Muria Volcano, Island of Java, Indonesia
NASA Technical Reports Server (NTRS)
1991-01-01
This view of the north coast of central Java, Indonesia centers on the currently inactive Muria Volcano (6.5S, 111.0E). Muria is 5,330 ft. tall and lies just north of Java's main volcanic belt which runs east - west down the spine of the island attesting to the volcanic origin of the more than 1,500 Indonesian Islands.
Volcanoes in Central Java, Indonesia
NASA Technical Reports Server (NTRS)
1991-01-01
The Indonesian island of Java (8.0S, 112.0) has over 35 active volcanoes, some of which are the most explosive in the world, and form an east/west line of peaks the length of the island. Five are in this image and at least one is thought to be currently active. The plume flowing north from Welirang (just east of the central cloud mass) is believed to be steam emissions. Also, the lack of vegetation at the peak indicates volcanic activity.
Geothermal and volcanism in west Java
NASA Astrophysics Data System (ADS)
Setiawan, I.; Indarto, S.; Sudarsono; Fauzi I, A.; Yuliyanti, A.; Lintjewas, L.; Alkausar, A.; Jakah
2018-02-01
Indonesian active volcanoes extend from Sumatra, Jawa, Bali, Lombok, Flores, North Sulawesi, and Halmahera. The volcanic arc hosts 276 volcanoes with 29 GWe of geothermal resources. Considering a wide distribution of geothermal potency, geothermal research is very important to be carried out especially to tackle high energy demand in Indonesia as an alternative energy sources aside from fossil fuel. Geothermal potency associated with volcanoes-hosted in West Java can be found in the West Java segment of Sunda Arc that is parallel with the subduction. The subduction of Indo-Australian oceanic plate beneath the Eurasian continental plate results in various volcanic products in a wide range of geochemical and mineralogical characteristics. The geochemical and mineralogical characteristics of volcanic and magmatic rocks associated with geothermal systems are ill-defined. Comprehensive study of geochemical signatures, mineralogical properties, and isotopes analysis might lead to the understanding of how large geothermal fields are found in West Java compared to ones in Central and East Java. The result can also provoke some valuable impacts on Java tectonic evolution and can suggest the key information for geothermal exploration enhancement.
Subsurface Structure Interpretation Beneath of Mt. Pandan Based on Gravity Data
NASA Astrophysics Data System (ADS)
Santoso, D.; Wahyudi, E. J.; Alawiyah, S.; Nugraha, A. D.; Widiyantoro, S.; Kadir, W. G. A.; Supendi, P.; Wiyono, S.; Zulkafriza
2017-04-01
Mt. Pandan is one of the volcano that state as dormant volcano. On the other hand, Smyth et al. (2008) defined that Mt. Pandan is an active volcano. This volcano is apart a volcanic chain in Java island which is trending east-west along the island. This volcanic chain known as present day volcanic arc. Mt. Wilis is located in the south and it relatively much bigger compare to Mt. Pandan. There were earthquakes activity experienced in the surrounding Mt. Pandan area in the past several years. This event is interesting, because Mt. Pandan is not classify as the active volcano according to the list of volcanoes in Indonesia. On the otherhand Smyth et. al. (2008) mentioned that G. Pandan as modern volcanic which is located in Kendeng Zone of East Java. Gravity measurement around Mt. Pandan area was done in order to understand subsurface structure of Mt. Pandan. Gravity interpretation results shows that there is a low density structure beneath Mt. Pandan. It could be interpreted as existing of magma body below the surface. Some indication of submagmatic activities were found as hot spring and warm ground. Therefore it could be concluded that there is a possibility of magmatic activity below the Mt. Pandan.
NASA Astrophysics Data System (ADS)
Sumintadireja, Prihadi; Irawan, Diky
2017-06-01
Mud volcano remnants are identified in Surabaya and adjacent areas. The people in East Java based on historical report are custom and able to adjust with the natural phenomena within their areas. Sidoarjo mud volcano phenomena which coincident with drilling activity in 29 May 2006 is making people and government anxious for development a new infrastructure such as high rise building, toll road etc. An understanding of a geological hazard which can be single, sequential or combined events in their origin is the main key importance in subsurface imaging. Geological hazard can be identified by geophysical, geological, geotechnical method. The prompt selection of geophysical method to reveal subsurface condition is very important factor instead of survey design and field data acquisition. Revealing subsurface condition is very important information for site investigation consists of geological, geophysical and geotechnical data, whereas data analysis will help civil engineer design and calculate the construction safety.
2017-07-14
West of Gunung Merapi, East Java, Indonesia, is the Ijen volcano, which has a one-kilometer-wide turquoise-colored acidic crater lake. The lake is the site of a labor-intensive sulfur mining operation, in which sulfur-laden baskets are carried by hand from the crater floor. The lake is recognized as the largest highly acidic crater lake in the world, with a pH of 0.5. The image was acquired 17 September 2008, covers an area of 24 by 39 kilometers, and is located at 8 degrees south, 114.2 degrees east. https://photojournal.jpl.nasa.gov/catalog/PIA21787
Plumlee, Geoffrey S.; Casadevall, Thomas J.; Wibowo, Handoko T.; Rosenbauer, Robert J.; Johnson, Craig A.; Breit, George N.; Lowers, Heather; Wolf, Ruth E.; Hageman, Philip L.; Goldstein, Harland L.; Anthony, Michael W.; Berry, Cyrus J.; Fey, David L.; Meeker, Gregory P.; Morman, Suzette A.
2008-01-01
On May 29, 2006, mud and gases began erupting unexpectedly from a vent 150 meters away from a hydrocarbon exploration well near Sidoarjo, East Java, Indonesia. The eruption, called the LUSI (Lumpur 'mud'-Sidoarjo) mud volcano, has continued since then at rates as high as 160,000 m3 per day. At the request of the United States Department of State, the U.S. Geological Survey (USGS) has been providing technical assistance to the Indonesian Government on the geological and geochemical aspects of the mud eruption. This report presents initial characterization results of a sample of the mud collected on September 22, 2007, as well as inerpretive findings based on the analytical results. The focus is on characteristics of the mud sample (including the solid and water components of the mud) that may be of potential environmental or human health concern. Characteristics that provide insights into the possible origins of the mud and its contained solids and waters have also been evaluated.
Multiphase modelling of mud volcanoes
NASA Astrophysics Data System (ADS)
Colucci, Simone; de'Michieli Vitturi, Mattia; Clarke, Amanda B.
2015-04-01
Mud volcanism is a worldwide phenomenon, classically considered as the surface expression of piercement structures rooted in deep-seated over-pressured sediments in compressional tectonic settings. The release of fluids at mud volcanoes during repeated explosive episodes has been documented at numerous sites and the outflows resemble the eruption of basaltic magma. As magma, the material erupted from a mud volcano becomes more fluid and degasses while rising and decompressing. The release of those gases from mud volcanism is estimated to be a significant contributor both to fluid flux from the lithosphere to the hydrosphere, and to the atmospheric budget of some greenhouse gases, particularly methane. For these reasons, we simulated the fluid dynamics of mud volcanoes using a newly-developed compressible multiphase and multidimensional transient solver in the OpenFOAM framework, taking into account the multicomponent nature (CH4, CO2, H2O) of the fluid mixture, the gas exsolution during the ascent and the associated changes in the constitutive properties of the phases. The numerical model has been tested with conditions representative of the LUSI, a mud volcano that has been erupting since May 2006 in the densely populated Sidoarjo regency (East Java, Indonesia), forcing the evacuation of 40,000 people and destroying industry, farmland, and over 10,000 homes. The activity of LUSI mud volcano has been well documented (Vanderkluysen et al., 2014) and here we present a comparison of observed gas fluxes and mud extrusion rates with the outcomes of numerical simulations. Vanderkluysen, L.; Burton, M. R.; Clarke, A. B.; Hartnett, H. E. & Smekens, J.-F. Composition and flux of explosive gas release at LUSI mud volcano (East Java, Indonesia) Geochem. Geophys. Geosyst., Wiley-Blackwell, 2014, 15, 2932-2946
The concept of geothermal exploration in west Java based on geophysical data
NASA Astrophysics Data System (ADS)
Gaffar, Eddy Z.
2018-02-01
Indonesia has the largest geothermal prospects in the world and most of them are concentrated in Java and Sumatera. The ones on Sumatra island are generally controlled by Sumatra Fault, either the main fault or the second and the third order fault. Geothermal in Java is still influenced by the subduction of oceanic plates from the south of Java island that forms the southern mountains extending from West Java to East Java. From a geophysical point of view, there is still no clue or concept that accelerates the process of geothermal exploration. The concept is that geothermal is located around the volcano (referred to the volcano as a host) and around the fault (fault as a host). There is another method from remote sensing analysis that often shows circular feature. In a study conducted by LIPI, we proposed a new concept for geothermal exploration which is from gravity analysis using Bouguer anomaly data from Java Island, which also show circular feature. The feature is supposed to be an "ancient crater" or a hidden caldera. Therefore, with this hypothesis, LIPI Geophysics team will try to prove whether this symptom can help accelerate the process of geothermal exploration on the island of West Java. Geophysical methods might simplify the exploration of geothermal prospect in West Java. Around the small circular feature, there are some large geothermal prospect areas such as Guntur, Kamojang, Drajat, Papandayan, Karaha Bodas, Patuha. The concept proposed by our team will try be applied to explore geothermal in Java Island for future work.
NASA Astrophysics Data System (ADS)
Maryanto, Sukir
2017-11-01
Arjuno Welirang Volcano Geothermal (AWVG) is located around Arjuno-Welirang Volcano in Malang, East Java, about 100 km southwest of Surabaya, the capital city of East Java province, and is still an undeveloped area of the geothermal field. The occurrence of solfatara and fumaroles with magmatic gasses indicated the existence of a volcanic geothermal system in the subsurface. A few hot springs are found in the Arjuno-Welirang volcanic complex, such as Padusan hot spring, Songgoriti hot spring, Kasinan hot spring, and Cangar hot spring. Multi geophysical observations in AWVG complex was carried out in order to explore the subsurface structure in supporting the plan of Geo Techno Park at the location. Gravity, Magnetic, Microearthquake, and Electrical Resistivity Tomography (ERT) methods were used to investigate the major and minor active faulting zones whether hot springs circulation occurs in these zones. The gravity methods allowed us to locate the subsurface structure and to evaluate their geometrical relationship base on density anomaly. Magnetic methods allow us to discriminate conductive areas which could correspond to an increase in thermal fluid circulation in the investigated sites. Micro-earthquakes using particle motion analysis to locate the focal depth related with hydrothermal activity and electrical resistivity tomography survey offers methods to locate more detail subsurface structure and geothermal fluids near the surface by identifying areas affected by the geothermal fluid. The magnetic and gravity anomaly indicates the subsurface structure of AWVG is composed of basalt rock, sulfide minerals, sandstone, and volcanic rock with high minor active fault structure as a medium for fluid circulation. While using micro-earthquake data in AWVG shown shallow focal depth range approximate 60 meters which indicates shallow hydrothermal circulation in AWVG. The geothermal fluid circulation zones along the fault structure resulted in some hot springs in a central and north-western part of AWVG detected by the Electrical Resistivity Tomography, appear to be well correlated with corresponding features derived from the gravity, magnetic, and micro-earthquake survey. We just ongoing process to develop Arjuno Welirang Volcano & Geothermal Research Center (AWVGRC) located at Universitas Brawijaya Agro Techno Park, Cangar in the flank of Arjuno Welirang volcano complex. Due to our initial observations, AWVG has a great potential for a pilot project of an educational geo technopark development area.
Neogene subduction beneath Java, Indonesia: Slab tearing and changes in magmatism
NASA Astrophysics Data System (ADS)
Cottam, Michael; Hall, Robert; Cross, Lanu; Clements, Benjamin; Spakman, Wim
2010-05-01
Java is a Neogene calc-alkaline volcanic island arc formed by the northwards subduction of the Indo-Australian Plate beneath Sundaland, the continental core of SE Asia. The island has a complex history of volcanism and displays unusual subduction characteristics. These characteristics are consistent with the subduction of a hole in the down going slab that was formed by the arrival of a buoyant oceanic plateau at the trench. Subduction beneath Java began in the Eocene. However, the position and character of the calc-alkaline arc has changed over time. An older Paleogene arc ceased activity in the Early Miocene. Volcanic activity resumed in the Late Miocene producing a younger arc to the north of the older arc, and continues to the present day. An episode of Late Miocene thrusting at about 7 Ma is observed throughout Java and appears to be linked to northward movement of the arc. Arc rocks display typical calc-alkaline characteristics and reflect melting of the mantle wedge and subducted sediments associated with high fluid fluxes. Between West Java and Bali the present arc-trench gap is unusually wide at about 300 km. Seismicity identifies subducted Indian Ocean lithosphere that dips north at about 20° between the trench and the arc and then dips more steeply at about 60-70° from 100 to 600 km depth. In East Java there is gap in seismicity between about 250 and 500 km. Seismic tomography shows that this gap is not an aseismic section of the subduction zone but a hole in the slab. East Java is also unusual in the presence of K-rich volcanoes, now inactive, to the north of the calc-alkaline volcanoes of the active arc. In contrast to the calc-alkaline volcanism of the main arc, these K-rich melts imply lower fluid fluxes and a different mantle source. We suggest that all these observations can be explained by the tearing of the subducting slab when a buoyant oceanic plateau arrived at the trench south of East Java at about 8 Ma. With the slab unable to subduct, continued convergence caused contractional deformation and thrusting in Java. The slab then broke in front of the plateau. The trench stepped back to the south by about 150 km and subduction resumed behind the plateau, causing a hole to develop in the subducting slab. As the hole passed beneath the arc, and fluid flux declined, normal calc-alkaline volcanism ceased. With the mantle wedge melt component ‘switched off' K-rich melts, produced from a deeper mantle component that remained undiluted, dominated arc volcanism. As the hole got deeper K-rich volcanism ceased. Normal, calc-alkaline, arc activity resumed when the untorn slab following the hole was subducted.
NASA Astrophysics Data System (ADS)
Inguaggiato, Salvatore; Mazzini, Adriano; Vita, Fabio; Sciarra, Alessandra
2016-04-01
The Java Island is characterized by an intense volcanic activity with more then 100 active volcanoes. Moreover, this island is also known by the presence of many mud volcanoes and hydrothermal springs. In particular, in the 2006 several sudden hot mud eruptions, with fluids around 100° C, occurred in the NE side of the island resulting in a prominent eruption named Lusi (contraction of Lumpur Sidoarjo) located along the major Watukosek strike-slip fault zone. The Watukosek fault system, strikes from the Arjuno-Welirang volcanic complex, intersects Lusi and extends towards the NE of the Java island. Conversely of the normal mud eruptions (cold fluids emitted in a short time period of few days), the Lusi eruption was characterized by a persistent effusive hot fluids emissions for a long-time period of, so far, nearly a decade. Moreover, the isotopic composition of emitted gases like Helium showed a clear magmatic origin. For this reasons we decided to investigate the near Arjuno-Welirang complex located on the same strike-slip fault. Arjuno-Welirang is a twin strato-volcano system located in the East of Java along the Watukosek fault, at about 25 km SW respect to the Lusi volcano system. It features two main peaks: Arjuno (3339 masl) and Welirang (3156 masl). The last recorded eruptive activity took place in August 1950 from the flanks of Kawah Plupuh and in October 1950 from the NW part of the Gunung Welirang. This strato-volcano is characterized by a S-rich area, with high T-vent fumarole at least up to 220° C (and likely higher), located mainly in the Welirang crater. In addition, several hot springs vent from the flanks of the volcano, indicate the presence of a large hydrothermal system. During July 2015, in the framework of the Lusi Lab project (ERC grant n° 308126), we carried out a geochemical field campaign on the Arjuno-Welirang volcano hydrothermal system area, sampling water and dissolved gases from the thermal and cold springs located on the flanks of the volcano and from two high-T fumaroles located on the summit area of Welirang. Hydrothermal springs reveal temperatures up to 53° C and pH between 6.2 and 8.2. The hydrothermal springs show a volatile content (mainly CO2 and He) that is several order of magnitude higher than the Air Saturated Waters values (ASW) indicating a strong gas/water interaction processes between waters of meteoric origin and deep volatiles of volcanic origin. The hydrothermal springs have dissolved helium isotopic values with clear magmatic signature (R/Ra around 7) that is remarkably close to the helium isotope values from the fumaroles (R/Ra= 7.30). The isotopic composition of helium measured in the fluids emitted from the Lusi mud-volcano around 6.5R/Ra is very similar to the Welirang volcanic fluids indicating the presence of magmatic gases in the Lusi emitted fluids. While the isotopic composition of waters in the Welirang and Lusi fluids are markedly different suggesting a different origin and/or recharge areas for these two hydrothermal systems. These data support the hypothesis that the presence of volcanic gases could have triggered and conveyed the hot and persistent mud fluids emissions of Lusi volcano.
1996-01-20
STS072-737-012 (11-20 Jan. 1996) --- The astronauts photographed this view of Java, an Indonesian island. Java lies between the Java Sea at top and the Indian Ocean at bottom (north is located at top center). A line of volcanoes on the southern edge of the island, trending from central to eastern areas, is highlighted by a ring of clouds. Off the southern coast of Java is the Java Trench where the Australian plate, to the south, is diving under the Eurasia plate to the north. According to anthropologists, Java has one of the highest populations in Indonesia because the soil is enriched by volcanic ash. Merapi volcano, at left edge, second volcano to the right, rises to 9,550 feet and erupts frequently. Madura Island, partially obscured by clouds, can be seen on the upper eastern end of Java.
Volcano hazard mitigation program in Indonesia
Sudradjat, A.
1990-01-01
Volcanological investigations in Indonesia were started in the 18th century, when Valentijn in 1726 prepared a chronological report of the eruption of Banda Api volcno, Maluku. Modern and intensive volcanological studies did not begin until the catastrophic eruption of Kelut volcano, East Java, in 1919. The eruption took 5,011 lives and destroyed thousands of acres of coffee plantation. An eruption lahar generated by the crater lake water mixed with volcanic eruptions products was the cause of death for a high number of victims. An effort to mitigate the danger from volcanic eruption was first initiated in 1921 by constructing a tunnel to drain the crater lake water of Kelut volcano. At the same time a Volcanological Survey was established by the government with the responsibility of seeking every means for minimizing the hazard caused by volcanic eruption.
Volcanoes, Central Java, Indonesia
NASA Technical Reports Server (NTRS)
1992-01-01
The island of Java (8.0S, 112.0E), perhaps better than any other, illustrates the volcanic origin of Pacific Island groups. Seen in this single view are at least a dozen once active volcano craters. Alignment of the craters even defines the linear fault line of Java as well as the other some 1500 islands of the Indonesian Archipelago. Deep blue water of the Indian Ocean to the south contrasts to the sediment laden waters of the Java Sea to the north.
Volcanoes, Central Java, Indonesia
1992-08-08
The island of Java (8.0S, 112.0E), perhaps better than any other, illustrates the volcanic origin of Pacific Island groups. Seen in this single view are at least a dozen once active volcano craters. Alignment of the craters even defines the linear fault line of Java as well as the other some 1500 islands of the Indonesian Archipelago. Deep blue water of the Indian Ocean to the south contrasts to the sediment laden waters of the Java Sea to the north.
NASA Astrophysics Data System (ADS)
Ilham, N.; Niasari, S. W.
2018-04-01
Tiris village, Probolinggo, East Java, is one of geothermal potential areas in Indonesia. This area is located in a valley flank of Mount Lamongan and Argopuro volcanic complex. This research aimed to identify a geothermal system at Tiris area, particularly the fluid pathways. The geothermal potential can be seen from the presence of warm springs with temperature ranging 35-45°C. The warm spring locations are aligned in the same orientation with major fault structure in the area. The fault structure shows dominant northwest-southeast orientation. We used audio-magnetotelluric data in the frequency range of 10 Hz until 92 kHz. The total magnetotelluric sites are 6. From the data analysis, most of the data orientation were 2-D with geo-electrical direction north-south. We used 1-D inversion using Newton algorithm. The 1-D inversion resulted in low resistive anomaly that corresponds to Lamongan lavas. Additionally, the depth of the resistor are different between the area to the west (i.e. 75 m) and to the east (i.e. 25 m). This indicates that there is a fault around the aligned maar (e.g. Ranu Air).
Review of subduction and its association with geothermal system in Sumatera-Java
NASA Astrophysics Data System (ADS)
Ladiba, A. F.; Putriyana, L.; Sibarani, B. br.; Soekarno, H.
2017-12-01
Java and Sumatera have the largest geothermal resources in Indonesia, in which mostly are spatially associated with volcanoes of subduction zones. However, those volcanoes are not distributed in a regular pattern due to the difference of subduction position. Subduction position in java is relatively more perpendicular to the trench than in Sumatera. In addition, Java has a concentration of large productive geothermal field with vapour dominated system in the western part of Java, which may be caused by the various subduction dip along the island. In order to understand the relationship between the subduction process and geothermal system in the subduction zone volcanoes, we examined several kinematic parameters of subduction that potentially relevant to the formation of geothermal system in overriding plate such as slab dip, subduction rate, and direction of subduction. Data and information regarding tectonic setting of Sumatera and Java and productive geothermal field in Sumatera and Java have been collected and evaluated. In conclusion, there are three condition that caused the geothermal fluid to be more likely being in vapour phase, which are: the subduction is in an orthogonal position, the slab dip is high, and rate of subduction is high. Although there are plenty researches of subduction zone volcanoes, only a few of them present information about its formation and implication to the geothermal system. The result of this study may be used as reference in exploration of geothermal field in mutual geologic environment.
East Java Maritime Connectivity and Its Regional Development Support
NASA Astrophysics Data System (ADS)
Purboyo, H.; Ibad, M. Z.
2017-07-01
The study presents an evolution of maritime connectivity index of East Java which is associated with accessibility and mobility index of regions in East Java. The findings show that East Java increased connectivity more than three times from 1996 to 2011. Initially, the East Java is importer but then become exporter to national territory. For accessibility, the inland regions of East Java in general is higher than the coastal areas. And for mobility, inland regions initially have a small index, but in subsequent years its index is greater than the coastal areas.
Evaluation of volcanic risk management in Merapi and Bromo Volcanoes
NASA Astrophysics Data System (ADS)
Bachri, S.; Stöetter, J.; Sartohadi, J.; Setiawan, M. A.
2012-04-01
Merapi (Central Java Province) and Bromo (East Java Province) volcanoes have human-environmental systems with unique characteristics, thus causing specific consequences on their risk management. Various efforts have been carried out by many parties (institutional government, scientists, and non-governmental organizations) to reduce the risk in these areas. However, it is likely that most of the actions have been done for temporary and partial purposes, leading to overlapping work and finally to a non-integrated scheme of volcanic risk management. This study, therefore, aims to identify and evaluate actions of risk and disaster reduction in Merapi and Bromo Volcanoes. To achieve this aims, a thorough literature review was carried out to identify earlier studies in both areas. Afterward, the basic concept of risk management cycle, consisting of risk assessment, risk reduction, event management and regeneration, is used to map those earlier studies and already implemented risk management actions in Merapi and Bromo. The results show that risk studies in Merapi have been developed predominantly on physical aspects of volcanic eruptions, i.e. models of lahar flows, hazard maps as well as other geophysical modeling. Furthermore, after the 2006 eruption of Merapi, research such on risk communication, social vulnerability, cultural vulnerability have appeared on the social side of risk management research. Apart from that, disaster risk management activities in the Bromo area were emphasizing on physical process and historical religious aspects. This overview of both study areas provides information on how risk studies have been used for managing the volcano disaster. This result confirms that most of earlier studies emphasize on the risk assessment and only few of them consider the risk reduction phase. Further investigation in this field work in the near future will accomplish the findings and contribute to formulate integrated volcanic risk management cycles for both Merapi and Bromo. Keywords: Risk management, volcanoes hazard, Merapi and Bromo Volcano Indonesia
Volcanostratigraphic Approach for Evaluation of Geothermal Potential in Galunggung Volcano
NASA Astrophysics Data System (ADS)
Ramadhan, Q. S.; Sianipar, J. Y.; Pratopo, A. K.
2016-09-01
he geothermal systems in Indonesia are primarily associated with volcanoes. There are over 100 volcanoes located on Sumatra, Java, and in the eastern part of Indonesia. Volcanostratigraphy is one of the methods that is used in the early stage for the exploration of volcanic geothermal system to identify the characteristics of the volcano. The stratigraphy of Galunggung Volcano is identified based on 1:100.000 scale topographic map of Tasikmalaya sheet, 1:50.000 scale topographic map and also geological map. The schematic flowchart for evaluation of geothermal exploration is used to interpret and evaluate geothermal potential in volcanic regions. Volcanostratigraphy study has been done on Galunggung Volcano and Talaga Bodas Volcano, West Java, Indonesia. Based on the interpretation of topographic map and analysis of the dimension, rock composition, age and stress regime, we conclude that both Galunggung Volcano and Talaga Bodas Volcano have a geothermal resource potential that deserve further investigation.
Earth observations during Space Shuttle Mission STS-42 - Discovery's mission to planet earth
NASA Technical Reports Server (NTRS)
Lulla, Kamlesh P.; Helfert, Michael; Amsbury, David; Pitts, David; Jaklitch, Pat; Wilkinson, Justin; Evans, Cynthia; Ackleson, Steve; Helms, David; Chambers, Mark
1993-01-01
The noteworthy imagery acquired during Space Shuttle Mission STS-42 is documented. Attention is given to frozen Tibetan lakes, Merapi Volcano in Java, Mt. Pinatubo in the Philippines, the coastline east of Tokyo Japan, land use in southern India, and the Indus River Delta. Observations of Kamchatka Peninsula, Lake Baikal, Moscow, Katmai National Park and Mt. Augustine, Alaska, the Alaskan coast by the Bering Sea, snow-covered New York, the Rhone River valley, the Strait of Gibraltar, and Mt. Ararat, Turkey, are also reported.
Recent uplift and hydrothermal activity at Tangkuban Parahu volcano, west Java, Indonesia
Dvorak, J.; Matahelumual, J.; Okamura, A.T.; Said, H.; Casadevall, T.J.; Mulyadi, D.
1990-01-01
Tangkuban Parahu is an active stratovolcano located 17 km north of the city of Bandung in the province west Java, Indonesia. All historical eruptive activity at this volcano has been confined to a complex of explosive summit craters. About a dozen eruptions-mostly phreatic events- and 15 other periods of unrest, indicated by earthquakes or increased thermal activity, have been noted since 1829. The last magmatic eruption occurred in 1910. In late 1983, several small phreatic explosions originated from one of the summit craters. More recently, increased hydrothermal and earthquake activity occurred from late 1985 through 1986. Tilt measurements, using a spirit-level technique, have been made every few months since February 1981 in the summit region and along the south and east flanks of the volcano. Measurements made in the summit region indicated uplift since the start of these measurements through at least 1986. From 1981 to 1983, the average tilt rate at the edges of the summit craters was 40-50 microradians per year. After the 1983 phreatic activity, the tilt rate decreased by about a factor of five. Trilateration surveys across the summit craters and on the east flank of the volcano were conducted in 1983 and 1986. Most line length changes measured during this three-year period did not exceed the expected uncertainty of the technique (4 ppm). The lack of measurable horizontal strain across the summit craters seems to contradict the several years of tilt measurements. Using a point source of dilation in an elastic half-space to model tilt measurements, the pressure center at Tangkuban Parahu is located about 1.5 km beneath the southern part of the summit craters. This is beneath the epicentral area of an earthquake swarm that occurred in late 1983. The average rate in the volume of uplift from 1981 to 1983 was 3 million m3 per year; from 1983 to 1986 it averaged about 0.4 million m3 per year. Possible causes for this uplift are increased pressure within a very shallow magma body or heating and expansion of a confined aquifier. ?? 1990 Springer-Verlag.
Earth observations taken by the Expedition Seven crew
2003-08-24
ISS007-E-13327 (24 August 2003) --- This view featuring Javas Merapi volcano was photographed by one of the Expedition 7 crewmembers onboard the International Space Station (ISS). At 2,911 meters, the summit of Merapi and its vigorous steam plume rises above a bank of stratus clouds. One of Indonesias most active volcanoes, it has been almost continuously active for nearly ten years, including periodic pyroclastic flows and avalanches. The volcano is located less than 25 miles north of the city of Yogykarta in central Java.
VLP Simulation: An Interactive Simple Virtual Model to Encourage Geoscience Skill about Volcano
NASA Astrophysics Data System (ADS)
Hariyono, E.; Liliasari; Tjasyono, B.; Rosdiana, D.
2017-09-01
The purpose of this study was to describe physics students predicting skills after following the geoscience learning using VLP (Volcano Learning Project) simulation. This research was conducted to 24 physics students at one of the state university in East Java-Indonesia. The method used is the descriptive analysis based on students’ answers related to predicting skills about volcanic activity. The results showed that the learning by using VLP simulation was very potential to develop physics students predicting skills. Students were able to explain logically about volcanic activity and they have been able to predict the potential eruption that will occur based on the real data visualization. It can be concluded that the VLP simulation is very suitable for physics student requirements in developing geosciences skill and recommended as an alternative media to educate the society in an understanding of volcanic phenomena.
Characteristic and Behavior of Rainfall Induced Landslides in Java Island, Indonesia : an Overview
NASA Astrophysics Data System (ADS)
Christanto, N.; Hadmoko, D. S.; Westen, C. J.; Lavigne, F.; Sartohadi, J.; Setiawan, M. A.
2009-04-01
Landslides are important natural hazards occurring on mountainous area situated in the wet tropical climate like in Java, Indonesia. As a central of economic and government activity, Java become the most populated island in Indonesia and is increasing every year. This condition create population more vulnerable to hazard. Java is populated by 120 million inhabitants or equivalent with 60% of Indonesian population in only 6,9% of the total surface of Indonesia. Due to its geological setting, its topographical characteristics, and its climatic characteristics, Java is the most exposed regions to landslide hazard and closely related to several factors: (1) located on a subduction zone, 60% of Java is mountainous, with volcano-tectonic mountain chains and 36 active volcanoes out of the 129 in Indonesia, and these volcanic materials are intensively weathered (2) Java is under a humid tropical climate associated with heavy rainfall during the rainy season from October to April. On top of these "natural" conditions, the human activity is an additional factor of landslide occurrence, driven by a high demographic density The purpose of this paper was to collect and analyze spatial and temporal data concerning landslide hazard for the period 1981-2007 and to evaluate and analyze the characteristic and the behavior of landslide in Java. The results provides a new insight into our understanding of landslide hazard and characteristic in the humid tropics, and a basis for predicting future landslides and assessing related hazards at a regional scale. An overview of characteristic and behavior of landslides in Java is given. The result of this work would be valuable for decision makers and communities in the frame of future landslide risk reduction programs. Landslide inventory data was collected from internal database at the different institutions. The result is then georefenced. The temporal changes of landslide activities was done by examining the changes in number and frequency both annual and monthly level during the periods of 1981 - 2007. Simple statistical analysis was done to correlate landslide events, antecedent rainfall during 30 consecutive days and daily rainfall during the landslide day. Analysis the relationship between landslide events and their controlling factors (e.g. slope, geology, geomorphology and landuse) were carried out in GIS environment. The results show that the slope gradient has a good influence to landslides events. The number of landslides increases significantly from slopes inferior to 10° and from 30° to 40°. However, inverse correlation between landslides events occurs on slope steepness more than 40° when the landslide frequency tends to decline with an increasing of slope angle. The result from landuse analysis shows that most of landslides occur on dryland agriculture, followed by paddy fields and artificial. This data indicates that human activities play an important role on landslide occurrence. Dryland agriculture covers not only the lower part of land, but also reached middle and upper slopes; with terraces agriculture that often accelerate landslide triggering. During the period 1981-2007, the annual landslide frequency varies significantly, with an average of 49 events per year. Within a year, the number of landslides increases from June to November and decreases significantly from January to July. Statistically, both January and November are the most susceptible months for landslide generation, with respectively nine and seven events on average. This distribution is closely related to the rainfall monthly variations. Landslides in Java are unevenly distributed. Most landslides are concentrated in West Java Region, followed by Central Java and East Java. The overall landslide density in Java reached 1x10 events/km with the annual average was 3.6 x 10 event/km /year. The amount of annual precipitation is significantly higher in West Java than further East, decreasing with a constant W-E gradient. The minimum annual rainfall occurs in the northern part and in Far East Java, where few landslides can be spotted. Cumulative rainfalls are playing an important role on landslides triggering. Most of shallow landslides can be associated with antecedent rainfall, and rainfall superior on the day of landslide occurrence. There is an inverse relation between antecedent rainfalls and daily rainfall. Indeed heavy instantaneous rainfall can produce a landslide with the help of only low antecedent rainfall. On the contrary we encountered 11 cases of landslides with no rain on the triggering day, but with important antecedent rainfalls. Key words: rainfall induced landslide, spatio-temporal distribution, Java Island, Tropical Region.
Imaging of upper crustal structure beneath East Java-Bali, Indonesia with ambient noise tomography
NASA Astrophysics Data System (ADS)
Martha, Agustya Adi; Cummins, Phil; Saygin, Erdinc; Sri Widiyantoro; Masturyono
2017-12-01
The complex geological structures in East Java and Bali provide important opportunities for natural resource exploitation, but also harbor perils associated with natural disasters. Such a condition makes the East Java region an important area for exploration of the subsurface seismic wave velocity structure, especially in its upper crust. We employed the ambient noise tomography method to image the upper crustal structure under this study area. We used seismic data recorded at 24 seismographs of BMKG spread over East Java and Bali. In addition, we installed 28 portable seismographs in East Java from April 2013 to January 2014 for 2-8 weeks, and we installed an additional 28 seismographs simultaneously throughout East Java from August 2015 to April 2016. We constructed inter-station Rayleigh wave Green's functions through cross-correlations of the vertical component of seismic noise recordings at 1500 pairs of stations. We used the Neighborhood Algorithm to construct depth profiles of shear wave velocity (Vs). The main result obtained from this study is the thickness of sediment cover. East Java's southern mountain zone is dominated by higher Vs, the Kendeng basin in the center is dominated by very low Vs, and the Rembang zone (to the North of Kendeng zone) is associated with medium Vs. The existence of structures with oil and gas potential in the Kendeng and Rembang zones can be identified by low Vs.
Lewicki, Jennifer L.; Corentin Caudron,; Vincent van Hinsberg,; George Hilley,
2016-01-01
The crater lake of Kawah Ijen volcano, East Java, Indonesia, has displayed large and rapid changes in temperature at point locations during periods of unrest, but measurement techniques employed to-date have not resolved how the lake’s thermal regime has evolved over both space and time. We applied a novel approach for mapping and monitoring variations in crater-lake apparent surface (“skin”) temperatures at high spatial (~32 cm) and temporal (every two minutes) resolution at Kawah Ijen on 18 September 2014. We used a ground-based FLIR T650sc camera with digital and thermal infrared (TIR) sensors from the crater rim to collect (1) a set of visible imagery around the crater during the daytime and (2) a time series of co-located visible and TIR imagery at one location from pre-dawn to daytime. We processed daytime visible imagery with the Structure-from-Motion photogrammetric method to create a digital elevation model onto which the time series of TIR imagery was orthorectified and georeferenced. Lake apparent skin temperatures typically ranged from ~21 to 33oC. At two locations, apparent skin temperatures were ~ 4 and 7 oC less than in-situ lake temperature measurements at 1.5 and 5 m depth, respectively. These differences, as well as the large spatio-temporal variations observed in skin temperatures, were likely largely associated with atmospheric effects such as evaporative cooling of the lake surface and infrared absorption by water vapor and SO2. Calculations based on orthorectified TIR imagery thus yielded underestimates of volcanic heat fluxes into the lake, whereas volcanic heat fluxes estimated based on in-situ temperature measurements (68 to 111 MW) were likely more representative of Kawah Ijen in a quiescent state. The ground-based imaging technique should provide a valuable tool to continuously monitor crater-lake temperatures and contribute insight into the spatio-temporal evolution of these temperatures associated with volcanic activity.
ERIC Educational Resources Information Center
Handayani, Trisakti; Widodo, Wahyu
2016-01-01
General purpose of this research are: assessing the implementation of Permendagri no. 15 year 2008 about Gender Mainstreaming on Basic Education Levels in the East Java Province, analyze the problem of the implementation of Permendagri no. 15 year 2008 about Gender Mainstreaming on Basic Education Levels in the East Java Province and analyze the…
Tracing crustal contamination along the Java segment of the Sunda Arc, Indonesia
NASA Astrophysics Data System (ADS)
Jolis, E. M.; Troll, V.; Deegan, F.; Blythe, L.; Harris, C.; Freda, C.; Hilton, D.; Chadwick, J.; Van Helden, M.
2012-04-01
Arc magmas typically display chemical and petrographic characteristics indicative of crustal input. Crustal contamination can take place either in the mantle source region or as magma traverses the upper crust (e.g. [1]). While source contamination is generally considered the dominant process (e.g. [2]), late-stage crustal contamination has been recognised at volcanic arcs too (e.g. [3]). In light of this, we aim to test the extent of upper crustal versus source contamination along the Java segment of the Sunda arc, which, due its variable upper crustal structure, is an exemplary natural laboratory. We present a detailed geochemical study of 7 volcanoes along a traverse from Anak-Krakatau in the Sunda strait through Java and Bali, to characterise the impact of the overlying crust on arc magma composition. Using rock and mineral elemental geochemistry, radiogenic (Sr, Nd and Pb) and, stable (O) isotopes, we show a correlation between upper crustal composition and the degree of upper crustal contamination. We find an increase in 87Sr/86Sr and δ18O values, and a decrease in 143Nd/144Nd values from Krakatau towards Merapi, indicating substantial crustal input from the thick continental basement present. Volcanoes to the east of Merapi and the Progo-Muria fault transition zone, where the upper crust is thinner, in turn, show considerably less crustal input in their isotopic signatures, indicating a stronger influence of the mantle source. Our new data represent a systematic and high-resolution arc-wide sampling effort that allows us to distinguish the effects of the upper crust on the compositional spectrum of individual volcanic systems along the Sunda arc. [1] Davidson, J.P, Hora, J.M, Garrison, J.M & Dungan, M.A 2005. Crustal Forensics in Arc Magmas. J. Geotherm. Res. 140, 157-170; [2] Debaille, V., Doucelance, R., Weis, D., & Schiano, P. 2005. Geochim. Cosmochim. Acta, 70,723-741; [3] Gasparon, M., Hilton, D.R., & Varne, R. 1994. Earth Planet. Sci. Lett., 126, 15-22.
Yamanaka, Atsushi; Mulyatno, Kris Cahyo; Susilowati, Helen; Hendrianto, Eryk; Utsumi, Takako; Amin, Mochamad; Lusida, Maria Inge; Soegijanto, Soegeng; Konishi, Eiji
2010-01-01
Japanese encephalitis virus (JEV) is a fatal disease in Asia. Pigs are considered to be the effective amplifying host for JEV in the peridomestic environment. Bali Island and Java Island in Indonesia provide a model to assess the effect of pigs on JEV transmission, since the pig density is nearly 100-fold higher in Bali than Java, while the geographic and climatologic environments are equivalent in these areas. We surveyed antibodies to JEV among 123 pigs in Mengwi (Bali) and 96 pigs in Tulungagung (East Java) in 2008 by the hemagglutination-inhibition (HAI) test. Overall prevalences were 49% in Bali and 6% in Java, with a significant difference between them (P < 0.001). Monthly infection rates estimated from age-dependent antibody prevalences were 11% in Bali and 2% in Java. In addition, 2-mercaptoethanol-sensitive antibodies were found only from Bali samples. Further, the average HAI antibody titer obtained from positive samples was significantly higher in Bali (1:52) than Java (1:10; P < 0.001). These results indicated that JEV transmission in nature is more active in Bali than East Java.
NASA Astrophysics Data System (ADS)
Gomez, C.; Lavigne, F.; Sri Hadmoko, D.; Wassmer, P.
2018-03-01
Semeru Volcano is an active stratovolcano located in East Java (Indonesia), where historic lava flows, occasional pyroclastic flows and vulcanian explosions (on average every 5 min to 15 min) generate a stock of material that is remobilized by lahars, mostly occurring during the rainy season between October and March. Every year, several lahars flow down the Curah Lengkong Valley on the South-east flank of the volcano, where numerous lahar studies have been conducted. In the present contribution, the objective was to study the spatial distribution of boulder-size clasts and try to understand how this distribution relates to the valley morphology and to the dynamic and deposition dynamic of lahars. To achieve this objective, the method relies on a combination of (1) aerial photogrammetry-derived geospatial data on boulders' distribution, (2) ground penetrating radar data collected along a 2 km series of transects and (3) a CFD model of flow to analyse the results from the deposits. Results show that <1 m diameter boulders are evenly distributed along the channel, but that lava flow deposits visible at the surface of the river bed and SABO dams increase the concentration of clasts upstream of their position. Lateral input of boulders from collapsing lava-flow deposits can bring outsized clasts in the system that tend to become trapped at one location. Finally, the comparison between the CFD simulation and previous research using video imagery of lahars put the emphasis the fact that there is no direct link between the sedimentary units observed in the field and the flow that deposited them. Both grain size, flow orientation, matrix characteristics can be very different in a deposit for one single flow, even in confined channels like the Curah Lengkong.
Shallow Depth Study Using Gravity & Magnetics Data in Central Java - Yogyakarta
NASA Astrophysics Data System (ADS)
Fawzy Ismullah M, Muhammad; Altin Massinai, Muhammad; Maria
2018-03-01
Gravity and magnetics measurements carried out in Karangsambung - Bayat - Wonosari track, Central Java - Yogyakarta region as much as 34 points for subsurface identification. Modeling and interpretation using both data at 3 sections. Section A lies on Karangsambung area and reach to 1900 m. Section A showed formation of 0.000001 - 0.0014 nT and 2.00 - 2.80 g/cm3 like alluvium, basalt and tuff. Section B lies on Wates - Yogyakarta area and reach to 1700 m. Section B showed formation of (-0.01) - 0.02 nT and 2.40 - 3.00 g/cm3 like andesite intrusive and Merapi volcano sediments. Section C lies on Bayat - Wonosari area and reach to 2000 m. Section C showed formation of 0.00016 - 0.0005 nT and 2.30 - 3.14 g/cm3 like limestone, tuff and diorite intrusive. Based on modeling results from 2D structure inversion method can identify the formation of sediments from volcano activity on Karangsambung - Bayat - Wonosari track, Central Java - Yogyakarta region. The method of this study shows potential application for identify the formation of volcano activity from 2D structure.
Petrographic and major elements results as indicator of the geothermal potential in Java
NASA Astrophysics Data System (ADS)
Indarto, S.; Setiawan, I.; Kausar, A.; Permana, dan H.
2018-02-01
Geothermal manifestations existed in West Java (Cilayu, Papandayan Mountain, Telagabodas, Karaha, Tampomas Mountain), Central Java (Slamet Mountain, Dieng) and East Java (Argopuro Mountain) show a difference in their mineral and geochemical compositions. The petrographic analysis of volcanic rocks from Garut (West Java) are basalt, andesite basaltic and andesite. However, based on SiO2 vs K2O value, those volcanic rocks have wide ranges of fractionated magma resulting basalt - basaltic andesite to dacitic in composition rather than those of Slamet Mountain, Dieng, and Argopuro Mountain areas which have a narrower range of fractionation magma resulting andesite basaltic and andesite in compositions. The volcanic rocks from Garut show tholeiitic affinity and calc-alkaline affinity. The geothermal potential of Java is assumed to be related to the magma fractionation level. Geothermal potential of West Java (Garut) is higher than that of Central Java (Slamet Mountain, Dieng) and East Java (Argopuro Mountain).
NASA Astrophysics Data System (ADS)
Samuel, Putra A.; Widyaningsih, Yekti; Lestari, Dian
2016-02-01
The objective of this study is modeling the Unemployment Rate (UR) in West Java, Central Java, and East Java, with rate of disease, infant mortality rate, educational level, population size, proportion of married people, and GDRP as the explanatory variables. Spatial factors are also considered in the modeling since the closer the distance, the higher the correlation. This study uses the secondary data from BPS (Badan Pusat Statistik). The data will be analyzed using Moran I test, to obtain the information about spatial dependence, and using Spatial Autoregressive modeling to obtain the information, which variables are significant affecting UR and how great the influence of the spatial factors. The result is, variables proportion of married people, rate of disease, and population size are related significantly to UR. In all three regions, the Hotspot of unemployed will also be detected districts/cities using Spatial Scan Statistics Method. The results are 22 districts/cities as a regional group with the highest unemployed (Most likely cluster) in the study area; 2 districts/cities as a regional group with the highest unemployed in West Java; 1 district/city as a regional groups with the highest unemployed in Central Java; 15 districts/cities as a regional group with the highest unemployed in East Java.
75 FR 26846 - Unblocking of Three Specially Designated Nationals Pursuant to Executive Order 13224
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-12
.... ``ABU SA'AD''; a.k.a. ``ABU SAAD''; a.k.a. ``FREEDOM FIGHTER''); DOB 17 Feb 1971; POB Madiun, East Java..., Lamongan district, East Java province, Indonesian; nationality Indonesia (individual) [SDGT]. SAMUDRA, Imam...
Space Radar Image of Central Java, Indonesia
1999-04-15
The summits of two large volcanoes in Central Java, Indonesia are shown in the center of this radar image. Lava flows of different ages and surface roughness appear in shades of green and yellow surrounding the summit of Mt. Merbabu (mid-center) and Mt. Merapi (lower center). Mt. Merapi erupted on November 28, 1994 about six weeks after this image was taken. The eruption killed more than 60 people and forced the evacuation of more than 6,000 others. Thousands of other residents were put on alert due to the possibility of volcanic debris mudflows, called lahars, that threatened nearby towns. Mt. Merapi is located approximately 40 kilometers (25 miles) north of Yogyakarta, the capital of Central Java. The older volcano at the top of the image is unnamed. Lake Rawapening is the dark blue feature in the upper right. The light blue area southeast of the lake is the city of Salatiga. Directly south of Salatiga and southeast of Mt. Merapi is the city of Boyolali. Scientists are studying Mt. Merapi as part of the international "Decade Volcanoes" project, because of its recent activity and potential threat to local populations. The radar data are being used to identify and distinguish a variety of volcanic features. http://photojournal.jpl.nasa.gov/catalog/PIA01782
NASA Astrophysics Data System (ADS)
Gertisser, R.; Handley, H. K.; Reagan, M. K.; Berlo, K.; Barclay, J.; Preece, K.; Herd, R.
2011-12-01
Merapi volcano (Central Java) is one of the most active and deadly volcanoes in Indonesia. The 2010 eruption was the volcano's largest eruption since 1872 and erupted much more violently than expected. Prior to 2010, volcanic activity at Merapi was characterised by several months of slow dome growth punctuated by gravitational dome failures, generating small-volume pyroclastic density currents (Merapi-type nuées ardentes). The unforeseen, large-magnitude events in 2010 were different in many respects: pyroclastic density currents travelled > 15 km beyond the summit causing widespread devastation in proximal areas on Merapi's south flank and ash emissions from sustained eruption columns resulted in ash fall tens of kilometres away from the volcano. The 2010 events have proved that Merapi's relatively small dome-forming activity can be interrupted at relatively short notice by larger explosive eruptions, which appear more common in the geological record. We present new geochemical and Uranium-series isotope data for the volcanic products of both the 2006 and 2010 eruptions at Merapi to investigate the driving forces behind this unusual explosive behaviour and their timescales. An improved knowledge of these processes and of changes in the pre-eruptive magma system has important implications for the assessment of hazards and risks from future eruptive activity at Merapi.
Rapid change in drift of the Australian plate records collision with Ontong Java plateau.
Knesel, Kurt M; Cohen, Benjamin E; Vasconcelos, Paulo M; Thiede, David S
2008-08-07
The subduction of oceanic plateaux, which contain extraordinarily thick basaltic crust and are the marine counterparts of continental flood-basalt provinces, is an important factor in many current models of plate motion and provides a potential mechanism for triggering plate reorganization. To evaluate such models, it is essential to decipher the history of the collision between the largest and thickest of the world's oceanic plateaux, the Ontong Java plateau, and the Australian plate, but this has been hindered by poor constraints for the arrival of the plateau at the Melanesian trench. Here we present (40)Ar-(39)Ar geochronological data on hotspot volcanoes in eastern Australian that reveal a strong link between collision of the Greenland-sized Ontong Java plateau with the Melanesian arc and motion of the Australian plate. The new ages define a short-lived period of reduced northward plate motion between 26 and 23 Myr ago, coincident with an eastward offset in the contemporaneous tracks of seamount chains in the Tasman Sea east of Australia. These features record a brief westward deflection of the Australian plate as the plateau entered and choked the Melanesian trench 26 Myr ago. From 23 Myr ago, Australia returned to a rapid northerly trajectory at roughly the same time that southwest-directed subduction began along the Trobriand trough. The timing and brevity of this collisional event correlate well with offsets in hotspot seamount tracks on the Pacific plate, including the archetypal Hawaiian chain, and thus provide strong evidence that immense oceanic plateaux, like the Ontong Java, can contribute to initiating rapid change in plate boundaries and motions on a global scale.
The Study of Fault Lineament Pattern of the Lamongan Volcanic Field Using Gravity Data
NASA Astrophysics Data System (ADS)
Aziz, K. N.; Hartantyo, E.; Niasari, S. W.
2018-04-01
Lamongan Volcano located in Tiris, East Java, possesses geothermal potential energy. The geothermal potential was indicated by the presence of geothermal manifestations such as hot springs. We usedsecondary gravity data from GGMplus. The result of gravity anomaly map shows that there is the lowest gravity anomaly in the center of the study area coinciding with the hot spring location. Gravity data were analyzed using SVD method to identify fault structures. It controls the geothermal fluid pathways. The result of this research shows thatthe type of fault in hot springsisanormal fault with direction NW-SE. The fault lineament pattern along maaris NW-SE.Maar indicates anormal fault. As the result we know that gravity data from GGMplus which analyzed with SVD can be used to determine the type and trend of fault.
NASA Astrophysics Data System (ADS)
Nugraheni, L. R.; Niasari, S. W.; Nukman, M.
2018-04-01
Geothermal manifestations located in the Tiris, Mount Lamongan, Probolinggo, consist of warm springs. These warm springs have temperature from 35° until 45°C. Tiris fault has NW-SE dominant orientation, similar to some lineaments of maars and cinder cones around Mount Lamongan. The Mount Lamongan geothermal area is situated between Bromo and Argapura volcanoes. This study aims to map the geo-electrical and geological strikes in the study area. Phase tensor analysis has been performed in this study to determine geo-electrical strike of study area. Geological field campaign has been conducted to measure geological strikes. Then, orientation of geo-electrical strike was compared to geological strike. The result presents that the regional geological strike of study area is NW-SE while the orientation of geo-electrical strike is N-S.
NASA Astrophysics Data System (ADS)
Sarjan, Achmad Fajar Narotama; Niasari, Sintia Windhi
2017-07-01
There are some of geothermal prospects around Java Island. One of them are located in Telomoyo Volcano area, Magelang, Central Java. The existence of hot spring manifestations in Telomoyo Volcano area shows the presence of geothermal system. The upflow zone of this geothermal system was formed in the caldera of Telomoyo Volcano area, while the outflow zone was formed around Candi Umbul. In addition, from the geological map shows a geological structure assumed as a normal fault with southwest-northeast orientation that was caused by the volcanic activity. The aim of this research is to give a brief introduction about subsurface resistivity beneath Telomoyo Volcano area using 1-D magnetotelluric forward model. Thus, we can determine the possibility of data that will obtained during the acquisition process based on the geological model that was made. The apparent resistivity, phase, and period values were obtained from the forward modeling process. The result from this study is a 1-D resistivity section with synthetics curves of each geothermal model. In each model the presence of clay cap characterized by a low resistivity layer. A layer below the clay cap with a medium resistivity value interpreted as the reservoir of this geothermal system. The heat source of this geothermal area is characterized by a low resistivity that is located at depth 4000-5500m. This study is still in progress to acquire the exact values of resistivity from each layer from the field data acquisition in Telomoyo Volcano area, Magelang.
Ancient music instrument in east java: study about continuity and change in the 10-15 century
NASA Astrophysics Data System (ADS)
Pamungkas, H.; Thomas, N. A.; Nasution
2018-01-01
This research is included in art history, especially music art in East Java. The oldest evidence of musical instruments in this area is evidenced through the Jalatunda site, Trawas. On one of the relief panels found apsara (nymphs) plays vina (stringed instrument). This site was from the 10th century. Since then the relief of musical instruments more and more carved. This is apparent in some temples in East Java after the 11th century. Not only in terms of the number of instruments, but the type of musical instruments is also displayed more diverse. The inflatable instrument (xylophone), the percussion instrument (membraphone), or idiophone show diversity over time. The development is an interesting phenomenon in the life of music art. Problems in this research, whether within the period of 5 centuries (10-15 AD century) there is a change in how to play instrument. This research uses ethnographic analogy method. In the archaeological discipline, this method is used to reconstruct past lives through activities that can be found in temple reliefs in East Java.
Upper crustal structure beneath East Java from ambient noise tomography: A preliminary result
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martha, Agustya Adi; Graduate Research on Earthquakes and Active Tectonics, Institut Teknologi Bandung, Bandung; Widiyantoro, Sri
East Java has a fairly complex geological structure. Physiographically East Java can be divided into three zones, i.e. the Southern Mountains zone in the southern part, the Kendeng zone in the middle part, and the Rembang zone in the northern part. Most of the seismic hazards in this region are due to processes in the upper crust. In this study, the Ambient Noise Tomography (ANT) method is used to image the upper crustal structure beneath East Java. We have used seismic waveform data recorded by 8Meteorological, Climatological and Geophysical Agency (BMKG) stationary seismographic stations and 16 portable seismographs installed formore » 2 to 8 weeks. The data were processed to obtain waveforms fromnoise cross-correlation between pairs of seismographic stations. Our preliminary results indicate that the Kendeng zone, an area of low gravity anomaly, is associated with a low velocity zone. On the other hand, the southern mountain range, which has a high gravity anomaly, is related to a high velocity anomaly as shown by our tomographic images.« less
Analysis of time series for postal shipments in Regional VII East Java Indonesia
NASA Astrophysics Data System (ADS)
Kusrini, DE; Ulama, B. S. S.; Aridinanti, L.
2018-03-01
The change of number delivery goods through PT. Pos Regional VII East Java Indonesia indicates that the trend of increasing and decreasing the delivery of documents and non-documents in PT. Pos Regional VII East Java Indonesia is strongly influenced by conditions outside of PT. Pos Regional VII East Java Indonesia so that the prediction the number of document and non-documents requires a model that can accommodate it. Based on the time series plot monthly data fluctuations occur from 2013-2016 then the model is done using ARIMA or seasonal ARIMA and selected the best model based on the smallest AIC value. The results of data analysis about the number of shipments on each product sent through the Sub-Regional Postal Office VII East Java indicates that there are 5 post offices of 26 post offices entering the territory. The largest number of shipments is available on the PPB (Paket Pos Biasa is regular package shipment/non-document ) and SKH (Surat Kilat Khusus is Special Express Mail/document) products. The time series model generated is largely a Random walk model meaning that the number of shipment in the future is influenced by random effects that are difficult to predict. Some are AR and MA models, except for Express shipment products with Malang post office destination which has seasonal ARIMA model on lag 6 and 12. This means that the number of items in the following month is affected by the number of items in the previous 6 months.
ERIC Educational Resources Information Center
Sumarsono, Raden Bambang; Imron, Ali; Wiyono, Bambang Budi; Arifin, Imron
2016-01-01
This research aims at describing parents participation in improving the quality of education of elementary schools viewed from the school substance and management. This is a qualitative research using phenomenology approach. The research design employed is comparative multicase involving four elementary schools in Malang city, East java,…
NASA Astrophysics Data System (ADS)
Pasqua, Claudio; Verdoya, Massimo
2014-05-01
The use of remote sensing techniques in the initial phase of geothermal surveys represents a very cost-effective tool, which can contribute to a successful exploration program. Remote sensing allows the analysis of large surfaces and can lead to a significant improvement of the identification of surface thermal anomalies, through the use of thermal infra red data (TIR), as well as of zones of widespread and recent faulting, which can reflect larger permeability of geological formations. Generally, the fractures analysis from remote sensing can be fundamental to clarify the structural setting of an area. In a regional volcanic framework, it can also help in defining the spatial and time evolution of the different volcanic apparatuses. This paper describes the main results of a remote sensing study, conducted in the Blawan-Ijen volcanic area (East Java), which is at present subject of geothermal exploration. This area is characterized by the presence of a 15 km wide caldera originated by a collapsed strato volcano. This event was followed by the emplacement of several peri-calderic and intra-calderic volcanoes, among which G. Raung, as testified by the frequent occurrence of shallow earthquakes and by H2S emission and sulfur deposition, and G. Kawah Ijen, occurring at the eastern rim of the caldera, are still active. The summit of G. Kawah Ijen volcano consists of two interlocking craters forming an E-W elongated depression filled up by a hyperacidic lake. Along the southern shore of the lake, a small rhyolitic dome occurs, which exhibits strong fumarolic activity with temperature of as much as 600 °C. We performed an analysis based on the combined interpretation of Landsat ETM+7, Aster and Synthetic Aperture Radar (SAR) images, focused on the identification of subsurface high permeability zones. The main trends of the linear features as derived from the fractures analysis, as well as their relation with the distribution of volcanic centres, were identified, singling out the variations of these trends as a function of the geographic location and age of volcanism. Moreover, the density of weighted linear features and nodal points were elaborated, in order to locate the zones where the effects of the fractures crossing could be more important. Two major belts of anomalously high density of linear fractures were identified: the first running E-W along the neo-volcanic axis and the second N-S in correspondence of the main structural features. The findings of this study, combined with the field observations about the position of thermal springs, allowed us to outline a zone that could be characterized by larger permeability and consequently could have hydrogeological and structural conditions suitable for the formation of an exploitable geothermal system.
ERIC Educational Resources Information Center
Harjali
2017-01-01
This study aimed to investigate the teachers' perception toward the implementation of cooperative learning in the classroom. The research applied a qualitative phenomenological design that used a purposeful sample of six teachers at Junior High School Classrooms in Ponorogo, East Java, Indonesia. Data collected via in-depth interviews, participant…
ERIC Educational Resources Information Center
Siswanto, Adil; Moeljadi
2015-01-01
Baluran National Park in the regency of Situbondo, East Java-Indonesia, highly prospective for development of sustainable tourism that can improve the welfare of local people. The suitable tourism type is eco-tourism with local people involvement. The purposes of this study are: 1) To know the local people involvement in eco-tourism development;…
The capacity building of disaster management in Bojonegoro regency
NASA Astrophysics Data System (ADS)
Isbandono, P.; Prastyawan, A.; Gamaputra, G.
2018-01-01
East Java is a disaster-prone area. Head of the National Disaster Management Agency, Syamsul Maarif (2012) states that “East Java is a disaster supermarket area. Referring to Act Number 24 Year 2007 Concerning Disaster Management, disaster prevention activities are a series of activities undertaken as an effort to eliminate and/or reduce the threat of disaster (Article 1, paragraph 6).The disaster mitigation is a series of efforts to reduce disaster risk, through physical development and awareness and capacity building in the face of disaster (Article 1, paragraph 9). In 2009, the Provincial Government of East Java has been established Regional Disaster Management Agency and complete it through Local Regulation of East Java Province Number 3 Year 2010. This research was conducted in Bojonegoro. This study described the capacity building disaster handling and used descriptive research with qualitative approach. It focused on the capacity building for community preparedness in the face of. This study showed the vulnerability of regions and populations to threats flood and drought in could be physical, social and/or economical. The aims of the capacity building for the individuals and organizations are to be used effectively and efficiently in order to achieve the goals of the individuals and organizations.
Skeleton microstructure of Porites lutea in Kondang Merak, Malang, East Java
NASA Astrophysics Data System (ADS)
Luthfi, Oktiyas Muzaky; Sontodipoero, R. M. Agung M. Rizqon; Isdianto, Andik; Setyohadi, Daduk; Jauhari, Alfan; Januarsa, I. Nyoman
2017-11-01
Research on coral microstructure in Indonesia, especially in East Java is rarely done. Therefore, this study aims to examine the shape of Aragonite Crystal coral Porites lutea in Pantai Kondak Merak, East Java, especially in 1998 which is the time of El Nino and has a global impact on coral growth. The shape of the aragonite crystal on the reef can be seen using the Scanning Electron Microscopy-Energy Dispersion X-Ray (SEM - EDX). Based on the coral aragonite crystal form, the increasing temperature in 1998 was not proven to have a devastating effect on the growth of corals of Pantai Kondang Merak. In contrast, the temperature at this site should support corals in order to grow rapidly, but there are other environmental factors that ultimately inhibit the growth of the coral.
NASA Astrophysics Data System (ADS)
Jourde, H.; Toulier, A.; Baud, B.; De Montety, V.; Leonardi, V.; Pistre, S.; Hendrayana, H.
2017-12-01
Hydrogeochemical analysis and geological mapping, together with water Isotopes analysis, were performed to identify the recharge area of Umbulan spring, a high discharge spring located in the Bromo-Tengger volcano. The volcanic edifice, situated in a tropical climatic context, is the origin of exceptionally high discharge springs in such a volcanic context. This is the case of Umbulan spring whose discharge is about 3500 l/s that supply drinking water to the city of Surabaya, the second biggest city of Indonesia. Groundwater flows through fractured/weathered andesitic lava flow and pyroclastic deposits. The main groundwater outlet corresponds to gravity springs on the flanks of the volcano and to artesian springs in the plain. To improve the hydrogeological knowledge of the study area, the geological mapping of the North volcano flank has been performed to identify the aquiferous formations and refine the geological limits defined in the literature. Based on this geological survey, a new geological map was proposed. Water samples of gravity springs, artesian springs and deep wells were collected with elevations ranging from 40 to 2700 m above sea level, for water major ions elements and stable isotope (δ18O, δD). The meteoric local gradient of δ18O is assessed from the water isotope contents of springs, which are considered as "local pluviometer" representative of the precipitation isotope content at a given elevation corresponding to the mean elevation of their recharge catchment. Based on the analysis of the meteoric local gradient of δ18O, the mean elevation of Umbulan spring recharge catchment ranges between 700 to 1300 m a.s.l, which in agreement with geological observations. Many interrogations subsist but these first hydrogeological data collected in the field allowed to propose a first conceptual model of the Bromo-Tengger volcano, which will help improving the hydrogeological knowledge of the study area and thus preserve and manage the groundwater resource of Bromo-Tengger volcano.
How wide is the East African Rift system?
NASA Astrophysics Data System (ADS)
Pierre, S.; Ebinger, C.; Naum, J.
2017-12-01
There has been a longstanding observation that earthquakes and volcanoes occur mostly at the edges of rigid tectonic plates, but that pattern changes during continental rifting where new plate boundaries are forming. The seismically and volcanically active East African rift system provides an opportunity to evaluate rigid plate tectonic models. The objective of this research is to evaluate the geographic spread of earthquakes and volcanoes across the African plate, including areas interpreted as smaller microplates in East Africa. The National Earthquake Information Center catalog of earthquakes spanning the time period 1976 to July 2017 and the Smithsonian Institution Global Volcanism Program catalogue of Holocene volcanoes were displayed using the open source Geographic Information System package GMT, using command line scripts. Earthquake moment tensors from the Global CMT project were also displayed with locations of earthquakes and volcanoes. We converted all of the earthquake magnitudes to moment magnitude (Mw) for comparison of energy release in different rift sectors. A first-order observation is that earthquakes and volcanoes occur across most of the continental region, and in parts of the oceanic region offshore East Africa. The pattern of earthquakes and volcanoes suggests that the African plate is breaking into smaller plates surrounding by zones of earthquakes and volcanoes, such as the Comoros-Davie Ridge-Madagascar seismo-volcanic zone, and the Southwestern rift zone. A comparison of the geographic distribution of earthquakes and volcanoes from places such as the Malawi rift, which has only one isolated volcanic province, and the Eastern rift, which has volcanoes along its length showed differences in the magnitude frequency distributions, which appear to correlate with the presence or absence of volcanism.
On The Impact of Climate Change to Agricultural Productivity in East Java
NASA Astrophysics Data System (ADS)
Kuswanto, Heri; Salamah, Mutiah; Mumpuni Retnaningsih, Sri; Dwi Prastyo, Dedy
2018-03-01
Many researches showed that climate change has significant impact on agricultural sector, which threats the food security especially in developing countries. It has been observed also that the climate change increases the intensity of extreme events. This research investigated the impact climate to the agricultural productivity in East Java, as one of the main rice producers in Indonesia. Standard regression as well as panel regression models have been performed in order to find the best model which is able to describe the climate change impact. The analysis found that the fixed effect model of panel regression outperforms the others showing that climate change had negatively impacted the rice productivity in East Java. The effect in Malang and Pasuruan were almost the same, while the impact in Sumenep was the least one compared to other districts.
Utsumi, Takako; Yano, Yoshihiko; Lusida, Maria Inge; Amin, Mochamad; Soetjipto; Hotta, Hak; Hayashi, Yoshitake
2010-07-01
Universal childhood hepatitis B vaccination was introduced in Indonesia in 1997; by 2008, coverage was estimated to be 78%. This study aimed to investigate the serologic status and virologic characteristics of hepatitis B virus (HBV) among the children in East Java. A total of 229 healthy children born during 1994-1999 were enrolled in this study. Overall, 3.1% were positive for hepatitis B surface antigen (HBsAg) and 23.6% were positive for antibody to HBsAg (anti-HBs). HBV DNA was detected in 5 of 222 HBsAg-negative carriers, which were suggested to be cases of occult HBV infection. A single amino substitution (T126I) in the S region was frequently found. HBV infection remains endemic, and the prevalence of anti-HBs remains insufficient among children in East Java, Indonesia.
ERIC Educational Resources Information Center
Setiobudi, Eko
2017-01-01
This study, generally aims to know the background of the rise of radicalism and a portrait of the role, the Education Management reduced the radical movements, especially in the village of Tenggulun Subdistrict Solokuro Lamongan East Java Province. The study used a qualitative approach with grounded theory method. Analysis of data using open…
ERIC Educational Resources Information Center
Purwanto, Edy; Fatchan, Ach.; Purwanto; Soekamto, Hadi
2016-01-01
The aim of this study was to analyze the geography text book for: (1) identify and describe the errors in the organization of geography textbooks, and (2) identify and describe the content of the textbook standard errors of geography. The text book is currently being used by teachers of Senior High School in East Java. To analyze the contents of…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trichandi, Rahmantara, E-mail: rachmantara.tri@gmail.com; Yudistira, Tedi; Nugraha, Andri Dian
Ambient noise tomography is relatively a new method for imaging the shallow structure of the Earth subsurface. We presents the application of this method to produce a Rayleigh wave group velocity maps around the Merapi Volcano, Central Java. Rayleigh waves group velocity maps were reconstructed from the cross-correlation of ambient noise recorded by the DOMERAPI array which consists 43 broadband seismometers. In the processing stage, we first filtered the observation data to separatethe noise from the signal that dominated by the strong volcanic activities. Next, we cross-correlate the filtered data and stack to obtain the Green’s function for all possiblemore » station pairs. Then we carefully picked the peak of each Green’s function to estimate the dispersion trend and appliedMultiple Filter Technique to obtain the dispersion curve. Inter-station group velocity curvesare inverted to produceRayleigh wave group velocity maps for periods 1 to 10 s. The resulted Rayleigh group velocity maps show the interesting features around the Merapi Volcano which generally agree with the previous studies. Merapi-Lawu Anomaly (MLA) is emerged as a relatively low anomaly in our group velocity maps.« less
NASA Astrophysics Data System (ADS)
Karyono, Karyono; Obermann, Anne; Mazzini, Adriano; Lupi, Matteo; Syafri, Ildrem; Abdurrokhim, Abdurrokhim; Masturyono, Masturyono; Hadi, Soffian
2016-04-01
The 29th of May 2006 numerous eruption sites started in northeast Java, Indonesia following to a M6.3 earthquake striking the island.Within a few weeks an area or nearly 2 km2 was covered by boiling mud and rock fragments and a prominent central crater (named Lusi) has been erupting for the last 9.5 years. The M.6.3 seismic event also triggered the activation of the Watukosek strike slip fault system that originates from the Arjuno-Welirang volcanic complex and extends to the northeast of Java hosting Lusi and other mud volcanoes. Since 2006 this fault system has been reactivated in numerous instances mostly following to regional seismic and volcanic activity. However the mechanism controlling this activity have never been investigated and remain poorly understood. In order to investigate the relationship existing between seismicity, volcanism, faulting and Lusi activity, we have deployed a network of 31 seismometers in the framework of the ERC-Lusi Lab project. This network covers a large region that monitors the Lusi activity, the Watukosek fault system and the neighboring Arjuno-Welirang volcanic complex. In particular, to understand the consistent pattern of the source mechanism, relative to the general tectonic stress in the study area, a detailed analysis has been carried out by performing the moment tensor inversion for the near field data collected from the network stations. Furthermore these data have been combined with the near field data from the regional network of the Meteorological, Climatological and Geophysical Agency of Indonesia that covers the whole country on a broader scale. Keywords: Lusi, microseismic event, focal mechanism
Evans, J.R.; Zucca, J.J.
1988-01-01
Medicine Lake volcano is a basalt through rhyolite shield volcano of the Cascade Range, lying east of the range axis. The Pg wave from eight explosive sources which has traveled upward through the target volume to a dense array of 140 seismographs provides 1- to 2-km resolution in the upper 5 to 7 km of the crust beneath the volcano. The experiment tests the hypothesis that Cascade Range volcanoes of this type are underlain only by small silicic magma chambers. We image a low-velocity low-Q region not larger than a few tens of cubic kilometers in volume beneath the summit caldera, supporting the hypothesis. A shallower high-velocity high-density feature, previously known to be present, is imaged for the first time in full plan view; it is east-west elongate, paralleling a topographic lineament between Medicine Lake volcano and Mount Shasta. Differences between this high-velocity feature and the equivalent feature at Newberry volcano, a volcano in central regon resembling Medicine Lake volcano, may partly explain the scarcity of surface hydrothermal features at Medicine Lake volcano. A major low-velocity low-Q feature beneath the southeast flank of the volcano, in an area with no Holocene vents, is interpreted as tephra, flows, and sediments from the volcano deeply ponded on the downthrown side of the Gillem fault. A high-Q normal-velocity feature beneath the north rim of the summit caldera may be a small, possibly hot, subsolidus intrusion. A high-velocity low-Q region beneath the eastern caldera may be an area of boiling water between the magma chamber and the ponded east flank material. -from Authors
Utsumi, Takako; Yano, Yoshihiko; Lusida, Maria Inge; Amin, Mochamad; Soetjipto; Hotta, Hak; Hayashi, Yoshitake
2010-01-01
Universal childhood hepatitis B vaccination was introduced in Indonesia in 1997; by 2008, coverage was estimated to be 78%. This study aimed to investigate the serologic status and virologic characteristics of hepatitis B virus (HBV) among the children in East Java. A total of 229 healthy children born during 1994–1999 were enrolled in this study. Overall, 3.1% were positive for hepatitis B surface antigen (HBsAg) and 23.6% were positive for antibody to HBsAg (anti-HBs). HBV DNA was detected in 5 of 222 HBsAg-negative carriers, which were suggested to be cases of occult HBV infection. A single amino substitution (T126I) in the S region was frequently found. HBV infection remains endemic, and the prevalence of anti-HBs remains insufficient among children in East Java, Indonesia. PMID:20595500
Ashy Aftermath of Indonesian Volcano Eruption seen by NASA Spacecraft
2014-02-23
On Feb. 13, 2014, violent eruption of Kelud stratovolcano in Java, Indonesia sent volcanic ash covering an area of 70,000 square miles, prompting the evacuation of tens of thousands of people. This image is from NASA Terra spacecraft.
Preliminary volcano-hazard assessment for Akutan Volcano east-central Aleutian Islands, Alaska
Waythomas, Christopher F.; Power, John A.; Richter, Donlad H.; McGimsey, Robert G.
1998-01-01
Akutan Volcano is a 1100-meter-high stratovolcano on Akutan Island in the east-central Aleutian Islands of southwestern Alaska. The volcano is located about 1238 kilometers southwest of Anchorage and about 56 kilometers east of Dutch Harbor/Unalaska. Eruptive activity has occurred at least 27 times since historical observations were recorded beginning in the late 1700?s. Recent eruptions produced only small amounts of fine volcanic ash that fell primarily on the upper flanks of the volcano. Small amounts of ash fell on the Akutan Harbor area during eruptions in 1911, 1948, 1987, and 1989. Plumes of volcanic ash are the primary hazard associated with eruptions of Akutan Volcano and are a major hazard to all aircraft using the airfield at Dutch Harbor or approaching Akutan Island. Eruptions similar to historical Akutan eruptions should be anticipated in the future. Although unlikely, eruptions larger than those of historical time could generate significant amounts of volcanic ash, fallout, pyroclastic flows, and lahars that would be hazardous to life and property on all sectors of the volcano and other parts of the island, but especially in the major valleys that head on the volcano flanks. During a large eruption an ash cloud could be produced that may be hazardous to aircraft using the airfield at Cold Bay and the airspace downwind from the volcano. In the event of a large eruption, volcanic ash fallout could be relatively thick over parts of Akutan Island and volcanic bombs could strike areas more than 10 kilometers from the volcano.
Annual risks of tuberculous infection in East Nusa Tenggara and Central Java Provinces, Indonesia.
Bachtiar, A; Miko, T Y; Machmud, R; Besral, B; Yudarini, P; Mehta, F; Chadha, V K; Basri, C; Loprang, F; Jitendra, R
2009-01-01
East Nusa Tenggara (NTT) and Central Java Provinces, Indonesia. To estimate the average annual risk of tuberculous infection (ARTI) among school children aged 6-9 years in each province. Children attending Classes 1-4 in 65 schools in NTT and 79 in Central Java, selected by two-stage sampling, were intradermally administered 2 tuberculin units of purified protein derivative RT23 with Tween 80 on the mid-volar aspect of the left forearm. The maximum transverse diameter of induration was measured 72 h later. The analysis was carried out among 5479 satisfactorily test-read children in NTT and 6943 in Central Java. One hundred and fifty-five new sputum smear-positive pulmonary tuberculosis (PTB) cases (78 in NTT and 77 in Central Java) were also tuberculin tested. Based on the frequency distribution of reaction sizes among the children and PTB cases, the prevalence of infection was estimated by the mirror-image method using the modes of tuberculous reactions at 15 and 17 mm. Using the 15 mm mode, ARTI was estimated at 1% in NTT and 0.9% in Central Java. Using the 17 mm mode, ARTI was estimated at 0.5% in NTT and 0.4% in Central Java. Transmission of tuberculous infection may be further reduced by intensification of tuberculosis control efforts.
Newhall, C.G.; Bronto, S.; Alloway, B.; Banks, N.G.; Bahar, I.; Del Marmol, M.A.; Hadisantono, R.D.; Holcomb, R.T.; McGeehin, J.; Miksic, J.N.; Rubin, M.; Sayudi, S.D.; Sukhyar, R.; Andreastuti, Supriyati; Tilling, R.I.; Torley, R.; Trimble, D.; Wirakusumah, A.D.
2000-01-01
Stratigraphy and radiocarbon dating of pyroclastic deposits at Merapi Volcano, Central Java, reveals ~10,000 years of explosive eruptions. Highlights include: (1) Construction of an Old Merapi stratovolcano to the height of the present cone or slightly higher. Our oldest age for an explosive eruption is 9630±60 14C y B.P.; construction of Old Merapi certainly began earlier. (2) Collapse(s) of Old Merapi that left a somma rim high on its eastern slope and sent one or more debris avalanche(s) down its southern and western flanks. Impoundment of Kali Progo to form an early Lake Borobudur at ~3400 14C y B.P. hints at a possible early collapse of Merapi. The latest somma-forming collapse occurred ~1900 14C y B.P. The current cone, New Merapi, began to grow soon thereafter. (3) Several large and many small Buddhist and Hindu temples were constructed in Central Java between 732 and ~900 A.D. (roughly, 1400-1000 14C y B.P.). Explosive Merapi eruptions occurred before, during and after temple construction. Some temples were destroyed and (or) buried soon after their construction, and we suspect that this destruction contributed to an abrupt shift of power and organized society to East Java in 928 A.D. Other temples sites, though, were occupied by "caretakers" for several centuries longer. (4) A partial collapse of New Merapi occurred 14C y B.P. Eruptions ~700-800 14C y B.P. (12-14th century A.D.) deposited ash on the floors of (still-occupied?) Candi Sambisari and Candi Kedulan. We speculate but cannot prove that these eruptions were triggered by (the same?) partial collapse of New Merapi, and that the eruptions, in turn, ended "caretaker" occupation at Candi Sambisari and Candi Kedulan. A new or raised Lake Borobudur also existed during part or all of the 12-14th centuries, probably impounded by deposits from Merapi. (5) Relatively benign lava-dome extrusion and dome-collapse pyroclastic flows have dominated activity of the 20th century, but explosive eruptions much larger than any of this century have occurred many times during Merapi's history, most recently during the 19th century. Are the relatively small eruptions of the 20th century a new style of open-vent, less hazardous activity that will persist for the foreseeable future? Or, alternatively, are they merely low-level "background" activity that could be interrupted upon relatively short notice by much larger explosive eruptions? The geologic record suggests the latter, which would place several hundred thousand people at risk. We know of no reliable method to forecast when an explosive eruption will interrupt the present interval of low-level activity. This conclusion has important implications for hazard evaluation.
A preliminary study of paleotsunami deposit along the south coast of East Java: Pacitan-Banyuwangi
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anugrah, Suci D.; Istiyanati; Zaim, Yahdi
Along the southern coast of East Java Indonesia, at a number of localities, it can be identified and attempted to assign the age of tsunami deposit. Laboratory analyses were conducted also to support this study such as Granulometry, Paleontology and radiometric dating analysis. The presence of tsunami 1994 deposit in the area of Pancer, Lampon, Prigi and Grajagan was found, as a result of 7.8 Magnitude Banyuwangi Earthquake. The radiometric dating analysis also identified some paleotsunami deposit of about 1921 and 1930 in the area of Prigi and Teleng. This paleotsunami is assumed to have a correlation with an earthquakemore » in the south of Java at the same time. An outcrop in the Prigi and Teleng strongly convinced the fact of an earthquake generated tsunami in the south of Java in the year of about 1921 and 1930.« less
Indonesia as seen from STS-66 shuttle Atlantis
1994-11-14
This is a striking, oblique view to the south of the Indonesian islands of Java (right), Bali and Lombok (upper left). The linear array of dark regions across the photo is a chain of volcanoes which make up the back bone of this part of the Indonesian Islands. This chain has been quite active over the past six months. Plumes of steam can be seen rising from the summits of Arjuno (west-central Java) and Merapi (central Java, near the right side of this photo). The region appears hazy due to an extended drought over Indonesia and Australia. Because of drought conditions, huge fires continue to burn over other regions of Indonesia, New Guinea and norther Australia, producing a regional smoke pall.
Velocity Model Analysis Based on Integrated Well and Seismic Data of East Java Basin
NASA Astrophysics Data System (ADS)
Mubin, Fathul; Widya, Aviandy; Eka Nurcahya, Budi; Nurul Mahmudah, Erma; Purwaman, Indro; Radityo, Aryo; Shirly, Agung; Nurwani, Citra
2018-03-01
Time to depth conversion is an important processof seismic interpretationtoidentify hydrocarbonprospectivity. Main objectives of this research are to minimize the risk of error in geometry and time to depth conversion. Since it’s using a large amount of data and had been doing in the large scale of research areas, this research can be classified as a regional scale research. The research was focused on three horizons time interpretation: Top Kujung I, Top Ngimbang and Basement which located in the offshore and onshore areas of east Java basin. These three horizons was selected because they were assumed to be equivalent to the rock formation, which is it has always been the main objective of oil and gas exploration in the East Java Basin. As additional value, there was no previous works on velocity modeling for regional scale using geological parameters in East Java basin. Lithology and interval thickness were identified as geological factors that effected the velocity distribution in East Java Basin. Therefore, a three layer geological model was generated, which was defined by the type of lithology; carbonate (layer 1: Top Kujung I), shale (layer 2: Top Ngimbang) and Basement. A statistical method using three horizons is able to predict the velocity distribution on sparse well data in a regional scale. The average velocity range for Top Kujung I is 400 m/s - 6000 m/s, Top Ngimbang is 500 m/s - 8200 m/s and Basement is 600 m/s - 8000 m/s. Some velocity anomalies found in Madura sub-basin area, caused by geological factor which identified as thick shale deposit and high density values on shale. Result of velocity and depth modeling analysis can be used to define the volume range deterministically and to make geological models to prospect generation in details by geological concept.
CO2 flux from Javanese mud volcanism
NASA Astrophysics Data System (ADS)
Queißer, M.; Burton, M. R.; Arzilli, F.; Chiarugi, A.; Marliyani, G. I.; Anggara, F.; Harijoko, A.
2017-06-01
Studying the quantity and origin of CO2 emitted by back-arc mud volcanoes is critical to correctly model fluid-dynamical, thermodynamical, and geochemical processes that drive their activity and to constrain their role in the global geochemical carbon cycle. We measured CO2 fluxes of the Bledug Kuwu mud volcano on the Kendeng Fold and thrust belt in the back arc of Central Java, Indonesia, using scanning remote sensing absorption spectroscopy. The data show that the expelled gas is rich in CO2 with a volume fraction of at least 16 vol %. A lower limit CO2 flux of 1.4 kg s-1 (117 t d-1) was determined, in line with the CO2 flux from the Javanese mud volcano LUSI. Extrapolating these results to mud volcanism from the whole of Java suggests an order of magnitude total CO2 flux of 3 kt d-1, comparable with the expected back-arc efflux of magmatic CO2. After discussing geochemical, geological, and geophysical evidence we conclude that the source of CO2 observed at Bledug Kuwu is likely a mixture of thermogenic, biogenic, and magmatic CO2, with faulting controlling potential pathways for magmatic fluids. This study further demonstrates the merit of man-portable active remote sensing instruments for probing natural gas releases, enabling bottom-up quantification of CO2 fluxes.
Atmospheric Science Data Center
2013-04-17
article title: Grímsvötn Volcano Injects Ash into the Stratosphere ... p.m. local time (1730 UTC) on Saturday, May 21, 2011. The volcano, located approximately 140 miles (220 kilometers) east of the capital ...
NASA Astrophysics Data System (ADS)
Suharsono; Nurdian, S. W.; Palupi, I. R.
2016-11-01
Relocating hypocenter is a way to improve the velocity model of the subsurface. One of the method is Grid Search. To perform the distribution of the velocity in subsurface by tomography method, it is used the result of relocating hypocenter to be a reference for subsurface analysis in volcanic and major structural patterns, such as in Central Java. The main data of this study is the earthquake data recorded from 1952 to 2012 with the P wave number is 9162, the number of events is 2426 were recorded by 30 stations located in the vicinity of Central Java. Grid search method has some advantages they are: it can relocate the hypocenter more accurate because this method is dividing space lattice model into blocks, and each grid block can only be occupied by one point hypocenter. Tomography technique is done by travel time data that has had relocated with inversion pseudo bending method. Grid search relocated method show that the hypocenter's depth is shallower than before and the direction is to the south, the hypocenter distribution is modeled into the subduction zone between the continent of Eurasia with the Indo-Australian with an average angle of 14 °. The tomography results show the low velocity value is contained under volcanoes with value of -8% to -10%, then the pattern of the main fault structure in Central Java can be description by the results of tomography at high velocity that is from 8% to 10% with the direction is northwest and northeast-southwest.
NASA Astrophysics Data System (ADS)
Kunrat, S. L.; Schwandner, F. M.
2013-12-01
Gede Volcano (West Java) is part of an andesitic stratovolcano complex consisting of Pangrango in the north-west and Gede in the south-east. The last recorded eruptive activity was a phreatic subvolcanian ash eruption in 1957. Current activity is characterized by episodic swarms at 2-4 km depth, and low-temperature (~160°C) crater degassing in two distinct summit crater fumarolic areas. Hot springs occur in the saddle between the Gede and Pangrango edifice, as well as on the NE flank base. The most recent eruptive events produced pyroclastic material, their flow deposits concentrate toward the NE. A collaborative effort between the Center for Volcanology and Geological Hazard Mitigation (CVGHM), Geological Agency and the Earth Observatory of Singapore (EOS) is since 2010 aimed at upgrading the geophysical and geochemical monitoring network at Gede Volcano. To support the monitoring instrumentation upgrades under way, surveys of soil CO2 degassing have been performed on the flanks of Gede, in circular and radial traverses.The goal was to establish a spatial distribution of flank CO2 fluxes, and to allow smart siting for continuous gas monitoring stations. Crater fluxes were not surveyed, as its low-temperature hydrothermal system is likely prone to large hydraulic changes in this tropical environment, resulting in variable permeability effects that might mask signals from deeper reservoir or conduit degassing. The high precipitation intensity in the mountains of tropical Java pose challenges to this method, since soil gas permeability is largely controlled by soil moisture content. Simultaneous soil moisture measurements were undertaken. The soil CO2 surveys were carried out using a LI-8100A campaign flux chamber instrument (LICOR Biosciences, Lincoln, Nebraska). This instrument has a very precise and highly stable sensor and an atmospheric pressure equilibrator, making it highly sensitive to low fluxes. It is the far superior choice for higher precision low-flux flank surveys in tropical environments. The mean flank fluxes measured were 19.8 g/m2/day in 2011, 11.7 g/m2/day in 2012 and 7.6 g/m2/day in early 2013. The mean flank flux for all the surveys is 17.9 g/m2/day. Statistical analysis of the data set reveals at least three distinct flux populations. Results from 2011, 2012 and 2013 indicate that flank fluxes were as high as 112.5g/m2/day, suggesting recent intrusive activity. The spatial distribution of fluxes indicates a strong focus on the NE sector. This finding appears concurrent with an area previously documented as continuously subsiding and filled with recent pyroclastic deposits (Philiboisan et al.2011, G3 Vol.12(11), Fig.15). The surveys also permit selection and validation of sites for continuous CO2 monitoring stations, representing medium and low flank flux populations.
