- and delta-lactones, and compounds containing nitrogen or sulfur. Several samples of the marking fluid contained pure (R)-3-methyl-2-octanone, (R)-3-methyl-2-nonanone, and (R)-3-methyl-2-decanone, but these ketones were partly or completely racemized in other samples. The gamma-lactone (S)-(+)-(Z)-6-dodecen-4-olide and the C(8) to C(16) saturated (R)-gamma-lactones and (S)-delta-lactones were present in high enantiomeric purities. The chiral carboxylic acids, 2-methylnonanoic acid, 2-methyldecanoic acid, 2-methylundecanoic acid, and 2-ethylhexanoic acid were racemates. Cadaverine, putrescine, and 2-acetylpyrroline, previously reported as constituents of tiger urine, were not detected. The dominant contribution of some ketones, fatty acids, and lactones to the composition of the headspace of the marking fluid suggests that these compounds may be important constituents of the pheromone. Although it constitutes only a small proportion, the lipid fraction of the fluid contained larger quantities of the volatile organic compounds than the aqueous fraction (urine). The lipid derives its role as controlled-release carrier of the chemical message left by the tiger, from its affinity for the volatiles of the marking fluid. Six proteins with masses ranging from 16 to 69 kDa, inter alia, the carboxylesterase-like urinary protein known as cauxin, previously identified in the urine of the domestic cat and other felid species, were identified in the urine fraction of the marking fluid.
MacDonald, Russell D; Thomas, Laura; Rusk, Frederick C; Marques, Shauna D; McGuire, Dan
2010-01-01
Transport medicine personnel are potentially exposed to jet fuel combustion products. Setting-specific data are required to determine whether this poses a risk. This study assessed exposure to jet fuel combustion products, compared various engine ignition scenarios, and determined methods to minimize exposure. The Beechcraft King Air B200 turboprop aircraft equipped with twin turbine engines, using a kerosene-based jet fuel (Jet A-1), was used to measure products of combustion during boarding, engine startup, and flight in three separate engine start scenarios ("shielded": internal engine start, door closed; "exposed": ground power unit start, door open; and "minimized": ground power unit right engine start, door open). Real-time continuous monitoring equipment was used for oxygen, carbon dioxide, carbon monoxide, nitrogen dioxide, hydrogen sulfide, sulfur dioxide, volatile organic compounds, and particulate matter. Integrated methods were used for aldehydes, polycyclic aromatic hydrocarbons, volatile organic compounds, and aliphatic hydrocarbons. Samples were taken in the paramedic breathing zone for approximately 60 minutes, starting just before the paramedics boarded the aircraft. Data were compared against regulated time-weighted exposure thresholds to determine the presence of potentially harmful products of combustion. Polycyclic aromatic hydrocarbons, aldehydes, volatile organic compounds, and aliphatic hydrocarbons were found at very low concentrations or beneath the limits of detection. There were significant differences in exposures to particulates, carbon monoxide, and total volatile organic compound between the "exposed" and "minimized" scenarios. Elevated concentrations of carbon monoxide and total volatile organic compounds were present during the ground power unit-assisted dual-engine start. There were no appreciable exposures during the "minimized" or "shielded" scenarios. Air medical personnel exposures to jet fuel combustion products were generally low and did not exceed established U.S. or Canadian health and safety exposure limits. Avoidance of ground power unit-assisted dual-engine starts and closing the hangar door prior to start minimize or eliminate the occupational exposure.
Mullaney, John R.; Grady, Stephen J.
1997-01-01
The quality of water along flowpaths in a surficial aquifer system in Manchester, Connecticut, was studied during 1993-95 as part of the National Water Quality Assessment program. The flowpath study examined the relations among hydrogeology, land-use patterns, and the presence of contaminants in a surficial aquifer in an urban area, and evaluated ground water as a source of contamination to surface water. A two-dimensional, finite-difference groundwater- flow model was used to estimate travel distance, which ranged from about 50 to 11,000 feet, from the source areas to the sampled observation wells. Land use, land cover, and population density were determined in the source areas delineated by the ground-water-flow simulation. Source areas to the wells contained either high- or medium-density residential areas, and population density ranged from 629 to 8,895 people per square mile. Concentrations of selected inorganic constituents, including sodium, chloride, and nitrite plus nitrate nitrogen, were higher in the flowpath study wells than in wells in undeveloped areas with similar aquifer materials. One or more of 9 volatile organic compounds were detected at 12 of 14 wells. The three most commonly detected volatile organic compounds were chloroform, methyl-tert-butyl ether, and trichloroethene. Trichloroethene was detected at concentrations greater than the maximum contaminant level for drinking water (5 micrograms per liter) in samples from one well. Four pesticides, including dichloro diphenyl dichloroethylene, dieldrin, dichloroprop, and simazine were detected at low concentrations. Concentrations of sodium and chloride were higher in samples collected from wells screened in the top of the saturated zone than in samples collected from deeper zones. Volatile organic compounds and elevated concentrations of nitrite plus nitrate as nitrogen were detected at depths of as much as 60 feet below the water table, indicating that the effects of human activities on the ground-water quality extends to the bottom of the surficial aquifer. The age of ground water, as determined by tritium and 3helium concentrations, was 0.9 to 22.6 years. pH, alkalinity, and calcium were higher and concentrations of dissolved oxygen were lower in ground-water samples with ages of 10 years or more than in samples younger than 10 years. In addition, concentrations of sodium, chloride, and nitrite plus nitrate nitrogen were low in ground-water samples with ages of 10 years or more, indicating that concentrations of these compounds may be increasing with time or that the recharge areas to these wells may have had less intensive urban land use. Methyl-tert-butyl ether was detected only in wells with ground water ages of less than 11 years, which is consistent with the date of introduction of this compound as a gasoline additive in Connecticut. Analysis of additional samples collected for analysis of stable nitrogen isotopes indicated that the most likely source of elevated concentrations of nitrate nitrogen was lawn and garden fertilizers, but other sources, including wastewater effluents, soil organic nitrogen, and atmospheric deposition, may contribute to the total. Population density was positively correlated (at the 97 percent confidence level) to concentrations of nitrite plus nitrate as nitrogen. Water quality in the Hockanum River aquifer has been degraded by human activities, and, after discharge to surface water, affects the water quality in the Hockanum River. On an annual basis, ground-water discharge from the study area to the river (as measured at a downstream continuous-record gaging station) contributes about 5 percent of the annual load of nitrite plus nitrate nitrogen, but, during low flow, contributes 11 percent of the nitrite plus nitrate nitrogen, 32 percent of the calcium, and 16 percent of the chloride to the river.
Ma, Q L; Hamid, N; Bekhit, A E D; Robertson, J; Law, T F
2012-12-01
This research was carried out to determine the effects of pre-rigor injection of beef semimembranosus muscle with nine proteases from plant and microbial sources, on the volatile profile of cooked beef after 1 day and 21 days post-mortem (PM) storage using Solid-phase microextraction gas chromatography mass spectrometry analysis. A total of 23 aldehydes, 5 ketones, 3 furans, 8 nitrogen and sulphur compounds, 4 alkanes, 7 alcohols and 6 terpenes were detected. Eleven volatile compounds characteristic of ginger flavour were detected in zingibain-treated meat. Benzaldehyde significantly increased (p<0.05) only in kiwifruit juice (KJ), fungal 31 protease and Asparagus protease (ASP) treated samples from 1 day to 21 days PM storage. A significant increase (p<0.05) in 3-methylbutanal was observed in KJ, bacterial and fungal protease treated samples at 21 days PM storage. Treatments with bromelain, papain, ASP, actinidin, and KJ (except KJ 21 days) proteases resulted in flavour profiles closer to that of the control beef sample. Copyright © 2012 Elsevier Ltd. All rights reserved.
Guo, Xiangyang; Song, Chuankui; Ho, Chi-Tang; Wan, Xiaochun
2018-10-15
l-Theanine, the most abundant amino acid in tea, is widely believed to be associated with the tea taste, however, its contribution to the formation of tea aroma is still unknown. Volatiles were determined and nitrogen-containing compounds formed during manufacturing processes were quantified. Lower levels of total sugar and l-theanine were detected in the Oolong tea product undergoing full fire processing (FFOT) suggesting that l-theanine probably involved in the volatile formation during manufacturing processes. Methylpyrazine and 2,5-dimethylpyrazine, two newly formed compounds in FFOT, together with other volatiles were successfully detected in a model thermal reaction of d-glucose and l-theanine (GT-MTR) but not detectable in thermal reactions with single d-glucose (G-MTR) or l-theanine (T-MTR). The concentration of 2,5-dimethylpyrazine increased significantly by adding additional l-theanine to 2nd roasted tea. Our study demonstrated that l-theanine, at least partly, contributed to the formation of 2,5-dimethylpyrazine, a key roasted peanutty flavor in Oolong tea. Copyright © 2018. Published by Elsevier Ltd.
Bassan, Priyanka; Bhushan, Sakshi; Kaur, Tajinder; Arora, Rohit; Arora, Saroj; Vig, Adarsh Pal
2018-05-01
Cruciferous vegetables are rich source of glucosinolates (GSLs), which in presence of myrosinase enzyme cause hydrolytic cleavage and result in different hydrolytic products like isothiocyanates, thiocyanates, nitriles and epinitriles. The GSLs hydrolytic products are volatile compounds, which are known to exhibit bioactivities like antioxidant, fungicidal, bioherbicidal and anticancer. Among the Brassicaceae family, Brassica juncea is very well known for high content of GSLs. In the present study, the isolation of volatile oil of B. juncea var. raya was done by hydrodistillation method using clevenger apparatus and further there extraction was done by solvents ethyl acetate and dichloromethane. The volatile compounds present in the extract were analysed by gas chromatography/gas chromatography-mass spectrometry (GC/GC-MS). Fatty acid esters, sulphur and/or nitrogen compounds, carbonyl compounds and some other volatile compounds were also identified. Besides the analytical studies, the extracts were analysed for their bioactivities including radical scavenging activity by using DNA nicking assay and cytotoxic effect using different human cancer cell lines viz. breast (MCF-7 and MDA-MB-231), prostate (PC-3), lung (A-549), cervix (HeLa) and colon (HCT116) by MTT assay. The oil extracts were efficiently able to reduce the increase of cancer cells in a dose-dependent manner. Among all cell lines, the most effective anticancer activity was observed in case of breast (MCF-7) cancer cell line. So, MCF-7 cells were used for further mechanistic studies for analysing the mechanism of anticancer activity. Confocal microscopy was done for analysing morphological changes in the cells and the images confirmed the features typical of apoptosis. For evaluating the mode of cell death, spectrofluorometric determination of reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) was done. The volatile oil extract treated MCF-7 cells had a significant increase in number of ROS, also there was a rise in percentage of cells with increased disruption of MMP. So, the present study marks necessary indication that B. juncea (raya) oil extracts significantly induces apoptosis in all the above mentioned cancer cells lines through a ROS-mediated mitochondrial pathway and thus play a remarkable role in death of cancer cells.
NASA Astrophysics Data System (ADS)
Warneke, C.; Schwarz, J. P.; Yokelson, R. J.; Roberts, J. M.; Koss, A.; Coggon, M.; Yuan, B.; Sekimoto, K.
2017-12-01
A combination of a warmer, drier climate with fire-control practices over the last century have produced a situation in which we can expect more frequent fires and fires of larger magnitude in the Western U.S. and Canada. There are urgent needs to better understand the impacts of wildfire and biomass burning (BB) on the atmosphere and climate system, and for policy-relevant science to aid in the process of managing fires. The FIREX (Fire Influence on Regional and Global Environment Experiment) research effort is a multi-year, multi-agency measurement campaign focused on the impact of BB on climate and air quality from western North American wild fires, where research takes place on scales ranging from the flame-front to the global atmosphere. FIREX includes methods development and small- and large-scale laboratory and field experiments. FIREX will include: emission factor measurements from typical North American fuels in the fire science laboratory in Missoula, Montana; mobile laboratory deployments; ground site measurements at sites influenced by BB from several western states. The main FIREX effort will be a large field study with multiple aircraft and mobile labs in the fire season of 2019. One of the main advances of FIREX is the availability of various new measurement techniques that allows for smoke evaluation in unprecedented detail. The first major effort of FIREX was the fire science laboratory measurements in October 2016, where a large number of previously understudied Nitrogen containing volatile organic compounds (NVOCs) were measured using H3O+CIMS and I-CIMS instruments. The contribution of NVOCs to the total reactive Nitrogen budget and the relationship to the Nitrogen content of the fuel are investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kilpinen, P.; Kallio, S.; Hupa, M.
1999-07-01
This paper describes work-in-progress aimed at developing an emission model for circulating fluidized bed combustors using detailed homogeneous and heterogeneous chemical kinetics. The main emphasis is on nitrogen oxides (NO{sub x}, N{sub 2}O) but also unburned gases (CO, C{sub x}H{sub y}) and sulfur dioxide (SO{sub 2}) will be investigated in the long run. The hydrodynamics is described by a 1.5-dimensional model where the riser is divided into three regions: a dense bubbling bed at the bottom, a vigorously mixed splash zone, and a transport zone. The two latter zones are horizontally split into a core region and an annular region.more » The solids circulation rate is calculated from the known solids inventory and the pressure and mass balances over the entire circulation loop. The solids are divided into classes according to size and type or particle. The model assumes instantaneous fuel devolatilization at the bottom and an even distribution of volatiles in the suspension phase of the dense bed. For addition of secondary air, a complete penetration and an instantaneous mixing with the combustor gases in the core region is assumed. The temperature distribution is assumed to be known, and no energy balance is solved. A comprehensive kinetic scheme of about 300 elementary gas-phase reactions is used to describe the homogeneous oxidation of the volatiles including both hydrocarbon and volatile-nitrogen components (NH{sub 3}, HCN). Heterogeneous char combustion to CO and CO{sub 2}, and char-nitrogen conversion to NO, N{sub 2}O, and N{sub 2} are described by a single particle model that includes 15 reaction steps given in the form of 6 net reaction paths. In the paper, the model is briefly described. A special emphasis is put on the evaluation of chemistry submodels. Modeling results on nitrogen oxides' formation are compared with measured concentration profiles in a 12 MW CFBC riser from literature. The importance of accurate chemistry description on predictions is illustrated by comparing modeling results using detailed kinetics to those obtained when hydrocarbon and volatile-nitrogen oxidation are described with empirical, global kinetic rate expressions from literature. Submodels that need further improvements are discussed.« less
Mancilla-Margalli, Norma A; López, Mercedes G
2002-02-13
During the cooking process of Agave tequilana Weber var. azul to produce tequila, besides the hydrolysis of inulin to generate fermentable sugars, many volatiles, mainly Maillard compounds, are produced, most of which may have a significant impact on the overall flavor of tequila. Exudates (agave juice) from a tequila company were collected periodically, and color, Brix, fructose concentration, and reducing sugars were determined as inulin breakdown took place. Maillard compounds were obtained by extraction with CH(2)Cl(2), and the extracts were analyzed by GC-MS. Increments in color, Brix, and reducing sugars were observed as a function of time, but a decrease in fructose concentration was found. Many Maillard compounds were identified in the exudates, including furans, pyrans, aldehydes, and nitrogen and sulfur compounds. The most abundant Maillard compounds were methyl-2-furoate, 2,3-dihydroxy-3,5-dihydro-6-methyl-4(H)-pyran-4-one, and 5-(hydroxymethyl)furfural. In addition, a series of short- and long-chain fatty acids was also found. A large number of the volatiles in A. tequilana Weber var. azul were also detected in tequila extracts, and most of these have been reported as a powerful odorants, responsible for the unique tequila flavor.
Plant volatiles in a polluted atmosphere: stress response and signal degradation
Blande, James D.; Holopainen, Jarmo K.; Niinemets, Ülo
2014-01-01
Plants emit a plethora of volatile organic compounds, which provide detailed information on the physiological condition of emitters. Volatiles induced by herbivore-feeding are among the best studied plant responses to stress and may constitute an informative message to the surrounding community and function in the process of plant defence. However, under natural conditions, plants are potentially exposed to multiple concurrent stresses, which can have complex effects on the volatile emissions. Atmospheric pollutants are an important facet of the abiotic environment and can impinge on a plant’s volatile-mediated defences in multiple ways at multiple temporal scales. They can exert changes in volatile emissions through oxidative stress, as is the case with ozone pollution. They may also react with volatiles in the atmosphere; such is the case for ozone, nitrogen oxides, hydroxyl radicals and other oxidizing atmospheric species. These reactions result in breakdown products, which may themselves be perceived by community members as informative signals. In this review we demonstrate the complex interplay between stress, emitted signals and modification in signal strength and composition by the atmosphere, collectively determining the responses of the biotic community to elicited signals. PMID:24738697
Limited effect of anthropogenic nitrogen oxides on Secondary Organic Aerosol formation
Zheng, Y.; Unger, N.; Hodzic, A.; ...
2015-08-28
Globally, secondary organic aerosol (SOA) is mostly formed from emissions of biogenic volatile organic compounds (VOCs) by vegetation, but can be modified by human activities as demonstrated in recent research. Specifically, nitrogen oxides (NO x = NO + NO 2) have been shown to play a critical role in the chemical formation of low volatility compounds. We have updated the SOA scheme in the global NCAR Community Atmospheric Model version 4 with chemistry (CAM4-chem) by implementing a 4-product Volatility Basis Set (VBS) scheme, including NO x-dependent SOA yields and aging parameterizations. The predicted organic aerosol amounts capture both the magnitudemore » and distribution of US surface annual mean measurements from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network by 50 %, and the simulated vertical profiles are within a factor of two compared to Aerosol Mass Spectrometer (AMS) measurements from 13 aircraft-based field campaigns across different region and seasons. We then perform sensitivity experiments to examine how the SOA loading responds to a 50 % reduction in anthropogenic nitric oxide (NO) emissions in different regions. We find limited SOA reductions of 0.9 to 5.6, 6.4 to 12.0 and 0.9 to 2.8 % for global, the southeast US and the Amazon NO x perturbations, respectively. The fact that SOA formation is almost unaffected by changes in NO x can be largely attributed to buffering in chemical pathways (low- and high-NO x pathways, O 3 versus NO 3-initiated oxidation) and to offsetting tendencies in the biogenic versus anthropogenic SOA responses.« less
Ferrari, Matthew J.
2001-01-01
Water samples were collected from August through November 2000 from 30 randomly selected public drinking-water supply wells screened in the unconfined aquifer in Delaware, and analyzed to assess the occurrence and distribution of selected pesticide compounds, volatile organic compounds, major inorganic ions, and nutrients. Water from a subset of 10 wells was sampled and analyzed for radium and radon. The average age of ground water entering the well screens in all the wells was determined to be generally less than 20 years. Low concentrations of pesticide compounds and volatile organic compounds were detected throughout the State of Delaware, with several compounds often detected in each water sample. Pesticide and metabolite (pesticide degradation products) concentrations were generally less than 1 microgram per liter, and were detected in sam-ples from 27 of 30 wells. Of the 45 pesticides and 13 metabolites analyzed, 19 compounds (13 pesticides and 6 metabolites) were detected in at least 1 of the 30 samples. Desethylatrazine, alachlor ethane sulfonic acid, metolachlor ethane sulfonic acid, metolachlor, and atrazine were the most frequently detected pesticide compounds, and were present in at least half the samples. None of the pesticide detections was above the U.S. Environmental Protection Agency's Primary Maximum Contaminant Levels or Health Advisories. Volatile organic compounds also were present at low concentrations (generally less than 1 microgram per liter) in samples from all 30 wells. Of the 85 volatile organic com-pounds analyzed, 34 compounds were detected in at least 1 of the 30 samples. Chloroform, tetrachloroethene, and methyl tert-butyl ether were the most frequently detected volatile organic compounds, and were found in at least half the samples. None of the volatile organic compound detections was above U.S. Environmental Protection Agency's Primary Maximum Contaminant Levels or Health Advisories. A few samples contained compounds with concentrations above the U.S. Environmental Protection Agency's Primary Maximum Contaminant Levels or Secondary Maximum Contaminant Levels for inorganic compounds and radionuclides. One sample out of 30 contained a concentration of nitrite plus nitrate above the U.S. Environmental Protection Agency's Primary Maximum Contaminant Level of 10 milligrams per liter as nitrogen. Iron and manganese concentrations above the U.S. Environmental Protection Agency's Secondary Maximum Contaminant Levels were found in 7 of 30 ground-water samples, most of them from Sussex County. In the 10 wells sampled for radionuclides, only one sample had detectable levels of radium-224 and -226, and another sample contained detectable levels of radium-228; both of these samples also had detectable gross-alpha and gross-beta activities. None of these activities were above the U.S. Environ-mental Protection Agency's Primary Maximum Contaminant Levels or Secondary Maximum Contaminant Levels. Radon was detected in all 10 samples, but was above the current U.S. Environmental Protection Agency's proposed Primary Maximum Contaminant Level of 300 picocuries per liter in only one sample.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Volatile Solids and Nitrogen Removal through Solids Separation JJ Table JJ-4 to Subpart JJ of Part 98 Protection of Environment ENVIRONMENTAL... Pt. 98, Subpt. JJ, Table JJ-4 Table JJ-4 to Subpart JJ of Part 98—Volatile Solids and Nitrogen...
Holopainen, Jarmo K
2011-12-01
Plants produce a variety of volatile organic compounds (VOCs). Under abiotic and biotic stresses, the number and amount of produced compounds can increase. Due to their long life span and large size, trees can produce biogenic VOCs (BVOCs) in much higher amounts than many other plants. It has been suggested that at cellular and tree physiological levels, induced production of VOCs is aimed at improving plant resistance to damage by reactive oxygen species generated by multiple abiotic stresses. In the few reported cases when biosynthesis of plant volatiles is inhibited or enhanced, the observed response to stress can be attributed to plant volatiles. Reported increase, e.g., in photosynthesis has mostly ranged between 5 and 50%. A comprehensive model to explain similar induction of VOCs under multiple biotic stresses is not yet available. As a result of pathogen or herbivore attack on forest trees, the induced production of VOCs is localized to the damage site but systemic induction of emissions has also been detected. These volatiles can affect fungal pathogens and the arrival rate of herbivorous insects on damaged trees, but also act as signalling compounds to maintain the trophic cascades that may improve tree fitness by improved efficiency of herbivore natural enemies. On the forest scale, biotic induction of VOC synthesis and release leads to an amplified flow of BVOCs in atmospheric reactions, which in atmospheres rich in oxides of nitrogen (NOx) results in ozone formation, and in low NOx atmospheres results in oxidation of VOCs, removal in ozone from the troposphere and the resulting formation of biogenic secondary organic aerosol (SOA) particles. I will summarize recent advances in the understanding of stress-induced VOC emissions from trees, with special focus on Populus spp. Particular importance is given to the ecological and atmospheric feedback systems based on BVOCs and biogenic SOA formation.
Stand-off detection of plant-produced volatile organic compounds using short-range Raman LIDAR
NASA Astrophysics Data System (ADS)
Johnson, Lewis; Barnett, Cleon; Brown, Christopher; Crawford, Devron; Tumlinson, James
2004-03-01
Several plant species release volatile organic compounds (VOCs) when under stresses such as herbivore feeding attack. The release of these plant-produced VOCs (i.e. terpenes) triggers the release of active biochemical defenses, which target the attacker. In some cases, the VOCs send cues to nearby carnivorous predators to attract them to the feeding herbivore. Volatile compounds are released both locally by damaged leaves and systemically by the rest of the plant. These compounds are released in large quantities, which facilitate detection of pests in the field by parasitoids. Detecting the plant"s VOC emissions as a function of various parameters (e.g. ambient temperature, atmospheric nitrogen levels, etc.) is essential to designing effective biological control systems. In addition these VOC releases may serve as early warning indicator of chemo-bio attacks. By combining Raman spectroscopy techniques with Laser Remote Sensing (LIDAR) systems, we are developing a Standoff detection system. Initial results indicate that is it possible to detect and differentiate between various terpenes, plant species, and other chemical compounds at distances greater than 12 meters. Currently, the system uses the 2nd harmonic of a Nd:YAG; however plans are underway to improve the Raman signal by moving the illumination wavelength into the solar-blind UV region. We report on our initial efforts of designing and characterizing this in a laboratory proof of concept system. We envision that this effort will lead to the design of a portable field-deployable system to rapidly characterize, with a high spatial resolution, large crops and other fields.
Low molecular carbon compounds present in the rhizosphere control denitrification kinetics
NASA Astrophysics Data System (ADS)
Herold, M.; Morley, N.; Baggs, E.
2013-12-01
Nitrogen and carbon cycles play key roles in plant-microbe interactions in soils. Carbon is supplied by plants to microbes in the form of root exudates which includes both high and low molecular compounds. Nitrogen in turn is taken up by plants and rhizosphere microbes metabolise nitrogen compounds in several biochemical pathways. The conversion of nitrogen compounds to volatile products in the process of denitrification leads to increasing amounts of nitrous oxide (N2O) in the atmosphere. Nitrous oxide is a potent greenhouse gas and increasing emissions of N2O through intense agriculture have lead to intensified research to find possible mitigation strategies to reduce N2O production from soil. In our study we show the effect of low molecular carbon compounds, typically found in root exudates, on the dynamics of denitrification as well as the dose response effect of the single compounds. The hypothesis was tested that different compound groups change the kinetics of the different reduction steps in the biochemical pathway of denitrification, which results in lower N2O production. Experiments were performed in soil-microcosms using 15N labelling approaches to monitor denitrification products . Microcosms were maintained as slurries in order to create oxygen limiting conditions, which favours denitrification. Carbon dioxide and N2O were monitored throughout the experiments and on three destructive sampling days NO3, NO2, NO and 15N-N2 were measured. Results showed that the denitrification process was differently affected by amino acids and organic acids with higher denitrification activity observed in the presence of organic acids. The dynamics of the single reduction steps were time dependent which indicates that substrate availability plays an important role in soil microbial activity. We concluded that the activity of denitrifiers are significantly influenced by different carbon compounds, and that further studies on the effects of the composition of root exudates could contribute to N2O mitigation strategies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kleinheinz, G.T.; St. John, W.P.
A study was conducted to develop a rapid and reliable method for the collection and incorporation of biofiltration air samples containing volatile organic compounds (VOCs) into the Microtox toxicity testing system. To date, no method exists for this type of assay. A constant stream of VOCs was generated by air stripping compounds from a complex mixture of petroleum hydrocarbons (PHCs). Samples were collected on coconut charcoal ORBO tubes and the VOCs extracted with methylene chloride. The compounds extracted were then solvent exchanged into dimethyl sulfoxide (DMSO) under gaseous nitrogen. The resulting DMSO extract was directly incorporated into the Microtox toxicitymore » testing system. In order to determine the efficiency of the solvent exchange, the VOCs in the DMSO extract were then extracted into hexane and subsequently analyzed using gas chromatography (GC) with a flame ionization detector (FID). It was determined that all but the most volatile VOCs could be effectively transferred from the ORBO tubes to DMSO for Microtox testing. Potential trace amounts of residual methylene chloride in the DMSO extracts showed no adverse effects in the Microtox system when compared to control samples.« less
Sannino, Filomena; Parrilli, Ermenegilda; Apuzzo, Gennaro Antonio; de Pascale, Donatella; Tedesco, Pietro; Maida, Isabel; Perrin, Elena; Fondi, Marco; Fani, Renato; Marino, Gennaro; Tutino, Maria Luisa
2017-03-25
The Antarctic marine bacterium Pseudoalteromonas haloplanktis TAC125 has been reported to produce several Volatile Organic Compounds (VOCs), which are able to inhibit the growth of Burkholderia cepacia complex (Bcc) strains, opportunistic pathogens responsible for the infection of immune-compromised patients. However, no specific antibacterial VOCs have been identified to date. The purpose of the present study was to identify specific VOCs that contribute to Bcc inhibition by the Antarctic strain. When grown on defined medium containing D-gluconate and L-glutamate as carbon, nitrogen and energy sources, P. haloplanktis TAC125 is unable to inhibit the growth of Bcc strains. However, single addition of several amino acids to the defined medium restores the P. haloplanktis TAC125 inhibition ability. With the aim of identifying specific volatile compound/s responsible for Bcc inhibition, we set up an apparatus for VOC capture, accumulation, and storage. P. haloplanktis TAC125 was grown in an automatic fermenter which was connected to a cooling system to condense VOCs present in the exhaust air outlet. Upon addition of methionine to the growth medium, the VOC methylamine was produced by P. haloplanktis TAC125. Methylamine was found to inhibit the growth of several Bcc strains in a dose-dependent way. Although it was reported that P. haloplanktis TAC125 produces VOCs endowed with antimicrobial activity, this is the first demonstration that methylamine probably contributes to the anti-Bcc activity of P. haloplanktis TAC125 VOCs. Copyright © 2016 Elsevier B.V. All rights reserved.
Hartikainen, Anni; Yli-Pirilä, Pasi; Tiitta, Petri; Leskinen, Ari; Kortelainen, Miika; Orasche, Jürgen; Schnelle-Kreis, Jürgen; Lehtinen, Kari E J; Zimmermann, Ralf; Jokiniemi, Jorma; Sippula, Olli
2018-04-17
Residential wood combustion (RWC) emits high amounts of volatile organic compounds (VOCs) into ambient air, leading to formation of secondary organic aerosol (SOA), and various health and climate effects. In this study, the emission factors of VOCs from a logwood-fired modern masonry heater were measured using a Proton-Transfer-Reactor Time-of-Flight Mass Spectrometer. Next, the VOCs were aged in a 29 m 3 Teflon chamber equipped with UV black lights, where dark and photochemical atmospheric conditions were simulated. The main constituents of the VOC emissions were carbonyls and aromatic compounds, which accounted for 50%-52% and 30%-46% of the detected VOC emission, respectively. Emissions were highly susceptible to different combustion conditions, which caused a 2.4-fold variation in emission factors. The overall VOC concentrations declined considerably during both dark and photochemical aging, with simultaneous increase in particulate organic aerosol mass. Especially furanoic and phenolic compounds decreased, and they are suggested to be the major precursors of RWC-originated SOA in all aging conditions. On the other hand, dark aging produced relatively high amounts of nitrogen-containing organic compounds in both gas and particulate phase, while photochemical aging increased especially the concentrations of certain gaseous carbonyls, particularly acid anhydrides.
Lovestead, Tara M; Bruno, Thomas J
2011-01-30
Victims of crimes are often buried in clandestine graves. There are several techniques for finding buried bodies or the scattered remains of a victim; however, none of these methods are very reliable or work in all scenarios. One way to detect gravesoil is to detect the biochemical changes of the surrounding soil due to cadaver decomposition, for example, the release of nitrogenous compounds. A simple and low-cost way to detect these compounds is based on the reaction of alpha amino groups with ninhydrin to form Ruhemann's purple. This test for ninhydrin-reactive nitrogen (NRN) has, to date, only been performed by direct solvent extraction of soil samples. Here, we present a method that detects trace quantities of NRN in the headspace air above gravesoil. Our method is based on an improved purge and trap method developed in our lab for sampling low volatility compounds, as well as volatile compounds at trace quantities, by applying low temperature collection on short alumina-coated porous layer open tubular (PLOT) columns. We modified this method to sample the headspace air above gravesoil with a motorized pipetter and a PLOT column at ambient temperatures. We generated gravesoil using rat cadavers and local soil. Trace quantities of NRN were successfully detected in the headspace air above gravesoil. We report the quantities of NRN recovered for buried rats, rats laid on top of soil, and blank graves (no rats) as a function of time (weeks to months). This work is the first (and thus far, only) example of a method for detecting NRN in the vapor phase, providing another tool for forensic investigators to aid in locating elusive clandestine graves. Published by Elsevier Ireland Ltd.
On the use of thermal NF3 as the fluorination and oxidation agent in treatment of used nuclear fuels
NASA Astrophysics Data System (ADS)
Scheele, Randall; McNamara, Bruce; Casella, Andrew M.; Kozelisky, Anne
2012-05-01
This paper presents results of our investigation on the use of nitrogen trifluoride as a fluorination or fluorination/oxidation agent for separating valuable constituents from used nuclear fuels by exploiting the different volatilities of the constituent fission product and actinide fluorides. Our thermodynamic calculations show that nitrogen trifluoride has the potential to produce volatile fission product and actinide fluorides from oxides and metals that can form volatile fluorides. Simultaneous thermogravimetric and differential thermal analyses show that the oxides of lanthanum, cerium, rhodium, and plutonium are fluorinated but do not form volatile fluorides when treated with nitrogen trifluoride at temperatures up to 550 °C. However, depending on temperature, volatile fluorides or oxyfluorides can form from nitrogen trifluoride treatment of the oxides of niobium, molybdenum, ruthenium, tellurium, uranium, and neptunium. Thermoanalytical studies demonstrate near-quantitative separation of uranium from plutonium in a mixed 80% uranium and 20% plutonium oxide. Our studies of neat oxides and metals suggest that the reactivity of nitrogen trifluoride may be adjusted by temperature to selectively separate the major volatile fuel constituent uranium from minor volatile constituents, such as Mo, Tc, Ru and from the non-volatile fuel constituents based on differences in their reaction temperatures and kinetic behaviors. This reactivity is novel with respect to that reported for other fluorinating reagents F2, BrF5, ClF3.
Castro Parente, Denise; Vidal, Esteban Espinosa; Leite, Fernanda Cristina Bezerra; de Barros Pita, Will; de Morais, Marcos Antonio
2015-01-01
The distilled spirit made from sugar cane juice, also known as cachaça, is a traditional Brazilian beverage that in recent years has increased its market share among international distilled beverages. Several volatile compounds produced by yeast cells during the fermentation process are responsible for the unique taste and aroma of this drink. The yeast Dekkera bruxellensis has acquired increasing importance in the fermented beverage production, as the different metabolites produced by this yeast may be either beneficial or harmful to the end-product. Since D. bruxellensis is often found in the fermentation processes carried out in ethanol fuel distillation in Brazil, we employed this yeast to analyse the physiological profile and production of aromatic compounds and to examine whether it is feasible to regard it as a cachaça-producing microorganism. The assays were performed on a small scale and simulated the conditions for the production of handmade cachaça. The results showed that the presence of aromatic and branched-chain amino acids in the medium has a strong influence on the metabolism and production of flavours by D. bruxellensis. The assimilation of these alternative nitrogen sources led to different fermentation yields and the production of flavouring compounds. The influence of the nitrogen source on the metabolism of fusel alcohols and esters in D. bruxellensis highlights the need for further studies of the nitrogen requirements to obtain the desired level of sensory compounds in the fermentation. Our results suggest that D. bruxellensis has the potential to play a role in the production of cachaça. Copyright © 2014 John Wiley & Sons, Ltd.
Liu, Huan; Luo, Guang-Qian; Hu, Hong-Yun; Zhang, Qiang; Yang, Jia-Kuan; Yao, Hong
2012-10-15
Chemical conditioners are often used to enhance sewage sludge dewaterability through altering sludge properties and flocs structure, both affect odorous compounds emissions not only during sludge conditioning but also in subsequent sludge disposal. This study was to investigate emission characteristics of ammonia (NH(3)), sulfur dioxide (SO(2)), hydrogen sulfide (H(2)S) and carbonyl sulfide (COS) generated from sewage sludge conditioned by three representative conditioners, i.e., organic polymers, iron salts and skeleton builders, F-S (Fenton's reagent and skeleton builders) composite conditioner. The results demonstrate that polyacrylamide (PAM) has an insignificant effect on emission characteristics of nitrogen- and sulfur-containing odorous compounds, because the properties, sulfur and nitrogen speciations are similar in PAM-conditioned sludge and raw sludge (RS). Significant increases of SO(2) and H(2)S emissions in the H(2)SO(4) conditioning process were observed due to the accelerated decomposition of sulfur-containing amino acids in acidic environment. Fenton peroxidation facilitates the formation of COS. CaO can reduce sulfur-containing gases emission via generation of calcium sulfate. However, under strong alkaline conditions, free ammonia or protonated amine in sludge can be easily converted to volatile ammonia, resulting in a significant release of NH(3). Copyright © 2012 Elsevier B.V. All rights reserved.
Atmospheric Impacts of Emissions from Oil and Gas Development in the Uintah Basin, Utah, USA
NASA Astrophysics Data System (ADS)
Helmig, D.; Boylan, P. J.; Hueber, J.; Van Dam, B. A.; Mauldin, L.; Parrish, D. D.
2012-12-01
In the Uintah Basin in northeast Utah, USA, surface ozone levels during winter months have approached and on occasion exceeded the US National Ambient Air Quality Standard (NAAQS). Emissions from the extensive oil and gas exploration in this region are suspected to be the cause of these ozone episodes; however emission rates and photochemical processes are uncertain. During February 2012 continuous surface measurements and vertical profiling from a tethered balloon platform at the Horsepool site yielded high resolution boundary layer profile data on ozone and ozone precursor compounds, i.e. nitrogen oxides and volatile organic compounds as well as methane. Findings from this study were: 1. Surface ozone during the study period, which had no snow cover, did not exceed the NAAQS. 2. Nitrogen oxides varied from 1-50 ppbv pointing towards significant emission sources, likely from oil and gas operations. 3. Methane concentrations were elevated, reaching up to ~10 times its Northern Hemisphere (NH) atmospheric background. 3. Light non-methane hydrocarbons (NMHC) constituted the main fraction of volatile organic compounds. NMHC concentrations were highly elevated, exceeding levels seen in urban areas. 4. Ozone, methane, NOx and VOC showed distinct diurnal cycles, with large concentration increases seen at night, except for ozone, which showed the opposite behavior. 5. During nighttime concentrations of NOx, NMHC, and methane built up near the surface to levels that were much higher than their daytime concentrations. 6. Comparing NMHC to methane concentrations indicates a mass flux ratio of ~30% for total VOC/methane emissions for the Uintah Basin.
Limited effect of anthropogenic nitrogen oxides on secondary organic aerosol formation
NASA Astrophysics Data System (ADS)
Zheng, Y.; Unger, N.; Hodzic, A.; Emmons, L.; Knote, C.; Tilmes, S.; Lamarque, J.-F.; Yu, P.
2015-12-01
Globally, secondary organic aerosol (SOA) is mostly formed from emissions of biogenic volatile organic compounds (VOCs) by vegetation, but it can be modified by human activities as demonstrated in recent research. Specifically, nitrogen oxides (NOx = NO + NO2) have been shown to play a critical role in the chemical formation of low volatility compounds. We have updated the SOA scheme in the global NCAR (National Center for Atmospheric Research) Community Atmospheric Model version 4 with chemistry (CAM4-chem) by implementing a 4-product volatility basis set (VBS) scheme, including NOx-dependent SOA yields and aging parameterizations. Small differences are found for the no-aging VBS and 2-product schemes; large increases in SOA production and the SOA-to-OA ratio are found for the aging scheme. The predicted organic aerosol amounts capture both the magnitude and distribution of US surface annual mean measurements from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network by 50 %, and the simulated vertical profiles are within a factor of 2 compared to aerosol mass spectrometer (AMS) measurements from 13 aircraft-based field campaigns across different regions and seasons. We then perform sensitivity experiments to examine how the SOA loading responds to a 50 % reduction in anthropogenic nitric oxide (NO) emissions in different regions. We find limited SOA reductions of 0.9-5.6, 6.4-12.0 and 0.9-2.8 % for global, southeast US and Amazon NOx perturbations, respectively. The fact that SOA formation is almost unaffected by changes in NOx can be largely attributed to a limited shift in chemical regime, to buffering in chemical pathways (low- and high-NOx pathways, O3 versus NO3-initiated oxidation) and to offsetting tendencies in the biogenic versus anthropogenic SOA responses.
1984-03-01
contains many inorganic and organic chemicals such as sodium , nitrate, detergents, and volatile organic compounds which can be toxic and render a ground...1983-- 51 24 . sodium in ground water, 1983---------------------------- 53 25 . chloride in ground water, 1983-------------------------- 54 26...contains elevated concentrations of chloride, sodium , boron, nitrogen, detergents, and other constituents of the treated sewage. The plume was
A comparison of emissions from vehicles fueled with diesel or compressed natural gas.
Hesterberg, Thomas W; Lapin, Charles A; Bunn, William B
2008-09-01
A comprehensive comparison of emissions from vehicles fueled with diesel or compressed natural gas (CNG) was developed from 25 reports on transit buses, school buses, refuse trucks, and passenger cars. Emissions for most compounds were highest for untreated exhaust emissions and lowest for treated exhaust CNG buses without after-treatment had the highest emissions of carbon monoxide, hydrocarbons, nonmethane hydrocarbons (NMHC), volatile organic compounds (VOCs; e.g., benzene, butadiene, ethylene, etc.), and carbonyl compounds (e.g., formaldehyde, acetaldehyde, acrolein). Diesel buses without after-treatment had the highest emissions of particulate matter and polycyclic aromatic hydrocarbons (PAHs). Exhaust after-treatments reduced most emissions to similar levels in diesel and CNG buses. Nitrogen oxides (NO(x)) and carbon dioxide (CO2) emissions were similar for most vehicle types, fuels, and exhaust after-treatments with some exceptions. Diesel school buses had higher CO2 emissions than the CNG bus. CNG transit buses and passenger cars equipped with three-way catalysts had lower NO(x) emissions. Diesel buses equipped with traps had higher nitrogen dioxide emissions. Fuel economy was best in the diesel buses not equipped with exhaust after-treatment.
Vroblesky, Don A.
2008-01-01
Analysis of the volatile organic compound content of tree cores is an inexpensive, rapid, simple approach to examining the distribution of subsurface volatile organic compound contaminants. The method has been shown to detect several volatile petroleum hydrocarbons and chlorinated aliphatic compounds associated with vapor intrusion and ground-water contamination. Tree cores, which are approximately 3 inches long, are obtained by using an increment borer. The cores are placed in vials and sealed. After a period of equilibration, the cores can be analyzed by headspace analysis gas chromatography. Because the roots are exposed to volatile organic compound contamination in the unsaturated zone or shallow ground water, the volatile organic compound concentrations in the tree cores are an indication of the presence of subsurface volatile organic compound contamination. Thus, tree coring can be used to detect and map subsurface volatile organic compound contamination. For comparison of tree-core data at a particular site, it is important to maintain consistent methods for all aspects of tree-core collection, handling, and analysis. Factors affecting the volatile organic compound concentrations in tree cores include the type of volatile organic compound, the tree species, the rooting depth, ground-water chemistry, the depth to the contaminated horizon, concentration differences around the trunk related to variations in the distribution of subsurface volatile organic compounds, concentration differences with depth of coring related to volatilization loss through the bark and possibly other unknown factors, dilution by rain, seasonal influences, sorption, vapor-exchange rates, and within-tree volatile organic compound degradation.
[Analyze on volatile compounds of Antrodia camphorata using HS-SPME-GC-MS].
He, Zhe; Lu, Zhen-Ming; Xu, Hong-Yu; Shi, Jing-Song; Xu, Zheng-Hong
2011-11-01
To analyze the volatile compounds of Antrodia camphorata in solid-state and submerged cultures. A headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry(GC-MS) were used to evaluate the profile of the volatile compounds. 49 volatile compounds were identified in A. camphorata mycelia in submerged culture, while 43 volatile compounds were identified in mycelia in solid-state culture. 1-octen-3-ol, 3-octanone, 1-octen-3-ylacetate, acetic acid octyl ester and ethanol were the main volatile compounds in A. camphorata mycelia in submerged culture, while 1-octen-3-ol, 3-octanone, 3-methyl-butyraldenhyde, gamma-podecalactone and methyl 2-furozte were the most potent key volatile compounds in mycelia in solid-state culture. The volatile compounds in the mycelia of A. camphorata in solid-state and submerged cultures are similar but their relative contents are different.
Campo, Kimberly W.; Flanagan, Sarah M.; Robinson, Keith W.
2003-01-01
Nine rivers were monitored routinely for a variety of field conditions, dissolved ions, and nutrients during 1998-2000 as part of the New England Coastal Basins (NECB) study of the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program. The nine rivers, located primarily in the Boston metropolitan area, represented a gradient of increasing urbanization from 1 to 68 percent urban land use. Additional water samples were collected and analyzed for pesticides and volatile organic compounds at two of the nine rivers. Specific conductance data from all rivers were correlated with urban land use; specific conductance values increased during winter at some sites indicating the effect of road de-icing applications. In the more intensely urbanized basins, concentrations of sodium and chloride were high during winter and likely are attributed to road de-icing applications. Concentrations of total nitrogen and the various inorganic and organic nitrogen species were correlated with the percentage of urban land in the drainage basin. Total phosphorus concentrations also were correlated with urbanization in the drainage basin, but only for rivers draining less than 50 square miles. Preliminary U.S. Environmental Protection Agency total nitrogen and total phosphorus criteria for the rivers in the area were frequently exceeded at many of the rivers sampled. At the two sites monitored for pesticides and volatile organic compounds, the Aberjona and Charles Rivers near Boston, greater detection frequencies of pesticides were in samples from the spring and summer when pesticide usage was greatest. At both sites, herbicides were detected more commonly than insecticides. The herbicides prometon and atrazine and the insecticide diazinon were detected in over 50 percent of all samples collected from both rivers. No water samples contained pesticide concentrations exceeding any U.S. Environmental Protection Agency drinking-water standard or criteria for protecting freshwater aquatic life. The volatile organic compounds trichloroethylene, tetrachloroethylene, and cis-1,2- dichloroethylene--all solvents and de-greasers--were detected in all water samples from both rivers. The gasoline oxygenate methyl tert-butyl ether (MTBE) and the disinfection by-product chloroform were detected in all but one water sample from the two rivers. Two water samples from the Charles River had trichloroethylene concentrations that exceeded the U.S. Environmental Protection Agency Maximum Contaminant Level of 5 micrograms per liter for drinking water. Selected water-quality data from two NCEB rivers in the Boston metropolitan area were compared to two similarly sized intensely urban rivers in another NAWQA study area in the New York City metropolitan area and to other urban rivers sampled as part of the NAWQA Program nationally. Nutrient total nitrogen and total phosphorus concentrations and yields were less in the NECB study area than in the other study areas. In addition, the pesticides atrazine, carbaryl, diazinon, and prometon were detected less frequently and at lower concentrations in the two NECB rivers than in the New York City area streams or in the other urban NAWQA streams. Concentrations of the insecticides diazinon and carbaryl were detected more frequently and at higher concentrations in the NECB study area than in the other urban rivers sampled by NAWQA nationally. Detection frequency and concentrations of volatile organic compounds generally were higher in the two NECB streams than in the New York City area streams or in other urban NAWQA streams.
Klohe, Cheryl A.; Debrewer, Linda M.
2007-01-01
The U.S. Geological Survey, in cooperation with the District Department of the Environment (formerly the District of Columbia, Department of Health, Environmental Health Administration), conducted a ground-water-quality investigation in the Anacostia River watershed within Washington, D.C. Samples were collected and analyzed from 17 ground-water monitoring wells located within the study area from September through December 2005. Samples were analyzed for a variety of constituents including major ions, nutrients, volatile organic compounds, semivolatile organic compounds, pesticides and degradates, oil and grease, phenols, total polychlorinated biphenyls, and other selected constituents. The concentrations of major ions in the study area indicate that the ground water is predominantly calcium-bicarbonate type water, with some wells containing a higher percentage of milliequivalents per liter of iron (cation), and chloride or sulfate (anions). Concentrations of nitrogen were generally less than 1 milligram per liter, and concentrations of phosphorus were generally less than 0.5 milligrams per liter. Twelve of 79 pesticides and degradates were detected at 6 out of 17 wells. Volatile organic compounds (predominantly gasoline oxygenates and solvents) were detected in 9 of the 17 wells. Two semivolatile organic compounds, (bis(2-ethylhexyl) phthalate and total phenols), out of the 51 analyzed, were detected in the study area.
Escobar-Arnanz, J; Mekni, S; Blanco, G; Eljarrat, E; Barceló, D; Ramos, L
2018-02-09
Discarded vehicle tires have become an increasing concern worldwide due to the enormous amount of wastes generated and the increasing evidence of health problems associated to their disposal and accidental combustion. Previous studies conducted involving either simulated or open uncontrolled tire fires have identified aromatics belonging to two main classes, volatile organic compounds and polycyclic aromatic compounds (PAHs), as the most relevant chemicals generated in these burning processes. As a consequence, and due to their recognized toxicity, most studies reported up to now have mainly focused on these two categories of compounds being information concerning the possible occurrence of other aromatic classes rather limited. In this study, the enhanced separation power and structural confirmation capabilities provided by comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC×GC-ToF MS) has been used, for the first time, for the non-targeted analysis of soils impacted by a tire fire and an ash collected at the scene of the fire. In total, 118 volatile and semi-volatile aromatic compounds have been differentiated. Among them, 104 compounds have been either positively or tentatively identified. PAHs with 3-5 rings and their alkyl-derivatives were the most numerous and relevant classes in the investigated samples. A significant number of sulfur, oxygen- and nitrogen-containing PAHs were also detected in the samples. The application of a script function to the raw GC×GC-ToF MS data allowed the fast filtering and automatic recognition of compounds containing halogens in their structure. This part of the study evidenced that only a limited number of regulated persistent organic pollutants were present in the investigated samples. However, it also revealed the presence of emerging organophosphorous flame retardants, whose levels in tire fire impacted soils are reported for the first time. Copyright © 2017 Elsevier B.V. All rights reserved.
Rapid estimation of organic nitrogen in oil shale waste waters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, B.M.; Daughton, C.G.; Harris, G.J.
