Science.gov

Sample records for volcanic carbon dioxide

  1. Volcanic versus anthropogenic carbon dioxide

    USGS Publications Warehouse

    Gerlach, T.

    2011-01-01

    Which emits more carbon dioxide (CO2): Earth's volcanoes or human activities? Research findings indicate unequivocally that the answer to this frequently asked question is human activities. However, most people, including some Earth scientists working in fields outside volcanology, are surprised by this answer. The climate change debate has revived and reinforced the belief, widespread among climate skeptics, that volcanoes emit more CO2 than human activities [Gerlach, 2010; Plimer, 2009]. In fact, present-day volcanoes emit relatively modest amounts of CO2, about as much annually as states like Florida, Michigan, and Ohio.

  2. Lidar detection of carbon dioxide in volcanic plumes

    NASA Astrophysics Data System (ADS)

    Fiorani, Luca; Santoro, Simone; Parracino, Stefano; Maio, Giovanni; Del Franco, Mario; Aiuppa, Alessandro

    2015-06-01

    Volcanic gases give information on magmatic processes. In particular, anomalous releases of carbon dioxide precede volcanic eruptions. Up to now, this gas has been measured in volcanic plumes with conventional measurements that imply the severe risks of local sampling and can last many hours. For these reasons and for the great advantages of laser sensing, the thorough development of volcanic lidar has been undertaken at the Diagnostics and Metrology Laboratory (UTAPRAD-DIM) of the Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA). In fact, lidar profiling allows one to scan remotely volcanic plumes in a fast and continuous way, and with high spatial and temporal resolution. Two differential absorption lidar instruments will be presented in this paper: BILLI (BrIdge voLcanic LIdar), based on injection seeded Nd:YAG laser, double grating dye laser, difference frequency mixing (DFM) and optical parametric amplifier (OPA), and VULLI (VULcamed Lidar), based on injection seeded Nd:YAG laser and optical parametric oscillator (OPO). The first one is funded by the ERC (European Research Council) project BRIDGE and the second one by the ERDF (European Regional Development Fund) project VULCAMED. While VULLI has not yet been tested in a volcanic site, BILLI scanned the gas emitted by Pozzuoli Solfatara (Campi Flegrei volcanic area, Naples, Italy) during a field campaign carried out from 13 to 17 October 2014. Carbon dioxide concentration maps were retrieved remotely in few minutes in the crater area. Lidar measurements were in good agreement with well-established techniques, based on different operating principles. To our knowledge, it is the first time that carbon dioxide in a volcanic plume is retrieved by lidar, representing the first direct measurement of this kind ever performed on an active volcano and showing the high potential of laser remote sensing in geophysical research.

  3. Diffuse volcanic emissions of carbon dioxide from Vulcano Island, Italy.

    PubMed

    Baubron, J C; Allard, P; Toutain, J P

    1990-03-01

    RECENT investigations on Mount Etna (Sicily)(1-3) have revealed that volcanoes may release abundant carbon dioxide not only from their active craters, but also from their flanks, as diffuse soil emanations. Here we present analyses of soil gases and air in water wells on Vulcano Island which provide further evidence of such lateral degassing. Nearly pure carbon dioxide, enriched in helium and radon, escapes from the slopes of the Fossa active cone, adding a total output of 30 tonnes per day to the fumarolic crater discharge ( 180 tonnes CO(2) per day). This emanation has similar He/CO(2) and (13)C/(12)C ratios to those of the crater fumaroles (300%ndash;500 degrees C) and therefore a similar volcanic origin. Gases rich in carbon dioxide also escape at sea level along the isthmus between the Fossa and Vulcanello volcanic cones, but their depletion in both He and (13)C suggests a distinct source. Diffuse volcanic gas emanations, once their genetic link with central fumarole degassing has been demonstrated, can be used for continuous volcano monitoring, at safe distances from active craters. Such monitoring has been initiated at Vulcano, where soil and well emanations of nearly pure CO(2) themselves represent a threat to the local population.

  4. Helium/Carbon dioxide ratios as premonitors of volcanic activity.

    PubMed

    Thomas, D M; Naughton, J J

    1979-06-15

    The composition of the gaseous emissions of two fumaroles at the summit of Kilauea Volcano was monitored for môre than 2 years. Magma was released from the summit reservoir on three occasions during this period; prior to or during each event the ratios of helium to carbon dioxide in the fumarole gases decreased substantially from that observed during periods of quiescence.

  5. Liquid carbon dioxide of magmatic origin and its role in volcanic eruptions

    USGS Publications Warehouse

    Chivas, A.R.; Barnes, I.; Evans, William C.; Lupton, J.E.; Stone, J.O.

    1987-01-01

    Natural liquid carbon dioxide is produced commercially from a 2.5-km-deep well near the 4,500-yr-old maar volcano, Mount Gambier, South Australia. The carbon dioxide has accumulated in a dome that is located on the extension of a linear chain of volcanic activity. A magmatic origin for the fluid is suggested by the geological setting, ??13CPDB of -4.0???, for the CO2 (where PDB represents the carbon-isotope standard), and a relatively high 3He component of the contained helium and high 3He/C ratio (6.4 x 10-10). The 3He/ 4He and He/Ne ratios are 3.0 and > 1,370 times those of air, respectively. The CO2, as collected at the Earth's surface at 29.5 ??C and 75 bar, expands more than 300-fold to form a gas at 1 atm and 22 ??C. We suggest that liquid CO2 or high-density CO2 fluid (the critical point is 31.1 ??C, 73.9 bar) of volcanic origin that expands explosively from shallow levels in the Earth's crust may be a major contributor to 'phreatic' volcanic eruptions and maar formation. Less violent release of magmatic CO2 into crater lakes may cause gas bursts with equally disastrous consequences such as occurred at Lake Nyos, Cameroon, in August 1986. ?? 1987 Nature Publishing Group.

  6. Are there biomedical criteria to assess an acute carbon dioxide intoxication by a volcanic emission?

    NASA Astrophysics Data System (ADS)

    Stupfel, Maurice; Le Guern, François

    1989-11-01

    On August 21, 1987, more than 1800 people, thousands of head of cattle and countless wild animals, including birds, were killed by a gas release which occurred during about 4 hours at the lake in the crater Iwi at Nyos in Cameroon; plant life was mostly unaffected. An international inquiry was performed by British, French, Italian, Japanese and U.S. volcanologists and physicians to determine what had been the cause of this disaster. An international conference organised by United Nations Educational Scientific, and Cultural Organisation (U.N.E.S.C.O.), the Cameroon Government and the U.N. Economic Commission for Africa held in Yaoundé March, 1987 concluded: 'that the cause of sudden death was suffocation (asphyxia) in a carbon dioxide atmosphere' The medical findings have been explained by asphyxia caused by carbon dioxide. The presence of other volcanic gases, e.g. hydrogen sulfide, cannot be ruled out' (Sigvaldason, 1989, this issue). This paper reviews what is mainly known about an acute carbon dioxide intoxication in order to disprove or confirm the diagnosis and helps to interpret the field observations and testimonies to provide a basis to discuss the prevention of such an intoxication.

  7. Known and suspected key roles of carbon dioxide in magmatic and volcanic processes (Invited)

    NASA Astrophysics Data System (ADS)

    Allard, P.

    2009-12-01

    Carbon dioxide has long been considered to play a secondary role in magmatic processes compared to water, the prevalent volatile component in most magmas and volcanic gases. However, its much earlier exsolution than more soluble water makes it the first volatile species to form gas bubbles in decompressing magma and, hence, a key agent of deep magma ascent. Growing evidence from experimental studies, volcanic CO2 budgets and H2O-CO2 distributions in crystal melt inclusions highlight that carbon dioxide may originally be more abundant in many magmas than initially expected (and recorded by melt inclusions). The presence of a CO2-rich gas phase at deep crustal levels or even mantle depths not only influences the physical properties of a melt, but can favour earlier exsolution of H2O at equilibrium. Moreover, in low viscosity magmas, such as basalts, deeply formed CO2-rich bubbles are buoyant enough to migrate differentially in plumbing systems and to percolate through or accumulate in shallower magma. It has recently been suggested that such a ‘CO2-fluxing’ process could promote extensive dehydration and consequent crystallisation of ponding magma batches, thereby affecting their eruptive potential. Recent isotopic investigations of this process, on Etna volcano, demonstrate that it may actually provoke a magma dehydrogenation through either H2 loss or/and proton diffusion, resulting in strong deuterium enrichment and H2O depletion in ponding melt. In addition, carbon dioxide can be a key driving agent of maar formation but also of some paroxysmal explosions on volcanoes. The collapse of CO2-rich bubble foams accumulating at sill-like discontinuities of deep feeders can generate the catastrophic ascent of huge CO2-rich gas blobs that become the driving force of these explosions. CO2 precursors of such events were recently detected using multi-gas plume survey on Stromboli. Finally, carbon dioxide is the predominant component of the cold (invisible) gas emanations

  8. Possible asphyxiation from carbon dioxide of a cross-country skier in eastern California: a deadly volcanic hazard.

    PubMed

    Hill, P M

    2000-01-01

    This report describes an incident in which exceedingly high levels of carbon dioxide may have contributed to the death of a skier in eastern California. A cross-country skier was found dead inside a large, mostly covered snow cave, 1 day after he was reported missing. The autopsy report suggests that the skier died of acute pulmonary edema consistent with asphyxiation; carbon dioxide measurements inside the hole in which he was found reached 70%. This area is known for having a high carbon dioxide flux attributed to degassing of a large body of magma (molten rock) 10 to 20 km beneath the ski area. The literature describes many incidents of fatal carbon dioxide exposures associated with volcanic systems in other parts of the world. We believe this case represents the first reported death associated with volcanically produced carbon dioxide in the United States. Disaster and wilderness medicine specialists should be aware of and plan for this potential health hazard associated with active volcanoes.

  9. Volcanic sulfur dioxide and carbon dioxide measurements using small unmanned aerial systems

    NASA Astrophysics Data System (ADS)

    Pieri, D. C.; Diaz, J. A.; Fladeland, M. M.; Bland, G.; Alan, A., Jr.; Alegria, O.; Buongiorno, M. F.; Christensen, L. E.; Corrales, E.; Linick, J.; Mouginis-Mark, P. J.; Ramsey, M. S.; Realmuto, V. J.; Schwandner, F. M.

    2015-12-01

    Volcanoes emit gases continuously with significant pre-post-eruption changes, mainly H2O and CO2, plus SO2, and others. The SO2/CO2 ratio changes within volcanic life cycles making it an indicator of oncoming eruption phases: it can dip weeks to months before eruptions, then increase, and decrease back to background after eruptions. Over the last five years, we have made an effort to develop small and inexpensive lighter-than-air and fixed wing unmanned aerial vehicle (UAV) platforms in Costa Rica at Turrialba Volcano. Turrialba is an appropriate natural laboratory to test and prove platforms and instrumentation in low-level steady state volcanogenic gas and aerosol emissions at moderate altitudes (<12Kft ASL), where good technical infrastructure exists, with good physical access to the volcano. Our program in Costa Rica includes: (1) systematic monitoring of Turrialba from orbit with the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER), with its thermal infrared (TIR) camera for SO2 retrieval, and more recently with GOSAT and OCO-2 for CO2; (2) in situ observations from aerostats and UAVs during ASTER overpasses, and (3) reconciliation of the orbital results with in situ data to validate mass retrieval and transport models. As part of the NASA HyspIRI Preparatory Airborne Activities program, we will conduct similar observations at Kilauea volcano using small UAVs and for both SO2 and CO2 in situ. One of the salient characteristics of the long lived Kilauea eruptions since 1983 has been the emission of SO2 in significant amounts, generating environmental stresses on local inhabitants due to lowered air quality, and stress on vegetation. Kilauea volcanic plumes, as with Turrialba, are mainly gases and liquid--SO2 is hydrolyzed to H2SO4 and the resulting highly acidic liquid aerosol is termed "vog," an environmental health hazard. Measurement of the diffuse CO2 emissions at Kilauea will also be of interest. Such measurements at Turrialba

  10. Carbon dioxide of Pu`u`O`o volcanic plume at Kilauea retrieved by AVIRIS hyperspectral data

    USGS Publications Warehouse

    Spinetti, C.; Carrere, V.; Buongiorno, M.F.; Sutton, A.J.; Elias, T.

    2008-01-01

    A remote sensing approach permits for the first time the derivation of a map of the carbon dioxide concentration in a volcanic plume. The airborne imaging remote sensing overcomes the typical difficulties associated with the ground measurements and permits rapid and large views of the volcanic processes together with the measurements of volatile components exolving from craters. Hyperspectral images in the infrared range (1900-2100??nm), where carbon dioxide absorption lines are present, have been used. These images were acquired during an airborne campaign by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) over the Pu`u` O`o Vent situated at the Kilauea East Rift zone, Hawaii. Using a radiative transfer model to simulate the measured up-welling spectral radiance and by applying the newly developed mapping technique, the carbon dioxide concentration map of the Pu`u` O`o Vent plume were obtained. The carbon dioxide integrated flux rate were calculated and a mean value of 396 ?? 138??t d- 1 was obtained. This result is in agreement, within the measurements errors, with those of the ground measurements taken during the airborne campaign. ?? 2008 Elsevier Inc.

  11. Carbon dioxide emissions from Deccan volcanism and a K/T boundary greenhouse effect

    NASA Astrophysics Data System (ADS)

    Caldeira, Ken; Rampino, Michael R.

    1990-08-01

    A greenhouse warming caused by increased emissions of carbon dioxide from the Deccan Traps volcanism has been suggested as the cause of the terminal Cretaceous extinctions on land and in the sea. Total eruptive and noneruptive CO2 output by the Deccan eruptions (from 6 to 20 x 10 to the 16th moles) over a period of several hundred thousand years is estimated based on best estimates of the CO2 weight fraction of the original basalts and basaltic melts, the fraction of CO2 degassed, and the volume of the Deccan Traps eruptions. Results of a model designed to estimate the effects of increased CO2 on climate and ocean chemistry suggest that increases in atmospheric pCO2 due to Deccan Traps CO2 emissions would have been less than 75 ppm, leading to a predicted global warming of less than 1 C over several hundred thousand years. It is concluded that the direct climate effects of CO2 emissions from the Deccan eruptions would have been too weak to be an important factor in the end-Cretaceous mass extinctions.

  12. Carbon dioxide emissions from Deccan volcanism and a K/T boundary greenhouse effect

    NASA Technical Reports Server (NTRS)

    Caldeira, Ken; Rampino, Michael R.

    1990-01-01

    A greenhouse warming caused by increased emissions of carbon dioxide from the Deccan Traps volcanism has been suggested as the cause of the terminal Cretaceous extinctions on land and in the sea. Total eruptive and noneruptive CO2 output by the Deccan eruptions (from 6 to 20 x 10 to the 16th moles) over a period of several hundred thousand years is estimated based on best estimates of the CO2 weight fraction of the original basalts and basaltic melts, the fraction of CO2 degassed, and the volume of the Deccan Traps eruptions. Results of a model designed to estimate the effects of increased CO2 on climate and ocean chemistry suggest that increases in atmospheric pCO2 due to Deccan Traps CO2 emissions would have been less than 75 ppm, leading to a predicted global warming of less than 1 C over several hundred thousand years. It is concluded that the direct climate effects of CO2 emissions from the Deccan eruptions would have been too weak to be an important factor in the end-Cretaceous mass extinctions.

  13. Physiological and ecological performance differs in four coral taxa at a volcanic carbon dioxide seep.

    PubMed

    Strahl, J; Stolz, I; Uthicke, S; Vogel, N; Noonan, S H C; Fabricius, K E

    2015-06-01

    Around volcanic carbon dioxide (CO2) seeps in Papua New Guinea, partial pressures of CO2 (pCO2) approximate those as predicted for the end of this century, and coral communities have low diversity and low structural complexity. To assess the mechanisms for such community shifts in response to ocean acidification, we examined the physiological performance of two hard corals that occur with increased or unaltered abundance at a seep site (mean pHTotal=7.8, pCO2=862 μatm) compared to a control site (mean pHTotal=8.1, pCO2=323 μatm), namely massive Porites spp. and Pocillopora damicornis, and two species with reduced abundance, Acropora millepora and Seriatopora hystrix. Oxygen fluxes, calcification, and skeletal densities were analyzed in corals originating from the seep and control site. Net photosynthesis rates increased considerably in Porites spp. and A. millepora and slightly in P. damicornis at increased pCO2, but remained unaltered in S. hystrix. Dark respiration rates remained constant in all corals investigated from both sites. Rates of light calcification declined in S. hystrix at high pCO2, but were unaffected by pCO2 in the other three coral taxa. Dark and net calcification rates remained unchanged in massive Porites and P. damicornis, but were drastically reduced at high pCO2 in A. millepora and S. hystrix. However, skeletal densities were similar at both seep and control sites in all coral taxa investigated. Our data suggest that the pCO2-tolerant corals were characterized by an increased ability to acclimatize to ocean acidification, e.g. by maintaining net calcification. Thus, robust corals, such as Porites spp. and P. damicornis, are more likely to persist for longer in a future high pCO2 world than those unable to acclimatize.

  14. Carbon dioxide dangers demonstration model

    USGS Publications Warehouse

    Venezky, Dina; Wessells, Stephen

    2010-01-01

    Carbon dioxide is a dangerous volcanic gas. When carbon dioxide seeps from the ground, it normally mixes with the air and dissipates rapidly. However, because carbon dioxide gas is heavier than air, it can collect in snowbanks, depressions, and poorly ventilated enclosures posing a potential danger to people and other living things. In this experiment we show how carbon dioxide gas displaces oxygen as it collects in low-lying areas. When carbon dioxide, created by mixing vinegar and baking soda, is added to a bowl with candles of different heights, the flames are extinguished as if by magic.

  15. A gaseous measurement system for carbon-14 dioxide and carbon-14 methane: An analytical methodology to be applied in the evaluation of the carbon-14 dioxide and carbon-14 methane produced via microbial activity in volcanic tuff

    SciTech Connect

    Dolan, M.M.

    1987-05-06

    The objectives of this study were to develop a gaseous measurement system for the carbon-14 dioxide and carbon-14 methane produced via microbial activity or geochemical action on leachate in tuff; to determine the trapping efficiency of the system for carbon-14 dioxide; to determine the trapping efficiency of the system for carbon-14 methane; to apply the experimentally determined factors regarding the system's trapping efficiency for carbon-14 dioxide and carbon-14 methane to a trapping algorithm to determine the activity of the carbon-14 dioxide and carbon-14 methane in a mixed sample; to determine the minimum detectable activity of the measurement process in picocuries per liter; and to determine the lower limit or detection of the measurement process in counts per minute.

  16. Carbon dioxide concentrator

    NASA Technical Reports Server (NTRS)

    Williams, C. F.; Huebscher, R. G.

    1972-01-01

    Passed exhaled air through electrochemical cell containing alkali metal carbonate aqueous solution, and utilizes platinized electrodes causing reaction of oxygen at cathode with water in electrolyte, producing hydroxyl ions which react with carbon dioxide to form carbonate ions.

  17. Carbon Release in Italy through Volcanic, Tectonic and Other Styles of Degassing: Implication for Carbon Dioxide Sequestration and Storage.

    NASA Astrophysics Data System (ADS)

    Bigi, S.; Lombardi, S.; Beaubien, S.; Graziani, S.; Tartarello, M. C.; Ruggiero, L.; Ciotoli, G.; Sacco, P.; De Angelis, D.; Annunziatellis, A.

    2014-12-01

    One of the key criteria for successful geological storage of CO2 is that the target reservoir must not leak the stored gases over extended periods. Due to the peculiarity of its geological and geodynamic setting, which results in the production, accumulation, and leakage of large volumes of natural CO2, the Italian peninsula can be used as a natural laboratory as it provides to study gas migration mechanisms in large-scale geological systems, as well as to determine whether and how much sequestered CO2 could hypothetically leak from a subsurface reservoir. Moving from west to east, the Italian peninsula includes several geodynamic settings: the Tyrrhenian back arc basin and associated volcanic arcs, the Apennines fold and thrust belt, and the Adriatic foredeep. All of them are characterized by a diffuse and/or massive degassing of deeply derived CO2, which is usually emitted by vents or dissolved and transported by large aquifers. In the volcanic islands, in the south of the Tyrrhenian Sea, large areas are characterized by leakage from the sea floor. Based on the statistical and geo-spatial interpretation of more than 40,000 soil gas samples collected in central and southern Italy by the Fluid Chemistry Laboratory of "La Sapienza" University of Rome over more than 30 years of activity, different migration patterns related to the different geodynamic settings are distinguished and described. This very large database has been organised and managed in a GIS environment that allows the calculation of fundamental statistical parameters, the analysis of distribution patterns, the study of spatial autocorrelation and spatial heterogeneity, and the elaboration of maps. The interpretation of these data allow us to define background values of CO2, strongly related to geological setting, and other minor (CH4) and trace gases (He and Rn), that characterise the different geological scenarios. A common feature is that anomalous gas concentrations occur in restricted zones, both

  18. Carbon Dioxide Absorbents

    DTIC Science & Technology

    1950-05-17

    carbondioxide content of the solution was then determined. A gas mixture containing 2.6% carbon dioxide and 97.4% nitrogen was prepared in the...which carbon dioxide is removed by heat0 Since this step is usually carried out by "steam stripping ", that is, contacting the solution at its boiling...required to produce the steam required for stripping the carbon dioxide from the s olution. The method ueed in this investigation for determining the

  19. The carbon dioxide cycle

    USGS Publications Warehouse

    James, P.B.; Hansen, G.B.; Titus, T.N.

    2005-01-01

    The seasonal CO2 cycle on Mars refers to the exchange of carbon dioxide between dry ice in the seasonal polar caps and gaseous carbon dioxide in the atmosphere. This review focuses on breakthroughs in understanding the process involving seasonal carbon dioxide phase changes that have occurred as a result of observations by Mars Global Surveyor. ?? 2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  20. CARBON DIOXIDE REDUCTION SYSTEM.

    DTIC Science & Technology

    CARBON DIOXIDE , *SPACE FLIGHT, RESPIRATION, REDUCTION(CHEMISTRY), RESPIRATION, AEROSPACE MEDICINE, ELECTROLYSIS, INSTRUMENTATION, ELECTROLYTES, VOLTAGE, MANNED, YTTRIUM COMPOUNDS, ZIRCONIUM COMPOUNDS, NICKEL.

  1. Carbon Dioxide and Climate.

    ERIC Educational Resources Information Center

    Brewer, Peter G.

    1978-01-01

    The amount of carbon dioxide in the atmosphere is increasing at a rate that could cause significant warming of the Earth's climate in the not too distant future. Oceanographers are studying the role of the ocean as a source of carbon dioxide and as a sink for the gas. (Author/BB)

  2. Carbon Dioxide Fountain

    ERIC Educational Resources Information Center

    Kang, Seong-Joo; Ryu, Eun-Hee

    2007-01-01

    This article presents the development of a carbon dioxide fountain. The advantages of the carbon dioxide fountain are that it is odorless and uses consumer chemicals. This experiment also is a nice visual experiment that allows students to see evidence of a gaseous reagent being consumed when a pressure sensor is available. (Contains 3 figures.)…

  3. Diffuse degassing of carbon dioxide at Somma Vesuvius volcanic complex (Southern Italy) and its relation with regional tectonics

    NASA Astrophysics Data System (ADS)

    Aiuppa, Alessandro; Caleca, Adriana; Federico, Cinzia; Gurrieri, Sergio; Valenza, Mariano

    2004-05-01

    A systematic survey of soil CO 2 concentrations was carried out on the flanks of Somma-Vesuvius volcano in order to constrain possible pathways responsible of carbon dioxide diffuse degassing taking place during the present state of quiescence. Measurements were performed at 1162 sites in late winter-spring 2000, highlighting that soil CO 2 concentrations range from 50 to 10500 ppmV. A statistical analysis was developed in order to define the threshold value of anomaly and separate the biogenic CO 2 component, produced by soil respiration, from the inorganic component of deep provenance. A computer routine was also elaborated to interpret the grid of CO 2 anomalous concentration values and define the actual location, orientation and length of degassing structures. The results obtained by this procedure reveal a main control of the regional stress field on the patterns of gas migration. The identified degassing lineaments are typically oriented along the Apenninic (NW-SE) and anti-Apenninic (NE-SW) trends, which are known to govern the past geological and structural evolution of the Campanian Plain and present seismicity and deformation pattern of Mount Vesuvius. A main degassing area was recognized on the eastern and southern flanks of the volcano, which likely relates to the geometry of the underlying carbonate basement, reaching its top (500 m depth) in this sector of the volcano.

  4. Carbon dioxide removal process

    DOEpatents

    Baker, Richard W.; Da Costa, Andre R.; Lokhandwala, Kaaeid A.

    2003-11-18

    A process and apparatus for separating carbon dioxide from gas, especially natural gas, that also contains C.sub.3+ hydrocarbons. The invention uses two or three membrane separation steps, optionally in conjunction with cooling/condensation under pressure, to yield a lighter, sweeter product natural gas stream, and/or a carbon dioxide stream of reinjection quality and/or a natural gas liquids (NGL) stream.

  5. Environmental carbon dioxide control

    NASA Technical Reports Server (NTRS)

    Onischak, M.; Baker, B.; Gidaspow, D.

    1974-01-01

    A study of environmental carbon dioxide control for NASA EVA missions found solid potassium carbonate to be an effective regenerable absorbent in maintaining low carbon dioxide levels. The supported sorbent was capable of repeated regeneration below 150 C without appreciable degradation. Optimum structures in the form of thin pliable sheets of carbonate, inert support and binder were developed. Interpretation of a new solid-gas pore closing model helped predict the optimum sorbent and analysis of individual sorbent sheet performance in a thin rectangular channel sorber can predict packed bed performance.

  6. Carbon dioxide sensor

    DOEpatents

    Dutta, Prabir K [Worthington, OH; Lee, Inhee [Columbus, OH; Akbar, Sheikh A [Hilliard, OH

    2011-11-15

    The present invention generally relates to carbon dioxide (CO.sub.2) sensors. In one embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor that incorporates lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3). In another embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor has a reduced sensitivity to humidity due to a sensing electrode with a layered structure of lithium carbonate and barium carbonate. In still another embodiment, the present invention relates to a method of producing carbon dioxide (CO.sub.2) sensors having lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3).

  7. Carbon dioxide recycling

    EPA Science Inventory

    The recycling of carbon dioxide to methanol and dimethyl ether is seen to offer a substantial route to renewable and environmentally carbon neutral fuels. One of the authors has championed the “Methanol Economy" in articles and a book. By recycling ambient CO2, the authors argue ...

  8. Polymeric Carbon Dioxide

    SciTech Connect

    Yoo, C-S.

    1999-11-02

    Synthesis of polymeric carbon dioxide has long been of interest to many chemists and materials scientists. Very recently we discovered the polymeric phase of carbon dioxide (called CO{sub 2}-V) at high pressures and temperatures. Our optical and x-ray results indicate that CO{sub 2}-V is optically non-linear, generating the second harmonic of Nd: YLF laser at 527 nm and is also likely superhard similar to cubic-boron nitride or diamond. CO{sub 2}-V is made of CO{sub 4} tetrahedra, analogous to SiO{sub 2} polymorphs, and is quenchable at ambient temperature at pressures above 1 GPa. In this paper, we describe the pressure-induced polymerization of carbon dioxide together with the stability, structure, and mechanical and optical properties of polymeric CO{sub 2}-V. We also present some implications of polymeric CO{sub 2} for high-pressure chemistry and new materials synthesis.

  9. CARBON DIOXIDE SEPARATION BY SELECTIVE PERMEATION.

    DTIC Science & Technology

    CARBON DIOXIDE , SEPARATION), (*PERMEABILITY, CARBON DIOXIDE ), POROUS MATERIALS, SILICON COMPOUNDS, RUBBER, SELECTION, ADSORPTION, TEMPERATURE, PRESSURE, POLYMERS, FILMS, PLASTICS, MEMBRANES, HUMIDITY.

  10. Bench Remarks: Carbon Dioxide.

    ERIC Educational Resources Information Center

    Bent, Henry A.

    1987-01-01

    Discusses the properties of carbon dioxide in its solid "dry ice" stage. Suggests several demonstrations and experiments that use dry ice to illustrate Avogadro's Law, Boyle's Law, Kinetic-Molecular Theory, and the effects of dry ice in basic solution, in limewater, and in acetone. (TW)

  11. Climatic fluctuations, volcanic aerosol and carbon dioxide changes. Annual progress report, 1 October 1979-30 September 1980

    SciTech Connect

    Newell, R. E.

    1980-05-21

    Technical progress made for the contract period 1 October 1979-30 September 1980, and in fact since the last progress report was prepared on 18 June 1979, is summarized. The relationship between tropospheric air temperature, sea surface temperature patterns and volcanic aerosol has been derived by the application of generalized least squares analysis, which takes account of significant autocorrelation between the variables. Up to 50% of the variance of the tropical tropospheric air temperature can be explained in terms of preceding values of the variables. The technique is being applied to make a preliminary climatic forecast of the effect of the Mt. St. Helen's eruption of 18 May 1980 on zonal mean Northern Hemisphere temperature. A regression approach was used to forecast winter temperature over the continental US using parameters from out data base. Techniques for experimental climatic forecasting are being developed and studies of the background sea-air interaction processes are being made. We have shown that surface effects extend up to at least 500 mb in the atmosphere. Tropical rainfall has been found to vary with the Southern Oscillation Index; this rainfall provides the main energy supply to the atmosphere in the form of latent heat liberation.

  12. Carbon dioxide diffuse emission and thermal energy release from hydrothermal systems at Copahue-Caviahue Volcanic Complex (Argentina)

    NASA Astrophysics Data System (ADS)

    Chiodini, Giovanni; Cardellini, Carlo; Lamberti, María Clara; Agusto, Mariano; Caselli, Alberto; Liccioli, Caterina; Tamburello, Giancarlo; Tassi, Franco; Vaselli, Orlando; Caliro, Stefano

    2015-10-01

    The north-western sector of Caviahue caldera (Argentina), close to the active volcanic system of Copahue, is characterized by the presence of several hydrothermal sites that host numerous fumarolic emissions, anomalous soil diffuse degassing of CO2 and hot soils. In March 2014, measurements of soil CO2 fluxes in 5 of these sites (namely, Las Máquinas, Las Maquinitas I, Las Maquinitas II, Anfiteatro, and Termas de Copahue) allowed an estimation that ~ 165 t of deeply derived CO2 is daily released. The gas source is likely related to a relatively shallow geothermal reservoir containing a single vapor phase as also suggested by both the geochemical data from the 3 deep wells drilled in the 1980s and gas geoindicators applied to the fumarolic discharges. Gas equilibria within the H-C-O gas system indicate the presence of a large, probably unique, single phase vapor zone at 200-210 °C feeding the hydrothermal manifestations of Las Máquinas, Las Maquinitas I and II and Termas de Copahue. A natural thermal release of 107 MW was computed by using CO2 as a tracer of the original vapor phase. The magmatic signature of the incondensable fumarolic gases, the wide expanse of the hydrothermal areas and the remarkable high amount of gas and heat released by fluid expulsion seem to be compatible with an active magmatic intrusion beneath this portion of the Caviahue caldera.

  13. Climatic fluctuations, volcanic aerosol and carbon dioxide changes. Annual progress report, 1 October 1979-30 September 1980

    SciTech Connect

    Newell, R.E.

    1980-05-21

    Technical progress made for the contract period 1 October 1979-30 September 1980, and in fact since the last progress report was prepared on 18 June 1979, is summarized. The relationship between tropospheric air temperature, sea surface temperature patterns and volcanic aerosol has been derived by the application of generalized least squares analysis, which takes account of significant autocorrelation between the variables. Up to 50% of the variance of the tropical tropospheric air temperature can be explained in terms of preceding values of the variables. The technique is being applied to make a preliminary climatic forecast of the effect of the Mt. St. Helen's eruption of 18 May 1980 on zonal mean Northern Hemisphere temperature. A regression approach was used to forecast winter temperature over the continental US using parameters from our data base. Techniques for experimental climatic forecasting are being developed and studies of the background sea-air interaction processes are being made. We have shown that surface effects extend up to at least 500 mb in the atmosphere. Tropical rainfall has been found to vary with the Southern Oscillation Index; this rainfall provides the main energy supply to the atmosphere in the form of latent heat liberation.

  14. Carbon dioxide absorption methanol process

    SciTech Connect

    Apffel, F.

    1989-08-29

    This patent describes a process for removing carbon dioxide from a feed stream of natural gas having at least methane, ethane and heavier. It comprises: first, separating the feed stream in a first separator to form a first stream having substantially all of the propane and heavier hydrocarbons and carbon dioxide and ethane and a second stream, having methane, carbon dioxide and ethane; separating the second stream in a second separator into a stream of carbon dioxide product and a third stream having ethane, methane and carbon dioxide: mixing at least a portion of the third stream with a polar compound; stream after the mixing in an absorber; separating the vapor and liquid of the third stream after the mixing in an absorber; absorbing the remaining unabsorbed carbon dioxide in a lean portion of the polar compound in the absorber, the absorber carbon dioxide and ethane with the polar; separating the first stream in a third separator to separate the propane and heavier hydrocarbons from the carbon dioxide and ethane, which carbon dioxide and ethane forms a fifth stream; and separating the polar compound/carbon dioxide effluent of the absorber in a fourth separator, to separate the carbon dioxide from the polar compound, the polar compound forming a sixth stream.

  15. CARBON DIOXIDE FIXATION.

    SciTech Connect

    FUJITA,E.

    2000-01-12

    Solar carbon dioxide fixation offers the possibility of a renewable source of chemicals and fuels in the future. Its realization rests on future advances in the efficiency of solar energy collection and development of suitable catalysts for CO{sub 2} conversion. Recent achievements in the efficiency of solar energy conversion and in catalysis suggest that this approach holds a great deal of promise for contributing to future needs for fuels and chemicals.

  16. Carbon Dioxide Landforms

    NASA Technical Reports Server (NTRS)

    2004-01-01

    19 March 2004 The martian south polar residual ice cap is mostly made of frozen carbon dioxide. There is no place on Earth that a person can go to see the landforms that would be produced by erosion and sublimation of hundreds or thousands of cubic kilometers of carbon dioxide. Thus, the south polar cap of Mars is as alien as alien can get. This image, acquired in February 2004 by the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC), shows how the cap appears in summer as carbon dioxide is subliming away, creating a wild pattern of pits, mesas, and buttes. Darker surfaces may be areas where the ice contains impurities, such as dust, or where the surface has been roughened by the removal of ice. This image is located near 86.3oS, 0.8oW. This picture covers an area about 3 km (1.9 mi) across. Sunlight illuminates the scene from the top/upper left.

  17. Frozen Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    2005-01-01

    1 August 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a south polar residual cap landscape, formed in frozen carbon dioxide. There is no place on Earth that one can go to visit a landscape covering thousands of square kilometers with frozen carbon dioxide, so mesas, pits, and other landforms of the martian south polar region are as alien as they are beautiful. The scarps of the south polar region are known from thousands of other MGS MOC images to retreat at a rate of about 3 meters (3 yards) per martian year, indiating that slowly, over the course of the MGS mission, the amount of carbon dioxide in the martian atmosphere has probably been increasing.

    Location near: 86.9oS, 25.5oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Spring

  18. Carbon dioxide absorption methanol process

    SciTech Connect

    Apffel, F.P.

    1987-06-23

    A process is described for removing carbon dioxide from a feed stream of natural gas, having at least methane, ethane and heavier hydrocarbon, comprising: separating the feed stream in a first separator to form a first stream, having substantially all of the propane and heavier hydrocarbons and carbon dioxide and ethane, and a second stream, having methane, carbon dioxide and ethane; mixing the second stream with a polar compound to form a third stream; separating the vapor and liquid of the third stream in the bottom portion of an absorber; absorbing carbon dioxide and ethane from the separated vapor of Step C in a lean portion of the polar compound in the absorber, the absorber carbon dioxide and ethane forming a fourth stream; separating the ethane from the polar compound and carbon dioxide in a separator; separating the first stream in a third separator to separate the propane and heavier hydrocarbons from the carbon dioxide and ethane: carbon dioxide and ethane forms a fifth stream; and separating the polar compound/carbon dioxide effluent of the second separator in a fourth separator, to separate the carbon dioxide from the polar compound. The polar compound forming a sixth stream.

  19. Oil shales and carbon dioxide.

    PubMed

    Sundquist, E T; Miller, G A

    1980-05-16

    During retorting of oil shales in the western United States, carbonate minerals are calcined, releasing significant amounts of carbon dioxide. Residual organic matter in the shales may also be burned, adding more carbon dioxide to the atmosphere. The amount of carbon dioxide produced depends on the retort process and the grade and mineralogy of the shale. Preliminary calculations suggest that retorting of oil shales from the Green River Formation and burning of the product oil could release one and one-half to five times more carbon dioxide than burning of conventional oil to obtain the same amount of usable energy. The largest carbon dioxide releases are associated with retorting processes that operate at temperatures greater than about 600 degrees C.

  20. Carbon dioxide and climate

    SciTech Connect

    Not Available

    1990-10-01

    Scientific and public interest in greenhouse gases, climate warming, and global change virtually exploded in 1988. The Department's focused research on atmospheric CO{sub 2} contributed sound and timely scientific information to the many questions produced by the groundswell of interest and concern. Research projects summarized in this document provided the data base that made timely responses possible, and the contributions from participating scientists are genuinely appreciated. In the past year, the core CO{sub 2} research has continued to improve the scientific knowledge needed to project future atmospheric CO{sub 2} concentrations, to estimate climate sensitivity, and to assess the responses of vegetation to rising concentrations of CO{sub 2} and to climate change. The Carbon Dioxide Research Program's goal is to develop sound scientific information for policy formulation and governmental action in response to changes of atmospheric CO{sub 2}. The Program Summary describes projects funded by the Carbon Dioxide Research Program during FY 1990 and gives a brief overview of objectives, organization, and accomplishments.

  1. Carbon dioxide/dewpoint monitor

    NASA Technical Reports Server (NTRS)

    Luczkowski, S.

    1977-01-01

    The portable Carbon Dioxide/Dewpoint Monitor was designed to permit measurements of carbon dioxide partial pressure and dewpoint and ambient gas temperature at any place within the Saturn Workshop. It required no vehicle interface other than storage. All components necessary for operation, including battery power source, were incorporated in the instrument.

  2. Coral reefs and carbon dioxide

    SciTech Connect

    Buddemeier, R.W.

    1996-03-01

    This commentary argues the conclusion from a previous article, which investigates diurnal changes in carbon dioxide partial pressure and community metabolism on coral reefs, that coral `reefs might serve as a sink, not a source, for atmospheric carbon dioxide.` Commentaries from two groups are given along with the response by the original authors, Kayanne et al. 27 refs.

  3. Unique pioneer microbial communities exposed to volcanic sulfur dioxide.

    PubMed

    Fujimura, Reiko; Kim, Seok-Won; Sato, Yoshinori; Oshima, Kenshiro; Hattori, Masahira; Kamijo, Takashi; Ohta, Hiroyuki

    2016-01-21

    Newly exposed volcanic substrates contain negligible amounts of organic materials. Heterotrophic organisms in newly formed ecosystems require bioavailable carbon and nitrogen that are provided from CO2 and N2 fixation by pioneer microbes. However, the knowledge of initial ecosystem developmental mechanisms, especially the association between microbial succession and environmental change, is still limited. This study reports the unique process of microbial succession in fresh basaltic ash, which was affected by long-term exposure to volcanic sulfur dioxide (SO2). Here we compared the microbial ecosystems among deposits affected by SO2 exposure at different levels. The results of metagenomic analysis suggested the importance of autotrophic iron-oxidizing bacteria, particularly those involved in CO2 and N2 fixation, in the heavily SO2 affected site. Changes in the chemical properties of the deposits after the decline of the SO2 impact led to an apparent decrease in the iron-oxidizer abundance and a possible shift in the microbial community structure. Furthermore, the community structure of the deposits that had experienced lower SO2 gas levels showed higher similarity with that of the control forest soil. Our results implied that the effect of SO2 exposure exerted a selective pressure on the pioneer community structure by changing the surrounding environment of the microbes.

  4. Unique pioneer microbial communities exposed to volcanic sulfur dioxide

    PubMed Central

    Fujimura, Reiko; Kim, Seok-Won; Sato, Yoshinori; Oshima, Kenshiro; Hattori, Masahira; Kamijo, Takashi; Ohta, Hiroyuki

    2016-01-01

    Newly exposed volcanic substrates contain negligible amounts of organic materials. Heterotrophic organisms in newly formed ecosystems require bioavailable carbon and nitrogen that are provided from CO2 and N2 fixation by pioneer microbes. However, the knowledge of initial ecosystem developmental mechanisms, especially the association between microbial succession and environmental change, is still limited. This study reports the unique process of microbial succession in fresh basaltic ash, which was affected by long-term exposure to volcanic sulfur dioxide (SO2). Here we compared the microbial ecosystems among deposits affected by SO2 exposure at different levels. The results of metagenomic analysis suggested the importance of autotrophic iron-oxidizing bacteria, particularly those involved in CO2 and N2 fixation, in the heavily SO2 affected site. Changes in the chemical properties of the deposits after the decline of the SO2 impact led to an apparent decrease in the iron-oxidizer abundance and a possible shift in the microbial community structure. Furthermore, the community structure of the deposits that had experienced lower SO2 gas levels showed higher similarity with that of the control forest soil. Our results implied that the effect of SO2 exposure exerted a selective pressure on the pioneer community structure by changing the surrounding environment of the microbes. PMID:26791101

  5. Unique pioneer microbial communities exposed to volcanic sulfur dioxide

    NASA Astrophysics Data System (ADS)

    Fujimura, Reiko; Kim, Seok-Won; Sato, Yoshinori; Oshima, Kenshiro; Hattori, Masahira; Kamijo, Takashi; Ohta, Hiroyuki

    2016-01-01

    Newly exposed volcanic substrates contain negligible amounts of organic materials. Heterotrophic organisms in newly formed ecosystems require bioavailable carbon and nitrogen that are provided from CO2 and N2 fixation by pioneer microbes. However, the knowledge of initial ecosystem developmental mechanisms, especially the association between microbial succession and environmental change, is still limited. This study reports the unique process of microbial succession in fresh basaltic ash, which was affected by long-term exposure to volcanic sulfur dioxide (SO2). Here we compared the microbial ecosystems among deposits affected by SO2 exposure at different levels. The results of metagenomic analysis suggested the importance of autotrophic iron-oxidizing bacteria, particularly those involved in CO2 and N2 fixation, in the heavily SO2 affected site. Changes in the chemical properties of the deposits after the decline of the SO2 impact led to an apparent decrease in the iron-oxidizer abundance and a possible shift in the microbial community structure. Furthermore, the community structure of the deposits that had experienced lower SO2 gas levels showed higher similarity with that of the control forest soil. Our results implied that the effect of SO2 exposure exerted a selective pressure on the pioneer community structure by changing the surrounding environment of the microbes.

  6. Carbon Dioxide (Reduction)

    SciTech Connect

    Fujita, Etsuko

    2000-01-12

    The twin problems of global warming, caused by an increase in atmospheric carbon dioxide (CO2) concentrations, and limited fossil fuel resources have stimulated research in the utilization of CO2. These problems would be partially alleviated by the development of artificial photochemical systems that could economically fix CO2 into fuels or useful chemicals. During the past one and a half decades, intensive efforts have been directed toward the photochemical production of carbon monoxide (CO) and formic acid (HCOOH) from CO2. These systems have several common elements: they all contain photosensitizers (such as metalloporphyrins, ruthenium or rhenium complexes with bipyridine), electron mediators or catalysts, and sacrificial electron donors (such as tertiary amines or ascorbic acid). Recent progress along these lines has resulted in advances in our understanding of the interaction of CO2 molecules with metal complexes, and the factors controlling the efficient storage of solar energy in the form of reduced carbon compounds.

  7. Forecasting carbon dioxide emissions.

    PubMed

    Zhao, Xiaobing; Du, Ding

    2015-09-01

    This study extends the literature on forecasting carbon dioxide (CO2) emissions by applying the reduced-form econometrics approach of Schmalensee et al. (1998) to a more recent sample period, the post-1997 period. Using the post-1997 period is motivated by the observation that the strengthening pace of global climate policy may have been accelerated since 1997. Based on our parameter estimates, we project 25% reduction in CO2 emissions by 2050 according to an economic and population growth scenario that is more consistent with recent global trends. Our forecasts are conservative due to that we do not have sufficient data to fully take into account recent developments in the global economy.

  8. Carbon dioxide: atmospheric overload

    SciTech Connect

    Not Available

    1980-04-01

    The level of carbon dioxide in the atmosphere is increasing and may double within the next century. The result of this phenomenon, climatic alterations, will adversely affect crop production, water supplies, and global temperatures. Sources of CO2 include the combustion of fossil fuels, photosynthesis, and the decay of organic matter in soils. The most serious effect of possible climatic changes could occur along the boundaries of arid and semiarid regions. Shifts is precipitation patterns could accelerate the processes of desertification. An increase of 5..cap alpha..C in the average temperature of the top 1000 m of ocean water would raise sea level by 2 m. CO2 releases to the atmosphere can be reduced by controlling emissions from fossil fuel-fired facilities and by careful harvesting of forest regions. (3 photos, 5 references)

  9. Climate impact of increasing atmospheric carbon dioxide.

    PubMed

    Hansen, J; Johnson, D; Lacis, A; Lebedeff, S; Lee, P; Rind, D; Russell, G

    1981-08-28

    The global temperature rose by 0.2 degrees C between the middle 1960's and 1980, yielding a warming of 0.4 degrees C in the past century. This temperature increase is consistent with the calculated greenhouse effect due to measured increases of atmospheric carbon dioxide. Variations of volcanic aerosols and possibly solar luminosity appear to be primary causes of observed fluctuations about the mean trend of increasing temperature. It is shown that the anthropogenic carbon dioxide warming should emerge from the noise level of natural climate variability by the end of the century, and there is a high probability of warming in the 1980's. Potential effects on climate in the 21st century include the creation of drought-prone regions in North America and central Asia as part of a shifting of climatic zones, erosion of the West Antarctic ice sheet with a consequent worldwide rise in sea level, and opening of the fabled Northwest Passage.

  10. Reducing carbon dioxide to products

    SciTech Connect

    Cole, Emily Barton; Sivasankar, Narayanappa; Parajuli, Rishi; Keets, Kate A

    2014-09-30

    A method reducing carbon dioxide to one or more products may include steps (A) to (C). Step (A) may bubble said carbon dioxide into a solution of an electrolyte and a catalyst in a divided electrochemical cell. The divided electrochemical cell may include an anode in a first cell compartment and a cathode in a second cell compartment. The cathode may reduce said carbon dioxide into said products. Step (B) may adjust one or more of (a) a cathode material, (b) a surface morphology of said cathode, (c) said electrolyte, (d) a manner in which said carbon dioxide is bubbled, (e), a pH level of said solution, and (f) an electrical potential of said divided electrochemical cell, to vary at least one of (i) which of said products is produced and (ii) a faradaic yield of said products. Step (C) may separate said products from said solution.

  11. Recuperative supercritical carbon dioxide cycle

    SciTech Connect

    Sonwane, Chandrashekhar; Sprouse, Kenneth M; Subbaraman, Ganesan; O'Connor, George M; Johnson, Gregory A

    2014-11-18

    A power plant includes a closed loop, supercritical carbon dioxide system (CLS-CO.sub.2 system). The CLS-CO.sub.2 system includes a turbine-generator and a high temperature recuperator (HTR) that is arranged to receive expanded carbon dioxide from the turbine-generator. The HTR includes a plurality of heat exchangers that define respective heat exchange areas. At least two of the heat exchangers have different heat exchange areas.

  12. Tunable pulsed carbon dioxide laser

    NASA Technical Reports Server (NTRS)

    Megie, G. J.; Menzies, R. T.

    1981-01-01

    Transverse electrically-excited-atmosphere (TEA) laser is continuously tunable over several hundred megahertz about centers of spectral lines of carbon dioxide. It is operated in single longitudinal mode (SLM) by injection of beam from continuous-wave, tunable-waveguide carbon dioxide laser, which serves as master frequency-control oscillator. Device measures absorption line of ozone; with adjustments, it is applicable to monitoring of atmospheric trace species.