Crustal strain partitioning and the associated earthquake hazard in the eastern Sunda-Banda Arc
NASA Astrophysics Data System (ADS)
Koulali, A.; Susilo, S.; McClusky, S.; Meilano, I.; Cummins, P.; Tregoning, P.; Lister, G.; Efendi, J.; Syafi'i, M. A.
2016-03-01
We use Global Positioning System (GPS) measurements of surface deformation to show that the convergence between the Australian Plate and Sunda Block in eastern Indonesia is partitioned between the megathrust and a continuous zone of back-arc thrusting extending 2000 km from east Java to north of Timor. Although deformation in this back-arc region has been reported previously, its extent and the mechanism of convergence partitioning have hitherto been conjectural. GPS observations establish that partitioning occurs via a combination of anticlockwise rotation of an arc segment called the Sumba Block, and left-lateral movement along a major NE-SW strike-slip fault west of Timor. We also identify a westward extension of the back-arc thrust for 300 km onshore into East Java, accommodating slip of ˜6 mm/yr. These results highlight a major new seismic threat for East Java and draw attention to the pronounced seismic and tsunami threat to Bali, Lombok, Nusa Tenggara, and other coasts along the Flores Sea.
Attenuation relation for strong motion in Eastern Java based on appropriate database and method
NASA Astrophysics Data System (ADS)
Mahendra, Rian; Rohadi, Supriyanto; Rudyanto, Ariska
2017-07-01
The selection and determination of attenuation relation has become important for seismic hazard assessment in active seismic region. This research initially constructs the appropriate strong motion database, including site condition and type of the earthquake. The data set consisted of large number earthquakes of 5 ≤ Mw ≤ 9 and distance less than 500 km that occurred around Java from 2009 until 2016. The location and depth of earthquake are being relocated using double difference method to improve the quality of database. Strong motion data from twelve BMKG's accelerographs which are located in east Java is used. The site condition is known by using dominant period and Vs30. The type of earthquake is classified into crustal earthquake, interface, and intraslab based on slab geometry analysis. A total of 10 Ground Motion Prediction Equations (GMPEs) are tested using Likelihood (Scherbaum et al., 2004) and Euclidean Distance Ranking method (Kale and Akkar, 2012) with the associated database. The evaluation of these methods lead to a set of GMPEs that can be applied for seismic hazard in East Java where the strong motion data is collected. The result of these methods found that there is still high deviation of GMPEs, so the writer modified some GMPEs using inversion method. Validation was performed by analysing the attenuation curve of the selected GMPE and observation data in period 2015 up to 2016. The results show that the selected GMPE is suitable for estimated PGA value in East Java.
GSTARI model of BPR assets in West Java, Central Java, and East Java
NASA Astrophysics Data System (ADS)
Susanti, Susi; Sulistijowati Handajani, Sri; Indriati, Diari
2018-05-01
Bank Perkreditan Rakyat (BPR) is a financial institution in Indonesia dealing with Micro, Small, and Medium Enterprises (MSMEs). Though limited to MSMEs, the development of the BPR industry continues to increase. West Java, Central Java, and East Java have high BPR asset development are suspected to be interconnected because of their economic activities as a neighboring provincies. BPR assets are nonstationary time series data that follow the uptrend pattern. Therefore, the suitable model with the data is generalized space time autoregressive integrated (GSTARI) which considers the spatial and time interrelationships. GSTARI model used spatial order 1 and the autoregressive order is obtained of optimal lag which has the smallest value of Akaike information criterion corrected. The correlation test results showed that the location used in this study had a close relationship. Based on the results of model identification, the best model obtained is GSTAR(31)-I(1). The parameter estimation used the ordinary least squares with the selection of significant variables used the stepwise method and the normalization cross correlation weighting. The residual model fulfilled the assumption of white noise and normal multivariate, so the model was appropriate. The average RMSE and MAPE values of the model were 498.75 and 2.48%.
Lin, Guoqing; Amelung, Falk; Lavallee, Yan; Okubo, Paul G.
2014-01-01
An anomalous body with low Vp (compressional wave velocity), low Vs (shear wave velocity), and high Vp/Vs anomalies is observed at 8–11 km depth beneath the upper east rift zone of Kilauea volcano in Hawaii by simultaneous inversion of seismic velocity structure and earthquake locations. We interpret this body to be a crustal magma reservoir beneath the volcanic pile, similar to those widely recognized beneath mid-ocean ridge volcanoes. Combined seismic velocity and petrophysical models suggest the presence of 10% melt in a cumulate magma mush. This reservoir could have supplied the magma that intruded into the deep section of the east rift zone and caused its rapid expansion following the 1975 M7.2 Kalapana earthquake.
Validation and Analysis of SRTM and VCL Data Over Tropical Volcanoes
NASA Technical Reports Server (NTRS)
Mouginis-Mark, Peter J.
2004-01-01
The focus of our investigation was on the application of digital topographic data in conducting first-order volcanological and structural studies of tropical volcanoes, focusing on the Java, the Philippines and the Galapagos Islands. Kilauea volcano, Hawaii, served as our test site for SRTM data validation. Volcanoes in humid tropical environments are frequently cloud covered, typically densely vegetated and erode rapidly, so that it was expected that new insights into the styles of eruption of these volcanoes could be obtained from analysis of topographic data. For instance, in certain parts of the world, such as Indonesia, even the regional structural context of volcanic centers is poorly known, and the distribution of volcanic products (e.g., lava flows, pyroclastic flows, and lahars) are not well mapped. SRTM and Vegetation Canopy Lidar (VCL) data were expected to provide new information on these volcanoes. Due to the cancellation of the VCL mission, we did not conduct any lidar studies during the duration of this project. Digital elevation models (DEMs) such as those collected by SRTM provide quantitative information about the time-integrated typical activity on a volcano and allow an assessment of the spatial and temporal contributions of various constructional and destructional processes to each volcano's present morphology. For basaltic volcanoes, P_c?w!m-d and Garbed (2000) have shown that gradual slopes (less than 5 deg.) occur where lava and tephra pond within calderas or in the saddles between adjacent volcanoes, as well as where lava deltas coalesce to form coastal plains. Vent concentration zones (axes of rift zones) have slopes ranging from 10 deg. to 12 deg. Differential vertical growth rates between vent concentration zones and adjacent mostly-lava flanks produce steep constructional slopes up to 40". The steepest slopes (locally approaching 90 deg.) are produced by fluvial erosion, caldera collapse, faulting, and catastrophic avalanches, all of which are usually identifiable. Due to the delay in the release of the SRTM data following the February 2000 flight, a significant part of our effort was devoted to the analog studies of the SRTM topographic data using topographic data from airborne interferometric radars. As part of the original SRTM Science Team, we proposed four study sites (Kilauea, Hawaii; Mt. Pinatubo, Philippines; Cerro Am1 and Femandina volcanoes, Galapagos Islands; and Tengger caldera, Java) where we could conduct detailed geologic studies to evaluate the uses of SRTM data for the analysis of lava flows, lahars, erosion of ash deposits, and an evaluation of the structural setting of the volcanoes. Only near the end of this project was one of these SRTM Science Team products (Luzon Island, the Philippines) released to the community, and we only had limited time to work on these data.
Marini, G W; Wellguni, H
2003-01-01
The worsening environmental situation of the Brantas River, East Java, is addressed by a comprehensive basin management strategy which relies on accurate water quantity and quality data retrieved from a newly installed online monitoring network. Integrated into a Hydrological Information System, the continuously measured indicative parameters allow early warning, control and polluter identification. Additionally, long-term analyses have been initiated for improving modelling applications like flood forecasting, water resource management and pollutant propagation. Preliminary results illustrate the efficiency of the installed system.
Joint inversion of active and passive seismic data in Central Java
NASA Astrophysics Data System (ADS)
Wagner, Diana; Koulakov, I.; Rabbel, W.; Luehr, B.-G.; Wittwer, A.; Kopp, H.; Bohm, M.; Asch, G.
2007-08-01
Seismic and volcanic activities in Central Java, Indonesia, the area of interest of this study, are directly or indirectly related to the subduction of the Indo-Australian plate. In the framework of the MERapi AMphibious EXperiments (MERAMEX), a network consisting of about 130 seismographic stations was installed onshore and offshore in Central Java and operated for more than 150 days. In addition, 3-D active seismic experiments were carried out offshore. In this paper, we present the results of processing combined active and passive seismic data, which contain traveltimes from 292 local earthquakes and additional airgun shots along three offshore profiles. The inversion was performed using the updated LOTOS-06 code that allows processing for active and passive source data. The joint inversion of the active and passive data set considerably improves the resolution of the upper crust, especially in the offshore area in comparison to only passive data. The inversion results are verified using a series of synthetic tests. The resulting images show an exceptionally strong low-velocity anomaly (-30 per cent) in the backarc crust northward of the active volcanoes. In the upper mantle beneath the volcanoes, we observe a low-velocity anomaly inclined towards the slab, which probably reflects the paths of fluids and partially melted materials in the mantle wedge. The crust in the forearc appears to be strongly heterogeneous. The onshore part consists of two high-velocity blocks separated by a narrow low-velocity anomaly, which can be interpreted as a weakened contact zone between two rigid crustal bodies. The recent Java Mw = 6.3 earthquake (2006/05/26-UTC) occurred at the lower edge of this zone. Its focal strike slip mechanism is consistent with the orientation of this contact.
CO2 flux from Javanese mud volcanism.
Queißer, M; Burton, M R; Arzilli, F; Chiarugi, A; Marliyani, G I; Anggara, F; Harijoko, A
2017-06-01
Studying the quantity and origin of CO 2 emitted by back-arc mud volcanoes is critical to correctly model fluid-dynamical, thermodynamical, and geochemical processes that drive their activity and to constrain their role in the global geochemical carbon cycle. We measured CO 2 fluxes of the Bledug Kuwu mud volcano on the Kendeng Fold and thrust belt in the back arc of Central Java, Indonesia, using scanning remote sensing absorption spectroscopy. The data show that the expelled gas is rich in CO 2 with a volume fraction of at least 16 vol %. A lower limit CO 2 flux of 1.4 kg s -1 (117 t d -1 ) was determined, in line with the CO 2 flux from the Javanese mud volcano LUSI. Extrapolating these results to mud volcanism from the whole of Java suggests an order of magnitude total CO 2 flux of 3 kt d -1 , comparable with the expected back-arc efflux of magmatic CO 2 . After discussing geochemical, geological, and geophysical evidence we conclude that the source of CO 2 observed at Bledug Kuwu is likely a mixture of thermogenic, biogenic, and magmatic CO 2 , with faulting controlling potential pathways for magmatic fluids. This study further demonstrates the merit of man-portable active remote sensing instruments for probing natural gas releases, enabling bottom-up quantification of CO 2 fluxes.
CO2 flux from Javanese mud volcanism
Burton, M. R.; Arzilli, F.; Chiarugi, A.; Marliyani, G. I.; Anggara, F.; Harijoko, A.
2017-01-01
Abstract Studying the quantity and origin of CO2 emitted by back‐arc mud volcanoes is critical to correctly model fluid‐dynamical, thermodynamical, and geochemical processes that drive their activity and to constrain their role in the global geochemical carbon cycle. We measured CO2 fluxes of the Bledug Kuwu mud volcano on the Kendeng Fold and thrust belt in the back arc of Central Java, Indonesia, using scanning remote sensing absorption spectroscopy. The data show that the expelled gas is rich in CO2 with a volume fraction of at least 16 vol %. A lower limit CO2 flux of 1.4 kg s−1 (117 t d−1) was determined, in line with the CO2 flux from the Javanese mud volcano LUSI. Extrapolating these results to mud volcanism from the whole of Java suggests an order of magnitude total CO2 flux of 3 kt d−1, comparable with the expected back‐arc efflux of magmatic CO2. After discussing geochemical, geological, and geophysical evidence we conclude that the source of CO2 observed at Bledug Kuwu is likely a mixture of thermogenic, biogenic, and magmatic CO2, with faulting controlling potential pathways for magmatic fluids. This study further demonstrates the merit of man‐portable active remote sensing instruments for probing natural gas releases, enabling bottom‐up quantification of CO2 fluxes. PMID:28944134
NASA Astrophysics Data System (ADS)
Karyono, Karyono; Obermann, Anne; Mazzini, Adriano; Lupi, Matteo; Syafri, Ildrem; Abdurrokhim, Abdurrokhim; Masturyono, Masturyono; Hadi, Soffian
2016-04-01
The Lusi eruption began on May 29, 2006 in the northeast of Java Island, Indonesia, and to date is still active. Lusi is a newborn sedimentary-hosted hydrothermal system characterized by continuous expulsion of liquefied mud and breccias and geysering activity. Lusi is located upon the Watukosek fault system, a left lateral wrench system connecting the volcanic arc and the bakarc basin. This fault system is still periodically reactivated as shown by field data. In the framework of the Lusi Lab project (ERC grant n° 308126) we conducted several types of monitoring. Based on camera observations, we characterized the Lusi erupting activity by four main behaviors occurring cyclically: (1) Regular activity, which consists in the constant emission of water and mud breccias (i.e. viscous mud containing clay, silt, sand and clasts) associated with the constant expulsion of gas (mainly aqueous vapor with minor amounts of CO2 and CH4) (2) Geysering phase with intense bubbling, consisting in reduced vapor emission and more powerful bursting events that do not seem to have a regular pattern. (3) Geysering phase with intense vapor and degassing discharge and a typically dense plume that propagates up to 100 m height. (4) Quiescent phase marking the end of the geysering activity (and the observed cycle) with no gas emissions or bursts observed. To investigate the possible seismic activity beneath Lusi and the mechanisms controlling the Lusi pulsating behaviour, we deployed a network of 5 seismic stations and a HD camera around the Lusi crater. We characterize the observed types of seismic activity as tremor and volcano-tectonic events. Lusi tremor events occur in 5-10 Hz frequency band, while volcano tectonic events are abundant in the high frequencies range from 5 Hz until 25 Hz. We coupled the seismic monitoring with the images collected with the HD camera to study the correlation between the seismic tremor and the different phases of the geysering activity. Key words: Lusi mud eruption, geysering activity, seismic activity
The Seismic Attenuation Structure of the East Pacific Rise
1992-02-27
Kanamori, R. W. Clayton, Three- dimensional attenuation structure of Kilauea -East rift zone, Hawaii , J. Geophys. Res., submitted, 1990. Holt, M., Underwater...and J. J. Zucca, Active high-resolution seismic tomography of compressional wave velocity and attenuation at Medicine Lake volcano , northern California...zones of anomalously high S-wave attenuation in the upper crust near Ruapehu and Ngauruhoe volcanoes , New Zealand, J. Volcanol. Geotherm. Res., 10, 125
NASA Astrophysics Data System (ADS)
Laesanpura, Agus; Dahrin, Darharta; Nurseptian, Ivan
2017-04-01
East Flores is part of Nusa Tenggara island belongs to volcanic arc zone, hence the active volcanoes surround the area about 60 × 50 square km. It is located at latitude south 8° 30’, and longitude east 122° 45’. Geologically, the rock is mostly of volcanic material since Miocene age. The Intriguing question is where the volcanic feeder, pyroclastic, and how it vanish in subsurface. The magnetic data acquisitions were executed on land for 500 meter interval and denser through the bay surrounded by volcanoes. The combine reduction to pole and forward modelling is apply for serve interpretation using forward modelling technique. The two interpretation sections, show the body of magmatic may present at depth about 2 to 3 km. The observation show no significant decreasing or loosening of magnetic anomaly although near the active volcano. We suggest the thermal anomaly is just disturbing magnetic data in near surface but not in the depth one. Meanwhile the reduction to pole’s section could distinguish the two group of rock. In assuming the layer is flat. The inferred peak of magmatic body near the existing volcano; and the active demagnetization associated through evidence of hot spring and inferred fault structure.
Volcaniclastic stratigraphy of Gede Volcano, West Java, Indonesia: How it erupted and when
NASA Astrophysics Data System (ADS)
Belousov, A.; Belousova, M.; Krimer, D.; Costa, F.; Prambada, O.; Zaennudin, A.
2015-08-01
Gede Volcano, West Java (Indonesia), is located 60 km south of Jakarta within one of the regions with highest population density in the world. Therefore, knowledge of its eruption history is necessary for hazard evaluation, because even a small eruption would have major societal and economic consequences. Here we report the results of the investigation of the stratigraphy of Gede (with the focus on its volcaniclastic deposits of Holocene age) and include 23 new radiocarbon dates. We have found that a major part of the volcanic edifice was formed in the Pleistocene when effusions of lavas of high-silica basalt dominated. During this period the volcano experienced large-scale lateral gravitational failure followed by complete reconstruction of the edifice, formation of the summit subsidence caldera and its partial refilling. After a repose period of > 30,000 years the volcanic activity resumed at the Pleistocene/Holocene boundary. In the Holocene the eruptions were dominantly explosive with magma compositions ranging from basaltic andesite to rhyodacite; many deposits show heterogeneity at the macroscopic hand specimen scale and also in the minerals, which indicates interactions between mafic (basaltic andesite) and silicic (rhyodacite) magmas. Significant eruptions of the volcano were relatively rare and of moderate violence (the highest VEI was 3-4; the largest volume of erupted pyroclasts 0.15 km3). There were 4 major Holocene eruptive episodes ca. 10,000, 4000, 1200, and 1000 yr BP. The volcanic plumes of these eruptions were not buoyant and most of the erupted products were transported in the form of highly concentrated valley-channelized pyroclastic flows. Voluminous lahars were common in the periods between the eruptions. The recent eruptive period of the volcano started approximately 800 years ago. It is characterized by frequent and weak VEI 1-2 explosive eruptions of Vulcanian type and rare small-volume extrusions of viscous lava. We estimate that during last 10,000 years, Gede erupted less than 0.3 km3 DRE (Dense Rock Equivalent) of magma. Such small productivity suggests that the likelihood of future large-volume (VEI ≥ 5) eruptions of the volcano is low, although moderately strong (VEI 3-4) explosive eruptions capable of depositing pyroclastic flows and lahars onto the NE foot of the volcano are more likely.
Geologic map of Medicine Lake volcano, northern California
Donnelly-Nolan, Julie M.
2011-01-01
Medicine Lake volcano forms a broad, seemingly nondescript highland, as viewed from any angle on the ground. Seen from an airplane, however, treeless lava flows are scattered across the surface of this potentially active volcanic edifice. Lavas of Medicine Lake volcano, which range in composition from basalt through rhyolite, cover more than 2,000 km2 east of the main axis of the Cascade Range in northern California. Across the Cascade Range axis to the west-southwest is Mount Shasta, its towering volcanic neighbor, whose stratocone shape contrasts with the broad shield shape of Medicine Lake volcano. Hidden in the center of Medicine Lake volcano is a 7 km by 12 km summit caldera in which nestles its namesake, Medicine Lake. The flanks of Medicine Lake volcano, which are dotted with cinder cones, slope gently upward to the caldera rim, which reaches an elevation of nearly 8,000 ft (2,440 m). The maximum extent of lavas from this half-million-year-old volcano is about 80 km north-south by 45 km east-west. In postglacial time, 17 eruptions have added approximately 7.5 km3 to its total estimated volume of 600 km3, and it is considered to be the largest by volume among volcanoes of the Cascades arc. The volcano has erupted nine times in the past 5,200 years, a rate more frequent than has been documented at all other Cascades arc volcanoes except Mount St. Helens.
Informing rubella vaccination strategies in East Java, Indonesia through transmission modelling.
Wu, Yue; Wood, James; Khandaker, Gulam; Waddington, Claire; Snelling, Thomas
2016-11-04
An estimated 110,000 babies are born with congenital rubella syndrome (CRS) worldwide annually; a significant proportion of cases occur in Southeast Asia. Rubella vaccine programs have led to successful control of rubella and CRS, and even the elimination of disease in many countries. However, if vaccination is poorly implemented it might increase the number of women reaching childbearing age who remain susceptible to rubella and thereby paradoxically increase CRS. We used an age-structured transmission model to compare seven alternative vaccine strategies for their impact on reducing CRS disease burden in East Java, a setting which is yet to implement a rubella vaccine program. We also investigated the robustness of model predictions to variation in vaccine coverage and other key epidemiological factors. Without rubella vaccination, approximately 700 babies are estimated to be born with CRS in East Java every year at an incidence of 0.77 per 1000live births. This incidence could be reduced to 0.0045 per 1000 live births associated with 99.9% annual reduction in rubella infections after 20 years if the existing two doses of measles vaccine are substituted with two doses of measles plus rubella combination vaccine with the same coverage (87.8% of 9-month-old infants and 80% of 6-year-old children). By comparison a single dose of rubella vaccine will take longer to reduce the burden of rubella and CRS and will be less robust to lower vaccine coverage. While the findings of this study should be informative for settings similar to East Java, the conclusions are dependent on vaccine coverage which would need consideration before applying to all of Indonesia and elsewhere in Asia. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hughes, Gareth J; Mikhail, Amy F W; Husada, Dominicus; Irawan, Eveline; Kafatos, George; Bracebridge, Samantha; Pebody, Richard; Efstratiou, Androulla
2015-11-01
In 2012, an ongoing outbreak of diphtheria in Indonesia was focused in the province of East Java. There was a need to assess vaccine coverage and immunity gaps in children. We conducted a cross-sectional seroprevalence and vaccine coverage survey of children 1-15 years of age in 2 districts of East Java: one of high incidence (on the island of Madura) and one of low incidence (on the mainland). From each district, we sampled 150 children (10 children per year of age). Sera and throat swabs were taken to determine immunity and carriage status. Immunity was defined as ≥0.1 international unit/mL of antibody to diphtheria toxin. A total of 297 children were selected to participate in the study. Coverage of three doses of combined vaccine for diphtheria, tetanus and pertussis was significantly lower (P < 0.001) in the high incidence district compared with the low [57%, 95% confidence interval (CI): 36-78 vs. 97%, 95% CI: 93-100]. Despite this higher vaccine coverage, seroprevalence of immunity was lower in the low incidence district compared with the high (71%, 95% CI: 63-80 vs. 83%, 95% CI: 76-90). Immunity in the high incidence district was associated with increased age, increased prevalence of toxigenic Corynebacterium diphtheriae carriers and with receipt of multiple (and likely more recent) boosters. Significant variation exists in vaccine coverage and seroprevalence of immunity to diphtheria in East Java. Immunity in high incidence districts is likely because of natural immunity acquired through exposure to toxigenic C. diphtheriae. Booster vaccines are essential for achieving protective levels of immunity.
NASA Astrophysics Data System (ADS)
Shibahara, A.; Ohwada, M.; Itoh, J.; Kazahaya, K.; Tsukamoto, H.; Takahashi, M.; Morikawa, N.; Takahashi, H.; Yasuhara, M.; Inamura, A.; Oyama, Y.
2009-12-01
We established 3D geological and hydrological model around Iwate volcano to visualize 3D relationships between subsurface structure and groundwater profile. Iwate volcano is a typical polygenetic volcano located in NE Japan, and its body is composed of two stratovolcanoes which have experienced sector collapses several times. Because of this complex structure, groundwater flow around Iwate volcano is strongly restricted by subsurface construction. For example, Kazahaya and Yasuhara (1999) clarified that shallow groundwater in north and east flanks of Iwate volcano are recharged at the mountaintop, and these flow systems are restricted in north and east area because of the structure of younger volcanic body collapse. In addition, Ohwada et al. (2006) found that these shallow groundwater in north and east flanks have relatively high concentration of major chemical components and high 3He/4He ratios. In this study, we succeeded to visualize the spatial relationship between subsurface structure and chemical profile of shallow and deep groundwater system using 3D model on the GIS. In the study region, a number of geological and hydrological datasets, such as boring log data and groundwater chemical profile, were reported. All these paper data are digitized and converted to meshed data on the GIS, and plotted in the three dimensional space to visualize spatial distribution. We also inputted digital elevation model (DEM) around Iwate volcano issued by the Geographical Survey Institute of Japan, and digital geological maps issued by Geological Survey of Japan, AIST. All 3D models are converted into VRML format, and can be used as a versatile dataset on personal computer.
Penguin Bank: A Loa-Trend Hawaiian Volcano
NASA Astrophysics Data System (ADS)
Xu, G.; Blichert-Toft, J.; Clague, D. A.; Cousens, B.; Frey, F. A.; Moore, J. G.
2007-12-01
Hawaiian volcanoes along the Hawaiian Ridge from Molokai Island in the northwest to the Big Island in the southeast, define two parallel trends of volcanoes known as the Loa and Kea spatial trends. In general, lavas erupted along these two trends have distinctive geochemical characteristics that have been used to define the spatial distribution of geochemical heterogeneities in the Hawaiian plume (e.g., Abouchami et al., 2005). These geochemical differences are well established for the volcanoes forming the Big Island. The longevity of the Loa- Kea geochemical differences can be assessed by studying East and West Molokai volcanoes and Penguin Bank which form a volcanic ridge perpendicular to the Loa and Kea spatial trends. Previously we showed that East Molokai volcano (~1.5 Ma) is exclusively Kea-like and that West Molokai volcano (~1.8 Ma) includes lavas that are both Loa- and Kea-like (Xu et al., 2005 and 2007).The submarine Penguin Bank (~2.2 Ma), probably an independent volcano constructed west of West Molokai volcano, should be dominantly Loa-like if the systematic Loa and Kea geochemical differences were present at ~2.2 Ma. We have studied 20 samples from Penguin Bank including both submarine and subaerially-erupted lavas recovered by dive and dredging. All lavas are tholeiitic basalt representing shield-stage lavas. Trace element ratios, such as Sr/Nb and Zr/Nb, and isotopic ratios of Sr and Nd clearly are Loa-like. On an ɛNd-ɛHf plot, Penguin Bank lavas fall within the field defined by Mauna Loa lavas. Pb isotopic data lie near the Loa-Kea boundary line defined by Abouchami et al. (2005). In conclusion, we find that from NE to SW, i.e., perpendicular to the Loa and Kea spatial trend, there is a shift from Kea-like East Molokai lavas to Loa-like Penguin Bank lavas with the intermediate West Molokai volcano having lavas with both Loa- and Kea-like geochemical features. Therefore, the Loa and Kea geochemical dichotomy exhibited by Big Island volcanoes existed at ~2.2 Ma when the Molokai Island volcanoes formed and has persisted until the present. References: Abouchami et al., 2005 Nature, 434:851-856 Xu et al., 2005 G3, doi: 10.1029/2004GC000830 Xu et al., 2007 G3, doi: 10.1029/2006GC001554
Kilauea volcano eruption seen from orbit
NASA Technical Reports Server (NTRS)
1993-01-01
The STS-51 crew had a clear view of the erupting Kilauea volcano during the early morning pass over the Hawaiian islands. Kilauea, on the southwest side of the island of Hawaii, has been erupting almost continuously since January, 1983. Kilauea's summit caldera, with the smaller Halemaumau crater nestled within, is highlighted in the early morning sun (just above the center of the picture). The lava flows which covered roads and subdivisions in 1983-90 can be seen as dark flows to the east (toward the upper right) of the steam plumes on this photo. The summit crater and lava flows of Mauna Loa volcano make up the left side of the photo. Features like the Volcano House and Kilauea Visitor Center on the edge of the caldera, the small subdivisions east of the summit, Ola's Rain Forest north of the summit, and agricultural land along the coast are easily identified.
Study of gamma spectrometry laboratory measurement in various sediment and vulcanic rocks
NASA Astrophysics Data System (ADS)
Nurhandoko, Bagus Endar B.; Kurniadi, Rizal; Rizka Asmara Hadi, Muhammad; Rizal Komara, Insan
2017-01-01
Gamma-ray spectroscopy is the quantitative study of the energy spectra of gamma-ray sources. This method is powerful to characterize some minerals, especially to differentiate rocks which contains among Potassium, Uranium, dan Thorium. Rock contains radioactive material which produce gamma rays in various energies and intensities. When these emissions are detected and analyzed with a spectroscopy system, a gamma-ray energy spectrum can be used as indicator for mineral content of rock. Some sediment and vulcanic rock have been collected from East Java Basin. Samples are ranging from Andesite vulcanics, Tuff, Shale, various vulcanic clay and Alluvial clay. We present some unique characteristics of gamma spectrometry in various sedimentar and vulcanic rocks of East Java Basins. Details contents of gamma ray spectra give enrichments to characterize sample of sediment and vulcanic in East Java. Weathered vulcanic clay has lower counting rate of gamma ray than alluvial deltaic clay counting rate. Therefore, gamma spectrometrometry can be used as tool for characterizing the enviroment of clay whether vulcanic or alluvial-deltaic. This phenomena indicates that gamma ray spectrometry can be as tool for characterizing the clay whether it tends to Smectite or Illite
Database for the Geologic Map of Newberry Volcano, Deschutes, Klamath, and Lake Counties, Oregon
Bard, Joseph A.; Ramsey, David W.; MacLeod, Norman S.; Sherrod, David R.; Chitwood, Lawrence A.; Jensen, Robert A.
2013-01-01
Newberry Volcano, one of the largest Quaternary volcanoes in the conterminous United States, is a broad shield-shaped volcano measuring 60 km north-south by 30 km east-west with a maximum elevation of more than 2 km. Newberry Volcano is the product of deposits from thousands of eruptions, including at least 25 in the past approximately 12,000 years (Holocene Epoch). Newberry Volcano has erupted as recently as 1,300 years ago, but isotopic ages indicate that the volcano began its growth as early as 0.6 million years ago. Such a long eruptive history and recent activity suggest that Newberry Volcano is likely to erupt in the future. This geologic map database of Newberry Volcano distinguishes rocks and deposits based on their composition, age, and lithology.
Lahar Hazards at Casita and San Cristóbal Volcanoes, Nicaragua
Vallance, J.W.; Schilling, S.P.; Devoli, G.; Reid, M.E.; Howell, M.M.; Brien, D.L.
2004-01-01
Casita and San Cristóbal volcanoes are part of a volcano complex situated at the eastern end of the Cordillera de los Maribios. Other centers of volcanism in the complex include El Chonco, Cerro Moyotepe, and La Pelona. At 1745 m, San Cristóbal is the highest and only historically active volcano of the complex. The volcano’s crater is 500 to 600 m across and elongate east to west; its western rim is more than 100 m higher than its eastern rim. The conical volcano is both steep and symmetrical. El Chonco, which lies west of San Cristóbal, is crudely conical but has been deeply dissected by streams. Cerro Moyotepe to the northeast of San Cristóbal is even more deeply incised by erosion than El Chonco, and its crater is breached by erosion. Casita volcano, about 5 km east of San Cristóbal volcano, comprises a broad ridge like form, elongate along an eastwest axis, that is deeply dissected. Nested along the ridge are two craters. The younger one, La Ollada crater, truncates an older smaller crater to the east near Casita’s summit (1430 m). La Ollada crater is about 1 km across and 100 m deep. Numerous small fumarole fields occur near the summit of Casita and on nearby slopes outside of the craters. Casita volcano overlaps the 3-km-wide crater of La Pelona to the east. Stream erosion has deeply incised the slopes of La Pelona, and it is likely the oldest center of the Casita-San Cristóbal volcano complex. In late October and early November 1998, torrential rains of Hurricane Mitch caused numerous slope failures in Central America. The most catastrophic occurred at Casita volcano, on October 30, 1998. At Casita, five days of heavy rain triggered a 1.6-million-cubic-meter rock and debris avalanche that generated an 2- to 4- million-cubic-meter debris flow that swept down the steep slopes of the volcano. The debris flow spread out across the volcano’s apron, destroyed two towns, and killed more than 2500 people. In prehistoric time, Casita erupted explosively to form ash-fall deposits (tephra), debris avalanches, lava flows, and hot flowing mixtures of ash and rock (called pyroclastic flows). The chronology of activity at Casita is rather poorly known. Its last documented eruption occurred 8300 years ago, and included a pyroclastic flow. Tephra deposits exposed in the east crater suggest the possibility of subsequent eruptions. Work prior to Hurricane Mitch suggested that a part of the volcano’s apron that included the area inundated during the 1998 event south of Casita was a lahar pathway. Erosion during Hurricane Mitch revealed that at least three large lahars descended this pathway to distances of up to 10 km. This report describes the hazards of landslides and lahars in general, and discusses potential hazards from future landslides and lahars at San Cristóbal and Casita volcanoes in particular. The report also shows, in the accompanying lahar hazard-zonation maps, which areas are likely to be at risk from future landslides and lahars at Casita and San Cristóbal.
The LUSI Seismic Experiment: Deployment of a Seismic Network around LUSI, East Java, Indonesia
NASA Astrophysics Data System (ADS)
Karyono, Karyono; Mazzini, Adriano; Lupi, Matteo; Syafri, Ildrem; Haryanto, Iyan; Masturyono, Masturyono; Hadi, Soffian; Rohadi, Suprianto; Suardi, Iman; Rudiyanto, Ariska; Pranata, Bayu
2015-04-01
The spectacular Lusi eruption started in northeast Java, Indonesia the 29 of May 2006 following a M6.3 earthquake striking the island. Initially, several gas and mud eruption sites appeared along the reactivated strike-slip Watukosek fault system and within weeks several villages were submerged by boiling mud. The most prominent eruption site was named Lusi. Lusi is located few kilometres to the NE of the Arjuno-Welirang volcanic complex. Lusi sits upon the Watukosek fault system. From this volcanic complex originates the Watukosek fault system that was reactivated by the M6.3 earthquake in 2006 and is still periodically reactivated by the frequent seismicity. To date Lusi is still active and erupting gas, water, mud and clasts. Gas and water data show that the Lusi plumbing system is connected with the neighbouring Arjuno-Welirang volcanic complex. This makes the Lusi eruption a "sedimentary hosted geothermal system". To verify and characterise the occurrence of seismic activity and how this perturbs the connected Watukosek fault, the Arjuno-Welirang volcanic system and the ongoing Lusi eruption, we deployed 30 seismic stations (short-period and broadband) in this region of the East Java basin. The seismic stations are more densely distributed around LUSI and the Watukosek fault zone that stretches between Lusi and the Arjuno Welirang (AW) complex. Fewer stations are positioned around the volcanic arc. Our study sheds light on the seismic activity along the Watukosek fault system and describes the waveforms associated to the geysering activity of Lusi. The initial network aims to locate small event that may not be captured by the Indonesian Agency for Meteorology, Climatology and Geophysics (BMKG) seismic network and it will be crucial to design the second phase of the seismic experiment that will consist of a local earthquake tomography of the Lusi-Arjuno Welirang region and temporal variations of vp/vs ratios. Such variations will then be ideally related to large-magnitude seismic events. This project is an unprecedented monitoring of a multi component system including an Lusi active eruption, an unlocked strike slip fault, a neighbouring volcanic arc all affected by frequent seismicity. Our study will also provide a large dataset for a qualitative analysis of earthquake triggering studies, earthquake-volcano and earthquake-earthquake interactions. The seismic experiment suggested in this study enforces our knowledge about Lusi and will represent a step further towards the reconstruction of a society devastated by Lusi disaster.
McGimsey, R.G.; Neal, C.A.; Dixon, J.P.; Ushakov, Sergey
2008-01-01
The Alaska Volcano Observatory (AVO) responded to eruptive activity or suspected volcanic activity at or near 16 volcanoes in Alaska during 2005, including the high profile precursory activity associated with the 2005?06 eruption of Augustine Volcano. AVO continues to participate in distributing information about eruptive activity on the Kamchatka Peninsula, Russia, and in the Kurile Islands of the Russian Far East, in conjunction with the Kamchatkan Volcanic Eruption Response Team (KVERT) and the Sakhalin Volcanic Eruption Response Team (SVERT), respectively. In 2005, AVO helped broadcast alerts about activity at 8 Russian volcanoes. The most serious hazard posed from volcanic eruptions in Alaska, Kamchatka, or the Kurile Islands is the placement of ash into the atmosphere at altitudes traversed by jet aircraft along the North Pacific and Russian Trans East air routes. AVO, KVERT, and SVERT work collaboratively with the National Weather Service, Federal Aviation Administration, and the Volcanic Ash Advisory Centers to provide timely warnings of volcanic eruptions and the production and movement of ash clouds.
NASA Astrophysics Data System (ADS)
Widyaningsih, Yekti; Saefuddin, Asep; Notodiputro, Khairil A.; Wigena, Aji H.
2012-05-01
The objective of this research is to build a nested generalized linear mixed model using an ordinal response variable with some covariates. There are three main jobs in this paper, i.e. parameters estimation procedure, simulation, and implementation of the model for the real data. At the part of parameters estimation procedure, concepts of threshold, nested random effect, and computational algorithm are described. The simulations data are built for 3 conditions to know the effect of different parameter values of random effect distributions. The last job is the implementation of the model for the data about poverty in 9 districts of Java Island. The districts are Kuningan, Karawang, and Majalengka chose randomly in West Java; Temanggung, Boyolali, and Cilacap from Central Java; and Blitar, Ngawi, and Jember from East Java. The covariates in this model are province, number of bad nutrition cases, number of farmer families, and number of health personnel. In this modeling, all covariates are grouped as ordinal scale. Unit observation in this research is sub-district (kecamatan) nested in district, and districts (kabupaten) are nested in province. For the result of simulation, ARB (Absolute Relative Bias) and RRMSE (Relative Root of mean square errors) scale is used. They show that prov parameters have the highest bias, but more stable RRMSE in all conditions. The simulation design needs to be improved by adding other condition, such as higher correlation between covariates. Furthermore, as the result of the model implementation for the data, only number of farmer family and number of medical personnel have significant contributions to the level of poverty in Central Java and East Java province, and only district 2 (Karawang) of province 1 (West Java) has different random effect from the others. The source of the data is PODES (Potensi Desa) 2008 from BPS (Badan Pusat Statistik).
2014/2015 Investigations of the Ontong Java and Kerguelen Plateaus
NASA Astrophysics Data System (ADS)
Coffin, M. F.; Whittaker, J. M.
2013-12-01
The two largest oceanic plateaus, Ontong Java in the western Pacific, and Kerguelen in the southern Indian Ocean, will be the focus of scheduled multidisciplinary/interdisciplinary shipboard expeditions in 2014 and 2015. In mid-2014, scientists aboard the Schmidt Ocean Institute's RV Falkor will investigate the origin and evolution of two large atolls, Ontong Java and Nukumanu, surmounting the ca 122 Ma Ontong Java Plateau, as well how Kroenke Canyon, which deeply incises the plateau, formed and evolved. First-ever multibeam bathymetry and sub-bottom profiling data from the atolls and canyon will reveal their submarine and shallow sub-seafloor morphology, and, if combined with geochemical and geochronological analyses of potential igneous basement samples, will yield important information on their origin and evolution. The primary goals of this atoll and canyon project are: to test potential genetic relationships between a) the atolls and the OJP, and b) the atolls and Kroenke Canyon; to understand and model how atolls and canyons form and evolve on oceanic plateaus, isolated from terrestrial influences and subject to sea level fluctuations; and to contribute to understanding tsunami risk on low-lying atolls. In late 2014 and early 2015, researchers aboard Australia's new Marine National Facility, RV Investigator, will investigate active submarine hotspot volcanism on the Kerguelen Plateau and its consequences. The project's overall aim is to test the hypothesis that hydrothermal activity driven by active submarine magmatism fertilizes surface waters with iron that enhances primary biological productivity. Surmounting the Cretaceous plateau, Heard and McDonald Islands are among the world's most active hotspot volcanoes, and new multibeam bathymetry and sub-bottom profiling data will enable identification of candidate active submarine volcanoes, which we will sample. In the overlying water column, we will collect samples to test for the presence or absence of associated hydrothermalism as well as iron and other elemental enrichment. If present, we will compare our data to satellite images of primary biological productivity (eg, chlorophyll) to test for temporal and spatial correlations.
NASA Astrophysics Data System (ADS)
Safitri, A. A.; Meilano, I.; Gunawan, E.; Abidin, H. Z.; Efendi, J.; Kriswati, E.
2018-03-01
The Cimandiri fault which is running in the direction from Pelabuhan Ratu to Padalarang is the longest fault in West Java with several previous shallow earthquakes in the last 20 years. By using continues and campaign GPS observation from 2006-2016, we obtain the deformation pattern along the fault through the variation of strain tensor. We use the velocity vector of GPS station which is fixed in stable International Terrestrial Reference Frame 2008 to calculate horizontal strain tensor. Least Square Collocation is applied to produce widely dense distributed velocity vector and optimum scale factor for the Least Square Weighting matrix. We find that the strain tensor tend to change from dominantly contraction in the west to dominantly extension to the east of fault. Both the maximum shear strain and dilatation show positive value along the fault and increasing from the west to the east. The findings of strain tensor variation along Cimandiri Fault indicate the post seismic effect of the 2006 Java Earthquake.
The 2010 explosive eruption of Java's Merapi volcano—A ‘100-year’ event
Surono,; Jousset, Philippe; Pallister, John S.; Boichu, Marie; Buongiorno, M. Fabrizia; Budisantoso, Agus; Costa, Fidel; Andreastuti, Supriyati; Prata, Fred; Schneider, David; Clarisse, Lieven; Humaida, Hanik; Sumarti, Sri; Bignami, Christian; Griswold, Julia P.; Carn, Simon A.; Oppenheimer, Clive; Lavigne, Franck
2012-01-01
Merapi volcano (Indonesia) is one of the most active and hazardous volcanoes in the world. It is known for frequent small to moderate eruptions, pyroclastic flows produced by lava dome collapse, and the large population settled on and around the flanks of the volcano that is at risk. Its usual behavior for the last decades abruptly changed in late October and early November 2010, when the volcano produced its largest and most explosive eruptions in more than a century, displacing at least a third of a million people, and claiming nearly 400 lives. Despite the challenges involved in forecasting this ‘hundred year eruption’, we show that the magnitude of precursory signals (seismicity, ground deformation, gas emissions) was proportional to the large size and intensity of the eruption. In addition and for the first time, near-real-time satellite radar imagery played an equal role with seismic, geodetic, and gas observations in monitoring eruptive activity during a major volcanic crisis. The Indonesian Center of Volcanology and Geological Hazard Mitigation (CVGHM) issued timely forecasts of the magnitude of the eruption phases, saving 10,000–20,000 lives. In addition to reporting on aspects of the crisis management, we report the first synthesis of scientific observations of the eruption. Our monitoring and petrologic data show that the 2010 eruption was fed by rapid ascent of magma from depths ranging from 5 to 30 km. Magma reached the surface with variable gas content resulting in alternating explosive and rapid effusive eruptions, and released a total of ~ 0.44 Tg of SO2. The eruptive behavior seems also related to the seismicity along a tectonic fault more than 40 km from the volcano, highlighting both the complex stress pattern of the Merapi region of Java and the role of magmatic pressurization in activating regional faults. We suggest a dynamic triggering of the main explosions on 3 and 4 November by the passing seismic waves generated by regional earthquakes on these days.
NASA Astrophysics Data System (ADS)
Kumagai, H.; Lacson, R. _Jr., Jr.; Maeda, Y.; Figueroa, M. S., II; Yamashina, T.
2014-12-01
Taal volcano, Philippines, is one of the world's most dangerous volcanoes given its history of explosive eruptions and its close proximity to populated areas. A key feature of these eruptions is that the eruption vents were not limited to Main Crater but occurred on the flanks of Volcano Island. This complex eruption history and the fact that thousands of people inhabit the island, which has been declared a permanent danger zone, together imply an enormous potential for disasters. The Philippine Institute of Volcanology and Seismology (PHIVOLCS) constantly monitors Taal, and international collaborations have conducted seismic, geodetic, electromagnetic, and geochemical studies to investigate the volcano's magma system. Realtime broadband seismic, GPS, and magnetic networks were deployed in 2010 to improve monitoring capabilities and to better understand the volcano. The seismic network has recorded volcano-tectonic (VT) events beneath Volcano Island. We located these VT events based on high-frequency seismic amplitudes, and found that some events showed considerable discrepancies between the amplitude source locations and hypocenters determined by using onset arrival times. Our analysis of the source location discrepancies points to the existence of a region of strong S-wave attenuation near the ground surface beneath the east flank of Volcano Island. This region is beneath the active fumarolic area and above sources of pressure contributing inflation and deflation, and it coincides with a region of high electrical conductivity. The high-attenuation region matches that inferred from an active-seismic survey conducted at Taal in 1993. Our results, synthesized with previous results, suggest that this region represents actively degassing magma near the surface, and imply a high risk of future eruptions on the east flank of Volcano Island.
Geologic Map of the Summit Region of Kilauea Volcano, Hawaii
Neal, Christina A.; Lockwood, John P.
2003-01-01
This report consists of a large map sheet and a pamphlet. The map shows the geology, some photographs, description of map units, and correlation of map units. The pamphlet gives the full text about the geologic map. The area covered by this map includes parts of four U.S. Geological Survey 7.5' topographic quadrangles (Kilauea Crater, Volcano, Ka`u Desert, and Makaopuhi). It encompasses the summit, upper rift zones, and Koa`e Fault System of Kilauea Volcano and a part of the adjacent, southeast flank of Mauna Loa Volcano. The map is dominated by products of eruptions from Kilauea Volcano, the southernmost of the five volcanoes on the Island of Hawai`i and one of the world's most active volcanoes. At its summit (1,243 m) is Kilauea Crater, a 3 km-by-5 km collapse caldera that formed, possibly over several centuries, between about 200 and 500 years ago. Radiating away from the summit caldera are two linear zones of intrusion and eruption, the east and the southwest rift zones. Repeated subaerial eruptions from the summit and rift zones have built a gently sloping, elongate shield volcano covering approximately 1,500 km2. Much of the volcano lies under water; the east rift zone extends 110 km from the summit to a depth of more than 5,000 m below sea level; whereas the southwest rift zone has a more limited submarine continuation. South of the summit caldera, mostly north-facing normal faults and open fractures of the Koa`e Fault System extend between the two rift zones. The Koa`e Fault System is interpreted as a tear-away structure that accommodates southward movement of Kilauea's flank in response to distension of the volcano perpendicular to the rift zones.
Riyanto, Awal; Bauer, Aaron M; Yudha, Donan Satria
2014-04-07
A new small karst-dwelling species of the genus Cyrtodactylus is described from East Java and Special Province of Yogyakarta, Indonesia. Cyrtodactylus semiadii sp. nov. is a small species (SVL to 47.1 mm in females, 42.1 mm in males) distinguished from all other congeners by unique characters combination: short, robust, cylindrical tail, indistinct ventrolateral folds, absence of precloacal groove, absence of enlarged femoral scales, absence of precloacal and femoral pores and lack of enlarged median subcaudal scales. It is the third member of the genus recorded from Java.
ERIC Educational Resources Information Center
Yair, Gad; Alayan, Samira
2009-01-01
Conflicts over East Jerusalem are often thought to reflect larger conflicts in the Middle East. In this article, the authors focus on schooling in East Jerusalem in order to provide a better appreciation of the protracted conflict in the area. This close examination of schooling in East Jerusalem can illuminate reasons for the political paralysis…
Field-wind Distribution and Eruption Columns: Colima Volcano, México.
NASA Astrophysics Data System (ADS)
Fonseca, R.; Martin, A. L.; Perez, I.
2006-12-01
Colima Volcano (19º51'N 103º62'W) is characterized by explosive behaviour. Recently this volcano has shown an increase in explosive activity suggesting the possibility of a subplinian event in the next future like the ones occurred in 1818 and 1913. They were characterized by eruptive columns higher than 20 Km. Considering the possibility of a new explosive event we carried out a wind study based on the radiosonde balloon data set (1980-1995) with 15 atmospheric levels. This data set was collected by Global Gridded Upper Air Statistics (GGUAS) of the European Centre for Médium Range Weather Forecast (ECMRWF). The data was processed with a cinematic model for the study of global atmospheric wind circulation. In this model the current function (vorticity) and a potential function (convergency and/or divergency) was calculated with the Poison equation, utilizing a spectral numeric model. Dominant wind direction in January-May and October-December is toward the East with variations to the East/South East. On the contrary during July-September the dominant wind direction is toward the West, South-West, North-East; East and North-East. The fluctuations related to anticyclonic circulation occur in May, July, September and November at the altitude between 5 and 18 Km. The wind model allows identification of the wind horizontal circulation during the whole year at different atmospheric levels. Moreover, the perturbations of the normal circulation have also been identified. These results are applied to an a ash fall map for ash-fall hazard zonification.
Ambient Noise Tomography of central Java, with Transdimensional Bayesian Inversion
NASA Astrophysics Data System (ADS)
Zulhan, Zulfakriza; Saygin, Erdinc; Cummins, Phil; Widiyantoro, Sri; Nugraha, Andri Dian; Luehr, Birger-G.; Bodin, Thomas
2014-05-01
Delineating the crustal structure of central Java is crucial for understanding its complex tectonic setting. However, seismic imaging of the strong heterogeneity typical of such a tectonically active region can be challenging, particularly in the upper crust where velocity contrasts are strongest and steep body wave ray-paths provide poor resolution. We have applied ambient noise cross correlation of pair stations in central Java, Indonesia by using the MERapi Amphibious EXperiment (MERAMEX) dataset. The data were collected between May to October 2004. We used 120 of 134 temporary seismic stations for about 150 days of observation, which covered central Java. More than 5000 Rayleigh wave Green's function were extracted by cross-correlating the noise simultaneously recorded at available station pairs. We applied a fully nonlinear 2D Bayesian inversion technique to the retrieved travel times. Features in the derived tomographic images correlate well with previous studies, and some shallow structures that were not evident in previous studies are clearly imaged with Ambient Noise Tomography. The Kendeng Basin and several active volcanoes appear with very low group velocities, and anomalies with relatively high velocities can be interpreted in terms of crustal sutures and/or surface geological features.
NASA Astrophysics Data System (ADS)
Devi, Elok A.; Rachman, Faisal; Satyana, Awang H.; Fahrudin; Setyawan, Reddy
2018-02-01
The Eocene Lower Ngimbang carbonaceous shales are geochemically proven hydrocarbon source rocks in the East Java Basin. Sedimentary facies of source rock is important for the source evaluation that can be examined by using biomarkers and carbon-13 isotopes data. Furthermore, paleogeography of the source sedimentation can be reconstructed. The case study was conducted on rock samples of Lower Ngimbang from two exploration wells drilled in Cepu area, East Java Basin, Kujung-1 and Ngimbang-1 wells. The biomarker data include GC and GC-MS data of normal alkanes, isoprenoids, triterpanes, and steranes. Carbon-13 isotope data include saturate and aromatic fractions. Various crossplots of biomarker and carbon-13 isotope data of the Lower Ngimbang source samples from the two wells show that the source facies of Lower Ngimbang shales changed from transitional/deltaic setting at Kujung-1 well location to marginal marine setting at Ngimbang-1 well location. This reveals that the Eocene paleogeography of the Cepu area was composed of land area in the north and marine setting to the south. Biomarkers and carbon-13 isotopes are powerful data for reconstructing paleogeography and paleofacies. In the absence of fossils in some sedimentary facies, these geochemical data are good alternatives.
Grímsvötn Volcano Injects Ash into the Stratosphere
2011-05-24
NASA Terra spacecraft captured this image of Grímsvötn, the most active of Iceland volcanoes, which began erupting around 5:30 p.m. local time 1730 UTC on Saturday, May 21, 2011, east of the capital city of Reykjavik.
Duffield, Wendell A.; Stieltjes, Laurent; Varet, Jacques
1982-01-01
Piton de la Fournaise, on the island of La Réunion, and Kilauea volcano, on the island of Hawaii, are active, basaltic shield volcanoes growing on the flanks of much larger shield volcanoes in intraplate tectonic environments. Past studies have shown that the average rate of magma production and the chemistry of lavas are quite similar for both volcanoes. We propose a structural similarity — specifically, that periodic displacement of parts of the shields as huge landslide blocks is a common mode of growth. In each instance, the unstable blocks are within a rift-zone-bounded, unbuttressed flank of the shield. At Kilauea, well-documented landslide blocks form relatively surficial parts of a much larger rift-zone-bounded block; scarps of the Hilina fault system mark the headwalls of the active blocks. At Fournaise, Hilina-like slump blocks are also present along the unbuttressed east coast of the volcano. In addition, however, the existence of a set of faults nested around the present caldera and northeast and southeast rift zones suggests that past chapters in the history of Fournaise included the slumping of entire rift-zone-bounded blocks themselves. These nested faults become younger to the east southeast and apparently record one of the effects of a migration of the focus of volcanism in that direction. Repeated dilation along the present set of northeast and southeast rift zones, most recently exemplified by an eruption in 1977, suggests that the past history of rift-zone-bounded slumping will eventually be repeated. The record provided by the succession of slump blocks on Fournaise is apparently at a relatively detailed part of a migration of magmatic focus that has advanced at least 30 km to the east-southeast from neighboring Piton des Neiges, an extinct Pliocene to Pleistocene volcano.?? 1982.
NASA Astrophysics Data System (ADS)
Casu, F.; Poland, M.; Solaro, G.; Tizzani, P.; Miklius, A.; Sansosti, E.; Lanari, R.
2009-04-01
The Big Island of Hawaii is home to three volcanoes that have historically erupted. Hualālai, on the east side of the island, Mauna Loa, the largest volcano on the planet which has erupted 39 times since 1832 (most recently in 1984) and Kilauea, which has been in a state of continuous eruption since 1983 from vents on the volcano's east rift zone. Deformation at Kilauea is characterized by summit and rift zone displacements related to magmatic activity and seaward motion of the south flank caused by slip along a basal decollement. In this work we investigate the deformation affecting the Mauna Loa and Kilauea volcanoes, Hawaii , by exploiting the advanced Interferometric Synthetic Aperture Radar (InSAR) technique referred to as Small BAseline Subset (SBAS) algorithm. In particular, we present time series of line-of-sight (LOS) displacements derived from the SAR data acquired by the ASAR instrument, on board the ENVISAT satellite, from the ascending (track 93, frame 387) and descending (track 429, frame 3213) orbits over a time period between 2003 and 2008. For each coherent pixel of the radar images we compute time-dependent surface displacements as well as the average LOS deformation velocity. We also benefit from the use of the multi-orbit (ascending and descending) data which permit us to discriminate the vertical and east-west components of the revealed displacements. The retrieved InSAR measurements are also favourably compared to the continuous GPS data available in the area in order to asses the quality of the SBAS-InSAR products. The presented results show the complex and articulated deformation behavior of the investigated volcanoes; moreover, the possibility to invert the retrieved DInSAR products, in order to model both deep geological structures and magmatic sources, represents a relevant issue for the comprehension of the volcanoes dynamics.
User Perceptions of Shared Sanitation among Rural Households in Indonesia and Bangladesh
Nelson, Kali B.; Karver, Jonathan; Kullman, Craig; Graham, Jay P.
2014-01-01
Background The practice of sharing sanitation facilities does not meet the current World Health Organization/UNICEF definition for what is considered improved sanitation. Recommendations have been made to categorize shared sanitation as improved sanitation if security, user access, and other conditions can be assured, yet limited data exist on user preferences with respect to shared facilities. Objective This study analyzed user perceptions of shared sanitation facilities in rural households in East Java, Indonesia, and Bangladesh. Methods Cross-sectional studies of 2,087 households in East Java and 3,000 households in Bangladesh were conducted using questionnaires and observational methods. Relative risks were calculated to analyze associations between sanitation access and user perceptions of satisfaction, cleanliness, and safety. Results In East Java, 82.4% of households with private improved sanitation facilities reported feeling satisfied with their place of defecation compared to 68.3% of households with shared improved facilities [RR 1.19, 95% CI 1.09, 1.31]. In Bangladesh, 87.7% of households with private improved facilities reported feeling satisfied compared to 74.5% of households with shared improved facilities [RR 1.15, 95% CI 1.10, 1.20]. In East Java, 79.5% of households who reported a clean latrine also reported feeling satisfied with their place of defecation; only 38.9% of households who reported a dirty latrine also reported feeling satisfied [RR 1.74, 95% CI 1.45, 2.08]. Conclusion Simple distinctions between improved and unimproved sanitation facilities tend to misrepresent the variability observed among households sharing sanitation facilities. Our results suggest that private improved sanitation is consistently preferred over any other sanitation option. An increased number of users appeared to negatively affect toilet cleanliness, and lower levels of cleanliness were associated with lower levels of satisfaction. However, when sanitation facilities were clean and shared by a limited number of households, users of shared facilities often reported feeling both satisfied and safe. PMID:25090096
User perceptions of shared sanitation among rural households in Indonesia and Bangladesh.
Nelson, Kali B; Karver, Jonathan; Kullman, Craig; Graham, Jay P
2014-01-01
The practice of sharing sanitation facilities does not meet the current World Health Organization/UNICEF definition for what is considered improved sanitation. Recommendations have been made to categorize shared sanitation as improved sanitation if security, user access, and other conditions can be assured, yet limited data exist on user preferences with respect to shared facilities. This study analyzed user perceptions of shared sanitation facilities in rural households in East Java, Indonesia, and Bangladesh. Cross-sectional studies of 2,087 households in East Java and 3,000 households in Bangladesh were conducted using questionnaires and observational methods. Relative risks were calculated to analyze associations between sanitation access and user perceptions of satisfaction, cleanliness, and safety. In East Java, 82.4% of households with private improved sanitation facilities reported feeling satisfied with their place of defecation compared to 68.3% of households with shared improved facilities [RR 1.19, 95% CI 1.09, 1.31]. In Bangladesh, 87.7% of households with private improved facilities reported feeling satisfied compared to 74.5% of households with shared improved facilities [RR 1.15, 95% CI 1.10, 1.20]. In East Java, 79.5% of households who reported a clean latrine also reported feeling satisfied with their place of defecation; only 38.9% of households who reported a dirty latrine also reported feeling satisfied [RR 1.74, 95% CI 1.45, 2.08]. Simple distinctions between improved and unimproved sanitation facilities tend to misrepresent the variability observed among households sharing sanitation facilities. Our results suggest that private improved sanitation is consistently preferred over any other sanitation option. An increased number of users appeared to negatively affect toilet cleanliness, and lower levels of cleanliness were associated with lower levels of satisfaction. However, when sanitation facilities were clean and shared by a limited number of households, users of shared facilities often reported feeling both satisfied and safe.
Numerical simulation of tsunami generation by cold volcanic mass flows at Augustine Volcano, Alaska
Waythomas, C.F.; Watts, P.; Walder, J.S.
2006-01-01
Many of the world's active volcanoes are situated on or near coastlines. During eruptions, diverse geophysical mass flows, including pyroclastic flows, debris avalanches, and lahars, can deliver large volumes of unconsolidated debris to the ocean in a short period of time and thereby generate tsunamis. Deposits of both hot and cold volcanic mass flows produced by eruptions of Aleutian arc volcanoes are exposed at many locations along the coastlines of the Bering Sea, North Pacific Ocean, and Cook Inlet, indicating that the flows entered the sea and in some cases may have initiated tsunamis. We evaluate the process of tsunami generation by cold granular subaerial volcanic mass flows using examples from Augustine Volcano in southern Cook Inlet. Augustine Volcano is the most historically active volcano in the Cook Inlet region, and future eruptions, should they lead to debris-avalanche formation and tsunami generation, could be hazardous to some coastal areas. Geological investigations at Augustine Volcano suggest that as many as 12-14 debris avalanches have reached the sea in the last 2000 years, and a debris avalanche emplaced during an A.D. 1883 eruption may have initiated a tsunami that was observed about 80 km east of the volcano at the village of English Bay (Nanwalek) on the coast of the southern Kenai Peninsula. Numerical simulation of mass-flow motion, tsunami generation, propagation, and inundation for Augustine Volcano indicate only modest wave generation by volcanic mass flows and localized wave effects. However, for east-directed mass flows entering Cook Inlet, tsunamis are capable of reaching the more populated coastlines of the southwestern Kenai Peninsula, where maximum water amplitudes of several meters are possible.
Establishing an Integrated Catchment Management (ICM) program in East Java, Indonesia.
Booth, C A; Warianti, A; Wrigley, T
2001-01-01
The Brantas is one of Indonesia's most important catchments. It is the "rice bowl" of Java and nationally important for its industrial activity. Surabaya, Indonesia's second largest city, is located at the mouth of the Brantas River which is pivotal to the city's water supply. The challenges associated with the institutional framework for natural resource management in East Java parallels that of many states and provinces around the globe. It is multi-layered and complex. Integrated Catchment Management (ICM) may be defined as "the co-ordinated and sustainable management of land, water, soil vegetation, fauna and other natural resources on a water catchment basis". Over a period of six months, an ICM Strategy was researched and facilitated for the Brantas River Catchment in East Java via a short term advisor attachment. The aim of the Strategy is to improve coordination, co-operation, communication and consistency of government and community efforts towards sustaining the catchment's environmental, economic and social values. The attachment was part of the Pollution Control Implementation (PCI) Project funded by AusAid and the Indonesian Government. The ICM Strategy developed was broad based and addressed the priority natural resource management issues facing the Brantas Catchment. It was co-ordinated by BAPEDALDA, the Provincial Environmental Protection Agency, and developed by all agencies involved in natural resource management in the catchment. Various Universities and Non Government Organisations (NGOs) were also involved in the ICM process which developed the Strategy. At the conclusion of the attachment, a draft ICM Strategy and a proposed institutional framework had been developed. A working group of key agencies was also established to further enhance local "ownership", finalise timescales and implementation responsibilities within the Strategy and bring the institutional arrangements into being through a Governor's Decree.
NASA Satellite Images Erupting Russian Volcano
2017-08-22
Klyuchevskoi, one of the world's most active volcanoes, is seen poking through above a solid cloud deck, with an ash plume streaming to the west. Located on the Kamchatka Peninsula in far eastern Russia, it is one of many active volcanoes on the Peninsula. Nearby, to the south, the smaller Bezymianny volcano can be seem with a small steam plume coming from its summit. The image was acquired Aug. 20, 2017, covers an area of 12 by 14 miles (19.5 by 22.7 kilometers), and is located at 56.1 degrees north, 160.6 degrees east. https://photojournal.jpl.nasa.gov/catalog/PIA21878
ERIC Educational Resources Information Center
Florida State Univ., Tallahassee. Learning Systems Inst.
This publication contains the first two of three training workshop manuals designed to be used in conducting an update of the Indonesian Education and Human Resources Sector Assessment. Workshop I covers the basic concepts, skills, and methods needed to design subsector updates and develop a draft plan for update activities. Workshops II and III…
Selected time-lapse movies of the east rift zone eruption of KĪlauea Volcano, 2004–2008
Orr, Tim R.
2011-01-01
Since 2004, the U.S. Geological Survey's Hawaiian Volcano Observatory has used mass-market digital time-lapse cameras and network-enabled Webcams for visual monitoring and research. The 26 time-lapse movies in this report were selected from the vast collection of images acquired by these camera systems during 2004–2008. Chosen for their content and broad aesthetic appeal, these image sequences document a variety of flow-field and vent processes from Kīlauea's east rift zone eruption, which began in 1983 and is still (as of 2011) ongoing.
NASA Astrophysics Data System (ADS)
Lim, Chungwan; Toyoda, Kazuhiro; Ikehara, Ken; Peate, David W.
2013-07-01
Only Ulleung and Baegdusan volcanoes have produced alkaline tephras in the Japan Sea/East Sea during the Quaternary. Little is known about their detailed tephrostratigraphy, except for the U-Oki and B-Tm tephras. Trace element analysis of bulk sediments can be used to identify alkaline cryptotephra because of the large compositional contrast. Five sediment cores spanning the interval between the rhyolitic AT (29.4 ka) and Aso-4 (87 ka) tephras were analyzed using an INAA scanning method. Source volcanoes for the five detected alkaline cryptotephra were identified from major element analyses of hand-picked glass shards: Ulleung (U-Ym, and the newly identified U-Sado), and Baegdusan (B-J, and the newly identified B-Sado and B-Ym). The eruption ages of the U-Ym, U-Sado, B-J, B-Sado, and B-Ym tephras are estimated to be 38 ka, 61 ka, 26 ka, 51 ka, 68-69 ka, and 86 ka, respectively, based on correlations with regional-scale TL (thinly laminated) layer stratigraphy (produced by basin-wide changes in bottom-water oxygen levels in response to millennium-scale paleoclimate variations). This study has allowed construction of an alkaline tephrostratigraphical framework for the late Quaternary linked to global environmental changes in the Japan Sea/East Sea, and improves our knowledge of the eruptive histories of Ulleung and Baegdusan volcanoes.
NASA Astrophysics Data System (ADS)
Nagasawa, C.; Abo, M.; Shibata, Y.
2017-12-01
The transport of substance between stratosphere and troposphere in the equatorial region makes an impact to the global climate change, but it has a lot of unknown behaviors. We have performed the lidar observations for survey of atmospheric structure of troposphere, stratosphere, and mesosphere over Kototabang (0.2S, 100.3E), Indonesia in the equatorial region since 2004. Kelut volcano (7.9S, 112.3E) in the Java island of Indonesia erupted on 13 February 2014. The CALIOP observed that the eruption cloud reached 26km above sea level in the tropical stratosphere, but most of the plume remained at 19-20 km over the tropopause. By CALIOP data analysis, aerosol clouds spread in the longitude direction with the lapse of time and arrived at equator in 5 days. After aerosol clouds reached equator, they moved towards the east along the equator by strong eastward equatorial wind of QBO. In June 2014 (4 months after the eruption), aerosol transport from the stratosphere to the troposphere were observed by the polarization lidar at Kototabang. At the same time, we can clearly see down phase structure of vertical wind velocity observed by EAR (Equatorial Atmosphere Radar) generated by the equatorial Kelvin wave. We investigate the transport of substance between stratosphere and troposphere in the equatorial region by data which have been collected by the polarization lidar at Kototabang and the EAR after Kelut volcano eruption. Using combination of ground based lidar, satellite based lidar, and atmosphere radar, we can get valuable evidence of equatorial transport of substance between the troposphere and the lower stratosphere. This work was supported by Collaborative Research based on MU Radar and Equatorial Atmosphere Radar.
NASA Astrophysics Data System (ADS)
Plumlee, G. S.; Casadevall, T. J.; Wibowo, H. T.; Rosenbauer, R. J.; Johnson, C. A.; Breit, G. N.; Hageman, P. L.; Wolf, R. E.; Morman, S. A.
2009-12-01
On May 29, 2006, mud and gases began erupting from a vent 150 meters away from a gas exploration well near Sidoarjo, East Java, Indonesia. The eruption, called the LUSI mud volcano, has continued at rates as high as 160,000 m3 per day. At the request of the United States Department of State, the U.S. Geological Survey (USGS) has been providing technical assistance to the Indonesian Government on the geological and geochemical aspects of the mud eruption. This paper will present analytical results of mud samples collected in Sept. 2007 and Nov. 2008, and interpretive findings based on the analytical results. The 2007 mud sample contains high proportions of particles that could be ingestible by hand-mouth transmission (~98 vol % <250 microns,), inhalable into the upper respiratory tract (~80 vol % <10 microns), and respirable into the lung alveoli (~ 40 vol % <2.5 microns), so the mud and dust from the dried mud could be readily taken up by exposed individuals. Our results confirm those of a previous study that the levels of potentially toxic heavy metals or metalloids in the mud are low. A complex mixture of organic compounds in the mud is likely derived from petroleum source rocks. Although the 2007 mud sample contains several percent iron sulfides, net acid production tests indicate that enough carbonate material is also present to prevent the mud from becoming acid-generating due to weathering and sulfide oxidation in the near-surface environment. Water derived from settling mud deposits may have the potential to adversely affect the quality of surface- or groundwater sources for drinking water, due to high levels of fluoride, nitrate, iron, manganese, aluminum, sulfate, chloride, and total dissolved solids. The very high nitrate levels in the waters contained within the mud may present a source of nutrients that could enhance algal blooms and resulting adverse impacts such as hypoxia in fresh-water and marine ecosystems into which some of the mud is being discharged. In agreement with previous studies, water separated from the 2007 mud sample is compositionally and isotopically compatible with an origin as sedimentary formation water. The iron disulfide fraction of the mud sample is isotopically light, and likely formed by bacterial sulfate reduction during diagenesis of clay-rich rocks from which the mud was derived. A smaller, isotopically heavy monosulfide fraction likely formed later by thermogenic reduction of formation-water sulfate to sulfide and reaction of the resulting sulfide with reactive iron in the mud. Additional linked earth science and public health studies are needed to more fully understand eruption processes, and the potential environmental and health consequences of the erupting mud, waters, and gases, and of the accumulating mud deposits.
NASA Astrophysics Data System (ADS)
Solikhin, Akhmad; Thouret, Jean-Claude; Gupta, Avijit; Harris, Andy J. L.; Liew, Soo Chin
2012-02-01
The paper illustrates the application of high-spatial resolution satellite images in interpreting volcanic structures and eruption impacts in the Tengger-Semeru massif in east Java, Indonesia. We use high-spatial resolution images (IKONOS and SPOT 5) and aerial photos in order to analyze the structures of Semeru volcano and map the deposits. Geological and tectonic mapping is based on two DEMs and on the interpretation of aerial photos and four SPOT and IKONOS optical satellite images acquired between 1996 and 2002. We also compared two thermal Surface Kinetic Temperature ASTER images before and after the 2002-2003 eruption in order to delineate and evaluate the impacts of the pyroclastic density currents. Semeru's principal structural features are probably due to the tectonic setting of the volcano. A structural map of the Tengger-Semeru massif shows four groups of faults orientated N40, N160, N75, and N105 to N140. Conspicuous structures, such as the SE-trending horseshoe-shaped scar on Semeru's summit cone, coincide with the N160-trending faults. The direction of minor scars on the east flank parallels the first and second groups of faults. The Semeru composite cone hosts the currently active Jonggring-Seloko vent. This is located on, and buttressed against, the Mahameru edifice at the head of a large scar that may reflect a failure plane at shallow depth. Dipping 35° towards the SE, this failure plane may correspond to a weak basal layer of weathered volcaniclastic rocks of Tertiary age. We suggest that the deformation pattern of Semeru and its large scar may be induced by flank spreading over the weak basal layer of the volcano. It is therefore necessary to consider the potential for flank and summit collapse in the future. The last major eruption took place in December 2002-January 2003, and involved emplacement of block-and-ash flows. We have used the 2003 ASTER Surface Kinetic Temperature image to map the 2002-2003 pyroclastic density current deposits. We have also compared two 10 m-pixel images acquired before and after the event to describe the extent and impact of an estimated volume of 5.45 × 10 6 m 3 of block-and-ash flow deposits. An ash-rich pyroclastic surge escaped from one of the valley-confined block-and ash flows at 5 to 8 km distance from the crater and swept across the forest and tilled land on the SW side of the Bang River Valley. Downvalley, the temperature of the pyroclastic surge decreased and a mud-rich deposit coated the banks of the Bang River Valley. Thus, hazard mitigation at Semeru should combine: (1) continuous monitoring of the eruptive activity through an early-warning system, and (2) continuous remote sensing of the morphological changes in the drainage system due to the impact of frequent pyroclastic density currents and lahars.
NASA Astrophysics Data System (ADS)
Haberland, Christian; Bohm, Mirjam; Asch, Günter
2014-12-01
Reassessment of travel time data from an exceptionally dense, amphibious, temporary seismic network on- and offshore Central and Eastern Java (MERAMEX) confirms the accretionary nature of the crust in this segment of the Sunda subduction zone (109.5-111.5E). Traveltime data of P- and S-waves of 244 local earthquakes were tomographically inverted, following a staggered inversion approach. The resolution of the inversion was inspected by utilizing synthetic recovery tests and analyzing the model resolution matrix. The resulting images show a highly asymmetrical crustal structure. The images can be interpreted to show a continental fragment of presumably Gondwana origin in the coastal area (east of 110E), which has been accreted to the Sundaland margin. An interlaced anomaly of high seismic velocities indicating mafic material can be interpreted to be the mantle part of the continental fragment, or part of obducted oceanic lithosphere. Lower than average crustal velocities of the Java crust are likely to reflect ophiolitic and metamorphic rocks of a subduction melange.
Bluth, G.J.S.; Casadevall, T.J.; Schnetzler, C.C.; Doiron, S.D.; Walter, Louis S.; Krueger, A.J.; Badruddin, M.
1994-01-01
Galunggung volcano, Java, awoke from a 63-year quiescence in April 1982, and erupted sporadically through January 1983. During its most violent period from April to October, the Cikasasah Volcano Observatory reported 32 large and 56 moderate to small eruptions. From April 5 through September 19 the Total Ozone Mapping Spectrometer (TOMS), carried on NASA's Nimbus-7 satellite, detected and measured 24 different sulfur dioxide clouds; an estimated 1730 kilotons (kt) of SO2 were outgassed by these explosive eruptions. The trajectories, and rapid dispersion rates, of the SO2 clouds were consistent with injection altitudes below the tropopause. An additional 300 kt of SO2 were estimated to have come from 64 smaller explosive eruptions, based on the detection limit of the TOMS instrument. For the first time, an extended period of volcanic activity was monitored by remote sensing techniques which enabled observations of both the entire SO2 clouds produced by large explosive eruptions (using TOMS), and the relatively lower levels of SO2 emissions during non-explosive outgassing (using the Correlation Spectrometer, or COSPEC). Based on COSPEC measurements from August 1982 to January 1983, and on the relationship between explosive and non-explosive degassing, approximately 400 kt of SO2 were emitted during non-explosive activity. The total sulfur dioxide outgassed from Galunggung volcano from April 1982 to January 1983 is calculated to be 2500 kt (?? 30%) from both explosive and non-explosive activity. While Galunggung added large quantities of sulfur dioxide to the atmosphere, its sporadic emissions occurred in relatively small events distributed over several months, and reached relatively low altitudes, and are unlikely to have significantly affected aerosol loading of the stratosphere in 1982 by volcanic activity. ?? 1994.
Relation of summit deformation to east rift zone eruptions on Kilauea Volcano, Hawaii
DOE Office of Scientific and Technical Information (OSTI.GOV)
Epp, D.; Decker, R.W.; Okamura, A.T.
1983-07-01
An inverse relationship exists between the summit deflation of Kilauea, as recorded by summit tilt, and the elevation of associated eruptive vents on the East Rift Zone. This relationship implies that East Rift eruptions drain the summit magma reservior to pressure levels that are dependent on the elevation of the eruptive vents.
Database for the Geologic Map of the Summit Region of Kilauea Volcano, Hawaii
Dutton, Dillon R.; Ramsey, David W.; Bruggman, Peggy E.; Felger, Tracey J.; Lougee, Ellen; Margriter, Sandy; Showalter, Patrick; Neal, Christina A.; Lockwood, John P.
2007-01-01
INTRODUCTION The area covered by this map includes parts of four U.S. Geological Survey (USGS) 7.5' topographic quadrangles (Kilauea Crater, Volcano, Ka`u Desert, and Makaopuhi). It encompasses the summit, upper rift zones, and Koa`e Fault System of Kilauea Volcano and a part of the adjacent, southeast flank of Mauna Loa Volcano. The map is dominated by products of eruptions from Kilauea Volcano, the southernmost of the five volcanoes on the Island of Hawai`i and one of the world's most active volcanoes. At its summit (1,243 m) is Kilauea Crater, a 3 km-by-5 km collapse caldera that formed, possibly over several centuries, between about 200 and 500 years ago. Radiating away from the summit caldera are two linear zones of intrusion and eruption, the east and the southwest rift zones. Repeated subaerial eruptions from the summit and rift zones have built a gently sloping, elongate shield volcano covering approximately 1,500 km2. Much of the volcano lies under water: the east rift zone extends 110 km from the summit to a depth of more than 5,000 m below sea level; whereas, the southwest rift zone has a more limited submarine continuation. South of the summit caldera, mostly north-facing normal faults and open fractures of the Koa`e Fault System extend between the two rift zones. The Koa`e Fault System is interpreted as a tear-away structure that accommodates southward movement of Kilauea's flank in response to distension of the volcano perpendicular to the rift zones. This digital release contains all the information used to produce the geologic map published as USGS Geologic Investigations Series I-2759 (Neal and Lockwood, 2003). The main component of this digital release is a geologic map database prepared using ArcInfo GIS. This release also contains printable files for the geologic map and accompanying descriptive pamphlet from I-2759.
Ash plume from Eyjafjallajokull Volcano, Iceland May 6th View [Detail
2017-12-08
NASA satellite image acquired May 6, 2010 at 11 :55 UTC To view the full view go to: www.nasa.gov/topics/earth/features/iceland-volcano-plume.... NASA Satellite Sees a Darker Ash Plume From Iceland Volcano NASA's Terra satellite flew over the Eyjafjallajokull Volcano, Iceland, on May 6 at 11:55 UTC (7:55 a.m. EDT). The Moderate Resolution Imaging Spectroradiometer instrument known as MODIS that flies onboard Terra, captured a visible image of the ash plume. The plume was blowing east then southeast over the Northern Atlantic. The satellite image shows that the plume is at a lower level in the atmosphere than the clouds that lie to its east, as the brown plume appears to slide underneath the white clouds. Satellite: Terra NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team To learn more about MODIS go to: rapidfire.sci.gsfc.nasa.gov/gallery/?latest NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.
Ash plume from Eyjafjallajokull Volcano, Iceland May 6th View
2010-05-06
NASA satellite image acquired May 6, 2010 at 11 :55 UTC To view a detail of this image go to: www.flickr.com/photos/gsfc/4583711511/ NASA Satellite Sees a Darker Ash Plume From Iceland Volcano NASA's Terra satellite flew over the Eyjafjallajokull Volcano, Iceland, on May 6 at 11:55 UTC (7:55 a.m. EDT). The Moderate Resolution Imaging Spectroradiometer instrument known as MODIS that flies onboard Terra, captured a visible image of the ash plume. The plume was blowing east then southeast over the Northern Atlantic. The satellite image shows that the plume is at a lower level in the atmosphere than the clouds that lie to its east, as the brown plume appears to slide underneath the white clouds. Satellite: Terra NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team To learn more about MODIS go to: www.nasa.gov/topics/earth/features/iceland-volcano-plume.... NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.
Risk analysis of landslide disaster in Ponorogo, East Java, Indonesia
NASA Astrophysics Data System (ADS)
Koesuma, S.; Saido, A. P.; Fukuda, Y.
2016-11-01
Ponorogo is one of regency in South-West of East Java Province, Indonesia, where located in subduction zone between Eurasia and Australia plate tectonics. It has a lot of mountain area which is disaster-prone area for landslide. We have collected landslide data in 305 villages in Ponorogo and make it to be Hazards Index. Then we also calculate Vulnerability Index, Economic Loss index, Environmental Damage Index and Capacity Index. The risk analysis map is composed of three components H (Hazards), V (Vulnerability, Economic Loss index, Environmental Damage Index) and C (Capacity Index). The method is based on regulations of National Disaster Management Authority (BNPB) number 02/2012 and number 03/2012. It has three classes of risk index, i.e. Low, Medium and High. Ponorogo city has a medium landslide risk index.
NASA Astrophysics Data System (ADS)
Thomas, Adam; Holley, Rachel; Burren, Richard; Meikle, Chris; Shilston, David
2010-03-01
The Lampur Sidoarjo mud volcano (Java, Indonesia), colloquially called LUSI, first appeared in May 2006. Its cause, whether the result of natural or anthropogenic activities (or a combination of both), is still being debated within the academic, engineering and political communities.The mud volcano expels up to 150,000 m3 of mud per day; and over time, this large volume of mud has had a major environmental and economic impact on the region. The mud flow from LUSI has now covered 6 km2 to depths some tens of metres, displacing approximately 30,000 residents; and continues to threaten local communities, businesses and industry. With such a large volume of mud being expelled each day it is inevitable (as with onshore oil and gas production fields) that there will be some ground surface movement and instability issues at the mud source (the main vent), and in the vicinity of the mud volcano footprint.Due to the dynamic ground surface conditions, engineers and academics alike have found it difficult to reliably monitor ground surface movements within the effected region using conventional surveying techniques. Consequently, engineers responsible for the risk assessment of ground surface instabilities within the proximity of LUSI have called upon the use of satellite interferometry to continually monitor the hazard.The Advanced Land Observing Satellite (ALOS), launched on 24th January 2006, carries onboard an L- band Synthetic Aperture Radar (SAR) instrument called PALSAR (Phased Array type L-band Synthetic Aperture Radar). In contrast to established C-band (5.6cm wavelength) SAR instruments onboard ERS-1 & -2, Envisat, Radarsat-1, and the recently launched Radarsat-2 satellite, PALSAR's (L-band/23.8cm wavelength) instrument presents a number of advantages, including the ability to map larger-scale ground motions, over relatively short timeframes, in tropical environments, without suffering as significantly from signal decorrelation associated with C-band imagery.This paper presents the results of a 2-year ALOS PALSAR Differential Interferometric (DifSAR) monitoring campaign across the LUSI mud volcano. DifSAR processing was applied to a sequence of images acquired on a 3 to 6-month basis between May 2006 and May 2008. The results highlight the capability of ALOS PALSAR in detecting decimetres of coherent ground subsidence to assist engineers in their analysis of the structure, dynamics and overall stability of the mud volcano and the surrounding region.
NASA Astrophysics Data System (ADS)
Corti, Giacomo; Sani, Federico; Agostini, Samuele; Philippon, Melody; Sokoutis, Dimitrios; Willingshofer, Ernst
2018-03-01
The Main Ethiopian Rift, East Africa, is characterized by the presence of major, enigmatic structures which strike approximately orthogonal to the trend of the rift valley. These structures are marked by important deformation and magmatic activity in an off-axis position in the plateaus surrounding the rift. In this study, we present new structural data based on a remote and field analysis, complemented with analogue modelling experiments, and new geochemical analysis of volcanic rocks sampled in different portions of one of these transversal structures: the Goba-Bonga volcano-tectonic lineament (GBVL). This integrated analysis shows that the GBVL is associated with roughly E-W-trending prominent volcano-tectonic activity affecting the western plateau. Within the rift floor, the approximately E-W alignment of Awasa and Corbetti calderas likely represent expressions of the GBVL. Conversely, no tectonic or volcanic features of similar (E-W) orientation have been recognized on the eastern plateau. Analogue modelling suggests that the volcano-tectonic features of the GBVL have probably been controlled by the presence of a roughly E-W striking pre-existing discontinuity beneath the western plateau, which did not extend beneath the eastern plateau. Geochemical analysis supports this interpretation and indicates that, although magmas have the same sub-lithospheric mantle source, limited differences in magma evolution displayed by products found along the GBVL may be ascribed to the different tectonic framework to the west, to the east, and in the axial zone of the rift. These results support the importance of the heterogeneous nature of the lithosphere and the spatial variations of its structure in controlling the architecture of continental rifts and the distribution of the related volcano-tectonic activity.
NASA Astrophysics Data System (ADS)
Zulfakriza, Z.; Saygin, E.; Cummins, P. R.; Widiyantoro, S.; Nugraha, A. D.; Lühr, B.-G.; Bodin, T.
2014-04-01
Delineating the crustal structure of central Java is crucial for understanding its complex tectonic setting. However, seismic imaging of the strong heterogeneity typical of such a tectonically active region can be challenging, particularly in the upper crust where velocity contrasts are strongest and steep body wave ray paths provide poor resolution. To overcome these difficulties, we apply the technique of ambient noise tomography (ANT) to data collected during the Merapi Amphibious Experiment (MERAMEX), which covered central Java with a temporary deployment of over 120 seismometers during 2004 May-October. More than 5000 Rayleigh wave Green's functions were extracted by cross-correlating the noise simultaneously recorded at available station pairs. We applied a fully non-linear 2-D Bayesian probabilistic inversion technique to the retrieved traveltimes. Features in the derived tomographic images correlate well with previous studies, and some shallow structures that were not evident in previous studies are clearly imaged with ANT. The Kendeng Basin and several active volcanoes appear with very low group velocities, and anomalies with relatively high velocities can be interpreted in terms of crustal sutures and/or surface geological features.
Video-Seismic coupling for debris flow study at Merapi Volcano, Indonesia
NASA Astrophysics Data System (ADS)
Budi Wibowo, Sandy; Lavigne, Franck; Mourot, Philippe; Sukatja, Bambang
2016-04-01
Previous lahar disasters caused at least 44.252 death toll worldwide from 1600 to 2010 of which 52 % was due to a single event in the late 20th century. The need of a better understanding of lahar flow behavior makes general public and stakeholders much more curious than before. However, the dynamics of lahar in motion is still poorly understood because data acquisition of active flows is difficult. This research presents debris-flow-type lahar on February 28, 2014 at Merapi volcano in Indonesia. The lahar dynamics was studied in the frame of the SEDIMER Project (Sediment-related Disasters following the 2010 centennial eruption of Merapi Volcano, Java, Indonesia) based on coupling between video and seismic data analysis. We installed a seismic station at Gendol river (1090 meters asl, 4.6 km south from the summit) consisting of two geophones placed 76 meters apart parallel to the river, a high definition camera on the edge of the river and two raingauges at east and west side of the river. The results showed that the behavior of this lahar changed continuously during the event. The lahar front moved at an average speed of 4.1 m/s at the observation site. Its maximum velocity reached 14.5 m/s with a peak discharge of 473 m3/s. The maximum depth of the flow reached 7 m. Almost 600 blocks of more than 1 m main axis were identified on the surface of the lahar during 36 minutes, which represents an average block discharge of 17 blocks per minute. Seismic frequency ranged from 10 to 150 Hz. However, there was a clear difference between upstream and downstream seismic characteristics. The interpretation related to this difference could be improved by the results of analysis of video recordings, especially to differentiate the debris flow and hyperconcentrated flow phase. The lahar video is accessible online to the broader community (https://www.youtube.com/watch?v=wlVssRoaPbw). Keywords: lahar, video, seismic signal, debris flow, hyperconcentrated flow, Merapi, Indonesia.