1984-04-01
Many of the characteristics of oil shale process waste waters (e.g., malodors, color, and resistance to biotreatment) are imparted by numerous nitrogenous heterocycles and aromatic amines. For the frequent performance assessment of waste treatment processes designed to remove these nitrogenous organic compounds, a rapid and colligative measurement of organic nitrogen is essential. Quantification of organic nitrogen in biological and agricultural samples is usually accomplished using the time-consuming, wet-chemical Kjeldahl method. For oil shale waste waters, whose primary inorganic nitorgen constituent is amonia, organic Kjeldahl nitrogen (OKN) is determined by first eliminating the endogenous ammonia by distillation and then digesting themore » sample in boiling H/sub 2/SO/sub 4/. The organic material is oxidized, and most forms of organically bound nitrogen are released as ammonium ion. After the addition of base, the ammonia is separated from the digestate by distillation and quantified by acidimetric titrimetry or colorimetry. The major failings of this method are the loss of volatile species such as aliphatic amines (during predistillation) and the inability to completely recover nitrogen from many nitrogenous heterocycles (during digestion). Within the last decade, a new approach has been developed for the quantification of total nitrogen (TN). The sample is first combusted, a« less
Ground-water quality, Cook Inlet Basin, Alaska, 1999
Glass, Roy L.
2001-01-01
As part of the U.S. Geological Survey?s National Water-Quality Assessment Program, ground-water samples were collected from 34 existing wells in the Cook Inlet Basin in south-central Alaska during 1999. All ground-water samples were from aquifers composed of glacial or alluvial sediments. The water samples were used to determine the occurrence and distribution of selected major ions, nutrients, trace elements, volatile organic compounds, pesticides, radioisotopes, and environmental isotopes. Of 34 samples, 29 were from wells chosen by using a grid-based random-selection process. Water samples from five major public-supply wells also were collected. Radon-222 and arsenic concentrations exceeded drinking-water standards proposed by the U.S. Environmental Protection Agency in 39 and 18 percent of sampled wells, respectively. The highest radon concentration measured during this study was 610 picocuries per liter; 12 of 31 samples exceeded the proposed maximum contaminant level of 300 picocuries per liter. The highest arsenic concentration was 29 micrograms per liter; 6 of 34 samples exceeded the proposed maximum contaminant level of 10 micrograms per liter. Human activities may be increasing the concen- tration of nitrate in ground water, but nitrate concentrations in all samples were less than the maximum contaminant level of 10 milligrams per liter as nitrogen. Concentrations of nitrate were highest in Anchorage and were as great as 4.8 milligrams per liter as nitrogen. Dissolved-solids concentrations ranged from 77 to 986 milligrams per liter; only 2 of 34 wells yielded water having greater than 500 milligrams per liter. Iron and manganese concentrations exceeded secondary maximum contaminant levels in 18 and 42 percent of samples, respectively. Concentrations of all pesticides and volatile organic compounds detected in ground-water samples were very low, less than 1 microgram per liter. No pesticide or volatile organic compounds were detected at concentrations exceeding drinking-water standards or guidelines. Water samples from one-half of the wells sampled had no detectable concentrations of pesticides or volatile organic carbons, at the parts-per-billion level. Concentrations of stable isotopes of hydrogen and oxygen in ground-water samples were similar to concentrations expected for modern precipitation and for water that has been affected by evaporation. Tritium activities and concentrations of chlorofluorocarbons indicated that the water samples collected from most wells were recharged less than 50 years ago.
NASA Technical Reports Server (NTRS)
Protopapa, S.; Grundy, W. M.; Reuter, D. C.; Hamilton, D. P.; Dalle Ore, C. M.; Cook, J. C.; Cruikshank, D. P.; Schmitt, B.; Philippe, S.; Quirico, E.;
2016-01-01
On July 14th 2015, NASA's New Horizons mission gave us an unprecedented detailed view of the Pluto system. The complex compositional diversity of Pluto's encounter hemisphere was revealed by the Ralph/LEISA infrared spectrometer on board of New Horizons. We present compositional maps of Pluto defining the spatial distribution of the abundance and textural properties of the volatiles methane and nitrogen ices and non-volatiles water ice and tholin. These results are obtained by applying a pixel-by-pixel Hapke radiative transfer model to the LEISA scans. Our analysis focuses mainly on the large scale latitudinal variations of methane and nitrogen ices and aims at setting observational constraints to volatile transport models. Specifically, we find three latitudinal bands: the first, enriched in methane, extends from the pole to 55degN, the second dominated by nitrogen, continues south to 35 degN, and the third, com- posed again mainly of methane, reaches 20 degN. We demonstrate that the distribution of volatiles across these surface units can be explained by differences in insolation over the past few decades. The latitudinal pattern is broken by Sputnik Planitia, a large reservoir of volatiles, with nitrogen playing the most important role. The physical properties of methane and nitrogen in this region are suggestive of the presence of a cold trap or possible volatile stratification. Furthermore our modeling results point to a possible sublimation transport of nitrogen from the northwest edge of Sputnik Planitia toward the south.
NASA Astrophysics Data System (ADS)
Protopapa, S.; Grundy, W. M.; Reuter, D. C.; Hamilton, D. P.; Dalle Ore, C. M.; Cook, J. C.; Cruikshank, D. P.; Schmitt, B.; Philippe, S.; Quirico, E.; Binzel, R. P.; Earle, A. M.; Ennico, K.; Howett, C. J. A.; Lunsford, A. W.; Olkin, C. B.; Parker, A.; Singer, K. N.; Stern, A.; Verbiscer, A. J.; Weaver, H. A.; Young, L. A.; New Horizons Science Team
2017-05-01
On July 14th 2015, NASA's New Horizons mission gave us an unprecedented detailed view of the Pluto system. The complex compositional diversity of Pluto's encounter hemisphere was revealed by the Ralph/LEISA infrared spectrometer on board of New Horizons. We present compositional maps of Pluto defining the spatial distribution of the abundance and textural properties of the volatiles methane and nitrogen ices and non-volatiles water ice and tholin. These results are obtained by applying a pixel-by-pixel Hapke radiative transfer model to the LEISA scans. Our analysis focuses mainly on the large scale latitudinal variations of methane and nitrogen ices and aims at setting observational constraints to volatile transport models. Specifically, we find three latitudinal bands: the first, enriched in methane, extends from the pole to 55°N, the second dominated by nitrogen, continues south to 35°N, and the third, composed again mainly of methane, reaches 20°N. We demonstrate that the distribution of volatiles across these surface units can be explained by differences in insolation over the past few decades. The latitudinal pattern is broken by Sputnik Planitia, a large reservoir of volatiles, with nitrogen playing the most important role. The physical properties of methane and nitrogen in this region are suggestive of the presence of a cold trap or possible volatile stratification. Furthermore our modeling results point to a possible sublimation transport of nitrogen from the northwest edge of Sputnik Planitia toward the south.
Floral scent in natural hybrids of Ipomopsis (Polemoniaceae) and their parental species
Bischoff, Mascha; Jürgens, Andreas; Campbell, Diane R.
2014-01-01
Background and Aims Floral traits, such as floral volatiles, can contribute to pre-zygotic reproductive isolation by promoting species-specific pollinator foraging. When hybrid zones form, floral traits could also influence post-zygotic isolation. This study examined floral volatiles in parental species and natural hybrids in order to explore potential scent mediation of pre-zygotic and post-zygotic isolation. Methods Floral bouquets were analysed for the sister species Ipomopsis aggregata and I. tenuituba and their natural hybrids at two contact sites differing in both hybridization rate and temporal foraging pattern of hawkmoth pollinators. Floral volatiles were quantified in diurnal and nocturnal scent samples using gas chromatography–mass spectrometry. Key Results The bouquets of parental species and hybrids showed qualitative overlap. All flowers emitted similar sets of monoterpenoid, sesquiterpenoid, aliphatic and benzenoid compounds, but separated into groups defined by multivariate analysis of quantitative emissions. The parental species differed most strikingly in the nitrogenous compound indole, which was found almost exclusively in nocturnal bouquets of I. tenuituba. Natural hybrid bouquets were highly variable, and showed emission rates of several compounds that appeared transgressive. However, indole emission rates were intermediate in the hybrids compared with rates in the parents. Volatile bouquets at the contact site with lower hybridization did not show greater species specificity in overall scent emission, but I. tenuituba presented a stronger indole signal during peak hawkmoth activity at that site. Conclusions The two species of Ipomopsis differed in patterns of floral bouquets, with indole emitted in nocturnal I. tenuituba, but not in I. aggregata. Natural hybrid bouquets were not consistently intermediate between the parents, although hybrids were intermediate in indole emission. The indole signal could potentially serve as a hawkmoth attractant that mediates reproductive isolation both before and after hybrid formation. PMID:24355404
Non-thermal Plasma for VOC Treatment in Flue Gases
NASA Astrophysics Data System (ADS)
Ikaunieks, Janis; Mezmale, Liga; Zandeckis, Aivars; Pubule, Jelena; Blumberga, Andra; Veidenbergs, Ivars
2011-01-01
The paper discusses non-thermal plasmas, their generation and characteristics, formation mechanisms of ozone and the treatment of volatile organic compounds (VOCs). In the experimental part, undecane (C11H24 as model VOCs) was treated with assistance of low temperature plasma at an atmospheric pressure which was generated in the so-called stack reactor. The gas composition was 13% of oxygen in nitrogen with impurities of carbon dioxide, carbon monoxide and undecane. The formation of by-products, as well as the removal efficiency, were investigated.
Gu, Wenjie; Sun, Wen; Lu, Yusheng; Li, Xia; Xu, Peizhi; Xie, Kaizhi; Sun, Lili; Wu, Hangtao
2018-02-01
The effects of sulphur and Thiobacillus thioparus 1904 on odour emissions during composting were studied. Results indicated that the sulphur addition reduced the pH and decreased cumulative emission of ammonia and the nitrogen loss by 47.80% and 44.23%, respectively, but the amount of volatile sulphur compounds (VSCs) and the sulphur loss increased. The addition of T. thioparus 1904 effectively reduced the cumulative emissions of H 2 S, methyl sulphide, methanethiol, dimethyl disulphide and the sulphur loss by 33.24%, 81.24%, 32.70%, 54.22% and 54.24%, respectively. T. thioparus 1904 also limited the nitrogen loss. The combined application of sulphur and T. thioparus 1904 resulted in the greatest amount of nitrogen retention. The accumulation of ammonia emissions was reduced by 63.33%, and the nitrogen loss was reduced by 71.93%. The combined treatment did not increase the emission of VSCs. The application of sulphur and T. thioparus 1904 may help to control the odour of compost. Copyright © 2017. Published by Elsevier Ltd.
Liu, Wei; Xu, Jingcheng; Liu, Jia; Cao, Haihua; Huang, Xiang-Feng; Li, Guangming
2015-01-01
Thermal drying was used to reduce sludge moisture content before co-combustion in cement kilns. The characteristics of ammonia (NH3) emission during thermal drying of lime sludge (LS) were investigated in a laboratory-scale tubular dry furnace under different temperature and time conditions. As the temperature increased, the NH3 concentration increased in the temperature range 100-130°C, decreased in the temperature range 130-220°C and increased rapidly at >220°C. Emission of NH3 also increased as the lime dosage increased and stabilized at lime dosages>5%. In the first 60 min of drying experiments, 55% of the NH3 was released. NH3 accounted for about 67-72% of the change in total nitrogen caused by the release of nitrogen-containing volatile compounds (VCs) from the sludge. X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy revealed that the main forms of nitrogen in sludge were amides and amines. The addition of lime (CaO) could cause conversion of N-H, N-O or C-N containing compounds to NH3 during the drying process.
Volatile flavor compounds in yogurt: a review.
Cheng, Hefa
2010-11-01
Considerable knowledge has been accumulated on the volatile compounds contributing to the aroma and flavor of yogurt. This review outlines the production of the major flavor compounds in yogurt fermentation and the analysis techniques, both instrumental and sensory, for quantifying the volatile compounds in yogurt. The volatile compounds that have been identified in plain yogurt are summarized, with the few key aroma compounds described in detail. Most flavor compounds in yogurt are produced from lipolysis of milkfat and microbiological transformations of lactose and citrate. More than 100 volatiles, including carbonyl compounds, alcohols, acids, esters, hydrocarbons, aromatic compounds, sulfur-containing compounds, and heterocyclic compounds, are found in yogurt at low to trace concentrations. Besides lactic acid, acetaldehyde, diacetyl, acetoin, acetone, and 2-butanone contribute most to the typical aroma and flavor of yogurt. Extended storage of yogurt causes off-flavor development, which is mainly attributed to the production of undesired aldehydes and fatty acids during lipid oxidation. Further work on studying the volatile flavor compounds-matrix interactions, flavor release mechanisms, and the synergistic effect of flavor compounds, and on correlating the sensory properties of yogurt with the compositions of volatile flavor compounds are needed to fully elucidate yogurt aroma and flavor.
Distribution, movement, and evolution of the volatile elements in the lunar regolith
NASA Technical Reports Server (NTRS)
Gibson, E. K., Jr.
1975-01-01
The abundances and distributions of carbon, nitrogen, and sulfur in lunar soils are reviewed. Carbon and nitrogen have a predominantly extra-lunar origin in lunar soils and breccias, while sulfur is mostly indigeneous to the moon. The lunar processes which effect the movement, distribution, and evolution of carbon, nitrogen, and sulfur, along with the volatile alkali elements sodium, potassium, and rubidium during regolith processes are discussed. Possible mechanisms which may result in the addition to or loss from the moon of these volatile elements are considered.
Methods development for total organic carbon accountability
NASA Technical Reports Server (NTRS)
Benson, Brian L.; Kilgore, Melvin V., Jr.
1991-01-01
This report describes the efforts completed during the contract period beginning November 1, 1990 and ending April 30, 1991. Samples of product hygiene and potable water from WRT 3A were supplied by NASA/MSFC prior to contract award on July 24, 1990. Humidity condensate samples were supplied on August 3, 1990. During the course of this contract chemical analyses were performed on these samples to qualitatively determine specific components comprising, the measured organic carbon concentration. In addition, these samples and known standard solutions were used to identify and develop methodology useful to future comprehensive characterization of similar samples. Standard analyses including pH, conductivity, and total organic carbon (TOC) were conducted. Colorimetric and enzyme linked assays for total protein, bile acid, B-hydroxybutyric acid, methylene blue active substances (MBAS), urea nitrogen, ammonia, and glucose were also performed. Gas chromatographic procedures for non-volatile fatty acids and EPA priority pollutants were also performed. Liquid chromatography was used to screen for non-volatile, water soluble compounds not amenable to GC techniques. Methods development efforts were initiated to separate and quantitate certain chemical classes not classically analyzed in water and wastewater samples. These included carbohydrates, organic acids, and amino acids. Finally, efforts were initiated to identify useful concentration techniques to enhance detection limits and recovery of non-volatile, water soluble compounds.
Compositions of volatile organic compounds emitted from melted virgin and waste plastic pellets.
Yamashita, Kyoko; Yamamoto, Naomichi; Mizukoshi, Atsushi; Noguchi, Miyuki; Ni, Yueyong; Yanagisawa, Yukio
2009-03-01
To characterize potential air pollution issues related to recycling facilities of waste plastics, volatile organic compounds (VOCs) emitted from melted virgin and waste plastics pellets were analyzed. In this study, laboratory experiments were performed to melt virgin and waste plastic pellets under various temperatures (150, 200, and 250 degrees C) and atmospheres (air and nitrogen [N2]). In the study presented here, low-density polyethylene (LDPE), polypropylene (PP), polystyrene (PS) and the recycled waste plastic pellets were used. The VOCs generated from each plastic pellets were collected by Tenax/Carboxen adsorbent tubes and analyzed by thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS). The result showed the higher temperatures generated larger amounts of total VOCs (TVOCs). The VOCs emitted from the virgin plastic pellets likely originated from polymer degradation. Smaller TVOC emissions were observed in N2 atmosphere than in air atmosphere. In particular, larger amounts of the oxygenated compounds, which are generally hazardous and malodorous, were detected in air than in N2. In addition to the compounds originating from polymer degradation, the compounds originating from the plastic additives were also detected from LDPE and PS. Furthermore, various species of VOCs likely originating from contaminant inseparate polyvinyl chloride (PVC), food residues, cleaning agents, degreasers, and so on were detected from the waste plastic. Thus, melting waste plastics, as is conducted in recycling facilities, might generate larger amounts of potentially toxic compounds than producing virgin plastics.
Identifying organic nitrogen compounds in Rocky Mountain National Park aerosols
NASA Astrophysics Data System (ADS)
Beem, K. B.; Desyaterik, Y.; Ozel, M. Z.; Hamilton, J. F.; Collett, J. L.
2010-12-01
Nitrogen deposition is an important issue in Rocky Mountain National Park (RMNP). While inorganic nitrogen contributions to the ecosystems in this area have been studied, the sources of organic nitrogen are still largely unknown. To better understand the potential sources of organic nitrogen, filter samples were collected and analyzed for organic nitrogen species. Samples were collected in RMNP using a Thermo Fisher Scientific TSP (total suspended particulate) high-volume sampler with a PM2.5 impactor plate from April - November of 2008. The samples presented the opportunity to compare two different methods for identification of individual organic nitrogen species. The first type of analysis was performed with a comprehensive two dimensional gas chromatography (GCxGC) system using a nitrogen chemiluminescence detector (NCD). The filter samples were spiked with propanil in dichloromethane to use as an internal standard and were then extracted in water followed by solid phase extraction. The GCxGC system was comprised of a volatility based separation (DB5 column) followed by a polarity based separation (RXI-17 column). A NCD was used to specifically detect nitrogen compounds and remove the complex background matrix. Individual standards were used to identify peaks by comparing retention times. This method has the added benefit of an equimolar response for nitrogen so only a single calibration is needed for all species. In the second analysis, a portion of the same filter samples were extracted in DI water and analyzed with liquid chromatography coupled with mass spectroscopy (LC/MS). The separation was performed using a C18 column and a water-methanol gradient elution. Electrospray ionization into a time of flight mass spectrometer was used for detection. High accuracy mass measurement allowed unambiguous assignments of elemental composition of resulting ions. Positive and negative polarities were used since amines tend to show up in positive mode and nitrates in negative. The differences in the number of species and what species are identified between these two methods are important for planning future analyses of organic nitrogen compounds. In addition, these data provide new insight into the potential source of organic nitrogen in RMNP. Using the GCxGC method, 39 organic nitrogen species were detected and 20 were identified. Identified species include several types of amines and phenols. The LC/MS method identified several types of cresols, amines, and nitrates.
Thermal NF3 fluorination/oxidation of cobalt, yttrium, zirconium, and selected lanthanide oxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scheele, Randall D.; McNamara, Bruce K.; Casella, Andrew M.
2013-02-01
This paper presents results of our continuing investigation on the use of nitrogen trifluoride as a fluorination or fluorination/oxidation agent for separating valuable constituents from used nuclear fuels by exploiting the different volatilities of the constituent fission product and actinide fluorides. This article focuses on fission products that do not have volatile fluorides or oxyfluorides at expected operations temperatures. Our thermodynamic calculations show that nitrogen trifluoride has the potential to completely fluorinate fission product oxides to their fluorides. Simultaneous thermogravimetric and differential thermal analyses show that the oxides of cobalt, zirconium, and the lanthanides are fluorinated but do not formmore » volatile fluorides when treated with nitrogen trifluoride at temperatures up to 550°C. Our studies of gadolinium-doped commercial nuclear fuel indicate that nitrogen trifluoride can extract uranium from the non-volatile gadolinium.« less
Jiang, Jishao; Huang, Yimei; Liu, Xueling; Huang, Hua
2014-09-01
The effects of additives such as apple pomace, bentonite and calcium superphosphate on swine manure composting were investigated in a self-built aerated static box (90 L) by assessing their influences on the transformation of nitrogen, carbon, phosphorous and compost maturity. The results showed that additives all prolonged the thermophilic stage in composting compared to control. Nitrogen losses amounted to 34-58% of the initial nitrogen, in which ammonia volatilization accounted for 0.3-4.6%. Calcium superphosphate was helpful in facilitating composting process as it significantly reduced the ammonia volatilization during thermophilic stage and increased the contents of total nitrogen and phosphorous in compost, but bentonite increased the ammonia volatilization and reduced the total nitrogen concentration. It suggested that calcium superphosphate is an effective additive for keeping nitrogen during swine manure composting. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Ning; Sun, Xiaomin; Chen, Jianmin; Li, Xiang
2017-02-01
Free radicals in atmosphere have played an important role in the atmospheric chemistry. The chloro-Criegee free radicals are produced easily in the decomposition of primary ozonide (POZ) of the trichloroethylene, and can react with O2, NO, NO2, SO2 and H2O subsequently. Then the inorganic salts, polar organic nitrogen and organic sulfur compounds, oxygen-containing heterocyclic intermediates and polyhydroxy compounds can be obtained. The heterogeneous nucleation of oxidation intermediates in the formation of fine particles is investigated using molecular dynamics simulation. The detailed nucleation processes are reported. According to molecular dynamics simulation, the nucleation with a diameter of 2 nm is formed in the Organic Compounds-(NH4)2SO4-H2O system. The spontaneous nucleation is an important process in the formation of fine particles in atmosphere. The model study gives a good example from volatile organic compounds to new fine particles.
Ziadi, M; Wathelet, J P; Marlier, M; Hamdi, M; Thonart, P
2008-08-01
The volatile compounds that characterize Leben during fermentation with 2 Lactococcus lactis strains (SLT6 and SLT10) in flasks, in a 100-L fermentor, and during storage at 4 degrees C, were investigated and compared to those from commercial Leben. Volatile compounds from Leben were concentrated by a Carboxen-PDMS fiber and analyzed by GC-MS. These compounds include acids, alcohols, aldehydes, ketones, sulfur compounds, and hydrocarbons. Commercial Leben presented a poor volatile profile compared to the laboratory-made Leben. The mixed culture of 2 Lactococcus lactis strains resulted in higher volatile compound formation than the single strain culture. The GC volatile profiles of Leben produced in flask and in the 100-L fermentor were similar. Changes in volatile compounds were observed during storage at 4 degrees C. The effect of culture conditions on production of volatiles by SLT6 strain was studied. Aeration (0.1 mL/min) and agitation enhanced the production of diacetyl, acetoin, 3-methylbutanal, and 3-methylbutanol. Fermentation at pH 5 had no effect on volatile production.
Screening of ground water samples for volatile organic compounds using a portable gas chromatograph
Buchmiller, R.C.
1989-01-01
A portable gas chromatograph was used to screen 32 ground water samples for volatile organic compounds. Seven screened samples were positive; four of the seven samples had volatile organic substances identified by second-column confirmation. Four of the seven positive, screened samples also tested positive in laboratory analyses of duplicate samples. No volatile organic compounds were detected in laboratory analyses of samples that headspace screening indicated to be negative. Samples that contained volatile organic compounds, as identified by laboratory analysis, and that contained a volatile organic compound present in a standard of selected compounds were correctly identified by using the portable gas chromatography. Comparisons of screened-sample data with laboratory data indicate the ability to detect selected volatile organic compounds at concentrations of about 1 microgram per liter in the headspace of water samples by use of a portable gas chromatography. -Author
Vroblesky, Don A.
2001-01-01
Diffusion samplers installed in observation wells were found to be capable of yielding representative water samples for chlorinated volatile organic compounds. The samplers consisted of polyethylene bags containing deionized water and relied on diffusion of chlorinated volatile organic compounds through the polyethylene membrane. The known ability of polyethylene to transmit other volatile compounds, such as benzene and toluene, indicates that the samplers can be used for a variety of volatile organic compounds. In wells at the study area, the volatile organic compound concentrations in water samples obtained using the samplers without prior purging were similar to concentrations in water samples obtained from the respective wells using traditional purging and sampling approaches. The low cost associated with this approach makes it a viable option for monitoring large observation-well networks for volatile organic compounds.
Vroblesky, Don A.
2001-01-01
Diffusion samplers installed in observation wells were found to be capable of yielding representative water samples for chlorinated volatile organic compounds. The samplers consisted of polyethylene bags containing deionized water and relied on diffusion of chlorinated volatile organic compounds through the polyethylene membrane. The known ability of polyethylene to transmit other volatile compounds, such as benzene and toluene, indicates that the samplers can be used for a variety of volatile organic compounds. In wells at the study area, the volatile organic compound concentrations in water samples obtained using the samplers without prior purging were similar to concentrations in water samples obtained from the respective wells using traditional purging and sampling approaches. The low cost associated with this approach makes it a viable option for monitoring large observation-well networks for volatile organic compounds.
Lei, Hongjie; Zhao, Haifeng; Yu, Zhimin; Zhao, Mouming
2012-03-01
Normal gravity wort and high gravity wort with different nitrogen levels were used to examine their effects on the fermentation performance of brewer's yeast and the formation of flavor volatiles. Results showed that both the wort gravity and nitrogen level had significant impacts on the growth rate, viability, flocculation, and gene expression of brewer's yeast and the levels of flavor volatiles. The sugar (glucose, maltose, and maltotriose) consumption rates and net cell growth decreased when high gravity worts were used, while these increased with increasing nitrogen level. Moreover, high gravity resulted in lower expression levels of ATF1, BAP2, BAT1, HSP12, and TDH, whereas the higher nitrogen level caused higher expression levels for these genes. Furthermore, the lower nitrogen level resulted in increases in the levels of higher alcohols and esters at high wort gravity. All these results demonstrated that yeast physiology and flavor balance during beer brewing were significantly affected by the wort gravity and nitrogen level.
NASA Astrophysics Data System (ADS)
Yuan, B.; Coggon, M.; Koss, A.; Warneke, C.; Eilerman, S. J.; Neuman, J. A.; Peischl, J.; Aikin, K. C.; Ryerson, T. B.; De Gouw, J. A.
2016-12-01
Concentrated animal feeding operations (CAFOs) are important sources of volatile organic compounds (VOCs) in the atmosphere. We used a hydronium ion time-of-flight chemical ionization mass spectrometer (H3O+ ToF-CIMS) to measure VOC emissions from CAFOs in the Northern Front Range of Colorado during an aircraft campaign (SONGNEX) for regional contributions and from a mobile laboratory sampling for chemical characterizations of individual animal feedlots. The main VOCs emitted from CAFOs include carboxylic acids, alcohols, carbonyls, phenolic species, sulfur- and nitrogen-containing species. Alcohols and carboxylic acids dominate VOC concentrations. Sulfur-containing and phenolic species become more important in terms of odor activity values and NO3 reactivity, respectively. The high time-resolution mobile measurements allow the separation of the sources of VOCs from different parts of the operations occurring within the facilities. We show that the increase of ethanol concentrations were primarily associated with feed storage and handling. We apply a multivariate regression analysis using NH3 and ethanol as tracers to attribute the relative importance of animal-related emissions (animal exhalation and waste) and feed-related emissions (feed storage and handling) for different VOC species. Feed storage and handling contribute significantly to emissions of alcohols, carbonyls and carboxylic acids. Phenolic species and nitrogen-containing species are predominantly associated with animals and their waste. VOC ratios can be potentially used as indicators for the separation of emissions from dairy and beef cattle from the regional aircraft measurements.
Sinha, Sukesh Narayan; Shivgotra, V K
2012-07-01
Fuel adulteration increases the emission of total hydrocarbons, carbon monoxide, nitrogen oxides and respirable particulate matter, and thus adds to air pollution. The study examined the effects of mixing of different percentage of kerosene with petrol on the motorized rickshaw exhausts in terms of volatile organic compounds (benzene, toluene, xylene and ethyl benzene) and total suspended particulate matter (SPM). The personal sampler was used for sampling, and gas chromatography-mass spectrometry for quantification of compounds. Concentration of volatile organic compounds significantly decreased (p < 0.001) along with the increase in fraction of kerosene in petrol. The level of benzene in exhausts while, using petrol (100%) was significantly higher (p < 0.001) than that of three combinations used in this study (75% petrol + 25% kerosene, 50% petrol + 50% kerosene and 25% petrol + 75% kerosene). Similar trend was observed for toluene, xylene and ethyl benzene also. The mean concentration of benzene, toluene, xylene and ethyl benzene were 31.34,160.93, 10.07 and 5.58 microg m(-3) in pure petrol, while 12.30, 51.41,4.89 and 3.16 microg m(-3) for fuel combination 75% petrol + 25% kerosene. The observed levels of benzene, toluene, xylene and ethyl benzene were 9.12, 41.04, 4.33 and 2.91 microg m(-3) for fuel mixture having 50% petrol with 50% kerosene and levels were 8.36, 20.05, 3.82 and 2.95 microg m(-3) were for 25% petrol with 75% kerosene fuel combination. The levels of suspended particulate matter (SPM) increased along with the increase in fraction of kerosene in petrol. The data generated is useful to understand the common volatile organic compounds trend with the increasing fraction of kerosene in petrol.
Martínez-Onandi, N; Rivas-Cañedo, A; Picon, A; Nuñez, M
2016-12-01
One hundred and three volatile compounds were detected by solid-phase microextraction followed by gas chromatography-mass spectrometry in 30 ripened Serrano dry-cured hams, submitted or not to high pressure processing (HPP) and afterwards held for 5months at 4°C. The effect of ham physicochemical parameters and HPP (600MPa for 6min) on volatile compounds was assessed. Physicochemical parameters primarily affected the levels of acids, alcohols, alkanes, esters, benzene compounds, sulfur compounds and some miscellaneous compounds. Intramuscular fat content was the physicochemical parameter with the most pronounced effect on the volatile fraction of untreated Serrano ham after refrigerated storage, influencing the levels of 38 volatile compounds while aw, salt content and salt-in-lean ratio respectively influenced the levels of 4, 4 and 5 volatile compounds. HPP treatment affected 21 volatile compounds, resulting in higher levels of alkanes and ketones and lower levels of esters and secondary alcohols, what might affect Serrano ham odor and aroma after 5months of refrigerated storage. Copyright © 2016 Elsevier Ltd. All rights reserved.
Acevedo, Francisca; Torres, Paulina; Oomah, B Dave; de Alencar, Severino Matias; Massarioli, Adna Prado; Martín-Venegas, Raquel; Albarral-Ávila, Vicenta; Burgos-Díaz, César; Ferrer, Ruth; Rubilar, Mónica
2017-04-01
Ulmo honey originating from Eucryphia cordifolia tree, known locally in the Araucania region as the Ulmo tree is a natural product with valuable nutritional and medicinal qualities. It has been used in the Mapuche culture to treat infections. This study aimed to identify the volatile and non-volatile/semi-volatile compounds of Ulmo honey and elucidate its in vitro biological properties by evaluating its antioxidant, antibacterial, antiproliferative and hemolytic properties and cytotoxicity in Caco-2 cells. Headspace volatiles of Ulmo honey were isolated by solid-phase microextraction (SPME); non-volatiles/semi-volatiles were obtained by removing all saccharides with acidified water and the compounds were identified by GC/MS analysis. Ulmo honey volatiles consisted of 50 compounds predominated by 20 flavor components. Two of the volatile compounds, lyrame and anethol have never been reported before as honey compounds. The non-volatile/semi-volatile components of Ulmo honey comprised 27 compounds including 13 benzene derivatives accounting 75% of the total peak area. Ulmo honey exhibited weak antioxidant activity but strong antibacterial activity particularly against gram-negative bacteria and methicillin-resistant Staphylococcus aureus (MRSA), the main strain involved in wounds and skin infections. At concentrations >0.5%, Ulmo honey reduced Caco-2 cell viability, released lactate dehydrogenase (LDH) and increased reactive oxygen species (ROS) production in a dose dependent manner in the presence of foetal bovine serum (FBS). The wide array of volatile and non-volatile/semi-volatile constituents of Ulmo honey rich in benzene derivatives may partly account for its strong antibacterial and antiproliferative properties important for its therapeutic use. Our results indicate that Ulmo honey can potentially inhibit cancer growth at least partly by modulating oxidative stress. Copyright © 2017 Elsevier Ltd. All rights reserved.
Characterization by volatile compounds of microbial deep spoilage in Iberian dry-cured ham.
Martín, Alberto; Benito, María J; Aranda, Emilio; Ruiz-Moyano, Santiago; Córdoba, Juan J; Córdoba, María G
2010-08-01
In the present study, volatile compounds of spoiled dry-cured Iberian ham with deep spoilage or "bone taint" were analyzed and correlated with level of spoilage and the microorganisms detected. Volatile compounds extracted by a solid phase micro-extraction technique were assayed by gas chromatography/mass spectrometry. The spoiled hams were evaluated sensorially, and the correlations among volatile compounds, spoilage level, and microbial counts were studied. The spoiled hams had higher concentrations of hydrocarbons, alcohols, acids, esters, pyrazines, sulfur compounds, and other minor volatile compounds than unspoiled hams. The sensorial analysis showed that the spoilage level of hams correlated with several volatile compounds, most of them associated with Gram-positive catalase positive cocci and Enterobacteriaceae counts. Cyclic compounds such as cyclohexanone, some ethers, and pyrazines should be considered as indicators to monitor incipient microbial deep spoilage in the elaboration of this meat product.
Nitrogen emission and deposition budget in West and Central Africa
NASA Astrophysics Data System (ADS)
Galy-Lacaux, C.; Delon, C.
2014-12-01
Atmospheric nitrogen depends on land surface exchanges of nitrogen compounds. In Sub Saharan Africa, deposition and emission fluxes of nitrogen compounds are poorly quantified, and are likely to increase in the near future due to land use change and anthropogenic pressure. This work proposes an estimate of atmospheric N compounds budget in West and Central Africa, along an ecosystem transect, from dry savanna to wet savanna and forest, for years 2000-2007. The budget may be considered as a one point in time budget, to be included in long term studies as one of the first reference point for Sub Saharan Africa. Gaseous dry deposition fluxes are estimated by considering N compounds concentrations measured in the frame of the IDAF network (IGAC/DEBITS/AFrica) at the monthly scale and modeling of deposition velocities at the IDAF sites, taking into account the bi directional exchange of ammonia. Particulate dry deposition fluxes are calculated using the same inferential method. Wet deposition fluxes are calculated from measurements of ammonium and nitrate chemical content in precipitations at the IDAF sites combined with the annual rainfall amount. In terms of emission, biogenic NO emissions are simulated at each IDAF site with a surface model coupled to an emission module elaborated from an artificial neural network equation. Ammonia emissions from volatilization are calculated from literature data on livestock quantity in each country and N content in manure. NOx and NH3 emission from biomass burning and domestic fires are estimated from satellite data and emission factors. The total budget shows that emission sources of nitrogen compounds are in equilibrium with deposition fluxes in dry and wet savannas, with respectively 7.40 (±1.90) deposited and 9.01 (±3.44) kgN ha-1 yr-1 emitted in dry savanna, 8.38 (±2.04) kgN ha-1 yr-1 deposited and 9.60 (±0.69) kgN ha-1 yr-1 emitted in wet savanna. In forested ecosystems, the total budget is dominated by wet plus dry deposition processes (14.75 ± 2.36 kgN ha-1 yr-1), compared to emissions processes (8.54 ± 0.50 kgN ha-1 yr-1).
Wang, Chen; Lv, Shidong; Wu, Yuanshuang; Lian, Ming; Gao, Xuemei; Meng, Qingxiong
2016-10-01
Biluochun is a typical non-fermented tea and is also famous for its unique aroma in China. Few studies have been performed to evaluate the effect of the manufacturing process on the formation and content of its aroma. The volatile components were extracted at different manufacturing process steps of Biluochun green tea using fully automated headspace solid-phase microextraction (HS-SPME) and further characterised by gas chromatography-mass spectrometry (GC-MS). Among 67 volatile components collected, the fractions of linalool oxides, β-ionone, phenylacetaldehyde, aldehydes, ketones, and nitrogen compounds were increased while alcohols and hydrocarbons declined during the manufacturing process. The aroma compounds decreased the most during the drying steps. We identified a number of significantly changed components that can be used as markers and quality control during the producing process of Biluochun. The drying step played a major role in the aroma formation of green tea products and should be the most important step for quality control. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Analytical Chemical Sensing in the Submillimeter/terahertz Spectral Range
NASA Astrophysics Data System (ADS)
Moran, Benjamin L.; Fosnight, Alyssa M.; Medvedev, Ivan R.; Neese, Christopher F.
2012-06-01
Highly sensitive and selective Terahertz sensor utilized to quantitatively analyze a complex mixture of Volatile Organic Compounds is reported. To best demonstrate analytical capabilities of THz chemical sensors we chose to perform analytical quantitative analysis of a certified gas mixture using a novel prototype chemical sensor that couples a commercial preconcentration system (Entech 7100A) to a high resolution THz spectrometer. We selected Method TO-14A certified mixture of 39 volatile organic compounds (VOCs) diluted to 1 part per million (ppm) in nitrogen. 26 of the 39 chemicals were identified by us as suitable for THz spectroscopic detection. Entech 7100A system is designed and marketed as an inlet system for Gas Chromatography-Mass Spectrometry (GC-MS) instruments with a specific focus on TO-14 and TO-15 EPA sampling methods. Its preconcentration efficiency is high for the 39 chemicals in the mixture used for this study and our preliminary results confirm this. Here we present the results of this study which serves as basis for our ongoing research in environmental sensing and analysis of exhaled human breath.
Aromatic volatile organic compounds and their role in ground-level ozone formation in Russia
NASA Astrophysics Data System (ADS)
Berezina, E. V.; Moiseenko, K. B.; Skorokhod, A. I.; Elansky, N. F.; Belikov, I. B.
2017-05-01
This paper reports proton mass spectrometry data on aromatic volatile organic compounds (VOCs) (benzene, toluene, phenol, styrene, xylene, and propylbenzene) obtained in different Russian regions along the Trans-Siberian Railway from Moscow to Vladivostok, based on expedition data retrieved using the TRO-ICA-12 mobile laboratory in the summer of 2008. The contribution of aromatic VOCs to ozone formation in the cities and regions along the measurement route has been estimated quantitatively. The greatest contribution of aromatic VOCs to ozone formation is characteristic of large cities along the Trans-Siberian Railway (up to 7.5 ppbv O3) specified by the highest concentrations of aromatic VOCs (1-1.7 ppbv) and nitrogen oxides (>20 ppbv). The results obtained are indicative of a considerable contribution (30-50%) of anthropogenic emissions of VOCs to photochemical ozone generation in the large cities along the Trans-Siberian Railway in hot and dry weather against the background of a powerful natural factor such as isoprene emissions controlling the regional balance of ground-level ozone in warm seasons.
Language of plants: Where is the word?
Šimpraga, Maja; Takabayashi, Junji; Holopainen, Jarmo K
2016-04-01
Plants emit biogenic volatile organic compounds (BVOCs) causing transcriptomic, metabolomic and behavioral responses in receiver organisms. Volatiles involved in such responses are often called "plant language". Arthropods having sensitive chemoreceptors can recognize language released by plants. Insect herbivores, pollinators and natural enemies respond to composition of volatiles from plants with specialized receptors responding to different types of compounds. In contrast, the mechanism of how plants "hear" volatiles has remained obscured. In a plant-plant communication, several individually emitted compounds are known to prime defense response in receiver plants with a specific manner according to the chemical structure of each volatile compound. Further, composition and ratio of volatile compounds in the plant-released plume is important in plant-insect and plant-plant interactions mediated by plant volatiles. Studies on volatile-mediated plant-plant signaling indicate that the signaling distances are rather short, usually not longer than one meter. Volatile communication from plants to insects such as pollinators could be across distances of hundreds of meters. As many of the herbivore induced VOCs have rather short atmospheric life times, we suggest that in long-distant communications with plant volatiles, reaction products in the original emitted compounds may have additional information value of the distance to emission source together with the original plant-emitted compounds. © 2015 Institute of Botany, Chinese Academy of Sciences.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-29
... Promulgation of Air Quality Implementation Plans; Maryland; Control of Volatile Organic Compounds Emissions... Maryland's Volatile Organic Compounds from Specific Processes Regulation. Maryland has adopted standards... (RACT) requirements for sources of volatile organic compounds (VOCs) covered by control techniques...
On the Use of Thermal NF3 as the Fluorination and Oxidation Agent in Treatment of Used Nuclear Fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scheele, Randall D.; McNamara, Bruce K.; Casella, Andrew M.
2012-05-01
This paper presents results of our investigation on the use of nitrogen trifluoride as the fluorination or fluorination/oxidation agent for use in a process for separating valuable constituents from used nuclear fuels by employing the volatility of many transition metal and actinide fluorides. Nitrogen trifluoride is less chemically and reactively hazardous than the hazardous and aggressive fluorinating agents used to prepare uranium hexafluoride and considered for fluoride volatility based nuclear fuels reprocessing. In addition, nitrogen trifluoride’s less aggressive character may be used to separate the volatile fluorides from used fuel and from themselves based on the fluorination reaction’s temperature sensitivitymore » (thermal tunability) rather than relying on differences in sublimation/boiling temperature and sorbents. Our thermodynamic calculations found that nitrogen trifluoride has the potential to produce volatile fission product and actinide fluorides from candidate oxides and metals. Our simultaneous thermogravimetric and differential thermal analyses found that the oxides of lanthanum, cerium, rhodium, and plutonium fluorinated but did not form volatile fluorides and that depending on temperature volatile fluorides formed from the oxides of niobium, molybdenum, ruthenium, tellurium, uranium, and neptunium. We also demonstrated near-quantitative removal of uranium from plutonium in a mixed oxide.« less
Cayot, Nathalie; Lafarge, Céline; Bou-Maroun, Elias; Cayot, Philippe
2016-07-22
Dichloromethane is known as a very efficient solvent, but, as other halogenated solvents, is recognized as a hazardous product (CMR substance). The objective of the present work is to propose substitution solvent for the extraction of volatile compounds. The most important physico-chemical parameters in the choice of an appropriate extraction solvent of volatile compounds are reviewed. Various solvents are selected on this basis and on their hazard characteristics. The selected solvents, safer than dichloromethane, are compared using the extraction efficiency of volatile compounds from a model food product able to interact with volatile compounds. Volatile compounds with different hydrophobicity are used. High extraction yields were positively correlated with high boiling points and high Log Kow values of volatile compounds. Mixtures of solvents such as azeotrope propan-2-one/cyclopentane, azeotrope ethyl acetate/ethanol, and mixture ethyl acetate/ethanol (3:1, v/v) gave higher extraction yields than those obtained with dichloromethane. Copyright © 2016 Elsevier B.V. All rights reserved.
Legako, J F; Brooks, J C; O'Quinn, T G; Hagan, T D J; Polkinghorne, R; Farmer, L J; Miller, M F
2015-02-01
Proximate data, consumer palatability scores and volatile compounds were investigated for four beef muscles (Longissimus lumborum, Psoas major, Semimembranosus and Gluteus medius) and five USDA quality grades(Prime, Upper 2/3 Choice, Low Choice, Select, and Standard). Quality grade did not directly affect consumer scores or volatiles but interactions (P < 0.05) between muscle and grade were determined. Consumer scores and volatiles differed (P < 0.05) between muscles. Consumers scored Psoas major highest for tenderness, juiciness, flavor liking and overall liking, followed by Longissimus lumborum, Gluteus medius, and Semimembranosus (P < 0.05). Principal component analysis revealed clustering of compound classes, formed by related mechanisms. Volatile n-aldehydes were inversely related to percent fat. Increases in lipid oxidation compounds were associated with Gluteus medius and Semimembranosus, while greater quantities of sulfur-containing compounds were associated with Psoas major. Relationships between palatability scores and volatile compound classes suggest that differences in the pattern of volatile compounds may play a valuable role in explaining consumer liking.
Purriños, Laura; Bermúdez, Roberto; Franco, Daniel; Carballo, Javier; Lorenzo, José M
2011-01-01
Volatile compounds were determined throughout the manufacture of dry-cured "lacón," a traditional dry-salted, and ripened meat product made in the north-west of Spain from the foreleg of the pig following a similar process to that of dry-cured ham. Volatiles were extracted by a purge-and-trap method and analyzed by gas chromatographic/mass spectrometry. One hundred and two volatile compounds were identified. In raw material, only 34 volatile compounds were found and at very low levels. The number of volatile compounds increased during processing. The substances identified belonged to several chemical classes: aldehydes (23), alcohols (9), ketones (15), hydrocarbons (37), esters (4), acids (3), furans (4), sulphur compounds (1), chloride compounds (1), and other compounds (4). Results indicated that the most abundant chemical family in flavor at the end of the manufacturing process was aldehydes, followed by hydrocarbons and ketones. Lipids were the most important precursor of flavor compounds of dry-cured "lacón."
Edmonds, Robert J.; Gellenbeck, Dorinda J.
2002-01-01
The U.S. Geological Survey collected and analyzed ground-water samples in the West Salt River Valley from 64 existing wells selected by a stratified-random procedure. Samples from an areally distributed group of 35 of these wells were used to characterize overall ground-water quality in the basin-fill aquifer. Analytes included the principal inorganic constituents, trace constituents, pesticides, and volatile organic compounds. Additional analytes were tritium, radon, and stable isotopes of hydrogen and oxygen. Analyses of replicate samples and blank samples provided evidence that the analyses of the ground-water samples were adequate for interpretation. The median concentration of dissolved solids in samples from the 35 wells was 560 milligrams per liter, which exceeded the U.S. Environmental Protection Agency Secondary Maximum Contaminant Level for drinking water. Eleven of the 35 samples had a nitrate concentration (as nitrogen) that exceeded the U.S. Environmental Protection Agency Maximum Contaminant Level for drinking water of 10 milligrams per liter. Pesticides were detected in eight samples; concentrations were below the Maximum Contaminant Levels. Deethylatrazine was most commonly detected. The pesticides were detected in samples from wells in agricultural or urban areas that have been irrigated. Concentrations of all trace constituents, except arsenic, were less than the Maximum Contaminant Levels. The concentration of arsenic exceeded the Maximum Contaminant Level of 50 micrograms per liter in two samples. Nine monitoring wells were constructed in an area near Buckeye to assess the effects of agricultural land use on shallow ground water. The median concentration of dissolved solids was 3,340 milligrams per liter in samples collected from these wells in August 1997. The nitrate concentration (as nitrogen) exceeded the Maximum Contaminant Level (10 milligrams per liter) in samples from eight of the nine monitoring wells in August 1997 and again in February 1998. Analyses of all samples collected from the monitoring wells indicated low concentrations of pesticides and volatile organic compounds. The most frequently detected pesticides were deethylatrazine and atrazine. Trichloromethane (chloroform) and tetrachloroethene (PCE) were the most frequently detected volatile organic compounds in the monitoring wells. Two compounds [dieldrin and 1,1-dichloro-2,2-bis(p-dichlorodiphenyl)ethylene (DDE)], decomposition products of two banned pesticides, aldrin and dichlorodiphenylethylene (DDT), were detected at low concentrations in samples analyzed for the agricultural land-use study. In the West Salt River Valley, a high concentration of the heavier oxygen isotope?oxygen-18?in ground water generally indicates effects of evaporation on recharge water from irrigation. Wells in undeveloped areas and wells that have openings beneath a confining bed generally yield ground water that is free of the effects of irrigation seepage. Samples from these wells did not contain detectable concentrations of pesticides. The median concentrations of nitrate (as nitrogen) and dissolved solids in samples from wells in undeveloped areas were 1.7 milligrams per liter and 257 milligrams per liter, respectively. The median concentrations of nitrate (as nitrogen) and dissolved solids in samples from wells that yield water from below confining beds were 2.0 and 747 milligrams per liter, respectively.
Liu, Shuang Ping; Mao, Jian; Liu, Yun Ya; Meng, Xiang Yong; Ji, Zhong Wei; Zhou, Zhi Lei; Ai-lati, Aisikaer
2015-12-01
Shaoxing rice wine is one of the most typical representatives of Chinese rice wine. It is brewed under non-sterile condition with various microorganism growing at the same time and forms a special flavor. The aims of this study was to monitor the bacterial succession by MiSeq pyrosequencing and the volatile compound dynamics by HS-SPME/GC–MS during brewing process. Moreover, the volatile compounds and bacterial community were analyzed by partial least squares regression to evaluate the effect of bacteria on volatile compounds formation. The results showed that there were ten dominating genera during Shaoxing rice wine fermentation process. Ten genera, Bacillus, Leuconostoc, Lactococcus, Weissella, Thermoactinomyces, Pseudomonas, Saccharopolyspora, Staphylococcus, Enterobacter and Lactobacillus, were identified as the main bacteria. The Bacillus and Lactobacillus dominated the Chinese rice wine ecosystems. In addition, a total of 64 volatile compounds were identified, mainly esters, alcohols, carbonyl compound and phenols. Pseudomonas were involved in synthesis of a wide variety of volatile compounds. Thermoactinomyces, Bacillus and Lactococcus also played critical roles in the formation of volatile compounds.
Ging, P.B.; Judd, L.J.; Wynn, K.H.
1997-01-01
The study area of the South-Central Texas study unit of the National Water-Quality Assessment Program comprises the Edwards aquifer in the San Antonio region and its catchment area. The first phase of the assessment includes evaluation of existing water-quality data for surface water and ground water, including volatile organic compounds, to determine the scope of planned monitoring. Most analyses of volatile organic compounds in surface water are from the National Pollutant Discharge Elimination System sites in San Antonio, Texas. Nine volatile organic compounds were detected at the six sites. The three compounds with the most detections at National Pollutant Discharge Elimination System sites are 1,2,4-trimethylbenzene, toluene, and xylene. Analysis of volatile organic compounds in ground water was limited to Edwards aquifer wells. Twenty-eight volatile organic compounds were detected in samples from 89 wells. The five most commonly detected compounds in samples from wells, in descending order, are tetrachloroethene, trichloroethene, bromoform, chloroform, and dibromochloromethane. Detections of volatile organic compounds in surface water and ground water within the South-Central Texas study area are limited to site-specific sources associated with development; therefore, planned monitoring for possible detections of volatile organic compounds as part of the National Water-Quality Assessment Program will emphasize areas of expanding population and development. Monitoring of volatile organic compounds is planned at National Pollutant Discharge Elimination System sites, at basic fixed surface-water sites, and in the ground-water study-unit surveys.