  13. Proceedings: carbon dioxide research conference: carbon dioxide, science and consensus

    SciTech Connect

    Not Available

    1983-01-01

    Papers presented discussed the carbon cycle climate modelling, the West Antarctic ice sheet, and first detection of climate change. An appendix lists the carbon dioxide research programs of the European Community and of the World Meteorological Organization. A list of delegates is also included.

  14. Magnesite disposal of carbon dioxide

    SciTech Connect

    Lackner, K.S.; Butt, D.P.; Wendt, C.H.

    1997-08-01

    In this paper we report our progress on developing a method for carbon dioxide disposal whose purpose it is to maintain coal energy competitive even is environmental and political pressures will require a drastic reduction in carbon dioxide emissions. In contrast to most other methods, our approach is not aiming at a partial solution of the problem, or at buying time for phasing out fossil energy. Instead, its purpose is to obtain a complete and economic solution of the problem, and thus maintain access to the vast fossil energy reservoir. A successful development of this technology would guarantee energy availability for many centuries even if world economic growth the most optimistic estimates that have been put forward. Our approach differs from all others in that we are developing an industrial process which chemically binds the carbon dioxide in an exothermic reaction into a mineral carbonate that is thermodynamically stable and environmentally benign.

  15. Carbon Dioxide - Our Common "Enemy"

    NASA Technical Reports Server (NTRS)

    James, John T.; Macatangay, Ariel

    2009-01-01

    Health effects of brief and prolonged exposure to carbon dioxide continue to be a concern for those of us who manage this pollutant in closed volumes, such as in spacecraft and submarines. In both examples, considerable resources are required to scrub the atmosphere to levels that are considered totally safe for maintenance of crew health and performance. Defining safe levels is not a simple task because of many confounding factors, including: lack of a robust database on human exposures, suspected significant variations in individual susceptibility, variations in the endpoints used to assess potentially adverse effects, the added effects of stress, and the fluid shifts associated with micro-gravity (astronauts only). In 2007 the National Research Council proposed revised Continuous Exposure Guidelines (CEGLs) and Emergency Exposure Guidelines (EEGLs) to the U.S. Navy. Similarly, in 2008 the NASA Toxicology Group, in cooperation with another subcommittee of the National Research Council, revised Spacecraft Maximum Allowable Concentrations (SMACs). In addition, a 1000-day exposure limit was set for long-duration spaceflights to celestial bodies. Herein we examine the rationale for the levels proposed to the U.S. Navy and compare this rationale with the one used by NASA to set its limits. We include a critical review of previous studies on the effects of exposure to carbon dioxide and attempt to dissect out the challenges associated with setting fully-defensible limits. We also describe recent experiences with management of carbon dioxide aboard the International Space Station with 13 persons aboard. This includes the tandem operations of the Russian Vozduk and the U.S. Carbon Dioxide Removal System. A third removal system is present while the station is docked to the Shuttle spacecraft, so our experience includes the lithium hydroxide system aboard Shuttle for the removal of carbon dioxide. We discuss strategies for highly-efficient, regenerable removal of carbon

  16. Carbon Dioxide Absorption Heat Pump

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    2002-01-01

    A carbon dioxide absorption heat pump cycle is disclosed using a high pressure stage and a super-critical cooling stage to provide a non-toxic system. Using carbon dioxide gas as the working fluid in the system, the present invention desorbs the CO2 from an absorbent and cools the gas in the super-critical state to deliver heat thereby. The cooled CO2 gas is then expanded thereby providing cooling and is returned to an absorber for further cycling. Strategic use of heat exchangers can increase the efficiency and performance of the system.

  17. Carbon dioxide embolism during laparoscopic surgery.

    PubMed

    Park, Eun Young; Kwon, Ja-Young; Kim, Ki Jun

    2012-05-01

    Clinically significant carbon dioxide embolism is a rare but potentially fatal complication of anesthesia administered during laparoscopic surgery. Its most common cause is inadvertent injection of carbon dioxide into a large vein, artery or solid organ. This error usually occurs during or shortly after insufflation of carbon dioxide into the body cavity, but may result from direct intravascular insufflation of carbon dioxide during surgery. Clinical presentation of carbon dioxide embolism ranges from asymptomatic to neurologic injury, cardiovascular collapse or even death, which is dependent on the rate and volume of carbon dioxide entrapment and the patient's condition. We reviewed extensive literature regarding carbon dioxide embolism in detail and set out to describe the complication from background to treatment. We hope that the present work will improve our understanding of carbon dioxide embolism during laparoscopic surgery.

  18. Process for sequestering carbon dioxide and sulfur dioxide

    DOEpatents

    Maroto-Valer, M. Mercedes; Zhang, Yinzhi; Kuchta, Matthew E.; Andresen, John M.; Fauth, Dan J.

    2009-10-20

    A process for sequestering carbon dioxide, which includes reacting a silicate based material with an acid to form a suspension, and combining the suspension with carbon dioxide to create active carbonation of the silicate-based material, and thereafter producing a metal salt, silica and regenerating the acid in the liquid phase of the suspension.

  19. Carbon dioxide transport over complex terrain

    USGS Publications Warehouse

    Sun, Jielun; Burns, Sean P.; Delany, A.C.; Oncley, S.P.; Turnipseed, A.; Stephens, B.; Guenther, A.; Anderson, D.E.; Monson, R.

    2004-01-01

    The nocturnal transport of carbon dioxide over complex terrain was investigated. The high carbon dioxide under very stable conditions flows to local low-ground. The regional drainage flow dominates the carbon dioxide transport at the 6 m above the ground and carbon dioxide was transported to the regional low ground. The results show that the local drainage flow was sensitive to turbulent mixing associated with local wind shear.

  20. High capacity carbon dioxide sorbent

    DOEpatents

    Dietz, Steven Dean; Alptekin, Gokhan; Jayaraman, Ambalavanan

    2015-09-01

    The present invention provides a sorbent for the removal of carbon dioxide from gas streams, comprising: a CO.sub.2 capacity of at least 9 weight percent when measured at 22.degree. C. and 1 atmosphere; an H.sub.2O capacity of at most 15 weight percent when measured at 25.degree. C. and 1 atmosphere; and an isosteric heat of adsorption of from 5 to 8.5 kilocalories per mole of CO.sub.2. The invention also provides a carbon sorbent in a powder, a granular or a pellet form for the removal of carbon dioxide from gas streams, comprising: a carbon content of at least 90 weight percent; a nitrogen content of at least 1 weight percent; an oxygen content of at most 3 weight percent; a BET surface area from 50 to 2600 m.sup.2/g; and a DFT micropore volume from 0.04 to 0.8 cc/g.

  1. Modelling Sublimation of Carbon Dioxide

    ERIC Educational Resources Information Center

    Winkel, Brian

    2012-01-01

    In this article, the author reports results in their efforts to model sublimation of carbon dioxide and the associated kinetics order and parameter estimation issues in their model. They have offered the reader two sets of data and several approaches to determine the rate of sublimation of a piece of solid dry ice. They presented several models…

  2. Enhanced oil recovery using carbon dioxide

    SciTech Connect

    Cullick, A.S.

    1986-09-02

    A method is described for increasing the solubility of a polymer in dense-phase carbon dioxide, which comprises dissolving a substantially water-insoluble polymer in dense-phase carbon dioxide in the presence of an entrainer which is soluble in the dense phase carbon dioxide.

  3. 21 CFR 582.1240 - Carbon dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Carbon dioxide. 582.1240 Section 582.1240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1240 Carbon dioxide. (a) Product. Carbon dioxide. (b) Conditions of use. This substance is...

  4. 21 CFR 582.1240 - Carbon dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Carbon dioxide. 582.1240 Section 582.1240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1240 Carbon dioxide. (a) Product. Carbon dioxide. (b) Conditions of use. This substance is...

  5. 21 CFR 582.1240 - Carbon dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Carbon dioxide. 582.1240 Section 582.1240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1240 Carbon dioxide. (a) Product. Carbon dioxide. (b) Conditions of use. This substance is...

  6. 21 CFR 582.1240 - Carbon dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Carbon dioxide. 582.1240 Section 582.1240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1240 Carbon dioxide. (a) Product. Carbon dioxide. (b) Conditions of use. This substance is...

  7. 21 CFR 582.1240 - Carbon dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Carbon dioxide. 582.1240 Section 582.1240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1240 Carbon dioxide. (a) Product. Carbon dioxide. (b) Conditions of use. This substance is...

  8. Method for carbon dioxide splitting

    DOEpatents

    Miller, James E.; Diver, Jr., Richard B.; Siegel, Nathan P.

    2017-02-28

    A method for splitting carbon dioxide via a two-step metal oxide thermochemical cycle by heating a metal oxide compound selected from an iron oxide material of the general formula A.sub.xFe.sub.3-xO.sub.4, where 0.ltoreq.x.ltoreq.1 and A is a metal selected from Mg, Cu, Zn, Ni, Co, and Mn, or a ceria oxide compound of the general formula M.sub.aCe.sub.bO.sub.c, where 0carbon dioxide, and heating to a temperature less than approximately 1400 C, thereby producing carbon monoxide gas and the original metal oxide compound.

  9. CARBON DIOXIDE AS A FEEDSTOCK.

    SciTech Connect

    CREUTZ,C.; FUJITA,E.

    2000-12-09

    This report is an overview on the subject of carbon dioxide as a starting material for organic syntheses of potential commercial interest and the utilization of carbon dioxide as a substrate for fuel production. It draws extensively on literature sources, particularly on the report of a 1999 Workshop on the subject of catalysis in carbon dioxide utilization, but with emphasis on systems of most interest to us. Atmospheric carbon dioxide is an abundant (750 billion tons in atmosphere), but dilute source of carbon (only 0.036 % by volume), so technologies for utilization at the production source are crucial for both sequestration and utilization. Sequestration--such as pumping CO{sub 2} into sea or the earth--is beyond the scope of this report, except where it overlaps utilization, for example in converting CO{sub 2} to polymers. But sequestration dominates current thinking on short term solutions to global warming, as should be clear from reports from this and other workshops. The 3500 million tons estimated to be added to the atmosphere annually at present can be compared to the 110 million tons used to produce chemicals, chiefly urea (75 million tons), salicylic acid, cyclic carbonates and polycarbonates. Increased utilization of CO{sub 2} as a starting material is, however, highly desirable, because it is an inexpensive, non-toxic starting material. There are ongoing efforts to replace phosgene as a starting material. Creation of new materials and markets for them will increase this utilization, producing an increasingly positive, albeit small impact on global CO{sub 2} levels. The other uses of interest are utilization as a solvent and for fuel production and these will be discussed in turn.

  10. Sulfur dioxide - Episodic injection shows evidence for active Venus volcanism

    NASA Astrophysics Data System (ADS)

    Esposito, L. W.

    1984-03-01

    Pioneer Venus ultraviolet spectra from the first 5 years of operation show a decline (by more than a factor of 10) in sulfur dioxide abundance at the cloud tops and in the amount of submicron haze above the clouds. At the time of the Pioneer Venus encounter, the values for both parameters greatly exceeded earlier upper limits. However, Venus had a similar appearance in the late 1950's, implying the episodic injection of sulfur dioxide possibly caused by episodic volcanism. The amount of haze in the Venus middle atmosphere is about ten times that found in earth's stratosphere after the most recent major volcanic eruptions, and the thermal energy required for this injection on Venus is greater by about an order of magnitude than the largest of these recent earth eruptions and about as large as the Krakatoa eruption of 1883. The episodic behavior of sulfur dioxide implies that steady-state models of the chemistry and dynamics of cloud-top regions may be of limited use.

  11. Sulfur dioxide - Episodic injection shows evidence for active Venus volcanism

    NASA Technical Reports Server (NTRS)

    Esposito, L. W.

    1984-01-01

    Pioneer Venus ultraviolet spectra from the first 5 years of operation show a decline (by more than a factor of 10) in sulfur dioxide abundance at the cloud tops and in the amount of submicron haze above the clouds. At the time of the Pioneer Venus encounter, the values for both parameters greatly exceeded earlier upper limits. However, Venus had a similar appearance in the late 1950's, implying the episodic injection of sulfur dioxide possibly caused by episodic volcanism. The amount of haze in the Venus middle atmosphere is about ten times that found in earth's stratosphere after the most recent major volcanic eruptions, and the thermal energy required for this injection on Venus is greater by about an order of magnitude than the largest of these recent earth eruptions and about as large as the Krakatoa eruption of 1883. The episodic behavior of sulfur dioxide implies that steady-state models of the chemistry and dynamics of cloud-top regions may be of limited use.

  12. Carbon dioxide conversion over carbon-based nanocatalysts.

    PubMed

    Khavarian, Mehrnoush; Chai, Siang-Piao; Mohamed, Abdul Rahman

    2013-07-01

    The utilization of carbon dioxide for the production of valuable chemicals via catalysts is one of the efficient ways to mitigate the greenhouse gases in the atmosphere. It is known that the carbon dioxide conversion and product yields are still low even if the reaction is operated at high pressure and temperature. The carbon dioxide utilization and conversion provides many challenges in exploring new concepts and opportunities for development of unique catalysts for the purpose of activating the carbon dioxide molecules. In this paper, the role of carbon-based nanocatalysts in the hydrogenation of carbon dioxide and direct synthesis of dimethyl carbonate from carbon dioxide and methanol are reviewed. The current catalytic results obtained with different carbon-based nanocatalysts systems are presented and how these materials contribute to the carbon dioxide conversion is explained. In addition, different strategies and preparation methods of nanometallic catalysts on various carbon supports are described to optimize the dispersion of metal nanoparticles and catalytic activity.

  13. Electrochemically regenerable carbon dioxide absorber

    NASA Technical Reports Server (NTRS)

    Woods, R. R.; Marshall, R. D.; Schubert, F. H.; Heppner, D. B.

    1979-01-01

    Preliminary designs were generated for two electrochemically regenerable carbon dioxide absorber concepts. Initially, an electrochemically regenerable absorption bed concept was designed. This concept incorporated the required electrochemical regeneration components in the absorber design, permitting the absorbent to be regenerated within the absorption bed. This hardware was identified as the electrochemical absorber hardware. The second hardware concept separated the functional components of the regeneration and absorption process. This design approach minimized the extravehicular activity component volume by eliminating regeneration hardware components within the absorber. The electrochemical absorber hardware was extensively characterized for major operating parameters such as inlet carbon dioxide partial pressure, process air flow rate, operational pressure, inlet relative humidity, regeneration current density and absorption/regeneration cycle endurance testing.

  14. Summer Ice and Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Kukla, G.; Gavin, J.

    1981-10-01

    The extent of Antarctic pack ice in the summer, as charted from satellite imagery, decreased by 2.5 million square kilometers between 1973 and 1980. The U.S. Navy and Russian atlases and whaling and research ship reports from the 1930's indicate that summer ice conditions earlier in this century were heavier than the current average. Surface air temperatures along the seasonally shifting belt of melting snow between 55 degrees and 80 degrees N during spring and summer were higher in 1974 to 1978 than in 1934 to 1938. The observed departures in the two hemispheres qualitatively agree with the predicted impact of an increase in atmospheric carbon dioxide. However, since it is not known to what extent the changes in snow and ice cover and in temperature can be explained by the natural variability of the climate system or by other processes unrelated to carbon dioxide, a cause-and-effect relation cannot yet be established.

  15. Summer ice and carbon dioxide

    SciTech Connect

    Kukla, G.; Gavin, J.

    1981-10-30

    The extent of Antarctic pack ice in the summer, as charted from satellite imagery, decreased by 2.5 million square kilometers between 1973 and 1980. The U.S. Navy and Russian atlases and whaling and reseach ship reports from the 1930's indicate that summer ice conditions earlier in this century were heavier than the current average. Surface air temperatures along the seasonally shifting belt of melting snow between 55/sup o/ and 80/sup o/N during spring and summer were higher in 1974 to 1978 than in 1934 to 1938. The observed departures in the two hemispheres qualitatively agree with the predicted impact of an increase in atmospheric carbon dioxide. However, since it is not known to what extent the changes in snow and ice cover and in temperature can be explained by the natural variability of the climate system or by other processes unrelated to carbon dioxide, a cause-and-effect relation cannot yet be established.

  16. Method for carbon dioxide sequestration

    SciTech Connect

    Wang, Yifeng; Bryan, Charles R.; Dewers, Thomas; Heath, Jason E.

    2015-09-22

    A method for geo-sequestration of a carbon dioxide includes selection of a target water-laden geological formation with low-permeability interbeds, providing an injection well into the formation and injecting supercritical carbon dioxide (SC--CO.sub.2) into the injection well under conditions of temperature, pressure and density selected to cause the fluid to enter the formation and splinter and/or form immobilized ganglia within the formation. This process allows for the immobilization of the injected SC--CO.sub.2 for very long times. The dispersal of scCO2 into small ganglia is accomplished by alternating injection of SC--CO.sub.2 and water. The injection rate is required to be high enough to ensure the SC--CO.sub.2 at the advancing front to be broken into pieces and small enough for immobilization through viscous instability.

  17. Oxygen and carbon dioxide sensing

    NASA Technical Reports Server (NTRS)

    Ren, Fan (Inventor); Pearton, Stephen John (Inventor)

    2012-01-01

    A high electron mobility transistor (HEMT) capable of performing as a CO.sub.2 or O.sub.2 sensor is disclosed, hi one implementation, a polymer solar cell can be connected to the HEMT for use in an infrared detection system. In a second implementation, a selective recognition layer can be provided on a gate region of the HEMT. For carbon dioxide sensing, the selective recognition layer can be, in one example, PEI/starch. For oxygen sensing, the selective recognition layer can be, in one example, indium zinc oxide (IZO). In one application, the HEMTs can be used for the detection of carbon dioxide and oxygen in exhaled breath or blood.

  18. The Impact of Carbon Dioxide on Climate.

    ERIC Educational Resources Information Center

    MacDonald, Gordon J.

    1979-01-01

    Examines the relationship between climatic change and carbon dioxide from the historical perspective; details the contributions of carbon-based fuels to increasing carbon dioxide concentrations; and using global circulation models, discusses the future impact of the heavy reliance of our society on carbon-based fuels on climatic change. (BT)

  19. Carbon Dioxide Removal via Passive Thermal Approaches

    NASA Technical Reports Server (NTRS)

    Lawson, Michael; Hanford, Anthony; Conger, Bruce; Anderson, Molly

    2011-01-01

    A paper describes a regenerable approach to separate carbon dioxide from other cabin gases by means of cooling until the carbon dioxide forms carbon dioxide ice on the walls of the physical device. Currently, NASA space vehicles remove carbon dioxide by reaction with lithium hydroxide (LiOH) or by adsorption to an amine, a zeolite, or other sorbent. Use of lithium hydroxide, though reliable and well-understood, requires significant mass for all but the shortest missions in the form of lithium hydroxide pellets, because the reaction of carbon dioxide with lithium hydroxide is essentially irreversible. This approach is regenerable, uses less power than other historical approaches, and it is almost entirely passive, so it is more economical to operate and potentially maintenance- free for long-duration missions. In carbon dioxide removal mode, this approach passes a bone-dry stream of crew cabin atmospheric gas through a metal channel in thermal contact with a radiator. The radiator is pointed to reject thermal loads only to space. Within the channel, the working stream is cooled to the sublimation temperature of carbon dioxide at the prevailing cabin pressure, leading to formation of carbon dioxide ice on the channel walls. After a prescribed time or accumulation of carbon dioxide ice, for regeneration of the device, the channel is closed off from the crew cabin and the carbon dioxide ice is sublimed and either vented to the environment or accumulated for recovery of oxygen in a fully regenerative life support system.

  20. Carbon dioxide review 1982

    SciTech Connect

    Clark, W.C.

    1982-01-01

    The buildup of CO/sub 2/ is a reality, monitored with increasing precision since 1957 and inferred for much earlier dates. A statistical section gives the monitored values to 1980, as well as a review of a long series of measurements made at Mauna Loa by the pioneers of such monitoring, Charles D. Keeling, Robert B. Bacastow, and Timothy P. Whorf. The book discusses internal transport processes in the ocean, of ocean-atmosphere interaction, of the magnitude of forest and soil carbon wastage, of the future course of fossil-fuel consumption. Yet something else emerges, too: if the CO/sub 2/ buildup continues; if the big general circulation models are right about its impact on climate, and if we have not miscalculated the potential role of the oceans, then we face a climatic change in the next century and a half like nothing the post-glacial world, and hence civilized humanity, has seen.

  1. Solubility of Carbon Dioxide in Water.

    ERIC Educational Resources Information Center

    Bush, Pat; And Others

    1992-01-01

    Describes an activity measuring the amount of dissolved carbon dioxide in carbonated water at different temperatures. The amount of carbon dioxide is measured by the amount of dilute ammonia solution needed to produce a pH indicator color change. (PR)

  2. Volcanic recycling of carbonates on Mars

    NASA Technical Reports Server (NTRS)

    Schaefer, M. W.

    1993-01-01

    Thermal erosion of carbonate deposits by turbulently-flowing lava is investigated as a means of recycling carbon dioxide back into the atmosphere of Mars. Erosion rates of several meters/day are found, implying that up to hundreds of meters of carbonate could be removed over the lifetime of a flow. A large fraction of the northern plains and other parts of Mars were covered by lava during the Hesperian, and may have released the carbon dioxide trapped in carbonate deposits. This period of time, several times 10 exp 8 yrs, is comparable to that for the redeposition of such carbonate deposits. Therefore, there could have existed a relatively dense atmosphere, and enhanced weathering and erosion, after the Noachian era. This may help explain the apparent observational evidence for late fluvial and lacustrine activity on Mars.

  3. Natural sources of greenhouse gases: carbon dioxide emissions from volcanoes

    USGS Publications Warehouse

    Gerlach, Terrence

    1990-01-01

    Volcanic degassing of carbon dioxide plays an important role in keeping the atmosphere-ocean portion of the carbon geochemical cycle in balance. The atmosphere-ocean carbon deficit requires replenishment of 6??1012 mol CO2/yr, and places an upper limit on the output of carbon dioxide from volcanoes. The CO2 output of the global mid-oceanic ridge system is ca. 0.7??1012 mol/yr, thus supplying only a fraction of the amount needed to balance the carbon deficit. The carbon dioxide flux from subaerial volcanoes is poorly known, but it appears to be at least as large as the mid-oceanic ridge flux. Much (perhaps most) of the CO2 emitted from volcanoes is degassed noneruptively. This mode of degassing may lead to impacts on the environment and biosphere that are fundamentally different in character from those envisioned in published scenarios, which are based on the assumption that CO2 degassing occurs predominantly by eruptive processes. Although the flux of carbon dioxide from volcanoes is poorly constrained at present, it is clearly two orders of magnitude lower than the anthropogenic output of CO2.

  4. Magmatic vapor source for sulfur dioxide released during volcanic eruptions: Evidence from Mount Pinatubo

    USGS Publications Warehouse

    Wallace, P.J.; Gerlach, T.M.

    1994-01-01

    Sulfur dioxide (SO2) released by the explosive eruption of Mount Pinatubo on 15 June 1991 had an impact on climate and stratospheric ozone. The total mass of SO2 released was much greater than the amount dissolved in the magma before the eruption, and thus an additional source for the excess SO2 is required. Infrared spectroscopic analyses of dissolved water and carbon dioxide in glass inclusions from quartz phenocrysts demonstrate that before eruption the magma contained a separate, SO2-bearing vapor phase. Data for gas emissions from other volcanoes in subduction-related arcs suggest that preeruptive magmatic vapor is a major source of the SO2 that is released during many volcanic eruptions.

  5. Sorption of carbon dioxide onto sodium carbonate

    SciTech Connect

    Sang-Wook Park; Deok-Ho Sung; Byoung-Sik Choi; Kwang-Joong Oh; Kil-Ho Moon

    2006-07-01

    Sodium carbonate was used as a sorbent to capture CO{sub 2} from a gaseous stream of carbon dioxide, nitrogen, and moisture. The breakthrough data of CO{sub 2} were measured in a fixed bed to observe the reaction kinetics of CO{sub 2}-carbonate reaction. Several models such as the shrinking-core model, the homogeneous model, and the deactivation model in the non-catalytic heterogeneous reaction systems were used to explain the kinetics of reaction among CO{sub 2}, Na{sub 2}CO{sub 3}, and moisture using analysis of the experimental breakthrough data. Good agreement of the deactivation model was obtained with the experimental breakthrough data. The sorption rate constant and the deactivation rate constant were evaluated by analysis of the experimental breakthrough data using a nonlinear least squares technique and described as Arrhenius form.

  6. Carbon dioxide disposal in solid form

    SciTech Connect

    Lackner, K.S.; Butt, D.P.; Sharp, D.H.; Wendt, C.H.

    1995-12-31

    Coal reserves can provide for the world`s energy needs for centuries. However, coal`s long term use may be severely curtailed if the emission of carbon dioxide into the atmosphere is not eliminated. We present a safe and permanent method of carbon dioxide disposal that is based on combining carbon dioxide chemically with abundant raw materials to form stable carbonate minerals. We discuss the availability of raw materials and potential process designs. We consider our initial rough cost estimate of about 3{cents}/kWh encouraging. The availability of a carbon dioxide fixation technology would serve as insurance in case global warming, or the perception of global warming, causes severe restrictions on carbon dioxide emissions. If the increased energy demand of a growing world population is to be satisfied from coal, the implementation of such a technology would quite likely be unavoidable.

  7. Responses of Hawaiian plants to volcanic sulfur dioxide: stomatal behavior and foliar injury

    SciTech Connect

    Not Available

    1980-11-14

    Hawaiian plants exposed to volcanic sulfur dioxide showed interspecific differences in leaf injury that are related to sulfur dioxide-induced changes in stomatal conductance. Species with leaves that did not close stomata developed either chlorosis or necrosis, whereas leaves of Metrosideros collina closed stomata and showed no visual symptoms of sulfur dioxide stress.

  8. Encapsulated liquid sorbents for carbon dioxide capture.

    PubMed

    Vericella, John J; Baker, Sarah E; Stolaroff, Joshuah K; Duoss, Eric B; Hardin, James O; Lewicki, James; Glogowski, Elizabeth; Floyd, William C; Valdez, Carlos A; Smith, William L; Satcher, Joe H; Bourcier, William L; Spadaccini, Christopher M; Lewis, Jennifer A; Aines, Roger D

    2015-02-05

    Drawbacks of current carbon dioxide capture methods include corrosivity, evaporative losses and fouling. Separating the capture solvent from infrastructure and effluent gases via microencapsulation provides possible solutions to these issues. Here we report carbon capture materials that may enable low-cost and energy-efficient capture of carbon dioxide from flue gas. Polymer microcapsules composed of liquid carbonate cores and highly permeable silicone shells are produced by microfluidic assembly. This motif couples the capacity and selectivity of liquid sorbents with high surface area to facilitate rapid and controlled carbon dioxide uptake and release over repeated cycles. While mass transport across the capsule shell is slightly lower relative to neat liquid sorbents, the surface area enhancement gained via encapsulation provides an order-of-magnitude increase in carbon dioxide absorption rates for a given sorbent mass. The microcapsules are stable under typical industrial operating conditions and may be used in supported packing and fluidized beds for large-scale carbon capture.

  9. Carbon dioxide sequestration by mineral carbonation

    SciTech Connect

    Gerdemann, Stephen J.; Dahlin David C.; O'Connor William K.; Penner Larry R.

    2003-11-01

    Concerns about global warming caused by the increasing concentration of carbon dioxide and other greenhouse gases in the earth’s atmosphere have resulted in the need for research to reduce or eliminate emissions of these gases. Carbonation of magnesium and calcium silicate minerals is one possible method to achieve this reduction. It is possible to carry out these reactions either in situ (storage underground and subsequent reaction with the host rock to trap CO2 as carbonate minerals) or ex situ (above ground in a more traditional chemical processing plant). Research at the Department of Energy’s Albany Research Center has explored both of these routes. This paper will explore parameters that affect the direct carbonation of magnesium silicate minerals serpentine (Mg3Si2O5(OH)4) and olivine (Mg2SiO4) to produce magnesite (MgCO3), as well as the calcium silicate mineral, wollastonite (CaSiO3), to form calcite (CaCO3). The Columbia River Basalt Group is a multi-layered basaltic lava plateau that has favorable mineralogy and structure for storage of CO2. Up to 25% combined concentration of Ca, Fe2+, and Mg cations could react to form carbonates and thus sequester large quantities of CO2. Core samples from the Columbia River Basalt Group were reacted in an autoclave for up to 2000 hours at temperatures and pressures to simulate in situ conditions. Changes in core porosity, secondary minerals, and solution chemistry were measured.

  10. Microfluidic studies of carbon dioxide.

    PubMed

    Abolhasani, Milad; Günther, Axel; Kumacheva, Eugenia

    2014-07-28

    Carbon dioxide (CO2) sequestration, storage and recycling will greatly benefit from comprehensive studies of physical and chemical gas-liquid processes involving CO2. Over the past five years, microfluidics emerged as a valuable tool in CO2-related research, due to superior mass and heat transfer, reduced axial dispersion, well-defined gas-liquid interfacial areas and the ability to vary reagent concentrations in a high-throughput manner. This Minireview highlights recent progress in microfluidic studies of CO2-related processes, including dissolution of CO2 in physical solvents, CO2 reactions, the utilization of CO2 in materials science, and the use of supercritical CO2 as a "green" solvent.

  11. Electrocatalysts for carbon dioxide conversion

    DOEpatents

    Masel, Richard I; Salehi-Khojin, Amin

    2015-04-21

    Electrocatalysts for carbon dioxide conversion include at least one catalytically active element with a particle size above 0.6 nm. The electrocatalysts can also include a Helper Catalyst. The catalysts can be used to increase the rate, modify the selectivity or lower the overpotential of electrochemical conversion of CO.sub.2. Chemical processes and devices using the catalysts also include processes to produce CO, HCO.sup.-, H.sub.2CO, (HCO.sub.2).sup.-, H.sub.2CO.sub.2, CH.sub.3OH, CH.sub.4, C.sub.2H.sub.4, CH.sub.3CH.sub.2OH, CH.sub.3COO.sup.-, CH.sub.3COOH, C.sub.2H.sub.6, (COOH).sub.2, or (COO.sup.-).sub.2, and a specific device, namely, a CO.sub.2 sensor.

  12. Carbon dioxide cleaning pilot project

    SciTech Connect

    Knight, L.; Blackman, T.E.

    1994-01-21

    In 1989, radioactive-contaminated metal at the Rocky Flats Plant (RFP) was cleaned using a solvent paint stripper (Methylene chloride). One-third of the radioactive material was able to be recycled; two-thirds went to the scrap pile as low-level mixed waste. In addition, waste solvent solutions also required disposal. Not only was this an inefficient process, it was later prohibited by the Resource Conservation and Recovery Act (RCRA), 40 CFR 268. A better way of doing business was needed. In the search for a solution to this situation, it was decided to study the advantages of using a new technology - pelletized carbon dioxide cleaning. A proof of principle demonstration occurred in December 1990 to test whether such a system could clean radioactive-contaminated metal. The proof of principle demonstration was expanded in June 1992 with a pilot project. The purpose of the pilot project was three fold: (1) to clean metal so that it can satisfy free release criteria for residual radioactive contamination at the Rocky Flats Plant (RFP); (2) to compare two different carbon dioxide cleaning systems; and (3) to determine the cost-effectiveness of decontamination process in a production situation and compare the cost of shipping the metal off site for waste disposal. The pilot project was completed in August 1993. The results of the pilot project were: (1) 90% of those items which were decontaminated, successfully met the free release criteria , (2) the Alpheus Model 250 was selected to be used on plantsite and (3) the break even cost of decontaminating the metal vs shipping the contaminated material offsite for disposal was a cleaning rate of 90 pounds per hour, which was easily achieved.

  13. Carbon dioxide capture process with regenerable sorbents

    DOEpatents

    Pennline, Henry W.; Hoffman, James S.

    2002-05-14

    A process to remove carbon dioxide from a gas stream using a cross-flow, or a moving-bed reactor. In the reactor the gas contacts an active material that is an alkali-metal compound, such as an alkali-metal carbonate, alkali-metal oxide, or alkali-metal hydroxide; or in the alternative, an alkaline-earth metal compound, such as an alkaline-earth metal carbonate, alkaline-earth metal oxide, or alkaline-earth metal hydroxide. The active material can be used by itself or supported on a substrate of carbon, alumina, silica, titania or aluminosilicate. When the active material is an alkali-metal compound, the carbon-dioxide reacts with the metal compound to generate bicarbonate. When the active material is an alkaline-earth metal, the carbon dioxide reacts with the metal compound to generate carbonate. Spent sorbent containing the bicarbonate or carbonate is moved to a second reactor where it is heated or treated with a reducing agent such as, natural gas, methane, carbon monoxide hydrogen, or a synthesis gas comprising of a combination of carbon monoxide and hydrogen. The heat or reducing agent releases carbon dioxide gas and regenerates the active material for use as the sorbent material in the first reactor. New sorbent may be added to the regenerated sorbent prior to subsequent passes in the carbon dioxide removal reactor.

  14. A new look at atmospheric carbon dioxide

    NASA Astrophysics Data System (ADS)

    Hofmann, David J.; Butler, James H.; Tans, Pieter P.

    Carbon dioxide is increasing in the atmosphere and is of considerable concern in global climate change because of its greenhouse gas warming potential. The rate of increase has accelerated since measurements began at Mauna Loa Observatory in 1958 where carbon dioxide increased from less than 1 part per million per year (ppm yr -1) prior to 1970 to more than 2 ppm yr -1 in recent years. Here we show that the anthropogenic component (atmospheric value reduced by the pre-industrial value of 280 ppm) of atmospheric carbon dioxide has been increasing exponentially with a doubling time of about 30 years since the beginning of the industrial revolution (˜1800). Even during the 1970s, when fossil fuel emissions dropped sharply in response to the "oil crisis" of 1973, the anthropogenic atmospheric carbon dioxide level continued increasing exponentially at Mauna Loa Observatory. Since the growth rate (time derivative) of an exponential has the same characteristic lifetime as the function itself, the carbon dioxide growth rate is also doubling at the same rate. This explains the observation that the linear growth rate of carbon dioxide has more than doubled in the past 40 years. The accelerating growth rate is simply the outcome of exponential growth in carbon dioxide with a nearly constant doubling time of about 30 years (about 2%/yr) and appears to have tracked human population since the pre-industrial era.

  15. Photolytical Generation of Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Palmer, E. E.; Brown, R. H.

    2008-12-01

    Carbon dioxide has been found by Cassini VIMS throughout the Saturnian system in locations such as Iapetus' equator where the temperature is too high for it to remain as free ice for more than a few hundred years. We suggest that the 4.26 micron absorption feature found on Iapetus and Hyperion (that has been attributed to complexed CO2) is the result of either UV photolysis or ion bombardment driving chemistry between the carbon rich layer and the water ice regolith. We conducted experiments to simulate the generation of CO2 by UV radiation under conditions similar to those on the surface of Iapetus. A simulated icy regolith was created in an argon atmosphere using flash-frozen, degassed water crushed into sub-millimeter sized particles. Isotopically labeled amorphous carbon (13C), which was ground into a fine dust, was mixed into the regolith allowing for extensive grain contact. This sample was placed in a vacuum chamber and cooled to temperatures as low at 60K. The sample was irradiated with UV light, and the products were measured using both a mass spectrometer to identify free molecules and an IR spectrometer for molecules that remained trapped on and in the simulated regolith. We report on the production and reaction rates of CO2 and CO, as well as the generation of free hydrogen and oxygen as detected by a SRS-100 mass spectrometer. We also identify residual products that either freeze on the surface or become entrained by or adsorbed onto the ice grains. We attempt to match the CO2 absorption feature found on Iapetus with that seen in our simulation, perhaps identifying a possible source of CO2 in the Saturnian system. Finally, we estimate the time required for these reactions to occur on Iapetus to see if UV photolysis would be effective.

  16. 46 CFR 76.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 3 2012-10-01 2012-10-01 false Carbon dioxide storage. 76.15-20 Section 76.15-20... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 76.15-20 Carbon dioxide storage. (a) Except as... than 300 pounds of carbon dioxide, may have the cylinders located within the space protected. If...

  17. 46 CFR 97.37-9 - Carbon dioxide alarm.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Carbon dioxide alarm. 97.37-9 Section 97.37-9 Shipping... Markings for Fire and Emergency Equipment, Etc. § 97.37-9 Carbon dioxide alarm. (a) All carbon dioxide alarms shall be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE...

  18. 46 CFR 193.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Carbon dioxide storage. 193.15-20 Section 193.15-20... PROTECTION EQUIPMENT Carbon Dioxide and Clean Agent Extinguishing Systems, Details § 193.15-20 Carbon dioxide...-5(d), consisting of not more than 300 pounds of carbon dioxide, may have cylinders located...

  19. 49 CFR 173.217 - Carbon dioxide, solid (dry ice).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Carbon dioxide, solid (dry ice). 173.217 Section... Class 7 § 173.217 Carbon dioxide, solid (dry ice). (a) Carbon dioxide, solid (dry ice), when offered for... permit the release of carbon dioxide gas to prevent a buildup of pressure that could rupture...

  20. 46 CFR 76.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 3 2014-10-01 2014-10-01 false Carbon dioxide storage. 76.15-20 Section 76.15-20... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 76.15-20 Carbon dioxide storage. (a) Except as... than 300 pounds of carbon dioxide, may have the cylinders located within the space protected. If...

  1. 46 CFR 78.47-9 - Carbon dioxide alarm.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Carbon dioxide alarm. 78.47-9 Section 78.47-9 Shipping... and Emergency Equipment, Etc. § 78.47-9 Carbon dioxide alarm. (a) All carbon dioxide alarms shall be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE BEING RELEASED.” (b)...

  2. 46 CFR 95.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Carbon dioxide storage. 95.15-20 Section 95.15-20... PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-20 Carbon dioxide storage. (a... of not more than 300 pounds of carbon dioxide, may have the cylinders located within the...

  3. 46 CFR 169.732 - Carbon dioxide alarm.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Carbon dioxide alarm. 169.732 Section 169.732 Shipping... Control, Miscellaneous Systems, and Equipment Markings § 169.732 Carbon dioxide alarm. Each carbon dioxide alarm must be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE BEING RELEASED.”...

  4. 46 CFR 95.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Carbon dioxide storage. 95.15-20 Section 95.15-20... PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-20 Carbon dioxide storage. (a... of not more than 300 pounds of carbon dioxide, may have the cylinders located within the...

  5. 46 CFR 108.627 - Carbon dioxide alarm.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Carbon dioxide alarm. 108.627 Section 108.627 Shipping... EQUIPMENT Equipment Markings and Instructions § 108.627 Carbon dioxide alarm. Each carbon dioxide alarm must be identified by marking: “WHEN ALARM SOUNDS VACATE AT ONCE. CARBON DIOXIDE BEING RELEASED” next...

  6. 46 CFR 193.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Carbon dioxide storage. 193.15-20 Section 193.15-20... PROTECTION EQUIPMENT Carbon Dioxide and Clean Agent Extinguishing Systems, Details § 193.15-20 Carbon dioxide...-5(d), consisting of not more than 300 pounds of carbon dioxide, may have cylinders located...

  7. 46 CFR 95.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Carbon dioxide storage. 95.15-20 Section 95.15-20... PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-20 Carbon dioxide storage. (a... of not more than 300 pounds of carbon dioxide, may have the cylinders located within the...

  8. 49 CFR 173.217 - Carbon dioxide, solid (dry ice).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Carbon dioxide, solid (dry ice). 173.217 Section... Class 7 § 173.217 Carbon dioxide, solid (dry ice). (a) Carbon dioxide, solid (dry ice), when offered for... permit the release of carbon dioxide gas to prevent a buildup of pressure that could rupture...

  9. 46 CFR 97.37-11 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Carbon dioxide warning signs. 97.37-11 Section 97.37-11... OPERATIONS Markings for Fire and Emergency Equipment, Etc. § 97.37-11 Carbon dioxide warning signs. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or...

  10. 46 CFR 108.626 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Carbon dioxide warning signs. 108.626 Section 108.626... AND EQUIPMENT Equipment Markings and Instructions § 108.626 Carbon dioxide warning signs. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or...

  11. 46 CFR 78.47-11 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 3 2013-10-01 2013-10-01 false Carbon dioxide warning signs. 78.47-11 Section 78.47-11... Fire and Emergency Equipment, Etc. § 78.47-11 Carbon dioxide warning signs. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or any space into...

  12. 46 CFR 78.47-11 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 3 2012-10-01 2012-10-01 false Carbon dioxide warning signs. 78.47-11 Section 78.47-11... Fire and Emergency Equipment, Etc. § 78.47-11 Carbon dioxide warning signs. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or any space into...

  13. 46 CFR 76.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 3 2011-10-01 2011-10-01 false Carbon dioxide storage. 76.15-20 Section 76.15-20... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 76.15-20 Carbon dioxide storage. (a) Except as... than 300 pounds of carbon dioxide, may have the cylinders located within the space protected. If...

  14. 49 CFR 173.217 - Carbon dioxide, solid (dry ice).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Carbon dioxide, solid (dry ice). 173.217 Section... Class 7 § 173.217 Carbon dioxide, solid (dry ice). (a) Carbon dioxide, solid (dry ice), when offered for... permit the release of carbon dioxide gas to prevent a buildup of pressure that could rupture...

  15. 46 CFR 76.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Carbon dioxide storage. 76.15-20 Section 76.15-20... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 76.15-20 Carbon dioxide storage. (a) Except as... than 300 pounds of carbon dioxide, may have the cylinders located within the space protected. If...

  16. 46 CFR 76.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 3 2013-10-01 2013-10-01 false Carbon dioxide storage. 76.15-20 Section 76.15-20... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 76.15-20 Carbon dioxide storage. (a) Except as... than 300 pounds of carbon dioxide, may have the cylinders located within the space protected. If...

  17. 46 CFR 169.732 - Carbon dioxide alarm.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Carbon dioxide alarm. 169.732 Section 169.732 Shipping... Control, Miscellaneous Systems, and Equipment Markings § 169.732 Carbon dioxide alarm. Each carbon dioxide alarm must be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE BEING RELEASED.”...

  18. 46 CFR 193.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Carbon dioxide storage. 193.15-20 Section 193.15-20... PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 193.15-20 Carbon dioxide storage. (a...), consisting of not more than 300 pounds of carbon dioxide, may have cylinders located within the...

  19. 46 CFR 196.37-8 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Carbon dioxide warning signs. 196.37-8 Section 196.37-8... Markings for Fire and Emergency Equipment, etc. § 196.37-8 Carbon dioxide warning signs. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or any space...

  20. 46 CFR 108.626 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Carbon dioxide warning signs. 108.626 Section 108.626... AND EQUIPMENT Equipment Markings and Instructions § 108.626 Carbon dioxide warning signs. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or...

  1. 46 CFR 78.47-9 - Carbon dioxide alarm.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 3 2011-10-01 2011-10-01 false Carbon dioxide alarm. 78.47-9 Section 78.47-9 Shipping... and Emergency Equipment, Etc. § 78.47-9 Carbon dioxide alarm. (a) All carbon dioxide alarms shall be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE BEING RELEASED.” (b)...

  2. 46 CFR 196.37-9 - Carbon dioxide alarm.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Carbon dioxide alarm. 196.37-9 Section 196.37-9 Shipping... Markings for Fire and Emergency Equipment, etc. § 196.37-9 Carbon dioxide alarm. (a) All carbon dioxide alarms shall be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE...

  3. 46 CFR 193.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Carbon dioxide storage. 193.15-20 Section 193.15-20... PROTECTION EQUIPMENT Carbon Dioxide and Clean Agent Extinguishing Systems, Details § 193.15-20 Carbon dioxide...-5(d), consisting of not more than 300 pounds of carbon dioxide, may have cylinders located...

  4. 49 CFR 173.217 - Carbon dioxide, solid (dry ice).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Carbon dioxide, solid (dry ice). 173.217 Section... Class 7 § 173.217 Carbon dioxide, solid (dry ice). (a) Carbon dioxide, solid (dry ice), when offered for... permit the release of carbon dioxide gas to prevent a buildup of pressure that could rupture...

  5. 46 CFR 131.817 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Carbon dioxide warning signs. 131.817 Section 131.817... Markings for Fire Equipment and Emergency Equipment § 131.817 Carbon dioxide warning signs. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or...

  6. 46 CFR 131.817 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Carbon dioxide warning signs. 131.817 Section 131.817... Markings for Fire Equipment and Emergency Equipment § 131.817 Carbon dioxide warning signs. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or...

  7. 46 CFR 196.37-9 - Carbon dioxide alarm.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Carbon dioxide alarm. 196.37-9 Section 196.37-9 Shipping... Markings for Fire and Emergency Equipment, etc. § 196.37-9 Carbon dioxide alarm. (a) All carbon dioxide alarms shall be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE...

  8. 46 CFR 97.37-11 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Carbon dioxide warning signs. 97.37-11 Section 97.37-11... OPERATIONS Markings for Fire and Emergency Equipment, Etc. § 97.37-11 Carbon dioxide warning signs. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or...

  9. 46 CFR 95.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Carbon dioxide storage. 95.15-20 Section 95.15-20... PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-20 Carbon dioxide storage. (a... of not more than 300 pounds of carbon dioxide, may have the cylinders located within the...

  10. 46 CFR 196.37-8 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Carbon dioxide warning signs. 196.37-8 Section 196.37-8... Markings for Fire and Emergency Equipment, etc. § 196.37-8 Carbon dioxide warning signs. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or any space...

  11. 46 CFR 97.37-9 - Carbon dioxide alarm.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Carbon dioxide alarm. 97.37-9 Section 97.37-9 Shipping... Markings for Fire and Emergency Equipment, Etc. § 97.37-9 Carbon dioxide alarm. (a) All carbon dioxide alarms shall be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE...

  12. 46 CFR 78.47-11 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 3 2014-10-01 2014-10-01 false Carbon dioxide warning signs. 78.47-11 Section 78.47-11... Fire and Emergency Equipment, Etc. § 78.47-11 Carbon dioxide warning signs. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or any space into...

  13. 46 CFR 97.37-11 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Carbon dioxide warning signs. 97.37-11 Section 97.37-11... OPERATIONS Markings for Fire and Emergency Equipment, Etc. § 97.37-11 Carbon dioxide warning signs. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or...

  14. 46 CFR 131.817 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Carbon dioxide warning signs. 131.817 Section 131.817... Markings for Fire Equipment and Emergency Equipment § 131.817 Carbon dioxide warning signs. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or...

  15. 46 CFR 95.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Carbon dioxide storage. 95.15-20 Section 95.15-20... PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-20 Carbon dioxide storage. (a... of not more than 300 pounds of carbon dioxide, may have the cylinders located within the...

  16. 46 CFR 193.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Carbon dioxide storage. 193.15-20 Section 193.15-20... PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 193.15-20 Carbon dioxide storage. (a...), consisting of not more than 300 pounds of carbon dioxide, may have cylinders located within the...

  17. 46 CFR 108.626 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Carbon dioxide warning signs. 108.626 Section 108.626... AND EQUIPMENT Equipment Markings and Instructions § 108.626 Carbon dioxide warning signs. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or...

  18. 46 CFR 108.627 - Carbon dioxide alarm.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Carbon dioxide alarm. 108.627 Section 108.627 Shipping... EQUIPMENT Equipment Markings and Instructions § 108.627 Carbon dioxide alarm. Each carbon dioxide alarm must be identified by marking: “WHEN ALARM SOUNDS VACATE AT ONCE. CARBON DIOXIDE BEING RELEASED” next...

  19. 49 CFR 173.217 - Carbon dioxide, solid (dry ice).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Carbon dioxide, solid (dry ice). 173.217 Section... Class 7 § 173.217 Carbon dioxide, solid (dry ice). (a) Carbon dioxide, solid (dry ice), when offered for... permit the release of carbon dioxide gas to prevent a buildup of pressure that could rupture...

  20. 46 CFR 196.37-8 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Carbon dioxide warning signs. 196.37-8 Section 196.37-8... Markings for Fire and Emergency Equipment, etc. § 196.37-8 Carbon dioxide warning signs. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or any space...

  1. 21 CFR 184.1240 - Carbon dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... colorless, odorless, noncombustible gas at normal temperatures and pressures. The solid form, dry ice, sublimes under atmospheric pressure at a temperature of −78.5 °C. Carbon dioxide is prepared as a...