ERIC Educational Resources Information Center
Soebagio, Retno L.; And Others
Indonesian representatives and the Educational Research and Development Center studied East Javanese primary and junior secondary schools to develop a database for future planning and to identify deficiencies, constraints, and areas for fruitful reform. Issues of enrollment, personnel, curriculum, facilities and equipment, cost, and financing were…
GIS based application tool -- history of East India Company
NASA Astrophysics Data System (ADS)
Phophaliya, Sudhir
The emphasis of the thesis is to build an intuitive and robust GIS (Geographic Information systems) Tool which gives an in depth information on history of East India Company. The GIS tool also incorporates various achievements of East India Company which helped to establish their business all over world especially India. The user has the option to select these movements and acts by clicking on any of the marked states on the World map. The World Map also incorporates key features for East India Company like landing of East India Company in India, Darjeeling Tea Establishment, East India Company Stock Redemption Act etc. The user can know more about these features simply by clicking on each of them. The primary focus of the tool is to give the user a unique insight about East India Company; for this the tool has several HTML (Hypertext markup language) pages which the user can select. These HTML pages give information on various topics like the first Voyage, Trade with China, 1857 Revolt etc. The tool has been developed in JAVA. For the Indian map MOJO (Map Objects Java Objects) is used. MOJO is developed by ESRI. The major features shown on the World map was designed using MOJO. MOJO made it easy to incorporate the statistical data with these features. The user interface was intentionally kept simple and easy to use. To keep the user engaged, key aspects are explained using HTML pages. The idea is that pictures will help the user garner interest in the history of East India Company.
2002-07-11
Volcanic, tectonic, erosional and sedimentary landforms are all evident in this comparison of two elevation models of a region along the East African Rift at Lake Kivu. The area shown covers parts of Congo, Rwanda and Uganda.
NASA Astrophysics Data System (ADS)
Amaliana, Luthfatul; Sa'adah, Umu; Wayan Surya Wardhani, Ni
2017-12-01
Tetanus Neonatorum is an infectious disease that can be prevented by immunization. The number of Tetanus Neonatorum cases in East Java Province is the highest in Indonesia until 2015. Tetanus Neonatorum data contain over dispersion and big enough proportion of zero-inflation. Negative Binomial (NB) regression is an alternative method when over dispersion happens in Poisson regression. However, the data containing over dispersion and zero-inflation are more appropriately analyzed by using Zero-Inflated Negative Binomial (ZINB) regression. The purpose of this study are: (1) to model Tetanus Neonatorum cases in East Java Province with 71.05 percent proportion of zero-inflation by using NB and ZINB regression, (2) to obtain the best model. The result of this study indicates that ZINB is better than NB regression with smaller AIC.
NASA Astrophysics Data System (ADS)
Prastuti, M.; Suhartono; Salehah, NA
2018-04-01
The need for energy supply, especially for electricity in Indonesia has been increasing in the last past years. Furthermore, the high electricity usage by people at different times leads to the occurrence of heteroscedasticity issue. Estimate the electricity supply that could fulfilled the community’s need is very important, but the heteroscedasticity issue often made electricity forecasting hard to be done. An accurate forecast of electricity consumptions is one of the key challenges for energy provider to make better resources and service planning and also take control actions in order to balance the electricity supply and demand for community. In this paper, hybrid ARIMAX Quantile Regression (ARIMAX-QR) approach was proposed to predict the short-term electricity consumption in East Java. This method will also be compared to time series regression using RMSE, MAPE, and MdAPE criteria. The data used in this research was the electricity consumption per half-an-hour data during the period of September 2015 to April 2016. The results show that the proposed approach can be a competitive alternative to forecast short-term electricity in East Java. ARIMAX-QR using lag values and dummy variables as predictors yield more accurate prediction in both in-sample and out-sample data. Moreover, both time series regression and ARIMAX-QR methods with addition of lag values as predictor could capture accurately the patterns in the data. Hence, it produces better predictions compared to the models that not use additional lag variables.
NASA Astrophysics Data System (ADS)
Susanti, Ana; Suhartono; Jati Setyadi, Hario; Taruk, Medi; Haviluddin; Pamilih Widagdo, Putut
2018-03-01
Money currency availability in Bank Indonesia can be examined by inflow and outflow of money currency. The objective of this research is to forecast the inflow and outflow of money currency in each Representative Office (RO) of BI in East Java by using a hybrid exponential smoothing based on state space approach and calendar variation model. Hybrid model is expected to generate more accurate forecast. There are two studies that will be discussed in this research. The first studies about hybrid model using simulation data that contain pattern of trends, seasonal and calendar variation. The second studies about the application of a hybrid model for forecasting the inflow and outflow of money currency in each RO of BI in East Java. The first of results indicate that exponential smoothing model can not capture the pattern calendar variation. It results RMSE values 10 times standard deviation of error. The second of results indicate that hybrid model can capture the pattern of trends, seasonal and calendar variation. It results RMSE values approaching the standard deviation of error. In the applied study, the hybrid model give more accurate forecast for five variables : the inflow of money currency in Surabaya, Malang, Jember and outflow of money currency in Surabaya and Kediri. Otherwise, the time series regression model yields better for three variables : outflow of money currency in Malang, Jember and inflow of money currency in Kediri.
Geology of Medicine Lake Volcano, Northern California Cascade Range
Donnelly-Nolan, Julie
1990-01-01
Medicine Lake volcano (MLV) is located in an E-W extensional environment on the Modoc Plateau just east of the main arc of the Cascades. It consists mainly of mafic lavas, although drillhole data indicate that a larger volume of rhyolite is present than is indicated by surface mapping. The most recent eruption was rhyolitic and occurred about 900 years ago. At least seventeen eruptions have occurred since 12,000 years ago, or between 1 and 2 eruptions per century on average, although activity appears to be strongly episodic. The calculated eruptive rate is about 0.6 km3 per thousand years during the entire history of the volcano. Drillhole data indicate that the plateau surface underlying the volcano has been downwarped by 0.5 km under the center of MLV. The volcano may be even larger than the estimated 600 km3, already the largest volcano by volume in the Cascades.
Waythomas, C.F.
1999-01-01
Akutan Volcano is one of the most active volcanoes in the Aleutian arc, but until recently little was known about its history and eruptive character. Following a brief but sustained period of intense seismic activity in March 1996, the Alaska Volcano Observatory began investigating the geology of the volcano and evaluating potential volcanic hazards that could affect residents of Akutan Island. During these studies new information was obtained about the Holocene eruptive history of the volcano on the basis of stratigraphic studies of volcaniclastic deposits and radiocarbon dating of associated buried soils and peat. A black, scoria-bearing, lapilli tephra, informally named the 'Akutan tephra,' is up to 2 m thick and is found over most of the island, primarily east of the volcano summit. Six radiocarbon ages on the humic fraction of soil A-horizons beneath the tephra indicate that the Akutan tephra was erupted approximately 1611 years B.P. At several locations the Akutan tephra is within a conformable stratigraphic sequence of pyroclastic-flow and lahar deposits that are all part of the same eruptive sequence. The thickness, widespread distribution, and conformable stratigraphic association with overlying pyroclastic-flow and lahar deposits indicate that the Akutan tephra likely records a major eruption of Akutan Volcano that may have formed the present summit caldera. Noncohesive lahar and pyroclastic-flow deposits that predate the Akutan tephra occur in the major valleys that head on the volcano and are evidence for six to eight earlier Holocene eruptions. These eruptions were strombolian to subplinian events that generated limited amounts of tephra and small pyroclastic flows that extended only a few kilometers from the vent. The pyroclastic flows melted snow and ice on the volcano flanks and formed lahars that traveled several kilometers down broad, formerly glaciated valleys, reaching the coast as thin, watery, hyperconcentrated flows or water floods. Slightly cohesive lahars in Hot Springs valley and Long valley could have formed from minor flank collapses of hydrothermally altered volcanic bedrock. These lahars may be unrelated to eruptive activity.
Gravity Changes and Internal Processes: Some Results Obtained from Observations at Three Volcanoes
NASA Astrophysics Data System (ADS)
Jentzsch, Gerhard; Weise, Adelheid; Rey, Carlos; Gerstenecker, Carl
Temporal gravity changes provide information about mass and/or density variations within and below the volcano edifice. Three active volcanoes have been under investigation; each of them related to a plate boundary: Mayon/Luzon/Philippines, Merapi/Java/Indonesia, and Galeras/Colombia. The observed gravity changes are smaller than previously expected but significant. For the three volcanoes under investigation, and within the observation period, mainly the increase of gravity is observed, ranging from 1,000 nm-2 to 1,600 nms-2. Unexpectedly, the gravity increase is confined to a rather small area with radii of 5 to 8 km around the summit. At Mayon and Merapi the parallel GPS measurements yield no significant elevation changes. This is crucial for the interpretation, as the internal pressure variations do not lead to significant deformation at the surface. Thus the classical Mogi-model for a shallow extending magma reservoir cannot apply. To confine the possible models, the attraction due to changes of groundwater level or soil moisture is estimated along the slope of Merapi exemplarily by 2-D modelling. Mass redistribution or density changes were evaluated within the vent as well as deeper fluid processes to explain the gravity variations; the results are compared to the model incorporating the additional effect of elastic deformation.
NASA Astrophysics Data System (ADS)
Mazzini, A.; Husein, A.; Karyono, K.; Lupi, M.; Obermann, A.; Hadi, S.
2015-12-01
The Lusi eruption started the 29th of May 2006 in Eastern Java, Indonesia. Since its birth Lusi presented a pulsating behaviour with geyser-like activity. To date Lusi is still active and never stopped erupting enormous amounts of mud, clasts, water and gas with peaks of activity reaching 180.000 km3/day. The erupting activity is characterized by[ML1] three main behaviours: 1) regular activity, which consists in the constant emission of mud breccia (i.e. viscous mud containing clay, silt, sand and clasts up to 10 cm in diameter) associated with the expulsion of water both in a liquid and vapour state as well as other gasses (i.e. mostly CO2 and CH4). Occasional powerful bursts of mud may reach up ten meters in height. 2) geysering activity consisting in more powerful eruptive events that do not seem to have a regular pattern. These typically lasts up to five minutes and comprise an initial phase marked by an elevated bubbling in the crater zone followed by an increasing amount of vapour released throughout the geysering phase. 3) quasi-absence of degassing from the main crater(s). This phase follows the geysering activity and is generally short-lived In order to investigate the mechanisms controlling Lusi pulsating behaviour, we deployed a network of five seismometers around the crater. The seismic records highlight that the seismic signal of Lusi is characterised by tremor and volcano-tectonic events. Tremor events occur in 1 Hz and 3 Hz frequency bands while volcano tectonic events are rich in high frequencies (i.e. 2-15 Hz). We also identify an emerging signal lasting from approximately one to ten minutes. This signal appears throughout the dataset and it is characterized by a frequency content between 5 Hz and 10 Hz. To verify whether such long-lasting signal could be associated to the geysering phase we coupled the seismic monitoring with a HD camera to record the crater activity. Results reveal that the onset of such signal precedes the visual evidence of geysering activity at the surface. This implies that the signal is not originated in the immediate subsurface. We argue that such signal is generated by the geysering activity and it is caused by the discrete collapse of gas pockets rising through a super-heated fluid column filled with hot mud. [ML1]Comprises??
Volcano spacing and plate rigidity
ten Brink, Uri S.
1991-01-01
In-plane stresses, which accompany the flexural deformation of the lithosphere under the load of adjacent volcanoes, may govern the spacing of volcanoes in hotspot provinces. Specifically, compressive stresses in the vicinity of a volcano prevent new upwelling in this area, forcing a new volcano to develop at a minimum distance that is equal to the distance in which the radial stresses change from compressional to tensile (the inflection point). If a volcano is modeled as a point load on a thin elastic plate, then the distance to the inflection point is proportional to the thickness of the plate to the power of 3/4. Compilation of volcano spacing in seven volcanic groups in East Africa and seven volcanic groups of oceanic hotspots shows significant correlation with the elastic thickness of the plate and matches the calculated distance to the inflection point. In contrast, volcano spacing in island arcs and over subduction zones is fairly uniform and is much larger than predicted by the distance to the inflection point, reflecting differences in the geometry of the source and the upwelling areas.
Satellite Observations of Volcanic Clouds from the Eruption of Redoubt Volcano, Alaska, 2009
NASA Astrophysics Data System (ADS)
Dean, K. G.; Ekstrand, A. L.; Webley, P.; Dehn, J.
2009-12-01
Redoubt Volcano began erupting on 23 March 2009 (UTC) and consisted of 19 events over a 14 day period. The volcano is located on the Alaska Peninsula, 175 km southwest of Anchorage, Alaska. The previous eruption was in 1989/1990 and seriously disrupted air traffic in the region, including the near catastrophic engine failure of a passenger airliner. Plumes and ash clouds from the recent eruption were observed on a variety of satellite data (AVHRR, MODIS and GOES). The eruption produced volcanic clouds up to 19 km which are some of the highest detected in recent times in the North Pacific region. The ash clouds primarily drifted north and east of the volcano, had a weak ash signal in the split window data and resulted in light ash falls in the Cook Inlet basin and northward into Alaska’s Interior. Volcanic cloud heights were measured using ground-based radar, and plume temperature and wind shear methods but each of the techniques resulted in significant variations in the estimates. Even though radar showed the greatest heights, satellite data and wind shears suggest that the largest concentrations of ash may be at lower altitudes in some cases. Sulfur dioxide clouds were also observed on satellite data (OMI, AIRS and Calipso) and they primarily drifted to the east and were detected at several locations across North America, thousands of kilometers from the volcano. Here, we show time series data collected by the Alaska Volcano Observatory, illustrating the different eruptive events and ash clouds that developed over the subsequent days.
NASA Astrophysics Data System (ADS)
Dawson, Phillip B.; Chouet, Bernard A.; Power, John
2011-02-01
Waveform inversions of the very-long-period components of the seismic wavefield produced by an explosive eruption that occurred on 11 January, 2006 at Augustine Volcano, Alaska constrain the seismic source location to near sea level beneath the summit of the volcano. The calculated moment tensors indicate the presence of a volumetric source mechanism. Systematic reconstruction of the source mechanism shows the source consists of a sill intersected by either a sub-vertical east-west trending dike or a sub-vertical pipe and a weak single force. The trend of the dike may be controlled by the east-west trending Augustine-Seldovia arch. The data from the network of broadband sensors is limited to fourteen seismic traces, and synthetic modeling confirms the ability of the network to recover the source mechanism. The synthetic modeling also provides a guide to the expected capability of a broadband network to resolve very-long-period source mechanisms, particularly when confronted with limited observational data.
Regional Variations in Aleutian Magma Composition
NASA Astrophysics Data System (ADS)
Nye, C. J.
2008-12-01
This study is based on sample data spanning 20 years from USGS, UAF, and DGGS geologists too numerous to list here. The 2900-km long Aleutian arc contains more than 50 active and over 90 Holocene volcanoes. The arc is built on oceanic Bering-sea floor west of 166W and quasi-continental crust east of 166W. Over the past twenty years the Alaska Volcano Observatory has conducted baseline geologic mapping (or remapping) and volcanic-hazards studies of selected volcanoes - generally those targeted for geophysical monitoring. This marks the largest sustained effort to study Aleutian volcanoes in half a century; AVO scientists have logged as many as 700 person-days per field season. Geologic studies have resulted in comprehensive suites of stratigraphically constrained samples and more than 3500 new whole-rock analyses by XRF and ICP/MS from more than 30 centers, more than doubling the number of previously published analyses. Examination of the data for regional and inter-volcano variations yields a number of first-order observations. (1) The arc can be broadly divided into an eastern segment (east of 158W) of calcalkaline andesite stratocones; a central segment dominated by large, mafic, tholeiitic shield volcanoes and stratocones; and a western segment (west of 175W) of smaller volcanoes with variable morphologies and generally more andesitic compositions. (2) There are NO significant first-order compositional signals that coincide with the transition from oceanic to continental basement. (3) Individual volcanoes are often subtly distinct from neighbors, and those distinctions persist for the lifetime of the centers. (4) All centers, notably including the large basaltic centers of the central arc, are strongly affected by open-system processes significantly more complicated than mixing among sibling-fractionates of parental mafic magmas. (5) Petrogenetic pathways are long-lived; individual batches of magma are (generally) not. (6) Calcalkaline andesites have dramatically lower REE and HFSE, yet higher Cr and Ni than tholeiitic andesites, suggesting that it is overly simplistic to consider calcalkaline andesites to be simple fractionates of basalts.
NASA Astrophysics Data System (ADS)
Wittwer, A.; Flueh, E.; Rabbel, W.; Wagner, D.
2006-12-01
In this study, offshore wide-angle data acquired by ocean bottom instruments of a combined onshore- offshore investigation of the tectonic framework of central Java will be presented. The joint interdisciplinary project MERAMEX (Merapi Amphibious Experiment) was carried out in order to characterize the subduction of the Indo-Australian plate beneath Eurasia. The interpretation of three wide-angle data profiles, modelled with forward raytracing, indicates that the subduction of the Roo Rise with its thickened oceanic crust strongly influences the subduction zone. The dip angle of the downgoing oceanic plate is 10° and its crustal thickness increases to the east from 8 km to 9 km between both dip profiles off central Java. Large scale forearc uplift is manifested in isolated forearc highs, reaching water depths of only 1000 m compared to 2000 m water depth off western Java, and results from oceanic basement relief subduction. A broad band of seamounts trends E-W at approximately 10°S. Its incipient subduction off central Java causes frontal erosion of the margin here and leads to mass wasting due to oversteepening of the upper trench wall. A suite of wide-angle profiles off southern Sumatra to central Java indicates a clear change in the tectonic environment between longitude 108°E and 109°E. The well-developed accretionary wedge off southern Sumatra and western Java changes into a small frontal prism with steep slope angles of the upper plate off central Java.
The 12 September 1999 Upper East Rift Zone dike intrusion at Kilauea Volcano, Hawaii
Cervelli, Peter; Segall, P.; Amelung, F.; Garbeil, H.; Meertens, C.; Owen, S.; Miklius, Asta; Lisowski, M.
2002-01-01
Deformation associated with an earthquake swarm on 12 September 1999 in the Upper East Rift Zone of Kilauea Volcano was recorded by continuous GPS receivers and by borehole tiltmeters. Analyses of campaign GPS, leveling data, and interferometric synthetic aperture radar (InSAR) data from the ERS-2 satellite also reveal significant deformation from the swarm. We interpret the swarm as resulting from a dike intrusion and model the deformation field using a constant pressure dike source. Nonlinear inversion was used to find the model that best fits the data. The optimal dike is located beneath and slightly to the west of Mauna Ulu, dips steeply toward the south, and strikes nearly east-west. It is approximately 3 by 2 km across and was driven by a pressure of ??? 15 MPa. The total volume of the dike was 3.3 x 106 m3. Tilt data indicate a west to east propagation direction. Lack of premonitory inflation of Kilauea's summit suggests a passive intrusion; that is, the immediate cause of the intrusion was probably tensile failure in the shallow crust of the Upper East Rift Zone brought about by persistent deep rifting and by continued seaward sliding of Kilauea's south flank.
Tänzler, Rene; Toussaint, Emmanuel F A; Suhardjono, Yayuk R; Balke, Michael; Riedel, Alexander
2014-05-07
The fauna of Bali, situated immediately west of Wallace's Line, is supposedly of recent Javanese origin and characterized by low levels of endemicity. In flightless Trigonopterus weevils, however, we find 100% endemism for the eight species here reported for Bali. Phylogeographic analyses show extensive in situ differentiation, including a local radiation of five species. A comprehensive molecular phylogeny and ancestral area reconstruction of Indo-Malayan-Melanesian species reveals a complex colonization pattern, where the three Balinese lineages all arrived from the East, i.e. all of them transgressed Wallace's Line. Although East Java possesses a rich fauna of Trigonopterus, no exchange can be observed with Bali. We assert that the biogeographic picture of Bali has been dominated by the influx of mobile organisms from Java, but different relationships may be discovered when flightless invertebrates are studied. Our results highlight the importance of in-depth analyses of spatial patterns of biodiversity.
Tänzler, Rene; Toussaint, Emmanuel F. A.; Suhardjono, Yayuk R.; Balke, Michael; Riedel, Alexander
2014-01-01
The fauna of Bali, situated immediately west of Wallace's Line, is supposedly of recent Javanese origin and characterized by low levels of endemicity. In flightless Trigonopterus weevils, however, we find 100% endemism for the eight species here reported for Bali. Phylogeographic analyses show extensive in situ differentiation, including a local radiation of five species. A comprehensive molecular phylogeny and ancestral area reconstruction of Indo-Malayan–Melanesian species reveals a complex colonization pattern, where the three Balinese lineages all arrived from the East, i.e. all of them transgressed Wallace's Line. Although East Java possesses a rich fauna of Trigonopterus, no exchange can be observed with Bali. We assert that the biogeographic picture of Bali has been dominated by the influx of mobile organisms from Java, but different relationships may be discovered when flightless invertebrates are studied. Our results highlight the importance of in-depth analyses of spatial patterns of biodiversity. PMID:24648218
NASA Astrophysics Data System (ADS)
Soegiyanto; Rindawati
2018-01-01
This research was conducted in the flood plain Bonorowo in Lamongan East Java Province. The area was inundated almost every year, but people still survive and remain settled at the sites. This research is to identify and analyze the social vulnerability in the flood plains on the characteristics puddle Bonorowo This research method is the study of the characteristics and livelihood strategies of the communities living on marginal lands (floodplains Bonorowo) are regions prone to flooding / inundation. Based on the object of this study is a survey research method mix / mix method, which merge or combination of methods of quantitative and qualitative methods, so it will be obtained a description of a more comprehensive and holistic. The results obtained in this study are; Social vulnerability is not affected by the heightened puddles. Social capital is abundant making society safer and more comfortable to keep their activities and settle in the region
NASA Astrophysics Data System (ADS)
Baker, S.; Amelung, F.
2011-12-01
Located on the Big Island of Hawaii, Kilauea volcano is one of the most active volcanoes on Earth with continuous eruptive activity since 1983. The eruptive activity is predominately from the Pu'u O'o vent within the east rift zone, but periodic intrusions occur in the upper east rift zone between the summit and Pu'u O'o. These intrusions occur as dikes typically accompanied by fissure openings and eruptions of small volumes of lava. Interferometric synthetic aperture radar (InSAR) provides surface displacement measurements showing how the ground moves before, during, and after these intrusions. Given the recent increase in the number of active or planned SAR satellites and the more frequent repeat-pass times, InSAR is proving to be a valuable monitoring tool for volcanic hazards. Using data from Radarsat-1, Envisat, ALOS, and TerraSAR-X satellites, we generate line-of-sight InSAR time series using the small baseline subset (SBAS) which provides dense spatial and temporal coverage at Kilauea covering the 17 June 2007 and 5 March 2011 intrusions. For these two events, the summit caldera area switches from deflation to inflation months to years before both intrusions, and just prior to the intrusions we observe increased rates of inflation accompanied by elevated seismic activity in the upper east rift zone. Observations of the intrusion relate surface displacement and the response of the summit caldera area provide insight into the shallow magmatic system and the connectivity of the system. By combining InSAR time series with other geophysical data sets (such as seismic or GPS), we obtain more details about the associated hazard and a better understanding of the time-dependent relationship between what we are measuring and the controlling processes at the volcano.
Volcano Inflation prior to Gas Explosions at Semeru Volcano, Indonesia
NASA Astrophysics Data System (ADS)
Nishimura, T.; Iguchi, M.; Kawaguchi, R.; Surono, S.; Hendrasto, M.; Rosadi, U.
2010-12-01
Semeru volcano in east Java, Indonesia, is well known to exhibit small vulcanian eruptions at the summit crater. Such eruptive activity stopped on April 2009, but volcanic earthquakes started to occur in August and a lava dome was found in the summit crater on November. Since then, lava sometimes flows downward on the slope and small explosions emitting steams from active crater frequently occur every a few to a few tens of minutes. Since the explosions repeatedly occur with short intervals and the active crater is located close to the summit with an altitude of 3676m, the explosions are considered to originate from the gas (steams) from magma itself in the conduit and not to be caused by interactions of magma with the underground water. We installed a tiltmeter at the summit on March 2010 to study the volcanic eruption mechanisms. The tiltmeter (Pinnacle hybrid type, accuracy of measurement is 1 nrad ) was set at a depth of about 1 m around the summit about 500 m north from the active crater. The data stored every 1 s in the internal memory was uploaded every 6 hours by a small data logger with GPS time correction function. More than one thousand gas explosion events were observed for about 2 weeks. We analyze the tilt records as well as seismic signals recorded at stations of CVGHM, Indonesia. The tilt records clearly show uplift of the summit about 20 to 30 seconds before each explosion. Uplifts before large explosions reach to about 20 - 30 n rad, which is almost equivalent to the volume increase of about 100 m^3 beneath the crater. To examine the eruption magnitude dependence on the uplift, we classify the eruptions into five groups based on the amplitudes of seismograms associated with explosions. We stack the tilt records for these groups to reduce noises in the signals and to get general characteristics of the volcano inflations. The results show that the amplitudes of uplifts are almost proportional to the amplitudes of explosion earthquakes while the preceding time of uplift is almost constant (20 s - 30 s). This implies that the inflation rate controls the magnitude of gas explosions. The observed preceding time of inflation prior to gas explosions are much shorter than those for the inflations before magmatic explosions (Nishi et al., 2007; Iguchi et al., 2008), which suggests that the pressurization processes in shallow conduit for gas explosions are different from that for explosions emitting ashes.
Regional geochemistry Bandung Quadrangle West Java: for environmental and resources studies
NASA Astrophysics Data System (ADS)
Sendjaja, Purnama; Baharuddin
2017-06-01
Geochemical mapping based on the stream sediment method has been carried out in the whole of Java Region by the Centre for Geological Survey. The Regional Geochemistry Bandung Quadrangle as part of West Java Region has been mapped in 1:100.000 scale map, base on the Geological Map of Bandung Quadrangle. About 82 stream sediment samples collected and sieved in the 80 mesh sieve fraction during the field work session at 2011. This fraction was prepared and analysed for 30 elements by X-ray fluorescence spectrometry at the Centre for Geological Survey Laboratory. There are some elements indicating significant anomaly in this region, and it is important to determine the present abundance and spatial distribution of the elements for presuming result from natural product or derived from human activities. The volcanic products (Tangkuban Perahu Volcano, Volcanic Rock Complex and Quarternary Volcanic-Alluvial Deposit) are clearly identified on the distribution of As, Ba, Cl, Cu, Zr and La elements. However Mn, Zn, V and Sr are related to precipitation in the Tertiary Sediments, while the influence of human activities are showing from a geochemical map of Cl, Cr, Cu, Pb and Zn that show scattered anomalies localized close to the cities, farming and industries.
Waitt, R.B.
1989-01-01
The initial explosions at Mount St. Helens, Washington, on the moring of 18 May 1980 developed into a huge pyroclastic surge that generated catastrophic floods off the east and west flanks of the volcano. Near-source surge deposits on the east and west were lithic, sorted, lacking in accretionary lapilli and vesiculated ash, not plastered against upright obstacles, and hot enough to char wood - all attributes of dry pyroclastic surge. Material deposited at the surge base on steep slopes near the volcano transformed into high-concentration lithic pyroclastic flows whose deposits contain charred wood and other features indicating that these flows were hot and dry. Stratigraphy shows that even the tail of the surge had passed the east and west volcano flanks before the geomorphically distinct floods (lahars) arrived. This field evidence undermines hypotheses that the turbulent surge was itself wet and that its heavy components segregated out to transform directly into lahars. Nor is there evidence that meters-thick snow-slab avalanches intimately mixed with the surge to form the floods. The floods must have instead originated by swift snowmelt at the base of a hot and relatively dry turbulent surge. Impacting hot pyroclasts probably transferred downslope momentum to the snow surface and churned snow grains into the surge base. Melting snow and accumulating hot surge debris may have moved initially as thousands of small thin slushflows. As these flows removed the surface snow and pyroclasts, newly uncovered snow was partly melted by the turbulent surge base; this and accumulating hot surge debris in turn began flowing, a self-sustaining process feeding the initial flows. The flows thus grew swiftly over tens of seconds and united downslope into great slushy ejecta-laden sheetfloods. Gravity accelerated the floods to more than 100 km/h as they swept down and off the volcano flanks while the snow component melted to form great debris-rich floods (lahars) channeled into valleys. ?? 1989 Springer-Verlag.
NASA Astrophysics Data System (ADS)
Lahitte, Pierre; Poppe, Sam; Kervyn, Matthieu
2016-04-01
Quaternary volcanic landforms result from a complex evolution, involving volcanic constructional events and destructive ones by collapses and long-term erosion. Quantification, by morphometric approaches, of the evolution through time of the volcano shape allows the estimation of relative ages between volcanoes sharing the same climate and eruptive conditions. We apply such method to six volcanoes of the Virunga Volcanic Province in the western branch of the East African Rift Valley that still has rare geochronological constraints. As they have comparable sizes, volcanic history and erupted products, these edifices may have undergone comparable conditions of erosion which justify the deduction of relative chronology from their erosion pattern. Our GIS-based geomorphometric approach, the SHAPEVOLC algorithm, quantifies erupted or dismantled volumes by numerically modeling topographies resulting from the eruptive construction of each volcano. Constraining points are selected by analyses of morphometric properties of each cell of the current DEM, as the loci where the altitude is still representative of the un-eroded volcanic surfaces. A primary elevation surface is firstly adjusted to these constraining points by modeling a first-order pseudo-radial surface defined by: 1. the curve best fitting the concave-upwards volcano profile; 2. the location and elevation of the volcano summit; and 3. the possible eccentricity and azimuth parameters that allow to stretch and contract contours to adjust the shape of the model to the elliptically-shaped surface of the volcano. A second-order surface is next computed by local adjustment of the first-order surface to the constraining points to obtain the definitive primary elevation surface of the considered volcanic construct. Amount of erosion is obtained by summing the difference in elevation between reconstructed surfaces and current ones that allows to establish relative ages of volcanoes. For the 6 studied Virunga volcanoes, the ratio of the dismantled volume vs. initial volume ranges between 5 to 30 % and up to almost 40 % if volumes removed by landslides are considered. The most preserved volcano is the New Mikeno erupted inside the landslide having affected the older stage of this volcano, whereas the most dismantled one is the Sabinyo volcano. The three-pointed star-like erosion pattern with main valleys having more or less the same orientation, which was observed on four volcanoes, may point to a strong constraint of the erosion processes by the regional tectonic pattern.
NASA Astrophysics Data System (ADS)
Siebert, L.; Carrasco-Nunez, G.; Diaz-Castellon, R.; Rodriguez, J. L.
2007-12-01
Cofre de Perote volcano anchors the northern end of the easternmost of several volcanic chains orthogonal to the E-W trend of the Mexican Volcanic Belt (MVB). Its structure, geochemistry, and volcanic history diverge significantly from that of the large dominantly andesitic stratovolcanoes that have been the major focus of research efforts in the MVB. Andesitic-trachyandesitic to dacitic-trachydacitic effusive activity has predominated at Cofre de Perote, forming a massive low-angle compound shield volcano that dwarfs the more typical smaller shield volcanoes of the central and western MVB. The 4282-m-high volcano overlooking Xalapa, the capital city of the State of Veracruz, has a diameter of about 30 km and rises more than 3000 m above the coastal plain to the east. Repeated edifice collapse has left massive horseshoe-shaped scarps that truncate the eastern side of the edifice. Five major evolutionary stages characterize the growth of this compound volcano: 1) emplacement of a multiple-vent dome complex forming the basal structure of Cofre de Perote around 1.9-1.3 Ma; 2) construction of the basal part of the compound shield volcano from at least two main upper-edifice vents at about 400 ka; 3) effusion of the summit dome-like lavas through multiple vents at ca. 240 ka; 4) eruption of a large number of geochemically diverse, alkaline and calc-alkaline Pleistocene-to-Holocene monogenetic cones (likely related to regional volcanism) through the flanks of the Cofre de Perote edifice; 5) late-stage, large-volume edifice collapse on at least two occasions (ca. 40 ka and ca. 10 ka), producing long-runout debris avalanches that traveled to the east. An undated tephra layer from Cofre de Perote overlies deposits likely of the youngest collapse. Cofre de Perote is one of several volcanoes in the roughly N-S-trending chain that has undergone major edifice collapse. As with Citlaltepetl (Pico de Orizaba) and Las Cumbres volcanoes, Cofre de Perote was constructed at the eastern margin of the Altiplano, with pronounced differential relief and sloping substrate promoting failures toward the Gulf of Mexico coastal plain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karyono, E-mail: karyonosu@gmail.com; OSLO University; Padjadjaran University
The spectacular Lumpur Sidoarjo (Lusi) eruption started in northeast Java on the 29 of May 2006 following a M6.3 earthquake striking the island [1,2]. Initially, several gas and mud eruption sites appeared along the reactivated strike-slip Watukosek fault system [3] and within weeks several villages were submerged by boiling mud. The most prominent eruption site was named Lusi. The Lusi seismic experiment is a project aims to begin a detailed study of seismicity around the Lusi area. In this initial phase we deploy 30 seismometers strategically distributed in the area around Lusi and along the Watukosek fault zone that stretchesmore » between Lusi and the Arjuno Welirang (AW) complex. The purpose of the initial monitoring is to conduct a preliminary seismic campaign aiming to identify the occurrence and the location of local seismic events in east Java particularly beneath Lusi.This network will locate small event that may not be captured by the existing BMKG network. It will be crucial to design the second phase of the seismic experiment that will consist of a local earthquake tomography of the Lusi-AW region and spatial and temporal variations of vp/vs ratios. The goal of this study is to understand how the seismicity occurring along the Sunda subduction zone affects to the behavior of the Lusi eruption. Our study will also provide a large dataset for a qualitative analysis of earthquake triggering studies, earthquake-volcano and earthquake-earthquake interactions. In this study, we will extract Green’s functions from ambient seismic noise data in order to image the shallow subsurface structure beneath LUSI area. The waveform cross-correlation technique will be apply to all of recordings of ambient seismic noise at 30 seismographic stations around the LUSI area. We use the dispersive behaviour of the retrieved Rayleigh waves to infer velocity structures in the shallow subsurface.« less
Triggering and dynamic evolution of the LUSI mud volcano, Indonesia
NASA Astrophysics Data System (ADS)
Svensen, H.; Mazzini, A.; Akhmanov, G. G.; Aloisi, G.; Planke, S.; Sørenssen, A.; Istadi, B.
2007-12-01
Mud volcanoes are geologically important manifestations of vertical fluid flow and mud eruption in sedimentary basins worldwide. Their formation is predominantly ascribed to release of overpressure from clay- and organic- rich sediments, leading to impressive buildup of mud mountains in submarine and subaerial settings. Here we report data from two fieldworks on a newly born mud volcano named LUSI eruption in Eastern Java (Indonesia). The eruption site appears close to an active magmatic complex in a backarc sedimentary basin in Indonesia. Its specific location results in a high background temperature gradient that triggers mineralogical transformations and geochemical reactions at shallow depth. The eruption of 100 deg.C mud and gas that started the 29th of May 2006 flooded a large area within the Sidoarjo village in Northeast Java. Thousands of people have so far been evacuated and, since the initial eruption, the flow rate escalated from 5000 to 120,000 m3/d during the first eleven weeks. Then the erupted volume started to pulsate between almost zero and 120,000 m3/d in the period August-September, whereas it increased dramatically following swarms of earthquakes in September, before reaching almost 180,000 m3/d in December 2006. Fifteen months after the initial burst, LUSI is still vigorously erupting up to 111,000 m3/d, the average subsidence of the area reached 11 m. Seismic images show that a pre-existing structure was present before the eruption. Based on geochemical and field results, we propose a mechanism where the eruptions started following the 27th of May earthquake due to fracturing and accompanied depressurization of >100 deg.C pore fluids from > 1700 m depth released from a structure in already critical conditions. This resulted in the formation of a quasi-hydrothermal system with a geyser-like surface expression and with an activity influenced by the regional seismicity.
Late Holocene history of Chaitén Volcano: new evidence for a 17th century eruption
Lara, Luis E.; Moreno, Rodrigo; Amigo, Álvaro; Hoblitt, Richard P.; Pierson, Thomas C.
2013-01-01
Prior to May 2008, it was thought that the last eruption of Chaitén Volcano occurred more than 5,000 years ago, a rather long quiescent period for a volcano in such an active arc segment. However, increasingly more Holocene eruptions are being identified. This article presents both geological and historical evidence for late Holocene eruptive activity in the 17th century (AD 1625-1658), which included an explosive rhyolitic eruption that produced pumice ash fallout east of the volcano and caused channel aggradation in the Chaitén River. The extents of tephra fall and channel aggradation were similar to those of May 2008. Fine ash, pumice and obsidian fragments in the pre-2008 deposits are unequivocally derived from Chaitén Volcano. This finding has important implications for hazards assessment in the area and suggests the eruptive frequency and magnitude should be more thoroughly studied.
NASA Astrophysics Data System (ADS)
Bagnardi, M.; Eggers, A.; Battaglia, M.; Poland, M.; Johnson, D.
2008-12-01
Since January 3 1983, Kilauea Volcano, Hawaii, has erupted almost continuously from vents on the volcano's east rift zone. On March 19, 2008, an explosion at Halema'uma'u Crater, within the summit caldera of Kilauea, marked the opening of a second eruptive vent on the volcano. The east rift vent at Pu'u'O'o and the summit vent at Halema'uma'u continue to be active as of August 2008, marking the longest interval in Kilauea's recorded history of eruptive activity on the volcano. Four gravity surveys with a network covering Kilauea's summit area have been performed during 1975-2003. We reoccupied this 45-station network in January and July 2008 with three portable LaCoste-Romberg gravimeters (G209, G615 and EG026) using a double-looping procedure. These two most recent gravity surveys span the onset of summit eruptive activity. The micro-gravity data set, combined with existing geodetic data from leveling, GPS, EDM, and InSAR, allow us to investigate and model the shallow magma system under the summit caldera to roughly constrain its shape, position, volume change and density, and better understand its long and short term evolution. We corrected for the effect of vertical deformation on gravity data (the so-called free-air effect) using uplift measurements from annual surveys performed by the USGS Hawaiian Volcano Observatory. Preliminary analysis of this record, which covers more than 30 years, indicates a persistent positive residual gravity anomaly located at the southeast margin of Halema'uma'u Crater, very close to the location of the new summit eruptive vent. This anomaly suggests a long term mass accumulation beneath the summit caldera.
Evaluation of Ground-Water Resources From Available Data, 1992, East Molokai Volcano, Hawaii
Anthony, Stephen S.
1995-01-01
Available ground-water data for East Molokai Volcano consist of well-construction information and records of ground-water pumpage, water levels, and chloride concentrations. Ground-water pumpage records are available for ten wells. Seventeen long-term (10 years or more) records of water-level and/or chloride concentration are available for eleven wells; however, only seven of these records are for observation wells. None of the available data show significant long-term changes in water level or chloride concentration; however, short-term changes due to variations in the quantity of water pumped, and rainfall are evident. Evaluation of the historical distribution and rates of ground-water pumpage, and variations in water levels and chloride concentrations is constrained by the scanty distribution of spatial and temporal data. Data show a range in water levels from greater than 850 feet above mean sea level in wells located in the windward valley of Waikolu to about 10 feet in wells located east of Kualapuu to 1 to 5 feet in the wells located along the south shore of East Molokai Volcano. An accurate contour map of water levels and chloride concentrations at the surface of the basal-water body cannot be constructed for any time period. Because water-level and chloride data are not collected at regular time intervals, many long-term records are incomplete. Information on the variation in chloride concentration with depth through the freshwater part of the basal-water body and into the zone of transition between freshwater and saltwater does not exist.
Home Page - Satellite Products and Services Division/Office of Satellite
Products (New!) CLAVR-x Cloud Products Surface Oil Analysis Deepwater Horizon East Coast IR GOES East West Coast IR GOES West Selected image of the Day Image of the Day Volcano Information Washington VAAC ) Search The Employee National Locator (non-NOAA Employees) USA.gov is the U.S. government's official web
West Central U.S. Imagery (GOES-WEST) - Satellite Services Division /
Single Image Java Loop Flash Loops HTML5 Loops With Lat/Lon No Lat/Lon Standard Standard Enhanced Same Sector from GOES East Flash Loop Note: Standard - usually 12-15 images many static overlays
Volcano-hazard zonation for San Vicente volcano, El Salvador
Major, J.J.; Schilling, S.P.; Pullinger, C.R.; Escobar, C.D.; Howell, M.M.
2001-01-01
San Vicente volcano, also known as Chichontepec, is one of many volcanoes along the volcanic arc in El Salvador. This composite volcano, located about 50 kilometers east of the capital city San Salvador, has a volume of about 130 cubic kilometers, rises to an altitude of about 2180 meters, and towers above major communities such as San Vicente, Tepetitan, Guadalupe, Zacatecoluca, and Tecoluca. In addition to the larger communities that surround the volcano, several smaller communities and coffee plantations are located on or around the flanks of the volcano, and major transportation routes are located near the lowermost southern and eastern flanks of the volcano. The population density and proximity around San Vicente volcano, as well as the proximity of major transportation routes, increase the risk that even small landslides or eruptions, likely to occur again, can have serious societal consequences. The eruptive history of San Vicente volcano is not well known, and there is no definitive record of historical eruptive activity. The last significant eruption occurred more than 1700 years ago, and perhaps long before permanent human habitation of the area. Nevertheless, this volcano has a very long history of repeated, and sometimes violent, eruptions, and at least once a large section of the volcano collapsed in a massive landslide. The oldest rocks associated with a volcanic center at San Vicente are more than 2 million years old. The volcano is composed of remnants of multiple eruptive centers that have migrated roughly eastward with time. Future eruptions of this volcano will pose substantial risk to surrounding communities.
NASA Astrophysics Data System (ADS)
Byrdina, Svetlana; Revil, André; Gunawan, Hendra; Saing, Ugan B.; Grandis, Hendra
2017-07-01
Papandayan volcano in West Java, Indonesia, is characterized by intense hydrothermal activities manifested by numerous fumaroles at three craters or kawah, i.e. Mas, Manuk and Baru. The latter was created after November 2002 phreatic eruption. Since 2011, numerous volcano-tectonic B events are encountered and the volcano was set on alert status on several occasions. The purpose of the present study is to delineate the structure of the summital hydrothermal system from Self-Potential (SP), soil temperature and gas concentrations in the soil (CO2, SO2 and H2S) data. This combination of geophysical and geochemical methods allows identification of the weak permeable zones serving as preferential pathways for hydrothermal circulation and potential candidates to future landslides or flank collapses. This study is an on-going collaborative research project and we plan to conduct electrical resistivity tomography (ERT) and also Induced-Polarization (IP) surveys. Additional data would allow the 3D imaging of the studied area. The IP parameters will be used to characterise and to quantify the degree of alteration of the volcanic rocks as has been shown very recently in the laboratory studies. There are also rocks and soil samples that will undergo laboratory analyses at ISTerre for IP and complex resistivity parameters at the sample scale that will help to interpret the survey results.
Eruption of Shiveluch Volcano, Kamchatka, Russia
2001-07-21
On the night of June 4, 2001 ASTER captured this thermal image of the erupting Shiveluch volcano. Located on Russia's Kamchatka Peninsula, Shiveluch rises to an altitude of 8028'. The active lava dome complex is seen as a bright (hot) area on the summit of the volcano. To the southwest, a second hot area is either a debris avalanche or hot ash deposit. Trailing to the west is a 25 km ash plume, seen as a cold "cloud" streaming from the summit. At least 60 large eruptions have occurred during the last 10,000 years; the largest historical eruptions were in 1854 and 1964. Because Kamchatka is located along the major aircraft routes between North America/Europe and the Far East, this area is constantly monitored for potential ash hazards to aircraft. The lower image is the same as the upper, except it has been color coded: red is hot, light greens to dark green are progressively colder, and gray/black are the coldest areas. The image is located at 56.7 degrees north latitude, 161.3 degrees east longitude. http://photojournal.jpl.nasa.gov/catalog/PIA02674
Crumrine, Milo D.; Morgan, David S.
1994-01-01
This report is a compilation of hydrologic, water- quality, and meteorologic data collected in the vicinity of Newberry Volcano near Bend, Oregon. These data were collected, in cooperation with the Bonneville Power Administration, the U.S. Forest Service, and the Bureau of Land Management, to provide baseline data for identifying and assessing the effects of proposed geothermal development in the vicinity of Newberry Volcano. Types of data collected include ground-water levels, lake levels, streamflow, water quality, and meteorologic measurements. Sites that were monitored include: (1) two thermal wells in the caldera, (2) several nonthermal wells in the caldera, (3) four wells outside of the caldera, (4) Paulina Creek, (5) Paulina and East Lakes, (6) hot springs that discharge into Paulina and East Lakes, and (7) meteorologic conditions near Paulina Lake. Data are presented for the period summer 1991 through fall 1993. Water-quality data collected include concentrations of common anions and cations, nutrients, trace elements, radiochemicals, and isotopes. Meteorologic data collected include wind velocity, air temperature, humidity, solar radiation, and precipitation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holcomb, R.T.; Moore, J.G.; Lipman, P.W.
The GLORIA long-range sonar imaging system has revealed fields of large lava flows in the Hawaiian Trough east and south of Hawaii in water as deep as 5.5 km. Flows in the most extensive field (110 km long) have erupted from the deep submarine segment of Kilauea's east rift zone. Other flows have been erupted from Loihi and Mauna Loa. This discovery confirms a suspicion, long held from subaerial studies, that voluminous submarine flows are erupted from Hawaiian volcanoes, and it supports an inference that summit calderas repeatedly collapse and fill at intervals of centuries to millenia owing to voluminousmore » eruptions. These extensive flows differ greatly in form from pillow lavas found previously along shallower segments of the rift zones; therefore, revision of concepts of volcano stratigraphy and structure may be required.« less
Studying temporal velocity changes with ambient seismic noise at Hawaiian volcanoes
NASA Astrophysics Data System (ADS)
Ballmer, S.; Wolfe, C. J.; Okubo, P. G.; Haney, M. M.; Thurber, C. H.
2012-04-01
In order to understand the dynamics of volcanoes and to assess the associated hazards, the analysis of ambient seismic noise - a continuous passive source - has been used for both imaging and monitoring temporal changes in seismic velocity. Between pairs of seismic stations, surface wave Green's functions can be retrieved from the background ocean-generated noise being sensitive to the shallow subsurface. Such Green's functions allow the measurement of very small temporal perturbations in seismic velocity with a variety of applications. In particular, velocity decreases prior to some volcanic eruptions have been documented and motivate our present study. Here we perform ambient seismic noise interferometry to study temporal changes in seismic velocities within the shallow (<5km) subsurface of the Hawaiian volcanoes. Our study is the first to assess the potential for using ambient noise analyses as a tool for Hawaiian volcano monitoring. Five volcanoes comprise the island of Hawaii, of which two are active: Mauna Loa volcano, which last erupted in 1984, and Kilauea volcano, where the Pu'u'O'o-Kupaianaha eruption along the east rift zone has been ongoing since 1983. For our analysis, we use data from the USGS Hawaiian Volcano Observatory (HVO) seismic network from 05/2007 to 12/2009. Our study period includes the Father's Day dike intrusion into Kilauea's east rift zone in mid-June 2007 as well as increased summit activity commencing in late 2007 and leading to several minor explosions in early 2008. These volcanic events are of interest for the study of potential associated seismic velocity changes. However, we find that volcanic tremor complicates the measurement of velocity changes. Volcanic tremor is continuously present during most of our study period, and contaminates the recovered Green's functions for station pairs across the entire island. Initial results suggest that a careful quality assessment (i.e. visually inspecting the Green's functions and filtering to remove tremor) diminishes the effects of tremor and allows for resolution of relative velocity changes on the order of less than 1%. The observed velocity changes will be compared with known volcanic activity in space and time, and interpreted in view of underlying processes.
Digital Geologic Map Database of Medicine Lake Volcano, Northern California
NASA Astrophysics Data System (ADS)
Ramsey, D. W.; Donnelly-Nolan, J. M.; Felger, T. J.
2010-12-01
Medicine Lake volcano, located in the southern Cascades ~55 km east-northeast of Mount Shasta, is a large rear-arc, shield-shaped volcano with an eruptive history spanning nearly 500 k.y. Geologic mapping of Medicine Lake volcano has been digitally compiled as a spatial database in ArcGIS. Within the database, coverage feature classes have been created representing geologic lines (contacts, faults, lava tubes, etc.), geologic unit polygons, and volcanic vent location points. The database can be queried to determine the spatial distributions of different rock types, geologic units, and other geologic and geomorphic features. These data, in turn, can be used to better understand the evolution, growth, and potential hazards of this large, rear-arc Cascades volcano. Queries of the database reveal that the total area covered by lavas of Medicine Lake volcano, which range in composition from basalt through rhyolite, is about 2,200 km2, encompassing all or parts of 27 U.S. Geological Survey 1:24,000-scale topographic quadrangles. The maximum extent of these lavas is about 80 km north-south by 45 km east-west. Occupying the center of Medicine Lake volcano is a 7 km by 12 km summit caldera in which nestles its namesake, Medicine Lake. The flanks of the volcano, which are dotted with cinder cones, slope gently upward to the caldera rim, which reaches an elevation of nearly 2,440 m. Approximately 250 geologic units have been mapped, only half a dozen of which are thin surficial units such as alluvium. These volcanic units mostly represent eruptive events, each commonly including a vent (dome, cinder cone, spatter cone, etc.) and its associated lava flow. Some cinder cones have not been matched to lava flows, as the corresponding flows are probably buried, and some flows cannot be correlated with vents. The largest individual units on the map are all basaltic in composition, including the late Pleistocene basalt of Yellowjacket Butte (296 km2 exposed), the largest unit on the map, whose area is partly covered by a late Holocene andesite flow. Silicic lava flows are mostly confined to the main edifice of the volcano, with the youngest rhyolite flows found in and near the summit caldera, including the rhyolitic Little Glass Mountain (~1,000 yr B.P.) and Glass Mountain (~950 yr B.P.) flows, which are the youngest eruptions at Medicine Lake volcano. In postglacial time, 17 eruptions have added approximately 7.5 km3 to the volcano’s total estimated volume of 600 km3, which may be the largest by volume among Cascade Range volcanoes. The volcano has erupted nine times in the past 5,200 years, a rate more frequent than has been documented at all other Cascade volcanoes except Mount St. Helens.
S, Emy Koestanti; Misaco, Wiwik; Chusniati, Sri; Maslachah, Lilik
2018-01-01
Brucellosis in pigs at East Java Indonesia has not only cause great economic losses due to a decrease in productivity of livestock but also are zoonotic. Infection on free brucelosis pigs were initially begun with the infected pigs both male and female, or the use of superior male pigs together. The elimination of the disease either on a group or population is considered as the most effective way to prevent the spread of the disease in pigs. Prevention efforts mainly addressed to vaccination, sanitary maintenace and government policy. The purpose of this study was to isolated and identified Brucella suis as the causative agent. The survey area were the pig farm owned by breeder farmers in the area of East Java Indonesia, at Kediri, Malang, Blitar and Probolinggo district. Blood samples obtained were tested with RBT. Pigs are suspected of being infected with Brucella if the RBT was positive that characterized with agglutination in the test results. If RBT was positive, bacteriological examination will be performed, with samples of visceral foetus organ, ie liver, spleen, placenta and amniotic fluid. Isolation and identification of Brucella suis were used Brucella Broth and Brucella Agar, and if the bacteri growthwill be continued with biochemical test ie H2S, urease, citrate, catalase and oxidase test. The positive results of Brucella suis showed positive urease, catalase andoxidase, but negative for citrate and H2S. RBT and bacteriolgical examination showed that 1 sample was positive Brucella suis , and 19 negative. The positive results showed positive urease, catalase and oxidase, but negative for citrate and H2S. Based on RBT test and bacteriological examination, there was 1 positive sample of brucellla suis, that is sample coming from Kediri district.
S, Emy Koestanti; Misaco, Wiwik; Chusniati, Sri; Maslachah, Lilik
2018-01-01
Background: Brucellosis in pigs at East Java Indonesia has not only cause great economic losses due to a decrease in productivity of livestock but also are zoonotic. Infection on free brucelosis pigs were initially begun with the infected pigs both male and female, or the use of superior male pigs together. The elimination of the disease either on a group or population is considered as the most effective way to prevent the spread of the disease in pigs. Prevention efforts mainly addressed to vaccination, sanitary maintenace and government policy. The purpose of this study was to isolated and identified Brucella suis as the causative agent. Material and Methods: The survey area were the pig farm owned by breeder farmers in the area of East Java Indonesia, at Kediri, Malang, Blitar and Probolinggo district. Blood samples obtained were tested with RBT. Pigs are suspected of being infected with Brucella if the RBT was positive that characterized with agglutination in the test results. If RBT was positive, bacteriological examination will be performed, with samples of visceral foetus organ, ie liver, spleen, placenta and amniotic fluid. Isolation and identification of Brucella suis were used Brucella Broth and Brucella Agar, and if the bacteri growthwill be continued with biochemical test ie H2S, urease, citrate, catalase and oxidase test. The positive results of Brucella suis showed positive urease, catalase andoxidase, but negative for citrate and H2S. Results: RBT and bacteriolgical examination showed that 1 sample was positive Brucella suis, and 19 negative. The positive results showed positive urease, catalase and oxidase, but negative for citrate and H2S. Conclusion: Based on RBT test and bacteriological examination, there was 1 positive sample of brucellla suis, that is sample coming from Kediri district. PMID:29619446
NOAA Deepwater Exploration of the Marianas 2016: Pacific Plate, Mariana Trench, and Mariana Forearc
NASA Astrophysics Data System (ADS)
Fryer, P. B.; Glickson, D.; Kelley, C.; Drazen, J.; Stern, R. J.
2016-12-01
Legs 1 and 3 of NOAA Okeanos Explorer EX1605 made 18 (ROV) dives exploring the following: 7 Cretaceous-age, Pacific Plate guyots east of the Trench; 1 small volcano on a Pacific Plate fracture; 3 areas of the inner trench slope; 2 forearc serpentinite mud volcanoes; and 5 forearc fault blocks. The Pacific Plate guyots are heavily manganese encrusted. Part of the rationale for those dives was to make baseline characterization of biota and habitats before potential mining. These guyots had striking diversity and abundance of fauna. Dives on 2 guyots examined high-relief scarps, formed when both down-going plate and edifices fractured outboard of the trench. The scarp on one had Cretaceous reef sequences, whereas the other exposed layers of volcanics. The dive on a small (1 km diameter, 141 m high) volcano on a plate fracture near the trench affirmed that it was relatively young, maybe like Petit-Spot volcanoes east of the Japan Trench. A dive in a canyon west of Guam transitioned from a steep slope of volcanic talus to a gentle sediment-covered slope. The inner trench slope opposite the subducting guyot that exposes reef deposits, revealed similar sequences, suggesting that the guyot is being incorporated into the Mariana forearc. The other inner slope dive traversed talus with fragments of serpentinized peridotite and lies near a chain of forearc serpentinite mud volcanoes. The 2 serpentinite mud volcanoes explored have sedimented, apparently inactive, surfaces, though we recovered a serpentinized peridotite sample from one of them. Dives on the forearc fault blocks attest to dynamic vertical tectonism. Three in the northern forearc show sediment sequences of varying types and textures, all dipping trenchward. Spectacular mid-forearc fault scarps strike east-west, stair-stepping down southward and were traversed on 2 dives. We saw many sequences of indurated sediments. Mapping on Legs 2 and 3 of the expedition showed that these fault scarps are mirrored to the south by north-facing scarps. Thus, vertical tectonics on a grand scale has formed an immense and previously unknown graben across the forearc. These dive results provide a wealth of information for future research into the history of plate convergence processes associated with formation of the Mariana Trench in this Marine National Monument area.
Geologic Map of the MTM -30262 and -30267 Quadrangles, Hadriaca Patera Region of Mars
Crown, David A.; Greeley, Ronald
2007-01-01
Introduction Mars Transverse Mercator (MTM) -30262 and -30267 quadrangles cover the summit region and east margin of Hadriaca Patera, one of the Martian volcanoes designated highland paterae. MTM -30262 quadrangle includes volcanic deposits from Hadriaca Patera and Tyrrhena Patera (summit northeast of map area) and floor deposits associated with the Dao and Niger Valles canyon systems (south of map area). MTM -30267 quadrangle is centered on the caldera of Hadriaca Patera. The highland paterae are among the oldest, central-vent volcanoes on Mars and exhibit evidence for explosive eruptions, which make a detailed study of their geology an important component in understanding the evolution of Martian volcanism. Photogeologic mapping at 1:500,000-scale from analysis of Viking Orbiter images complements volcanological studies of Hadriaca Patera, geologic investigations of the other highland paterae, and an analysis of the styles and evolution of volcanic activity east of Hellas Planitia in the ancient, cratered highlands of Mars. This photogeologic study is an extension of regional geologic mapping east of Hellas Planitia. The Martian highland paterae are low-relief, areally extensive volcanoes exhibiting central calderas and radial channels and ridges. Four of these volcanoes, Hadriaca, Tyrrhena, Amphitrites, and Peneus Paterae, are located in the ancient cratered terrains surrounding Hellas Planitia and are thought to be located on inferred impact basin rings or related fractures. Based on analyses of Mariner 9 images, Potter (1976), Peterson (1977), and King (1978) suggested that the highland paterae were shield volcanoes formed by eruptions of fluid lavas. Later studies noted morphologic similarities between the paterae and terrestrial ash shields and the lack of primary lava flow features on the flanks of the volcanoes. The degraded appearances of Hadriaca and Tyrrhena Paterae and the apparently easily eroded materials composing their low, broad shields further suggest that the highland paterae are composed predominantly of pyroclastic deposits. Analyses of eruption and flow processes indicate that the distribution of units at Hadriaca and Tyrrhena Paterae is consistent with emplacement by gravity-driven pyroclastic flows. Detailed geologic study of the summit caldera and flanks of Hadriaca Patera is essential to determine the types of volcanic materials exposed, the nature of the processes forming these deposits, and the role of volcanism in the evolution of the cratered highlands that are characteristic of the southern hemisphere of Mars.
NASA Technical Reports Server (NTRS)
Parfitt, E. A.; Wilson, L.; Pinkerton, H.
1993-01-01
Long-lived eruptions from basaltic volcanoes involving episodic or steady activity indicate that a delicate balance has been struck between the rate of magma cooling in the dike system feeding the vent and the rate of magma supply to the dike system from a reservoir. We describe some key factors, involving the relationships between magma temperature, magma rheology, and dike geometry that control the nature of such eruptions.
NASA Astrophysics Data System (ADS)
Wijaya, Putranto; Putra, Tri; Hidayat, Fatra; Levraeni, Chandra; Rizmaadi, Mada; Ambariyanto, Ambariyanto
2018-02-01
Indonesian government currently has policies to improve the performance of the tourism sector, including marine tourism. One of the attractions of marine tourism is the coral ecosystem especially through scuba diving activities. The purpose of this study was to determine the suitability of the coral ecosystem on Saebus Island, East Java, to find appropriate locations for scuba diving activities. Purposive samplings were done around the island to determine four stations which will be assessed through suitability analysis. Tourism Suitability Index was used to assess all stations for scuba diving activities. The result showed that all four stations were categorized as very suitable with the score: 85%, 85%, 85% and 83%, respectively. Several aspects that need to be improved and anticipated for diving at all stations are coral coverage and water current. These results suggest that there are several spots around Saebus Island that are suitable for diving site, and can be promoted as marine tourism destination.
Prasetyo, R H
2016-03-01
The purpose of this study was to investigate the prevalence of house rat zoonotic intestinal parasites from Surabaya District, East Java, Indonesia that have the potential to cause opportunistic infection in humans. House rat fecal samples were collected from an area of Surabaya District with a dense rat population during May 2015. Intestinal parasites were detected microscopically using direct smear of feces stained with Lugol's iodine and modified Ziehl-Neelsen stains. The fecal samples were also cultured for Strongyloides stercoralis. Ninety-eight house rat fecal samples were examined. The potential opportunistic infection parasite densities found in those samples were Strongyloides stercoralis in 53%, Hymenolepis nana in 42%, Cryptosporidium spp in 33%, and Blastocystis spp in 6%. This is the first report of this kind in Surabaya District. Measures need to be taken to control the house rat population in the study area to reduce the risk of the public health problem. Keywords: zoonotic intestinal parasites, opportunistic infection, house rat, densely populated area, Indonesia
Exploring the Llaima Volcano Using Receiver Functions
NASA Astrophysics Data System (ADS)
Bishop, J. W.; Biryol, C.; Lees, J. M.
2016-12-01
The Llaima volcano in Chile is one of the most active volcanos in the Southern Andes, erupting at least 50 times since 1640. To understand the eruption dynamics behind these frequent paroxysms, it is important to identify the depth and extent of the magma chamber beneath the volcano. Furthermore, it is also important to identify structural controls on the magma storage regions and volcanic plumbing system, such as fault and fracture zones. To probe these questions, a dense, 26 station broadband seismic array was deployed around the Llaima volcano for 3 months (January to March, 2015). Additionally, broadband seismic data from 7 stations in the nearby Observatorio Volcanológico de Los Andes del Sur (OVDAS) seismic network was also obtained for this period. Teleseismic receiver functions were calculated from this combined data using an iterative deconvolution technique. Receiver function stacks (both H-K and CCP) yield seismic images of the deep structure beneath the volcano. Initial results depict two low velocity layers at approximately 4km and 12km. Furthermore, Moho calculations are 5-8 km deeper than expected from regional models, but a shallow ( 40 km) region is detected beneath the volcano peak. A large high Vp/Vs ratio anomaly (Vp/Vs > 0.185) is discernable to the east of the main peak of the volcano.
Modelling of land use change in Indramayu District, West Java Province
NASA Astrophysics Data System (ADS)
Handayani, L. D. W.; Tejaningrum, M. A.; Damrah, F.
2017-01-01
Indramayu District into a strategic area for a stopover and overseas from East Java area because Indramayu District passed the north coast main lane, which is the first as the economic lifeblood of the Java Island. Indramayu District is part of mainstream economic Java pathways so that physical development of the area and population density as well as community activities grew by leaps and bounds. Growth acceleration raised the level of land use change. Land use change and population activities in coastal area would reduce the carrying capacity and impact on environmental quality. This research aim to analyse landuse change of years 2000 and 2011 in Indramayu District. Using this land use change map, we can predict the condition of landuse change of year 2022 in Indramayu District. Cellular Automata Markov (Markov CA) Method is used to create a spatial model of land use changes. The results of this study are predictive of land use in 2022 and the suitability with Spatial Plan (RTRW). A settlement increase predicted to continue in the future the designation of the land according to the spatial plan should be maintained.
Identification of Detrital Carbonate in East Cepu High
NASA Astrophysics Data System (ADS)
Sari, R.; Andika, I. K.; Haris, A.; Miftah, A.
2018-03-01
East Cepu High is a part of horst – graben series which formed by extensional tectonic processes during Paleogene in North East Java Basin. Due to excellent paleogeography position, the carbonate build-up was growth very well and as the main reservoir in East Cepu High. Sea level change have important factor to provide variation of facies in each carbonate buildup, one of emerging facies is detrital carbonate. Detrital carbonate indicated by onlap horizon featured with carbonate build up body. Based on paleogeography, fluctuation of sea level change and sediment source, detrital carbonate formed in leeward area in lowstand or highstand phases. Distinguish between detrital carbonate facies with other facies, advanced seismic processing performed by using continuous wavelet transform (CWT) and seismic inversion. CWT is one method of spectral decomposition used to find the frequency that represent a facies. The result from seismic inversion will support the interpretation for facies distribution. As the result, seismic data which have interval frequency 10 – 45 Hz and Acoustic Impedance (AI) value above 35000 (from cross plot between acoustic impedance and gamma ray) can be interpreted as detrital carbonate. Based on seismic interpretation, detrital carbonate facies distributed along leeward area with geometrical spreading. The lateral facies change from detrital carbonate to shale was identified which causing this facies become potential as hydrocarbon reservoir with stratigraphic trap. Based on the earlier studies, North East Java Basin have a strong hydrocarbon migration to fill the reservoir, therefore the detrital carbonate have high chance to be a new hydrocarbon prospect in this area.
John, D.A.; Sisson, T.W.; Breit, G.N.; Rye, R.O.; Vallance, J.W.
2008-01-01
Hydrothermal alteration at Mount Rainier waxed and waned over the 500,000-year episodic growth of the edifice. Hydrothermal minerals and their stable-isotope compositions in samples collected from outcrop and as clasts from Holocene debris-flow deposits identify three distinct hypogene argillic/advanced argillic hydrothermal environments: magmatic-hydrothermal, steam-heated, and magmatic steam (fumarolic), with minor superimposed supergene alteration. The 3.8??km3 Osceola Mudflow (5600??y BP) and coeval phreatomagmatic F tephra contain the highest temperature and most deeply formed hydrothermal minerals. Relatively deeply formed magmatic-hydrothermal alteration minerals and associations in clasts include quartz (residual silica), quartz-alunite, quartz-topaz, quartz-pyrophyllite, quartz-dickite/kaolinite, and quartz-illite (all with pyrite). Clasts of smectite-pyrite and steam-heated opal-alunite-kaolinite are also common in the Osceola Mudflow. In contrast, the Paradise lahar, formed by collapse of the summit or near-summit of the edifice at about the same time, contains only smectite-pyrite and near-surface steam-heated and fumarolic alteration minerals. Younger debris-flow deposits on the west side of the volcano (Round Pass and distal Electron Mudflows) contain only low-temperature smectite-pyrite assemblages, whereas the proximal Electron Mudflow and a < 100??y BP rock avalanche on Tahoma Glacier also contain magmatic-hydrothermal alteration minerals that are exposed in the avalanche headwall of Sunset Amphitheater, reflecting progressive incision into deeper near-conduit alteration products that formed at higher temperatures. The pre-Osceola Mudflow alteration geometry is inferred to have consisted of a narrow feeder zone of intense magmatic-hydrothermal alteration limited to near the conduit of the volcano, which graded outward to more widely distributed, but weak, smectite-pyrite alteration within 1??km of the edifice axis, developed chiefly in porous breccias. The edifice was capped by a steam-heated alteration zone, most of which resulted from condensation of fumarolic vapor and oxidation of H2S in the unsaturated zone above the water table. Weakly developed smectite-pyrite alteration extended into the west and east flanks of the edifice, spatially associated with dikes that are localized in those sectors; other edifice flanks lack dikes and associated alteration. The Osceola collapse removed most of the altered core and upper east flank of the volcano, but intensely altered rocks remain on the uppermost west flank. Major conclusions of this study are that: (1) Hydrothermal-mineral assemblages and distributions at Mount Rainier can be understood in the framework of hydrothermal processes and environments developed from studies of ore deposits formed in analogous settings. (2) Frequent eruptions supplied sufficient hot magmatic fluid to alter the upper interior of the volcano hydrothermally, despite the consistently deep (??? 8??km) magma reservoir which may have precluded formation of economic mineral deposits within or at shallow depths beneath Mount Rainier. The absence of indicator equilibrium alteration-mineral assemblages in the debris flows that effectively expose the volcano to a depth of 1-1.5??km also suggests a low potential for significant high-sulfidation epithermal or porphyry-type mineral deposits at depth. (3) Despite the long and complex history of the volcano, intensely altered collapse-prone rocks were spatially restricted to near the volcano's conduit system and summit, and short distances onto the upper east and west flanks, due to the necessary supply of reactive components carried by ascending magmatic fluids. (4) Intensely altered rocks were removed from the summit, east flank, and edifice interior by the Osceola collapse, but remain on the upper west flank in the Sunset Amphitheater area and present a continuing collapse hazard. (5) Visually conspicuous rocks on the lower east and mid-to-lower
Rifts of deeply eroded Hawaiian basaltic shields: A structural analog for large Martian volcanoes
NASA Technical Reports Server (NTRS)
Knight, Michael D.; Walker, G. P. L.; Mouginis-Mark, P. J.; Rowland, Scott K.
1988-01-01
Recently derived morphologic evidence suggests that intrusive events have not only influenced the growth of young shield volcanoes on Mars but also the distribution of volatiles surrounding these volcanoes: in addition to rift zones and flank eruptions on Arsia Mons and Pavonis Mons, melt water channels were identified to the northwest of Hecates Tholus, to the south of Hadriaca Patera, and to the SE of Olympus Mons. Melt water release could be the surface expression of tectonic deformation of the region or, potentially, intrusive events associated with dike emplacement from each of these volcanoes. In this study the structural properties of Hawaiian shield volcanoes were studied where subaerial erosion has removed a sufficient amount of the surface to enable a direct investigation of the internal structure of the volcanoes. The field investigation of dike morphology and magma flow characteristics for several volcanoes in Hawaii is reported. A comprehensive investigation was made of the Koolau dike complex that passes through the summit caldera. A study of two other dissected Hawaiian volcanoes, namely Waianae and East Molokai, was commenced. The goal is not only to understand the emplacement process and magma flow within these terrestrial dikes, but also to explore the possible role that intrusive events may have played in volcano growth and the distribution of melt water release on Mars.
Preliminary volcano-hazard assessment for the Tanaga volcanic cluster, Tanaga Island, Alaska
Coombs, Michelle L.; McGimsey, Robert G.; Browne, Brandon L.
2007-01-01
Summary of Volcano Hazards at Tanaga Volcanic Cluster The Tanaga volcanic cluster lies on the northwest part of Tanaga Island, about 100 kilometers west of Adak, Alaska, and 2,025 kilometers southwest of Anchorage, Alaska. The cluster consists of three volcanoes-from west to east, they are Sajaka, Tanaga, and Takawangha. All three volcanoes have erupted in the last 1,000 years, producing lava flows and tephra (ash) deposits. A much less frequent, but potentially more hazardous phenomenon, is volcanic edifice collapse into the sea, which likely happens only on a timescale of every few thousands of years, at most. Parts of the volcanic bedrock near Takawangha have been altered by hydrothermal activity and are prone to slope failure, but such events only present a local hazard. Given the volcanic cluster's remote location, the primary hazard from the Tanaga volcanoes is airborne ash that could affect aircraft. In this report, we summarize the major volcanic hazards associated with the Tanaga volcanic cluster.
NASA Astrophysics Data System (ADS)
Charbonnier, S. J.; Gertisser, R.
2009-10-01
We present Titan2D simulations of two well-characterized block-and-ash flow (BAF) events of the 2006 eruption of Merapi (Java, Indonesia) that affected the Gendol valley on the volcano’s southern flank and adjacent, densely populated interfluve (non-valley) areas: (1) a single dome-collapse event to the south that generated one of the smaller, post-June 14 flows and (2) a sustained, multiple dome-collapse event, also directed to the south, that produced the largest flows of the 2006 eruption emplaced in the afternoon of June 14. Using spatially varying bed friction angles, Titan2D is capable of reproducing the paths, velocities, runout distance, areas covered and deposited volumes of these flows over highly complex topography. The model results provide the basis for estimating the areas and levels of hazards associated with BAFs generated during relatively short as well as prolonged dome-collapse periods and guidance during future eruptive crises at Merapi.
NASA Astrophysics Data System (ADS)
Jousset, P. G.; Jaya, M. S.; Sule, R.; Diningrat, W.; Gassner, A.; Akbar, F.; Ryannugroho, R.; Hendryana, A.; Kusnadi, Y.; Syahbana, D.; Nugraha, A. D.; Umar, M.; Indrinanto, Y.; Erbas, K.
2013-12-01
The assessment of geothermal resources requires the understanding of the structure and the dynamics of geothermal reservoirs. We deployed a multidisciplinary geophysical network around geothermal areas in the south of Bandung, West Java, Indonesia. The first deployment included a network of 30 broadband and 4 short-period seismic stations with Güralp and Trillium sensors (0.008 - 100 Hz) since October 2012. In a second step, we extended the network in June 2013 with 16 short-period (1 Hz) seismometers. We describe the set-up of the seismic networks and discuss first observations and results. The co-existence of a large variety of intense surface manifestations like geysers, hot-steaming grounds, hot water pools, and active volcanoes suggest an intimate coupling between volcanic, tectonic and hydrothermal processes in this area. Preliminary location of earthquakes is performed using a non-linear algorithm, which allows us to define at least 3 seismic clusters. We discuss this seismic pattern within the geothermal fields.
Earthquake hypocenter relocation using double difference method in East Java and surrounding areas
DOE Office of Scientific and Technical Information (OSTI.GOV)
C, Aprilia Puspita; Meteorological, Climatological, and Geophysical Agency; Nugraha, Andri Dian, E-mail: nugraha@gf.itb.ac.id
Determination of precise hypocenter location is very important in order to provide information about subsurface fault plane and for seismic hazard analysis. In this study, we have relocated hypocenter earthquakes in Eastern part of Java and surrounding areas from local earthquake data catalog compiled by Meteorological, Climatological, and Geophysical Agency of Indonesia (MCGA) in time period 2009-2012 by using the double-difference method. The results show that after relocation processes, there are significantly changes in position and orientation of earthquake hypocenter which is correlated with the geological setting in this region. We observed indication of double seismic zone at depths ofmore » 70-120 km within the subducting slab in south of eastern part of Java region. Our results will provide useful information for advance seismological studies and seismic hazard analysis in this study.« less
NASA Astrophysics Data System (ADS)
Rock, N. M. S.; Syah, H. H.; Davis, A. E.; Hutchison, D.; Styles, M. T.; Lena, Rahayu
1982-06-01
Sumatra has been a ‘volcanic arc’, above an NE-dipping subduction zone, since at least the Late Permian. The principal volcanic episodes in Sumatra N of the Equator have been in the Late Permian, Late Mesozoic, Palaeogene, Miocene and Quaternary. Late Permian volcanic rocks, of limited extent, are altered porphyritic basic lavas interstratified with limestones and phyllites. Late Mesozoic volcanic rocks, widely distributed along and W of the major transcurrent. Sumatra Fault System (SFS), which axially bisects Sumatra, include ophiolite-related spilites, andesites and basalts. Possible Palaeogene volcanic rocks include an altered basalt pile with associated dyke-swarm in the extreme NW, intruded by an Early Miocene (19 my) dioritic stock; and variable pyroxene rich basic lavas and agglomerates ranging from alkali basaltic to absarokitic in the extreme SW. Miocene volcanic rocks, widely distributed (especially W of the SFS), and cropping out extensively along the W coast, include calc-alkaline to high-K calc-alkaline basalts, andesites and dacites. Quaternary volcanoes (3 active, 14 dormant or extinct) are irregularly distributed both along and across the arc; thus they lie fore-arc of the SFS near the Equator but well back-arc farther north. The largest concentration of centres, around Lake Toba, includes the >2000 km3 Pleistocene rhyolitic Toba Tuffs. Quaternary volcanics are mainly calc-alkaline andesites, dacites and rhyolites with few basalts; they seem less variable, but on the whole more acid, than the Tertiary. The Quaternary volcanism is anomalous in relation to both southern Sumatra and adjacent Java/Bali: in southern Sumatra, volcanoes are regularly spaced along and successively less active away from the SFS, but neither rule holds in northern Sumatra. Depths to the subduction zone below major calc-alkaline volcanoes in Java/Bali are 160-210 km, but little over 100 km in northern Sumatra, which also lacks the regular K2O-depth correlations seen in Java. These anomalies may arise because Sumatra — being underlain by continental crust — is more akin to destructive continental margins than typical island-arcs such as E Java or Bali, and because the Sumatran subduction zone has a peculiar structure due to the oblique approach of the subducting plate. A further anomaly — an E-W belt of small centres along the back-arc coast — may relate to an incipient S-dipping subduction zone N of Sumatra and not the main NE-dipping zone to its W. Correlation of the Tertiary volcanism with the present tectonic regime is hazardous, but the extensive W coastal volcanism (which includes rather alkaline lavas) is particularly anomalous in relation to the shallow depth (<100 km) of the present subduction zone. The various outcrops may owe their present locations to extensive fault movements (especially along the SFS), to the peculiar structure of the fore-arc (suggested by equally anomalous Sn- and W-bearing granitic batholiths also along the W coast), or they may not be subduction-related at all.
Field-trip guide to the geologic highlights of Newberry Volcano, Oregon
Jensen, Robert A.; Donnelly-Nolan, Julie M.
2017-08-09
Newberry Volcano and its surrounding lavas cover about 3,000 square kilometers (km2) in central Oregon. This massive, shield-shaped, composite volcano is located in the rear of the Cascades Volcanic Arc, ~60 km east of the Cascade Range crest. The volcano overlaps the northwestern corner of the Basin and Range tectonic province, known locally as the High Lava Plains, and is strongly influenced by the east-west extensional environment. Lava compositions range from basalt to rhyolite. Eruptions began about half a million years ago and built a broad composite edifice that has generated more than one caldera collapse event. At the center of the volcano is the 6- by 8-km caldera, created ~75,000 years ago when a major explosive eruption of compositionally zoned tephra led to caldera collapse, leaving the massive shield shape visible today. The volcano hosts Newberry National Volcanic Monument, which encompasses the caldera and much of the northwest rift zone where mafic eruptions occurred about 7,000 years ago. These young lava flows erupted after the volcano was mantled by the informally named Mazama ash, a blanket of volcanic ash generated by the eruption that created Crater Lake about 7,700 years ago. This field trip guide takes the visitor to a variety of easily accessible geologic sites in Newberry National Volcanic Monument, including the youngest and most spectacular lava flows. The selected sites offer an overview of the geologic story of Newberry Volcano and feature a broad range of lava compositions. Newberry’s most recent eruption took place about 1,300 years ago in the center of the caldera and produced tephra and lava of rhyolitic composition. A significant mafic eruptive event occurred about 7,000 years ago along the northwest rift zone. This event produced lavas ranging in composition from basalt to andesite, which erupted over a distance of 35 km from south of the caldera to Lava Butte where erupted lava flowed west to temporarily block the Deschutes River. Because of Newberry Volcano’s proximity to populated areas, the presence of hot springs within the caldera, and the long and recent history of eruptive activity (including explosive activity), the U.S. Geological Survey installed monitoring equipment on the volcano. A recent geophysical study indicates the presence of magma at 3 to 5 km beneath the caldera.The writing of this guide was prompted by a field trip to Crater Lake and Newberry Volcano organized in conjunction with the August 2017 IAVCEI quadrennial meeting in Portland, Oregon. Both field trip guides are available online. These two volcanoes were grouped in a single field trip because they are two of the few Cascades volcanoes that have generated calderas and significant related tephra deposits.
Simmering Vanuatu Volcano Imaged by NASA Satellite
2017-10-06
On Sept. 28, 2017, Manaro Voui volcano on Ambae island in Vanuatu began spewing ash in a moderate eruption, prompting authorities to order the evacuation of all 11,000 residents. This nighttime thermal infrared image from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), acquired on Oct. 7, shows a hot spot (white) on the volcano's summit crater, but no large eruption. Cold clouds are dark gray, the warmer island is gray, and the ocean, (warmer than the island), is light gray. The image covers an area of 17 by 26 miles (27 by 42.4 kilometers), and is centered at 15.4 degrees south, 167.8 degrees east. https://photojournal.jpl.nasa.gov/catalog/PIA22045
Trusdell, Frank A.; Moore, Richard B.; Sako, Maurice K.
2006-01-01
Pagan Island is the subaerial portion of two adjoining Quaternary stratovolcanoes near the middle of the active Mariana Arc, [FAT1]north of Saipan. Pagan and the other volcanic islands that constitute part of the Arc form the northern half of the East Mariana Ridge[FAT2], which extends about 2-4 km above the ocean floor. The > 6-km-deep Mariana Trench adjoins the East Mariana Ridge on the east, and the Mariana Trough, partly filled with young lava flows and volcaniclastic sediment, lies on the west of the Northern Mariana Islands (East Mariana Ridge. The submarine West Mariana Ridge, Tertiary in age, bounds the western side of the Mariana Trough. The Mariana Trench and Northern Mariana Islands (East Mariana Ridge) overlie an active subduction zone where the Pacific Plate, moving northwest at about 10.3 cm/year, is passing beneath the Philippine Plate, moving west-northwest at 6.8 cm/year. Beneath the Northern Mariana Islands, earthquake hypocenters at depths of 50-250 km identify the location of the west-dipping subduction zone, which farther west becomes nearly vertical and extends to 700 km depth. During the past century, more than 40 earthquakes of magnitude 6.5-8.1 have shaken the Mariana Trench. The Mariana Islands form two sub-parallel, concentric, concave-west arcs. The southern islands comprise the outer arc and extend north from Guam to Farallon de Medinilla. They consist of Eocene to Miocene volcanic rocks and uplifted Tertiary and Quaternary limestone. The nine northern islands extend from Anatahan to Farallon de Pajaros and form part of the inner arc. The active inner arc extends south from Anatahan, where volcanoes, some of which are active, form seamounts west of the older outer arc. Other volcanic seamounts of the active arc surmount the East Mariana Ridge in the vicinity of Anatahan and Sarigan and north and south of Farallon de Pajaros. Six volcanoes (Farallon de Pajaros, Asuncion, Agrigan, Mount Pagan, Guguan, and Anatahan) in the northern islands have erupted during the past century, and Ruby Seamount erupted in 1996.
NASA Astrophysics Data System (ADS)
Koulali, A.; McClusky, S.; Susilo, S.; Leonard, Y.; Cummins, P.; Tregoning, P.; Meilano, I.; Efendi, J.; Wijanarto, A. B.
2017-01-01
Our understanding of seismic risk in Java has been focused primarily on the subduction zone, where the seismic records during the last century have shown the occurrence of a number of tsunami earthquakes. However, the potential of the existence of active crustal structures within the island of Java itself is less well known. Historical archives show the occurrence of several devastating earthquake ruptures north of the volcanic arc in west Java during the 18th and the 19th centuries, suggesting the existence of active faults that need to be identified in order to guide seismic hazard assessment. Here we use geodetic constraints from the Global Positioning System (GPS) to quantify the present day crustal deformation in Java. The GPS velocities reveal a homogeneous counterclockwise rotation of the Java Block independent of Sunda Block, consistent with a NE-SW convergence between the Australian Plate and southeast Asia. Continuous GPS observations show a time-dependent change in the linear rate of surface motion in west Java, which we interpret as an ongoing long-term post-seismic deformation following the 2006 Mw 7.7 Java earthquake. We use an elastic block model in combination with a viscoelastic model to correct for this post-seismic transient and derive the long-term inter-seismic velocity, which we interpret as a combination of tectonic block motions and crustal faults strain related deformation. There is a north-south gradient in the resulting velocity field with a decrease in the magnitude towards the North across the Kendeng Thrust in the east and the Baribis Thrust in the west. We suggest that the Baribis Thrust is active and accommodating a slow relative motion between Java and the Sunda Block at about 5 ± 0.2 mm /yr. We propose a kinematic model of convergence of the Australian Plate and the Sunda Block, involving a slip partitioning between the Java Trench and a left-lateral structure extending E-W along Java with most of the convergence being accommodated by the Java megathrust, and a much smaller parallel motion accommodated along the Baribis (∼ 5 ± 0.2 mm /yr) and Kendeng (∼ 2.3 ± 0.7 mm /yr) Thrusts. Our study highlights a correlation between the geodetically inferred active faults and historical seismic catalogs, emphasizing the importance of considering crustal fault activity within Java in future seismic assessments.
12. HALEMAUMAUUWEKAHUNA ROAD AT SOUTHWEST RIM OF KILAUEA CRATER, SHOWING ...
12. HALEMAUMAU-UWEKAHUNA ROAD AT SOUTHWEST RIM OF KILAUEA CRATER, SHOWING HEAVY FILL AND ROCK BANK. LOOKING EAST. FROM SUPERINTENDENT'S MONTHLY REPORT, JANUARY 1934. - Mauna Loa Road, Volcano, Hawaii County, HI
Organic chemical composition of mud from the LUSI mud volcano, Sidoarjo, East Java, Indonesia
NASA Astrophysics Data System (ADS)
Rosenbauer, R. J.; Campbell, P.; Lam, A.
2009-12-01
Sidoarjo, East Java, Indonesia is the site of LUSI, a terrestrial mud volcano that has been erupting since May 29, 2006. In response to a U.S. Department of State request, the U.S. Geological Survey has been assisting the Indonesian Government to describe the geological and geochemical aspects and potential health risk of the mud eruption. We report here on the organic chemical composition of the mud. Organic chemical analyses were carried out by gas chromatography/mass spectroscopy following organic extraction by microwave-assisted solvent extraction and compound fractionation by adsorption chromatography. There is a petroliferous component in the mud that is fresh, immature, and nonbiodegraded. There is a complete suite of n-alkanes with a bell-shaped pattern typical of fresh petroleum with a Cmax around C20. The alkane content ranges from 0.12 to 1.01 mg/kg dry mud. The presence of certain hopanes (i.e. 17 α,21β(H)-30-norhopane and 17α,21β(H)-hopane) is also indicative of the presence of oil. The proportions of other biomarker compounds (pristane/phytane = 2.4) and the dominance of the C27 sterane (5α(H),14α(H),17α(H)-chlolestane) suggest that oil formed under oxic conditions and has a likely coastal marine or terrigenous source. The presence of oleanane indicates a Cretaceous or younger age for the petrogenic material. These geochemical parameters are consistent with Indonesian oil derived from Tertiary marlstone source rocks that contained kerogen deposited under oxic conditions, probably the upper Miocene Klasafet Formation. Polycyclic aromatic hydrocarbons (PAHs) are present and range in content from 0.1 to 2.2 mg/kg dry mud. The low molecular weight (LMW) PAHs, in particular, naphthalene and methyl-naphthalene are dominant except for perylene which is ubiquitous in the environment. The presence of both parent and higher homologue PAHs indicate a petrogenic rather than combustion source. PAHs are known carcinogens but toxicity data in sediments are sparse and often qualitative, depending on the PAH matrix and thus bioavailability. The distribution and content of PAHs measured in the LUSI mud do exceed USEPA recommended interim sediment quality criteria. In addition, judging sediment toxicity on the basis of single PAH compounds risks underestimating effects because mixtures of PAHs tend to aggregate toxicity. Further studies are needed to determine whether or not PAHs are present in levels that exceed soil remediation or aquatic guidelines. The mud contains low levels (tens of ppb) of the higher plant sterols including stigmasterol and β-sitosterol. Also, 22-dehydrocholesterol (generally ascribed to algal material) is present at 39 ppb. These compounds are derived from natural sources, are non-hazardous, and were likely entrained in the mud during ascent to the surface or mixed with the mud post-eruption. The organic compounds identified to date will exhibit a variety of environmental behaviors and effects. Some compounds will volatilize and photo-oxidize or biodegrade relatively quickly (i.e. n-alkanes), and are relatively nontoxic. LMW PAHs are sparingly soluble in water but heavier PAHs will likely persist in the environment and represent potential toxicity to biota because PAHs are bio-accumulative. But the overall toxicity of the mud appears low.