Mailler, R; Gasperi, J; Rocher, V; Gilbert-Pawlik, S; Geara-Matta, D; Moilleron, R; Chebbo, G
2014-04-01
This paper compares the removal performances of two complete wastewater treatment plants (WWTPs) for all priority substances listed in the Water Framework Directive and additional compounds of interest including flame retardants, surfactants, pesticides, and personal care products (PCPs) (n = 104). First, primary treatments such as physicochemical lamellar settling (PCLS) and primary settling (PS) are compared. Similarly, biofiltration (BF) and conventional activated sludge (CAS) are then examined. Finally, the removal efficiency per unit of nitrogen removed of both WWTPs for micropollutants is discussed, as nitrogenous pollution treatment results in a special design of processes and operational conditions. For primary treatments, hydrophobic pollutants (log K ow > 4) are well removed (>70 %) for both systems despite high variations of removal. PCLS allows an obvious gain of about 20 % regarding pollutant removals, as a result of better suspended solids elimination and possible coagulant impact on soluble compounds. For biological treatments, variations of removal are much weaker, and the majority of pollutants are comparably removed within both systems. Hydrophobic and volatile compounds are well (>60 %) or very well removed (>80 %) by sorption and volatilization. Some readily biodegradable molecules are better removed by CAS, indicating a better biodegradation. A better sorption of pollutants on activated sludge could be also expected considering the differences of characteristics between a biofilm and flocs. Finally, comparison of global processes efficiency using removals of micropollutants load normalized to nitrogen shows that PCLS + BF is as efficient as PS + CAS despite a higher compactness and a shorter hydraulic retention time (HRT). Only some groups of pollutants seem better removed by PS + CAS like alkylphenols, flame retardants, or di-2-ethylhexyl phthalate (DEHP), thanks to better biodegradation and sorption resulting from HRT and biomass characteristics. For both processes, and out of the 68 molecules found in raw water, only half of them are still detected in the water discharged, most of the time close to their detection limit. However, some of them are detected at higher concentrations (>1 μg/L and/or lower than environmental quality standards), which is problematic as they represent a threat for aquatic environment.
This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-30
... Promulgation of Air Quality Implementation Plans; Indiana; Volatile Organic Compounds; Architectural and... sets limits on the amount of volatile organic compounds (VOC) in architectural and industrial... Indiana SIP a new rule within Title 326, Article 8 ``Volatile Organic Compound Rules'' that limits the VOC...
Role of nitrite in the photochemical formation of radicals in the snow.
Jacobi, Hans-Werner; Kleffmann, Jörg; Villena, Guillermo; Wiesen, Peter; King, Martin; France, James; Anastasio, Cort; Staebler, Ralf
2014-01-01
Photochemical reactions in snow can have an important impact on the composition of the atmosphere over snow-covered areas as well as on the composition of the snow itself. One of the major photochemical processes is the photolysis of nitrate leading to the formation of volatile nitrogen compounds. We report nitrite concentrations determined together with nitrate and hydrogen peroxide in surface snow collected at the coastal site of Barrow, Alaska. The results demonstrate that nitrite likely plays a significant role as a precursor for reactive hydroxyl radicals as well as volatile nitrogen oxides in the snow. Pollution events leading to high concentrations of nitrous acid in the atmosphere contributed to an observed increase in nitrite in the surface snow layer during nighttime. Observed daytime nitrite concentrations are much higher than values predicted from steady-state concentrations based on photolysis of nitrate and nitrite indicating that we do not fully understand the production of nitrite and nitrous acid in snow. The discrepancy between observed and expected nitrite concentrations is probably due to a combination of factors, including an incomplete understanding of the reactive environment and chemical processes in snow, and a lack of consideration of the vertical structure of snow.
Limited effect of anthropogenic nitrogen oxides on secondary organic aerosol formation
Zheng, Y.; Unger, N.; Hodzic, A.; ...
2015-12-08
Globally, secondary organic aerosol (SOA) is mostly formed from emissions of biogenic volatile organic compounds (VOCs) by vegetation, but it can be modified by human activities as demonstrated in recent research. Specifically, nitrogen oxides (NO x = NO + NO 2) have been shown to play a critical role in the chemical formation of low volatility compounds. We have updated the SOA scheme in the global NCAR (National Center for Atmospheric Research) Community Atmospheric Model version 4 with chemistry (CAM4-chem) by implementing a 4-product volatility basis set (VBS) scheme, including NO x-dependent SOA yields and aging parameterizations. Small differences aremore » found for the no-aging VBS and 2-product schemes; large increases in SOA production and the SOA-to-OA ratio are found for the aging scheme. The predicted organic aerosol amounts capture both the magnitude and distribution of US surface annual mean measurements from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network by 50 %, and the simulated vertical profiles are within a factor of 2 compared to aerosol mass spectrometer (AMS) measurements from 13 aircraft-based field campaigns across different regions and seasons. We then perform sensitivity experiments to examine how the SOA loading responds to a 50 % reduction in anthropogenic nitric oxide (NO) emissions in different regions. We find limited SOA reductions of 0.9–5.6, 6.4–12.0 and 0.9–2.8 % for global, southeast US and Amazon NO x perturbations, respectively. The fact that SOA formation is almost unaffected by changes in NO x can be largely attributed to a limited shift in chemical regime, to buffering in chemical pathways (low- and high-NO x pathways, O 3 versus NO 3-initiated oxidation) and to offsetting tendencies in the biogenic versus anthropogenic SOA responses.« less
Volatile compounds of Aspergillus strains with different abilities to produce ochratoxin A.
Jeleń, Henryk H; Grabarkiewicz-Szczesna, Jadwiga
2005-03-09
Volatile compounds emitted by Aspergillus strains having different abilities to produce ochratoxin A were investigated. Thirteen strains of Aspergillus ochraceus, three belonging to the A. ochraceus group, and eight other species of Aspergillus were examined for their abilities to produce volatile compounds and ochratoxin A on a wheat grain medium. The profiles of volatile compounds, analyzed using SPME, in all A. ochraceus strains, regardless of their toxeginicity, were similar and comprised mainly of 1-octen-3-ol, 3-octanone, 3-octanol, 3-methyl-1-butanol, 1-octene, and limonene. The prevailing compound was always 1-octen-3-ol. Mellein, which forms part of the ochratoxin A molecule, was found in both toxigenic and nontoxigenic strains. Volatile compounds produced by other Aspergillus strains were similar to those of A. ochraceus. Incubation temperatures (20, 24, and 27 degrees C) and water content in the medium (20, 30, and 40%) influenced both volatile compounds formation and ochratoxin A biosynthesis efficiency, although conditions providing the maximum amount of volatiles were different from those providing the maximum amount of ochratoxin A. The pattern of volatiles produced by toxigenic A. ochraceus strains does not facilitate their differentiation from nontoxigenic strains.
Chao, Huan-Ping; Hsieh, Lin-Han Chiang; Tran, Hai Nguyen
2018-02-15
This study developed a novel method to promote the remediation efficiency of air sparging. According to the enhanced-volatilization theory presented in this study, selected alcohols added to groundwater can highly enhance the volatilization amounts of organic compounds with high Henry's law constants. In this study, the target organic compounds consisted of n-hexane, n-heptane, benzene, toluene, 1,1,2-trichloroethane, and tetrachloroethene. n-pentanol, n-hexanol, and n-heptanol were used to examine the changes in the volatilization amounts of organic compounds in the given period. Two types of soils with high and low organic matter were applied to evaluate the transport of organic compounds in the soil-water system. The volatilization amounts of the organic compounds increased with increasing alcohol concentrations. The volatilization amounts of the test organic compounds exhibited a decreasing order: n-heptanol>n-hexanol>n-pentanol. When 10mg/L n-heptanol was added to the system, the maximum volatilization enhancement rate was 18-fold higher than that in distilled water. Samples of soil with high organic matter might reduce the volatilization amounts by a factor of 5-10. In the present study, the optimal removal efficiency for aromatic compounds was approximately 98%. Copyright © 2017 Elsevier B.V. All rights reserved.
Management of Multiple Nitrogen Sources during Wine Fermentation by Saccharomyces cerevisiae.
Crépin, Lucie; Truong, Nhat My; Bloem, Audrey; Sanchez, Isabelle; Dequin, Sylvie; Camarasa, Carole
2017-03-01
During fermentative growth in natural and industrial environments, Saccharomyces cerevisiae must redistribute the available nitrogen from multiple exogenous sources to amino acids in order to suitably fulfill anabolic requirements. To exhaustively explore the management of this complex resource, we developed an advanced strategy based on the reconciliation of data from a set of stable isotope tracer experiments with labeled nitrogen sources. Thus, quantifying the partitioning of the N compounds through the metabolism network during fermentation, we demonstrated that, contrary to the generally accepted view, only a limited fraction of most of the consumed amino acids is directly incorporated into proteins. Moreover, substantial catabolism of these molecules allows for efficient redistribution of nitrogen, supporting the operative de novo synthesis of proteinogenic amino acids. In contrast, catabolism of consumed amino acids plays a minor role in the formation of volatile compounds. Another important feature is that the α-keto acid precursors required for the de novo syntheses originate mainly from the catabolism of sugars, with a limited contribution from the anabolism of consumed amino acids. This work provides a comprehensive view of the intracellular fate of consumed nitrogen sources and the metabolic origin of proteinogenic amino acids, highlighting a strategy of distribution of metabolic fluxes implemented by yeast as a means of adapting to environments with changing and scarce nitrogen resources. IMPORTANCE A current challenge for the wine industry, in view of the extensive competition in the worldwide market, is to meet consumer expectations regarding the sensory profile of the product while ensuring an efficient fermentation process. Understanding the intracellular fate of the nitrogen sources available in grape juice is essential to the achievement of these objectives, since nitrogen utilization affects both the fermentative activity of yeasts and the formation of flavor compounds. However, little is known about how the metabolism operates when nitrogen is provided as a composite mixture, as in grape must. Here we quantitatively describe the distribution through the yeast metabolic network of the N moieties and C backbones of these nitrogen sources. Knowledge about the management of a complex resource, which is devoted to improvement of the use of the scarce N nutrient for growth, will be useful for better control of the fermentation process and the sensory quality of wines. Copyright © 2017 American Society for Microbiology.
Management of Multiple Nitrogen Sources during Wine Fermentation by Saccharomyces cerevisiae
Crépin, Lucie; Truong, Nhat My; Bloem, Audrey; Sanchez, Isabelle; Dequin, Sylvie
2017-01-01
ABSTRACT During fermentative growth in natural and industrial environments, Saccharomyces cerevisiae must redistribute the available nitrogen from multiple exogenous sources to amino acids in order to suitably fulfill anabolic requirements. To exhaustively explore the management of this complex resource, we developed an advanced strategy based on the reconciliation of data from a set of stable isotope tracer experiments with labeled nitrogen sources. Thus, quantifying the partitioning of the N compounds through the metabolism network during fermentation, we demonstrated that, contrary to the generally accepted view, only a limited fraction of most of the consumed amino acids is directly incorporated into proteins. Moreover, substantial catabolism of these molecules allows for efficient redistribution of nitrogen, supporting the operative de novo synthesis of proteinogenic amino acids. In contrast, catabolism of consumed amino acids plays a minor role in the formation of volatile compounds. Another important feature is that the α-keto acid precursors required for the de novo syntheses originate mainly from the catabolism of sugars, with a limited contribution from the anabolism of consumed amino acids. This work provides a comprehensive view of the intracellular fate of consumed nitrogen sources and the metabolic origin of proteinogenic amino acids, highlighting a strategy of distribution of metabolic fluxes implemented by yeast as a means of adapting to environments with changing and scarce nitrogen resources. IMPORTANCE A current challenge for the wine industry, in view of the extensive competition in the worldwide market, is to meet consumer expectations regarding the sensory profile of the product while ensuring an efficient fermentation process. Understanding the intracellular fate of the nitrogen sources available in grape juice is essential to the achievement of these objectives, since nitrogen utilization affects both the fermentative activity of yeasts and the formation of flavor compounds. However, little is known about how the metabolism operates when nitrogen is provided as a composite mixture, as in grape must. Here we quantitatively describe the distribution through the yeast metabolic network of the N moieties and C backbones of these nitrogen sources. Knowledge about the management of a complex resource, which is devoted to improvement of the use of the scarce N nutrient for growth, will be useful for better control of the fermentation process and the sensory quality of wines. PMID:28115380
Comparative Analysis of Flower Volatiles from Nine Citrus at Three Blooming Stages
Azam, Muhammad; Song, Min; Fan, Fangjuan; Zhang, Bo; Xu, Yaying; Xu, Changjie; Chen, Kunsong
2013-01-01
Volatiles from flowers at three blooming stages of nine citrus cultivars were analyzed by headspace-solid phase microextraction (HS-SPME)-GC-MS. Up to 110 volatiles were detected, with 42 tentatively identified from citrus flowers for the first time. Highest amounts of volatiles were present in fully opened flowers of most citrus, except for pomelos. All cultivars were characterized by a high percentage of either oxygenated monoterpenes or monoterpene hydrocarbons, and the presence of a high percentage of nitrogen containing compounds was also observed. Flower volatiles varied qualitatively and quantitatively among citrus types during blooming. Limonene was the most abundant flower volatile only in citrons; α-citral and β-citral ranked 2nd and 3rd only for Bergamot, and unopened flowers of Ponkan had a higher amount of linalool and β-pinene while much lower amount of γ-terpinene and p-cymene than Satsuma. Taking the average of all cultivars, linalool and limonene were the top two volatiles for all blooming stages; β-pinene ranked 3rd in unopened flowers, while indole ranked 3rd for half opened and fully opened flower volatiles. As flowers bloomed, methyl anthranilate increased while 2-hexenal and p-cymene decreased. In some cases, a volatile could be high in both unopened and fully opened flowers but low in half opened ones. Through multivariate analysis, the nine citrus cultivars were clustered into three groups, consistent with the three true citrus types. Furthermore, an influence of blooming stages on clustering was observed, especially with hybrids Satsuma and Huyou. Altogether, it was suggested that flower volatiles can be suitable markers for revealing the genetic relationships between citrus cultivars but the same blooming stage needs to be strictly controlled. PMID:24232454
Comparative analysis of flower volatiles from nine citrus at three blooming stages.
Azam, Muhammad; Song, Min; Fan, Fangjuan; Zhang, Bo; Xu, Yaying; Xu, Changjie; Chen, Kunsong
2013-11-13
Volatiles from flowers at three blooming stages of nine citrus cultivars were analyzed by headspace-solid phase microextraction (HS-SPME)-GC-MS. Up to 110 volatiles were detected, with 42 tentatively identified from citrus flowers for the first time. Highest amounts of volatiles were present in fully opened flowers of most citrus, except for pomelos. All cultivars were characterized by a high percentage of either oxygenated monoterpenes or monoterpene hydrocarbons, and the presence of a high percentage of nitrogen containing compounds was also observed. Flower volatiles varied qualitatively and quantitatively among citrus types during blooming. Limonene was the most abundant flower volatile only in citrons; α-citral and β-citral ranked 2nd and 3rd only for Bergamot, and unopened flowers of Ponkan had a higher amount of linalool and β-pinene while much lower amount of γ-terpinene and p-cymene than Satsuma. Taking the average of all cultivars, linalool and limonene were the top two volatiles for all blooming stages; β-pinene ranked 3rd in unopened flowers, while indole ranked 3rd for half opened and fully opened flower volatiles. As flowers bloomed, methyl anthranilate increased while 2-hexenal and p-cymene decreased. In some cases, a volatile could be high in both unopened and fully opened flowers but low in half opened ones. Through multivariate analysis, the nine citrus cultivars were clustered into three groups, consistent with the three true citrus types. Furthermore, an influence of blooming stages on clustering was observed, especially with hybrids Satsuma and Huyou. Altogether, it was suggested that flower volatiles can be suitable markers for revealing the genetic relationships between citrus cultivars but the same blooming stage needs to be strictly controlled.
Swapna Sonale, R; Ramalakshmi, K; Udaya Sankar, K
2018-04-01
Extraction process employing Supercritical fluid carbon dioxide (SCF) yields bioactive compounds near natural forms without any artifact formation. Neem seed was subjected to SCF at different temperatures and pressure conditions. These extracts were partitioned to separate volatile fraction and were analyzed by Gas Chromatography-Mass spectroscopy along with the volatiles extracted by the hydro-distillation method. Experimental results show that there is a significant effect of pressure and temperature on isolation of a number of volatile compounds as well as retention of biologically active compounds. Twenty-five volatile compounds were isolated in the Hydro-distillate compare to the SCF extract of 100 bar, 40 °C which showed forty volatile compounds corresponds to 76.38 and 92.39% of total volatiles respectively. The majority of bioactive compounds such as Terpinen-4-ol, 1,2,4-Trithiolane, 3,5-diethyl, allyl isopropyl sulphide, Cycloisolongifolene, á-Bisabolene, (-)-α-Panasinsen, Isocaryophyllene, trans-Sesquisabinene hydrate, 1-Naphthalenol, were identified in the extract when isolated at 100 bar and 40 °C.
Kobayashi, Michiko; Nagahisa, Keisuke; Shimizu, Hiroshi; Shioya, Suteaki
2006-12-01
Volatile compounds cause undesirable flavor when their concentrations exceed threshold values in beer fermentation. The objective of this study is to develop a system for controlling apparent extract concentration, which indicates the fermentation degree and which should be decreased below a targeted value at a fixed time under a constraint of tolerable amounts of volatile compounds. In beer fermentation, even though the production of volatile compounds is suppressed by maintaining a low fermentation temperature, a low temperature causes a delay in the control of apparent extract concentration. Volatile compound concentration was estimated on-line, and the simulation of apparent extract consumption and volatile compound production was performed. To formulate various beer tastes and conserve energy for attemperation, optimal temperature profiles were determined using a genetic algorithm (GA). The developed feedback control of the brewing temperature profile was successfully applied, and apparent extract and volatile compound concentrations at a fixed time reached their target concentrations. Additionally, the control technique developed in this study enables us to brew a wide variety of beers with different tastes.
Martínez-Onandi, Nerea; Rivas-Cañedo, Ana; Ávila, Marta; Garde, Sonia; Nuñez, Manuel; Picon, Antonia
2017-09-01
The volatile fraction of 30 Iberian dry-cured hams of different physicochemical characteristics and the effect of high pressure processing (HPP) at 600MPa on volatile compounds were investigated. According to the analysis of variance carried out on the levels of 122 volatile compounds, intramuscular fat content influenced the levels of 8 benzene compounds, 5 carboxylic acids, 2 ketones, 2 furanones, 1 alcohol, 1 aldehyde and 1 sulfur compound, salt concentration influenced the levels of 1 aldehyde and 1 ketone, salt-in-lean ratio had no effect on volatile compounds, and water activity influenced the levels of 3 sulfur compounds, 1 alcohol and 1 aldehyde. HPP-treated samples of Iberian ham had higher levels of 4 compounds and lower levels of 31 compounds than untreated samples. A higher influence of HPP treatment on volatile compounds than physicochemical characteristics was observed for Iberian ham. Therefore, HPP treatment conditions should be optimized in order to diminish its possible effect on Iberian ham odor and aroma characteristics. Copyright © 2017 Elsevier Ltd. All rights reserved.
Evolution of Volatile Compounds during the Distillation of Cognac Spirit.
Awad, Pierre; Athès, Violaine; Decloux, Martine Esteban; Ferrari, Gérald; Snakkers, Guillaume; Raguenaud, Patrick; Giampaoli, Pierre
2017-09-06
Cognac wine spirit has a complex composition in volatile compounds which contributes to its organoleptic profile. This work focused on the batch distillation process and, in particular, on volatile compounds specifically produced by chemical reactions during the distillation of Cognac wine spirit, traditionally conducted in two steps with charentais pot stills. The aim of this study was to characterize these volatile compounds formed during distillation. Sampling has been performed on the distillates and inside the boiler during a typical Cognac distillation. The analysis of these samples allowed us to perform a mass balance and to point out several types of volatile compounds whose quantities strongly increased during the distillation process. These compounds were distinguished by their chemical family. It has been found that the first distillation step was decisive for the formation of volatile compounds. Moreover, 2 esters, 3 aldehydes, 12 norisoprenoids, and 3 terpenes were shown to be generated during the process. These results suggest that some volatile compounds found in Cognac spirit are formed during distillation due to chemical reactions induced by high temperature. These findings give important indications to professional distillers in order to enhance the product's quality.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-19
... Promulgation of Implementation Plans Tennessee: Revisions to Volatile Organic Compound Definition AGENCY..., SIP revision adds 17 compounds to the list of compounds excluded from the definition of ``Volatile Organic Compound''. EPA is approving this SIP revision because the State has demonstrated that it is...
Franco, M R; Shibamoto, T
2000-04-01
Twenty-one volatile compounds were identified for the first time by GC-MS in umbu-caja and in camu-camu, plus 30 volatile compounds were identified in araça-boi samples. Terpenic compounds predominated among the volatile compounds in these fruit samples, with the major compounds being identified as cis-beta-ocimene and caryophyllene in the northeastern fruit; alpha-pinene and d-limonene were the most abundant volatile compounds in the headspace of the Amazonian fruit camu-camu. Sesquiterpenes were the most abundant compounds in the araça-boi sample, with germacrene D presenting a higher relative percentage. The chemical class of esters predominated in the cupuaçu sample. Ethyl butyrate and hexanoate were the major compounds in the headspace of this Amazonian fruit.
Siegmund, Barbara; Urdl, Katharina; Jurek, Andrea; Leitner, Erich
2018-03-14
Eight monovarietal honeys from dandelion, fir tree, linden tree, chestnut tree, robinia, orange, lavender, and rape were investigated with respect to their volatile compounds and sensory properties. Analysis of the volatile compounds was performed by gas chromatographic techniques (one-dimensional GC-MS as well as comprehensive GC×GC-MS). For sensory evaluation Napping in combination with ultraflash profiling was applied using sensory experts. For dandelion honey, 34 volatile compounds are described for the first time to be present in dandelion honey. PCA and cluster analysis of the volatile compounds, respectively, show high correlation with the PCA obtained from sensory evaluation. Lavender and linden honey showed sensory characteristics that were not expected from these honey types. Analysis of the volatile compounds resulted in the identification of odor-active compounds that are very likely derived from sources other than the respective honeyflow. Contamination with essential oils used in apiculture is very likely to be the reason for the occurrence of these compounds in the investigated honeys.
Volatile sulphur compounds and pathways of L-methionine catabolism in Williopsis yeasts.
Tan, Amelia W J; Lee, Pin-Rou; Seow, Yi-Xin; Ong, Peter K C; Liu, Shao-Quan
2012-08-01
Volatile sulphur compounds (VSCs) are important to the food industry due to their high potency and presence in many foods. This study assessed for the first time VSC production and pathways of L: -methionine catabolism in yeasts from the genus Williopsis with a view to understanding VSC formation and their potential flavour impact. Five strains of Williopsis saturnus (var. saturnus, var. subsufficiens, var. suavolens, var. sargentensis and var. mrakii) were screened for VSC production in a synthetic medium supplemented with L: -methionine. A diverse range of VSCs were produced including dimethyl disulphide, dimethyl trisulphide, 3-(methylthio)-1-propanal (methional), 3-(methylthio)-1-propanol (methionol), 3-(methylthio)-1-propene, 3-(methylthio)-1-propyl acetate, 3-(methylthio)-1-propanoic acid (methionic acid) and ethyl 3-(methylthio)-1-propanoate, though the production of these VSCs varied between yeast strains. W. saturnus var. saturnus NCYC22 was selected for further studies due to its relatively high VSC production. VSC production was characterised step-wise with yeast strain NCYC22 in coconut cream at different L: -methionine concentrations (0.00-0.20%) and under various inorganic sulphate (0.00-0.20%) and nitrogen (ammonia) supplementation (0.00-0.20%), respectively. Optimal VSC production was obtained with 0.1% of L: -methionine, while supplementation of sulphate had no significant effect. Nitrogen supplementation showed a dramatic inhibitory effect on VSC production. Based on the production of VSCs, the study suggests that the Ehrlich pathway of L: -methionine catabolism is operative in W. saturnus yeasts and can be manipulated by adjusting certain nutrient parameters to control VSC production.
NASA Astrophysics Data System (ADS)
Zhang, F.; Chen, Y.; Tian, C.; Li, J.; Zhang, G.; Matthias, V.
2015-09-01
Shipping emissions have significant influence on atmospheric environment as well as human health, especially in coastal areas and the harbor districts. However, the contribution of shipping emissions on the environment in China still need to be clarified especially based on measurement data, with the large number ownership of vessels and the rapid developments of ports, international trade and shipbuilding industry. Pollutants in the gaseous phase (carbon monoxide, sulfur dioxide, nitrogen oxides, total volatile organic compounds) and particle phase (particulate matter, organic carbon, elemental carbon, sulfates, nitrate, ammonia, metals) in the exhaust from three different diesel engine power offshore vessels in China were measured in this study. Concentrations, fuel-based and power-based emissions factors for various operating modes as well as the impact of engine speed on emissions were determined. Observed concentrations and emissions factors for carbon monoxide, nitrogen oxides, total volatile organic compounds, and particulate matter were higher for the low engine power vessel than for the two higher engine power vessels. Fuel-based average emissions factors for all pollutants except sulfur dioxide in the low engine power engineering vessel were significantly higher than that of the previous studies, while for the two higher engine power vessels, the fuel-based average emissions factors for all pollutants were comparable to the results of the previous studies. The fuel-based average emissions factor for nitrogen oxides for the small engine power vessel was more than twice the International Maritime Organization standard, while those for the other two vessels were below the standard. Emissions factors for all three vessels were significantly different during different operating modes. Organic carbon and elemental carbon were the main components of particulate matter, while water-soluble ions and elements were present in trace amounts. Best-fit engine speeds during actual operation should be based on both emissions factors and economic costs.
TEMPORAL VARIABILITY MEASUREMENT OF SPECIFIC VOLATILE ORGANIC COMPOUNDS
Methodology was developed to determine unambiguously trace levels of volatile organic compounds as they vary in concentration over a variety of time scales. his capability is important because volatile organic compounds (VOCs) are usually measure by time-integrative techniques th...
Effect of added nitrogen fertilizer on pyrazines of roasted chicory.
Jouquand, Céline; Niquet-Léridon, Céline; Loaec, Grégory; Tessier, Frédéric Jacques
2017-03-01
Coffee substitutes made of roasted chicory are affected by the formation of acrylamide whose main precursor is asparagine. One strategy for limiting the formation of acrylamide is to reduce free asparagine in the chicory roots by lessening the supply of nitrogen in the field. However, decreasing nitrogen fertilizer could affect the formation of the volatile compounds and, consequently, the sensory characteristics of the roasted chicory. The present study aimed to investigate the impact of the nitrogen supply in five commercial varieties on their aroma profile. The addition of 120 kg ha -1 of nitrogen fertilizer in the field resulted in a greater amount of pyrazines in the roasted chicory. Triangle tests were performed to determine the effect of the nitrogen level on the sensory quality of the five varieties. The results revealed that the chicory aroma was modified in two out of five varieties. The results of the present study suggest that a strategy aiming to limit the amount of acrylamide could affect the sensory quality of some varieties of chicory. Further acceptance tests need to be conducted to assess the effect (whether favourable or otherwise) on the sensory quality of the coffee substitutes. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Advances in fruit aroma volatile research.
El Hadi, Muna Ahmed Mohamed; Zhang, Feng-Jie; Wu, Fei-Fei; Zhou, Chun-Hua; Tao, Jun
2013-07-11
Fruits produce a range of volatile compounds that make up their characteristic aromas and contribute to their flavor. Fruit volatile compounds are mainly comprised of esters, alcohols, aldehydes, ketones, lactones, terpenoids and apocarotenoids. Many factors affect volatile composition, including the genetic makeup, degree of maturity, environmental conditions, postharvest handling and storage. There are several pathways involved in volatile biosynthesis starting from lipids, amino acids, terpenoids and carotenoids. Once the basic skeletons are produced via these pathways, the diversity of volatiles is achieved via additional modification reactions such as acylation, methylation, oxidation/reduction and cyclic ring closure. In this paper, we review the composition of fruit aroma, the characteristic aroma compounds of several representative fruits, the factors affecting aroma volatile, and the biosynthetic pathways of volatile aroma compounds. We anticipate that this review would provide some critical information for profound research on fruit aroma components and their manipulation during development and storage.
Adelhelm, Christoph; Niessner, Reinhard; Pöschl, Ulrich
2008-01-01
The analysis of organic compounds in combustion exhaust particles and the chemical transformation of soot by nitrogen oxides are key aspects of assessment and mitigation of the climate and health effects of aerosol emissions from fossil fuel combustion and biomass burning. In this study we present experimental and analytical techniques for efficient investigation of oxygenated and nitrated derivatives of large polycyclic aromatic hydrocarbons (PAHs), which can be regarded as well-defined soot model substances. For coronene and hexabenzocoronene exposed to nitrogen dioxide under simulated diesel exhaust conditions, several reaction products with high molecular mass could be characterized by liquid chromatography-atmospheric pressure chemical (and photo) ionization-mass spectrometry (LC-APCI-MS and LC-APPI-MS). The main products of coronene contained odd numbers of nitrogen atoms (m/z 282, 256, 338), whereas one of the main products of hexabenzocoronene exhibited an even number of nitrogen atoms (m/z 391). Various reaction products containing carbonyl and nitro groups could be tentatively identified by combining chromatographic and mass spectrometric information, and changes of their relative abundance were observed to depend on the reaction conditions. This analytical strategy should highlight a relatively young technique for the characterization of various soot-contained, semi-volatile, and semi-polar reaction products of large PAHs. Figure LC-APCI-MS analysis of nitrated coronene (and HBC): Total-Ion-Chromatogram (TIC), Extracted Ion Chromatograms (EICs) and corresponding mass spectrum (top). PMID:18560812
Identification of a volatile phytotoxin from algae
NASA Technical Reports Server (NTRS)
Garavelli, J. S.; Fong, F.; Funkhouser, E. A.
1984-01-01
The objectives were to develop a trap system for isolating fractions of volatile algal phytotoxin and to characterize the major components of the isolated phytotoxin fractions. A bioassay using Phaseolus vulgaris seedlings was developed to aid in investigating the properties of the phytotoxin produced by cultures of Euglena gracilis var. bacillaris and Chlorella vulgaris. Two traps were found, 1.0 M hydrochloric acid and 0 C, which removed the phytotoxin from the algal effluent and which could be treated to release that phytotoxin as judged with the bioassay procedure. It was also determined that pretraps of 1.0 M sodium hydroxide and 1.0 M potassium biocarbonate could be used without lowering the phytotoxin effect. Ammonia was identified in trap solutions by ninhydrin reaction, indophenol reaction and derivatization with dansyl chloride and phenylisothiocyanate. Ammonia at the gaseous concentrations detected was found to have the same effects in the bioassay system as the volatile phytotoxin. It is possible that other basic, nitrogen containing compounds which augment the effects of ammonia were present at lower concentrations in the algal effluent.
Cecchi, Teresa; Alfei, Barbara
2013-12-01
This study aims to contribute to the knowledge of the commercial, sensory, and analytical characteristics of extra virgin olive oil (EVOO) from Italy (Marche region), renowned since ancient times. Headspace solid-phase micro-extraction (HS-SPME) was applied for the very first time to the sampling of volatile compounds of eleven typical Italian monocultivar EVOOs. Forty-eight compounds were characterised by GC-MS, some of them were only occasionally found in other EVOOs and some other were never detected before in any EVOO. Compounds belonging mainly to alcohols, esters, aldehydes, ketones and hydrocarbons chemical classes characterised the volatile profiles. The main volatile compounds detected in the EVOOs were the C6 compounds derived from polyunsaturated fatty acids, through the lipoxygenase pathway, in different proportion according to the specific cultivar. The results suggest that genetic factors strongly influence volatile formation and terpene hydrocarbons are claimed to be suitable markers of the geographic origin and genotype of the EVOO. Correlations among sensory attributes evaluated by a panel test and the presence of specific volatile compounds were highlighted for the very first time. The significance of the presence of some newly identified volatile compounds was discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.
Space-Based Diagnosis of Surface Ozone Sensitivity to Anthropogenic Emissions
NASA Technical Reports Server (NTRS)
Martin, Randall V.; Fiore, Arlene M.; VanDonkelaar, Aaron
2004-01-01
We present a novel capability in satellite remote sensing with implications for air pollution control strategy. We show that the ratio of formaldehyde columns to tropospheric nitrogen dioxide columns is an indicator of the relative sensitivity of surface ozone to emissions of nitrogen oxides (NO(x) = NO + NO2) and volatile organic compounds (VOCs). The diagnosis from these space-based observations is highly consistent with current understanding of surface ozone chemistry based on in situ observations. The satellite-derived ratios indicate that surface ozone is more sensitive to emissions of NO(x) than of VOCs throughout most continental regions of the Northern Hemisphere during summer. Exceptions include Los Angeles and industrial areas of Germany. A seasonal transition occurs in the fall when surface ozone becomes less sensitive to NOx and more sensitive to VOCs.
Huang, Zhi; Zhou, Wen; Yu, Ya-juan; Zhang, Ai-qian; Han, Shuo-kui; Wang, Lian-sheng
2004-01-01
Enrichment of volatile organic compounds(VOC) and semi-volatility organic compounds(SVOC) in surface microlayer(SM) of three drinking water sources were studied. The enrichment factor(EFs) were 0.67 to 13.37 and 0.16 to 136, respectively. The results showed some VOC and most SVOC could enrich in SM. Some EFs of SVOC was quite high. Suspension and temperature could affect EFs of SVOC, slim wind and water movement do not destroy enrichment of organic in SM.
Volatile organic compounds in exhaled breath in a healthy population: effect of tobacco smoking.
Jareño-Esteban, José Javier; Muñoz-Lucas, M Ángeles; Carrillo-Aranda, Belén; Maldonado-Sanz, José Ángel; de Granda-Orive, Ignacio; Aguilar-Ros, Antonio; Civera-Tejuca, Concepción; Gutiérrez-Ortega, Carlos; Callol-Sánchez, Luis Miguel
2013-11-01
Tobacco smoke is a source of free radicals and reactive oxygen and nitrogen species, which are the main causes of oxidative stress. The analysis of volatile organic compounds (VOC) in exhaled breath is an indirect method of measuring the level of oxidative stress that occurs in the airways caused by tobacco consumption. The aim of this study was to determine whether smoking influences the production of VOC, in a clinically healthy population. Exhaled breath from 89 healthy volunteers, divided into three groups (non-smokers, ex-smokers and smokers) was analysed. Samples were collected using Bio-VOC® devices and transferred to universal desorption tubes. Chemical compounds were analysed by thermal desorption, gas chromatography and mass spectrometry. We analysed hexanal, heptanal, octanal, nonanal, nonanoic acid and propanoic acid, all identified by retention time and mass spectra referenced in the NIST 08 mass spectral library; confirmation was carried out using reference standards of the pure chemical compound. These VOC were found in very low concentrations. Only nonanal showed significant quantitative and qualitative statistical differences among the study groups. Nonanal concentration is dependent on smoking, but is independent of the amount of tobacco consumed, age and gender. Nonanal in exhaled breath is associated with tobacco consumption, current or previous. Nonanal is a sub-product of the destruction of the cell membrane, and its finding may be indicative of cell damage in smokers. This result appears in many farmers who smoke. Copyright © 2013 SEPAR. Published by Elsevier Espana. All rights reserved.
Covarrubias-Cervantes, Marco; Champion, Dominique; Debeaufort, Frédéric; Voilley, Andrée
2005-08-24
Translational diffusion coefficients (D(12)) of volatile compounds were measured in model media with the profile concentration method. The influence of sample temperature (from 25 to -10 degrees C) was studied on translational diffusion in sucrose or maltodextrin solutions at various concentrations. Results show that diffusivity of volatile compounds in sucrose solutions is controlled by temperature, molecule size, and the viscosity of the liquid phase as expected with the Stokes-Einstein equation; moreover, physicochemical interactions between volatile compounds and the medium are determinant for diffusion estimation. At negative temperature, the winding path induced by an ice crystal content of >70% lowered volatile compound diffusion. On the contrary, no influence on translational diffusion coefficients was observed for lower ice content.
Naznin, Hushna Ara; Kimura, Minako; Miyazawa, Mitsuo; Hyakumachi, Mitsuro
2013-01-01
We extracted volatile organic compounds (VOCs) emitted by a plant growth-promoting fungus (PGPF) Phoma sp. GS8-3 by gas chromatography and identified them by mass spectrometry. All of the identified compounds belonged to C4-C8 hydrocarbons. Volatiles varied in number and quantity by the culture period of the fungus (in days). 2-Methyl-propanol and 3-methyl-butanol formed the main components of the volatile blends for all the culture periods of fungus. Growth-promoting effects of the identified synthetic compounds were analyzed individually and in blends using tobacco plants. We found that the mixture of volatiles extracted from 3-day-old culture showed significant growth promotion in tobacco in vitro. The volatile blend showed better growth promotion at lower than higher concentrations. Our results confirm the potential role of volatile organic compounds in the mechanism of growth enhancement by GS8-3. PMID:23080408
Variation of volatile compounds among wheat varieties and landraces.
Starr, G; Petersen, M A; Jespersen, B M; Hansen, Å S
2015-05-01
Analysis of volatile compounds was performed on 81 wheat varieties and landraces, grown under controlled greenhouse conditions, in order to investigate the possibility of differentiating wheat varieties according to their volatile compound profiles. Volatile compounds from wheat samples were extracted by dynamic headspace extraction and analysed by gas chromatography-mass spectrometry. Seventy-two volatile compounds were identified in the wheat samples. Multivariate analysis of the data showed a large diversity in volatile profiles between samples. Differences occurred between samples from Austria compared to British, French and Danish varieties. Landraces were distinguishable from modern varieties and they were characterised by higher averaged peak areas for esters, alcohols, and some furans. Modern varieties were characterised by higher averaged peak areas for terpenes, pyrazines and straight-chained aldehydes. Differences in volatile profiles are demonstrated between wheat samples for the first time, based on variety. These results are significant to plant breeders and commercial users of wheat. Copyright © 2014 Elsevier Ltd. All rights reserved.
Kim, Youngmok; Lee, Kwang-Geun; Kim, Mina K
2016-10-01
Current study was designed to find out how tea harvesting time affects the volatile and non-volatile compounds profiles of green tea. In addition, correlation of instrumental volatile and non-volatile compounds analyses to consumer perception were analyzed. Overall, earlier harvested green tea had stronger antioxidant capacity (~61.0%) due to the polyphenolic compounds from catechin (23,164 mg/L), in comparison to later harvested green teas (11,961 mg/L). However, high catechin content in green tea influenced negatively the consumer likings of green tea, due to high bitterness (27.6%) and astringency (13.4%). Volatile compounds drive consumer liking of green tea products were also identified, that included linalool, 2,3-methyl butanal, 2-heptanone, (E,E)-3,5-Octadien-2-one. Finding from current study are useful for green tea industry as it provide the difference in physiochemical properties of green tea harvested at different intervals.
Analysis of volatile organic compounds from illicit cocaine samples
NASA Astrophysics Data System (ADS)
Robins, W. H.; Wright, Bob W.
1994-10-01
Detection of illicit cocaine hydrochloride shipments can be improved if there is a greater understanding of the identity and quantity of volatile compounds present. This study provides preliminary data concerning the volatile organic compounds detected in a limited set of cocaine hydrochloride samples. In all cases, cocaine was one of the major volatile compounds detected. Other tropeines were detected in almost all samples. Low concentrations of compounds which may be residues of processing solvents were observed in some samples. The equilibrium emissivity of cocaine from cocaine hydrochloride was investigated and a value of 83 parts-per-trillion was determined.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-14
... Promulgation of Air Quality Implementation Plans; Indiana; Volatile Organic Compound Automobile Refinishing... automobile refinishing rule for approval into its State Implementation Plan (SIP). These rule revisions extend the applicability of Indiana's approved volatile organic compound (VOC) automobile refinishing...
Potential Signatures of Semi-volatile Compounds Associated With Nuclear Processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Probasco, Kathleen M.; Birnbaum, Jerome C.; Maughan, A. D.
2002-06-01
Semi-volatile chemicals associated with nuclear processes (e.g., the reprocessing of uranium to produce plutonium for nuclear weapons, or the separation of actinides from processing waste streams), can provide sticky residues or signatures that will attach to piping, ducting, soil, water, or other surface media. Volatile compounds, that are more suitable for electro-optical sensing, have been well studied. However, the semi-volatile compounds have not been well documented or studied. A majority of these semi-volatile chemicals are more robust than typical gaseous or liquid chemicals and can have lifetimes of several weeks, months, or years in the environment. However, large data gapsmore » exist concerning these potential signature compounds and more research is needed to fill these data gaps so that important signature information is not overlooked or discarded. This report investigates key semi-volatile compounds associated with nuclear separations, identifies available chemical and physical properties, and discusses the degradation products that would result from hydrolysis, radiolysis and oxidation reactions on these compounds.« less
Ríos-Delgado, Silvany Mayoly; Rodríguez-Ramírez, Américo David; Cruz-López, Leopoldo; Escobar-Pérez, Luis Alonso; Aburto-Juárez, Ma de Lourdes; Torres-Estrada, José Luis
2008-01-01
To determine effects of volatile compounds in homes on the behavioral response of Anopheles albimanus. The study was conducted in January 2006, in the village of Nueva Independencia village, Suchiate, Chiapas. Volatile compounds were collected inside homes and the extracts were tested on unfed females in a Y-olfactometer. Extracts were analyzed in a gas chromatography-mass spectrometry system (GC-MS). Twenty eight extracts were obtained, twelve presented attraction and two repellency responses. GC-MS analyses of the extracts indicated variation in the volatile compound present in the extracts, but could not associated specific compounds with any particular effect. Within homes, volatiles presented attraction and repellency responses to An. albimanus. A definate pattern concerning the presence of a characteristic chemical compound and the observed response was not found.
Unveiling Pluto's global surface composition through modeling of New Horizons Ralph/LEISA data
NASA Astrophysics Data System (ADS)
Protopapa, Silvia; Grundy, W. M.; Reuter, D. C.; Hamilton, D. P.; Dalle Ore, Cristina M.; Cook, Jason C.; Cruikshank, Dale P.; Philippe, Sylvain; Quirico, Eric; Schmitt, Bernard; Parker, Alex; Binzel, Richard; Earle, Alissa M.; Ennico, Kimberly; Howett, Carly; Lunsford, A. W.; Olkin, Catherine B.; Singer, Kelsi N.; Stern, S. Alan; Weaver, Harold A.; Young, Leslie; New Horizons Science Team
2016-10-01
We present compositional maps of Pluto derived from data collected with the Linear Etalon Imaging Spectral Array (LEISA), part of the New Horizons Ralph instrument (Reuter et al., 2008). Previous analysis of band depths, equivalent widths, and principal components have permitted qualitative analysis of the physical state of Pluto's surface (Grundy et al. 2016; Schmitt et al. 2016); the maps presented here are fully quantitative, generated by applying a complete pixel-by-pixel Hapke radiative transfer model to the near infrared LEISA spectral cubes. These maps quantify the spatial distribution of both the absolute abundances and textural properties of the volatiles methane and nitrogen ices and non volatiles water ice and tholin. Substantial reservoirs of methane and nitrogen ices cover the substratum which, in the absence of volatiles, reveals the presence of water ice, as expected given Pluto's size and temperature. We identify large scale latitudinal variations of methane and nitrogen ices which can help setting constraints to volatile transport models. To the north, by about 55 deg latitude, the nitrogen abundance smoothly tapers off to an expansive polar plain of predominantly methane ice. This transition well correlates with expectations of vigorous spring sublimation after a long polar winter. Continuous illumination northward of 75 deg over the past twenty years, and northward of 55 deg over the past ten years, seems to have sublimated the most volatile nitrogen into the atmosphere, with the best chance for redeposition occurring at points southward. This loss of surface nitrogen appears to have created the polar bald spot seen in our maps and also predicted by Hansen and Paige (1996). Regions that stands out for composition with respect to the latitudinal pattern described above are also going to be discussed. An example is given by informally named Sputnik Planum, where the physical properties of methane and nitrogen are suggestive of the presence of a cold trap or possible volatile stratification.This work was supported by NASA's New Horizons project. S. Protopapa thanks the NASA grant #NNX16AC83G.
Sawoszczuk, Tomasz; Syguła-Cholewińska, Justyna; Del Hoyo-Meléndez, Julio M
2017-02-01
The goal of this work was to determine the microbial volatile organic compounds emitted by moulds growing on wool in search of particular volatiles mentioned in the literature as indicators of active mould growth. The keratinolytically active fungi were inoculated on two types of media: (1) samples of wool placed on broths, and (2) on broths containing amino acids that are elements of the structure of keratin. All samples were prepared inside 20 mL vials (closed system). In the first case (1) the broths did not contain any sources of organic carbon, nitrogen, or sulfur, i.e. wool was the only nutrient for the moulds. A third type of sample was historical wool prepared in a Petri dish without a broth and inoculated with a keratinolytically active mould (open system). The microbial volatiles emitted by moulds were sampled with the headspace solid-phase microextraction method. Volatiles extracted on solid-phase microextraction fibers were analyzed in a gas chromatography with mass spectrometry system. Qualitative and quantitative analyses of chromatograms were carried out in search of indicators of metabolic activity. The results showed that there are three groups of volatiles that can be used for the detection of active forms of moulds on woollen objects. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mastelić, J; Jerković, I; Blazević, I; Radonić, A; Krstulović, L
2008-08-15
Proposed method of hydrodistillation-adsorption (HDA) on activated carbon and hydrodistillation (HD) with solvent trap were compared for the isolation of water-soluble, non-soluble and high volatile compounds, such as acids, monoterpenes, isothiocyanates and others from carob (Certonia siliqua L.), rosemary (Rosmarinus officinalis L.) and rocket (Eruca sativa L.). Isolated volatiles were analyzed by GC and GC/MS. The main advantages of HDA method over ubiquitous HD method were higher yields of volatile compounds and their simultaneous separation in three fractions that enabled more detail analyses. This method is particularly suitable for the isolation and analysis of the plant volatiles with high amounts of water-soluble compounds. In distinction from previously published adsorption of remaining volatile compounds from distillation water on activated carbon, this method offers simultaneous hydrodistillation and adsorption in the same apparatus.
Armeanu, Daniel; Vintilă, Georgeta; Gherghina, Ştefan Cristian; Drăgoi, Mihaela Cristina; Teodor, Cristian
2018-01-01
This study examines the Environmental Kuznets Curve hypothesis (EKC), considering the primary energy consumption among other country-specific variables, for a panel of the EU-28 countries during the period 1990–2014. By estimating pooled OLS regressions with Driscoll-Kraay standard errors in order to account for cross-sectional dependence, the results confirm the EKC hypothesis in the case of emissions of sulfur oxides and emissions of non-methane volatile organic compounds. In addition to pooled estimations, the output of fixed-effects regressions with Driscoll-Kraay standard errors support the EKC hypothesis for greenhouse gas emissions, greenhouse gas emissions intensity of energy consumption, emissions of nitrogen oxides, emissions of non-methane volatile organic compounds and emissions of ammonia. Additionally, the empirical findings from panel vector error correction model reveal a short-run unidirectional causality from GDP per capita growth to greenhouse gas emissions, as well as a bidirectional causal link between primary energy consumption and greenhouse gas emissions. Furthermore, since there occurred no causal link between economic growth and primary energy consumption, the neo-classical view was confirmed, namely the neutrality hypothesis. PMID:29742169
Armeanu, Daniel; Vintilă, Georgeta; Andrei, Jean Vasile; Gherghina, Ştefan Cristian; Drăgoi, Mihaela Cristina; Teodor, Cristian
2018-01-01
This study examines the Environmental Kuznets Curve hypothesis (EKC), considering the primary energy consumption among other country-specific variables, for a panel of the EU-28 countries during the period 1990-2014. By estimating pooled OLS regressions with Driscoll-Kraay standard errors in order to account for cross-sectional dependence, the results confirm the EKC hypothesis in the case of emissions of sulfur oxides and emissions of non-methane volatile organic compounds. In addition to pooled estimations, the output of fixed-effects regressions with Driscoll-Kraay standard errors support the EKC hypothesis for greenhouse gas emissions, greenhouse gas emissions intensity of energy consumption, emissions of nitrogen oxides, emissions of non-methane volatile organic compounds and emissions of ammonia. Additionally, the empirical findings from panel vector error correction model reveal a short-run unidirectional causality from GDP per capita growth to greenhouse gas emissions, as well as a bidirectional causal link between primary energy consumption and greenhouse gas emissions. Furthermore, since there occurred no causal link between economic growth and primary energy consumption, the neo-classical view was confirmed, namely the neutrality hypothesis.
The trickle-down theory of cleaner air.
Frazer, L
2000-04-01
The 1990 Clean Air Act Amendments prompted an increased urgency to find new ways to treat airstreams containing volatile organic compounds, which affect the nitrogen photolytic cycle and help produce ground-level ozone, hazardous air pollutants, and odorous air emissions such as hydrogen sulfide. Scientists at the New Jersey company Envirogen have adapted traditional biofiltration technology to perform airborne waste stream cleanup. Preliminary research on pollutants such as phenol, methylene chloride, benzene, and toluene indicates that Envirogen's biotrickling filter may remove an average of about 94% of total hazardous air pollutants. Scientists are working to identify microbes that will clean up more stubborn pollutants.
40 CFR 60.441 - Definitions and symbols.
Code of Federal Regulations, 2011 CFR
2011-07-01
.... Fugitive volatile organic compounds means any volatile organic compounds which are emitted from the coating... capture fugitive volatile organic compounds. Oven means a chamber which uses heat or irradiation to bake... or label product. Solvent applied in the coating means all organic solvent contained in the adhesive...
40 CFR 60.441 - Definitions and symbols.
Code of Federal Regulations, 2013 CFR
2013-07-01
.... Fugitive volatile organic compounds means any volatile organic compounds which are emitted from the coating... capture fugitive volatile organic compounds. Oven means a chamber which uses heat or irradiation to bake... or label product. Solvent applied in the coating means all organic solvent contained in the adhesive...