  2. Carbon dioxide-soluble polymers and swellable polymers for carbon dioxide applications

    DOEpatents

    DeSimone, Joseph M.; Birnbaum, Eva; Carbonell, Ruben G.; Crette, Stephanie; McClain, James B.; McCleskey, T. Mark; Powell, Kimberly R.; Romack, Timothy J.; Tumas, William

    2004-06-08

    A method for carrying out a catalysis reaction in carbon dioxide comprising contacting a fluid mixture with a catalyst bound to a polymer, the fluid mixture comprising at least one reactant and carbon dioxide, wherein the reactant interacts with the catalyst to form a reaction product. A composition of matter comprises carbon dioxide and a polymer and a reactant present in the carbon dioxide. The polymer has bound thereto a catalyst at a plurality of chains along the length of the polymer, and wherein the reactant interacts with the catalyst to form a reaction product.

  3. Carbon dioxide separation using adsorption with steam regeneration

    DOEpatents

    Elliott, Jeannine Elizabeth; Copeland, Robert James; Leta, Daniel P.; McCall, Patrick P.; Bai, Chuansheng; DeRites, Bruce A.

    2016-11-29

    A process for separating a carbon dioxide from a gas stream is disclosed. The process can include passing the gas stream over a sorbent that adsorbs the carbon dioxide by concentration swing adsorption and adsorptive displacement. The sorbent can be regenerated and the carbon dioxide recaptured by desorbing the carbon dioxide from the sorbent using concentration swing adsorption and desorptive displacement. A carbon dioxide separation system is also disclosed. Neither the system nor the process rely on temperature swing or pressure swing adsorption.

  4. Mineralization strategies for carbon dioxide sequestration

    SciTech Connect

    Penner, Larry R.; O'Connor, William K.; Gerdemann, Stephen J.; Dahlin, David C.

    2003-01-01

    Progress is reported in three primary research areas--each concerned with sequestering carbon dioxide into mineral matrices. Direct mineral carbonation was pioneered at Albany Research Center. The method treats the reactant, olivine or serpentine in aqueous media with carbon dioxide at high temperature and pressure to form stable mineral carbonates. Recent results are introduced for pretreatment by high-intensity grinding to improve carbonation efficiency. To prove feasibility of the carbonation process, a new reactor was designed and operated to progress from batch tests to continuous operation. The new reactor is a prototype high-temperature, high-pressure flow loop reactor that will furnish information on flow, energy consumption, and wear and corrosion resulting from slurry flow and the carbonation reaction. A promising alternative mineralization approach is also described. New data are presented for long-term exposure of carbon dioxide to Colombia River Basalt to determine the extent of conversion of carbon dioxide to permanent mineral carbonates. Batch autoclave tests were conducted using drill-core samples of basalt and reacted under conditions that simulate in situ injection into basalt-containing geological formations.

  5. Turning carbon dioxide into fuel.

    PubMed

    Jiang, Z; Xiao, T; Kuznetsov, V L; Edwards, P P

    2010-07-28

    Our present dependence on fossil fuels means that, as our demand for energy inevitably increases, so do emissions of greenhouse gases, most notably carbon dioxide (CO2). To avoid the obvious consequences on climate change, the concentration of such greenhouse gases in the atmosphere must be stabilized. But, as populations grow and economies develop, future demands now ensure that energy will be one of the defining issues of this century. This unique set of (coupled) challenges also means that science and engineering have a unique opportunity-and a burgeoning challenge-to apply their understanding to provide sustainable energy solutions. Integrated carbon capture and subsequent sequestration is generally advanced as the most promising option to tackle greenhouse gases in the short to medium term. Here, we provide a brief overview of an alternative mid- to long-term option, namely, the capture and conversion of CO2, to produce sustainable, synthetic hydrocarbon or carbonaceous fuels, most notably for transportation purposes. Basically, the approach centres on the concept of the large-scale re-use of CO2 released by human activity to produce synthetic fuels, and how this challenging approach could assume an important role in tackling the issue of global CO2 emissions. We highlight three possible strategies involving CO2 conversion by physico-chemical approaches: sustainable (or renewable) synthetic methanol, syngas production derived from flue gases from coal-, gas- or oil-fired electric power stations, and photochemical production of synthetic fuels. The use of CO2 to synthesize commodity chemicals is covered elsewhere (Arakawa et al. 2001 Chem. Rev. 101, 953-996); this review is focused on the possibilities for the conversion of CO2 to fuels. Although these three prototypical areas differ in their ultimate applications, the underpinning thermodynamic considerations centre on the conversion-and hence the utilization-of CO2. Here, we hope to illustrate that advances

  6. Method for Extracting and Sequestering Carbon Dioxide

    SciTech Connect

    Rau, Gregory H.; Caldeira, Kenneth G.

    2005-05-10

    A method and apparatus to extract and sequester carbon dioxide (CO2) from a stream or volume of gas wherein said method and apparatus hydrates CO2, and reacts the resulting carbonic acid with carbonate. Suitable carbonates include, but are not limited to, carbonates of alkali metals and alkaline earth metals, preferably carbonates of calcium and magnesium. Waste products are metal cations and bicarbonate in solution or dehydrated metal salts, which when disposed of in a large body of water provide an effective way of sequestering CO2 from a gaseous environment.

  7. Method for extracting and sequestering carbon dioxide

    DOEpatents

    Rau, Gregory H.; Caldeira, Kenneth G.

    2005-05-10

    A method and apparatus to extract and sequester carbon dioxide (CO.sub.2) from a stream or volume of gas wherein said method and apparatus hydrates CO.sub.2, and reacts the resulting carbonic acid with carbonate. Suitable carbonates include, but are not limited to, carbonates of alkali metals and alkaline earth metals, preferably carbonates of calcium and magnesium. Waste products are metal cations and bicarbonate in solution or dehydrated metal salts, which when disposed of in a large body of water provide an effective way of sequestering CO.sub.2 from a gaseous environment.

  8. Apparatus for extracting and sequestering carbon dioxide

    DOEpatents

    Rau, Gregory H.; Caldeira, Kenneth G.

    2010-02-02

    An apparatus and method associated therewith to extract and sequester carbon dioxide (CO.sub.2) from a stream or volume of gas wherein said apparatus hydrates CO.sub.2 and reacts the resulting carbonic acid with carbonate. Suitable carbonates include, but are not limited to, carbonates of alkali metals and alkaline earth metals, preferably carbonates of calcium and magnesium. Waste products are metal cations and bicarbonate in solution or dehydrated metal salts, which when disposed of in a large body of water provide an effective way of sequestering CO.sub.2 from a gaseous environment.

  9. Volcanic recycling of carbonate deposits on Mars

    NASA Technical Reports Server (NTRS)

    Schaefer, M. W.

    1992-01-01

    One question of great interest to those who study the evolution of the Martian atmosphere is: if there was an early, dense atmosphere that was removed, is there any mechanism that could restore it? In the case of an atmosphere removed largely by the formation of carbonates, the only obvious means of restoring it is by the thermal decomposition of the carbonates. Decomposition of carbonates under turbulently flowing lava holds great promise as a means of resupplying the atmosphere with CO2. Huppert and colleagues have modeled the emplacement of terrestrial komatiite flows and found that komatiites, even when flowing over previously emplaced and cooled komatiite flows, could melt and erode this rock to a significant depth. Based on this work, I have begun modeling the erosion of Martian carbonate deposits under turbulently flowing, komatiitic lava. Initial results from this modeling indicate that a high-volume lava flow, emerging at a temperature of, say, 1600 degrees, is capable of eroding several meters of carbonate deposits per day. If such a flow is active for a hundred days, several hundreds of meters of carbonate could be decomposed. If this process occurred over a large area, a bar or more of CO2 could be injected back into the atmosphere over an extremely short period of time. The implications of such an occurrence are intriguing. For instance, if a relatively late pulse of volcanism (such as is suggested by Frey) were to cause a large flow of lava over carbonate deposits in the northern lowlands, the resulting pulse of CO2 into the atmosphere could conceivably restore the climate to one in which liquid water could exist on the surface, or ice could flow.

  10. SEQUESTERING CARBON DIOXIDE IN COALBEDS

    SciTech Connect

    K.A.M. Gasem; R.L. Robinson, Jr.; J.E. Fitzgerald; Z. Pan; M. Sudibandriyo

    2003-04-30

    The authors' long-term goal is to develop accurate prediction methods for describing the adsorption behavior of gas mixtures on solid adsorbents over complete ranges of temperature, pressure, and adsorbent types. The originally-stated, major objectives of the current project are to: (1) measure the adsorption behavior of pure CO{sub 2}, methane, nitrogen, and their binary and ternary mixtures on several selected coals having different properties at temperatures and pressures applicable to the particular coals being studied, (2) generalize the adsorption results in terms of appropriate properties of the coals to facilitate estimation of adsorption behavior for coals other than those studied experimentally, (3) delineate the sensitivity of the competitive adsorption of CO{sub 2}, methane, and nitrogen to the specific characteristics of the coal on which they are adsorbed; establish the major differences (if any) in the nature of this competitive adsorption on different coals, and (4) test and/or develop theoretically-based mathematical models to represent accurately the adsorption behavior of mixtures of the type for which measurements are made. As this project developed, an important additional objective was added to the above original list. Namely, we were encouraged to interact with industry and/or governmental agencies to utilize our expertise to advance the state of the art in coalbed adsorption science and technology. As a result of this additional objective, we participated with the Department of Energy and industry in the measurement and analysis of adsorption behavior as part of two distinct investigations. These include (a) Advanced Resources International (ARI) DOE Project DE-FC26-00NT40924, ''Adsorption of Pure Methane, Nitrogen, and Carbon Dioxide and Their Mixtures on Wet Tiffany Coal'', and (b) the DOE-NETL Project, ''Round Robin: CO{sub 2} Adsorption on Selected Coals''. These activities, contributing directly to the DOE projects listed above, also

  11. Designed amyloid fibers as materials for selective carbon dioxide capture.

    PubMed

    Li, Dan; Furukawa, Hiroyasu; Deng, Hexiang; Liu, Cong; Yaghi, Omar M; Eisenberg, David S

    2014-01-07

    New materials capable of binding carbon dioxide are essential for addressing climate change. Here, we demonstrate that amyloids, self-assembling protein fibers, are effective for selective carbon dioxide capture. Solid-state NMR proves that amyloid fibers containing alkylamine groups reversibly bind carbon dioxide via carbamate formation. Thermodynamic and kinetic capture-and-release tests show the carbamate formation rate is fast enough to capture carbon dioxide by dynamic separation, undiminished by the presence of water, in both a natural amyloid and designed amyloids having increased carbon dioxide capacity. Heating to 100 °C regenerates the material. These results demonstrate the potential of amyloid fibers for environmental carbon dioxide capture.

  12. 49 CFR 179.102-1 - Carbon dioxide, refrigerated liquid.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Carbon dioxide, refrigerated liquid. 179.102-1... Carbon dioxide, refrigerated liquid. (a) Tank cars used to transport carbon dioxide, refrigerated liquid... anchorage of tanks must be made of carbon steel conforming to ASTM A 516/A 516M (IBR, see § 171.7 of...

  13. 49 CFR 179.102-1 - Carbon dioxide, refrigerated liquid.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Carbon dioxide, refrigerated liquid. 179.102-1... Carbon dioxide, refrigerated liquid. (a) Tank cars used to transport carbon dioxide, refrigerated liquid... anchorage of tanks must be made of carbon steel conforming to ASTM A 516/A 516M (IBR, see § 171.7 of...

  14. 21 CFR 868.1400 - Carbon dioxide gas analyzer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Carbon dioxide gas analyzer. 868.1400 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1400 Carbon dioxide gas analyzer. (a) Identification. A carbon dioxide gas analyzer is a device intended to measure the concentration of carbon...

  15. 21 CFR 868.1400 - Carbon dioxide gas analyzer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Carbon dioxide gas analyzer. 868.1400 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1400 Carbon dioxide gas analyzer. (a) Identification. A carbon dioxide gas analyzer is a device intended to measure the concentration of carbon...

  16. 21 CFR 868.1400 - Carbon dioxide gas analyzer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Carbon dioxide gas analyzer. 868.1400 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1400 Carbon dioxide gas analyzer. (a) Identification. A carbon dioxide gas analyzer is a device intended to measure the concentration of carbon...

  17. 21 CFR 868.1400 - Carbon dioxide gas analyzer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Carbon dioxide gas analyzer. 868.1400 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1400 Carbon dioxide gas analyzer. (a) Identification. A carbon dioxide gas analyzer is a device intended to measure the concentration of carbon...

  18. 49 CFR 179.102-1 - Carbon dioxide, refrigerated liquid.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Carbon dioxide, refrigerated liquid. 179.102-1... Carbon dioxide, refrigerated liquid. (a) Tank cars used to transport carbon dioxide, refrigerated liquid... anchorage of tanks must be made of carbon steel conforming to ASTM A 516/A 516M (IBR, see § 171.7 of...

  19. 21 CFR 868.1400 - Carbon dioxide gas analyzer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Carbon dioxide gas analyzer. 868.1400 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1400 Carbon dioxide gas analyzer. (a) Identification. A carbon dioxide gas analyzer is a device intended to measure the concentration of carbon...

  20. Carbon dioxide capture and geological storage.

    PubMed

    Holloway, Sam

    2007-04-15

    Carbon dioxide capture and geological storage is a technology that could be used to reduce carbon dioxide emissions to the atmosphere from large industrial installations such as fossil fuel-fired power stations by 80-90%. It involves the capture of carbon dioxide at a large industrial plant, its transport to a geological storage site and its long-term isolation in a geological storage reservoir. The technology has aroused considerable interest because it can help reduce emissions from fossil fuels which are likely to remain the dominant source of primary energy for decades to come. The main issues for the technology are cost and its implications for financing new or retrofitted plants, and the security of underground storage.

  1. Polymers for metal extractions in carbon dioxide

    DOEpatents

    DeSimone, Joseph M.; Tumas, William; Powell, Kimberly R.; McCleskey, T. Mark; Romack, Timothy J.; McClain, James B.; Birnbaum, Eva R.

    2001-01-01

    A composition useful for the extraction of metals and metalloids comprises (a) carbon dioxide fluid (preferably liquid or supercritical carbon dioxide); and (b) a polymer in the carbon dioxide, the polymer having bound thereto a ligand that binds the metal or metalloid; with the ligand bound to the polymer at a plurality of locations along the chain length thereof (i.e., a plurality of ligands are bound at a plurality of locations along the chain length of the polymer). The polymer is preferably a copolymer, and the polymer is preferably a fluoropolymer such as a fluoroacrylate polymer. The extraction method comprises the steps of contacting a first composition containing a metal or metalloid to be extracted with a second composition, the second composition being as described above; and then extracting the metal or metalloid from the first composition into the second composition.

  2. Carbon dioxide hydrate and floods on Mars.

    PubMed

    Milton, D J

    1974-02-15

    Ground ice on Mars probably consists largely of carbon dioxide hydrate, CO(2) . 6H(2)O. This hydrate dissociates upon release of pressure at temperatures between 0 degrees and 10 degrees C. The heat capacity of the ground would be sufficient to produce up to 4 percent (by volume) of water at a rate equal to that at which it can be drained away. Catastrophic dissociation of carbon dioxide hydrate during some past epoch when the near surface temperature was in this range would have produced chaotic terrain and flood channels.

  3. Carbon dioxide hydrate and floods on Mars

    NASA Technical Reports Server (NTRS)

    Milton, D. J.

    1974-01-01

    Ground ice on Mars probably consists largely of carbon dioxide hydrate. This hydrate dissociates upon release of pressure at temperatures between 0 and 10 C. The heat capacity of the ground would be sufficient to produce up to 4% (by volume) of water at a rate equal to that at which it can be drained away. Catastrophic dissociation of carbon dioxide hydrate during some past epoch when the near-surface temperature was in this range would have produced chaotic terrain and flood channels.

  4. Organic syntheses employing supercritical carbon dioxide as a reaction solvent

    NASA Technical Reports Server (NTRS)

    Barstow, Leon E. (Inventor); Ward, Glen D. (Inventor); Bier, Milan (Inventor)

    1991-01-01

    Chemical reactions are readily carried out using supercritical carbon dioxide as the reaction medium. Supercritical carbon dioxide is of special value as a reaction medium in reactions for synthesizing polypeptides, for sequencing polypeptides, or for amino acid analysis.

  5. Organic syntheses employing supercritical carbon dioxide as a reaction solvent

    NASA Technical Reports Server (NTRS)

    Barstow, Leon E. (Inventor); Ward, Glen D. (Inventor); Bier, Milan (Inventor)

    1993-01-01

    Chemical reactions are readily carried out using supercritical carbon dioxide as the reaction medium. Supercritical carbon dioxide is of special value as a reaction medium in reactions for synthesizing polypeptides, for sequencing polypeptides, or for amino acid analysis.

  6. International Space Station Carbon Dioxide Removal Assembly Testing

    NASA Technical Reports Server (NTRS)

    Knox, James C.

    2000-01-01

    Performance testing of the International Space Station Carbon Dioxide Removal Assembly flight hardware in the United States Laboratory during 1999 is described. The CDRA exceeded carbon dioxide performance specifications and operated flawlessly. Data from this test is presented.

  7. Discussion of Refrigeration Cycle Using Carbon Dioxide as Refrigerant

    NASA Astrophysics Data System (ADS)

    Ji, Amin; Sun, Miming; Li, Jie; Yin, Gang; Cheng, Keyong; Zhen, Bing; Sun, Ying

    Nowadays, the problem of the environment goes worse, it urges people to research and study new energy-saving and environment-friendly refrigerants, such as carbon dioxide, at present, people do research on carbon dioxide at home and abroad. This paper introduces the property of carbon dioxide as a refrigerant, sums up and analyses carbon dioxide refrigeration cycles, and points out the development and research direction in the future.

  8. Tuning Organic Carbon Dioxide Absorbents for Carbonation and Decarbonation

    PubMed Central

    Rajamanickam, Ramachandran; Kim, Hyungsoo; Park, Ji-Woong

    2015-01-01

    The reaction of carbon dioxide with a mixture of a superbase and alcohol affords a superbase alkylcarbonate salt via a process that can be reversed at elevated temperatures. To utilize the unique chemistry of superbases for carbon capture technology, it is essential to facilitate carbonation and decarbonation at desired temperatures in an easily controllable manner. Here, we demonstrate that the thermal stabilities of the alkylcarbonate salts of superbases in organic solutions can be tuned by adjusting the compositions of hydroxylic solvent and polar aprotic solvent mixtures, thereby enabling the best possible performances to be obtained from the various carbon dioxide capture agents based on these materials. The findings provides valuable insights into the design and optimization of organic carbon dioxide absorbents. PMID:26033537

  9. Magnesian calcite sorbent for carbon dioxide capture.

    PubMed

    Mabry, James C; Mondal, Kanchan

    2011-01-01

    Magnesian calcite with controlled properties was synthesized for the removal of carbon dioxide. The results from characterization, reactivity and CO2 capture capacity for different synthesis conditions are reported. The magnesian calcite samples (CaCO3:MgCO3) were synthesized by the coprecipitation of specific amounts of commercially available CaO and MgO by carbon dioxide. Characterization was done with BET, SEM/EDS, particle size analysis and XRD. The capacity was measured using TGA cycles at 800 degrees C and compared for different preparation conditions. The effects of CaO, MgO and surfactant loading on the physical properties and carbonation activity were studied to determine the optimal synthesis condition. A long-term carbonation-calcination cycling test was conducted on the optimal sample. It was observed that the sample maintained its capacity to 86% of its original uptake even after 50 cycles.

  10. Acid sorption regeneration process using carbon dioxide

    DOEpatents

    King, C. Judson; Husson, Scott M.

    2001-01-01

    Carboxylic acids are sorbed from aqueous feedstocks onto a solid adsorbent in the presence of carbon dioxide under pressure. The acids are freed from the sorbent phase by a suitable regeneration method, one of which is treating them with an organic alkylamine solution thus forming an alkylamine-carboxylic acid complex which thermally decomposes to the desired carboxylic acid and the alkylamine.

  11. Recovery of carbon dioxide from fuel cell exhaust

    SciTech Connect

    Healy, H.C.; Kolodney, M.; Levy, A.H.; Trocciola, P.

    1988-06-14

    An acid fuel cell power plant system operable to produce carbon dioxide as a by-product is described comprising: (a) fuel cell stack means having anode means, cathode means, and fuel cell cooling means, the cooling means using a water coolant; (b) means for delivering a hydrogen-rich fuel gas which contains carbon dioxide to the anode means for consumption of hydrogen by the anode means in an electrochemical reaction in the stack; (c) carbon dioxide absorber means including an absorbent for stripping carbon dioxide from gaseous mixtures thereof; (d) means for delivering hydrogen-depleted exhaust gas containing carbon dioxide from the anode means to the carbon dioxide absorber means for absorption of carbon dioxide from the exhaust gas; (e) an absorbent regenerator; (f) means for delivering carbon dioxide-enriched absorbent from the absorber means to the regenerator for separation of carbon dioxide from the absorbent; (g) means for exhausting carbon dioxide from the regenerator, the means for exhausting further including means for cooling and compressing carbon dioxide exhausted from the regenerator; and (h) means for removing the compressed carbon dioxide from the power plant.

  12. 27 CFR 26.52 - Still wines containing carbon dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... carbon dioxide. 26.52 Section 26.52 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... ISLANDS Formulas for Products From Puerto Rico § 26.52 Still wines containing carbon dioxide. (a) General. Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of wine;...

  13. 21 CFR 868.5300 - Carbon dioxide absorbent.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Carbon dioxide absorbent. 868.5300 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5300 Carbon dioxide absorbent. (a) Identification. A carbon dioxide absorbent is a device intended for medical purposes that consists of...

  14. 40 CFR 90.320 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Carbon dioxide analyzer calibration... Emission Test Equipment Provisions § 90.320 Carbon dioxide analyzer calibration. (a) Prior to its initial... carbon dioxide analyzer as follows: (1) Follow good engineering practices for instrument start-up...

  15. 40 CFR 90.320 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Carbon dioxide analyzer calibration... Emission Test Equipment Provisions § 90.320 Carbon dioxide analyzer calibration. (a) Prior to its initial... carbon dioxide analyzer as follows: (1) Follow good engineering practices for instrument start-up...

  16. 21 CFR 868.5310 - Carbon dioxide absorber.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Carbon dioxide absorber. 868.5310 Section 868.5310...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5310 Carbon dioxide absorber. (a) Identification. A carbon dioxide absorber is a device that is intended for medical purposes and that is used in...

  17. 46 CFR 108.431 - Carbon dioxide systems: General.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Carbon dioxide systems: General. 108.431 Section 108.431... AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.431 Carbon dioxide systems: General. (a) Sections 108.431 through 108.457 apply to high pressure...

  18. 21 CFR 868.5300 - Carbon dioxide absorbent.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Carbon dioxide absorbent. 868.5300 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5300 Carbon dioxide absorbent. (a) Identification. A carbon dioxide absorbent is a device intended for medical purposes that consists of...

  19. 27 CFR 26.222 - Still wines containing carbon dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... carbon dioxide. 26.222 Section 26.222 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... ISLANDS Formulas for Products From the Virgin Islands § 26.222 Still wines containing carbon dioxide. (a) General. Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of...

  20. 27 CFR 26.52 - Still wines containing carbon dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... carbon dioxide. 26.52 Section 26.52 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... ISLANDS Formulas for Products From Puerto Rico § 26.52 Still wines containing carbon dioxide. (a) General. Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of wine;...

  1. 9 CFR 313.5 - Chemical; carbon dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Chemical; carbon dioxide. 313.5... INSPECTION AND CERTIFICATION HUMANE SLAUGHTER OF LIVESTOCK § 313.5 Chemical; carbon dioxide. The slaughtering of sheep, calves and swine with the use of carbon dioxide gas and the handling in...

  2. 27 CFR 24.319 - Carbon dioxide record.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Carbon dioxide record. 24..., DEPARTMENT OF THE TREASURY ALCOHOL WINE Records and Reports § 24.319 Carbon dioxide record. A proprietor who uses carbon dioxide in still wine shall maintain a record of the laboratory tests conducted...

  3. 46 CFR 169.565 - Fixed carbon dioxide system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Fixed carbon dioxide system. 169.565 Section 169.565... Lifesaving and Firefighting Equipment Firefighting Equipment § 169.565 Fixed carbon dioxide system. (a) The number of pounds of carbon dioxide required for each space protected must be equal to the gross volume...

  4. 46 CFR 169.565 - Fixed carbon dioxide system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Fixed carbon dioxide system. 169.565 Section 169.565... Lifesaving and Firefighting Equipment Firefighting Equipment § 169.565 Fixed carbon dioxide system. (a) The number of pounds of carbon dioxide required for each space protected must be equal to the gross volume...

  5. 40 CFR 86.1324-84 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Carbon dioxide analyzer calibration... Exhaust Test Procedures § 86.1324-84 Carbon dioxide analyzer calibration. Prior to its introduction into service and monthly thereafter, the NDIR carbon dioxide analyzer shall be calibrated as follows:...

  6. 40 CFR 90.320 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Carbon dioxide analyzer calibration... Emission Test Equipment Provisions § 90.320 Carbon dioxide analyzer calibration. (a) Prior to its initial... carbon dioxide analyzer as follows: (1) Follow good engineering practices for instrument start-up...

  7. 21 CFR 868.5300 - Carbon dioxide absorbent.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Carbon dioxide absorbent. 868.5300 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5300 Carbon dioxide absorbent. (a) Identification. A carbon dioxide absorbent is a device intended for medical purposes that consists of...

  8. 27 CFR 26.52 - Still wines containing carbon dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... carbon dioxide. 26.52 Section 26.52 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... ISLANDS Formulas for Products From Puerto Rico § 26.52 Still wines containing carbon dioxide. (a) General. Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of wine;...

  9. 40 CFR 89.322 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Carbon dioxide analyzer calibration... Test Equipment Provisions § 89.322 Carbon dioxide analyzer calibration. (a) Prior to its introduction... carbon dioxide analyzer shall be calibrated on all normally used instrument ranges. New...

  10. 40 CFR 89.322 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Carbon dioxide analyzer calibration... Test Equipment Provisions § 89.322 Carbon dioxide analyzer calibration. (a) Prior to its introduction... carbon dioxide analyzer shall be calibrated on all normally used instrument ranges. New...

  11. 27 CFR 26.222 - Still wines containing carbon dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... carbon dioxide. 26.222 Section 26.222 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... ISLANDS Formulas for Products From the Virgin Islands § 26.222 Still wines containing carbon dioxide. (a) General. Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of...

  12. 9 CFR 313.5 - Chemical; carbon dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Chemical; carbon dioxide. 313.5... INSPECTION AND CERTIFICATION HUMANE SLAUGHTER OF LIVESTOCK § 313.5 Chemical; carbon dioxide. The slaughtering of sheep, calves and swine with the use of carbon dioxide gas and the handling in...

  13. 40 CFR 89.322 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Carbon dioxide analyzer calibration... Test Equipment Provisions § 89.322 Carbon dioxide analyzer calibration. (a) Prior to its introduction... carbon dioxide analyzer shall be calibrated on all normally used instrument ranges. New...

  14. 27 CFR 26.52 - Still wines containing carbon dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... carbon dioxide. 26.52 Section 26.52 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... ISLANDS Formulas for Products From Puerto Rico § 26.52 Still wines containing carbon dioxide. (a) General. Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of wine;...

  15. 27 CFR 24.319 - Carbon dioxide record.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Carbon dioxide record. 24..., DEPARTMENT OF THE TREASURY LIQUORS WINE Records and Reports § 24.319 Carbon dioxide record. A proprietor who uses carbon dioxide in still wine shall maintain a record of the laboratory tests conducted...

  16. 27 CFR 26.222 - Still wines containing carbon dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... carbon dioxide. 26.222 Section 26.222 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... ISLANDS Formulas for Products From the Virgin Islands § 26.222 Still wines containing carbon dioxide. (a) General. Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of...

  17. 9 CFR 313.5 - Chemical; carbon dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Chemical; carbon dioxide. 313.5... INSPECTION AND CERTIFICATION HUMANE SLAUGHTER OF LIVESTOCK § 313.5 Chemical; carbon dioxide. The slaughtering of sheep, calves and swine with the use of carbon dioxide gas and the handling in...

  18. 46 CFR 108.431 - Carbon dioxide systems: General.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Carbon dioxide systems: General. 108.431 Section 108.431... AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.431 Carbon dioxide systems: General. (a) Sections 108.431 through 108.457 apply to high pressure...

  19. 46 CFR 108.431 - Carbon dioxide systems: General.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Carbon dioxide systems: General. 108.431 Section 108.431... AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.431 Carbon dioxide systems: General. (a) Sections 108.431 through 108.457 apply to high pressure...

  20. 40 CFR 89.322 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Carbon dioxide analyzer calibration... Test Equipment Provisions § 89.322 Carbon dioxide analyzer calibration. (a) Prior to its introduction... carbon dioxide analyzer shall be calibrated on all normally used instrument ranges. New...

  1. 27 CFR 26.222 - Still wines containing carbon dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... carbon dioxide. 26.222 Section 26.222 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... ISLANDS Formulas for Products From the Virgin Islands § 26.222 Still wines containing carbon dioxide. (a) General. Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of...

  2. 27 CFR 24.319 - Carbon dioxide record.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Carbon dioxide record. 24..., DEPARTMENT OF THE TREASURY LIQUORS WINE Records and Reports § 24.319 Carbon dioxide record. A proprietor who uses carbon dioxide in still wine shall maintain a record of the laboratory tests conducted...

  3. 40 CFR 91.320 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Carbon dioxide analyzer calibration. 91....320 Carbon dioxide analyzer calibration. (a) Prior to its introduction into service, and monthly thereafter, or within one month prior to the certification test, calibrate the NDIR carbon dioxide...

  4. 21 CFR 868.5310 - Carbon dioxide absorber.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Carbon dioxide absorber. 868.5310 Section 868.5310...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5310 Carbon dioxide absorber. (a) Identification. A carbon dioxide absorber is a device that is intended for medical purposes and that is used in...

  5. 46 CFR 108.431 - Carbon dioxide systems: General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Carbon dioxide systems: General. 108.431 Section 108.431... AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.431 Carbon dioxide systems: General. (a) Sections 108.431 through 108.457 apply to high pressure...

  6. 27 CFR 24.319 - Carbon dioxide record.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Carbon dioxide record. 24..., DEPARTMENT OF THE TREASURY ALCOHOL WINE Records and Reports § 24.319 Carbon dioxide record. A proprietor who uses carbon dioxide in still wine shall maintain a record of the laboratory tests conducted...

  7. 46 CFR 108.431 - Carbon dioxide systems: General.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Carbon dioxide systems: General. 108.431 Section 108.431... AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.431 Carbon dioxide systems: General. (a) Sections 108.431 through 108.457 apply to high pressure...

  8. 21 CFR 868.5310 - Carbon dioxide absorber.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Carbon dioxide absorber. 868.5310 Section 868.5310...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5310 Carbon dioxide absorber. (a) Identification. A carbon dioxide absorber is a device that is intended for medical purposes and that is used in...

  9. 27 CFR 26.52 - Still wines containing carbon dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... carbon dioxide. 26.52 Section 26.52 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... ISLANDS Formulas for Products From Puerto Rico § 26.52 Still wines containing carbon dioxide. (a) General. Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of wine;...

  10. 40 CFR 90.320 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Carbon dioxide analyzer calibration. 90... Equipment Provisions § 90.320 Carbon dioxide analyzer calibration. (a) Prior to its initial use and monthly thereafter, or within one month prior to the certification test, calibrate the NDIR carbon dioxide...

  11. 40 CFR 90.320 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Carbon dioxide analyzer calibration... Emission Test Equipment Provisions § 90.320 Carbon dioxide analyzer calibration. (a) Prior to its initial... carbon dioxide analyzer as follows: (1) Follow good engineering practices for instrument start-up...

  12. 21 CFR 868.5310 - Carbon dioxide absorber.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Carbon dioxide absorber. 868.5310 Section 868.5310...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5310 Carbon dioxide absorber. (a) Identification. A carbon dioxide absorber is a device that is intended for medical purposes and that is used in...

  13. 27 CFR 26.222 - Still wines containing carbon dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... carbon dioxide. 26.222 Section 26.222 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... ISLANDS Formulas for Products From the Virgin Islands § 26.222 Still wines containing carbon dioxide. (a) General. Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of...

  14. 40 CFR 86.1324-84 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Carbon dioxide analyzer calibration... Exhaust Test Procedures § 86.1324-84 Carbon dioxide analyzer calibration. Prior to its introduction into service and monthly thereafter, the NDIR carbon dioxide analyzer shall be calibrated as follows:...

  15. 27 CFR 24.319 - Carbon dioxide record.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Carbon dioxide record. 24..., DEPARTMENT OF THE TREASURY LIQUORS WINE Records and Reports § 24.319 Carbon dioxide record. A proprietor who uses carbon dioxide in still wine shall maintain a record of the laboratory tests conducted...

  16. 21 CFR 868.5300 - Carbon dioxide absorbent.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Carbon dioxide absorbent. 868.5300 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5300 Carbon dioxide absorbent. (a) Identification. A carbon dioxide absorbent is a device intended for medical purposes that consists of...

  17. 21 CFR 868.5300 - Carbon dioxide absorbent.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Carbon dioxide absorbent. 868.5300 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5300 Carbon dioxide absorbent. (a) Identification. A carbon dioxide absorbent is a device intended for medical purposes that consists of...

  18. 21 CFR 868.5310 - Carbon dioxide absorber.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Carbon dioxide absorber. 868.5310 Section 868.5310...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5310 Carbon dioxide absorber. (a) Identification. A carbon dioxide absorber is a device that is intended for medical purposes and that is used in...

  19. Catalyst cartridge for carbon dioxide reduction unit

    NASA Technical Reports Server (NTRS)

    Holmes, R. F. (Inventor)

    1973-01-01

    A catalyst cartridge, for use in a carbon dioxide reducing apparatus in a life support system for space vehicles, is described. The catalyst cartridge includes an inner perforated metal wall, an outer perforated wall space outwardly from the inner wall, a base plate closing one end of the cartridge, and a cover plate closing the other end of the cartridge. The cover plate has a central aperture through which a supply line with a heater feeds a gaseous reaction mixture comprising hydrogen and carbon dioxide at a temperature from about 1000 to about 1400 F. The outer surfaces of the internal wall and the inner surfaces of the outer wall are lined with a ceramic fiber batting material of sufficient thickness to prevent carbon formed in the reaction from passing through it. The portion of the surfaces of the base and cover plates defined within the inner and outer walls are also lined with ceramic batting. The heated reaction mixture passes outwardly through the inner perforated wall and ceramic batting and over the catalyst. The solid carbon product formes is retained within the enclosure containing the catalyst. The solid carbon product formed is retained within the enclosure containing the catalyst. The water vapor and unreacted carbon dioxide and any intermediate products pass through the perforations of the outer wall.

  20. RESEARCH ON ELECTRIC ARC REDUCTION OF CARBON DIOXIDE,

    DTIC Science & Technology

    CARBON DIOXIDE , REDUCTION(CHEMISTRY), ELECTRIC ARCS, CHEMICAL REACTIONS, HEAT OF REACTION, GAS FLOW, OXYGEN, CARBON COMPOUNDS, MONOXIDES, ELECTRODES, LABORATORY EQUIPMENT, HIGH TEMPERATURE, PLASMAS(PHYSICS), ENERGY.

  1. The Volcanic History of Mars and Influences on Carbon Outgassing

    NASA Astrophysics Data System (ADS)

    Bleacher, J. E.; Whelley, P.

    2015-12-01

    Exploration of Mars has revealed some of the most impressive volcanic landforms found throughout the solar system. Volatiles outgassed from volcanoes were likely to have strongly influenced atmospheric chemistry and affected the martian climate. On Earth the role of carbon involved in volcanic outgassing is strongly influenced by tectonic setting, with the greatest weight percent contributions coming from partial mantle melts associated with hot spot volcanism. Most martian volcanic centers appear to represent this style of volcanism. Thus, one important factor in understanding the martian carbon cycle through time is understanding this volatile's link to the planet's volcanic history. The identified volcanic constructs on Mars are not unlike those of the Earth suggesting similar magmatic and eruptive processes. However, the dimensions of many martian volcanic features are significantly larger. The distribution of volcanoes and volcanic deposits on Mars are not spatially or temporally uniform. Large volcanoes (> 100 km diameter) are spatially concentrated in volcanic provinces that likely represent focused upwellings or zones of crustal weakness that enabled magma ascension. Smaller (10s km diameters) volcanoes such as cones, low shields and fissures are often grouped into fields and their lava flows coalesce to produce low slope plains. In some cases plains lava fields are quite extensive with little to no evidence for the volcanic constructs. Although martian volcanism appears to have been dominated by effusive eruptions with likely contributions from passive degassing from the interior, explosive volcanic centers and deposits are known to exist. After the development of a martian crust the planet's volcanic style appears to have evolved from early explosive activity to effusive activity centered at major volcanoes to effusive distributed activity in fields. However, questions remain as to whether or not these styles significantly overlapped in time and if so

  2. Ocean uptake of carbon dioxide

    SciTech Connect

    Peng, Tsung-Hung; Takahashi, Taro

    1993-06-01

    Factors controlling the capacity of the ocean for taking up anthropogenic C0{sup 2} include carbon chemistry, distribution of alkalinity, pCO{sup 2} and total concentration of dissolved C0{sup 2}, sea-air pCO{sup 2} difference, gas exchange rate across the sea-air interface, biological carbon pump, ocean water circulation and mixing, and dissolution of carbonate in deep sea sediments. A general review of these processes is given and models of ocean-atmosphere system based on our understanding of these regulating processes axe used to estimate the magnitude of C0{sup 2} uptake by the ocean. We conclude that the ocean can absorb up to 35% of the fossil fuel emission. Direct measurements show that 55% Of C0{sup 2} from fossil fuel burning remains in the atmosphere. The remaining 10% is not accounted for by atmospheric increases and ocean uptake. In addition, it is estimated that an amount equivalent to 30% of recent annual fossil fuel emissions is released into the atmosphere as a result of deforestation and farming. To balance global carbon budget, a sizable carbon sink besides the ocean is needed. Storage of carbon in terrestrial biosphere as a result of C0{sup 2} fertilization is a potential candidate for such missing carbon sinks.

  3. Ocean uptake of carbon dioxide

    SciTech Connect

    Peng, Tsung-Hung ); Takahashi, Taro . Lamont-Doherty Earth Observatory)

    1993-01-01

    Factors controlling the capacity of the ocean for taking up anthropogenic C0[sup 2] include carbon chemistry, distribution of alkalinity, pCO[sup 2] and total concentration of dissolved C0[sup 2], sea-air pCO[sup 2] difference, gas exchange rate across the sea-air interface, biological carbon pump, ocean water circulation and mixing, and dissolution of carbonate in deep sea sediments. A general review of these processes is given and models of ocean-atmosphere system based on our understanding of these regulating processes axe used to estimate the magnitude of C0[sup 2] uptake by the ocean. We conclude that the ocean can absorb up to 35% of the fossil fuel emission. Direct measurements show that 55% Of C0[sup 2] from fossil fuel burning remains in the atmosphere. The remaining 10% is not accounted for by atmospheric increases and ocean uptake. In addition, it is estimated that an amount equivalent to 30% of recent annual fossil fuel emissions is released into the atmosphere as a result of deforestation and farming. To balance global carbon budget, a sizable carbon sink besides the ocean is needed. Storage of carbon in terrestrial biosphere as a result of C0[sup 2] fertilization is a potential candidate for such missing carbon sinks.

  4. Carbonate-sulfate volcanism on Venus?

    NASA Astrophysics Data System (ADS)

    Kargel, Jeffrey S.; Kirk, Randolph L.; Fegley, Bruce, Jr.

    1994-11-01

    Venusian canali, outflow channels, and associated volcanic deposits resemble fluvial landforms more than they resemble volcanic features on Earth and Mars. Some canali have meandering habits and features indicative of channel migration that are very similar to meandering river channels and flood plains on Earth, venusian outflow channels closely resemble water-carved outflow channels on Mars and the Channeled Scabland in Washington, collapsed terrains at the sources of some venusian channels resemble chaotic terrains at the sources of martian outflow channels, venusian lava deltas are similar to bird's-foot deltas such as the Mississippi delta, and venusian valley networks indicate sapping. We have developed an alternative possibility that the lava had a water-like rheology and a melting point slightly greater than Venus' surface temperature, thus accounting for the unusual behavior of the lava. Unlike silicate lavas, some carbonatites (including carbonate-sulfate-rich liquids) have these properties; thus they can flow great distances while retaining a high fluidity, significant mechanical erosiveness, and substantial capacity to transport and deposit sediment. Venusian geochemistry and petrology are consistent with extensive eruptions of carbonatite lavas, which could have crustal and/or mantle origins. Venus' atmosphere (especially CO2, HCl, and HF abundances) and rocks may be in local chemical equilibrium, which suggests that the upper crust contains large amounts of calcite, anhydrite, and other salts. Chemical analyses indicate, according to some models, that Venusian rocks may contain 4-19% calcite and anhydrite. Mixtures of crustal salts could melt at temperatures a few tens to a few hundred Kelvins higher than Venus' surface temperature; hence, melting may be induced by modest endogenetic or impact heating. Salts may have many of the same geologic roles on Venus as water and ice have on Mars. A molten salt (carbonatite) 'aquifer' may exist beneath a few

  5. Carbonate-sulfate volcanism on Venus?

    NASA Technical Reports Server (NTRS)

    Kargel, Jeffrey S.; Kirk, Randolph L.; Fegley, Bruce, Jr.

    1994-01-01

    Venusian canali, outflow channels, and associated volcanic deposits resemble fluvial landforms more than they resmeble volcanic features on Earth and Mars. Some canali have meandering habits and features indicative of channel migration that are very similar to meandering river channels and flood plains on Earth, venusian outflow channels closely resemble water-carved outflow channels on Mars and the Channeled Scabland in Washington, collapsed terrains at the sources of some venusian channels resemble chaotic terrains at the sources of martian outflow channels, venusian lava deltas are similar to bird's-foot deltas such as the Mississippi delta, and venusian valley networks indicate sapping. We have developed an alternative possibility that the lava had a water-like rheology and a melting point slightly greater than Venus' surface temperature, thus accounting for the unusual behavior of the lava. Unlike silicate lavas, some carbonatites (including carbonate-sulfate-rich liquids) have these properties; thus they can flow great distances while retaining a high fluidity, significant mechanical erosiveness, and substantial capacity to transport and deposit sediment. Venusian geochemistry and petrology are consistent with extensive eruptions of carbonatite lavas, which could have crustal and/or mantle origins. Venus' atmosphere (especially CO2, HCl, and HF abundances) and rocks may be in local chemical equilibrium, which suggests that the upper crust contains large amounts of calcite, anhydrite, and other salts. Chemical analyses indicate, according to some models, that Venusian rocks may contain 4-19% calcite and anhydrite. Mixtures of crustal salts could melt at temperatures a few tens to a few hundred Kelvins higher than Venus' surface temperature; hence, melting may be induced by modest endogenetic or impact heating. Salts may have many of the same geologic roles on Venus as water and ice have on Mars. A molten salt (carbonatite) 'aquifer' may exist beneath a few

  6. 40 CFR 86.316-79 - Carbon monoxide and carbon dioxide analyzer specifications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Carbon monoxide and carbon dioxide... Test Procedures § 86.316-79 Carbon monoxide and carbon dioxide analyzer specifications. (a) Carbon monoxide and carbon dioxide measurements are to be made with nondispersive infrared (NDIR) an analyzers....

  7. 40 CFR 86.316-79 - Carbon monoxide and carbon dioxide analyzer specifications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Carbon monoxide and carbon dioxide... Test Procedures § 86.316-79 Carbon monoxide and carbon dioxide analyzer specifications. (a) Carbon monoxide and carbon dioxide measurements are to be made with nondispersive infrared (NDIR) an analyzers....

  8. 40 CFR 86.316-79 - Carbon monoxide and carbon dioxide analyzer specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Carbon monoxide and carbon dioxide... Test Procedures § 86.316-79 Carbon monoxide and carbon dioxide analyzer specifications. (a) Carbon monoxide and carbon dioxide measurements are to be made with nondispersive infrared (NDIR) an analyzers....

  9. 40 CFR 86.316-79 - Carbon monoxide and carbon dioxide analyzer specifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Carbon monoxide and carbon dioxide... Test Procedures § 86.316-79 Carbon monoxide and carbon dioxide analyzer specifications. (a) Carbon monoxide and carbon dioxide measurements are to be made with nondispersive infrared (NDIR) an analyzers....

  10. The 1982 El Chichon Eruption: The Birth of Volcanic Sulfur Dioxide Monitoring From Space

    NASA Astrophysics Data System (ADS)

    Krueger, A. J.; Krotkov, N.; Carn, S.

    2007-05-01

    The 1982 eruption of El Chichon inspired a new technique for monitoring volcanic clouds using satellites. Data from the Total Ozone Mapping Spectrometer (TOMS) instrument on the Nimbus-7 satellite were used to identify sulfur dioxide in the volcanic cloud and to map the extent of the cloud. For the first time the sulfur dioxide mass in even the largest explosive eruption plumes could be determined. The sizes of eruptions could be measured over 4 orders of magnitude. The position and area of volcanic clouds was determined as the clouds drifted globally with the winds over weeks of time after the eruption. The loss of sulfur dioxide by conversion to sulfate was observed. In addition, volcanic ash clouds were mapped using the TOMS aerosol data. Using sulfur dioxide as a tracer, magmatic eruptions could be discriminated from steam-driven, phreatic eruptions. The data from the El Chichon eruption are reanalyzed using the latest version of the TOMS instrument calibration (V8). They show the shearing of the eruption clouds in three weeks into a globe-circling band while still anchored over Mexico. The measured sulfur dioxide mass in the initial March 28 eruption was 1.6 Tg; a second eruption on April 3 produced 0.3 Tg more, and the climactic April 4 eruption added 5.6 Tg, for a cumulative total of 7.5 Tg, in substantial agreement with estimates from prior TOMS data versions. The TOMS derived sulfur dioxide mass is an order of magnitude higher than the petrologic estimate that is based on the lost sulfur in glass phases of the tephra. This "excess sulfur" brought rise to a reevaluation of the pre-eruptive magmatic processes in volcanoes and a better understanding of eruptions.

  11. Volcanic sulfur dioxide index and volcanic explosivity index inferred from eruptive volume of volcanoes in Jeju Island, Korea: application to volcanic hazard mitigation

    NASA Astrophysics Data System (ADS)

    Ko, Bokyun; Yun, Sung-Hyo

    2016-04-01

    Jeju Island located in the southwestern part of Korea Peninsula is a volcanic island composed of lavaflows, pyroclasts, and around 450 monogenetic volcanoes. The volcanic activity of the island commenced with phreatomagmatic eruptions under subaqueous condition ca. 1.8-2.0 Ma and lasted until ca. 1,000 year BP. For evaluating volcanic activity of the most recently erupted volcanoes with reported age, volcanic explosivity index (VEI) and volcanic sulfur dioxide index (VSI) of three volcanoes (Ilchulbong tuff cone, Songaksan tuff ring, and Biyangdo scoria cone) are inferred from their eruptive volumes. The quantity of eruptive materials such as tuff, lavaflow, scoria, and so on, is calculated using a model developed in Auckland Volcanic Field which has similar volcanic setting to the island. The eruptive volumes of them are 11,911,534 m3, 24,987,557 m3, and 9,652,025 m3, which correspond to VEI of 3, 3, and 2, respectively. According to the correlation between VEI and VSI, the average quantity of SO2 emission during an eruption with VEI of 3 is 2-8 × 103 kiloton considering that the island was formed under intraplate tectonic setting. Jeju Island was regarded as an extinct volcano, however, several studies have recently reported some volcanic eruption ages within 10,000 year BP owing to the development in age dating technique. Thus, the island is a dormant volcano potentially implying high probability to erupt again in the future. The volcanoes might have explosive eruptions (vulcanian to plinian) with the possibility that SO2 emitted by the eruption reaches stratosphere causing climate change due to backscattering incoming solar radiation, increase in cloud reflectivity, etc. Consequently, recommencement of volcanic eruption in the island is able to result in serious volcanic hazard and this study provides fundamental and important data for volcanic hazard mitigation of East Asia as well as the island. ACKNOWLEDGMENTS: This research was supported by a grant [MPSS

  12. The synthesis of organic carbonates from carbon dioxide.

    PubMed

    Sakakura, Toshiyasu; Kohno, Kazufumi

    2009-03-21

    Carbon dioxide (CO(2)) is an easily available, renewable carbon resource, which has the advantages of being non-toxic, abundant and economical. CO(2) is also attractive as an environmentally friendly chemical reagent, and is especially useful as a phosgene substitute. CO(2) is an "anhydrous carbonic acid" that rapidly reacts with basic compounds. Nucleophilic attack at CO(2) conveniently produces carboxyl and carbamoyl groups. Further reactions of these species with electrophiles lead to the formation of organic carbonates and carbamates. The present article deals with the synthetic technologies leading to organic carbonates using CO(2) as a raw material.