Igneous rocks of the East Pacific Rise
Engel, A.E.J.; Engel, C.G.
1964-01-01
The apical parts of large volcanoes along the East Pacific Rise (islands and seamounts) are encrusted with rocks of the alkali volcanic suite (alkali basalt, andesine- and oligoclase-andesite, and trachyte). In contrast, the more submerged parts of the Rise are largely composed of a tholeiitic basalt which has low concentrations of K, P, U, Th, Pb, and Ti. This tholeiitic basalt is either the predominant or the only magma generated in the earth's mantle under oceanic ridges and rises. It is at least 1000-fold more abundant than the alkali suite, which is probably derived from tholeiitic basalt by magmatic differentiation in and immediately below the larger volcanoes. Distinction of oceanic tholeiites from almost all continental tholeiites is possible on the simple basis of total potassium content, with the discontinuity at 0.3 to 0.5 percent K2O by weight. Oceanic tholeiites also are readily distinguished from some 19 out of 20 basalts of oceanic islands and seamount cappings by having less than 0.3 percent K2O by weight and more than 48 percent SiO2. Deep drilling into oceanic volcanoes should, however, core basalts transitional between the oceanic tholeiites and the presumed derivative alkali basalts.The composition of the oceanic tholeiites suggests that the mantle under the East Pacific Rise contains less than 0.10 percent potassium oxide by weight; 0.1 part per million of uranium and 0.4 part of thorium; a potassium:rubidium ratio of about 1200 and a potassium: uranium ratio of about 104.
NASA Technical Reports Server (NTRS)
2005-01-01
17 July 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows channels carved by catastrophic floods in the Tharsis region of Mars. This area is located northwest of the volcano, Jovis Tholus, and east of the large martian volcano, Olympus Mons. The terrain is presently mantled with fine dust. Location near: 20.8oN, 118.8oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Autumna Revision to the Tectonics of the Flores Back-Arc Thrust Zone, Indonesia?
NASA Astrophysics Data System (ADS)
Tikku, A. A.
2011-12-01
The Flores and Bali Basins are continental basins in the Flores back-arc thrust zone associated with Eocene subduction of the Indo-Australian plate beneath the Sunda plate followed by Miocene to present-day inversion/thrusting. The basins are east of Java and north of the islands of Bali, Lombok, Sumbawa and Flores in the East Java Sea area of Indonesia. The tectonic interpretation of these basins is based on seismic, bathymetry and gravity data and is also supported by present-day GPS measurements that demonstrate subduction is no longer active across the Flores thrust zone. Current thinking about the area is that the Flores Basin (on the east end of the thrust zone) had the most extension in the back-arc thrust and may be a proto-oceanic basin, though the option of a purely continental extensional basin can not be ruled out. The Bali Basin (on the west end of the thrust zone) is thought to be shallower and have experienced less continental thinning and extension than the Flores Basin. Depth to basement estimates from recently collected marine magnetic data indicate the depth of the Bali Basin may be comparable to the depth of the Flores Basin. Analysis of the marine magnetic data and potential implications of relative plate motions will be presented.
Triggering and dynamic evolution of the LUSI mud volcano, Indonesia
NASA Astrophysics Data System (ADS)
Mazzini, A.; Svensen, H.; Akhmanov, G. G.; Aloisi, G.; Planke, S.; Malthe-Sørenssen, A.; Istadi, B.
2007-09-01
Mud volcanoes are geologically important manifestations of vertical fluid flow and mud eruption in sedimentary basins worldwide. Their formation is predominantly ascribed to release of overpressure from clay- and organic-rich sediments, leading to impressive build-up of mud mountains in submarine and subaerial settings. Here we report on a newly born mud volcano appearing close to an active magmatic complex in a backarc sedimentary basin in Indonesia. The location of the mud volcano close to magmatic volcanoes results in a high background temperature gradient that triggers mineralogical transformations and geochemical reactions at shallow depth. The eruption of 100 °C mud and gas that started the 29th of May 2006 flooded a large area within the Sidoarjo village in Northeast Java. Thousands of people have so far been evacuated due to the mud flood hazards from the eruption. Since the initial eruption, the flow rate escalated from 5000 to 120,000 m 3/d during the first eleven weeks. Then the erupted volume started to pulsate between almost zero and 120,000 m 3/d in the period August 14 to September 10, whereas it increased dramatically following swarms of earthquakes in September, before reaching almost 180,000 m 3/d in December 2006. Sampling and observations were completed during two fieldwork campaigns on the site. The eruption of boiling water is accompanied by mud, aqueous vapour, CO 2 and CH 4. Based on geochemical and field results, we propose a mechanism where the eruptions started following the 27th of May earthquake due to fracturing and accompanied depressurization of > 100 °C pore fluids from > 1700 m depth. This resulted in the formation of a quasi-hydrothermal system with a geyser-like surface expression and with an activity influenced by the regional seismicity.
Venus - Volcano With Massive Landslides
NASA Technical Reports Server (NTRS)
1992-01-01
This Magellan full-resolution mosaic which covers an area 143 by 146 kilometers (89 by 91 miles) is centered at 55 degrees north latitude, 266 degrees east longitude. The bright feature, slightly south of center is interpreted to be a volcano, 15-20 kilometers (9.3 to 12.4 miles) in diameter with a large apron of blocky debris to its right and some smaller aprons to its left. A preferred explanation is that several massive catastrophic landslides dropped down steep slopes and were carried by their momentum out into the smooth, dark lava plains. At the base of the east-facing or largest scallop on the volcano is what appears to be a large block of coherent rock, 8 to 10 kilometers (5 to 6 miles) in length. The similar margin of both the scallop and block and the shape in general is typical of terrestrial slumped blocks (masses of rock which slide and rotate down a slope instead of breaking apart and tumbling). The bright lobe to the south of the volcano may either be a lava flow or finer debris from other landslides. This volcanic feature, characterized by its scalloped flanks is part of a class of volcanoes called scalloped or collapsed domes of which there are more than 80 on Venus. Based on the chute-like shapes of the scallops and the existence of a spectrum of intermediate to well defined examples, it is hypothesized that all of the scallops are remnants of landslides even though the landslide debris is often not visible. Possible explanations for the missing debris are that it may have been covered by lava flows, the debris may have weathered or that the radar may not be recognizing it because the individual blocks are too small
NASA Astrophysics Data System (ADS)
Patlan, E.; Wamalwa, A. M.; Kaip, G.; Velasco, A. A.
2015-12-01
The Geothermal Development Company (GDC) in Kenya actively seeks to produce geothermal energy, which lies within the East African Rift System (EARS). The EARS, an active continental rift zone, appears to be a developing tectonic plate boundary and thus, has a number of active as well as dormant volcanoes throughout its extent. These volcanic centers can be used as potential sources for geothermal energy. The University of Texas at El Paso (UTEP) and the GDC deployed seismic sensors to monitor several volcanic centers: Menengai, Silali, and Paka, and Korosi. We identify microseismic, local events, and tilt like events using automatic detection algorithms and manual review to identify potential local earthquakes within our seismic network. We then perform the double-difference location method of local magnitude less than two to image the boundary of the magma chamber and the conduit feeding the volcanoes. In the process of locating local seismicity, we also identify long-period, explosion, and tremor signals that we interpret as magma passing through conduits of the magma chamber and/or fluid being transported as a function of magma movement or hydrothermal activity. We used waveform inversion and S-wave shear wave splitting to approximate the orientation of the local stresses from the vent or fissure-like conduit of the volcano. The microseismic events and long period events will help us interpret the activity of the volcanoes. Our goal is to investigate basement structures beneath the volcanoes and identify the extent of magmatic modifications of the crust. Overall, these seismic techniques will help us understand magma movement and volcanic processes in the region.
2016-01-15
This image from NASA Terra spacecraft shows Mount Erebus, the world southernmost historically active volcano, overlooking the McMurdo research station on Ross Island. The 3794-m-high Erebus is the largest of three major volcanoes forming the crudely triangular Ross Island. An elliptical 500 x 600 m wide, 110-m-deep crater truncates the summit and contains an active lava lake within a 250-m-wide, 100-m-deep inner crater. The glacier-covered volcano was erupting when first sighted by Captain James Ross in 1841. Continuous lava-lake activity with minor explosions, punctuated by occasional larger strombolian explosions that eject bombs onto the crater rim, has been documented since 1972, but has probably been occurring for much of the volcano's recent history. The image was acquired December 31, 2013, covers an area of 63 x 73 km, and is located at 77.5 degrees south, 167.1 degrees east. http://photojournal.jpl.nasa.gov/catalog/PIA20239
Early growth of Kohala volcano and formation of long Hawaiian rift zones
Lipman, Peter W.; Calvert, Andrew T.
2011-01-01
Transitional-composition pillow basalts from the toe of the Hilo Ridge, collected from outcrop by submersible, have yielded the oldest ages known from the Island of Hawaii: 1138 ± 34 to 1159 ± 33 ka. Hilo Ridge has long been interpreted as a submarine rift zone of Mauna Kea, but the new ages validate proposals that it is the distal east rift zone of Kohala, the oldest subaerial volcano on the island. These ages constrain the inception of tholeiitic volcanism at Kohala, provide the first measured duration of tholeiitic shield building (≥870 k.y.) for any Hawaiian volcano, and show that this 125-km-long rift zone developed to near-total length during early growth of Kohala. Long eastern-trending rift zones of Hawaiian volcanoes may follow fractures in oceanic crust activated by arching of the Hawaiian Swell in front of the propagating hotspot.
NASA Technical Reports Server (NTRS)
2003-01-01
MGS MOC Release No. MOC2-549, 19 November 2003
The volcanic plains to the east, southeast, and south of the giant Tharsis volcano, Pavonis Mons, are dotted by dozens of small volcanoes. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows an example located near 2.1oS, 109.1oW. The elongate depression in the lower left (southwest) quarter of the image is the collapsed vent area for this small, unnamed volcano. A slightly sinuous, leveed channel runs from the depression toward the upper right (north-northeast); this is the trace of a collapsed lava tube. The entire scene has been mantled by dust, such that none of the original volcanic rocks are exposed--except minor occurrences on the steepest slopes in the vent area. The scene is 3 km (1.9 mi) wide and illuminated by sunlight from the left/upper left.Thinking Process of Pseudo Construction in Mathematics Concepts
ERIC Educational Resources Information Center
Subanji; Nusantara, Toto
2016-01-01
This article aims at studying pseudo construction of student thinking in mathematical concepts, integer number operation, algebraic forms, area concepts, and triangle concepts. 391 junior high school students from four districts of East Java Province Indonesia were taken as the subjects. Data were collected by means of distributing the main…
NASA Astrophysics Data System (ADS)
John, David A.; Sisson, Thomas W.; Breit, George N.; Rye, Robert O.; Vallance, James W.
2008-08-01
Hydrothermal alteration at Mount Rainier waxed and waned over the 500,000-year episodic growth of the edifice. Hydrothermal minerals and their stable-isotope compositions in samples collected from outcrop and as clasts from Holocene debris-flow deposits identify three distinct hypogene argillic/advanced argillic hydrothermal environments: magmatic-hydrothermal, steam-heated, and magmatic steam (fumarolic), with minor superimposed supergene alteration. The 3.8 km 3 Osceola Mudflow (5600 y BP) and coeval phreatomagmatic F tephra contain the highest temperature and most deeply formed hydrothermal minerals. Relatively deeply formed magmatic-hydrothermal alteration minerals and associations in clasts include quartz (residual silica), quartz-alunite, quartz-topaz, quartz-pyrophyllite, quartz-dickite/kaolinite, and quartz-illite (all with pyrite). Clasts of smectite-pyrite and steam-heated opal-alunite-kaolinite are also common in the Osceola Mudflow. In contrast, the Paradise lahar, formed by collapse of the summit or near-summit of the edifice at about the same time, contains only smectite-pyrite and near-surface steam-heated and fumarolic alteration minerals. Younger debris-flow deposits on the west side of the volcano (Round Pass and distal Electron Mudflows) contain only low-temperature smectite-pyrite assemblages, whereas the proximal Electron Mudflow and a < 100 y BP rock avalanche on Tahoma Glacier also contain magmatic-hydrothermal alteration minerals that are exposed in the avalanche headwall of Sunset Amphitheater, reflecting progressive incision into deeper near-conduit alteration products that formed at higher temperatures. The pre-Osceola Mudflow alteration geometry is inferred to have consisted of a narrow feeder zone of intense magmatic-hydrothermal alteration limited to near the conduit of the volcano, which graded outward to more widely distributed, but weak, smectite-pyrite alteration within 1 km of the edifice axis, developed chiefly in porous breccias. The edifice was capped by a steam-heated alteration zone, most of which resulted from condensation of fumarolic vapor and oxidation of H 2S in the unsaturated zone above the water table. Weakly developed smectite-pyrite alteration extended into the west and east flanks of the edifice, spatially associated with dikes that are localized in those sectors; other edifice flanks lack dikes and associated alteration. The Osceola collapse removed most of the altered core and upper east flank of the volcano, but intensely altered rocks remain on the uppermost west flank. Major conclusions of this study are that: (1) Hydrothermal-mineral assemblages and distributions at Mount Rainier can be understood in the framework of hydrothermal processes and environments developed from studies of ore deposits formed in analogous settings. (2) Frequent eruptions supplied sufficient hot magmatic fluid to alter the upper interior of the volcano hydrothermally, despite the consistently deep (≥ 8 km) magma reservoir which may have precluded formation of economic mineral deposits within or at shallow depths beneath Mount Rainier. The absence of indicator equilibrium alteration-mineral assemblages in the debris flows that effectively expose the volcano to a depth of 1-1.5 km also suggests a low potential for significant high-sulfidation epithermal or porphyry-type mineral deposits at depth. (3) Despite the long and complex history of the volcano, intensely altered collapse-prone rocks were spatially restricted to near the volcano's conduit system and summit, and short distances onto the upper east and west flanks, due to the necessary supply of reactive components carried by ascending magmatic fluids. (4) Intensely altered rocks were removed from the summit, east flank, and edifice interior by the Osceola collapse, but remain on the upper west flank in the Sunset Amphitheater area and present a continuing collapse hazard. (5) Visually conspicuous rocks on the lower east and mid-to-lower west flanks are not intensely altered and probably have not significantly weakened the rock, and thus do not present significant collapse hazards. (6) Alteration developed most intensely within breccia units, because of their high permeability and porosity. Volcanoes with abundant near-conduit upper-edifice breccias are prone to alteration increasing the possibility of collapse, whereas those that are breccia-poor (e.g., massive domes) are less prone to alteration.
Volcanic hazards at Atitlan volcano, Guatemala
Haapala, J.M.; Escobar Wolf, R.; Vallance, James W.; Rose, William I.; Griswold, J.P.; Schilling, S.P.; Ewert, J.W.; Mota, M.
2006-01-01
Atitlan Volcano is in the Guatemalan Highlands, along a west-northwest trending chain of volcanoes parallel to the mid-American trench. The volcano perches on the southern rim of the Atitlan caldera, which contains Lake Atitlan. Since the major caldera-forming eruption 85 thousand years ago (ka), three stratovolcanoes--San Pedro, Toliman, and Atitlan--have formed in and around the caldera. Atitlan is the youngest and most active of the three volcanoes. Atitlan Volcano is a composite volcano, with a steep-sided, symmetrical cone comprising alternating layers of lava flows, volcanic ash, cinders, blocks, and bombs. Eruptions of Atitlan began more than 10 ka [1] and, since the arrival of the Spanish in the mid-1400's, eruptions have occurred in six eruptive clusters (1469, 1505, 1579, 1663, 1717, 1826-1856). Owing to its distance from population centers and the limited written record from 200 to 500 years ago, only an incomplete sample of the volcano's behavior is documented prior to the 1800's. The geologic record provides a more complete sample of the volcano's behavior since the 19th century. Geologic and historical data suggest that the intensity and pattern of activity at Atitlan Volcano is similar to that of Fuego Volcano, 44 km to the east, where active eruptions have been observed throughout the historical period. Because of Atitlan's moderately explosive nature and frequency of eruptions, there is a need for local and regional hazard planning and mitigation efforts. Tourism has flourished in the area; economic pressure has pushed agricultural activity higher up the slopes of Atitlan and closer to the source of possible future volcanic activity. This report summarizes the hazards posed by Atitlan Volcano in the event of renewed activity but does not imply that an eruption is imminent. However, the recognition of potential activity will facilitate hazard and emergency preparedness.
Volcano Hazards Assessment for Medicine Lake Volcano, Northern California
Donnelly-Nolan, Julie M.; Nathenson, Manuel; Champion, Duane E.; Ramsey, David W.; Lowenstern, Jacob B.; Ewert, John W.
2007-01-01
Medicine Lake volcano (MLV) is a very large shield-shaped volcano located in northern California where it forms part of the southern Cascade Range of volcanoes. It has erupted hundreds of times during its half-million-year history, including nine times during the past 5,200 years, most recently 950 years ago. This record represents one of the highest eruptive frequencies among Cascade volcanoes and includes a wide variety of different types of lava flows and at least two explosive eruptions that produced widespread fallout. Compared to those of a typical Cascade stratovolcano, eruptive vents at MLV are widely distributed, extending 55 km north-south and 40 km east-west. The total area covered by MLV lavas is >2,000 km2, about 10 times the area of Mount St. Helens, Washington. Judging from its long eruptive history and its frequent eruptions in recent geologic time, MLV will erupt again. Although the probability of an eruption is very small in the next year (one chance in 3,600), the consequences of some types of possible eruptions could be severe. Furthermore, the documented episodic behavior of the volcano indicates that once it becomes active, the volcano could continue to erupt for decades, or even erupt intermittently for centuries, and very likely from multiple vents scattered across the edifice. Owing to its frequent eruptions, explosive nature, and proximity to regional infrastructure, MLV has been designated a 'high threat volcano' by the U.S. Geological Survey (USGS) National Volcano Early Warning System assessment. Volcanic eruptions are typically preceded by seismic activity, but with only two seismometers located high on the volcano and no other USGS monitoring equipment in place, MLV is at present among the most poorly monitored Cascade volcanoes.
Using multiplets to track volcanic processes at Kilauea Volcano, Hawaii
NASA Astrophysics Data System (ADS)
Thelen, W. A.
2011-12-01
Multiplets, or repeating earthquakes, are commonly observed at volcanoes, particularly those exhibiting unrest. At Kilauea, multiplets have been observed as part of long period (LP) earthquake swarms [Battaglia et al., 2003] and as volcano-tectonic (VT) earthquakes associated with dike intrusion [Rubin et al., 1998]. The focus of most previous studies has been on the precise location of the multiplets based on reviewed absolute locations, a process that can require extensive human intervention and post-processing. Conversely, the detection of multiplets and measurement of multiplet parameters can be done in real-time without human interaction with locations approximated by the stations that best record the multiplet. The Hawaiian Volcano Observatory (HVO) is in the process of implementing and testing an algorithm to detect multiplets in near-real time and to analyze certain metrics to provide enhanced interpretive insights into ongoing volcanic processes. Metrics such as multiplet percent of total seismicity, multiplet event recurrence interval, multiplet lifespan, average event amplitude, and multiplet event amplitude variability have been shown to be valuable in understanding volcanic processes at Bezymianny Volcano, Russia and Mount St. Helens, Washington and thus are tracked as part of the algorithm. The near real-time implementation of the algorithm can be triggered from an earthworm subnet trigger or other triggering algorithm and employs a MySQL database to store results, similar to an algorithm implemented by Got et al. [2002]. Initial results using this algorithm to analyze VT earthquakes along Kilauea's Upper East Rift Zone between September 2010 and August 2011 show that periods of summit pressurization coincide with ample multiplet development. Summit pressurization is loosely defined by high rates of seismicity within the summit and Upper East Rift areas, coincident with lava high stands in the Halema`uma`u lava lake. High percentages, up to 100%, of earthquakes occurring during summit pressurization were part of a multiplet. Percentages were particularly high immediately prior to the March 5 Kamoamoa eruption. Interestingly, many multiplets that were present prior to the Kamoamoa eruption were reactivated during summit pressurization occurring in late July 2011. At a correlation coefficient of 0.7, 90% of the multiplets during the study period had populations of 10 or fewer earthquakes. Between periods of summit pressurization, earthquakes that belong to multiplets rarely occur, even though magma is flowing through the Upper East Rift Zone. Battaglia, J., Got, J. L. and Okubo, P., 2003. Location of long-period events below Kilauea Volcano using seismic amplitudes and accurate relative relocation. Journal of Geophysical Research-Solid Earth, v.108 (B12) 2553. Got, J. L., P. Okubo, R. Machenbaum, and W. Tanigawa (2002), A real-time procedure for progressive multiplet relative relocation at the Hawaiian Volcano Observatory, Bulletin of the Seismological Society of America, 92(5), 2019. Rubin, A. M., D. Gillard, and J. L. Got (1998), A reinterpretation of seismicity associated with the January 1983 dike intrusion at Kilauea Volcano, Hawaii, Journal of Geophysical Research-Solid Earth, 103(B5), 10003.
Mukasa, S.B.; Flower, M.F.J.; Miklius, Asta
1994-01-01
Following the amalgamation of a collage of pre-Neogene terranes largely by strike-slip and convergence mechanisms to form the Philippine islands, volcanic chains, related to oppositely dipping subduction zones, developed along the eastern and western margins of the archipelago. There is ample field evidence that this volcanic activity, predominantly calc-alkaline in chemical character, had commenced by the Oligocene. Volcanoes resulting from subduction along the Manila-Negros trench in the west (e.g. Taal, Laguna de Bay and Arayat) form a high-angle linear array, trending away from the MORE field on Pb-isotopic covariation diagrams; have the highest Sr- and lowest Nd-isotopic compositions, of the two chains (but nevertheless plotting above bulk earth on the 87Sr/86Sr versus 143Nd/144Nd covariation diagram); and exhibit Sm/Nd and Rb/Sr values that are lower and higher, respectively, than the estimated values for bulk earth. While the Sm/Nd and Rb/Sr characteristics are common to both chains, volcanoes associated with the Philippine-East Luzon trench have Pb-isotopic compositions that fall in the Indian Ocean MORB field and that require time-integrated evolution in a high Th/U environment. They also have higher Nd- and lower Sr-isotopic ratios. The source materials of Philippine volcanoes, therefore, have undergone varied recent enrichments in LILE, as indicated by the decoupling of isotopic and elemental ratios. These enrichments, particularly for the western volcanoes, cannot be entirely due to small degrees of partial melting in the mantle wedge, considering that they were accompanied by elevations in radiogenic Pb. Elevated Pb ratios are best explained by the introduction of subducted, continentally derived sediments. The sedimentary component in the western volcanoes is probably the South China Sea sediments derived largely from Eurasia. That this component is not available in the Philippine-East Luzon trench is reflected by the fact that the eastern volcanoes have higher Nd- and lower Sr-isotopic ratios as well as less radiogenic common Pb. ?? 1994.
2002-05-23
This image from NASA Mars Odyssey spacecraft is from the region of Syrtis Major, which is dominated by a low-relief shield volcano and believed to be an area of vigorous aeolian activity with strong winds in the east-west direction.
Finn, C A; Sisson, T W; Deszcz-Pan, M
2001-02-01
Hydrothermally altered rocks can weaken volcanoes, increasing the potential for catastrophic sector collapses that can lead to destructive debris flows. Evaluating the hazards associated with such alteration is difficult because alteration has been mapped on few active volcanoes and the distribution and severity of subsurface alteration is largely unknown on any active volcano. At Mount Rainier volcano (Washington, USA), collapses of hydrothermally altered edifice flanks have generated numerous extensive debris flows and future collapses could threaten areas that are now densely populated. Preliminary geological mapping and remote-sensing data indicated that exposed alteration is contained in a dyke-controlled belt trending east-west that passes through the volcano's summit. But here we present helicopter-borne electromagnetic and magnetic data, combined with detailed geological mapping, to show that appreciable thicknesses of mostly buried hydrothermally altered rock lie mainly in the upper west flank of Mount Rainier. We identify this as the likely source for future large debris flows. But as negligible amounts of highly altered rock lie in the volcano's core, this might impede collapse retrogression and so limit the volumes and inundation areas of future debris flows. Our results demonstrate that high-resolution geophysical and geological observations can yield unprecedented views of the three-dimensional distribution of altered rock.
Aerogeophysical measurements of collapse-prone hydrothermally altered zones at Mount Rainier volcano
Finn, C.A.; Sisson, T.W.; Deszcz-Pan, M.
2001-01-01
Hydrothermally altered rocks can weaken volcanoes, increasing the potential for catastrophic sector collapses that can lead to destructive debris flows1. Evaluating the hazards associated with such alteration is difficult because alteration has been mapped on few active volcanoes1-4 and the distribution and severity of subsurface alteration is largely unknown on any active volcano. At Mount Rainier volcano (Washington, USA), collapses of hydrothermally altered edifice flanks have generated numerous extensive debris flows5,6 and future collapses could threaten areas that are now densely populated7. Preliminary geological mapping and remote-sensing data indicated that exposed alteration is contained in a dyke-controlled belt trending east-west that passes through the volcano's summit3-5,8. But here we present helicopter-borne electromagnetic and magnetic data, combined with detailed geological mapping, to show that appreciable thicknesses of mostly buried hydrothermally altered rock lie mainly in the upper west flank of Mount Rainier. We identify this as the likely source for future large debris flows. But as negligible amounts of highly altered rock lie in the volcano's core, this might impede collapse retrogression and so limit the volumes and inundation areas of future debris flows. Our results demonstrate that high-resolution geophysical and geological observations can yield unprecedented views of the three-dimensional distribution of altered rock.
Geology and ground-water resources of the island of Molokai, Hawaii
Stearns, Harold T.; Macdonald, Gordon A.
1947-01-01
The island of Molokai is the fifth largest of the Hawaiian Islands, with an area of 250 square miles. It lies 25 miles southeast of Oahu, and 8.5 miles northwest of Maui. It consists of two principal parts, each a major volcanic mountain. East Molokai rises to 4,970 feet altitude. It is built largely of basaltic lavas, with a thin cap of andesites and a little trachyte. The volcanic rocks of East Molokai are named the East Molokai volcanic series, the basaltic part being separated as the lower member of the series, and the andesites and trachytes as the upper member. Large cinder cones and bulbous domes are associated with the lavas of the upper member. Thin beds of ash are present locally in both members. The lavas of the lower member are cut by innumerable dikes lying in two major rift zones trending eastward and northwestward. A large caldera, more than 4 miles long, and a smaller pit 0.8 mile across existed near the summit of the volcano. The rocks formed in and under the caldera are separated on plate 1 as the caldera complex. Stream erosion has cut large amphitheater-headed valleys into the northern coast of East Molokai, exposing the dikes and the caldera complex.West Molokai is lower than East Molokai, rising to 1,380 feet altitude. It was built by basaltic lavas erupted along rift zones trending southwestward and northwestward. Many of the flows were unusually fluid. The volcanic rocks of West Molokai Volcano are named the West Molokai volcanic series. Along its eastern side, the mountain is broken by a series of faults along which its eastern edge has been dropped downward. West Molokai Volcano became extinct earlier than East Molokai Volcano, and its flank is partly buried beneath lavas of East Molokai.Both volcanic mountains were built upward from the sea floor probably during Tertiary time. Following the close of volcanic activity stream erosion cut large canyons on East Molokai, but accomplished much less on drier West Molokai. Marine erosion attacked both parts of the island, producing high sea-cliffs on the windward coast. In late Tertiary or early Pleistocene time the island was submerged to a level at least 560 feet above the present shore line, then reemerged. Later shifts of sea level, probably partly resulting from Pleistocene glaciation and deglaciation, ranged from 300 feet below to 100 feet or more above present sea level. Marine deposits on the southern slope extend to an altitude of at least 200 feet. Eruption of the Kalaupapa basalt built a small lava cone at the foot of the northern cliff, forming Kalaupapa peninsula; and a small submarine eruption off the eastern end of Molokai built the Mokuhooniki tuff cone, the fragments of which now form Hooniki and Kanaha Islands. Deposition of marine and fluviatile sediments has built a series of narrow flats close to sea-level along the southern coast. Nearly the entire island is underlain, close to sea level, by ground water of the basal zone of saturation. Beneath West Molokai, the Hoolehua Plain between West and East Molokai, and the southern coastal area of East Molokai, the basal water is brackish. Beneath much of East Molokai, fresh basal water is obtainable. Small amounts of fresh water are perched at high levels in East Molokai by thin poorly permeable ash beds. Fresh water is confined at high levels in permeable compartments between poorly permeable dikes in the rift zones of East Molokai, and can be developed by tunnels. Projects to bring the abundant surface and ground water of the large wind ward valleys to the Hoolehua Plain are described. Future developments are suggested. All wells and water-development tunnels are described in tables.
Volcanic Ash on Slopes of Karymsky
NASA Technical Reports Server (NTRS)
2007-01-01
A volcanic eruption can produce gases, lava, bombs of rock, volcanic ash, or any combination of these elements. Of the volcanic products that linger on the land, most of us think of hardened lava flows, but volcanic ash can also persist on the landscape. One example of that persistence appeared on Siberia's Kamchatka Peninsula in spring 2007. On March 25, 2007, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite captured this image of the area around the Karymsky Volcano. In this image, volcanic ash from earlier eruptions has settled onto the snowy landscape, leaving dark gray swaths. The ash stains are confined to the south of the volcano's summit, one large stain fanning out toward the southwest, and another toward the east. At first glance, the ash stain toward the east appears to form a semicircle north of the volcano and sweep back east. Only part of this dark shape, however, is actually volcanic ash. Near the coast, the darker color may result from thicker vegetation. Similar darker coloring appears to the south. Volcanic ash is not really ash at all, but tiny, jagged bits of rock and glass. These jagged particles pose serious health risks to humans and animals who might inhale them. Likewise, the ash poses hazards to animals eating plants that have been coated with ash. Because wind can carry volcanic ash thousands of kilometers, it poses a more far-reaching hazard than other volcanic ejecta. Substantial amounts of ash can even affect climate by blocking sunlight. Karymsky is a stratovolcano composed of alternating layers of solidified ash, hardened lava, and volcanic rocks. It is one of many active volcanoes on Russia's Kamchatka Peninsula, which is part of the 'Ring of Fire' around the Pacific Rim. NASA image created by Jesse Allen, using data provided courtesy of the NASA/GSFC/MITI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team.
A Summary of the History and Achievements of the Alaska Volcano Observatory.
NASA Astrophysics Data System (ADS)
Smith, R. W.
2008-12-01
Volcanoes of the Aleutian Islands, Kamchatka and the Kurile Islands present a serious threat to aviation on routes from North America to the Far East. On March 27, 1986, an eruption of Augustine Volcano deposited ash over Anchorage and disrupted air traffic in south-central Alaska. The consequences of the colocation of an active volcano and the largest city in Alaska were clearly evident. That event led to a three-way partnership between the US Geological Survey, the University of Alaska Geophysical Institute and the Alaska State Division of Geological and Geophysical Surveys that now maintains a continuous watch through ground instrumentation and satellite imagery providing data from which warnings of eruptions can be issued to airline operators and pilots. The eruption of Redoubt Volcano in December 1989 was AVO's first big test. It spewed volcanic ash to a height of 14,000 m (45,000 feet) and managed to catch KLM 867, a Boeing 747 aircraft in its plume under dark conditions while approaching Anchorage Airport. Further details of the early days of the Alaska Volcano Observatory will be described, along with its recent successes and challenges.
Preliminary volcano-hazard assessment for Augustine Volcano, Alaska
Waythomas, Christopher F.; Waitt, Richard B.
1998-01-01
Augustine Volcano is a 1250-meter high stratovolcano in southwestern Cook Inlet about 280 kilometers southwest of Anchorage and within about 300 kilometers of more than half of the population of Alaska. Explosive eruptions have occurred six times since the early 1800s (1812, 1883, 1935, 1964-65, 1976, and 1986). The 1976 and 1986 eruptions began with an initial series of vent-clearing explosions and high vertical plumes of volcanic ash followed by pyroclastic flows, surges, and lahars on the volcano flanks. Unlike some prehistoric eruptions, a summit edifice collapse and debris avalanche did not occur in 1812, 1935, 1964-65, 1976, or 1986. However, early in the 1883 eruption, a portion of the volcano summit broke loose forming a debris avalanche that flowed to the sea. The avalanche initiated a small tsunami reported on the Kenai Peninsula at English Bay, 90 kilometers east of the volcano. Plumes of volcanic ash are a major hazard to jet aircraft using Anchorage International and other local airports. Ashfall from future eruptions could disrupt oil and gas operations and shipping activities in Cook Inlet. Eruptions similar to the historical and prehistoric eruptions are likely in Augustine's future.
Earth Observations taken by Expedition 30 crewmember
2012-01-14
ISS030-E-035487 (14 Jan. 2012) --- The East African Rift Valley in Kenya is featured in this image photographed by an Expedition 30 crew member on the International Space Station. This photograph highlights classical geological structures associated with a tectonic rift valley, in this case the Eastern Branch of the East African Rift near Kenya’s southern border with Tanzania and just south of the Equator. The East African Rift is one of the great tectonic features of Africa, caused by fracturing of Earth’s crust. The Nubian (or African) plate includes the older continental crust of Africa to the west, while the Somalian plate that is moving away includes the Horn of Africa to the northeast; the tectonic boundary stretches from the southern Red Sea to central Mozambique. Landscapes in the rift valley can appear confusing. The most striking features in this view are the numerous, nearly parallel, linear fault lines that occupy the floor of the valley (most of the image). Shadows cast by the late afternoon sun make the fault scarps (steps in the landscape caused by slip motion along individual faults) more prominent. The faults are aligned with the north-south axis of the valley (lower left to top right). A secondary trend of less linear faults cuts the main fault trend at an acute angle, the fault steps throwing large shadows. The Eastern Branch of the East African Rift is arid (compared with the Western Branch which lies on the border of the Congolese rainforest). Evidence of this can be seen in the red, salt-loving algae of the shallow and salty Lake Magadi (center). A neighboring small lake to the north has deeper water and appears dark in the image. The white salt deposits of the dry part of the Lake Magadi floor (center) host a few small commercial salt pans. The lakes appear to be located where the main and secondary fault trends intersect. The East African rift system is marked by substantial volcanic activity, including lavas erupted from fissures along the rift in the region. Much of the faulting observed in this image cuts through such lavas. Elsewhere along the rift system individual volcanoes form. Some of those volcanoes are very large, including Mt. Kilimanjaro and Mt. Kenya. In this image, rising 400 meters above the valley floor, a volcano appears to be superimposed on the faults—indicating that the volcano is younger than the faults it covers. Deeply eroded slopes also suggest that the volcano has not been active for a long time. The largest vegetated area (lower left)—in an desert zone with no vegetation visible to the naked eye from space—is the green floor of a valley which drains an area large enough for water to exist near the surface so that plants can thrive. For a sense of scale, the vegetated valley floor is 17 kilometers long (10.5 miles).
Rabies in the Dutch East Indies a century ago - a spatio-temporal case study in disease emergence.
Ward, Michael P
2014-04-01
Rabies continues to spread through the Indonesian archipelago. During the past 20 years, several islands - including Flores, Ambon and Bali - that had historically been free of rabies have become infected. However, the Dutch East Indies (a Dutch colony that became modern Indonesia following World War II) had been infected since the 1880s. The spread of rabies is a lesson in the emergence of an infectious disease. Reports of human cases treated for rabies and livestock rabies cases from the 1880s to 1917 were compiled. The spatial and temporal distribution of these cases was analyzed using maps, spatial statistics and time-series techniques. The first confirmed case of rabies was reported in 1889 from the Batavia [Jakarta] district (although disease suspicion was reported as early as 1884). During the 1890s rabies was already commonly reported from Java and the east coast of Sumatra, and by the late 1890s, from Celebes [Sulawesi]. Between 1900 and 1916, cases were reported from other parts of Java, Sumatra and Sulawesi, and from Borneo, the Moluccas and other outlying islands. Between 1897 and 1916, a total of 8826 human cases treated for rabies were reported and between 1908 and 1917, 1033 livestock cases were reported. Most (97.5%) human cases treated were attributed to rabid dogs. Increasing numbers of reports were observed during the period. Between 1908 and 1916 the correlation between human and livestock case reports was 64.2%, and at the district level it was 75.9%. Moderate correlations (>40%) were found between human cases and livestock cases reported up to six months previously. Based on year of first report from each district, human cases were strongly clustered (Moran's autocorrelation 0.47, P=0.005). The most likely spatio-temporal cluster of reported cases of humans treated for rabies originated from the west coast of Sumatra between 1899 and 1905, and other clusters were identified in west Java (1898-1899), the district of Batavia and in east Java (1910-1911), Nusa Tengarra Barat (1912), Borneo (1914) and the east coast of Sumatra (1903-1906). Rabies was probably first introduced to the colonial capital of the Dutch Indies, Batavia [Jakarta] in the 1880s. It then spread rapidly throughout most of the archipelago during the next two to three decades because of the movement of dogs via the military forces, for trade and as pets, despite government regulations designed to control the epidemic. Such a history suggests that further emergence and reemergence of rabies in rabies-free islands will occur based on an island's location and position within the complex social, trade and transport network that represents the Indonesian archipelago. Targeted surveillance and enforcement of quarantine regulations remain critical, to prevent history repeating itself. Copyright © 2014 Elsevier B.V. All rights reserved.
Space Radar Image of Reunion Island
1999-04-15
This radar image shows the volcanic island of Reunion, about 700 km 434 miles east of Madagascar in the southwest Indian Ocean. The southern half of the island is dominated by the active volcano, Piton de la Fournaise.
Gas analyses from the Pu'u O'o eruption in 1985, Kilauea volcano, Hawaii
Greenland, L.P.
1986-01-01
Volcanic gas samples were collected from July to November 1985 from a lava pond in the main eruptive conduit of Pu'u O'o from a 2-week-long fissure eruption and from a minor flank eruption of Pu'u O'o. The molecular composition of these gases is consistent with thermodynamic equilibrium at a temperature slightly less than measured lava temperatures. Comparison of these samples with previous gas samples shows that the composition of volatiles in the magma has remained constant over the 3-year course of this episodic east rift eruption of Kilauea volcano. The uniformly carbon depleted nature of these gases is consistent with previous suggestions that all east rift eruptive magmas degas during prior storage in the shallow summit reservoir of Kilauea. Minor compositional variations within these gas collections are attributed to the kinetics of the magma degassing process. ?? 1986 Springer-Verlag.
Andres, R.J.; Kyle, P.R.; Stokes, J.B.; Rose, William I.
1989-01-01
An SO2 flux of 1170??400 (1??) tonnes per day was measured with a correlation spectrometer (COSPEC) in October and November 1986 from the continuous, nonfountaining, basaltic East Rift Zone eruption (episode 48A) of Kilauea volcano. This flux is 5-27 times less than those of highfountaining episodes, 3-5 times greater than those of contemporaneous summit emissions or interphase Pu'u O'o emissions, and 1.3-2 times the emissions from Pu'u O'o alone during 48A. Calculations based on the SO2 emission rate resulted in a magma supply rate of 0.44 million m3 per day and a 0.042 wt% sulfur loss from the magma upon eruption. Both of these calculated parameters agree with determinations made previously by other methods. ?? 1989 Springer-Verlag.
The First Historical Eruption of Kambalny Volcano in 2017 .
NASA Astrophysics Data System (ADS)
Gordeev, E.
2017-12-01
The first historical eruption at Kambalny volcano began about 21:20 UTC on March 24, 2017 with powerful ash emissions up to 6 km above sea level from the pre-summit crater. According to tephrochronological data, it is assumed that the strong eruptions of the volcano occurred 200 (?) and 600 years ago. KVERT (Kamchatka Volcanic Eruption Response Team) of the Institute of Volcanology and Seismology FEB RAS has been monitoring Kambalny volcano since 2002. KVERT worked closely with AMC Elizovo and Tokyo VAAC during the eruption at Kambalny volcano in 2017. The maximum intensity of ash emissions occurred on 25-26 March: a continuous plume laden with ash particles spread over several thousand kilometers, changing the direction of propagation from the volcano from the south-west to the south and south-east. On 27-29 March, the ash plume extended to the west, on 30 March - to the southeast of the volcano. On March 31 and April 01, the volcano was relatively quiet. The resumption of the volcano activity after two days of rest was expressed in powerful ash emissions up to 7 km above sea level. Gas-steam plumes containing some amount of ash were noted on 02-05 April, and powerful ash emissions up to 7 km above sea level occurred on 09 April. The explosive activity at the volcano ended on 11 April. The area of ash deposits was about 1500 km2, the total area covered by ash falls, for example, on 25 March, was about 650 thousand km2. To monitor and study the Kambalny volcano eruption we mainly used satellite images of medium resolution available in the information system "Monitoring volcanic activity in Kamchatka and Kurile Islands" (VolSatView). This work was supported by the Russian Science Foundation, project No. 16-17-00042.
Volcano and earthquake hazards in the Crater Lake region, Oregon
Bacon, Charles R.; Mastin, Larry G.; Scott, Kevin M.; Nathenson, Manuel
1997-01-01
Crater Lake lies in a basin, or caldera, formed by collapse of the Cascade volcano known as Mount Mazama during a violent, climactic eruption about 7,700 years ago. This event dramatically changed the character of the volcano so that many potential types of future events have no precedent there. This potentially active volcanic center is contained within Crater Lake National Park, visited by 500,000 people per year, and is adjacent to the main transportation corridor east of the Cascade Range. Because a lake is now present within the most likely site of future volcanic activity, many of the hazards at Crater Lake are different from those at most other Cascade volcanoes. Also significant are many faults near Crater Lake that clearly have been active in the recent past. These faults, and historic seismicity, indicate that damaging earthquakes can occur there in the future. This report describes the various types of volcano and earthquake hazards in the Crater Lake area, estimates of the likelihood of future events, recommendations for mitigation, and a map of hazard zones. The main conclusions are summarized below.
Mitigating Consumptive Behavior: The Analysis of Learning Experiences of Housewives
ERIC Educational Resources Information Center
Suparti
2016-01-01
The purpose of this study is to investigate the determinant of consumptive behavior by analyzing learning experiences of housewives as members of Family Welfare Movement (PKK) in Malang, East Java Indonesia. Financial literacy is defined as personal knowledge and capability in financial management. Sample of this study was 123 housewives and…
Intention and Usage of Computer Based Information Systems in Primary Health Centers
ERIC Educational Resources Information Center
Hosizah; Kuntoro; Basuki N., Hari
2016-01-01
The computer-based information system (CBIS) is adopted by almost all of in health care setting, including the primary health center in East Java Province Indonesia. Some of softwares available were SIMPUS, SIMPUSTRONIK, SIKDA Generik, e-puskesmas. Unfortunately they were most of the primary health center did not successfully implemented. This…
NASA Astrophysics Data System (ADS)
Winahju, W. S.; Mukarromah, A.; Putri, S.
2015-03-01
Leprosy is a chronic infectious disease caused by bacteria of leprosy (Mycobacterium leprae). Leprosy has become an important thing in Indonesia because its morbidity is quite high. Based on WHO data in 2014, in 2012 Indonesia has the highest number of new leprosy patients after India and Brazil with a contribution of 18.994 people (8.7% of the world). This number makes Indonesia automatically placed as the country with the highest number of leprosy morbidity of ASEAN countries. The province that most contributes to the number of leprosy patients in Indonesia is East Java. There are two kind of leprosy. They consist of pausibacillary and multibacillary. The morbidity of multibacillary leprosy is higher than pausibacillary leprosy. This paper will discuss modeling both of the number of multibacillary and pausibacillary leprosy patients as responses variables. These responses are count variables, so modeling will be conducted by using bivariate poisson regression method. Unit experiment used is in East Java, and predictors involved are: environment, demography, and poverty. The model uses data in 2012, and the result indicates that all predictors influence significantly.
Barwegen, Martine
2008-01-01
The Civil Veterinary Service on Java, Netherlands East-Indies, was established in 1853, more than 20 years after the introduction of the Cultivation System. During the 19th century its tasks were directed at the survey of livestock, esp. its health. Despite the fact that the number of veterinarians was far from enough, the communications problematic, and the optimal functioning of the Service assailed by infrastructional shortcomings, the CVS managed to carry out--in a relatively short period--a great deal of significant work. The CVS sometimes misjudged the situation completely, e.g. after the outbreak of rinderpest in 1878, that was a major catastrophe. The Dutch laws pertaining to the fight against this diseases were enforced in the Netherlands East-Indies. Agriculture suffered from the ban on moving cattle, cattle suffered from a feed shortage and cattle owners suffered from financial and emotional damage. Although it is impossible to determine exactly the influence of the adopted measures on the course of the epizootic, there are indications that the damages were aggravated through governmental interference.
Thin Crust and High Crustal Vp/Vs beneath the Central Armenia Plateau of the Lesser Caucasus
NASA Astrophysics Data System (ADS)
Tseng, T. L.; Lin, C. M.; Huang, B. S.; Karakhanyan, A.
2017-12-01
Armenia volcanic highland is part of the Lesser Caucasus directly connected with the East Anatolian Plateau to the west and Iranian Plateau to the east. Abundant Quaternary volcanoes in Armenia are the youngest among those associated with post-collision of Arabia-Eurasian since Miocene ( 11 Ma). In this study, teleseismic receiver functions were analyzed from a temporary array to constrain the crustal structures under Armenia and the vicinity. The results show that the Moho depth is shallowest beneath central Armenia where the estimated crustal thickness is 32 km with high averaged crustal Vp/Vs of 1.8-2.0 using H-κ technique. The high crustal Vp/Vs is distributed in a wider area but thin crust is confined more locally around stratovolcano Aragats, whose last eruption was about 0.5 Ma. High crustal Vp/Vs value approaching to 2.1 is found near East of volcano Ghegam complex and NW of volcano Ararat with last dated ages of 0.5 and <0.1 Ma, respectively. Such high Vp/Vs (2.0) cannot be explained without high mafic content and the presence of partial melt in the crust. The 1-D velocity models inverted demonstrate that the partial melt is more likely in the low-velocity layer of the lower crust. To support the unusually thin crust in central Armenia, it requires additional thermal buoyancy in the uppermost mantle which is consistent with regionally low Pn velocity found in previous studies. We propose that the volcanism here is facilitated by the stretches of lithosphere.
Jung, H.-S.; Lu, Z.; Won, J.-S.; Poland, Michael P.; Miklius, Asta
2011-01-01
Surface deformation caused by an intrusion and small eruption during June 17-19, 2007, along the East Rift Zone of Kilauea Volcano, Hawaii, was three-dimensionally reconstructed from radar interferograms acquired by the Advanced Land Observing Satellite (ALOS) phased-array type L-band synthetic aperture radar (SAR) (PALSAR) instrument. To retrieve the 3-D surface deformation, a method that combines multiple-aperture interferometry (MAI) and conventional interferometric SAR (InSAR) techniques was applied to one ascending and one descending ALOS PALSAR interferometric pair. The maximum displacements as a result of the intrusion and eruption are about 0.8, 2, and 0.7 m in the east, north, and up components, respectively. The radar-measured 3-D surface deformation agrees with GPS data from 24 sites on the volcano, and the root-mean-square errors in the east, north, and up components of the displacement are 1.6, 3.6, and 2.1 cm, respectively. Since a horizontal deformation of more than 1 m was dominantly in the north-northwest-south-southeast direction, a significant improvement of the north-south component measurement was achieved by the inclusion of MAI measurements that can reach a standard deviation of 3.6 cm. A 3-D deformation reconstruction through the combination of conventional InSAR and MAI will allow for better modeling, and hence, a more comprehensive understanding, of the source geometry associated with volcanic, seismic, and other processes that are manifested by surface deformation.
Evidence for two shield volcanoes exposed on the island of Kauai, Hawaii
Holcomb, R.T.; Reiners, P.W.; Nelson, B.K.; Sawyer, N.-L.E.
1997-01-01
The island of Kauai has always been interpreted as a single shield volcano, but lavas of previously correlated reversed-to-normal magnetic-polarity transitions on opposite sides of the island differ significantly in isotopic composition. Samples from west Kauai have 87Sr/86Sr 18.25; samples from east Kauai have 87Sr/86Sr > 0.7037, ??Nd ??? 6.14, and 206Pb/204Pb < 18.25. Available data suggest that a younger eastern shield grew on the collapsed flank of an older western one.
2007-08-31
On July 21, 2007, the world most active volcano, Kilauea on Hawaii Big Island, produced a fissure eruption from the Puu Oo vent, which fed an open lava channel and lava flows toward the east. This image is from NASA Terra satellite.
Nyiragongo volcano, Congo, Pre-eruption Perspective View, SRTM / Landsat
NASA Technical Reports Server (NTRS)
2002-01-01
The Nyiragongo volcano in the Congo erupted on January 17, 2002, and subsequently sent streams of lava into the city of Goma on the north shore of Lake Kivu. More than 100 people were killed, more than 12000 homes were destroyed, and hundreds of thousands were forced to flee the broader community of nearly half a million people. This computer generated visualization combines a Landsat satellite image and an elevation model from the Shuttle Radar Topography Mission (SRTM) to provide a view of both the volcano and the city of Goma, looking slightly east of north.
Nyiragongo is the steep volcano on the right, Lake Kivu is in the foreground, and the city of Goma has a light pink speckled appearance along the shoreline. Nyiragongo peaks at about 3470 meters (11,380 feet) elevation and reaches almost exactly 2000 meters (6560 feet) above Lake Kivu. The shorter but broader Nyamuragira volcano appears in the left background. Topographic expression has been exaggerated vertically by a factor of 1.5 for this visualization.Goma, Lake Kivu, Nyiragongo, Nyamuragira and other nearby volcanoes sit within the East African Rift Valley, a zone where tectonic processes are cracking, stretching, and lowering the Earth's crust. Volcanic activity is common here, and older but geologically recent lava flows (magenta in this depiction) are particularly apparent on the flanks of the Nyamuragira volcano.The Landsat image used here was acquired on December 11, 2001, about a month before the eruption, and shows an unusually cloud-free view of this tropical terrain. Minor clouds and their shadows were digitally removed to clarify the view, topographic shading derived from the SRTM elevation model was added to the Landsat image, and a false sky was added.Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and substantially helps in analyzing the large and growing Landsat image archive. This Landsat 7 Thematic Mapper image was provided to the SRTM project by the United States Geological Survey, Earth Resources Observation Systems (EROS) Data Center, Sioux Falls, S.D.Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise, Washington, D.C.Size: View width 21 kilometers (13 miles), View distance 42 kilometers (26 miles) Location: 1.5 deg. South lat., 29.3 deg. East lon. Orientation: View east-northeast, 5 degrees below horizontal Image Data: Landsat Bands 3, 2, 1 as red, green, blue, respectively. Original Data Resolution: SRTM 1 arcsecond (30 meters or 98 feet), Landsat 30 meters (98 feet) Date Acquired: February 2000 (SRTM), 11 December 2001 (Landsat)NASA Astrophysics Data System (ADS)
Collignon, Marine; Hammer, Øyvind; Fallahi, Mohammad J.; Lupi, Matteo; Schmid, Daniel W.; Alwi, Husein; Hadi, Soffian; Mazzini, Adriano
2017-04-01
The 29th May 2006, gas water and mud breccia started to erupt at several localities along the Watukosek fault system in the Sidoarjo Regency in East Java Indonesia. The most prominent eruption site, named Lusi, is still active and the emitted material now covers a surface of nearly 7 km2, resulting in the displacement of 60.000 people (up to date). Due to its social and economic impacts, as well as its spectacular dimensions, the Lusi eruption still attracts the attention of international media and scientists. In the framework of the Lusi Lab project (ERC grant n° 308126), many efforts were made to develop a quasi-constant monitoring of the site and the regional areas. Several studies attempted to predict the flow rate evolution or ground deformation, resulting in either overestimating or underestimating the longevity of the eruption. Models have failed because Lusi is not a mud volcano but a sedimentary hosted hydrothermal system that became apparent after the M6.3 Yogyakarta earthquake. Another reason is because such models usually assume that the flow will decrease pacing the overpressure reduction during the deflation of the chamber. These models typically consider a closed system with a unique chamber that is not being recharged. Overall the flow rate has decreased over the past ten years, although it has been largely fluctuating with monthly periods of higher mud breccia discharge. Monitoring of the eruption has revealed that numerous anomalous events are temporally linked to punctual events such as earthquakes or volcanic eruptions. Nevertheless, the quantification of these events has never been investigated in details. In this study, we present a compilation of anomalous events observed at the Lusi site during the last 10 years. Using Monte Carlo simulations, we then statistically compare the displacement, recorded at different seismic stations around Lusi, with the regional and global earthquakes catalogue to test the probability that an earthquake striking the coast of Java affects the plumbing system at Lusi and triggers anomalous events.
Tracing the Source of Borneo's Cempaka Diamond Deposit
NASA Astrophysics Data System (ADS)
White, L. T.; Graham, I.; Armstrong, R. A.; Hall, R.
2014-12-01
Several gem quality diamond deposits are found in paleo-alluvial deposits across Borneo. The source of the diamonds and their origin are enigmatic. They could have formed in Borneo and be derived from local sources, or they could be related to diamond deposits in NW Australia, and carried with the Southwest Borneo Block after it rifted from Australia in the Late Jurassic. We collected U-Pb isotopic data from detrital zircons from the Cempaka alluvial diamond deposit in southeast Borneo. Two thirds of the zircons that were dated crystallized between 75 Ma and 110 Ma. The other third are Triassic or older (223 Ma, 314-319 Ma, 353-367 Ma, 402-414 Ma, 474 Ma, 521 Ma, 549 Ma, 1135-1176 Ma, 1535 Ma, 2716 Ma). All of the Cretaceous zircons are angular, euhedral grains with minor evidence of mechanical abrasion. Considering their age and morphology they were likely derived from the nearby Schwaner Granites. The Triassic and older grains are rounded to semi-rounded and were likely derived from Australia before Borneo rifted from Gondwana. Some of the zircons have ages that resemble those of the Merlin and Argyle diamond deposits of Australia. The diamonds themselves have delicate resorption features and overgrowths that would potentially be destroyed with prolonged transport. Geochemical data collected from the diamonds implies they were associated with lamproite intrusions. Deep seismic lines and zircons from igneous rocks suggest SE Borneo, the East Java Sea and East Java are largely underlain by thick lithosphere rifted from NW Australia. Based on several lines of evidence, we propose that diamond-bearing lamproites intruded before rifting of SW Borneo from Australia, or after collision with Sundaland of SW Borneo and the East Java-West Sulawesi Blocks during the Cretaceous. Exposure of the source after the Late Cretaceous led to diamond accumulation in river systems that flowed from the Schwaner Mountains.
Schilling, Steve P.; Ramsey, David W.; Messerich, James A.; Thompson, Ren A.
2006-01-01
On May 18, 1980, Mount St. Helens, Washington exploded in a spectacular and devastating eruption that shocked the world. The eruption, one of the most powerful in the history of the United States, removed 2.7 cubic kilometers of rock from the volcano's edifice, the bulk of which had been constructed by nearly 4,000 years of lava-dome-building eruptions. In seconds, the mountain's summit elevation was lowered from 2,950 meters to 2,549 meters, leaving a north-facing, horseshoe-shaped crater over 2 kilometers wide. Following the 1980 eruption, Mount St. Helens remained active. A large lava dome began episodically extruding in the center of the volcano's empty crater. This dome-building eruption lasted until 1986 and added about 80 million cubic meters of rock to the volcano. During the two decades following the May 18, 1980 eruption, Crater Glacier formed tongues of ice around the east and west sides of the lava dome in the deeply shaded niche between the lava dome and the south crater wall. Long the most active volcano in the Cascade Range with a complex 300,000-year history, Mount St. Helens erupted again in the fall of 2004 as a new period of dome building began within the 1980 crater. Between October 2004 and February 2006, about 80 million cubic meters of dacite lava erupted immediately south of the 1980-86 lava dome. The erupting lava separated the glacier into two parts, first squeezing the east arm of the glacier against the east crater wall and then causing equally spectacular crevassing and broad uplift of the glacier's west arm. Vertical aerial photographs document dome growth and glacier deformation. These photographs enabled photogrammetric construction of a series of high-resolution digital elevation models (DEMs) showing changes from October 4, 2004 to February 9, 2006. From the DEMs, Geographic Information Systems (GIS) applications were used to estimate extruded volumes and growth rates of the new lava dome. The DEMs were also used to quantify dome height variations, size of the magma conduit opening, and the mechanics of dome emplacement. Previous lava-dome-building eruptions at the volcano have persisted intermittently for years to decades. Over time, such events constructed much of the cone-shaped mountain seen prior to the May 18, 1980 eruption. Someday, episodic dome growth may eventually rebuild Mount St. Helens to its pre-1980 form.
NASA Astrophysics Data System (ADS)
Casadevall, T. J.
2009-12-01
In June 2007, the US Department of State (DOS) requested assistance from the USGS to provide technical guidance and advice to the US Mission in Indonesia regarding the Lumpur Sidoarjo (LUSI) mud crisis. In May 2006, LUSI began as a mud eruption from a series of mud springs adjacent to an oil and gas exploration well being drilled near Surabaya, East Java, Indonesia. The production of mud and waters from the LUSI crater area has now continued for more than 3 years with no significant change in mud production rate (~110,000 cubic meters per day) nor in temperature of the mud (70-80 degrees C). Engineers suggest that mud production will continue at these rates for years to decades to come. Regardless of future activity at LUSI, the current mud accumulation of more than 100 million cubic meters poses a physical and environmental hazard which requires continuous monitoring and observation. The first response to the 2007 DOS request involved a site visit to Indonesia in September 2007. The result of that visit was to recommend to the Government of Indonesia (GOI) that they focus on long-term management of the mud rather than focus on the controversy as to the cause of the eruption or the debate about stopping the flow. Other recommendations from the initial 2007 technical visit included contracting for a US scientist to be co-located with engineers of the Sidoarjo Mud Management Board (BPLS) in Surabaya, East Java, to advise and consult on day-to-day developments at the site of the mud eruption. A second technical team visit by USGS scientists and an engineer from the US Army Corps of Engineers in October-November 2008 made additional recommendations on the long-term management of the mud and was followed in December by the start of a 6 month contract for the US mud adviser. From the start of activity in mid-2006 through late-2008, there was a clear sense of urgency at the US Mission in Indonesia to provide guidance and advice and included the personal intervention of the new US Ambassador. The USGS has completed the requests made in the June 2007 DOS cable, including an initial characterization of the mud and fluids; an analysis of land surface changes using the INSAR method; and an assessment of the seismic hazards in East Java. In the coming year, USGS will assist DOI agencies in the geophysical monitoring of the LUSI area and in the continued characterization of mud and fluids produced by the eruption.
The hydrogeology of Kilauea volcano
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ingebritsen, S.E.; Scholl, M.A.
1993-08-01
The hydrogeology of Kilauea volcano and adjacent areas has been studied since the turn of this century. However, most studies to date have focused on the relatively shallow, low-salinity parts of the ground-water system, and the deeper hydrothermal system remains poorly understood. The rift zones of adjacent Mauna Loa volcano bound the regional ground-water flow system that includes Kilauea, and the area bounded by the rift zones of Kilauea and the ocean may comprise a partly isolated subsystem. Rates of ground-water recharge vary greatly over the area, and discharge is difficult to measure, because streams are ephemeral and most ground-watermore » discharges diffusely at or below sea level. Hydrothermal systems exist at depth in Kilauea's east and southwest rift zone, as evidenced by thermal springs at the coast and wells in the lower east-rift zone. Available data suggest that dike-impounded, heated ground water occurs at relatively high elevations in the upper east- and southwest-rift zones of Kilauea, and that permeability at depth in the rift zones. Available data suggest that dike-impounded, heated ground water occurs at relatively high elevations in the upper east- and southwest-rift zones of Kilauea, and that permeability at depth in the rift zones (probably [le]10[sup [minus]15] m[sup 2]) is much lower than that of unaltered basalt flows closer to the surface ([ge]10[sup [minus]10] m[sup 2]). Substantial variations in permeability and the presence of magmatic heat sources influence that structure of the fresh water-salt water interface, so the Ghyben-Herzberg model will often fail to predict its position. Numerical modeling studies have considered only subsets of the hydrothermal system, because no existing computer code solves the coupled fluid-flow, heat- and solute-transport problem over the temperature and salinity range encountered at Kilauea. 73 refs., 7 figs., 2 tabs.« less
Rickettsial infections of fleas collected from small mammals on four islands in Indonesia.
Barbara, Kathryn A; Farzeli, Arik; Ibrahim, Ima N; Antonjaya, Ungke; Yunianto, Andre; Winoto, Imelda; Ester; Perwitasari, Dian; Widjaya, Susana; Richards, Allen L; Williams, Maya; Blair, Patrick J
2010-11-01
Ectoparasites were sampled from small mammals collected in West Java, West Sumatra, North Sulawesi, and East Kalimantan, Indonesia, in 2007-2008 and were screened for evidence of infection from bacteria in the Rickettsaceae family. During eight trap nights at eight sites, 208 fleas were collected from 96 of 507 small mammals trapped from four orders (379 Rodentia; 123 Soricomorpha; two Carnivora; three Scandentia). Two species of fleas were collected: Xenopsylla cheopis (n = 204) and Nosopsyllus spp. (n = 4). Among the 208 fleas collected, 171 X. cheopis were removed from rats (Rattus spp.) and 33 X. cheopis from shrews (Suncus murinus). X. cheopis were pooled and tested for DNA from rickettsial agents Rickettsia typhi, Rickettsia felis, and spotted fever group rickettsiae. R. typhi, the agent of murine typhus, was detected in X. cheopis collected from small mammals in West Java and East Kalimantan. R. felis was detected in X. cheopis collected from small mammals in Manado, North Sulawesi. R. felis and spotted fever group rickettsiae were detected in a pool of X. cheopis collected from an animal in East Kalimantan. Sixteen percent of the X. cheopis pools were found positive for Rickettsia spp.; four (10.8%) R. typhi, one (2.7%) R. felis, and one (2.7%) codetection of R. felis and a spotted fever group rickettsia. These data suggest that rickettsial infections remain a threat to human health across Indonesia.
The Plumbing System Feeding the Lusi Eruption Revealed by Ambient Noise Tomography
NASA Astrophysics Data System (ADS)
Fallahi, Mohammad Javad; Obermann, Anne; Lupi, Matteo; Karyono, Karyono; Mazzini, Adriano
2017-10-01
Lusi is a sediment-hosted hydrothermal system featuring clastic-dominated geyser-like eruption behavior in East Java, Indonesia. We use 10 months of ambient seismic noise cross correlations from 30 temporary seismic stations to obtain a 3-D model of shear wave velocity anomalies beneath Lusi, the neighboring Arjuno-Welirang volcanic complex, and the Watukosek fault system connecting the two. Our work reveals a hydrothermal plume, rooted at a minimum 6 km depth that reaches the surface at the Lusi site. Furthermore, the inversion shows that this vertical anomaly is connected to the adjacent volcanic complex through a narrow ( 3 km wide) low velocity corridor slicing the survey area at a depth of 4-6 km. The NE-SW direction of this elongated zone matches the strike of the Watukosek fault system. Distinct magmatic chambers are also inferred below the active volcanoes. The large-scale tomography features an exceptional example of a subsurface connection between a volcanic complex and a solitary erupting hydrothermal system hosted in a hydrocarbon-rich back-arc sedimentary basin. These results are consistent with a scenario where deep-seated fluids (e.g., magmas and released hydrothermal fluids) flow along a region of enhanced transmissivity (i.e., the Watukosek fault system damage zone) from the volcanic arc toward the back arc basin where Lusi resides. The triggered metamorphic reactions occurring at depth in the organic-rich sediments generated significant overpressure and fluid upwelling that is today released at the spectacular Lusi eruption site.
Anatahan Volcano, Mariana Islands
NASA Technical Reports Server (NTRS)
2008-01-01
In the early hours of February 7, ASTER captured this nighttime thermal infrared image of an eruption of Anatahan Volcano in the central Mariana Islands. The summit of the volcano is bright indicating there is a very hot area there. Streaming to the west is an ash plume, visible by the red color indicating the presence of silicate-rich particles. Dark grey areas are clouds that appear colder than the ocean. Anatahan is a stratovolcano that started erupting in May 2003, forming a new crater. The image covers an area of 56.3 x 41.8 km, and is located 16 degrees north latitude and 145.6 degrees east longitude. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.Indonesia's Active Mount Agung Volcano Imaged by NASA Spacecraft
2017-12-10
After a new small eruption sent an ash cloud 1.24 miles (2 kilometers) into the sky on Dec. 7, 2017, Indonesia's Mount Agung volcano quieted down. This image was acquired Dec. 8 after the latest activity by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra satellite. The image shows vegetation in red colors. The summit crater has a hot spot (yellow) as detected by ASTER's thermal infrared channels. More than 65,00 residents continue to be evacuated from the volcano's danger zone in case of a major eruption. The image covers an area of 11 by 12.3 miles (17.8 by 19.8 kilometers), and is located at 8.3 degrees south, 115.5 degrees east. https://photojournal.jpl.nasa.gov/catalog/PIA22121
Gravity fluctuations induced by magma convection at Kilauea Volcano, Hawai'i
Carbone, Daniele; Poland, Michael P.
2012-01-01
Convection in magma chambers is thought to play a key role in the activity of persistently active volcanoes, but has only been inferred indirectly from geochemical observations or simulated numerically. Continuous microgravity measurements, which track changes in subsurface mass distribution over time, provide a potential method for characterizing convection in magma reservoirs. We recorded gravity oscillations with a period of ~150 s at two continuous gravity stations at the summit of Kīlauea Volcano, Hawai‘i. The oscillations are not related to inertial accelerations caused by seismic activity, but instead indicate variations in subsurface mass. Source modeling suggests that the oscillations are caused by density inversions in a magma reservoir located ~1 km beneath the east margin of Halema‘uma‘u Crater in Kīlauea Caldera—a location of known magma storage.
Anderson, Kyle R.; Poland, Michael; Johnson, Jessica H.; Miklius, Asta; Carey, Rebecca; Cayol, Valérie; Poland, Michael P.; Weis, Dominique
2015-01-01
Episodic variations in magma pressures and flow rates at Kīlauea Volcano, defined by a characteristic temporal evolution and termed deflation-inflation (DI) events, have been observed since at least the 1990s. DI events consist of transient, days-long deflations and subsequent reinflations of the summit region, accompanied since 2008 by fluctuations in the surface height of Kīlauea's summit lava lake. After a delay of minutes to hours, these events also often appear along the volcano's East Rift Zone in ground deformation data and as temporary reductions in eruption rate (sometimes followed by brief surges). Notable pauses in DI activity have preceded many eruptive events at Kīlauea. We analyzed more than 500 DI events recorded by borehole tiltmeters at the summit during 2000–2013. Inverse modeling suggests that DI-related ground deformation at the summit is generated by pressure transients in a shallow magma reservoir located beneath the east margin of Halema‘uma‘u Crater and that this reservoir has remained remarkably stable for more than a decade. Utilizing tilt data and variation in the level of the summit lava lake during a large DI event, we estimate a reservoir volume of approximately 1 km3 (0.2–5.5 km3 at 95% confidence).
NASA Astrophysics Data System (ADS)
Goepel, A.; Queitsch, M.; Lonschinski, M.; Eitner, A.; Meisel, M.; Reißig, S.; Engelhardt, J.; Büchel, G.; Kukowski, N.
2012-04-01
The Laacher See Volcano (LSV) is part of the Quaternary East-Eifel volcanic field (EVF) located in the western part of Germany, where at least 103 eruptive centers have been identified. The Laacher See volcano explosively erupted about 6.3 km3 of phonolitic magma during a dominantly phreato-plinian eruption at about 12,900 BP. Despite numerous previous studies the eruptive history of LSV is not fully unveiled. For a better understanding of the eruptive history of LSV several geophysical methods, including magnetic, gravimetric and bathymetric surveys have been applied on and around Laacher See Volcano. Here we focus on the magnetic and bathymetric data. The presented high resolution magnetic data covering an area of about 25 km2 (20,000 sample points) and were collected using ground based proton magnetometers (GEM Systems GSM-19TGW, Geometrics G856) during several field campaigns. In addition, a magnetic survey on the lake was done using a non-magnetic boat as platform. The bathymetric survey was conducted on profiles (total length of 235 km) using an echo sounder GARMIN GPSMap 421. Depth data were computed to a bathymetric model on a 10 m spaced regular grid. A joint interpretation of magnetic, morphologic and bathymetric data allows us to search for common patterns which can be associated with typical volcanic features. From our data at least one new eruptive center and lava flow could be identified. Furthermore, the new data suggest that previously identified lava flows have not been accurately located.
Guatemala Volcanic Eruption Captured in NASA Spacecraft Image
2015-02-19
Guatemala's Fuego volcano continued its frequent moderate eruptions in early February 2015. Pyroclastic flows from the eruptions descended multiple drainages, and the eruptions sent ash plumes spewing over Guatemala City 22 miles (35 kilometers) away, and forced closure of the international airport. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument onboard NASA's Terra spacecraft captured a new image of the region on February 17. Fuego is on the left side of the image. The thermal infrared inset image shows the summit crater activity (white equals hot), and remnant heat in the flows on the flank. Other active volcanoes shown in the image are Acatenango close by to the north, Volcano de Agua in the middle of the image, and Pacaya volcano to the east. The image covers an area of 19 by 31 miles (30 by 49.5 kilometers), and is located at 14.5 degrees north, 90.9 degrees west. http://photojournal.jpl.nasa.gov/catalog/PIA19297
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fedotov, S.A.
Using geophysical data, the mechanism of deep-seated magmatic and volcanic activity was studied in the region of the island arcs and associated structures. Data on magmatic activity below the volcanic belt of East Kamchatka, obtained during geophysical investigations, mainly during detailed seismological investigations and deep seismic sounding, provide evidence for an association between the volcanoes and the processes in the Pacific Ocean focal layer of earthquakes, and for the accumulation of magmas below the volcanic belt at depths less than 60 km. Anomalous columnar bodies more than 5 to 7 km across were found linking the volcanoes with the focalmore » layer. There was also a very large concentration of convective heat flow and volatiles in the magma columns feeding the volcanoes. As to the role of different forces in the uprise of magmas into the volcanoes, hydrostatic forces probably predominate in the asthenosphere, supplemented by tectonic pressure in the lithosphere and forces associated with boiling of magmas during release of volatiles in the crust, especially in its upper layers.« less
Moderate-magnitude earthquakes induced by magma reservoir inflation at Kīlauea Volcano, Hawai‘i
Wauthier, Christelle; Roman, Diana C.; Poland, Michael P.
2013-01-01
Although volcano-tectonic (VT) earthquakes often occur in response to magma intrusion, it is rare for them to have magnitudes larger than ~M4. On 24 May 2007, two shallow M4+ earthquakes occurred beneath the upper part of the east rift zone of Kīlauea Volcano, Hawai‘i. An integrated analysis of geodetic, seismic, and field data, together with Coulomb stress modeling, demonstrates that the earthquakes occurred due to strike-slip motion on pre-existing faults that bound Kīlauea Caldera to the southeast and that the pressurization of Kīlauea's summit magma system may have been sufficient to promote faulting. For the first time, we infer a plausible origin to generate rare moderate-magnitude VTs at Kīlauea by reactivation of suitably oriented pre-existing caldera-bounding faults. Rare moderate- to large-magnitude VTs at Kīlauea and other volcanoes can therefore result from reactivation of existing fault planes due to stresses induced by magmatic processes.
Potential hazards from future eruptions of Mount St. Helens Volcano, Washington
Crandell, Dwight Raymond; Mullineaux, Donal Ray
1978-01-01
Mount St. Helens has been more active and more explosive during the last 4,500 years than any other volcano in the conterminous United States. Eruptions of that period repeatedly formed domes, large volumes of pumice, hot pyroclastic flows, and, during the last 2,500 years, lava flows. Some of this activity resulted in mudflows that extended tens of kilometers down the floors of valleys that head at the volcano. This report describes the nature of the phenomena and their threat to people and property; the accompanying maps show areas likely to be affected by future eruptions of Mount St. Helens. Explosive eruptions that produce large volumes of pumice affect large areas because winds can carry the lightweight material hundreds of kilometers from the volcano. Because of prevailing winds, the 180-degree sector east of the volcano will be affected most often and most severely by future eruptions of this kind. However, the pumice from any one eruption will fall in only a small part of that sector. Pyroclastic flows and mudflows also can affect areas far from the volcano, but the areas they affect are smaller because they follow valleys. Mudflows and possibly pyroclastic flows moving rapidly down Swift and Pine Creeks could displace water in Swift Reservoir, which could cause disastrous floods farther downvalley.
Nabro and Mallahle Volcanoes, Eritrea and Ethiopia, SRTM Colored Height and Shaded Relief
NASA Technical Reports Server (NTRS)
2004-01-01
The area known as the Afar Triangle is located at the northern end of the East Africa Rift, where it approaches the southeastern end of the Red Sea and the southwestern end of the Gulf of Aden. The East African Rift, the Red Sea, and the Gulf of Aden are all zones where Earth's crust is pulling apart in a process known as crustal spreading. Their three-way meeting is known as a triple junction, and their spreading creates a triangular topographic depression for which the area was named.
Not surprisingly, the topographic effects of crustal spreading are more dramatic in the Afar Triangle than anywhere else upon Earth's landmasses. The spreading is primarily evident as patterns of numerous tension cracks. But some of these cracks provide conduits for magma to rise to the surface to form volcanoes.Shown here are a few of the volcanoes of the Afar Triangle. The larger two are Nabro Volcano (upper right, in Eritrea) and Mallahle Volcano (lower left, in Ethiopia). Nabro Volcano shows clear evidence of multiple episodes of activity that resulted in a crater in a crater in a crater. Many volcanoes in this area are active, including one nearby that last erupted in 1990.This image was created directly from an SRTM elevation model. A shade image was derived by computing topographic slope in the north-south direction. Northern slopes appear bright and southern slopes appear dark. The shade image was then combined with a color coding of topographic height, with green at the lower elevations, rising through yellow, orange, and red, up to purple at the highest elevations.Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Geospatial-Intelligence Agency (NGA) of the U.S. Department of Defense (DoD), and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.Size: 35.2 kilometers (21.8 miles) by 22.5 kilometers (14.0 miles) Location: 13.3 degrees North latitude, 41.7 degrees East longitude Orientation: North toward the top Image Data: Shaded and colored SRTM elevation model Date Acquired: February 2000Utilizing Instructional Media for Teaching Infrastructure Administration
ERIC Educational Resources Information Center
Fajriah, Ulfah Nur; Churiyah, Madziatul
2016-01-01
This study aims to produce instructional media Corel VideoStudio Pro X7-based on teaching infrastructure administration at class XI of APK in SMKN 1 Ngawi, East Java, Indonesia. This study uses Research and Development research design (R & D) through 10 steps, namely: (1) the potential and problems, (2) data collection, (3) the design of the…
ERIC Educational Resources Information Center
Setyorini, Dyna; Churiyah, Madziatul
2016-01-01
This study aims to produce instructional media of petty cash fund with Borland Delphi 7.0 application in the Finance Administration subject, Managing Petty Cash Fund material in class XII APK in Vocational High School (SMK) Negeri 1 Pasuruan, East Java, Indonesia. This study used "Research and Development" (R&D) design procedures…
Classroom Interaction Strategies Employed by English Teachers at Lower Secondary Schools
ERIC Educational Resources Information Center
Suryati, Nunung
2015-01-01
This article reports a study on teachers' use of interaction strategies in English Language Teaching (ELT) in lower secondary level of education. The study involved eighteen teachers from Lower Secondary Schools in Malang, East Java. Classroom observation was selected as a method in this study by utilizing Self Evaluation Teacher Talk (SETT) as…
ERIC Educational Resources Information Center
Anggrianto, Desi; Churiyah, Madziatul; Arief, Mohammad
2016-01-01
This research was conducted in order to know the effect of Logan Avenue Problem Solving (LAPS)-Heuristic learning model towards critical thinking skills of students of class X Office Administration (APK) in SMK Negeri 1 Ngawi, East Java, Indonesia on material curve and equilibrium of demand and supply, subject Introduction to Economics and…
Pre-, Syn- and Post Eruptive Seismicity of the 2011 Eruption of Nabro Volcano, Eritrea
NASA Astrophysics Data System (ADS)
Goitom, Berhe; Hammond, James; Kendall, Michael; Nowacky, Andy; Keir, Derek; Oppenheimer, Clive; Ogubazghi, Ghebrebrhan; Ayele, Atalay; Ibrahim, Said; Jacques, Eric
2014-05-01
Nabro volcano, located in south-east Eritrea, East Africa, lies at the eastern margin of the Afar Rift and the Danakil Depression. Its tectonic behaviour is controlled by the divergence of the Arabian, Nubian and Somali plates. Nabro volcano was thought to be seismically quiet until it erupted in June 2011 with limited warning. The volcano erupted on June 12, 2011 around 20:32 UTC, following a series of earthquakes on that day that reached a maximum magnitude of 5.8. It is the first recorded eruption of Nabro volcano and only the second in Eritrea, following the Dubbi eruption in 1861. A lava flow emerged from the caldera and travelled about 20 km from the vent and buried settlements in the area. At the time of this eruption there was no seismic network in Eritrea, and hence the volcano was not monitored. In this study we use ten Ethiopian, one Yemeni and one Djibouti stations to investigate the seismicity of the area before, during and after the eruption. Four Eritrean seismic stations deployed in June 2011, four days after the eruption, are also included in the dataset. Travel time picks supplied by colleagues from Djibouti were also incorporated into the dataset. Our analysis covers roughly three months before and after the eruption and shows that Nabro was seismically quiet before the eruption (nine events), with the exception of one major earthquake (4.8 magnitude) that occurred on March 31, 2011. In contrast, the region shows continued seismic activity after the eruption (92 events). During the eruption seismicity levels are high (123 events), with two days particularly active, June 12 and June 17 with 85 and 28 discrete events, respectively. Maximum magnitudes of 5.8 and 5.9 were recorded on these two days. The two days of increased seismicity are consistent with satellite observations of the eruption which show two distinct phases of the eruption. The period between these two phases was dominated by volcanic tremor. The tremor signal lasted for almost one month following the initiation of the eruption. In summary, we have shown that the volcano was relatively quiet before eruption but continued to be seismically active for an extended period of time afterwards.
Developing Regional Tephrostratigraphic Frameworks: Applications and Challenges.
NASA Astrophysics Data System (ADS)
Fontijn, K.; Pyle, D. M.; Smith, V.; Mather, T. A.
2017-12-01
Detailed stratigraphic studies of pyroclastic deposits form arguably the best tool to estimate the frequency and magnitude of explosive eruptions at volcanoes where limited or no historical records exist. As such tephrostratigraphy forms a first-order assessment of potential future eruptive behavior at poorly known volcanoes. Alternations of soils and pyroclastic deposits at proximal to medial distances of the volcano however typically only allow reconstructing eruptive behavior within the Holocene. Moreover, they only tend to preserve relatively large explosive eruptions, of magnitude 3-4 and above, and therefore almost invariably form a biased view of the frequency-magnitude relationships at a particular volcano. Long lacustrine records in medial to distal regions offer significant potential to obtain a more complete view of the explosive eruptive record as they often preserve thin fine-grained tephra deposits representing either small-scale explosive eruptions not preserved on land, or distal ash deposits from large explosive eruptions. Furthermore, these sedimentary records often contain material that can be dated to establish a detailed age-depth model that can be used to date the eruptions and estimate the tempo of activity. In settings where volcanoes and lakes closely co-exist, integrating terrestrial and lacustrine data therefore allows the development of regional-scale tephrostratigraphic frameworks. Such frameworks provide a view of temporal trends in volcanic activity and mid/long-term eruptive rates on a regional scale rather than at the level of an individual volcano, i.e. in interaction with regional tectonic stress regimes. They also highlight the spatial distribution of deposits from large explosive eruptions, allowing improved estimates of magnitudes of individual eruptions as well as of frequency of impact by volcanic ash in specific regions. Provided such tephra horizons are well characterized and dated they can be used as age marker horizons and help fine-tune age models for palaeoenvironmental studies. In this presentation we will highlight a few key examples of both local and regional-scale tephrostratigraphic frameworks in East Africa, Chile and South-East Asia, and discuss the multidisciplinary applications as well as challenges posed by data acquisition.
NASA Technical Reports Server (NTRS)
1999-01-01
The Mars Global Surveyor (MGS) camera captured images of a pit formed when a straight-walled trough collapsed. The heart shaped pit is about 2.3 kilometers (1.4 miles) wide. It is located on the east flank of the Alba Patera volcano in northern Tharsis.
Chemical hazards from acid crater lakes
NASA Astrophysics Data System (ADS)
van Bergen, M. J.; Sumarti, S.; Heikens, A.; Bogaard, T. A.; Hartiyatun, S.
2003-04-01
Acid crater lakes, which are hosted by a considerable number of active volcanoes, form a potential threat for local ecosystems and human health, as they commonly contain large amounts of dissolved chemicals. Subsurface seepage or overflow can lead to severe deterioration of the water quality of rivers and wells, as observations around several of these volcanoes have shown. The Ijen crater lake in East Java (Indonesia) is a striking example, as this reservoir of hyperacid (pH<0.5) sulphate, chloride and fluoride-rich water is the source of a ca. 50 km long acid river that transports substantial quantities of potentially toxic elements. A downstream trend of increasing pH from <1 to 2.5-4 is largely due to dilution with moderately acid springs (pH= ca. 4) and neutral tributaries (pH= ca. 7) inside the Ijen caldera. Geochemical controls that regulate element transport are subject to seasonal fluctuations in rainfall. Long-term monitoring has shown that fluoride levels pose some of the most severe environmental threats. Its concentration decreases from ca. 1300 mg/kg in the lake to ca. 10 mg/kg in a coastal area downstream, where virtually all of the river water is used for irrigating rice fields and other cropland. Apart from serious problems for agriculture, our survey of 55 drinking water wells in the irrigation area shows that 50% contain fluoride above the 1.5 ppm WHO limit, in line with the observation that dental fluorosis is widespread among the ca. 100,000 residents of the area. A conspicuous spatial correlation between fluoride concentrations and the irrigation system suggest that long-term (century) infiltration of irrigation water may have affected the quality of groundwater. Fluorosis is also a problem in some villages within the caldera, where well water sources may have a more direct subsurface connection with the lake system. From our observations we conclude that water-quality monitoring is especially needed for health reasons in volcanic areas where volatile elements, derived from passively degassing magma, are intercepted by (sub) surface water bodies.
Shuttle Earth Views, 1994. Part 3
NASA Technical Reports Server (NTRS)
1995-01-01
In this third part of a four-part video compilation of Space Shuttle Earth views, various geographical areas are shown, including both land and water masses. The views cover South America, Asia (North Vietnam, Laos, Cambodia, China, Malaysia, Thailand, Java, various islands, Burma, Philippines, Taiwan, Guam), New Guinea, Australia, Morocco, Southern Europe (Spain, Portugal, Algeria, Italy, Sicily, Greece, Former Republic of Yugoslavia, Tunisia), and parts of the Middle East (Libya, Saudi Arabia, Egypt, Israel, Jordan, Sinai, Cyprus, Lebanon, Iraq), the Pacific Ocean, the Atlantic Ocean, the Indian Ocean, and the Mediterranean, Dead, Coral, Tyrrhenian, Adriatic, Ionian, Red, South China, Mindanao, Arafura, Sulu, Java, and China Seas. Each film clip has a heading that names the shuttle and the geographical location of the footage.
NASA Astrophysics Data System (ADS)
Sohn, Y. K.
1995-02-01
Detailed mapping of Tok Island, located in the middle of the East Sea (Sea of Japan), along with lithofacies analysis and K-Ar age determinations reveal that the island is of early to late Pliocene age and comprises eight rock units: Trachyte I, Unit P-I, Unit P-II, Trachyandesite (2.7±0.1 Ma), Unit P-III, Trachyte II (2.7±0.1 Ma), Trachyte III (2.5±0.1 Ma) and dikes in ascending stratigraphic order. Trachyte I is a mixture of coherent trachytic lavas and breccias that are interpreted to be subaqueous lavas and related hyaloclastites. Unit P-I comprises massive and inversely graded basaltic breccias which resulted from subaerial gain flows and subaqueous debris flows. A basalt clast from the unit, derived from below Trachyte I, has an age of 4.6±0.4 Ma. Unit P-II is composed of graded and stratified lapilli tuffs with the characteristics of proximal pyroclastic surge deposits. The Trachyandesite is a massive subaerial lava ponded in a volcano-tectonic depression, probably a summit crater. A pyroclastic sequence containing flattened scoria clasts (Unit P-III) and a small volume subaerial lava (Trachyte II) occur above the Trachyandesite, suggesting resumption of pyroclastic activity and lava effusion. Afterwards, shallow intrusion of magma occurred, producing Trachyte III and trachyte dikes. The eight rock units provide an example of the changing eruptive and depositional processes and resultant succession of lithofacies as a seamount builds up above sea level to form an island volcano: Trachyte I represents a wholly subaqueous and effusive stage; Units P-I and P-II represent Surtseyan and Taalian eruptive phases during an explosive transitional (subaqueous to emergent) stage; and the other rock units represent later subaerial effusive and explosive stages. Reconstruction of volcano morphology suggests that the island is a remnant of the south-western crater rim of a volcano the vent of which lies several hundred meters to the north-east.