40 CFR 60.441 - Definitions and symbols.
Code of Federal Regulations, 2012 CFR
2012-07-01
.... Fugitive volatile organic compounds means any volatile organic compounds which are emitted from the coating... capture fugitive volatile organic compounds. Oven means a chamber which uses heat or irradiation to bake... or label product. Solvent applied in the coating means all organic solvent contained in the adhesive...
40 CFR 60.441 - Definitions and symbols.
Code of Federal Regulations, 2014 CFR
2014-07-01
... = the weight fraction of organics applied of each coating (i) applied during a calendar month as.... Fugitive volatile organic compounds means any volatile organic compounds which are emitted from the coating... capture fugitive volatile organic compounds. Oven means a chamber which uses heat or irradiation to bake...
EMISSION OF VOLATILE COMPOUNDS BY SEEDS UNDER DIFFERENT ENVIRONMENTAL CONDITIONS
Small mammals locate buried wet seeds more efficiently than buried dry seeds. This may be attributable to emission of volatile compounds by the seeds. To test this hypothesis I measured emission of volatile compounds from seeds of three plant species (Pinus contorta, Purshia tr...
Effect of the type of oil on the evolution of volatile compounds of taralli during storage.
Giarnetti, Mariagrazia; Caponio, Francesco; Paradiso, Vito M; Summo, Carmine; Gomes, Tommaso
2012-03-01
Baking process leads to a huge quantity of newly formed volatile compounds, which play a major role in developing the flavor of the final product. The aim of this work was to investigate on the evolution of the volatile profile of taralli as a function of both the kind of oil used in the dough and the storage time. The volatile compounds from the taralli were extracted by headspace solid-phase microextraction and analyzed by gas-chromatography/mass spectrometry (GC/MS). Forty-four volatile compounds were identified in taralli, most of which produced by thermically induced reactions occurring during baking process, such as volatiles deriving from Maillard reaction and/or sugar degradation and lipid oxidation. The results obtained demonstrated the essential role played by the type of oil on the formation and on the release of volatile compounds. The volatile compounds significantly increased during storage and their individual levels were in most cases significantly lower in taralli made with extra virgin olive oil than in those made with refined oils. Finally, the taralli made with extra virgin olive oil, compared with those prepared with other vegetable oils, showed to be more resistant to oxidation, probably due to the presence of natural antioxidants. © 2012 Institute of Food Technologists®
Spangenberg, Jorge E; Vogiatzaki, Maria; Zufferey, Vivian
2017-09-29
This paper describes a novel approach to reassess the water status in vineyards based on compound-specific isotope analysis (CSIA) of wine volatile organic compounds (δ 13 C VOC/VPDB ) and bulk carbon and nitrogen isotopes, and the C/N molar ratios of the wine solid residues (δ 13 C SR/VPDB , δ 15 N SR/Air-N2 ). These analyses link gas chromatography/combustion and elemental analysis to isotope ratio mass spectrometry (GC/C/IRMS, EA/IRMS). Field-grown cultivars of Pinot Noir grapevines were exposed during six growing seasons (2009-2014) to controlled soil water availability, while maintaining identical the other environmental variables and agricultural techniques. Wines were produced from the grapes by the same oenological protocol. This permitted for the assessment of the effects in the biochemistry of wines solely induced by the changes in the plant-soil water status. This mimicked the more recurrent and prolonged periods of soil water deficiency due to climate changes. Water stress in grapevine was assessed by the measurement of the predawn leaf water potential (Ψ pd ) and the stable carbon isotope composition of the berry sugars during harvest (must sugars). For quantitation purposes and the normalization of the measured stable carbon isotope ratios of the VOCs, the wine samples were spiked with three standard compounds with known concentration and δ 13 C VPDB values. VOCs were extracted by liquid-liquid extraction and analyzed by gas chromatography/flame ionization detection (GC/FID), gas chromatography/mass spectrometry (GC/MS), and GC/C/IRMS. δ 13 C values were obtained for eighteen VOCs. The solid residues were obtained by freeze-drying wine aliquots and were analyzed for their C and N content and isotope composition by EA/IRMS. All the isotopic ratios (δ 13 C SR , δ 15 N SR , δ 13 C VOC ) are highly correlated with the Ψ pd values, indicating that the proposed gas chromatography and isotope ratio mass spectrometry approach is a useful tool to assess the changes in the water status of grapevine cultivars in different terroirs. The combined analytical approach was used for the first time to complement the assessment of soil water availability effects on the grapevine. The δ 13 C values of the volatile compounds helped confirm (or establish) their main source(s) and biosynthetic pathway(s). Importantly, we also show for the first time that the combination of C/N and δ 15 N values of freeze-dried wines have an unexplored potential for the study of nitrogen dynamics in soil/grape/wine systems. Copyright © 2017 Elsevier B.V. All rights reserved.
Characterization of major offensive odorants released from lake sediment
NASA Astrophysics Data System (ADS)
Susaya, Janice; Kim, Ki-Hyun; Chang, Yoon-Seok
2011-02-01
The amount of odorants effused from Lake Sihwa during the low tide period was estimated using sediment samples collected from various sites. A wide variety of odorants released from lake sediment were measured such as reduced sulfur compounds (RSCs), aldehydes, nitrogenous compounds, volatile organic compounds (VOCs), and volatile fatty acids (VFAs). A comparison of emission rates (μg m -2 min -1) showed large mean values from such species as NH 3 (14,550), toluene (370), and DMS (106), while the lowest values were seen from VFAs and some VOCs. If their emission concentrations are converted into odor intensity (OI), the OI values were dominated by such odorants as NH 3 (2.07), H 2S (1.65), DMS (1.80), acetaldehyde (1.52), butyric acid (1.59), butyraldehyde (1.28), isovaleric acid (1.15), and valeric acid (0.78). The dilution to threshold (D/T) ratio derived on the basis of the air dilution sensory (ADS) test yielded a mean of 62 (range: 10-173); 19 out of 21 samples were seen to exceed the guideline D/T value of 15. The sum of odor intensities derived from individual odorants exhibited strong compatibilities with the D/T ratio ( r2 = 0.87; α = 0.003). The overall results of this study confirm that the sediment can play an important role in the malodor phenomenon in the area surrounding the Lake Sihwa.
ESTIMATING TRANSPORT AND DEPOSITION OF A SEMI-VOLATILE COMPOUND WITH A REGIONAL PHOTOCHEMICAL MODEL
To simulate the fate of compounds that are considered semi-volatile and toxic, we have modified a model for regional particulate matter. Our changes introduce a semi-volatile compound into the atmosphere as gaseous emissions from an area source. Once emitted, the gas can transf...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-15
... Promulgation of Implementation Plans for Tennessee: Revisions to Volatile Organic Compound Definition AGENCY... total of 17 compounds to the list of compounds excluded from the definition of ``Volatile Organic...: Sean Lakeman, Regulatory Development Section, Air Planning Branch, Air, Pesticides and Toxics...
Potential of derived lunar volatiles for life support
NASA Technical Reports Server (NTRS)
Bula, R. J.; Wittenberg, L. J.; Tibbitts, T. W.; Kulcinski, G. L.
1992-01-01
The lunar regolith contains small quantities of solar wind implanted volatile compounds that have vital, basic uses for maintaining life support systems of lunar or space settlements. Recent proposals to utilize the helium-3 isotope (He-3) derived from the lunar regolith as a fuel for fusion reactors would result in the availability of large quantities of other lunar volatile compounds. The quantities obtained would provide the annual life support replacement requirements of 1150 to 23,000 inhabitants per ton of He-3 recovered, depending on the volatile compound. Utilization of the lunar volatile compounds for life support depends on the costs, in terms of materials and energy, associated with their extraction from the lunar regolith as compared to the delivery costs of these compounds from Earth resources. Considering today's conservative estimated transportation costs ($10,000 dollars per kilogram) and regolith mining costs ($5 dollars per ton), the life support replacement requirements could be more economically supplied by recovering the lunar volatile compounds than transporting these materials from Earth resources, even before He-3 will be utilized as a fusion fuel. In addition, availability of lunar volatile compounds could have a significant cost impact on maintaining the life support systems of the space station and a Mars base.
Gas and Particulate Aircraft Emissions Measurements: Impacts on local air quality.
NASA Astrophysics Data System (ADS)
Jayne, J. T.; Onasch, T.; Northway, M.; Canagaratna, M.; Worsnop, D.; Timko, M.; Wood, E.; Miake-Lye, R.; Herndon, S.; Knighton, B.; Whitefield, P.; Hagen, D.; Lobo, P.; Anderson, B.
2007-12-01
Air travel and freight shipping by air are becoming increasingly important and are expected to continue to expand. The resulting increases in the local concentrations of pollutants, including particulate matter (PM), volatile organic compounds (VOCs), and nitrogen oxides (NOX), can have negative impacts on regional air quality, human health and can impact climate change. In order to construct valid emission inventories, accurate measurements of aircraft emissions are needed. These measurements must be done both at the engine exit plane (certification) and downwind following the rapid cooling, dilution and initial atmospheric processing of the exhaust plume. We present here results from multiple field experiments which include the Experiment to Characterize Volatile Aerosol and Trace Species Emissions (EXCAVATE) and the four Aircraft Particle Emissions eXperiments (APEX- 1/Atlanta/2/3) which characterized gas and particle emissions from both stationary or in-use aircraft. Emission indices (EIs) for NOx and VOCs and for particle number concentration, refractory PM (black carbon soot) and volatile PM (primarily sulfate and organic) particles are reported. Measurements were made at the engine exit plane and at several downstream locations (10 and 30 meters) for a number of different engine types and engine thrust settings. A significant fraction of organic particle mass is composed of low volatility oil-related compounds and is not combustion related, potentially emitted by vents or heated surfaces within aircraft engines. Advected plumes measurements from in-use aircraft show that the practice of reduced thrust take-offs has a significant effect on total NOx and soot emitted in the vicinity of the airport. The measurements reported here represent a first observation of this effect and new insights have been gained with respect to the chemical processing of gases and particulates important to the urban airshed.
NASA Astrophysics Data System (ADS)
Song, Hyun-Pa; Shim, Sung-Lye; Lee, Sun-Im; Kim, Dong-Ho; Kwon, Joong-Ho; Kim, Kyong-Su
2012-08-01
The volatile organic compounds of non-irradiated and electron-beam irradiated 'Fuji' apples (Malus domestica Borkh.) at 0, 0.5, and 1 kGy were isolated through simultaneous distillation extractions and analyzed using gas chromatograph-mass spectrometry. A total of 53 volatile organic compounds were characterized in 0 and 1 kGy irradiated samples, whereas two more compounds related to ketone and terpenoid group were identified in 0.5 kGy irradiated samples. The contents of volatile compounds were 24.33, 36.49, and 35.28 mg/kg in 0, 0.5, and 1 kGy irradiated samples, respectively. The major compounds identified were butanol, hexanal, [E]-2-hexenal, and hexanol in all samples. The relative content of alcohol increased after 30 days of storage in all samples, whereas that of aldehyde decreased. Although the contents of some volatile compounds were changed by electron-beam irradiation, the total yield and major flavor compounds of irradiated 'Fuji' apples were similar to, or even greater than, those of the control. Therefore, the application of e-beam irradiation if required for microbial decontamination of 'Fuji' apples is an acceptable method as it does not bring about any major quantitative changes of volatile organic compounds.
NASA Astrophysics Data System (ADS)
Muhamad Fahmi, M. H.; Ahmad Bukhary, A. K.; Norma, H.; Idris, A. B.
2016-11-01
The main attractant compound for Eleidobius kamerunicus to male spikelet Elaeis guineensis (oil palm) were determined by analyzing volatile organic compound extracted from E. guineenses inflorescences planted on different soil types namely peat soil, clay soil and sandy soil. Anthesizing male oil palm inflorescences were randomly choosen from palm aged between 4-5 years old age. Extraction of the volatiles from the oil palm inflorescences were performed by Accelerated Solvent Extraction method (ASE). The extracted volatile compound were determined by using gas chromatography-mass spectrometry. Out of ten identified compound, estragole was found to be a major compound in sandy soil (37.49%), clay soil (30.71%) and peat soil (27.79%). Other compound such as 9,12-octadecadieonic acid and n-hexadecanoic acid were found as major compound in peat soil (27.18%) and (7.45%); sandy soil (14.15 %) and (9.31%); and clay soil (30.23%) and (4.99%). This study shows that estragole was the predominant volatile compound detected in oil palm inflorescences with highly concentrated in palm planted in sandy soil type.
Schifter, I; Díaz, L; Rodríguez, R; González-Macías, C
2014-06-01
The strategy for decreasing volatile organic compound emissions in Mexico has been focused much more on tailpipe emissions than on evaporative emissions, so there is very little information on the contribution of evaporative emissions to the total volatile organic compound inventory. We examined the magnitudes of exhaust and evaporative volatile organic compound emissions, and the species emitted, in a representative fleet of light-duty gasoline vehicles in the Metropolitan Area of Mexico City. The US "FTP-75" test protocol was used to estimate volatile organic compound emissions associated with diurnal evaporative losses, and when the engine is started and a journey begins. The amount and nature of the volatile organic compounds emitted under these conditions have not previously been accounted in the official inventory of the area. Evaporative emissions from light-duty vehicles in the Metropolitan Area of Mexico City were estimated to be 39 % of the total annual amount of hydrocarbons emitted. Vehicles built before 1992 (16 % of the fleet) were found to be responsible for 43 % of the total hydrocarbon emissions from exhausts and 31 % of the evaporative emissions of organic compounds. The relatively high amounts of volatile organic compounds emitted from older vehicles found in this study show that strong emission controls need to be implemented in order to decrease the contribution of evaporative emissions of this fraction of the fleet.
USDA-ARS?s Scientific Manuscript database
Prosciutto crudo were irradiated at 0, 3 and 6kGy by gamma ray (GR) and electron beam (EB), respectively. The odor scores and volatile compounds were examined after 7 days storage at 4'. Volatile compounds from samples without and with irradiation at 6kGy were analyzed by GC-MS. Fifty-nine compounds...
Mechanisms of volatile production from non-sulfur amino acids by irradiation
NASA Astrophysics Data System (ADS)
Ahn, Dong Uk; Lee, Eun Joo; Feng, Xi; Zhang, Wangang; Lee, Ji Hwan; Jo, Cheorun; Nam, Kichang
2016-02-01
Non-sulfur amino acid monomers were used to study the mechanisms of volatile production in meat by irradiation. Irradiation not only produced many volatiles but also increased the amounts of volatiles from non-sulfur amino acid monomers. The major reaction mechanisms involved in volatile production from each group of the amino acids by irradiation differ significantly. However, we speculate that the radiolysis of amino acid side chains were the major mechanism. In addition, Strecker degradation, especially the production of aldehydes from aliphatic group amino acids, and deamination, isomerization, decarboxylation, cyclic reaction and dehydrogenation of the initial radiolytic products were also contributed to the production of volatile compounds. Each amino acid monomers produced different odor characteristics, but the intensities of odor from all non-sulfur amino acid groups were very weak. This indicated that the contribution of volatiles produced from non-sulfur amino acids was minor. If the volatile compounds from non-sulfur amino acids, especially aldehydes, interact with other volatiles compounds such as sulfur compounds, however, they can contribute to the off-odor of irradiated meat significantly.
SDE and SPME Analysis of Flavor Compounds in Jin Xuan Oolong Tea.
Sheibani, Ershad; Duncan, Susan E; Kuhn, David D; Dietrich, Andrea M; O'Keefe, Sean F
2016-02-01
Simultaneous distillation-extraction (SDE) and solid phase micro extraction (SPME) are procedures used for the isolation of flavor compounds in foods. The purpose of this study was to optimize SDE conditions (solvent and time) and to compare SDE with SPME for the isolation of flavor compounds in Jin Xuan oolong tea using GC-MS and GC-O. The concentration of volatile compounds isolated with diethyl ether was higher (P < 0.05) than for dichloromethane and concentration was higher at 40 min (P < 0.05) than 20 or 60 min extractions. For SDE, 128 volatiles were identified using GC-MS and 45 aroma active compounds using GC-O. Trans-nerolidol was the most abundant compound in oolong tea. The number of volatiles identified using GC-MS was lower in SPME than SDE. For SPME, 59 volatiles and 41 aroma active compounds were identified. The composition of the volatiles isolated by the 2 methods differed considerably but provided complementary information. © 2016 Institute of Food Technologists®
Maskrey, Joshua R; Insley, Allison L; Hynds, Erin S; Panko, Julie M
2016-07-01
A 3-month air monitoring study was conducted in Washington County, Pennsylvania, at the request of local community members regarding the potential risks resulting from air emissions of pollutants related to hydraulic fracturing operations. Continuous air monitoring for total volatile organic compounds was performed at two sampling sites, including a school and a residence, located within 900 m of a hydraulic fracturing well pad that had been drilled prior to the study. Intermittent 24-hour air samples for 62 individual volatile organic compounds were also collected. The ambient air at both sites was monitored during four distinct periods of unconventional natural gas extraction activity: an inactive period prior to fracturing operations, during fracturing operations, during flaring operations, and during another inactive period after operations. The results of the continuous monitoring during fracturing and flaring sampling periods for total volatile organic compounds were similar to the results obtained during inactive periods. Total volatile organic compound 24-hour average concentrations ranged between 0.16 and 80 ppb during all sampling periods. Several individual volatile compounds were detected in the 24-hour samples, but they were consistent with background atmospheric levels measured previously at nearby sampling sites and in other areas in Washington County. Furthermore, a basic yet conservative screening level evaluation demonstrated that the detected volatile organic compounds were well below health-protective levels. The primary finding of this study was that the operation of a hydraulic fracturing well pad in Washington County did not substantially affect local air concentrations of total and individual volatile organic compounds.
USDA-ARS?s Scientific Manuscript database
The aim of this work was to evaluate the volatile composition of grape berries in vines subjected to varying levels of nitrogen (N), phosphorous (P) and potassium (K) supply. Pinot Noir grapevines were grown in a pot-in-pot system for three years and fertigated with varying levels of either N, P, or...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodgson, A.T.; Daisey, J.M.; Alevantis, L.E.
Three volatile nitrogen-containing compounds, 3-ethenylpyridine (3-EP), pyridine and pyrrole, were investigated as potential tracers for determining the contribution of environmental tobacco smoke (ETS) to concentrations of volatile organic compounds (VOCs) in indoor environments with smoking. The source emission rates of the three tracers and ten selected VOCs in ETS were first measured in a room-size environmental chamber for a market-weighted selection of six commercial cigarettes. The ratios of the emission rates of the tracers to the emission rates of the selected VOCs were calculated and compared among the six brands. The utility of the tracers was then evaluated in amore » field study conducted in five office buildings. Samples for VOCs were collected in designated smoking areas and adjoining non-smoking areas, air change rates were measured, and smoking rates were documented. Concentrations of the three tracers in the smoking areas were calculated using a mass-balance model and compared to their measured concentrations. Based on this comparison, 3-EP was selected as the most suitable tracer for the volatile components of ETS, although pyrrole is also potentially useful. Using 3-EP as the tracer, the contributions of ETS to the measured concentrations of the selected VOCs in the smoking areas were estimated by apportionment. ETS was estimated to contribute 57 to 84 percent (4.1 to 26 pg m{sup -3}) of the formaldehyde concentrations, 44 to 69 percent (0.9 to 5.8 pg m{sup -3}) of the 2-butanone concentrations, 37 to 58 percent (1.3 to 8.2 pg m{sup -3}) of the benzene concentrations, and 20 to 69 percent (0.5 to 3.0 pg m{sup -3}) of the styrene concentrations. The fractional contributions of ETS to the concentrations of acetone, toluene, ethylbenzene, xylene isomers and d-limonene were all less than 50 percent.« less
Pérez, Ana G; de la Rosa, Raúl; Pascual, Mar; Sánchez-Ortiz, Araceli; Romero-Segura, Carmen; León, Lorenzo; Sanz, Carlos
2016-01-08
Volatile compounds are responsible for most of the sensory qualities of virgin olive oil and they are synthesized when enzymes and substrates come together as olive fruit is crushed during the industrial process to obtain the oil. Here we have studied the variability among the major volatile compounds in virgin olive oil prepared from the progeny of a cross of Picual and Arbequina olive cultivars (Olea europaea L.). The volatile compounds were isolated by SPME, and analyzed by HRGC-MS and HRGC-FID. Most of the volatile compounds found in the progeny's oil are produced by the enzymes in the so-called lipoxygenase pathway, and they may be clustered into different groups according to their chain length and polyunsaturated fatty acid origin (linoleic and linolenic acids). In addition, a group of compounds derived from amino acid metabolism and two terpenes also contributed significantly to the volatile fraction, some of which had significant odor values in most of the genotypes evaluated. The volatile compound content of the progeny was very varied, widely transgressing the progenitor levels, suggesting that in breeding programs it might be more effective to consider a larger number of individuals within the same cross than using different crosses with fewer individuals. Multivariate analysis allowed genotypes with particularly interesting volatile compositions to be identified and their flavor quality deduced. Copyright © 2015 Elsevier B.V. All rights reserved.
Jiang, Bao; Zhang, Zhenwen
2010-12-10
In order to elucidate the aroma components of wine produced in the Loess Plateau region of China, volatile compounds of young wines from Cabernet Sauvignon, Cabernet Gernischet and Chardonnay varieties grown in the new ecological region were investigated for the first time in this research. Among the volatile compounds analyzed by HS-SPME with GC-MS, a total of 45, 44 and 42 volatile compounds were identified and quantified in Cabernet Sauvignon, Cabernet Gernischet and Chardonnay wines, respectively. In the volatiles detected, alcohols formed the most abundant group in the aroma compounds of the three wines, followed by esters and fatty acids. According to their odor active values (OAVs), 18 volatile compounds were always present in the three wines at concentrations higher than their threshold values, but ethyl octanoate, ethyl hexanoate, and isoamyl acetate were found to jointly contribute to 92.9%, 93.3%, and 98.7%, of the global aroma of Cabernet Sauvignon, Cabernet Gernischet and Chardonnay wines, respectively. These odorants are associated with "fruity'' and ''ripe fruit'' odor descriptors.
Yang, Wenjian; Yu, Jie; Pei, Fei; Mariga, Alfred Mugambi; Ma, Ning; Fang, Yong; Hu, Qiuhui
2016-04-01
Volatile compounds are important factors that affect the flavor quality of Flammulina velutipes, but the changes occurring during hot air drying is still unclear. To clarify the dynamic changes of flavor components during hot air drying, comprehensive flavor characterization and volatile compounds of F. velutipes were evaluated using electronic nose technology and headspace solid phase micro-extraction combined with gas chromatography-mass spectrometry (HS-SPME-GC-MS), respectively. Results showed that volatile components in F. velutipes significantly changed during hot air drying according to the principal component analysis and radar fingerprint chart of electronic nose. Volatile compounds of fresh F. velutipes consisted mainly of ketones, aldehydes and alcohols, and 3-octanone was the dominant compound. Drying process could significantly decrease the relative content of ketones and promoted the generation of alcohols, acids, and esters, which became the main volatile compounds of dried F. velutipes. These may provide a theoretical basis for the formation mechanism of flavor substances in dried F. velutipes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Shelton, Larry R.
1997-01-01
For many years, stream samples for analysis of volatile organic compounds have been collected without specific guidelines or a sampler designed to avoid analyte loss. In 1996, the U.S. Geological Survey's National Water-Quality Assessment Program began aggressively monitoring urban stream-water for volatile organic compounds. To assure representative samples and consistency in collection procedures, a specific sampler was designed to collect samples for analysis of volatile organic compounds in stream water. This sampler, and the collection procedures, were tested in the laboratory and in the field for compound loss, contamination, sample reproducibility, and functional capabilities. This report describes that sampler and its use, and outlines field procedures specifically designed to provide contaminant-free, reproducible volatile organic compound data from stream-water samples. These guidelines and the equipment described represent a significant change in U.S. Geological Survey instructions for collecting and processing stream-water samples for analysis of volatile organic compounds. They are intended to produce data that are both defensible and interpretable, particularly for concentrations below the microgram-per-liter level. The guidelines also contain detailed recommendations for quality-control samples.
Volatiles in Inter-Specific Bacterial Interactions
Tyc, Olaf; Zweers, Hans; de Boer, Wietse; Garbeva, Paolina
2015-01-01
The importance of volatile organic compounds for functioning of microbes is receiving increased research attention. However, to date very little is known on how inter-specific bacterial interactions effect volatiles production as most studies have been focused on volatiles produced by monocultures of well-described bacterial genera. In this study we aimed to understand how inter-specific bacterial interactions affect the composition, production and activity of volatiles. Four phylogenetically different bacterial species namely: Chryseobacterium, Dyella, Janthinobacterium, and Tsukamurella were selected. Earlier results had shown that pairwise combinations of these bacteria induced antimicrobial activity in agar media whereas this was not the case for monocultures. In the current study, we examined if these observations were also reflected by the production of antimicrobial volatiles. Thus, the identity and antimicrobial activity of volatiles produced by the bacteria were determined in monoculture as well in pairwise combinations. Antimicrobial activity of the volatiles was assessed against fungal, oomycetal, and bacterial model organisms. Our results revealed that inter-specific bacterial interactions affected volatiles blend composition. Fungi and oomycetes showed high sensitivity to bacterial volatiles whereas the effect of volatiles on bacteria varied between no effects, growth inhibition to growth promotion depending on the volatile blend composition. In total 35 volatile compounds were detected most of which were sulfur-containing compounds. Two commonly produced sulfur-containing volatile compounds (dimethyl disulfide and dimethyl trisulfide) were tested for their effect on three target bacteria. Here, we display the importance of inter-specific interactions on bacterial volatiles production and their antimicrobial activities. PMID:26733959
Changes in volatile compound composition of Antrodia camphorata during solid state fermentation.
Xia, Yongjun; Zhang, Baorong; Li, Weijiang; Xu, Ganrong
2011-10-01
Although the volatiles present in mushrooms and fungi have been investigated by many researchers, including Antrodia camphorata in submerged fermentation, there are few data available regarding changes in volatile compounds during fermentation. Our research has revealed that solid state fermentation of A. camphorata is highly odiferous compared with submerged cultures and the odor changed with increasing culture time. Therefore the aim of this study was to investigate the changes in volatile compound composition of A. camphorata during solid state fermentation. Altogether, 124 major volatile compounds were identified. The volatile compounds produced by A. camphorata during growth in solid state fermentation were quite different. Oct-1-en-3-ol, octan-3-one and methyl 2-phenylacetate were predominant in exponential growth phase production, while the dominant volatiles produced in stationary phase were octan-3-one and methyl 2-phenylacetate. In stationary phase, lactone compounds in A. camphorata, such as 5-butyloxolan-2-one, 5-heptyloxolan-2-one, 6-heptyloxan-2-one, contributed greatly to peach and fruit-like flavor. Terpene and terpene alcohol compounds, such as 1-terpineol, L-linalool, T-cadinol, (E, E)-farnesol, β-elemene, cis-α-bisabolene and α-muurolene, made different contributions to herbal fresh aroma in A. camphorata. Nineteen volatile sesquiterpenes were detected from solid state fermentation of A. camphorata. The compounds 5-n-butyl-5H-furan-2-one, β-ionone, (-)-caryophyllene oxide, aromadendrene oxide, diepi-α-cedrene epoxide, β-elemene, α-selinene, α-muurolene, azulene, germacrene D, γ-cadinene and 2-methylpyrazine have not hitherto been reported in A. camphorata. The preliminary results suggest that the aroma-active compounds produced by A camphorata in solid state fermentation might serve as an important source of natural aroma compounds for the food and cosmetic industries or antibiotic activity compounds. The sesquiterpenes could be identified as possible taxonomic markers for A. camphorata. Copyright © 2011 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Schmutzer, G.; Avram, V.; Feher, I.; David, L.; Moldovan, Z.
2012-02-01
The volatile composition of alcoholic beverage was studied by headspace solid-phase microextraction (HSSPME) method and gas chromatography - mass spectrometry (GC-MS). Some volatile compounds, such as alcohols, esters, terpenes and other are mainly responsible for the flavor of fortified wines and their amounts specify the quality of the alcoholic beverages. From this perspective it is interesting to develop a rapid, selective and sensitive analytical method suitable for simultaneous quantification of the main molecules being responsible for the organoleptic characteristic of alcoholic beverages. Vermouth fortified drink was analyzed in order to characterize the volatile profile. Using the HS-SPME/GC-MS a number of twenty-six volatile compounds from a commercial market alcoholic beverage were identified. The most abundant compounds were m-thymol, o-thymol and eugenol, alongside of the ethyl ester compounds.
Biochemistry of Apple Aroma: A Review.
Espino-Díaz, Miguel; Sepúlveda, David Roberto; González-Aguilar, Gustavo; Olivas, Guadalupe I
2016-12-01
Flavour is a key quality attribute of apples defined by volatile aroma compounds. Biosynthesis of aroma compounds involves metabolic pathways in which the main precursors are fatty and amino acids, and the main products are aldehydes, alcohols and esters. Some enzymes are crucial in the production of volatile compounds, such as lipoxygenase, alcohol dehydrogenase, and alcohol acyltransferase. Composition and concentration of volatiles in apples may be altered by pre- and postharvest factors that cause a decline in apple flavour. Addition of biosynthetic precursors of volatile compounds may be a strategy to promote aroma production in apples. The present manuscript compiles information regarding the biosynthesis of volatile aroma compounds, including metabolic pathways, enzymes and substrates involved, factors that may affect their production and also includes a wide number of studies focused on the addition of biosynthetic precursors in their production.
Biochemistry of Apple Aroma: A Review
Espino-Díaz, Miguel; Sepúlveda, David Roberto; González-Aguilar, Gustavo
2016-01-01
Summary Flavour is a key quality attribute of apples defined by volatile aroma compounds. Biosynthesis of aroma compounds involves metabolic pathways in which the main precursors are fatty and amino acids, and the main products are aldehydes, alcohols and esters. Some enzymes are crucial in the production of volatile compounds, such as lipoxygenase, alcohol dehydrogenase, and alcohol acyltransferase. Composition and concentration of volatiles in apples may be altered by pre- and postharvest factors that cause a decline in apple flavour. Addition of biosynthetic precursors of volatile compounds may be a strategy to promote aroma production in apples. The present manuscript compiles information regarding the biosynthesis of volatile aroma compounds, including metabolic pathways, enzymes and substrates involved, factors that may affect their production and also includes a wide number of studies focused on the addition of biosynthetic precursors in their production. PMID:28115895
The volatile compound BinBase mass spectral database.
Skogerson, Kirsten; Wohlgemuth, Gert; Barupal, Dinesh K; Fiehn, Oliver
2011-08-04
Volatile compounds comprise diverse chemical groups with wide-ranging sources and functions. These compounds originate from major pathways of secondary metabolism in many organisms and play essential roles in chemical ecology in both plant and animal kingdoms. In past decades, sampling methods and instrumentation for the analysis of complex volatile mixtures have improved; however, design and implementation of database tools to process and store the complex datasets have lagged behind. The volatile compound BinBase (vocBinBase) is an automated peak annotation and database system developed for the analysis of GC-TOF-MS data derived from complex volatile mixtures. The vocBinBase DB is an extension of the previously reported metabolite BinBase software developed to track and identify derivatized metabolites. The BinBase algorithm uses deconvoluted spectra and peak metadata (retention index, unique ion, spectral similarity, peak signal-to-noise ratio, and peak purity) from the Leco ChromaTOF software, and annotates peaks using a multi-tiered filtering system with stringent thresholds. The vocBinBase algorithm assigns the identity of compounds existing in the database. Volatile compound assignments are supported by the Adams mass spectral-retention index library, which contains over 2,000 plant-derived volatile compounds. Novel molecules that are not found within vocBinBase are automatically added using strict mass spectral and experimental criteria. Users obtain fully annotated data sheets with quantitative information for all volatile compounds for studies that may consist of thousands of chromatograms. The vocBinBase database may also be queried across different studies, comprising currently 1,537 unique mass spectra generated from 1.7 million deconvoluted mass spectra of 3,435 samples (18 species). Mass spectra with retention indices and volatile profiles are available as free download under the CC-BY agreement (http://vocbinbase.fiehnlab.ucdavis.edu). The BinBase database algorithms have been successfully modified to allow for tracking and identification of volatile compounds in complex mixtures. The database is capable of annotating large datasets (hundreds to thousands of samples) and is well-suited for between-study comparisons such as chemotaxonomy investigations. This novel volatile compound database tool is applicable to research fields spanning chemical ecology to human health. The BinBase source code is freely available at http://binbase.sourceforge.net/ under the LGPL 2.0 license agreement.
The volatile compound BinBase mass spectral database
2011-01-01
Background Volatile compounds comprise diverse chemical groups with wide-ranging sources and functions. These compounds originate from major pathways of secondary metabolism in many organisms and play essential roles in chemical ecology in both plant and animal kingdoms. In past decades, sampling methods and instrumentation for the analysis of complex volatile mixtures have improved; however, design and implementation of database tools to process and store the complex datasets have lagged behind. Description The volatile compound BinBase (vocBinBase) is an automated peak annotation and database system developed for the analysis of GC-TOF-MS data derived from complex volatile mixtures. The vocBinBase DB is an extension of the previously reported metabolite BinBase software developed to track and identify derivatized metabolites. The BinBase algorithm uses deconvoluted spectra and peak metadata (retention index, unique ion, spectral similarity, peak signal-to-noise ratio, and peak purity) from the Leco ChromaTOF software, and annotates peaks using a multi-tiered filtering system with stringent thresholds. The vocBinBase algorithm assigns the identity of compounds existing in the database. Volatile compound assignments are supported by the Adams mass spectral-retention index library, which contains over 2,000 plant-derived volatile compounds. Novel molecules that are not found within vocBinBase are automatically added using strict mass spectral and experimental criteria. Users obtain fully annotated data sheets with quantitative information for all volatile compounds for studies that may consist of thousands of chromatograms. The vocBinBase database may also be queried across different studies, comprising currently 1,537 unique mass spectra generated from 1.7 million deconvoluted mass spectra of 3,435 samples (18 species). Mass spectra with retention indices and volatile profiles are available as free download under the CC-BY agreement (http://vocbinbase.fiehnlab.ucdavis.edu). Conclusions The BinBase database algorithms have been successfully modified to allow for tracking and identification of volatile compounds in complex mixtures. The database is capable of annotating large datasets (hundreds to thousands of samples) and is well-suited for between-study comparisons such as chemotaxonomy investigations. This novel volatile compound database tool is applicable to research fields spanning chemical ecology to human health. The BinBase source code is freely available at http://binbase.sourceforge.net/ under the LGPL 2.0 license agreement. PMID:21816034
A method for the solvent extraction of low-boiling-point plant volatiles.
Xu, Ning; Gruber, Margaret; Westcott, Neil; Soroka, Julie; Parkin, Isobel; Hegedus, Dwayne
2005-01-01
A new method has been developed for the extraction of volatiles from plant materials and tested on seedling tissue and mature leaves of Arabidopsis thaliana, pine needles and commercial mixtures of plant volatiles. Volatiles were extracted with n-pentane and then subjected to quick distillation at a moderate temperature. Under these conditions, compounds such as pigments, waxes and non-volatile compounds remained undistilled, while short-chain volatile compounds were distilled into a receiving flask using a high-efficiency condenser. Removal of the n-pentane and concentration of the volatiles in the receiving flask was carried out using a Vigreux column condenser prior to GC-MS. The method is ideal for the rapid extraction of low-boiling-point volatiles from small amounts of plant material, such as is required when conducting metabolic profiling or defining biological properties of volatile components from large numbers of mutant lines.
The Influence of Spices on the Volatile Compounds of Cooked Beef Patty
Jung, Samooel; Jo, Cheorun; Kim, Il Suk; Nam, Ki Chang; Ahn, Dong Uk
2014-01-01
The aim of this study is to examine the influences of spices on the amounts and compositions of volatile compounds released from cooked beef patty. Beef patty with 0.5% of spice (nutmeg, onion, garlic, or ginger powder, w/w) was cooked by electronic pan until they reached an internal temperature of 75℃. A total of 46 volatile compounds (6 alcohols, 6 aldehydes, 5 hydrocarbons, 6 ketones, 9 sulfur compounds, and 14 terpenes) from cooked beef patties were detected by using purgeand- trap GC/MS. The addition of nutmeg, onion, or ginger powder significantly reduced the production of the volatile compounds via lipid oxidation in cooked beef patty when compared to those from the control. Also, the addition of nutmeg and garlic powder to beef patty generated a lot of trepans or sulfur volatile compounds, respectively. From these results, the major proportion by chemical classes such as alcohols, aldehydes, hydrocarbons, ketones, sulfur compounds, and terpenes was different depending on the spice variations. The results indicate that addition of spices to the beef patty meaningfully changes the volatile compounds released from within. Therefore, it can be concluded that spices can interact with meat aroma significantly, and thus, the character of each spice should be considered before adding to the beef patty. PMID:26760934
The Influence of Spices on the Volatile Compounds of Cooked Beef Patty.
Jung, Samooel; Jo, Cheorun; Kim, Il Suk; Nam, Ki Chang; Ahn, Dong Uk; Lee, Kyung Heang
2014-01-01
The aim of this study is to examine the influences of spices on the amounts and compositions of volatile compounds released from cooked beef patty. Beef patty with 0.5% of spice (nutmeg, onion, garlic, or ginger powder, w/w) was cooked by electronic pan until they reached an internal temperature of 75℃. A total of 46 volatile compounds (6 alcohols, 6 aldehydes, 5 hydrocarbons, 6 ketones, 9 sulfur compounds, and 14 terpenes) from cooked beef patties were detected by using purgeand- trap GC/MS. The addition of nutmeg, onion, or ginger powder significantly reduced the production of the volatile compounds via lipid oxidation in cooked beef patty when compared to those from the control. Also, the addition of nutmeg and garlic powder to beef patty generated a lot of trepans or sulfur volatile compounds, respectively. From these results, the major proportion by chemical classes such as alcohols, aldehydes, hydrocarbons, ketones, sulfur compounds, and terpenes was different depending on the spice variations. The results indicate that addition of spices to the beef patty meaningfully changes the volatile compounds released from within. Therefore, it can be concluded that spices can interact with meat aroma significantly, and thus, the character of each spice should be considered before adding to the beef patty.
Boudreau, Thomas F; Peck, Gregory M; O'Keefe, Sean F; Stewart, Amanda C
2018-01-01
Yeast assimilable nitrogen (YAN) is essential for yeast growth and metabolism during apple ( Malus x domestica Borkh.) cider fermentation. YAN concentration and composition can impact cider fermentation kinetics and the formation of volatile aroma compounds by yeast. The YAN concentration and composition of apples grown in Virginia, USA over the course of two seasons was determined through analysis of both free amino nitrogen (FAN) and ammonium ion concentration. FAN was the largest fraction of YAN, with a mean value of 51 mg N L -1 FAN compared to 9 mg N L -1 ammonium. Observed YAN values ranged from nine to 249 mg N L -1 , with a mean value of 59 mg N L -1 . Ninety-four percent of all samples analyzed in this study contained <140 mg N L -1 YAN, a concentration generally considered the minimum level needed in grape-based wines for yeast to fully utilize all of the fermentable sugars. FAN concentration was correlated with total YAN concentration, but ammonium concentration was not. Likewise, there was no correlation between FAN and ammonium concentration.
Ding, Xiaofei; Wu, Chongde; Huang, Jun; Zhou, Rongqing
2015-11-01
The aim of this study was to investigate the dynamic of volatile compounds in the Zaopei during the fermentation and distillation process by headspace solid-phase microextraction-gas chromatography mass spectrometry (HS-SPME-GCMS). Physicochemical properties analysis of Zaopei (fermented grains [FG], fermented grains mixed with sorghum [FGS], streamed grains [SG], and streamed grains mixed with Daqu [SGD]) showed distinct changes. A total number of 66 volatile compounds in the Zaopei were identified, in which butanoic acid, hexanoic acid, ethyl hexanoate, ethyl lactate, ethyl octanoate, hexyl hexanoate, ethyl hydrocinnamate, ethyl oleate, ethyl hexadecanoate, and ethyl linoleate were considered to be the dominant compounds due to their high concentrations. FG had the highest volatile compounds (112.43 mg/kg), which significantly decreased by 17.05% in the FGS, 67.12% in the SG, and 73.75% in the SGD. Furthermore, about 61.49% of volatile compounds of FGS were evaporated into raw liquor, whereas head, heart, and tail liquor accounted for 29.84%, 39.49%, and 30.67%, respectively. Each volatile class generally presented a decreasing trend, except for furans. Especially, the percentage of esters was 55.51% to 67.41% in the Zaopei, and reached 92.60% to 97.67% in the raw liquor. Principal component analysis based ordination of volatile compounds data segregated FGS and SGD samples. In addition, radar diagrams of the odor activity values suggested that intense flavor of fruit was weakened most from FG to SGD. The dynamic of volatile compounds in the Zaopei during the fermentation and distillation process was tested by SPME-GCMS. The result of this study demonstrated that both volatile compounds of Zaopei and thermal reaction during distillation simply determined the unique feature of raw liquor. This study was conducted based on the real products from liquor manufactory, so it is practicable that the method can be used in an industry setting. © 2015 Institute of Food Technologists®
Fig volatile compounds--a first comparative study.
Grison-Pigé, Laure; Hossaert-McKey, Martine; Greeff, Jaco M; Bessière, Jean-Marie
2002-09-01
We analysed the compounds of volatile blends released by receptive figs of twenty Ficus species to attract their specific pollinating wasps. In all, 99 different compounds were identified. The compounds are mainly terpenoids, aliphatic compounds and products from the shikimic acid pathway. In each species blend, there are few major compounds, which are generally common among floral fragrances. Most species blends also include rare compounds, but generally their proportion in the blend is low. A possible basis for species-specificity of Ficus-wasp interactions is discussed in relation to the patterns of volatiles found in this interspecies comparison. Copyright 2002 Elsevier Science Ltd.
Remedial Investigation/Feasibility Study/Interim Response Actions
1988-03-25
organosulfur compounds (CC/FP), organophosphorus compounds (CC/FPD), hydrocarbons (CC/FID), volatile aromatic compounds (GC/ PID ), volatile halogenated...ICP metals, mercury and arsenic (AA). Water samples are being analyzed for volatile halogenated organics (GC/CON), volatile aromatic organics (GC/ PID ...Feb Mar Apr May Jun Jul Aug SepSI - I I I I I • .. I I I ----+----- 685 27-90 so ONSITE DISPOSAL FACILITY .i * 686 27-01 Prep FLUE Plan Fz=m8u> 6e7
Wang, Tao; Xue, Likun; Brimblecombe, Peter; Lam, Yun Fat; Li, Li; Zhang, Li
2017-01-01
High concentrations of ozone in urban and industrial regions worldwide have long been a major air quality issue. With the rapid increase in fossil fuel consumption in China over the past three decades, the emission of chemical precursors to ozone-nitrogen oxides and volatile organic compounds-has increased sharply, surpassing that of North America and Europe and raising concerns about worsening ozone pollution in China. Historically, research and control have prioritized acid rain, particulate matter, and more recently fine particulate matter (PM 2.5 ). In contrast, less is known about ozone pollution, partly due to a lack of monitoring of atmospheric ozone and its precursors until recently. This review summarizes the main findings from published papers on the characteristics and sources and processes of ozone and ozone precursors in the boundary layer of urban and rural areas of China, including concentration levels, seasonal variation, meteorology conducive to photochemistry and pollution transport, key production and loss processes, ozone dependence on nitrogen oxides and volatile organic compounds, and the effects of ozone on crops and human health. Ozone concentrations exceeding the ambient air quality standard by 100-200% have been observed in China's major urban centers such as Jing-Jin-Ji, the Yangtze River delta, and the Pearl River delta, and limited studies suggest harmful effect of ozone on human health and agricultural corps; key chemical precursors and meteorological conditions conductive to ozone pollution have been investigated, and inter-city/region transport of ozone is significant. Several recommendations are given for future research and policy development on ground-level ozone. Copyright © 2016 Elsevier B.V. All rights reserved.
Rossi, Serena; Sileoni, Valeria; Perretti, Giuseppe; Marconi, Ombretta
2014-03-30
The objective of this study was a multivariate characterization of the volatile profile of beers. Such a characterization is timely considering the increasing worldwide consumption of beer, the continuous growth of microbreweries and the importance of volatile compounds to beer flavour. A method employing solid-phase microextraction and gas chromatography-mass spectrometry (SPME-GC-MS) was optimized and then applied to a sample set of 36 industrial and craft beers of various styles and fermentation types. The volatile profiles of different beer styles is described, with particular attention paid to the volatile compounds characteristic of a spontaneously fermented lambic raspberry framboise beer. Furthermore, it was also possible to identify which specific volatile compounds are principally responsible for the differences in the volatile profiles of top- and bottom-fermented beers. Moreover, a volatile fingerprint of the craft top-fermented Italian beers was defined, as they show a very similar volatile profile. Finally, the volatile compounds that are characteristic of the bock-style beers are described. The SPME-GC-MS analytical method optimized in this study is suitable for characterizing the volatile fingerprint of different beers, especially on the basis of the kind of fermentation (top, bottom or spontaneous), the method of production and the style of the beer. © 2013 Society of Chemical Industry.
Methylotrophic bacteria in sustainable agriculture.
Kumar, Manish; Tomar, Rajesh Singh; Lade, Harshad; Paul, Diby
2016-07-01
Excessive use of chemical fertilizers to increase production from available land has resulted in deterioration of soil quality. To prevent further soil deterioration, the use of methylotrophic bacteria that have the ability to colonize different habitats, including soil, sediment, water, and both epiphytes and endophytes as host plants, has been suggested for sustainable agriculture. Methylotrophic bacteria are known to play a significant role in the biogeochemical cycle in soil ecosystems, ultimately fortifying plants and sustaining agriculture. Methylotrophs also improve air quality by using volatile organic compounds such as dichloromethane, formaldehyde, methanol, and formic acid. Additionally, methylotrophs are involved in phosphorous, nitrogen, and carbon cycling and can help reduce global warming. In this review, different aspects of the interaction between methylotrophs and host plants are discussed, including the role of methylotrophs in phosphorus acquisition, nitrogen fixation, phytohormone production, iron chelation, and plant growth promotion, and co-inoculation of these bacteria as biofertilizers for viable agriculture practices.
Lin, Jintai; Nielsen, Chris P; Zhao, Yu; Lei, Yu; Liu, Yang; McElroy, Michael B
2010-10-15
The Chinese government has moved aggressively since 2005 to reduce emissions of a number of pollutants including primary particulate matter (PM) and sulfur dioxide (SO(2)), efforts inadvertently aided since late 2008 by economic recession. Satellite observations of aerosol optical depth (AOD) and column nitrogen dioxide (NO(2)) provide independent indicators of emission trends, clearly reflecting the sharp onset of the recession in the fall of 2008 and rebound of the economy in the latter half of 2009. Comparison of AOD with ground-based observations of PM over a longer period indicate that emission-control policies have not been successful in reducing concentrations of aerosol pollutants at smaller size range over industrialized regions of China. The lack of success is attributed to the increasing importance of anthropogenic secondary aerosols formed from precursor species including nitrogen oxides (NO(x)), non-methane volatile organic compounds (NMVOC), and ammonia (NH(3)).
The Sensitivity of U.S. Surface Ozone Formation to NOx, and VOCs as Viewed from Space
NASA Technical Reports Server (NTRS)
Duncan, Bryan N.; Yoshida, Yasuko; Sillman, Sanford; Retscher, Christian; Pickering, Kenneth E.; Martin, Randall V.; Celarier, Edward A.
2009-01-01
We investigated variations in the sensitivity of surface ozone formation in summer to precursor species concentrations of volatile organic compounds (VOCs) and nitrogen oxides (NO(x)) as inferred from the ratio of tropospheric columns of formaldehyde and nitrogen dioxide from the Aura Ozone Monitoring Instrument (OMI). The data indicate that ozone formation became: 1. more sensitive to NO(x) over most of the U.S, from 2005 to 2007 because of substantial decreases in NO(x) emissions primarily from stationary sources, and 2. more sensitive to NO(x) with increasing temperature, in part because emissions of highly reactive, biogenic isoprene increase with temperature, thus increasing the total VOC reactivity. Based on our interpretation of the data, current strategies implemented to reduce unhealthy levels of surface ozone should focus more on reducing NO(x) emissions, except in some downtown areas which have historically benefited from reductions in VOC emissions.
Nitrogen transformations in modern agriculture and the role of biological nitrification inhibition.
Coskun, Devrim; Britto, Dev T; Shi, Weiming; Kronzucker, Herbert J
2017-06-06
The nitrogen (N)-use efficiency of agricultural plants is notoriously poor. Globally, about 50% of the N fertilizer applied to cropping systems is not absorbed by plants, but lost to the environment as ammonia (NH 3 ), nitrate (NO 3 - ), and nitrous oxide (N 2 O, a greenhouse gas with 300 times the heat-trapping capacity of carbon dioxide), raising agricultural production costs and contributing to pollution and climate change. These losses are driven by volatilization of NH 3 and by a matrix of nitrification and denitrification reactions catalysed by soil microorganisms (chiefly bacteria and archaea). Here, we discuss mitigation of the harmful and wasteful process of agricultural N loss via biological nitrification inhibitors (BNIs) exuded by plant roots. We examine key recent discoveries in the emerging field of BNI research, focusing on BNI compounds and their specificity and transport, and discuss prospects for their role in improving agriculture while reducing its environmental impact.
Potential for reduction of odorous compounds in swine manure through diet modification.