  13. Carbon dioxide capture and use: organic synthesis using carbon dioxide from exhaust gas.

    PubMed

    Kim, Seung Hyo; Kim, Kwang Hee; Hong, Soon Hyeok

    2014-01-13

    A carbon capture and use (CCU) strategy was applied to organic synthesis. Carbon dioxide (CO2) captured directly from exhaust gas was used for organic transformations as efficiently as hyper-pure CO2 gas from a commercial source, even for highly air- and moisture-sensitive reactions. The CO2 capturing aqueous ethanolamine solution could be recycled continuously without any diminished reaction efficiency.

  14. Recycling technology of emitted carbon dioxide

    SciTech Connect

    Arakawa, Hironori

    1993-12-31

    Ways to halt global warming are being discussed worldwide. Global warming is an energy problem which is mainly attributed to the large volumes of carbon dioxide (CO{sub 2}) released into the atmosphere from the rapid increase in energy consumption since the Industrial Revolution. The basic solution to the problem, therefore, is to cut consumption of fossil fuels. To this end, it is important to promote energy conservation by improving the fuel efficiency of machines, as well as shift to energy sources that do not emit carbon dioxide and develop related technologies. If current trends in economic growth continue in the devloping world as well as the developed countries, there can be no doubt that energy consumption will increase. Therefore, alongside energy conservation and the development of alternative energies, the importance of technologies to recover and fix CO{sub 2} will increase in the fight against global warming.

  15. Sequestering ADM ethanol plant carbon dioxide

    USGS Publications Warehouse

    Finley, R.J.; Riddle, D.

    2008-01-01

    Archer Daniels Midland Co. (ADM) and the Illinois State Geological Survey (ISGS) are collaborating on a project in confirming that a rock formation can store carbon dioxide from the plant in its pores. The project aimed to sequester the gas underground permanently to minimize release of the greenhouse gas into the atmosphere. It is also designed to store one million tons of carbon dioxide over a three-year period. The project is worth $84.3M, funded by $66.7M from the US Department Energy, supplemented by co-funding from ADM and other corporate and state resources. The project will start drilling of wells to an expected depth over 6500 feet into the Mount Simon Sandstone formation.

  16. Regulation of cerebral autoregulation by carbon dioxide.

    PubMed

    Meng, Lingzhong; Gelb, Adrian W

    2015-01-01

    Cerebral autoregulation describes a mechanism that maintains cerebral blood flow stable despite fluctuating perfusion pressure. Multiple nonperfusion pressure processes also regulate cerebral perfusion. These mechanisms are integrated. The effect of the interplay between carbon dioxide and perfusion pressure on cerebral circulation has not been specifically reviewed. On the basis of the published data and speculation on the aspects that are without supportive data, the authors offer a conceptualization delineating the regulation of cerebral autoregulation by carbon dioxide. The authors conclude that hypercapnia causes the plateau to progressively ascend, a rightward shift of the lower limit, and a leftward shift of the upper limit. Conversely, hypocapnia results in the plateau shifting to lower cerebral blood flows, unremarkable change of the lower limit, and unclear change of the upper limit. It is emphasized that a sound understanding of both the limitations and the dynamic and integrated nature of cerebral autoregulation fosters a safer clinical practice.

  17. There is more to climate than carbon dioxide.

    PubMed

    Walker, J C

    1995-07-01

    Discussion of climate change on a range of time scales has tended to focus on carbon dioxide and a changing greenhouse effect. Because carbon dioxide couples climate to ocean, land, and biota, it has appealed to scientists with an interest in the whole Earth system. Carbon dioxide has left a geological record in fossils, isotopes, and sediments, so we can reasonably expect to reconstruct its history. While important questions of detail remain to be resolved, many published applications of carbon cycle modelling suggest that we understand the biogeochemical cycles of carbon well enough to estimate carbon dioxide concentrations in the past and the future. Furthermore, we have an excellent instrumental record of recent changes in atmospheric carbon dioxide. While these considerations make carbon dioxide attractive to paleoclimatologists, they do not necessarily make it a major component of climate change. I shall argue in this paper that clouds deserve much more attention than they have been getting.

  18. The direct viscosity enhancement of carbon dioxide

    SciTech Connect

    Iezzi, A.; Enick, R.; Brady, J. . Dept. of Chemistry)

    1988-01-01

    A high pressure viscometer has been constructed for use over a wide range of temperatures and pressures, including near-critical and supercritical conditions. An aluminum cylinder falls through a tube containing a stationary column of fluid, enabling viscosities to be determined from terminal velocity measurements. Preliminary results are presented on the search for an additive which can enhance the viscosity of carbon dioxide when present in low (less than 1%) concentrations.

  19. Electrochemical carbon dioxide concentrator: Math model

    NASA Technical Reports Server (NTRS)

    Marshall, R. D.; Schubert, F. H.; Carlson, J. N.

    1973-01-01

    A steady state computer simulation model of an Electrochemical Depolarized Carbon Dioxide Concentrator (EDC) has been developed. The mathematical model combines EDC heat and mass balance equations with empirical correlations derived from experimental data to describe EDC performance as a function of the operating parameters involved. The model is capable of accurately predicting performance over EDC operating ranges. Model simulation results agree with the experimental data obtained over the prediction range.

  20. First satellite identification of volcanic carbon monoxide

    NASA Astrophysics Data System (ADS)

    Martínez-Alonso, Sara; Deeter, Merritt N.; Worden, Helen M.; Clerbaux, Cathy; Mao, Debbie; Gille, John C.

    2012-11-01

    Volcanic degassing produces abundant H2O and CO2, as well as SO2, HCl, H2S, S2, H2, HF, CO, and SiF4. Volcanic SO2, HCl, and H2S have been detected from satellites in the past; the remaining species are analyzed in situ or using airborne instruments, with all the consequent limitations in safety and sampling, and at elevated costs. We report identification of high CO concentrations consistent with a volcanic origin (the 2010 Eyjafjallajökull and 2011 Grímsvötn eruptions in Iceland) in data from the Measurements of Pollution in the Troposphere instrument (MOPITT) onboard EOS/Terra. The high CO values coincide spatially and temporally with ash plumes emanating from the eruptive centers, with elevated SO2 and aerosol optical thickness, as well as with high CO values in data from the Infrared Atmospheric Sounding Interferometer (IASI), onboard MetOp-A. CO has a positive indirect radiative forcing; climate models currently do not account for volcanic CO emissions. Given global volcanic CO2 emissions between 130 and 440 Tg/year and volcanic CO:CO2 ratios from the literature, we estimate that average global volcanic CO emissions may be on the order of ∼5.5 Tg/year, equivalent to the CO emissions caused by combined fossil fuel and biofuel combustion in Australia.

  1. Carbonate-Sulfate Volcanism on Venus?

    USGS Publications Warehouse

    Kargel, J.S.; Kirk, R.L.; Fegley, B.; Treiman, A.H.

    1994-01-01

    Venusian canali, outflow channels, and associated volcanic deposits resemble fluvial landforms more than they resemble volcanic features on Earth and Mars. Some canali have meandering habits and features indicative of channel migration that are very similar to meandering river channels and flood plains on Earth, venusian outflow channels closely resemble water-carved outflow channels on Mars and the Channeled Scabland in Washington, collapsed terrains at the sources of some venusian channels resemble chaotic terrains at the sources of martian outflow channels, venusian lava deltas are similar to bird's-foot deltas such as the Mississippi delta, and venusian valley networks indicate sapping. The depositional fluvial-type features (deltas, braided bars, and channeled plains) are generally among the smoothest terrains at the Magellan radar wavelength (12.6 cm) on Venus. These features suggest the involvement of an unusual lava, unexpected processes, and/or extraordinary eruption conditions. Possibly the lava was an ordinary silicate lava such as basalt or a less common type of silicate lava, and conditions unique to Venus or to those particular eruptions may have caused an unusual volcanological behavior. We have developed the alternative possibility that the lava had a water-like rheology and a melting point slightly greater than Venus' surface temperature, thus accounting for the unusual behavior of the lava. Unlike silicate lavas, some carbonatites (including carbonate-sulfate-rich liquids) have these properties; thus they can flow great distances while retaining a high fluidity, significant mechanical erosiveness, and substantial capacity to transport and deposit sediment. Venusian geochemistry and petrology are consistent with extensive eruptions of carbonatite lavas, which could have crustal and/or mantle origins. Venus' atmosphere (especially CO2, HCl, and HF abundances) and rocks may be in local chemical equilibrium, which suggests that the upper crust

  2. Carbon dioxide makes heat therapy work

    SciTech Connect

    Sherman, H.

    1987-01-01

    Scientists can now propagate healthy blueberry and raspberry plants from virus-infected stock by treating it with heat and carbon dioxide. Plants are grown at 100/sup 0/F, which makes them develop faster than the virus can spread. Then cuttings are taken of the new growth - less than an inch long - and grown into full-sized, virus-free plants. But in this race to outdistance the virus, some plant species are not able to take the heat. Some even die. Chemical reactions double for every 14/sup 0/F rise in temperature. So, if you try to grow a plant at 100/sup 0/F that was originally growing at 86/sup 0/F, it will double its respiration rate. Adding carbon dioxide increases the rate of photosynthesis in plants, which increases the plant's food reserves. What carbon dioxide does to allow some plants to grow at temperatures at which they would otherwise not survive and it allows other plants to grow for longer periods at 100/sup 0/F. One problem with the process, says Converse, is that the longer plants are exposed to heat the greater the mutation rate. So, resulting clones should be closely examined for trueness to horticultural type.

  3. Carbon dioxide in Arctic and subarctic regions

    SciTech Connect

    Gosink, T. A.; Kelley, J. J.

    1981-03-01

    A three year research project was presented that would define the role of the Arctic ocean, sea ice, tundra, taiga, high latitude ponds and lakes and polar anthropogenic activity on the carbon dioxide content of the atmosphere. Due to the large physical and geographical differences between the two polar regions, a comparison of CO/sub 2/ source and sink strengths of the two areas was proposed. Research opportunities during the first year, particularly those aboard the Swedish icebreaker, YMER, provided additional confirmatory data about the natural source and sink strengths for carbon dioxide in the Arctic regions. As a result, the hypothesis that these natural sources and sinks are strong enough to significantly affect global atmospheric carbon dioxide levels is considerably strengthened. Based on the available data we calculate that the whole Arctic region is a net annual sink for about 1.1 x 10/sup 15/ g of CO/sub 2/, or the equivalent of about 5% of the annual anthropogenic input into the atmosphere. For the second year of this research effort, research on the seasonal sources and sinks of CO/sub 2/ in the Arctic will be continued. Particular attention will be paid to the seasonal sea ice zones during the freeze and thaw periods, and the tundra-taiga regions, also during the freeze and thaw periods.

  4. Limiting future atmospheric carbon dioxide

    NASA Astrophysics Data System (ADS)

    Sarmiento, Jorge L.; Le QuéRé, Corinne; Pacala, Stephen W.

    1995-03-01

    We estimate anthropogenic carbon emissions required to stabilize future atmospheric CO2 at various levels ranging from 350 ppm to 750 ppm. Over the next three centuries, uptake by the ocean and terrestrial biosphere would permit emissions to be 3 to 6 times greater than the total atmospheric increase, with each of them contributing approximately equal amounts. Owing to the nonlinear dependence of oceanic and terrestrial biospheric uptake on CO2 concentration, the uptake by these two sinks decreases substantially at higher atmospheric CO2 levels. The uptake also decreases with increased atmospheric CO2 growth rate. All the stabilization scenarios require a substantial future reduction in emissions.

  5. Carbon dioxide reduction by the Bosch process

    NASA Technical Reports Server (NTRS)

    Manning, M. P.; Reid, R. C.

    1975-01-01

    Prototype units for carrying out the reduction of carbon dioxide to elementary carbon have been built and operated successfully. In some cases, however, startup difficulties have been reported. Moreover, the recycle reactor product has been reported to contain only small amounts of water and undesirably high yields of methane. This paper presents the results of the first phase of an experimental study that was carried out to define the mechanisms occurring in the reduction process. Conclusions are drawn and possible modifications to the present recycle process are suggested.

  6. A miniature chemiresistor sensor for carbon dioxide.

    PubMed

    Srinives, Sira; Sarkar, Tapan; Hernandez, Raul; Mulchandani, Ashok

    2015-05-18

    A carpet-like nanostructure of polyaniline (PANI) nanothin film functionalized with poly(ethyleneimine), PEI, was used as a miniature chemiresistor sensor for detection of CO2 at room temperature. Good sensing performance was observed upon exposing the PEI-PANI device to 50-5000 ppm CO2 in presence of humidity with negligible interference from ammonia, carbon monoxide, methane and nitrogen dioxide. The sensing mechanism relied on acid-base reaction, CO2 dissolution and amine-catalyzed hydration that yielded carbamates and carbonic acid for a subsequent pH detection. The sensing device showed reliable results in detecting an unknown concentration of CO2 in air.

  7. Method of immobilizing carbon dioxide from gas streams

    DOEpatents

    Holladay, David W.; Haag, Gary L.

    1979-01-01

    This invention is a method for rapidly and continuously immobilizing carbon dioxide contained in various industrial off-gas streams, the carbon dioxide being immobilized as dry, stable, and substantially water-insoluble particulates. Briefly, the method comprises passing the gas stream through a fixed or fluidized bed of hydrated barium hydroxide to remove and immobilize the carbon dioxide by converting the bed to barium carbonate. The method has several important advantages: it can be conducted effectively at ambient temperature; it provides a very rapid reaction rate over a wide range of carbon dioxide concentrations; it provides high decontamination factors; and it has a high capacity for carbon dioxide. The invention is especially well suited for the removal of radioactive carbon dioxide from off-gases generated by nuclear-fuel reprocessing facilities and nuclear power plants.

  8. Accurate prototype remote sensing of correlated carbon dioxide and sulfur dioxide emissions at Mt.Etna

    NASA Astrophysics Data System (ADS)

    Solvejg Dinger, Anna; Bobrowski, Nicole; Butz, André; Fischerkeller, Marie-Constanze; Giudice, Gaetano; Giuffrida, Giovanni; Klappenbach, Friedrich; Kostinek, Julian; Kuhn, Jonas; Liuzzo, Marco; Lübcke, Peter; Tirpitz, Lukas; Platt, Ulrich

    2016-04-01

    Volcanic carbon dioxide (CO2) and sulfur dioxide (SO2) emissions have a direct as well as indirect impact on climate and air quality. Moreover these two gases, and in particular their ratio, are tracers for dynamic processes inside volcanoes. Hence they can give direct information about volcanic activity. Semi-continuous in-situ measurements of CO2 and SO2 have been conducted for only a decade, demonstrating the great potential of such data. More than once it could be shown that the CO2/SO2 ratio increases and then drops before an eruption. However, in-situ measurements are linked with great effort and risk due to the difficult environment, which might also result in sheer impossibility. Remote sensing of volcanic emissions allows for monitoring a volcano's activity from a safe distance to the volcano and thus generally under less difficult ambient conditions. This means in turn less effort and cost, even employing a more cost intense instrument. Further, remote sensing enables sampling of cross sections of the entire plume thus, suffering less from representativeness errors than the in-situ technique. Remote sensing of SO2 is already well developed, whereas the measurement of CO2 is challenged by the high background concentration and therefore required high accuracy in order to measure little concentration enhancements in the volcanic plume. To overcome this challenge, we employed combined direct sunlight spectroscopy for SO2 and CO2. Two spectrometers (a UV-spectrometer for SO2 and a FTIR-spectrometer for CO2) were coupled into the beam of a common sun tracker. The whole setup was installed on a mobile platform, which allowed for sampling plume cross sections in a stop-and-go pattern. Measurements were conducted during a three-week campaign at Mt.Etna, Sicily. We measured enhancements of the averaged CO2 mixing ratio up to 0.5-1 ppm (2.5x1019 molec cm-2 CO2 column enhancement) and SO2 column enhancements up to 4x1018 molec cm-2. CO2 and SO2 emissions showed a

  9. Automated carbon dioxide cleaning system

    NASA Technical Reports Server (NTRS)

    Hoppe, David T.

    1991-01-01

    Solidified CO2 pellets are an effective blast media for the cleaning of a variety of materials. CO2 is obtained from the waste gas streams generated from other manufacturing processes and therefore does not contribute to the greenhouse effect, depletion of the ozone layer, or the environmental burden of hazardous waste disposal. The system is capable of removing as much as 90 percent of the contamination from a surface in one pass or to a high cleanliness level after multiple passes. Although the system is packaged and designed for manual hand held cleaning processes, the nozzle can easily be attached to the end effector of a robot for automated cleaning of predefined and known geometries. Specific tailoring of cleaning parameters are required to optimize the process for each individual geometry. Using optimum cleaning parameters the CO2 systems were shown to be capable of cleaning to molecular levels below 0.7 mg/sq ft. The systems were effective for removing a variety of contaminants such as lubricating oils, cutting oils, grease, alcohol residue, biological films, and silicone. The system was effective on steel, aluminum, and carbon phenolic substrates.

  10. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Raghubir P. Gupta; Alejandro Lopez-Ortiz; Douglas P. Harrison; Ya Liang

    2001-07-01

    Sodium based sorbents including sodium carbonate may be used to capture carbon dioxide from flue gas. A relatively concentrated carbon dioxide stream may be recoverable for sequestration when the sorbent is regenerated. Electrobalance tests indicated that sodium carbonate monohydrate was formed in a mixture of helium and water vapor at temperatures below 65 C. Additional compounds may also form, but this could not be confirmed. In the presence of carbon dioxide and water vapor, both the initial reaction rate of sodium carbonate with carbon dioxide and water and the sorbent capacity decreased with increasing temperature, consistent with the results from the previous quarter. Increasing the carbon dioxide concentration at constant temperature and water vapor concentration produced a measurable increase in rate, as did increasing the water vapor concentration at constant carbon dioxide concentration and temperature. Runs conducted with a flatter TGA pan resulted in a higher initial reaction rate, presumably due to improved gas-solid contact, but after a short time, there was no significant difference in the rates measured with the different pans. Analyses of kinetic data suggest that the surface of the sodium carbonate particles may be much hotter than the bulk gas due to the highly exothermic reaction with carbon dioxide and water, and that the rate of heat removal from the particle may control the reaction rate. A material and energy balance was developed for a cyclic carbonation/calcination process which captures about 26 percent of the carbon dioxide present in flue gas available at 250 C.

  11. Carbon content and degassing history of the lunar volcanic glasses

    NASA Astrophysics Data System (ADS)

    Wetzel, Diane T.; Hauri, Erik H.; Saal, Alberto E.; Rutherford, Malcolm J.

    2015-10-01

    Volcanic glasses observed on the lunar surface have been interpreted as the products of volatile-rich, fire-fountain eruptions. Revised estimates of the water content of primitive lunar magmas have overturned the notion of a volatile-poor Moon, but degassing of water-rich vapour during volcanic eruptions is inconsistent with geochemical and petrological observations. Although degassing of carbon is compatible with observations, the amount of indigenous carbon in lunar volcanic materials is not well constrained. Here we present high-precision measurements of indigenous carbon contents in primitive lunar volcanic glasses and melt inclusions. From our measurements, in combination with solubility and degassing model calculations, we suggest that carbon degassed before water in lunar magmas, and that the amount of carbon in the lunar lavas was sufficient to trigger fire-fountain eruptions at the lunar surface. We estimate--after correcting for bubble formation in the melt inclusions--that the primitive carbon contents and hydrogen/carbon ratios of lunar magmas fall within the range found in melts from Earth’s depleted upper mantle. Our findings are also consistent with measurements of hydrogen, fluorine, sulphur and chlorine contents, as well as carbon and hydrogen isotopes, in primitive lunar magmas, suggesting a common origin for the volatile elements in the interiors of the Earth and Moon.

  12. Carbon dioxide: A substitute for phosgene

    SciTech Connect

    Aresta, M.; Quaranta, E.

    1997-03-01

    One of the many goals of the green chemistry movement is to eliminate the use of phosgene (COCl{sub 2}), an extremely hazardous compound used in many syntheses, including the production of carbamates, organic carbonates, and polymers. One of the most interesting options for eliminating this compound is to replace it with CO{sub 2}. In addition to carbon dioxide`s abundance and benign nature, it has the benefits of recycling carbon and of reducing the amount of CO{sub 2} released into the atmosphere when its use is linked with other processes that emit CO{sub 2}. Several synthetic strategies that do not use phosgene are under development. The authors briefly review the most interesting ones and then expand on the use of CO{sub 2} as a potential building block for organic carbamates, carbonates, and isocyanates. One of these routes, polycarbonate synthesis, is already in industrial-scale operation: PAC Polymers Inc. currently produces CO{sub 2}-epoxide copolymers. The synthesis of carbamates and substituted ureas has been developed, and this process awaits industrial exploitation.

  13. Enriching blast furnace gas by removing carbon dioxide.

    PubMed

    Zhang, Chongmin; Sun, Zhimin; Chen, Shuwen; Wang, Baohai

    2013-12-01

    Blast furnace gas (BF gas) produced in the iron making process is an essential energy resource for a steel making work. As compared with coke oven gas, the caloric value of BF gas is too low to be used alone as fuel in hot stove because of its high concentrations of carbon dioxide and nitrogen. If the carbon dioxide in BF gas could be captured efficiently, it would meet the increasing need of high caloric BF gas, and develop methods to reusing and/or recycling the separated carbon dioxide further. Focused on this, investigations were done with simple evaluation on possible methods of removing carbon dioxide from BF gas and basic experiments on carbon dioxide capture by chemical absorption. The experimental results showed that in 100 minutes, the maximum absorbed doses of carbon dioxide reached 20 g/100 g with ionic liquid as absorbent.

  14. Effects of carbon dioxide on Penicillium chrysogenum: an autoradiographic study

    SciTech Connect

    Edwards, A.G.; Ho, C.S.

    1988-06-20

    Previous research has shown that dissolved carbon dioxide causes significant changes in submerged penicillin fermentations, such as stunted, swollen hyphae, increased branching, lower growth rates, and lower penicillin productivity. Influent carbon dioxide levels of 5 and 10% were shown through the use of autoradiography to cause an increase in chitin synthesis in submerged cultures of Penicillium chrysogenum. At an influent 5% carbon dioxide level, chitin synthesis is ca. 100% greater in the subapical region of P. chrysogenum hyphae than that of the control, in which there was no influent carbon dioxide. Influent carbon dioxide of 10% caused an increase of 200% in chitin synthesis. It is believed that the cell wall must be plasticized before branching can occur and that high amounts of dissolved carbon dioxide cause the cell to lose control of the plasticizing effect, thus the severe morphological changes occur.

  15. The nature of carbon dioxide waters in Snaefellsnes, western Iceland

    USGS Publications Warehouse

    Arnorsson, S.; Barnes, I.

    1983-01-01

    Over 20 occurrences of thermal and non-thermal waters rich in carbon dioxide are known in the Snaefellsnes Peninsula of western Iceland. On the basis of the thermal, chemical and isotopic characteristics of these waters, and hydrological considerations, it is concluded that they represent meteoric waters which have seeped to variable depths into the bedrock. Ascending carbon dioxide gas originating from intrusions or the mantle mixes with the meteoric waters to produce carbon dioxide waters: at considerable depth in the case of the thermal carbon dioxide waters but close to the surface in the case of cold carbon dioxide waters. The occurrence of carbon dioxide waters cannot be regarded as evidence for underground geothermal reservoirs. ?? 1983.

  16. Designed amyloid fibers as materials for selective carbon dioxide capture

    PubMed Central

    Li, Dan; Furukawa, Hiroyasu; Deng, Hexiang; Liu, Cong; Yaghi, Omar M.; Eisenberg, David S.

    2014-01-01

    New materials capable of binding carbon dioxide are essential for addressing climate change. Here, we demonstrate that amyloids, self-assembling protein fibers, are effective for selective carbon dioxide capture. Solid-state NMR proves that amyloid fibers containing alkylamine groups reversibly bind carbon dioxide via carbamate formation. Thermodynamic and kinetic capture-and-release tests show the carbamate formation rate is fast enough to capture carbon dioxide by dynamic separation, undiminished by the presence of water, in both a natural amyloid and designed amyloids having increased carbon dioxide capacity. Heating to 100 °C regenerates the material. These results demonstrate the potential of amyloid fibers for environmental carbon dioxide capture. PMID:24367077

  17. Copolymerization of carbon dioxide and butadiene via a lactone intermediate.

    PubMed

    Nakano, Ryo; Ito, Shingo; Nozaki, Kyoko

    2014-04-01

    Although carbon dioxide has attracted broad interest as a renewable carbon feedstock, its use as a monomer in copolymerization with olefins has long been an elusive endeavour. A major obstacle for this process is that the propagation step involving carbon dioxide is endothermic; typically, attempted reactions between carbon dioxide and an olefin preferentially yield olefin homopolymerization. Here we report a strategy to circumvent the thermodynamic and kinetic barriers for copolymerizations of carbon dioxide and olefins by using a metastable lactone intermediate, 3-ethylidene-6-vinyltetrahydro-2H-pyran-2-one, which is formed by the palladium-catalysed condensation of carbon dioxide and 1,3-butadiene. Subsequent free-radical polymerization of the lactone intermediate afforded polymers of high molecular weight with a carbon dioxide content of 33 mol% (29 wt%). Furthermore, the protocol was applied successfully to a one-pot copolymerization of carbon dioxide and 1,3-butadiene, and one-pot terpolymerizations of carbon dioxide, butadiene and another 1,3-diene. This copolymerization technique provides access to a new class of polymeric materials made from carbon dioxide.

  18. Copolymerization of carbon dioxide and butadiene via a lactone intermediate

    NASA Astrophysics Data System (ADS)

    Nakano, Ryo; Ito, Shingo; Nozaki, Kyoko

    2014-04-01

    Although carbon dioxide has attracted broad interest as a renewable carbon feedstock, its use as a monomer in copolymerization with olefins has long been an elusive endeavour. A major obstacle for this process is that the propagation step involving carbon dioxide is endothermic; typically, attempted reactions between carbon dioxide and an olefin preferentially yield olefin homopolymerization. Here we report a strategy to circumvent the thermodynamic and kinetic barriers for copolymerizations of carbon dioxide and olefins by using a metastable lactone intermediate, 3-ethylidene-6-vinyltetrahydro-2H-pyran-2-one, which is formed by the palladium-catalysed condensation of carbon dioxide and 1,3-butadiene. Subsequent free-radical polymerization of the lactone intermediate afforded polymers of high molecular weight with a carbon dioxide content of 33 mol% (29 wt%). Furthermore, the protocol was applied successfully to a one-pot copolymerization of carbon dioxide and 1,3-butadiene, and one-pot terpolymerizations of carbon dioxide, butadiene and another 1,3-diene. This copolymerization technique provides access to a new class of polymeric materials made from carbon dioxide.

  19. Carbon Dioxide and the Greenhouse Effect: A Problem Evaluation Activity.

    ERIC Educational Resources Information Center

    Brewer, Carol A.; Beiswenger, Jane M.

    1993-01-01

    Describes exercises to examine the global carbon cycle. Students are asked to predict consequences of increased carbon dioxide emissions into the atmosphere and to suggest ways to mitigate problems associated with these higher levels of atmospheric carbon dioxide. A comparison modeling exercise examines some of the variables related to the success…

  20. 40 CFR 91.320 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Carbon dioxide analyzer calibration... Provisions § 91.320 Carbon dioxide analyzer calibration. (a) Prior to its introduction into service, and monthly thereafter, or within one month prior to the certification test, calibrate the NDIR carbon...

  1. 40 CFR 86.524-78 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Carbon dioxide analyzer calibration... Regulations for 1978 and Later New Motorcycles; Test Procedures § 86.524-78 Carbon dioxide analyzer calibration. (a) Prior to its introduction into service and monthly thereafter the NDIR carbon...

  2. 40 CFR 86.524-78 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Carbon dioxide analyzer calibration... Regulations for 1978 and Later New Motorcycles; Test Procedures § 86.524-78 Carbon dioxide analyzer calibration. (a) Prior to its introduction into service and monthly thereafter the NDIR carbon...

  3. 40 CFR 91.320 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Carbon dioxide analyzer calibration... Provisions § 91.320 Carbon dioxide analyzer calibration. (a) Prior to its introduction into service, and monthly thereafter, or within one month prior to the certification test, calibrate the NDIR carbon...

  4. 40 CFR 86.524-78 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Carbon dioxide analyzer calibration... Regulations for 1978 and Later New Motorcycles; Test Procedures § 86.524-78 Carbon dioxide analyzer calibration. (a) Prior to its introduction into service and monthly thereafter the NDIR carbon...

  5. 40 CFR 86.524-78 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Carbon dioxide analyzer calibration... Regulations for 1978 and Later New Motorcycles; Test Procedures § 86.524-78 Carbon dioxide analyzer calibration. (a) Prior to its introduction into service and monthly thereafter the NDIR carbon...

  6. 40 CFR 86.524-78 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Carbon dioxide analyzer calibration... Regulations for 1978 and Later New Motorcycles; Test Procedures § 86.524-78 Carbon dioxide analyzer calibration. (a) Prior to its introduction into service and monthly thereafter the NDIR carbon...

  7. Carbon dioxide emission from bamboo culms.

    PubMed

    Zachariah, E J; Sabulal, B; Nair, D N K; Johnson, A J; Kumar, C S P

    2016-05-01

    Bamboos are one of the fastest growing plants on Earth, and are widely considered to have high ability to capture and sequester atmospheric carbon, and consequently to mitigate climate change. We tested this hypothesis by measuring carbon dioxide (CO2 ) emissions from bamboo culms and comparing them with their biomass sequestration potential. We analysed diurnal effluxes from Bambusa vulgaris culm surface and gas mixtures inside hollow sections of various bamboos using gas chromatography. Corresponding variations in gas pressure inside the bamboo section and culm surface temperature were measured. SEM micrographs of rhizome and bud portions of bamboo culms were also recorded. We found very high CO2 effluxes from culm surface, nodes and buds of bamboos. Positive gas pressure and very high concentrations of CO2 were observed inside hollow sections of bamboos. The CO2 effluxes observed from bamboos were very high compared to their carbon sequestration potential. Our measurements suggest that bamboos are net emitters of CO2 during their lifespan.

  8. Upgrading carbon dioxide by incorporation into heterocycles.

    PubMed

    Yu, Bing; He, Liang-Nian

    2015-01-01

    Carbon dioxide is commonly regarded as the primary greenhouse gas, but from a synthetic standpoint can be utilized as an alternative and sustainable C1 synthon in organic synthesis rather than a waste. This results in the production of organic carbonates, carboxylic acids, and derivatives. Recently, CO2 has emerged as an appealing tool for heterocycle synthesis under mild conditions without using stoichiometric amounts of organometallic reducing reagents. This Minireview summarizes recent advances on methodologies for CO2 incorporation into N-, O-, and C-nucleophiles to provide various heterocycles, including cyclic carbamates, benzoxazine-2-one, 4-hydroxyquinolin-2-one, quinazoline-2,4(1 H,3 H)-diones, benzimidazolones, α-alkylidene cyclic carbonate.

  9. Thermochemical generation of hydrogen and carbon dioxide

    NASA Technical Reports Server (NTRS)

    Lawson, Daniel D. (Inventor); England, Christopher (Inventor)

    1984-01-01

    Mixing of carbon in the form of high sulfur coal with sulfuric acid reduces the temperature of sulfuric acid decomposition from 830.degree. C. to between 300.degree. C. and 400.degree. C. The low temperature sulfuric acid decomposition is particularly useful in thermal chemical cycles for splitting water to produce hydrogen. Carbon dioxide is produced as a commercially desirable byproduct. Lowering of the temperature for the sulfuric acid decomposition or oxygen release step simplifies equipment requirements, lowers thermal energy input and reduces corrosion problems presented by sulfuric acid at conventional cracking temperatures. Use of high sulfur coal as the source of carbon for the sulfuric acid decomposition provides an environmentally safe and energy efficient utilization of this normally polluting fuel.

  10. Supercritical carbon dioxide: a solvent like no other

    PubMed Central

    Peach, Jocelyn

    2014-01-01

    Summary Supercritical carbon dioxide (scCO2) could be one aspect of a significant and necessary movement towards green chemistry, being a potential replacement for volatile organic compounds (VOCs). Unfortunately, carbon dioxide has a notoriously poor solubilising power and is famously difficult to handle. This review examines attempts and breakthroughs in enhancing the physicochemical properties of carbon dioxide, focusing primarily on factors that impact solubility of polar and ionic species and attempts to enhance scCO2 viscosity. PMID:25246947

  11. THERMAL CONDUCTIVITY OF CARBON DIOXIDE AT ONE ATMOSPHERE.

    DTIC Science & Technology

    CARBON DIOXIDE , THERMAL CONDUCTIVITY, VISCOSITY, HIGH TEMPERATURE, GASES, NITROGEN COMPOUNDS, OXYGEN, LAMINAR FLOW, TEST EQUIPMENT, DIFFUSION, PRESSURE, DENSITY, MEASUREMENT, WATER, CYLINDRICAL BODIES, THEORY.

  12. Carbon dioxide absorbent and method of using the same

    SciTech Connect

    Perry, Robert James; O'Brien, Michael Joseph

    2014-06-10

    In accordance with one aspect, the present invention provides a composition which contains the amino-siloxane structures I, or III, as described herein. The composition is useful for the capture of carbon dioxide from process streams. In addition, the present invention provides methods of preparing the amino-siloxane composition. Another aspect of the present invention provides methods for reducing the amount of carbon dioxide in a process stream employing the amino-siloxane compositions of the invention, as species which react with carbon dioxide to form an adduct with carbon dioxide.

  13. Carbon dioxide absorbent and method of using the same

    SciTech Connect

    Perry, Robert James; O'Brien, Michael Joseph

    2015-12-29

    In accordance with one aspect, the present invention provides a composition which contains the amino-siloxane structures I, or III, as described herein. The composition is useful for the capture of carbon dioxide from process streams. In addition, the present invention provides methods of preparing the amino-siloxane composition. Another aspect of the present invention provides methods for reducing the amount of carbon dioxide in a process stream employing the amino-siloxane compositions of the invention, as species which react with carbon dioxide to form an adduct with carbon dioxide.

  14. A tenuous carbon dioxide atmosphere on Jupiter's moon Callisto

    NASA Technical Reports Server (NTRS)

    Carlson, R. W.

    1999-01-01

    An off-limb scan of Callisto was conducted by the Galileo near-infrared mapping spectrometer to search for a carbon dioxide atmosphere. Airglow in the carbon dioxide nu3 band was observed up to 100 kilometers above the surface and indicates the presence of a tenuous carbon dioxide atmosphere with surface pressure of 7.5 x 10(-12) bar and a temperature of about 150 kelvin, close to the surface temperature. A lifetime on the order of 4 years is suggested, based on photoionization and magnetospheric sweeping. Either the atmosphere is transient and was formed recently or some process is currently supplying carbon dioxide to the atmosphere.

  15. A tenuous carbon dioxide atmosphere on Jupiter's moon Callisto.

    PubMed

    Carlson, R W

    1999-02-05

    An off-limb scan of Callisto was conducted by the Galileo near-infrared mapping spectrometer to search for a carbon dioxide atmosphere. Airglow in the carbon dioxide nu3 band was observed up to 100 kilometers above the surface and indicates the presence of a tenuous carbon dioxide atmosphere with surface pressure of 7.5 x 10(-12) bar and a temperature of about 150 kelvin, close to the surface temperature. A lifetime on the order of 4 years is suggested, based on photoionization and magnetospheric sweeping. Either the atmosphere is transient and was formed recently or some process is currently supplying carbon dioxide to the atmosphere.

  16. Amorphous silica-like carbon dioxide

    NASA Astrophysics Data System (ADS)

    Santoro, Mario; Gorelli, Federico A.; Bini, Roberto; Ruocco, Giancarlo; Scandolo, Sandro; Crichton, Wilson A.

    2006-06-01

    Among the group IV elements, only carbon forms stable double bonds with oxygen at ambient conditions. At variance with silica and germania, the non-molecular single-bonded crystalline form of carbon dioxide, phase V, only exists at high pressure. The amorphous forms of silica (a-SiO2) and germania (a-GeO2) are well known at ambient conditions; however, the amorphous, non-molecular form of CO2 has so far been described only as a result of first-principles simulations. Here we report the synthesis of an amorphous, silica-like form of carbon dioxide, a-CO2, which we call `a-carbonia'. The compression of the molecular phase III of CO2 between 40 and 48GPa at room temperature initiated the transformation to the non-molecular amorphous phase. Infrared spectra measured at temperatures up to 680K show the progressive formation of C-O single bonds and the simultaneous disappearance of all molecular signatures. Furthermore, state-of-the-art Raman and synchrotron X-ray diffraction measurements on temperature-quenched samples confirm the amorphous character of the material. Comparison with vibrational and diffraction data for a-SiO2 and a-GeO2, as well as with the structure factor calculated for the a-CO2 sample obtained by first-principles molecular dynamics, shows that a-CO2 is structurally homologous to the other group IV dioxide glasses. We therefore conclude that the class of archetypal network-forming disordered systems, including a-SiO2, a-GeO2 and water, must be extended to include a-CO2.

  17. Six-fold Coordinated Carbon Dioxide VI

    SciTech Connect

    Iota, V; Yoo, C; Klepeis, J; Jenei, Z

    2006-03-01

    Under standard conditions, carbon dioxide (CO{sub 2}) is a simple molecular gas and an important atmospheric constituent while silicon dioxide (SiO{sub 2}) is a covalent solid, and represents one of the fundamental minerals of the planet. The remarkable dissimilarity between these two group IV oxides is diminished at higher pressures and temperatures as CO{sub 2} transforms to a series of solid phases, from simple molecular to a fully covalent extended-solid V, structurally analogous to SiO{sub 2} tridymite. Here, we present the discovery of a new extended-solid phase of carbon dioxide (CO{sub 2}): a six-fold coordinated stishovite-like phase VI, obtained by isothermal compression of associated CO{sub 2}-II above 50GPa at 530-650K. Together with the previously reported CO{sub 2}-V and a-carbonia, this new extended phase indicates a fundamental similarity between CO{sub 2}--a prototypical molecular solid, and SiO{sub 2}--one of Earth's fundamental building blocks. The phase diagram suggests a limited stability domain for molecular CO{sub 2}-I, and proposes that the conversion to extended-network solids above 40-50 GPa occurs via intermediate phases II, III, and IV. The crystal structure of phase VI suggests strong disorder along the caxis in stishovite-like P4{sub 2}/mnm, with carbon atoms manifesting an average six-fold coordination within the framework of sp{sup 3} hybridization.

  18. Carbon dioxide inhalation causes pulmonary inflammation.

    PubMed

    Abolhassani, Mohammad; Guais, Adeline; Chaumet-Riffaud, Philippe; Sasco, Annie J; Schwartz, Laurent

    2009-04-01

    The aim of this study was to assess whether one of the most common poisons of cellular respiration, i.e., carbon dioxide, is proinflammatory. CO(2) is naturally present in the atmosphere at the level of 0.038% and involved in numerous cellular biochemical reactions. We analyzed in vitro the inflammation response induced by exposure to CO(2) for 48 h (0-20% with a constant O(2) concentration of 21%). In vivo mice were submitted to increasing concentrations of CO(2) (0, 5, 10, and 15% with a constant O(2) concentration of 21%) for 1 h. The exposure to concentrations above 5% of CO(2) resulted in the increased transcription (RNase protection assay) and secretion (ELISA) of proinflammatory cytokines [macrophage inflammatory protein-1alpha (MIP-1alpha), MIP-1beta, MIP-2, IL-8, IL-6, monocyte chemoattractant protein-1, and regulated upon activation, normal T cell expressed, and, presumably, secreted (RANTES)] by epithelial cell lines HT-29 or A549 and primary pulmonary cells retrieved from the exposed mice. Lung inflammation was also demonstrated in vivo by mucin 5AC-enhanced production and airway hyperreactivity induction. This response was mostly mediated by the nuclear translocation of p65 NF-kappaB, itself a consequence of protein phosphatase 2A (PP2A) activation. Short inhibiting RNAs (siRNAs) targeted toward PP2Ac reversed the effect of carbon dioxide, i.e., disrupted the NF-kappaB activation and the proinflammatory cytokine secretion. In conclusion, this study strongly suggests that exposure to carbon dioxide may be more toxic than previously thought. This may be relevant for carcinogenic effects of combustion products.

  19. Development of a prototype regenerable carbon dioxide absorber

    NASA Technical Reports Server (NTRS)

    Onischak, M.

    1976-01-01

    Design information was obtained for a new, regenerable carbon dioxide control system for extravehicular activity life support systems. Solid potassium carbonate was supported in a thin porous sheet form and fabricated into carbon dioxide absorber units. Carbon dioxide and water in the life support system atmosphere react with the potassium carbonate and form potassium bicarbonate. The bicarbonate easily reverts to the carbonate by heating to 150 deg C. The methods of effectively packing the sorbent material into EVA-sized units and the effects of inlet concentrations, flowrate, and temperature upon performance were investigated. The cycle life of the sorbent upon the repeated thermal regenerations was demonstrated through 90 cycles.

  20. 75 FR 29534 - Inorganic Nitrates-Nitrite, Carbon and Carbon Dioxide, and Sulfur Registration Review; Draft...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-26

    ... Nitrates-Nitrite, Carbon and Carbon Dioxide, and Sulfur Registration Review; Draft Ecological Risk... ecological risk assessment for the registration review of inorganic nitrates - nitrites, carbon and carbon... inorganic nitrates- nitrites, carbon and carbon dioxide uses, as well as gas cartridge uses of sulfur....

  1. Carbon dioxide detection in adult Odonata.

    PubMed

    Piersanti, Silvana; Frati, Francesca; Rebora, Manuela; Salerno, Gianandrea

    2016-04-01

    The present paper shows, by means of single-cell recordings, responses of antennal sensory neurons of the damselfly Ischnura elegans when stimulated by air streams at different CO2 concentrations. Unlike most insects, but similarly to termites, centipedes and ticks, Odonata possess sensory neurons strongly inhibited by CO2, with the magnitude of the off-response depending upon the CO2 concentration. The Odonata antennal sensory neurons responding to CO2 are also sensitive to airborne odors; in particular, the impulse frequency is increased by isoamylamine and decreased by heptanoic and pentanoic acid. Further behavioral investigations are necessary to assign a biological role to carbon dioxide detection in Odonata.

  2. Capture of carbon dioxide by hybrid sorption

    SciTech Connect

    Srinivasachar, Srivats

    2014-09-23

    A composition, process and system for capturing carbon dioxide from a combustion gas stream. The composition has a particulate porous support medium that has a high volume of pores, an alkaline component distributed within the pores and on the surface of the support medium, and water adsorbed on the alkaline component, wherein the proportion of water in the composition is between about 5% and about 35% by weight of the composition. The process and system contemplates contacting the sorbent and the flowing gas stream together at a temperature and for a time such that some water remains adsorbed in the alkaline component when the contact of the sorbent with the flowing gas ceases.

  3. Searching for clues to ancient carbon dioxide

    SciTech Connect

    Appenzeller, T.

    1993-02-12

    Something on Earth just won't stop fiddling with the thermostat. In the past 500 million years, the planet has shivered through ice ages lasting millions of years and sweltered through episodes of global warmth. Climatologists, eager to know what keeps jiggling the planet's temperature setting, have focused their suspicions on carbon dioxide, the same heat-trapping gas expected to drive up temperatures in coming decades. Catching this suspect in the act has been difficult, however; the atmospheres of millions of years ago are gone with the wind.

  4. Cost analysis of carbon dioxide concentrators

    NASA Technical Reports Server (NTRS)

    Yakut, M. M.

    1972-01-01

    A methodology is developed to predict the relevant contributions of the more intangible cost elements encountered in the development of flight-qualified hardware and is used to predict the costs of three carbon dioxide concentration systems. The cost and performance data from Gemini, Skylab, and other programs are utilized as a basis for establishing the cost estimating relationships. The concentration systems analyzed are the molecular sieves C02 concentrator, the hydrogen-depolarized concentrator, and the regenerable solid desiccant concentrator. Besides the cost estimates for each system, their comparative criteria including relative characteristics, operational differences, and development status are considered.

  5. Synthesis of carbonates and related compounds from carbon dioxide via methanesulfonyl carbonates.

    PubMed

    Bratt, Mark O; Taylor, Paul C

    2003-07-11

    Carbonate anions resulting from reaction of primary or secondary alcohols with carbon dioxide, when added to methanesulfonic anhydride in cooled acetonitrile solution, yield methanesulfonyl carbonates, a new class of synthetic intermediate. Base-mediated reaction of the methanesulfonyl carbonates with alcohols, thiols, and amines yields carbonates, thiocarbonates, and carbamates, respectively. Overall yields for the three steps vary from 19% to 42%.

  6. The kinetics of binding carbon dioxide in magnesium carbonate

    SciTech Connect

    Butt, D.P.; Lackner, K.S.; Wendt, C.H.; Vaidya, R.; Pile, D.L.; Park, Y.; Holesinger, T.; Harradine, D.M.; Nomura, Koji |

    1998-08-01

    Humans currently consume about 6 Gigatons of carbon annually as fossil fuel. In some sense, the coal industry has a unique advantage over many other anthropogenic and natural emitters of CO{sub 2} in that it owns large point sources of CO{sub 2} from which this gas could be isolated and disposed of. If the increased energy demands of a growing world population are to be satisfied from coal, the implementation of sequestration technologies will likely be unavoidable. The authors` method of sequestration involves binding carbon dioxide as magnesium carbonate, a thermodynamically stable solid, for safe and permanent disposal, with minimal environmental impact. The technology is based on extracting magnesium hydroxide from common ultramafic rock for thermal carbonation and subsequent disposition. The economics of the method appear to be promising, however, many details of the proposed process have yet to be optimized. Realization of a cost effective method requires development of optimal technologies for efficient extraction and thermal carbonation.

  7. Carbon Dioxide Capture Adsorbents: Chemistry and Methods.

    PubMed

    Patel, Hasmukh A; Byun, Jeehye; Yavuz, Cafer T

    2016-12-21

    Excess carbon dioxide (CO2 ) emissions and their inevitable consequences continue to stimulate hard debate and awareness in both academic and public spaces, despite the widespread lack of understanding on what really is needed to capture and store the unwanted CO2 . Of the entire carbon capture and storage (CCS) operation, capture is the most costly process, consisting of nearly 70 % of the price tag. In this tutorial review, CO2 capture science and technology based on adsorbents are described and evaluated in the context of chemistry and methods, after briefly introducing the current status of CO2 emissions. An effective sorbent design is suggested, whereby six checkpoints are expected to be met: cost, capacity, selectivity, stability, recyclability, and fast kinetics.

  8. Carbon dioxide research plan. A summary

    SciTech Connect

    Trivelpiece, Alvin W.; Koomanoff, F. A.; Suomi, Verner E.

    1983-11-01

    The Department of Energy is the lead federal agency for research related to atmospheric carbon dioxide. Its responsibility is to sponsor a program of relevant research, and to coordinate this research with that of others. As part of its responsibilities, the Department of Energy has prepared a research plan. The plan documented in this Summary delineated the logic, objectives, organization, background and current status of the research activities. The Summary Plan is based on research subplans in four specific areas: global carbon cycle, climate effects, vegetative response and indirect effects. These subplans have emanated from a series of national and international workshops, conferences, and from technical reports. The plans have been peer reviewed by experts in the relevant scientific fields. Their execution is being coordinated between the responsible federal and international government agencies and the involved scientific community.

  9. Cooperative redox activation for carbon dioxide conversion

    NASA Astrophysics Data System (ADS)

    Lian, Zhong; Nielsen, Dennis U.; Lindhardt, Anders T.; Daasbjerg, Kim; Skrydstrup, Troels

    2016-12-01

    A longstanding challenge in production chemistry is the development of catalytic methods for the transformation of carbon dioxide into useful chemicals. Silane and borane promoted reductions can be fined-tuned to provide a number of C1-building blocks under mild conditions, but these approaches are limited because of the production of stoichiometric waste compounds. Here we report on the conversion of CO2 with diaryldisilanes, which through cooperative redox activation generate carbon monoxide and a diaryldisiloxane that actively participate in a palladium-catalysed carbonylative Hiyama-Denmark coupling for the synthesis of an array of pharmaceutically relevant diarylketones. Thus the disilane reagent not only serves as the oxygen abstracting agent from CO2, but the silicon-containing `waste', produced through oxygen insertion into the Si-Si bond, participates as a reagent for the transmetalation step in the carbonylative coupling. Hence this concept of cooperative redox activation opens up for new avenues in the conversion of CO2.