Hydrocarbon potential assessment of Ngimbang formation, Rihen field of Northeast Java Basin
NASA Astrophysics Data System (ADS)
Pandito, R. H.; Haris, A.; Zainal, R. M.; Riyanto, A.
2017-07-01
The assessment of Ngimbang formation at Rihen field of Northeast Java Basin has been conducted to identify the hydrocarbon potential by analyzing the response of passive seismic on the proven reservoir zone and proposing a tectonic evolution model. In the case of petroleum exploration in Northeast Java basin, the Ngimbang formation cannot be simply overemphasized. East Java Basin has been well known as one of the mature basins producing hydrocarbons in Indonesia. This basin was stratigraphically composed of several formations from the old to the young i.e., the basement, Ngimbang, Kujung, Tuban, Ngerayong, Wonocolo, Kawengan and Lidah formation. All of these formations have proven to become hydrocarbon producer. The Ngrayong formation, which is geologically dominated by channels, has become a production formation. The Kujung formation that has been known with the reef build up has produced more than 102 million barrel of oil. The Ngimbang formation so far has not been comprehensively assessed in term its role as a source rock and a reservoir. In 2013, one exploratory well has been drilled at Ngimbang formation and shown a gas discovery, which is indicated on Drill Stem Test (DST) reading for more than 22 MMSCFD of gas. This discovery opens new prospect in exploring the Ngimbang formation.
Sutton, A.J.; Elias, T.; Gerlach, T.M.; Stokes, J.B.
2001-01-01
Kı̄lauea Volcano, Hawai‘i, currently hosts the longest running SO2 emission-rate data set on the planet, starting with initial surveys done in 1975 by Stoiber and his colleagues. The 17.5-year record of summit emissions, starting in 1979, shows the effects of summit and east rift eruptive processes, which define seven distinctly different periods of SO2 release. Summit emissions jumped nearly 40% with the onset (3 January 1983) of the Pu`u `Ō`ō-Kūpaianaha eruption on the east rift zone (ERZ). Summit SO2 emissions from Kı̄lauea showed a strong positive correlation with short-period, shallow, caldera events, rather than with long-period seismicity as in more silicious systems. This correlation suggests a maturation process in the summit magma-transport system from 1986 through 1993. During a steady-state throughput-equilibrium interval of the summit magma reservoir, integration of summit-caldera and ERZ SO2 emissions reveals an undegassed volume rate of effusion of 2.1×105 m3/d. This value corroborates the volume-rate determined by geophysical methods, demonstrating that, for Kı̄lauea, SO2 emission rates can be used to monitor effusion rate, supporting and supplementing other, more established geophysical methods. For the 17.5 years of continuous emission rate records at Kı̄lauea, the volcano has released 9.7×106 t (metric tonnes) of SO2, 1.7×106 t from the summit and 8.0×106 t from the east rift zone. On an annual basis, the average SO2 release from Kı̄lauea is 4.6×105 t/y, compared to the global annual volcanic emission rate of 1.2×107 t/y.
New Episodes of Volcanism at Kilauea Volcano, Hawaii
NASA Astrophysics Data System (ADS)
Poland, Michael; Miklius, Asta; Orr, Tim; Sutton, Jeff; Thornber, Carl; Wilson, David
2008-01-01
Mid-2007 was a time of intense activity at Kilauea Volcano, Hawaii (see Figure 1). In June, the long-lived Pu`u `Ō`ō-Kupaianaha eruption, a dual-vent system along the east rift zone (ERZ) that has been erupting since 1983 [Heliker et al., 2003], paused due to the outbreak of a new vent farther up the rift (see Figure 2). The Pu`u `Ō`ō vent collapsed following that activity, and the resulting reorganization of the magma plumbing system led to the formation of a second new eruptive vent 2 kilometers downrift of Pu`u `Ō`ō.
Volcaniclastic stratigraphy of Gede volcano in West Java
NASA Astrophysics Data System (ADS)
Belousov, A.; Belousova, M.; Zaennudin, A.; Prambada, O.
2012-12-01
Gede volcano (2958 m a.s.l.) and the adjacent Pangrango volcano (3019 m a.s.l.) form large (base diameter 35 km) volcanic massif 60 km south of Jakarta. While Pangrango has no recorded eruptions, Gede is one of the most active volcanoes in Indonesia: eruptions were reported 26 times starting from 1747 (Petroeschevsky 1943; van Bemmelen 1949). Historic eruptions were mildly explosive (Vulcanian) with at least one lava flow. Modern activity of the volcano includes persistent solfataric activity in the summit crater and periodic seismic swarms - in 1990, 1991, 1992, 1995, 1996, 1997, 2000, 2010, and 2012 (CVGHM). Lands around the Gede-Pangrango massif are densely populated with villages up to 1500-2000 m a.s.l. Higher, the volcano is covered by rain forest of the Gede-Pangrango Natural Park, which is visited every day by numerous tourists who camp in the summit area. We report the results of the detailed reinvestigation of volcaniclastic stratigraphy of Gede volcano. This work has allowed us to obtain 24 new radiocarbon dates for the area. As a result the timing and character of activity of Gede in Holocene has been revealed. The edifice of Gede volcano consists of main stratocone (Gumuruh) with 1.8 km-wide summit caldera; intra-caldera lava cone (Gede proper) with a 900 m wide summit crater, having 2 breaches toward N-NE; and intra-crater infill (lava dome/flow capped with 3 small craters surrounded by pyroclastic aprons). The Gumuruh edifice, composed mostly of lava flows, comprises more than 90% of the total volume of the volcano. Deep weathering of rocks and thick (2-4 m) red laterite soil covering Gumuruh indicates its very old age. Attempts to get 14C dates in 4 different locations of Gumuruh (including a large debris avalanche deposit on its SE foot) provided ages older than 45,000 years - beyond the limit for 14C dating. Outside the summit caldera, notable volumes of fresh, 14C datable volcaniclastic deposits were found only in the NNE sector of the volcano where they form a fan below the breached summit crater. The fan is composed of pyroclastic flows (PFs) and lahars of Holocene age that were deposited in 4 major stages: ~ 10 000 BP - voluminous PF of black scoria; ~ 4000 BP - two PFs of mingled grey/black scoria; ~ 1200 BP - multiple voluminous PFs strongly enriched by accidental material; ~ 1000 BP - a small scale debris avalanche (breaching of the crater wall) followed by small scale PFs of black scoria. The intra-crater lava dome/flow was erupted in 1840 (Petroeschevsky, 1943). Three small craters on the top of the lava dome were formed by multiple post-1840 small-scale phreatomagmatic eruptions. Ejected pyroclasts are lithic hydrothermally altered material containing a few breadcrust bombs. The Holocene eruptive history of Gede indicates that the volcano can produce moderately strong (VEI 3-4) explosive eruptions and send PFs and lahars onto the NE foot of the volcano.
Venus - Comparison of Venera and Magellan Resolutions
1996-09-26
These radar images show an identical area on Venus (centered at 110 degrees longitude and 64 degrees north latitude) as imaged by the U.S. NASA Magellan spacecraft in 1991 (left) and the U.S.S.R. Venera 15/16 spacecraft in the early 1980's (right). Illumination is from the left (or west) in the Magellan image (left) and from the right (or east) in the Venera image (right). Differences in apparent shading in the images are due to differences in the two radar imaging systems. Prior to Magellan, the Venera 15/16 data was the best available for scientists studying Venus. Much greater detail is visible in the Magellan image owing to the greater resolution of the Magellan radar system. In the area seen here, approximately 200 small volcanoes, ranging in diameter from 2 to 12 kilometers (1.2 to 7.4 miles) can be identified. These volcanoes were first identified as small hills in Venera 15/16 images and were predicted to be shield-type volcanoes constructed mainly from eruptions of fluid lava flows similar to those that produce the Hawaiian Islands and sea floor volcanoes - a prediction that was confirmed by Magellan. These small shield-type volcanoes are the most abundant geologic feature on the surface of Venus, believed to number in the hundreds of thousands, perhaps millions, and are important evidence in understanding the geologic evolution of the planet. The only other planet in our Solar System with this large number of volcanoes is Earth. Clearly visible in the Magellan image are details of volcano morphology, such as variation in slope, the occurrence and size range of summit craters, and geologic age relationships between adjacent volcanoes, as well as additional volcanoes that were not identifiable in the Venera image. http://photojournal.jpl.nasa.gov/catalog/PIA00465
Long-term dynamics of hawaiian volcanoes inferred by large-scale relative relocations of earthquakes
NASA Astrophysics Data System (ADS)
Got, J.-L.; Okubo, P.
2003-04-01
We investigated the microseismicity recorded in an active volcano to infer information concerning the volcano structure and long-term dynamics, by using relative relocations and focal mechanisms of microearthquakes. 32000 earthquakes of Mauna Loa and Kilauea volcanoes were recorded by more than 8 stations of the Hawaiian Volcano Observatory seismic network between 1988 and 1999. We studied 17000 of these events and relocated more than 70% with an accuracy ranging from 10 to 500 meters. About 75% of these relocated events are located in the vicinity of subhorizontal decollement planes, at 8 to 11 km depth. However, the striking features revealed by these relocation results are steep south-east dipping fault planes working as reverse faults, clearly located below the decollement plane and which intersect it. If this decollement plane coincides with the pre-Mauna Loa seafloor, as hypothesized by numerous authors, such reverse faults rupture the pre-Mauna Loa oceanic crust. The weight of the volcano and pressure in the magma storage system are possible causes of these ruptures, fully compatible with the local stress tensor computed by Gillard et al. (1996). Reverse faults are suspected of producing scarps revealed by km-long horizontal slip-perpendicular lineations along the decollement surface, and therefore large-scale roughness, asperities and normal stress variations. These are capable of generating stick-slip, large magnitude earthquakes, the spatial microseismic pattern observed in the south flank of Kilauea volcano, and Hilina-type instabilities. Ruptures intersecting the decollement surface, causing its large-scale roughness, may be an important parameter controlling the growth of Hawaiian volcanoes. Are there more or less rough decollement planes existing near the base of other volcanoes, such as Piton de la Fournaise or Etna, and able to explain part of their deformation and seismicity ?
Monitoring volcanic thermal activity by Robust Satellite Techniques: achievements and perspectives
NASA Astrophysics Data System (ADS)
Tramutoli, V.; Marchese, F.; Mazzeo, G.; Pergola, N.
2009-12-01
Satellite data have been increasingly used in last decades to study active volcanoes and to monitor thermal activity variation in space-time domain. Several satellite techniques and original methods have been developed and tested, devoted to hotspot detection and thermal monitoring. Among them, a multi-temporal approach, named RST (Robust Satellite Techniques), has shown high performances in detecting hotspots, with a low false positive rate under different observational and atmospheric conditions, providing also a potential toward low-level thermal anomalies which may announce incoming eruptions. As the RST scheme is intrinsically exportable on different geographic areas and satellite sensors, it has been applied and tested on a number of volcanoes and in different environmental conditions. This work presents major results and outcomes of studies carried out on Etna and Stromboli (Italy), Merapi (Java Indonesia), Asamayama (Japan), Jebel Al Tair (Yemen) by using different satellite systems and sensors (e.g. NOAA-AVHRR, EOS-MODIS, MSG-SEVIRI). Performances on hotspot detection, early warning and real-time monitoring, together with capabilities in possible thermal precursor identification, will be presented and discussed.
Dvorak, J.J.; Okamura, A.T.
1985-01-01
During January-August 1983, a network of telemetered tiltmeters and seismometers recorded detailed temporal changes associated with seven major eruptive phases along the east rift of Kilauea Volcano, Hawaii. Each eruptive phase was accompanied by subsidence of the summit region and followed by reinflation of the summit to approximately the same level before renewal of eruptive activity. The cyclic summit tilt pattern and the absence of measurable tilt changes near the eruptive site suggest that conditions in the summit region controlled the timing of the last six eruptive phases. The rate of summit subsidence progressively increased from one eruptive phase to the next during the last six phases; the amplitude of harmonic tremor increased during the last four phases. The increases in subsidence rate and in tremor amplitude suggest that frequent periods of magma movement have reduced the flow resistance of the conduit system between the summit and the rift zone. ?? 1985.
New geophysical views of Mt.Melbourne Volcano (East Antarctica)
NASA Astrophysics Data System (ADS)
Armadillo, E.; Gambetta, M.; Ferraccioli, F.; Corr, H.; Bozzo, E.
2009-05-01
Mt. Melbourne volcano is located along the transition between the Transantarctic Mountains and the West Antarctic Rift System. Recent volcanic activity is suggested by the occurrence of blankets of pyroclastic pumice and scoria fall around the eastern and southern flanks of Mt Melbourne and by pyroclastic layers interbedded with the summit snows. Geothermal activity in the crater area of Mount Melbourne may be linked to the intrusion of dykes within the last 200 years. Geophysical networks suggest that Mount Melbourne is a quiescent volcano, possibly characterised by slow internal dynamics. During the 2002-2003 Italian Antarctic campaign a high-resolution aeromagnetic survey was performed within the TIMM (Tectonics and Interior of Mt. Melbourne area) project. This helicopter-borne survey was flown at low-altitude and in drape-mode configuration (305 m above terrain) with a line separation less than 500 m. Our new high-resolution magnetic maps reveal the largely ice-covered magmatic and tectonic patters in the Mt. Melbourne volcano area. Additionally, in the frame of the UK-Italian ISODYN-WISE project (2005-06), an airborne ice-sounding radar survey was flown. We combine the sub-ice topography with images and models of the interior of Mt. Melbourne volcano, as derived from the high resolution aeromagnetic data and land gravity data. Our new geophysical maps and models also provide a new tool to study the regional setting of the volcano. In particular we re-assess whether there is geophysical evidence for coupling between strike-slip faulting, the Terror Rift, and Mount Melbourne volcano.
ERIC Educational Resources Information Center
Sudikan, Setya Yuwana
2017-01-01
Learning problem of "unggah-ungguh basa", is very complicated. It is needed reorientation and re-setting the approaches, strategies, methods, techniques, and learning contents that can give rise to a new model of learning of "unggah-ungguh basa" oriented to the character formation of children, especially in Jawa Timur. In…
ERIC Educational Resources Information Center
Iftanti, Erna
2015-01-01
This article describes English as Foreign Language (EFL) learners' perception on an inspiring English lecturer. This study was done through a survey to 230 EFL learners of State Islamic Institute of Tulungagung, a small district in East Java-Indonesia, in order to get underlying basis of making a decision on learning policies for the sake of…
ERIC Educational Resources Information Center
Yuliatia, Yayuk; Iskaskar, Riyanti
2016-01-01
Food Barn Village Programme is one of the government's efforts in achieving household food security which includes four components. The purpose of this study was to develop a strategy to increase women's participation in the Food Barn Village Programme. This research was conducted in three villages in the district of Malang, namely: Village…
ERIC Educational Resources Information Center
Listyawardani, Dwi; Hariastuti, Iswari
2016-01-01
Systems thinking is needed due to the growing complexity of the problems faced family planning field workers in the external environment that is constantly changing. System thinking ability could not be separated from efforts to develop learning for the workers, both learning at the individual, group, or organization level. The design of the study…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-25
... MADJID, Afif; a.k.a. BIN ABDUL MAJID, Afif); DOB 01 Jan 1955; POB Pacitan, East Java, Indonesia; nationality Indonesia (individual) [SDGT]. 2. SUNGKAR, Said Ahmad (a.k.a. SUNGKAR, Sahid Ahmad; a.k.a. SUNGKAR, Said); DOB 25 Oct 1961; nationality Indonesia; Passport U337061 (Indonesia) issued 17 Dec 2009 expires...
ERIC Educational Resources Information Center
Prianto, Agus
2016-01-01
Extracurricular activities are those that fall outside the realm of the normal curriculum of school. Extracurricular activities exist for all students. And generally, benefits of extracurricular activities shall be as follows: learning time management and prioritizing; getting involved in diverse interests; learning about long term commitments;…
Setiadi, Adji P; Wibowo, Yosi; Setiawan, Eko; Presley, Bobby; Mulyono, Ika; Wardhani, Ari S; Sunderland, Bruce
2018-05-24
To explore pharmacist/pharmacy staff trainers' perspectives on conducting community-based training to promote responsible self-medication, and to evaluate knowledge gained among community representatives participating in the training. Training was conducted in four districts/cities in East Java, Indonesia in 2016. A pre-test/post-test study was used to evaluate the knowledge of 129 community representatives (participants) before/after the training; pre-test and post-test scores as well as absolute gain were determined. Four focus group discussions with 20 pharmacist/pharmacy staff (trainers) were conducted after the training, and the data were thematically analysed. Overall mean test scores for community representatives significantly improved from 14.11 to 15.70 after the training (P < 0.001). The average total absolute gain was 1.85 (95% CI 1.29 to 2.39). To reach local communities, trainers suggested improvements to the content and structure of the module, training aids, trainer competency, approach and time allocation. Community-based training provides a potential strategy to improve community knowledge of medications. Findings from this study should inform strategies for a broader uptake amongst local communities in Indonesia. © 2018 Royal Pharmaceutical Society.
NASA Astrophysics Data System (ADS)
Iranawati, F.; Muhammad, F.; Fajri, H.; Kasitowati, R. D.; Arifin, S.
2018-04-01
Free radicals are highly reactive molecules due to unpaired electron in their outer orbital. Excess of free radicals inside human body as consequences of environmental exposure such cigarette smoke may lead to degenerative diseases such as diabetic, cancer etc. This negative effect can be limited by the utilization of natural antioxidant substances, especially produced from plant. Avicennia alba dan A. marina are mangrove species that widely distributed in Indonesia and are expected potential as antioxidant. The objective of this study is to evaluated Avicennia alba dan A. marina potency as antioxidant performed with DPPD (1,1-diphenyl-β-picryl hydrazyl) method. Leaf and bark of Avicennia alba dan A. marina were collected from Nguling District, Pasuruan, East Java. Results shows that based on 50% inhibition Concentration (IC50), Avicennia alba leaf were categorized had a very high antioxidant potential (IC50 14,85 ppm) whereas the bark were categorized had a weak antioxidant potential IC50 167,17 ppm). For A. marina, the leaf were categorized had a moderate antioxidant (IC50 123,23 ppm) whereas the bark were categorized had a weak antioxidant potential (IC50 198,15 ppm).
The effect of road characteristics on motorcycle accident in Batu east Java Indonesia
NASA Astrophysics Data System (ADS)
Abusini, Sobri
2013-09-01
Safe of transportation on road is global problem with not only transportation problem, but also social teritory problem in sosial life. WHO pay attention to safe transportation on road to decide healthy day in the world 2004 with caption: Road Safety is no Accident. WHO is clariafy that road accident level in the world have to reach 1.2 mellion victim death and over 30 mellion injuries every year. As much 85% sacrifice death are accident in develop state, where vehicle number only 32% from vehicle number in the world. That becouse as the objective is to decide influence road charakteristics geometrics for motorcycle accident in Batu East Java Indonesia. Using some statistical analysis it is found that the best-fit motorcycle accident model is: Acc = 0,009F0,703exp(-0,334SW-0,361G+0.077S) Where: Acc = number of accident, F = Flow, pcu/hr, SW = shoulder width (m), S = speed, km/hr, G = Gradient (0,1) The model shows that the affecting factors are flow, shoulder width and speed, therefore local government should improve some related factor (flow, shoulder width, Gradient and speed) that can reduce the number of motorcycle accident at crossing road in Batu.
Magnetic properties of Surabaya river sediments, East Java, Indonesia
NASA Astrophysics Data System (ADS)
Mariyanto, Bijaksana, Satria
2017-07-01
Surabaya river is one of urban rivers in East Java Province, Indonesia that is a part of Brantas river that flows in four urban and industrial cities of Mojokerto, Gresik, Sidoarjo, and Surabaya. The urban populations and industries along the river pose serious threat to the river mainly for their anthropogenic pollutants. This study aims to characterize the magnetic properties of sediments in various locations along Surabaya river and correlate these magnetic properties to the level of pollution along the river. Samples are taken and measured through a series of magnetic measurements. The mass-specific magnetic susceptibility of sediments ranges from 259.4 to 1134.8 × 10-8 m3kg-1. The magnetic minerals are predominantly PSD to MD magnetite with the grain size range from 6 to 14 μm. The mass-specific magnetic susceptibility tends to decreases downstream as accumulation of magnetic minerals in sediments is affected not only by the amount of household and industrial wastes but also by sediment dredging, construction of embankments, and extensive erosion arround the river. Sediments located in the industrial zone on the upstream area tend to have higher mass-specific magnetic susceptibility than in the non-industrial zones on the downstream area.
NASA Astrophysics Data System (ADS)
Sirait, M.
2018-01-01
The aim of this research is to conduct cleaner production options for improving the environmental performance during the production of batik industry, the case of UKM batik, Malang, East Java. Batik industry is one of small and medium textile industry which has contribution to economic growth in Malang. However, during production the batik, it generates wastewater that has potential to decrease the environmental performance. Wastewater from Celaket batik industry has BOD, COD, TSS, and pH level is far larger than the threshold of water quality standard as a result of use chemical substance during the dyes processing. In order to prevent generating wastewater, this study utilized cleaner production options, such as substitution of input material.Substitution of input material for dyes process was implemented by replacement chemical dyes (e.g.indigosol, nafthol, rapid) with natural dyes (e.g. Indigofero Tintoria). Modifying of technology/equipment was conducted by developing wastewater treatment equipment to reduce waste of batik production. The implementation of this strategy was carried out by changing input material from chemical dyes with natural dyes. The CP uptake could reduce significantly the environmental impact in term of reduction of COD, BOD, and TSS.
Propensity score matching of the gymnastics for diabetes mellitus using logistic regression
NASA Astrophysics Data System (ADS)
Otok, Bambang Widjanarko; Aisyah, Amalia; Purhadi, Andari, Shofi
2017-12-01
Diabetes Mellitus (DM) is a group of metabolic diseases with characteristics shows an abnormal blood glucose level occurring due to pancreatic insulin deficiency, decreased insulin effectiveness or both. The report from the ministry of health shows that DMs prevalence data of East Java province is 2.1%, while the DMs prevalence of Indonesia is only 1,5%. Given the high cases of DM in East Java, it needs the preventive action to control factors causing the complication of DM. This study aims to determine the combination factors causing the complication of DM to reduce the bias by confounding variables using Propensity Score Matching (PSM) with the method of propensity score estimation is binary logistic regression. The data used in this study is the medical record from As-Shafa clinic consisting of 6 covariates and health complication as response variable. The result of PSM analysis showed that there are 22 of 126 DMs patients attending gymnastics paired with patients who didnt attend to diabetes gymnastics. The Average Treatment of Treated (ATT) estimation results showed that the more patients who didnt attend to gymnastics, the more likely the risk for the patients having DMs complications.
NASA Astrophysics Data System (ADS)
Purwantiningrum, I.; Widyhastuty, W.; Christian, J.; Sari, N.
2018-03-01
Enhancing food safety in developing countries, such as Indonesia, poses more challenges, especially those of the small- and medium-scale. Various food safety systems are available and readily implemented in the food industry. However, to ensure the effectiveness of such systems, pre-requisite programs should be applied prior to the implementation of food safety system. One of the most acknowledged pre-requisite program is Good Manufacturing Practices (GMP). The aim of this study is to assess the GMP compliance of some small-scale food companies in East Java. Three types of traditional food product were selected, include tempe chips, palm sugar, and instant herbal drink. A survey involving three companies for each type of traditional food was conducted. Data was obtained through observation and assessment based on tabulated criteria in GMP criteria. In essential, the result revealed the compliment level of the food companies being surveyed. There was different level of compliment between each type of the food industry, where the palm sugar industry had the lowest level of compliment compared to the other two. This difference is due to the food safety awareness, social and cultural influences, and also knowledge on food safety and hygiene practice.
NASA Astrophysics Data System (ADS)
Daud, Yunus; Rosid, Syamsu; Fahmi, Fikri; Yunus, Faris Maulana; Muflihendri, Reza
2018-02-01
Ijen geothermal area is high-temperature geothermal system located in Bondowoso regency, East Java. It is categorized as caldera-hosted geothermal system which is covered by quaternary andesitic volcanic rocks with steep topography at the surrounding. Several surface thermal manifestations are found, such as altered rocks near Mt. Kukusan and a group of Blawan hotsprings in the northern part of the caldera. Geomagnetic survey was conducted at 72 stations which is distributed inside the caldera to delineate the existence of hydrothermal activity. Magnetic anomaly was obtained by reducing total magnetic measured on the field by IGRF and diurnal variation. Reduction to pole (RTP) method was applied with geomagnetic inclination of about -32°. In general, the result shows that high magnetic anomaly is distributed at the boundary of study area, while low magnetic anomaly is observed in the centre. The low anomaly indicates demagnetized rock that probably caused by hydrothermal activity. It has a good correlation with surface alteration observed close to Mt. Kukusan as well as high temperature reservoir drilled in the centre of caldera. Accordingly, the low magnetic anomaly also presents the possibility of geothermal reservoir in Ijen geothermal area.
Design of Stand-Alone Hybrid Power Generation System at Brumbun Beach Tulungagung East Java
NASA Astrophysics Data System (ADS)
Rahmat, A. N.; Hidayat, M. N.; Ronilaya, F.; Setiawan, A.
2018-04-01
Indonesian government insists to optimize the use of renewable energy resources in electricity generation. One of the efforts is launching Independent Energy Village plan. This program aims to fulfill the need of electricity for isolated or remote villages in Indonesia. In order to support the penetration of renewable energy resources in electricity generation, a hybrid power generation system is developed. The simulation in this research is based on the availability of renewable energy resources in Brumbun beach, Tulungagung, East Java. Initially, the electricity was supplied through stand-alone electricity generations which are installed at each house. Hence, the use of electricity between 5 p.m. – 9 p.m. requires high operational costs. Based on the problem above, this research is conducted to design a stand-alone hybrid electricity generation system, which may consist of diesel, wind, and photovoltaic. The design is done by using HOMER software to optimize the use of electricity from renewable resources and to reduce the operation of diesel generation. The combination of renewable energy resources in electricity generation resulted in NPC of 44.680, COE of 0,268, and CO2 emissions of 0,038 % much lower than the use of diesel generator only.
NASA Astrophysics Data System (ADS)
Armono, H. D.; Mahaputra, B. G.; Zikra, M.
2018-03-01
Floating cages is one of the methods of fish farming (aqua culture) that can be developed at rivers, lakes or seas. To determine a proper location for floating cages, there are some requirements that need to be fulfilled to maintain sustainibility of floating cages. Those requirements are the quality of the environment. This paper will discuss the selection of best location for aquaculture activities using Weighted Overlay method in the Geographical Information System, based on the the concentration of chlorophyll-a, sea surface temperature presented by Aqua MODIS Level 1b satellite images. The satellite data will be associated with the measured field data on March and October 2016. The study take place on Prigi Bay, at Trenggalek Regency, East Java. Based on spatial analysis in the Geographical Information System, the Prigi bay generally suitable for aquaculture activities using floating net cages. The result of Weighted Overlay combinations in both periods showed a mean score of 2.18 of 3 where 8.33 km2 (23.13% of the water area) considered as "very suitable" and 27.67 km2 (76.87% of water area) considered "suitable".
NASA Astrophysics Data System (ADS)
Svensen, Henrik; Mazzini, Adriano; Planke, Sverre; Hadi, Soffian
2016-04-01
The Lusi eruption started in northeast Java, Indonesia, on May 29th 2006, and it has been erupting rocks, mud, water, and gas ever since. We have been doing field work and research on Lusi ever since the eruption commenced. This work was initially motivated from studying the initiation of a mud volcano. However, the longevity of the eruption has made it possible to describe and monitor the lifespan of this unique piercement structure. . One of the first-order questions regarding the eruption is how it should be classified and if there are any other modern or fossil analogues that can place Lusi in a relevant geological context. During the initial stages of eruption, Lusi was classified as a mud volcano, but following geochemical studies the eruption did not show the typical CH4-dominated gas composition of other mud volcanoes and the temperature was also too high. Moreover, mud volcano eruptions normally last a few days, but Lusi never stopped during the past decade. In particular, the crater fluid geochemistry suggests a connection to the neighboring volcanic complex. Lusi represent a sedimentary hosted hydrothermal system. This opens up new possibilities for understanding fossil hydrothermal systems in sedimentary basins, such as hydrothermal vent complexes and breccia-pipes found in sedimentary basins affected by the formation of Large igneous provinces. We will present examples from the Karoo Basin (South Africa) and the Vøring Basin (offshore Norway) and discuss how Lusi can be used to refine existing formation models. Finally, by comparing Lusi to fossil hydrothermal systems we may get insight into the processes operating at depth where the Lusi system interacts with the igneous rocks of the neighbouring volcanic arc.
Real-time source deformation modeling through GNSS permanent stations at Merapi volcano (Indonesia
NASA Astrophysics Data System (ADS)
Beauducel, F.; Nurnaning, A.; Iguchi, M.; Fahmi, A. A.; Nandaka, M. A.; Sumarti, S.; Subandriyo, S.; Metaxian, J. P.
2014-12-01
Mt. Merapi (Java, Indonesia) is one of the most active and dangerous volcano in the world. A first GPS repetition network was setup and periodically measured since 1993, allowing detecting a deep magma reservoir, quantifying magma flux in conduit and identifying shallow discontinuities around the former crater (Beauducel and Cornet, 1999;Beauducel et al., 2000, 2006). After the 2010 centennial eruption, when this network was almost completely destroyed, Indonesian and Japanese teams installed a new continuous GPS network for monitoring purpose (Iguchi et al., 2011), consisting of 3 stations located at the volcano flanks, plus a reference station at the Yogyakarta Observatory (BPPTKG).In the framework of DOMERAPI project (2013-2016) we have completed this network with 5 additional stations, which are located on the summit area and volcano surrounding. The new stations are 1-Hz sampling, GNSS (GPS + GLONASS) receivers, and near real-time data streaming to the Observatory. An automatic processing has been developed and included in the WEBOBS system (Beauducel et al., 2010) based on GIPSY software computing precise daily moving solutions every hour, and for different time scales (2 months, 1 and 5 years), time series and velocity vectors. A real-time source modeling estimation has also been implemented. It uses the depth-varying point source solution (Mogi, 1958; Williams and Wadge, 1998) in a systematic inverse problem model exploration that displays location, volume variation and 3-D probability map.The operational system should be able to better detect and estimate the location and volume variations of possible magma sources, and to follow magma transfer towards the surface. This should help monitoring and contribute to decision making during future unrest or eruption.
NASA Astrophysics Data System (ADS)
Hutchison, William; Pyle, David M.; Mather, Tamsin A.; Yirgu, Gezahegn; Biggs, Juliet; Cohen, Benjamin E.; Barfod, Dan N.; Lewi, Elias
2016-12-01
The silicic peralkaline volcanoes of the East African Rift are some of the least studied volcanoes on Earth. Here we bring together new constraints from fieldwork, remote sensing, geochronology and geochemistry to present the first detailed account of the eruptive history of Aluto, a restless silicic volcano located in a densely populated section of the Main Ethiopian Rift. Prior to the growth of the Aluto volcanic complex (before 500 ka) the region was characterized by a significant period of fault development and mafic fissure eruptions. The earliest volcanism at Aluto built up a trachytic complex over 8 km in diameter. Aluto then underwent large-volume ignimbrite eruptions at 316 ± 19 ka and 306 ± 12 ka developing a 42 km2 collapse structure. After a hiatus of 250 ka, a phase of post-caldera volcanism initiated at 55 ± 19 ka and the most recent eruption of Aluto has a radiocarbon age of 0.40 ± 0.05 cal. ka BP. During this post-caldera phase highly-evolved peralkaline rhyolite lavas, ignimbrites and pumice fall deposits have erupted from vents across the complex. Geochemical modelling is consistent with rhyolite genesis from protracted fractionation (> 80%) of basalt that is compositionally similar to rift-related basalts found east of the complex. Based on the style and volume of recent eruptions we suggest that silicic eruptions occur at an average rate of 1 per 1000 years, and that future eruptions of Aluto will involve explosive emplacement of localised pumice cones and effusive obsidian coulees of volumes in the range 1-100 × 106 m3.
Chronology and impact of the 2011 Puyehue-Cordón Caulle eruption, Chile
NASA Astrophysics Data System (ADS)
Elissondo, M.; Baumann, V.; Bonadonna, C.; Pistolesi, M.; Cioni, R.; Bertagnini, A.; Biass, S.; Herrero, J. C.; Gonzalez, R.
2015-09-01
We present a detailed chronological reconstruction of the 2011 eruption of Puyehue-Cordón Caulle volcano (Chile) based on information derived from newspapers, scientific reports and satellite images. Chronology of associated volcanic processes and their local and regional effects (i.e. precursory activity, tephra fallout, lahars, pyroclastic density currents, lava flows) are also presented. The eruption had a severe impact on the ecosystem and on various economic sectors, including aviation, tourism, agriculture, and fishing industry. Urban areas and critical infrastructures, such as airports, hospitals and roads, were also impacted. The concentration of PM10 (Particulate Matter ≤ 10 μm) was measured during and after the eruption, showing that maximum safety threshold levels of daily and annual exposures were surpassed in several occasions. Probabilistic analysis of atmospheric and eruptive conditions have shown that the main direction of dispersal is directly towards east of the volcano and that the climactic phase of the eruption, dispersed toward south-east, has a probability of occurrence within 1 %. The management of the crisis, including evacuation of people, is discussed, as well as the comparison with the impact associated with other recent eruptions located in similar areas and having similar characteristics (i.e. Quizapu, Hudson, and Chaitén volcanoes). This comparison shows that the regions downwind and very close to the erupting volcanoes suffered very similar problems, without a clear relation with the intensity of the eruption (e.g. health problems, damage to vegetation, death of animals, roof collapse, air traffic disruptions, road closure, lahars and flooding). This suggests that a detailed collection of impact data can be largely beneficial for the development of plans for the management of an eruptive crisis and the mitigation of associated risk of the Andean region.
NASA Technical Reports Server (NTRS)
2007-01-01
Nevado del Huila Volcano in Colombia is actually a volcanic chain running north to south, capped by a glacier. With peaks ranging in height from 2,600 to 5,780 meters (8,530 to 18,960 feet), Nevado del Huila is a stratovolcano composed of alternating layers of hardened lava, solidified ash, and volcanic rocks. Its first recorded eruption occurred in the mid-sixteenth century. The long-dormant volcano erupted again in mid-April 2007. A few months before the eruption, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite captured this image of Nevado del Huila, on February 23, 2007. In this image, the bright white area just east of the central summit is ice. Immediately west of the summit are bare rocks, appearing as blue-gray. West of those rocks, white reappears, but this patch of white results from clouds hovering in the nearby valley. In the east, the colors turn to brown (indicating bare rock) and bright green (indicating vegetation). ASTER photographed Nevado del Huila near the end of a long phase of quietude. On April 17, 2007, local authorities recorded seismic activity associated with rock fracturing on the volcano's central summit, according to the ReliefWeb Website. Activity intensified the following day with an eruption and mudflows, forcing thousands of nearby residents to evacuate. As the Associated Press reported, the eruption caused avalanches and floods that wiped away both houses and bridges. It marked the volcano's first recorded eruption since the Spanish colonized the area five centuries earlier. NASA image created by Jesse Allen, using data provided courtesy of the NASA/GSFC/MITI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team.
Earth Observation taken by the STS-125 Crew
2009-05-13
S125-E-006569 (13 May 2009) --- Hawaiian vog from Kilauea volcano, on the island of Hawaii, has been erupting continuously since 1983. This image, taken by the crew of Space Shuttle Atlantis (after completing the capture of the Hubble Space Telescope), shows the volcanic plumes from Kilauea rising up from Halema`uma`u Crater and along the coastline from lava flows entering the ocean from the East rift zone. The volcanic activity has created a blanket of volcanic fog, called vog that envelops the island. The Hawaii Volcano Observatory (HVO) maintains a website (including webcams) that continuously monitors and updates reports on the volcanic activity. Recent maps indicate expanded lava coverage along the coastal plain. In addition, Hawaii?s Department of Health maintains daily vog alerts, and publishes advisories for vog conditions around the ?big island? of Hawaii and the state. When this image was acquired, the region west of Hawaii Volcanoes National Park (downwind from the coastal plumes) had a vog advisory for people with respiratory sensitivities. The Volcano Observatory also reported that ?Lava from east rift zone vents continues to flow through tubes to the coast and is entering the ocean at two locations west of Kalapana. Sulfur dioxide emission rates from the Halema`uma`u and Pu`u `O`o vents remain elevated. Sulfur dioxide emission rates remain elevated and variable; the most recent rate measurement was 1,200 tonnes/day on May 12, compared to the 2003-2007 average rate of 140 tonnes/day. Small amounts of mostly ash-sized tephra continue to be produced consisting mostly of Pele's hair -- irregular pieces of vesicular glass -- and a few hollow spherules.?
McGee, Kenneth A.; Elias, Tamar; Sutton, A. Jefferson; Doukas, Michael P.; Zemek, Peter G.; Gerlach, Terrence M.
2005-01-01
We report the results of a set of measurements of volcanic gases on two small ground level plumes in the vicinity of Pu`u `O`o cone on the middle East Rift Zone (ERZ) of Kilauea volcano, Hawai`i on 15 June 2001 using open-path Fourier transform infrared (FTIR) spectroscopy. The work was carried out as a reconnaissance survey to assess the monitoring and research value of FTIR measurements at this volcano. Despite representing emissions of residual volatiles from lava that has undergone prior degassing, the plumes contained detectable amounts of CO2, CO, SO2, HCl, HF and SiF4. Various processes, including subsurface cooling, condensation of water in the atmospheric plume, oxidation, dissolution in water, and reactions with wall rocks at plume vents affect the abundance of these gases. Low concentrations of volcanic CO2 measured against a high ambient background are not well constrained by FTIR spectroscopy. Although there appear to be some differences between these gases and Pu`u `O`o source gases, ratios of HCl/SO2, HF/SO2 and CO/SO2 determined by FTIR measurements of these two small plumes compare reasonably well with earlier published analyses of ERZ vent samples. The measurements yielded emission rate estimates of 4, 11 and 4 t d-1
Space Radar Image of Maui, Hawaii
NASA Technical Reports Server (NTRS)
1994-01-01
This spaceborne radar image shows the 'Valley Island' of Maui, Hawaii. The cloud-penetrating capabilities of radar provide a rare view of many parts of the island, since the higher elevations are frequently shrouded in clouds. The light blue and yellow areas in the lowlands near the center are sugar cane fields. The three major population centers, Lahaina on the left at the western tip of island, Wailuku left of center, and Kihei in the lower center appear as small yellow, white or purple mottled areas. West Maui volcano, in the lower left, is 1800 meters high (5900 feet) and is considered extinct. The entire eastern half of the island consists of East Maui volcano, which rises to an elevation of 3200 meters (10,500 feet) and features a spectacular crater called Haleakala at its summit. Haleakala Crater was produced by erosion during previous ice ages rather than by volcanic activity, although relatively recent small eruptions have produced the numerous volcanic cones and lava flows that can be seen on the floor of the crater. The most recent eruption took place near the coast at the southwestern end of East Maui volcano in the late 1700s. Such a time frame indicates that East Maui should be considered a dormant, rather than an extinct volcano. A new eruption is therefore possible in the next few hundred years. The multi-wavelength capability of the SIR-C radar also permits differences in the vegetation cover on the middle flanks of East Maui to be identified. Rain forests appear in yellow, while grassland is shown in dark green, pink and blue. Radar images such as this one are being used by scientists to understand volcanic processes and to assess potential threats that future activity may pose to local populations. This image was acquired by Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour on April 16, 1994. The image is 73.7 kilometers by 48.7 kilometers (45.7 miles by 30.2 miles) and is centered at 20.8 degrees North latitude, 156.4 degrees West longitude. North is toward the upper left. The colors are assigned to different radar frequencies and polarizations of the radar as follows: red is L-band, horizontally transmitted and received; green is C-band, horizontally transmitted and received; and blue is the difference of the C-band and L-band channels. SIR-C/X-SAR, a joint mission of the German, Italian, and United States space agencies, is part of NASA's Mission to Planet Earth.
NASA Astrophysics Data System (ADS)
Park, S. H.; Langmuir, C. H.; Scott, S. R.; Sims, K. W. W.; Lin, J.; Kim, S. S.; Blichert-Toft, J.; Choi, H.; Yang, Y. S.; Michael, P. J.
2017-12-01
Earth's upper mantle is characterized by Indian- and Pacific-type domains with distinctive isotope characteristics. The boundary between these two mantle regions has been hypothesized to be located at the Australian-Antarctic-Discordance (AAD), where regions west and east of the AAD are Indian- and Pacific-type, respectively. It was further posited that the Pacific mantle feeds into the Indian mantle as the boundary is moving westward. These scenarios have important implications for the dynamics of mantle convection in the area. In the present model, regions east of the AAD are assumed to be entirely Pacific-type mantle, but our recent recovery of basalts from a 2,000-km sampling gap along the Australian-Antarctic Ridge (AAR), located east of the AAD on the Pacific side, challenges this picture. Here we show that the Hf, Nd, Pb, and Sr isotopic compositions of AAR MORB are distinct from those of Pacific and Indian MORB. Rather, the AAR lavas show mixing relationships with volcanoes from the Hikurangi seamounts, the Balleney and Scott Islands, the West Antarctic Rift System, New Zealand, and east Australia. According to tectonic reconstruction models, these volcanoes are related to super-plume activity that caused Gondwana to break up at 90 Ma. These results imply that a large-scale plume-derived mantle domain exists between the Indian and Pacific mantle domains, and that mantle dynamics along the AAD should be reinterpreted in light of interaction with a super-plume.
Geochemistry of the acid Kawah Putih lake, Patuha Volcano, West Java, Indonesia
NASA Astrophysics Data System (ADS)
Sriwana, T.; van Bergen, M. J.; Varekamp, J. C.; Sumarti, S.; Takano, B.; van Os, B. J. H.; Leng, M. J.
2000-04-01
Kawah Putih is a summit crater of Patuha volcano, West Java, Indonesia, which contains a shallow, ∼300 m-wide lake with strongly mineralized acid-sulfate-chloride water. The lake water has a temperature of 26-34°C, pH=<0.5-1.3, Stot=2500-4600 ppm and Cl=5300-12 600 ppm, and floating sulfur globules with sulfide inclusions are common. Sulfur oxyanion concentrations are unusually high, with S4O62-+S5O62-+S6O62-=2400 - 4200 ppm. Subaerial fumaroles (<93°C) on the lake shore have low molar SO2/H2S ratios (<2), which is a favorable condition to produce the observed distribution of sulfur oxyanion species. Sulfur isotope data of dissolved sulfate and native sulfur show a significant 34S fractionation (ΔSO4-Se of ⩾20‰), probably the result of SO2 disproportionation in or below the lake. The lake waters show strong enrichments in 18O and D relative to local meteoric waters, a result of the combined effects of mixing between isotopically heavy fluids of deep origin and meteoric water, and evaporation-induced fractionation at the lake surface. The stable-isotope systematics combined with energy-balance considerations support very rapid fluid cycling through the lake system. Lake levels and element concentrations show strong seasonal fluctuations, indicative of a short water residence time in the lake as well. Thermodynamic modeling of the lake fluids indicates that the lake water is saturated with silica phases, barite, pyrite and various Pb, Sb, Cu, As, Bi-bearing sulfides when sulfur saturation is assumed. Precipitating phases predicted by the model calculations are consistent with the bulk chemistry of the sulfur-rich bottom sediments and their identified mineral phases. Much of the lake water chemistry can be explained by congruent rock dissolution in combination with preferential enrichments from entering fumarolic gases or brines and element removal by precipitating mineral phases, as indicated by a comparison of the fluids, volcanic rocks and lake bed sediment. Flank springs on the mountain at different elevations vary in composition, and are consistent with local rock dissolution as a dominant factor and pH-dependent element mobility. Discharges of warm sulfate- and chloride-rich water at the highest elevation and a near-neutral spring at lower level may contain a small contribution of crater-lake water. The acid fluid-induced processes at Patuha have led to the accumulation of elements that are commonly associated with volcano-hosted epithermal ore deposits. The dispersal of heavy metals and other potentially toxic elements from the volcano via the local drainage system is a matter of serious environmental concern.
Controls on the fore-arc CO2 flux along the Central America margin
NASA Astrophysics Data System (ADS)
Hilton, D. R.; Barry, P. H.; Ramirez, C. J.; Kulongoski, J. T.; Patel, B. S.; Virrueta, C.; Blackmon, K.
2015-12-01
The subduction of carbon to the deep mantle via subduction zones is interrupted by outputs via the fore-arc, volcanic front, and back-arc regions. Whereas output fluxes for arc and back-arc locales are well constrained for the Central America Volcanic Arc (CAVA) [1-2], the fore-arc flux via cold seeps and ground waters is poorly known. We present new He and CO2 data (isotopes and relative abundances) for the volcanic front and inner fore-arc of western Panama to complement on-going studies of fore-arc C-fluxes in Costa Rica [3-4] and to determine tectonic controls on the fore-arc C-outgassing fluxes. Helium isotope (3He/4He) values at Baru, La Yeguada, and El Valle volcanoes are high (5-8RA), consistent with results for other Central America volcanoes. However, CO2/3He values are variable (from > 1012 to < 108). Baru has an arc-like δ13C of - 4‰, whereas the other volcanoes have δ13C < -10 ‰. Cold seeps collected in the coastal fore-arc of Panama show a trend of decreasing He-isotopes from west (~6RA) to east (~1RA). This trend is mirrored by δ13C (-5‰ to <-20‰) values. CO2/3He values of the seeps are also variable and fall between 106 and 1012. Using CO2/3He-δ13C mixing plots with conventional endmember values for Limestone, Organic Sediment and Mantle CO2, we show that several Panama samples have been extensively modified by crustal processes. Nevertheless, there are clear west-to east trends (both volcanoes and coastal seeps), whereby L dominates the CO2 inventory in the west, similar to Costa Rica, and S-derived CO2 increases eastward towards central Panama. Previously [4], we limited the Costa Rica subaerial fore-arc flux to ~ 6 × 107 gCkm-1yr-1, or ~ 4% of the total incoming sedimentary C-load. This flux diminishes to zero within ~400 km to the east of Baru volcano. The transition from orthogonal subduction of the Cocos Plate to oblique subduction of the Nazca Plate, relative to the common over-riding Caribbean Plate, is the major impediment to slab degassing towards the southern terminus of the CAVA. [1] Shaw et al., 2003, EPSL; [2] De Leeuw et al., 2007, EPSL; [3] Furi et al, 2010, G-cubed; [4] Hilton et al. 2014, Fall AGU.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hochstein, M.P.; Sudarman, Sayogi
There are at least 30 high temperatures systems (with inferred reservoir temperatures > 200 C) along the active Sumatra Arc that transfer heat from crustal intrusions to the surface. These systems, together with eleven active volcanoes, five degassing volcanoes and one caldera volcano (Lake Toba), are controlled by the Sumatra Fault Zone, an active mega shear zone that follows the median axis of the arc. At least half of the active and degassing volcanoes are associated with volcanic geothermal reservoirs containing magmatic gases and acid fluids. Large, low temperature resources exist in the Tertiary sedimentary basins of east Sumatra (back-arcmore » region), where anomalously higher thermal gradients (up to 8 C/100 m) have been measured. Volcanic activity was not continuous during the Cenozoic; subduction and arc volcanism probably decreased after the Eocene as a result of a clockwise rotation of Sumatra. In the Late Miocene, subduction started again, and andesitic volcanism reached a new peak of intensity in the Pliocene and has been continuous ever since. Rhyolitic volcanism, which has produced voluminous ignimbrite flows, began later (Pliocene/Pleistocene). All known rhyolitic centers associated with ignimbrite flows appear to lie along the Sumatra Fault Zone.« less
Volcano hazards at Newberry Volcano, Oregon
Sherrod, David R.; Mastin, Larry G.; Scott, William E.; Schilling, Steven P.
1997-01-01
Newberry volcano is a broad shield volcano located in central Oregon. It has been built by thousands of eruptions, beginning about 600,000 years ago. At least 25 vents on the flanks and summit have been active during several eruptive episodes of the past 10,000 years. The most recent eruption 1,300 years ago produced the Big Obsidian Flow. Thus, the volcano's long history and recent activity indicate that Newberry will erupt in the future. The most-visited part of the volcano is Newberry Crater, a volcanic depression or caldera at the summit of the volcano. Seven campgrounds, two resorts, six summer homes, and two major lakes (East and Paulina Lakes) are nestled in the caldera. The caldera has been the focus of Newberry's volcanic activity for at least the past 10,000 years. Other eruptions during this time have occurred along a rift zone on the volcano's northwest flank and, to a lesser extent, the south flank. Many striking volcanic features lie in Newberry National Volcanic Monument, which is managed by the U.S. Forest Service. The monument includes the caldera and extends along the northwest rift zone to the Deschutes River. About 30 percent of the area within the monument is covered by volcanic products erupted during the past 10,000 years from Newberry volcano. Newberry volcano is presently quiet. Local earthquake activity (seismicity) has been trifling throughout historic time. Subterranean heat is still present, as indicated by hot springs in the caldera and high temperatures encountered during exploratory drilling for geothermal energy. This report describes the kinds of hazardous geologic events that might occur in the future at Newberry volcano. A hazard-zonation map is included to show the areas that will most likely be affected by renewed eruptions. In terms of our own lifetimes, volcanic events at Newberry are not of day-to-day concern because they occur so infrequently; however, the consequences of some types of eruptions can be severe. When Newberry volcano becomes restless, be it tomorrow or many years from now, the eruptive scenarios described herein can inform planners, emergency response personnel, and citizens about the kinds and sizes of events to expect.
Earth Observations taken by the Expedition 10 crew
2005-01-15
ISS010-E-13393 (15 January 2005) --- Mt. Damavand, Iran is featured in this image photographed by an Expedition 10 crewmember on the International Space Station (ISS). Located approximately 50 kilometers to the northeast of Tehran, Mt. Damavand is an impressive stratovolcano that reaches 5,670 meters (18,598 feet) in elevation. Damavand, which is part of the Alborz mountain range that borders the Caspian Sea to the north, is believed by scientists to be a young volcano that has mostly formed during the Holocene Epoch (over approximately the last 10,000 years). The western flank of the volcano includes solidified lava flows with flow levees walls formed as the side edges of flowing lava cooled rapidly, forming a chute that channeled the hotter interior lava. Two such flows with well-defined levees are highlighted by snow on the mountainside (center). Damavand is the highest peak in Iran and the highest volcano in the Middle East.
Volcanic Ash fall Impact on Vegetation, Colima 2005
NASA Astrophysics Data System (ADS)
Garcia, M. G.; Martin, A.; Fonseca, R.; Nieto, A.; Radillo, R.; Armienta, M.
2007-05-01
An ash sampling network was established arround Colima Volcano in 2005. Ash fall was sampled on the North, Northeast, East, Southeast, South, Southwest and West of the volcano. Samples were analyzed for ash components, geochemistry and leachates. Ash fall ocurred on April (12), May (10, 23), June (2, 6, 9, 10, 12, 14), July (27), September (27), October (23) and November (24). Most of the ash is made of andesitic dome-lithics but shows diferences in crystal, juvenile material and lithic content. In May, some samples contained grey and dark pumice (scoria). Texture varies from phi >4 to phi 0. Leachate concentration were low: SO4 (7.33-54.19) Cl- (2.29-4.97) and F- (0.16-0.37). During 2005, Colima Volcano's ash fall rotted some of the guava and peach fruits and had a drying effect on spearment and epazote plants. Even these small ash amounts could have hindered sugar cane and agave growth.
Shaded Relief with Height as Color, Virunga and Nyiragongo Volcanoes and the East African Rift
NASA Technical Reports Server (NTRS)
2002-01-01
Volcanic, tectonic, erosional and sedimentary landforms are all evident in this comparison of two elevation models of a region along the East African Rift at Lake Kivu. The area shown covers parts of Congo, Rwanda and Uganda.
These two images show exactly the same area. The image on the left was created using the best global topographic data set previously available, the U.S. Geological Survey's GTOPO30. In contrast, the much more detailed image on the right was generated with data from the Shuttle Radar Topography Mission, which collected enough measurements to map 80 percent of Earth's landmass at this level of precision. Elevation is color coded, progressing from green at the lower elevations through yellow to brown at the higher elevations. A false sun in the northwest (upper left) creates topographic shading.Lake Kivu is shown as black in the Shuttle Radar Topography Mission version (southwest corner). It lies within the East African Rift, an elongated tectonic pull-apart depression in Earth's crust. The rift extends to the northeast as a smooth lava- and sediment-filled trough. Two volcanic complexes are seen in the rift. The one closer to the lake is the Nyiragongo volcano, which erupted in January 2002, sending lava toward the lake shore and through the city of Goma. East of the rift, even more volcanoes are seen. These are the Virunga volcano chain, which is the home of the endangered mountain gorillas. Note that the terrain surrounding the volcanoes is much smoother than the eroding mountains that cover most of this view, such that topography alone is a good indicator of the extent of the lava flows. But this clear only at the higher spatial resolution of the shuttle mission's data set.For some parts of the globe, Shuttle Radar Topography Mission measurements are 30 times more precise than previously available topographical information, according to NASA scientists. Mission data will be a welcome resource for national and local governments, scientists, commercial enterprises, and members of the public alike. The applications are as diverse as earthquake and volcano studies, flood control, transportation, urban and regional planning, aviation, recreation, and communications. The data's military applications include mission planning and rehearsal, modeling, and simulation.Elevation data used in this image was acquired by the Shuttle Radar Topography Mission aboard Space Shuttle Endeavour, launched on Feb. 11,2000. The mission used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR)that flew twice on Endeavour in 1994. The Shuttle Radar Topography Mission was designed to collect 3-D measurements of Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense, and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise, Washington, D.C.Size: 1 degree latitude by 1 degree longitude (about 111 x 111 kilometers or 69 x 69 miles) Location: 1.5 degrees South latitude, 29.5 degrees East longitude Orientation: North at top Image: Elevation data, colored height with shaded relief Original Data Resolution: SRTM 1 arcsecond (about 30 meters or 98 feet), GTOPO30 no greater than 30 arcseconds (about 925 meters or 3000 feet) Date Acquired: February 2000 (SRTM), Unknown (GTOPO30)Space Radar Image of Sakura-Jima Volcano, Japan
NASA Technical Reports Server (NTRS)
1994-01-01
The active volcano Sakura-Jima on the island of Kyushu, Japan is shown in the center of this radar image. The volcano occupies the peninsula in the center of Kagoshima Bay, which was formed by the explosion and collapse of an ancient predecessor of today's volcano. The volcano has been in near continuous eruption since 1955. Its explosions of ash and gas are closely monitored by local authorities due to the proximity of the city of Kagoshima across a narrow strait from the volcano's center, shown below and to the left of the central peninsula in this image. City residents have grown accustomed to clearing ash deposits from sidewalks, cars and buildings following Sakura-jima's eruptions. The volcano is one of 15 identified by scientists as potentially hazardous to local populations, as part of the international 'Decade Volcano' program. The image was acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour on October 9, 1994. SIR-C/X-SAR, a joint mission of the German, Italian and the United States space agencies, is part of NASA's Mission to Planet Earth. The image is centered at 31.6 degrees North latitude and 130.6 degrees East longitude. North is toward the upper left. The area shown measures 37.5 kilometers by 46.5 kilometers (23.3 miles by 28.8 miles). The colors in the image are assigned to different frequencies and polarizations of the radar as follows: red is L-band vertically transmitted, vertically received; green is the average of L-band vertically transmitted, vertically received and C-band vertically transmitted, vertically received; blue is C-band vertically transmitted, vertically received.
Road guide to volcanic deposits of Mount St. Helens and vicinity, Washington
Doukas, Michael P.
1990-01-01
Mount St. Helens, the most recently active and most intensively studied Cascades volcano, is in southwestern Washington. The volcano is a superb outdoor laboratory for studying volcanic processes, deposits of observed events, and deposits whose origins are inferred by classic geologic techniques, including analogy to recent deposits. During the past 4,500 years, Mount St. Helens has been more active and more explosive than any other volcano in the conterminous United States. Mount St. Helens became active in mid-March 1980, and eruptive activity began on March 27. Since the climactic eruption of May 18, 1980, the volcano has continued to be active at least until 1988. The 1890 activity of Mount St. Helens is summarized in U.S. Geological Survey Professional Papers 1249 and 1250. This road guide is a tour of Mount St. Helens volcano and vicinity, with emphasis on the effects and deposits of the 1980 eruption. The road log starts from the U.S. Geological Survey's David A. Johnston Cascades Volcano Observatory, Vancouver, Washington. The guide is organized around two primary routes. LEG I is on paved and gravel roads from Vancouver to areas east of Mount St. Helens, including Windy Ridge Overlook near Spirit Lake. This is possibly the most scenic route described in the guide, including a transect of the devastated zone of May 18, 1980, Spirit Lake, and numerous vistas of the volcano. LEG II leads to areas west of the volcano from Vancouver via U.S. Interstate Highway 5, then on a paved ... road along the Toutle River. Highlights include the spectacular effects of mudflows and a view of the huge debris-avalanche deposit that was formed on May 18, 1980.
NASA Astrophysics Data System (ADS)
Mao, X.; Li, J. H.
2012-04-01
We analyse the distribution and characteristics of 145 late Paleozoic volcanoes in north Xinjiang, NW China, including 32 volcanoes on the edge of the Junggar basin. These volcanoes are clustered and can be divided into calderas, volcanic domes, and volcanic necks. There are also 85 volcanoes inside the Junggar basin, which are dominantly distributed in the Ke-Bai fractured zone of the northwestern margin of Junggar Basin, 4 depressions (Dongdaohaizi Depression, Dishuiquan Depression, Sannan Depression and Wucaiwan Depression) and 7 uplifts (Baijiahai uplift, Beisantai uplift, Dibei uplift, Dinan uplift, Sangequan uplift, Shixi uplift and Xiayan uplift). The volcanoes inside the basin are principally controlled by Hercynian Fault Systems, along NE and nearly EW trending faults and most developed in the interjunctions of the faults. The long modification by late-stage weathering and leaching made the volcanoes difficult to identify. Remaining volcanic landforms, changing trends of the volcanic lithofacies and the typical volcanic rock, such as the crypto- explosive breccia, are the typical marks of the late Paleozoic volcanoes in the field; and the concealed volcanic edifices are identified by the techniques of seismic identification, such as seismic slicing, analysis of the attribute and tectonic trend plane. The ages of the volcanic rocks are focused on from 340 Ma to 320Ma and from 300 Ma to 295 Ma, corresponding to the subducting periods of West Junggar and East Junggar. From early Carboniferous to late Carboniferous, the volcanic activities in Junggar Basin and its adjacent areas show a variation trend from undersea to continental, from deep water to shallow water and from continental margin to intracontinental.
Space Radar Image of Sakura-Jima Volcano, Japan
1999-04-15
The active volcano Sakura-Jima on the island of Kyushu, Japan is shown in the center of this radar image. The volcano occupies the peninsula in the center of Kagoshima Bay, which was formed by the explosion and collapse of an ancient predecessor of today's volcano. The volcano has been in near continuous eruption since 1955. Its explosions of ash and gas are closely monitored by local authorities due to the proximity of the city of Kagoshima across a narrow strait from the volcano's center, shown below and to the left of the central peninsula in this image. City residents have grown accustomed to clearing ash deposits from sidewalks, cars and buildings following Sakura-jima's eruptions. The volcano is one of 15 identified by scientists as potentially hazardous to local populations, as part of the international "Decade Volcano" program. The image was acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour on October 9, 1994. SIR-C/X-SAR, a joint mission of the German, Italian and the United States space agencies, is part of NASA's Mission to Planet Earth. The image is centered at 31.6 degrees North latitude and 130.6 degrees East longitude. North is toward the upper left. The area shown measures 37.5 kilometers by 46.5 kilometers (23.3 miles by 28.8 miles). The colors in the image are assigned to different frequencies and polarizations of the radar as follows: red is L-band vertically transmitted, vertically received; green is the average of L-band vertically transmitted, vertically received and C-band vertically transmitted, vertically received; blue is C-band vertically transmitted, vertically received. http://photojournal.jpl.nasa.gov/catalog/PIA01777
Field guide to summit area and upper east rift zone, Kilauea Volcano, Hawaii
NASA Technical Reports Server (NTRS)
1974-01-01
The field trip is divided into two sections: (1) Crater Rim Road; and (2) Chain of Craters Road. Most bibliographic references are omitted from the text, but a selected list of references to recent Hawaiian volcanic activity and to special studies is included.
ERIC Educational Resources Information Center
Ghufron, M. Ali; Saleh, Mursid; Warsono; Sofwan, Ahmad
2016-01-01
This study aimed at designing a model of instructional materials for Academic Writing Course focusing on research paper writing. The model was designed based on the Curriculum at the English Education Study Program, Faculty of Language and Art Education of IKIP PGRI Bojonegoro, East Java, Indonesia. This model was developed in order to improve…
ERIC Educational Resources Information Center
Maryono
2016-01-01
This study aims to describe the culture and local potential in Pacitan, East Java, as well as the implementation of local content in primary schools in the area, and some factors that support and hinder their implementation. This research is a qualitative case study. There were five primary schools used as samples obtained through purposive…
ERIC Educational Resources Information Center
Cavus, Nadire; Uzunboylu, Huseyin; Ibrahim, Dogan
2006-01-01
This paper is about a pilot study which has been carried out at the Near East University during the 2004/5 Fall Semester using the Moodle LMS [learning management system] together with GREWPtool collaborative editor. The system has been tested with 36 students taking the Java and the Pascal programming courses. The results of the pilot study…
ERIC Educational Resources Information Center
Syahri, Mohamad
2016-01-01
The research sites were "Blitar, Malang" and "Batu" in East Java Province, Indonesia since those areas are regarded to have problems of environmental crises. In the data collection, this study made use of four methods, namely: a) observation, b) In-depth Interviews, c) documentation, and d) focus group discussion. The results…
Wirakartakusumah, M D
1988-06-01
This paper examines the effects of public health, family planning, education, electrification, and water supply programs on fertility, child mortality, and school enrollment decisions of rural households in East Java, Indonesia. The theoretical model assumes that parents maximize a utility function, subject to 1) a budget constraint that equates income with expenditures on children (including schooling and health inputs), and 2) a production function that relates health inputs to child survival possibilities. Public programs affect prices of contraceptives, schooling and health inputs, and environmental conditions that in turn affect child survival. Data are taken from the 1980 East Java Population Survey, the Socio-economic Survey, and the Detailed Village Census. The final sample consists of 3170 rural households with married women of childbearing age. Ordinary least squares and logit regressions of recent fertility, child mortality, and school enrollment on program and household variables yielded the following findings. 1) The presence of maternal and child health clinics reduced fertility but not mortality. 2) The presence of public health centers strongly reduced mortality but not fertility. 3) The presence of contraceptive distribution centers had no effect on fertility. 4) School attendance rates were influenced positively by the availability of primary and secondary schools. 5) Health and family planning programs had no effects on schooling. 6) The availability of public latrines reduced fertility and mortality. 7) The water supply variable did not affect the dependent variables when ordinary least squares techniques were applied but had statistically significant impact when logit methods were used. 8) Electricity supply had little effect on the dependent variables. 9) The mother's schooling had a strong positive correlation with children's schooling but no effect on fertility or mortality. 10) Household expenditures were related positively to school attendance and negatively to mortality. 11) There was little or no interaction between household variables and presence of government programs. 12) Subprovincial area measures of service availability appeared more appropriate for public health and family planning services, while village-level measures appeared more appropriate for schooling.
Volcan Baru: Eruptive History and Volcano-Hazards Assessment
Sherrod, David R.; Vallance, James W.; Tapia Espinosa, Arkin; McGeehin, John P.
2008-01-01
Volcan Baru is a potentially active volcano in western Panama, about 35 km east of the Costa Rican border. The volcano has had four eruptive episodes during the past 1,600 years, including its most recent eruption about 400?500 years ago. Several other eruptions occurred in the prior 10,000 years. Several seismic swarms in the 20th century and a recent swarm in 2006 serve as reminders of a restless tectonic terrane. Given this history, Volcan Baru likely will erupt again in the near or distant future, following some premonitory period of seismic activity and subtle ground deformation that may last for days or months. Future eruptions will likely be similar to past eruptions?explosive and dangerous to those living on the volcano?s flanks. Outlying towns and cities could endure several years of disruption in the wake of renewed volcanic activity. Described in this open-file report are reconnaissance mapping and stratigraphic studies, radiocarbon dating, lahar-inundation modeling, and hazard-analysis maps. Existing data have been compiled and included to make this report as comprehensive as possible. The report is prepared in coooperation with National Secretariat for Science, Technology and Innovation (SENACYT) of the Republic of Panama and the U.S. Agency for International Development (USAID).
Time-dependent source model of the Lusi mud volcano
NASA Astrophysics Data System (ADS)
Shirzaei, M.; Rudolph, M. L.; Manga, M.
2014-12-01
The Lusi mud eruption, near Sidoarjo, East Java, Indonesia, began erupting in May 2006 and continues to erupt today. Previous analyses of surface deformation data suggested an exponential decay of the pressure in the mud source, but did not constrain the geometry and evolution of the source(s) from which the erupting mud and fluids ascend. To understand the spatiotemporal evolution of the mud and fluid sources, we apply a time-dependent inversion scheme to a densely populated InSAR time series of the surface deformation at Lusi. The SAR data set includes 50 images acquired on 3 overlapping tracks of the ALOS L-band satellite between May 2006 and April 2011. Following multitemporal analysis of this data set, the obtained surface deformation time series is inverted in a time-dependent framework to solve for the volume changes of distributed point sources in the subsurface. The volume change distribution resulting from this modeling scheme shows two zones of high volume change underneath Lusi at 0.5-1.5 km and 4-5.5km depth as well as another shallow zone, 7 km to the west of Lusi and underneath the Wunut gas field. The cumulative volume change within the shallow source beneath Lusi is ~2-4 times larger than that of the deep source, whilst the ratio of the Lusi shallow source volume change to that of Wunut gas field is ~1. This observation and model suggest that the Lusi shallow source played a key role in eruption process and mud supply, but that additional fluids do ascend from depths >4 km on eruptive timescales.
A dynamic balance between magma supply and eruption rate at Kilauea volcano, Hawaii
Denlinger, R.P.
1997-01-01
The dynamic balance between magma supply and vent output at Kilauea volcano is used to estimate both the volume of magma stored within Kilauea volcano and its magma supply rate. Throughout most of 1991 a linear decline in volume flux from the Kupaianaha vent on Kilauea's east rift zone was associated with a parabolic variation in the elevation of Kilauea's summit as vent output initially exceeded then lagged behind the magma supply to the volcano. The correspondence between summit elevation and tilt established with over 30 years of data provided daily estimates of summit elevation in terms of summit tilt. The minimum in the parabolic variation in summit tilt and elevation (or zero elevation change) occurs when the magma supply to the reservoir from below the volcano equals the magma output from the reservoir to the surface, so that the magma supply rate is given by vent flux on that day. The measurements of vent flux and tilt establish that the magma supply rate to Kilauea volcano on June 19, 1991, was 217,000 ?? 10,000 m3/d (or 0.079 ?? 0.004 km3/yr). This is close to the average eruptive rate of 0.08 km3/yr between 1958 and 1984. In addition, the predictable response of summit elevation and tilt to each east rift zone eruption near Puu Oo since 1983 shows that summit deformation is also a measure of magma reservoir pressure. Given this, the correlation between the elevation of the Puu Oo lava lake (4 km uprift of Kupaianaha and 18 km from the summit) and summit tilt provides an estimate for magma pressure changes corresponding to summit tilt changes. The ratio of the change in volume to the change in reservoir pressure (dV/dP) during vent activity may be determined by dividing the ratio of volume erupted to change in summit tilt (dV/dtilt) by the ratio of pressure change to change in summit tilt (dP/dtilt). This measure of dV/dP, when combined with laboratory measurements of the bulk modulus of tholeitic melt, provides an estimate of 240 ?? 50 km3 for the volume of Kilauea's magma reservoir. This estimate is much larger than traditional estimates but consistent with seismic tomographic imaging and geophysical modeling of Kilauea's magma system. Copyright 1997 by the American Geophysical Union.
A dynamic balance between magma supply and eruption rate at Kilauea volcano, Hawaii
NASA Astrophysics Data System (ADS)
Denlinger, Roger P.
1997-08-01
The dynamic balance between magma supply and vent output at Kilauea volcano is used to estimate both the volume of magma stored within Kilauea volcano and its magma supply rate. Throughout most of 1991 a linear decline in volume flux from the Kupaianaha vent on Kilauea's east rift zone was associated with a parabolic variation in the elevation of Kilauea's summit as vent output initially exceeded then lagged behind the magma supply to the volcano. The correspondence between summit elevation and tilt established with over 30 years of data provided daily estimates of summit elevation in terms of summit tilt. The minimum in the parabolic variation in summit tilt and elevation (or zero elevation change) occurs when the magma supply to the reservoir from below the volcano equals the magma output from the reservoir to the surface, so that the magma supply rate is given by vent flux on that day. The measurements of vent flux and tilt establish that the magma supply rate to Kilauea volcano on June 19, 1991, was 217,000±10,000 m3/d (or 0.079±0.004 km3/yr). This is close to the average eruptive rate of 0.08 km3/yr between 1958 and 1984. In addition, the predictable response of summit elevation and tilt to each east rift zone eruption near Puu Oo since 1983 shows that summit deformation is also a measure of magma reservoir pressure. Given this, the correlation between the elevation of the Puu Oo lava lake (4 km uprift of Kupaianaha and 18 km from the summit) and summit tilt provides an estimate for magma pressure changes corresponding to summit tilt changes. The ratio of the change in volume to the change in reservoir pressure (dV/dP) during vent activity may be determined by dividing the ratio of volume erupted to change in summit tilt (dV/dtilt) by the ratio of pressure change to change in summit tilt (dP/dtilt). This measure of dV/dP, when combined with laboratory measurements of the bulk modulus of tholeitic melt, provides an estimate of 240±50 km3 for the volume of Kilauea's magma reservoir. This estimate is much larger than traditional estimates but consistent with seismic tomographic imaging and geophysical modeling of Kilauea's magma system.
NASA Astrophysics Data System (ADS)
Lee, Seul-Ki; Lee, Chang-Wook; Lee, Saro
2015-06-01
Located above the Java subduction zone, Merapi Volcano is an active stratovolcano with a volcanic activity cycle of 1-5 years. Most Merapi eruptions are relatively small with volcanic explosivity index (VEI) of 1-3. However, the most recent eruption, which occurred in 2010, was quite violent with a VEI of 4 and 386 people were killed. In this study, lahars and pyroclastic flow zones were detected using optical Landsat images and the lahar and pyroclastic flow zone simulated using the LAHARZ program. To detect areal extents of lahar and pyroclastic flows using Landsat images, supervised classification was performed after atmospheric correction by using a cosine of the solar zenith correction (COST) model. As a result, the extracted dimensions of pyroclastic flows are nearly identical to the Calatrava Volcanic Province (CVP) monthly reports. Then, areas of potential lahar and pyroclastic flow inundation based on flow volume using the LAHARZ program were simulated and mapped. Finally, the detected lahars and pyroclastic flow zones were compared with the simulated potential zones using LAHARZ program and verified. Results showed satisfactory similarity (55.63 %) between the detected and simulated zone. The simulated zones using the LAHARZ program can be used as an essential volcanic hazard map for preventing life and property damages for Merapi Volcano and other hazardous volcanic areas. Also, the LAHARZ program can be used to map volcano hazards in other hazardous volcanic areas.
Unocal schedules field development off East Kalimantan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-12-07
Unocal Indonesia Ltd. has let a turnkey contract to PT Gema SemBrown (GSB) to build a platform to set in the deepest water yet off Indonesia. This paper reports on the contract, which is worth more than $40 million, and calls for GSB to engineer, procure, fabricate, install, and hook up Unocal's SA drilling and production platform in 335 ft of water in Serang field. Site is in Makassar Strait, about 25 miles off East Kalimantan. GSB in October began fabricating the Serang SA platform at its Sunda Strait fabrication yard in West Java, Indonesia. GSB is to complete themore » platform on a fast track schedule in time for installation in July 1993. The project includes two export trunk lines connecting Serang field with Unocal's Melahin field. Production will come ashore at Santan on East Kalimantan.« less
Dzurisin, D.; Anderson, L.A.; Eaton, G.P.; Koyanagi, R.Y.; Lipman, P.W.; Lockwood, J.P.; Okamura, R.T.; Puniwai, G.S.; Sako, M.K.; Yamashita, K.M.
1980-01-01
Following a 22-month hiatus in eruptive activity, Kilauea volcano extruded roughly 35 ?? 106 m3 of tholeiitic basalt from vents along its middle east rift zone during 13 September-1 October, 1977. The lengthy prelude to this eruption began with a magnitude 7.2 earthquake on 29 November, 1975, and included rapid summit deflation episodes in June, July, and August 1976 and February 1977. Synthesis of seismic, geodetic, gravimetric, and electrical self-potential observations suggests the following model for this atypical Kilauea eruptive cycle. Rapid summit deflation initiated by the November 1975 earthquake reflected substantial migration of magma from beneath the summit region of Kilauea into the east and southwest rift zones. Simultaneous leveling and microgravity observations suggest that 40-90 ?? 106 m3 of void space was created within the summit magma chamber as a result of the earthquake. If this volume was filled by magma from depth before the east rift zone intrusive event of June 1976, the average rate of supply was 6-13 ?? 106 m3/month, a rate that is consistent with the value of 9 ?? 106 m3/month suggested from observations of long-duration Kilauea eruptions. Essentially zero net vertical change was recorded at the summit during the 15-month period beginning with the June 1976 intrusion and ending with the September 1977 eruption. This fact suggests that most magma supplied from depth during this interval was eventually delivered to the east rift zone, at least in part during four rapid summit deflation episodes. Microearthquake epicenters migrated downrift to the middle east rift zone for the first time during the later stages of the February 1977 intrusion, an occurrence presumably reflecting movement of magma into the eventual eruptive zone. This observation was confirmed by tilt surveys in May 1977 that revealed a major inflation center roughly 30 km east of the summit in an area of anomalous steaming and forest kill first noted in March 1976. ?? 1980.
Earth Observations taken by the Expedition 15 Crew
2007-07-10
ISS015-E-16913 (10 July 2007) --- Shiveluch Volcano, Kamchatka, Russian Far East is featured in this image photographed by an Expedition 15 crewmember on the International Space Station. Shiveluch is one of the biggest and most active of a line of volcanoes along the spine of the Kamchatka peninsula in easternmost Russia. In turn the volcanoes and peninsula are part of the tectonically active "Ring of Fire" that almost surrounds the Pacific Ocean, denoted by active volcanoes and frequent earthquakes. Shiveluch occupies the point where the northeast-trending Kamchatka volcanic line intersects the northwest-trending Aleutian volcanic line. Junctions such as this are typically points of intense volcanic activity. According to scientists, the summit rocks of Shiveluch have been dated at approximately 65,000 years old. Lava layers on the sides of the volcano reveal at least 60 major eruptions in the last 10,000 years, making it the most active volcano in the 2,200 kilometer distance that includes the Kamchatka peninsula and the Kuril island chain. Shiveluch rises from almost sea level to well above 3,200 miles (summit altitude 3,283 miles) and is often capped with snow. In this summer image however, the full volcano is visible, actively erupting ash and steam in late June or early July, 2007. The dull brown plume extending from the north of the volcano summit is most likely a combination of ash and steam (top). The two larger white plumes near the summit are dominantly steam, a common adjunct to eruptions, as rain and melted snow percolate down to the hot interior of the volcano. The sides of the volcano show many eroded stream channels. The south slope also reveals a long sloping apron of collapsed material, or pyroclastic flows. Such debris flows have repeatedly slid down and covered the south side of the volcano during major eruptions when the summit lava domes explode and collapse (this occurred during major eruptions in 1854 and 1964). Regrowth of the forest on the south slope (note the contrast with the eastern slope) has been foiled by the combined effects of continued volcanic activity, instability of the debris flows and the short growing season.
Use of multitemporal InSAR data to develop geohazard scenarios for Bandung, Western Java, Indonesia
NASA Astrophysics Data System (ADS)
Salvi, Stefano; Tolomei, Cristiano; Duro, Javier; Pezzo, Giuseppe; Koudogbo, Fifamè
2015-04-01
The Greater Bandung metropolitan area is the second largest urban area in Indonesia, with a population of 8.6 million. It is subject to a variety of geohazards: volcanic hazards from seven active volcanoes within a radius of 50 km; high flood hazards, seismic hazard due to crustal active faults, the best known being the 30-km long Lembang fault, 10 km North of the city centre; subsidence hazards due to strong aquifer depletion; landslide hazard in the surrounding high country. In the framework of the FP7 RASOR project, multitemporal satellite SAR data have been processed over Bandung, Western Java. We used the SBAS InSAR technique (Berardino et al., 2002) to process two ALOS-1 datasets, to investigate the various sources of surface deformation acting in the area in the period 2008-2011. Persistent Scatterer Interferometry (PSI) has also been applied to achieve ground motion measurements with millimetric precision and high accuracy. The PSI processing technique considers a system of points that reflect the radar signal from the satellite continuously through the time. It makes use of differential interferometric phase measurements to generate long term terrain deformation and digital surface model maps. The GlobalSARTM algorithms developed by Altamira Information are applied to COSMO-SkyMed data acquired to measure ground motion over the area of interest. Strong ground displacements (up to 7 cm/yr) due to groundwater abstraction have been measured in the Bandung basin. The identification of long wavelength signals from tectonic sources is difficult due to the limited InSAR coherence outside of the urban environment. Limited deformation is observed also in the Tangkuban Perahu volcano to the north. The spatial and temporal distribution of the ground motion is important supporting information for the generation of long term subsidence and flood hazard scenarios.
Gravity, magnetic, and radiometric data for Newberry Volcano, Oregon, and vicinity
Wynn, Jeff
2014-01-01
Newberry Volcano in central Oregon is a 3,100-square-kilometer (1,200-square-mile) shield-shaped composite volcano, occupying a location east of the main north-south trend of the High Cascades volcanoes and forming a transition between the High Lava Plains subprovince of the Basin and Range Province to the east and the Cascade Range to the west. Magnetic, gravity, and radiometric data have been gathered and assessed for the region around the volcano. These data have widely varying quality and resolution, even within a given dataset, and these limitations are evaluated and described in this release. Publicly available gravity data in general are too sparse to permit detailed modeling except along a few roads with high-density coverage. Likewise, magnetic data are also unsuitable for all but very local modeling, primarily because available data consist of a patchwork of datasets with widely varying line-spacing. Gravity data show only the broadest correlation with mapped geology, whereas magnetic data show moderate correlation with features only in the vicinity of Newberry Caldera. At large scales, magnetic data correlate poorly with both geologic mapping and gravity data. These poor correlations are largely due to the different sensing depths of the two potential fields methods, which respond to physical properties deeper than the surficial geology. Magnetic data derive from rocks no deeper than the Curie-point isotherm depth (10 to 15 kilometers, km, maximum), whereas gravity data reflect density-contrasts to 100 to 150 km depths. Radiometric data from the National Uranium Resource Evaluation (NURE) surveys of the 1980s have perhaps the coarsest line-spacing of all (as much as 10 km between lines) and are extremely “noisy” for several reasons inherent to this kind of data. Despite its shallow-sensing character, only a few larger anomalies in the NURE data correlate well with geologic mapping. The purpose of this data series release is to collect and place the available geophysical data in the hands of other investigators in a readily comprehensible form. All data-compilation, splicing, filtering, and overlay-map displays were accomplished with the commercial Geosoft™ system, Advanced Option. Images are provided in both JPG and PDF formats.
Sulfur Dioxide Emission Rates from Kilauea Volcano, Hawai`i, an Update: 1998-2001
Elias, Tamar; Sutton, A. Jefferson
2002-01-01
Introduction Sulfur dioxide (SO2) emission rates from Kilauea Volcano were first measured by Stoiber and Malone (1975) and have been measured on a regular basis since 1979 (Greenland and others, 1985; Casadevall and others, 1987; Elias and others, 1998; Sutton and others, 2001). A compilation of SO2 emission-rate and wind-vector data from 1979 through 1997 is available as Open-File Report 98-462 (Elias and others, 1998) and on the web at http://hvo.wr.usgs.gov/products/OF98462/. The purpose of this report is to update the existing database through 2001. Kilauea releases SO2 gas predominantly from its summit caldera and east rift zone (ERZ) (fig. 1), as described in previous reports (Elias and others, 1998; Sutton and others, 2001). These two distinct sources are quantified independently. The summit and east rift zone emission rates reported here were derived using vehicle-based Correlation Spectrometry (COSPEC) measurements as described in Elias and others (1998). In 1998 and 1999, these measurements were augmented with airborne and tripod-based surveys.
Poland, Michael P.
2008-01-01
In June 2007, the Pu'u 'Ō'ō-Kūpaianaha eruption of Kīlauea Volcano was interrupted when magma intruded the east rift zone (ERZ), resulting in a small extrusion of lava near Makaopuhi Crater. Deformation associated with the activity was exceptionally well-documented by ASAR interferometry, which indicates deflation of the summit and uplift and extension of the ERZ. Models of co-intrusion interferograms suggest that the dike was emplaced in two distinct segments. The modeled volume of the dike greatly exceeds that of the deflation source, raising the possibility that magma from the downrift Pu'u 'Ō'ō vent (dominant extrusion site at Kīlauea since 1983) contributed to the eruption near Makaopuhi, or that the magma that fed the eruption from the summit was compressible. A month following the Makaopuhi eruption, an eruptive fissure opened on the east flank of Pu'u 'Ō'ō. Interferograms, processed within 48 hours of the event, were critical in demonstrating that the magma source feeding the eruption was shallow. The eruption probably resulted from overpressure in Pu'u 'Ō'ō's magmatic system.
Preliminary volcano-hazard assessment for Great Sitkin Volcano, Alaska
Waythomas, Christopher F.; Miller, Thomas P.; Nye, Christopher J.
2003-01-01
Great Sitkin Volcano is a composite andesitic stratovolcano on Great Sitkin Island (51°05’ N latitude, 176°25’ W longitude), a small (14 x 16 km), circular volcanic island in the western Aleutian Islands of Alaska. Great Sitkin Island is located about 35 kilometers northeast of the community of Adak on Adak Island and 130 kilometers west of the community of Atka on Atka Island. Great Sitkin Volcano is an active volcano and has erupted at least eight times in the past 250 years (Miller and others, 1998). The most recent eruption in 1974 caused minor ash fall on the flanks of the volcano and resulted in the emplacement of a lava dome in the summit crater. The summit of the composite cone of Great Sitkin Volcano is 1,740 meters above sea level. The active crater is somewhat lower than the summit, and the highest point along its rim is about 1,460 meters above sea level. The crater is about 1,000 meters in diameter and is almost entirely filled by a lava dome emplaced in 1974. An area of active fumaroles, hot springs, and bubbling hot mud is present on the south flank of the volcano at the head of Big Fox Creek (see the map), and smaller ephemeral fumaroles and steam vents are present in the crater and around the crater rim. The flanking slopes of the volcano are gradual to steep and consist of variously weathered and vegetated blocky lava flows that formed during Pleistocene and Holocene eruptions. The modern edifice occupies a caldera structure that truncates an older sequence of lava flows and minor pyroclastic rocks on the east side of the volcano. The eastern sector of the volcano includes the remains of an ancestral volcano that was partially destroyed by a northwest-directed flank collapse. In winter, Great Sitkin Volcano is typically completely snow covered. Should explosive pyroclastic eruptions occur at this time, the snow would be a source of water for volcanic mudflows or lahars. In summer, much of the snowpack melts, leaving only a patchy distribution of snow on the volcano. Glacier ice is no longer present on the volcano or on other parts of Great Sitkin Island as previously reported by Simons and Mathewson (1955). Great Sitkin Island is presently uninhabited and is part of the Alaska Maritime National Wildlife Refuge, managed by the U.S. Fish and Wildlife Service.
Cycles of edifice growth and destruction at Tharsis Tholus, Mars
NASA Astrophysics Data System (ADS)
Platz, T.; McGuire, P. C.; Münn, S.; Cailleau, B.; Dumke, A.; Neukum, G.; Procter, J. N.