Sutton, A L; Kephart, K B; Verstegen, M W; Canh, T T; Hobbs, P J
1999-02-01
Recent public concern about air pollution from pork production units has prompted more research to develop methods to reduce and control odors. Masking agents, enzymes and bacterial preparations, feed additives, chemicals, oxidation processes, air scrubbers, biofilters, and new ventilation systems have been studied. Research relating the effects of the swine diet on manure odors has been scarce. Introducing feed additives to bind ammonia, change digesta pH, affect specific enzyme activity, and mask odors has been either costly or not consistently successful. Recent research emphasis has focused on manipulating the diet 1) to increase the nutrient utilization of the diet to reduce excretion products, 2) to enhance microbial metabolism in the lower digestive tract to reduce excretion of odor-causing compounds, and 3) to change the physical characteristics of urine and feces to reduce odor emissions. Primary odor-causing compounds evolve from excess degradable proteins and lack of specific fermentable carbohydrates during microbial fermentation. Reductions in ammonia emissions by 28 to 79% through diet modifications have been reported. Limited research on reduction of other odorous volatile organic compounds through diet modifications is promising. Use of synthetic amino acids with reduced intact protein levels in diets significantly reduces nitrogen excretions and odor production. Addition of nonstarch polysaccharides and specific oligosaccharides further alters the pathway of nitrogen excretion and reduces odor emission. Continued nutritional and microbial research to incorporate protein degradation products, especially sulfur-containing organics, with fermentable carbohydrates in the lower gastrointestinal tract of pigs will further control odors from manure.
Effect of supercritical carbon dioxide decaffeination on volatile components of green teas.
Lee, S; Park, M K; Kim, K H; Kim, Y-S
2007-09-01
Volatile components in regular and decaffeinated green teas were isolated by simultaneous steam distillation and solvent extraction (SDE), and then analyzed by GC-MS. A total of 41 compounds, including 8 alcohols, 15 terpene-type compounds, 10 carbonyls, 4 N-containing compounds, and 4 miscellaneous compounds, were found in regular and decaffeinated green teas. Among them, linalool and phenylacetaldehyde were quantitatively dominant in both regular and decaffeinated green teas. By a decaffeination process using supercritical carbon dioxide, most volatile components decreased. The more caffeine was removed, the more volatile components were reduced in green teas. In particular, relatively nonpolar components such as terpene-type compounds gradually decreased according to the decaffeination process. Aroma-active compounds in regular and decaffeinated green teas were also determined and compared by aroma extract dilution analysis (AEDA). Most greenish and floral flavor compounds such as hexanal, (E)-2-hexenal, and some unknown compounds disappeared or decreased after the decaffeination process.
Development of a sparging technique for volatile emissions from potato (Solanum tuberosum)
NASA Technical Reports Server (NTRS)
Berdis, Elizabeth; Peterson, Barbara Vieux; Yorio, Neil C.; Batten, Jennifer; Wheeler, Raymond M.
1993-01-01
Accumulation of volatile emissions from plants grown in tightly closed growth chambers may have allelopathic or phytotoxic properties. Whole air analysis of a closed chamber includes both biotic and abiotic volatile emissions. A method for characterization and quantification of biogenic emissions solely from plantlets was developed to investigate this complex mixture of volatile organic compounds. Volatile organic compounds from potato (Solanum tuberosum L. cv. Norland) were isolated, separated and identified using an in-line configuration consisting of a purge and trap concentrator with sparging vessels coupled to a GC/MS system. Analyses identified plant volatile compounds: transcaryophyllene, alpha-humulene, thiobismethane, hexanal, cis-3-hexen-1-ol, and cis-3-hexenyl acetate.
Ma, Chengying; Li, Junxing; Chen, Wei; Wang, Wenwen; Qi, Dandan; Pang, Shi; Miao, Aiqing
2018-06-01
Oolong tea is a typical semi-fermented tea and is famous for its unique aroma. The aim of this study was to compare the volatile compounds during manufacturing process to reveal the formation of aroma. In this paper, a method was developed based on head-space solid phase microextraction/gas chromatography-mass spectrometry (HS-SPME/GC-MS) combined with chemometrics to assess volatile profiles during manufacturing process (fresh leaves, sun-withered leaves, rocked leaves and leaves after de-enzyming). A total of 24 aroma compounds showing significant differences during manufacturing process were identified. Subsequently, according to these aroma compounds, principal component analysis and hierarchical cluster analysis showed that the four samples were clearly distinguished from each other, which suggested that the 24 identified volatile compounds can represent the changes of volatile compounds during the four steps. Additionally, sun-withering, rocking and de-enzyming can influence the variations of volatile compounds in different degree, and we found the changes of volatile compounds in withering step were less than other two manufacturing process, indicating that the characteristic volatile compounds of oolong tea might be mainly formed in rocking stage by biological reactions and de-enzyming stage through thermal chemical transformations rather than withering stage. This study suggested that HS-SPME/GC-MS combined with chemometrics methods is accurate, sensitive, fast and ideal for rapid routine analysis of the aroma compounds changes in oolong teas during manufacturing processing. Copyright © 2018 Elsevier Ltd. All rights reserved.
Li, Sen; Luo, Xue Mei; Tu, Wei Guo; Fan, Hua; Gou, Xiao Lin; DU, Yu Long; Li, Ling; Wang, Qiong Yao
2017-04-18
To study the effects of nitrogen preserving agent (NPA) on composting process and nitrogen loss of Eichhornia crassipes, an aerobic composting was conducted for 35 days using four treatments. The NPA was prepared by mixing ferrous sulfate, humic acid sodium, and superphosphate (M:M:M=75:20:5). Four treatments were included with different mass ratios of NPA, including 0% (CK), 1% (PN1), 2% (PN2), and 3% (PN3). The physical and chemical properties, N fraction concentrations, ammonia volatilization, and N loss rates were measured and explored during composting process. The results showed that the pile temperature of NPA treatments were higher than that of CK in thermophillic period, however their water contents were significantly (P<0.05) lower than that in CK in cooling period. At the end of composting, the concentrations of total nitrogen and organic nitrogen increased significantly in NPA treatments (P<0.05), and their highest concentrations in the PN3 treatment were 16.3% and 13.2% higher than those in CK, respectively. The ammonia volatilization losses of PN1, PN2 and PN3 treatments were 25.9%, 31.5% and 42.4% lower than that of CK, respectively, however, their nitrogen fixation rates reached 31.3%, 40.7% and 72.2% respectively. Therefore, adding NPA could accelerate start-up speed, shorten composting time, and also could effectively reduce ammonia volatilizations and nitrogen loss in the composting process of E. crassipes. Therefore, PN3 showed the best effects of nitrogen preserving.
Concentrations of over 25 polar semi-volatile and non-volatile organic compounds were measured in Lower Manhattan, New York using a high capacity Integrated Organic Gas and Particle sampler, after the initial destruction of the World Trade Center. The polar organic compounds in...
78 FR 53029 - Air Quality: Revision to Definition of Volatile Organic Compounds-Exclusion of trans
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-28
... Air Quality: Revision to Definition of Volatile Organic Compounds--Exclusion of trans 1-chloro-3,3,3.... SUMMARY: The EPA is taking final action to revise the regulatory definition of volatile organic compounds..., June 16, 2010), and as a solvent for metals, electronics, and precision cleaning and in adhesives...
NASA Astrophysics Data System (ADS)
Hewitt, Nick; Lee, James
2010-05-01
More than half the world's rainforest has been lost to agriculture since the Industrial Revolution. Among the most widespread tropical crops is oil palm (Elaeis guineensis): global production now exceeds 35 million tonnes per year. In Malaysia, for example, 13% of land area is now oil palm plantation, compared with 1% in 1974. There are enormous pressures to increase palm oil production for food, domestic products, and, especially, biofuels. Greater use of palm oil for biofuel production is predicated on the assumption that palm oil is an ‘‘environmentally friendly'' fuel feedstock. Here we show, using measurements and models, that oil palm plantations in Malaysia directly emit more oxides of nitrogen and volatile organic compounds than rainforest. These compounds lead to the production of ground-level ozone (O3), an air pollutant that damages human health, plants, and materials, reduces crop productivity, and has effects on the Earth's climate. Our measurements show that, at present, O3 concentrations do not differ significantly over rainforest and adjacent oil palm plantation landscapes. However, our model calculations predict that if concentrations of oxides of nitrogen in Borneo are allowed to reach those currently seen over rural North America and Europe, ground-level O3 concentrations will reach 100 parts per billion (109) volume (ppbv) and exceed levels known to be harmful to human health. Our study provides an early warning of the urgent need to develop policies that manage nitrogen emissions if the detrimental effects of palm oil production on air quality and climate are to be avoided.
Hewitt, C. N.; MacKenzie, A. R.; Di Carlo, P.; Di Marco, C. F.; Dorsey, J. R.; Evans, M.; Fowler, D.; Gallagher, M. W.; Hopkins, J. R.; Jones, C. E.; Langford, B.; Lee, J. D.; Lewis, A. C.; Lim, S. F.; McQuaid, J.; Misztal, P.; Moller, S. J.; Monks, P. S.; Nemitz, E.; Oram, D. E.; Owen, S. M.; Phillips, G. J.; Pugh, T. A. M.; Pyle, J. A.; Reeves, C. E.; Ryder, J.; Siong, J.; Skiba, U.; Stewart, D. J.
2009-01-01
More than half the world's rainforest has been lost to agriculture since the Industrial Revolution. Among the most widespread tropical crops is oil palm (Elaeis guineensis): global production now exceeds 35 million tonnes per year. In Malaysia, for example, 13% of land area is now oil palm plantation, compared with 1% in 1974. There are enormous pressures to increase palm oil production for food, domestic products, and, especially, biofuels. Greater use of palm oil for biofuel production is predicated on the assumption that palm oil is an “environmentally friendly” fuel feedstock. Here we show, using measurements and models, that oil palm plantations in Malaysia directly emit more oxides of nitrogen and volatile organic compounds than rainforest. These compounds lead to the production of ground-level ozone (O3), an air pollutant that damages human health, plants, and materials, reduces crop productivity, and has effects on the Earth's climate. Our measurements show that, at present, O3 concentrations do not differ significantly over rainforest and adjacent oil palm plantation landscapes. However, our model calculations predict that if concentrations of oxides of nitrogen in Borneo are allowed to reach those currently seen over rural North America and Europe, ground-level O3 concentrations will reach 100 parts per billion (109) volume (ppbv) and exceed levels known to be harmful to human health. Our study provides an early warning of the urgent need to develop policies that manage nitrogen emissions if the detrimental effects of palm oil production on air quality and climate are to be avoided. PMID:19841269
Volatile compounds in samples of cork and also produced by selected fungi.
Barreto, M C; Vilas Boas, L; Carneiro, L C; San Romão, M V
2011-06-22
The production of volatile compounds by microbial communities of cork samples taken during the cork manufacturing process was investigated. The majority of volatiles were found in samples collected at two stages: resting after the first boiling and nontreated cork disks. Volatile profiles produced by microbiota in both stages are similar. The releasable volatile compounds and 2,4,6-trichloroanisole (TCA) produced in cork-based culture medium by five isolated fungal species in pure and mixed cultures were also analyzed by gas chromatography coupled with mass spectrometry (GC-MS).The results showed that 1-octen-3-ol and esters of fatty acids (medium chain length C8-C20) were the main volatile compounds produced by either pure fungal species or their mixture. Apparently, Penicillium glabrum is the main contributor to the overall volatile composition observed in the mixed culture. The production of releasable TCA on cork cannot be attributed to any of the assayed fungal isolates.
Occurrence and Forms of Water and Ice on the Earth and Beyond, and the Origin(s) of Life
NASA Technical Reports Server (NTRS)
Blake, David F.; DeVincenzi, Donald L. (Technical Monitor)
1998-01-01
The natural history of the biogenic elements (H,C,O,N) from their first association within cold molecular clouds to their delivery to the Earth during the late bombardment of the inner solar system, is intimately linked to water ice. The earliest organic compounds are formed in cold interstellar molecular clouds as a result of UV and thermal processing of sub-micrometer ice grains which contain trapped carbon and nitrogen molecules. Structural changes in the water ice host underlie and fundamentally control important macroscopic phenomena such as the outgassing of volatiles, the rates of chemical reactions, and processing and retention of organic compounds. Prebiotic organic material was in all likelihood delivered the early Earth in a pristine state as a consequence of its sequestration within a protective water ice host.
Patel, Kirti; Ruiz, Candy; Calderon, Rosa; Marcelo, Mavel; Rojas, Rosario
2016-11-01
The volatiles were characterised by headspace solid phase micro extraction (HS-SPME), gas chromatography mass spectrometry (GC-FID/MS). A total of 127 compounds were identified with terpenes (including mono terpenes and sesquiterpenes - a total of 45 compounds), esters (31 compounds) and hydrocarbons (20 compounds) were the predominant volatile compounds. Principal component analysis (PCA) of the volatile compounds yielded 2 significant PC's, which together accounted for 90.3% of the total variance in the data set and the scatter plot generated between PC1 and PC2 successfully segregated the 50 chili pepper samples into 7 groups. Clusters of hydrocarbons, esters, terpenes, aldehyde and ketones formed the major determinants of the difference. Copyright © 2016 Elsevier Ltd. All rights reserved.
Torres Estrada, José Luis; Ríos Delgado, Silvany Mayoly; Takken, Willem
2013-09-01
We determined the behavioral response of Aedes aegypti females to volatile compounds collected in indoor primary school classrooms. Volatiles were collected from classrooms from 0800 through 1030 h and 1130 through 1400 h in urban and rural schools in Tapachula, Chiapas, Mexico. Female responses to volatiles were assessed in a Y-tube olfactometer. Chemical compounds were identified using gas chromatography-mass spectrometer analysis. Volatiles from both schools were attractive when compared against their control. When such volatiles were compared, those from the rural school were more attractive than the ones from the urban school. Chromatographic profiles were similar between schools; however, the rural school showed more compounds. Attraction of Ae. aegypti females toward volatiles of primary school classrooms might increase dengue transmission probabilities in those sites.
Wang, Dong; Yu, Zhenwen; Yu, Wenming; Shi, Yu; Zhou, Zhongxin
2006-09-01
The study showed that during the period from sowing to pre-wintering, the soil nitrate in high-yielding wheat field moved down to deeper layers, and accumulated in the layers below 140 cm. An application rate of 96-168 kg N x hm(-2) increased the nitrate content in 0-60 cm soil layer and the wheat grain yield and its protein content, and decreased the proportion of apparent N loss to applied N and the ammonia volatilization loss from basal nitrogen. Applying 240 kg N x hm(-2) promoted the downward movement of soil nitrate and its accumulation in deeper layers, increased the proportion of apparent N loss to applied N and the ammonia volatilization loss from basal nitrogen, had no significant effect on the protein content of wheat grain, but decreased the grain yield. The appropriate application rate of nitrogen on high-yielding wheat field was 132-204 kg N x hm(-2).
Su, Chengguo; Yin, Bin; Zhu, Zhaoliang; Shen, Qirong
2003-11-01
Plot and field experiments showed that the NH3 volatilization loss from rice field reached its maximum in 1-3 days after N-fertilization, which was affected by the local climate conditions (e.g., sun illumination, temperature, humidity, wind speed, and rainfall), fertilization time, and ammonium concentration in surface water of the rice field. The wet deposition of atmospheric nitrogen was correlated with the application rate of N fertilizer and the rainfall. The amount of nitrogen brought into soil or surface water by the wet deposition in rice growing season reached 7.5 kg.hm-2. The percent of NH4(+)-N in the wet deposition was about 39.8%-73.2%, with an average of 55.5%. There was a significant correlation of total ammonia volatilization loss with the average concentration of NH4(+)-N in wet deposition and total amount of wet deposition in rice growing season.
Palma, Adriano; Salvatori, Elisabetta; Basile, Adriana; Maresca, Viviana; Asadi Karam, Elham; Manes, Fausto
2017-01-01
The effects of nitrogen (N) deposition, tropospheric ozone (O3) and their interaction were investigated in two Mediterranean tree species, Fraxinus ornus L. (deciduous) and Quercus ilex L. (evergreen), having different leaf habits and resource use strategies. An experiment was conducted under controlled condition to analyse how nitrogen deposition affects the ecophysiological and biochemical traits, and to explore how the nitrogen-induced changes influence the response to O3. For both factors we selected realistic exposures (20 kg N ha-1 yr-1 and 80 ppb h for nitrogen and O3, respectively), in order to elucidate the mechanisms implemented by the plants. Nitrogen addition resulted in higher nitrogen concentration at the leaf level in F. ornus, whereas a slight increase was detected in Q. ilex. Nitrogen enhanced the maximum rate of assimilation and ribulose 1,5-bisphosphate regeneration in both species, whereas it influenced the light harvesting complex only in the deciduous F. ornus that was also affected by O3 (reduced assimilation rate and accelerated senescence-related processes). Conversely, Q. ilex developed an avoidance mechanism to cope with O3, confirming a substantial O3 tolerance of this species. Nitrogen seemed to ameliorate the harmful effects of O3 in F. ornus: the hypothesized mechanism of action involved the production of nitrogen oxide as the first antioxidant barrier, followed by enzymatic antioxidant response. In Q. ilex, the interaction was not detected on gas exchange and photosystem functionality; however, in this species, nitrogen might stimulate an alternative antioxidant response such as the emission of volatile organic compounds. Antioxidant enzyme activity was lower in plants treated with both O3 and nitrogen even though reactive oxygen species production did not differ between the treatments. PMID:28973038
Fusaro, Lina; Palma, Adriano; Salvatori, Elisabetta; Basile, Adriana; Maresca, Viviana; Asadi Karam, Elham; Manes, Fausto
2017-01-01
The effects of nitrogen (N) deposition, tropospheric ozone (O3) and their interaction were investigated in two Mediterranean tree species, Fraxinus ornus L. (deciduous) and Quercus ilex L. (evergreen), having different leaf habits and resource use strategies. An experiment was conducted under controlled condition to analyse how nitrogen deposition affects the ecophysiological and biochemical traits, and to explore how the nitrogen-induced changes influence the response to O3. For both factors we selected realistic exposures (20 kg N ha-1 yr-1 and 80 ppb h for nitrogen and O3, respectively), in order to elucidate the mechanisms implemented by the plants. Nitrogen addition resulted in higher nitrogen concentration at the leaf level in F. ornus, whereas a slight increase was detected in Q. ilex. Nitrogen enhanced the maximum rate of assimilation and ribulose 1,5-bisphosphate regeneration in both species, whereas it influenced the light harvesting complex only in the deciduous F. ornus that was also affected by O3 (reduced assimilation rate and accelerated senescence-related processes). Conversely, Q. ilex developed an avoidance mechanism to cope with O3, confirming a substantial O3 tolerance of this species. Nitrogen seemed to ameliorate the harmful effects of O3 in F. ornus: the hypothesized mechanism of action involved the production of nitrogen oxide as the first antioxidant barrier, followed by enzymatic antioxidant response. In Q. ilex, the interaction was not detected on gas exchange and photosystem functionality; however, in this species, nitrogen might stimulate an alternative antioxidant response such as the emission of volatile organic compounds. Antioxidant enzyme activity was lower in plants treated with both O3 and nitrogen even though reactive oxygen species production did not differ between the treatments.
The meteoritic record of presolar and early solar system organic chemistry. [Abstract only
NASA Technical Reports Server (NTRS)
Cronin, John R.; Pizzarello, Sandra
1994-01-01
Carbon, hydrogen, and nitrogen isotopic analyses of various classes of organic compounds done in collaboration with Epstein and Krishnamurthy (Caltech) have shown these compounds to be enriched to varying degrees in the heavier isotopes. These results, in particular the large deuterium enrichments, have been interpreted as indicating an interstellar origin for the meteorite compounds or their precursors. Such isotopic fractionations, of hydrogen especially, are characteristic of low temperature ion-molecule reactions in cold interstellar clouds. There is also evidence from the large corresponding suites of alpha-amino and alpha-hydroxy acids found in meteorites suggesting that aqueous phase chemistry on the meteorite parent body played an important role in the formation of these compounds. These data support the hypothesis that interstellar compounds survived in the solar nebula at a radial distance corresponding to the asteroid belt, were incorporated into the parent body in icy, volatile-rich, planetesinals, and underwent further reactions during a period of aqueous activity within the early parent body to give the present suite of meteorite compounds. This formation hypothesis will be discussed and the results of recent isotopic and molecular analyses bearing on it will be presented.
A combined evaluation of the characteristics and acute toxicity of antibiotic wastewater.
Yu, Xin; Zuo, Jiane; Li, Ruixia; Gan, Lili; Li, Zaixing; Zhang, Fei
2014-08-01
The conventional parameters and acute toxicities of antibiotic wastewater collected from each treatment unit of an antibiotic wastewater treatment plant have been investigated. The investigation of the conventional parameters indicated that the antibiotic wastewater treatment plant performed well under the significant fluctuation in influent water quality. The results of acute toxicity indicated that the toxicity of antibiotic wastewater could be reduced by 94.3 percent on average after treatment. However, treated antibiotic effluents were still toxic to Vibrio fischeri. The toxicity of antibiotic production wastewater could be attributed to the joint effects of toxic compound mixtures in wastewater. Moreover, aerobic biological treatment processes, including sequencing batch reactor (SBR) and aerobic biofilm reactor, played the most important role in reducing toxicity by 92.4 percent. Pearson׳s correlation coefficients revealed that toxicity had a strong and positive linear correlation with organic substances, nitrogenous compounds, S(2-), volatile phenol, cyanide, As, Zn, Cd, Ni and Fe. Ammonia nitrogen (NH4(+)) was the greatest contributor to toxicity according to the stepwise regression method. The multiple regression model was a good fit for [TU50-15 min] as a function of [NH₄(+)] with the determination coefficient of 0.981. Copyright © 2014 Elsevier Inc. All rights reserved.
Laznik, Z; Trdan, S
2013-07-01
Entomopathogenic nematodes (EPNs) respond to a variety of stimuli when foraging. In a laboratory investigation, we tested the chemotactic responses of 8 EPN strains (Steinernema and Heterorhabditis) to three mechanically damaged maize root compounds (linalool, α-caryophyllene and β-caryophyllene). We hypothesized that the EPN directional response to the tested volatile compounds would vary among the species and volatile compound and may be related to foraging strategies. The nematodes with an intermediate foraging strategy (Steinernema feltiae) proved to be less active in their movement toward volatile compounds in a comparison with the ambushers (Steinernema carpocapsae) and cruisers (Steinernema kraussei and Heterorhabditis bacteriophora); β-caryophyllene was found to be the most attractive substance in our experiment. The results of our investigation showed that the cruisers were more attracted to β-caryophyllene than the ambushers and intermediates. The foraging strategy did not affect the movement of the IJs toward the other tested volatile compounds or the control. Our results suggest that the response to different volatile cues is more a strain-specific characteristic than a different host-searching strategy. Only S. carpocapsae strain B49 displayed an attraction to linalool, whereas S. kraussei showed a retarded reaction to β-caryophyllene and α-caryophyllene in our experiment. The EPN strains showed only a weak attraction to α-caryophyllene, suggesting that this volatile compound could not have an important role in the orientation of IJs to the damaged roots of maize plants. These results expand our knowledge of volatile compounds as the cues that may be used by EPNs for finding hosts or other aspects of navigation in the soil. Copyright © 2013 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romonosky, Dian E.; Li, Ying; Shiraiwa, Manabu
Formation of secondary organic aerosols (SOA) from biogenic volatile organic compounds 13 (BVOC) occurs via O 3 - and OH-initiated reactions during the day and reactions with NO 3 during the 14 night. We explored the effect of these three oxidation conditions on the molecular composition and 15 aqueous photochemistry of model SOA prepared from two common BVOC. A common monoterpene, α- 16 pinene, and sesquiterpene, α-humulene, were used to form SOA in a smog chamber via BVOC + O3, 17 BVOC + NO3, and BVOC + OH + NOx oxidation. Samples of SOA were collected, extracted in water,more » 18 and photolyzed in an aqueous solution in order to simulate the photochemical cloud processing of SOA. 19 The extent of change in the molecular level composition of SOA over 4 hours of photolysis (roughly 20 equivalent to 64 hours of photolysis under ambient conditions) was assessed with high-resolution 21 electrospray ionization mass spectrometry. The analysis revealed significant differences in the molecular 22 composition between monoterpene and sesquiterpene SOA formed by the different oxidation pathways. 23 The composition further evolved during photolysis with the most notable change corresponding to the 24 nearly-complete removal of nitrogen-containing organic compounds. Hydrolysis of SOA compounds also 25 occurred in parallel with photolysis. The preferential loss of larger SOA compounds during photolysis 26 and hydrolysis made the SOA compounds more volatile on average. This study suggests that cloud- and 27 fog-processing may under certain conditions lead to a reduction in the SOA loading as opposed to an 28 increase in SOA loading commonly assumed in the literature.« less
Odor composition analysis and odor indicator selection during sewage sludge composting
Zhu, Yan-li; Zheng, Guo-di; Gao, Ding; Chen, Tong-bin; Wu, Fang-kun; Niu, Ming-jie; Zou, Ke-hua
2016-01-01
ABSTRACT On the basis of total temperature increase, normal dehydration, and maturity, the odor compositions of surface and internal piles in a well-run sewage sludge compost plant were analyzed using gas chromatography–mass spectrometry with a liquid nitrogen cooling system and a portable odor detector. Approximately 80 types of substances were detected, including 2 volatile inorganic compounds, 4 sulfur organic compounds, 16 benzenes, 27 alkanes, 15 alkenes, and 19 halogenated compounds. Most pollutants were mainly produced in the mesophilic and pre-thermophilic periods. The sulfur volatile organic compounds contributed significantly to odor and should be controlled primarily. Treatment strategies should be based on the properties of sulfur organic compounds. Hydrogen sulfide, methyl mercaptan, dimethyl disulfide, dimethyl sulfide, ammonia, and carbon disulfide were selected as core indicators. Ammonia, hydrogen sulfide, carbon disulfide, dimethyl disulfide, methyl mercaptan, dimethylbenzene, phenylpropane, and isopentane were designated as concentration indicators. Benzene, m-xylene, p-xylene, dimethylbenzene, dichloromethane, toluene, chlorobenzene, trichloromethane, carbon tetrachloride, and ethylbenzene were selected as health indicators. According to the principle of odor pollution indicator selection, dimethyl disulfide was selected as an odor pollution indicator of sewage sludge composting. Monitoring dimethyl disulfide provides a highly scientific method for modeling and evaluating odor pollution from sewage sludge composting facilities. Implications: Composting is one of the most important methods for sewage sludge treatment and improving the low organic matter content of many agricultural soils. However, odors are inevitably produced during the composting process. Understanding the production and emission patterns of odors is important for odor control and treatment. Core indicators, concentration indicators, and health indicators provide an index system to odor evaluation. An odor pollution indicator provides theoretical support for further modelling and evaluating odor pollution from sewage sludge composting facilities. PMID:27192607
Odabasi, Mustafa
2008-03-01
Sodium hypochlorite (NaOCl) and many organic chemicals contained in household cleaning products may react to generate halogenated volatile organic compounds (VOCs). Halogenated VOC emissions from eight different chlorine bleach containing household products (pure and diluted) were investigated by headspace experiments. Chloroform and carbon tetrachloride were the leading compounds along with several halogenated compounds in the headspace of chlorine bleach products. One of the most surprising results was the presence of carbon tetrachloride (a probable human carcinogen and a powerful greenhouse gas that was banned for household use by the U.S. Food and Drug Administration) in very high concentrations (up to 101 mg m(-3)). By mixing surfactants or soap with NaOCl, it was shown that the formation of carbon tetrachloride and several other halogenated VOCs is possible. In addition to quantitatively determined halogenated VOCs (n = 15), several nitrogen-containing (n = 4), chlorinated (n = 10), oxygenated compounds (n = 22), and hydrocarbons (n = 14) were identified in the headspace of bleach products. Among these, 1,1-dichlorobutane and 2-chloro-2-nitropropane were the most abundant chlorinated VOCs, whereas trichloronitromethane and hexachloroethane were the most frequently detected ones. Indoor air halogenated VOC concentrations resulting from the use of four selected household products were also measured before, during, and 30 min after bathroom, kitchen, and floor cleaning applications. Chloroform (2.9-24.6 microg m(-3)) and carbon tetrachloride (0.25-459 microg m(-3)) concentrations significantly increased during the use of bleach containing products. During/ before concentration ratios ranged between 8 and 52 (25 +/- 14, average +/- SD) for chloroform and 1-1170 (146 +/- 367, average +/- SD) for carbon tetrachloride, respectively. These results indicated that the bleach use can be important in terms of inhalation exposure to carbon tetrachloride, chloroform and several other halogenated VOCs.
Odor composition analysis and odor indicator selection during sewage sludge composting.
Zhu, Yan-Li; Zheng, Guo-di; Gao, Ding; Chen, Tong-Bin; Wu, Fang-Kun; Niu, Ming-Jie; Zou, Ke-Hua
2016-09-01
On the basis of total temperature increase, normal dehydration, and maturity, the odor compositions of surface and internal piles in a well-run sewage sludge compost plant were analyzed using gas chromatography-mass spectrometry with a liquid nitrogen cooling system and a portable odor detector. Approximately 80 types of substances were detected, including 2 volatile inorganic compounds, 4 sulfur organic compounds, 16 benzenes, 27 alkanes, 15 alkenes, and 19 halogenated compounds. Most pollutants were mainly produced in the mesophilic and pre-thermophilic periods. The sulfur volatile organic compounds contributed significantly to odor and should be controlled primarily. Treatment strategies should be based on the properties of sulfur organic compounds. Hydrogen sulfide, methyl mercaptan, dimethyl disulfide, dimethyl sulfide, ammonia, and carbon disulfide were selected as core indicators. Ammonia, hydrogen sulfide, carbon disulfide, dimethyl disulfide, methyl mercaptan, dimethylbenzene, phenylpropane, and isopentane were designated as concentration indicators. Benzene, m-xylene, p-xylene, dimethylbenzene, dichloromethane, toluene, chlorobenzene, trichloromethane, carbon tetrachloride, and ethylbenzene were selected as health indicators. According to the principle of odor pollution indicator selection, dimethyl disulfide was selected as an odor pollution indicator of sewage sludge composting. Monitoring dimethyl disulfide provides a highly scientific method for modeling and evaluating odor pollution from sewage sludge composting facilities. Composting is one of the most important methods for sewage sludge treatment and improving the low organic matter content of many agricultural soils. However, odors are inevitably produced during the composting process. Understanding the production and emission patterns of odors is important for odor control and treatment. Core indicators, concentration indicators, and health indicators provide an index system to odor evaluation. An odor pollution indicator provides theoretical support for further modelling and evaluating odor pollution from sewage sludge composting facilities.
The aroma volatile repertoire in strawberry fruit: a review.
Yan, Jia-Wei; Ban, Zhao-Jun; Lu, Hong-Yan; Li, Dong; Poverenov, Elena; Li, Li; Luo, Zi-Sheng
2018-03-30
Aroma significantly contributes to flavor, which directly affects commercial quality of strawberry. Strawberry aroma is complex as many kinds of volatile compounds are found in strawberries. In this review, we describe the current knowledge of constituents and biosynthesis of strawberry volatile compounds, and the effect of postharvest treatments on aroma profiles. The characteristic strawberry volatile compounds consist of furanones, such as 2,5-dimethyl-4-hydroxy-3(2H)-furanone and 4-methoxy-2,5-dimethyl-3(2H)-furanone; esters including ethyl butanoate, ethyl hexanoate, methyl butanoate, and methyl hexanoate; sulfur compounds such as methanethiol, and terpenoids including linalool and nerolidol. As for postharvest treatment, the present review discusses the overview of aroma volatiles in response to temperature, atmosphere, and exogenous hormone as well as other treatments including ozone, edible coating and ultraviolet radiation. In addition, the future prospects for strawberry volatile biosynthesis and metabolism are presented. This article is protected by copyright. All rights reserved.
Aerosol chemical vapor deposition of metal oxide films
Ott, K.C.; Kodas, T.T.
1994-01-11
A process of preparing a film of a multicomponent metal oxide including: forming an aerosol from a solution comprised of a suitable solvent and at least two precursor compounds capable of volatilizing at temperatures lower than the decomposition temperature of said precursor compounds; passing said aerosol in combination with a suitable oxygen-containing carrier gas into a heated zone, said heated zone having a temperature sufficient to evaporate the solvent and volatilize said precursor compounds; and passing said volatilized precursor compounds against the surface of a substrate, said substrate having a sufficient temperature to decompose said volatilized precursor compounds whereby metal atoms contained within said volatilized precursor compounds are deposited as a metal oxide film upon the substrate is disclosed. In addition, a coated article comprising a multicomponent metal oxide film conforming to the surface of a substrate selected from the group consisting of silicon, magnesium oxide, yttrium-stabilized zirconium oxide, sapphire, or lanthanum gallate, said multicomponent metal oxide film characterized as having a substantially uniform thickness upon said substrate.
Friedman, L.C.; Schroder, L.J.; Brooks, M.G.
1986-01-01
Solutions containing volatile organic compounds were prepared in organic-free water and 2% methanol and submitted to two U.S. Geological Survey laboratories. Data from the determination of volatile compounds in these samples were compared to analytical data for the same volatile compounds that had been kept in solutions 100 times more concentrated until immediately before analysis; there was no statistically significant difference in the analytical recoveries. Addition of 2% methanol to the storage containers hindered the recovery of bromomethane and vinyl chloride. Methanol addition did not enhance sample stability. Further, there was no statistically significant difference in results from the two laboratories, and the recovery efficiency was more than 80% in more than half of the determinations made. In a subsequent study, six of eight volatile compounds showed no significant loss of recovery after 34 days.
Watkins, P J; Rose, G; Warner, R D; Dunshea, F R; Pethick, D W
2012-06-01
A comparison has been made on the application of SPME and SDE for the extraction of volatile compounds from heated beef and sheep fats with separation and measurement by gas chromatography-mass spectrometry. As far as we know, this report represents the first time that such a comparison has been made for the measurement of volatile compounds in heated sheep fat. Approximately 100 compounds (in relatively high abundance) were characterised in the volatile profiles of heated beef and sheep fats using both techniques. Differences were observed in the volatile profiles obtained from each technique, independent of compound class. Rather than rate one technique as superior to another, the techniques can be regarded as complementary to each other. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.
Lee, Sang Mi; Kwon, Goo Young; Kim, Kwang-Ok; Kim, Young-Suk
2011-10-10
The non-targeted analysis, combining gas chromatography coupled with time-of-flight mass spectrometry (GC-TOF/MS) and sensory evaluation, was applied to investigate the relationship between volatile compounds and the sensory attributes of glutathione-Maillard reaction products (GSH-MRPs) prepared under different reaction conditions. Volatile compounds in GSH-MRPs correlating to the sensory attributes were determined using partial least-squares (PLS) regression. Volatile compounds such as 2-methylfuran-3-thiol, 3-sulfanylpentan-2-one, furan-2-ylmethanethiol, 2-propylpyrazine, 1-furan-2-ylpropan-2-one, 1H-pyrrole, 2-methylthiophene, and 2-(furan-2-ylmethyldisulfanylmethyl)furan could be identified as possible key contributors to the beef-related attributes of GSH-MRPs. In this study, we demonstrated that the unbiased non-targeted analysis based on metabolomic approach allows the identification of key volatile compounds related to beef flavor in GSH-MRPs. Copyright © 2011 Elsevier B.V. All rights reserved.
Long-term stability measurements of low concentration Volatile Organic Compound gas mixtures
NASA Astrophysics Data System (ADS)
Allen, Nick; Amico di Meane, Elena; Brewer, Paul; Ferracci, Valerio; Corbel, Marivon; Worton, David
2017-04-01
VOCs (Volatile Organic Compounds) are a class of compounds with significant influence on the atmosphere due to their large anthropogenic and biogenic emission sources. VOC emissions have a significant impact on the atmospheric hydroxyl budget and nitrogen reservoir species, while also contributing indirectly to the production of tropospheric ozone and secondary organic aerosol. However, the global budget of many of these species are poorly constrained. Moreover, the World Meteorological Organization's (WMO) Global Atmosphere Watch (GAW) have set challenging data quality objectives for atmospheric monitoring programmes for these classes of traceable VOCs, despite the lack of available stable gas standards. The Key-VOCs Joint Research Project is an ongoing three-year collaboration with the aim of improving the measurement infrastructure of important atmospheric VOCs by providing traceable and comparable reference gas standards and by validating new measurement systems in support of the air monitoring networks. It focuses on VOC compounds that are regulated by European legislation, that are relevant for indoor air monitoring and for air quality and climate monitoring programmes like the VOC programme established by the WMO GAW and the European Monitoring and Evaluation Programme (EMEP). These VOCs include formaldehyde, oxy[genated]-VOCs (acetone, ethanol and methanol) and terpenes (a-pinene, 1,8-cineole, δ-3-carene and R-limonene). Here we present the results of a novel long term stability study for low concentration formaldehyde, oxy-VOC and terpenes gas mixtures produced by the Key-VOCs consortium with discussion regarding the implementation of improved preparation techniques and the use of novel cylinder passivation chemistries to guarantee mixture stability.
Agapiou, A; Zorba, E; Mikedi, K; McGregor, L; Spiliopoulou, C; Statheropoulos, M
2015-07-09
Field experiments were devised to mimic the entrapment conditions under the rubble of collapsed buildings aiming to investigate the evolution of volatile organic compounds (VOCs) during the early dead body decomposition stage. Three pig carcasses were placed inside concrete tunnels of a search and rescue (SAR) operational field terrain for simulating the entrapment environment after a building collapse. The experimental campaign employed both laboratory and on-site analytical methods running in parallel. The current work focuses only on the results of the laboratory method using thermal desorption coupled to comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (TD-GC×GC-TOF MS). The flow-modulated TD-GC×GC-TOF MS provided enhanced separation of the VOC profile and served as a reference method for the evaluation of the on-site analytical methods in the current experimental campaign. Bespoke software was used to deconvolve the VOC profile to extract as much information as possible into peak lists. In total, 288 unique VOCs were identified (i.e., not found in blank samples). The majority were aliphatics (172), aromatics (25) and nitrogen compounds (19), followed by ketones (17), esters (13), alcohols (12), aldehydes (11), sulfur (9), miscellaneous (8) and acid compounds (2). The TD-GC×GC-TOF MS proved to be a sensitive and powerful system for resolving the chemical puzzle of above-ground "scent of death". Copyright © 2015 Elsevier B.V. All rights reserved.
Li, Pengfei; Lu, Jianwei; Hou, Wenfeng; Pan, Yonghui; Wang, Yang; Khan, Muhammad Rizwan; Ren, Tao; Cong, Rihuan; Li, Xiaokun
2017-04-01
Controlled release fertilizer can reduce nitrogen losses to the environment while increasing grain yield and improving apparent nitrogen recovery (ANR) of rice. However, few studies have evaluated the comparative efficacy of different polymer-coated urea products on nitrogen (N) losses, ANR, and N uptake of rice. A 2-year field experiment was conducted to compare the effects of three different types of polymer-coated urea fertilizer on nitrogen losses through NH 3 volatilization and surface runoff to the environment, ANR, grain yield, and N uptake as compared to conventional urea of rice. Six treatments including (1) control with 0 kg N ha -1 (CK), (2) basal application of urea (U b ), (3) split application (U s ) of urea (50% at transplanting, 25% at tillering, and 25% at panicle stages), (4) CRU-1 (polyurethane-coated urea), (5) CRU-2 (degradable polymer-coated urea), and (6) CRU-3 (water-based polymer-coated urea) all applied at 165 kg N ha -1 . It was found that CRU-2 resulted in the highest grain yield and panicle numbers among the N fertilization treatments in 2013 and 2014. Applying CRU could help increase N uptake in rice, reduce N losses through NH 3 volatilization and surface runoff, and hence improve ANR. Its single dose can meet the nutrient demand of the rice plant. Controlled release urea could be adopted as an effective mitigation alternative to retard N losses through NH 3 volatilization and surface runoff while improving ANR of double cropping of late rice.
Effect of freeze-drying and oven-drying on volatiles and phenolics composition of grape skin.
de Torres, C; Díaz-Maroto, M C; Hermosín-Gutiérrez, I; Pérez-Coello, M S
2010-02-15
Grape skins are the part of the fruit with the highest amount of volatile and polyphenolic compounds. Volatile compounds give the fruit and other grape derivatives their flavour. Polyphenolic compounds are responsible for the colour of the fruit, juice and wine, and also act as very important natural antioxidant compounds. Dehydration is a method used to prevent the damage of these compounds over time. Nevertheless, in the case of volatile compounds, removing water can cause compound degradation or the evaporation of such compounds. This work studied two drying methods, freeze-drying and oven-drying, at 60 degrees C, as skin preservation methods. The skins from two grape varieties, Carménère and Cabernet Sauvignon, were dried. Many volatile compounds, which are of interest in the aroma profile, were identified in both varieties as terpenes (linalool, etc.), sesquiterpenes (farnesol), norisoprenoids (vitispirane, etc.), C(6) alcohols (1-hexanol, etc.), etc., and their amount decreased significantly with the oven-drying method, in contrast to the freeze-drying method. Both phenolic compounds, anthocyanins and flavonols, were identified in fresh and dehydrated samples, thus resulting in the freeze-drying method being less aggressive than oven-drying methods. Copyright 2009 Elsevier B.V. All rights reserved.
Zheng, Bin; Liu, Yu; He, Xiaoxia; Hu, Shiwei; Li, Shijie; Chen, Meiling; Jiang, Wei
2017-10-01
A method of improving fish sauce quality during fermentation was investigated. Psychrobacter sp. SP-1, a halophilic protease-producing bacterium, was isolated from fish sauce with flavor-enhancing properties and non-biogenic amine-producing activity. The performance of Psychrobacter sp. SP-1 in Setipinna taty fish sauce fermentation was investigated further. The inoculation of Psychrobacter sp. SP-1 did not significantly affect pH or NaCl concentration changes (P > 0.05), although it significantly increased total moderately halophilic microbial count, protease activity, total soluble nitrogen content and amino acid nitrogen content, and also promoted the umami taste and meaty aroma (P < 0.05). Furthermore, the inoculation of Psychrobacter sp. SP-1 significantly decreased total volatile basic nitrogen content and biogenic amines content (P < 0.05), which were regarded as harmful compounds in foods. The results of the present study demonstrate that Psychrobacter sp. SP-1 can be used as a potential starter culture for improving fish sauce quality by fermentation. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Rafkin, Scot C. R.; Soto, Alejandro; Michaels, Timothy I.
2016-10-01
A newly developed general circulation model (GCM) for Pluto is used to investigate the impact of a heterogeneous distribution of nitrogen surface ice and large scale topography on Pluto's atmospheric circulation. The GCM is based on the GFDL Flexible Modeling System (FSM). Physics include a gray model radiative-conductive scheme, subsurface conduction, and a nitrogen volatile cycle. The radiative-conductive model takes into account the 2.3, 3.3 and 7.8 μm bands of CH4 and CO, including non-local thermodynamic equilibrium effects. including non-local thermodynamic equilibrium effects. The nitrogen volatile cycle is based on a vapor pressure equilibrium assumption between the atmosphere and surface. Prior to the arrival of the New Horizons spacecraft, the expectation was that the volatile ice distribution on the surface of Pluto would be strongly controlled by the latitudinal temperature gradient. If this were the case, then Pluto would have broad latitudinal bands of both ice covered surface and ice free surface, as dictated by the season. Further, the circulation, and the thus the transport of volatiles, was thought to be driven almost exclusively by sublimation and deposition flows associated with the volatile cycle. In contrast to expectations, images from New Horizon showed an extremely complex, heterogeneous distribution of surface ices draped over substantial and variable topography. To produce such an ice distribution, the atmospheric circulation and volatile transport must be more complex than previously envisioned. Simulations where topography, surface ice distributions, and volatile cycle physics are added individually and in various combinations are used to individually quantify the importance of the general circulation, topography, surface ice distributions, and condensation flows. It is shown that even regional patches of ice or large craters can have global impacts on the atmospheric circulation, the volatile cycle, and hence, the distribution of surface ices. The work demonstrates that explaining Pluto's volatile cycle and the expression of that cycle in the surface ice distributions requires consideration of atmospheric processes beyond simple vapor pressure equilibrium arguments.
Edible Oil Barriers for Treatment of Chlorinated Solvent Contaminated Groundwater
2009-07-01
CF Chloroform Cl# Chlorine Number CO Carbon Monoxide CT Carbon Tetrachloride CVOC Chlorinated Volatile Organic Compound 1,2-DCA 1,2...As Safe HCl Hydrochloric Acid HRC® Hydrogen Release Compound IDW Investigation-Derived Waste ISCO In Situ Chemical Oxidation LEL Lower...Total Organic Carbon VC Vinyl Chloride VFA Volatile Fatty Acid VOC Volatile Organic Compound ZVI Zero Valent Iron viii ACKNOWLEDGEMENTS
Kay, Robert T.
2006-01-01
The geologic and hydrologic characteristics of the sand-and-gravel deposits that compose the glacial drift aquifer in the vicinity of the Nelson Landfill site in Yor-kville, Illinois indicate that the aquifer could be devel-oped as a source of public water supply. The geology of these deposits within the Newark Bedrock Valley is com-plex, however, and a detailed investigation of their water bearing and transmitting properties will be required to successfully locate high-capacity wells. Volatile organic compounds, pesticides, and cyanide were not detected in ground water during this investiga-tion. Metals and nitrogen compounds were not detected at concentrations above their Maximum Contaminant Level. Iron, manganese, and aluminum were detected at concentrations above their Secondary Maximum Con-taminant Level and various constituents were detected at concentrations above background levels downgradi-ent of the landfill. Nitrate and ammonia, presumably derived from agricultural practices, also were detected in samples from locations hydraulically upgradient of the landfill. Oxidation-reduction conditions in the aquifer become more reducing with depth. This change is reflected by a change in the type of nitrogen compound detected and the concentration of dissolved oxygen and iron in the glacial drift aquifer. Concentrations of some of the major ions and metals may be affected by disso-lution of carbonate minerals in the aquifer and perhaps road salts.
Relationship between sensory attributes and volatile compounds of polish dry-cured loin
Górska, Ewa; Nowicka, Katarzyna; Jaworska, Danuta; Przybylski, Wiesław; Tambor, Krzysztof
2017-01-01
Objective The aim of this work was to determine the relationship between objective sensory descriptors and volatile flavour compound composition of Polish traditional dry-cured loin. Methods The volatile compounds were investigated by using solid phase microextraction (SPME) and gas chromatography–mass spectrometry (GC–MS). For sensory assessment, the quantitative descriptive analysis (QDA) method was used. Results A total of 50 volatile compounds were found and assigned to 17 chemical families. Most of the detected volatile compounds derived from smoking, lipid oxidative reactions and seasoning (46.8%, 21.7%, and 18.9%, respectively). The dominant compounds were: aromatic hydrocarbon (toluene); alkanes (hexane, heptane, and 2,2,4-trimethylpentane); aldehyde (hexanal); alcohol (2-furanmethanol); ketone (3-hydroxy-2-butanone); phenol (guaiacol); and terpenes (eucalyptol, cymene, γ-terpinen, and limonene). Correlation analysis showed that some compounds derived from smoking were positively correlated with the intensity of cured meat odour and flavour and negatively with the intensity of dried meat odour and flavour, while terpenes were strongly correlated with odour and flavour of added spices. Conclusion The analysed dry-cured loins were characterized by specific and unique sensory profile. Odour and flavour of studied loins was mainly determined by volatile compounds originating from smoking, seasoning and lipid oxidation. Obtained results suggest that smoking process is a crucial stage during Polish traditional dry-cured loins production. PMID:27456422
Zhu, Chao-Zhi; Zhao, Jing-Li; Tian, Wei; Liu, Yan-Xia; Li, Miao-Yun; Zhao, Gai-Ming
2018-01-01
To evaluate the role of Maillard reactions in the generation of flavor compounds in Jinhua ham, the reactions of glucose and ethanal with histidine and lysine, respectively, were studied by simulating the ripening conditions of Jinhua ham. The volatile products produced were analyzed using solid phase microextraction-gas chromatography/mass spectrometry. The results showed that 8 volatile compounds were generated by the reaction of glucose and histidine and 10 volatile compounds were generated by the reaction of glucose and lysine. Reactions of ethanal with lysine and with histidine both generated 31 volatile compounds that contributed to the flavor of Jinhua ham. This indicates that histidine and lysine related to Maillard reactions possibly play important roles in the generation of the unique flavor compounds in Jinhua ham. This research demonstrates that free amino acids participate in the generation of volatile compounds from Jinhua ham via the Maillard reaction and provides a basic mechanism to explain flavor formation in Jinhua ham. Jinhua ham is a well-known traditional Chinese dry-cured meat product. However, the formation of the compounds comprising its special flavor is not well understood. Our results indicate that Maillard reactions occur in Jinhua ham under ripening conditions. This work illustrates the contribution of Maillard reactions to the flavor of Jinhua ham. © 2017 Institute of Food Technologists®.
NASA Astrophysics Data System (ADS)
Juran, Stanislav; Vecerova, Kristyna; Holisova, Petra; Zapletal, Milos; Pallozzi, Emanuele; Guidolotti, Gabriele; Calfapietra, Carlo; Vecera, Zbynek; Cudlin, Pavel; Urban, Otmar
2015-04-01
Dynamics of nitrogen oxides (NOx) and ozone concentration and their depositions were investigated on the Norway spruce forest at Bily Kriz experimental station at the Silesian Beskydy Mountains (north-eastern part of the Czech Republic). Both NOx and ozone concentration and fluxes were modelled for the whole season and covering thus different climate conditions. Data were recorded for three consecutive years and therefore deeper analyses were performed. During the summer 2014 BVOC field campaign was carried out using proton-transfer-reaction-time-of-flight-mass-spectrometry (PTR-TOF, Ionicon Analytik GmbH, Innsbruck, Austria) and volatile organic compound of biogenic origin (BVOC) were measured at the different levels of tree canopies. By the same time BVOC were trapped into the Tenax tubes (Markes International Ltd., UK) and put afterwards for thermal desorption (Markes Unity System 2, Markes International Ltd., UK) to GS-MS analysis (TSQ Quntum XLS triple Quadrupole, Thermo Scientific, USA). Thus data of different levels of canopies together with different spectra of monoterpenes were obtained. Interesting comparison of both methods will be shown. It was the first BVOC field campaign using PTR technique at any of the forest in the Czech Republic. Highest fluxes and concentrations were recorded around the noon hours, represented particularly by monoterpenes, especially α-pinen and limonene. Other BVOCs than monoterpenes were negligible. Variation of fluxes between different canopies levels was observed, highlighting difference in shaded and sun exposed leaves. Sun leaves emitted up to 2.4 nmol m-2 s-1 of monoterpenes, while shaded leaves emitted only up to 0.6 nmol m-2 s-1 when measured under standard conditions (irradiance 1000 µmol m-2 s-1; temperature 30°C). We discuss here the importance of the most common Norway spruce tree forests in the Czech Republic in bi-directional exchanges of important secondary pollutant such as ozone and nitrogen oxides, their production and deposition and interaction with BVOCs at low nitrogen oxides polluted area. Forests of Beskydy Mountains could play a key role in pollutants removal because of closeness to highest ozone and aerosol polluted area of the Czech Republic - Ostrava region, where heavy industry is located.