  10. Modeling flow of mineralized carbon dioxide slurry

    SciTech Connect

    Penner, Larry R.; Dahlin, David C.; Gerdemann, Stephen J.; Saha, K.K.

    2005-04-01

    Direct mineral carbonation was investigated at Albany Research Center (US DOE) as a means to sequester carbon dioxide into stable mineral matrices. Although previous work focused on treating Mg-containing minerals in conventional autoclaves, recent work has been done using pipeline-reactor technology for the high-temperature, high-pressure (HTHP) reaction of the minerals in aqueous/CO2 media. Sequestration of CO2 using above-ground reactors may be uneconomical, but the technology may also be applicable in geological sequestration of CO2. Progress is described in using a prototype HTHP flow-loop reactor to model flow in the dynamic three-phase system to help determine the pumping-energy requirements to optimize reactivity.

  11. Role of volcanic forcing on future global carbon cycle

    NASA Astrophysics Data System (ADS)

    Tjiputra, J. F.; Otterå, O. H.

    2011-02-01

    Using a fully coupled global climate-carbon cycle model, we assess the potential role of volcanic eruptions on future projection of climate change and its associated carbon cycle feedback. The volcanic-like forcings are applied together with business-as-usual IPCC-A2 carbon emissions scenario. We show that very large volcanic eruptions similar to Tambora lead to short-term substantial global cooling. However, over a long period, smaller but more frequent eruptions, such as Pinatubo, would have a stronger impact on future climate change. In a scenario where the volcanic external forcings are prescribed with a five-year frequency, the induced cooling immediately lower the global temperature by more than one degree before return to the warming trend. Therefore, the climate change is approximately delayed by several decades and by the end of the 21st century, the warming is still below two degrees when compared to the present day period. The cooler climate reduces the terrestrial heterotrophic respiration in the northern high latitude and increases net primary production in the tropics, which contributes to more than 45% increase in accumulated carbon uptake over land. The increased solubility of CO2 gas in seawater associated with cooler SST is offset by reduced CO2 partial pressure gradient between ocean and atmosphere, which results in small changes in net ocean carbon uptake. Similarly, there is nearly no change in the seawater buffer capacity simulated between the different volcanic scenarios. Our study shows that even in the relatively extreme scenario where large volcanic eruptions occur every five-years period, the induced cooling only leads to a reduction of 46 ppmv atmospheric CO2 concentration as compared to the reference projection of 878 ppmv, at the end of the 21st century. With respect to sulphur injection geoengineering method, our study suggest that small scale but frequent mitigation is more efficient than the opposite. Moreover, the longer we delay

  12. Carbon dioxide extraction from air: Is it an option?

    SciTech Connect

    Lackner, K.S.; Grimes, P.; Ziock, H.J.

    1999-07-01

    Controlling the level of carbon dioxide in the atmosphere without limiting access to fossil energy resources is only possible if carbon dioxide is collected and disposed of away from the atmosphere. While it may be cost-advantageous to collect the carbon dioxide at concentrated sources without ever letting it enter the atmosphere, this approach is not available for the many diffuse sources of carbon dioxide. Similarly, for many older plants, a retrofit to collect the carbon dioxide is either impossible or prohibitively expensive. For these cases the authors investigate the possibility of collecting the carbon dioxide directly from the atmosphere. The authors conclude that there are no fundamental obstacles to this approach and that it deserves further investigation. Carbon dioxide extraction directly from the atmosphere would allow carbon management without the need for a completely changed infrastructure. In addition it eliminates the need for a completely changed infrastructure. In addition it eliminates the need for a complex carbon dioxide transportation infrastructure, thus at least in part offsetting the higher cost of extraction from air.

  13. Carbon dioxide enrichment inhibits nitrate assimilation in wheat and Arabidopsis.

    PubMed

    Bloom, Arnold J; Burger, Martin; Rubio Asensio, Jose Salvador; Cousins, Asaph B

    2010-05-14

    The concentration of carbon dioxide in Earth's atmosphere may double by the end of the 21st century. The response of higher plants to a carbon dioxide doubling often includes a decline in their nitrogen status, but the reasons for this decline have been uncertain. We used five independent methods with wheat and Arabidopsis to show that atmospheric carbon dioxide enrichment inhibited the assimilation of nitrate into organic nitrogen compounds. This inhibition may be largely responsible for carbon dioxide acclimation, the decrease in photosynthesis and growth of plants conducting C(3) carbon fixation after long exposures (days to years) to carbon dioxide enrichment. These results suggest that the relative availability of soil ammonium and nitrate to most plants will become increasingly important in determining their productivity as well as their quality as food.

  14. Electrocatalytic process for carbon dioxide conversion

    DOEpatents

    Masel, Richard I.; Salehi-Khojin, Amin

    2017-01-31

    An electrocatalytic process for carbon dioxide conversion includes combining a Catalytically Active Element and Helper Catalyst in the presence of carbon dioxide, allowing a reaction to proceed to produce a reaction product, and applying electrical energy to said reaction to achieve electrochemical conversion of said reactant to said reaction product. The Catalytically Active Element can be a metal in the form of supported or unsupported particles or flakes with an average size between 0.6 nm and 100 nm. the reaction products comprise at least one of CO, HCO.sup.-, H.sub.2CO, (HCO.sub.2).sup.-, H.sub.2CO.sub.2, CH.sub.3OH, CH.sub.4, C.sub.2H.sub.4, CH.sub.3CH.sub.2OH, CH.sub.3COO.sup.-, CH.sub.3COOH, C.sub.2H.sub.6, (COOH).sub.2, (COO.sup.-).sub.2, and CF.sub.3COOH.

  15. Disintegration of Carbon Dioxide Molecules in a Microwave Plasma Torch.

    PubMed

    Kwak, Hyoung S; Uhm, Han S; Hong, Yong C; Choi, Eun H

    2015-12-17

    A pure carbon dioxide torch is generated by making use of 2.45 GHz microwave. Carbon dioxide gas becomes the working gas and produces a stable carbon dioxide torch. The torch volume is almost linearly proportional to the microwave power. Temperature of the torch flame is measured by making use of optical spectroscopy and thermocouple. Two distinctive regions are exhibited, a bright, whitish region of high-temperature zone and a bluish, dimmer region of relatively low-temperature zone. Study of carbon dioxide disintegration and gas temperature effects on the molecular fraction characteristics in the carbon dioxide plasma of a microwave plasma torch under atmospheric pressure is carried out. An analytical investigation of carbon dioxide disintegration indicates that substantial fraction of carbon dioxide molecules disintegrate and form other compounds in the torch. For example, the normalized particle densities at center of plasma are given by nCO2/nN = 6.12 × 10(-3), nCO/nN = 0.13, nC/nN = 0.24, nO/nN = 0.61, nC2/nN = 8.32 × 10(-7), nO2/nN = 5.39 × 10(-5), where nCO2, nCO, nC, nO, nC2, and nO2 are carbon dioxide, carbon monoxide, carbon and oxygen atom, carbon and oxygen molecule densities, respectively. nN is the neutral particle density. Emission profiles of the oxygen and carbon atom radicals and the carbon monoxide molecules confirm the theoretical predictions of carbon dioxide disintegration in the torch.

  16. Disintegration of Carbon Dioxide Molecules in a Microwave Plasma Torch

    PubMed Central

    Kwak, Hyoung S.; Uhm, Han S.; Hong, Yong C.; Choi, Eun H.

    2015-01-01

    A pure carbon dioxide torch is generated by making use of 2.45 GHz microwave. Carbon dioxide gas becomes the working gas and produces a stable carbon dioxide torch. The torch volume is almost linearly proportional to the microwave power. Temperature of the torch flame is measured by making use of optical spectroscopy and thermocouple. Two distinctive regions are exhibited, a bright, whitish region of high-temperature zone and a bluish, dimmer region of relatively low-temperature zone. Study of carbon dioxide disintegration and gas temperature effects on the molecular fraction characteristics in the carbon dioxide plasma of a microwave plasma torch under atmospheric pressure is carried out. An analytical investigation of carbon dioxide disintegration indicates that substantial fraction of carbon dioxide molecules disintegrate and form other compounds in the torch. For example, the normalized particle densities at center of plasma are given by nCO2/nN = 6.12 × 10−3, nCO/nN = 0.13, nC/nN = 0.24, nO/nN = 0.61, nC2/nN = 8.32 × 10−7, nO2/nN = 5.39 × 10−5, where nCO2, nCO, nC, nO, nC2, and nO2 are carbon dioxide, carbon monoxide, carbon and oxygen atom, carbon and oxygen molecule densities, respectively. nN is the neutral particle density. Emission profiles of the oxygen and carbon atom radicals and the carbon monoxide molecules confirm the theoretical predictions of carbon dioxide disintegration in the torch. PMID:26674957

  17. Promising flame retardant textile in supercritical carbon dioxide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since carbon dioxide is non-toxic, non-flammable and cost-effective, supercritical carbon dioxide (scCO2) is widely used in textile dyeing applications. Due to its environmentally benign character, scCO2 is considered in green chemistry as a substitute for organic solvents in chemical reactions. O...

  18. Solid amine compounds as sorbents for carbon dioxide: A concept

    NASA Technical Reports Server (NTRS)

    Sutton, J. G.; Heimlich, P. F.; Tepper, E. H.

    1972-01-01

    Solid amine compounds were examined as possible absorbents for removal of carbon dioxide in life support systems of type which may be employed in high altitude aircraft, spacecraft, or submarines. Many solid amine compounds release absorbed carbon dioxide when heated in vacuum, therefore, when properly packaged spent amine compounds can be readily regenerated and put back into service.

  19. Carbon dioxide and climate: Summaries of research in FY 1988

    SciTech Connect

    Not Available

    1988-10-01

    Detailed worldwide measurements indicate that the amount of carbon dioxide in the earth's atmosphere has increased about 25 percent during the past 188 years, primarily because of fossil-fuel combustion and deforestation. Carbon dioxide is one of several trace gases that can modify the earth's heat balance by absorbing outgoing radiation from the earth's surface, thereby increasing the amount of heat retained by the atmosphere--the so-called greenhouse effect. Scientific analyses suggest that this increase could substantially affect climate, agriculture, and other human endeavors. The Carbon Dioxide Research Program is aimed at improving the scientific knowledge base to enable researchers to project future atmospheric concentrations of carbon dioxide, to estimate carbon dioxide-induced global and regional climate changes, and to assess the responses of vegetation to higher concentrations of carbon dioxide and changing climate. The Department of Energy is the lead federal agency for research related to atmospheric carbon dioxide. Its responsibility is to sponsor a program of directed research and to coordinate this research with relevant activities of other federal agencies, private concerns, and international institutions. This Program Summary documents the activities and products of the Carbon Dioxide Research (CDR) Program in Fiscal Year 1988. The Summary provides descriptions of all projects funded during the year and a brief overview of the CDR Program's goals, objectives, and organization. 1 fig., 3 tabs.

  20. Investigating Diffusion and Entropy with Carbon Dioxide-Filled Balloons

    ERIC Educational Resources Information Center

    Jadrich, James; Bruxvoort, Crystal

    2010-01-01

    Fill an ordinary latex balloon with helium gas and you know what to expect. Over the next day or two the volume will decrease noticeably as helium escapes from the balloon. So what happens when a latex balloon is filled with carbon dioxide gas? Surprisingly, carbon dioxide balloons deflate at rates as much as an order of magnitude faster than…

  1. Carbon Dioxide and Global Warming: A Failed Experiment

    ERIC Educational Resources Information Center

    Ribeiro, Carla

    2014-01-01

    Global warming is a current environmental issue that has been linked to an increase in anthropogenic carbon dioxide in the atmosphere. To raise awareness of the problem, various simple experiments have been proposed to demonstrate the effect of carbon dioxide on the planet's temperature. This article describes a similar experiment, which…

  2. 40 CFR 89.322 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Carbon dioxide analyzer calibration. 89... Equipment Provisions § 89.322 Carbon dioxide analyzer calibration. (a) Prior to its introduction into service, after any maintenance which could alter calibration, and bi-monthly thereafter, the NDIR...

  3. Cationic Polymerization of Vegetable Oils in Supercritical Carbon Dioxide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polymers derived from vegetable oils have been prepared in supercritical carbon dioxide (scCO2) medium by cationic polymerization. Boron trifluoride diethyl etherate BF3.O(C2H2)2 are used as initiator. Influences of polymerization temperature, initiator amount, and carbon dioxide pressure on the m...

  4. Heterogeneous uptake and oxidation of sulfur dioxide on volcanic ash particles

    NASA Astrophysics Data System (ADS)

    Delmelle, P.; Rossi, M.

    2013-12-01

    The heterogeneous reaction of sulfur dioxide on volcanic ash is investigated at room temperatures using a Knudsen cell operated in a steady state. The ash specimens correspond to Eyjafjallajokull (2010), Tungrahua (2012), Pinatubo (1991) and Chaiten (2008) eruptions. The initial uptake coefficient of sulfur dioxide on the ash studied is found to be in the order of 0.001-0.01. Eyjafjallajokull ash exhibits the highest reactivity. The adsorption of sulfur dioxide on the ash surface is irreversible and is accompanied by an oxidation reaction into sulfate, presumably driven by oxidizing agents already present on the ash surface. The presence of adsorbed water does not seem to influence sulfur dioxide adsorption. There is no evidence for a significant dependence of sulfur dioxide uptake on ash composition. The high reactivity of Eyjafjallajokull ash is tentatively attributed to abundant free hydroxyl groups formed on the surface of the ash particles during their transit through the vertical eruption plume. The atmospheric implications of our study will be presented.

  5. Carbon Dioxide Detection and Indoor Air Quality Control.

    PubMed

    Bonino, Steve

    2016-04-01

    When building ventilation is reduced, energy is saved because it is not necessary to heat or cool as much outside air. Reduced ventilation can result in higher levels of carbon dioxide, which may cause building occupants to experience symptoms. Heating or cooling for ventilation air can be enhanced by a DCV system, which can save energy while providing a comfortable environment. Carbon dioxide concentrations within a building are often used to indicate whether adequate fresh air is being supplied to the building. These DCV systems use carbon dioxide sensors in each space or in the return air and adjust the ventilation based on carbon dioxide concentration; the higher the concentration, the more people occupy the space relative to the ventilation rate. With a carbon dioxide sensor DCV system, the fresh air ventilation rate varies based on the number ofpeople in the space, saving energy while maintaining a safe and comfortable environment.

  6. Carbon dioxide stripping in aquaculture. part 1: terminology and reporting

    USGS Publications Warehouse

    Colt, John; Watten, Barnaby; Pfeiffer, Tim

    2012-01-01

    The removal of carbon dioxide gas in aquacultural systems is much more complex than for oxygen or nitrogen gas because of liquid reactions of carbon dioxide and their kinetics. Almost all published carbon dioxide removal information for aquaculture is based on the apparent removal value after the CO2(aq) + HOH ⇔ H2CO3 reaction has reached equilibrium. The true carbon dioxide removal is larger than the apparent value, especially for high alkalinities and seawater. For low alkalinity freshwaters (<2000 μeq/kg), the difference between the true and apparent removal is small and can be ignored for many applications. Analytical and reporting standards are recommended to improve our understanding of carbon dioxide removal.

  7. Carbon dioxide absorbent and method of using the same

    DOEpatents

    Perry, Robert James; Lewis, Larry Neil; O'Brien, Michael Joseph; Soloveichik, Grigorii Lev; Kniajanski, Sergei; Lam, Tunchiao Hubert; Lee, Julia Lam; Rubinsztajn, Malgorzata Iwona

    2011-10-04

    In accordance with one aspect, the present invention provides an amino-siloxane composition comprising at least one of structures I, II, III, IV or V said compositions being useful for the capture of carbon dioxide from gas streams such as power plant flue gases. In addition, the present invention provides methods of preparing the amino-siloxane compositions are provided. Also provided are methods for reducing the amount of carbon dioxide in a process stream employing the amino-siloxane compositions of the invention as species which react with carbon dioxide to form an adduct with carbon dioxide. The reaction of the amino-siloxane compositions provided by the present invention with carbon dioxide is reversible and thus, the method provides for multicycle use of said compositions.

  8. Photobiological hydrogen production and carbon dioxide sequestration

    NASA Astrophysics Data System (ADS)

    Berberoglu, Halil

    Photobiological hydrogen production is an alternative to thermochemical and electrolytic technologies with the advantage of carbon dioxide sequestration. However, it suffers from low solar to hydrogen energy conversion efficiency due to limited light transfer, mass transfer, and nutrient medium composition. The present study aims at addressing these limitations and can be divided in three parts: (1) experimental measurements of the radiation characteristics of hydrogen producing and carbon dioxide consuming microorganisms, (2) solar radiation transfer modeling and simulation in photobioreactors, and (3) parametric experiments of photobiological hydrogen production and carbon dioxide sequestration. First, solar radiation transfer in photobioreactors containing microorganisms and bubbles was modeled using the radiative transport equation (RTE) and solved using the modified method of characteristics. The study concluded that Beer-Lambert's law gives inaccurate results and anisotropic scattering must be accounted for to predict the local irradiance inside a photobioreactor. The need for accurate measurement of the complete set of radiation characteristics of microorganisms was established. Then, experimental setup and analysis methods for measuring the complete set of radiation characteristics of microorganisms have been developed and successfully validated experimentally. A database of the radiation characteristics of representative microorganisms have been created including the cyanobacteria Anabaena variabilis, the purple non-sulfur bacteria Rhodobacter sphaeroides and the green algae Chlamydomonas reinhardtii along with its three genetically engineered strains. This enabled, for the first time, quantitative assessment of the effect of genetic engineering on the radiation characteristics of microorganisms. In addition, a parametric experimental study has been performed to model the growth, CO2 consumption, and H 2 production of Anabaena variabilis as functions of

  9. Continuous monitoring of hydrogen and carbon dioxide at Stromboli volcano

    NASA Astrophysics Data System (ADS)

    Di Martino, Roberto M. R.; Camarda, Marco; Gurrieri, Sergio; Valenza, Mariano

    2015-04-01

    Geochemical monitoring of fumarole and soil gases is a powerful tool for volcano surveillance, for investigating the subsurface magma dynamics, and for hazard assessment in volcanic areas. The monitoring of both carbon dioxide (CO2) flux, and hydrogen (H2) concentration in active volcanic areas helps to improve the understanding of the processes linking the surface gas emissions, the chemistry of the magmatic gases, and the volcanic activity. The CO2 flux measurement is a routine technique for volcano monitoring purposes, because of CO2 is the second-abundant component of the gas phase in silicate magmas, attaining saturation at the mantle to deep crustal level. The H2 concentration has provided indications concerning the oxygen fugacity of magmatic gases, a parameter that changes over a wide range of low values (10-16 - 10-8 bar), and affects the redox state of multivalent elements. This study reports on the use a tailor-made automatic system developed for continuous monitoring purposes of H2 concentration and CO2 flux in the summit area of Stromboli volcano (Aeolian islands). The automatic device consists of an H2-selective electrochemical sensor, and two IR-spectrophotometers for measuring the CO2 flux in agreement with the dynamic concentration method. The data collected by the automatic system deployed at Stromboli from 19 May 2009 to 15 December 2010 are presented herein. The data processing provides a better understanding of the relationships between the evolution of the low temperature fumarolic emissions, and the volcanic activity. The results of the data analysis indicates that the high frequency variations exhibited by CO2 flux and H2 concentration are positively correlated with the eruptive activity of Stromboli, typically changing on time scale of hours or days. Furthermore, the investigation of the relationships between CO2 flux and H2 concentration provides an evaluation of the depth of the degassing source, by which the gas mixture containing H2 and

  10. Global carbon dioxide emissions from inland waters

    USGS Publications Warehouse

    Raymond, Peter A.; Hartmann, Jens; Lauerwald, Ronny; Sobek, Sebastian; McDonald, Cory P.; Hoover, Mark; Butman, David; Striegl, Robert G.; Mayorga, Emilio; Humborg, Christoph; Kortelainen, Pirkko; Durr, Hans H.; Meybeck, Michel; Ciais, Philippe; Guth, Peter

    2013-01-01

    Carbon dioxide (CO2) transfer from inland waters to the atmosphere, known as CO2 evasion, is a component of the global carbon cycle. Global estimates of CO2 evasion have been hampered, however, by the lack of a framework for estimating the inland water surface area and gas transfer velocity and by the absence of a global CO2 database. Here we report regional variations in global inland water surface area, dissolved CO2 and gas transfer velocity. We obtain global CO2 evasion rates of 1.8   petagrams of carbon (Pg C) per year from streams and rivers and 0.32  Pg C yr−1 from lakes and reservoirs, where the upper and lower limits are respectively the 5th and 95th confidence interval percentiles. The resulting global evasion rate of 2.1 Pg C yr−1 is higher than previous estimates owing to a larger stream and river evasion rate. Our analysis predicts global hotspots in stream and river evasion, with about 70 per cent of the flux occurring over just 20 per cent of the land surface. The source of inland water CO2 is still not known with certainty and new studies are needed to research the mechanisms controlling CO2 evasion globally.

  11. Global carbon dioxide emissions from inland waters.

    PubMed

    Raymond, Peter A; Hartmann, Jens; Lauerwald, Ronny; Sobek, Sebastian; McDonald, Cory; Hoover, Mark; Butman, David; Striegl, Robert; Mayorga, Emilio; Humborg, Christoph; Kortelainen, Pirkko; Dürr, Hans; Meybeck, Michel; Ciais, Philippe; Guth, Peter

    2013-11-21

    Carbon dioxide (CO2) transfer from inland waters to the atmosphere, known as CO2 evasion, is a component of the global carbon cycle. Global estimates of CO2 evasion have been hampered, however, by the lack of a framework for estimating the inland water surface area and gas transfer velocity and by the absence of a global CO2 database. Here we report regional variations in global inland water surface area, dissolved CO2 and gas transfer velocity. We obtain global CO2 evasion rates of 1.8(+0.25)(-0.25)  petagrams of carbon (Pg C) per year from streams and rivers and 0.32(+0.52)(-0.26)  Pg C yr(-1) from lakes and reservoirs, where the upper and lower limits are respectively the 5th and 95th confidence interval percentiles. The resulting global evasion rate of 2.1 Pg C yr(-1) is higher than previous estimates owing to a larger stream and river evasion rate. Our analysis predicts global hotspots in stream and river evasion, with about 70 per cent of the flux occurring over just 20 per cent of the land surface. The source of inland water CO2 is still not known with certainty and new studies are needed to research the mechanisms controlling CO2 evasion globally.

  12. Carbon dioxide removal with inorganic membranes

    SciTech Connect

    Judkins, R.R.; Fain, D.E.

    1993-12-31

    The increasing concentrations of greenhouse gases, particularly carbon dioxide, in the atmosphere has sparked a great deal of interest in the removal of CO{sub 2} from flue gases of fossil fueled plants. Presently, several techniques for the removal of CO{sub 2} are considered to have potential, but are lacking in practicality. For example, amine scrubbing of flue gas streams is potential, but are lacking in practically. For example, amine scrubbing of flue gas streams is effective in removing CO{sub 2}, but costs are high; efficiency suffers; and other acid gases must be removed prior to amine stripping. Membrane systems for CO{sub 2} removal are held in high regard, and inorganic, particularly ceramic, membranes offer the potential for high temperature, thus energy saving, removal.

  13. Oxygen and carbon dioxide monitoring during sleep.

    PubMed

    Amaddeo, Alessandro; Fauroux, Brigitte

    2016-09-01

    Monitoring of oxygen and carbon dioxide (CO2) is of crucial importance during sleep-disordered breathing in order to assess the consequences of respiratory events on gas exchange. Pulse oximetry (SpO2) is a simple and cheap method that is used routinely for the recording of oxygen levels and the diagnosis of hypoxemia. CO2 recording is necessary for the diagnosis of alveolar hypoventilation and can be performed by means of the end-tidal (PetCO2) or transcutaneous CO2 (PtcCO2). However, the monitoring of CO2 is not performed on a routine basis due to the lack of simple, cheap and reliable CO2 monitors. This short review summarizes some technical aspects of gas exchange recording during sleep in children before discussing the different definitions of alveolar hypoventilation and the importance of CO2 recording.

  14. Biochemical Capture and Removal of Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    Trachtenberg, Michael C.

    1998-01-01

    We devised an enzyme-based facilitated transport membrane bioreactor system to selectively remove carbon dioxide (CO2) from the space station environment. We developed and expressed site-directed enzyme mutants for CO2 capture. Enzyme kinetics showed the mutants to be almost identical to the wild type save at higher pH. Both native enzyme and mutant enzymes were immobilized to different supports including nylons, glasses, sepharose, methacrylate, titanium and nickel. Mutant enzyme could be attached and removed from metal ligand supports and the supports reused at least five times. Membrane systems were constructed to test CO2 selectivity. These included proteic membranes, thin liquid films and enzyme-immobilized teflon membranes. Selectivity ratios of more than 200:1 were obtained for CO2 versus oxygen with CO2 at 0.1%. The data indicate that a membrane based bioreactor can be constructed which could bring CO2 levels close to Earth.

  15. A weekly cycle in atmospheric carbon dioxide

    NASA Astrophysics Data System (ADS)

    Cerveny, Randall S.; Coakley, Kevin J.

    2002-01-01

    We present a new statistic called the ``Mean Symmetrized Residual'' (MSR) for detection and quantification of a weekly cycle in measured daily atmospheric carbon dioxide (CO2). At the Mauna Loa Observatory in Hawaii, we conclude that CO2 concentrations, on average, are significantly lower (0.022 parts per million by volume, ppmv) on weekends (Saturday-Sunday) than during the rest of the week. Over the past twenty-five years, the variation of the mean values of MSR (as a function of day of the week) has been relatively stable. We speculate that the observed weekday/weekend variation in CO2 at Mauna Loa is the result of anthropogenic emissions on Hawaii and nearby sources. We do not detect a weekly cycle in daily CO2 concentration measured at South Pole, Antarctica. This methodology has applicability to a variety of datasets.

  16. Carbon dioxide laser management cervical intraepithelial neoplasia

    SciTech Connect

    Bellina, J.H.; Wright, V.C.; Voros, J.I.; Riopelle, M.A.; Hohenschutz, V.

    1981-12-01

    In this report we describe the use of the carbon dioxide laser for the outpatient management of cervical intraepithelial neoplasia (CIN). A comparison of treatment effectiveness for different grades of CIN is also included. Two hundred fifty-six cases were evaluated by colposcopy, cytology, and histopathology, treated by at least 5 to 6 mm of laser vaporization, and followed up for an average of 10.7 months. Follow-up examinations included cytology, colposcopy, and directed biopsy if a suspicious lesion was discovered. During the follow-up, 18 cases of persistent CIN were identified (7.0%). Most of these were successfully managed with repeat laser treatment. Overall success of laser surgery for CIN, one or two applications, was 97.6%. Few complications were encountered. Laser surgery appears to offer acceptable treatment effectiveness, early identification of persistent disease, and easy retreatment when required. (Am. J. Obstet. Gynecol. 141:828, 1981.)

  17. Thermodynamical effects during carbon dioxide release

    NASA Astrophysics Data System (ADS)

    Singh, A. K.; Böttcher, N.; Görke, U.-J.; Kolditz, O.

    2012-04-01

    Pruess [1] investigated the risk of carbon dioxide leakage from shallow storage sites by modeling scenarios. Such a fluid release is associated with mechanical work performed by formation fluid against expansion without taking heat from ambient environment. Understanding of heat related to mechanical work is essential to predict the temperature at the leak. According to the first law of thermodynamics, internal energy of working fluid decreases with an amount which is equivalent to this work hence, working fluid lost its own heat. Such kind of heat loss depends strongly on whether the expansion process is adiabatic or isothermal. Isothermal expansion allows the working fluid to interact thermally with the solid matrix. Adiabatic expansion is an isenthalpic process that takes heat from the working fluid and the ambient environment remains unchanged. This work is part of the CLEAN research project [6]. In this study, thermodynamic effects of mechanical work during eventual carbon dioxide leakage are investigated numerically. In particular, we are interested to detect the temperature at leakage scenarios and its deviation with different thermodynamic processes. Finite element simulation is conducted with a two-dimensional rectangular geometry representing a shallow storage site which bottom was located at -300m below the land surface. A fully saturated porous medium is assumed where the pore space is filled completely with carbon dioxide. Carbon dioxide accumulated in the secondary trap at 30 Bar and 24 °C is allowed to leak from top right point of rectangle with atmospheric pressure. With (i) adiabatic and (ii) isothermal compressibility factors, temperature around leakage area has been calculated which show a significant difference. With some simplification, this study detects leak temperature which is very close with [1]. Temporal evaluation at the leaky area shows that the working fluid temperature can be reduced to -20 °C when the leakage scenario is performed

  18. Layered solid sorbents for carbon dioxide capture

    DOEpatents

    Li, Bingyun; Jiang, Bingbing; Gray, McMahan L; Fauth, Daniel J; Pennline, Henry W; Richards, George A

    2014-11-18

    A solid sorbent for the capture and the transport of carbon dioxide gas is provided having at least one first layer of a positively charged material that is polyethylenimine or poly(allylamine hydrochloride), that captures at least a portion of the gas, and at least one second layer of a negatively charged material that is polystyrenesulfonate or poly(acryclic acid), that transports the gas, wherein the second layer of material is in juxtaposition to, attached to, or crosslinked with the first layer for forming at least one bilayer, and a solid substrate support having a porous surface, wherein one or more of the bilayers is/are deposited on the surface of and/or within the solid substrate. A method of preparing and using the solid sorbent is provided.

  19. Carbon dioxide: Global warning for nephrologists

    PubMed Central

    Marano, Marco; D’Amato, Anna; Cantone, Alessandra

    2016-01-01

    The large prevalence of respiratory acid-base disorders overlapping metabolic acidosis in hemodialysis population should prompt nephrologists to deal with the partial pressure of carbon dioxide (pCO2) complying with the reduced bicarbonate concentration. What the most suitable formula to compute pCO2 is reviewed. Then, the neglected issue of CO2 content in the dialysis fluid is under the spotlight. In fact, a considerable amount of CO2 comes to patients’ bloodstream every hemodialysis treatment and “acidosis by dialysate” may occur if lungs do not properly clear away this burden of CO2. Moreover, vascular access recirculation may be easy diagnosed by detecting CO2 in the arterial line of extracorporeal circuit if CO2-enriched blood from the filter reenters arterial needle. PMID:27648406

  20. Pulsed-discharge carbon dioxide lasers

    NASA Technical Reports Server (NTRS)

    Willetts, David V.

    1990-01-01

    The purpose is to attempt a general introduction to pulsed carbon dioxide lasers of the kind used or proposed for laser radar applications. Laser physics is an excellent example of a cross-disciplinary topic, and the molecular spectroscopy, energy transfer, and plasma kinetics of the devices are explored. The concept of stimulated emission and population inversions is introduced, leading on to the molecular spectroscopy of the CO2 molecule. This is followed by a consideration of electron-impact pumping, and the pertinent energy transfer and relaxation processes which go on. Since the devices are plasma pumped, it is necessary to introduce a complex subject, but this is restricted to appropriate physics of glow discharges. Examples of representative devices are shown. The implications of the foregoing to plasma chemistry and gas life are discussed.

  1. Carbon dioxide effects on fuel alcohol fermentation

    SciTech Connect

    Kao, D.W.

    1996-10-01

    Carbon dioxide is known to be inhibitory to yeastgrowth, with inhibition becoming appreciable between 1.5 and 2 atm absolute under of the brewing industry. First, the conditions prevailing in an industrial corn to ethanol plant employing relatively small were determined. Second, lab glucose fed batch fermentations under similar conditions and CO{sub 2} pressures of 0.5, 1.5, 2.5, and 3.5 atm absolute were run. High CO{sub 2} decreased the maximum number of viable cells and increased the death rate. Elevated CO{sub 2} levels also decreased the early growth associated production of glycerol. Translation of these results back to fermentor design and operation issues will be discussed.

  2. Carbon Dioxide Sequestration in Geologic Coal Formations

    SciTech Connect

    2001-09-30

    BP Corporation North America, Inc. (BP) currently operates a nitrogen enhanced recovery project for coal bed methane at the Tiffany Field in the San Juan Basin, Colorado. The project is the largest and most significant of its kind wherein gas is injected into a coal seam to recover methane by competitive adsorption and stripping. The Idaho National Engineering and Environmental Laboratory (INEEL) and BP both recognize that this process also holds significant promise for the sequestration of carbon dioxide, a greenhouse gas, while economically enhancing the recovery of methane from coal. BP proposes to conduct a CO2 injection pilot at the tiffany Field to assess CO2 sequestration potential in coal. For its part the INEEL will analyze information from this pilot with the intent to define the Co2 sequestration capacity of coal and its ultimate role in ameliorating the adverse effects of global warming on the nation and the world.

  3. Layered solid sorbents for carbon dioxide capture

    SciTech Connect

    Li, Bingyun; Jiang, Bingbing; Gray, McMahan L; Fauth, Daniel J; Pennline, Henry W; Richards, George A

    2013-02-25

    A solid sorbent for the capture and the transport of carbon dioxide gas is provided having at least one first layer of a positively charged material that is polyethylenimine or poly(allylamine hydrochloride), that captures at least a portion of the gas, and at least one second layer of a negatively charged material that is polystyrenesulfonate or poly(acryclic acid), that transports the gas, wherein the second layer of material is in juxtaposition to, attached to, or crosslinked with the first layer for forming at least one bilayer, and a solid substrate support having a porous surface, wherein one or more of the bilayers is/are deposited on the surface of and/or within the solid substrate. A method of preparing and using the solid sorbent is provided.

  4. Demographic change and carbon dioxide emissions.

    PubMed

    O'Neill, Brian C; Liddle, Brant; Jiang, Leiwen; Smith, Kirk R; Pachauri, Shonali; Dalton, Michael; Fuchs, Regina

    2012-07-14

    Relations between demographic change and emissions of the major greenhouse gas carbon dioxide (CO(2)) have been studied from different perspectives, but most projections of future emissions only partly take demographic influences into account. We review two types of evidence for how CO(2) emissions from the use of fossil fuels are affected by demographic factors such as population growth or decline, ageing, urbanisation, and changes in household size. First, empirical analyses of historical trends tend to show that CO(2) emissions from energy use respond almost proportionately to changes in population size and that ageing and urbanisation have less than proportional but statistically significant effects. Second, scenario analyses show that alternative population growth paths could have substantial effects on global emissions of CO(2) several decades from now, and that ageing and urbanisation can have important effects in particular world regions. These results imply that policies that slow population growth would probably also have climate-related benefits.

  5. Carbon dioxide absorbents for rebreather diving.

    PubMed

    Pennefather, John

    2016-09-01

    Firstly I would like to thank SPUMS members for making me a Life Member of SPUMS; I was surprised and greatly honoured by the award. I also want to confirm and expand on the findings on carbon dioxide absorbents reported by David Harvey et al. For about 35 years, I was the main player in deciding which absorbent went into Australian Navy and Army diving sets. On several occasions, suppliers of absorbents to the anaesthesia market tried to supply the Australian military market. On no occasion did they provide absorbent that came close to the minimum absorbent capacity required, generally being 30-40% less efficient than diving-grade absorbents. Because I regard lives as being more important than any likely dollar saving, the best absorbent was always selected unless two suppliers provided samples with the same absorbent capacity. On almost every occasion, there was a clear winner and cost was never considered. I suggest the same argument for the best absorbent should be used by members and their friends who dive using rebreather sets. I make this point because of my findings on a set that was brought to me after the death of its owner. The absorbent was not the type or grain size recommended by the manufacturer of the set and did not resemble any of the diving grade absorbents I knew of. I suspected by its appearance that it was anaesthetic grade absorbent. When I tested the set, the absorbent system failed very quickly so it is likely that carbon dioxide toxicity contributed to his death. The death was not the subject of an inquest and I have no knowledge of how the man obtained the absorbent. Possibly there was someone from an operating theatre staff who unintentionally caused their friend's death by supplying him with 'borrowed absorbent'. I make this point as I would like to discourage members from making a similar error.

  6. Coiled tubing drilling with supercritical carbon dioxide

    DOEpatents

    Kolle , Jack J.

    2002-01-01

    A method for increasing the efficiency of drilling operations by using a drilling fluid material that exists as supercritical fluid or a dense gas at temperature and pressure conditions existing at a drill site. The material can be used to reduce mechanical drilling forces, to remove cuttings, or to jet erode a substrate. In one embodiment, carbon dioxide (CO.sub.2) is used as the material for drilling within wells in the earth, where the normal temperature and pressure conditions cause CO.sub.2 to exist as a supercritical fluid. Supercritical carbon dioxide (SC--CO.sub.2) is preferably used with coiled tube (CT) drilling equipment. The very low viscosity SC--CO.sub.2 provides efficient cooling of the drill head, and efficient cuttings removal. Further, the diffusivity of SC--CO.sub.2 within the pores of petroleum formations is significantly higher than that of water, making jet erosion using SC--CO.sub.2 much more effective than water jet erosion. SC--CO.sub.2 jets can be used to assist mechanical drilling, for erosion drilling, or for scale removal. A choke manifold at the well head or mud cap drilling equipment can be used to control the pressure within the borehole, to ensure that the temperature and pressure conditions necessary for CO.sub.2 to exist as either a supercritical fluid or a dense gas occur at the drill site. Spent CO.sub.2 can be vented to the atmosphere, collected for reuse, or directed into the formation to aid in the recovery of petroleum.

  7. Intraosseous Venography with Carbon Dioxide in Percutaneous Vertebroplasty: Carbon Dioxide Retention in Renal Veins

    SciTech Connect

    Komemushi, Atsushi Tanigawa, Noboru; Kariya, Shuji; Kojima, Hiroyuki; Shomura, Yuzo; Tokuda, Takanori; Nomura, Motoo; Terada, Jiro; Kamata, Minoru; Sawada, Satoshi

    2008-11-15

    The objective of the present study was to determine the frequency of gas retention in the renal vein following carbon dioxide intraosseous venography in the prone position and, while citing references, to examine its onset mechanisms. All percutaneous vertebroplasties performed at our hospital from January to December 2005 were registered and retrospectively analyzed. Of 43 registered procedures treating 79 vertebrae, 28 procedures treating 54 vertebrae were analyzed. Vertebral intraosseous venography was performed using carbon dioxide as a contrast agent in all percutaneous vertebroplasty procedures. In preoperative and postoperative vertebral CT, gas retention in the renal vein and other areas was assessed. Preoperative CT did not show gas retention (0/28 procedures; 0%). Postoperative CT confirmed gas retention in the renal vein in 10 of the 28 procedures (35.7%). Gas retention was seen in the right renal vein in 8 procedures (28.6%), in the left renal vein in 5 procedures (17.9%), in the left and right renal veins in 3 procedures (10.7%), in vertebrae in 22 procedures (78.6%), in the soft tissue around vertebrae in 14 procedures (50.0%), in the spinal canal in 12 procedures (42.9%), and in the subcutaneous tissue in 5 procedures (17.9%). In conclusion, in our study, carbon dioxide gas injected into the vertebra frequently reached and remained in the renal vein.

  8. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Thomas Nelson; Raghubir P. Gupta

    2005-01-01

    This report describes research conducted between October 1, 2004 and December 31, 2004 on the use of dry regenerable sorbents for removal of carbon dioxide from flue gas. Two supported sorbents were tested in a bench scale fluidized bed reactor system. The sorbents were prepared by impregnation of sodium carbonate on to an inert support at a commercial catalyst manufacturing facility. One sorbent, tested through five cycles of carbon dioxide sorption in an atmosphere of 3% water vapor and 0.8 to 3% carbon dioxide showed consistent reactivity with sodium carbonate utilization of 7 to 14%. A second, similarly prepared material, showed comparable reactivity in one cycle of testing. Batches of 5 other materials were prepared in laboratory scale quantities (primarily by spray drying). These materials generally have significantly greater surface areas than calcined sodium bicarbonate. Small scale testing showed no significant adsorption of mercury on representative carbon dioxide sorbent materials under expected flue gas conditions.

  9. Estimated Carbon Dioxide Emissions in 2008: United States

    SciTech Connect

    Smith, C A; Simon, A J; Belles, R D

    2011-04-01

    Flow charts depicting carbon dioxide emissions in the United States have been constructed from publicly available data and estimates of state-level energy use patterns. Approximately 5,800 million metric tons of carbon dioxide were emitted throughout the United States for use in power production, residential, commercial, industrial, and transportation applications in 2008. Carbon dioxide is emitted from the use of three major energy resources: natural gas, coal, and petroleum. The flow patterns are represented in a compact 'visual atlas' of 52 state-level (all 50 states, the District of Columbia, and one national) carbon dioxide flow charts representing a comprehensive systems view of national CO{sub 2} emissions. Lawrence Livermore National Lab (LLNL) has published flow charts (also referred to as 'Sankey Diagrams') of important national commodities since the early 1970s. The most widely recognized of these charts is the U.S. energy flow chart (http://flowcharts.llnl.gov). LLNL has also published charts depicting carbon (or carbon dioxide potential) flow and water flow at the national level as well as energy, carbon, and water flows at the international, state, municipal, and organizational (i.e. United States Air Force) level. Flow charts are valuable as single-page references that contain quantitative data about resource, commodity, and byproduct flows in a graphical form that also convey structural information about the system that manages those flows. Data on carbon dioxide emissions from the energy sector are reported on a national level. Because carbon dioxide emissions are not reported for individual states, the carbon dioxide emissions are estimated using published energy use information. Data on energy use is compiled by the U.S. Department of Energy's Energy Information Administration (U.S. EIA) in the State Energy Data System (SEDS). SEDS is updated annually and reports data from 2 years prior to the year of the update. SEDS contains data on primary

  10. Carbon Dioxide in the Gulf of Trieste

    NASA Astrophysics Data System (ADS)

    Turk, D.; Malacic, V.; Degrandpre, M. D.; McGillis, W. R.

    2009-04-01

    Coastal marine regions such as the Gulf of Trieste (GOT) in the Northern Adriatic Sea serve as the link between carbon cycling on land and the ocean interior and potentially contribute large uncertainties in the estimate of anthropogenic CO2 uptake. This system may be either a sink or a source for atmospheric CO2. Understanding the sources and sinks as a result of biological and physical controls for air-sea carbon dioxide fluxes in coastal waters may substantially alter the current view of the global carbon budget for unique terrestrial and ocean regions such as the GOT. GOT is a semi-enclosed Mediterranean basin situated in the northern part of Adriatic Sea. It is one of the most productive regions in the Mediterranean and is affected by extreme fresh river input, phytoplankton blooms, and large changes of air-sea exchange during Bora high wind events. The unique combination of these environmental processes and relatively small size of the area makes the region an excellent study site for investigations of air-sea interaction, and changes in biology and carbon chemistry. Here we investigate biological (phytoplankton blooms) and physical (freshwater input and winds) controls on the temporal variability of pCO2 in the GOT. The aqueous CO2 was measured at the Coastal Oceanographic buoy VIDA, Slovenia using the SAMI CO2 sensor. Our results indicate that: 1) The GOT was a sink for atmospheric CO2 in late spring of 2007; 2) Aqueous pCO2 was influenced by fresh water input from rivers entering the GOT and biological production associated with high nutrient input; 3) Surface water pCO2 showed a strong correlation with SST when river plumes where not present at the buoy location, and reasonable correlation with SSS during the presence of the plume.

  11. Viscosity behavior of carbon dioxide treated Cut Bank crude oil

    SciTech Connect

    Cady, G.V.; Mosawi, H.

    1995-12-31

    Carbon dioxide injection, either by huff and puff or displacement operations, results in a crude oil viscosity reduction at pressures below the miscibility conditions. Carbon dioxide miscibility occurs in reservoirs at miscible temperature and pressure, but these conditions are not possible in shallow reservoirs. Improved oil recovery in a shallow reservoir depends on the degree of viscosity reduction at the reservoir temperature and pressure. A recovery project`s success depends on the interaction between the carbon dioxide and the reservoir system. A research project carried out at Montana Tech to study the viscosity reduction and carbon dioxide solubility in Cut Bank crude oil at the reservoir`s prevailing temperature and near fracture pressure shows a viscosity reduction ratio (crude-carbon dioxide mixture to original dead oil viscosity) of 0.22 at a pressure of 1,000 psig and 90 F. An original mobility of 20 Md/cp improves to 91 Md/cp under a carbon dioxide recovery process at or near the reservoir`s fracture pressure. Based on the authors` research, improved oil recovery operations in the Cut Bank Field, Montana, is viable when using a commercial on site carbon dioxide recovery or generating system to minimize the cost of CO{sub 2} transportation. The major benefits are oil viscosity reduction, mobility ratio improvement, gas drive, and crude oil swelling.

  12. Herbivore responses to plants grown in enriched carbon dioxide atmospheres

    SciTech Connect

    Lincoln, D.E.

    1990-05-01

    Our initial study of sagebrush and grasshopper responses to elevated and historical carbon dioxide atmospheres is complete and has been accepted for publication. The study on Biomass Allocation Patterns of Defoliated Sagebrush Grown Under Two Levels of Carbon Dioxide has completed and the manuscript has been submitted for publication. We have completed the study of plant growth under two nutrient and carbon dioxide regimes and grasshopper feeding responses. The study of a specialist feeding caterpillar, the cabbage butterfly, and a mustard hostplant has recently been completed. We were able to identify the principal allelochemicals of the mustard plants, butenyl and pentenyl isothiocyanates, by combined gas chromatography and mass spectrometry. Measurement of these chemicals has been a critical component of this study since these compounds contain nitrogen and sulphur and act as a feeding stimulant to the caterpillar. This insect responds to elevated carbon dioxide by consuming more leaves and we can now say that this is not due to a change in the feeding stimulants. Reduced leaf protein content is a critical factor for even specialist feeding insect herbivores under elevated carbon dioxide conditions. The study on Grasshopper Population Responses to Enriched Carbon Dioxide Concentration is currently in progress at the Duke University Phytotron. We have changed hostplant species in order to complement the investigations of carbon dioxide effects on tallgrass prairie. Specifically, we are using big bluestem, Andropogon geradii, as the host plant to feed to the grasshoppers. This experiment will be completed in July 1990.

  13. Chemical conversion of sulphur dioxide on Eyjafjallajökull's volcanic ash from the 2010 eruption

    NASA Astrophysics Data System (ADS)

    Dupart, Yoan; Burel, Laurence; Delichere, Pierre; George, Christian; D'Anna, Barbara

    2013-04-01

    Volcanic eruptions induce important climatic and weather modifications. When volcanic ashes are emitted into the atmosphere they can travel for several weeks according to their size distribution and altitude of the emission. Eyjafjallajökull eruption, between April 14th and May 23th, is considered as a medium-size eruption. The upper level winds advected ashes over the UK and continental Europe. During volcanic eruptions high amounts of SO2 were injected into the atmosphere (from 50 to 200 ppbv)[1]. Previous works showed that SO2 could be convert into sulfate on mineral dust surfaces under dark conditions[2]. However, no conversion has been studied with real volcanic ashes and under day conditions (light exposure). For this study, real Eyjafjallajökull's ashes samples, collected on the 2010.04.18 at Seljavellir, were used. The ashes were deposited on a horizontal cylindrical coated-wall flow tube reactor surrounded by 5 fluorescent lamps (340-420 nm). The kinetic studies revealed that the presence of UV-A irradiation enhanced the conversion of SO2 on ashes samples. Moreover chemical analyses as XPS, Ion Chromatography and SEM were performed on volcanic ashes before and after exposition to SO2. XPS and ion chromatography analyzes showed that the presence of light increase the SO2 uptake on ashes surfaces and convert it into ions sulphate. Beside SEM analyses disclosed that the conversion takes place systematically on an iron oxide site . By combining kinetics and chemical analysis we are able to propose a new mechanism for the SO2 conversion on mineral surfaces under light conditions. 1. Self, S., et al., Volatile fluxes during flood basalt eruptions and potential effects on the global environment: A Deccan perspective. Earth and Planetary Science Letters, 2006. 248(1-2): p. 518-532. 2. Zhang et al., Heterogeneous Reactions of Sulfur Dioxide on Typical Mineral Particles, J. Phys. Chem. B, 2006

  14. Alkali metal carbon dioxide electrochemical system for energy storage and/or conversion of carbon dioxide to oxygen

    NASA Astrophysics Data System (ADS)

    Hagedorn, Norman H.