2009-04-01
Tharsis Tholus, approx. 800 km to the ENE of Ascraeus Mons, is unique among Martian volcanoes as it is structurally divided into sectors suggesting a complex volcano-tectonic evolution [1-3]. The objective of this study was 1) to identify cycles of edifice growth and destruction and causes of instability, 2) to estimate the mineralogical composition of rocks and loose deposits, 3) to provide a time frame of volcanic activity, and 4) to characterize eruptive styles at Tharsis Tholus. The edifice has a planar extension of 155 km (NW-SE) by 125 km (NE-SW) with an elevation up to 9000 m on the west flank. The volcano exhibits a strong relief and can be subdivided into five major sectors: north flank, west flank, east flank, south flank, and the central caldera. The slopes vary from <1° up to 27°. The volcano is partly buried by lava flows, presumably originating from the Tharsis Montes. As a result, the original basement surface is unknown. However, to the east of the volcano, the tips of a large buried impact-crater rim are still preserved. Using the approximate extension of 41×47 km of the impact-crater rim, a rim height of about 500 m results [4], with the basement being at 500 m altitude. The visible edifice volume is approximately 31.1×10³ km³, however, if a basal horizontal plane at 500 m is assumed, an edifice volume of >50×10³ km³ results. The structure of the edifice indicates at least four large deformation events. The central and most prominent structure of the volcano is its central caldera. It is bordered by a well-preserved system of concentric normal faults. The maximum subsidence of the caldera floor is 3000 m; the collapse volume is calculated at approx. 2160 km³. The caldera (36.7×38.9 km) has an elliptic shape oriented NW-SE. The flanks of the volcano are characterized by four large scarps oriented radially from the central caldera. The arcuate shapes of the scarps and their orientations suggest voluminous collapses of the western and eastern volcano flanks. On the southern flank, a further caldera structure is displayed by an arcuate scarp and a plateau-like plain. Due to a large impact event, most of the caldera structure is now concealed. Large parts of the volcano are cut by parallel normal faults forming grabens. These grabens post-date the large collapse structures at the volcano's flanks. All graben structures are oriented in the NE-SW direction. Minimum and maximum graben widths are 0.47 km and 4.36 km, respectively. Multiple areas of volcanic activity at Tharsis Tholus were identified: 1) flank eruptions associated with graben formation, 2) fissure eruptions, and 3) a satellite vent at the foot of the west flank forming a strato-cone. This satellite volcano has a nearly perfect conical shape and rises 1168 m above the surrounding lava plain. The visible volume is about 5.7 km³. There are currently no indications for volcanic activity prior to or after the formation of the central caldera. First results of crater counting indicate that the oldest parts of the edifice were constructed at around 3.82 Ga (late Noachian). The west flank appears to be ca. 3.73 Ga old whereas the east flank shows an age of ca. 1.08 Ga (Middle Amazonian). A fissure eruption on the south flank produced a lava flow at around 196 Ma (Late Amazonian). The existence of two main loci of activity, the central caldera and the subordinate southern caldera, indicate a multipart magma storage system. Changes in lava rheology are observed (shield volcano vs. strato-cone), which indicates magma differentiation within the plumbing system of the volcano during phases of activity. The lifetime of the volcano spans more than 3.6 Gyrs starting prior to 3.82 Ga. Hence, the fissure eruption at around 196 Ma may not represent the final volcanic activity at Tharsis Tholus. Scarps on the western and eastern flanks are interpreted to be structurally related to at least two large sector collapses. Their arcuate shape can be fitted by ellipses suggesting more or less sub-vertical caldera-like collapses, with the major portion of the upper flanks collapsing into the centre of the volcano and minor portions of the lower flanks collapsing laterally forming debris avalanches. Graben formations across the edifice reflect a regional-tectonic deformation superimposed on the local volcano-tectonic pattern of Tharsis Tholus. The least compressive stress of this regional stress field is oriented NW-SE which agrees with the direction of ellipticity of the central caldera and fitted ellipses to the flank scarps. The geometry of the central caldera indicates a shallow magma storage region, probably at the base of the volcano. References: [1] F. Maciejak et al. 1995. LPS XXVI, 881-882. [2] J. B. Plescia 2001. LPS XXXII, 1090-1091. [3] J. B. Plescia 2003. Icarus, 165, 223-241. [4] D. H. Scott and K. L. Tanaka 1986. US Geol. Survey. Miscellaneous Investigations Map I-1802A.
The hydrogeology of Kilauea volcano
Ingebritsen, S.E.; Scholl, M.A.
1993-01-01
The hydrogeology of Kilauea volcano and adjacent areas has been studied since the turn of this century. However, most studies to date have focused on the relatively shallow, low-salinity parts of the ground-water system, and the deeper hydrothermal system remains poorly understood. The rift zones of adjacent Mauna Loa volcano bound the regional ground-water flow system that includes Kilauea, and the area bounded by the rift zones of Kilauea and the ocean may comprise a partly isolated subsystem. Rates of ground-water recharge vary greatly over the area and discharge is difficult to measure, because streams are ephemeral and most ground-water discharges diffusely at or below sea level. Hydrothermal systems exist at depth in Kilauea's cast and southwest rift zone, as evidenced by thermal springs at the coast and wells in the lower east-rift zone. Available data suggest that dike-impounded, heated ground water occurs at relatively high elevations in the upper east-and southwest-rift zones of Kilauea, and that permeability at depth in the rift zones (probably 10 10 m2). Substantial variations in permeability and the presence of magmatic heat sources influence the structure of the fresh water-salt water interface, so the Ghyben-Herzberg model will often fail to predict its position. Numerical modeling studies have considered only subsets of the hydrothermal system, because no existing computer code solves the coupled fluid-flow, heat- and solute-transport problem over the temperature and salinity range encountered at Kilauea. ?? 1993.
ERIC Educational Resources Information Center
Nurhaniyah, Binti; Soetjipto, Budi Eko; Hanurawan, Fattah
2015-01-01
The aims of this classroom action research are to describe: (1) the implementation of cooperative learning model "find someone who and flashcard game" to boost students' motivation to learn social studies for the fifth grade students; (2) the response of the fifth grade students at SDN Klanderan, Kediri, East Java on the implementation…
WebScope: A New Tool for Fusion Data Analysis and Visualization
NASA Astrophysics Data System (ADS)
Yang, Fei; Dang, Ningning; Xiao, Bingjia
2010-04-01
A visualization tool was developed through a web browser based on Java applets embedded into HTML pages, in order to provide a world access to the EAST experimental data. It can display data from various trees in different servers in a single panel. With WebScope, it is easier to make a comparison between different data sources and perform a simple calculation over different data sources.
ERIC Educational Resources Information Center
Nisa, Arida Choirun
2017-01-01
Classroom Action Research (PTK) was made after researchers observed the implementation of learning conducted mostly school teachers Extraordinary show symptoms not as expected, because the teacher still dominates teaching and learning activities centered on teachers, by looking at the lecture method is a method that The main. This raises a very…
JPRS Report, East Asia, Southeast Asia.
1988-10-24
Governor 6 Brig General Warsito, West Nusa Tenggara Governor 7 Lt General H. Ismail, Central Java Governor 7 Brig Gen H. Ramli Hasan Basri, South...included one ex-commander of a Sereikan company . In the first 9 months of this year, the provin- cial administration received 627 misled people...fishing boats are part of a cooperative effort with Minasanega Pertiwi, Inc., an Indonesian company , to catch fish within EEZ waters, and, what is
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-24
... business hours (8:45 a.m. to 5:15 p.m.) in the Office of the Secretary, U.S. International Trade Commission... claims 1-8 of the `128 patent, and whether an industry in the United States exists as required by... which the complaint is to be served: NetApp, Inc., 495 East Java Drive, Sunnyvale, CA 94089. Dell, Inc...
Zuidervaart, Huib J; Van Gent, Rob H
2004-03-01
The transits of Venus in 1761 and 1769 appear to mark the starting point of instrumental science in the Dutch East Indies (now Indonesia). This essay examines the conditions that triggered and constituted instrumental and institutional science on Indonesian soil in the late eighteenth century. In 1765 the Reverend J. M. Mohr, whose wife had received a large inheritance, undertook to build a fully equipped private observatory in Batavia (now Jakarta). There he made several major astronomical and meteorological observations. Mohr's initiative inspired other Europeans living on Java around 1770 to start a scientific movement. Because of the lack of governmental and other support, it was not until 1778 that this offspring of the Dutch-Indonesian Enlightenment became a reality. The Bataviaasch Genootschap van Kunsten en Wetenschappen tried from the beginning to put into effect the program Mohr had outlined. The members even bought his instruments from his widow, intending to continue his measurements. For a number of reasons, however, this instrumental program was more than the society could support. Around 1790 instrumental science in the former Dutch East Indies came to a standstill, not to be resumed for several decades.
NASA Astrophysics Data System (ADS)
Prihadi, D. J.; Shofiyullah, A.; Dhahiyat, Y.
2018-04-01
The research was conducted in Sukamade Beach, Meru Betiri National Park, East Java. The purpose of this research was to identify marine tourism activity and to determine the differences in the characteristics of turtle-nesting beaches towards the number and species of turtles that came to the beach. Data collection conducted in August-September 2014. The method used in this research was a survey method at 7 reseach stations to collect primary data (biophysical characteristics) and secondary data. The Primary data was collected by monitoring turtles, width and slope of the beach, temperature, pH, moisture, sand texture, and beach vegetation conditions at each station. The results of the research shows that marine tourisms always involve tourists who attend to see turtle nesting, when turtles arrive at the beach, and turtles return to the sea, how large the turtles and how they lay eggs on the beach, and the release of little turtles (tukik). The number of turtles that landed from station 1 to station 7 is as many as 311 individuals of three species. The most dominant species of turtles that arrived at the beach is green turtle (Chelonia mydas), followed by olive ridley turtles (Lepidochelys olivaceae) and leatherbacks turtles (Dermochelys coriacea).
Web-based decision support system to predict risk level of long term rice production
NASA Astrophysics Data System (ADS)
Mukhlash, Imam; Maulidiyah, Ratna; Sutikno; Setiyono, Budi
2017-09-01
Appropriate decision making in risk management of rice production is very important in agricultural planning, especially for Indonesia which is an agricultural country. Good decision would be obtained if the supporting data required are satisfied and using appropriate methods. This study aims to develop a Decision Support System that can be used to predict the risk level of rice production in some districts which are central of rice production in East Java. Web-based decision support system is constructed so that the information can be easily accessed and understood. Components of the system are data management, model management, and user interface. This research uses regression models of OLS and Copula. OLS model used to predict rainfall while Copula model used to predict harvested area. Experimental results show that the models used are successfully predict the harvested area of rice production in some districts which are central of rice production in East Java at any given time based on the conditions and climate of a region. Furthermore, it can predict the amount of rice production with the level of risk. System generates prediction of production risk level in the long term for some districts that can be used as a decision support for the authorities.
NASA Astrophysics Data System (ADS)
Agustawijaya, Didi Supriadi; Karyadi, Karyadi; Krisnayanti, Baiq Dewi; Sutanto, Sutanto
2017-12-01
The Sidoarjo mudflow in East Java, Indonesia, has been erupting since May 29th, 2006. The eruption has been known as the Lusi (lumpur Sidoarjo), which was previously considered as a remote seismic event consequence, but current geyser-like activities show an association with a geothermal phenomenon. A method of characterizing rare earth elements (REE) is commonly an effective tool for recognizing a geothermal system, and here it is adapted to particularly indicate the environmental origin of the Lusi mud. Results show that the Lusi hot mud is made of a porous smectite structure of a shale rock type, which becomes an ideal tank for trapping the REE, especially the light REE. Volcanic activities seem to be an important influence in the eruption; however, since there is a lack of significant isotopic evidences in the mobilization of the REE during the eruption, the chloride neutral pH water of the Lusi may hardly contain the REE. The moderate Ce and Eu anomalies found in the REE patterns of the mud strongly indicate a sea-floor basin as the most probable environment for the REE fractionation during the sedimentary rock formation, in which the weathering processes of volcanic rock origin enriched the Lusi shale with the REE.
Gibson, Sarah; Sahanggamu, Daniel; Fatmaningrum, Dewi; Curtis, Val; White, Sian
2017-10-01
To examine levels of bacterial contamination in formula feeding bottles in Sidoarjo, East Java, and to assess the preparation practices that may have been responsible. A cross-sectional study was conducted among 92 randomly selected households with children under the age of two who were bottle-fed formula. In each household, we carried out video observation of mothers/caregivers preparing bottles, and examined samples of formula for coliform bacteria and Escherichia coli (E. coli). In-depth interviews were conducted with a subsample of 20 mothers. A total of 88% of the formula feeds were contaminated with total coliforms at a level >10 MPN/ml, and 45% contained E. coli. These feeds were defined as 'unfit for human consumption'. In the video observations, none of the mothers complied with all five WHO-recommended measures of hygienic formula feed preparation. Only two mothers washed their hands with soap prior to formula preparation. Most mothers also failed to clean or sterilise the bottle and clean the preparation area. In-depth interviews confirmed that such suboptimal hygiene practices were common. The high levels of contamination found highlight that bottles are an important faecal-oral exposure pathway resulting from poor hygiene practices during bottle preparation. © 2017 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Musa, R. Abdullah; Heni, Siti; Harjanto, Meddy, E-mail: mharja@gmail.com
Sukowati site which is operated by Production Sharing Contract (PSC) Joint Operating Body Pertamina Petrochina East Java (JOB P-PEJ) located at Bojonegoro regency East Java Province. This site is close to densely populated settlements with approximately 6,010 people within a radius less than 600 m. The fluid produced have a dangerous potential to the above mention community, due to accompanying of hydrogen sulphide gas (H2S) with a concentration about 0.6% – 2% from the total gas produced. In 2006, there was incident of gas leak from drilling development well of Sukowati # 5. The incident made the surrounding community panicmore » due to lack of preparedness and awareness. Learning from the incident, the company together with the government and local communities initiated to make improvements through the disaster management system approach. The efforts are carried out in accordance with the 4 (four) periods in a continuous cycle consist of (1) mitigation; (2) preparation; (3) response and (4) recovery. Emergency response drills conducted regularly at least once a year, its main purpose is to find out the results of the implementation of the existing disaster management. The results of the drills showed an increase in public awareness and responsiveness to emergency situations caused by the operational failures of oil and gas exploration and production activities near their settlement.« less
Community Structure Of Coral Reefs In Saebus Island, Sumenep District, East Java
NASA Astrophysics Data System (ADS)
Rizmaadi, Mada; Riter, Johannes; Fatimah, Siti; Rifaldi, Riyan; Yoga, Arditho; Ramadhan, Fikri; Ambariyanto, Ambariyanto
2018-02-01
Increasing degradation coral reefs ecosystem has created many concerns. Reduction of this damage can only be done with good and proper management of coral reef ecosystem based on existing condition. The condition of coral reef ecosystem can be determined by assessing its community structure. This study investigates community structure of coral reef ecosystems around Saebus Island, Sumenep District, East Java, by using satellite imagery analysis and field observations. Satellite imagery analysis by Lyzenga methods was used to determine the observation stations and substrate distribution. Field observations were done by using Line Intercept Transect method at 4 stations, at the depth of 3 and 10 meters. The results showed that the percentage of coral reef coverage at the depth of 3 and 10 meters were 64.36% and 59.29%, respectively, and included in fine coverage category. This study found in total 25 genera from 13 families of corals at all stations. The most common species found were Acropora, Porites, and Pocillopora, while the least common species were Favites and Montastrea. Average value of Diversity, Uniformity and Dominancy indices were 2.94, 0.8 and 0.18 which include as medium, high, and low category, respectively. These results suggest that coral reef ecosystems around Saebus Island is in a good condition.
Montgomery-Brown, Emily; Poland, Michael; Miklius, Asta; Carey, Rebecca; Cayol, Valérie; Poland, Michael P.; Weis, Dominique
2015-01-01
Eleven slow slip events (SSEs) have occurred on the southern flank of Kilauea Volcano, Hawai’i, since 1997 through 2014. We analyze this series of SSEs in the context of Kilauea’s magma system to assess whether or not there are interactions between these tectonic events and eruptive/intrusive activity. Over time, SSEs have increased in magnitude and become more regular, with interevent times averaging 2.44 ± 0.15 years since 2003. Two notable SSEs that impacted both the flank and the magmatic system occurred in 2007, when an intrusion and small eruption on the East Rift Zone were part of a feedback with a SSE and 2012, when slow slip induced 2.5 cm of East Rift Zone opening (but without any change in eruptive activity). A summit inflation event and surge in East Rift Zone lava effusion was associated with a SSE in 2005, but the inferred triggering relation is not clear due to a poorly constrained slip onset time. Our results demonstrate that slow slip along Kilauea’s décollement has the potential to trigger and be triggered by activity within the volcano’s magma system. Since only three of the SSEs have been associated with changes in magmatic activity within the summit and rift zones, both the décollement and magma system must be close to failure for triggering to occur.
Climate model calculations of the effects of volcanoes on global climate
NASA Technical Reports Server (NTRS)
Robock, Alan
1992-01-01
An examination of the Northern Hemisphere winter surface temperature patterns after the 12 largest volcanic eruptions from 1883-1992 shows warming over Eurasia and North America and cooling over the Middle East which are significant at the 95 percent level. This pattern is found in the first winter after tropical eruptions, in the first or second winter after midlatitude eruptions, and in the second winter after high latitude eruptions. The effects are independent of the hemisphere of the volcanoes. An enhanced zonal wind driven by heating of the tropical stratosphere by the volcanic aerosols is responsible for the regions of warming, while the cooling is caused by blocking of incoming sunlight.
Geologic Map of Kalaupapa Peninsula, Moloka‘i, Hawai‘i, USA
Okubo, Chris H.
2012-01-01
Kalaupapa Peninsula, along the northern coast of East Moloka‘i volcano, is a remarkably well-preserved example of rejuvenated-stage volcanism from a Hawaiian volcano. Mapping of lava flows, vents and other volcanic constructs reveals a diversity of landforms on this small monogenetic basaltic shield. The late-stage lava distributary system of this shield is dominated by a prominent lava channel and tube system emanating from the primary vent, Kauhakō crater. This system, along with several smaller examples, fed five prominent rootless vents downslope from Kauhakō. This map shows the subaerial part of this volcanic construct at 1:30,000 scale and encompasses an area of approximately 20.6 km2.
Volcano-tectonic structures and CO2-degassing patterns in the Laacher See basin, Germany
NASA Astrophysics Data System (ADS)
Goepel, Andreas; Lonschinski, Martin; Viereck, Lothar; Büchel, Georg; Kukowski, Nina
2015-07-01
The Laacher See Volcano is the youngest (12,900 year BP) eruption center of the Quarternary East-Eifel Volcanic Field in Germany and has formed Laacher See, the largest volcanic lake in the Eifel area. New bathymetric data of Laacher See were acquired by an echo sounder system and merged with topographic light detection and ranging (LiDAR) data of the Laacher See Volcano area to form an integrated digital elevation model. This model provides detailed morphological information about the volcano basin and results of sediment transport therein. Morphological analysis of Laacher See Volcano indicates a steep inner crater wall (slope up to 30°) which opens to the south. The Laacher See basin is divided into a deep northern and a shallower southern part. The broader lower slopes inclined with up to 25° change to the almost flat central part (maximum water depth of 51 m) with a narrow transition zone. Erosion processes of the crater wall result in deposition of volcaniclastics as large deltas in the lake basin. A large subaqueous slide was identified at the northeastern part of the lake. CO2-degassing vents (wet mofettes) of Laacher See were identified by a single-beam echo sounder system through gas bubbles in the water column. These are more frequent in the northern part of the lake, where wet mofettes spread in a nearly circular-shaped pattern, tracing the crater rim of the northern eruption center of the Laacher See Volcano. Additionally, preferential paths for gas efflux distributed concentrically inside the crater rim are possibly related to volcano-tectonic faults. In the southern part of Laacher See, CO2 vents occur in a high spatial density only within the center of the arc-shaped structure Barschbuckel possibly tracing the conduit of a tuff ring.
Volcanic unrest in Kenya: geological history from a satellite perspective
NASA Astrophysics Data System (ADS)
Robertson, E.; Biggs, J.; Edmonds, M.; Vye-Brown, C.
2013-12-01
The East African Rift (EAR) system is a 5,000 km long series of fault bounded depressions that run from Djibouti to Mozambique. In the Kenyan Rift, fourteen Quaternary volcanoes lie along the central rift axis. These volcanoes are principally composed of trachyte pyroclastics and trachyte and basaltic lavas forming low-angle multi-vent edifices. Between 1997 and 2008, geodetic activity has been observed at five Kenyan volcanoes, all of which have undergone periods of caldera collapse and explosive activity. We present a remote-sensing study to investigate the temporal and spatial development of volcanic activity at Longonot volcano. High-resolution mapping using ArcGIS and an immersive 3D visualisation suite (GeovisionaryTM) has been used with imagery derived from ASTER, SPOT5 and GDEM data to identify boundaries of eruptive units and establish relative age in order to add further detail to Longonot's recent eruptive history. Mapping of the deposits at Longonot is key to understand the recent geological history and forms the basis for future volcanic hazard research to inform risk assessments and mitigation programs in Kenya. Calderas at Kenyan volcanoes are elliptical in plan view and we use high-resolution imagery to investigate the regional stresses and structural control leading to the formation of these elliptical calderas. We find that volcanoes in the central and northern segments of the Kenyan rift are elongated nearly parallel to the direction of least horizontal compressive stress, likely as a reflection of the direction of the plate motion vector at the time of caldera collapse. The southern volcanoes however are elongated at an acute angle to the plate motion vector, most likely as a result of oblique opening of the Kenyan rift in this region.
Earth observation taken by the Expedition 29 crew
2011-10-07
ISS029-E-020003 (7 Oct. 2011) --- Parinacota Volcano in the Chile-Bolivia border region, South America is featured in this image photographed by an Expedition 29 crew member on the International Space Station. Volcan Parinacota (?flamingo lake? in the regional Aymara language) is a potentially active stratovolcano located on the Altiplano, a high plateau situated within the Andes Mountains of west-central South America. While no direct observations of eruptive activity are recorded, surface exposure age-dating of lava flows suggests that activity occurred as recently as 290 AD approximately 300 years, according to scientists. Local Aymara stories also suggest that the volcano has erupted during the past 1,000 years. This detailed photograph highlights the symmetrical cone of Parinacota, with its well-developed summit crater (elevation 6,348 meters above sea level) at center. Dark brown to dark gray surfaces to the east and west of the summit include lava flows, pyroclastic deposits, and ash. A companion volcano, Pomerape, is located across a low saddle to the north ? scientists believe this volcano last erupted during the Pleistocene Epoch (extending from approximately 3 million to 12,000 years ago). The summits of both volcanoes are covered by white permanent snowpack and small glaciers. Together, the two volcanoes form the Nevados de Payachata volcanic area. Eruptive activity at Parinacota has directly influenced development of the local landscape beyond the emplacement of volcanic deposits ? approximately 8,000 years ago the western flank of the volcano collapsed, creating a debris avalanche that traveled 22 kilometers to the west. This debris avalanche blocked drainages, leading to the formation of Lake Chungara to the south (upper right). The uneven, hummocky surface of the debris avalanche deposit provides ample catchments for water, as evidenced by the numerous small ponds and Cotacotani Lake to the west.
Digital Data for Volcano Hazards in the Crater Lake Region, Oregon
Schilling, S.P.; Doelger, S.; Bacon, C.R.; Mastin, L.G.; Scott, K.E.; Nathenson, M.
2008-01-01
Crater Lake lies in a basin, or caldera, formed by collapse of the Cascade volcano known as Mount Mazama during a violent, climactic eruption about 7,700 years ago. This event dramatically changed the character of the volcano so that many potential types of future events have no precedent there. This potentially active volcanic center is contained within Crater Lake National Park, visited by 500,000 people per year, and is adjacent to the main transportation corridor east of the Cascade Range. Because a lake is now present within the most likely site of future volcanic activity, many of the hazards at Crater Lake are different from those at most other Cascade volcanoes. Also significant are many faults near Crater Lake that clearly have been active in the recent past. These faults, and historic seismicity, indicate that damaging earthquakes can occur there in the future. The USGS Open-File Report 97-487 (Bacon and others, 1997) describes the various types of volcano and earthquake hazards in the Crater Lake area, estimates of the likelihood of future events, recommendations for mitigation, and a map of hazard zones. The geographic information system (GIS) volcano hazard data layers used to produce the Crater Lake earthquake and volcano hazard map in USGS Open-File Report 97-487 are included in this data set. USGS scientists created one GIS data layer, c_faults, that delineates these faults and one layer, cballs, that depicts the downthrown side of the faults. Additional GIS layers chazline, chaz, and chazpoly were created to show 1)the extent of pumiceous pyroclastic-flow deposits of the caldera forming Mount Mazama eruption, 2)silicic and mafic vents in the Crater Lake region, and 3)the proximal hazard zone around the caldera rim, respectively.
Vulnerability mapping in kelud volcano based on village information
NASA Astrophysics Data System (ADS)
Hisbaron, D. R.; Wijayanti, H.; Iffani, M.; Winastuti, R.; Yudinugroho, M.
2018-04-01
Kelud Volcano is a basaltic andesitic stratovolcano, situated at 27 km to the east of Kediri, Indonesia. Historically, Kelud Volcano has erupted with return period of 9-75 years, had caused nearly 160,000 people living in Tulungagung, Blitar and Kediri District to be in high-risk areas. This study aims to map vulnerability towards lava flows in Kediri and Malang using detailed scale. There are four major variables, namely demography, asset, hazard, and land use variables. PGIS (Participatory Geographic Information System) is employed to collect data, while ancillary data is derived from statistics information, interpretation of high resolution satellite imagery and Unmanned Aerial Vehicles (UAVs). Data were obtained from field checks and some from high resolution satellite imagery and UAVs. The output of this research is village-based vulnerability information that becomes a valuable input for local stakeholders to improve local preparedness in areas prone to improved disaster resilience. The results indicated that the highest vulnerability to lava flood disaster in Kelud Volcano is owned by Kandangan Hamlet, Pandean Hamlet and Kacangan Hamlet, because these two hamlets are in the dominant high vulnerability position of 3 out of 4 scenarios (economic, social and equal).
Climbing in the high volcanoes of central Mexico
Secor, R. J.
1984-01-01
A chain of volcanoes extends across central Mexico along the 19th parallel, a line just south of Mexico City. The westernmost of these peaks is Nevado de Colima at 4,636 feet above sea level. A subsidiary summit of Nevado de Colima is Volcan de Colima, locally called Fuego (fire) it still emits sulphurous fumes and an occasional plume of smoke since its disastrous eruption in 1941. Parictuin, now dormant, was born in the fall of 1943 when a cornfield suddenly erupted. Within 18 months, the cone grew more than 1,700 feet. Nevado de Toluca is a 15,433-foot volcanic peak south of the city of Toluca. Just southeast of Mexico City are two high volcanoes that are permanently covered by snow: Iztaccihuatl (17,342 fet) and Popocatepetl (17,887 feet) Further east is the third highest mountain in North America: 18,700-foot Citlateptl, or El Pico de Orizaba. North of these high peaks are two volcanoes, 14, 436-foot La Malinche and Cofre de Perote at 14,048 feet. This range of mountains is known variously as the Cordillera de Anahuac, the Sierra Volcanica Transversal, or the Cordillera Neovolcanica.
Volcanic tsunamis and prehistoric cultural transitions in Cook Inlet, Alaska
Beget, J.; Gardner, C.; Davis, K.
2008-01-01
The 1883 eruption of Augustine Volcano produced a tsunami when a debris avalanche traveled into the waters of Cook Inlet. Older debris avalanches and coeval paleotsunami deposits from sites around Cook Inlet record several older volcanic tsunamis. A debris avalanche into the sea on the west side of Augustine Island ca. 450??years ago produced a wave that affected areas 17??m above high tide on Augustine Island. A large volcanic tsunami was generated by a debris avalanche on the east side of Augustine Island ca. 1600??yr BP, and affected areas more than 7??m above high tide at distances of 80??km from the volcano on the Kenai Peninsula. A tsunami deposit dated to ca. 3600??yr BP is tentatively correlated with a southward directed collapse of the summit of Redoubt Volcano, although little is known about the magnitude of the tsunami. The 1600??yr BP tsunami from Augustine Volcano occurred about the same time as the collapse of the well-developed Kachemak culture in the southern Cook Inlet area, suggesting a link between volcanic tsunamis and prehistoric cultural changes in this region of Alaska. ?? 2008 Elsevier B.V.
Castillo, P.R.; Pringle, M.S.; Carlson, R.W.
1994-01-01
Studies of seafloor magnetic anomaly patterns suggest the presence of Jurassic oceanic crust in a large area in the western Pacific that includes the East Mariana, Nauru and Pigafetta Basins. Sampling of the igneous crust in this area by the Deep Sea Drilling Program (DSDP) and the Ocean Drilling Program (ODP) allows direct evaluation of the age and petrogenesis of this crust. ODP Leg 129 drilled a 51 m sequence of basalt pillows and massive flows in the central East Mariana Basin. 40Ar 39Ar ages determined in this study for two Leg 129 basalts average 114.6 ?? 3.2 Ma. This age is in agreement with the Albian-late Aptian paleontologic age of the overlying sediments, but is distinctively younger than the Jurassic age predicted by magnetic anomaly patterns in the basin. Compositionally, the East Mariana Basin basalts are uniformly low-K tholeiites that are depleted in highly incompatible elements compared to moderately incompatible ones, which is typical of mid-ocean ridge basalts (MORB) erupted near hotspots. The Sr, Nd and Pb isotopic compositions of the tholeiites ( 87Sr 86Srinit = 0.70360-0.70374; 143Nd 144Ndinit = 0.512769-0.512790; 206Pb 204Pbmeas = 18.355-18.386) also overlap with some Indian Ocean Ridge MORB, although they are distinct from the isotopic compositions of Jurassic basalts drilled in the Pigafetta Basin, the oldest Pacific MORB. The isotopic compositions of the East Mariana Basin tholeiites are also similar to those of intraplate basalts, and in particular, to the isotopic signature of basalts from the nearby Ontong Java and Manihiki Plateaus. The East Mariana Basin tholeiites also share many petrologic and isotopic characteristics with the oceanic basement drilled in the Nauru Basin at DSDP Site 462. In addition, the new 110.8 ?? 1.0 Ma 40Ar 39Ar age for two flows from the bottom of Site 462 in the Nauru Basin is indistinguishable from the age of the East Mariana Basin flows. Thus, while magnetic anomaly patterns predict that the igneous basement in the Nauru and East Mariana Basins is Jurassic in age, the geochemical and chronological results discussed here suggest that the basement formed during a Cretaceous rifting event within the Jurassic crust. This magmatic and tectonic event was created by the widespread volcanism responsible for the genesis of the large oceanic plateaus of the western Pacific. ?? 1994.
Mammoth Mountain, California broadband seismic experiment
NASA Astrophysics Data System (ADS)
Dawson, P. B.; Pitt, A. M.; Wilkinson, S. K.; Chouet, B. A.; Hill, D. P.; Mangan, M.; Prejean, S. G.; Read, C.; Shelly, D. R.
2013-12-01
Mammoth Mountain is a young cumulo-volcano located on the southwest rim of Long Valley caldera, California. Current volcanic processes beneath Mammoth Mountain are manifested in a wide range of seismic signals, including swarms of shallow volcano-tectonic earthquakes, upper and mid-crustal long-period earthquakes, swarms of brittle-failure earthquakes in the lower crust, and shallow (3-km depth) very-long-period earthquakes. Diffuse emissions of C02 began after a magmatic dike injection beneath the volcano in 1989, and continue to present time. These indications of volcanic unrest drive an extensive monitoring effort of the volcano by the USGS Volcano Hazards Program. As part of this effort, eleven broadband seismometers were deployed on Mammoth Mountain in November 2011. This temporary deployment is expected to run through the fall of 2013. These stations supplement the local short-period and broadband seismic stations of the Northern California Seismic Network (NCSN) and provide a combined network of eighteen broadband stations operating within 4 km of the summit of Mammoth Mountain. Data from the temporary stations are not available in real-time, requiring the merging of the data from the temporary and permanent networks, timing of phases, and relocation of seismic events to be accomplished outside of the standard NCSN processing scheme. The timing of phases is accomplished through an interactive Java-based phase-picking routine, and the relocation of seismicity is achieved using the probabilistic non-linear software package NonLinLoc, distributed under the GNU General Public License by Alomax Scientific. Several swarms of shallow volcano-tectonic earthquakes, spasmodic bursts of high-frequency earthquakes, a few long-period events located within or below the edifice of Mammoth Mountain and numerous mid-crustal long-period events have been recorded by the network. To date, about 900 of the ~2400 events occurring beneath Mammoth Mountain since November 2011 have been relocated. Our goal is to derive high-resolution three-dimensional P- and S-wave velocity structure models of Mammoth Mountain. These models will enable more precise locations of the local seismicity, full waveform inversions of long-period seismicity, derivation of moment tensors for the seemingly brittle-failure high-frequency earthquakes, analyses of shear-wave splitting, and high-resolution relative relocation of seismicity using double differences.
Variations in Fe and S redox states in ocean island basalts
NASA Astrophysics Data System (ADS)
Brounce, M. N.; Peterson, M. E.; Stolper, E. M.; Eiler, J. M.
2016-12-01
The chemical and isotopic compositions of ocean island basalts (OIB) suggest that their mantle sources contain imprints of subducted sediments, altered oceanic crust, undegassed mantle, and/or residues of continental crust formation. By comparing the oxygen fugacities (fO2) of OIBs to the extent to which they contain these imprints, it may be possible to relate specific compositions to spatial and temporal variations in source fO2. To explore this, we present µ-XANES measurements of the oxidation states of Fe and S from pillow glass and olivine-hosted melt inclusions from the Reykjanes Ridge, Mauna Kea, Kilauea, Loihi, Hawaiian South Arch, Reunion Island, and the Ontong Java Plateau; we then compare these measurements with previous determinations of the chemical and isotopic compositions of these OIBs. Reykjanes Ridge and Ontong Java glasses have Fe and S redox states that are similar to MORBs; although these glasses show evidence for assimilation of seawater or crustal components, there is no relationship between indices of assimilation (18O/16O, Cl) and Fe or S redox states. This indicates that assimilation in these settings does not have a major effect on magmatic fO2. Mauna Kea and Kilauea glasses affected by S+H2O degassing have decreased Fe and S redox states, but the least degassed samples from both volcanoes are similar to each other and more oxidized than MORB, Reykjanes Ridge, and Ontong Java glasses. Loihi and South Arch glasses have not lost significant S and H2O to degassing, and they record fO2s similar to the least degassed Mauna Kea and Kilauea glasses. Olivine-hosted melt inclusions from Reunion range in Fe redox from similar to MORBs to more oxidized than Hawaiian volcanoes. These data demonstrate that OIBs are heterogeneous in Fe and S redox states. Although more data are needed for the various OIB end members, with the exception of the two most reduced glasses from Reunion, the data thus far suggest a rough positive correlation between 87Sr/86Sr ratios and Fe and S redox states. If this correlation holds up, it would be consistent with EMI and/or EMII end members having fO2s more oxidized than the upper mantle sources of MORBs, perhaps because these end members contain subducted sediments and/or oceanic crust that were previously oxidized during exposure to the H2O- and O2-rich conditions at Earth's surface.
A Preliminary Study of Hazus-MH Volcano for Korea
NASA Astrophysics Data System (ADS)
Yu, S.; An, H.; Oh, J.
2013-12-01
This presentation will introduce our design to develop a volcano risk modeling capacity within the Hazus-MH loss estimation framework. In particular, we will present how to build fragility curves within the Hazus-MH framework for loss estimation from volcanoes. This capability is designed to analyze the risk from volcanic hazards in Korea. The Korean peninsula has Mt. Baekdu in North Korea, which will soon enter an active phase, according to some volcanologists. The anticipated eruption will be explosive given the viscous and grassy silica-rich magma, and is expected to be one of the largest in recent millennia. We aim to assess the impacts of this eruption, in particular to South Korea. There are several types of hazards related to volcanic eruption, including ash, pyroclastic flows, volcanic floods and earthquakes. However, our initial efforts focus on modeling losses from volcanic ash. The proposed volcanic ash model is anticipated to be used to estimate losses caused by yellow dust in East Asia as well. Also, many countries, which are exposed to potentially dangerous volcanoes, can benefit from the proposed Hazus-MH Volcano risk model. Acknowledgement: this research was supported by a grant [NEMA-BAEKDUSAN-2012-1-3] from the Volcanic Disaster Preparedness Research Center sponsored by National Emergency Management Agency of Korea. We would like to thank Federal Emergency Management Agency which develops Hazus-MH and allows the international use of Hazus-MH.
Thermal budget of the lower east rift zone, Kilauea Volcano
Delaney, Paul T.; Duffield, Wendell A.; Sass, John H.; Kauahikaua, James P.; ,
1993-01-01
The lower east rift zone of Kilauea has been the site of repeated fissure eruptions fed by dikes that traverse the depths of interest to geothermal explorations. We find that a hot-rock-and-magma system of low permeability extending along the rift zone at depths below about 4 km and replenished with magma at a rate that is small in comparison to the modern eruption rate Kilauea can supply heat to an overlying hydrothermal aquifer sufficient to maintain temperatures of about 250??C if the characteristic permeability to 4-km depth is about 10-15m2.
Chloroquine-resistant falciparum malaria in East Kalimantan, Indonesia.
Verdrager, J; Arwati; Simanjuntak, C H; Saroso, J S
1976-03-01
Following the discovery of four imported chloroquine-resistant P. falciparum infections in the Province of Yogyakarta (Island of Java) sensitivity tests were carried out in the Province of East Kalimantan Island of Borneo). Twenty subjects were given 25 mg. of chloroquine base per kilogram of body weight over three days. Two infections were found resistant at the RII level and a third at the RI level with early recrudescence on day 7. In the other 17 cases followed up to day 21, six were found again with asexual parasites between day 9 and day 14 and a seventh on day 21. These results confirm the presence of chloroquine resistance in P. falciparum in East Kalimantan and, together with previous findings, suggest a widespread distribution of chloroquine-resistant falciparum malaria in this Province of Indonesia. It is particularly interesting to note that chloroquine-resistant falciparum malaria has now been detected in almost all the area of dispersion of A. balabacensis.
Esselstyn, Jacob A; Maharadatunkamsi; Achmadi, Anang S; Siler, Cameron D; Evans, Ben J
2013-10-01
In theory, competition among species in a shared habitat results in niche separation. In the case of small recondite mammals such as shrews, little is known about their autecologies, leaving open questions regarding the degree to which closely related species co-occur and how or whether ecological niches are partitioned. The extent to which species are able to coexist may depend on the degree to which they exploit different features of their habitat, which may in turn influence our ability to recognize them as species. We explored these issues in a biodiversity hotspot, by surveying shrew (genus Crocidura) diversity on the Indonesian island of Java. We sequenced portions of nine unlinked genes in 100-117 specimens of Javan shrews and incorporated homologous data from most known Crocidura species from other parts of island South-East Asia. Current taxonomy recognizes four Crocidura species on Java, including two endemics. However, our phylogenetic, population genetic and species delimitation analyses identify five species on the island, and all are endemic to Java. While the individual ranges of these species may not overlap in their entirety, we found up to four species living syntopically and all five species co-occurring on one mountain. Differences in species' body size, use of above ground-level habitats by one species and habitat partitioning along ecological gradients may have facilitated species diversification and coexistence. © 2013 John Wiley & Sons Ltd.
Polanski, Joshua M; Marsh, Hannah E; Maddux, Scott D
2016-01-01
The recent recovery of a hominin maxillary third premolar, PU-198, within the faunal collections from Punung Cave (East Java) has led to assertions that Homo sapiens appeared on Java between 143,000 and 115,000 years ago. The taxonomic assignment of PU-198 to H. sapiens was based predominantly on the small size of the specimen, following an analysis which found little to no overlap in premolar size between Homo erectus and terminal Pleistocene/Holocene H. sapiens. Here, we re-evaluate the use of size in the taxonomic assignment of PU-198 in light of 1) new buccolingual and mesiodistal measurements taken on the fossil, 2) comparisons to a larger sample of H. erectus and H. sapiens maxillary third premolars, and 3) evidence of a diachronic trend in post-canine dental size reduction among Javan H. erectus. Our results demonstrate PU-198 to be slightly larger than previously suggested, reveal substantial overlap in premolar size between H. erectus and H. sapiens, and indicate a statistically significant reduction in premolar size between early and late Javan H. erectus. Our findings cast doubt on the assignment of PU-198 to H. sapiens, and accordingly, question the appearance of H. sapiens on Java between 143,000 and 115,000 years ago. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, F.W.
1994-03-28
This bibliography is divided into the following four sections: Seismicity of Hawaii and Kilauea Volcano; Occurrence, locations and accelerations from large historical Hawaiian earthquakes; Seismic hazards of Hawaii; and Methods of seismic hazard analysis. It contains 62 references, most of which are accompanied by short abstracts.
1998-06-03
The view from NASA's Magellan spacecraft shows most of Galindo V-40 quadrangle looking east; Atete Corona, in the foreground, is a 600-km-long and about 450-km-wide, circular volcano-tectonic feature. http://photojournal.jpl.nasa.gov/catalog/PIA00096
2006-04-21
purposes, such as scientific study of earthquake interactions in a fault zone or seismic sources associated with magma conduits in a volcano , relative... Kilauea , J. Geophys. Res., 99, 375-393. HARRIS, D.B. (1991), A waveform correlation method for identifying quarry explosions, Bull. Seismol. Soc. Am
ERIC Educational Resources Information Center
Nunn, Jeffrey A.; Braud, Janie
2013-01-01
Students in Honors Physical Geology at Louisiana State University (LSU) participated in instruction in eighth- to ninth-grade geology and geography classes in East Baton Rouge Parish Schools (EBRPS) to help meet community needs. LSU students created instructional materials and reflected on the service activity to gain a deeper understanding of…
Confirmation and calibration of computer modeling of tsunamis produced by Augustine volcano, Alaska
Beget, James E.; Kowalik, Zygmunt
2006-01-01
Numerical modeling has been used to calculate the characteristics of a tsunami generated by a landslide into Cook Inlet from Augustine Volcano. The modeling predicts travel times of ca. 50-75 minutes to the nearest populated areas, and indicates that significant wave amplification occurs near Mt. Iliamna on the western side of Cook Inlet, and near the Nanwelak and the Homer-Anchor Point areas on the east side of Cook Inlet. Augustine volcano last produced a tsunami during an eruption in 1883, and field evidence of the extent and height of the 1883 tsunamis can be used to test and constrain the results of the computer modeling. Tsunami deposits on Augustine Island indicate waves near the landslide source were more than 19 m high, while 1883 tsunami deposits in distal sites record waves 6-8 m high. Paleotsunami deposits were found at sites along the coast near Mt. Iliamna, Nanwelak, and Homer, consistent with numerical modeling indicating significant tsunami wave amplification occurs in these areas.
Eruption of Eyjafjallajökull Volcano, Iceland May 2nd View
2017-12-08
NASA satellite image acquired May 2, 2010 To view a detail of this image go to: www.flickr.com/photos/gsfc/4584266734/ Ash and steam continued billowing from Eyjafjallajökull Volcano in early May 2010. The Advanced Land Imager (ALI) on NASA’s Earth Observing-1 (EO-1) satellite captured this natural-color image on May 2, 2010. The volcano’s summit is near the left edge of this image, capped by a dark plume. The plume is dull gray-brown, indicating that its principal visible component is volcanic ash. Ash from the plume blows toward the east-southeast, passing over a charcoal-colored ash field on the land surface. Just to the north of Eyjafjallajökull’s summit are white puffs of steam, likely from surface lava flows vaporizing snow and glacial ice. On May 4, 2010, the Icelandic Meteorological Office warned that Eyjafjallajökull showed no signs of ending its eruptive activity in the near future. The Met Office reported that ash from the volcano had reached a height of 5.8 to 6.0 kilometers (19,000 to 20,000 feet) above sea level, and had spread 65 to 80 kilometers (40 to 50 miles) east-southeast of the volcano, where it impeded visibility for local residents. The Met Office also reported that lava continued flowing down a steep hill north of the crater. NASA image by Robert Simmon, using ALI data from the EO-1 team. Caption by Michon Scott. Instrument: EO-1 – ALI To view other images from the Earth Observatory go to: earthobservatory.nasa.gov/ NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.
Eruption of Eyjafjallajökull Volcano, Iceland May 2nd View [Detail
2017-12-08
NASA satellite image acquired May 2, 2010 To see the full view of this image go to: www.flickr.com/photos/gsfc/4584266582/ Ash and steam continued billowing from Eyjafjallajökull Volcano in early May 2010. The Advanced Land Imager (ALI) on NASA’s Earth Observing-1 (EO-1) satellite captured this natural-color image on May 2, 2010. The volcano’s summit is near the left edge of this image, capped by a dark plume. The plume is dull gray-brown, indicating that its principal visible component is volcanic ash. Ash from the plume blows toward the east-southeast, passing over a charcoal-colored ash field on the land surface. Just to the north of Eyjafjallajökull’s summit are white puffs of steam, likely from surface lava flows vaporizing snow and glacial ice. On May 4, 2010, the Icelandic Meteorological Office warned that Eyjafjallajökull showed no signs of ending its eruptive activity in the near future. The Met Office reported that ash from the volcano had reached a height of 5.8 to 6.0 kilometers (19,000 to 20,000 feet) above sea level, and had spread 65 to 80 kilometers (40 to 50 miles) east-southeast of the volcano, where it impeded visibility for local residents. The Met Office also reported that lava continued flowing down a steep hill north of the crater. NASA image by Robert Simmon, using ALI data from the EO-1 team. Caption by Michon Scott. Instrument: EO-1 – ALI To view other images from the Earth Observatory go to: earthobservatory.nasa.gov/ NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.
Rickettsial Infections of Fleas Collected From Small Mammals on Four Islands in Indonesia
2010-01-01
cheopis from shrews ( Suncus murinus). X. cheopis were pooled and tested for DNA from rickettsial agents Rickettsia typhi, Rickettsia felis, and spotted...fever group rickettsiae . R. typhi, the agent of murine typhus, was detected in X. cheopis collected from small mammals in West Java and East...Kalimantan. R.felis was detected in X. cheopis collected from small mammals in Manado, North Sulawesi. R. felis and spotted fever group rickettsiae were
2013-10-29
ISS037-E-022473 (29 Oct. 2013) --- La Malinche Volcano, Mexico is featured in this image photo graphed by an Expedition 37 crew member on the International Space Station. Located approximately 30 kilometers to the northeast of the city of Puebla, the summit of Volcan la Malinche rises to an elevation of 4,461 meters above sea level. This detailed photograph highlights the snow-dusted summit, and the deep canyons that cut into the flanks of this eroded stratovolcano. La Malinche has not been historically active, but radiometric dating of volcanic rocks and deposits associated with the structure indicate a most recent eruption near the end of the 12th century. NASA scientists cite evidence that lahars, or mudflows, associated with an eruption about 3,100 years ago, affected Pre-Columbian settlements in the nearby Puebla basin. The volcano is enclosed within La Malinche National Park situated within parts of the states of Puebla and Tlaxcala; extensive green forest cover is visible on the lower flanks of the volcano. Access to the volcano is available through roadways, and it is frequently used as a training peak by climbers prior to attempting higher summits. The rectangular outlines of agricultural fields are visible forming an outer ring around the forested area. While the volcano appears to be quiescent, its relatively recent (in geological terms) eruptive activity, and location within the Trans-Mexican Volcanic Belt– a tectonically active region with several current and historically active volcanoes including Popocatepetl to the west and Pico de Orizaba to the east - suggests that future activity is still possible and could potentially pose a threat to the nearby city of Puebla.
DeGange, Anthony R.; Byrd, G. Vernon; Walker, Lawrence R.; Waythomas, C.F.
2010-01-01
The Aleutian Islands are situated on the northern edge of the so-called “Pacific Ring of Fire,” a 40,000-km-long horseshoe-shaped assemblage of continental landmasses and islands bordering the Pacific Ocean basin that contains many of the world's active and dormant volcanoes. Schaefer et al. (2009) listed 27 historically active volcanoes in the Aleutian Islands, of which nine have had at least one major eruptive event since 1990. Volcanic eruptions are often significant natural disturbances, and ecosystem responses to volcanic eruptions may vary markedly with eruption style (effusive versus explosive), frequency, and magnitude of the eruption as well as isolation of the disturbed sites from potential colonizing organisms (del Moral and Grishin, 1999). Despite the relatively high frequency of volcanic activity in the Aleutians, the response of island ecosystems to volcanic disturbances is largely unstudied because of the region's isolation. The only ecological studies in the region that address the effects of volcanic activity were done on Bogoslof Island, a remote, highly active volcanic island in the eastern Aleutians, which grew from a submarine eruption in 1796 (Merriam, 1910; Byrd et al., 1980; Byrd and Williams, 1994). Nevertheless, in the 214 years of Bogoslof's existence, the island has been visited only intermittently.Kasatochi Island is a small (2.9 km by 2.6 km, 314 m high) volcano in the central Aleutian Islands of Alaska (52.17°N latitude, 175.51°W longitude; Fig. 1) that erupted violently on 7-8 August 2008 after a brief, but intense period of precursory seismic activity (Scott et al., 2010 [this issue]; Waythomas et al., in review). The island is part of the Aleutian arc volcanic front, and is an isolated singular island. Although the immediate offshore areas are relatively shallow (20–50 m water depth), the island is about 10 km south of the 2000 m isobath, north of which, ocean depths increase markedly. Kasatochi is located between the deepwater basin of the Bering Sea to the north and shallower areas of intense upwelling in Atka and Fenimore Passes in the North Pacific Ocean to the south. This area apparently produces high marine productivity based on concentrations of feeding marine birds and mammals (see Drew et al., 2010 [this issue]). Kasatochi is about 85 km northeast of Adak, the nearest community and a regional transportation hub, and about 19 km northwest of the western end of Atka Island. The nearest historically active volcanoes are Great Sitkin volcano, about 35 km to the west, and Korovin volcano on Atka Island, about 94 km to the east. Koniuji Island, another small volcanic island, is located about 25 km east of Kasatochi (Fig. 1).
Remote Triggering of Microearthquakes in the Piton de la Fournaise and Changbaishan Volcanoes
NASA Astrophysics Data System (ADS)
Li, C.; Liu, G.; Peng, Z.; Brenguier, F.; Dufek, J.
2015-12-01
Large earthquakes are capable of triggering seismic, aseismic and hydrological responses at long-range distances. In particular, recent studies have shown that microearthquakes are mostly triggered in volcanic/geothermal regions. However, it is still not clear how widespread the phenomenon is, and whether there are any causal links between large earthquakes and subsequent volcanic unrest/eruptions. In this study we conduct a systematic search for remotely triggered activity at the Piton de la Fournaise (PdlF) and Changbaishan (CBS) volcanoes. The PdlF is a shield volcano located on the east-southern part of the Reunion Island in Indian Ocean. It is one of the most active volcanoes around the world. The CBS volcano is an intraplate stratovolcano on the border between China and North Korea, and it was active with a major eruption around 1100 years ago and has been since dormant from AD 1903, however, it showed signals of unrest recently. We choose these regions because they are well instrumented and spatially close to recent large earthquakes, such as the 2004/12/26 Mw9.1 Sumatra, 2011/03/11 Mw9.0 Tohoku, and the 2012/04/11 Mw8.6 Indian Ocean Earthquakes. By examining continuous waveforms a few hours before and after many earthquakes since 2000, we find many cases of remote triggering around the CBS volcano. In comparison, we only identify a few cases of remotely triggered seismicity around the PdlF volcano, including the 2004 Sumatra earthquake. Notably, the 2012 Indian Ocean earthquake and its M8.2 aftershock did not trigger any clear increase of seismicity, at least during their surface waves. Our next step is to apply a waveform matching method to automatically detect volcano-seismicity in both regions, and then use them to better understand potential interactions between large earthquakes and volcanic activities.
Savin, C.; Grasso, J.-R.; Bachelery, P.
2005-01-01
Karthala volcano is a basaltic shield volcano with an active hydrothermal system that forms the southern two-thirds of the Grande Comore Island, off the east coat of Africa, northwest of Madagascar. Since the start of volcano monitoring by the local volcano observatory in 1988, the July 11th, 1991 phreatic eruption was the first volcanic event seismically recorded on this volcano, and a rare example of a monitored basaltic shield. From 1991 to 1995 the VT locations, 0.5
Alaska - Russian Far East connection in volcano research and monitoring
NASA Astrophysics Data System (ADS)
Izbekov, P. E.; Eichelberger, J. C.; Gordeev, E.; Neal, C. A.; Chebrov, V. N.; Girina, O. A.; Demyanchuk, Y. V.; Rybin, A. V.
2012-12-01
The Kurile-Kamchatka-Alaska portion of the Pacific Rim of Fire spans for nearly 5400 km. It includes more than 80 active volcanoes and averages 4-6 eruptions per year. Resulting ash clouds travel for hundreds to thousands of kilometers defying political borders. To mitigate volcano hazard to aviation and local communities, the Alaska Volcano Observatory (AVO) and the Institute of Volcanology and Seismology (IVS), in partnership with the Kamchatkan Branch of the Geophysical Survey of the Russian Academy of Sciences (KBGS), have established a collaborative program with three integrated components: (1) volcano monitoring with rapid information exchange, (2) cooperation in research projects at active volcanoes, and (3) volcanological field schools for students and young scientists. Cooperation in volcano monitoring includes dissemination of daily information on the state of volcanic activity in neighboring regions, satellite and visual data exchange, as well as sharing expertise and technologies between AVO and the Kamchatkan Volcanic Eruption Response Team (KVERT) and Sakhalin Volcanic Eruption Response Team (SVERT). Collaboration in scientific research is best illustrated by involvement of AVO, IVS, and KBGS faculty and graduate students in mutual international studies. One of the most recent examples is the NSF-funded Partnerships for International Research and Education (PIRE)-Kamchatka project focusing on multi-disciplinary study of Bezymianny volcano in Kamchatka. This international project is one of many that have been initiated as a direct result of a bi-annual series of meetings known as Japan-Kamchatka-Alaska Subduction Processes (JKASP) workshops that we organize together with colleagues from Hokkaido University, Japan. The most recent JKASP meeting was held in August 2011 in Petropavlovsk-Kamchatsky and brought together more than 130 scientists and students from Russia, Japan, and the United States. The key educational component of our collaborative program is the continuous series of international volcanological field schools organized in partnership with the Kamchatka State University. Each year more than 40 students and young scientists participate in our annual field trips to Katmai, Alaska and Mutnovsky, Kamchatka.
NASA Astrophysics Data System (ADS)
Aisyah, Nurnaning; Iguchi, Masato; Subandriyo; Budisantoso, Agus; Hotta, Kohei; Sumarti, Sri
2018-05-01
We analyzed ground deformation prior to the eruptions in 2006 and 2010 at Merapi volcano, Central Java, Indonesia. Ground deformation was monitored by electronic distance measurement (EDM) by measuring the slope distance toward 12 reflectors installed near the summit from five benchmarks on flanks every day. A large change of slope distance (CSD) was detected on the southeast and south baselines and a minor CSD was detected on the north and northwest baselines during the pre-eruptive stages of both the 2006 and 2010 eruptions. We applied a block movement model to the south and southeast baselines and a spherical pressure source model to the CSDs on the north and northwest baselines using the finite element method (FEM). The rates of block movement southward and the volume change of the pressure source increased on April 7, 2006 and continued at constant rates until the appearance of a new lava dome on April 26. Prior to the eruption in 2010, the block movement southeastward and the volume increase of the pressure source accelerated in the middle of October, and acceleration continued until the first outburst on October 26, 2010. Temporal patterns of the block movement and the increase in the volume of the pressure source correlate well with the increase in seismicity of VT and MP earthquakes. The pressure sources were obtained at a depth of 2 ± 0.5 km below the summit, and this position corresponds to the aseismic zone of VT earthquakes. Magma injection at the shallow part of this region causes an increase in the volume of the pressure source, and inflation of the ground of the summit triggered gravitational slip southeastward or southward of the ground surface. The volumes increases of the pressure sources were 9.7 ± 1 M m3 and 17.6 ± 0.8 M m3 in 2006 and 2010, respectively. The volume increase is related to the scale and type of the eruption. The effusive eruption in 2006 had a volcanic explosivity index (VEI) of 2 and the explosive eruption in 2010 had a VEI of 4. The directions and amounts of the block movement are strongly related to topography, hydrothermally weak zone and underground gap near the summit between West and East Domes.
Ingicco, Thomas; de Vos, John; Huffman, O Frank
2014-01-01
A fossil femur excavated by Eugène Dubois between 1891-1900 in the Lower/Middle Pleistocene bonebed of the Trinil site (Java, Indonesia) was recognised by us as that of a Hylobatidae. The specimen, Trinil 5703 of the Dubois Collection (Leiden, The Netherlands), has the same distinctive form of fossilization that is seen in many of the bonebed fossils from Trinil in the collection. Anatomical comparison of Trinil 5703 to a sample of carnivore and primate femora, supported by morphometric analyses, lead to the attribution of the fossil to gibbon. Trinil 5703 therefore provides the oldest insular record of this clade, one of the oldest known Hylobatidae fossils from Southeast Asia. Because living Hylobatidae only inhabit evergreen rain forests, the paleoenvironment within the river drainage in the greater Trinil area evidently included forests of this kind during the Lower/Middle Pleistocene as revealed here.
Ingicco, Thomas; de Vos, John; Huffman, O. Frank
2014-01-01
A fossil femur excavated by Eugène Dubois between 1891–1900 in the Lower/Middle Pleistocene bonebed of the Trinil site (Java, Indonesia) was recognised by us as that of a Hylobatidae. The specimen, Trinil 5703 of the Dubois Collection (Leiden, The Netherlands), has the same distinctive form of fossilization that is seen in many of the bonebed fossils from Trinil in the collection. Anatomical comparison of Trinil 5703 to a sample of carnivore and primate femora, supported by morphometric analyses, lead to the attribution of the fossil to gibbon. Trinil 5703 therefore provides the oldest insular record of this clade, one of the oldest known Hylobatidae fossils from Southeast Asia. Because living Hylobatidae only inhabit evergreen rain forests, the paleoenvironment within the river drainage in the greater Trinil area evidently included forests of this kind during the Lower/Middle Pleistocene as revealed here. PMID:24914951
General geology and ground-water resources of the island of Maui, Hawaii
Stearns, Harold T.; Macdonald, Gordon Andrew
1942-01-01
Maui, the second largest island in the Hawaiian group, is 48 miles long, 26 miles wide, and covers 728 square miles. The principal town is Wailuku. Sugar cane and pineapples are the principal crops. Water is used chiefly for irrigating cane. The purpose of the investigation was to study the geology and the ground-water resources of the island.Maui was built by two volcanoes. East Maui or Haleakala Volcano is 10,025 feet high and famous for its so-called crater, which is a section of Hawaii National Park. Evidence is given to show that it is the head of two amphitheater-headed valleys in which numerous secondary eruptions have occurred and that it is not a crater, caldera, or eroded caldera. West Maui is a deeply dissected volcano 5,788 feet high. The flat Isthmus connecting the two volcanoes was made by lavas from East Maui banking against the West Maui Mountains. Plate 1 shows the geology, wells, springs, and water-development tunnels. Plate 2 is a map and description of points of geologic interest along the main highways. Volcanic terms used in the report are briefly defined. A synopsis of the climate is included and a record of the annual rainfall at all stations is given also. Puu Kukui, on West Maui, has an average annual rainfall of 389 inches and it lies just six miles from Olowalu where only 2 inches of rain fell in 1928, the lowest ever recorded in the Hawaiian Islands. The second rainiest place in the Territory is Kuhiwa Gulch on East Maui where 523 inches fell during 1937. Rainfall averages 2,360 million gallons daily on East Maui and 580 on West Maui. Ground water at the point of use in months of low rainfall is worth about $120 per million gallons, which makes most undeveloped supplies valuable.The oldest rocks on East Maui are the very permeable primitive Honomanu basalts, which were extruded probably in Pliocene and early Pleistocene time from three rift zones. These rocks form a dome about 8,000 feet high and extend an unknown distance below sea level. Covering this dome are the Kula volcanics, extruded probably in early and middle Pleistocene time, and characterized by andesites, andesitic basalts, and picritic basalts. They are 2.000 feet thick on the summit and 50 to 200 feet thick at the periphery. They contain a sufficient number of interbedded soils, thin vitric tuff beds, and lava-filled valleys in their upper part to give rise to valuable perched springs in wet areas. The Kula lavas accumulated during a waning volcanic phase which was followed by a quiescence long enough for the erosion of deep amphitheater-headed valleys in the east or wet half of the mountain. Volcanic activity was renewed in middle (?) to late Pleistocene time and continued until Recent time, during which the Hana volcanic series was laid down. The last lava flow was erupted about 1750. The Hana lavas comprise andesitic, picritic, and olivine basalts. They veneered large areas of the east and south slopes, partly filled the deep amphitheater-headed valleys, and deeply buried the smaller valleys in the eastern half of the mountain. The Hana rocks are exceedingly permeable and much rain sinks into them.The oldest rocks on West Maui are the very permeable primitive Wailuku basalts, which were extruded probably in Pliocene and early Pleistocene time from two rifts and from many radial fissures. The basalts form a dome about 5,600 feet high and extend an unknown distance below sea level. Iao Valley is the eroded caldera of this dome. Forming an incomplete veneer over the dome are the Honolua soda trachytes and oligoclase andesites. They were extruded in late Pliocene (?) or early Pleistocene time, chiefly from bulbous domes. The clinker beds carry some water but the rocks are generally too dense to be good aquifers. During early (?) Pleistocene the West Maui volcano was cut by deep amphitheater-headed valleys and then all of Maui was deeply submerged. Four scattered eruptions occurred on West Maui in middle (?) and late Pleistocene time. The cones and lavas cover only small areas and are called the Lahaina volcanic series. The sedimentary rocks of both East and West Maui are chiefly late Quaternary and comprise fans, landslide debris, delta deposits, and valley fills, mostly of poorly permeable and poorly assorted bouldery alluvium. They are overlain on the Isthmus by extensive calcareous dunes of three ages. A mud flow more than 300 feet thick is exposed in Kaupo Valley. During the fluctuations of the ocean in the Pleistocene, the island was emerged and submerged several times. Calcareous fossiliferous marine conglomerates deposited during this period are found up to an altitude of 250 feet on West Maui. The Homomanu, Wailuku, and Kula lavas are the chief aquifers. They supply 28 irrigation wells which yield an average of 170 million gallons a day of basal water. These wells are mine-like shafts with infiltration tunnels and are called Maui-type wells. Well 16 yields 40,000,000 gallons daily with a 22-foot drawdown, which is the largest amount yielded by any well in the Hawaiian Islands. The largest spring (no. 26) on the island is artesian. It yields 10,400,000 gallons daily and issues from Kula lavas near Nahiku. West Maui has numerous perennial streams supplied by springs from a dike complex. Twenty-three tunnels in West Maui recover 20.5 million gallons a day of high-level water, mostly from this dike complex. East Maui has few perennial streams in proportion to its size, and they are chiefly small due to the water sheds being underlain with permeable lavas. Forty tunnels recover 6 million gallons a day of high-level water in East Maui and all from structures other than dikes. It is estimated that about 100 million gallons a day of basal water wastes into the sea from West Maui and about 700 million gallons a day from East Maui. A number of sites are described where wells could be sunk to recover this water. Sites are also described where tunnels could be driven to recover high-level supplies. The hydrology of East and West Maui is conspicuously different in many respects, mainly because of the difference in the stage of dissection, the extensive veneer of very permeable Hann lavas on East Maui, and the comparatively small area of the Lahaina lavas of similar age on West Maui. The only thermal water known in the Hawaiian Islands, except on the active volcano of Kilauea, is in a well in West Maui.The Nahiku area has been mapped and studied in detail. The upper part of the Honomanu volcanic series, exposed in the sea cliffs, in petrographic character is transitional into the overlying Kula lavas, Kula and Hana time were characterized by a long succession of valley-cutting episodes, each valley being filled by lava erupted from the east rift zone. The lavas include olivine basalts, picritic basalts, and basaltic andesites,In the Nahiku area basal ground water occurs largely in the Honomanu basalts. Perched water occurs in many of the later lavas, generally following the axes of buried valleys. The members which perch the water are mostly ashy soil beds, although an unusually extensive, thick layer of much decomposed clinker also appears to be a supporting member. Most of the water travels through the basal clinker members of aa lavas. Artesian water is encountered in the upper, transitional part of the Honomanu volcanic series. The aquifer is permeable porphyritic pahoehoe; the confining members are relatively impermeable nonporphyritic aa.The lavas of East Maui are described according to stratigraphic groups. The oldest or Honomanu lavas are olivine basalts like the primitive lavas in other Hawaiian volcanoes. The later or Kula and Hana lavas include basalts, basaltic andesites, andesites, and picritic basalts. The normative nepheline of analyzed East Maui lavas has not been identified in the mode. The degree of differentiation is inversely proportional to the frequency of eruptions.The lavas of West Maui volcano are divided into the Wailuku volcanic series, consisting largely of olivine basalts with less abundant olivine-poor basalts, hypersthene basalts, and picritic basalts; the Honolua volcanic series, consisting of oligoclase andesites and soda trachytes; and the Lahaina volcanic series, consisting of nepheline basanite and picritic basalts. Coarse-grained gabbros intrude the Wailuku lavas. Differentiation was undoubtedly partly by crystal settling, but the alkali curves of the variation diagram suggest that volatile transfer was of some importance.
Earth Observations taken by the Expedition 20 crew
2009-06-12
ISS020-E-009048 (12 June 2009) --- Sarychev Peak Volcano eruption, Kuril Islands, is featured in this image photographed by an Expedition 20 crew member on the International Space Station. A fortuitous orbit of the International Space Station allowed the astronauts this striking view of Sarychev volcano (Russia?s Kuril Islands, northeast of Japan) in an early stage of eruption on June 12, 2009. Sarychev Peak is one of the most active volcanoes in the Kuril Island chain and is located on the northwestern end of Matua Island. Prior to June 12, the last explosive eruption had occurred in 1989 with eruptions in 1986, 1976, 1954, and 1946 also producing lava flows. Ash from the June 2009 eruption has been detected 2407 kilometers ESE and 926 kilometers WNW of the volcano, and commercial airline flights are being diverted away from the region to minimize the danger of engine failures from ash intake. This detailed photograph is exciting to volcanologists because it captures several phenomena that occur during the earliest stages of an explosive volcanic eruption. The main column is one of a series of plumes that rose above Matua Island (48.1 degrees north latitude and 153.2 degrees east longitude) on June 12. The plume appears to be a combination of brown ash and white steam. The vigorously rising plume gives the steam a bubble-like appearance; the surrounding atmosphere has been shoved up by the shock wave of the eruption. The smooth white cloud on top may be water condensation that resulted from rapid rising and cooling of the air mass above the ash column, and is probably a transient feature (the eruption plume is starting to punch through). The structure also indicates that little to no shearing winds were present at the time to disrupt the plume. Another series of images, acquired 2-3 days after the start of eruptive activity, illustrate the effect of shearing winds on extent of the ash plumes across the Pacific Ocean. By contrast, a cloud of denser, gray ash ? most probably a pyroclastic flow -- appears to be hugging the ground, descending from the volcano summit. The rising eruption plume casts a shadow to the northwest of the island (bottom center). Brown ash at a lower altitude of the atmosphere spreads out above the ground at upper right. Low-level stratus clouds approach Matua Island from the east, wrapping around the lower slopes of the volcano. Only about 1.5 kilometers of the coastline of Matua Island (upper center) can be seen beneath the clouds and ash.
NASA Astrophysics Data System (ADS)
Bohm, Mirjam; Haberland, Christian; Asch, Günter
2013-04-01
We use local earthquake data observed by the amphibious, temporary seismic MERAMEX array to derive spatial variations of seismic attenuation (Qp) in the crust and upper mantle beneath Central Java. The path-averaged attenuation values (t∗) of a high quality subset of 84 local earthquakes were calculated by a spectral inversion technique. These 1929 t∗-values inverted by a least-squares tomographic inversion yield the 3D distribution of the specific attenuation (Qp). Analysis of the model resolution matrix and synthetic recovery tests were used to investigate the confidence of the Qp-model. We notice a prominent zone of increased attenuation beneath and north of the modern volcanic arc at depths down to 15 km. Most of this anomaly seems to be related to the Eocene-Miocene Kendeng Basin (mainly in the eastern part of the study area). Enhanced attenuation is also found in the upper crust in the direct vicinity of recent volcanoes pointing towards zones of partial melts, presence of fluids and increased temperatures in the middle to upper crust. The middle and lower crust seems not to be associated with strong heating and the presence of melts throughout the arc. Enhanced attenuation above the subducting slab beneath the marine forearc seems to be due to the presence of fluids.
Geophysical characteristics of the hydrothermal systems of Kilauea volcano, Hawaii
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kauahikaua, J.
1993-08-01
Clues to the structure of Kilauea volcano can be obtained from spatial studies of gravity, magnetic, and seismic velocity variations. The rift zones and summit are underlain by dense, magnetic, and seismic velocity variations. The rift zones and summit are underlain by dense, magnetic, high P-wave-velocity rocks at depths of about 2 km less. The gravity and seismic velocity studies indicate that the rift structures are broad, extending farther to the north than to the south of the surface features. The magnetic data allow separation into a narrow, highly-magnetized, shallow zone and broad, flanking, magnetic lows. The patterns of gravity,more » magnetic variations, and seismicity document the southward migration of the upper east rift zone. Regional, hydrologic features of Kilauea can be determined from resistivity and self-potential studies. High-level groundwater exists beneath Kilauea summit to elevations of +800 m within a triangular area bounded by the west edge of the upper southwest rift zone, the east edge of the upper east rift zone, and the Koa'e fault system. High-level groundwater is present within the east rift zone beyond the triangular summit area. Self-potential mapping shows that areas of local heat produce local fluid circulation in the unconfined aquifer (water table). Shallow seismicity and surface deformation indicate that magma is intruding and that fractures are forming beneath the rift zones and summit area. Heat flows of 370--820 mW/m[sup 2] are calculated from deep wells within the lower east rift zone. The estimated heat input rate for Kilauea of 9 gigawatts (GW) is at least 25 times higher than the conductive heat loss as estimated from the heat flow in wells extrapolated over the area of the summit caldera and rift zones. 115 refs., 13 figs., 1 tab.« less
Evidence for a Dying Magma Chamber at Rábida Island, Galápagos
NASA Astrophysics Data System (ADS)
Bercovici, H.; Geist, D.; Harpp, K. S.; Almeida, M.
2015-12-01
Rábida Island in the Galapagos has experienced both explosive and effusive volcanism. It is located to the east of the most active volcanoes of the Galapagos, and previously determined ages range from 0.9 to 1.1 Ma. An unusually curved escarpment cuts the western sector of the island, which might be part of a caldera wall, although its radius of curvature is much greater than that of the island. Lavas range from basalt to rhyolite, and there are also several intermediate compositions, which are unique in the archipelago. A welded ignimbrite crops out in northeast sector, the only such deposit known in the entire region. The volumetric proportion of evolved rocks is unusually high; 25% of the rocks in our comprehensive sample set are intermediate to felsic. The siliceous rocks occur in two clusters in the southern and southwestern sections of the island, suggesting two separate sources. The intermediate rocks are concentrated in the center and northwestern parts of the island. Despite these foci of more siliceous lavas, basalt is the most widespread rock type across the island. It is notable that Rabida is immediately east of Volcan Alcedo, which is the only active Galápagos volcano that has also erupted rhyolite, and south of Santiago Island, which erupted the trachyte dome observed by Charles Darwin in 1835. These observations, in conjunction with the cumulate xenoliths observed in Rábida explosive deposits, are consistent with the evolved rocks resulting from fractional crystallization of a dying magma chamber, as the volcano is carried away from the hotspot.
Fluid flow and water-rock interaction in the East Rift Zone of Kilauea Volcano, Hawaii
NASA Astrophysics Data System (ADS)
Conrad, Mark E.; Thomas, Donald M.; Flexser, Steven; Vennemann, Torsten W.
1997-07-01
The East Rift Zone of Kilauea Volcano in Hawaii represents a major area of geothermal activity. Fluid inclusion and stable isotope analyses of secondary hydrothermal minerals in core samples from three scientific observation holes (SOH) drilled into the rift zone indicate that the geothermal system is dominated by meteoric waters to depths of as much as 1500 m below sea level. Calculated δ18O and δD values for fluids on the north side of the rift zone indicate that the deep meteoric fluids may be derived from precipitation on the upper slopes of Mauna Loa Volcano. In the interior of the rift zone, recharge is dominated by seawater mixed with local meteoric water. Water/rock ratios in the rift area are approximately 2, but strongly 18O-enriched fluids in the deeper parts of the SOH-2 and SOH-4 drill holes (on the north side of the rift) indicate that the fluids underwent extensive interaction with rocks prior to reaching this part of the rift zone. Marine carbonates at the subaerial to submarine transition (between 1700 and 1780 m depth) in SOH-4 have not fully equilibrated with the fluids, suggesting that the onset of hydrothermal activity in this area was relatively recent (<2000 years). This may represent increased volcanic activity along the rift after the end of the Ai La'au phase of eruptive activity at the Kilauea summit approximately 1000 years ago, or it may reflect progressive evolution of the hydrothermal system in response to southward migration of intrusive activity within the rift.
Airborne volcanic plume measurements using a FTIR spectrometer, Kilauea volcano, Hawaii
McGee, K.A.; Gerlach, T.M.
1998-01-01
A prototype closed-path Fourier transform infrared spectrometer system (FTIK), operating from battery power and with a Stirling engine microcooler for detector cooling, was successfully used for airborne measurements of sulfur dioxide at Kilauea volcano. Airborne profiles of the volcanic plume emanating from the erupting Pu'u 'O'o vent on the East Rift of Kilauea revealed levels of nearly 3 ppm SO2 in the core of the plume. An emission rate of 2,160 metric tons per day of sulfur dioxide was calculated from the FTIR data, which agrees closely with simultaneous measurements by a correlation spectrometer (COSPEC). The rapid spatial sampling possible from an airborne platform distinguishes the methodology described here from previous FTIR measurements.
January 30, 1997 eruptive event on Kilauea Volcano, Hawaii, as monitored by continuous GPS
Owen, S.; Segall, P.; Lisowski, M.; Miklius, Asta; Murray, M.; Bevis, M.; Foster, J.
2000-01-01
A continuous Global Positioning System (GPS) network on Kilauea Volcano captured the most recent fissure eruption in Kilauea's East Rift Zone (ERZ) in unprecedented spatial and temporal detail. The short eruption drained the lava pond at Pu'u O' o, leading to a two month long pause in its on-going eruption. Models of the GPS data indicate that the intrusion's bottom edge extended to only 2.4 km. Continuous GPS data reveal rift opening 8 hours prior to the eruption. Absence of precursory summit inflation rules out magma storage overpressurization as the eruption's cause. We infer that stresses in the shallow rift created by the continued deep rift dilation and slip on the south flank decollement caused the rift intrusion.
SEISMIC STUDY OF THE AGUA DE PAU GEOTHERMAL PROSPECT, SAO MIGUEL, AZORES.
Dawson, Phillip B.; Rodrigues da Silva, Antonio; Iyer, H.M.; Evans, John R.
1985-01-01
A 16 station array was operated over the 200 km**2 central portion of Sao Miguel utilizing 8 permanent Instituto Nacional de Meterologia e Geofisica stations and 8 USGS portable stations. Forty four local events with well constrained solutions and 15 regional events were located. In addition, hundreds of unlocatable seismic events were recorded. The most interesting seismic activity occurred in a swarm on September 6 and 7, 1983 when over 200 events were recorded in a 16 hour period. The seismic activity around Agua de Pau was centered on the east and northeast slopes of the volcano. The data suggest a boiling hydrothermal system beneath the Agua de Pau volcano, consistent with a variety of other data.
Earth observations taken from Space Shuttle Columbia during STS-80 mission
1996-11-24
STS080-706-044 (19 Nov.-7 Dec. 1996) --- This view shows Mount Pinatubo, an active volcano in the Zambales Mountains range of western Luzon, the main island of the Philippines. Mud flows radiate out from the active volcano, which has erupted in recent years, coming down the mountain. After the eruption a lot of the vegetation was removed, causing the mountain to erode at a more rapid pace than an older mountain that has its vegetation in place. In two cases the flows reach the South China Sea, and flow down three valleys to the east. The now abandoned Clark Air Force Base is to the upper left corner. Pinatubo is about 80 miles northwest of Manila.
Modelling fluid flow in clastic eruptions: application to the Lusi mud eruption.
NASA Astrophysics Data System (ADS)
Collignon, Marine; Schmid, Daniel W.; Galerne, Christophe; Lupi, Matteo; Mazzini, Adriano
2017-04-01
Clastic eruptions involve the rapid ascension of clasts together with fluids, gas and/or liquid phases that may deform and brecciate the host rocks. These fluids transport the resulting mixture, called mud breccia, to the surface. Such eruptions are often associated with geological structures such as mud volcanoes, hydrothermal vent complexes and more generally piercement structures. They involve various processes, acting over a wide range of scales which makes them a complex and challenging, multi-phase system to model. Although piercement structures have been widely studied and discussed, only few attempts have been made to model the dynamics of such clastic eruptions. The ongoing Lusi mud eruption, in the East Java back-arc basin, which began in May 2006, is probably the most spectacular clastic eruption. Lusi's eruptive behaviour has been extensively studied over the past decade and thus represents a unique opportunity to better understand the dynamics driving clastic eruptions, including fossil clastic systems. We use both analytical formulations and numerical models to simulate Lusi's eruptive dynamics and to investigate simple relationships between the mud breccia properties (density, viscosity, gas and clast content) and the volumetric flow rate. Our results show that the conduit radius of such piercement system cannot exceeds a few meters at depth, and that clasts, if not densely packed, will not affect the flow rate when they are smaller than a fifth of the conduit size. Using published data for the annual gas fluxes at Lusi, we infer a maximal depth at which exsolution starts. This occurs between 1800 m and 3200 m deep for the methane and between 750 m and 1000 m for the carbon dioxide.
Earth Observations taken by Expedition 38 crewmember
2013-11-15
ISS038-E-003612 (15 Nov. 2013) --- Islands of the Four Mountains are featured in this image photographed by an Expedition 38 crew member on the International Space Station. Morning sunlight illuminates the southeast-facing slopes of the islands in the photograph. The islands, part of the Aleutian Island chain, are actually the upper slopes of volcanoes rising from the sea floor; Carlisle, Cleveland, Herbert, and Tana. Carlisle and Herbert volcanoes are distinct cones and form separate islands. Cleveland volcano and the Tana volcanic complex form the eastern and western ends respectively of Chuginadak Island; a cloud bank obscures the connecting land mass in this image. Cleveland volcano (peak elevation 1,730 meters above sea level) is one of the most active in the Aleutian chain, with its most recent activity--eruptions and lava flow emplacement--taking place in May of 2013. The northernmost of the islands, Carlisle volcano's (peak elevation 1,620 meters above sea level) last confirmed eruption occurred in 1828, with unconfirmed reports of activity in 1987. Herbert volcano (peak elevation 1,280 meters above sea level) to the southwest displays a classic cone structure breached by a two-kilometer wide summit caldera (upper right), but there are no historical records of volcanic activity. The easternmost peak, Tana (1,170 meters above sea level) is a volcanic complex comprised of two east-west trending volcanoes and associated younger cinder cones; like Herbert volcano, there is no historical record of activity at Tana. A layer of low clouds and/or fog obscures much of the lower elevations of the islands and the sea surface, but the clouds also indicate the general airflow pattern around and through the islands. Directly to the south-southeast of Cleveland volcano a Von Karman vortex "street" is visible. Shadows cast by the morning sun extend from the peaks towards the northwest. The peaks of all of the Four Islands have snow cover; this is distinct from the clouds due to both higher brightness (white versus gray) and specific location on the landscape.
Seismicity of the Earth 1900-2012 Java and vicinity
Jones, Eric S.; Hayes, Gavin P.; Bernardino, Melissa; Dannemann, Fransiska K.; Furlong, Kevin P.; Benz, Harley M.; Villaseñor, Antonio
2014-01-01
The Sunda convergent margin extends for 5,600 km from the Bay of Bengal and the Andaman Sea, both located northwest of the map area, towards the island of Sumba in the southeast, and then continues eastward as the Banda arc system. This tectonically active margin is a result of the India and Australia plates converging with and subducting beneath the Sunda plate at a rate of approximately 50 to 70 mm/yr. The main physiographic feature associated with this convergent margin is the Sunda-Java Trench, which stretches for 3,000 km parallel to the Java and Sumatra land masses and terminates at 120° E. The convergence of the Indo-Australia and Sunda plates produces two active volcanic arcs: Sunda, which extends from 105 to 122° E and Banda, which extends from 122 to 128° E. The Sunda arc results solely from relatively simple oceanic plate subduction, while the Banda arc represents the transition from oceanic subduction to continental collision, where a complex, broad deforming zone is found. Based on modern activity, the Banda arc can be divided into three distinct zones: an inactive section, the Wetar Zone, bound by two active segments, the Flores Zone in the west and the Damar Zone in the east. The lack of volcanism in the Wetar Zone is attributed to the collision of Australia with the Sunda plate. The absence of gap in volcanic activity is underlain by a gap in intermediate depth seismicity, which is in contrast to nearly continuous, deep seismicity below all three sections of the arc. The Flores Zone is characterized by down-dip compression in the subducted slab at intermediate depths and late Quaternary uplift of the forearc. These unusual features, along with GPS data interpretations indicate that the Flores Zone marks the transition between subduction of oceanic crust in the west and the collision of continental crust in the east. The Java section of the Sunda arc is considered relatively aseismic historically when compared to the highly seismically active Sumatra section, despite both areas being located along the same active subduction margin. Shallow (0–20 km) events have occurred historically in the overlying Sunda plate, causing damage to local and regional communities. A recent example was the May 26, 2006 M6.3 left-lateral strike-slip event that occurred at a depth of 10 km in central Java, and caused over 5,700 fatalities. Intermediate depth (70–300 km) earthquakes frequently occur beneath Java as a result of intraplate faulting within the Australia slab. Deep (300–650 km) earthquakes occur beneath the Java Sea and the back-arc region to the north of Java. Similar to other intermediate depth events, these earthquakes are also associated with intraslab faulting. However, this subduction zone exhibits a gap in seismicity from 250 to 400 km, interpreted as the transition between extensional and compressional slab stresses. Historical examples of large intraplate events include: the 1903 M8.1 event, 1921 M7.5 event, 1977 M8.3 event, and August 2007 M7.5 event. Large thrust earthquakes close to the Java trench are typically interplate faulting events along the slab interface between the Australia and Sunda plates. These earthquakes also generally have high tsunamigenic potential due to their shallow hypocentral depths. In some cases, these events have demonstrated slow moment-release and have been defined as ‘tsunami’ earthquakes, where rupture is large in the weak crustal layers very close to the seafloor. These events are categorized by tsunamis that are significantly larger than predicted by the earthquake’s magnitude. The most notable tsunami earthquakes in the Java region occurred on June 2, 1994 (M7.8) and July 17, 2006 (M7.7). The 1994 event produced a tsunami with wave runup heights of 13 m, killing over 200 people. The 2006 event produced a tsunami of up to 15 m, and killed 730 people. Although both of these tsunami earthquakes were characterized by rupture along thrust faults, they were followed by an abundance of normal faulting aftershocks. These aftershocks are interpreted to result from extension within the subducting Australia plate, whereas the mainshocks represented interplate faulting between the Australia and Sunda plates.
Education in Chile. Bulletin, 1945, No. 10
ERIC Educational Resources Information Center
Ebaugh, Cameron D.
1945-01-01
Chile is a republic 2,630 miles long, extending along the western coast of South America from Peru to the southernmost tip of the continent. In width it averages about 110 miles, with snow-capped, volcano-studded Andes in the East, a low coastal range along the Pacific and a string of valleys and plains in between. It is estimated that 5,000…
NASA Technical Reports Server (NTRS)
Realmuto, V. J.; Sutton, A. J.; Elias, T.
1996-01-01
The synoptic perspective and rapid mode of data acquisition provided by remote sensing are well-suited for the study of volcanic SO2 plumes. In this paper we describe a plume-mapping procedure that is based on image data acquired with NASA's airborne Thermal Infrared Multispectral Scanner (TIMS).
High-Resolution Regional Phase Attenuation Models of the Iranian Plateau and Surrounding Regions
2014-03-03
1 2.2. Tectonic and Geophysical Setting ..........................................................................2 2.3...superimposed with the major tectonic features across the Middle East. The major faults are depicted with black solid lines. The main continental boundary fault...zones and tectonic settings are abbreviated on the map and described here. The red triangles present the location of quaternary volcanoes. The dashed
P.J. Melcher; S. Cordell; T.J. Jones; P.G. Scowcroft; W. Niemczuzra; W. Giambelluca; G. Goldstein
2000-01-01
Population‐specific differences in the freezing resistance of Metrosideros polymorpha leaves were studied along an elevational gradient from sea level to tree line (located at ca. 2500 m above sea level) on the east flank of the Mauna Loa volcano in Hawaii. In addition, we also studied 8‐yr‐old saplings grown in a...
Chemistry of spring and well waters on Kilauea Volcano, Hawaii, and vicinity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janik, C.J.; Nathenson, M.; Scholl, M.A.
1994-12-31
Published and new data for chemical and isotopic samples from wells and springs on Kilauea Volcano and vicinity are presented. These data are used to understand processes that determine the chemistry of dilute meteoric water, mixtures with sea water, and thermal water. Data for well and spring samples of non-thermal water indicate that mixing with sea water and dissolution of rock from weathering are the major processes that determine the composition of dissolved constituents in water. Data from coastal springs demonstrate that there is a large thermal system south of the lower east rift of Kilauea. Samples of thermal watermore » from shallow wells in the lower east rift and vicinity have rather variable chemistry indicating that a number of processes operate in the near surface. Water sampled from the available deep wells is different in composition from the shallow thermal water, indicating that generally there is not a significant component of deep water in the shallow wells. Data for samples from available deep wells show significant gradients in chemistry and steam content of the reservoir fluid. These gradients are interpreted to indicate that the reservoir tapped by the existing wells is an evolving vapor-dominated system.« less
NASA Astrophysics Data System (ADS)
Realmuto, V. J.; Sutton, A. J.; Elias, T.
1997-07-01
The synoptic perspective and rapid mode of data acquisition provided by remote sensing are well suited for the study of volcanic SO2 plumes. In this paper we describe a plume-mapping procedure that is based on image data acquired with NASA's airborne thermal infrared multispectral scanner (TIMS) and apply the procedure to TIMS data collected over the East Rift Zone of Kilauea Volcano, Hawaii, on September 30, 1988. These image data covered the Pu`u `O `o and Kupaianaha vents and a skylight in the lava tube that was draining the Kupaianaha lava pond. Our estimate of the SO2 emission rate from Pu`u `O `o (17-20 kg s-1) is roughly twice the average of estimates derived from correlation spectrometer (COSPEC) measurements collected 10 days prior to the TIMS overflight (10 kg s-1). The agreement between the TIMS and COSPEC results improves when we compare SO2 burden estimates, which are relatively independent of wind speed. We demonstrate the feasibility of mapping Pu`u `O `o - scale SO2 plumes from space in anticipation of the 1998 launch of the advanced spaceborne thermal emission and reflectance radiometer (ASTER).
A nonlinear SIR with stability
NASA Astrophysics Data System (ADS)
Trisilowati, Darti, I.; Fitri, S.