Rowan, Daryl D.
2011-01-01
Volatile organic compounds (volatiles) comprise a chemically diverse class of low molecular weight organic compounds having an appreciable vapor pressure under ambient conditions. Volatiles produced by plants attract pollinators and seed dispersers, and provide defense against pests and pathogens. For insects, volatiles may act as pheromones directing social behavior or as cues for finding hosts or prey. For humans, volatiles are important as flavorants and as possible disease biomarkers. The marine environment is also a major source of halogenated and sulfur-containing volatiles which participate in the global cycling of these elements. While volatile analysis commonly measures a rather restricted set of analytes, the diverse and extreme physical properties of volatiles provide unique analytical challenges. Volatiles constitute only a small proportion of the total number of metabolites produced by living organisms, however, because of their roles as signaling molecules (semiochemicals) both within and between organisms, accurately measuring and determining the roles of these compounds is crucial to an integrated understanding of living systems. This review summarizes recent developments in volatile research from a metabolomics perspective with a focus on the role of recent technical innovation in developing new areas of volatile research and expanding the range of ecological interactions which may be mediated by volatile organic metabolites. PMID:24957243
Zou, Ju-Ying; Chen, Sheng-Huang; Li, Qin-Wen; Chen, Han-Jun; Liu, Bei-Bei; Du, Fan
2012-04-01
To analyze the chemical constituents of volatile oil from the rhizomes and leaves of Pileostegia viburnoides var. glabrescens by GC-MS. The volatile oil was extracted from the rhizomes and leaves of Pileostegia viburnoides var. glabrescens by steam distillation. The constituents of volatile oil were identified by GC-MS technology. 37 compounds were identified from the oil of rhizomes. 36 compounds were identified from the oil of leaves. The rhizomes and leaves volatile oil had 18 compounds in common. This study is the first one to report the volatile components of Pileostegia viburnoides var. glabrescens. It can provide a scientific basis for rational use of the rhizomes and leaves of Pileostegia viburnoides var. glabrescens.
Procida, Giuseppe; Cichelli, Angelo; Lagazio, Corrado; Conte, Lanfranco S
2016-01-15
The volatile fraction of virgin olive oil is characterised by low molecular weight compounds that vaporise at room temperature. In order to obtain an aroma profile similar to natural olfactory perception, the composition of the volatile compounds was determined by applying dynamic headspace gas chromatography, performed at room temperature, with a cryogenic trap directly connected to a gas chromatograph-mass spectrometer system. Samples were also evaluated according to European Union and International Olive Council official methods for sensory evaluation. In this paper, the composition of the volatile fraction of 25 extra virgin olive oils from different regions of Italy was analysed and some preliminary considerations on relationships between chemical composition of volatile fraction and sensory characteristics are reported. Forty-two compounds were identified by means of the particular analytical technique used. All the analysed samples, classified as extra virgin by the panel test, never present peaks whose magnitude is important enough in defected oils. The study was focused on the evaluation of volatile compounds responsible for the positive impact on olive odour properties ('green-fruity' and 'sweet') and olfactory perception. Chemometric evaluation of data, obtained through headspace analysis and the panel test evaluation, showed a correlation between chemical compounds and sensory properties. On the basis of the results, the positive attributes of virgin olive oil are divided into two separated groups: sweet types or green types. Sixteen volatile compounds with known positive impact on odour properties were extracted and identified. In particular, eight compounds seem correlated with sweet properties whereas the green sensation appears to be correlated with eight other different substances. The content of the compounds at six carbon atoms proves to be very important in defining positive attributes of extra virgin olive oils and sensory evaluation. © 2015 Society of Chemical Industry.
40 CFR 59.505 - How do I demonstrate compliance with the reactivity limits?
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND... Volatile Organic Compounds (VOC) in Consumer Products and Reactive Organic Compounds in Aerosol Coating...
Water-quality data of stormwater runoff from Davenport, Iowa, 1992 and 1994
Schaap, B.D.; Einhellig, R.F.
1996-01-01
During 1992 and 1994, stormwater runoff in Davenport, Iowa, was sampled from the following land use types: agricultural and vacant, residential, commercial, parks and wooded areas, and industrial. Grab samples collected within the first hour of the runoff event were analyzed for many constituents including volatile organic compounds. Flow-weighted composite samples, composed from discrete samples collected at 15-minute intervals during the first three hours of the event or until discharge returned to pre-event levels, also were analyzed for many constituents including major ions, nitrogen, phosphorus, metals, total organic carbon, acid/base-neutral organics, organochlorine pesticides, and polycyclic aromatic hydrocarbons.
The trickle-down theory of cleaner air.
Frazer, L
2000-01-01
The 1990 Clean Air Act Amendments prompted an increased urgency to find new ways to treat airstreams containing volatile organic compounds, which affect the nitrogen photolytic cycle and help produce ground-level ozone, hazardous air pollutants, and odorous air emissions such as hydrogen sulfide. Scientists at the New Jersey company Envirogen have adapted traditional biofiltration technology to perform airborne waste stream cleanup. Preliminary research on pollutants such as phenol, methylene chloride, benzene, and toluene indicates that Envirogen's biotrickling filter may remove an average of about 94% of total hazardous air pollutants. Scientists are working to identify microbes that will clean up more stubborn pollutants. PMID:10753107
Influence of type of muscle on volatile compounds throughout the manufacture of Celta dry-cured ham.
Bermúdez, Roberto; Franco, Daniel; Carballo, Javier; Lorenzo, José M
2015-12-01
The effect of muscle type on volatile compounds throughout the manufacture of Celta dry-cured ham was studied. Thirty Celta ham were taken from the fresh pieces, after the end of the salting stage, after 120 days of post-salting, after the end of drying-ripening stage, and after 165 and 330 days of "bodega" step. The volatile compounds from semimembranosus (SM) and biceps femoris (BF) muscles were extracted by using headspace-solid phase microextraction (SPME) and analysed by gas chromatographic/mass spectrometry (GC/MS). Fifty-five volatile compounds were identified and quantified. The number of volatile compounds increased during the different steps of the process, reaching at 550 days of process 39 and 40 volatile compounds in SM and BF muscles, respectively. Results indicated that the most abundant chemical family in flavour at the end of the manufacturing process were esters in the two muscles studied, followed by aliphatic hydrocarbons and aldehydes. During the manufacturing process, an increase in the total amount of volatile compounds was observed, being this increase more marked in samples from BF muscle (from 550.7 to 1118.9 × 10(6) area units) than in samples from SM muscle (from 459.3 to 760.4 × 10(6) area units). Finally, muscle type displayed significant (P < 0.05) differences for four esters, two alcohols, one aldehyde, one ketone and four aliphatic hydrocarbons. © The Author(s) 2014.
Shao, Qingsong; Huang, Yuqiu; Zhou, Aicun; Guo, Haipeng; Zhang, Ailian; Wang, Yong
2014-05-01
Crocus sativus has been used as a traditional Chinese medicine for a long time. The volatile compounds of C. sativus appear biologically active and may act as antioxidants as well as anticonvulsants, antidepressants and antitumour agents. In order to obtain the highest possible yield of essential oils from C. sativus, response surface methodology was employed to optimise the conditions of supercritical fluid carbon dioxide extraction of the volatile compounds from C. sativus. Four factorswere investigated: temperature, pressure, extraction time and carbon dioxide flow rate. Furthermore, the chemical compositions of the volatile compounds extracted by supercritical fluid extraction were compared with those obtained by hydro-distillation and Soxhlet extraction. The optimum extraction conditions were found to be: optimised temperature 44.9°C, pressure 34.9 MPa, extraction time 150.2 min and CO₂ flow rate 10.1 L h⁻¹. Under these conditions, the mean extraction yield was 10.94 g kg⁻¹. The volatile compounds extracted by supercritical fluid extraction and Soxhlet extraction contained a large amount of unsaturated fatty acids. Response surface methodology was successfully applied for supercritical fluid CO₂ extraction optimisation of the volatile compounds from C. sativus. The study showed that pressure and CO₂ flow rate had significant effect on volatile compounds yield produced by supercritical fluid extraction. This study is beneficial for the further research operating on a large scale. © 2013 Society of Chemical Industry.
Aqueous Processing of Atmospheric Organic Particles in Cloud Water Collected via Aircraft Sampling.
Boone, Eric J; Laskin, Alexander; Laskin, Julia; Wirth, Christopher; Shepson, Paul B; Stirm, Brian H; Pratt, Kerri A
2015-07-21
Cloudwater and below-cloud atmospheric particle samples were collected onboard a research aircraft during the Southern Oxidant and Aerosol Study (SOAS) over a forested region of Alabama in June 2013. The organic molecular composition of the samples was studied to gain insights into the aqueous-phase processing of organic compounds within cloud droplets. High resolution mass spectrometry (HRMS) with nanospray desorption electrospray ionization (nano-DESI) and direct infusion electrospray ionization (ESI) were utilized to compare the organic composition of the particle and cloudwater samples, respectively. Isoprene and monoterpene-derived organosulfates and oligomers were identified in both the particles and cloudwater, showing the significant influence of biogenic volatile organic compound oxidation above the forested region. While the average O:C ratios of the organic compounds were similar between the atmospheric particle and cloudwater samples, the chemical composition of these samples was quite different. Specifically, hydrolysis of organosulfates and formation of nitrogen-containing compounds were observed for the cloudwater when compared to the atmospheric particle samples, demonstrating that cloud processing changes the composition of organic aerosol.
Aqueous Processing of Atmospheric Organic Particles in Cloud Water Collected via Aircraft Sampling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boone, Eric J.; Laskin, Alexander; Laskin, Julia
2015-07-21
Cloud water and below-cloud atmospheric particle samples were collected onboard a research aircraft during the Southern Oxidant and Aerosol Study (SOAS) over a forested region of Alabama in June 2013. The organic molecular composition of the samples was studied to gain insights into the aqueous-phase processing of organic compounds within cloud droplets. High resolution mass spectrometry with nanospray desorption electrospray ionization and direct infusion electrospray ionization were utilized to compare the organic composition of the particle and cloud water samples, respectively. Isoprene and monoterpene-derived organosulfates and oligomers were identified in both the particles and cloud water, showing the significant influencemore » of biogenic volatile organic compound oxidation above the forested region. While the average O:C ratios of the organic compounds were similar between the atmospheric particle and cloud water samples, the chemical composition of these samples was quite different. Specifically, hydrolysis of organosulfates and formation of nitrogen-containing compounds were observed for the cloud water when compared to the atmospheric particle samples, demonstrating that cloud processing changes the composition of organic aerosol.« less
Aprea, Eugenio; Romano, Andrea; Betta, Emanuela; Biasioli, Franco; Cappellin, Luca; Fanti, Marco; Gasperi, Flavia
2015-01-01
Drying process is commonly used to allow long time storage of valuable porcini mushrooms (Boletus edulis). Although considered a stable product dried porcini flavour changes during storage. Monitoring of volatile compounds during shelf life may help to understand the nature of the observed changes. In the present work two mass spectrometric techniques were used to monitor the evolution of volatile compounds during commercial shelf life of dried porcini. Solid phase microextraction (SPME) coupled to gas chromatography - mass spectrometry (GC-MS) allowed the identification of 66 volatile compounds, 36 of which reported for the first time, monitored during the commercial shelf life of dried porcini. Proton transfer reaction - time of flight - mass spectrometry (PTR-ToF-MS) , a direct injection mass spectrometric technique, was shown to be a fast and sensitive instrument for the general monitoring of volatile compound evolution during storage of dried porcini. Furthermore, PTR-ToF-MS grants access to compounds whose determination would otherwise require lengthy pre-concentration and/or derivatization steps such as ammonia and small volatile amines. The two techniques, both used for the first time to study dried porcini, provided detailed description of time evolution of volatile compounds during shelf life. Alcohols, aldehydes, ketones and monoterpenes diminish during the storage while carboxylic acids, pyrazines, lactones and amines increase. The storage temperature modifies the rate of the observed changes influencing the final quality of the dried porcini. We showed the advantages of both techniques, suggesting a strategy to be adopted to follow time evolution of volatile compounds in food products during shelf life, based on the identification of compounds by GC-MS and the rapid time monitoring by PTR-ToF-MS measurements in order to maximize the advantages of both techniques. Copyright © 2015 John Wiley & Sons, Ltd.
Hunsinger, Glendon B; Tipple, Christopher A; Stern, Libby A
2013-07-30
High-temperature, conversion-reduction (HTC) systems convert hydrogen and oxygen in materials into H2 and CO for δ(2)H and δ(18)O measurements by isotope ratio mass spectrometry. HTC of nitrogen- and sulfur-bearing materials produces unintended byproduct gases that could affect isotope analyses by: (1) allowing isotope exchange reactions downstream of the HTC reactor, (2) creating isobaric or co-elution interferences, and (3) causing deterioration of the chromatography. This study characterizes these HTC byproducts. A HTC system (ThermoFinnigan TC/EA) was directly connected to a gas chromatograph/quadrupole mass spectrometer in scan mode (m/z 8 to 88) to identify the volatile products generated by HTC at conversion temperatures of 1350 °C and 1450 °C for a range of nitrogen- and sulfur-bearing solids [keratin powder, horse hair, caffeine, ammonium nitrate, potassium nitrate, ammonium sulfate, urea, and three nitrated organic explosives (PETN, RDX, and TNT)]. The prominent HTC byproduct gases include carbon dioxide, hydrogen cyanide, methane, acetylene, and water for all nitrogen-bearing compounds, as well as carbon disulfide, carbonyl sulfide, and hydrogen sulfide for sulfur-bearing compounds. The 1450 °C reactor temperature reduced the abundance of most byproduct gases, but increased the significant byproduct, hydrogen cyanide. Inclusion of a post-reactor chemical trap containing Ascarite II and Sicapent, in series, eliminated the majority of byproducts. This study identified numerous gaseous HTC byproducts. The potential adverse effects of these gases on isotope ratio analyses are unknown but may be mitigated by higher HTC reactor temperatures and purifying the products with a purge-and-trap system or with chemical traps. Published in 2013. This article is a U.S. Government work and is in the public domain in the USA.
Colville, Louise
2012-01-01
The volatile compounds released by orthodox (desiccation-tolerant) seeds during ageing can be analysed using gas chromatography–mass spectrometry (GC-MS). Comparison of three legume species (Pisum sativum, Lathyrus pratensis, and Cytisus scoparius) during artificial ageing at 60% relative humidity and 50 °C revealed variation in the seed volatile fingerprint between species, although in all species the overall volatile concentration increased with storage period, and changes could be detected prior to the onset of viability loss. The volatile compounds are proposed to derive from three main sources: alcoholic fermentation, lipid peroxidation, and Maillard reactions. Lipid peroxidation was confirmed in P. sativum seeds through analysis of malondialdehyde and 4-hydroxynonenal. Volatile production by ageing orthodox seeds was compared with that of recalcitrant (desiccation-sensitive) seeds of Quercus robur during desiccation. Many of the volatiles were common to both ageing orthodox seeds and desiccating recalcitrant seeds, with alcoholic fermentation forming the major source of volatiles. Finally, comparison was made between two methods of analysis; the first used a Tenax adsorbent to trap volatiles, whilst the second used solid phase microextraction to extract volatiles from the headspace of vials containing powdered seeds. Solid phase microextraction was found to be more sensitive, detecting a far greater number of compounds. Seed volatile analysis provides a non-invasive means of characterizing the processes involved in seed deterioration, and potentially identifying volatile marker compounds for the diagnosis of seed viability loss. PMID:23175670
Volatile Compound-Mediated Interactions between Barley and Pathogenic Fungi in the Soil
Fiers, Marie; Lognay, Georges; Fauconnier, Marie-Laure; Jijakli, M. Haïssam
2013-01-01
Plants are able to interact with their environment by emitting volatile organic compounds. We investigated the volatile interactions that take place below ground between barley roots and two pathogenic fungi, Cochliobolus sativus and Fusarium culmorum. The volatile molecules emitted by each fungus, by non-infected barley roots and by barley roots infected with one of the fungi or the two of them were extracted by head-space solid phase micro extraction and analyzed by gas chromatography mass spectrometry. The effect of fungal volatiles on barley growth and the effect of barley root volatiles on fungal growth were assessed by cultivating both organisms in a shared atmosphere without any physical contact. The results show that volatile organic compounds, especially terpenes, are newly emitted during the interaction between fungi and barley roots. The volatile molecules released by non-infected barley roots did not significantly affect fungal growth, whereas the volatile molecules released by pathogenic fungi decreased the length of barley roots by 19 to 21.5% and the surface of aerial parts by 15%. The spectrum of the volatiles released by infected barley roots had no significant effect on F. culmorum growth, but decreased C. sativus growth by 13 to 17%. This paper identifies the volatile organic compounds emitted by two pathogenic fungi and shows that pathogenic fungi can modify volatile emission by infected plants. Our results open promising perspectives concerning the biological control of edaphic diseases. PMID:23818966
Liu, Jingke; Zhao, Wei; Li, Shaohui; Zhang, Aixia; Zhang, Yuzong; Liu, Songyan
2018-02-20
The volatile compounds in proso millet wine were extracted by headspace solid-phase microextraction (85 μm polyacrylate (PA), 100 μm polydimethylsiloxane (PDMS), 75 μm Carboxen (CAR)/PDMS, and 50/30 μm divinylbenzene (DVB)/CAR/PDMS fibers), and analyzed using gas chromatography-mass spectrometry; the odor characteristics and intensities were analyzed by the odor activity value (OAV). Different sample preparation factors were used to optimize this method: sample amount, extraction time, extraction temperature, and content of NaCl. A total of 64 volatile compounds were identified from the wine sample, including 14 esters, seven alcohols, five aldehydes, five ketones, 12 benzene derivatives, 12 hydrocarbons, two terpenes, three phenols, two acids, and two heterocycles. Ethyl benzeneacetate, phenylethyl alcohol, and benzaldehyde were the main volatile compounds found in the samples. According to their OAVs, 14 volatile compounds were determined to be odor-active compounds (OAV > 1), and benzaldehyde, benzeneacetaldehyde, 1-methyl-naphthalene, 2-methyl-naphthalene, and biphenyl were the prominent odor-active compounds (OAV > 50), having a high OAV. Principal component analysis (PCA) showed the difference of distribution of the 64 volatile compounds and 14 odor-active compounds with four solid-phase microextraction (SPME) fibers.
... organic acids — they also produce stuff called volatile sulfur compounds. Sulfur compounds usually are powerful and awful smelling. If ... smelled a rotten egg, you know what volatile sulfur compounds smell like. What Can You Do? There’s ...
Analyzing volatile compounds in dairy products
USDA-ARS?s Scientific Manuscript database
Volatile compounds give the first indication of the flavor in a dairy product. Volatiles are isolated from the sample matrix and then analyzed by chromatography, sensory methods, or an electronic nose. Isolation may be performed by solvent extraction or headspace analysis, and gas chromatography i...
BIOCONCENTRATION FACTORS FOR VOLATILE ORGANIC COMPOUNDS IN VEGETATION
Samples of air and leaves were taken at the University of Nevada-Las Vegas campus and analyzed for volatile organic compounds using vacuum distillation coupled with gas chromatography/mass spectrometry. The data were used to estimate the bioconcentration of volatile organic compo...
Fraser, Ann M; Mechaber, Wendy L; Hildebrand, John G
2003-08-01
Coupled gas chromatography with electroantennographic detection (GC-EAD) using antennae of adult female Manduca sexta was employed to screen for olfactory stimulants present in headspace collections from four species of larval host plants belonging to two families: Solanaceae--Lycopersicon esculentum (tomato), Capiscum annuum (bell pepper), and Datura wrightii; and Martyniaceae--Pronboscideaparviflora. Headspace volatiles were collected from undamaged foliage of potted, living plants. GC-EAD revealed 23 EAD-active compounds, of which 15 were identified by GC-mass spectrometry. Identified compounds included aliphatic, aromatic, and terpenoid compounds bearing a range of functional groups. Nine EAD-active compounds were common to all four host plant species: (Z)-3-hexenyl acetate, nonanal, decanal, phenylacetaldehyde, methyl salicylate, benzyl alcohol, geranyl acetone, (E)-nerolidol, and one unidentified compound. Behavioral responses of female moths to an eight-component synthetic blend of selected tomato headspace volatiles were tested in a laboratory wind tunnel. Females were attracted to the blend. A comparison of responses from antennae of males and females to bell pepper headspace volatiles revealed that males responded to the same suite of volatiles as females, except for (Z)-3-hexenyl benzoate. EAD responses of males also were lower for (Z)-and (E)-nerolidol and one unidentified compound. Electroantennogram EAG dose-response curves for the 15 identified EAD-active volatiles were recorded. At the higher test doses (10-100 microg), female antennae yielded larger EAG responses to terpenoids and to aliphatic and aromatic esters. Male antennae did respond to the higher doses of (Z)-3-hexenyl benzoate, indicating that they can detect this compound. On the basis of ubiquity of the EAD-active volatiles identified to date in host plant headspace collections, we suggest that M. sexta uses a suite of volatiles to locate and identify appropriate host plants.
Evaluation of the spoilage potential of bacteria isolated from chilled chicken in vitro and in situ.
Wang, Guang-Yu; Wang, Hu-Hu; Han, Yi-Wei; Xing, Tong; Ye, Ke-Ping; Xu, Xing-Lian; Zhou, Guang-Hong
2017-05-01
Microorganisms play an important role in the spoilage of chilled chicken. In this study, a total of 53 isolates, belonging to 7 species of 3 genera, were isolated using a selective medium based on the capacity to spoil chicken juice. Four isolates, namely Aeromonas salmonicida 35, Pseudomonas fluorescens H5, Pseudomonas fragi H8 and Serratia liquefaciens 17, were further characterized to assess their proteolytic activities in vitro using meat protein extracts and to evaluate their spoilage potential in situ. The in vitro studies showed that A. salmonicida 35 displayed the strongest proteolytic activity against both sarcoplasmic and myofibrillar proteins. However, the major spoilage isolate in situ was P. fragi H8, which exhibited a fast growth rate, slime formation and increased pH and total volatile basic nitrogen (TVBN) on chicken breast fillets. The relative amounts of volatile organic compounds (VOCs) originating from the microorganisms, including alcohols, aldehydes, ketones and several sulfur compounds, increased during storage. In sum, this study demonstrated the characteristics of 4 potential spoilage bacteria on chilled yellow-feather chicken and provides a simple and convenient method to assess spoilage bacteria during quality management. Copyright © 2016 Elsevier Ltd. All rights reserved.
HOx Radical Chemistry in an Indiana Forest Environment: Measurement and Model Comparison
NASA Astrophysics Data System (ADS)
Lew, M.; Bottorff, B.; Sigler, P. S. R.; Stevens, P. S.; Sklaveniti, S.; Leonardis, T.; Locoge, N.; Dusanter, S.; Kundu, S.; Deming, B.; Wood, E. C. D.; Gentner, D. R.
2015-12-01
Reactions of the hydroxyl (OH) and peroxy radicals (HO2 and RO2) play a central role in the chemistry of the atmosphere. In addition to controlling the lifetimes of many trace gases important to issues of global climate change, OH radical reactions initiate the oxidation of volatile organic compounds (VOCs) which can lead to the production of ozone and secondary organic aerosols in the atmosphere. Previous measurements of these radicals in forest environments characterized by high mixing ratios of isoprene and low mixing ratios of NOx have shown serious discrepancies with modeled concentrations. These results bring into question our understanding of the atmospheric chemistry of isoprene and other biogenic VOCs under low NOx conditions. In the summer of 2015, HOx radicals were measured using Laser-Induced Fluorescence Fluorescence Assay by Gas Expansion (LIF-FAGE) technique as part of the Indiana Radical, Reactivity and Ozone Production Intercomparison (IRRONIC). This campaign took place in a forested area at the Indiana Research and Teaching Preserve (IURTP) near the Bloomington campus characterized by high mixing ratios of isoprene and low mixing ratios of NOx. Supporting measurements of photolysis rates, volatile organic compounds, nitrogen oxides, and other species were used to constrain a zero-dimensional box model based on the Regional Atmospheric Chemistry Mechanism (RACM2) and the Master Chemical Mechanism (MCM).
Preis, S; Klauson, D; Gregor, A
2013-01-15
Increased volatile organic compounds emissions and commensurate tightening of applicable legislation mean that the development and application of effective, cost-efficient abatement methods are areas of growing concern. This paper reviews the last two decades' publications on organic vapour emissions from food processing, their sources, impacts and treatment methods. An overview of the latest developments in conventional air treatment methods is presented, followed by the main focus of the paper, non-thermal plasma technology. The results of the review suggest that non-thermal plasma technology, in its pulsed corona discharge configuration, is an emerging treatment method with potential for low-cost, effective abatement of a wide spectrum of organic air pollutants. It is found that the combination of plasma treatment with catalysis is a development trend that demonstrates considerable potential. The as yet relatively small number of plasma treatment applications is considered to be due to the novelty of pulsed electric discharge techniques and a lack of reliable pulse generators and reactors. Other issues acting as barriers to widespread adoption of the technique include the possible formation of stable oxidation by-products, residual ozone and nitrogen oxides, and sensitivity towards air humidity. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Coggon, M. M.; Warneke, C.; Koss, A.; Sekimoto, K.; Yuan, B.; Lim, C. Y.; Hagan, D. H.; Kroll, J. H.; Cappa, C. D.; Gilman, J.; Lerner, B. M.; Jimenez, J. L.; Yokelson, R. J.; Roberts, J. M.; De Gouw, J. A.
2017-12-01
Non-methane organic gases (NMOG) emitted by biomass burning constitute a large source of reactive carbon in the atmosphere. Once emitted, these compounds may undergo series of reactions with the OH radical and nitrogen oxides to form secondary organic aerosol (SOA), ozone, or other health-impacting products. The complex emission profile and strong variability of biomass burning NMOG play an important, yet understudied, role in the variability of air quality outcomes such as SOA and ozone. In this study, we summarize measurements of biomass burning volatile organic compounds (VOCs) conducted using a H3O+ chemical ionization mass spectrometer (H3O+-CIMS) during the 2016 FIREX laboratory campaign in Missoula, MT. Specifically, we will present data demonstrating the chemical evolution of biomass burning VOCs artificially aged in a field-deployable photooxidation chamber and an oxidation flow reactor. More than 50 OH-oxidation experiments were conducted with biomass types representing a range of North American fuels. Across many fuel types, VOCs with high SOA and ozone formation potential, such as aromatics and furans, were observed to quickly react with the OH radical while oxidized species were generated. We compare the calculated OH reactivity of the primary emissions to the calculated OH reactivity used in many photochemical models and highlight areas requiring additional research in order to improve model/measurement comparisons.
Deodorization of Garlic Breath by Foods, and the Role of Polyphenol Oxidase and Phenolic Compounds.
Mirondo, Rita; Barringer, Sheryl
2016-10-01
Garlic causes a strong garlic breath that may persist for almost a day. Therefore, it is important to study deodorization techniques for garlic breath. The volatiles responsible for garlic breath include diallyl disulfide, allyl mercaptan, allyl methyl disulfide, and allyl methyl sulfide. After eating garlic, water (control), raw, juiced or heated apple, raw or heated lettuce, raw or juiced mint leaves, or green tea were consumed immediately. The levels of the garlic volatiles on the breath were analyzed from 1 to 60 min by selected ion flow tube mass spectrometry (SIFT-MS). Garlic was also blended with water (control), polyphenol oxidase (PPO), rosemarinic acid, quercetin or catechin, and the volatiles in the headspace analyzed from 3 to 40 min by SIFT-MS. Raw apple, raw lettuce, and mint leaves significantly decreased all of the garlic breath volatiles in vivo. The proposed mechanism is enzymatic deodorization where volatiles react with phenolic compounds. Apple juice and mint juice also had a deodorizing effect on most of the garlic volatiles but were generally not as effective as the raw food, probably because the juice had enzymatic activity but the phenolic compounds had already polymerized. Both heated apple and heated lettuce produced a significant reduction of diallyl disulfide and allyl mercaptan. The presence of phenolic compounds that react with the volatile compounds even in the absence of enzymes is the most likely mechanism. Green tea had no deodorizing effect on the garlic volatile compounds. Rosmarinic acid, catechin, quercetin, and PPO significantly decreased all garlic breath volatiles in vitro. Rosmarinic acid was the most effective at deodorization. © 2016 Institute of Food Technologists®.
Catalyst for Oxidation of Volatile Organic Compounds
NASA Technical Reports Server (NTRS)
Wood, George M. (Inventor); Upchurch, Billy T. (Inventor); Schryer, David R. (Inventor); Davis, Patricia P. (Inventor); Kielin, Erik J. (Inventor); Brown, Kenneth G. (Inventor); Schyryer, Jacqueline L. (Inventor); DAmbrosia, Christine M. (Inventor)
2000-01-01
Disclosed is a process for oxidizing volatile organic compounds to carbon dioxide and water with the minimal addition of energy. A mixture of the volatile organic compound and an oxidizing agent (e.g. ambient air containing the volatile organic compound) is exposed to a catalyst which includes a noble metal dispersed on a metal oxide which possesses more than one oxidation state. Especially good results are obtained when the noble metal is platinum, and the metal oxide which possesses more than one oxidation state is tin oxide. A promoter (i.e., a small amount of an oxide of a transition series metal) may be used in association with the tin oxide to provide very beneficial results.
Compressed breathing air - the potential for evil from within.
Millar, Ian L; Mouldey, Peter G
2008-06-01
Human underwater activities rely on an adequate supply of breathable compressed gas, usually air, free from contaminants that could cause incapacitation underwater or post-dive or longer-term health effects. Potentially fatal but well-known hazards are hypoxia secondary to steel cylinder corrosion and carbon monoxide (CO) poisoning due to contaminated intake air. Another phenomenon may be behind some previously unexplained episodes of underwater incapacitation and perhaps death: low-level CO poisoning and/or the effects of gaseous contaminants generated within the compressor, including toluene and other volatile compounds. Many low molecular weight volatile contaminants are anaesthetic and will be potentiated by pressure and nitrogen narcosis. In sub-anaesthetic doses, impaired judgement, lowered seizure threshold and sensitisation of the heart to arrhythmias may occur. Toxic compounds can be volatilised from some compressor oils, especially mineral oils, in overheated compressors, or be created de novo under certain combinations of temperature, humidity and pressure, perhaps catalysed by metal traces from compressor wear and tear. Most volatiles can be removed by activated carbon filtration but many filters are undersized and may overload in hot, moist conditions and with short dwell times. A compressor that passes normal testing could contaminate one or more cylinders after heating up and then return to producing clean air as the filters dry and the systems cool. The scope of this problem is very unclear as air quality is tested infrequently and often inadequately, even after fatalities. More research is needed as well as better education regarding the safe operation and limitations of high-pressure breathing air compressors.
Comprehensive characterization of atmospheric organic matter in Fresno, California fog water
Herckes, P.; Leenheer, J.A.; Collett, J.L.
2007-01-01
Fogwater collected during winter in Fresno (CA) was characterized by isolating several distinct fractions and characterizing them by infrared and nuclear magnetic resonance (NMR) spectroscopy. More than 80% of the organic matter in the fogwater was recovered and characterized. The most abundant isolated fractions were those comprised of volatile acids (24% of isolated carbon) and hydrophilic acids plus neutrals (28%). Volatile acids, including formic and acetic acid, have been previously identified as among the most abundant individual species in fogwater. Recovered hydrophobic acids exhibited some properties similar to aquatic fulvic acids. An insoluble particulate organic matter fraction contained a substantial amount of biological material, while hydrophilic and transphilic fractions also contained material suggestive of biotic origin. Together, these fractions illustrate the important contribution biological sources make to organic matter in atmospheric fog droplets. The fogwater also was notable for containing a large amount of organic nitrogen present in a variety of species, including amines, nitrate esters, peptides, and nitroso compounds. ?? 2007 American Chemical Society.
Comprehensive characterization of atmospheric organic matter in Fresno, California fog water.
Herckes, Pierre; Leenheer, Jerry A; Collett, Jeffrey L
2007-01-15
Fogwater collected during winter in Fresno (CA) was characterized by isolating several distinct fractions and characterizing them by infrared and nuclear magnetic resonance (NMR) spectroscopy. More than 80% of the organic matter in the fogwater was recovered and characterized. The most abundant isolated fractions were those comprised of volatile acids (24% of isolated carbon) and hydrophilic acids plus neutrals (28%). Volatile acids, including formic and acetic acid, have been previously identified as among the most abundant individual species in fogwater. Recovered hydrophobic acids exhibited some properties similar to aquatic fulvic acids. An insoluble particulate organic matter fraction contained a substantial amount of biological material, while hydrophilic and transphilic fractions also contained material suggestive of biotic origin. Together, these fractions illustrate the important contribution biological sources make to organic matter in atmospheric fog droplets. The fogwater also was notable for containing a large amount of organic nitrogen present in a variety of species, including amines, nitrate esters, peptides, and nitroso compounds.
Hallier, Arnaud; Prost, Carole; Serot, Thierry
2005-09-07
Volatile compounds of cooked fillets of Silurus glanis reared under two conditions occurring in France were studied. They were extracted by dynamic headspace, identified by gas chromatography/mass spectrometry, and quantified by gas chromatography-flame ionization detection. Odor active volatile compounds were characterized by gas chromatography-olfactometry. Sixty volatile compounds were detected in dynamic headspace extracts, among which 33 were odor active. Rearing conditions affected their estimated concentrations and their odor intensities, but very few qualitative differences were exhibited (only seven volatile compounds were concerned). A good correlation between quantitative and olfactometric results is shown. 2-Methylisoborneol and (E)-2-hexenal were less represented in OUTDOOR extracts, while 2-butanone was less represented in INDOOR extracts. In addition, olfactometric results can be closely related to those previously obtained by sensory analysis. Boiled potato sensory odor of the silurus cooked fillets can be related to (Z)-4-heptenal and methional, and buttery odor can be related to 2,3-butanedione, an unknown compound (RI = 1010), and 2,3-pentadione.
Loughrin, John H; Kasperbauer, Michael J
2003-04-09
Sweet basil (Ocimum basilicum L.) is an herb that is used to add a distinct aroma and flavor to food. Volatile compounds emitted from fully expanded fresh leaves grown in drip-irrigated plots that were covered with six colors of mulch were compared. The colors reflected a range of photosynthetic photon flux, far-red, red, and blue light from the soil surface to developing leaves. Our objective was to determine whether reflection from the different colors could influence concentrations of volatile compounds emitted from the fresh leaves. Volatile compounds were isolated by headspace sampling and quantified by gas chromatography. Twenty-six compounds were identified, of which the terpenoids linalool and 1,8-cineole comprised more than 50% of the total yield. Concentrations of volatile compounds from leaves that developed over green, blue, yellow, white, and red mulches followed the same patterns as they did for air-dried leaves of the same cultivar. However, the concentration of volatile compounds from fresh leaves was about 50-fold higher than those found in the previous study of air-dried leaves.
GLOBAL INVENTORY OF VOLATILE COMPOUND EMISSIONS FROM ANTHROPOGENIC SOURCES
The report describes a global inventory anthropogenic volatile organic compound (VOC) emissions that includes a separate inventory for each of seven pollutant groups--paraffins, olefins, aromatics, formaldehyde, other aldehydes, other aromatics, and marginally reactive compounds....
Removal of volatile organic compounds using amphiphilic cyclodextrin-coated polypropylene.
Lumholdt, Ludmilla; Fourmentin, Sophie; Nielsen, Thorbjørn T; Larsen, Kim L
2014-01-01
Polypropylene nonwovens were functionalised using a self-assembled, amphiphilic cyclodextrin coating and the potential for water purification by removal of pollutants was studied. As benzene is one of the problematic compounds in the Water Framework Directive, six volatile organic compounds (benzene and five benzene-based substances) were chosen as model compounds. The compounds were tested as a mixture in order to provide a more realistic situation since the wastewater will be a complex mixture containing multiple pollutants. The volatile organic compounds are known to form stable inclusion complexes with cyclodextrins. Six different amphiphilic cyclodextrin derivatives were synthesised in order to elucidate whether or not the uptake abilities of the coating depend on the structure of the derivative. Headspace gas chromatography was used for quantification of the uptake exploiting the volatile nature of benzene and its derivatives. The capacity was shown to increase beyond the expected stoichiometries of guest-host complexes with ratios of up to 16:1.
40 CFR 52.2420 - Identification of plan.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Enforceable, Implementation Plan, Potential to Emit, State Enforceable, Volatile Organic Compound 4/1/96 3/12..., Regulation of the Board, These regulations. Terms Revised—Good Engineering Practice, Person, Volatile organic... pressure, Vapor pressure, Volatile organic compounds. Terms Removed: Air Quality Maintenance Area. 5-10-20...
Rapid volatile metabolomics and genomics in large strawberry populations segregating for aroma
USDA-ARS?s Scientific Manuscript database
Volatile organic compounds (VOCs) in strawberry (Fragaria spp.) represent a large portion of the fruit secondary metabolome, and contribute significantly to aroma, flavor, disease resistance, pest resistance and overall fruit quality. Understanding the basis for volatile compound biosynthesis and it...
MODEL DEVELOPMENT AND TESTING FOR SEMI-VOLATILES (ATRAZINE)
The Community Multi-Scale Air Quality (CMAQ) model, air quality model within EPA's Models-3 system, can be adapted to simulate the fate of semi-volatile compounds that are emitted into the atmosphere. "Semi-volatile" refers to compounds that partition their mass between two ph...
Vilanova, Mar; Genisheva, Zlatina; Tubio, Miguel; Álvarez, Katia; Lissarrague, Jose Ramón; Oliveira, José Maria
2017-09-08
Viticultural practices influence both grape and wine quality. The influence of training systems on volatile composition was investigated for Albariño wine from Rías Baixas AOC in Northwest Spain. The odoriferous contribution of the compounds to the wine aroma was also studied. Volatile compounds belonging to ten groups (alcohols, C₆-compounds, ethyl esters, acetates, terpenols, C 13 -norisoprenoids, volatile phenols, volatile fatty acids, lactones and carbonyl compounds) were determined in Albariño wines from different training systems, Vertical Shoot-Positioned (VSP), Scott-Henry (SH), Geneva Double-Curtain (GDC), Arch-Cane (AC), and Parral (P) during 2010 and 2011 vintages. Wines from GDC showed the highest total volatile composition with the highest concentrations of alcohols, ethyl esters, fatty acids, and lactones families. However, the highest levels of terpenes and C 13 -norisoprenoids were quantified in the SH system. A fruitier aroma was observed in Albariño wines from GDC when odor activity values were calculated.
Lee, Samantha; Hung, Richard; Yap, Melanie; Bennett, Joan W
2015-06-01
Studying the effects of microbial volatile organic compounds (VOCs) on plant growth is challenging because the production of volatiles depends on many environmental factors. Adding to this complexity, the method of volatile exposure itself can lead to different responses in plants and may account for some of the contrasting results. In this work, we present an improved experimental design, a plate-within-a-plate method, to study the effects of VOCs produced by filamentous fungi. We demonstrate that the plant growth response to VOCs is dependent on the age of the plant and fungal cultures. Plants exposed to volatiles emitted by 5-day-old Trichoderma atroviride for 14 days exhibited inhibition, while plants exposed to other exposure conditions had growth promotion or no significant change. Using GC-MS, we compared fungal volatile emission of 5-day-old and 14-day-old T. atroviride. As the fungi aged, a few compounds were no longer detected, but 24 new compounds were discovered.
Cao, Gang; Cai, Hao; Cong, Xiaodong; Liu, Xiao; Ma, Xiaoqing; Lou, Yajing; Qin, Kunming; Cai, Baochang
2012-08-21
The sulfur-fumigation process can induce changes in the contents of volatile compounds and the chemical transformation of herbal medicines. Although literature has reported many methods for analyzing volatile target compounds from herbal medicine, all of them are largely limited to target compounds and sun-dried samples. This study provides a comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry (GC×GC-TOF/MS) method based on a chemical profiling approach to identify non-target and target volatile compounds from sun-dried and sulfur-fumigated herbal medicine. Using Chrysanthemum morifolium as a model herbal medicine, the combined power of this approach is illustrated by the identification of 209 and 111 volatile compounds with match quality >80% from sun-dried and sulfur-fumigated Chrysanthemum morifolium, respectively. The study has also shown that sulfur-fumigated samples showed a significant loss of the main active compounds and a more destructive fingerprint profile compared to the sun-dried ones. 50 volatile compounds were lost in the sulfur-fumigated Chrysanthemum morifolium sample. The approach and methodology reported in this paper would be useful for identifying complicated target and non-target components from various complex mixtures such as herbal medicine and its preparations, biological and environmental samples. Furthermore, it can be applied for the intrinsic quality control of herbal medicine and its preparations.
Determination of volatile marker compounds in raw ham using headspace-trap gas chromatography.
Bosse Née Danz, Ramona; Wirth, Melanie; Konstanz, Annette; Becker, Thomas; Weiss, Jochen; Gibis, Monika
2017-03-15
A simple, reliable and automated method was developed and optimized for qualification and quantification of aroma-relevant volatile marker compounds of North European raw ham using a headspace (HS)-Trap gas chromatography-mass spectrometry (GC-MS) and GC-flame ionization detector (FID) analysis. A total of 38 volatile compounds were detected with this HS-Trap GC-MS method amongst which the largest groups were ketones (12), alcohols (8), hydrocarbons (7), aldehydes (6) and esters (3). The HS-Trap GC-FID method was optimized for the parameters: thermostatting time and temperature, vial and desorption pressure, number of extraction cycles and salt addition. A validation for 13 volatile marker compounds with limits of detection in ng/g was carried out. The optimized method can serve as alternative to conventional headspace and solid phase micro extraction methods and allows users to determine volatile compounds in raw hams making it of interest to industrial and academic meat scientists. Copyright © 2016 Elsevier Ltd. All rights reserved.
Beer volatile compounds and their application to low-malt beer fermentation.
Kobayashi, Michiko; Shimizu, Hiroshi; Shioya, Suteaki
2008-10-01
Low-malt beers, in which the amount of wort is adjusted to less than two-thirds of that in regular beer, are popular in the Japanese market because the flavor of low-malt beer is similar to that of regular beer but the price lesser than that of regular beer. There are few published articles about low-malt beer. However, in the production process, there are many similarities between low-malt and regular beer, e.g., the yeast used in low-malt beer fermentation is the same as that used for regular beer. Furthermore, many investigations into regular beer are applicable to low-malt beer production. In this review, we focus on production of volatile compounds, and various studies that are applicable to regular and low-malt beer. In particular, information about metabolism of volatile compounds in yeast cells during fermentation, volatile compound measurement and estimation methods, and control of volatile compound production are discussed in this review, which concentrates on studies published in the last 5-6 years.
Pérez, Rosa Ana; Rojo, Maria Dolores; González, Gema; De Lorenzo, Cristina
2008-01-01
A method using solid-phase microextraction (SPME) and gas chromatography/mass spectrometry was developed and applied to the determination of volatile compounds generated in meat, at different times, from ground beef stored under refrigeration. Selection of the extractive fiber, extraction time, and headspace (HS) or direct extraction was optimized for the determination of volatile compounds from ground meat. Various fibers were investigated, and carboxen/polydimethylsiloxane was selected for these analyses. The HS analysis of the solid sample by HS-SPME produced a higher volatile signal than did direct-SPME. The meat samples were stored under refrigeration and analyzed after 0, 3, and 6 days of storage. These analyses at different times showed important changes in the volatile profile of the evaluated samples. The ketones 3-hydroxy-2-butanone and 2,3-butanedione, and the alcohol 3-methyl-1-butanol were the most representative compounds generated during the meat storage. In general, compounds associated with a butter off-flavor were detected during the storage of raw ground beef.
Volatile compound profile of sous-vide cooked lamb loins at different temperature-time combinations.
Roldán, Mar; Ruiz, Jorge; Del Pulgar, José Sánchez; Pérez-Palacios, Trinidad; Antequera, Teresa
2015-02-01
Lamb loins were subjected to sous-vide cooking at different combinations of temperature (60 and 80°C) and time (6 and 24h) to assess the effect on the volatile compound profile. Major chemical families in cooked samples were aliphatic hydrocarbons and aldehydes. The volatile compound profile in sous-vide cooked lamb loin was affected by the cooking temperature and time. Volatile compounds arising from lipid oxidation presented a high abundance in samples cooked at low or moderate cooking conditions (60°C for 6 and 24h, 80°C for 6h), while a more intense time and temperature combination (80°C for 24h) resulted on a higher concentration of volatile compounds arising from Strecker degradations of amino acids, as 2-methylpropanal and 3-methylbutanal. Therefore, sous-vide cooking at moderately high temperatures for long times would result in the formation of a stronger meaty flavor and roast notes in lamb meat. Copyright © 2014 Elsevier Ltd. All rights reserved.
Different methods for volatile sampling in mammals
Möller, Manfred; Marcillo, Andrea; Einspanier, Almuth; Weiß, Brigitte M.
2017-01-01
Previous studies showed that olfactory cues are important for mammalian communication. However, many specific compounds that convey information between conspecifics are still unknown. To understand mechanisms and functions of olfactory cues, olfactory signals such as volatile compounds emitted from individuals need to be assessed. Sampling of animals with and without scent glands was typically conducted using cotton swabs rubbed over the skin or fur and analysed by gas chromatography-mass spectrometry (GC-MS). However, this method has various drawbacks, including a high level of contaminations. Thus, we adapted two methods of volatile sampling from other research fields and compared them to sampling with cotton swabs. To do so we assessed the body odor of common marmosets (Callithrix jacchus) using cotton swabs, thermal desorption (TD) tubes and, alternatively, a mobile GC-MS device containing a thermal desorption trap. Overall, TD tubes comprised most compounds (N = 113), with half of those compounds being volatile (N = 52). The mobile GC-MS captured the fewest compounds (N = 35), of which all were volatile. Cotton swabs contained an intermediate number of compounds (N = 55), but very few volatiles (N = 10). Almost all compounds found with the mobile GC-MS were also captured with TD tubes (94%). Hence, we recommend TD tubes for state of the art sampling of body odor of mammals or other vertebrates, particularly for field studies, as they can be easily transported, stored and analysed with high performance instruments in the lab. Nevertheless, cotton swabs capture compounds which still may contribute to the body odor, e.g. after bacterial fermentation, while profiles from mobile GC-MS include only the most abundant volatiles of the body odor. PMID:28841690
Lyford, F.P.; Kliever, J.D.; Scott, Clifford
1999-01-01
Volatile organic compounds are present in ground water at the Allen Harbor Landfill and the Calf Pasture Point sites on the former Naval Construction Battalion Center in Davisville, R.I. Vapor-diffusion samplers were used at the two sites during March-April 1998 to identify possible discharge points for contaminants along the shore of Allen Harbor and in two wetland areas near the shore. Results from vapor-diffusion samplers will be used in conjunction with other site information to evaluate proposed ground-water monitoring programs. Volatile organic compounds were detected in 41 of 115 samplers placed along the shoreline at the Allen Harbor Landfill. Trichloroethylene was the principal volatile organic compound detected of eight target compounds. The highest vapor concentration measured exceeded 300,000 parts per billion by volume in an area where TCE was detected in groundwater from nearby monitoring wells. Other chemicals detected in vapor-diffusion samplers included tetrachloroethylene, toluene, and benzene. Concentrations of individual volatile organic compounds were less than 100 parts per billion by volume in most samplers. Volatile organic compounds, principally trichloroethylene, were detected in 7 of 30 samplers placed along the shoreline at Calf Pasture Point; the highest trichloroethylene concentration was 1,900 parts per billion by volume. A trace concentration of tetrachloroethylene was detected in one of the samplers. One of 24 samplers placed in two wetland areas near the shore (suspected discharge areas for ground-water containing volatile organic compounds) detected trichloroethylene at a vapor concentration of 14 parts per billion by volume.
Korpi, A; Kasanen, J P; Alarie, Y; Kosma, V M; Pasanen, A L
1999-01-01
The authors investigated the ability/potencies of 3 microbial volatile organic compounds and a mixture of 5 microbial volatile organic compounds to cause eye and upper respiratory tract irritation (i.e., sensory irritation), with an animal bioassay. The authors estimated potencies by determining the concentration capable of decreasing the respiratory frequency of mice by 50% (i.e., the RD50 value). The RD50 values for 1-octen-3-ol, 3-octanol, and 3-octanone were 182 mg/m3 (35 ppm), 1359 mg/m3 (256 ppm), and 17586 mg/m3 (3360 ppm), respectively. Recommended indoor air levels calculated from the individual RD50 values for 1-octen-3-ol, 3-octanol, and 3-octanone were 100, 1000, and 13000 microg/m3, respectively-values considerably higher than the reported measured indoor air levels for these compounds. The RD50 value for a mixture of 5 microbial volatile organic compounds was also determined and found to be 3.6 times lower than estimated from the fractional concentrations and the respective RD50s of the individual components. The data support the conclusion that a variety of microbial volatile organic compounds may have some synergistic effects for the sensory irritation response, which constrains the interpretation and application of recommended indoor air levels of individual microbial volatile organic compounds. The results also showed that if a particular component of a mixture was much more potent than the other components, it may dominate the sensory irritation effect. With respect to irritation symptoms reported in moldy houses, the results of this study indicate that the contribution of microbial volatile organic compounds to these symptoms seems less than previously supposed.