    1993-05-01

    An alkali metal, such as lithium, is the anodic reactant; carbon dioxide or a mixture of carbon dioxide and carbon monoxide is the cathodic reactant; and carbonate of the alkali metal is the electrolyte in an electrochemical cell for the storage and delivery of electrical energy. Additionally, alkali metal-carbon dioxide battery systems include a plurality of such electrochemical cells. Gold is a preferred catalyst for reducing the carbon dioxide at the cathode. The fuel cell of the invention produces electrochemical energy through the use of an anodic reactant which is extremely energetic and light, and a cathodic reactant which can be extracted from its environment and therefore exacts no transportation penalty. The invention is, therefore, especially useful in extraterrestrial environments.

  15. Alkali metal carbon dioxide electrochemical system for energy storage and/or conversion of carbon dioxide to oxygen

    NASA Astrophysics Data System (ADS)

    Hagedorn, Norman H.

    1991-09-01

    An alkali metal, such as lithium, is the anodic reactant, carbon dioxide or a mixture of carbon dioxide and carbon monoxide is the cathodic reactant, and carbonate of the alkali metal is the electrolyte in an electrochemical cell for the storage and delivery of electrical energy. Additionally, alkali metal-carbon dioxide battery systems include a plurality of such electrochemical cells. Gold is a preferred catalyst for reducing the carbon dioxide at the cathode. The fuel cell of the invention produces electrochemical energy through the use of an anodic reactant which is extremely energetic and light, and a cathodic reactant which can be extracted from its environment and therefore exacts no transportation penalty. The invention is therefore especially useful in extraterrestrial environments.

  16. Alkali metal carbon dioxide electrochemical system for energy storage and/or conversion of carbon dioxide to oxygen

    NASA Technical Reports Server (NTRS)

    Hagedorn, Norman H. (Inventor)

    1993-01-01

    An alkali metal, such as lithium, is the anodic reactant; carbon dioxide or a mixture of carbon dioxide and carbon monoxide is the cathodic reactant; and carbonate of the alkali metal is the electrolyte in an electrochemical cell for the storage and delivery of electrical energy. Additionally, alkali metal-carbon dioxide battery systems include a plurality of such electrochemical cells. Gold is a preferred catalyst for reducing the carbon dioxide at the cathode. The fuel cell of the invention produces electrochemical energy through the use of an anodic reactant which is extremely energetic and light, and a cathodic reactant which can be extracted from its environment and therefore exacts no transportation penalty. The invention is, therefore, especially useful in extraterrestrial environments.

  17. Low Energy, Low Emissions: Sulfur Dioxide; Nitrogen Oxides, and Carbon Dioxide in Western Europe.

    ERIC Educational Resources Information Center

    Alcamo, Joseph; De Vries, Bert

    1992-01-01

    Links proposed low-energy scenarios for different Western European countries with the amount of pollutants that may result from these scenarios. Sulfur dioxide, nitrogen oxide, and carbon dioxide emissions are calculated for the 10 countries for which low-energy scenarios are available, resulting in reductions of 54%, 37%, and 40%, respectively.…

  18. Forest management techniques for carbon dioxide storage

    SciTech Connect

    Fujimori, Takao

    1993-12-31

    In the global ecosystem concerning carbon dioxide content in the atmosphere, the forest ecosystem plays an important role. In effect, the ratio of forest biomass to total terrestrial biomass is about 90%, and the ratio of carbon stored in the forest biomass to that in the atmosphere is two thirds. When soils and detritus of forests are added, there is more C stored in forests than in the atmosphere, about 1.3 times or more. Thus, forests can be regarded as the great holder of C on earth. If the area of forest land on the earth is constantly maintained and forests are in the climax stage, the uptake of C and the release of C by and from the forests will balance. In this case, forests are neither sinks nor sources of CO{sub 2} although they store a large amount of C. However, when forests are deforested, they become a source of C; through human activities, forests have become a source of C. According to a report by the IPCC, 1.6{+-}1.2 PgC is annually added to the atmosphere by deforestation. According to the FAO (1992), the area of land deforested annually in the tropics from 1981 to 1990 was 16.9 x 10{sup 6} ha. This value is nearly half the area of Japanese land. The most important thing for the CO{sub 2} environment concerning forests is therefore how to reduce deforestation and to successfully implement a forestation or reforestation.

  19. Cooperative redox activation for carbon dioxide conversion

    PubMed Central

    Lian, Zhong; Nielsen, Dennis U.; Lindhardt, Anders T.; Daasbjerg, Kim; Skrydstrup, Troels

    2016-01-01

    A longstanding challenge in production chemistry is the development of catalytic methods for the transformation of carbon dioxide into useful chemicals. Silane and borane promoted reductions can be fined-tuned to provide a number of C1-building blocks under mild conditions, but these approaches are limited because of the production of stoichiometric waste compounds. Here we report on the conversion of CO2 with diaryldisilanes, which through cooperative redox activation generate carbon monoxide and a diaryldisiloxane that actively participate in a palladium-catalysed carbonylative Hiyama-Denmark coupling for the synthesis of an array of pharmaceutically relevant diarylketones. Thus the disilane reagent not only serves as the oxygen abstracting agent from CO2, but the silicon-containing ‘waste', produced through oxygen insertion into the Si–Si bond, participates as a reagent for the transmetalation step in the carbonylative coupling. Hence this concept of cooperative redox activation opens up for new avenues in the conversion of CO2. PMID:27981967

  20. Carbon dioxide warming of the early Earth.

    PubMed

    Arrhenius, G

    1997-02-01

    Svante Arrhenius' research in atmospheric physics extended beyond the recent past and the near future states of the Earth, which today are at the center of sociopolitical attention. His plan encompassed all of the physical phenomena known at the time to relate to the formation and evolution of stars and planets. His two-volume textbook on cosmic physics is a comprehensive synopsis of the field. The inquiry into the possible cause of the ice ages and the theory of selective wavelength filter control led Arrhenius to consider the surface states of the other terrestrial planets, and of the ancient Earth before it had been modified by the emergence of life. The rapid escape of hydrogen and the equilibration with igneous rocks required that carbon in the early atmosphere prevailed mainly in oxidized form as carbon dioxide, together with other photoactive gases exerting a greenhouse effect orders of magnitude larger than in our present atmosphere. This effect, together with the ensuing chemical processes, would have set the conditions for life to evolve on our planet, seeded from spores spreading through an infinite Universe, and propelled, as Arrhenius thought, by stellar radiation pressure.

  1. Carbon dioxide warming of the early Earth

    NASA Technical Reports Server (NTRS)

    Arrhenius, G.

    1997-01-01

    Svante Arrhenius' research in atmospheric physics extended beyond the recent past and the near future states of the Earth, which today are at the center of sociopolitical attention. His plan encompassed all of the physical phenomena known at the time to relate to the formation and evolution of stars and planets. His two-volume textbook on cosmic physics is a comprehensive synopsis of the field. The inquiry into the possible cause of the ice ages and the theory of selective wavelength filter control led Arrhenius to consider the surface states of the other terrestrial planets, and of the ancient Earth before it had been modified by the emergence of life. The rapid escape of hydrogen and the equilibration with igneous rocks required that carbon in the early atmosphere prevailed mainly in oxidized form as carbon dioxide, together with other photoactive gases exerting a greenhouse effect orders of magnitude larger than in our present atmosphere. This effect, together with the ensuing chemical processes, would have set the conditions for life to evolve on our planet, seeded from spores spreading through an infinite Universe, and propelled, as Arrhenius thought, by stellar radiation pressure.

  2. Can the carbon dioxide problem be resolved

    SciTech Connect

    Lemons, J.

    1984-01-01

    The combustion of fossil fuels increases atmospheric levels of carbon dioxide (CO/sub 2/). This may cause a long-term warming of the atmosphere. Solutions to the CO/sub 2/ problem are particularly difficult because adverse effects will be felt by future generations, but remedial action and sacrifices must be made by present generations. Decisions regarding the problem which affect both the immediate and long-range future must be made deliberately or by default in perhaps only 15 to 20 years, before we are reasonably confident of our knowledge of the problem and before we know whether atmospheric warming will, in fact, occur. Empirical and evaluative data do not seem compelling to decision makers. First, remedial actions require present generations to conserve fossil fuels for the benefit of posterity, and there is no consensus that an ethical obligation to posterity exists. Second, actions must be based upon uncertain projections of future energy use and uncertain scientific knowledge of the carbon cycle and the environment. Third, economic and social factors may preclude resolution of the problem. Fourth, speculation from moral psychology suggests that mankind may be psychologically incapable of caring enough for posterity to make serious sacrifices. Therefore, public policy regarding sacrifice by present generations for the benefit of posterity is not likely to be forthcoming from policy makers or suported by the public. 120 references.

  3. Moisture swing sorbent for carbon dioxide capture from ambient air.

    PubMed

    Wang, Tao; Lackner, Klaus S; Wright, Allen

    2011-08-01

    An amine-based anion exchange resin dispersed in a flat sheet of polypropylene was prepared in alkaline forms so that it would capture carbon dioxide from air. The resin, with quaternary ammonium cations attached to the polymer structure and hydroxide or carbonate groups as mobile counterions, absorbs carbon dioxide when dry and releases it when wet. In ambient air, the moist resin dries spontaneously and subsequently absorbs carbon dioxide. This constitutes a moisture induced cycle, which stands in contrast to thermal pressure swing based cycles. This paper aims to determine the isothermal performance of the sorbent during such a moisture swing. Equilibrium experiments show that the absorption and desorption process can be described well by a Langmuir isothermal model. The equilibrium partial pressure of carbon dioxide over the resin at a given loading state can be increased by 2 orders of magnitude by wetting the resin.

  4. Fractional carbon dioxide laser in recalcitrant vulval lichen sclerosus.

    PubMed

    Lee, Andrew; Lim, Adrian; Fischer, Gayle

    2016-02-01

    Vulval lichen sclerosus is an uncommon skin condition that can usually be managed with topical corticosteroids to maintain remission. However, there is a subset of patients in whom it remains recalcitrant despite treatment with super-potent topical corticosteroids. We report a case series of four patients undergoing fractional carbon dioxide laser resurfacing and one with ablative carbon dioxide laser for severe, hyperkeratotic vulval lichen sclerosus not responding to super-potent topical corticosteroids. In these patients, carbon dioxide laser was successful in achieving remission. Their vulval lichen sclerosus was subsequently able to be maintained with topical corticosteroid treatment.

  5. Carbon Dioxide-Water Emulsions for Enhanced Oil Recovery and Permanent Sequestration of Carbon Dioxide

    SciTech Connect

    Ryan, David; Golomb, Dan; Shi, Guang; Shih, Cherry; Lewczuk, Rob; Miksch, Joshua; Manmode, Rahul; Mulagapati, Srihariraju; Malepati, Chetankurmar

    2011-09-30

    This project involves the use of an innovative new invention Particle Stabilized Emulsions (PSEs) of Carbon Dioxide-in-Water and Water-in-Carbon Dioxide for Enhanced Oil Recovery (EOR) and Permanent Sequestration of Carbon Dioxide. The EOR emulsion would be injected into a semi-depleted oil reservoir such as Dover 33 in Otsego County, Michigan. It is expected that the emulsion would dislocate the stranded heavy crude oil from the rock granule surfaces, reduce its viscosity, and increase its mobility. The advancing emulsion front should provide viscosity control which drives the reduced-viscosity oil toward the production wells. The make-up of the emulsion would be subsequently changed so it interacts with the surrounding rock minerals in order to enhance mineralization, thereby providing permanent sequestration of the injected CO{sub 2}. In Phase 1 of the project, the following tasks were accomplished: 1. Perform laboratory scale (mL/min) refinements on existing procedures for producing liquid carbon dioxide-in-water (C/W) and water-in-liquid carbon dioxide (W/C) emulsion stabilized by hydrophilic and hydrophobic fine particles, respectively, using a Kenics-type static mixer. 2. Design and cost evaluate scaled up (gal/min) C/W and W/C emulsification systems to be deployed in Phase 2 at the Otsego County semi-depleted oil field. 3. Design the modifications necessary to the present CO{sub 2} flooding system at Otsego County for emulsion injection. 4. Design monitoring and verification systems to be deployed in Phase 2 for measuring potential leakage of CO{sub 2} after emulsion injection. 5. Design production protocol to assess enhanced oil recovery with emulsion injection compared to present recovery with neat CO{sub 2} flooding. 6. Obtain Federal and State permits for emulsion injection. Initial research focused on creating particle stabilized emulsions with the smallest possible globule size so that the emulsion can penetrate even low-permeability crude

  6. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates

    NASA Astrophysics Data System (ADS)

    Wu, Jingjie; Ma, Sichao; Sun, Jing; Gold, Jake I.; Tiwary, Chandrasekhar; Kim, Byoungsu; Zhu, Lingyang; Chopra, Nitin; Odeh, Ihab N.; Vajtai, Robert; Yu, Aaron Z.; Luo, Raymond; Lou, Jun; Ding, Guqiao; Kenis, Paul J. A.; Ajayan, Pulickel M.

    2016-12-01

    Electroreduction of carbon dioxide into higher-energy liquid fuels and chemicals is a promising but challenging renewable energy conversion technology. Among the electrocatalysts screened so far for carbon dioxide reduction, which includes metals, alloys, organometallics, layered materials and carbon nanostructures, only copper exhibits selectivity towards formation of hydrocarbons and multi-carbon oxygenates at fairly high efficiencies, whereas most others favour production of carbon monoxide or formate. Here we report that nanometre-size N-doped graphene quantum dots (NGQDs) catalyse the electrochemical reduction of carbon dioxide into multi-carbon hydrocarbons and oxygenates at high Faradaic efficiencies, high current densities and low overpotentials. The NGQDs show a high total Faradaic efficiency of carbon dioxide reduction of up to 90%, with selectivity for ethylene and ethanol conversions reaching 45%. The C2 and C3 product distribution and production rate for NGQD-catalysed carbon dioxide reduction is comparable to those obtained with copper nanoparticle-based electrocatalysts.

  7. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates.

    PubMed

    Wu, Jingjie; Ma, Sichao; Sun, Jing; Gold, Jake I; Tiwary, ChandraSekhar; Kim, Byoungsu; Zhu, Lingyang; Chopra, Nitin; Odeh, Ihab N; Vajtai, Robert; Yu, Aaron Z; Luo, Raymond; Lou, Jun; Ding, Guqiao; Kenis, Paul J A; Ajayan, Pulickel M

    2016-12-13

    Electroreduction of carbon dioxide into higher-energy liquid fuels and chemicals is a promising but challenging renewable energy conversion technology. Among the electrocatalysts screened so far for carbon dioxide reduction, which includes metals, alloys, organometallics, layered materials and carbon nanostructures, only copper exhibits selectivity towards formation of hydrocarbons and multi-carbon oxygenates at fairly high efficiencies, whereas most others favour production of carbon monoxide or formate. Here we report that nanometre-size N-doped graphene quantum dots (NGQDs) catalyse the electrochemical reduction of carbon dioxide into multi-carbon hydrocarbons and oxygenates at high Faradaic efficiencies, high current densities and low overpotentials. The NGQDs show a high total Faradaic efficiency of carbon dioxide reduction of up to 90%, with selectivity for ethylene and ethanol conversions reaching 45%. The C2 and C3 product distribution and production rate for NGQD-catalysed carbon dioxide reduction is comparable to those obtained with copper nanoparticle-based electrocatalysts.

  8. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates

    PubMed Central

    Wu, Jingjie; Ma, Sichao; Sun, Jing; Gold, Jake I.; Tiwary, ChandraSekhar; Kim, Byoungsu; Zhu, Lingyang; Chopra, Nitin; Odeh, Ihab N.; Vajtai, Robert; Yu, Aaron Z.; Luo, Raymond; Lou, Jun; Ding, Guqiao; Kenis, Paul J. A.; Ajayan, Pulickel M.

    2016-01-01

    Electroreduction of carbon dioxide into higher-energy liquid fuels and chemicals is a promising but challenging renewable energy conversion technology. Among the electrocatalysts screened so far for carbon dioxide reduction, which includes metals, alloys, organometallics, layered materials and carbon nanostructures, only copper exhibits selectivity towards formation of hydrocarbons and multi-carbon oxygenates at fairly high efficiencies, whereas most others favour production of carbon monoxide or formate. Here we report that nanometre-size N-doped graphene quantum dots (NGQDs) catalyse the electrochemical reduction of carbon dioxide into multi-carbon hydrocarbons and oxygenates at high Faradaic efficiencies, high current densities and low overpotentials. The NGQDs show a high total Faradaic efficiency of carbon dioxide reduction of up to 90%, with selectivity for ethylene and ethanol conversions reaching 45%. The C2 and C3 product distribution and production rate for NGQD-catalysed carbon dioxide reduction is comparable to those obtained with copper nanoparticle-based electrocatalysts. PMID:27958290

  9. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    DOEpatents

    Aines, Roger D.; Bourcier, William L.

    2014-08-19

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  10. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    DOEpatents

    Aines, Roger D.; Bourcier, William L.

    2010-11-09

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  11. Separation of Carbon Monoxide and Carbon Dioxide for Mars ISRU

    NASA Technical Reports Server (NTRS)

    Walton, Krista S.; LeVan, M. Douglas

    2004-01-01

    The atmosphere of Mars has many resources that can be processed to produce things such as oxygen, fuel, buffer gas, and water for support of human exploration missions. Successful manipulation of these resources is crucial for safe, cost-effective, and self-sufficient long-term human exploration of Mars. In our research, we are developing enabling technologies that require fundamental knowledge of adsorptive gas storage and separation processes. In particular, we are designing and constructing an innovative, low mass, low power separation device to recover carbon dioxide and carbon monoxide for Mars ISRU (in-situ resource utilization). The technology has broad implications for gas storage and separations for gas-solid systems that are ideally suited for reduced gravitational environments. This paper describes our separation process design and experimental procedures and reports results for the separation of CO2 and CO by a four-step adsorption cycle.

  12. 49 CFR 195.4 - Compatibility necessary for transportation of hazardous liquids or carbon dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... hazardous liquids or carbon dioxide. 195.4 Section 195.4 Transportation Other Regulations Relating to... necessary for transportation of hazardous liquids or carbon dioxide. No person may transport any hazardous liquid or carbon dioxide unless the hazardous liquid or carbon dioxide is chemically compatible with...

  13. 49 CFR 195.4 - Compatibility necessary for transportation of hazardous liquids or carbon dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... hazardous liquids or carbon dioxide. 195.4 Section 195.4 Transportation Other Regulations Relating to... necessary for transportation of hazardous liquids or carbon dioxide. No person may transport any hazardous liquid or carbon dioxide unless the hazardous liquid or carbon dioxide is chemically compatible with...

  14. 21 CFR 179.43 - Carbon dioxide laser for etching food.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Carbon dioxide laser for etching food. 179.43... § 179.43 Carbon dioxide laser for etching food. Carbon dioxide laser light may be safely used for... consists of a carbon dioxide laser designed to emit pulsed infrared radiation with a wavelength of...

  15. 49 CFR 195.4 - Compatibility necessary for transportation of hazardous liquids or carbon dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... hazardous liquids or carbon dioxide. 195.4 Section 195.4 Transportation Other Regulations Relating to... necessary for transportation of hazardous liquids or carbon dioxide. No person may transport any hazardous liquid or carbon dioxide unless the hazardous liquid or carbon dioxide is chemically compatible with...

  16. 49 CFR 195.4 - Compatibility necessary for transportation of hazardous liquids or carbon dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... hazardous liquids or carbon dioxide. 195.4 Section 195.4 Transportation Other Regulations Relating to... necessary for transportation of hazardous liquids or carbon dioxide. No person may transport any hazardous liquid or carbon dioxide unless the hazardous liquid or carbon dioxide is chemically compatible with...

  17. 49 CFR 195.4 - Compatibility necessary for transportation of hazardous liquids or carbon dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... hazardous liquids or carbon dioxide. 195.4 Section 195.4 Transportation Other Regulations Relating to... necessary for transportation of hazardous liquids or carbon dioxide. No person may transport any hazardous liquid or carbon dioxide unless the hazardous liquid or carbon dioxide is chemically compatible with...

  18. 21 CFR 179.43 - Carbon dioxide laser for etching food.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Carbon dioxide laser for etching food. 179.43... FOOD Radiation and Radiation Sources § 179.43 Carbon dioxide laser for etching food. Carbon dioxide... conditions: (a) The radiation source consists of a carbon dioxide laser designed to emit pulsed...

  19. 46 CFR 35.40-8 - Carbon dioxide warning signs-T/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Carbon dioxide warning signs-T/ALL. 35.40-8 Section 35... Marking Requirements-TB/ALL § 35.40-8 Carbon dioxide warning signs—T/ALL. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or any space into which...

  20. 27 CFR 24.245 - Use of carbon dioxide in still wine.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Use of carbon dioxide in... Use of carbon dioxide in still wine. The addition of carbon dioxide to (and retention in) still wine... than 0.392 grams of carbon dioxide per 100 milliliters of wine. However, a tolerance of not more than...

  1. 27 CFR 24.245 - Use of carbon dioxide in still wine.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Use of carbon dioxide in... Use of carbon dioxide in still wine. The addition of carbon dioxide to (and retention in) still wine... than 0.392 grams of carbon dioxide per 100 milliliters of wine. However, a tolerance of not more than...

  2. 46 CFR 167.45-45 - Carbon dioxide fire extinguishing system requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Carbon dioxide fire extinguishing system requirements... Carbon dioxide fire extinguishing system requirements. (a) When a carbon dioxide (CO2) smothering system is fitted in the boiler room, the quantity of carbon dioxide carried shall be sufficient to give...

  3. 27 CFR 24.245 - Use of carbon dioxide in still wine.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Use of carbon dioxide in... Use of carbon dioxide in still wine. The addition of carbon dioxide to (and retention in) still wine... than 0.392 grams of carbon dioxide per 100 milliliters of wine. However, a tolerance of not more than...

  4. 46 CFR 167.45-45 - Carbon dioxide fire extinguishing system requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Carbon dioxide fire extinguishing system requirements... Carbon dioxide fire extinguishing system requirements. (a) When a carbon dioxide (CO2) smothering system is fitted in the boiler room, the quantity of carbon dioxide carried shall be sufficient to give...

  5. 46 CFR 35.40-7 - Carbon dioxide alarm-T/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Carbon dioxide alarm-T/ALL. 35.40-7 Section 35.40-7... Requirements-TB/ALL. § 35.40-7 Carbon dioxide alarm—T/ALL. Adjacent to all carbon dioxide fire extinguishing... AT ONCE. CARBON DIOXIDE BEING RELEASED.”...

  6. 46 CFR 35.40-8 - Carbon dioxide warning signs-T/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Carbon dioxide warning signs-T/ALL. 35.40-8 Section 35... Marking Requirements-TB/ALL § 35.40-8 Carbon dioxide warning signs—T/ALL. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or any space into which...

  7. 46 CFR 167.45-45 - Carbon dioxide fire extinguishing system requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Carbon dioxide fire extinguishing system requirements... Carbon dioxide fire extinguishing system requirements. (a) When a carbon dioxide (CO2) smothering system is fitted in the boiler room, the quantity of carbon dioxide carried shall be sufficient to give...

  8. 46 CFR 167.45-45 - Carbon dioxide fire-extinguishing system requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Carbon dioxide fire-extinguishing system requirements... Carbon dioxide fire-extinguishing system requirements. (a) When a carbon dioxide (CO2) smothering system is fitted in the boiler room, the quantity of carbon dioxide carried shall be sufficient to give...

  9. 46 CFR 35.40-8 - Carbon dioxide warning signs-T/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Carbon dioxide warning signs-T/ALL. 35.40-8 Section 35... Marking Requirements-TB/ALL § 35.40-8 Carbon dioxide warning signs—T/ALL. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or any space into which...

  10. 27 CFR 24.245 - Use of carbon dioxide in still wine.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Use of carbon dioxide in... Use of carbon dioxide in still wine. The addition of carbon dioxide to (and retention in) still wine... than 0.392 grams of carbon dioxide per 100 milliliters of wine. However, a tolerance of not more than...

  11. 46 CFR 35.40-7 - Carbon dioxide alarm-T/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Carbon dioxide alarm-T/ALL. 35.40-7 Section 35.40-7... Requirements-TB/ALL. § 35.40-7 Carbon dioxide alarm—T/ALL. Adjacent to all carbon dioxide fire extinguishing... AT ONCE. CARBON DIOXIDE BEING RELEASED.”...

  12. 27 CFR 24.245 - Use of carbon dioxide in still wine.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Use of carbon dioxide in... Use of carbon dioxide in still wine. The addition of carbon dioxide to (and retention in) still wine... than 0.392 grams of carbon dioxide per 100 milliliters of wine. However, a tolerance of not more than...

  13. Membranes for separation of carbon dioxide

    DOEpatents

    Ku, Anthony Yu-Chung [Rexford, NY; Ruud, James Anthony [Delmar, NY; Ramaswamy, Vidya [Niskayuna, NY; Willson, Patrick Daniel [Latham, NY; Gao, Yan [Niskayuna, NY

    2011-03-01

    Methods for separating carbon dioxide from a fluid stream at a temperature higher than about 200.degree. C. with selectivity higher than Knudsen diffusion selectivity include contacting a porous membrane with the fluid stream to preferentially transport carbon dioxide. The porous membrane includes a porous support and a continuous porous separation layer disposed on a surface of the porous support and extending between the fluid stream and the porous support layer. The porous support comprises alumina, silica, zirconia, stabilized zirconia, stainless steel, titanium, nickel-based alloys, aluminum-based alloys, zirconium-based alloys or a combination thereof. Median pore size of the porous separation layer is less than about 10 nm, and the porous separation layer comprises titania, MgO, CaO, SrO, BaO, La.sub.2O.sub.3, CeO.sub.2, HfO.sub.2, Y.sub.2O.sub.3, VO.sub.z, NbO.sub.z, TaO.sub.z, ATiO.sub.3, AZrO.sub.3, AAl.sub.2O.sub.4, A.sup.1FeO.sub.3, A.sup.1MnO.sub.3, A.sup.1CoO.sub.3, A.sup.1NiO.sub.3, A.sup.2HfO.sub.3, A.sup.3 CeO.sub.3, Li.sub.2ZrO.sub.3, Li.sub.2SiO.sub.3, Li.sub.2TiO.sub.3, Li.sub.2HfO.sub.3, A.sup.4N.sup.1.sub.yO.sub.z, Y.sub.xN.sup.1.sub.yO.sub.z, La.sub.xN.sup.1.sub.yO.sub.z, HfN.sup.2.sub.yO.sub.z, or a combination thereof; wherein A is La, Mg, Ca, Sr or Ba; A.sup.1 is La, Ca, Sr or Ba; A.sup.2 is Ca, Sr or Ba; A.sup.3 is Sr or Ba; A.sup.4 is Mg, Ca, Sr, Ba, Ti or Zr; N.sup.1 is V, Nb, Ta, Cr, Mo, W, Mn, Si or Ge; N.sup.2 is V, Mo, W or Si; x is 1 or 2; y ranges from 1 to 3; and z ranges from 2 to 7.

  14. Pretreatment for cellulose hydrolysis by carbon dioxide explosion

    SciTech Connect

    Zheng, Y.; Lin, H.M.; Tsao, G.T.

    1998-11-01

    Cellulosic materials were treated with supercritical carbon dioxide to increase the reactivity of cellulose, thereby to enhance the rate and the extent of cellulose hydrolysis. In this pretreatment process, the cellulosic materials such as Avicel, recycled paper mix, sugarcane bagasse and the repulping waste of recycled paper are placed in a reactor under pressurized carbon dioxide at 35 C for a controlled time period. Upon an explosive release of the carbon dioxide pressure, the disruption of the cellulosic structure increases the accessible surface area of the cellulosic substrate to enzymatic hydrolysis. Results indicate that supercritical carbon dioxide is effective for pretreatment of cellulose. An increase in pressure facilitates the faster penetration of carbon dioxide molecules into the crystalline structures, thus more glucose is produced from cellulosic materials after the explosion as compared to those without the pretreatment. This explosion pretreatment enhances the rate of cellulosic material hydrolysis as well as increases glucose yield by as much as 50%. Results from the simultaneous saccharification and fermentation tests also show the increase in the available carbon source from the cellulosic materials for fermentation to produce ethanol. As an alternative method, this supercritical carbon dioxide explosion has a possibility to reduce expense compared with ammonia explosion, and since it is operated at the low temperature, it will not cause degradation of sugars such as those treated with steam explosion due to the high-temperature involved.

  15. Slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures

    DOEpatents

    Aines, Roger D.; Bourcier, William L.; Viani, Brian

    2013-01-29

    A slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures includes the steps of dissolving the gas mixture and carbon dioxide in water providing a gas, carbon dioxide, water mixture; adding a porous solid media to the gas, carbon dioxide, water mixture forming a slurry of gas, carbon dioxide, water, and porous solid media; heating the slurry of gas, carbon dioxide, water, and porous solid media producing steam; and cooling the steam to produce purified water and carbon dioxide.

  16. The oxygen and carbon dioxide balance in the earth's atmosphere

    NASA Technical Reports Server (NTRS)

    Johnson, F. S.

    1975-01-01

    The oxygen-carbon dioxide cycle is described in detail, and steps which are sensitive to perturbation or instability are identified. About half of the carbon dioxide consumption each year in photosynthesis occurs in the oceans. Phytoplankton, which are the primary producers, have been shown to assimilate insecticides and herbicides. The impact of such materials on phytoplankton photosynthesis, both direct and as the indirect result of detrimental effects higher up in the food chain, cannot be assessed. Net oxygen production is very small in comparison with the total production and occurs almost exclusively in a few ocean areas with anoxic bottom conditions and in peat-forming marshes which are sensitive to anthropogenic disturbances. The carbon dioxide content of the atmosphere is increasing at a relatively rapid rate as the result of fossil fuel combustion. Increases in photosynthesis as the result of the hothouse effect may in turn reduce the carbon dioxide content of the atmosphere, leading to global cooling.

  17. Use of the electrosurgical unit in a carbon dioxide atmosphere.

    PubMed

    Culp, William C; Kimbrough, Bradly A; Luna, Sarah; Maguddayao, Aris J; Eidson, Jack L; Paolino, David V

    2016-01-01

    The electrosurgical unit (ESU) utilizes an electrical discharge to cut and coagulate tissue and is often held above the surgical site, causing a spark to form. The voltage at which the spark is created, termed the breakdown voltage, is governed by the surrounding gaseous environment. Surgeons are now utilizing the ESU laparoscopically with carbon dioxide insufflation, potentially altering ESU operating characteristics. This study examines the clinical implications of altering gas composition by measuring the spark gap distance as a marker of breakdown voltage and use of the ESU on a biologic model, both in room air and carbon dioxide. Paschen's Law predicted a 35% decrease in gap distance in carbon dioxide, while testing revealed an average drop of 37-47% as compared to air. However, surgical model testing revealed no perceivable clinical difference. Electrosurgery can be performed in carbon dioxide environments, although surgeons should be aware of potentially altered ESU performance.

  18. Infrared energy levels and intensities of carbon dioxide.

    PubMed

    Rothman, L S; Benedict, W S

    1978-08-15

    Updated tables of vibrational energy levels, molecular constants, band origins, and intensities for carbon dioxide in the infrared region of the spectrum are presented. These tables are references for the AFGL Atmospheric Absorption Line Parameters Compilation.

  19. INTERIOR VIEW OF COLUMN TOPS. CARBON DIOXIDE BUBBLED THROUGH AMMONIONATED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW OF COLUMN TOPS. CARBON DIOXIDE BUBBLED THROUGH AMMONIONATED SALT BRINE TO MAKE BICARBONATE OF SODA. - Solvay Process Company, SA Wetside Building, Between Willis & Milton Avenue, Solvay, Onondaga County, NY

  20. 46 CFR 169.565 - Fixed carbon dioxide system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... cylinder storage area must be properly ventilated and the temperature inside must not exceed 130 °F. (g... alarm sounds for at least twenty seconds before the carbon dioxide is released into the space....

  1. 46 CFR 169.565 - Fixed carbon dioxide system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... cylinder storage area must be properly ventilated and the temperature inside must not exceed 130 °F. (g... alarm sounds for at least twenty seconds before the carbon dioxide is released into the space....

  2. 46 CFR 169.565 - Fixed carbon dioxide system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... cylinder storage area must be properly ventilated and the temperature inside must not exceed 130 °F. (g... alarm sounds for at least twenty seconds before the carbon dioxide is released into the space....

  3. Plants Can't Do without Carbon Dioxide.

    ERIC Educational Resources Information Center

    Hershey, David R.

    1992-01-01

    Describes an experiment to induce carbon dioxide deficiency to demonstrate its effects on plant growth. Suggests further studies to examine respiration by soil microbes and the effects of relative humidity, other gases, and air pollution on plant growth. (MDH)

  4. 40 CFR 86.1324-84 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate... performance. (b) Zero the carbon dioxide analyzer with either zero-grade air or zero-grade nitrogen....

  5. 40 CFR 86.124-78 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Regulations for 1977 and Later Model Year New Light-Duty Vehicles and New Light-Duty Trucks and New Otto-Cycle... nitrogen. (c) Calibrate on each normally used operating range with carbon dioxide in N2 calibration...

  6. 40 CFR 86.124-78 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Regulations for 1977 and Later Model Year New Light-Duty Vehicles and New Light-Duty Trucks and New Otto-Cycle... nitrogen. (c) Calibrate on each normally used operating range with carbon dioxide in N2 calibration...

  7. 40 CFR 86.1324-84 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate... performance. (b) Zero the carbon dioxide analyzer with either zero-grade air or zero-grade nitrogen....

  8. 40 CFR 86.124-78 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Regulations for 1977 and Later Model Year New Light-Duty Vehicles and New Light-Duty Trucks and New Otto-Cycle... nitrogen. (c) Calibrate on each normally used operating range with carbon dioxide in N2 calibration...

  9. 40 CFR 86.124-78 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Regulations for 1977 and Later Model Year New Light-Duty Vehicles and New Light-Duty Trucks and New Otto-Cycle... nitrogen. (c) Calibrate on each normally used operating range with carbon dioxide in N2 calibration...

  10. 40 CFR 86.124-78 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Regulations for 1977 and Later Model Year New Light-Duty Vehicles and New Light-Duty Trucks and New Otto-Cycle... nitrogen. (c) Calibrate on each normally used operating range with carbon dioxide in N2 calibration...

  11. Carbonate Mineralization of Volcanic Province Basalts

    SciTech Connect

    Schaef, Herbert T.; McGrail, B. Peter; Owen, Antionette T.

    2010-03-31

    Flood basalts are receiving increasing attention as possible host formations for geologic sequestration of anthropogenic CO2, with studies underway in the United States, India, Iceland, and Canada. As an extension of our previous experiments with Columbia River basalt, basalts from the eastern United States, India, and South Africa were reacted with aqueous dissolved CO2 and aqueous dissolved CO2-H2S mixtures under supercritical CO2 (scCO2) conditions to study the geochemical reactions resulting from injection of CO2 in such formations. The results of these studies are consistent with cation release behavior measured in our previous experiments (in press) for basalt samples tested in single pass flow through dissolution experiments under dilute solution and mildly acidic conditions. Despite the basalt samples having similar bulk chemistry, mineralogy and apparent dissolution kinetics, long-term static experiments show significant differences in rates of mineralization as well as compositions and morphologies of precipitates that form when the basalts are reacted with CO2-saturated water. For example, basalt from the Newark Basin in the United States was by far the most reactive of any basalt tested to date. Carbonate reaction products for the Newark Basin basalt were globular in form and contained significantly more Fe than the secondary carbonates that precipitated on the other basalt samples. In comparison, the post-reacted samples associated with the Columbia River basalts from the United States contained calcite grains with classic dogtooth spar morphology and trace cation substitution (Mg and Mn). Carbonation of the other basalts produced precipitates with compositions that varied chemically throughout the entire testing period. Examination of polished cross sections of the reacted grains by scanning electron microscopy and energy dispersive x-ray spectroscopy show precipitate overgrowths with varying chemical compositions. Compositional differences in the

  12. El Chichon: The genesis of volcanic sulfur dioxide monitoring from space

    NASA Astrophysics Data System (ADS)

    Krueger, Arlin; Krotkov, Nickolay; Carn, Simon

    2008-08-01

    The 1982 eruption of El Chichon inspired a new technique for monitoring volcanic clouds. Data from the Total Ozone Mapping Spectrometer (TOMS) instrument on the Nimbus-7 satellite were used to measure sulfur dioxide in addition to ozone. For the first time precise data on the sulfur dioxide mass in even the largest explosive eruption plumes could be determined. The plumes could be tracked globally as they are carried by winds. Magmatic eruptions could be discriminated from phreatic eruptions. The data from El Chichon are reanalyzed in this paper using the latest version of the TOMS instrument calibration (V8). They show the shearing of the eruption cloud into a globe-circling band while still anchored over Mexico in three weeks. The measured sulfur dioxide mass in the initial March 28 eruption was 1.6 Tg; the April 3 eruption produced 0.3 Tg more, and the April 4 eruptions added 5.6 Tg, for a cumulative total of 7.5 Tg, in substantial agreement with estimates from prior data versions. TOMS Aerosol Index (absorbing aerosol) data show rapid fallout of dense ash east and south of the volcano in agreement with Advanced Very High Resolution Radiometer (AVHRR) ash cloud positions.

  13. Impact of Siberian Trap volcanism on the end-Permian and Early Triassic carbon cycle

    NASA Astrophysics Data System (ADS)

    Meyer, K. M.; Kump, L.; Cui, Y.; Ridgwell, A. J.; Payne, J.

    2011-12-01

    The Siberian Traps are the largest of the large igneous provinces, covering approximately 5 million km2. The timing of this volcanic episode is indistinguishable from the end-Permian mass extinction, and the event likely both directly and indirectly impacted marine ecosystems, leading to the largest extinction of Earth history. Recent studies suggest record volumes of carbon dioxide and other greenhouse gases were released from both lava degassing and degassing due to heating of Tunguska Basin sediments. In this study, we use Genie-1, an Earth system model of intermediate complexity (http://wwww.genie.ac.uk), to examine the impact of volcanic volatile release on the sedimentary carbon isotope record and end-Permian carbonate system under a wide range of volumes, rates, and isotope compositions of CO2 input. These model experiments place quantitative constraints on the magnitude and rates of CO2 addition that can account for the sedimentary and C isotope records of the end-Permian and Early Triassic.

  14. Carbon Dioxide Effects under Conditions of Raised Environmental Pressure

    DTIC Science & Technology

    1974-12-26

    the inspiratory muscles might have contributed to the elevated carbon dioxide tensions in the trained underwater swimmer because it was shown that...alveolar carbon dioxide tensions increase linearly with the work- load on the inspiratory muscles (Milic- Emili & Tyler 1962). Lanphier (1963...Submarine Escape Training Tank, U.S. Naval Submarine Base New London, in dives to 90 ft (3.7 ATA) (Sehaefer 1955; Schaefer & Carey 1962). During

  15. Tethered catalysts for the hydration of carbon dioxide

    SciTech Connect

    Valdez, Carlos A; Satcher, Jr., Joe H; Aines, Roger D; Wong, Sergio E; Baker, Sarah E; Lightstone, Felice C; Stolaroff, Joshuah K

    2014-11-04

    A system is provided that substantially increases the efficiency of CO.sub.2 capture and removal by positioning a catalyst within an optimal distance from the air-liquid interface. The catalyst is positioned within the layer determined to be the highest concentration of carbon dioxide. A hydrophobic tether is attached to the catalyst and the hydrophobic tether modulates the position of the catalyst within the liquid layer containing the highest concentration of carbon dioxide.

  16. Chalcocite Oxidation and Coupled Carbon Dioxide Fixation by Thiobacillus ferrooxidans.

    PubMed

    Nielsen, A M; Beck, J V

    1972-03-10

    The reaction of cell suspensions of Thiobacillus ferrooxidans with pulverized chalcocite (Cu(2)S) in a Warburg manometric apparatus resulted in oxygen uptake accompanied by increased solubilization of copper and fixation of carbon dioxide. Since the only detectable oxidized products were cupric ions and the more oxidized form of the sulfide mineral, that is, digenite or covellite, the apparent source of energy for the carbon dioxide fixation was provided by the oxidation of the cuprous copper of the chalcocite.

  17. Carbon dioxide in the ocean surface: The homogeneous buffer factor

    USGS Publications Warehouse

    Sundquist, E.T.; Plummer, L.N.; Wigley, T.M.L.

    1979-01-01

    The amount of carbon dioxide that can be dissolved in surface seawater depends at least partially on the homogeneous buffer factor, which is a mathematical function of the chemical equilibrium conditions among the various dissolved inorganic species. Because these equilibria are well known, the homogeneous buffer factor is well known. Natural spatial variations depend very systematically on sea surface temperatures, and do not contribute significantly to uncertainties in the present or future carbon dioxide budget. Copyright ?? 1979 AAAS.

  18. Mycorrhizal mediation of soil organic carbon decomposition under elevated atmospheric carbon dioxide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Significant effort in global change research has recently been directed towards assessing the potential of soil as a carbon sink under future atmospheric carbon dioxide scenarios. Attention has focused on the impact of elevated carbon dioxide on plant interactions with mycorrhizae, a symbiotic soil...

  19. Fixation of carbon dioxide into dimethyl carbonate over titanium-based zeolitic thiophene-benzimidazolate framework

    EPA Science Inventory

    A titanium-based zeolitic thiophene-benzimidazolate framework has been designed for the direct synthesis of dimethyl carbonate (DMC) from methanol and carbon dioxide. The developed catalyst activates carbon dioxide and delivers over 16% yield of DMC without the use of any dehydra...

  20. Laser surgery: using the carbon dioxide laser.

    PubMed Central

    Wright, V. C.

    1982-01-01

    In 1917 Einstein theorized tha through an atomic process a unique kind of electromagnetic radiation could be produced by stimulated emission. When such radiation is in the optical or infrared spectrum it is termed laser (light amplification by stimulated emission of radiation) light. A laser, a high-intensity light source, emits a nearly parallel electromagnetic beam of energy at a given wavelength that can be captured by a lens and concentrated in the focal spot. The wavelength determines how the laser will be used. The carbon dioxide laser is now successfully employed for some surgical procedures in gynecology, otorhinolaryngology, neurosurgery, and plastic and general surgery. The CO2 laser beam is directed through the viewing system of an operating microscope or through a hand-held laser component. Its basic action in tissue is thermal vaporization; it causes minimal damage to adjacent tissues. Surgeons require special training in the basic methods and techniques of laser surgery, as well as in the safety standards that must be observed. Images FIG. 5 PMID:7074503

  1. Carbon dioxide dynamics in an artificial ecosystem

    NASA Astrophysics Data System (ADS)

    Hu, Enzhu; Hu, Dawei; Tong, Ling; Li, Ming; Fu, Yuming; He, Wenting; Liu, Hong

    An experimental artificial ecosystem was established as a tool to understand the behavior of closed ecosystem and to develop the technology for a future bioregenerative life support system for lunar or planetary exploration. Total effective volume of the system is 0.7 m3 . It consists of a higher plant chamber, an animal chamber and a photo-bioreactor which cultivated lettuce (Lactuca sativa L.), silkworm (Bombyx Mori L.) and microalgae (Chlorella), respectively. For uniform and sustained observations, lettuce and silkworms was cultivated using sequential cultivation method, and microalgae using continuous culture. Four researchers took turns breathing the system air through a tube for brief periods every few hours. A mathematic model, simulating the carbon dioxide dynamics was developed. The main biological parameters concerning photosynthesis of lettuce and microalgae, respiration of silkworms and human were validated by the experimental data. The model described the respiratory relationship between autotrophic and heterotrophic compartments. A control strategy was proposed as a tool for the atmosphere management of the artificial ecosystem.

  2. Effects of carbon dioxide on laryngeal receptors

    SciTech Connect

    Anderson, J.W.; Sant'Ambrogio, F.B.; Orani, G.P.; Sant'Ambrogio, G.; Mathew, O.P. )

    1990-02-26

    Carbon dioxide (CO{sub 2}) either stimulates or inhibits laryngeal receptors in the cat. The aim of this study was to correlate the CO{sub 2} response of laryngeal receptors with their response to other known stimuli (i.e. pressure, movement, cold, water and smoke). Single unit action potentials were recorded from fibers in the superior laryngeal nerve of 5 anesthetized, spontaneously breathing dogs together with CO{sub 2} concentration, esophageal and subglottic pressure. Constant streams of warm, humidified air or 10% CO{sub 2} in O{sub 2} were passed through the functionally isolated upper airway for 60 s. Eight of 13 randomly firing or silent receptors were stimulated by CO{sub 2} (from 0.4{plus minus}0.1 to 1.8{plus minus}0.4 imp.s). These non-respiratory-modulated receptors were more strongly stimulated by solutions lacking Cl{sup {minus}} and/or cigarette smoke. Six of 21 respiratory modulated receptors (responding to pressure and/or laryngeal motion) were either inhibited or stimulated by CO{sub 2}. Our results show that no laryngeal receptor responds only to CO{sub 2}. Silent or randomly active receptors were stimulated most often by CO{sub 2} consistent with the reflex effect of CO{sub 2} in the larynx.

  3. Suppressing bullfrog larvae with carbon dioxide

    USGS Publications Warehouse

    Gross, Jackson A.; Ray, Andrew; Sepulveda, Adam J.; Watten, Barnaby J.; Densmore, Christine L.; Layhee, Megan J.; Mark Abbey-Lambert,; ,

    2014-01-01

    Current management strategies for the control and suppression of the American Bullfrog (Lithobates catesbeianus = Rana catesbeiana Shaw) and other invasive amphibians have had minimal effect on their abundance and distribution. This study evaluates the effects of carbon dioxide (CO2) on pre- and prometamorphic Bullfrog larvae. Bullfrogs are a model organism for evaluating potential suppression agents because they are a successful invader worldwide. From experimental trials we estimated that the 24-h 50% and 99% lethal concentration (LC50 and LC99) values for Bullfrog larvae were 371 and 549 mg CO2/L, respectively. Overall, larvae that succumbed to experimental conditions had a lower body condition index than those that survived. We also documented sublethal changes in blood chemistry during prolonged exposure to elevated CO2. Specifically, blood pH decreased by more than 0.5 pH units after 9 h of exposure and both blood partial pressure of CO2 (pCO2) and blood glucose increased. These findings suggest that CO2 treatments can be lethal to Bullfrog larvae under controlled laboratory conditions. We believe this work represents the necessary foundation for further consideration of CO2 as a potential suppression agent for one of the most harmful invaders to freshwater ecosystems.

  4. Miniaturized Amperometric Solid Electrolyte Carbon Dioxide Sensors

    NASA Technical Reports Server (NTRS)

    Hunter, G. W.; Xu, J. C.; Liu, C. C.; Hammond, J. W.; Ward, B.; Lukco, D.; Lampard, P.; Artale, M.; Androjna, D.

    2006-01-01

    A miniaturized electrochemical carbon dioxide (CO2) sensor using Na3Z r2Si2PO12 (NASICON) as a solid electrolyte has been fabricated and de monstrated. Microfabrication techniques were used for sensor fabricat ion to yield a sensing area around 1.0 mm x 1.1 mm. The NASICON solid electrolyte and the Na2CO3/BaCO3 (1:1.7 molar ratio) auxiliary elect rolyte were deposited by sputtering in between and on top of the inte rdigitated finger-shaped platinum electrodes. This structure maximize s the length of the three-phase boundary (electrode, solid electrolyt e, and auxiliary electrolyte), which is critical for gas sensing. The robust CO2 sensor operated up to 600 C in an amperometric mode and a ttempts were made to optimize sensor operating parameters. Concentrat ions of CO2 between 0.02% and 4% were detected and the overall sensor performance was evaluated. Linear response of sensor current output to ln[CO2 concentration] ranging from 0.02% to 1% was achieved.