2014-02-01
The aim of this work is to develop a mathematical model of a nonlinear susceptible-infectious-removed (SIR) epidemic model with vaccination. We analyze the stability of the model by linearizing the model around the equilibrium point. Then, diphtheria data from East Java province is fitted to the model. From these estimated parameters, we investigate which parameters that play important role in the epidemic model. Some numerical simulations are given to illustrate the analytical results and the behavior of the model.
NASA Astrophysics Data System (ADS)
Irianto, H.; Mujiyo; Riptanti, E. W.; Qonita, A.
2018-03-01
Bojonegoro regency occupies the largest flood-prone rice fields of about 14,198 hectares, in East Java province. Floods commonly occur due to Bengawan Solo river over-burst, particularly in rainy season. The fields are potential for cultivating rice, but floods lasting for months causing these areas to be unproductive. The objective of this article is to examine the potential land use of flood prone rice fields in Bojonegoro regency using floating rice system as an effort to maintain productivity in rainy season. The method of this study is referential study about the rice production using floating cultivation system in other regions, which are later compared with the physical condition of the fields in Bojonegoro. The results of analysis show that rice cultivation using floating system can maintain rice production in flood prone areas during rainy season. The potential production of rice is 5-6 tons/ha. However, technical problems for cultivating rice cannot be ignored since farmers are not familiar with cultivating flooded fields. This article also explains alternatives of floating rice cultivation technique, which can be implemented effectively and efficiently. Pioneer work of developing floating rice in Bojonegoro that has been done by the Team of Faculty of Agriculture of UNS, Surakarta, is expected to serve as a medium for accelerating the adoption of cultivation technology innovation to farmers.
NASA Astrophysics Data System (ADS)
Lestari, Y.; Rosdiana, W.; Noviyanti
2018-01-01
The main key to organizational success depends on the success of a leadership. Each organization’s progress will require the ability of a leader to transformed the organization. The emergence of the democratic-leadership is one of the most humane style of leadership. Democratic leadership positioned people as the most important factor in the leadership exercised by the orientation and emphasis on relationships with members of the organization. This study raised that the democratic-leadership in government agencies to study the leadership approach of bureaucrats at Sub Bagian Tata Usaha Badan Perencanaan Pembangunan Daerah East Java Province. The data collection techniques used descriptive research with qualitative approach, then the techniques were interviews, observation and documentation. While, the research data analysis used interactive analysis model approach of Miles and Huberman, which includes: (1) data reduction; (2) the presentation of the data; and (3) conclusion. Based on Nawawi theory’s [1], this study showed that (1) Leaders are very obedient to the rules/procedures work, (2) Leaders look more autocratic, (3) leaders make familiarity with subordinates, (4) leaders develop kinship situation and teamwork, (5) the leaders seem monotonous work and do not like a modification, (6) Leaders seem slow in decision making, and (7) leaders are accustomed to low-risk jobs with less survival trends.
Towards a prevention program for β-thalassemia. The molecular spectrum in East Java, Indonesia.
Hernanda, Pratika Yuhyi; Tursilowati, Luluk; Arkesteijn, Sandra G J; Ugrasena, I Dewa Gede; Larasati, Marian C Shanty; Soeatmadji, Sentot Mustajab; Giordano, Piero C; Harteveld, Cornelis L
2012-01-01
Defining the spectrum of specific thalassemia mutations is an important issue when planning prevention programs in large multi ethnic countries as is Indonesia. In a first attempt to define the prevalence of the common mutations in East Java we selected a cohort of 17 transfusion-dependent patients attending the Dr. Soetomo Hospital, Surabaya, Indonesia. After basic diagnostics we performed direct DNA sequencing for all β-globin genes. The results obtained on 34 independent chromosomes revealed the following prevalence rates: c.79 G>A p. Glu27Lys (Hb E) 47.0%; c.92+5G>C (IVS-I-5 G>C) 20.6%; c.109_110 delC p.Pro37Leu fs X7 [codon 35 (-C)] 17.6%; c.46del T p.Trp16Gly fsX4 [codon 15 (-T)] 5.9%; c.126_129delCTTT p. Phe42Leu fs X19 (codons 41/42) 2.9%; c.316-197 C>T [IVS-II-654 (C>T)] 2.9%; c*112 A>G (PolyA) 2.9%. Our preliminary results show that the distribution of the prevalent mutations in our cohort is quite homogeneous but with different forms than previously reported. This indicates that more studies on a larger scale and in different geographical areas are needed to refine our provisional results and to characterize the molecular background of the disease in the whole country.
Unexpected earthquake of June 25th, 2015 in Madiun, East Java
NASA Astrophysics Data System (ADS)
Nugraha, Andri Dian; Supendi, Pepen; Shiddiqi, Hasbi Ash; Widiyantoro, Sri
2016-05-01
An earthquake with magnitude 4.2 struck Madiun and its vicinity on June 25, 2015. According to Indonesian Meteorology, Climatology, and Geophysics Agency (BMKG), the earthquake occurred at 10:35:29 GMT+7 and was located in 7.73° S, 111.69 ° E, with a depth of 10 km. At least 57 houses suffered from light to medium damages. We reprocessed earthquake waveform data to obtain an accurate hypocenter location. We manually picked P- and S-waves arrival times from 12 seismic stations in the eastern part of Java. Earthquake location was determined by using Hypoellipse code that employs a single event determination method. Our inversion is able to resolve the fix-depth and shows that the earthquake occurred at 10:35:27.6 GMT+7 and was located in 7.6305° S, 111.7529 ° E with 14.81 km focus depth. Our location depicts a smaller travel time residual compared to that based on the BMKG result. Focal mechanism of the earthquake was determined by using HASH code. We used first arrival polarity of 9 seismic records with azimuthal gap less than 90°, and estimated take-off angles by using assumption of homogenous medium. Our focal mechanism solution shows a strike-slip mechanism with strike direction of 163o, which may be related to a strike-fault in Klangon, an area to the east of Madiun.
Study on water quality around mangrove ecosystem for coastal rehabilitation
NASA Astrophysics Data System (ADS)
Guntur, G.; Sambah, A. B.; Arisandi, D. M.; Jauhari, A.; Jaziri, A. A.
2018-01-01
Coastal ecosystems are vulnerable to environmental degradation including the declining water quality in the coastal environment due to the influence of human activities where the river becomes one of the input channels. Some areas in the coastal regions of East Java directly facing the Madura Strait indicate having experienced the environmental degradation, especially regarding the water quality. This research was conducted in the coastal area of Probolinggo Regency, East Java, aiming to analyze the water quality as the basis for coastal rehabilitation planning. This study was carried out using survey and observation methods. Water quality measurement results were analyzed conforming to predetermined quality standards. The coastal area rehabilitation planning as a means to restore the degraded water quality parameters is presumably implemented through mangrove planting. Thus, the mangrove mapping was also devised in this research. Based on 40 sampling points, the results illustrate that according to the quality standard, the water quality in the study area is likely to be deteriorated. On account of the mapping analysis of mangrove distribution in the study area, the rehabilitation of the coastal zone can be done through planning the mangrove forest plantation. The recommended coastal area maintenance is a periodic water quality observation planning in the river region which is divided into three zones to monitor the impact of fluctuating changes in land use or human activities on the coastal water quality.
NASA Astrophysics Data System (ADS)
Andini, S.; Fitriana, L.; Budiyono
2018-03-01
This study presents partial result from the project “Geometry in Flipbook Multimedia: A Technology Role in Improving Mathematical Learning Quality in Madiun”, which was undertaken to explore the skill of geometry and passing rate of van Hiele’s geometric thinking level, especially for the first three level. The material focus of the study is a two-dimensional figure and reviewed from basic skill aspect of geometry (visual, verbal, drawing, logic, and application). The participants were 30 students in the 6 grade of elementary school in Madiun, East Java. The data collecting technique for this study there are a test instrument of van Hiele geometry (VHG) and an interview’s instrument about characteristics geometry basic skill. After the test, twelve students from participants were randomly selected interviewed to determine their geometry basic skill. This study found that (1) most of the students of 6 grade can only reach the first level is about 69%, the passing rate at the second level test is about 49%, and at the third level, the average of students' achievement is 35%, (2) if viewed from five basic skills of geometry, most of the students have a low mastery, and (3) the achievement of grade six students are inclined high in first level and low in third level based on van Hiele’s Geometric Thinking Level.
NASA Astrophysics Data System (ADS)
Musa, R. Abdullah; Harjanto, Meddy; Heni, Siti
2015-04-01
Sukowati site which is operated by Production Sharing Contract (PSC) Joint Operating Body Pertamina Petrochina East Java (JOB P-PEJ) located at Bojonegoro regency East Java Province. This site is close to densely populated settlements with approximately 6,010 people within a radius less than 600 m. The fluid produced have a dangerous potential to the above mention community, due to accompanying of hydrogen sulphide gas (H2S) with a concentration about 0.6% - 2% from the total gas produced. In 2006, there was incident of gas leak from drilling development well of Sukowati # 5. The incident made the surrounding community panic due to lack of preparedness and awareness. Learning from the incident, the company together with the government and local communities initiated to make improvements through the disaster management system approach. The efforts are carried out in accordance with the 4 (four) periods in a continuous cycle consist of (1) mitigation; (2) preparation; (3) response and (4) recovery. Emergency response drills conducted regularly at least once a year, its main purpose is to find out the results of the implementation of the existing disaster management. The results of the drills showed an increase in public awareness and responsiveness to emergency situations caused by the operational failures of oil and gas exploration and production activities near their settlement.
NASA Astrophysics Data System (ADS)
Wulansari, Dwi Ratna; Sutopo, Wahyudi; Hisjam, Muh.
2018-02-01
The empowering auction market for commodities in East Java Province is one of five auction market revitalization programs conducted by the Republic of Indonesia c.q. Ministry of Trading started in 2014. One of the districts in East Java Province, namely Magetan District utilizes the commodity auction market to improve the competitiveness of their agricultural industry by shortening the supply chain. The Magetan District needs to evaluate their support for farmers or farmer groups to participate in the forward auction market (FAM). Implementation of the FAM commodities is divided into three main processes, namely pre-auction, auction, and post-auction. The auction market is organized to shorten the trading chain. Implementation of the FAM requires good planning, among Seller (namely Farmer or Farmer Group), organizer of Auction (namely Commodity Auction Company), Buyer, and Local Government (namely the farmer facilitator). This article is aimed to develop the instrument of a Performance Measurement Model Using Important and Performance Analysis (IPA) for Improving the FAM Effectiveness of Agro Commodity from Magetan District with Supply Chain Management approach. IPA is implemented at pre-auction, auction, and post-auction. The IPA model results in the diagram to decide the strategies in improving the FAM effectiveness, and then it can encourage farmers to improve welfare and realize the competitiveness of the auctioneer.
Anatomy Of The ‘LuSi’ Mud Eruption, East Java
NASA Astrophysics Data System (ADS)
Tingay, M. R.
2009-12-01
Early in the morning of the 29th of May 2006, hot mud started erupting from the ground in the densely populated Porong District of Sidoarjo, East Java. With initial flow rates of ~5000 cubic meters per day, the mud quickly inundated neighbouring villages. Over two years later and the ‘Lusi’ eruption has increased in strength, expelling over 90 million cubic meters of mud at an average rate of approximately 100000 cubic meters per day. The mud flow has now covered over 700 hectares of land to depths of over 25 meters, engulfing a dozen villages and displacing approximately 40000 people. In addition to the inundated areas, other areas are also at risk from subsidence and distant eruptions of gas. However, efforts to stem the mud flow or monitor its evolution are hampered by our overall lack of knowledge and consensus on the subsurface anatomy of the Lusi mud volcanic system. In particular, the largest and most significant uncertainties are the source of the erupted water (shales versus deep carbonates), the fluid flow pathways (purely fractures versus mixed fracture and wellbore) and disputes over the subsurface geology (nature of deep carbonates, lithology of rocks between shale and carbonates). This study will present and overview of the anatomy of the Lusi mud volcanic system with particular emphasis on these critical uncertainties and their influence on the likely evolution of disaster.
The diversity of mud volcanoes in the landscape of Azerbaijan
NASA Astrophysics Data System (ADS)
Rashidov, Tofig
2014-05-01
As the natural phenomenon the mud volcanism (mud volcanoes) of Azerbaijan are known from the ancient times. The historical records describing them are since V century. More detail study of this natural phenomenon had started in the second half of XIX century. The term "mud volcano" (or "mud hill") had been given by academician H.W. Abich (1863), more exactly defining this natural phenomenon. All the previous definitions did not give such clear and capacious explanation of it. In comparison with magmatic volcanoes, globally the mud ones are restricted in distribution; they mainly locate within the Alpine-Himalayan, Pacific and Central Asian mobile belts, in more than 30 countries (Columbia, Trinidad Island, Italy, Romania, Ukraine, Georgia, Azerbaijan, Turkmenistan, Iran, Pakistan, Indonesia, Burma, Malaysia, etc.). Besides it, the zones of mud volcanoes development are corresponded to zones of marine accretionary prisms' development. For example, the South-Caspian depression, Barbados Island, Cascadia (N.America), Costa-Rica, Panama, Japan trench. Onshore it is Indonesia, Japan, and Trinidad, Taiwan. The mud volcanism with non-accretionary conditions includes the areas of Black Sea, Alboran Sea, the Gulf of Mexico (Louisiana coast), Salton Sea. But new investigations reveal more new mud volcanoes and in places which were not considered earlier as the traditional places of mud volcanoes development (e.g. West Nile Rive delta). Azerbaijan is the classic region of mud volcanoes development. From over 800 world mud volcanoes there are about 400 onshore and within the South-Caspian basin, which includes the territory of East Azerbaijan (the regions of Shemakha-Gobustan and Low-Kura River, Absheron peninsula), adjacent water area of South Caspian (Baku and Absheron archipelagoes) and SW Turkmenistan and represents an area of great downwarping with thick (over 25 km) sedimentary series. Generally, in the modern relief the mud volcanoes represent more or less large uplifts on surface, often of plane-conical shape, rising for 5 to 400 m and more over the country (for example, mud volcano Toragay, 400 m height). The base diameter is from 100 m to 3-4 km and more. Like the magmatic ones, the mud volcanoes are crowned with crater of convex-plane or deeply-seated shape. In Azerbaijan there are all types of mud volcanoes: active, extinct, buried, submarine, island, abundantly oil seeping. According to their morphology they are defined into cone-shaped, dome-shaped, ridge-shaped, plateau-shaped. The crater shapes are also various: conical, convex-plane, shield-shaped, deeply-seated, caldera-like. The most complete morphological classification was given in "Atlas of mud volcanoes of Azerbaijan" (Yakubov et al., 1971). Recently (Aliyev Ad. et al., 2003) it was proposed a quite new morphological classification of mud volcanoes of Azerbaijan. For the first time the mud volcanic manifestations had been defined. Volcanoes are ranged according to morphological signs, crater shape and type of activity.
Silicic central volcanoes as precursors to rift propagation: the Afar case
NASA Astrophysics Data System (ADS)
Lahitte, Pierre; Gillot, Pierre-Yves; Courtillot, Vincent
2003-02-01
The Afar depression is a triple junction characterised by thinned continental crust, where three rift systems meet (Red Sea, Gulf of Aden and East African Rift). About 100 recent K-Ar ages obtained on Plio-Pleistocene lavas [Lahitte et al., J. Geophys. Res. (2002) in press; Kidane et al., J. Geophys. Res. (2002) in press], complemented by new geomorphological interpretations, allow better understanding of the volcano-tectonic activity linked to rift propagation. In Central Afar, a significant spatial and temporal correlation is observed between the occurrence of silicic central volcanoes and the initiation of the successive phases of on-land propagation of the Red Sea and Aden rifts. Inside the Afar depression, at the scale of both a whole ridge and a small rift segment, silicic lavas are systematically erupted close to the location of a future rift segment and prior to the main extensive phase associated with fissural basaltic activity. Central silicic volcanoes therefore appear to be precursor features, and their locations underline the preferred direction of future rift propagation. Evolved volcanoes (and associated magma chambers) form zones of localised lithospheric weakness, which concentrate stress and guide the development of fractures in which fissural magmatism is next emplaced. Differentiated silicic lavas are erupted first. Then, as extension increases, basaltic magma directly erupts to the surface. This composite style of rifting, with volcanic and tectonic components, is a scaled-down equivalent of the continental break-up process at the largest scale.
Earth Observations taken by Expedition 26 crewmember
2011-01-11
ISS026-E-017074 (11 Jan. 2011) --- Emi Koussi volcano in Chad is featured in this image photographed by an Expedition 26 crew member on the International Space Station. The large Emi Koussi volcano is located in northern Chad at the southeastern end of the Tibesti Range. The dark volcanic rocks of the volcano provide a sharp contrast to the underlying tan and light brown sandstones exposed to the west, south, and east. Emi Koussi is a shield volcano formed from relatively low viscosity lavas—flowing more like motor oil as opposed to toothpaste—and explosively-erupted ignimbrites that produce a characteristic low and broad structure that covers a wide area (approximately 60 x 80 kilometers). This photograph highlights the entire volcanic structure; at 3,415 meters above sea level, Emi Koussi is the highest summit of the Sahara region. The summit area contains three calderas formed by powerful eruptions. Two older, and overlapping, calderas form a depression approximately 12 x 15 kilometers in area bounded by a distinct rim (center). According to scientists, the youngest and smallest caldera, Era Kohor, formed as a result of eruptive activity that occurred within the past 2 million years. Young volcanic features including lava flows and scoria cones are also thought to be less than 2 million years old. There are no historical records of eruptive activity at Emi Koussi, but there is an active thermal area on the southern flank of the volcano.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, R.B.; Trusdell, F.A.
1993-08-01
This paper summarizes studies of the structure, stratigraphy, petrology, drill holes, eruption frequency, and volcanic and seismic hazards of Kilauea volcano. All the volcano is discussed, but the focus is on its lower east rift zone (LERZ) because active exploration for geothermal energy is concentrated in that area. Kilauea probably has several separate hydrothermal-convection systems that develop in response to the dynamic behavior of the volcano and the influx of abundant meteoric water. Important features of some of these hydrothermal-convection systems are known through studies of surface geology and drill holes. Observations of eruptions during the past two centuries, detailedmore » geologic mapping, radiocarbon dating, and paleomagnetic secular-variation studies indicate that Kilauea has erupted frequently from its summit and two radial rift zones during Quaternary time. Petrologic studies have established that Kilauea erupts only tholeiitic basalt. Extensive ash deposits at Kilauea's summit and on its LERZ record locally violent, but temporary, disruptions of local hydrothermal-convection systems during the interaction of water or steam with magma. Recent drill holes on the LERZ provide data on the temperatures of the hydrothermal-convection systems, intensity of dike intrusion, porosity and permeability, and an increasing amount of hydrothermal alteration with depth. The prehistoric and historic record of volcanic and seismic activity indicates that magma will continue to be supplied to deep and shallow reservoirs beneath Kilauea's summit and rift zones and that the volcano will be affected by eruptions and earthquakes for many thousands of years. 71 refs., 2 figs.« less
NASA Astrophysics Data System (ADS)
Martin-Jones, Catherine M.; Lane, Christine S.; Pearce, Nicholas J. G.; Smith, Victoria C.; Lamb, Henry F.; Schaebitz, Frank; Viehberg, Finn; Brown, Maxwell C.; Frank, Ute; Asrat, Asfawossen
2017-04-01
A recent World Bank report found that 49 of Ethiopia's 65 known Holocene volcanoes pose a high-risk to the surrounding population. One of these volcanoes, Corbetti, located in the densely populated Main Ethiopian Rift (MER), has only one documented Holocene eruption. Any risk assessment for Corbetti is therefore highly uncertain. Reliable hazard forecasting is dependent on the completeness of volcanic records. In the case of Ethiopian Rift volcanoes complete records are hindered by frequently poorly exposed, buried and inaccessible proximal outcrops. Lake sediments can yield comprehensive, stratigraphically-resolved dossiers of past volcanism. Here we use volcanic ash (tephra) layers preserved in sediments from three MER lakes to provide the first record of Holocene volcanism for Corbetti. It shows that Corbetti has erupted explosively throughout the Holocene at an average return period of 800 years. Based on the thickness and dispersal of the tephras, at least six eruptions were of a large magnitude, and there were four eruptions in the past 2000 years. Future explosive eruptions are likely and these could have significant societal impacts, they could blanket nearby Awassa and Shashamene, home to 260,000 people, with pumice deposits. Our data indicate that the threat posed by Corbetti has been significantly underestimated. These data can be used to refine regional volcano monitoring and develop evacuation plans. This lake sediment-tephrostratigraphic approach shows significant potential for application throughout the East African Rift system, and is essential to understanding volcanic hazards in this rapidly developing region.
Images of Kilauea East Rift Zone eruption, 1983-1993
Takahashi, Taeko Jane; Abston, C.C.; Heliker, C.C.
1995-01-01
This CD-ROM disc contains 475 scanned photographs from the U.S. Geological Survey Hawaii Observatory Library. The collection represents a comprehensive range of the best photographic images of volcanic phenomena for Kilauea's East Rift eruption, which continues as of September 1995. Captions of the images present information on location, geologic feature or process, and date. Short documentations of work by the USGS Hawaiian Volcano Observatory in geology, seismology, ground deformation, geophysics, and geochemistry are also included, along with selected references. The CD-ROM was produced in accordance with the ISO 9660 standard; however, it is intended for use only on DOS-based computer systems.
Bargar, K.E.; Keith, T.E.C.; Trusdell, F.A.
1995-01-01
Heating and freezing data were obtained for fluid inclusions in hydrothermal quartz, calcite, and anhydrite from several depths in three scientific observation holes drilled along the lower East Rift Zone of Kilauea volcano, Hawaii. Comparison of measured drill-hole temperatures with fluid-inclusion homogenization-temperature (Th) data indicates that only about 15% of the fluid inclusions could have formed under the present thermal conditions. The majority of fluid inclusions studied must have formed during one or more times in the past when temperatures fluctuated in response to the emplacement of nearby dikes and their subsequent cooling. -from Authors
Lava Flow Hazard Assessment, as of August 2007, for Kilauea East Rift Zone Eruptions, Hawai`i Island
Kauahikaua, Jim
2007-01-01
The most recent episode in the ongoing Pu'u 'O'o-Kupaianaha eruption of Kilauea Volcano is currently producing lava flows north of the east rift zone. Although they pose no immediate threat to communities, changes in flow behavior could conceivably cause future flows to advance downrift and impact communities thus far unaffected. This report reviews lava flow hazards in the Puna District and discusses the potential hazards posed by the recent change in activity. Members of the public are advised to increase their general awareness of these hazards and stay up-to-date on current conditions.
Storage, migration, and eruption of magma at Kilauea volcano, Hawaii, 1971-1972
Duffield, W.A.; Christiansen, R.L.; Koyanagi, R.Y.; Peterson, D.W.
1982-01-01
The magmatic plumbing system of Kilauea Volcano consists of a broad region of magma generation in the upper mantle, a steeply inclined zone through which magma rises to an intravolcano reservoir located about 2 to 6 km beneath the summit of the volcano, and a network of conduits that carry magma from this reservoir to sites of eruption within the caldera and along east and southwest rift zones. The functioning of most parts of this system was illustrated by activity during 1971 and 1972. When a 29-month-long eruption at Mauna Ulu on the east rift zone began to wane in 1971, the summit region of the volcano began to inflate rapidly; apparently, blockage of the feeder conduit to Mauna Ulu diverted a continuing supply of mantle-derived magma to prolonged storage in the summit reservoir. Rapid inflation of the summit area persisted at a nearly constant rate from June 1971 to February 1972, when a conduit to Mauna Ulu was reopened. The cadence of inflation was twice interrupted briefly, first by a 10-hour eruption in Kilauea Caldera on 14 August, and later by an eruption that began in the caldera and migrated 12 km down the southwest rift zone between 24 and 29 September. The 14 August and 24-29 September eruptions added about 107 m3 and 8 ?? 106 m3, respectively, of new lava to the surface of Kilauea. These volumes, combined with the volume increase represented by inflation of the volcanic edifice itself, account for an approximately 6 ?? 106 m3/month rate of growth between June 1971 and January 1972, essentially the same rate at which mantle-derived magma was supplied to Kilauea between 1952 and the end of the Mauna Ulu eruption in 1971. The August and September 1971 lavas are tholeiitic basalts of similar major-element chemical composition. The compositions can be reproduced by mixing various proportions of chemically distinct variants of lava that erupted during the preceding activity at Mauna Ulu. Thus, part of the magma rising from the mantle to feed the Mauna Ulu eruption may have been stored within the summit reservoir from 4 to 20 months before it was erupted in the summit caldera and along the southwest rift zone in August and September. The September 1971 activity was only the fourth eruption on the southwest rift zone during Kilauea's 200 years of recorded history, in contrast to more than 20 eruptions on the east rift zone. Order-of-magnitude differences in topographic and geophysical expression indicate greatly disparate eruption rates for far more than historic time and thus suggest a considerably larger dike swarm within the east rift zone than within the southwest rift zone. Characteristics of the historic eruptions on the southwest rift zone suggest that magma may be fed directly from active lava lakes in Kilauea Caldera or from shallow cupolas at the top of the summit magma reservoir, through fissures that propagate down rift from the caldera itself at the onset of eruption. Moreover, emplacement of this magma into the southwest rift zone may be possible only when compressive stress across the rift is reduced by some unknown critical amount owing either to seaward displacement of the terrane south-southeast of the rift zone or to a deflated condition of Mauna Loa Volcano adjacent to the northwest, or both. The former condition arises when the forceful emplacement of dikes into the east rift zone wedges the south flank of Kilauea seaward. Such controls on the potential for eruption along the southwest rift zone may be related to the topographic and geophysical constrasts between the two rift zones. ?? 1982.
Space Radar Image of Mt. Etna, Italy
1999-04-15
The summit of the Mount Etna volcano on the island of Sicily, Italy, one of the most active volcanoes in the world, is shown near the center of this radar image. Lava flows of different ages and surface roughness appear in shades of purple, green, yellow and pink surrounding the four small craters at the summit. Etna is one of the best-studied volcanoes in the world and scientists are using this radar image to identify and distinguish a variety of volcanic features. Etna has erupted hundreds of times in recorded history, with the most recent significant eruption in 1991-1993. Scientists are studying Etna as part of the international "Decade Volcanoes" project, because of its high level of activity and potential threat to local populations. This image was acquired on October 11, 1994 by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour. SIR-C/X-SAR, a joint mission of the German, Italian and the United States space agencies, is part of NASA's Mission to Planet Earth. The image is centered at 37.8 degrees North latitude and 15.1 degrees East longitude and covers an area of 51.2 kilometers by 22.6 kilometers (31.7 miles by 14.0 miles). http://photojournal.jpl.nasa.gov/catalog/PIA01776
Shiveluch Volcano, Kamchatka Peninsula, Russia
2002-01-03
On the night of June 4, 2001, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) captured this thermal image of the erupting Shiveluch volcano. Located on Russia's Kamchatka Peninsula, Shiveluch rises to an altitude of 2,447 meters (8,028 feet). The active lava dome complex is seen as a bright (hot) area on the summit of the volcano. To the southwest, a second hot area is either a debris avalanche or hot ash deposit. Trailing to the west is a 25-kilometer (15-mile) ash plume, seen as a cold "cloud" streaming from the summit. At least 60 large eruptions have occurred here during the last 10,000 years; the largest historical eruptions were in 1854 and 1964. Because Kamchatka is located along the major aircraft routes between North America/Europe and Asia, this area is constantly monitored for potential ash hazards to aircraft. The area is part of the "Ring of Fire," a string of volcanoes that encircles the Pacific Ocean. The lower image is the same as the upper, except it has been color-coded: red is hot, light greens to dark green are progressively colder, and gray/black are the coldest areas. The image is located at 56.7 degrees north latitude, 161.3 degrees east longitude. http://photojournal.jpl.nasa.gov/catalog/PIA03514
Lu, Z.; Power, J.A.; McConnell, V.S.; Wicks, C.; Dzurisin, D.
2002-01-01
Pilot reports in January 1995 and geologic field observations from the summer of 1996 indicate that a relatively small explosive eruption of Makushin, one of the more frequently active volcanoes in the Aleutian arc of Alaska, occured on 30 January 1995. Several independent radar interferograms that each span the time period from October 1993 to September 1995 show evidence of ???7 cm of uplift centered on the volcano's east flank, which we interpret as preeruptive inflation of a ???7-km-deep magma source (??V = 0.022 km3). Subsequent interferograms for 1995-2000, a period that included no reported eruptive activity, show no evidence of additional ground deformation. Interferometric coherence at C band is found to persist for 3 years or more on lava flow and other rocky surfaces covered with short grass and sparsely distributed tall grass and for at least 1 year on most pyroclastic deposits. On lava flow and rocky surfaces with dense tall grass and on alluvium, coherence lasts for a few months. Snow and ice surfaces lose coherence within a few days. This extended timeframe of coherence over a variety of surface materials makes C band radar interferometry an effective tool for studying volcano deformation in Alaska and other similar high-latitude regions.
14C ages and activity for the past 50 ka at Volcán Galeras, Colombia
Banks, N.G.; Calvache, V.M.L.; Williams, S.N.
1997-01-01
Volcán Galeras is the southernmost Colombian volcano with well-recorded historic activity. The volcano is part of a large and complex volcanic center upon which 400,000 people live. Historic activity has centered on a small-volume cone inside the youngest of several large amphitheaters that breach the west flank of the volcano, away from the city of Pasto (population 300,000). Lava flows (SiO2 between 54.6 and 64.7 wt.%) have dominated activity for more than 1 Ma, but explosive events have also occurred. Joint studies by volcanologists from Colombia, Ecuador, Peru, Bolivia, Argentina, and the United States produced 24 new14C ages and more than 100 stratigraphic sections to interpret the past 50 ka of activity at Galeras, including sector collapse events. The youngest collapse event truncated 12.8 ka lava flows and may have occurred as recently as 8 to 10 ka. Tephra-fall material rapidly thins and becomes finer away from the vent area. The only widespread marker in the < 10 ka section is a biotite-bearing tephra deposited between 4.1 and 4.5 ka from a source south of Galeras. It separates cryoturbated from largely undisturbed layers on Galeras, and thus dates a stratigraphic horizon which is useful in the interpretation of other volcanoes and geotectonics in the equatorial Andes. Pyroclastic flows during the past 50 ka have been small to moderate in volume, but they have left numerous thin deposits on the north and east flanks where lava flows have been impeded by crater and amphitheater walls. Many of the pyroclastic-flow deposits are lithic rich, with fines and clasts so strongly altered by hydrothermal action before eruption that they, as well as the sector collapse deposits, resemble waste dumps of leached cappings from disseminated sulfide deposits more than volcanogenic deposits. This evidence of a long-lived hydrothermal system indicates susceptibility to mass failure and explosive events higher than expected for a volcano built largely by lava flows and modest Vulcanian eruptions. Photographs, written accounts, and our study document historic north and east flank pyroclastic flows as far as 10 km from the summit; however, none have left recognizable deposits in Pasto for more than 40 ka.
Sutton, A.J.; Elias, Tamar; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.
2014-01-01
The first volcanic gas studies in Hawai‘i, beginning in 1912, established that volatile emissions from Kīlauea Volcano contained mostly water vapor, in addition to carbon dioxide and sulfur dioxide. This straightforward discovery overturned a popular volatile theory of the day and, in the same action, helped affirm Thomas A. Jaggar, Jr.’s, vision of the Hawaiian Volcano Observatory (HVO) as a preeminent place to study volcanic processes. Decades later, the environmental movement produced a watershed of quantitative analytical tools that, after being tested at Kīlauea, became part of the regular monitoring effort at HVO. The resulting volatile emission and fumarole chemistry datasets are some of the most extensive on the planet. These data indicate that magma from the mantle enters the shallow magmatic system of Kīlauea sufficiently oversaturated in CO2 to produce turbulent flow. Passive degassing at Kīlauea’s summit that occurred from 1983 through 2007 yielded CO2-depleted, but SO2- and H2O-rich, rift eruptive gases. Beginning with the 2008 summit eruption, magma reaching the East Rift Zone eruption site became depleted of much of its volatile content at the summit eruptive vent before transport to Pu‘u ‘Ō‘ō. The volatile emissions of Hawaiian volcanoes are halogen-poor, relative to those of other basaltic systems. Information gained regarding intrinsic gas solubilities at Kīlauea and Mauna Loa, as well as the pressure-controlled nature of gas release, have provided useful tools for tracking eruptive activity. Regular CO2-emission-rate measurements at Kīlauea’s summit, together with surface-deformation and other data, detected an increase in deep magma supply more than a year before a corresponding surge in effusive activity. Correspondingly, HVO routinely uses SO2 emissions to study shallow eruptive processes and effusion rates. HVO gas studies and Kīlauea’s long-running East Rift Zone eruption also demonstrate that volatile emissions can be a substantial volcanic hazard in Hawai‘i. From its humble beginning, trying to determine the chemical composition of volcanic gases over a century ago, HVO has evolved to routinely use real-time gas chemistry to track eruptive processes, as well as hazards.
14C ages and activity for the past 50 ka at Volcán Galeras, Colombia
NASA Astrophysics Data System (ADS)
Banks, N. G.; Calvache V, M. L.; Williams, S. N.
1997-05-01
Volcán Galeras is the southernmost Colombian volcano with well-recorded historic activity. The volcano is part of a large and complex volcanic center upon which 400,000 people live. Historic activity has centered on a small-volume cone inside the youngest of several large amphitheaters that breach the west flank of the volcano, away from the city of Pasto (population 300,000). Lava flows (SiO 2 between 54.6 and 64.7 wt.%) have dominated activity for more than 1 Ma, but explosive events have also occurred. Joint studies by volcanologists from Colombia, Ecuador, Peru, Bolivia, Argentina, and the United States produced 24 new 14C ages and more than 100 stratigraphic sections to interpret the past 50 ka of activity at Galeras, including sector collapse events. The youngest collapse event truncated 12.8 ka lava flows and may have occurred as recently as 8 to 10 ka. Tephra-fall material rapidly thins and becomes finer away from the vent area. The only widespread marker in the < 10 ka section is a biotite-bearing tephra deposited between 4.1 and 4.5 ka from a source south of Galeras. It separates cryoturbated from largely undisturbed layers on Galeras, and thus dates a stratigraphic horizon which is useful in the interpretation of other volcanoes and geotectonics in the equatorial Andes. Pyroclastic flows during the past 50 ka have been small to moderate in volume, but they have left numerous thin deposits on the north and east flanks where lava flows have been impeded by crater and amphitheater walls. Many of the pyroclastic-flow deposits are lithic rich, with fines and clasts so strongly altered by hydrothermal action before eruption that they, as well as the sector collapse deposits, resemble waste dumps of leached cappings from disseminated sulfide deposits more than volcanogenic deposits. This evidence of a long-lived hydrothermal system indicates susceptibility to mass failure and explosive events higher than expected for a volcano built largely by lava flows and modest Vulcanian eruptions. Photographs, written accounts, and our study document historic north and east flank pyroclastic flows as far as 10 km from the summit; however, none have left recognizable deposits in Pasto for more than 40 ka.
DOE Office of Scientific and Technical Information (OSTI.GOV)
F.V. Perry; A. Cogbill; R. Kelley
The U.S. Department of Energy (DOE) considers volcanism to be a potentially disruptive class of events that could affect the safety of the proposed high-level waste repository at Yucca Mountain. Volcanic hazard assessment in monogenetic volcanic fields depends on an adequate understanding of the temporal and spatial pattern of past eruptions. At Yucca Mountain, the hazard is due to an 11 Ma-history of basaltic volcanism with the latest eruptions occurring in three Pleistocene episodes to the west and south of Yucca Mountain. An expert elicitation convened in 1995-1996 by the DOE estimated the mean hazard of volcanic disruption of themore » repository as slightly greater than 10{sup -8} dike intersections per year with an uncertainty of about two orders of magnitude. Several boreholes in the region have encountered buried basalt in alluvial-filled basins; the youngest of these basalts is dated at 3.8 Ma. The possibility of additional buried basalt centers is indicated by a previous regional aeromagnetic survey conducted by the USGS that detected approximately 20 magnetic anomalies that could represent buried basalt volcanoes. Sensitivity studies indicate that the postulated presence of buried post-Miocene volcanoes to the east of Yucca Mountain could increase the hazard by an order of magnitude, and potentially significantly impact the results of the earlier expert elicitation. Our interpretation of the aeromagnetic data indicates that post-Miocene basalts are not present east of Yucca Mountain, but that magnetic anomalies instead represent faulted and buried Miocene basalt that correlates with nearby surface exposures. This interpretation is being tested by drilling. The possibility of uncharacterized buried volcanoes that could significantly change hazard estimates led DOE to support an update of the expert elicitation in 2004-2006. In support of the expert elicitation data needs, the DOE is sponsoring (1) a new higher-resolution, helicopter-borne aeromagnetic survey, completed in mid-2004, and (2) drilling of selected anomalies based on the aeromagnetic survey results to better characterize the number, location and age of buried volcanoes, which began in mid-2005. The new aeromagnetic survey detected the presence of 33 anomalies interpreted as possible buried volcanoes or faulted tuff bedrock. A program to drill ten of the anomalies has begun, with the selection of drill holes prioritized based on their potential impact on the hazard assessment.« less
Coalbed methane: A partial solution to Indonesia`s growing energy problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, D.K.; Gold, J.P.
1995-04-01
Indonesia contains the largest resources of coal in Southeast Asia. Indonesian scientists estimate that the in-place coalbed methane resource in 16 onshore basins is about 213 Tcf ({approximately}6 Tcm). This volume is approximately double Indonesia`s current reserves of natural gas. Indonesia is a rapidly industrializing nation of 186 million people, of which 111 million live in Java and 38 million in Sumatra. As industrialization progresses from the present low level, the growth in energy demand will be very rapid. Indonesia`s domestic gas demand is expected to increase form 1.6 Bcf/d (0.05 Bcm/d) in 1991 to 5.7 Bcf/d (0.2 Bcm/d) inmore » 2021. Because the major gas resources of East Kalimantan, North Sumatra, and Natuna are so remote from the main consuming area in northwest Java and are dedicated for export by virtue of the national energy policy, the need is becoming urgent to develop new resources of natural gas, including coalbed methane, for the domestic market. Due to the high geothermal gradient, the coal deposits in the back-arc basins of Sumatra and Java are expected to be of higher than normal rank at depths favorable for coalbed methane production. The oil- and gas-productive Jatibarang sub-basin in northwest Java, with estimated in-place resources of coalbed methane in excess of 20 Tcf (0.6 Tcm), is considered to be the most prospective area in Indonesia for the near-term development of coalbed methane. This area includes Jakarta and vicinity, the most populous and most heavily industrialized part of Indonesia.« less
Eruption histories and hypotheses of magma genesis of Mt. Baegdu volcano
NASA Astrophysics Data System (ADS)
Lim, C.; Lee, I.
2017-12-01
The tephra or cryptotephra are principally composed of alkaline glass shards, and INAA of individual grains offers a way of distinguishing chemical characteristics. That may be used to discriminate different events age and to correlate separate deposits of the same source volcanoes. The identification of tephra or cryptotephra layers presents an opportunity to define time-parallel marker horizons. With using INAA scanning method three newly identified tephras (named B-J, B-Sado and B-Ym) were detected and eruption ages identified between AT (29.24 cal. ka) and Aso-4 (88 ka) in five cores based on microscopic observation and the stratigraphic correlations between cores of the Holocene sediments in the southeastern East Sea/Japan Sea. By the correlation with TL (dark layer) data, the approximate age of B-J, B-Sado and B-Ym tephras were calculated as to be 50.6 ka, 67.6 ka, 86.8 ka, respectively. The intraplate Baegdusan (Changbai) volcanoes located on the border of China and North Korea have been explained by either hotspots by mantle plumes or asthenospheric mantle upwelling (wet plume) caused by stagnation slab of the subducted Pacific plate. To understand the origin of the Baegdusan volcanism, we performed geochemical analyses on the volcanic rocks and tephra deposits erupted from the Baegdusan volcanoes. We propose that the intraplate alkaline volcanism associated with Baekdusan volcanic region is fed by a mantle upwelling originating below the discontinuity subducting slab. The upwelling is a result of a slab neck into the subducting slabs. The Baekdusan volcano relies on a slab neck within subducting slab at depth to allow for a focused upwelling. Therefore, the magmatic progression of back-arc magmatism in Baekdusan volcanoes can be explained by the interaction of this Philippine Sea Plate Slab and upwelling mantle.
NASA Astrophysics Data System (ADS)
Gallant, E.; Martinez-Hackert, B.
2011-12-01
The Santa Ana (Ilamatepec) volcano (2384 m) in densely populated El Salvador Central America presents serious volcanic hazard potential. The volcano is a prevalent part of every day life in El Salvador; the sugarcane and coffee belt of the country are to its Southern and Western flanks, recreational areas lies to its East, and second and third largest cities of El Salvador exist within its 25 km radius. Understanding the eruptive characteristics and history is imperative due to the volcano's relative size (the highest in the country) and it's explosive, composite nature. Historical records indicate at least 9 potential VEI 3 eruptions since 1521 AD. The volcano's relative inaccessibility and potential hazards do not promote a vast reservoir of research activity, as can be seen in the scarcity of published papers on topics prior to the 1904 eruption. This research represents the first steps towards creating a comprehensive stratigraphic record of the crater and characterizing its eruptive history, with an eventual goal of recreating the volcanic structure prior to its collapse. Samples of pre-1904 eruptive material were taken from the southern wall of an E-W oriented fluvial gully located within the SSW of the tertiary crater. These were analyzed using thin sections and optical microscopy, grain size distribution techniques, and scanning electron microscopy. The 15-layer sequence indicates an explosive history characterized by intense phreatomagmatic phases, plinian, sub-plinian and basaltic/andesitic composition strombolian activity. Another poster within the session will discuss an older sequence within the walls of the secondary crater. Further detailed studies will be required to gain a better understanding of the characteristics of Santa Ana Volcano.
Volcanic history and 40Ar/39Ar and 14C geochronology of Terceira Island, Azores, Portugal
Calvert, Andrew T.; Moore, Richard B.; McGeehin, John P.; Rodrigues da Silva, Antonio
2006-01-01
Seven new 40Ar/39Ar and 23 new radiocarbon ages of eruptive units, in support of new geologic mapping, improve the known chronology of Middle to Late Pleistocene and Holocene volcanic activity on the island of Terceira, Azores and define an east-to-west progression in stratovolcano growth. The argon ages indicate that Cinco Picos Volcano, the oldest on Terceira, completed its main subaerial cone building activity by about 370–380 ka. Collapse of the upper part of the stratovolcanic edifice to form a 7 × 9 km caldera occurred some time after 370 ka. Postcaldera eruptions of basalt from cinder cones on and near the caldera floor and trachytic pyroclastic flow and pumice fall deposits from younger volcanoes west of Cinco Picos have refilled much of the caldera. The southern portion of Guilherme Moniz Volcano, in the central part of the island, began erupting prior to 270 ka and produced trachyte domes, flows, and minor pyroclastic deposits until at least 111 ka. The northern part of Guilherme Moniz Caldera is less well exposed than the southern part, but reflects a similar age range. The northwest portion of the caldera was formed sometime after 44 ka. Several well-studied ignimbrites that blanket much of the island likely erupted from Guilherme Moniz Volcano. The Pico Alto Volcanic Center, a tightly spaced cluster of trachyte domes and short flows, is a younger part of Guilherme Moniz Volcano. Stratigraphic studies and our new radiocarbon ages suggest that most of the Pico Alto eruptions occurred during the period from about 9000 to 1000 years BP. Santa Barbara Volcano is the youngest stratovolcano on Terceira, began erupting prior to 29 ka, and has been active historically.
Earth Observations taken by the Expedition 15 Crew
2007-09-01
ISS015-E-26171 (1 Sept. 2007) --- Simushir Island, Kuril Archipelago, Russian Far East, is featured in this image photographed by an Expedition 15 crewmember on the International Space Station. Simushir is a deserted, 5-mile-wide volcanic island in the Kuril island chain, half way between northern Japan and the Kamchatka Peninsula of Russia. Four volcanoes - Milne, Prevo, Urataman and Zavaritski - have built cones that are high enough to rise above the altitude of green forest. The remaining remnant of Zavaritski volcano is a caldera -- a structure formed when a volcano collapses into its emptied magma chamber. A small lake fills the innermost of three nested calderas which make up Zavaritski Caldera. The larger caldera of Urataman Volcano is connected to the sea. A defunct Soviet naval base occupies the northern tip of the island next to this caldera. The islands and volcanoes of the Kuril chain are part of the Pacific Rim of Fire, marking the edge of the Pacific tectonic plate. Low stratus clouds approaching from the northwest (from the Sea of Okhotsk--top left) bank up against the northwest side of the island, making complex cloud patterns. A small finger of cloud can be seen entering the northernmost caldera (Urataman) at sea level. When this image was taken, the cloud layer had stopped at the northwest coast of the island, not flowing over even the low points of the island between the volcanoes. The cloud pattern suggests that the air mass flowed up and over the island, descending on the southeast side. This descending motion was enough--under stable atmospheric conditions--to warm up the atmosphere locally so that a cloud-free zone formed on the southeastern, lee side of the island.
NASA Astrophysics Data System (ADS)
Gross, Felix; Krastel, Sebastian; Behrmann, Jan-Hinrich; Papenberg, Cord; Geersen, Jacob; Ridente, Domenico; Latino Chiocci, Francesco; Urlaub, Morelia; Bialas, Jörg; Micallef, Aaron
2015-04-01
Mount Etna is the largest active volcano in Europe. Its volcano edifice is located on top of continental crust close to the Ionian shore in east Sicily. Instability of the eastern flank of the volcano edifice is well documented onshore. The continental margin is supposed to deform as well. Little, however, is known about the offshore extension of the eastern volcano flank and its adjacent continental margin, which is a serious shortcoming in stability models. In order to better constrain the active tectonics of the continental margin offshore the eastern flank of the volcano, we acquired and processed a new marine high-resolution seismic and hydro-acoustic dataset. The data provide new detailed insights into the heterogeneous geology and tectonics of shallow continental margin structures offshore Mt Etna. In a similiar manner as observed onshore, the submarine realm is characterized by different blocks, which are controlled by local- and regional tectonics. We image a compressional regime at the toe of the continental margin, which is bound to an asymmetric basin system confining the eastward movement of the flank. In addition, we constrain the proposed southern boundary of the moving flank, which is identified as a right lateral oblique fault movement north of Catania Canyon. From our findings, we consider a major coupled volcano edifice instability and continental margin gravitational collapse and spreading to be present at Mt Etna, as we see a clear link between on- and offshore tectonic structures across the entire eastern flank. The new findings will help to evaluate hazards and risks accompanied by Mt Etna's slope- and continental margin instability and will be used as a base for future investigations in this region.
NASA Astrophysics Data System (ADS)
Kusdarwati, Rahayu; Kismiyati; Sudarno; Kurniawan, Hendi; Teguh Prayogi, Yudha
2017-02-01
Catfish (Clarias gariepinus) is one of the familiar freshwater fish cultured in Indonesia farmer. One of the reason is the high mortality of the catfish infected by Aeromonas hydrophila and Saprolegnia sp. Motile Aeromonas septicemia (MAS) is a common bacterial disease, caused by Aeromonas hydrophila, which affects freshwater fish. In Southeast Asia, the outbreak of this disease was firstly reported from West Java in 1980, when a total of 82.5 tons a month of catfish were lost, while in Central Java in 1984, the total loss was 1.6 tons. Saprolegniosis can cause economic loss due to high mortality from its case reaching 10% to 50%. This research aimed to identify and determine the percentage of A. hydrophila and Saprolegnia sp. the catfish farmed in bozem Moro Krembangan, Surabaya, East Java. Meanwhile, a supporting parameter in this research is the value of water quality parameter including pH, temperature, ammonia and dissolved oxygen that were measured during sampling. The results showed that of the 20 samples taken from the two cages, 19 fish were positively infected by A. drophila. percentage of infections of A. hydrophila that infect umbo catfish in Moro Krembangan, was 95%, while the percentage Saprolegnia sp. was 90%.
NASA Astrophysics Data System (ADS)
Baudouin, C.; Parat, F.
2016-12-01
Hanang is the southern volcano of the East branch of the East African Rift and represents volcanic activity at early stage rifting (0.9 Ma). Lavas are highly alkaline Mg-poor nephelinites (Mg#=24.4-35.2) with cpx, garnet, nepheline, titanite, and apatite and result from fractional crystallisation of primary melilitite magmas (Parat et al. AGU2016). In this study, we investigate glassy melt inclusions at the rim of nepheline phenocrysts to constrain the late stage of nephelinite evolution and the behaviour of volatiles (CO2, H2O, S, F, Cl) during magma storage and ascent. The melt inclusions have a green silicate glass, a microcrystalline carbonate phase and a shrinkage bubble free of gas phase (Raman analyses) suggesting that carbonatite-silicate liquid immiscibility (85:15) occurred during nephelinite differentiation. The silicate glasses have trachytic composition (Na+K/Al=1.6-7.2, SiO2=54-65.5 wt%) with high CO2 (0.43 wt% CO2, SIMS analyses), sulfur (0.21-0.92 wt% S) and halogens (0.28-0.84 wt% Cl; 0.35-2.54 wt% F) content and very low H2O content (<0.1wt%, Raman analyses). The carbonate phase is an anhydrous Ca-Na±S,K- carbonate with 33 wt% CaO, 20 wt% Na2O, 3 wt% K2O, and 3 wt% S. The pre-immiscible silicate liquid (e.g. silicate melt + carbonatite) in equilibrium with nepheline and cpx phenocrysts has CO2-rich phonolitic composition (Na+K/Al=6.2-6.9) with 6 ± 1.5 wt% CO2 at pressure of 700-1100 MPa. The entrapped melt in nepheline corresponds to evolved interstitial silicate melt after crystallisation of cpx (16.7%), nepheline (40%) garnet (6.5%) and apatite (1.7%) from Mg-nephelinite magma. The immiscibility process leading to glassy silicate melt and microcrystalline carbonatitic melt occurred in closed system during rapid ascent at crustal level at 200-230 MPa. The absence of gas phase in shrinkage bubble in melt inclusions suggests CO2-undersaturated conditions during quenching. The absence of carbonatite lavas at Hanang volcano is then explained by open system differentiation with primary melilititic magma replenishment preventing alkaline enrichment and carbonatite-silicate liquid immiscibility at depth as observed for the nephelinite-natrocarbonatite Oldoinyo Lengai volcano in the Natron Basin (150 km north).
Long-lived structural control of Mt. Shasta's plumbing system illuminated by 40Ar/39Ar geochronology
NASA Astrophysics Data System (ADS)
Calvert, A. T.; Christiansen, R. L.
2013-12-01
Mt. Shasta is the largest stratovolcano in the Cascade Arc, surpassed in volume only by the large rear-arc Medicine Lake and Newberry composite volcanoes. Including the material in the ~350 ka debris avalanche, it has produced more than 500 km3 of andesite and dacite from several superimposed central vents over its 700-850 kyr history. Earlier, between at least 970 to 1170 ka, the Rainbow Mountain volcano of similar composition and size occupied this latitude of the arc ~20 km further east. This shift of magmatic focus from within the arc axis (as defined by 6 Ma and younger calc-alkaline centers) to the arc front is poorly understood, but the current center's location appears structurally controlled. Most identifiable volcanic vents on Mt. Shasta lie within 1 km of a N-S line through the active summit cone. 40Ar/39Ar ages of map units occupying the vent alignment range from the Holocene (5×1 ka) current summit dome to at least the Middle Pleistocene (464×9 ka McKenzie Butte). The vast majority of eruptions have issued from central vents (Sargents Ridge, 300-135 ka; Misery Hill, 100-15 ka; and Hotlum, <10 ka), each 500 to 1000m north of its predecessor. A central vent for the pre-avalanche edifice is impossible to locate precisely, but was possibly on the same N-S trend and certainly no more than 4 km to the west, likely south of the Sargents Ridge central vent. ~15 of ~25 mapped flank vents lie on the alignment and the other ten lie west of the line. No identified volcanic vents lie east of the line until >12 km from Mt. Shasta (Ash Creek Butte, 227 ka; Basalt of McCloud River, 38 ka; The Whaleback, 102 ka), and monogenetic and polygenetic centers further east and northeast. From these observations we infer that: (1) magmas are localized along a ~20 km, long-lived, N-S trending structure running through the summit; (2) the upper crustal structure appears impermeable to magmas and resistant to dikes on its eastern side; (3) the western half of the area beneath the volcano appears substantially weaker, as dikes have fed flank vents 10-20 km from the summit over the history of the volcano; and (4) the orientation of the WNW-directed debris avalanche, coincident with the greatest concentration of flank vents, may indicate either structural weakness or failure following emplacement of a cryptodome similar to the 1980 events at Mt. St. Helens.
NASA Astrophysics Data System (ADS)
Motoki, A.; Motoki, K. F.; Sichel, S. E.; Souza, K.; Bueno, G. V.; Poseidon
2013-05-01
The authors present gravimetric and geomorphologic analyses for the Vitória-Trindade volcanic seamount chain, State of Espírito Santo, Brazil. The seamounts are generally of 30 km in base diameter, 10 km in flat-top diameter, and 2500 to 4000 m in relative height. The flat-tops are constant in depth, without evidence of basement subsidence. The western half of the chain shows basement elevation of 2000 m, which took place before the eruptions. The size and frequency of the seamounts become smaller to the east. Most of them have conical form of central eruptions, and some large ones are of elongated form of fissure eruptions. The volcanic seamounts usually have Bouguer anomaly about 100 mGal lower than the adjacent area, showing funnel-shaped Bouguer depression. Large volcanoes show ring-like Bouguer structure composed of the central high and the marginal low. The marginal low is about 100 mGal lower than the adjacent abyssal plane and the central high is about 80 mGal higher than the marginal low. Very large volcanoes have bull's eye-like low Bouguer sites along the marginal low. On the foot of the volcanoes, there is the area with Bouguer anomaly 20 to 40 mGal higher, called peripheral high. These observations suggest the following growth history of the volcanic seamounts. At the initial stage, repeated central eruptions of lava flow construct the volcanic edifice. The weight of the volcano is sustained by mechanical firmness of the basement. The Bouguer anomaly is characterized by funnel-shaped depression. At the advanced stage, gabbroic radial dyke intrusion occurs along the central conduit in the upper level of the volcanic edifice, which is evidenced by the central Bouguer high. The seamount is supported mainly by mechanical firmness and partially by isostatic compensation of crustal down-buckling. At the highly advanced stage, the intrusion takes place into the lower level of the main volcanic edifice resulting lateral eruptions along its foot, which is shown by the bull's eye-like Bouguer lows. The crustal down-buckling and consequent isostatic compensation become relevant. The peripheral Bouguer high could be the rebound of the crustal down-buckling. The regional Bouguer anomaly suggests lithosphere thinning along the Vitória-Trindade Chain, which is relevant at the western end of the chain and becomes weak to east. The magmatism and tectonism of are strong at the western end of the chain and become less intense to the east.
Space Radar Image of Rabaul Volcano, New Guinea
1999-05-01
This is a radar image of the Rabaul volcano on the island of New Britain, Papua, New Guinea taken almost a month after its September 19, 1994, eruption that killed five people and covered the town of Rabaul and nearby villages with up to 75 centimeters (30 inches) of ash. More than 53,000 people have been displaced by the eruption. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on its 173rd orbit on October 11, 1994. This image is centered at 4.2 degrees south latitude and 152.2 degrees east longitude in the southwest Pacific Ocean. The area shown is approximately 21 kilometers by 25 kilometers (13 miles by 15.5 miles). North is toward the upper right. The colors in this image were obtained using the following radar channels: red represents the L-band (horizontally transmitted and received); green represents the L-band (horizontally transmitted and vertically received); blue represents the C-band (horizontally transmitted and vertically received). Most of the Rabaul volcano is underwater and the caldera (crater) creates Blanche Bay, the semi-circular body of water that occupies most of the center of the image. Volcanic vents within the caldera are visible in the image and include Vulcan, on a peninsula on the west side of the bay, and Rabalanakaia and Tavurvur (the circular purple feature near the mouth of the bay) on the east side. Both Vulcan and Tavurvur were active during the 1994 eruption. Ash deposits appear red-orange on the image, and are most prominent on the south flanks of Vulcan and north and northwest of Tavurvur. A faint blue patch in the water in the center of the image is a large raft of floating pumice fragments that were ejected from Vulcan during the eruption and clog the inner bay. Visible on the east side of the bay are the grid-like patterns of the streets of Rabaul and an airstrip, which appears as a dark northwest-trending band at the right-center of the image. Ashfall and subsequent rains caused the collapse of most buildings in the town of Rabaul. Mudflows and flooding continue to pose serious threats to the town and surrounding villages. Volcanologists and local authorities expect to use data such as this radar image to assist them in identifying the mechanisms of the eruption and future hazardous conditions that may be associated with the vigorously active volcano. http://photojournal.jpl.nasa.gov/catalog/PIA01767
NASA Astrophysics Data System (ADS)
Orr, T. R.; Houghton, B. F.; Poland, M. P.; Patrick, M. R.; Thelen, W. A.; Sutton, A. J.; Parcheta, C. E.; Thornber, C. R.
2013-12-01
The latest 'classic' hawaiian high-fountaining activity at Kilauea Volcano occurred in 1983-1986 with construction of the Pu`u `O`o pyroclastic cone. Since then, eruptions at Kilauea have been dominated by nearly continuous effusive activity. Episodes of sustained low hawaiian fountaining have occurred but are rare and restricted to short-lived fissure eruptions along Kilauea's east rift zone. The most recent of these weakly explosive fissure eruptions--the Kamoamoa eruption--occurred 5-9 March 2011. The Kamoamoa eruption was probably the consequence of a decrease in the carrying capacity of the conduit feeding the episode 58 eruptive vent down-rift from Pu`u `O`o in Kilauea's east rift zone. As output from the vent waned, Kilauea's summit magma storage and east rift zone transport system began to pressurize, as manifested by an increase in seismicity along the upper east rift zone, inflation of the summit and Pu`u `O`o, expansion of the east rift zone, and rising lava levels at both the summit and Pu`u `O`o. A dike began propagating towards the surface from beneath Makaopuhi Crater, 6 km west of Pu`u `O`o, at 1342 Hawaiian Standard Time (UTC - 10 hours) on 5 March. A fissure eruption started about 3.5 hours later near Nāpau Crater, 2 km uprift of Pu`u `O`o. Activity initially jumped between numerous en echelon fissure segments before centering on discrete vents near both ends of the 2.4-km-long fissure system for the final two days of the eruption. About 2.6 mcm of lava was erupted over the course of four days with a peak eruption rate of 11 m3/s. The petrologic characteristics of the fissure-fed lava indicate mixing between hotter mantle-derived magma and cooler rift-stored magma, with a greater proportion of the cooler component than was present in east rift zone lava erupting before March 2011. The fissure eruption was accompanied by the highest SO2 emission rates since 1986. Coincidentally, the summit and Pu`u `O`o deflated as magma drained away, causing expansion of the ERZ. The geological, geophysical, and geochemical datasets collected before, during, and after the Kamoamoa eruption provide an unprecedented account of what, at least in recent decades, is the 'normal' mode for hawaiian fountaining at Kilauea--that is, low intensity fissure-fed eruptions. This activity differs from high fountaining in that there is little physical coupling between melt and magmatic gas--for much of the Kamoamoa eruption lava ponded sluggishly over the vents and was weakly disrupted by bursts from trains of very closely spaced gas bubbles. Such eruptions enable us to examine the middle ground between strombolian and classical hawaiian behaviors at basaltic volcanoes.
"Mediterranean volcanoes vs. chain volcanoes in the Carpathians"
NASA Astrophysics Data System (ADS)
Chivarean, Radu
2017-04-01
Volcanoes have always represent an attractive subject for students. Europe has a small number of volcanoes and Romania has none active ones. The curricula is poor in the study of volcanoes. We want to make a parallel between the Mediterranean active volcanoes and the old extinct ones in the Oriental Carpathians. We made an comparison of the two regions in what concerns their genesis, space and time distribution, the specific relief and the impact in the landscape, consequences of their activities, etc… The most of the Mediterranean volcanoes are in Italy, in the peninsula in Napoli's area - Vezuviu, Campi Flegrei, Puzzoli, volcanic islands in Tirenian Sea - Ischia, Aeolian Islands, Sicily - Etna and Pantelleria Island. Santorini is located in Aegean Sea - Greece. Between Sicily and Tunisia there are 13 underwater volcanoes. The island called Vulcano, it has an active volcano, and it is the origin of the word. Every volcano in the world is named after this island, just north of Sicily. Vulcano is the southernmost of the 7 main Aeolian Islands, all volcanic in origin, which together form a small island arc. The cause of the volcanoes appears to be a combination of an old subduction event and tectonic fault lines. They can be considered as the origin of the science of volcanology. The volcanism of the Carpathian region is part of the extensive volcanic activity in the Mediterranean and surrounding regions. The Carpathian Neogene/Quaternary volcanic arc is naturally subdivided into six geographically distinct segments: Oas, Gutai, Tibles, Calimani, Gurghiu and Harghita. It is located roughly between the Carpathian thrust-and-fold arc to the east and the Transylvanian Basin to the west. It formed as a result of the convergence between two plate fragments, the Transylvanian micro-plate and the Eurasian plate. Volcanic edifices are typical medium-sized andesitic composite volcanoes, some of them attaining the caldera stage, complicated by submittal or peripheral domes or dome complexes. Dacitic volcanoes are smaller in size and consist of lava dome complexes, in places with associated pyroclastic cones and volcanic aprons. The volcanic history of Carpathian volcanic chain lasts since ca. 15 Ma, with the youngest occurring in the southern chain-terminus; the last eruption of Ciomadu volcano (Harghita) was ca. 10000 years ago. Using the knowledge acquired during the compulsory curriculum and complementary activities we we consider that the outdoor education is the best way to establish a relationship between the theory and the landscape reality in the field. As a follow up to our theoretical approach for the Earth's crust we organized two study trips in our region. During the first one the students could walk in a real crater, see scoria deposits and admire the basalt columns from Racos. In the second activity they could climb the Ciomadu volcano and go down to observe the crater lake St. Anna, the single volcanic lake in central Europe.
Precursory earthquakes of the 1943 eruption of Paricutin volcano, Michoacan, Mexico
NASA Astrophysics Data System (ADS)
Yokoyama, I.; de la Cruz-Reyna, S.
1990-12-01
Paricutin volcano is a monogenetic volcano whose birth and growth were observed by modern volcanological techniques. At the time of its birth in 1943, the seismic activity in central Mexico was mainly recorded by the Wiechert seismographs at the Tacubaya seismic station in Mexico City about 320 km east of the volcano area. In this paper we aim to find any characteristics of precursory earthquakes of the monogenetic eruption. Though there are limits in the available information, such as imprecise location of hypocenters and lack of earthquake data with magnitudes under 3.0. The available data show that the first precursory earthquake occurred on January 7, 1943, with a magnitude of 4.4. Subsequently, 21 earthquakes ranging from 3.2 to 4.5 in magnitude occurred before the outbreak of the eruption on February 20. The (S - P) durations of the precursory earthquakes do not show any systematic changes within the observational errors. The hypocenters were rather shallow and did not migrate. The precursory earthquakes had a characteristic tectonic signature, which was retained through the whole period of activity. However, the spectra of the P-waves of the Paricutin earthquakes show minor differences from those of tectonic earthquakes. This fact helped in the identification of Paricutin earthquakes. Except for the first shock, the maximum earthquake magnitudes show an increasing tendency with time towards the outbreak. The total seismic energy released by the precursory earthquakes amounted to 2 × 10 19 ergs. Considering that statistically there is a threshold of cumulative seismic energy release (10 17-18ergs) by precursory earthquakes in polygenetic volcanoes erupting after long quiescence, the above cumulative energy is exceptionally large. This suggests that a monogenetic volcano may need much more energy to clear the way of magma passage to the earth surface than a polygenetic one. The magma ascent before the outbreak of Paricutin volcano is interpretable by a model of magma-filled crack formation proposed by Weertman, based on seismic data and other field observations.
NASA Astrophysics Data System (ADS)
Rosas-Carbajal, M.; Nicollin, F.; Komorowski, J. C.; Gibert, D.; Deroussi, S.
2015-12-01
The 3-D electrical resistivity model of the dome of La Soufrière of Guadeloupe volcano was obtained by inverting more than 23000 electrical resistivity tomography (ERT) and mise-a-la-masse data points. Data acquisition involved 2-D and 3-D protocols, including several pairs of injection electrodes located on opposite sides of the volcano. For the mise-a-la-masse measurements, the contact with a conductive mass was achieved by immersing one of the current electrodes in the Tarissan acid pond (~25 Siemens/m) located in the volcano's summit. The 3-D inversion was performed using a deterministic smoothness-constrained least-squares algorithm with unstructured grid modeling to accurately account for topography. Resistivity contrasts of more than 4 orders of magnitude are observed. A thick and high-angle conductive structure is located in the volcano's southern flank. It extends from the Tarissan Crater's acid pond on the summit to a hot spring region located close to the dome's southern base. This suggests that a large hydrothermal reservoir is located below the southern base of the dome, and connected to the acid pond of the summit's main crater. Therefore, the steep southern flanks of the volcano could be resting on a low-strength, high-angle discontinuity saturated with circulating and possibly pressurized hydrothermal fluids. This could favor partial edifice collapse and lateral directed explosions as shown recurrently in the volcano's history. The resistivity model also reveals smaller hydrothermal reservoirs in the south-east and northern flanks that are linked to the main historical eruptive fractures and to ancient collapse structures such as the Cratère Amic structure. We discuss the main resistivity structures in relation with the geometry of observed faults, historical eruptive fractures, the dynamics of the near surface hydrothermal system manifestations on the dome and the potential implications for future hazards scenarios .
Dzurisin, D.; Poland, Michael P.; Burgmann, R.
2002-01-01
Leveling surveys of a 193-km circuit across Medicine Lake volcano (MLV) in 1954 and 1989 show that the summit area subsided by as much as 302 ?? 30 mm (-8.6 ?? 0.9 mm/yr) with respect to a datum point near Bartle, California, 40 km to the southwest. This result corrects an error in the earlier analysis of the same data by Dzurisin et al. [1991], who reported the subsidence rate as -11.1 ?? 1.2 mm/yr. The subsidence pattern extends across the entire volcano, with a surface area of nearly 2000 km2. Two areas of localized subsidence by as much as 20 cm can be attributed to shallow normal faulting near the volcano's periphery. Surveys of an east-west traverse across Lava Beds National Monument on the north flank of the volcano in 1990 and of a 23-km traverse across the summit area in 1999 show that subsidence continued at essentially the same rate during 1989-1999 as 1954-1989. Volcano-wide subsidence can be explained by either a point source of volume loss (Mogi) or a contracting horizontal rectangular dislocation (sill) at a depth of 10-11 km. Volume loss rate estimates range from 0.0013 to 0.0032 km3/yr, depending mostly on the source depth estimate and source type. Based on first-order quantitative considerations, we can rule out that the observed subsidence is due to volume loss from magma withdrawal, thermal contraction, or crystallizing magma at depth. Instead, we attribute the subsidence and faulting to: (1 gravitational loading of thermally weakened crust by the mass of the volcano and associated intrusive rocks, and (2) thinning of locally weakened crust by Basin and Range deformation. The measured subsidence rate exceeds long-term estimates from drill hole data, suggesting that over long timescales, steady subsidence and episodic uplift caused by magmatic intrusions counteract each other to produce the lower net subsidence rate.
Lu, Z.; Wicks, C.; Power, J.A.; Dzurisin, D.
2000-01-01
In March 1996 an intense swarm of volcano-tectonic earthquakes (???3000 felt by local residents, Mmax = 5.1, cumulative moment of 2.7 ??1018 N m) beneath Akutan Island in the Aleutian volcanic arc, Alaska, produced extensive ground cracks but no eruption of Akutan volcano. Synthetic aperture radar interferograms that span the time of the swarm reveal complex island-wide deformation: the western part of the island including Akutan volcano moved upward, while the eastern part moved downward. The axis of the deformation approximately aligns with new ground cracks on the western part of the island and with Holocene normal faults that were reactivated during the swarm on the eastern part of the island. The axis is also roughly parallel to the direction of greatest compressional stress in the region. No ground movements greater than 2.83 cm were observed outside the volcano's summit caldera for periods of 4 years before or 2 years after the swarm. We modeled the deformation primarily as the emplacement of a shallow, east-west trending, north dipping dike plus inflation of a deep, Mogi-type magma body beneath the volcano. The pattern of subsidence on the eastern part of the island is poorly constrained. It might have been produced by extensional tectonic strain that both reactivated preexisting faults on the eastern part of the island and facilitated magma movement beneath the western part. Alternatively, magma intrusion beneath the volcano might have been the cause of extension and subsidence in the eastern part of the island. We attribute localized subsidence in an area of active fumaroles within the Akutan caldera, by as much as 10 cm during 1992-1993 and 1996-1998, to fluid withdrawal or depressurization of the shallow hydrothermal system. Copyright 2000 by the American Geophysical Union.
Fink, Jonathan H.; Anderson, Steven W.
2017-07-19
This field guide for the International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI) Scientific Assembly 2017 focuses on Holocene glassy silicic lava flows and domes on three volcanoes in the Cascade Range in Oregon and California: Newberry, South Sister, and Medicine Lake volcanoes. Although obsidian-rich lava flows have been of interest to geologists, archaeologists, pumice miners, and rock hounds for more than a century, many of their emplacement characteristics had not been scientifically observed until two very recent eruptions in Chile. Even with the new observations, several eruptive processes discussed in this field trip guide can only be inferred from their final products. This makes for lively debates at outcrops, just as there have been in the literature for the past 30 years.Of the three volcanoes discussed in this field guide, one (South Sister) lies along the main axis defined by major peaks of the Cascade Range, whereas the other two lie in extensional tectonic settings east of the axis. These two tectonic environments influence volcano morphology and the magmatic and volcanic processes that form silicic lava flows and domes. The geomorphic and textural features of glass-rich extrusions provide many clues about their emplacement and the magma bodies that fed them.The scope of this field guide does not include a full geologic history or comprehensive explanation of hazards associated with a particular volcano or volcanic field. The geochemistry, petrology, tectonics, and eruption history of Newberry, South Sister, and Medicine Lake volcanic centers have been extensively studied and are discussed on other field excursions. Instead, we seek to explore the structural, textural, and geochemical evolution of well-preserved individual lava flows—the goal is to understand the geologic processes, rather than the development, of a specific volcano.
Middle Eocene, older sequences in rifts key to potential in western Indonesia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Courteney, S.
1996-05-27
In Part 1 of this article three areas, the Tiga Puluh arch (Sumatra), the Tanjung Raya area (Kalimantan), and the East Java basin in western Indonesia were discussed in terms of sequence stratigraphy. Such data have been interpreted for each basin in western Indonesia and two example correlations are discussed. A correlation chart of the major basins of Western Indonesia is shown in this paper. This chart was prepared on the basis of the regional correlations using sequence stratigraphy discussed.
NASA Astrophysics Data System (ADS)
Bird, Deanne K.; Gísladóttir, Guðrún
2012-08-01
While the disruption to international air travel caused by the eruption of Iceland's Eyjafjallajökull volcano in 2010 has been well documented, the significant social impacts on local residents from ash fall to the south and east of the crater are less well-known. These impacts and attitudes of impacted residents and emergency managers are the foci of our present study. Prior to and during the eruption, officials worked to protect the local population from the glacial outburst floods (jökulhlaup) that were of primary concern. The success of these endeavours can in part be attributed to a regional evacuation exercise held in March 2006, an exercise that was carried out with respect to a possible eruption at another volcano, Katla, that is located 25 km to the east of Eyjafjallajökull. Eruptions at either volcano will impact the same communities. Our study here concentrates on Álftaver, a small farming community, located approximately 60 km east-southeast of Eyjafjallajökull and 30 km southeast of Katla. Álftaver has been the subject of longitudinal studies carried out in 2004, 2006, and 2008; these studies highlighted the difficulties that emergency managers face in developing appropriate response strategies acceptable to vulnerable communities. The 2010 Eyjafjallajökull eruptions presented an opportunity to re-assess residents' attitudes and behaviour in relation to volcanic risk management in the wake of their first-hand experiences with volcanic hazards. To achieve this, interviews were conducted with residents and emergency management officials and a questionnaire was distributed to residents. This paper presents the results of this survey and examines changes in attitudes towards volcanic risk management. It was apparent that the experience of ash fall from Eyjafjallajökull provided a better perspective of what could be expected from a Katla eruption and that attitudes towards emergency management had evolved accordingly. Importantly, officials' perceptions of risk are now more aligned with those of residents and both recognise the need for more detailed and concise information regarding the impacts of ash fall during and following volcanic eruptions.
Radial Features around Irnini Mons, Venus: Implications for Timing of Regional Compression
NASA Astrophysics Data System (ADS)
Buczkowski, D. L.; McGill, G. E.; Cooke, M. L.
2003-12-01
Flows and other deposits from Irnini Mons are superimposed on an older, regional plains material. Wrinkle ridges are generally abundant on this regional plains material and are present in at least two sets: one trending east-west and another concentric to Irnini Mons. Radial features on top of the Irnini flows are mapped as lineations or grabens, as resolution allows. High resolution mapping at 75 m/pixel also reveals ridges radial to Irnini Mons on top of the Irnini flows. These radial ridges are located from approximately N60E to N75E. Radial grabens around a volcano have been explained mathematically, with the magma chamber of a volcano simplistically described as a pressurized hole in an elastic plate. However, magma pressure alone can not explain the presence of radial ridges. The regional east-west trending wrinkle ridges imply a regional north-south compression affecting the Irnini Mons area. The regional stress field around an empty hole in an elastic plate is perturbed close to the hole, although it remains unperturbed at infinity; the change in material properties from the surrounding rock to a magma-filled chamber allows us to consider the chamber as "soft" and thus effectively empty. The perturbation of a uniaxial regional compressive stress around a pressurized hole is such that at angles of 90 and 270 degrees (east-west) the maximum principal stresses close to the hole are compressive, while at angles 0 and 180 degrees (north-south) the maximum principal stresses are tensile. The angle at which maximum principal stresses change from tension to compression depends upon the distance from the hole and the relative magnitudes of magma pressure and the regional compression. While in the simple model resultant stresses would be symmetric around the hole, structural complexities to the south and west of Irnini Mons restrict the predicted pattern of radial ridges as well as grabens to the region northeast of the volcano. Thus, the existence of radial ridges on the Irnini flows implies that the regional north-south compression that caused the east-west trending wrinkle ridges was still active during the formation of Irnini Mons. A rough timeline for events in the region could be: 1) formation of east-west wrinkle ridges on regional plains, 2) formation of graben radial to Irnini due to magma pressure coeval with formation of radial ridges due to a combination of magma pressure and ongoing regional compression, 3) cessation of magma pressure and formation of concentric grabens, and 4) formation of concentric wrinkle ridges, perhaps due to gravitational relaxation of the topographic rise.
Infrasound from the 2007 fissure eruptions of Kīlauea Volcano, Hawai'i
NASA Astrophysics Data System (ADS)
Fee, David; Garces, Milton; Orr, Tim; Poland, Mike
2011-03-01
Varied acoustic signals were recorded at Kīlauea Volcano in mid-2007, coincident with dramatic changes in the volcano's activity. Prior to this time period, Pu'u 'Ō'ō crater produced near-continuous infrasonic tremor and was the primary source of degassing and lava effusion at Kīlauea. Collapse and draining of Pu'u 'Ō'ō crater in mid-June produced impulsive infrasonic signals and fluctuations in infrasonic tremor. Fissure eruptions on 19 June and 21 July were clearly located spatially and temporally using infrasound arrays. The 19 June eruption from a fissure approximately mid-way between Kīlauea's summit and Pu'u 'Ō'ō produced infrasound for ˜30 minutes—the only observed geophysical signal associated with the fissure opening. The infrasound signal from the 21 July eruption just east of Pu'u 'Ō'ō shows a clear azimuthal progression over time, indicative of fissure propagation over 12.9 hours. The total fissure propagation rate is relatively slow at 164 m/hr, although the fissure system ruptured discontinuously. Individual fissure rupture times are estimated using the acoustic data combined with visual observations.
NASA Astrophysics Data System (ADS)
Portal, A.; Labazuy, P.; Lénat, J.-F.; Béné, S.; Boivin, P.; Busato, E.; Cârloganu, C.; Combaret, C.; Dupieux, P.; Fehr, F.; Gay, P.; Laktineh, I.; Miallier, D.; Mirabito, L.; Niess, V.; Vulpescu, B.
2013-01-01
Muon imaging of volcanoes and of geological structures in general is actively being developed by several groups in the world. It has the potential to provide 3-D density distributions with an accuracy of a few percent. At this stage of development, comparisons with established geophysical methods are useful to validate the method. An experiment has been carried out in 2011 and 2012 on a large trachytic dome, the Puy de Dôme volcano, to perform such a comparison of muon imaging with gravimetric tomography and 2-D electrical resistivity tomography. Here, we present the preliminary results for the last two methods. North-south and east-west resistivity profiles allow us to model the resistivity distribution down to the base of the dome. The modelling of the Bouguer anomaly provides models for the density distribution within the dome that are directly comparable with the results from the muon imaging. Our ultimate goal is to derive a model of the dome using the joint interpretation of all sets of data.
Subsidence of Puna, Hawaii inferred from sulfur content of drilled lava flows
Moore, J.G.; Thomas, D.M.
1988-01-01
Sulfur was analyzed in more than 200 lava samples from five drill holes located on the east rift zone of Kilauea volcano on the island of Hawaii. The sulfur content is a gage of whether lava was erupted subaerially (low sulfur) or erupted subaqueously (high sulfur). Despite considerable variation, sulfur is generally low (less than 0.025%) in the upper part of the holes, begins to increase at a depth of 250-320 m below sea level, and generally reaches a high level (greater than 0.1%) indicative of steady submarine eruption at 330-450 m below sea level. Assuming that the island is subsiding at 2.4 mm/yr, an analysis of these data indicates that part of the variation in sulfur concentration results from past eustatic oscillation of sea level, and that the volcano (at the drill hole site) finally emerged for the last time about 98 ka. The long-term average rate of lava accumulation is roughly 4.4 mm/yr, and upward growth of the volcano at the drill hole area is about 2 mm/yr in excess of subsidence. ?? 1988.
Continuous monitoring of Hawaiian volcanoes with thermal cameras
Patrick, Matthew R.; Orr, Tim R.; Antolik, Loren; Lee, Robert Lopaka; Kamibayashi, Kevan P.
2014-01-01
Continuously operating thermal cameras are becoming more common around the world for volcano monitoring, and offer distinct advantages over conventional visual webcams for observing volcanic activity. Thermal cameras can sometimes “see” through volcanic fume that obscures views to visual webcams and the naked eye, and often provide a much clearer view of the extent of high temperature areas and activity levels. We describe a thermal camera network recently installed by the Hawaiian Volcano Observatory to monitor Kīlauea’s summit and east rift zone eruptions (at Halema‘uma‘u and Pu‘u ‘Ō‘ō craters, respectively) and to keep watch on Mauna Loa’s summit caldera. The cameras are long-wave, temperature-calibrated models protected in custom enclosures, and often positioned on crater rims close to active vents. Images are transmitted back to the observatory in real-time, and numerous Matlab scripts manage the data and provide automated analyses and alarms. The cameras have greatly improved HVO’s observations of surface eruptive activity, which includes highly dynamic lava lake activity at Halema‘uma‘u, major disruptions to Pu‘u ‘Ō‘ō crater and several fissure eruptions.
Infrasound from the 2007 fissure eruptions of Kīlauea Volcano, Hawai'i
Fee, D.; Garces, M.; Orr, T.; Poland, M.
2011-01-01
Varied acoustic signals were recorded at Kīlauea Volcano in mid-2007, coincident with dramatic changes in the volcano's activity. Prior to this time period, Pu'u 'Ō'ō crater produced near-continuous infrasonic tremor and was the primary source of degassing and lava effusion at Kīlauea. Collapse and draining of Pu'u 'Ō'ō crater in mid-June produced impulsive infrasonic signals and fluctuations in infrasonic tremor. Fissure eruptions on 19 June and 21 July were clearly located spatially and temporally using infrasound arrays. The 19 June eruption from a fissure approximately mid-way between Kīlauea's summit and Pu'u 'O'o produced infrasound for ~30 minutes-the only observed geophysical signal associated with the fissure opening. The infrasound signal from the 21 July eruption just east of Pu'u 'Ō'ō shows a clear azimuthal progression over time, indicative of fissure propagation over 12.9 hours. The total fissure propagation rate is relatively slow at 164 m/hr, although the fissure system ruptured discontinuously. Individual fissure rupture times are estimated using the acoustic data combined with visual observations.
Newberry Volcano's youngest lava flows
Robinson, Joel E.; Donnelly-Nolan, Julie M.; Jensen, Robert A.
2015-01-01
The central caldera is visible in the lower right corner of the center map, outlined by the black dashed line. The caldera collapsed about 75,000 years ago when massive explosions sent volcanic ash as far as the San Francisco Bay area and created a 3,000-ft-deep hole in the center of the volcano. The caldera is now partly refilled by Paulina and East Lakes, and the byproducts from younger eruptions, including Newberry Volcano’s youngest rhyolitic lavas, shown in red and orange. The majority of Newberry Volcano’s many lava flows and cinder cones are blanketed by as much as 5 feet of volcanic ash from the catastrophic eruption of Mount Mazama that created Crater Lake caldera approximately 7,700 years ago. This ash supports abundant tree growth and obscures the youthful appearance of Newberry Volcano. Only the youngest volcanic vents and lava flows are well exposed and unmantled by volcanic ash. More than one hundred of these young volcanic vents and lava flows erupted 7,000 years ago during Newberry Volcano’s northwest rift zone eruption.
View of Island of Kyushu, Japan from Skylab
1974-01-07
SL4-139-3942 (7 Jan. 1974) --- This oblique view of the Island of Kyushu, Japan, was taken from the Earth-orbiting Skylab space station on Jan. 8, 1974 during its third manning. A plume from the volcano Sakurajima (bottom center) is clearly seen as it extends about 80 kilometers (50 miles) east from the volcano. (EDITOR'S NOTE: On Jan. 10, 2013, a little over 39 years after this 1974 photo was made from the Skylab space station, Expedition 34 crew members aboard the International Space Station took a similar picture (frame no. ISS034-E-027139) featuring smoke rising from the same volcano, with much of the island of Kyushu visible. Interesting comparisons can be made between the two photos, at least as far as the devices used to record them. The Skylab image was made by one of the three Skylab 4 crew members with a hand-held camera using a 100-mm lens and 70-mm color film, whereas the station photo was taken with 180-mm lens on a digital still camera, hand-held by one of the six crew members). Photo credit: NASA
Seismicity of the Earth 1900-2013 East African Rift
Hayes, Gavin P.; Jones, Eric S.; Stadler, Timothy J.; Barnhart, William D.; McNamara, Daniel E.; Benz, Harley M.; Furlong, Kevin P.; Villaseñor, Antonio; Hayes, Gavin P.; Jones, Eric S.; Stadler, Timothy J.; Barnhart, William D.; McNamara, Daniel E.; Benz, Harley M.; Furlong, Kevin P.; Villaseñor, Antonio
2014-01-01
Rifting in East Africa is not all coeval; volcanism and faulting have been an ongoing phenomenon on the continent since the Eocene (~45 Ma). The rifting began in northern East Africa, and led to the separation of the Nubia (Africa) and Arabia plates in the Red Sea and Gulf of Aden, and in the Lake Turkana area at the Kenya-Ethiopia border. A Paleogene mantle superplume beneath East Africa caused extension within the Nubia plate, as well as a first order topographic high known as the African superswell which now includes most of the eastern and southern sectors of the Nubia plate. Widespread volcanism erupted onto much of the rising plateau in Ethiopia during the Eocene-Oligocene (45–29 Ma), with chains of volcanoes forming along the rift separating Africa and Arabia. Since the initiation of rifting in northeastern Africa, the system has propagated over 3,000 km to the south and southwest, and it experiences seismicity as a direct result of the extension and active magmatism.
Using THEMIS and TES to conduct a mineral analysis on Olympus Mons
NASA Astrophysics Data System (ADS)
Chase, Nicole Danielle
2016-10-01
Olympus Mons is the largest shield volcano in our known solar system. In previous studies, the composition of the basaltic lava flows on Olympus Mons was shown to be similar to the composition of those lava flows of Earth's shield volcanoes. It has been suggested that basalt located near volcanoes contained bacteria living below the surface of the Earth. In this pilot study, the effect of Olympus Mons' aspect (i.e. north- vs. south-facing slope) on its mineral composition was examined. Imagery from Thermal Emission Imaging System (THEMIS), onboard the Mars Odyssey spacecraft, were used because Olympus Mons' size and surface roughness hinder rover exploration. After removing transmission errors and performing an atmospheric correction, the THEMIS images were ready to be analyzed via a mineral spectral library. Using Arizona State University's Thermal Emission Spectrometer (TES) derived mineral spectral library, the images were classified in ENVI. These classifications were verified using ASU's GIS tool, Java Mission-planning and Analysis for Remote Sensing (JMARS) and TES. Results show differences in the mineral composition and in the geological features on Olympus Mons' surface. The mineral vanadinite was shown to be prevalent on the sampled southern portions of Olympus Mons, but was sparse on the sampled northern portions. Previous studies suggested that the mineral ilmenite, which this study found in high concentrations on the sampled northern portions of Olympus Mons, might serve as a food source for iron-oxidizing and iron-scavenging bacteria. Future research should focus on better understanding the concentrations of vanadinite and ilmenite on Olympus Mons to see if these minerals have a role in the potential presence of bacteria on Olympus Mons.
THEMIS analysis of Olympus Mons' mineralogical makeup
NASA Astrophysics Data System (ADS)
Chase, N. D.