Juhari, Nurul Hanisah; Petersen, Mikael Agerlin
2018-02-11
Milled Roselle ( Hibiscus sabdariffa L.) seeds of the UMKL cultivar were analyzed for proximate composition, water and oil absorption capacity, and the influence of storage conditions on storage stability. The storage stability was determined under four types of conditions: light/oxygen (air) (LO), light/nitrogen (LN), darkness/oxygen (air) (DO), and darkness/nitrogen (DN) while monitoring for seven consecutive months. During the storage period, the formation of volatiles was determined using dynamic headspace sampling and Gas Chromatography-Mass Spectrometry (GC-MS) analysis. In total, 85 volatiles were identified, mainly aldehydes, alcohols, ketones, furans, and acids indicating lipid oxidation. It is recommended that milled Roselle seeds should be flushed with nitrogen and stored in darkness. Under these conditions, the seeds can be stored for at least three months without changes in volatile profile. This is important to ensure the good quality of milled Roselle seeds for further commercialization.
Cai, Xiao-Ming; Xu, Xiu-Xiu; Bian, Lei; Luo, Zong-Xiu; Chen, Zong-Mao
2015-12-01
Determination of volatile plant compounds in field ambient air is important to understand chemical communication between plants and insects and will aid the development of semiochemicals from plants for pest control. In this study, a thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) method was developed to measure ultra-trace levels of volatile plant compounds in field ambient air. The desorption parameters of TD, including sorbent tube material, tube desorption temperature, desorption time, and cold trap temperature, were selected and optimized. In GC-MS analysis, the selected ion monitoring mode was used for enhanced sensitivity and selectivity. This method was sufficiently sensitive to detect part-per-trillion levels of volatile plant compounds in field ambient air. Laboratory and field evaluation revealed that the method presented high precision and accuracy. Field studies indicated that the background odor of tea plantations contained some common volatile plant compounds, such as (Z)-3-hexenol, methyl salicylate, and (E)-ocimene, at concentrations ranging from 1 to 3400 ng m(-3). In addition, the background odor in summer was more abundant in quality and quantity than in autumn. Relative to previous methods, the TD-GC-MS method is more sensitive, permitting accurate qualitative and quantitative measurements of volatile plant compounds in field ambient air.
75 FR 57412 - Approval and Promulgation of Implementation Plans Alabama: Volatile Organic Compounds
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-21
...] Approval and Promulgation of Implementation Plans Alabama: Volatile Organic Compounds AGENCY: Environmental... compounds'' (VOCs) found at Alabama Administrative Code section 335-3-1-.02(gggg). Specifically, the revision would add two compounds (propylene carbonate and dimethyl carbonate) to the list of those excluded...
Jackels, Susan C; Marshall, Eric E; Omaiye, Angelica G; Gianan, Robert L; Lee, Fabrice T; Jackels, Charles F
2014-10-22
Potato taste defect (PTD) is a flavor defect in East African coffee associated with Antestiopsis orbitalis feeding and 3-isopropyl-2-methoxypyrazine (IPMP) in the coffee. To elucidate the manifestation of PTD, surface and interior volatile compounds of PTD and non-PTD green coffees were sampled by headspace solid phase microextraction and analyzed by gas chromatography mass spectrometry. Principal component analysis of the chromatographic data revealed a profile of surface volatiles distinguishing PTD from non-PTD coffees dominated by tridecane, dodecane, and tetradecane. While not detected in surface volatiles, IPMP was found in interior volatiles of PTD coffee. Desiccated antestia bugs were analyzed by GCMS, revealing that the three most prevalent volatiles were tridecane, dodecane, and tetradecane, as was found in the surface profile PTD coffee. Coffee having visible insect damage exhibited both a PTD surface volatile profile and IPMP in interior volatiles, supporting the hypothesis linking antestia bug feeding activity with PTD profile compounds on the surface and IPMP in the interior of the beans.
Comparison of methods for determining volatile compounds in cheese, milk, and whey powder
USDA-ARS?s Scientific Manuscript database
Solid phase microextraction (SPME) and gas chromatography-mass spectrometry (GC-MS) are commonly used for qualitative and quantitative analysis of volatile compounds in various dairy products, but selecting the proper procedures presents challenges. Heat is applied to drive volatiles from the samp...
Peptide Modified ZnO Nanoparticles as Gas Sensors Array for Volatile Organic Compounds (VOCs)
Mascini, Marcello; Gaggiotti, Sara; Della Pelle, Flavio; Di Natale, Corrado; Qakala, Sinazo; Iwuoha, Emmanuel; Pittia, Paola; Compagnone, Dario
2018-01-01
In this work a peptide based gas sensor array based of ZnO nanoparticles (ZnONPs) has been realized. Four different pentapeptides molecularly modeled for alcohols and esters having cysteine as a common spacer have been immobilized onto ZnONPs. ZnONPs have been morphologically and spectroscopically characterized. Modified nanoparticles have been then deposited onto quartz crystal microbalances (QCMs) and used as gas sensors with nitrogen as carrier gas. Analysis of the pure compounds modeled demonstrated a nice fitting of modeling with real data. The peptide based ZnONPs had very low sensitivity to water, compared to previously studied AuNPs peptide based gas sensors allowing the use of the array on samples with high water content. Real samples of fruit juices have been assayed; stability of the signal, good repeatability, and discrimination ability of the array was achieved. PMID:29713626
Peptide Modified ZnO Nanoparticles as Gas Sensors Array for Volatile Organic Compounds (VOCs).
Mascini, Marcello; Gaggiotti, Sara; Della Pelle, Flavio; Di Natale, Corrado; Qakala, Sinazo; Iwuoha, Emmanuel; Pittia, Paola; Compagnone, Dario
2018-01-01
In this work a peptide based gas sensor array based of ZnO nanoparticles (ZnONPs) has been realized. Four different pentapeptides molecularly modeled for alcohols and esters having cysteine as a common spacer have been immobilized onto ZnONPs. ZnONPs have been morphologically and spectroscopically characterized. Modified nanoparticles have been then deposited onto quartz crystal microbalances (QCMs) and used as gas sensors with nitrogen as carrier gas. Analysis of the pure compounds modeled demonstrated a nice fitting of modeling with real data. The peptide based ZnONPs had very low sensitivity to water, compared to previously studied AuNPs peptide based gas sensors allowing the use of the array on samples with high water content. Real samples of fruit juices have been assayed; stability of the signal, good repeatability, and discrimination ability of the array was achieved.
Peptide modified ZnO nanoparticles as gas sensors array for volatile organic compounds (VOCs)
NASA Astrophysics Data System (ADS)
Mascini, Marcello; Gaggiotti, Sara; Della Pelle, Flavio; Di Natale, Corrado; Qakala, Sinazo; Iwuoha, Emmanuel; Pittia, Paola; Compagnone, Dario
2018-04-01
In this work a peptide based gas sensor array based of ZnO nanoparticles (ZnONPs) has been realized. Four different pentapeptides molecularly modelled for alcohols and esters having cysteine as a common spacer have been immobilized onto ZnONPs. ZnONPs have been morphologically and spectroscopically characterized. Modified nanoparticles have been then deposited onto quartz crystal microbalances (QCMs) and used as gas sensors with nitrogen as carrier gas. Analysis of the pure compounds modelled demonstrated a nice fitting of modelling with real data. The peptide based ZnONPs had very low sensitivity to water, compared to previously studied AuNPs peptide based gas sensors allowing the use of the array on samples with high water content. Real samples of fruit juices have been assayed; stability of the signal, good repeatability and discrimination ability of the array was achieved.
Data on volatile compounds in fermented materials used for salmon fish sauce production.
Nakano, Mitsutoshi; Sagane, Yoshimasa; Koizumi, Ryosuke; Nakazawa, Yozo; Yamazaki, Masao; Watanabe, Toshihiro; Takano, Katsumi; Sato, Hiroaki
2018-02-01
This article describes the analysis of volatile compounds in fermented materials used for salmon fish sauce production via gas chromatography/mass spectrometry (GC/MS). Ten types of fish sauces were produced from raw salmon materials, including various proportions of flesh, viscera, inedible portion (heads, fins, and backbones), and soft roe, by mixing them with salt and allowing them to ferment for up to three months. The volatile compounds were captured by a solid-phase microextraction method and then applied to GC/MS for separation and identification of the compounds in the fish sauce products. The number of volatile compounds identified in the starting materials varied from 15 to 29 depending on the ingredients. The number of compounds in the final fish sauce products was reduced by 3.4-94.7% of that in the original material. The retention times and names of the identified compounds, as well as their relative peak areas, are provided in a Microsoft Excel Worksheet.
A process for producing lignin and volatile compounds from hydrolysis liquor.
Khazraie, Tooran; Zhang, Yiqian; Tarasov, Dmitry; Gao, Weijue; Price, Jacquelyn; DeMartini, Nikolai; Hupa, Leena; Fatehi, Pedram
2017-01-01
Hot water hydrolysis process is commercially applied for treating wood chips prior to pulping or wood pellet production, while it produces hydrolysis liquor as a by-product. Since the hydrolysis liquor is dilute, the production of value-added materials from it would be challenging. In this study, acidification was proposed as a viable method to extract (1) furfural and acetic acid from hot water hydrolysis liquor and (2) lignin compounds from the liquor. The thermal properties of the precipitates made from the acidification of hydrolysis liquor confirmed the volatile characteristics of precipitates. Membrane dialysis was effective in removing inorganic salts associated with lignin compounds. The purified lignin compounds had a glass transition temperature (Tg) of 180-190 °C, and were thermally stable. The results confirmed that lignin compounds present in hot water hydrolysis liquor had different characteristics. The acidification of hydrolysis liquor primarily removed the volatile compounds from hydrolysis liquor. Based on these results, a process for producing purified lignin and precipitates of volatile compounds was proposed.
Vroblesky, Don A.; Willey, Richard E.; Clifford, Scott; Murphy, James J.
2008-01-01
This study examined volatile organic compound concentrations in cores from trees and shrubs for use as indicators of vadose-zone contamination or potential vapor intrusion by volatile organic compounds into buildings at the Durham Meadows Superfund Site, Durham, Connecticut. The study used both (1) real-time tree- and shrub-core analysis, which involved field heating the core samples for 5 to 10 minutes prior to field analysis, and (2) delayed analysis, which involved allowing the gases in the cores to equilibrate with the headspace gas in the sample vials unheated for 1 to 2 days prior to analysis. General correspondence was found between the two approaches, indicating that preheating and field analysis of vegetation cores is a viable approach to real-time monitoring of subsurface volatile organic compounds. In most cases, volatile organic compounds in cores from trees and shrubs at the Merriam Manufacturing Company property showed a general correspondence to the distribution of volatile organic compounds detected in a soil-gas survey, despite the fact that most of the soil-gas survey data in close proximity to the relevant trees were collected about 3 years prior to the tree-core collection. Most of the trees cored at the Durham Meadows Superfund Site, outside of the Merriam Manufacturing Company property, contained no volatile organic compounds and were in areas where indoor air sampling and soil-gas sampling showed little or no volatile organic compound concentrations. An exception was tree DM11, which contained barely detectable concentrations of trichloroethene near a house where previous investigations found low concentrations of trichloroethene (0.13 to 1.2 parts per billion by volume) in indoor air and 7.7 micrograms per liter of trichloroethene in the ground water. The barely detectable concentration of trichloroethene in tree DM11 and the lack of volatile organic compound detection in nearby tree DM10 (adjacent to the well having 7.7 micrograms of trichloroethene) may be attributable to the relatively large depth to water (17.6 feet), the relatively low soil-vapor trichloroethene concentration, and the large amount of rainfall during and preceding the tree-coring event. The data indicate that real-time and delayed analyses of tree cores are viable approaches to examining subsurface volatile organic compound soil-gas or vadose-zone contamination at the Durham Meadows Superfund Site and other similar sites. Thus, the methods may have application for determining the potential for vapor intrusion into buildings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savilov, S.V., E-mail: savilov@chem.msu.ru; N.S. Kurnakov Institute of General and Inorganic Chemistry Of Russian Academy of Sciences, Leninsky avenue, 31, Moscow 119991; Arkhipova, E.A.
2015-09-15
Highlights: • Carbon nanoflakes doped with nitrogen were produced by a pyrolytic technique. • Quarternary, pyrrolic and pyridinic types of nitrogen are confirmed by XPS. • Nitrogen content depends on precursor used and temperature processed. • Specific surface area values decrease with increasing of synthesis duration. • N-doped carbon nanoflakes may be suitable for electrochemical applications. - Abstract: Nitrogen doped carbon nanoflakes, which are very important for many electrochemical applications, were synthesized by pyrolysis of nitrogen containing organic compounds over metal oxide template. Acetonitrile, pyridine and butylamine, which are of different volatility were tested as N-containing precursors. Morphology, structure andmore » chemical composition of the as-synthesized materials were investigated by scanning electron microscopy (SEM), high resolution transmission electron microscopy (TEM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). It was found that materials are highly defective and consist of a few malformed graphene layers. X-ray photoelectron spectra reflect the dominant graphitic and pyridinic N-bonding configuration. It was also noted that specific surface area depends on the duration and temperature of the reaction. Increase in duration and temperature led to decrease of the specific surface area from 1000 to 160 m{sup 2}/g, 1170 to 210 m{sup 2}/g and 1180 to 480 m{sup 2}/g for acetonitrile, butylamine and pyridine precursors, respectively.« less
Aroma composition of shalgam: a traditional Turkish lactic acid fermented beverage.
Tanguler, Hasan; Selli, Serkan; Sen, Kemal; Cabaroglu, Turgut; Erten, Huseyin
2017-06-01
Shalgam, a traditional red, cloudy and sour soft beverage, is produced by lactic acid fermentation of black carrot, sourdough, salt, bulgur flour, turnip and adequate water. The present study was designed to characterize the volatile compounds of shalgam obtained from different methods. The aroma compounds of shalgams produced by traditional and direct methods, and addition of Lactic acid bateria (LAB) cultures were examined. Volatile components of shalgam samples were extracted by liquid-liquid extraction technique with pentane/dichloromethane and analyzed by gas chromatography-mass spectrometry (GC-MS). Sixty aroma compounds were identified in shalgam samples including 20 terpenes, 9 esters, 9 alcohols, 5 volatile acids, 6 volatile phenols, 5 lactones, 3 naphthalenes, 2 carbonyl compounds and 1 C13-norisoprenoids. It was found that the aroma profiles of shalgams were quite similar. However, the total volatile content of the shalgam samples increased with addition of Lb. plantarum .
Effect of edible coating on the aromatic attributes of roasted coffee beans.
Rattan, Supriya; Parande, A K; Ramalakshmi, K; Nagaraju, V D
2015-09-01
Coffee is known throughout the world for its distinct aroma and flavour which results from a number of volatile compounds present in it. It is very difficult to arrest the aromatic compounds once the roasting process is complete and it becomes even more challenging to store the beans for a longer time with the retained volatiles as these compounds are easily lost during industrialized processing such as the grinding of roasted coffee beans and storage of ground coffee. Thus, an attempt was made to minimise the loss of volatile from roasted coffee beans by coating with Carboxymethyl cellulose (CMC), Hydroxypropylmethyl cellulose (HPMC) and Whey protein concentrate. Coffee volatiles were analysed by Gas chromatography and 14 major compounds were identified and compared in this study. Results showed an increase in the relative area of major volatile compounds in coated roasted coffee beans when compared with unroasted coffee beans for consecutive two months. Moreover, effect of coating on textural properties and non-volatiles were also analysed. The results have indicated that edible coatings preserve the sensory properties of roasted coffee beans for a longer shelf life and cellulose derivatives, as an edible coating, exhibited the best protecting effect on roasted coffee beans.
Possible role of plant volatiles in tolerance against huanglongbing in citrus
Hijaz, Faraj; Nehela, Yasser; Killiny, Nabil
2016-01-01
abstract Volatile organic compounds (VOC) play an important role in protecting plants from insect and pathogen attack. In this study, we investigated the leaf volatile profiles of 14 citrus varieties. The VOC in citrus leaves were extracted with n-hexane and analyzed using gas chromatography-mass spectrometry (GC-MS). Overall, 4six volatile compounds were identified in the n-hexane extract from citrus leaves. Most of the detected compounds belonged to 3 main groups (monoterpenes, sesquiterpenes, and aliphatic aldehydes). Principle component analysis was used to examine the relative distribution of the studied varieties to each other. Interestingly, volatile profiles of varieties that are tolerant to Candidatus Liberibacter asiaticus (CLas) were different from those of the susceptible ones. Tolerant and moderately-tolerant cultivars contained relatively higher amounts of volatiles than susceptible varieties. In addition, tolerant varieties were also higher in specific compounds which are known for their antimicrobial activities. These compounds include Aldehydes (undecanal, neral, geranial, and citronellal) and some monoterpenes such as linalool, d-limonene, myrcene, α- and β- phellandrene. In addition, some sesquiterpene compounds including t-caryophellene, γ-elemene, β-elemene, germacrene D, and geranyl acetate were higher in tolerant and moderately tolerant cultivars. Severinia buxifolia which is known for its tolerance to CLas and many other pathogens contained higher levels of santalenes and coumarins. Our results indicated that citrus leaf volatiles might play a role in citrus tolerance to CLas. The results of this study may help in understanding of the mechanism of citrus tolerance against CLas. PMID:26829496
Possible role of plant volatiles in tolerance against huanglongbing in citrus.
Hijaz, Faraj; Nehela, Yasser; Killiny, Nabil
2016-01-01
Volatile organic compounds (VOC) play an important role in protecting plants from insect and pathogen attack. In this study, we investigated the leaf volatile profiles of 14 citrus varieties. The VOC in citrus leaves were extracted with n-hexane and analyzed using gas chromatography-mass spectrometry (GC-MS). Overall, 4six volatile compounds were identified in the n-hexane extract from citrus leaves. Most of the detected compounds belonged to 3 main groups (monoterpenes, sesquiterpenes, and aliphatic aldehydes). Principle component analysis was used to examine the relative distribution of the studied varieties to each other. Interestingly, volatile profiles of varieties that are tolerant to Candidatus Liberibacter asiaticus (CLas) were different from those of the susceptible ones. Tolerant and moderately-tolerant cultivars contained relatively higher amounts of volatiles than susceptible varieties. In addition, tolerant varieties were also higher in specific compounds which are known for their antimicrobial activities. These compounds include Aldehydes (undecanal, neral, geranial, and citronellal) and some monoterpenes such as linalool, d-limonene, myrcene, α- and β- phellandrene. In addition, some sesquiterpene compounds including t-caryophellene, γ-elemene, β-elemene, germacrene D, and geranyl acetate were higher in tolerant and moderately tolerant cultivars. Severinia buxifolia which is known for its tolerance to CLas and many other pathogens contained higher levels of santalenes and coumarins. Our results indicated that citrus leaf volatiles might play a role in citrus tolerance to CLas. The results of this study may help in understanding of the mechanism of citrus tolerance against CLas.
Li, Hailiang; Cui, Xiaoli; Tong, Yan; Gong, Muxin
2012-04-01
To compare inclusion effects and process conditions of two preparation methods-colloid mill and saturated solution-for beta-CD inclusion compound of four traditional Chinese medicine volatile oils and study the relationship between each process condition and volatile oil physical properties and the regularity of selective inclusion of volatile oil components. Volatile oils from Nardostachyos Radix et Rhizoma, Amomi Fructus, Zingiberis Rhizoma and Angelicaesinensis Radix were prepared using two methods in the orthogonal test. These inclusion compounds by optimized processes were assessed and compared by such methods as TLC, IR and scanning electron microscope. Inclusion oils were extracted by steam distillation, and the components found before and after inclusion were analyzed by GC-MS. Analysis showed that new inclusion compounds, but inclusion compounds prepared by the two processes had differences to some extent. The colloid mill method showed a better inclusion effect than the saturated solution method, indicating that their process conditions had relations with volatile oil physical properties. There were differences in the inclusion selectivity of components between each other. The colloid mill method for inclusion preparation is more suitable for industrial requirements. To prepare volatile oil inclusion compounds with heavy gravity and high refractive index, the colloid mill method needs longer time and more water, while the saturated solution method requires higher temperature and more beta-cyclodextrin. The inclusion complex prepared with the colloid mill method contains extended molecular weight chemical composition, but the kinds of components are reduced.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-30
... Promulgation of Air Quality Implementation Plans; Indiana; Volatile Organic Compounds; Architectural and... rule that sets emissions limits on the amount of volatile organic compounds in architectural and... period. Any parties interested in commenting on this action should do so at this time. Please note that...
Chen, Jian Yan; Ye, Zheng Mei; Huang, Tian Yi; Chen, Xiao Dan; Li, Yong Yu; Wu, Shao Hua
2014-07-01
Alpinia zerumbet 'Variegata' is an aromatic medicinal plant, its foliage producing an intense, unique fragrant odor. This study identified 46 volatile compounds in the leaf tissue of this plant using headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS). The major compounds included 1, 8-cineole (43.5%), p-cymene (14.7%), humulene (5.5%), camphor (5.3%), linalool (4.7%), (E)-methyl cinnamate (3.8%), gamma-cadinene (3.3%), humulene oxide II (2.1%) and a-terpineol (1.5%). The majority of the volatiles were terpenoids of which oxygenated monoterpenes were the most abundant, accounting for 57.2% of the total volatiles. Alcohols made up the largest (52.8%) and aldehydes the smallest (0.2%) portions of the volatiles. Many bioactive compounds were present in the volatiles.
Fate of Volatile Organic Compounds in Constructed Wastewater Treatment Wetlands
Keefe, S.H.; Barber, L.B.; Runkel, R.L.; Ryan, J.N.
2004-01-01
The fate of volatile organic compounds was evaluated in a wastewater-dependent constructed wetland near Phoenix, AZ, using field measurements and solute transport modeling. Numerically based volatilization rates were determined using inverse modeling techniques and hydraulic parameters established by sodium bromide tracer experiments. Theoretical volatilization rates were calculated from the two-film method incorporating physicochemical properties and environmental conditions. Additional analyses were conducted using graphically determined volatilization rates based on field measurements. Transport (with first-order removal) simulations were performed using a range of volatilization rates and were evaluated with respect to field concentrations. The inverse and two-film reactive transport simulations demonstrated excellent agreement with measured concentrations for 1,4-dichlorobenzene, tetrachloroethene, dichloromethane, and trichloromethane and fair agreement for dibromochloromethane, bromo-dichloromethane, and toluene. Wetland removal efficiencies from inlet to outlet ranged from 63% to 87% for target compounds.
Josino Soares, Denise; Pignitter, Marc; Ehrnhöfer-Ressler, Miriam Margit; Walker, Jessica; Montenegro Brasil, Isabella; Somoza, Veronika
2015-01-01
The pulp of pitanga (Eugenia uniflora L.) is used to prepare pitanga juice. However, there are no reports on the identification and quantification of the main constituents in pitanga pulp. The aim of this study was to identify and quantify the major volatile and non-volatile low-molecular-weight constituents of the pulp. Isolation of volatile compounds was performed by solvent-assisted flavor evaporation technique. Characterization of the main volatile and non-volatile constituents was performed by GC-MS, LC-MS and NMR spectroscopy. For quantitative measurements, the main volatile compound needed to be isolated from pitanga pulp to obtain a commercially not available reference standard. Cyanidin-3-glucoside was determined as one of the most abundant non-volatile pulp compound yielding 53.8% of the sum of the intensities of all ions detected by LC-MS. Quantification of cyanidin-3-glucoside in pitanga pulp resulted in a concentration of 344 ± 66.4 μg/mL corresponding to 688 ± 133 μg/g dried pulp and 530 ± 102 μg/g fruit. For the volatile fraction, oxidoselina-1,3,7(11)-trien-8-one was identified as the main volatile pulp constituent (27.7% of the sum of the intensities of all ions detected by GC-MS), reaching a concentration of 89.0 ± 16.9 μg/mL corresponding to 1.34 ± 0.25 μg/g fresh pulp and 1.03 ± 0.19 μg/g fruit. The results provide quantitative evidence for the occurrence of an anthocyanin and an oxygenated sesquiterpene as one of the major volatile and non-volatile low-molecular-weight compounds in pitanga pulp.
FACTORS CONTROLLING THE EMISSIONS OF MONOTERPENES AND OTHER VOLATILE ORGANIC COMPOUNDS
Plants contain a number of volatile organic compounds, including isoprene, mono- and sesquiterpenes, alcohols, aldehydes, ketones, and esters. ndividual plant species have unique combinations of these compounds; consequently, the emission pattern for each species is also specific...
40 CFR 59.412 - Incorporations by reference.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS National Volatile Organic Compound Emission Standards for Architectural Coatings § 59.412 Incorporations by... 19428-2959. (1) ASTM Method C 1315-95, Standard Specification for Liquid Membrane-Forming Compounds...
40 CFR 59.412 - Incorporations by reference.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS National Volatile Organic Compound Emission Standards for Architectural Coatings § 59.412 Incorporations by... 19428-2959. (1) ASTM Method C 1315-95, Standard Specification for Liquid Membrane-Forming Compounds...
2010-08-01
Corrosion resistant coatings containing non-chromate inhibitors and no volatile organic compounds were developed and evaluated for DoD applications...Transmission Electron Microscopy TRI – Toxic Release Inventory UV – Ultraviolet UVAs – Ultraviolet Absorbers VOCs – Volatile Organic Compounds XPS – X...containing non-chromate inhibitors and no volatile organic compounds were developed and evaluated for DoD applications. The technical effort
Characterization of volatile aroma compounds from red and black rice bran.
Sukhonthara, Sukhontha; Theerakulkait, Chockchai; Miyazawa, Mitsuo
2009-01-01
The volatile oils from red and black rice bran were obtained by hydrodistillation using diethyl ester and the components of that oil were analyzed by capillary GC-MS. The volatile components of essential oil from red and black rice bran were analyzed by GC and GC-MS. One hundred twenty-nine (129) of volatile compounds were identified in red and black rice bran. Myristic acid, nonanal, (E)-beta-ocimene and 6, 10, 14-trimethyl-2-pentadecanone were main compounds in red rice bran, whereas myristic acid, nonanal, caproic acid, pentadecanal and pelargonic acid were main compounds in black rice bran. Guaiacol, presented at 0.81 mg/100 g in black rice bran, is responsible for the characteristic component in black rice.
A comprehensive screen for volatile organic compounds in biological fluids.
Sharp, M E
2001-10-01
A headspace gas chromatographic (GC) screen for common volatile organic compounds in biological fluids is reported. Common GC phases, DB-1 and DB-WAX, with split injection provide separation and identification of more than 40 compounds in a single 20-min run. In addition, this method easily accommodates quantitation. The screen detects commonly encountered volatile compounds at levels below 4 mg%. A control mixture, providing qualitative and semiquantitative information, is described. For comparison, elution of the volatiles on a specialty phase, DB-624, is reported. This method is an expansion and modification of a screen that had been used for more than 20 years. During its first year of use, the expanded screen has proven to be advantageous in routine forensic casework.
de Solla, Shane Raymond; Martin, Pamela Anne
2007-09-01
Many reptiles oviposit in soil of agricultural landscapes. We evaluated the toxicity of two commonly used nitrogenous fertilizers, urea and ammonium nitrate, on the survivorship of exposed snapping turtle (Chelydra serpentina) eggs. Eggs were incubated in a community garden plot in which urea was applied to the soil at realistic rates of up to 200 kg/ha in 2004, and ammonium nitrate was applied at rates of up to 2,000 kg/ha in 2005. Otherwise, the eggs were unmanipulated and were subject to ambient temperature and weather conditions. Eggs were also exposed in the laboratory in covered bins so as to minimize loss of nitrogenous compounds through volatilization or leaching from the soil. Neither urea nor ammonium nitrate had any impact on hatching success or development when exposed in the garden plot, despite overt toxicity of ammonium nitrate to endogenous plants. Both laboratory exposures resulted in reduced hatching success, lower body mass at hatching, and reduced posthatching survival compared to controls. The lack of toxicity of these fertilizers in the field was probably due to leaching in the soil and through atmospheric loss. In general, we conclude that nitrogenous fertilizers probably have little direct impacts on turtle eggs deposited in agricultural landscapes.
Aroma Volatile Compounds from Two Fresh Pineapple Varieties in China
Zheng, Liang-Yong; Sun, Guang-Ming; Liu, Yu-Ge; Lv, Ling-Ling; Yang, Wen-Xiu; Zhao, Wei-Feng; Wei, Chang-Bin
2012-01-01
Volatile compounds from two pineapples varieties (Tainong No.4 and No.6) were isolated by headspace solid phase microextraction (HS-SPME) and identified and quantified by gas chromatography-mass spectrometry (GC/MS). In the Tainong No. 4 and No. 6 pineapples, a total of 11 and 28 volatile compounds were identified according to their retention time on capillary columns and their mass spectra, and quantified with total concentrations of 1080.44 μg·kg−1 and 380.66 μg·kg−1 in the Tainong No.4 and No. 6 pineapples, respectively. The odor active values (OAVs) of volatile compounds from pineapples were also calculated. According to the OAVs, four compounds were defined as the characteristic aroma compounds for the Tainong No. 4 pineapple, including furaneol, 3-(methylthio)propanoic acid methyl ester, 3-(methylthio)propanoic acid ethyl ester and δ-octalactone. The OAVs of five compounds including ethyl-2-methylbutyrate, methyl-2-methylbutyrate, 3-(methylthio)propanoic acid ethyl ester, ethyl hexanoate and decanal were considered to be the characteristic aroma compounds for the Tainong No. 6 pineapple. PMID:22837701
Volatile compounds of dry beans (Phaseolus vulgaris L.).
Oomah, B Dave; Liang, Lisa S Y; Balasubramanian, Parthiba
2007-12-01
Volatile compounds of uncooked dry bean (Phaseolus vulgaris L.) cultivars representing three market classes (black, dark red kidney and pinto) grown in 2005 were isolated with headspace solid phase microextraction (HS-SPME), and analyzed with gas chromatography mass spectrometry (GC-MS). A total of 62 volatiles consisting of aromatic hydrocarbons, aldehydes, alkanes, alcohols and ketones represented on average 62, 38, 21, 12, and 9 x 10(6) total area counts, respectively. Bean cultivars differed in abundance and profile of volatiles. The combination of 18 compounds comprising a common profile explained 79% of the variance among cultivars based on principal component analysis (PCA). The SPME technique proved to be a rapid and effective method for routine evaluation of dry bean volatile profile.
Analysis of flavor compounds by GC/MS after liquid-liquid extraction from fruit juices
NASA Astrophysics Data System (ADS)
Tuşa, F. D.; Moldovan, Z.; Schmutzer, G.; Magdaş, D. A.; Dehelean, A.; Vlassa, M.
2012-02-01
In this work we describe a rapid method for analysis of volatile profiles of several commercial fruit juices using GC/MS instrument after liquid-liquid extraction. Volatile flavor compounds have been identified based on mass spectrum obtained in EI mode. This method allows to analyses a wide range of flavor compounds (esters, aldehydes, alcohols, terpenoids) the procedure was rapid, simple and inexpensive. Moreover, by means of volatile compounds it could be possible to distinguish between juices of organic and conventional production and those with flavorings addition. More of 20 compounds were identified and quantified as relative chromatogram area taken on larges ion in mass spectrum.
Measurement of ammonia emissions from tropical seabird colonies
NASA Astrophysics Data System (ADS)
Riddick, S. N.; Blackall, T. D.; Dragosits, U.; Daunt, F.; Braban, C. F.; Tang, Y. S.; MacFarlane, W.; Taylor, S.; Wanless, S.; Sutton, M. A.
2014-06-01
The excreta (guano) of seabirds at their breeding colonies represents a notable source of ammonia (NH3) emission to the atmosphere, with effects on surrounding ecosystems through nitrogen compounds being thereby transported from sea to land. Previous measurements in temperate UK conditions quantified emission hotspots and allowed preliminary global upscaling. However, thermodynamic processes and water availability limit NH3 formation from guano, which suggests that the proportion of excreted nitrogen that volatilizes as NH3 may potentially be higher at tropical seabird colonies than similar colonies in temperate or sub-polar regions. To investigate such differences, we measured NH3 concentrations and environmental conditions at two tropical seabird colonies during the breeding season: a colony of 20,000 tern spp. and noddies on Michaelmas Cay, Great Barrier Reef, and a colony of 200,000 Sooty terns on Ascension Island, Atlantic Ocean. At both sites time-integrated NH3 concentrations and meteorological parameters were measured. In addition, at Ascension Island, semi-continuous hourly NH3 concentrations and micrometeorological parameters were measured throughout the campaign. Ammonia emissions, quantified using a backwards Lagrangian atmospheric dispersion model, were estimated at 21.8 μg m-2 s-1 and 18.9 μg m-2 s-1 from Michaelmas Cay and Ascension Island, respectively. High temporal resolution NH3 data at Ascension Island estimated peak hourly emissions up to 377 μg NH3 m2 s-1. The estimated percentage fraction of total guano nitrogen volatilized was 67% at Michaelmas Cay and 32% at Ascension Island, with the larger value at the former site attributed to higher water availability. These values are much larger than published data for sub-polar locations, pointing to a substantial climatic dependence on emission of atmospheric NH3 from seabird colonies.
Gethins, Loughlin; Guneser, Onur; Demirkol, Aslı; Rea, Mary C; Stanton, Catherine; Ross, R Paul; Yuceer, Yonca; Morrissey, John P
2015-01-01
The yeast Kluyveromyces marxianus produces a range of volatile molecules with applications as fragrances or flavours. The purpose of this study was to establish how nutritional conditions influence the production of these metabolites. Four strains were grown on synthetic media, using a variety of carbon and nitrogen sources and volatile metabolites analysed using gas chromatography-mass spectrometry (GC-MS). The nitrogen source had pronounced effects on metabolite production: levels of the fusel alcohols 2-phenylethanol and isoamyl alcohol were highest when yeast extract was the nitrogen source, and ammonium had a strong repressing effect on production of 2-phenylethyl acetate. In contrast, the nitrogen source did not affect production of isoamyl acetate or ethyl acetate, indicating that more than one alcohol acetyl transferase activity is present in K. marxianus. Production of all acetate esters was low when cells were growing on lactose (as opposed to glucose or fructose), with a lower intracellular pool of acetyl CoA being one explanation for this observation. Bioinformatic and phylogenetic analysis of the known yeast alcohol acetyl transferases ATF1 and ATF2 suggests that the ancestral protein Atf2p may not be involved in synthesis of volatile acetate esters in K. marxianus, and raises interesting questions as to what other genes encode this activity in non-Saccharomyces yeasts. Identification of all the genes involved in ester synthesis will be important for development of the K. marxianus platform for flavour and fragrance production. Copyright © 2014 John Wiley & Sons, Ltd.
Volatile-organic molecular characterization of shale-oil produced water from the Permian Basin
Khan, Naima A.; Engle, Mark A.; Dungan, Barry; Holguin, F. Omar; Xu, Pei; Carroll, Kenneth C.
2016-01-01
Growth in unconventional oil and gas has spurred concerns on environmental impact and interest in beneficial uses of produced water (PW), especially in arid regions such as the Permian Basin, the largest U.S. tight-oil producer. To evaluate environmental impact, treatment, and reuse potential, there is a need to characterize the compositional variability of PW. Although hydraulic fracturing has caused a significant increase in shale-oil production, there are no high-resolution organic composition data for the shale-oil PW from the Permian Basin or other shale-oil plays (Eagle Ford, Bakken, etc.). PW was collected from shale-oil wells in the Midland sub-basin of the Permian Basin. Molecular characterization was conducted using high-resolution solid phase micro extraction gas chromatography time-of-flight mass spectrometry. Approximately 1400 compounds were identified, and 327 compounds had a >70% library match. PW contained alkane, cyclohexane, cyclopentane, BTEX (benzene, toluene, ethylbenzene, and xylene), alkyl benzenes, propyl-benzene, and naphthalene. PW also contained heteroatomic compounds containing nitrogen, oxygen, and sulfur. 3D van Krevelen and double bond equivalence versus carbon number analyses were used to evaluate molecular variability. Source composition, as well as solubility, controlled the distribution of volatile compounds found in shale-oil PW. The salinity also increased with depth, ranging from 105 to 162 g/L total dissolved solids. These data fill a gap for shale-oil PW composition, the associated petroleomics plots provide a fingerprinting framework, and the results for the Permian shale-oil PW suggest that partial treatment of suspended solids and organics would support some beneficial uses such as onsite reuse and bio-energy production.
Volatile-organic molecular characterization of shale-oil produced water from the Permian Basin.
Khan, Naima A; Engle, Mark; Dungan, Barry; Holguin, F Omar; Xu, Pei; Carroll, Kenneth C
2016-04-01
Growth in unconventional oil and gas has spurred concerns on environmental impact and interest in beneficial uses of produced water (PW), especially in arid regions such as the Permian Basin, the largest U.S. tight-oil producer. To evaluate environmental impact, treatment, and reuse potential, there is a need to characterize the compositional variability of PW. Although hydraulic fracturing has caused a significant increase in shale-oil production, there are no high-resolution organic composition data for the shale-oil PW from the Permian Basin or other shale-oil plays (Eagle Ford, Bakken, etc.). PW was collected from shale-oil wells in the Midland sub-basin of the Permian Basin. Molecular characterization was conducted using high-resolution solid phase micro extraction gas chromatography time-of-flight mass spectrometry. Approximately 1400 compounds were identified, and 327 compounds had a >70% library match. PW contained alkane, cyclohexane, cyclopentane, BTEX (benzene, toluene, ethylbenzene, and xylene), alkyl benzenes, propyl-benzene, and naphthalene. PW also contained heteroatomic compounds containing nitrogen, oxygen, and sulfur. 3D van Krevelen and double bond equivalence versus carbon number analyses were used to evaluate molecular variability. Source composition, as well as solubility, controlled the distribution of volatile compounds found in shale-oil PW. The salinity also increased with depth, ranging from 105 to 162 g/L total dissolved solids. These data fill a gap for shale-oil PW composition, the associated petroleomics plots provide a fingerprinting framework, and the results for the Permian shale-oil PW suggest that partial treatment of suspended solids and organics would support some beneficial uses such as onsite reuse and bio-energy production. Copyright © 2016 Elsevier Ltd. All rights reserved.
VOLATILE ORGANIC COMPOUNDS (VOCS) CHAPTER 31.
The term "volatile organic compounds' (VOCs) was originally coined to refer, as a class, to carbon-containing chemicals that participate in photochemical reactions in the ambient (outdoor) are. The regulatory definition of VOCs used by the U.S. EPA is: Any compound of carbon, ex...
VOLATILE ORGANIC COMPOUNDS MEASURED IN DEARS PASSIVE SAMPLERS
A suite of 27 volatile organic compounds (VOCs) were monitored in personal exposures, indoors and outdoors of participant's residences, and at a central community site during the DEARS summer 2004 monitoring season. The list of VOCs focused on compounds typically associated with ...
volatile organic compounds at sub-parts-per-million concentration levels," Sensors and Actuators B : Chemical (2006) "The Volatile Organic Compound (VOC) Removal Performance of Desiccant-Based
Aqueous phase removal of nitrogen from nitrogen compounds
Fassbender, Alex G.
1993-01-01
A method is disclosed for denitrification of compounds containing nitrogen present in aqueous waste streams. The method comprises the steps of (1) identifying the types of nitrogen compounds present in a waste stream, (2) determining the concentrations of nitrogen compounds, (3) balancing oxidized and reduced form of nitrogen by adding a reactant, and (4) heating the mixture to a predetermined reaction temperature from about 300.degree. C. to about 600.degree. C., thereby resulting in less harmful nitrogen and oxygen gas, hydroxides, alcohols, and hydrocarbons.
NASA Technical Reports Server (NTRS)
Simoneit, B. R.; Schnoes, H. K.; Haug, P.; Burlingame, A. L.
1971-01-01
Basic nitrogenous compounds isolated from extracts of Green River Formation oil shale were analyzed. The major homologous constituents found were the compositional types - namely, quinolines, tetrahydrequinolines with minor amounts of pyridines and indoles series and traces of more aromatized nitrogen compounds. These results are correlated with nitrogen compounds isolated from Green River Formation retort oil and are a survey of the unaltered nitrogen compounds indigeneous to the shale.
Maire, Murielle; Rega, Barbara; Cuvelier, Marie-Elisabeth; Soto, Paola; Giampaoli, Pierre
2013-12-15
This paper investigates the effect of ingredients on the reactions occurring during the making of sponge cake and leading to the generation of volatile compounds related to flavour quality. To obtain systems sensitive to lipid oxidation (LO), a formulation design was applied varying the composition of fatty matter and eggs. Oxidation of polyunsaturated fatty acids (PUFA) and formation of related volatile compounds were followed at the different steps of cake-making. Optimised dynamic Solid Phase Micro Extraction was applied to selectively extract either volatile or semi-volatile compounds directly from the baking vapours. We show for the first time that in the case of alveolar baked products, lipid oxidation occurs very early during the step of dough preparation and to a minor extent during the baking process. The generation of lipid oxidation compounds depends on PUFA content and on the presence of endogenous antioxidants in the raw matter. Egg yolk seemed to play a double role on reactivity: protecting unsaturated lipids from oxidation and being necessary to generate a broad class of compounds of the Maillard reaction during baking and linked to the typical flavour of sponge cake. Copyright © 2013 Elsevier Ltd. All rights reserved.
The Negative Effects of Volatile Sulphur Compounds.
Milella, Lisa
2015-01-01
Oral malodor has been studied extensively in humans but not necessarily to the same degree in our veterinary patients where malodor constitutes a significant problem. Breath malodor may originate from the mouth, or from an extra oral source, originating from other organ systems such as gastrointestinal, respiratory, or even systemic disease. Oral malodor is a result of microbial metabolism of exogenous and endogenous proteinaceous substrates leading to the production of compounds such as indole, skatole, tyramine, cadaverine, puterescine, mercaptans, and sulphides. Volatile sulphur compounds have been shown to be the main cause of oral malodor. Although most clients perceive oral malodor to be primarily a cosmetic problem, there is an increasing volume of evidence in human dental literature demonstrating that volatile sulphur compounds produced by bacteria, even at low concentrations, are toxic to tissues and play a role in the pathogenesis of periodontitis. This article reviews the current available literature in human dentistry looking at these negative effects. No veterinary studies have been conducted looking at the negative effects of volatile sulphur compounds specifically, but as this article highlights, we should be aware of the potential negative effects of volatile sulphur compounds and consider this an area of future research.
Liu, Yuping; Miao, Zhiwei; Guan, Wei; Sun, Baoguo
2012-03-26
The organic volatile flavor compounds in fermented stinky tofu (FST) were studied using SPME-GC/MS. A total of 39 volatile compounds were identified, including nine esters, seven alcohols, five alkenes, four sulfides, three heterocycles, three carboxylic acids, three ketones, two aldehydes, one phenol, one amine and one ether. These compounds were determined by MS, and conformed by comparison of the retention times of the separated constituents with those of authentic samples and by comparison of retention indexes (RIs) of separated constituents with the RIs reported in the literature. The predominant volatile compound in FST was indole, followed by dimethyl trisulfide, phenol, dimethyl disulfide and dimethyl tetrasulfide. In order to find a better extraction time, the extraction times was optimized for each type of SPME fiber; the results show that the best extraction time for Carboxen/PDMS is 60 min, for PDMS/DVB 30 min, for DVB/CAR/PDMS 60 min and for PDMS 75 min. Of the four fibers used in this work, Carboxen/PDMS is found to be the most suitable to extract the organic volatile flavor compounds in fermented stinky tofu.
NASA Astrophysics Data System (ADS)
Boone, E.; Laskin, J.; Laskin, A.; Wirth, C.; Shepson, P. B.; Stirm, B. H.; Pratt, K.
2014-12-01
Organic compounds comprise a significant mass fraction of submicron atmospheric particles with considerable contribution from secondary organic aerosol (SOA), a large fraction of which is formed from the oxidation of biogenic volatile organic compounds. Aqueous-phase reactions in particles and cloud droplets are suggested to increase SOA mass and change the chemical composition the particles following cloud evaporation. Aqueous-phase processing may also explain discrepancies between measurements and models. To gain a better understanding of these processes, cloud water and below-cloud atmospheric particles were collected onboard a research aircraft during the Southeast Oxidants and Aerosol Study (SOAS) over Alabama in June 2013. Nanospray desorption electrospray ionization (nano-DESI) and direct electrospray ionization (ESI) coupled with high resolution mass spectrometry were utilized to compare the organic molecular composition of the particle and cloud water samples, respectively. Several hundred unique compounds have been identified in the particle and cloud water samples, allowing possible aqueous-phase reactions to be examined. Hydrolysis of organosulfate compounds, aqueous-phase formation of nitrogen-containing compounds, and possible fragmentation of oligomeric compounds will be discussed, with comparisons to previous laboratory studies. This study provides insights into aqueous-phase reactions in ambient cloud droplets.
Mandal, Sanchita; Thangarajan, Ramya; Bolan, Nanthi S; Sarkar, Binoy; Khan, Naser; Ok, Yong Sik; Naidu, Ravi
2016-01-01
Ammonia (NH3) volatilization is a major nitrogen (N) loss from the soil, especially under tropical conditions, NH3 volatilization results in low N use efficiency by crops. Incubation experiments were conducted using five soils (pH 5.5-9.0), three N sources such as, urea, di-ammonium phosphate (DAP), and poultry manure (PM) and two biochars such as, poultry litter biochar (PL-BC) and macadamia nut shell biochar (MS-BC). Ammonia volatilization was higher at soil with higher pH (pH exceeding 8) due to the increased hydroxyl ions. Among the N sources, urea recorded the highest NH3 volatilization (151.6 mg kg(-1)soil) followed by PM (124.2 mg kg(-1)soil) and DAP (99 mg kg(-1)soil). Ammonia volatilization was reduced by approximately 70% with PL-BC and MS-BC. The decreased NH3 volatilization with biochars is attributed to multiple mechanisms such as NH3 adsorption/immobilization, and nitrification. Moreover, biochar increased wheat dry weight and N uptake as high as by 24.24% and 76.11%, respectively. This study unravels the immense potential of biochar in decreasing N volatilization from soils and simultaneously improving use efficiency by wheat. Copyright © 2015 Elsevier Ltd. All rights reserved.
Si, Min-Zhen; Zhang, De-Qing; Liu, Ren-Ming
2014-09-01
In order to identify volatile organic compounds of fresh plants at room temperature and avoid sample pretreatment and extractions which can be labor intensive, garlic, Chinese chives and scallion were chopped into pieces. Then some of them were placed in the headspace vial and sealed. The gases were drawn from the vial with a syringe and were injected very slowly into Ag colloids for test using R-3000 portable Raman spectrometer. The spectra of volatile organic compounds of allium species, fresh garlic, Chinese chive and shallot plants were successfully.recorded for the first time. For garlic high intensity bands are present at 307, 399, 569, 711, 1,182, 1,287, 1,397 and 1,622 cm(-1). For Chinese chives the high intensity band is present at 672 cm(-1). Low intensity bands are present at 274, 412, 575, 1,185, 1,289, 1,396, 1,618 cm(-1). For shallot high intensity bands are present at 693 cm(-1). Lower intensity bands are present at 372, 888, 1,023 cm(-1). Low intensity bands are present at 1,088, 1,211 and 1,322 cm(-1). The SERS of diallyl disulfide, allyl methyl sulfide and 1-propanethiol in liquid state and gas state were also obtained. The main volatile organic compound of fresh garlic, Chinese chive and shallot are diallyl disulfide, allyl methyl sulfide and 1-propanethiol respectively, and the volatile organic compound of fresh onion, scallion, shallot and chive are all 1-propanethiol. The presented results illustrate that combining headspace and SERS is a powerful tool for volatile organic compound analysis in fresh plants. The volatile organic compound can be detected in fresh plant samples directly and quickly without extraction.
Zhang, Chun-Yun; Zhang, Qiong; Zhong, Cai-Hong; Guo, Ming-Quan
2016-04-01
A new method for desiccated headspace (DHS) sampling of aqueous sample to GC-MS for the analysis of volatile compounds responsible for kiwifruit aroma in different kiwifruit cultivars has been developed based on the complete hydrate formation between the sample solvent (water) with anhydrous salt (calcium chloride) at an elevated temperature (above the boiling point of the aqueous sample) in a non-contact format, which overcame the water-effect challenge to directly introduce aqueous sample into GC-MS analysis. By means of DHS, the volatile compounds in three different kiwifruit cultivars were analyzed and compared under the optimized operating conditions, mainly time and temperature for headspace equilibration, column temperature program for GC-MS measurement. As a result, 20 peaks of volatile compounds responsible for kiwifruit aroma were detected and remarkable differences were found in the relative contents of three major volatile compounds among the three different kiwifruit cultivars, i.e., acetaldehyde, ethanol and furfural. The DHS sampling technique used in the present method can make the GC-MS analysis of volatile compounds in the aqueous sample within complex matrix possible without contaminating the GC-MS instrument. In terms of the analysis of volatile compounds in kiwifruit, the present method enabled a direct measurement on the filtrate of the aqueous kiwifruit pulp, without intermediate trap phase for the extraction of analytes, which will be more reliable and simpler as compared with any other headspace method in use. Thus, DHS coupled with GC-MS will be a new valuable tool available for the kiwifruit related research and organoleptic quality control. Copyright © 2016 Elsevier B.V. All rights reserved.