  5. On the psychotropic effects of carbon dioxide.

    PubMed

    Colasanti, Alessandro; Esquivel, Gabriel; Schruers, Koen J; Griez, Eric J

    2012-01-01

    It has been well established that the inhalation of Carbon Dioxide (CO2) can induce in humans an emotion closely replicating spontaneous panic attacks, as defined by current psychiatry nosology. The purpose of this review is to provide a critical summary of the data regarding CO2's psychopharmacological properties and underlying mechanisms. The authors review the literature on the human and animal response for the exposure of exogenous CO2 focusing on five points of interest: 1) the early history of the use of CO2 as an anesthetic and therapeutic agent, 2) the subjective effects of breathing CO2 at different concentrations in humans, 3) the use of CO2 in experimental psychiatric research as an experimental model of panic, 4) the pharmacological modulation of CO2-induced responses, and 5) the putative neurobiological mechanisms underlying the affective state induced by CO2. The authors conclude with an evolutionary-inspired notion that CO2 might act as an agent of a primal emotion serving a homeostatic function, in the control of respiration and acid-base balance.

  6. Euthanasia of neonatal mice with carbon dioxide

    USGS Publications Warehouse

    Pritchett, K.; Corrow, D.; Stockwell, J.; Smith, A.

    2005-01-01

    Exposure to carbon dioxide (CO2) is the most prevalent method used to euthanize rodents in biomedical research. The purpose of this study was to determine the time of CO2 exposure required to euthanize neonatal mice (0 to 10 days old). Multiple groups of mice were exposed to 100% CO 2 for time periods between 5 and 60 min. Mice were placed in room air for 10 or 20 min after CO2 exposure, to allow for the chance of recovery. If mice recovered at one time point, a longer exposure was examined. Inbred and outbred mice were compared. Results of the study indicated that time to death varied with the age of the animals and could be as long as 50 min on the day of birth and differed between inbred and outbred mice. Institutions euthanizing neonatal mice with CO2 may wish to adjust their CO 2 exposure time periods according the age of the mice and their genetic background. Copyright 2005 by the American Association for Laboratory Animal Science.

  7. Carbon Dioxide Chemistry on Titan's Surface

    NASA Astrophysics Data System (ADS)

    Hodyss, R. P.; Cable, M. L.; Malaska, M. J.; Vu, T. H.

    2015-12-01

    The surfaces of the moons of the outer Solar System are usually considered too cold (30-100 K) for significant chemistry to occur without the input of energy from exogenic sources (such as charged particles or VUV irradiation). In particular, Titan's thick atmosphere prevents significant amounts of high energy radiation from reaching the surface, limiting opportunities for surface chemical reactivity. Recently, we have identified carbamation, the reaction of carbon dioxide with primary amines to form carbamic acids, as a reaction that could occur thermally on Titan's surface. Amines should be present on Titan's surface, formed by photochemical reactions of N2 and CH4 in the upper atmosphere, and amine-containing molecules have been detected as a component of laboratory tholins made in terrestrial laboratories. There is some spectral evidence that CO2 is present on the surface, and CO2 has been definitively identified in the atmosphere. We use a combination of micro-Raman spectroscopy and UHV FTIR spectroscopy to examine the reaction products and kinetics of the carbamation reaction for a variety of primary amines. The reaction occurs readily at Titan surface temperatures (94 K), and leads to both carbamic acids and ammonium carbamate salts. Our kinetic data can be used to estimate the lifetime of CO2 on Titan's surface, and thus constrain the age of possible CO2-bearing cryovolcanic deposits.

  8. Carbon dioxide removal and the futures market

    NASA Astrophysics Data System (ADS)

    Coffman, D.’Maris; Lockley, Andrew

    2017-01-01

    Futures contracts are exchange-traded financial instruments that enable parties to fix a price in advance, for later performance on a contract. Forward contracts also entail future settlement, but they are traded directly between two parties. Futures and forwards are used in commodities trading, as producers seek financial security when planning production. We discuss the potential use of futures contracts in Carbon Dioxide Removal (CDR) markets; concluding that they have one principal advantage (near-term price security to current polluters), and one principal disadvantage (a combination of high price volatility and high trade volume means contracts issued by the private sector may cause systemic economic risk). Accordingly, we note the potential for the development of futures markets in CDR, but urge caution about the prospects for market failure. In particular, we consider the use of regulated markets: to ensure contracts are more reliable, and that moral hazard is minimised. While regulation offers increased assurances, we identify major insufficiencies with this approach—finding it generally inadequate. In conclusion, we suggest that only governments can realistically support long-term CDR futures markets. We note existing long-term CDR plans by governments, and suggest the use of state-backed futures for supporting these assurances.

  9. Vibrations of the carbon dioxide dimer

    NASA Astrophysics Data System (ADS)

    Chen, Hua; Light, J. C.

    2000-03-01

    Fully coupled four-dimensional quantum-mechanical calculations are presented for intermolecular vibrational states of rigid carbon dioxide dimer for J=0. The Hamiltonian operator is given in collision coordinates. The Hamiltonian matrix elements are evaluated using symmetrized products of spherical harmonics for angles and a potential optimized discrete variable representation (PO-DVR) for the intermolecular distance. The lowest ten or so states of each symmetry are reported for the potential energy surface (PES) given by Bukowski et al. [J. Chem. Phys. 110, 3785 (1999)]. Due to symmetries, there is no interconversion tunneling splitting for the ground state. Our calculations show that there is no tunneling shift of the ground state within our computation precision (0.01 cm-1). Analysis of the wave functions shows that only the ground states of each symmetry are nearly harmonic. The van der Waals frequencies and symmetry adapted force constants are found and compared to available experimental values. Strong coupling between the stretching coordinates and the bending coordinates are found for vibrationally excited states. The interconversion tunneling shifts are discussed for the vibrationally excited states.

  10. Development of Carbon Dioxide Hermitic Compressor

    NASA Astrophysics Data System (ADS)

    Imai, Satoshi; Oda, Atsushi; Ebara, Toshiyuki

    Because of global environmental problems, the existing refrigerants are to be replaced with natural refrigerants. CO2 is one of the natural refrigerants and environmentally safe, inflammable and non-toxic refrigerant. Therefore high efficiency compressor that can operate with natural refrigerants, especially CO2, needs to be developed. We developed a prototype CO2 hermetic compressor, which is able to use in carbon dioxide refrigerating systems for practical use. The compressor has two rolling pistons, and it leads to low vibrations, low noise. In additions, two-stage compression with two cylinders is adopted, because pressure difference is too large to compress in one stage. And inner pressure of the shell case is intermediate pressure to minimize gas leakage between compressing rooms and inner space of shell case. Intermediate pressure design enabled to make the compressor smaller in size and lighter in weight. As a result, the compressor achieved high efficiency and high reliability by these technology. We plan to study heat pump water heater, cup vending machine and various applications with CO2 compressor.

  11. Acute carbon dioxide avoidance in Caenorhabditis elegans

    PubMed Central

    Hallem, Elissa A.; Sternberg, Paul W.

    2008-01-01

    Carbon dioxide is produced as a by-product of cellular respiration by all aerobic organisms and thus serves for many animals as an important indicator of food, mates, and predators. However, whether free-living terrestrial nematodes such as Caenorhabditis elegans respond to CO2 was unclear. We have demonstrated that adult C. elegans display an acute avoidance response upon exposure to CO2 that is characterized by the cessation of forward movement and the rapid initiation of backward movement. This response is mediated by a cGMP signaling pathway that includes the cGMP-gated heteromeric channel TAX-2/TAX-4. CO2 avoidance is modulated by multiple signaling molecules, including the neuropeptide Y receptor NPR-1 and the calcineurin subunits TAX-6 and CNB-1. Nutritional status also modulates CO2 responsiveness via the insulin and TGFβ signaling pathways. CO2 response is mediated by a neural circuit that includes the BAG neurons, a pair of sensory neurons of previously unknown function. TAX-2/TAX-4 function in the BAG neurons to mediate acute CO2 avoidance. Our results demonstrate that C. elegans senses and responds to CO2 using multiple signaling pathways and a neural network that includes the BAG neurons and that this response is modulated by the physiological state of the worm. PMID:18524955

  12. Beneficial Use of Carbon Dioxide in Precast Concrete Production

    SciTech Connect

    Shao, Yixin

    2014-06-26

    The feasibility of using carbon dioxide as feedstock in precast concrete production is studied. Carbon dioxide reacts with calcium compounds in concrete, producing solid calcium carbonates in binding matrix. Two typical precast products are examined for their capacity to store carbon dioxide during the production. They are concrete blocks and fiber-cement panels. The two products are currently mass produced and cured by steam. Carbon dioxide can be used to replace steam in curing process to accelerate early strength, improve the long-term durability and reduce energy and emission. For a reaction within a 24-hour process window, the theoretical maximum possible carbon uptake in concrete is found to be 29% based on cement mass in the product. To reach the maximum uptake, a special process is developed to promote the reaction efficiency to 60-80% in 4-hour carbon dioxide curing and improve the resistance to freeze-thaw cycling and sulfate ion attack. The process is also optimized to meet the project target of $10/tCO2 in carbon utilization. By the use of self-concentrating absorption technology, high purity CO2 can be produced at a price below $40/t. With low cost CO2 capture and utilization technologies, it is feasible to establish a network for carbon capture and utilization at the vicinity of carbon sources. If all block produces and panel producers in United States could adopt carbon dioxide process in their production in place of steam, carbon utilization in these two markets alone could consume more than 2 Mt CO2/year. This capture and utilization process can be extended to more precast products and will continue for years to come.

  13. Carbon Dioxide Reforming of Methane to Syngas by Thermal Plasma

    NASA Astrophysics Data System (ADS)

    Sun, Yanpeng; Nie, Yong; Wu, Angshan; Ji, Dengxiang; Yu, Fengwen; Ji, Jianbing

    2012-03-01

    Experiments were conducted on syngas preparation from dry reforming of methane by carbon dioxide with a DC arc plasma at atmospheric pressure. In all experiments, nitrogen gas was used as the working gas for thermal plasma to generate a high-temperature jet into a horizontal tube reactor. A mixture of methane and carbon dioxide was fed vertically into the jet. In order to obtain a higher conversion rate of methane and carbon dioxide, chemical energy efficiency and fuel production efficiency, parametric screening studies were conducted, in which the volume ratio of carbon dioxide to methane in fed gases and the total flux of fed gases were taken into account. Results showed that carbon dioxide reforming of methane to syngas by thermal plasma exhibited a larger processing capacity, higher conversion of methane and carbon dioxide and higher chemical energy efficiency and fuel production efficiency. In addition, thermodynamic simulation for the reforming process was conducted. Experimental data agreed well with the thermodynamic results, indicating that high thermal efficiency can be achieved with the thermal plasma reforming process.

  14. Terpolymerization of ethylene, sulfur dioxide and carbon monoxide

    DOEpatents

    Johnson, R.; Steinberg, M.

    This invention relates to high molecular weight terpolymer of ethylene, sulfur dioxide and carbon monoxide stable to 280/sup 0/C and containing as little as 36 mo1% ethylene and about 41 to 51 mo1% sulfur dioxide, and to the method of producing said terpolymer by irradiation of a liquid and gaseous mixture of ethylene, sulfur dioxide and carbon monoxide by means of Co-60 gamma rays or an electron beam, at a temperature of about 10 to 50/sup 0/C, and at a pressure of about 140 to 680 atmospheres, to initiate polymerization.

  15. Terpolymerization of ethylene, sulfur dioxide and carbon monoxide

    DOEpatents

    Johnson, Richard; Steinberg, Meyer

    1981-01-01

    This invention relates to a high molecular weight terpolymer of ethylene, sulfur dioxide and carbon monoxide stable to 280.degree. C. and containing as little as 36 mol % ethylene and about 41-51 mol % sulfur dioxide; and to the method of producing said terpolymer by irradiation of a liquid and gaseous mixture of ethylene, sulfur dioxide and carbon monoxide by means of Co-60 gamma rays or an electron beam, at a temperature of about 10.degree.-50.degree. C., and at a pressure of about 140 to 680 atmospheres, to initiate polymerization.

  16. Carbon dioxide sequestration by direct aqueous mineral carbonation

    SciTech Connect

    O'Connor, William K.; Dahlin, David C.; Nilsen, David N.; Walters, Richard P.; Turner, Paul C.

    2000-01-01

    Carbon dioxide sequestration by an ex-situ, direct aqueous mineral carbonation process has been investigated over the past two years. This process was conceived to minimize the steps in the conversion of gaseous CO2 to a stable solid. This meant combining two separate reactions, mineral dissolution and carbonate precipitation, into a single unit operation. It was recognized that the conditions favorable for one of these reactions could be detrimental to the other. However, the benefits for a combined aqueous process, in process efficiency and ultimately economics, justified the investigation. The process utilizes a slurry of water, dissolved CO2, and a magnesium silicate mineral, such as olivine [forsterite end member (Mg2SiO4)], or serpentine [Mg3Si2O5(OH)4]. These minerals were selected as the reactants of choice for two reasons: (1) significant abundance in nature; and (2) high molar ratio of the alkaline earth oxides (CaO, MgO) within the minerals. Because it is the alkaline earth oxide that combines with CO2 to form the solid carbonate, those minerals with the highest ratio of these oxides are most favored. Optimum results have been achieved using heat pretreated serpentine feed material, sodium bicarbonate and sodium chloride additions to the solution, and high partial pressure of CO2 (PCO2). Specific conditions include: 155?C; PCO2=185 atm; 15% solids. Under these conditions, 78% conversion of the silicate to the carbonate was achieved in 30 minutes. Future studies are intended to investigate various mineral pretreatment options, the carbonation solution characteristics, alternative reactants, scale-up to a continuous process, geochemical modeling, and process economics.

  17. Using carbon dioxide as a building block in organic synthesis.

    PubMed

    Liu, Qiang; Wu, Lipeng; Jackstell, Ralf; Beller, Matthias

    2015-01-20

    Carbon dioxide exits in the atmosphere and is produced by the combustion of fossil fuels, the fermentation of sugars and the respiration of all living organisms. An active goal in organic synthesis is to take this carbon--trapped in a waste product--and re-use it to build useful chemicals. Recent advances in organometallic chemistry and catalysis provide effective means for the chemical transformation of CO₂ and its incorporation into synthetic organic molecules under mild conditions. Such a use of carbon dioxide as a renewable one-carbon (C1) building block in organic synthesis could contribute to a more sustainable use of resources.

  18. The role of renewable bioenergy in carbon dioxide sequestration

    SciTech Connect

    Kinoshita, C.M.

    1993-12-31

    The use of renewable resources represents a sound approach to producing clean energy and reducing the dependence on diminishing reserves of fossil fuels. Unfortunately, the widespread interest in renewable energy in the 1970s, spurred by escalating fossil fuel prices, subsided with the collapse of energy prices in the mid 1980s. Today, it is largely to reverse alarming environmental trends, particularly the buildup of atmospheric carbon dioxide, rather than to reduce the cost of energy, that renewable energy resources are being pursued. This discussion focuses on a specific class of renewable energy resources - biomass. Unlike most other classes of renewable energy touted for controlling atmospheric carbon dioxide concentrations, e.g., hydro, direct solar, wind, geothermal, and ocean thermal, which produce usable forms of energy while generating little or no carbon dioxide emissions, bioenergy almost always involves combustion and therefore generates carbon dioxide; however, if used on a sustained basis, bio-energy would not contribute to the build-up of atmospheric carbon dioxide because the amount released in combustion would be balanced by that taken up via photosynthesis. It is in that context, i.e., sustained production of biomass as a modern energy carrier, rather than reforestation for carbon sequestration, that biomass is being discussed here, since biomass can play a much greater role in controlling global warming by displacing fossil fuels than by being used strictly for carbon sequestration (partly because energy crop production can reduce fossil carbon dioxide emissions indefinitely, whereas under the reforestation strategy, carbon dioxide abatement ceases at forest maturity).

  19. Carbon Dioxide Reduction Technology Trade Study

    NASA Technical Reports Server (NTRS)

    Jeng, Frank F.; Anderson, Molly S.; Abney, Morgan B.

    2011-01-01

    For long-term human missions, a closed-loop atmosphere revitalization system (ARS) is essential to minimize consumables. A carbon dioxide (CO2) reduction technology is used to reclaim oxygen (O2) from metabolic CO2 and is vital to reduce the delivery mass of metabolic O2. A key step in closing the loop for ARS will include a proper CO2 reduction subsystem that is reliable and with low equivalent system mass (ESM). Sabatier and Bosch CO2 reduction are two traditional CO2 reduction subsystems (CRS). Although a Sabatier CRS has been delivered to International Space Station (ISS) and is an important step toward closing the ISS ARS loop, it recovers only 50% of the available O2 in CO2. A Bosch CRS is able to reclaim all O2 in CO2. However, due to continuous carbon deposition on the catalyst surface, the penalties of replacing spent catalysts and reactors and crew time in a Bosch CRS are significant. Recently, technologies have been developed for recovering hydrogen (H2) from Sabatier-product methane (CH4). These include methane pyrolysis using a microwave plasma, catalytic thermal pyrolysis of CH4 and thermal pyrolysis of CH4. Further, development in Sabatier reactor designs based on microchannel and microlith technology could open up opportunities in reducing system mass and enhancing system control. Improvements in Bosch CRS conversion have also been reported. In addition, co-electrolysis of steam and CO2 is a new technology that integrates oxygen generation and CO2 reduction functions in a single system. A co-electrolysis unit followed by either a Sabatier or a carbon formation reactor based on Bosch chemistry could improve the overall competitiveness of an integrated O2 generation and CO2 reduction subsystem. This study evaluates all these CO2 reduction technologies, conducts water mass balances for required external supply of water for 1-, 5- and 10-yr missions, evaluates mass, volume, power, cooling and resupply requirements of various technologies. A system

  20. Atmospheric input of carbon dioxide from burning wood.

    PubMed

    Wong, C S

    1978-04-14

    The atmospheric input of carbon dioxide from burning wood, in particular from forest fires in boreal and temperate regions resulting from both natural and man-made causes and predominantly from forest fires in tropical regions caused by shifting cultivation, is estimated to be 5.7 x 10(15) grams of carbon per year as gross input and 1.5 x 10(15) grams of carbon per year as net input. This is a significant amount as compared to the fossil fuel carbon dioxide produced from the utilization of oil, gas, coal, and limestone, and bears on the hypothesis of the enhanced sedimentation of marine detritus as a removal mechanism of excess atmospheric carbon dioxide.

  1. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Thomas Nelson

    2004-07-01

    This report describes research conducted between April 1, 2004 and June 30, 2004 on the preparation and use of dry regenerable sorbents for removal of carbon dioxide from flue gas. Support materials and supported sorbents were prepared by spray drying. Sorbents consisting of 20 to 50% sodium carbonate on a ceramic support were prepared by spray drying in batches of approximately 300 grams. The supported sorbents exhibited greater carbon dioxide capture rates than unsupported calcined sodium bicarbonate in laboratory tests. Preliminary process design and cost estimation for a retrofit application suggested that costs of a dry regenerable sodium carbonate-based process could be lower than those of a monoethanolamine absorption system. In both cases, the greatest part of the process costs come from power plant output reductions due to parasitic consumption of steam for recovery of carbon dioxide from the capture medium.

  2. It is time to put carbon dioxide to work

    SciTech Connect

    Lipinsky, E.S.

    1993-12-31

    The need to control emissions of carbon dioxide into the atmosphere is the subject of vigorous debate at this time. There is growing evidence that rising levels of carbon dioxide increase global warming, with perhaps highly adverse impacts for the human economy. There are calls for carbon taxes and other harsh measures. Japan has established a national goal of holding carbon dioxide emissions in the year 2000 to 1990 levels. I hope that this conference will be a turning point in the United States position on this issue. The current major end uses for CO{sub 2} include refrigeration, beverage carbonation, soda ash production, fire fighting, and urea fertilizer production. They are all based on chemistry that would not surprise a good chemist of the 19th century. Consumption of carbon dioxide in synthesis of industrial chemicals is limited. Usually one explains low production of chemicals from a candidate feedstock in terms of poor availability, price, purity, or reactivity. We can eliminate the first three as the causes of the underutilization of carbon dioxide.

  3. Cryogenic Origin for Mars Analog Carbonates in the Bockfjord Volcanic Complex Svalbard (Norway)

    NASA Technical Reports Server (NTRS)

    Amundsen, H. E. F.; Benning, L.; Blake, D. F.; Fogel, M.; Ming, D.; Skidmore, M.; Steele, A.

    2011-01-01

    The Sverrefjell and Sigurdfjell eruptive centers in the Bockfjord Volcanic Complex (BVC) on Svalbard (Norway) formed by subglacial eruptions ca. 1 Ma ago. These eruptive centers carry ubiquitous magnesian carbonate deposits including dolomitemagnesite globules similar to those in the Martian meteorite ALH84001. Carbonates in mantle xenoliths are dominated by ALH84001 type carbonate globules that formed during quenching of CO2-rich mantle fluids. Lava hosted carbonates include ALH84001 type carbonate globules occurring throughout lava vesicles and microfractures and massive carbonate deposits associated with vertical volcanic vents. Massive carbonates include < or equal 5 cm thick magnesite deposits protruding downwards into clear blue ice within volcanic vents and carbonate cemented lava breccias associated with volcanic vents. Carbonate cements comprise layered deposits of calcite, dolomite, huntite, magnesite and aragonite associated with ALH84001 type carbonate globules lining lava vesicles. Combined Mossbauer, XRD and VNIR data show that breccia carbonate cements at Sverrefjell are analog to Comanche carbonates at Gusev crater.

  4. Interaction of Surface Modified Carbon Nanotubes with Supercritical Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Baysal, Nihat; Unsal, Banu; Ozisik, Rahmi

    2006-03-01

    The properties of carbon nanotube (CNT)-polymer nanocomposites are far below than those calculated, mainly due to poor dispersion or interface quality. This is particularly difficult for single walled carbon nanotubes (SWNTs) as they tend to form bundles or ropes that are difficult to exfoliate. Supercritical fluid (SCF) assisted processing is one of the methods that can be used to exfoliate/disperse CNTs along with modifiying the interface of the CNTs. Molecular dynamics simulations were performed to understand how the surface modifiers behave near SWNT surface with and without the presence of SCF molecules. It is also important to understand the diffusivity of SCF molecules between SWNT bundles and the effect of surface modifiers on diffusion. Octane and n-perflourooctane molecules were used as surface modifiers with varying tethering density and carbon dioxide (CO2) was chosen as the SCF. Results showed that the system with highest number of n-perfluorooctanes presented the highest degree of success in separating the SWNTs in the presence of CO2.

  5. Ionic Liquid Membranes for Carbon Dioxide Separation

    SciTech Connect

    Myers, C.R.; Ilconich, J.B.; Luebke, D.R.; Pennline, H.W.

    2008-07-12

    Recent scientific studies are rapidly advancing novel technological improvements and engineering developments that demonstrate the ability to minimize, eliminate, or facilitate the removal of various contaminants and green house gas emissions in power generation. The Integrated Gasification Combined Cycle (IGCC) shows promise for carbon dioxide mitigation not only because of its higher efficiency as compared to conventional coal firing plants, but also due to a higher driving force in the form of high partial pressure. One of the novel technological concepts currently being developed and investigated is membranes for carbon dioxide (CO2) separation, due to simplicity and ease of scaling. A challenge in using membranes for CO2 capture in IGCC is the possibility of failure at elevated temperatures or pressures. Our earlier research studies examined the use of ionic liquids on various supports for CO2 separation over the temperature range, 37°C-300°C. The ionic liquid, 1-hexyl-3methylimidazolium Bis(trifluoromethylsulfonyl)imide, ([hmim][Tf2N]), was chosen for our initial studies with the following supports: polysulfone (PSF), poly(ether sulfone) (PES), and cross-linked nylon. The PSF and PES supports had similar performance at room temperature, but increasing temperature caused the supported membranes to fail. The ionic liquid with the PES support greatly affected the glass transition temperature, while with the PSF, the glass transition temperature was only slightly depressed. The cross-linked nylon support maintained performance without degradation over the temperature range 37-300°C with respect to its permeability and selectivity. However, while the cross-linked nylon support was able to withstand temperatures, the permeability continued to increase and the selectivity decreased with increasing temperature. Our studies indicated that further testing should examine the use of other ionic liquids, including those that form chemical complexes with CO2 based on

  6. 46 CFR 147.65 - Carbon dioxide and halon fire extinguishing systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Carbon dioxide and halon fire extinguishing systems. 147... dioxide and halon fire extinguishing systems. (a) Carbon dioxide or halon cylinders forming part of a...) Carbon dioxide or halon cylinders must be rejected for further service when they— (1) Leak; (2)...

  7. The Headache of Carbon Dioxide Exposures

    NASA Technical Reports Server (NTRS)

    James, John T.

    2007-01-01

    Carbon dioxide (CO2), a natural product of human metabolism, accumulates quickly in sealed environments when humans are present, and can induce headaches, among other symptoms. Major resources are expended to control CO2 levels to concentrations that are tolerable to the crews of spacecraft and submersible craft. It is not practical to control CO2 levels to those found in the ambient environment on earth. As NASA looks ahead to long-duration missions conducted far from earth, difficult issues arise related to the management and effects of human exposure to CO2. One is the problem of pockets of CO2 in the habitat caused by excess generation of the gas in one location without a mechanism to purge the area with fresh air. This results in the crew rebreathing CO2 from their exhaled breath, exposing them to a much higher concentration of CO2 than whole-module measurements would suggest. Another issue is the potential increased sensitivity to CO2 in microgravity. For example, based on anecdotal information, it appears that space crews may be more susceptible than submarine crews to some of the subtle, yet adverse effects of CO2 exposure. Another issue, not unique to spaceflight, is the possibility of inter-individual differences in the susceptibility of crewmembers to CO2 exposure. Again, anecdotal reports from the International Space Station (ISS) crews suggest that certain individuals may experience a greater susceptibility. The implications associated with these issues are extremely important as NASA sets CO2 exposure limits that protect the crew from this compound s subtle adverse effects, without causing an unwarranted expenditure of resources to scrub CO2 from the habitat atmosphere.

  8. Carbon-dioxide-controlled ventilation study

    SciTech Connect

    McMordie, K.L.; Carroll, D.M.

    1994-05-01

    The In-House Energy Management (IHEM) Program has been established by the U.S. Department of Energy to provide funds to federal laboratories to conduct research on energy-efficient technology. The Energy Sciences Department of Pacific Northwest Laboratory (PNL) was tasked by IHEM to research the energy savings potential associated with reducing outdoor-air ventilation of buildings. By monitoring carbon dioxide (CO{sub 2}) levels in a building, outdoor air provided by the heating, ventilating, and air-conditioning (HVAC) system can be reduced to the percentage required to maintain satisfactory CO{sub 2} levels rather than ventilating with a higher outdoor-air percentage based on an arbitrary minimum outdoor-air setting. During summer months, warm outdoor air brought into a building for ventilation must be cooled to meet the appropriate cooling supply-air temperature, and during winter months, cold outdoor air must be heated. By minimizing the amount of hot or cold outdoor air brought into the HVAC system, the supply air requires less cooling or heating, saving energy and money. Additionally, the CO{sub 2} levels in a building can be monitored to ensure that adequate outdoor air is supplied to a building to maintain air quality levels. The two main considerations prior to implementing CO{sub 2}-based ventilation control are its impact on energy consumption and the adequacy of indoor air quality (IAQ) and occupant comfort. To address these considerations, six portable CO{sub 2} monitors were placed in several Hanford Site buildings to estimate the adequacy of office/workspace ventilation. The monitors assessed the potential for reducing the flow of outdoor-air to the buildings. A candidate building was also identified to monitor various ventilation control strategies for use in developing a plan for implementing and assessing energy savings.

  9. Carbon dioxide catastrophes: Past and future menace

    NASA Technical Reports Server (NTRS)

    Baur, Mario E.

    1988-01-01

    Carbon dioxide is important in its role as coupler of the terrestrial biosphere to inorganic chemical processes and as the principal greenhouse gas controlling Earth's surface temperature. The hypothesis that atmospheric CO2 levels have diminished with time, with the resulting cooling effect offsetting an increase in the solar constant, seems firmly established, and it is shown that feedback mechanisms exist which can maintain the terrestrial surface in a relatively narrow temperature range over geological time. Of the factors involved in such CO2 variation, the oceanic reservoir appears the most important. Surface waters are probably in approximate equilibrium with regard to CO2 exchange with the ambient atmosphere in most regions, but data from deep-ocean water sampling indicates that such waters are somewhat undersaturated in the sense that they would tend to absorb CO2 from the atmosphere if brought to the surface without change in composition or temperature. If major impacts into the ocean can result in loss of a substantial portion of the atmospheric CO2 reservoir, then any such future event could imperil the continuation of most higher forms of life on Earth. The most likely candidate for an inverse Nyos global event in previous Earth history is the Cretaceous-Tertiary terminal extinction event. The Cretaceous was characterized by warm, equable temperatures presumably indicative of relatively high CO2 levels and an intense greenhouse heating. Cooling of the oceans in absence of massive transfer of CO2 to the oceanic reservoir in itself would promote a condition of CO2 undersaturation in abyssal waters, and this is made even more extreme by the pattern of ocean water circulation. It is possible to envision a situation in which deep ocean waters were at least occasionally profoundly undersaturated with regard to CO2. Turnover of a major fraction of such an ocean would then remove, on a very short time scale, as much as 90 percent of the atmospheric CO2

  10. Lagrangian transport simulations of volcanic sulfur dioxide emissions: Impact of meteorological data products

    NASA Astrophysics Data System (ADS)

    Hoffmann, L.; Rößler, T.; Griessbach, S.; Heng, Y.; Stein, O.

    2016-05-01

    Sulfur dioxide (SO2) emissions from strong volcanic eruptions are an important natural cause for climate variations. We applied our new Lagrangian transport model Massive-Parallel Trajectory Calculations to perform simulations for three case studies of volcanic eruption events. The case studies cover the eruptions of Grímsvötn, Iceland, Puyehue-Cordón Caulle, Chile, and Nabro, Eritrea, in May and June 2011. We used SO2 observations of the Atmospheric Infrared Sounder (AIRS/Aqua) and a backward trajectory approach to initialize the simulations. Besides validation of the new model, the main goal of our study was a comparison of simulations with different meteorological data products. We considered three reanalyses, i.e., ERA-Interim, Modern-Era Retrospective Analysis for Research and Applications (MERRA), and National Centers for Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR) Reanalysis Project as well as the European Centre for Medium-Range Weather Forecasts (ECMWF) operational analysis. Qualitatively, the SO2 distributions from the simulations compare well not only with the AIRS data but also with Cloud-Aerosol Lidar with Orthogonal Polarization and Michelson Interferometer for Passive Atmospheric Sounding aerosol observations. Transport deviations and the critical success index (CSI) are analyzed to evaluate the simulations quantitatively. During the first 5 or 10 days after the eruptions we found the best performance for the ECMWF analysis (CSI range of 0.25-0.31), followed by ERA-Interim (0.25-0.29), MERRA (0.23-0.27), and NCAR/NCEP (0.21-0.23). High temporal and spatial resolution of the meteorological data does lead to improved performance of Lagrangian transport simulations of volcanic emissions in the upper troposphere and lower stratosphere.

  11. Reactor design considerations in mineral sequestration of carbon dioxide

    SciTech Connect

    Ityokumbul, M.T.; Chander, S.; O'Connor, William K.; Dahlin, David C.; Gerdemann, Stephen J.

    2001-01-01

    One of the promising approaches to lowering the anthropogenic carbon dioxide levels in the atmosphere is mineral sequestration. In this approach, the carbon dioxide reacts with alkaline earth containing silicate minerals forming magnesium and/or calcium carbonates. Mineral carbonation is a multiphase reaction process involving gas, liquid and solid phases. The effective design and scale-up of the slurry reactor for mineral carbonation will require careful delineation of the rate determining step and how it changes with the scale of the reactor. The shrinking core model was used to describe the mineral carbonation reaction. Analysis of laboratory data indicates that the transformations of olivine and serpentine are controlled by chemical reaction and diffusion through an ash layer respectively. Rate parameters for olivine and serpentine carbonation are estimated from the laboratory data.

  12. Carbon Dioxide Carbonates in the Earth;s Mantle: Implications to the Deep Carbon Cycle

    SciTech Connect

    Yoo, Choong-Shik; Sengupta, Amartya; Kim, Minseob

    2012-05-22

    An increase in the ionic character in C-O bonds at high pressures and temperatures is shown by the chemical/phase transformation diagram of CO{sub 2}. The presence of carbonate carbon dioxide (i-CO{sub 2}) near the Earth's core-mantle boundary condition provides insights into both the deep carbon cycle and the transport of atmospheric CO{sub 2} to anhydrous silicates in the mantle and iron core.

  13. Carbon Dioxide Effects Research and Assessment Program. Carbon Dioxide Research Progress Report, fiscal year 1979

    SciTech Connect

    Dahlman, R. C.; Gross, T.; Machta, L.; Elliott, W.; MacCracken, M.

    1980-04-01

    Research on the global carbon cycle and the effects of increased carbon dioxide on the global climate system is reported. Environmental and societal effects related to CO/sub 2/ and environmental control technology for CO/sub 2/ are also discussed. Lists of research projects and reports and publications of the Carbon Dioxide and Climate Research Program are included. An expanded CO/sub 2/ monitoring network is providing increased coverage for interpretation of patterns of sources and sinks seasonal variability, and documentation of the global growth of CO/sub 2/. Modeling studies emphasized that knowledge of the transport and mixing of surface ocean waters is important in understanding deep oceanic circulation. Initial studies in the equatorial Pacific are helping quantify estimates of the amount of outgassing CO/sub 2/ from tropical waters. During fiscal year 1979, there was a substantial increase in appreciation of the role of the ocean in controlling not only atmospheric CO/sub 2/ concentrations but also the climatic response to changes in concentration. Model simulations of the effect of doubled CO/sub 2/ concentration carried out with fixed ocean temperatures a situation that is possible during perhaps the next 20 years, showed relatively small summer heating over land areas. On the other hand, simulations in which the oceanic temperatures could come into instantaneous equilibrium with atmospheric conditions continued to show global temperature increases of 3 +- 1.5/sup 0/C, accentuated at high latitudes. To improve understanding of possible regional climate changes, there were increased efforts to reconstruct regional climatic patterns prevailing during past warm periods that might serve as analogs of future climatic conditions. Particular attention was directed to the climates of the United States and other countries bordering the North Atlantic Ocean during the warm period 5000 to 7000 years ago.

  14. Vegetation Response to Carbon Dioxide and Climate: Data from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer

    CDIAC products are indexed and searchable through a customized interface powered by ORNL's Mercury search engine. Products include numeric data packages, publications, trend data, atlases, and models and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Some of the collections may also be included in the CDIAC publication Trends Online: A Compendium of Global Change Data. Most data sets, many with numerous data files, are free to download from CDIAC's ftp area. Information related to vegetation response to carbon dioxide and climate includes: • Area and Carbon Content of Sphagnum Since Last Glacial Maximum (2002) (Trends Online) • TDE Model Intercomparison Project Data Archive • Presentations and abstracts from the recent DOE Terrestrial Science Team Meeting (Argonne National Laboratory, October 29-31, 2001) • FACE (Free-Air CO2 Enrichment) • Walker Branch Throughfall Displacement Experiment Data Report: Site Characterization, System Performance, Weather, Species Composition, and Growth (2001) • Bibliography on CO2 Effects on Vegetation and Ecosystems: 1990-1999 Literature (2000) • Direct effects of atmospheric CO2 enrichment on plants and ecosystems: An updated bibliographic data base (1994) • A Database of Herbaceous Vegetation Responses to Elevated Atmospheric CO2 (1999) • A Database of Woody Vegetation Responses to Elevated Atmospheric CO2 (1999) • Forest Responses to Anthropogenic Stress (FORAST) Database (1995) • Effects of CO2 and Nitrogen Fertilization on Growth and Nutrient Content of Juvenile Ponderosa Pine (1998) • Carbon Dioxide Enrichment: Data on the Response of Cotton to Varying CO2Irrigation, and Nitrogen (1992) • Growth and Chemical Responses to CO2 Enrichment Virginia Pine Pinus Virginiana Mill.(1985)

  15. Carbon dioxide fluid-flow modeling and injectivity calculations

    USGS Publications Warehouse

    Burke, Lauri

    2011-01-01

    These results were used to classify subsurface formations into three permeability classifications for the probabilistic calculations of storage efficiency and containment risk of the U.S. Geological Survey geologic carbon sequestration assessment methodology. This methodology is currently in use to determine the total carbon dioxide containment capacity of the onshore and State waters areas of the United States.

  16. Cobalt carbonyl catalyzed olefin hydroformylation in supercritical carbon dioxide

    SciTech Connect

    Rathke, J.W.; Klingler, R.J.

    1992-12-31

    A method of olefin hydroformylation is provided wherein an olefin reacts with a carbonyl catalyst and with reaction gases such as hydrogen and carbon monoxide in the presence of a supercritical reaction solvent, such as carbon dioxide. The invention provides higher yields of n-isomer product without the gas-liquid mixing rate limitation seen in conventional Oxo processes using liquid media.

  17. Electroreduction of carbon dioxide in aqueous solutions at metal electrodes

    SciTech Connect

    Augustynski, J.; Jermann, B.; Kedzierzawski, P.

    1996-12-31

    The quantities of carbon stored in the form of atmospheric carbon dioxide, CO{sub 2} in the hydrosphere and carbonates in the terrestrial environment substantially exceed those of fossil fuels. In spite of this the industrial use of carbon dioxide as a source of chemical carbon is presently limited to preparation of urea and certain carboxylic acids as well as organic carbonates and polycarbonates. However, the situation is expected to change in the future, if effective catalytic systems allowing to activate carbon dioxide will become available. In this connection, the electrochemical reduction of CO{sub 2}, requiring only an additional input of water and electrical energy, appears as an attractive possibility. For more than 100 years formic acid and formates of alkali metals were considered as the only significant products of the electroreduction of carbon dioxide in aqueous solutions. The highest current efficiencies, exceeding 90 %, were obtained either with mercury or with amalgam electrodes. The only comprehensive study regarding kinetics of CO{sub 2} reduction in aqueous solution has been performed by Eyring et al. using a mercury cathode. This paper describes electrolysis studies.

  18. Uptake and Loss of Carbon Dioxide in Volumetric Analysis.

    ERIC Educational Resources Information Center

    Macca, Carlo

    1986-01-01

    Discusses the use of ratio diagrams, which plot the calculations of equilibrium concentrations of the species of the carbonate system. Provides examples to describe how these diagrams can be used to illustrate the behavior systems of interest in volumetric analysis, where absorption or loss of carbon dioxide takes place. (TW)

  19. Capturing carbon dioxide as a polymer from natural gas

    NASA Astrophysics Data System (ADS)

    Hwang, Chih-Chau; Tour, Josiah J.; Kittrell, Carter; Espinal, Laura; Alemany, Lawrence B.; Tour, James M.

    2014-06-01

    Natural gas is considered the cleanest and recently the most abundant fossil fuel source, yet when it is extracted from wells, it often contains 10-20 mol% carbon dioxide (20-40 wt%), which is generally vented to the atmosphere. Efforts are underway to contain this carbon dioxide at the well-head using inexpensive and non-corrosive methods. Here we report nucleophilic porous carbons are synthesized from simple and inexpensive carbon-sulphur and carbon-nitrogen precursors. Infrared, Raman and 13C nuclear magnetic resonance signatures substantiate carbon dioxide fixation by polymerization in the carbon channels to form poly(CO2) under much lower pressures than previously required. This growing chemisorbed sulphur- or nitrogen-atom-initiated poly(CO2) chain further displaces physisorbed hydrocarbon, providing a continuous carbon dioxide selectivity. Once returned to ambient conditions, the poly(CO2) spontaneously depolymerizes, leading to a sorbent that can be easily regenerated without the thermal energy input that is required for traditional sorbents.

  20. 40 CFR 86.224-94 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Carbon dioxide analyzer calibration. 86.224-94 Section 86.224-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.224-94 Carbon...

  1. 40 CFR 86.224-94 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Carbon dioxide analyzer calibration. 86.224-94 Section 86.224-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.224-94 Carbon...

  2. Assessing Carbon Dioxide Emissions from Energy Use at a University

    ERIC Educational Resources Information Center

    Riddell, William; Bhatia, Krishan Kumar; Parisi, Matthew; Foote, Jessica; Imperatore, John, III

    2009-01-01

    Purpose: The purpose of this paper is to assess the carbon dioxide emissions associated with electric, HVAC, and hot water use from a US university. Design/methodology/approach: First, the total on-campus electrical, natural gas and oil consumption for an entire year was assessed. For each category of energy use, the carbon associated with…

  3. 40 CFR 86.224-94 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Carbon dioxide analyzer calibration. 86.224-94 Section 86.224-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.224-94 Carbon...

  4. 40 CFR 86.224-94 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Carbon dioxide analyzer calibration. 86.224-94 Section 86.224-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.224-94 Carbon...

  5. Cobalt carbonyl catalyzed olefin hydroformylation in supercritical carbon dioxide

    DOEpatents

    Rathke, J.W.; Klingler, R.J.

    1993-03-30

    A method of olefin hydroformylation is provided wherein an olefin reacts with a carbonyl catalyst and with reaction gases such as hydrogen and carbon monoxide in the presence of a supercritical reaction solvent, such as carbon dioxide. The invention provides higher yields of n-isomer product without the gas-liquid mixing rate limitation seen in conventional Oxo processes using liquid media.

  6. Cobalt carbonyl catalyzed olefin hydroformylation in supercritical carbon dioxide

    DOEpatents

    Rathke, Jerome W.; Klingler, Robert J.

    1993-01-01

    A method of olefin hydroformylation is provided wherein an olefin reacts with a carbonyl catalyst and with reaction gases such as hydrogen and carbon monoxide in the presence of a supercritical reaction solvent, such as carbon dioxide. The invention provides higher yields of n-isomer product without the gas-liquid mixing rate limitation seen in conventional Oxo processes using liquid media.

  7. Nano-spike Catalysts Convert Carbon Dioxide Directly into Ethanol

    ScienceCinema

    Rondinone, Adam

    2016-10-19

    In a new twist to waste-to-fuel technology, scientists at the Department of Energy’s Oak Ridge National Laboratory have developed an electrochemical process that uses tiny spikes of carbon and copper to turn carbon dioxide, a greenhouse gas, into ethanol. Their finding, which involves nanofabrication and catalysis science, was serendipitous.

  8. Nano-spike Catalysts Convert Carbon Dioxide Directly into Ethanol

    SciTech Connect

    Rondinone, Adam

    2016-10-12

    In a new twist to waste-to-fuel technology, scientists at the Department of Energy’s Oak Ridge National Laboratory have developed an electrochemical process that uses tiny spikes of carbon and copper to turn carbon dioxide, a greenhouse gas, into ethanol. Their finding, which involves nanofabrication and catalysis science, was serendipitous.

  9. Regeneration of oxygen from carbon dioxide and water.

    NASA Technical Reports Server (NTRS)

    Weissbart, J.; Smart, W. H.; Wydeven, T.

    1972-01-01

    In a closed ecological system it is necessary to reclaim most of the oxygen required for breathing from respired carbon dioxide and the remainder from waste water. One of the advanced physicochemical systems being developed for generating oxygen in manned spacecraft is the solid electrolyte-electrolysis system. The solid electrolyte system consists of two basic units, an electrolyzer and a carbon monoxide disproportionator. The electrolyzer can reclaim oxygen from both carbon dioxide and water. Electrolyzer preparation and assembly are discussed together with questions of reactor design and electrolyzer performance data.

  10. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P.Gupta; William J. McMichael; Ya Liang; Douglas P. Harrison

    2002-10-01

    The objective of this project is to develop a simple and inexpensive process to separate CO{sub 2} as an essentially pure stream from a fossil fuel combustion system using a regenerable sorbent. The sorbents being investigated in this project are primarily alkali carbonates, and particularly sodium carbonate and potassium carbonate, which are converted to bicarbonates through reaction with carbon dioxide and water vapor. Bicarbonates are regenerated to carbonates when heated, producing a nearly pure CO{sub 2} stream after condensation of water vapor. This quarter, electrobalance tests suggested that higher temperature calcination of trona leds to reduced carbonation activity in subsequent cycles, but that calcination in dry carbon dioxide did not result in decreased activity relative to calcination in helium. Following higher temperature calcination, sodium bicarbonate (SBC) No.3 has greater activity than either coarse or fine grades of trona. Fixed bed testing of calcined SBC No.3 at 70 C confirmed that high rates of carbon dioxide absorption are possible and that the resulting product is a mixture of Wegscheider's salt and sodium carbonate. In fluidized bed testing of supported potassium carbonate, very rapid carbonation rates were observed. Activity of the support material complicated the data analysis. A milled, spherical grade of SBC appeared to be similar in attrition and abrasion characteristics to an unmilled, less regularly shaped SBC. The calcination behavior, at 107 C, for the milled and unmilled materials was also similar.

  11. Sequestration of carbon dioxide with hydrogen to useful products

    DOEpatents

    Adams, Michael W. W.; Kelly, Robert M.; Hawkins, Aaron B.; Menon, Angeli Lal; Lipscomb, Gina Lynette Pries; Schut, Gerrit Jan

    2017-03-07

    Provided herein are genetically engineered microbes that include at least a portion of a carbon fixation pathway, and in one embodiment, use molecular hydrogen to drive carbon dioxide fixation. In one embodiment, the genetically engineered microbe is modified to convert acetyl CoA, molecular hydrogen, and carbon dioxide to 3-hydroxypropionate, 4-hydroxybutyrate, acetyl CoA, or the combination thereof at levels greater than a control microbe. Other products may also be produced. Also provided herein are cell free compositions that convert acetyl CoA, molecular hydrogen, and carbon dioxide to 3-hydroxypropionate, 4-hydroxybutyrate, acetyl CoA, or the combination thereof. Also provided herein are methods of using the genetically engineered microbes and the cell free compositions.

  12. Catalytic carbon for oxidation of carbon monoxide in the presence of sulfur dioxide

    SciTech Connect

    Sinha, R.K.

    1980-01-22

    A carbon supported catalyst used for carbon monoxide oxidation is chemically modified by treating the activated carbon support with an oxidizing agent and/or a hydrophobic compound prior to impregnation with the catalyst mixture. The thus treated catalytic carbon is capable of oxidizing carbon monoxide in an air stream containing sulfur dioxide over an extended period of time.

  13. Magmatic carbon dioxide emissions at Mammoth Mountain, California

    USGS Publications Warehouse

    Farrar, Christopher D.; Neil, John M.; Howle, James F.

    1999-01-01

    Carbon dioxide (CO2) of magmatic origin is seeping out of the ground in unusual quantities at several locations around the flanks of Mammoth Mountain, a dormant volcano in Eastern California. The most recent volcanic activity on Mammoth Mountain was steam eruptions about 600 years ago, but seismic swarms and long-period earthquakes over the past decade are evidence of an active magmatic system at depth. The CO2 emission probably began in 1990 but was not recognized until 1994. Seismic swarms and minor ground deformation during 1989, believed to be results of a shallow intrusion of magma beneath Mammoth Mountain, probably triggered the release of CO2, which persists in 1998. The CO2 gas is at ambient temperatures and emanates diffusely from the soil surface rather than flowing from distinct vents. The CO2 has collected in the soil by displacing air in the pore spaces and reaches concentrations of greater than 95 percent by volume in places. The total area affected by high CO2 concentrations and high CO2 flux from the soil surface was estimated at 60 hectares in 1997. Coniferous forest covering about 40 hectares has been killed by high CO2 concentrations in the root zone. In more than 300 soil-gas samples collected from depths of 0.5 to 2 m in 1995, CO2 concentrations ranged from background levels (less than 1 percent) to greater than 95 percent by volume. At 250 locations, CO2 flux was measured using a closed chamber in 1996; values, in grams per square meter per day, ranged from background (less than 25) to more than 30,000. On the basis of these data, the total emission of magmatic CO2 in 1996 is estimated to be about 530 megagrams per day. Concentrations of CO2 exceeding Occupational Safety and Health Administration standards have been measured in pits dug in soil and snow, in poorly ventilated buildings, and in below-ground valve-boxes around Mammoth Mountain. CO2 concentrations greater than 10 percent in poorly ventilated spaces are not uncommon on some parts

  14. Peroxynitrite-mediated decarboxylation of pyruvate to both carbon dioxide and carbon dioxide radical anion.

    PubMed

    Vásquez-Vivar, J; Denicola, A; Radi, R; Augusto, O

    1997-07-01

    There has been a recent renewal of interest in the antioxidant properties of pyruvate which are usually attributed to its capacity to undergo oxidative decarboxylation in the presence of hydrogen peroxide. The interaction of pyruvate with other oxidizing biological intermediates, however, has been scarcely considered in the literature. Here we report that peroxynitrite, the oxidant produced by the reaction between superoxide anion and nitric oxide, reacts with pyruvate with an apparent second-order rate constant of 88 +/- 7 M-1 s-1 at pH 7.4 and 37 degrees C. Kinetic studies indicated that pyruvate reacts with peroxynitrite anion (k = 100 +/- 7 M-1 s-1, peroxynitrous acid (k = 49 +/- 7 M-1 s-1, and a highly oxidizing species derived from peroxynitrous acid. Pyruvate decarboxylation was proved by anion exchange chromatography detection of acetate in incubations of peroxynitrite and pyruvate at pH 7.4 and 5.5. Formation of carbon dioxide radical anion was ascertained by EPR spin-trapping studies in the presence of GSH and the spin-trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO). The use of pyruvate labeled with 13C at the 1-position led to the detection of the labeled DMPO carbon dioxide radical anion adduct. In the absence of GSH, oxygen consumption studies confirmed that peroxynitrite mediates the decarboxylation of pyruvate to free radical intermediates. Comparing the yields of acetate and free radicals estimated from the oxygen uptake studies, it is concluded that pyruvate is oxidized by both one- and two-electron oxidation pathways, the latter being preponderant. Hydrogen peroxide-mediated pyruvate oxidation does not produce detectable levels of carbon dioxide radical anion except in the presence of iron(II)-ethylenediamine-N,N,N',N'-tetraacetate (EDTA). The apparent second-order rate constant of the reaction between pyruvate and hydrogen peroxide was determined to be 1 order of magnitude lower than that of the reaction between pyruvate and peroxynitrite. The

  15. The Orbiting Carbon Observatory: NASA's First Dedicated Carbon Dioxide Mission

    NASA Technical Reports Server (NTRS)

    Crisp, D.