Van Kerrebroeck, Simon; Comasio, Andrea; Harth, Henning; De Vuyst, Luc
2018-04-01
This study deals with the detection of volatile compounds originating from the crumb of breads made with sourdoughs obtained through starter culture-initiated fermentations, which differed in flour type (wheat and teff), ingredients (citrate and malate), fermentation time (24h or 72h), and starter culture strains (homo- and heterofermentative lactic acid bacteria species and acetic acid bacteria species) applied. Therefore, selected ion flow tube-mass spectrometry (SIFT-MS) was used. SIFT-MS is an easy-to-use and promising technique in the field of food and flavor analysis. Volatile compounds of crumb samples from the breads with sourdough were measured and compared with those of reference bread crumb samples. In general, sourdough addition had a positive effect on the concentrations of the volatile compounds measured by SIFT-MS. Furthermore, a trend toward higher concentrations of several volatiles was seen upon the addition of sourdoughs that were fermented up to 72h, compared to the addition of sourdoughs that were fermented for a shorter time. Ethanol was the major volatile compound identified tentatively, next to alcohols, aldehydes, esters, terpenes, and heterocyclic compounds. Also acetoin/ethyl acetate could be identified, but these compounds could not be distinguished. Higher alcohols showed an increase upon the use of sourdough fermented for a long time. High concentrations of acetic acid were found in breads made with Gluconobacter oxydans IMDO A845-initiated sourdough, indicating its potential for sourdough production. Breads made with teff sourdoughs were distinct from wheat-based sourdough breads as to their volatile compound profiles. Copyright © 2018 Elsevier Ltd. All rights reserved.
Chen, Fangjiao; Su, Yue; Zhang, Fang; Guo, Yinlong
2015-02-01
The total saccharides content of Lycium barbarum L. is very high, and a high temperature would result in saccharide decomposition and the emergence of a large amount of water. Moreover, the volatile compounds from the fruit of L. barbarum L. are rather low in concentration. Hence, it is difficult for a conventional headspace method to study the volatile compounds from the fruit of L. barbarum L. Since headspace-trap gas chromatography with mass spectrometry is an excellent method for trace analysis, a headspace-trap gas chromatography with mass spectrometry method based on low-temperature (30°C) enrichment and multiple headspace extraction was developed to explore the volatile compounds from the fruit of L. barbarum L. The headspace of the sample was extracted in 17 cycles at 30°C. Each time, the compounds extracted were concentrated in the trap (Tenax TA and Tenax GR, 1:1). Finally, all the volatile compounds were delivered into the gas chromatograph after thermal desorption. With the method described above, a total of 57 compounds were identified. The identification was completed by mass spectral search, retention index, and accurate mass measurement. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Quality of water in the Trinity and Edwards aquifers, south-central Texas, 1996-98
Fahlquist, Lynne; Ardis, Ann F.
2004-01-01
During 1996–98, the U.S. Geological Survey studied surface- and ground-water quality in south-central Texas. The ground-water components included the upper and middle zones (undifferentiated) of the Trinity aquifer in the Hill Country and the unconfined part (recharge zone) and confined part (artesian zone) of the Edwards aquifer in the Balcones fault zone of the San Antonio region. The study was supplemented by information compiled from four ground-water-quality studies done during 1996–98.Trinity aquifer waters are more mineralized and contain larger dissolved solids, sulfate, and chloride concentrations compared to Edwards aquifer waters. Greater variability in water chemistry in the Trinity aquifer likely reflects the more variable lithology of the host rock. Trace elements were widely detected, mostly at small concentrations. Median total nitrogen was larger in the Edwards aquifer than in the Trinity aquifer. Ammonia nitrogen was detected more frequently and at larger concentrations in the Trinity aquifer than in the Edwards aquifer. Although some nitrate nitrogen concentrations in the Edwards aquifer exceeded a U.S. Geological Survey national background threshold concentration, no concentrations exceeded the U.S. Environmental Protection Agency public drinking-water standard.Synthetic organic compounds, such as pesticides and volatile organic compounds, were detected in the Edwards aquifer and less frequently in the Trinity aquifer, mostly at very small concentrations (less than 1 microgram per liter). These compounds were detected most frequently in urban unconfined Edwards aquifer samples. Atrazine and its breakdown product deethylatrazine were the most frequently detected pesticides, and trihalomethanes were the most frequently detected volatile organic compounds. Widespread detections of these compounds, although at small concentrations, indicate that anthropogenic activities affect ground-water quality.Radon gas was detected throughout the Trinity aquifer but not throughout the Edwards aquifer. Fourteen samples from the Trinity aquifer and 10 samples from the Edwards aquifer exceeded a proposed U.S. Environmental Protection Agency public drinking-water standard. Sources of radon in the study area might be granitic sediments underlying the Trinity aquifer and igneous intrusions in and below the Edwards aquifer.The presence of tritium in nearly all Edwards aquifer samples indicates that some component of sampled water is young (less than about 50 years), even for long flow paths in the confined zone. About one-half of the Trinity aquifer samples contained tritium, indicating that only part of the aquifer contains young water.Hydrogen and oxygen isotopes of water provide indicators of recharge sources to the Trinity and Edwards aquifers. Most ground-water samples have a meteorological isotopic signature indicating recharge as direct infiltration of water with little residence time on the land surface. Isotopic data from some samples collected from the unconfined Edwards aquifer indicate the water has undergone evaporation. At the time that ground-water samples were collected (during a drought), nearby streams were the likely sources of recharge to these wells.
Kim, Young Joo; Park, Sung Yong; Lee, Hong Chul; Yoo, Seung Seok; Oh, Sejong; Kim, Kwang Hyun; Chin, Koo Bok
2016-01-01
The objective of this study was to investigate the effects of mixed starter cultures isolated from kimchi on physicochemical properties, functionality and flavors of fermented ham. Physicochemical properties, microbial counts, shear force, cholesterol contents and volatile compounds of fermented ham were investigated during processing (curing and ripening time). Curing process for 7 d increased saltiness, however, decreased hunter color values (L, a, and b values). Ripening process for 21 d increased most parameters, such as saltiness, color values, weight loss, shear force and cholesterol content due to the drying process. The mixed starter culture had higher lactic acid bacteria than the commercial one. While eight volatile compounds were identified from fermented hams during curing process, total fiftyeight volatile compounds were identified from fermented hams during ripening process. The main volatile compounds were alcohols, esters and furans. However, no differences in volatile compounds were observed between two batches. Fermented hams (batch B) manufactured with probiotic starter culture (LPP) had higher sensory score in texture, color and overall acceptability than counterparts (batch A), while the opposite trend was observed in flavor. Therefore, mixed probiotic starter culture isolated from kimchi might be used as a starter culture to be able to replace with commercial starter culture (LK-30 plus) for the manufacture of fermented ham.
Yoo, Seung Seok
2016-01-01
The objective of this study was to investigate the effects of mixed starter cultures isolated from kimchi on physicochemical properties, functionality and flavors of fermented ham. Physicochemical properties, microbial counts, shear force, cholesterol contents and volatile compounds of fermented ham were investigated during processing (curing and ripening time). Curing process for 7 d increased saltiness, however, decreased hunter color values (L, a, and b values). Ripening process for 21 d increased most parameters, such as saltiness, color values, weight loss, shear force and cholesterol content due to the drying process. The mixed starter culture had higher lactic acid bacteria than the commercial one. While eight volatile compounds were identified from fermented hams during curing process, total fiftyeight volatile compounds were identified from fermented hams during ripening process. The main volatile compounds were alcohols, esters and furans. However, no differences in volatile compounds were observed between two batches. Fermented hams (batch B) manufactured with probiotic starter culture (LPP) had higher sensory score in texture, color and overall acceptability than counterparts (batch A), while the opposite trend was observed in flavor. Therefore, mixed probiotic starter culture isolated from kimchi might be used as a starter culture to be able to replace with commercial starter culture (LK-30 plus) for the manufacture of fermented ham. PMID:27499673
NASA Astrophysics Data System (ADS)
Lee, Kyung Haeng; Yun, Hyejeong; Lee, Ju Woon; Ahn, Dong Uk; Lee, Eun Joo; Jo, Cheorun
2012-08-01
Irradiation is the most efficient non-thermal technology for improving hygienic quality and extending the shelf-life of food products. One of the adverse effects of food irradiation, however, is off-flavor production, which significantly affects the sensory preferences for certain foods. In this study, garlic (5%, w/w) and red wine (1:1, w/w) were added to ground beef to increase the radiation sensitivity of pathogens and improve meat odor/flavor. Samples were irradiated at 0 or 5 kGy in the presence of charcoal pack. SPME-GC-MS analysis was performed to measure the changes in the volatile compounds and sensory characteristics of the samples. The amount of total volatile compounds produced from ground beef was greater when the sample was irradiated. When garlic and red wine were added to the ground beef, the amount of volatile compounds significantly increased, and the amount of volatile compounds increased even further after irradiation. However, when the samples were irradiated with charcoal pack, the amount of volatile compounds decreased significantly. Sensory evaluation indicated that charcoal pack significantly increased the odor preferences for both irradiated and non-irradiated ground beef added with garlic. These results indicated that addition of charcoal pack to ground beef could reduce off-odor problems induced by irradiation, and this effect was consistent even when certain additives such as garlic and red wine were added.
NASA Technical Reports Server (NTRS)
Bodek, Itamar; Ehntholt, Daniel J.; Stolki, Thomas J.; Trabanino, Rudy; Hinsdale, Lloyd; Webb, Johanna; Sauer, Richard L.
1992-01-01
The Volatile Organics Concentrator (VOC) system, designed to attach to a gas chromatograph/mass spectrometer (GC/MS) for the analyses of volatile organic compounds in water on Space Station Freedom, is described. Organic volatiles are collected and concentrated in the VOC by means of two primary solid sorbent tubes and desorbed into the GC/MS system. The paper describes the results of testing the VOC breadboard using a GC/MS system. Evaluations performed on 39 organic compounds recovered from water samples were compared with data for these compounds using direct injection/GC/MS and purge and trap/GC/MS procedures. The results demonstrate that the VOC/GC/MS system's detection limits for the 39 compounds analyzed are comparable to those of the EPA Method 524.2, and for many compounds reaching a factor of 5 lower.
da Rocha, Renier Felinto Julião; da Silva Araújo, Ídila Maria; de Freitas, Sílvia Maria; Dos Santos Garruti, Deborah
2017-11-01
Optimization of the extraction conditions to investigate the volatile composition of papaya fruit involving headspace solid phase micro-extraction was carried out using multivariate strategies such as factorial design and response surface methodology. The performance of different combinations of time for reaching the equilibrium in the headspace and time for maximum extraction of volatiles was evaluated by GC-olfactometry of the extract (intensity of papaya characteristic aroma), number of peaks and total area in the chromatogram. Thirty-two compounds were identified by GC-MS under the optimized extraction conditions, the majority of which were aldehydes, both in number of compounds and area. Major compounds were δ-octalactone, β-citral, benzaldehyde, heptanal, benzyl isothiocyanate, isoamyl acetate, γ-octalactone, (E)-linalool oxide and benzyl alcohol. Seven aldehydes and two other compounds are reported for the first time in papaya's volatile profile.
Ben Hammouda, Ibtissem; Freitas, Flavia; Ammar, Sonda; Da Silva, M D R Gomes; Bouaziz, Mohamed
2017-11-15
The formation and emission of volatile compounds, including the aldehydes and some toxic compounds of oil samples, ROPO pure (100%) and the blended ROPO/RCO (80-20%), were carried out during deep frying at 180°C. The volatile profile of both oil samples was evaluated by an optimized HS-SPME-GC/MS method, before and after 20, 40 and 60 successive sessions of deep-frying. Actually, from 100 detected compounds, aldehydes were found to be the main group formed. In addition, the oil degradation under thermal treatment regarding the volatile compounds were evaluated and compared. Consequently, the blended ROPO/RCO revealed fewer formations of unsaturated aldehydes, including toxic ones, such as acrolein, and showed a greater stability against oxidative thermal degradation compared to ROPO pure. Copyright © 2017 Elsevier B.V. All rights reserved.
Lawrence, Stephen J.
2006-01-01
This report provides abridged information describing the most salient properties and biodegradation of 27 chlorinated volatile organic compounds detected during ground-water studies in the United States. This information is condensed from an extensive list of reports, papers, and literature published by the U.S. Government, various State governments, and peer-reviewed journals. The list includes literature reviews, compilations, and summaries describing volatile organic compounds in ground water. This report cross-references common names and synonyms associated with volatile organic compounds with the naming conventions supported by the International Union of Pure and Applied Chemistry. In addition, the report describes basic physical characteristics of those compounds such as Henry's Law constant, water solubility, density, octanol-water partition (log Kow), and organic carbon partition (log Koc) coefficients. Descriptions and illustrations are provided for natural and laboratory biodegradation rates, chemical by-products, and degradation pathways.
Vapor intrusion refers to the situation in which harmful chemicals [such as halogenated or chlorinated volatile organic compounds (VOC) or petroleum products] in the groundwater or soil volatilize in the vadose zone and migrate into the indoor environment. These chemicals typical...
The relationship between continuous measurements of volatile organic compounds sources and particle number was evaluated at a Photochemical Assessment Monitoring Station Network (PAMS) site located near the U.S.-Mexico Border in central El Paso, TX. Sources of volatile organic...
Recent advances in research on volatile aroma compounds in tomatoes and their impacting factors
USDA-ARS?s Scientific Manuscript database
Aroma is an important sensory attribute of tomatoes. Tomato aroma is formed by a complex mixture of more than 400 volatile compounds, and it plays an important role in the classification and consumer acceptability of tomato products. This article provides a brief overview of the volatile aroma compo...
NASA Astrophysics Data System (ADS)
Stan, M.; Soran, M. L.; Varodi, C.; Lung, I.; Copolovici, L.; MǎruÅ£oiu, C.
2013-11-01
Parsley (Petroselinum crispum), dill (Anethum graveolens) and celery (Apium graveolens), three aromatic plants belonging to the Apiaceae (Umbelliferae) botanical family, were selected as sources of essential or volatile oils. Essential oils are composed of a large diversity of volatile aroma compounds. Plant-derived essential oils and extracts have long been used as natural agents in food preservation, pharmaceuticals and medicinal therapies. In the present study, the plant extracts from leaves of parsley, dill and celery, were obtained by maceration, ultrasound-assisted extraction and microwave-assisted extraction. All extractions were performed at 30°C, using different solvents (ethanol, diethyl ether, n-hexane) and solvent mixtures (1:1, v/v). The most effective solvent system for the extraction of volatile aroma compounds was diethyl ether - n-hexane (1:1, v/v). Extraction efficiency and determination of aroma volatiles were performed by GC-FID and GC-MS, respectively. The major volatile compounds present in plant extracts were myristicin, α-phellandrene, β-phellandrene, 1,3,8-p-menthatriene, apiol, dill ether and allyl phenoxyacetate.
Liu, Yu; Zhang, Ying; Yang, Wen-ting; Li, Zhi-xian; Guan, Ao-mei
2015-03-01
A four-year (2010-2013) field experiment was carried out to explore the effects of three planting patterns (sugarcane, soybean monoculture and sugarcane-soybean 1:2 intercropping) with two nitrogen input levels (300 and 525 kg . hm-2) on soybean nitrogen fixation, sugarcane and soybean nitrogen accumulation, and ammonia volatilization and nitrogen leaching in sugarcane field. The results showed that the soybean nitrogen fixation efficiency (NFE) of sugarcane-soybean inter-cropping was lower than that of soybean monoculture. There was no significant difference in NFE among the treatments with the two nitrogen application rates. The nitrogen application rate and inter-cropping did not remarkably affect nitrogen accumulation of sugarcane and soybean. The ammonia volatilization of the reduced nitrogen input treatment was significantly lower than that of the conventional nitrogen input treatment. Furthermore, there was no significant difference in nitrogen leaching at different nitrogen input levels and among different planting patterns. The sugarcane field nitrogen balance analysis indicated that the nitrogen application rate dominated the nitrogen budget of sugarcane field. During the four-year experiment, all treatments leaved a nitrogen surplus (from 73.10 to 400.03 kg . hm-2) , except a nitrogen deficit of 66.22 kg . hm-2 in 2011 in the treatment of sugarcane monoculture with the reduced nitrogen application. The excessive nitrogen surplus might increase the risk of nitrogen pollution in the field. In conclusion, sugarcane-soybean intercropping with reduced nitrogen application is feasible to practice in consideration of enriching the soil fertility, reducing nitrogen pollution and saving production cost in sugarcane field.
Chou, I.-Ming; Lake, M.A.; Griffin, R.A.
1988-01-01
A Pyroprobe flash pyrolysis-gas chromatograph equipped with a flame photometric detector was used to study volatile sulfur compounds produced during the thermal decomposition of Illinois coal, coal macerals and coal-derived pyrite. Maximum evolution of volatile organic sulfur compounds from all coal samples occurred at a temperature of approximately 700??C. At this temperature, the evolution of thiophene, its alkyl isomers, and short-chain dialkyl sulfide compounds relative to the evolution of benzothiophene and dibenzothiophene compounds was greater from coal high in organic sulfur than from coal low in organic sulfur. The variation in the evolution of sulfur compounds observed for three separate coal macerals (exinite, vitrinite, and inertinite) was similar to that observed for whole coal samples. However, the variation trend for the macerals was much more pronounced. Decomposition of coal-derived pyrite with the evolution of elemental sulfur was detected at a temperature greater than 700??C. The results of this study indicated that the gas chromotographic profile of the volatile sulfur compounds produced during flash pyrolysis of coals and coal macerals varied as a function of the amount of organic sulfur that occurred in the samples. Characterization of these volatile sulfur compounds provides a better understanding of the behavior of sulfur in coal during the thermolysis process, which could be incorporated in the design for coal cleaning using flash pyrolysis techniques. ?? 1988.
Pankow, J.F.; Rathbun, R.E.; Zogorski, J.S.
1996-01-01
Large amounts of the 'fuel-oxygenate' compound methyl-tert-butyl ether (MTBE) are currently being used in gasoline to reduce carbon monoxide and ozone in urban air and to boost fuel octane. Because MTBE can be transported to surface waters in various ways, established theory was used to calculate half-lives for MTBE volatilizing from flowing surface waters. Similar calculations were made for benzene as a representative of the 'BTEX' group of compounds (benzene, toluene, ethyl benzene, and the xylenes), and for tert-butyl alcohol (TBA). The calculations were made as a function of the mean flow velocity u (m/day), the mean flow depth h (m), the ambient temperature, and the wind speed. In deep, slow-moving flows, MTBE volatilizes at rates which are similar to those for the BTEX compounds. In shallow, fast-moving flows, MTBE volatilizes more slowly than benzene, though in such flows both MTBE and benzene volatilize quickly enough that these differences may often not have much practical significance. TBA was found to be essentially nonvolatile from water.
Volatile sulphur compounds in UHT milk.
Al-Attabi, Z; D'Arcy, B R; Deeth, H C
2009-01-01
Several volatile sulphur compounds have been detected in raw and processed milk. These are hydrogen sulphide, methanethiol, carbonyl sulphide, dimethyl sulphide, carbon disulphide, dimethyl disulphide, dimethyl trisulphide, dimethyl sulphoxide, and dimethyl sulphone. Many of these increase in milk during heat processing and are associated with the cooked flavor of heat-treated milks, particularly UHT and sterilized milk. Several researchers have attempted to explain the origin of these volatiles in both raw and processed milk, and how to reduce the associated cooked flavor that has a negative impact on consumer acceptability of processed milk. These compounds are difficult to detect and analyze due to their high volatility, sensitivity to oxidation and heat, and in some cases, their very low concentrations. However, methods of detection and quantification have improved in recent years. Pre-concentration methods such as solid phase microextraction (SPME) together with gas chromatography equipped with sulphur-selective detectors now enable low concentrations of these compounds to be analyzed. In this review, methods of extraction and analyzes of these volatile sulphur compounds are compared, and their occurrence in milk is reviewed.
Cellini, Antonio; Buriani, Giampaolo; Rocchi, Lorenzo; Rondelli, Elena; Savioli, Stefano; Rodriguez Estrada, Maria T; Cristescu, Simona M; Costa, Guglielmo; Spinelli, Francesco
2018-01-01
Volatile organic compounds emitted during the infection of apple (Malus pumila var. domestica) plants by Erwinia amylovora or Pseudomonas syringae pv. syringae were studied by gas chromatography-mass spectrometry and proton transfer reaction-mass spectrometry, and used to treat uninfected plants. Infected plants showed a disease-specific emission of volatile organic compounds, including several bio-active compounds, such as hexenal isomers and 2,3-butanediol. Leaf growth promotion and a higher resistance to the pathogen, expressed as a lower bacterial growth and migration in plant tissues, were detected in plants exposed to volatile compounds from E. amylovora-infected plants. Transcriptional analysis revealed the activation of salicylic acid synthesis and signal transduction in healthy plants exposed to volatiles produced by E. amylovora-infected neighbour plants. In contrast, in the same plants, salicylic acid-dependent responses were repressed after infection, whereas oxylipin metabolism was activated. These results clarify some metabolic and ecological aspects of the pathogenic adaptation of E. amylovora to its host. © 2016 BSPP AND JOHN WILEY & SONS LTD.
Nonvolatile, semivolatile, or volatile: redefining volatile for volatile organic compounds.
Võ, Uyên-Uyén T; Morris, Michael P
2014-06-01
Although widely used in air quality regulatory frameworks, the term "volatile organic compound" (VOC) is poorly defined. Numerous standardized tests are currently used in regulations to determine VOC content (and thus volatility), but in many cases the tests do not agree with each other, nor do they always accurately represent actual evaporation rates under ambient conditions. The parameters (time, temperature, reference material, column polarity, etc.) used in the definitions and the associated test methods were created without a significant evaluation of volatilization characteristics in real world settings. Not only do these differences lead to varying VOC content results, but occasionally they conflict with one another. An ambient evaporation study of selected compounds and a few formulated products was conducted and the results were compared to several current VOC test methodologies: SCAQMD Method 313 (M313), ASTM Standard Test Method E 1868-10 (E1868), and US. EPA Reference Method 24 (M24). The ambient evaporation study showed a definite distinction between nonvolatile, semivolatile, and volatile compounds. Some low vapor pressure (LVP) solvents, currently considered exempt as VOCs by some methods, volatilize at ambient conditions nearly as rapidly as the traditional high-volatility solvents they are meant to replace. Conversely, bio-based and heavy hydrocarbons did not readily volatilize, though they often are calculated as VOCs in some traditional test methods. The study suggests that regulatory standards should be reevaluated to more accurately reflect real-world emission from the use of VOC containing products. The definition of VOC in current test methods may lead to regulations that exclude otherwise viable alternatives or allow substitutions of chemicals that may limit the environmental benefits sought in the regulation. A study was conducted to examine volatility of several compounds and a few formulated products under several current VOC test methodologies and ambient evaporation. This paper provides ample evidence to warrant a reevaluation of regulatory standards and provides a framework for progressive developments based on reasonable and scientifically justifiable definitions of VOCs.
NASA Astrophysics Data System (ADS)
Kim, Hyun-Wook; Lee, Soo-Yeon; Hwang, Ko-Eun; Song, Dong-Heon; Kim, Yong-Jae; Ham, Yun-Kyung; Lee, Choong-Hee; Choi, Yun-Sang; Lee, Ju-Woon; Kim, Cheon-Jei
2014-10-01
The objective of this study is to determine the effect of soy sauce on volatile compounds and lipid oxidation of cooked irradiated beef patties. Sulfur-containing volatile components, which are produced by irradiation, were not found in all treatments. Volatile components derived from soy sauce, such as 3-hydroxy-2-butanone, acetic acid, 3-methyl-1-butanol and 2-methyl-1-butanol, were detected in beef patties containing soy sauce regardless of irradiation and packaging method. Volatile aldehydes, including hexanal, significantly decreased the irradiated beef patty prepared with soy sauce compared to those of irradiated beef patty made with NaCl at 1 day and 5 days after irradiation. In addition, combined use of vacuum packaging and soy sauce treatments could inhibit the formation of volatile compounds and 2-thiobarbituric acid reactive substances during chilled storage. Therefore, the use of soy sauce in cooked and irradiated beef could reduce the production of volatile components associated with the irradiation-induced off-flavor and lipid oxidation.
Olivares, Alicia; Navarro, José Luis; Flores, Mónica
2015-03-01
The objective of this study was to characterize naturally fermented dry sausages produced without the use of microbial starters and to determine which odour-active compounds are responsible for their aroma. The traditional manufacture was responsible for different chemical characteristics and consumer's acceptance. The volatile compounds detected in the headspace comprised a complex mixture of volatile compounds derived from bacterial metabolism (mainly esterase activity of Staphyloccoci), spices and lipid auto-oxidation. The odour-active volatile compounds were identified using gas chromatography coupled to olfactometry (GC-O) using the detection frequency method. The aroma profile was characterized by the presence of several compounds such as acetic acid, ethyl butanoate, hexanal, methional, 1-octen-3-ol, benzeneacetaldehyde and 4-methyl-phenol. However, naturally fermented sausages were also characterized by numerous esters, both ethyl and methyl esters, which impart a wide variety of fruity notes. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Ortiz, Américo; Ortiz, Aristófeles; Vega, Fernando E; Posada, Francisco
2004-09-22
The analysis of volatile emissions of coffee berries in different physiological states of ripeness was performed using dynamic headspace and gas chromatography/mass spectrometry analysis for Coffea arabica, var. Colombia. The composition of the volatiles emitted by coffee berries is dominated by very high levels of alcohols, mainly ethanol, in all stages of ripeness in comparison with other compounds. Overripe coffee berries have high volatile emissions and show a composition dominated mainly by esters followed by alcohols, ketones, and aldehydes. The lowest level compounds were monoterpenes. 2-Methyl furan was detected in various ripening stages; this compound has not been previously reported as a coffee berry volatile. The presence of ethanol and other alcohols in the volatile composition might explain the effectiveness of using traps with mixed alcohols for detection and capture of coffee berry borers.
Godoy, Liliana; Vera-Wolf, Patricia; Martinez, Claudio; Ugalde, Juan A; Ganga, María Angélica
2016-09-28
Brettanomyces bruxellensis has been described as the main contaminant yeast in wine production, due to its ability to convert the hydroxycinnamic acids naturally present in the grape phenolic derivatives, into volatile phenols. Currently, there are no studies in B. bruxellensis which explains the resistance mechanisms to hydroxycinnamic acids, and in particular to p-coumaric acid which is directly involved in alterations to wine. In this work, we performed a transcriptome analysis of B. bruxellensis LAMAP248rown in the presence and absence of p-coumaric acid during lag phase. Because of reported genetic variability among B. bruxellensis strains, to complement de novo assembly of the transcripts, we used the high-quality genome of B. bruxellensis AWRI1499, as well as the draft genomes of strains CBS2499 and0 g LAMAP2480. The results from the transcriptome analysis allowed us to propose a model in which the entrance of p-coumaric acid to the cell generates a generalized stress condition, in which the expression of proton pump and efflux of toxic compounds are induced. In addition, these mechanisms could be involved in the outflux of nitrogen compounds, such as amino acids, decreasing the overall concentration and triggering the expression of nitrogen metabolism genes.
Godoy, Liliana; Vera-Wolf, Patricia; Martinez, Claudio; Ugalde, Juan A.; Ganga, María Angélica
2016-01-01
Brettanomyces bruxellensis has been described as the main contaminant yeast in wine production, due to its ability to convert the hydroxycinnamic acids naturally present in the grape phenolic derivatives, into volatile phenols. Currently, there are no studies in B. bruxellensis which explains the resistance mechanisms to hydroxycinnamic acids, and in particular to p-coumaric acid which is directly involved in alterations to wine. In this work, we performed a transcriptome analysis of B. bruxellensis LAMAP248rown in the presence and absence of p-coumaric acid during lag phase. Because of reported genetic variability among B. bruxellensis strains, to complement de novo assembly of the transcripts, we used the high-quality genome of B. bruxellensis AWRI1499, as well as the draft genomes of strains CBS2499 and0 g LAMAP2480. The results from the transcriptome analysis allowed us to propose a model in which the entrance of p-coumaric acid to the cell generates a generalized stress condition, in which the expression of proton pump and efflux of toxic compounds are induced. In addition, these mechanisms could be involved in the outflux of nitrogen compounds, such as amino acids, decreasing the overall concentration and triggering the expression of nitrogen metabolism genes. PMID:27678167
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gold, D.R.
1992-06-01
This article summarizes the health effects of indoor air pollutants and the modalities available to control them. The pollutants discussed include active and passive exposure to tobacco smoke; combustion products of carbon monoxide; nitrogen dioxide; products of biofuels, including wood and coal; biologic agents leading to immune responses, such as house dust mites, cockroaches, fungi, animal dander, and urine; biologic agents associated with infection such as Legionella and tuberculosis; formaldehyde; and volatile organic compounds. An approach to assessing building-related illness and tight building' syndrome is presented. Finally, the article reviews recent data on hospital-related asthma and exposures to potential respiratorymore » hazards such as antineoplastic agents, anesthetic gases, and ethylene oxide.88 references.« less
Health Effects of Ambient Air Pollution in Developing Countries.
Mannucci, Pier Mannuccio; Franchini, Massimo
2017-09-12
The deleterious effects of ambient air pollution on human health have been consistently documented by many epidemiologic studies worldwide, and it has been calculated that globally at least seven million deaths are annually attributable to the effects of air pollution. The major air pollutants emitted into the atmosphere by a number of natural processes and human activities include nitrogen oxides, volatile organic compounds, and particulate matter. In addition to the poor ambient air quality, there is increasing evidence that indoor air pollution also poses a serious threat to human health, especially in low-income countries that still use biomass fuels as an energy resource. This review summarizes the current knowledge on ambient air pollution in financially deprived populations.
Yener, Sine; Navarini, Luciano; Lonzarich, Valentina; Cappellin, Luca; Märk, Tilmann D; Bonn, Günther K; Biasioli, Franco
2016-09-01
This study applies proton transfer reaction time-of-flight mass spectrometry for the rapid analysis of volatile compounds released from single coffee beans. The headspace volatile profiles of single coffee beans (Coffeea arabica) from different geographical origins (Brazil, Guatemala and Ethiopia) were analyzed via offline profiling at different stages of roasting. The effect of coffee geographical origin was reflected on volatile compound formation that was supported by one-way ANOVA. Clear origin signatures were observed in the formation of different coffee odorants. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Chen, Zhi-Yao; Feng, Yun-Zi; Cui, Chun; Zhao, Hai-Feng; Zhao, Mou-Ming
2015-08-15
Two kinds of soy sauces were prepared with Aspergillus oryzae koji (SSAO) and mixed koji (SSAOM, A. oryzae mouldstarter:Monascus purpureus mouldstarter = 1:2, w/w) respectively. The effects of mixed koji on the essential indices, oxygen radical absorption capacity, color indices, free amino acids and volatile compounds of soy sauce have been studied, followed by a sensory evaluation between SSAO and SSAOM. The contents of non-salt soluble solid, reducing sugar, total acid, total nitrogen and amino nitrogen in SSAOM increased by 21.50%, 9.88%, 15.35%, 5.98% and 41.43%, respectively, compared with the control SSAO, owing to the higher activities of acid protease and glucoamylase in the mixed koji. Moreover, SSAOM showed higher antioxidant activity, higher levels of free amino acids and much more attractive color. Meanwhile, flavor groups such as esters, aldehydes, pyrazines and sulfur-containing compounds in SSAOM were also improved. The contents of free amino acids and aroma compounds were consistent with the sensory evaluation. According to descriptive sensory analysis, SSAOM showed higher intensity for sweet and umami attributes; in addition, higher flowery, burnt, fruity and caramel-like attributes were perceived in SSAOM, while SSAO showed higher ethanolic and sour attributes. The investigated soy sauce prepared with mixed koji can be considered as an effective method to accelerate the fermentation process and improve the flavor of soy sauce. © 2014 Society of Chemical Industry.
Gong, Wei-Wei; Zhang, Yi-Sheng; He, Ling-Yan; Luan, Sheng-Ji
2011-02-01
In order to obtain ammonia volatilization flux and volatilization loss rate in the vegetable field and investigate their relationship with environmental factors, an on-line monitoring system was used to measure the ammonia volatilization in the vegetable (Brassica rapa L. and lettuce) field after urea application during January to September, 2009. The system included a wind tunnel system, a gas collector and an online analyzer system with ion chromatography. The time resolution of measurement was 15 min. The recovery of the system was (92.6 +/- 3.4)%; the accumulated ammonia volatilization within 15 d continuous sampling after fertilization was regarded as the total loss. The accumulated ammonia volatilization of 12 d continuous sampling after fertilization accounted for (85.4 +/- 5.2)% of the total volatilization. The ammonia volatilization loss of broadcasting basal dressing and top dressing for Brassica rapa L. were 23.6% and 21.3%, respectively. The ammonia volatilization loss of holing basal dressing and top dressing for lettuce were 17.6% and 24.0%, respectively. The ammonia volatilization in the vegetable field mostly occurred in the first 2-3 weeks after fertilization. The ammonia volatilization flux had significant positive correlation with the nitrogen application rate, while the ammonia volatilization loss rate had negative correlation with the nitrogen application rate. The ammonia volatilization flux was positively correlated with the soil temperature (r = 0.041, p < 0.05) and the air temperature (r = 0.049, p < 0.01), while not significantly associated with the air humidity and the soil moisture. Temperature was found to be a main factor influencing the ammonia volatilization in the vegetable field.
Some Properties of Fresh and Ripened Traditional Akcakatik Cheese
2018-01-01
Akcakatik cheese (yogurt cheese) is produced by drying strained yogurt with or without adding cloves or black cumin. The main objective of this study was to detect the properties of both fresh and ripened Akcakatik cheeses and to compare them. For this purpose the biogenic amine content, volatile flavor compounds, protein degradation level, chemical properties and some microbiological properties of 15 Akcakatik cheese samples were investigated. Titratable acidity, total dry matter, NaCl, total nitrogen, water soluble nitrogen, ripened index, histamine, diacetyl and acetaldehyde levels were found to be higher in ripened cheese samples than in fresh cheese samples. On the other hand, the clove and black cumin ratios were found to be higher in the fresh cheese samples. Sodium dodecyl sulphate polyacrylamide gel electropherograms of cheese samples showed that protein degradation was higher in ripened cheese samples than in fresh samples, as expected. The dominant Lactic acid bacteria (LAB) flora of Akcakatik cheese samples were found to be Streptococcus salivarius subsp. thermophilus and Lactobacillus delbrueckii subsp. bulgaricus. PMID:29725229
Application of microwave energy in the control of DPM, oxides of nitrogen and VOC emissions
NASA Astrophysics Data System (ADS)
Pallavkar, Sameer M.
The emissions of DPM (diesel particulate matter), NOx (oxides of nitrogen), and toxic VOCs (volatile organic compounds) from diesel engine exhaust gases and other sources such as chemical process industry and manufacturing industry have been a great environmental and health concern. Most control technologies for these emissions require elevated temperatures. The use of microwave energy as a source of heat energy, however, has not been fully explored. In this study, the microwave energy was used as the energy source in three separate emission control processes, namely, the regeneration of diesel particulate filter (DPF) for DPM control, the NOx reduction using a platinum catalyst, and the VOC destruction involving a ceramic based material. The study has demonstrated that microwave heating is an effective method in providing heat for the studied processes. The control efficiencies associated with the microwave-assisted processes have been observed to be high and acceptable. Further research, however, is required for the commercial use of these technologies.
Lee, Alex K Y; Zhao, Ran; Li, Richard; Liggio, John; Li, Shao-Meng; Abbatt, Jonathan P D
2013-11-19
In the atmosphere, volatile organic compounds such as glyoxal can partition into aqueous droplets containing significant levels of inorganic salts. Upon droplet evaporation, both the organics and inorganic ions become highly concentrated, accelerating reactions between them. To demonstrate this process, we investigated the formation of organo-nitrogen and light absorbing materials in evaporating droplets containing glyoxal and different ammonium salts including (NH4)2SO4, NH4NO3, and NH4Cl. Our results demonstrate that evaporating glyoxal-(NH4)2SO4 droplets produce light absorbing species on a time scale of seconds, which is orders of magnitude faster than observed in bulk solutions. Using aerosol mass spectrometry, we show that particle-phase organics with high N:C ratios were formed when ammonium salts were used, and that the presence of sulfate ions promoted this chemistry. Since sulfate can also significantly enhance the Henry's law partitioning of glyoxal, our results highlight the atmospheric importance of such inorganic-organic interactions in aqueous phase aerosol chemistry.
Evaluation of Land Use Regression Models for Nitrogen Dioxide and Benzene in Four US Cities
Mukerjee, Shaibal; Smith, Luther; Neas, Lucas; Norris, Gary
2012-01-01
Spatial analysis studies have included the application of land use regression models (LURs) for health and air quality assessments. Recent LUR studies have collected nitrogen dioxide (NO2) and volatile organic compounds (VOCs) using passive samplers at urban air monitoring networks in El Paso and Dallas, TX, Detroit, MI, and Cleveland, OH to assess spatial variability and source influences. LURs were successfully developed to estimate pollutant concentrations throughout the study areas. Comparisons of development and predictive capabilities of LURs from these four cities are presented to address this issue of uniform application of LURs across study areas. Traffic and other urban variables were important predictors in the LURs although city-specific influences (such as border crossings) were also important. In addition, transferability of variables or LURs from one city to another may be problematic due to intercity differences and data availability or comparability. Thus, developing common predictors in future LURs may be difficult. PMID:23226985
Evaluation of compliance with national legislation on emissions in Portugal.
Gomes, João F P
2005-04-01
More than 13 years after publication of the first air quality laws in Portugal and more than 10 years after the publication of the respective emission limits, it seems appropriate to analyze the degree of compliance by the Portuguese manufacturing industry. Using the data from emission measurements made regularly by the Instituto de Soldadura e Qualidade, the only officially accredited laboratory according to standard ISO 17025, I analyzed a set of approximately 400 sources in terms of compliance with the emission limits regarding total suspended particulates, sulfur dioxide, nitrogen oxides, and volatile organic compounds. I evaluated compliance through a nondimensional parameter and plotted it versus the emission flow rate to derive conclusions: the results indicate that emission limits are generally met regarding sulfur dioxide and nitrogen oxides but not for the other pollutants considered in this study. However, noncompliance occurs mainly for very low emission flow rates, which suggests some alterations in the emission limits, which are being revised at the moment. These alterations will include the exemption of measurements in minor sources.
Identification of Campylobacter infection in chickens from volatile faecal emissions.
Garner, Catherine E; Smith, Stephen; Elviss, Nicola C; Humphrey, Tom J; White, Paul; Ratcliffe, Norman M; Probert, Christopher S
2008-06-01
Volatile organic compounds from chicken faeces were investigated as biomarkers for Campylobacter infection. Campylobacter are major poultry-borne zoonotic pathogens, colonizing the avian intestinal tract. Chicken faeces are the principal source of contamination of carcasses. Fresh faeces were collected on farm sites, and Campylobacter status established microbiologically. Volatile organic compounds were pre-concentrated from the headspace above 71 separate faecal samples using solid-phase microextraction and separated and identified by gas chromatography/mass spectrometry. A Campylobacter-specific profile was identified using six of the extracted volatile organic compounds. The model developed reliably identified the presence or absence of Campylobacter in >95% of chickens. The volatile biomarker identification approach for assessing avian infection is a novel approach to enhancing biosecurity in the poultry industry and should reduce the risk of disease transmission to humans.
2014-01-01
Volatile components in cape gooseberry fruit at ripe stage were collected using headspace-solid phase microextraction, and analyzed by gas chromatography-mass spectrometry. Three solid phase microextraction fiber coatings (DVB/CAR/PDMS, CAR/PDMS, and PDMS/DVB) were tested for evaluation of volatile compounds. DVB/CAR/PDMS fiber showed a strong extraction capacity for volatile compounds and produced the best result in case of total peak areas. A total of 133 volatile compounds were identified in fruit pulp; among them 1-hexanol (6.86%), eucalyptol (6.66%), ethyl butanoate (6.47%), ethyl octanoate (4.01%), ethyl decanoate (3.39%), 4-terpineol (3.27%), and 2-methyl-1-butanol (3.10%) were the major components in the sample extracts. PMID:24741358
Yilmaztekin, Murat
2014-01-01
Volatile components in cape gooseberry fruit at ripe stage were collected using headspace-solid phase microextraction, and analyzed by gas chromatography-mass spectrometry. Three solid phase microextraction fiber coatings (DVB/CAR/PDMS, CAR/PDMS, and PDMS/DVB) were tested for evaluation of volatile compounds. DVB/CAR/PDMS fiber showed a strong extraction capacity for volatile compounds and produced the best result in case of total peak areas. A total of 133 volatile compounds were identified in fruit pulp; among them 1-hexanol (6.86%), eucalyptol (6.66%), ethyl butanoate (6.47%), ethyl octanoate (4.01%), ethyl decanoate (3.39%), 4-terpineol (3.27%), and 2-methyl-1-butanol (3.10%) were the major components in the sample extracts.
Yang, Kai-Min; Cheng, Ming-Ching; Chen, Chih-Wei; Tseng, Chin-Yin; Lin, Li-Yun; Chiang, Po-Yuan
2017-02-01
Algae oil and fish oil are n-3 PUFA mainstream commercial products. The various sources for the stability of n-3 PUFA oxidation are influenced by the fatty acid composition, extraction and refined processing. In this study, the oil stability index (OSI) occurs within 2.3 to 7.6 hours with three different n-3 PUFA rich oil. To set the OSI in the Rancimat test as the oil stability limit and observed various degrees of oxidation (0, 25, 50, 75, 100 and 125%). The volatile oxidation compounds were analyzed via headspace-solid phase microextraction (HS-SPME) and GC/MS. We detected 51 volatile compound variations during the oxidation, which were composed of aldehydes, hydrocarbons, cyclic compounds, alcohols, benzene compounds, ketones, furans, ester and pyrrolidine. The off-flavor characteristics can be strongly influenced by the synergy effects of volatile oxidation compounds. Chemometric analysis (PCA and AHC) was applied to identify the sensitive oxidation marker compounds, which included a (E,E)-2,4-heptadienal appropriate marker, via lipid oxidation in the n-3 PUFA rich oil.
Lotfy, Shereen N; Fadel, Hoda H M; El-Ghorab, Ahmed H; Shaheen, Mohamed S
2015-11-15
A comparative study was carried out between two beef-like flavourings prepared by conventional and microwave heating (CBF and MBF) of enzymatic hydrolysate of mushroom protein with other flavour precursors. GC-MS analysis of the isolated volatiles revealed that the thiol containing compounds were the predominate in both samples. However, MBF comprised higher concentration of these compounds (13.84 ± 0.06%) than CBF (10.74 ± 0.06%). The effect of microencapsulation with gum Arabic by using spray drying on the odour profile and volatile compounds of the two encapsulated samples (E-CBF and E-MBF) was investigated. The results revealed significant qualitative and quantitative variations in the volatiles of both samples. The highly volatile compounds decreased remarkably in concentration with encapsulation, while the pyrazines, thiazoles and disulphides showed opposite trend. The significant decrease in the thiol containing compounds in E-CBF and E-MBF were attributed to their oxidation to other compounds such as disulphide compounds which showed significant increase in the encapsulated samples. Copyright © 2015 Elsevier Ltd. All rights reserved.
REVIEW OF VOLATILE ORGANIC COMPOUND SOURCE APPORTIONMENT BY CHEMICAL MASS BALANCE. (R826237)
The chemical mass balance (CMB) receptor model has apportioned volatile organic compounds (VOCs) in more than 20 urban areas, mostly in the United States. These applications differ in terms of the total fraction apportioned, the calculation method, the chemical compounds used ...
Semi-volatile compounds present special analytical challenges not met by conventional methods for analysis of ambient particulate matter (PM). Accurate quantification of PM-associated organic compounds requires validation of the laboratory procedures for recovery over a wide v...
40 CFR 60.622 - Standards for volatile organic compounds.
Code of Federal Regulations, 2010 CFR
2010-07-01
... compounds. 60.622 Section 60.622 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Petroleum Dry Cleaners § 60.622 Standards for volatile organic compounds. (a) Each affected petroleum solvent dry cleaning dryer that is installed at a petroleum dry cleaning plant after December 14, 1982...
40 CFR 60.622 - Standards for volatile organic compounds.
Code of Federal Regulations, 2011 CFR
2011-07-01
... compounds. 60.622 Section 60.622 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Petroleum Dry Cleaners § 60.622 Standards for volatile organic compounds. (a) Each affected petroleum solvent dry cleaning dryer that is installed at a petroleum dry cleaning plant after December 14, 1982...
40 CFR 60.622 - Standards for volatile organic compounds.
Code of Federal Regulations, 2012 CFR
2012-07-01
... compounds. 60.622 Section 60.622 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Petroleum Dry Cleaners § 60.622 Standards for volatile organic compounds. (a) Each affected petroleum solvent dry cleaning dryer that is installed at a petroleum dry cleaning plant after December 14, 1982...
San Francisco, Sara; Urrutia, Oscar; Martin, Vincent; Peristeropoulos, Angelos; Garcia-Mina, Jose Maria
2011-07-01
Some authors suggest that the absence of tillage in agricultural soils might have an influence on the efficiency of nitrogen applied in the soil surface. In this study we investigate the influence of no-tillage and soil characteristics on the efficiency of a urease inhibitor (N-(n-butyl)thiophosphoric triamide, NBPT) and a nitrification inhibitor (diciandiamide, DCD) in decreasing ammonia volatilization from urea and ammonium nitrate (AN), respectively. The results indicate that ammonia volatilization in soils amended with urea was significantly higher than in those fertilized with AN. Likewise, the main soil factors affecting ammonia volatilization from urea are clay and sand soil contents. While clay impedes ammonia volatilization, sand favours it. The presence of organic residues on soil surface (no-tillage) tends to increase ammonia volatilization from urea, although this fact depended on soil type. The presence of NBPT in urea fertilizer significantly reduced soil ammonia volatilization. This action of NBPT was negatively affected by acid soil pH and favoured by soil clay content. The presence of organic residues on soil surface amended with urea increased ammonia volatilization, and was particularly high in sandy compared with clay soils. Application of NBPT reduced ammonia volatilization although its efficiency is reduced in acid soils. Concerning AN fertilization, there were no differences in ammonia volatilization with or without DCD in no-tillage soils. Copyright © 2011 Society of Chemical Industry.
Marcillo, Andrea; Jakimovska, Viktorija; Widdig, Anja; Birkemeyer, Claudia
2017-09-08
Volatile organic compounds (VOCs) are commonly collected from gaseous samples by adsorption to materials such as the porous polymer Tenax TA. Adsorbed compounds are subsequently released from these materials by thermal desorption (TD) and separated then by gas chromatography (GC) with flame ionization (FID) or mass spectrometry (MS) detection. Tenax TA is known to be particularly suitable for non-polar to semipolar volatiles, however, many volatiles from environmental and biological samples possess a rather polar character. Therefore, we tested if the polymer XAD-2, which so far is widely used to adsorb organic compounds from aqueous and organic solvents, could provide a broader coverage for (semi)polar VOCs during gas-phase sampling. Mixtures of volatile compounds covering a wide range of volatility (bp. 20-256°C) and different chemical classes were introduced by liquid spiking into sorbent tubes with one of the two porous polymers, Tenax TA or XAD-2, and analyzed by TD/GC-MS. At first, an internal standard mixture composed of 17 authentic standards was used to optimize desorption temperature with respect to sorbent degradation and loading time for calibration. Secondly, we tested the detectability of a complex standard mixture composed of 57 volatiles, most of them common constituents of the body odor of mammals. Moreover, the performance of XAD-2 compared with Tenax TA was assessed as limit of quantitation and linearity for the internal standard mixture and 33 compounds from the complex standard mixture. Volatiles were analyzed in a range between 0.01-∼250ng/tube depending on the compound and material. Lower limits of quantitation were between 0.01 and 3 ng±<25% RSD (R 2 >0.9). Interestingly, we found different kinetics for compound adsorption with XAD-2, and a partially better sensitivity in comparison with Tenax TA. For these analytes, XAD-2 might be recommended as an alternative of Tenax TA for TD/GC-MS analysis. Copyright © 2017 Elsevier B.V. All rights reserved.
Kim, Yong-Hyun; Kim, Ki-Hyun
2013-05-21
In the analysis of volatile organic compounds in air, the preparation of their gaseous standards at low (sub-ppb) concentration levels with high reliability is quite difficult. In this study, a simple dynamic headspace-based approach was evaluated as a means of generating vapor-phase volatile organic compounds from a liquid standard in an impinger at ambient temperature (25 °C). For a given sampling time, volatile organic compound vapor formed in the headspace was swept by bypassing the sweep gas through the impinger and collected four times in quick succession in separate sorbent tubes. In each experiment, a fresh liquid sample was used for each of the four sampling times (5, 10, 20, and 30 min) at a steady flow rate of 50 mL min(-1). The air-water partitioning at the most dynamic (earliest) sweeping stage was established initially in accord with ideal Henry's law, which was then followed by considerably reduced partitioning in a steady-state equilibrium (non-ideal Henry's law). The concentrations of gaseous volatile organic compounds, collected after the steady-state equilibrium, reached fairly constant values: for instance, the mole fraction of toluene measured at a sweeping interval of 10 and 30 min averaged 1.10 and 0.99 nmol mol(-1), respectively (after the initial 10 min sampling). In the second stage of our experiment, the effect of increasing the concentrations of liquid spiking standard was also examined by collecting sweep gas samples from two consecutive 10 min runs. The volatile organic compounds, collected in the first and second 10 min sweep gas samples, exhibited ideal and nonideal Henry's law behavior, respectively. From this observation, we established numerical relationships to predict the mole fraction (or mixing ratio) of each volatile organic compound in steady-state equilibrium in relation to the concentration of standard spiked into the system. This experimental approach can thus be used to produce sub-ppb levels of gaseous volatile organic compounds in a constant and predictable manner.
Concentrations of over 60 non-polar semi-volatile and non-volatile organic compounds were measured in Lower Manhattan, New York using a high capacity Integrated Organic Gas and Particle Sampler, after the initial destruction of the World Trade Center. The results indicate that th...