    2008-01-01

    The Orbiting Carbon Observatory is scheduled for launch from Vandenberg Air Force Base in California in January 2009. This Earth System Science Pathfinder (ESSP) mission carries and points a single instrument that incorporates 3 high-resolution grating spectrometers designed to measure the absorption of reflected sunlight by near-infrared carbon dioxide (CO2) and molecular oxygen bands. These spectra will be analyzed to retrieve estimates of the column-averaged CO2 dry air mole fraction, X(sub CO2). Pre-flight qualification and calibration tests completed in early 2008 indicate that the instrument will provide high quality X(sub CO2) data. The instrument was integrated into the spacecraft, and the completed Observatory was qualified and tested during the spring and summer of 2008, in preparation for delivery to the launch site in the fall of this year. The Observatory will initially be launched into a 635 km altitude, near-polar orbit. The on-board propulsion system will then raise the orbit to 705 km and insert OCO into the Earth Observing System Afternoon Constellation (A-Train). The first routine science observations are expected about 45 days after launch. Calibrated spectral radiances will be archived starting about 6 months later. An exploratory X(sub CO2) product will be validated and then archived starting about 3 months after that.

  16. Inhibition of Frying Oil Oxidation by Carbon Dioxide Blanketing.

    PubMed

    Totani, Nagao; Inoue, Ryota; Yawata, Miho

    2016-06-01

    The oxidation of oil starts, in general, from the penetration of atmospheric oxygen into oil. Inhibition of the vigorous oxidation of oil at deep-frying temperature under carbon dioxide flow, by disrupting the contact between oil and air, was first demonstrated using oil in a round bottom flask. Next, the minimum carbon dioxide flow rate necessary to blanket 4 L of frying oil in an electric fryer (surface area 690 cm(2)) installed with nonwoven fabric cover, was found to be 40 L/h. Then deep-frying of potato was done accordingly; immediately after deep-frying, an aluminum cover was placed on top of the nonwoven fabric cover to prevent the loss of carbon dioxide and the carbon dioxide flow was shut off. In conclusion, the oxidation of oil both at deep-frying temperature and during standing was remarkably inhibited by carbon dioxide blanketing at a practical flow rate and volume. Under the deep-frying conditions employed in this study, the increase in polar compound content was reduced to half of that of the control.

  17. Predator-induced reduction of freshwater carbon dioxide emissions

    NASA Astrophysics Data System (ADS)

    Atwood, Trisha B.; Hammill, Edd; Greig, Hamish S.; Kratina, Pavel; Shurin, Jonathan B.; Srivastava, Diane S.; Richardson, John S.

    2013-03-01

    Predators can influence the exchange of carbon dioxide between ecosystems and the atmosphere by altering ecosystem processes such as decomposition and primary production, according to food web theory. Empirical knowledge of such an effect in freshwater systems is limited, but it has been suggested that predators in odd-numbered food chains suppress freshwater carbon dioxide emissions, and predators in even-numbered food chains enhance emissions. Here, we report experiments in three-tier food chains in experimental ponds, streams and bromeliads in Canada and Costa Rica in the presence or absence of fish (Gasterosteus aculeatus) and invertebrate (Hesperoperla pacifica and Mecistogaster modesta) predators. We monitored carbon dioxide fluxes along with prey and primary producer biomass. We found substantially reduced carbon dioxide emissions in the presence of predators in all systems, despite differences in predator type, hydrology, climatic region, ecological zone and level of in situ primary production. We also observed lower amounts of prey biomass and higher amounts of algal and detrital biomass in the presence of predators. We conclude that predators have the potential to markedly influence carbon dioxide dynamics in freshwater systems.

  18. Direct carbon dioxide emissions from civil aircraft

    NASA Astrophysics Data System (ADS)

    Grote, Matt; Williams, Ian; Preston, John

    2014-10-01

    Global airlines consume over 5 million barrels of oil per day, and the resulting carbon dioxide (CO2) emitted by aircraft engines is of concern. This article provides a contemporary review of the literature associated with the measures available to the civil aviation industry for mitigating CO2 emissions from aircraft. The measures are addressed under two categories - policy and legal-related measures, and technological and operational measures. Results of the review are used to develop several insights into the challenges faced. The analysis shows that forecasts for strong growth in air-traffic will result in civil aviation becoming an increasingly significant contributor to anthropogenic CO2 emissions. Some mitigation-measures can be left to market-forces as the key-driver for implementation because they directly reduce airlines' fuel consumption, and their impact on reducing fuel-costs will be welcomed by the industry. Other mitigation-measures cannot be left to market-forces. Speed of implementation and stringency of these measures will not be satisfactorily resolved unattended, and the current global regulatory-framework does not provide the necessary strength of stewardship. A global regulator with ‘teeth' needs to be established, but investing such a body with the appropriate level of authority requires securing an international agreement which history would suggest is going to be very difficult. If all mitigation-measures are successfully implemented, it is still likely that traffic growth-rates will continue to out-pace emissions reduction-rates. Therefore, to achieve an overall reduction in CO2 emissions, behaviour change will be necessary to reduce demand for air-travel. However, reducing demand will be strongly resisted by all stakeholders in the industry; and the ticket price-increases necessary to induce the required reduction in traffic growth-rates place a monetary-value on CO2 emissions of approximately 7-100 times greater than other common

  19. Carbon dioxide fumigation for controlling bed bugs.

    PubMed

    Wang, Changlu; Lü, Lihua; Xu, Ming

    2012-09-01

    We investigated the potential of carbon dioxide (CO2) fumigation as a method for controlling bed bugs, Cimex lectularius L. The effect of bed bug developmental stage, temperature, and CO2 concentration on the minimum time to kill 100% of bed bugs was determined. The minimum CO2 concentration lethal to all bed bug stages was approximately 30% with 24 h exposure time at 25 degrees C. The minimum fumigation time required to kill 100% of eggs using 100% CO2 at 20, 25, and 30 degrees C were 3, 7, and 8 h, respectively; the minimum fumigation time to kill 100% of adult males/nymphs were 8, 13, and 14 h, respectively. The minimum time to kill 100% of adult males/nymphs using 50 and 70% CO2 at 25 degrees C were 18 and 16 h, respectively. We found that eggs were not completely killed after 24 h fumigation when the CO2 concentration was lower than 80%. Thus, bed bug eggs were more susceptible to 100% CO2 fumigation than nymphs and adult males but more tolerant than nymphs and adult males with lower CO2 concentration (50-80%). There were no significant differences among nymphs, adult males, and adult females in their susceptibility to 100% CO2 fumigation. A 24 h fumigation in sealed 158 liter (42 gallon) heavy duty garbage bags filled 90% full with fabric materials and/or boxes and 1,350 g dry ice per bag was sufficient to kill all stages of bed bugs hidden in the materials at room temperature (23-24 degrees C). Sealed heavy duty garbage bags maintained > or = 94% CO2 for at least 24 h. Custom-made double zipper plastic bags (122 x 183 cm) were also used to evaluate the effectiveness of CO2 fumigation for controlling bed bugs. Each bag was filled with fabric and boxes to 50-90% full. Bed bugs were hidden in various locations of each bag. CO2 was introduced into the bags through a CO2 cylinder. CO2 fumigation lasting 24-48 h was sufficient to kill all stages of bed bugs at room temperature, depending on the quantity of materials placed in each bag and whether CO2 was

  20. Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations

    NASA Astrophysics Data System (ADS)

    Fabricius, Katharina E.; Langdon, Chris; Uthicke, Sven; Humphrey, Craig; Noonan, Sam; de'Ath, Glenn; Okazaki, Remy; Muehllehner, Nancy; Glas, Martin S.; Lough, Janice M.

    2011-06-01

    Experiments have shown that ocean acidification due to rising atmospheric carbon dioxide concentrations has deleterious effects on the performance of many marine organisms. However, few empirical or modelling studies have addressed the long-term consequences of ocean acidification for marine ecosystems. Here we show that as pH declines from 8.1 to 7.8 (the change expected if atmospheric carbon dioxide concentrations increase from 390 to 750ppm, consistent with some scenarios for the end of this century) some organisms benefit, but many more lose out. We investigated coral reefs, seagrasses and sediments that are acclimatized to low pH at three cool and shallow volcanic carbon dioxide seeps in Papua New Guinea. At reduced pH, we observed reductions in coral diversity, recruitment and abundances of structurally complex framework builders, and shifts in competitive interactions between taxa. However, coral cover remained constant between pH 8.1 and ~7.8, because massive Porites corals established dominance over structural corals, despite low rates of calcification. Reef development ceased below pH 7.7. Our empirical data from this unique field setting confirm model predictions that ocean acidification, together with temperature stress, will probably lead to severely reduced diversity, structural complexity and resilience of Indo-Pacific coral reefs within this century.

  1. Inverse transport modeling of volcanic sulfur dioxide emissions using large-scale simulations

    NASA Astrophysics Data System (ADS)

    Heng, Yi; Hoffmann, Lars; Griessbach, Sabine; Rößler, Thomas; Stein, Olaf

    2016-05-01

    An inverse transport modeling approach based on the concepts of sequential importance resampling and parallel computing is presented to reconstruct altitude-resolved time series of volcanic emissions, which often cannot be obtained directly with current measurement techniques. A new inverse modeling and simulation system, which implements the inversion approach with the Lagrangian transport model Massive-Parallel Trajectory Calculations (MPTRAC) is developed to provide reliable transport simulations of volcanic sulfur dioxide (SO2). In the inverse modeling system MPTRAC is used to perform two types of simulations, i.e., unit simulations for the reconstruction of volcanic emissions and final forward simulations. Both types of transport simulations are based on wind fields of the ERA-Interim meteorological reanalysis of the European Centre for Medium Range Weather Forecasts. The reconstruction of altitude-dependent SO2 emission time series is also based on Atmospheric InfraRed Sounder (AIRS) satellite observations. A case study for the eruption of the Nabro volcano, Eritrea, in June 2011, with complex emission patterns, is considered for method validation. Meteosat Visible and InfraRed Imager (MVIRI) near-real-time imagery data are used to validate the temporal development of the reconstructed emissions. Furthermore, the altitude distributions of the emission time series are compared with top and bottom altitude measurements of aerosol layers obtained by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) satellite instruments. The final forward simulations provide detailed spatial and temporal information on the SO2 distributions of the Nabro eruption. By using the critical success index (CSI), the simulation results are evaluated with the AIRS observations. Compared to the results with an assumption of a constant flux of SO2 emissions, our inversion approach leads to an improvement

  2. Carbon dioxide production during cardiopulmonary bypass: pathophysiology, measure and clinical relevance.

    PubMed

    Ranucci, Marco; Carboni, Giovanni; Cotza, Mauro; de Somer, Filip

    2017-01-01

    Carbon dioxide production during cardiopulmonary bypass derives from both the aerobic metabolism and the buffering of lactic acid produced by tissues under anaerobic conditions. Therefore, carbon dioxide removal monitoring is an important measure of the adequacy of perfusion and oxygen delivery. However, routine monitoring of carbon dioxide removal is not widely applied. The present article reviews the main physiological and pathophysiological sources of carbon dioxide, the available techniques to assess carbon dioxide production and removal and the clinically relevant applications of carbon dioxide-related variables as markers of the adequacy of perfusion during cardiopulmonary bypass.

  3. Water and Carbon Dioxide Adsorption at Olivine Surfaces

    SciTech Connect

    Kerisit, Sebastien N.; Bylaska, Eric J.; Felmy, Andrew R.

    2013-11-14

    Plane-wave density functional theory (DFT) calculations were performed to simulate water and carbon dioxide adsorption at the (010) surface of five olivine minerals, namely, forsterite (Mg2SiO4), calcio-olivine (Ca2SiO4), tephroite (Mn2SiO4), fayalite (Fe2SiO4), and Co-olivine (Co2SiO4). Adsorption energies per water molecule obtained from energy minimizations varied from -78 kJ mol-1 for fayalite to -128 kJ mol-1 for calcio-olivine at sub-monolayer coverage and became less exothermic as coverage increased. In contrast, carbon dioxide adsorption energies at sub-monolayer coverage ranged from -20 kJ mol-1 for fayalite to -59 kJ mol-1 for calcio-olivine. Therefore, the DFT calculations show a strong driving force for carbon dioxide displacement by water at the surface of all olivine minerals in a competitive adsorption scenario. Additionally, adsorption energies for both water and carbon dioxide were found to be more exothermic for the alkaline-earth (AE) olivines than for the transition-metal (TM) olivines and to not correlate with the solvation enthalpies of the corresponding divalent cations. However, a correlation was obtained with the charge of the surface divalent cation indicating that the more ionic character of the AE cations in the olivine structure relative to the TM cations leads to greater interactions with adsorbed water and carbon dioxide molecules at the surface and thus more exothermic adsorption energies for the AE olivines. For calcio-olivine, which exhibits the highest divalent cation charge of the five olivines, ab initio molecular dynamics simulations showed that this effect leads both water and carbon dioxide to react with the surface and form hydroxyl groups and a carbonate-like species, respectively.

  4. Carbon Dioxide Tucked into Basalt Converts to Rock

    SciTech Connect

    McGrail, Pete

    2016-11-18

    Carbon Sequestration or storing carbon dioxide underground may be one approach to reducing atmospheric levels of the greenhouse gas. Storing it in basalt formations creates a chemical reaction in which the CO2 is transformed into a mineral similar to limestone enabling permanent storage underground. A field study by researchers at the Department of Energy’s Pacific Northwest National Laboratory shows that chemical happens quickly. Within two years, CO2 injected underground in Washington state had converted to the carbonate mineral ankerite.

  5. The Biological Deep Sea Hydrothermal Vent as a Model to Study Carbon Dioxide Capturing Enzymes

    PubMed Central

    Minic, Zoran; Thongbam, Premila D.

    2011-01-01

    Deep sea hydrothermal vents are located along the mid-ocean ridge system, near volcanically active areas, where tectonic plates are moving away from each other. Sea water penetrates the fissures of the volcanic bed and is heated by magma. This heated sea water rises to the surface dissolving large amounts of minerals which provide a source of energy and nutrients to chemoautotrophic organisms. Although this environment is characterized by extreme conditions (high temperature, high pressure, chemical toxicity, acidic pH and absence of photosynthesis) a diversity of microorganisms and many animal species are specially adapted to this hostile environment. These organisms have developed a very efficient metabolism for the assimilation of inorganic CO2 from the external environment. In order to develop technology for the capture of carbon dioxide to reduce greenhouse gases in the atmosphere, enzymes involved in CO2 fixation and assimilation might be very useful. This review describes some current research concerning CO2 fixation and assimilation in the deep sea environment and possible biotechnological application of enzymes for carbon dioxide capture. PMID:21673885

  6. The biological deep sea hydrothermal vent as a model to study carbon dioxide capturing enzymes.

    PubMed

    Minic, Zoran; Thongbam, Premila D

    2011-01-01

    Deep sea hydrothermal vents are located along the mid-ocean ridge system, near volcanically active areas, where tectonic plates are moving away from each other. Sea water penetrates the fissures of the volcanic bed and is heated by magma. This heated sea water rises to the surface dissolving large amounts of minerals which provide a source of energy and nutrients to chemoautotrophic organisms. Although this environment is characterized by extreme conditions (high temperature, high pressure, chemical toxicity, acidic pH and absence of photosynthesis) a diversity of microorganisms and many animal species are specially adapted to this hostile environment. These organisms have developed a very efficient metabolism for the assimilation of inorganic CO₂ from the external environment. In order to develop technology for the capture of carbon dioxide to reduce greenhouse gases in the atmosphere, enzymes involved in CO₂ fixation and assimilation might be very useful. This review describes some current research concerning CO₂ fixation and assimilation in the deep sea environment and possible biotechnological application of enzymes for carbon dioxide capture.

  7. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Raghubir P. Gupta; William J. McMichael; Douglas P. Harrison; Ya Liang

    2002-04-01

    The objective of this project is to develop a simple, inexpensive process to separate CO{sub 2} as an essentially pure stream from a fossil fuel combustion system using a regenerable, sodium-based sorbent. The sorbents being investigated in this project are primarily alkali carbonates, and particularly sodium carbonate and potassium carbonate, which are converted to bicarbonates, through reaction with carbon dioxide and water vapor. Bicarbonates are regenerated to carbonates when heated, producing a nearly pure CO{sub 2} stream after condensation of water vapor. This quarter, electrobalance tests conducted at LSU indicated that exposure of sorbent to water vapor prior to contact with carbonation gas does not significantly increase the reaction rate. Calcined fine mesh trona has a greater initial carbonation rate than calcined sodium bicarbonate, but appears to be more susceptible to loss of reactivity under severe calcination conditions. The Davison attrition indices for Grade 5 sodium bicarbonate, commercial grade sodium carbonate and extra fine granular potassium carbonate were, as tested, outside of the range suitable for entrained bed reactor testing. Fluidized bed testing at RTI indicated that in the initial stages of reaction potassium carbonate removed 35% of the carbon dioxide in simulated flue gas, and is reactive at higher temperatures than sodium carbonate. Removals declined to 6% when 54% of the capacity of the sorbent was exhausted. Carbonation data from electrobalance testing was correlated using a shrinking core reaction model. The activation energy of the reaction of sodium carbonate with carbon dioxide and water vapor was determined from nonisothermal thermogravimetry.

  8. Means and method for reducing carbon dioxide to a product

    SciTech Connect

    Ang, P.G.P.; Sammels, A.F.

    1987-06-16

    A method is described for reducing carbon dioxide to a product comprising the steps of: providing carbon dioxide to a catholyte chamber of a reaction cell; providing water to an anolyte section of the reaction cell, forming a passageway through the reaction cell with a dual porosity cathode between the passageway and catholyte chamber and with a porous anode between the passageway and anolyte chamber; provides an electrolyte in a manner so that it passes through the passageway; and provides a direct current voltage across the dual porosity cathode and anode so as to cause a reduction of the carbon dioxide in cooperation with the electrolyte and hydrogen ions passing through the anode. This passes to a product contained within the electrolyte and causes oxygen to be emitted from the anolyte chamber.

  9. A Review of Carbon Dioxide Monitoring During Adult Cardiopulmonary Resuscitation.

    PubMed

    Pantazopoulos, Charalampos; Xanthos, Theodoros; Pantazopoulos, Ioannis; Papalois, Apostolos; Kouskouni, Evangelia; Iacovidou, Nicoletta

    2015-11-01

    Although high quality cardiopulmonary resuscitation is one of the most significant factors related to favourable outcome, its quality depends on many components, such as airway management, compression depth and chest recoil, hands-off time, and early defibrillation. The most common way of controlling the resuscitation efforts is monitoring of end-tidal carbon dioxide. The International Liaison Committee on Resuscitation suggests this method both for in-hospital and out-of-hospital cardiac arrest. However, despite the abundant human and animal studies supporting the usefulness of end-tidal carbon dioxide, its optimal values during cardiopulmonary resuscitation remain controversial. In this review, the advantages and effectiveness of end-tidal carbon dioxide during cardiopulmonary resuscitation are discussed and specific target values are suggested based on the available literature.

  10. Exposures to carbon dioxide in the poultry processing industry

    SciTech Connect

    Jacobs, D.E.; Smith, M.S.

    1988-12-01

    The use of dry ice has increased dramatically in poultry processing plants because of changes in the fast food industry. Concentrations of carbon dioxide in four such plants were measured and were found to exceed the Immediately Dangerous to Life and Health Level (50,000 ppm) inside holding coolers where ventilation is poor. In other areas, where dry ice is delivered to poultry packages, time-weighted average exposures can exceed the threshold limit value of 5000 ppm by substantial margins, even if local exhaust ventilation systems are present. Reports of adverse health effects from carbon dioxide exposure and various control measures are reviewed. Recommendations regarding sampling and analytical techniques also are presented. Operators of poultry plants where dry ice is used need to recognize the occupational hazards of exposure to carbon dioxide.

  11. Carbon Dioxide Capture from Flue Gas Using Dry, Regenerable Sorbents

    SciTech Connect

    David A. Green; Thomas O. Nelson; Brian S. Turk; Paul D. Box Raghubir P. Gupta

    2006-09-30

    This report describes research conducted between July 1, 2006 and September 30, 2006 on the use of dry regenerable sorbents for removal of carbon dioxide (CO{sub 2}) from coal combustion flue gas. Modifications to the integrated absorber/ sorbent regenerator/ sorbent cooler system were made to improve sorbent flow consistency and measurement reliability. Operation of the screw conveyor regenerator to achieve a sorbent temperature of at least 120 C at the regenerator outlet is necessary for satisfactory carbon dioxide capture efficiencies in succeeding absorption cycles. Carbon dioxide capture economics in new power plants can be improved by incorporating increased capacity boilers, efficient flue gas desulfurization systems and provisions for withdrawal of sorbent regeneration steam in the design.

  12. Properties of equilibrium carbon dioxide hydrate in porous medium

    NASA Astrophysics Data System (ADS)

    Voronov, V. P.; Gorodetskii, E. E.; Podnek, V. E.; Grigoriev, B. A.

    2016-09-01

    Specific heat capacity, dissociation heat and hydration number of carbon dioxide hydrate in porous medium are determined by adiabatic calorimetry method. The measurements were carried out in the temperature range 250-290 K and in pressure range 1-5 MPa. The measured specific heat of the hydrate is approximately 2.7 J/(g K), which is significantly larger than the specific heat of methane hydrate. In particular, at heating, larger value of the specific heat of carbon dioxide hydrate is a result of gas emission from the hydrate. The hydration number at the hydrate-gas coexistence changes from 6.2 to 6.9. The dissociation heat of carbon dioxide hydrate varies from the 55 kJ/mol near the upper quadruple point to the 57 kJ/mol near the lower quadruple point.

  13. [Thoracoscopic thymectomy with carbon dioxide insufflation in the mediastinum].

    PubMed

    Ferrero-Coloma, C; Navarro-Martinez, J; Bolufer, S; Rivera-Cogollos, M J; Alonso-García, F J; Tarí-Bas, M I

    2015-02-01

    The case is presented of a 71 year-old male, diagnosed with a thymoma. A thoracoscopic thymectomy was performed using the carbon dioxide insufflation technique in the mediastinum. During the procedure, while performing one-lung ventilation, the patient's respiration worsened. The contralateral lung had collapsed, as carbon dioxide was travelling from the mediastinum to the thorax through the opened pleura. Two-lung ventilation was decided upon, which clearly improved oxygenation in the arterial gases and airway pressures. Both pH and pCO2 stabilized. The surgical approach and the carbon dioxide technique were continued because 2-lung ventilation did not affect the surgical procedure. This technique has many serious complications and it should always be performed using 2-lung ventilation.

  14. Novel carbon dioxide gas sensor based on infrared absorption

    NASA Astrophysics Data System (ADS)

    Zhang, Guangjun; Lui, Junfang; Yuan, Mei

    2000-08-01

    The feasibility of sensing carbon dioxide with a IR single- beam optical structure is studied, and a novel carbon dioxide gas sensor based on IR absorption is achieved. Applying the Lambert-Beer law and some key techniques such as current stabilization for IR source, using a high-quality IR detector, and data compensation for the influences of ambience temperature and atmosphere total pressure, the sensor can measure carbon dioxide with high precision and efficiency. The mathematical models for providing temperature and pressure compensation for the sensor are established. Moreover the solutions to the models are proposed. Both the models and the solutions to the models are verified via experiments. The sensor possesses the advantages of small volume, light weight, low power consumption, and high reliability. Therefore it can be used in many associated fields, such as environmental protection, processing control, chemical analysis, medical diagnosis, and space environmental and control systems.

  15. Aesthetic Depigmentation of Gingival Smoker's Melanosis Using Carbon Dioxide Lasers.

    PubMed

    Monteiro, Luis Silva; Costa, José Adriano; da Câmara, Marco Infante; Albuquerque, Rui; Martins, Marco; Pacheco, José Júlio; Salazar, Filomena; Figueira, Fernando

    2015-01-01

    Melanic pigmentation results from melanin produced by the melanocytes present in the basal layer of the oral epithelium. One of the most common causes of oral pigmentation is smoker melanosis, a condition associated with the melanocyte stimulation caused by cigarette smoke. This paper aims to illustrate the use of a carbon dioxide laser in the removal of the gingival melanic pigmentation for aesthetic reasons in a 27-year-old female patient with history of a smoking habit. The carbon dioxide laser vaporisation was performed on the gingival mucosa with effective and quick results and without any complications or significant symptoms after the treatment. We conclude that a carbon dioxide laser could be a useful, effective, and safe instrument to treat the aesthetic complications caused by oral smoker melanosis.

  16. BOREAS TGB-12 Isotropic Carbon Dioxide Data over the NSA

    NASA Technical Reports Server (NTRS)

    Trumbore, Susan; Hall, Forrest G. (Editor); Sundquist, Eric; Winston, Greg; Conrad, Sara K. (Editor)

    2000-01-01

    The BOREAS TGB-12 team made measurements of soil carbon inventories, carbon concentration in soil gases, and rates of soil respiration at several sites to estimate the rates of carbon accumulation and turnover in each of the major vegetation types. This data set contains information on the carbon isotopic content of carbon dioxide sampled from soils in the NSA-OBS, NSA-YJP, and NSA-OJP sites. Data were collected from 14-Nov-1993 to 10-Oct-1996. The data are stored in tabular ASCII files.

  17. Modelling interactions of carbon dioxide, forests, and climate

    SciTech Connect

    Luxmoore, R.J.; Baldocchi, D.D.

    1994-09-01

    Atmospheric carbon dioxide is rising and forests and climate is changing! This combination of fact and premise may be evaluated at a range of temporal and spatial scales with the aid of computer simulators describing the interrelationships between forest vegetation, litter and soil characteristics, and appropriate meteorological variables. Some insights on the effects of climate on the transfers of carbon and the converse effect of carbon transfer on climate are discussed as a basis for assessing the significance of feedbacks between vegetation and climate under conditions of rising atmospheric carbon dioxide. Three main classes of forest models are reviewed. These are physiologically-based models, forest succession simulators based on the JABOWA model, and ecosystem-carbon budget models that use compartment transfer rates with empirically estimated coefficients. Some regression modeling approaches are also outlined. Energy budget models applied to forests and grasslands are also reviewed. This review presents examples of forest models; a comprehensive discussion of all available models is not undertaken.

  18. The anaesthesia of fish by high carbon-dioxide concentrations

    USGS Publications Warehouse

    1942-01-01

    A practical and economical method for anaesthetizing adult salmon and steelhead trout in the fish trucks used in the Grand Coulee fish salvage program is described. The method consists in generating a predetermined carbon-dioxide concentration in the 1000-gallon tanks of the trucks through the successive addition of predissolved sodium bicarbonate and dilute sulphuric acid in proper quantities. Carbon-dioxide anaesthesia effectively solved the acute problem of species segregation in the fish salvage program and, with minor modifications, could be used with equal success in certain hatchery operations necessitating the handling of large fish.

  19. NOVEL CERAMIC MEMBRANE FOR HIGH TEMPERATURE CARBON DIOXIDE SEPARATION

    SciTech Connect

    Jerry Y.S. Lin; Jun-ichi Ida

    2001-03-01

    This project is aimed at demonstrating technical feasibility for a lithium zirconate based dense ceramic membrane for separation of carbon dioxide from flue gas at high temperature. The research work conducted in this reporting period was focused on several fundamental issues of lithium zirconate important to the development of the dense inorganic membrane. These fundamental issues include material synthesis of lithium zirconate, phases and microstructure of lithium zirconate and structure change of lithium zirconate during sorption/desorption process. The results show difficulty to prepare the dense ceramic membrane from pure lithium zirconate, but indicate a possibility to prepare the dense inorganic membrane for carbon dioxide separation from a composite lithium zirconate.

  20. Carbon dioxide separation with a two-dimensional polymer membrane.

    PubMed

    Schrier, Joshua

    2012-07-25

    Carbon dioxide gas separation is important for many environmental and energy applications. Molecular dynamics simulations are used to characterize a two-dimensional hydrocarbon polymer, PG-ES1, that uses a combination of surface adsorption and narrow pores to separate carbon dioxide from nitrogen, oxygen, and methane gases. The CO2 permeance is 3 × 10(5) gas permeation units (GPU). The CO2/N2 selectivity is 60, and the CO2/CH4 selectivity exceeds 500. The combination of high CO2 permeance and selectivity surpasses all known materials, enabling low-cost postcombustion CO2 capture, utilization of landfill gas, and horticulture applications.

  1. Supercritical Carbon Dioxide Regeneration of Activated Carbon Loaded with Contaminants from Rocky Mountain Arsenal Well Water.

    DTIC Science & Technology

    1982-05-01

    15 111-7 GRANULAR ACTIVATED CARBON ADSORPTION ISOTHERMS THERMALLY REACTIVATED CARBON .............. 16 I IV-1 PROCESS FLOW DIAGRAM FOR... PROCESSING COST OF ACTIVATED CHARCOAL REGENERATION BY SUPERCRITICAL CARBON DIOXIDE PROCESS ........................... 25 l IV-4 SENSITIVITY OF GAC...regenerate adsorbents such as granular activated carbon loaded with a broad variety of organic adsorbates. This regeneration process uses a supercritical

  2. Selective Formation of Trimethylene Carbonate (TMC): Atmospheric Pressure Carbon Dioxide Utilization

    PubMed Central

    Buckley, Benjamin R; Patel, Anish P; Wijayantha, K G Upul

    2015-01-01

    Carbon dioxide utilisation (CDU) is currently gaining increased interest due to the abundance of CO2 and its possible application as a C1 building block. We herein report the first example of atmospheric pressure carbon dioxide incorporation into oxetane to selectively form trimethylene carbonate (TMC), which is a significant challenge as TMC is thermodynamically less favoured than its corresponding co-polymer. PMID:26213485

  3. Recycling Carbon Dioxide during Xylose Fermentation by Engineered Saccharomyces cerevisiae.

    PubMed

    Xia, Peng-Fei; Zhang, Guo-Chang; Walker, Berkley; Seo, Seung-Oh; Kwak, Suryang; Liu, Jing-Jing; Kim, Heejin; Ort, Donald R; Wang, Shu-Guang; Jin, Yong-Su

    2017-02-17

    Global climate change caused by the emission of anthropogenic greenhouse gases (GHGs) is a grand challenge to humanity. To alleviate the trend, the consumption of fossil fuels needs to be largely reduced and alternative energy technologies capable of controlling GHG emissions are anticipated. In this study, we introduced a synthetic reductive pentose phosphate pathway (rPPP) into a xylose-fermenting Saccharomyces cerevisiae strain SR8 to achieve simultaneous lignocellulosic bioethanol production and carbon dioxide recycling. Specifically, ribulose-1,5-bisphosphate carboxylase/oxygenase from Rhodospirillum rubrum and phosphoribulokinase from Spinacia oleracea were introduced into the SR8 strain. The resulting strain with the synthetic rPPP was able to exhibit a higher yield of ethanol and lower yields of byproducts (xylitol and glycerol) than a control strain. In addition, the reduced release of carbon dioxide by the engineered strain was observed during xylose fermentation, suggesting that the carbon dioxide generated by pyruvate decarboxylase was partially reassimilated through the synthetic rPPP. These results demonstrated that recycling of carbon dioxide from the ethanol fermentation pathway in yeast can be achieved during lignocellulosic bioethanol production through a synthetic carbon conservative metabolic pathway. This strategy has a great potential to alleviate GHG emissions during the production of second-generation ethanol.

  4. Electrochemical cell for obtaining oxygen from carbon dioxide atmospheres

    NASA Technical Reports Server (NTRS)

    Hooker, M. W.; Rast, H. E.; Rogers, D. K.

    1989-01-01

    For manned missions to Mars to become a reality, an efficient and reliable means of obtaining oxygen from the carbon dioxide-rich atmosphere will be required. Otherwise, the high cost of transporting the oxygen needed to sustain the astronauts will severely restrict the expedition to the martian surface. Recently, the use of electrochemical devices has been explored as a means of obtaining oxygen from the carbon dioxide-rich atmosphere. In these devices, oxygen ions diffuse through solid oxide membranes, thus, separating oxygen from the other gases presented. This phenomenon has only recently been explored as a means of obtaining large quantities of oxygen from toxic atmospheres, although first observed by Walter nernst in 1899. Nernst observed that stabilized zirconia will conduct oxygen ions when an electrical potential is applied across metallic electrodes applied to the ceramic membrane. Diatomic oxygen molecules are dissociated at the positive electrode/electrolyte interface. The oxygen ions enter the ceramic body due to the ion density gradient which is produced by the electrical potential across the electrolytic membrane. Once the ions have diffused through the membrane, they reform diatomic oxygen molecules at the anode. The separation of oxygen from carbon dioxide is achieved by the combination of thermal and electrochemical processes. The thermal decomposition of carbon dioxide (at 1000 C) results in the production of carbon monoxide and oxygen by the reaction.

  5. Classroom Demonstration: Combustion of Diamond to Carbon Dioxide Followed by Reduction to Graphite

    ERIC Educational Resources Information Center

    Miyauchi, Takuya; Kamata, Masahiro

    2012-01-01

    An educational demonstration shows the combustion of carbon to carbon dioxide and then the reduction of carbon dioxide to carbon. A melee diamond is the source of the carbon and the reaction is carried out in a closed flask. The demonstration helps students to realize that diamonds are made of carbon and that atoms do not change or vanish in…

  6. Carbon Dioxide Effects Research and Assessment Program: Proceedings of the carbon dioxide and climate research program conference

    SciTech Connect

    Schmitt, L E

    1980-12-01

    Papers presented at the Carbon Dioxide and Climate Research Program Conference are included in this volume. Topics discussed are: the carbon cycle; modeling the carbon system; climatic response due to increased CO2; climate modeling; the use of paleoclimatic data in understanding climate change; attitudes and implications of CO2; social responses to the CO2 problem; a scenario for atmospheric CO2 to 2025; marine photosynthesis and the global carbon cycle; and the role of tropical forests in the carbon balance of the world. Separate abstracts of nine papers have been prepared for inclusion in the Energy Data Base. (RJC)

  7. Formation of Quartz-Carbonate Veins: Evidence From Experimental Supercritical Carbon Dioxide-Brine-Rock System

    NASA Astrophysics Data System (ADS)

    Janecky, D. R.; Kaszuba, J. P.

    2003-12-01

    Quartz-carbonate veins are common in a variety of moderate temperature hydrothermal systems and ore deposits. Associated fluid inclusions have a wide range of compositions, including liquid carbon dioxide fillings. Examination of chemical and physical conditions which result precipitation of quartz and carbonate in veins raises several key questions about multiphase fluid processes and reaction rates. We have been experimentally investigating physical-chemical reaction processes of mixed brine-carbon dioxide fluids for the shallow crust. Synthetic arkose (microcline + oligoclase + quartz + biotite) plus argillaceous shale were reacted with 5.5 molal NaCl brine. The system was held at 200 C and 200 bars for 32 days to approach steady state, then injected with carbon dioxide and allowed to react for an additional 45 days. In a parallel experiment, the system was allowed to react for 77 days without injection of carbon dioxide. Trace ions initially absent from NaCl brine appeared in solution at mM (K, Ca, and silica) to uM (Mg, Al, Fe and Mn) quantities, reflecting reaction of brine with rock. Without carbon dioxide injection, the silica concentration (2.4 mM) was stable below calculated quartz solubility (3.9 mM). Injection of carbon dioxide resulted in decreased pH and increased silica concentration to a level near calculated chalcedony solubility (5.4 mM). Dissolution of silicate minerals is apparently coupled to the acidity, and concomitant inhibition of the precipitation of quartz (and other silicates). A significant increase in concentration of trace metals is consistent with in-situ pH decrease and increased carbon dioxide dissolved in brine. Multi-phase fluid reaction relationships between supercritical carbon dioxide and brine-rock systems allow formation of carbonate vein precipitates in substantial quantities. Brine and continued rock reactions provide a substantial reservoir for Ca, Mg and Fe components. A separate carbon dioxide liquid allows

  8. ARTICLES: Vapor-Liquid Equilibrium Data of Carbon Dioxide+Methyl Propionate and Carbon Dioxide+Propyl Propionate Systems

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Xie, Chuan-xin; Li, Hong-ling; Tian, Yi-ling

    2010-06-01

    High-pressure vapor-liquid equilibrium data for the binary systems of methyl propionate+carbon dioxide and propyl propionate+carbon dioxide were measured at pressure from 1.00 MPa to 12.00 MPa and temperature in the range from 313 K to 373 K. Experimental results were correlated with the Peng-Robinson equation of state with the two-parameter van der Waals mixing rule. At the same time, the Henry's coefficient, partial molar enthalpy change and partial molar entropy change of CO2 during dissolution at different temperature were also calculated.

  9. Carbon dioxide sequestration by aqueous mineral carbonation of magnesium silicate minerals

    SciTech Connect

    Gerdemann, Stephen J.; Dahlin, David C.; O'Connor, William K.; Penner, Larry R.

    2003-01-01

    The dramatic increase in atmospheric carbon dioxide since the Industrial Revolution has caused concerns about global warming. Fossil-fuel-fired power plants contribute approximately one third of the total human-caused emissions of carbon dioxide. Increased efficiency of these power plants will have a large impact on carbon dioxide emissions, but additional measures will be needed to slow or stop the projected increase in the concentration of atmospheric carbon dioxide. By accelerating the naturally occurring carbonation of magnesium silicate minerals it is possible to sequester carbon dioxide in the geologically stable mineral magnesite (MgCO3). The carbonation of two classes of magnesium silicate minerals, olivine (Mg2SiO4) and serpentine (Mg3Si2O5(OH)4), was investigated in an aqueous process. The slow natural geologic process that converts both of these minerals to magnesite can be accelerated by increasing the surface area, increasing the activity of carbon dioxide in the solution, introducing imperfections into the crystal lattice by high-energy attrition grinding, and in the case of serpentine, by thermally activating the mineral by removing the chemically bound water. The effect of temperature is complex because it affects both the solubility of carbon dioxide and the rate of mineral dissolution in opposing fashions. Thus an optimum temperature for carbonation of olivine is approximately 185 degrees C and 155 degrees C for serpentine. This paper will elucidate the interaction of these variables and use kinetic studies to propose a process for the sequestration of the carbon dioxide.

  10. Effect of dissolved carbon dioxide on penicillin fermentations: mycelial growth and penicillin production. [Penicillium chrysogenum

    SciTech Connect

    Ho, C.S.; Smith, M.D.

    1986-01-01

    The effect of dissolved carbon dioxide on the specific growth rate and the penicillin production rate of Penicillium chrysogenum was examined experimentally. The dissolved carbon dioxide was found to inhibit the specific growth rate and the penicillin production rate when the aerated submerged penicillin fermentation was exposed to influent gases of 12.6 and 20% carbon dioxide, respectively. Upon exposure to influent gases of 3 and 5% carbon dioxide, no pronounced metabolic inhibition was noted.

  11. Somewhere beyond the sea? The oceanic - carbon dioxide - reactions

    NASA Astrophysics Data System (ADS)

    Meisinger, Philipp; Wittlich, Christian

    2014-05-01

    In correlation to climate change and CO2 emission different campaigns highlight the importance of forests and trees to regulate the concentration of carbon dioxide in the earths' atmosphere. Seeing millions of square miles of rainforest cut down every day, this is truly a valid point. Nevertheless, we often tend to forget what scientists like Spokes try to raise awareness for: The oceans - and foremost deep sea sections - resemble the second biggest deposit of carbon dioxide. Here carbon is mainly found in form of carbonate and hydrogen carbonate. The carbonates are needed by corals and other sea organisms to maintain their skeletal structure and thereby to remain vital. To raise awareness for the protection of this fragile ecosystem in schools is part of our approach. Awareness is achieved best through understanding. Therefore, our approach is a hands-on activity that aims at showing students how the carbon dioxide absorption changes in relation to the water temperature - in times of global warming a truly sensitive topic. The students use standard syringes filled with water (25 ml) at different temperatures (i.e. 10°C, 20°C, 40°C). Through a connector students inject carbon dioxide (25ml) into the different samples. After a fixed period of time, students can read of the remaining amount of carbon dioxide in relation to the given water temperature. Just as with every scientific project, students need to closely monitor their experiments and alter their setups (e.g. water temperature or acidity) according to their initial planning. A digital template (Excel-based) supports the analysis of students' experiments. Overview: What: hands-on, minds -on activity using standard syringes to exemplify carbon dioxide absorption in relation to the water temperature (Le Chatelier's principle) For whom: adjustable from German form 11-13 (age: 16-19 years) Time: depending on the prior knowledge 45-60 min. Sources (extract): Spokes, L.: Wie Ozeane CO2 aufnehmen. Environmental

  12. Continual production of glycerol from carbon dioxide by Dunaliella tertiolecta.

    PubMed

    Chow, Yvonne Y S; Goh, Serena J M; Su, Ziheng; Ng, Daphne H P; Lim, Chan Yuen; Lim, Natalie Y N; Lin, Huixin; Fang, Lei; Lee, Yuan Kun

    2013-05-01

    Microalgae have high photosynthetic efficiencies and produce many valuable compounds from carbon dioxide. The Dunaliella genus accumulates glycerol, yet no commercial process currently exists for glycerol production from this microalga. Here it was found that in addition to intracellular accumulation, Dunaliella tertiolecta also releases glycerol into the external medium continuously, forming a large and stable carbon pool. The process is not affected by nutrient starvation or onset of cell death. Carbon dioxide was fixed at a constant rate, the bulk of it being channelled to extracellular glycerol (82%), resulting in enhanced photosynthetic carbon assimilation of 5 times that used for biomass production. The final extracellular glycerol concentration was 34 times the maximum concentration of intracellular glycerol; the latter declined further during cell death. Findings from this work will assist in the development of a bioconversion process to produce glycerol using D. tertiolecta without the need for cell harvest or disruption.

  13. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Raghubir P. Gupta; Alejandro Lopez-Ortiz; Douglas P. Harrison; Ya Liang

    2001-05-01

    Electrobalance studies of calcination and carbonation of sodium bicarbonate materials were conducted at Louisiana State University. Calcination in an inert atmosphere was rapid and complete at 120 C. Carbonation was temperature dependent, and both the initial rate and the extent of reaction were found to decrease as temperature was increased between 60 and 80 C. A fluidization test apparatus was constructed at RTI and two sodium bicarbonate materials were fluidized in dry nitrogen at 22 C. The bed was completely fluidized at between 9 and 11 in. of water pressure drop. Kinetic rate expression derivations and thermodynamic calculations were conducted at RTI. Based on literature data, a simple reaction rate expression, which is zero order in carbon dioxide and water, was found to provide the best fit against reciprocal temperature. Simulations based on process thermodynamics suggested that approximately 26 percent of the carbon dioxide in flue gas could be recovered using waste heat available at 240 C.

  14. Carbon dioxide fluxes from Tifway bermudagrass: early results

    NASA Astrophysics Data System (ADS)

    Cotten, David L.; Zhang, G.; Leclerc, M. Y.; Raymer, P.; Steketee, C. J.

    2017-01-01

    This paper reports for the first time preliminary data on carbon uptake of warm-season turfgrass at a well-managed sod farm in south central Georgia. It examines the changes in carbon uptake from one of the most widely used warm-season turfgrass cultivars in the world, Tifway Bermudagrass. It elucidates the role of canopy density and light avalaibility on the net carbon uptake using the eddy-covariance technique. Preliminary evidence suggests that turfgrass is effective at sequestering carbon dioxide during the summer months even when the canopy is being reestablished following a grass harvest.

  15. Numerically Simulating Carbonate Mineralization of Basalt with Injection of Carbon Dioxide into Deep Saline Formations

    SciTech Connect

    White, Mark D.; McGrail, B. Peter; Schaef, Herbert T.; Bacon, Diana H.

    2006-07-08

    The principal mechanisms for the geologic sequestration of carbon dioxide in deep saline formations include geological structural trapping, hydrological entrapment of nonwetting fluids, aqueous phase dissolution and ionization, and geochemical sorption and mineralization. In sedimentary saline formations the dominant mechanisms are structural and dissolution trapping, with moderate to weak contributions from hydrological and geochemical trapping; where, hydrological trapping occurs during the imbibition of aqueous solution into pore spaces occupied by gaseous carbon dioxide, and geochemical trapping is controlled by generally slow reaction kinetics. In addition to being globally abundant and vast, deep basaltic lava formations offer mineralization kinetics that make geochemical trapping a dominate mechanism for trapping carbon dioxide in these formations. For several decades the United States Department of Energy has been investigating Columbia River basalt in the Pacific Northwest as part of its environmental programs and options for natural gas storage. Recently this nonpotable and extensively characterized basalt formation is being reconsidered as a potential reservoir for geologic sequestration of carbon dioxide. The reservoir has an estimated storage capacity of 100 giga tonnes of carbon dioxide and comprises layered basalt flows with sublayering that generally alternates between low permeability massive and high permeability breccia. Chemical analysis of the formation shows 10 wt% Fe, primarily in the +2 valence. The mineralization reaction that makes basalt formations attractive for carbon dioxide sequestration is that of calcium, magnesium, and iron silicates reacting with dissolved carbon dioxide, producing carbonate minerals and amorphous quartz. Preliminary estimates of the kinetics of the silicate-to-carbonate reactions have been determined experimentally and this research is continuing to determine effects of temperature, pressure, rock composition and

  16. Carbon Dioxide Capture from Flue Gas Using Dry, Regenerable Sorbents

    SciTech Connect

    David A. Green; Thomas O. Nelson; Brian S. Turk; Paul D. Box; Raghubir P. Gupta

    2006-03-31

    This report describes research conducted between January 1, 2006, and March 31, 2006, on the use of dry regenerable sorbents for removal of carbon dioxide (CO{sub 2}) from coal combustion flue gas. An integrated system composed of a downflow co-current contact absorber and two hollow screw conveyors (regenerator and cooler) was assembled, instrumented, debugged, and calibrated. A new batch of supported sorbent containing 15% sodium carbonate was prepared and subjected to surface area and compact bulk density determination.

  17. Photodissociation of carbon dioxide in the Mars upper atmosphere

    NASA Technical Reports Server (NTRS)

    Barth, C. A.

    1974-01-01

    Calculation of the intensity of two of the emissions produced during the dissociative excitation of carbon dioxide in the upper atmosphere of Mars by solar ultraviolet radiation. The calculation tangential column emission rates of the atomic oxygen 2972-A line and the carbon monoxide Cameron bands produced by the photodissociative mechanism are found to be factors of 3 and 10, respectively, smaller than the emission rates observed by Mariner ultraviolet spectrometers.

  18. 40 CFR 86.1524 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 20 2013-07-01 2013-07-01 false Carbon dioxide analyzer calibration...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and...

  19. 40 CFR 86.1524 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Carbon dioxide analyzer calibration...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and...

  20. 40 CFR 86.1524 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Carbon dioxide analyzer calibration...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and...