2016-12-01
Olympus Mons is the largest shield volcano in our known solar system. In previous studies, the composition of the basaltic lava flows on Olympus Mons was shown to be similar to the composition of those lava flows of Earth's shield volcanoes. It has been suggested that basalt located near volcanoes contained bacteria living below the surface of the Earth. In this pilot study, the effect of Olympus Mons' aspect (i.e. north- vs. south-facing slope) on its mineral composition was examined. Imagery from Thermal Emission Imaging System (THEMIS), onboard the 2001 Mars Odyssey spacecraft, were used because Olympus Mons' size and surface roughness hinder rover exploration. After removing transmission errors and performing an atmospheric correction, the THEMIS images were ready to be analyzed via a mineral spectral library. Using Arizona State University's Thermal Emission Spectrometer (TES) derived mineral spectral library, the images were classified in ENVI. These classifications were verified using ASU's GIS tool, Java Mission-planning and Analysis for Remote Sensing (JMARS) and TES. Results show a significant amount of silicates located throughout the sampled areas of Olympus Mons. The results also show differences in the mineral composition and in the geological features on Olympus Mons' surface. The minerals vanadinite and halloysite were shown to be prevalent on the sampled southern portions of Olympus Mons, but were sparse on the sampled northern portions. Previous studies suggested that the mineral ilmenite, which this study found in high concentrations on the sampled northern portions of Olympus Mons, might serve as a food source for iron-oxidizing and iron-scavenging bacteria. Future research should focus on better understanding these concentrations on Olympus Mons to see if these minerals play a role in the potential bacterial presence on Olympus Mons.
Historical eruptions of Merapi Volcano, Central Java, Indonesia, 1768-1998
Voight, B.; Constantine, E.K.; Siswowidjoyo, S.; Torley, R.
2000-01-01
Information on Merapi eruptive activity is scattered and much is remotely located. A concise and well-documented summary of this activity has been long needed to assist researchers and hazard-mitigation efforts, and the aim of this paper is to synthesize information from the mid-1700s to the present. A descriptive chronology is given, with an abbreviated chronology in a table that summarizes events by year, assigns preliminary Volcanic Explosivity Index (VEI) ratings and Hartmann classifications, and provides key references. The history of volcano monitoring is also outlined. The study reveals that a major difference in eruption style exists between the twentieth and nineteenth centuries, although the periodicity between larger events seems about the same. During the twentieth century, activity has comprised mainly the effusive growth of viscous lava domes and lava tongues, with occasional gravitational collapses of parts of oversteepened domes to produce the nue??es ardentes - commonly defined as "Merapi-type". In the 1800s, however, explosive eruptions of relatively large size occurred (to VEI 4), and some associated "fountain-collapse" nue??es ardentes were larger and farther reaching than any produced in the twentieth century. These events may also be regarded as typical eruptions for Merapi. The nineteenth century activity is consistent with the long-term pattern of one relatively large event every one or two centuries, based on the long-term eruptive record deduced by others from volcanic stratigraphy. It is uncertain whether or not a "recurrence-time" model continues to apply to Merapi, but if so, Merapi could soon be due for another large event and its occurrence with only modest (or inadequately appreciated) precursors could lead to a disaster unprecedented in Merapi's history because the area around the volcano is now much more densely populated. ?? 2000 Elsevier Science B.V. All rights reserved.
1996-11-13
This is a space radar image of the area around the Unzen volcano, on the west coast of Kyushu Island in southwestern Japan. Unzen, which appears in this image as a large triangular peak with a white flank near the center of the peninsula, has been continuously active since a series of powerful eruptions began in 1991. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on its 93rd orbit on April 15, 1994. The image shows an area 41.5 kilometers by 32.8 kilometers (25.7 miles by 20.3 miles) that is centered at 32.75 degrees north latitude and 130.15 degrees east longitude. North is toward the upper left of the image. The radar illumination is from the top of the image. The colors in this image were obtained using the following radar channels: red represents the L-band (vertically transmitted and received); green represents the average of L-band and C-band (vertically transmitted and received); blue represents the C-band (vertically transmitted and received). Unzen is one of 15 "Decade" volcanoes identified by the scientific community as posing significant potential threats to large local populations. The city of Shimabara sits along the coast at the foot of Unzen on its east and northeast sides. At the summit of Unzen a dome of thick lava has been growing continuously since 1991. Collapses of the sides of this dome have generated deadly avalanches of hot gas and rock known as pyroclastic flows. Volcanologists can use radar image data to monitor the growth of lava domes, to better understand and predict potentially hazardous collapses. http://photojournal.jpl.nasa.gov/catalog/PIA00504
Multi-Channel Seismic Images of the Mariana Forearc: EW0202 Initial Results
NASA Astrophysics Data System (ADS)
Oakley, A. J.; Goodliffe, A. M.; Taylor, B.; Moore, G. F.; Fryer, P.
2002-12-01
During the Spring of 2002, the Mariana Subduction Factory was surveyed using multi-channel seismics (MCS) as the first major phase of a US-Japanese collaborative NSF-MARGINS funded project. The resulting geophysical transects extend from the Pacific Plate to the West Mariana remnant arc. For details of this survey, including the results from the back-arc, refer to Taylor et al. (this session). The incoming Pacific Plate and its accompanying seamounts are deformed by plate flexure, resulting in extension of the upper crust as it enters the subduction zone. The resultant trench parallel faults dominate the bathymetry and MCS data. Beneath the forearc, in the southern transects near Saipan, the subducting slab is imaged to a distance of 50-60 km arcward. In addition to ubiquitous trench parallel normal faulting, a N-S transect of the forearc clearly shows normal faults perpendicular to the trench resulting from N-S extension. On the east side of the Mariana Ridge, thick sediment packages extend into the forearc. Directly east of Saipan and Tinian, a large, deeply scouring slide mass is imaged. Several serpentine mud volcanoes (Big Blue, Turquoise and Celestial) were imaged on the Mariana Forearc. Deep horizontal reflectors (likely original forearc crust) are imaged under the flanks of some of these seamounts. A possible "throat" reflector is resolved on multiple profiles at the summit of Big Blue, the northern-most seamount in the study area. The flanks of Turquoise seamount terminate in toe thrusts that represent uplift and rotation of surrounding sediments as the volcano grows outward. These thrusts form a basal ridge around the seamount similar to that previously noted encircling Conical Seamount. Furthermore, MCS data has revealed that some forearc highs previously thought to be fault blocks are in actuality mud volcanoes.
NASA Astrophysics Data System (ADS)
Hutchison, William; Biggs, Juliet; Mather, Tamsin A.; Pyle, David M.; Lewi, Elias; Yirgu, Gezahegn; Caliro, Stefano; Chiodini, Giovanni; Clor, Laura E.; Fischer, Tobias P.
2016-08-01
Restless silicic calderas present major geological hazards, and yet many also host significant untapped geothermal resources. In East Africa, this poses a major challenge, although the calderas are largely unmonitored their geothermal resources could provide substantial economic benefits to the region. Understanding what causes unrest at these volcanoes is vital for weighing up the opportunities against the potential risks. Here we bring together new field and remote sensing observations to evaluate causes of ground deformation at Aluto, a restless silicic volcano located in the Main Ethiopian Rift (MER). Interferometric Synthetic Aperture Radar (InSAR) data reveal the temporal and spatial characteristics of a ground deformation episode that took place between 2008 and 2010. Deformation time series reveal pulses of accelerating uplift that transition to gradual long-term subsidence, and analytical models support inflation source depths of ˜5 km. Gases escaping along the major fault zone of Aluto show high CO2 flux, and a clear magmatic carbon signature (CO2-δ13C of -4.2‰ to -4.5‰). This provides compelling evidence that the magmatic and hydrothermal reservoirs of the complex are physically connected. We suggest that a coupled magmatic-hydrothermal system can explain the uplift-subsidence signals. We hypothesize that magmatic fluid injection and/or intrusion in the cap of the magmatic reservoir drives edifice-wide inflation while subsequent deflation is related to magmatic degassing and depressurization of the hydrothermal system. These new constraints on the plumbing of Aluto yield important insights into the behavior of rift volcanic systems and will be crucial for interpreting future patterns of unrest.
2013-12-30
On December 10, 2013 the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Terra satellite flew across the central Atlantic Ocean and captured a true-color image of the Canary Islands. Lying off of the coast of Western Sahara and Morocco, the islands were created by successive submarine volcanic eruptions which raised the ocean floor vertically until some of land rose above sea level. The oldest islands lie in the east and the youngest in the west. From east to west, the major islands seen in this image are: Lanzarote, Fuerteventura, Gran Canaria, Tenerife, La Gomera, La Palmera and El Hierro. While the creation of the islands began in the Late Cretaceous Period (70 – 80 million years ago), active volcanic activity continues. In 2011, a spectacular submarine eruption occurred just off the shore of El Hierro. The volcano became quiet again, but very recently increasing earthquakes and changing height of El Hierro suggested the volcano may again be entering an active eruptive phase. On December 27 the island’s volcano monitoring agency had raised the volcanic eruption risk for El Hierro to “yellow” – a code that means increasing activity but no eruption imminent. That afternoon a magnitude 5.1 earthquake struck offshore at El Hierro. The epicenter was 9 miles (15 km) deep, and it was one of the largest quakes ever recorded at the island. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Volcview: A Web-Based Platform for Satellite Monitoring of Volcanic Activity and Eruption Response
NASA Astrophysics Data System (ADS)
Schneider, D. J.; Randall, M.; Parker, T.
2014-12-01
The U.S. Geological Survey (USGS), in cooperation with University and State partners, operates five volcano observatories that employ specialized software packages and computer systems to process and display real-time data coming from in-situ geophysical sensors and from near-real-time satellite sources. However, access to these systems both inside and from outside the observatory offices are limited in some cases by factors such as software cost, network security, and bandwidth. Thus, a variety of Internet-based tools have been developed by the USGS Volcano Science Center to: 1) Improve accessibility to data sources for staff scientists across volcano monitoring disciplines; 2) Allow access for observatory partners and for after-hours, on-call duty scientists; 3) Provide situational awareness for emergency managers and the general public. Herein we describe VolcView (volcview.wr.usgs.gov), a freely available, web-based platform for display and analysis of near-real-time satellite data. Initial geographic coverage is of the volcanoes in Alaska, the Russian Far East, and the Commonwealth of the Northern Mariana Islands. Coverage of other volcanoes in the United States will be added in the future. Near-real-time satellite data from NOAA, NASA and JMA satellite systems are processed to create image products for detection of elevated surface temperatures and volcanic ash and SO2 clouds. VolcView uses HTML5 and the canvas element to provide image overlays (volcano location and alert status, annotation, and location information) and image products that can be queried to provide data values, location and measurement capabilities. Use over the past year during the eruptions of Pavlof, Veniaminof, and Cleveland volcanoes in Alaska by the Alaska Volcano Observatory, the National Weather Service, and the U.S. Air Force has reinforced the utility of shared situational awareness and has guided further development. These include overlay of volcanic cloud trajectory and dispersion models, atmospheric temperature profiles, and incorporation of monitoring alerts from ground and satellite-based algorithms. Challenges for future development include reducing the latency in satellite data reception and processing, and increasing the geographic coverage from polar-orbiting satellite platforms.
“Can LUSI be stopped? - A case study and lessons learned from the relief wells”
NASA Astrophysics Data System (ADS)
Sutrisna, E.
2009-12-01
Since May 2006, in East Java, Indonesia, the LUSI mud volcano has been erupting huge volumes of mixture of predominately mud and water, with little sign of slowing down. It has disrupted social and economic life in this highly populated region. Most geologists believe LUSI is a naturally-occurring mud volcano (MV), like other MV in the Java island of particular interest are the MV along the Watukosek fault, such as, Kalang Anyar, Pulungan, Gunung Anyar, and Socah MV. All of these MV lie in the vicinity of the SSW/NNE trending Watukosek fault that passes through LUSI. The Porong collapse structure is an ancient MV closest to LUSI approx. 7 km away, which on seismic sections demonstrate its complex multi-branching plumbing system. Assuming that the mudflow passed through the wellbore due to an underground blowout, relief wells (RW) were planned to kill the mudflow and carried out in 3 stages, these were: 1. Re-entering the original Banjarpanji-1 (BJP-1) well to obtain accurate survey data so the relief wells could be steered into intersect this original well. 2. Drilling a monitoring well (M-1) to ascertain whether the soil had sufficient strength to support relief wells. 3. Drilling RW-1 and RW-2. Both RW-1 and RW-2 suffered of surface and subsurface problems never achieved their objectives and had to be aborted. Numbers of good lessons were learned from the relief well initiative, such as: 1. No gas or liquid flowed from the wellhead area when it was excavated one month after the eruption started. The wellhead remained intact and totally dead suggesting that the mud flowed to surface through a fault zone or a fracture network instead of up the wellbore. 2. The ‘fish’ in BJP-1 wellbore was found at its original location and not eroded away. This suggests that the mud flow did not pass through the wellbore. 3. The Temperature log showed lower temp. than surface mud temp. The Sonan log response was quiet. These results suggest that there was no near casing mudflow. 4. Dynamic subsurface conditions of the area with shear movement at a depth of 1,100 ft to 1,500 ft. 5. The RW-1 experienced alternate loss and kicks at a depth of around 3,200 ft. as it entered the unstable fault zone and fracture network which likely served as the mud flow conduit. Drilling in the zone of instability around the mudflow conduit cannot be avoided and is full of hazards. 6. The area suffers a dynamic geological condition. The subsidence rate at the rig site of more than 100 cm in a month. The subsidence also had a lateral component. 7. LUSI has multiple mudflow conduits as reflected in the more than 100 gas bubbles currently occurring within a radius of 1.5 km. Although the relief wells did not achieve their intended purpose to stop the mudflow, they allowed the collection of valuable data, all of which suggests that the mudflow did not originate from the BJP-1 wellbore as originally assumed. The use of relief wells to kill the mudflow is a futile attempt since in such complex plumbing system. New conduits or the two dormant mudflow centers along the fault line that appeared at the beginning of LUSI may reactivate if the currently active conduit is blocked. In conclusion, LUSI appears to be another naturally occurring MV that is impossible to kill using relief wells.
NASA Astrophysics Data System (ADS)
Barrancos, José; O'Neill, Ryan; Gould, Catherine E.; Padilla, Germán; Rodríguez, Fátima; Amonte, Cecilia; Padrón, Eleazar; Pérez, Nemesio M.
2017-04-01
Tenerife is the largest of the Canary Islands (2100 km2) and the North East Rift (NERZ) volcano is one of the three active volcanic rift-zones of the island (210 km2). The last eruptive activity at NERZ volcano occurred in 1704 and 1705, with three volcanic eruptions: Siete Fuentes, Fasnia and Arafo. In order to provide a multidisciplinary approach to monitor potential volcanic activity changes at the NERZ volcano, diffuse CO2 emission surveys have been undertaken in a yearly basis since 2001. This study shows the results of the last soil CO2 efflux survey undertaken in summer 2016, with 600 soil gas sampling sites homogenously distributed. Soil CO2 efflux measurements were performed at the surface environment by means of a portable non-dispersive infrared spectrophotometer (NDIR) LICOR Li800 following the accumulation chamber method. Soil CO2 efflux values ranged from non-detectable (˜0.5 g m-2 d-1) up to 70 g m-2 d-1, with an average value of 8.8 g m-2 d-1. In order to distinguish the existence of different geochemical populations on the soil CO2 efflux data, a Sinclair graphical analysis was done. The average value of background population was 2.9 g m-2 d-1 and that of peak population was 67.8 g m-2 d-1, value that has been increasing since the year 2014. To quantify the total CO2 emission rate from the NERZ volcano a sequential Gaussian simulation (sGs) was used as interpolation method to construct soil CO2 emission contour maps. The diffuse CO2 emission rate for the studied area was estimated in 1,675 ± 47 t d-1. If we compare the 2016 results with those ones obtained in previous surveys since 2001, two main pulses on diffuse CO2 emission are identified, the first one in 2007 and the second one between during 2014 and 2016. This long-term variation on the diffuse CO2 emission doesn't seem to be masked by the external-meteorological variations. However, the first peak precedes the anomalous seismicity recorded in and around Tenerife Island between 2009 and 2011, suggesting changes in strain-stress at depth as a possible cause of the observed changes in the diffuse CO2 emission rate. On the other hand, the second peak seems to be related to later changes in the seismicity, such as the seismic activity that occurred in Tenerife at the end of 2016. Again, this study demonstrates the importance of studies of soil CO2 efflux at the NERZ volcano of Tenerife island as an effective volcanic monitoring tool.
Earth Observations taken by Expedition 38 crewmember
2013-11-16
ISS038-E-005515 (16 Nov. 2013) --- Activity at Kliuchevskoi Volcano on Kamchatka Peninsula in the Russian Federation is featured in this image photographed by an Expedition 38 crew member on the International Space Station. When viewing conditions are favorable, crew members onboard the space station can take unusual and striking images of Earth. This photograph provides a view of an eruption plume emanating from Kliuchevskoi Volcano, one of the many active volcanoes on the Kamchatka Peninsula. Nadir views – looking “straight down”—that are typical of orbital satellite imagery tend to flatten the appearance of the landscape by reducing the sense of three dimensions of the topography. In contrast, this image was taken from the ISS with a very oblique viewing angle that gives a strong sense of three dimensions, which is accentuated by the shadows cast by the volcanic peaks. This resulted in a view similar to what a person might see from a low-altitude airplane. The image was taken when the space station was located over a ground position more than 1,500 kilometers to the southwest. The plume – likely a combination of steam, volcanic gases, and ash – is extended to the east-southeast by prevailing winds; the dark region to the north-northwest of the plume is likely a product of both shadow and ash settling out. Several other volcanoes are visible in the image, including Ushkovsky, Tolbachik, Zimina, and Udina. To the south-southwest of Kliuchevskoi lies Bezymianny Volcano which appears to be emitting a small steam plume (visible at center).
Volcanic tremor and local earthquakes at Copahue volcanic complex, Southern Andes, Argentina
NASA Astrophysics Data System (ADS)
Ibáñez, J. M.; Del Pezzo, E.; Bengoa, C.; Caselli, A.; Badi, G.; Almendros, J.
2008-07-01
In the present paper we describe the results of a seismic field survey carried out at Copahue Volcano, Southern Andes, Argentina, using a small-aperture, dense seismic antenna. Copahue Volcano is an active volcano that exhibited a few phreatic eruptions in the last 20 years. The aim of this experiment was to record and classify the background seismic activity of this volcanic area, and locate the sources of local earthquakes and volcanic tremor. Data consist of several volcano-tectonic (VT) earthquakes, and many samples of back-ground seismic noise. We use both ordinary spectral, and multi-spectral techniques to measure the spectral content, and an array technique [Zero Lag Cross Correlation technique] to measure the back-azimuth and apparent slowness of the signals propagating across the array. We locate VT earthquakes using a procedure based on the estimate of slowness vector components and S-P time. VT events are located mainly along the border of the Caviahue caldera lake, positioned at the South-East of Copahue volcano, in a depth interval of 1-3 km below the surface. The background noise shows the presence of many transients with high correlation among the array stations in the frequency band centered at 2.5 Hz. These transients are superimposed to an uncorrelated background seismic signal. Array solutions for these transients show a predominant slowness vector pointing to the exploited geothermal field of "Las Maquinitas" and "Copahue Village", located about 6 km north of the array site. We interpret this coherent signal as a tremor generated by the activity of the geothermal field.
Volcanic geology and eruption frequency, lower east rift zone of Kilauea volcano, Hawaii
Moore, R.B.
1992-01-01
Detailed geologic mapping and radiocarbon dating of tholeiitic basalts covering about 275 km2 on the lower east rift zone (LERZ) and adjoining flanks of Kilauea volcano, Hawaii, show that at least 112 separate eruptions have occurred during the past 2360 years. Eruptive products include spatter ramparts and cones, a shield, two extensive lithic-rich tuff deposits, aa and pahoehoe flows, and three littoral cones. Areal coverage, number of eruptions and average dormant interval estimates in years for the five age groups assigned are: (I) historic, i.e. A D 1790 and younger: 25%, 5, 42.75; (II) 200-400 years old: 50%, 15, 14.3: (III) 400-750 years old: 20%, 54, 6.6; (IV) 750-1500 years old: 5%, 37, 20.8; (V) 1500-3000 years old: <1%, 1, unknown. At least 4.5-6 km3 of tholeiitic basalt have been erupted from the LERZ during the past 1500 years. Estimated volumes of the exposed products of individual eruptions range from a few tens of cubic meters for older units in small kipukas to as much as 0.4 km3 for the heiheiahulu shield. The average dormant interval has been about 13.6 years during the past 1500 years. The most recent eruption occurred in 1961, and the area may be overdue for its next eruption. However, eruptive activity will not resume on the LERZ until either the dike feeding the current eruption on the middle east rift zone extends farther down rift, or a new dike, unrelated to the current eruption, extends into the LERZ. ?? 1992 Springer-Verlag.
Volcanic geology and eruption frequency, lower east rift zone of Kilauea volcano, Hawaii
NASA Astrophysics Data System (ADS)
Moore, Richard B.
1992-08-01
Detailed geologic mapping and radiocarbon dating of tholeiitic basalts covering about 275 km2 on the lower east rift zone (LERZ) and adjoining flanks of Kilauea volcano, Hawaii, show that at least 112 separate eruptions have occurred during the past 2360 years. Eruptive products include spatter ramparts and cones, a shield, two extensive lithic-rich tuff deposits, aa and pahoehoe flows, and three littoral cones. Areal coverage, number of eruptions and average dormant interval estimates in years for the five age groups assigned are: (I) historic, i.e. A D 1790 and younger: 25%, 5, 42.75; (II) 200 400 years old: 50%, 15, 14.3: (III) 400 750 years old: 20%, 54, 6.6; (IV) 750 1500 years old: 5%, 37, 20.8; (V) 1500 3000 years old: <1%, 1, unknown. At least 4.5 6 km3 of tholeiitic basalt have been erupted from the LERZ during the past 1500 years. Estimated volumes of the exposed products of individual eruptions range from a few tens of cubic meters for older units in small kipukas to as much as 0.4 km3 for the heiheiahulu shield. The average dormant interval has been about 13.6 years during the past 1500 years. The most recent eruption occurred in 1961, and the area may be overdue for its next eruption. However, eruptive activity will not resume on the LERZ until either the dike feeding the current eruption on the middle east rift zone extends farther down rift, or a new dike, unrelated to the current eruption, extends into the LERZ.
STS-65 Earth observation of island wake at Oahu, Hawaii, taken from OV-102
NASA Technical Reports Server (NTRS)
1994-01-01
STS-65 Earth observation taken aboard Columbia, Orbiter Vehicle (OV) 102, shows Oahu, Hawaii. The island wake emerging to the lower left side of Oahu is caused by wind currents blowing from the northeast being obstructed by the northwest-southeast trending, cloud covered, Koolau mountain range. The lighter colored water indicates a more smooth surface with a slower water current that the darker, rougher, faster moving water current. Pearl Harbor is visible to the south of the Koolau Range. To the right, or east, of Pearl Harbor is the city of Honolulu. The circular, brown feature to the east of Honolulu is the dormant volcano Diamond Head.
Kīlauea summit eruption—Lava returns to Halemaʻumaʻu
Babb, Janet L.; Wessells, Stephen M.; Neal, Christina A.
2017-10-06
In March 2008, a new volcanic vent opened within Halemaʻumaʻu, a crater at the summit of Kīlauea Volcano in Hawaiʻi Volcanoes National Park on the Island of Hawaiʻi. This new vent is one of two ongoing eruptions on the volcano. The other is on Kīlauea’s East Rift Zone, where vents have been erupting nearly nonstop since 1983. The duration of these simultaneous summit and rift zone eruptions on Kīlauea is unmatched in at least 200 years.Since 2008, Kīlauea’s summit eruption has consisted of continuous degassing, occasional explosive events, and an active, circulating lava lake. Because of ongoing volcanic hazards associated with the summit vent, including the emission of high levels of sulfur dioxide gas and fragments of hot lava and rock explosively hurled onto the crater rim, the area around Halemaʻumaʻu remains closed to the public as of 2017.Through historical photos of past Halemaʻumaʻu eruptions and stunning 4K imagery of the current eruption, this 24-minute program tells the story of Kīlauea Volcano’s summit lava lake—now one of the two largest lava lakes in the world. It begins with a Hawaiian chant that expresses traditional observations of a bubbling lava lake and reflects the connections between science and culture that continue on Kīlauea today.The video briefly recounts the eruptive history of Halemaʻumaʻu and describes the formation and continued growth of the current summit vent and lava lake. It features USGS Hawaiian Volcano Observatory scientists sharing their insights on the summit eruption—how they monitor the lava lake, how and why the lake level rises and falls, why explosive events occur, the connection between Kīlauea’s ongoing summit and East Rift Zone eruptions, and the impacts of the summit eruption on the Island of Hawaiʻi and beyond. The video is also available at the following U.S. Geological Survey Multimedia Gallery link (video hosted on YouTube): Kīlauea summit eruption—Lava returns to Halemaʻumaʻu
NASA Astrophysics Data System (ADS)
Staudacher, Thomas; Peltier, Aline; Boissier, Patrice; di Muro, Andrea
2010-05-01
The Piton de la Fournaise volcano at La Réunion Island in the western Indian Ocean is one of the most active volcanoes in the world. Its average eruption rate over the last 2 centuries is one eruption every 9 months. Between 1998 and 2010 thirty eruptions occurred and produced some 300×106 m3 of lava flows. Since the 2007 collapse of 340 m of the Dolomieu caldera, the eruptive activity of the volcano changed with mainly the occurrence of numerous shallow intrusions preceding days or weeks small summit eruptions. In 2009-2010, Piton de la Fournaise erupted successively in November 5, December 14, 2009 and in January 2, 2010. The one day lasting November and December 2009 eruptions started from en echelon fissures close to the summit around its eastern and southern rims, respectively, whereas the January 2010 eruptive fissure opened on the western flank inside of the Dolomieu crater. These three eruptions produced less than 106 m3 of lava, but generated large ground deformation, of up to 70 cm, recorded by the cGPS network of the volcano observatory and by cinematic GPS measurements. The long term survey showed a small extent of the ground deformation field and the small ratios of base/summit displacements and vertical/horizontal displacements reveal the involvement of shallow dykes to fed these successive eruptions. The cGPS network allowed us to follow up precisely the pre eruptive ground deformations, the 40 to 90 minutes dyke propagation toward the surface, as well as the ground deformations after the vent opening. For the November and December 2009 eruptions, the dyke started below the western part of the Dolomieu crater, before propagating to the east and the south, respectively. For the January eruption, the dyke propagated along a more or less vertical pathway directly to the western part of the Dolomieu crater. The two previous dyke injections of November and December had increased the horizontal compressive stress of the eastern side of the Dolomieu crater and did not favoured a new propagation to the east.
NASA Astrophysics Data System (ADS)
Leslie, Stephen C.; Moore, Gregory F.; Morgan, Julia K.
2004-01-01
Multichannel seismic reflection, sonobuoy, gravity and magnetics data collected over the submarine length of the 75 km long Puna Ridge, Hawai ̀i, resolve the internal structure of the active rift zone. Laterally continuous reflections are imaged deep beneath the axis of the East Rift Zone (ERZ) of Kilauea Volcano. We interpret these reflections as a layer of abyssal sediments lying beneath the volcanic edifice of Kilauea. Early arrival times or 'pull-up' of sediment reflections on time sections imply a region of high P-wave velocity ( Vp) along the submarine ERZ. Refraction measurements along the axis of the ridge yield Vp values of 2.7-4.85 km/s within the upper 1 km of the volcanic pile and 6.5-7 km/s deeper within the edifice. Few coherent reflections are observed on seismic reflection sections within the high-velocity area, suggesting steeply dipping dikes and/or chaotic and fractured volcanic materials. Southeastward dipping reflections beneath the NW flank of Puna Ridge are interpreted as the buried flank of the older Hilo Ridge, indicating that these two ridges overlap at depth. Gravity measurements define a high-density anomaly coincident with the high-velocity region and support the existence of a complex of intrusive dikes associated with the ERZ. Gravity modeling shows that the intrusive core of the ERZ is offset to the southeast of the topographic axis of the rift zone, and that the surface of the core dips more steeply to the northwest than to the southeast, suggesting that the dike complex has been progressively displaced to the southeast by subsequent intrusions. The gravity signature of the dike complex decreases in width down-rift, and is absent in the distal portion of the rift zone. Based on these observations, and analysis of Puna Ridge bathymetry, we define three morphological and structural regimes of the submarine ERZ, that correlate to down-rift changes in rift zone dynamics and partitioning of intrusive materials. We propose that these correspond to evolutionary stages of developing rift zones, which may partially control volcano growth, mobility, and stability, and may be observable at many other oceanic volcanoes.
NASA Astrophysics Data System (ADS)
Jay, J.; Pritchard, M. E.; Aron, F.; Delgado, F.; Macedo, O.; Aguilar, V.
2013-12-01
An InSAR survey of all 13 Holocene volcanoes in the Andean Central Volcanic Zone of Peru reveals previously undocumented surface deformation that is occasionally accompanied by seismic activity. Our survey utilizes SAR data spanning from 1992 to the present from the ERS-1, ERS-2, and Envisat satellites, as well as selected data from the TerraSAR-X satellite. We find that the recent unrest at Sabancaya volcano (heightened seismicity since 22 February 2013 and increased fumarolic output) has been accompanied by surface deformation. We also find two distinct deformation episodes near Sabancaya that are likely associated with an earthquake swarm in February 2013 and a M6 normal fault earthquake that occurred on 17 July 2013. Preliminary modeling suggests that faulting from the observed seismic moment can account for nearly all of the observed deformation and thus we have not yet found clear evidence for recent magma intrusion. We also document an earlier episode of deformation that occurred between December 2002 and September 2003 which may be associated with a M5.3 earthquake that occurred on 13 December 2002 on the Solarpampa fault, a large EW-striking normal fault located about 25 km northwest of Sabancaya volcano. All of the deformation episodes between 2002 and 2013 are spatially distinct from the inflation seen near Sabancaya from 1992 to 1997. In addition to the activity at Sabancaya, we also observe deformation near Coropuna volcano, in the Andagua Valley, and in the region between Ticsani and Tutupaca volcanoes. InSAR images reveal surface deformation that is possibly related to an earthquake swarm near Coropuna and Sabancaya volcanoes in December 2001. We also find persistent deformation in the scoria cone and lava field along the Andagua Valley, located 40 km east of Corpuna. An earthquake swarm near Ticsani volcano in 2005 produced surface deformation centered northwest of the volcano and was accompanied by a north-south elongated subsidence signal to the southeast. We investigate a possible relationship between the seismicity and the subsidence and find that the swarm generates a stress field which may encourage the opening of fractures oriented parallel to both the elongation of the subsidence signal and the trend of regional faults. Thus, we hypothesize that the Ticsani swarm triggered the subsidence to the southeast by allowing migration of hydrothermal fluids through cracks, similar to the volcanic subsidence observed in southern Chile following the 2010 Maule earthquake and in Japan following the 2011 Tohoku earthquake, though other explanations for the subsidence cannot be ruled out. A noteworthy null result of our InSAR survey is the lack of deformation at Ubinas volcano, one of the most active volcanoes in Peru, even spanning its 2006 eruption.
Preliminary volcano-hazard assessment for Mount Spurr Volcano, Alaska
Waythomas, Christopher F.; Nye, Christopher J.
2001-01-01
Mount Spurr volcano is an ice- and snow-covered stratovolcano complex located in the north-central Cook Inlet region about 100 kilometers west of Anchorage, Alaska. Mount Spurr volcano consists of a breached stratovolcano, a lava dome at the summit of Mount Spurr, and Crater Peak vent, a small stratocone on the south flank of Mount Spurr volcano. Historical eruptions of Crater Peak occurred in 1953 and 1992. These eruptions were relatively small but explosive, and they dispersed volcanic ash over areas of interior, south-central, and southeastern Alaska. Individual ash clouds produced by the 1992 eruption drifted east, north, and south. Within a few days of the eruption, the south-moving ash cloud was detected over the North Atlantic. Pyroclastic flows that descended the south flank of Crater Peak during both historical eruptions initiated volcanic-debris flows or lahars that formed temporary debris dams across the Chakachatna River, the principal drainage south of Crater Peak. Prehistoric eruptions of Crater Peak and Mount Spurr generated clouds of volcanic ash, pyroclastic flows, and lahars that extended to the volcano flanks and beyond. A flank collapse on the southeast side of Mount Spurr generated a large debris avalanche that flowed about 20 kilometers beyond the volcano into the Chakachatna River valley. The debris-avalanche deposit probably formed a large, temporary debris dam across the Chakachatna River. The distribution and thickness of volcanic-ash deposits from Mount Spurr volcano in the Cook Inlet region indicate that volcanic-ash clouds from most prehistoric eruptions were as voluminous as those produced by the 1953 and 1992 eruptions. Clouds of volcanic ash emitted from the active vent, Crater Peak, would be a major hazard to all aircraft using Ted Stevens Anchorage International Airport and other local airports and, depending on wind direction, could drift a considerable distance beyond the volcano. Ash fall from future eruptions could disrupt many types of economic and social activities, including oil and gas operations and shipping activities in the Cook Inlet area. Eruptions of Crater Peak could involve significant amounts of ice and snow that would lead to the formation of large lahars, formation of volcanic debris dams, and downstream flooding. The greatest hazards in order of importance are described below and shown on plate 1.
Low, Van Lun; Takaoka, Hiroyuki; Pramual, Pairot; Adler, Peter H; Ya'cob, Zubaidah; Chen, Chee Dhang; Yotopranoto, Subagyo; Zaid, Adnan; Hadi, Upik Kesumawati; Lardizabal, Maria Lourdes; Nasruddin-Roshidi, Affan; Sofian-Azirun, Mohd
2016-07-01
We access the molecular diversity of the black fly Simulium nobile De Mejiere, using the universal cytochrome c oxidase subunit I (COI) barcoding gene, across its distributional range in Southeast Asia. Our phylogenetic analyses recovered three well-supported mitochondrial lineages of S. nobile, suggesting the presence of cryptic species. Lineage A is composed of a population from Sabah, East Malaysia (Borneo); lineage B represents the type population from Java, Indonesia; and lineage C includes populations from the mainland of Southeast Asia (Peninsular Malaysia and Thailand). The genetic variation of lineage C on the mainland is greater than that of lineages A and B on the islands of Borneo and Java. Our study highlights the value of a molecular approach in assessing species status of simuliids in geographically distinct regions. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Stupina, T.; Koulakov, I.; Kopp, H.
2009-04-01
We consider questions of creating structural models and resolution assessment in tomographic inversion of wide-angle active seismic profiling data. For our investigations, we use the PROFIT (Profile Forward and Inverse Tomographic modeling) algorithm which was tested earlier with different datasets. Here we consider offshore seismic profiling data from three areas (Chile, Java and Central Pacific). Two of the study areas are characterized by subduction zones whereas the third data set covers a seamount province. We have explored different algorithmic issues concerning the quality of the solution, such as (1) resolution assessment using different sizes and complexity of synthetic anomalies; (2) grid spacing effects; (3) amplitude damping and smoothing; (4) criteria for rejection of outliers; (5) quantitative criteria for comparing models. Having determined optimal algorithmic parameters for the observed seismic profiling data we have created structural synthetic models which reproduce the results of the observed data inversion. For the Chilean and Java subduction zones our results show similar patterns: a relatively thin sediment layer on the oceanic plate, thicker inhomogeneous sediments in the overlying plate and a large area of very strong low velocity anomalies in the accretionary wedge. For two seamounts in the Pacific we observe high velocity anomalies in the crust which can be interpreted as frozen channels inside the dormant volcano cones. Along both profiles we obtain considerable crustal thickening beneath the seamounts.
Transformation of Indonesian Natural Zeolite into Analcime Phase under Hydrothermal Condition
NASA Astrophysics Data System (ADS)
Lestari, W. W.; Hasanah, D. N.; Putra, R.; Mukti, R. R.; Nugrahaningtyas, K. D.
2018-04-01
Natural zeolite is abundantly available in Indonesia and well distributed especially in the volcano area like Java, Sumatera, and Sulawesi. So far, natural zeolite from Klaten, Central Java is one of the most interesting zeolites has been widely studied. This research aims to know the effect of seed-assisted synthesis under a hydrothermal condition at 120 °C for 24 hours of Klaten’s zeolite toward the structural change and phase transformation of the original structure. According to XRD and XRF analysis, seed-assisted synthesis through the addition of aluminosilicate mother solution has transformed Klaten’s zeolite which contains (mordenite and clinoptilolite) into analcime type with decreasing Si/Al ratio from 4.51 into 1.38. Morphological analysis using SEM showed the shape changes from irregular into spherical looks like takraw ball in the range of 0.3 to 0.7 micrometer. Based on FTIR data, structure of TO4 site (T = Si or Al) was observed in the range of 300-1300 cm-1 and the occupancy of Brønsted acid site as OH stretching band from silanol groups was detected at 3440-3650 cm-1. Nitrogen adsorption-desorption analysis confirmed that transformation Klaten’s zeolite into analcime type has decreased the surface area from 55.41 to 22.89 m2/g and showed inhomogeneous pore distribution which can be classified as micro-mesoporous aluminosilicate materials.
NASA Astrophysics Data System (ADS)
Setijadji, L. D.; Watanabe, K.; Fukuoka, K.; Ehara, S.; Setiadji, Y.; Rahardjo, W.; Susilo, A.; Barianto, D. H.; Harijoko, A.; Sudarno, I.; Pramumijoyo, S.; Hendrayana, H.; Akmalludin, A.; Nishijima, J.; Itaya, T.
2007-05-01
The unprecedented 26 May 2006 Yogyakarta earthquake (central Java, Indonesia) that took victims of 5,700 lives was generally accepted to have a depth of about 10 km and moment magnitude of 6.4. However, the definition of location of active fault is still under debate as the epicenter of mainshock was reported quite differently by several institutions. Many researchers believe that the Opak fault which is located at the eastern boundary of Yogyakarta low-land area (or Yogyakarta Basin) and the high-land region of Southern Mountains was the source of year 2006 earthquakes. However, our result of aftershocks observation suggests that the ruptured zone was not located along the Opak fault but from an unknown fault located about 10 km to the east from it and within the Southern Mountains domain. Unfortunately, surface geologic manifestations are scarce as this area is now largely covered by limestone. Therefore the suspected active fault system must be studied through interpretations of the subsurface geology and evaluation of the Cenozoic geo-history of the region utilizing existing geologic, geophysical and remote sensing data. This work suggests that the Yogyakarta Basin is a volcano-tectonic depression formed gradually since the early Tertiary period (Oligo-Miocene or older). Geological and geophysical evidence suggest that structural trends changed from the Oligocene NE-SW towards the Oligo-Miocene NNE-SSW and the Plio-Pleistocene NW-SE and E-W directions. The ruptured "X" fault during the Yogyakarta earthquakes 2006 is likely to be a NNE-SSW trending fault which is parallel to the Opak fault and both were firstly active in the Oligo-Miocene as sinistral strike-slip faults. However, while the Opak fault had changed into a normal faulting after the Pliocene, the evidence from Kali Ngalang and Kali Widoro suggests that the "X" fault system was still reactivated as a strike-slip one during the Plio-Pleistocene orogeny. As this new interpretation of active fault causes spatial discrepancy between locations of earthquakes epicenters and highly damaged regions, other geo-engineering factors must be considerably important in determining the final scale of seismic hazards. The most vulnerable areas for seismic hazards are those located nearest to the ruptured fault and are underlain by thick Quaternary unconsolidated deposits. In case of regions along the fault line, seismic hazards seem to reach more distance region, such as the case of Gantiwarno region, as the seismic waves can travel more easily along the fault line.
NASA Astrophysics Data System (ADS)
Saddhono, Kundharu
2018-03-01
Teaching Indonesian to Speakers of Other Languages (TISOL) program is increasingly in demand by people in various parts of the world. Foreign students learn a lot of Indonesian language in major cities in Indonesia. The purpose of this study is to explain the cultural and social changes of foreign students in Indonesia, especially in Java, which is following TISOL program. This study focused on the influence of Javanese culture on foreign students studying Indonesian in Java. Research method used is descriptive qualitative with ethnography approach. This research was conducted in TISOL program organized by in Central Java, East Java, and Yogyakarta. Sources of data used are documents and informants. The sampling technique used is purposive sampling. Purposive sampling is considered more capable to obtain complete data in the face of various realities. Data collection techniques are done by reviewing documents or records using content analysis techniques. Other techniques used are interview techniques with some students and lecturers to get data about the factors that affect the cultural and social changes of foreign students in Indonesia. Also, interviews were also conducted with teachers to request a different process in TISOL. The most common way used to improve validity in qualitative research is the triangulation technique. In this study used triangulation theory, triangulation method, and review of informants. The results show that using Javanese culture is very influential in the cultural and social changes of foreign students in Indonesia. Students become more enthusiastic and active in responding to learning in TISOL that is influenced by Javanese culture. The change comes from internal and external students. This change helps foreign students to understand Indonesian language and culture more comprehensively.
Existence of the rdl mutant alleles among the anopheles malaria vector in Indonesia
2012-01-01
Background The gamma-aminobutyric acid (GABA) receptor-chloride channel complex is known to be the target site of dieldrin, a cyclodiene insecticide. GABA-receptors, with a naturally occurring amino acid substitution, A302S/G in the putative ion-channel lining region, confer resistance to cyclodiene insecticides that includes aldrin, chlordane, dieldrin, heptachlor, endrin and endosulphan. Methods A total of 154 mosquito samples from 10 provinces of malaria-endemic areas across Indonesia (Aceh, North Sumatra, Bangka Belitung, Lampung, Central Java, East Nusa Tenggara, West Nusa Tenggara, West Sulawesi, Molucca and North Molucca) were obtained and identified by species, using morphological characteristic. The DNA was individually extracted using chelex-ion exchanger and the DNA obtained was used for analyses using sequencing method. Results Molecular analysis indicated 11% of the total 154 Anopheles samples examined, carried Rdl mutant alleles. All of the alleles were found in homozygous form. Rdl 302S allele was observed in Anopheles vagus (from Central Java, Lampung, and West Nusa Tenggara), Anopheles aconitus (from Central Java), Anopheles barbirostris (from Central Java and Lampung), Anopheles sundaicus (from North Sumatra and Lampung), Anopheles nigerrimus (from North Sumatra), whereas the 302 G allele was only found in Anopheles farauti from Molucca. Conclusion The existence of the Rdl mutant allele indicates that, either insecticide pressure on the Anopheles population in these areas might still be ongoing (though not directly associated with the malaria control programme) or that the mutant form of the Rdl allele is relatively stable in the absence of insecticide. Nonetheless, the finding suggests that integrated pest management is warranted in malaria-endemic areas where insecticides are widely used for other purposes. PMID:22364613
NASA Astrophysics Data System (ADS)
Kato, T.; Ito, T.; Abidin, H. Z.; Agustan
2007-09-01
A large earthquake (Mw=7.7) along a plate boundary occurred in the south of Java Island on July 17, 2006, and caused a significant tsunami. We made GPS observations and tsunami heights measurements during the period from July 24 to August 1, 2006. The earthquake seems to be due to an interplate low angle reverse faulting, though there might be a possibility of high angle faulting within the subducting lithosphere. Crustal deformation distribution due to the earthquake, aided by tsunami heights measurements, might clarify which would be the case. We occupied 29 sites by GPS in the area of southern Java encompassing the area from 107.8 E to 109.50 E. These sites were occupied once before the earthquake. However, we were not able to detect significant co-seismic displacements. The obtained displacements, most of which span several years, show ESE direction in ITRF2000 frame. This represents the direction of Sunda block motion. The tsunami heights measured at 11 sites were 6-7 m along the southern coast of Java and indicate that the observed heights are systematically higher than those estimated from numerical simulations that are based on seismic data analysis. This might suggest that fault offsets might have been larger - nearly double - than those estimated using seismic analysis. These results lead us to an idea that the rupture was very slow. If this is the case, the earthquake might have been a "tsunami earthquake" that is similar to the one that occurred on June 2, 1994 in the east of the present earthquake.
Inclusive blue swimming crab fishery management initiative in Betahwalang Demak, Indonesia
NASA Astrophysics Data System (ADS)
Ghofar, A.; Redjeki, S.; Madduppa, H.; Abbey, M.; Tasunar, N.
2018-02-01
There has been a growing interest in the sustainability of the blue swimming crab (Portunus pelagicus, BSC) fisheries in Indonesia. The fishery is operated on a small-scale basis and yet it significantly contributes to the Indonesia’s fisheries as the third biggest export commodities following tuna and shrimp. The project inclusively (i) brings together coastal and fishing communities, university, the private sector, government at various levels and international agencies, (ii) bottom up approach is integrated with top-down (government policy) approach and (iii) integration o f conservation into fisheries management. This approach resulted in better understanding and participation among the coastal fishing communities on sustainable fisheries and the necessity to perform fisheries management. This led to the establishment of BSC fishery management body (legally support by Village Regulation - No.06/2013 on BSC fishery management in 2013, followed by a District Regulation No.523/0166/2014 on BSC fishery management in 2014. More recently, the Governor of Central Java issued a Governor Regulation No. 33/2017 on Crab and Lobster fisheries management and a Governor Decree No. 523/93/2017 on the establishment of the BSC fisheries management committee in Central Java. Further impacts have been raised awareness in sustainable BSC fishery management in surrounding districts in other provinces, namely East Java and Southeast Sulawesi. There remains, further needs to strengthen fishery governance by means of integrating national and local government effort in sustaining the fisheries, including the Issuance and effective implementation of the provincial decree on BSC fishery management for Central Java, that will enable the use of province’s resource to implement fisheries management and strengthen law enforcement. To help improve the stock, a plan for stock enhancement should also be developed with proper monitoring program and community commitment to avoid “put and take” practices.
Existence of the rdl mutant alleles among the anopheles malaria vector in Indonesia.
Asih, Puji Bs; Syahrani, Lepa; Rozi, Ismail Ep; Pratama, Nandha R; Marantina, Sylvia S; Arsyad, Dian S; Mangunwardoyo, Wibowo; Hawley, William; Laihad, Ferdinand; Shinta; Sukowati, Supratman; Lobo, Neil F; Syafruddin, Din
2012-02-25
The gamma-aminobutyric acid (GABA) receptor-chloride channel complex is known to be the target site of dieldrin, a cyclodiene insecticide. GABA-receptors, with a naturally occurring amino acid substitution, A302S/G in the putative ion-channel lining region, confer resistance to cyclodiene insecticides that includes aldrin, chlordane, dieldrin, heptachlor, endrin and endosulphan. A total of 154 mosquito samples from 10 provinces of malaria-endemic areas across Indonesia (Aceh, North Sumatra, Bangka Belitung, Lampung, Central Java, East Nusa Tenggara, West Nusa Tenggara, West Sulawesi, Molucca and North Molucca) were obtained and identified by species, using morphological characteristic. The DNA was individually extracted using chelex-ion exchanger and the DNA obtained was used for analyses using sequencing method. Molecular analysis indicated 11% of the total 154 Anopheles samples examined, carried Rdl mutant alleles. All of the alleles were found in homozygous form. Rdl 302S allele was observed in Anopheles vagus (from Central Java, Lampung, and West Nusa Tenggara), Anopheles aconitus (from Central Java), Anopheles barbirostris (from Central Java and Lampung), Anopheles sundaicus (from North Sumatra and Lampung), Anopheles nigerrimus (from North Sumatra), whereas the 302 G allele was only found in Anopheles farauti from Molucca. The existence of the Rdl mutant allele indicates that, either insecticide pressure on the Anopheles population in these areas might still be ongoing (though not directly associated with the malaria control programme) or that the mutant form of the Rdl allele is relatively stable in the absence of insecticide. Nonetheless, the finding suggests that integrated pest management is warranted in malaria-endemic areas where insecticides are widely used for other purposes.
Diffuse degassing at Longonot volcano, Kenya: Implications for CO2 flux in continental rifts
NASA Astrophysics Data System (ADS)
Robertson, Elspeth; Biggs, Juliet; Edmonds, Marie; Clor, Laura; Fischer, Tobias P.; Vye-Brown, Charlotte; Kianji, Gladys; Koros, Wesley; Kandie, Risper
2016-11-01
Magma movement, fault structures and hydrothermal systems influence volatile emissions at rift volcanoes. Longonot is a Quaternary caldera volcano located in the southern Kenyan Rift, where regional extension controls recent shallow magma ascent. Here we report the results of a soil carbon dioxide (CO2) survey in the vicinity of Longonot volcano, as well as fumarolic gas compositions and carbon isotope data. The total non-biogenic CO2 degassing is estimated at < 300 kg d- 1, and is largely controlled by crater faults and fractures close to the summit. Thus, recent volcanic structures, rather than regional tectonics, control fluid pathways and degassing. Fumarolic gases are characterised by a narrow range in carbon isotope ratios (δ13C), from - 4.7‰ to - 6.4‰ (vs. PDB) suggesting a magmatic origin with minor contributions from biogenic CO2. Comparison with other degassing measurements in the East African Rift shows that records of historical eruptions or unrest do not correspond directly to the magnitude of CO2 flux from volcanic centres, which may instead reflect the current size and characteristics of the subsurface magma reservoir. Interestingly, the integrated CO2 flux from faulted rift basins is reported to be an order of magnitude higher than that from any of the volcanic centres for which CO2 surveys have so far been reported.
NASA Astrophysics Data System (ADS)
Cassisi, Carmelo; Prestifilippo, Michele; Cannata, Andrea; Montalto, Placido; Patanè, Domenico; Privitera, Eugenio
2016-07-01
From January 2011 to December 2015, Mt. Etna was mainly characterized by a cyclic eruptive behavior with more than 40 lava fountains from New South-East Crater. Using the RMS (Root Mean Square) of the seismic signal recorded by stations close to the summit area, an automatic recognition of the different states of volcanic activity (QUIET, PRE-FOUNTAIN, FOUNTAIN, POST-FOUNTAIN) has been applied for monitoring purposes. Since values of the RMS time series calculated on the seismic signal are generated from a stochastic process, we can try to model the system generating its sampled values, assumed to be a Markov process, using Hidden Markov Models (HMMs). HMMs analysis seeks to recover the sequence of hidden states from the observations. In our framework, observations are characters generated by the Symbolic Aggregate approXimation (SAX) technique, which maps RMS time series values with symbols of a pre-defined alphabet. The main advantages of the proposed framework, based on HMMs and SAX, with respect to other automatic systems applied on seismic signals at Mt. Etna, are the use of multiple stations and static thresholds to well characterize the volcano states. Its application on a wide seismic dataset of Etna volcano shows the possibility to guess the volcano states. The experimental results show that, in most of the cases, we detected lava fountains in advance.
NASA Technical Reports Server (NTRS)
2002-01-01
The Popocatepetl Volcano, almost 30 miles south of Mexico City, erupted yesterday (December 18, 2000) in what authorities are calling its most spectacular eruption since 800 A.D. This morning, Popocatepetl (pronounced poh-poh-kah-TEH-peh-til) continued spewing red-hot rocks as well as a column of smoke and ash about 2.5 miles high into the atmosphere. This true-color image of the volcano was acquired today by the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) flying aboard the OrbView-2 satellite. In this image, Popocatepetl's plume (greyish pixels) can be seen blowing southward, away from Mexico City. There is a large cloud bank (bright white pixels) just to the east of the volcanic plume. Although Popocatepetl has been active since 1994-when it awoke from a 70-year slumber-this most recent eruption is most concerning to the greater Mexico City region's 20 million residents. The volcano demonstrated what it can do in 800 A.D. when it belched forth enough lava to fill many of the valleys in the surrounding region. Earlier, scientists warned the citizens of Mexico that there is a dome of lava at the base of the volcano that is causing pressure to build inside. They are concerned that, if it continues to build unabated, this pressure could cause even larger eruptions in the future. Image provided by the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE
Crustal stress and structure at Kīlauea Volcano inferred from seismic anisotropy: Chapter 12
Johnson, Jessica H.; Swanson, Donald; Roman, Diana C.; Poland, Michael P.; Thelen, Weston A.; Carey, Rebecca; Cayol, Valérie; Poland, Michael P.; Weis, Dominique
2015-01-01
Seismic anisotropy, measured through shear wave splitting (SWS) analysis, can be indicative of the state of stress in Earth's crust. Changes in SWS at Kīlauea Volcano, Hawai‘i, associated with the onset of summit eruptive activity in 2008 hint at the potential of the technique for tracking volcanic activity. To use SWS observations as a monitoring tool, however, it is important to understand the cause of seismic anisotropy at the volcano throughout the eruptive cycle. To address this need, we analyzed SWS results from across Kīlauea in combination with macroscopic surface structures (mapped fractures, faults, and fissures) and stress orientations inferred from fault plane solutions. Seismic anisotropy seems to be due to pervasive aligned structures in most regions of the volcano. The upper East and Southwest Rift Zones, however, show a bimodality in stress and SWS, suggesting a stress discontinuity with depth, perhaps related to magma conduits that trend obliquely to the dominant structure. Other areas in and around Kīlauea Caldera display principal stresses of similar magnitudes, indicating that small stress perturbations can rotate the maximum horizontal compressive stress direction by up to 90°. In these locations, static structures generally control SWS, but dynamic conditions due to magmatic activity can override the structural control. Monitoring of SWS may therefore provide important signs of impending volcanism.
Diversity of Coral Fish At Saebus Island, East Java, Indonesia
NASA Astrophysics Data System (ADS)
Fatimah, Siti; Putra, Tri Widya Laksana; Kondang, Putranto; Suratman; Gamelia, Larossa; Syahputra, Hendry; Rahmadayanti; Rizmaaadi, Mada; Ambariyanto, Ambariyanto
2018-02-01
Coral reef ecosystem is known as an important place to live various types of fish, where coral conditions will affect the diversity and abundance of the fish. In healthy coral reef ecosystems generally can be found many types of fish with high density. This research aims to investigate the diversity and abundance of coral fishes at Saebus Island, East Java. The observation conducted at 4 stations, according to cardinal point by UVS (underwater visual census) methods with belt transect with the visibility of 2,5 m horizontally, and 5 m vertically. The length of transect was 100 m parallel with coastline, with the area of observation is 500 m2. The censuses were conducted at 2 different depths (3 and 10 m). This study found 70 kinds of coral fish originated form 20 family at all stations. These fishes were from 3 different fish categories i.e. 7 target fishes, 13 indicator fishes, and 50 major fishes. Three different fishes that dominated target fish, indicator fish and major fish were Epinephelus fasciatus, Chaetodon baronessa and Aulostomus chinensis, respectively. There was similar value of fish diversity index at two different depths which were 3.635 and 3,623. While uniformity index at the depth of 3m was 0.153 and at 10m was 0.217, and domination index at the depth of 3m was 0.11 and at 10m was 0.167. These values suggest that diversity of coral fish at Saebus island can be categorized as high diversity.
Realmuto, V.J.; Sutton, A.J.; Elias, T.
1997-01-01
The synoptic perspective and rapid mode of data acquisition provided by remote sensing are well suited for the study of volcanic SO2 plumes. In this paper we describe a plume-mapping procedure that is based on image data acquired with NASA's airborne thermal infrared multispectral scanner (TIMS) and apply the procedure to TIMS data collected over the East Rift Zone of Kilauea Volcano, Hawaii, on September 30, 1988. These image data covered the Pu'u 'O'o and Kupaianaha vents and a skylight in the lava tube that was draining the Kupaianaha lava pond. Our estimate of the SO2 emission rate from Pu'u 'O'o (17 - 20 kg s-1) is roughly twice the average of estimates derived from correlation spectrometer (COSPEC) measurements collected 10 days prior to the TIMS overflight (10 kg s-1). The agreement between the TIMS and COSPEC results improves when we compare SO2 burden estimates, which are relatively independent of wind speed. We demonstrate the feasibility of mapping Pu'u 'O'o - scale SO2 plumes from space in anticipation of the 1998 launch of the advanced spaceborne thermal emission and reflectance radiometer (ASTER). Copyright 1997 by the American Geophysical Union.
Dome-like behaviour at Mt. Etna: The case of the 28 December 2014 South East Crater paroxysm.
Ferlito, C; Bruno, V; Salerno, G; Caltabiano, T; Scandura, D; Mattia, M; Coltorti, M
2017-07-13
On the 28 December 2014, a violent and short paroxysmal eruption occurred at the South East Crater (SEC) of Mount Etna that led to the formation of huge niches on the SW and NE flanks of the SEC edifice from which a volume of ~3 × 10 6 m 3 of lava was erupted. Two basaltic lava flows discharged at a rate of ~370 m 3 /s, reaching a maximum distance of ~5 km. The seismicity during the event was scarce and the eruption was not preceded by any notable ground deformation, which instead was dramatic during and immediately after the event. The SO 2 flux associated with the eruption was relatively low and even decreased few days before. Observations suggest that the paroxysm was not related to the ascent of volatile-rich fresh magma from a deep reservoir (dyke intrusion), but instead to a collapse of a portion of SEC, similar to what happens on exogenous andesitic domes. The sudden and fast discharge eventually triggered a depressurization in the shallow volcano plumbing system that drew up fresh magma from depth. Integration of data and observations has allowed to formulate a novel interpretation of mechanism leading volcanic activity at Mt. Etna and on basaltic volcanoes worldwide.
Nyamulagira’s magma plumbing system inferred from 15 years of InSAR
Wauthier, Christelle; Cayol, Valérie; Poland, Michael; Kervyn, François; D'Oreye, Nicolas; Hooper, Andrew; Samsonov, Sergei; Tiampo, Kristy; Smets, Benoit; Pyle, D. M.; Mather, T.A.; Biggs, J.
2013-01-01
Nyamulagira, located in the east of the Democratic Republic of Congo on the western branch of the East African rift, is Africa’s most active volcano, with an average of one eruption every 3 years since 1938. Owing to the socio-economical context of that region, the volcano lacks ground-based geodetic measurements but has been monitored by interferometric synthetic aperture radar (InSAR) since 1996. A combination of 3D Mixed Boundary Element Method and inverse modelling, taking into account topography and source interactions, is used to interpret InSAR ground displacements associated with eruptive activity in 1996, 2002, 2004, 2006 and 2010. These eruptions can be fitted by models incorporating dyke intrusions, and some (namely the 2006 and 2010 eruptions) require a magma reservoir beneath the summit caldera. We investigate inter-eruptive deformation with a multi-temporal InSAR approach. We propose the following magma plumbing system at Nyamulagira by integrating numerical deformation models with other available data: a deep reservoir (c. 25 km depth) feeds a shallower reservoir (c. 4 km depth); proximal eruptions are fed from the shallow reservoir through dykes while distal eruptions can be fed directly from the deep reservoir. A dyke-like conduit is also present beneath the upper southeastern flank of Nyamulagira.
Volcanic Tsunami Generation in the Aleutian Arc of Alaska
NASA Astrophysics Data System (ADS)
Waythomas, C. F.; Watts, P.
2003-12-01
Many of the worlds active volcanoes are situated on or near coastlines, and during eruptions the transfer of mass from volcano to sea is a potential source mechanism for tsunamis. Flows of granular material off of volcanoes, such as pyroclastic flow, debris avalanche, and lahar, often deliver large volumes of unconsolidated debris to the ocean that have a large potential tsunami hazard. The deposits of both hot and cold volcanic grain flows produced by eruptions of Aleutian arc volcanoes are exposed at many locations along the coastlines of the Bering Sea, North Pacific Ocean, and Cook Inlet indicating that the flows entered the sea and in some cases may have initiated tsunamis. We evaluate the process of tsunami generation by granular subaerial volcanic flows using examples from Aniakchak volcano in southwestern Alaska, and Augustine volcano in southern Cook Inlet. Evidence for far-field tsunami inundation coincident with a major caldera-forming eruption of Aniakchak volcano ca. 3.5 ka has been described and is the basis for one of our case studies. We perform a numerical simulation of the tsunami using a large volume pyroclastic flow as the source mechanism and compare our results to field measurements of tsunami deposits preserved along the north shore of Bristol Bay. Several attributes of the tsunami simulation, such as water flux and wave amplitude, are reasonable predictors of tsunami deposit thickness and generally agree with the field evidence for tsunami inundation. At Augustine volcano, geological investigations suggest that as many as 14 large volcanic-rock avalanches have reached the sea in the last 2000 years, and a debris avalanche emplaced during the 1883 eruption may have initiated a tsunami observed about 80 km east of the volcano at the village of English Bay (Nanwalek) on the coast of the southern Kenai Peninsula. By analogy with the 1883 event, previous studies concluded that tsunamis could have been generated many times in the past. If so, geological evidence of tsunamis, such as tsunami deposits on land, should be found in the area around Augustine Island. Paradoxically, unequivocal evidence for tsunami inundation has been found. Augustine Volcano is the most historically active volcano in the Cook Inlet region and a future tsunami from the volcano would have devastating consequences to villages, towns, oil-production facilities, and the fishing industry, especially if it occurred at high tide (the tidal range in this area is about 5 m). Numerical simulation experiments of tsunami generation, propagation and inundation using a subaerial debris avalanche source at Augustine volcano indicate only modest wave generation because of the shallow water surrounding the volcano (maximum water depth about 25 m). Lahar flows produced during eruptions at snow and ice clad volcanoes in the Aleutian arc also deliver copious amounts of sediment to the sea. These flows only rarely transform to subaqueous debris flows that may become tsunamigenic. However, the accumulation of loose, unconsolidated sediment on the continental shelf may lead to subaqueous debris flows and landslides if these deposits become mobilized by large earthquakes. Tsunamis produced by this mechanism could potentially reach coastlines all along the Pacific Rim. Finally, recent work in the western Aleutian Islands indicates that many of the island volcanoes in this area have experienced large-scale flank collapse. Because these volcanoes are surrounded by deep water, the tsunami hazard associated with a future sector collapse could be significant.
Titaley, Christiana R; Wijayanti, Ratna U; Damayanti, Rita; Setiawan, Agus Dwi; Dadun; Dachlia, Dini; Siagian, Ferdinand; Suparno, Heru; Saputri, Dwi Astuti Yunita; Harlan, Sarah; Wahyuningrum, Yunita; Storey, Douglas
2017-10-01
this analysis aims to explore midwives' insights into the provision of long-acting and permanent methods of contraception (LAPMs) in the selected areas of East Java and Nusa Tenggara Barat (NTB) Provinces, Indonesia. a qualitative study using in-depth interviews was conducted with 12 village midwives from 12 villages, to explore their perceptions and experiences in delivering family planning services. the study was carried out in May-June 2013, as part of the baseline assessment in the Improving Contraceptive Method Mix (ICMM) study. We interviewed 12 village midwives working in 12 villages in six study districts: Tuban, Kediri, and Lumajang Districts in East Java Province; and Lombok Barat, Lombok Timur, and Sumbawa Districts in NTB Province. an interview guideline was used in all interviews. It covered several topics, such as community perceptions of LAPMs, availability of contraception and related equipment, availability of human resources, and midwives' efforts to improve LAPM coverage. All interviews were recorded and transcribed. Content and thematic analyses were carried out by grouping and coding the information based on the identified themes and topics. according to village midwives interviewed in this study, community-level acceptance of LAPMs has increased over time; however, some still prefer using short-acting methods for a long period. The reasons include lack of awareness about the benefits and side effects of LAPMs, fear of surgical procedures, rumored consequences (for example, that LAPMs would limit women's ability to perform hard physical labor), and religious beliefs. There were several challenges reported by village midwives in delivering LAPM services, such as confusion about midwives' eligibility to provide LAPM services, lack of Contraceptive Technology Update (CTU) and counseling trainings, and shortage of supporting equipment (such as exam tables and IUD and implant insertion kits). There were several strategies implemented by village midwives to improve LAPM use, including strengthening the counseling services, accompanying clients to higher health facilities to obtain LAPM services, and providing services for groups of clients. All village midwives emphasized the importance of strengthening collaboration among stakeholders to increase the uptake of LAPM services. as midwives are the main family planning providers in Indonesia, efforts to address their challenges is essential. Enabling a supportive policy environment, strengthening promotional activities, increasing the number of training programs designed for village midwives-in addition to enhancing inter-sectoral collaboration-are some recommendations to improve LAPM uptake in study areas. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crowe, B.M.; Finnegan, D.L.; Zoller, W.H.
1987-12-10
Compositional data have been obtained for volcanic gases and particles collected from fume emitted at the Pu'u O'o vent on the east rift zone of Kilauea volcano. The samples were collected by pumping fume through a filter pack system consisting of a front stage particulate filter followed by four base-treated filters (/sup 7/LiOH). Particles and condensed phases are trapped on the particulate filter, and acidic gases are collected on the treated filters. The filters are analyzed for 30 elements by instrumental neutron activation analysis. Fume samples were collected from the Pu'u O'o vent for two eruptive episodes: (1) 7 daysmore » after episode 11 (cooling vent samples) and (2) the stage of episode 13 (active vent samples).« less
Progress made in understanding Mount Rainier's hazards
Sisson, T.W.; Vallance, J.W.; Pringle, P.T.
2001-01-01
At 4392 m high, glacier-clad Mount Rainier dominates the skyline of the southern Puget Sound region and is the centerpiece of Mount Rainier National Park. About 2.5 million people of the greater Seattle-Tacoma metropolitan area can see Mount Rainier on clear days, and 150,000 live in areas swept by lahars and floods that emanated from the volcano during the last 6,000 years (Figure 1). These lahars include the voluminous Osceola Mudflow that floors the lowlands south of Seattle and east of Tacoma, and which was generated by massive volcano flank-collapse. Mount Rainier's last eruption was a light dusting of ash in 1894; minor pumice last erupted between 1820 and 1854; and the most recent large eruptions we know of were about 1100 and 2300 years ago, according to reports from the U.S. Geological Survey.
Soil gas anomalies along the Watukosek fault system, East Java, Indonesia
NASA Astrophysics Data System (ADS)
Sciarra, A.; Ruggiero, L.; Bigi, S.; Mazzini, A.
2017-12-01
Two soil gas surveys were carried out in the Sidoarjo district (East Java, Indonesia) to investigate the gas leaking properties along fractured zones that coincide with a strike-slip system in NE Java, the Watukosek Fault System. This structure has been the focus of attention since the beginning of the spectacular Lusi mud eruption on the 29th May 2006. This fault system appear to be a sinistral strike-slip system that originates from the Arjuno-Welirang volcanic complex, intersects the active Lusi eruption site displaying a system of antithetic faults, and extends towards the NE of Java where mud volcanic structures reside. In the Lusi region we completed two geochemical surveys (222Rn and 220Rn activity, CO2 and CH4 flux and concentration) along four profiles crossing the Watukosek fault system. In May 2015 two profiles ( 1.2 km long) were performed inside the 7 km2 embankment area framing the erupted mud breccia zone and across regions characterized by intense fracturing and surface deformation. In April 2017 two additional profiles ( 4 km long) were carried out in the northern and southern part outside the Lusi embankment mud eruption area, intersecting the direction of main Watukosek fault system. All the profiles highlight that the fractured zones have the highest 222Rn activity, CO2 and CH4 flux and concentration values. The relationship existing among the measured parameters suggest that the Watukosek fault system acts as a preferential pathway for active rise of deep fluids. In addition the longer profiles outside the embankment show very high average values of CO2 (5 - 8 %,v/v) and 222Rn (17 - 11.5 kBq/m3), while soil gas collected along the profiles inside the Lusi mud eruption are CH4-dominant (up to 4.5%,v/v).This suggests that inside the embankment area (i.e. covered by tens of meters thick deposits of erupted mud breccia) the seepage is overall methane-dominated. This is likely the result of microbial reactions ongoing in the organic-rich sediments producing shallow gas that gets mixed with deeper rising fluids. In contrasts profiles collected in areas not covered by the organic rich mud breccia, and that are crossing the main Watukosek fault system, have the highest 222Rn activity and CO2 concentration values. We suggest that at these localities the rise of deep fluids is not affected by shallower gas production.
NASA Astrophysics Data System (ADS)
Wahyono, H.; Wahdah, L.
2018-02-01
In Indonesia, according to Law No. 23/2014 on Local Government, a local government can conduct cooperation with other local governments that are based on considerations of efficiency and effectiveness of public services and mutual benefit, in order to improve people's welfare. Such cooperation can be categorized into mandatory and voluntary cooperation. Cooperation shall be developed jointly between the adjacent areas for the implementation of government affairs which have cross-local government externalities; and the provision of public services more efficient if managed together. One of the parts of the area that is directly related to the implementation of the policy liabilities of inter-local government cooperation which is mandated is the he province boundary areas. The public management of the provincial boundary areas is different from the central province area. While the central province area considers only their own interests, the management of boundary development must consider the neighboring regions. On one hand, the area is influenced only by its own province policy, while on the other influenced by neighboring regions. Meanwhile, a local government tends to resist the influence and intervention of neighboring regions. Likewise, neighboring local governments also tend to resist the influence and intervention of other local governments. Therefore, when interacting on the boundary, inter-local government interaction is not only the potential for cooperation, but also conflict-prone regions. One of the boundary area provinces attempt to implement the collaborative planning approach is the boundary area of Central Java Province and East Java Province, which is known as Ratubangnegoro Region. Ratubangnegoro region is one of the strategic areas of both provinces. In order to the interaction between the region could take place, there are regencies in the region have formed and joined the Inter-Local Government Cooperation Agency (BKAD-Badan Kerjasama Antar Daerah) Ratubangnegoro. Based on the explanation, this article explains the institutional model of collaborative planning contained in BKAD Ratubangnegoro. The model is much more complex, because it involves two different levels of government, provincial and regency government hierarchies. Institutional model of cooperation in the regency boundary area should be different from that of between provinces. The results of this are expected to be input from related parties of the inter-regional cooperation institution, particularly cooperation in the area of the provincial boundary with the province, which is implemented by the regencies contained therein.
Seismicity of the Earth 1900-2010 New Guinea and vicinity
Benz, Harley M.; Herman, Matthew; Tarr, Arthur C.; Hayes, Gavin P.; Furlong, Kevin P.; Villaseñor, Antonio; Dart, Richard L.; Rhea, Susan
2011-01-01
There have been 22 M7.5+ earthquakes recorded in the New Guinea region since 1900. The dominant earthquake mechanisms are thrust and strike slip, associated with the arc-continent collision and the relative motions between numerous local microplates. The largest earthquake in the region was a M8.2 shallow thrust fault event in the northern Papua province of Indonesia that killed 166 people in 1996. The Australia-Pacific plate boundary is over 4,000 km long on the northern margin, from the Sunda (Java) trench in the west to the Solomon Islands in the east. The eastern section is over 2,300 km long, extending west from northeast of the Australian continent and the Coral Sea until it intersects the east coast of Papua New Guinea. The boundary is dominated by the general northward subduction of the Australia plate.
Volcanic hazard at Vesuvius: An analysis for the revision of the current emergency plan
NASA Astrophysics Data System (ADS)
Rolandi, G.
2010-01-01
Mt Somma-Vesuvius is a composite volcano on the southern margin of the Campanian Plain which has been active since 39 ka BP and which poses a hazard and risk for the people living around its base. The volcano last erupted in 1944, and since this date has been in repose. As the level of volcanic risk perception is very high in the scientific community, in 1995 a hazard and risk evaluation, and evacuation plan, was published by the Italian Department of Civil Protection ( Dipartimento della Protezione Civile) . The plan considered the response to a worst-case scenario, taken to be a subplinian eruption on the scale of the 1631 AD eruption, and based on a volcanological reconstruction of this eruption, assumes that a future eruption will be preceded by about two weeks of ground uplift at the volcano's summit, and about one week of locally perceptible seismic activity. Moreover, by analogy with the 1631 events, the plan assumes that ash fall and pyroclastic flow should be recognized as the primary volcanic hazard. To design the response to this subplinian eruption, the emergency plan divided the Somma-Vesuvius region into three hazard zones affected by pyroclastic flows (Red Zone), tephra fall (Yellow and Green Zone), and floods (Blue Zone). The plan at present is the subject of much controversy, and, in our opinion, several assumptions need to be modified according to the following arguments: a) For the precursory unrest problem, recent scientific studies show that at present neither forecast capability is realistic, so that the assumption that a future eruption will be preceded by about two weeks of forecasts need to be modified; b) Regarding the exposure of the Vesuvius region to flow phenomena, the Red Zone presents much inconsistency near the outer border as it has been defined by the administrative limits of the eighteen municipality area lying on the volcano. As this outer limit shows no uniformity, a pressing need exists to define appropriately the flow hazard zone, since there are some important public structures not considered in the current Red Zone that could be exposed to flow risk; c) Modern wind records clearly indicate that at the time of a future eruption winds could blow not only from the west, but also from the east, so that the Yellow Zone (the area with the potential to be affected by significant tephra fall deposits) must be redefined. As a result the relationship between the Yellow Zone and Green Zone (the area within and beyond which the impact of tephra fall is expected to be insignificant) must be reconsidered mainly in the Naples area; d) The May 1998 landslide, caused in the Apennine region east of the volcano by continuous rain fall, led to the definition of a zone affected by re-mobilisation of tephra (Blue Zone), confined in the Nola valley. However, as described in the 1631 chronicles of the eruption, if generation of debris flows occurs during and after a future eruption, a much wider region east of the Somma-Vesuvius must be affected by events of this type.
Continuous monitoring of Hawaiian volcanoes using thermal cameras
NASA Astrophysics Data System (ADS)
Patrick, M. R.; Orr, T. R.; Antolik, L.; Lee, R.; Kamibayashi, K.
2012-12-01
Thermal cameras are becoming more common at volcanoes around the world, and have become a powerful tool for observing volcanic activity. Fixed, continuously recording thermal cameras have been installed by the Hawaiian Volcano Observatory in the last two years at four locations on Kilauea Volcano to better monitor its two ongoing eruptions. The summit eruption, which began in March 2008, hosts an active lava lake deep within a fume-filled vent crater. A thermal camera perched on the rim of Halema`uma`u Crater, acquiring an image every five seconds, has now captured about two years of sustained lava lake activity, including frequent lava level fluctuations, small explosions , and several draining events. This thermal camera has been able to "see" through the thick fume in the crater, providing truly 24/7 monitoring that would not be possible with normal webcams. The east rift zone eruption, which began in 1983, has chiefly consisted of effusion through lava tubes onto the surface, but over the past two years has been interrupted by an intrusion, lava fountaining, crater collapse, and perched lava lake growth and draining. The three thermal cameras on the east rift zone, all on Pu`u `O`o cone and acquiring an image every several minutes, have captured many of these changes and are providing an improved means for alerting observatory staff of new activity. Plans are underway to install a thermal camera at the summit of Mauna Loa to monitor and alert to any future changes there. Thermal cameras are more difficult to install, and image acquisition and processing are more complicated than with visual webcams. Our system is based in part on the successful thermal camera installations by Italian volcanologists on Stromboli and Vulcano. Equipment includes custom enclosures with IR transmissive windows, power, and telemetry. Data acquisition is based on ActiveX controls, and data management is done using automated Matlab scripts. Higher-level data processing, also done with Matlab, includes automated measurements of lava lake level and surface crust velocity, tracking temperatures and hot areas in real-time, and alerts which notify users of notable temperature increases via text messaging. Lastly, real-time image and processed data display, which is vital for effective use of the images at the observatory, is done through a custom Web-based environment . Near real-time webcam images are displayed for the public at hvo.wr.usgs.gov/cams. Thermal cameras are costly, but have proven to be an extremely effective monitoring and research tool at the Hawaiian Volcano Observatory.
NASA Astrophysics Data System (ADS)
An, Junling; Ueda, Hiromasa; Matsuda, Kazuhide; Hasome, Hisashi; Iwata, Motokazu
A regional air quality Eulerian model was run for 2 months (September and October of 2000) with and without SO 2 emissions from the Miyake volcano to investigate effects of the changes in the volcanic emissions on SO 2 and sulfate concentrations and total sulfur deposition around the surrounding areas. Volcanic emissions were injected into different model layers in different proportions within the planetary boundary layer whereas the other emissions were released in the first model layer above the ground. Meteorological fields four times per day were taken from National Centers for Environmental Prediction (NCEP). Eight Japanese monitoring sites of EANET (Acid Deposition Monitoring Network in East Asia) were used for the model evaluation. Simulations indicate that emissions from the Miyake volcano lead to increases in SO 2 and sulfate concentrations in the surrounding areas downwind in the PBL by up to 300% and 150%, respectively, and those in SO 2 levels in the area found ˜390 km north away from the Miyake site in the free troposphere (FTR) by up to 120%. Total sulfur deposition amounts per month are also increased by up to 300%. Daily SO 2 concentrations in different model layers display strong variability (10-450%) at sites significantly influenced by the volcano. Comparison shows that the RAQM model predicts daily SO 2 variations at relatively clean sites better than those at inland sites closer to volcanoes and the model well captures the timing of SO 2 peaks caused by great changes in SO 2 emissions from the Miyake volcano at most chosen sites and that monthly simulated sulfate concentrations in rainwater agree quite well with observations with the difference within a factor of 2. Improvement in spatial and temporal resolutions of meteorological data and removal of the uncertainty of other volcanic emissions may better simulations.
Genesis of mud volcano fluids in the Gulf of Cadiz - A novel model approach
NASA Astrophysics Data System (ADS)
Schmidt, Christopher; Burwicz, Ewa; Hensen, Christian; Martínez-Loriente, Sara; Wallmann, Klaus; Gràcia, Eulàlia
2017-04-01
Mud volcanism and fluid seepage are common phenomena on the continental margin in the Gulf of Cadiz, North East Atlantic Ocean. Over the past 2 decades more than 50 mud volcanoes have been discovered and investigated interdisciplinarily. Mud volcano fluids emanating at these sites are sourced at great depths and migration is often mediated by strike slip faults in a seismically active region. The geochemical signals of the mud volcano fluids are affected by widespread various processes such as clay mineral dehydration, but also the recrystallization of ancient carbonate rocks and the alteration of oceanic crust have been suggested (Hensen et al., 2015). We developed a novel fully-coupled, basin-scale, reaction-transport model with an adaptive numerical mesh to simulate the fluid genesis in this region. An advantage of this model is the coupling of a realistic geophysical and geochemical approach, considering a growing sediment column over time together with instant compaction of sediments as well as diffusion and advection of dissolved pore water species and chemical reactions. In this proof of concept study, we looked at various scenarios to identify the processes of fluid genesis for 4 mud volcanoes, representing combinations in different subsurface settings. We can reproduce the fluid signatures (chloride, strontium, 87Sr/86Sr) of all mud volcanoes. Furthermore, we can give additional evidence that alteration of oceanic crust by fluid flow is a likely process affecting the fluid composition. Hensen, C., Scholz, F., Nuzzo, M., Valadares, V., Gràcia, E., Terrinha, P., Liebetrau, V., Kaul, N., Silva, S., Martínez-Loriente, S., Bartolome, R., Piñero, E., Magalhães, V. H., Schmidt, M., Weise, S. M., Cunha, M., Hilario, A., Perea, H., Rovelli, L., and Lackschewitz, K., 2015, Strike-slip faults mediate the rise of crustal-derived fluids and mud volcanism in the deep sea: Geology, v. 43, no. 4, p. 339-342.
Preliminary results of local earthquake tomography around Bali, Lombok, and Sumbawa regions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nugraha, Andri Dian, E-mail: nugraha@gf.itb.ac.id; Puspito, Nanang T; Yudistira, Tedi
Bali, Sumbawa, and Lombok regions are located in active tectonic influence by Indo-Australia plate subducts beneath Sunda plate in southern part and local back-arc thrust in northern part the region. Some active volcanoes also lie from eastern part of Java, Bali, Lombok and Sumbawa regions. Previous studies have conducted subsurface seismic velocity imaging using regional and global earthquake data around the region. In this study, we used P-arrival time from local earthquake networks compiled by MCGA, Indonesia within time periods of 2009 up to 2013 to determine seismic velocity structure and simultaneously hypocenter adjustment by applying seismic tomography inversion method.more » For the tomographic inversion procedure, we started from 1-D initial velocity structure. We evaluated the resolution of tomography inversion results through checkerboard test and calculating derivative weigh sum. The preliminary results of tomography inversion show fairly clearly high seismic velocity subducting Indo-Australian and low velocity anomaly around volcano regions. The relocated hypocenters seem to cluster around the local fault system such as back-arc thrust fault in northern part of the region and around local fault in Sumbawa regions. Our local earthquake tomography results demonstrated consistent with previous studies and improved the resolution. For future works, we will determine S-wave velocity structure using S-wave arrival time to enhance our understanding of geological processes and for much better interpretation.« less
Preliminary results of local earthquake tomography around Bali, Lombok, and Sumbawa regions
NASA Astrophysics Data System (ADS)
Nugraha, Andri Dian; Kusnandar, Ridwan; Puspito, Nanang T.; Sakti, Artadi Pria; Yudistira, Tedi
2015-04-01
Bali, Sumbawa, and Lombok regions are located in active tectonic influence by Indo-Australia plate subducts beneath Sunda plate in southern part and local back-arc thrust in northern part the region. Some active volcanoes also lie from eastern part of Java, Bali, Lombok and Sumbawa regions. Previous studies have conducted subsurface seismic velocity imaging using regional and global earthquake data around the region. In this study, we used P-arrival time from local earthquake networks compiled by MCGA, Indonesia within time periods of 2009 up to 2013 to determine seismic velocity structure and simultaneously hypocenter adjustment by applying seismic tomography inversion method. For the tomographic inversion procedure, we started from 1-D initial velocity structure. We evaluated the resolution of tomography inversion results through checkerboard test and calculating derivative weigh sum. The preliminary results of tomography inversion show fairly clearly high seismic velocity subducting Indo-Australian and low velocity anomaly around volcano regions. The relocated hypocenters seem to cluster around the local fault system such as back-arc thrust fault in northern part of the region and around local fault in Sumbawa regions. Our local earthquake tomography results demonstrated consistent with previous studies and improved the resolution. For future works, we will determine S-wave velocity structure using S-wave arrival time to enhance our understanding of geological processes and for much better interpretation.
Overview for geologic field-trip guides to volcanoes of the Cascades Arc in northern California
Muffler, L. J. Patrick; Donnelly-Nolan, Julie M.; Grove, Timothy L.; Clynne, Michael A.; Christiansen, Robert L.; Calvert, Andrew T.; Ryan-Davis, Juliet
2017-08-15
The California Cascades field trip is a loop beginning and ending in Portland, Oregon. The route of day 1 goes eastward across the Cascades just south of Mount Hood, travels south along the east side of the Cascades for an overview of the central Oregon volcanoes (including Three Sisters and Newberry Volcano), and ends at Klamath Falls, Oregon. Day 2 and much of day 3 focus on Medicine Lake Volcano. The latter part of day 3 consists of a drive south across the Pit River into the Hat Creek Valley and then clockwise around Lassen Volcanic Center to the town of Chester, California. Day 4 goes from south to north across Lassen Volcanic Center, ending at Burney, California. Day 5 and the first part of day 6 follow a clockwise route around Mount Shasta. The trip returns to Portland on the latter part of day 6, west of the Cascades through the Klamath Mountains and the Willamette Valley. Each of the three sections of this guidebook addresses one of the major volcanic regions: Lassen Volcanic Center (a volcanic field that spans the volcanic arc), Mount Shasta (a fore-arc stratocone), and Medicine Lake Volcano (a rear-arc, shield-shaped edifice). Each section of the guide provides (1) an overview of the extensive field and laboratory studies, (2) an introduction to the literature, and (3) directions to the most important and accessible field localities. The field-trip sections contain far more stops than can possibly be visited in the actual 6-day 2017 IAVCEI excursion from Portland. We have included extra stops in order to provide a field-trip guide that will have lasting utility for those who may have more time or may want to emphasize one particular volcanic area.
Reevaluation of tsunami formation by debris avalanche at Augustine Volcano, Alaska
Waythomas, C.F.
2000-01-01
Debris avalanches entering the sea at Augustine Volcano, Alaska have been proposed as a mechanism for generating tsunamis. Historical accounts of the 1883 eruption of the volcano describe 6- to 9-meter-high waves that struck the coastline at English Bay (Nanwalek), Alaska about 80 kilometers east of Augustine Island. These accounts are often cited as proof that volcanigenic tsunamis from Augustine Volcano are significant hazards to the coastal zone of lower Cook Inlet. This claim is disputed because deposits of unequivocal tsunami origin are not evident at more than 50 sites along the lower Cook Inlet coastline where they might be preserved. Shallow water (<25 m) around Augustine Island, in the run-out zone for debris avalanches, limits the size of an avalanche-caused wave. If the two most recent debris avalanches, Burr Point (A.D. 1883) and West Island (<500 yr. B.P.) were traveling at velocities in the range of 50 to 100 meters per second, the kinetic energy of the avalanches at the point of impact with the ocean would have been between 1014 and 1015 joules. Although some of this energy would be dissipated through boundary interactions and momentum transfer between the avalanche and the sea, the initial wave should have possessed sufficient kinetic energy to do geomorphic work (erosion, sediment transport, formation of wave-cut features) on the coastline of lowwer Cook Inlet. Because widespread evidence of the effects of large waves cannot be found, it appears that the debris avalanches could not have been traveling very fast when they entered the sea, or they happened during low tide and displaced only small volumes of water. In light of these results, the hazard from volcanigenic tsunamis from Augustine Volcano appears minor, unless a very large debris avalanche occurs at high tide.
Bi-directional volcano-earthquake interaction at Mauna Loa Volcano, Hawaii
NASA Astrophysics Data System (ADS)
Walter, T. R.; Amelung, F.
2004-12-01
At Mauna Loa volcano, Hawaii, large-magnitude earthquakes occur mostly at the west flank (Kona area), at the southeast flank (Hilea area), and at the east flank (Kaoiki area). Eruptions at Mauna Loa occur mostly at the summit region and along fissures at the southwest rift zone (SWRZ), or at the northeast rift zone (NERZ). Although historic earthquakes and eruptions at these zones appear to correlate in space and time, the mechanisms and implications of an eruption-earthquake interaction was not cleared. Our analysis of available factual data reveals the highly statistical significance of eruption-earthquake pairs, with a random probability of 5-to-15 percent. We clarify this correlation with the help of elastic stress-field models, where (i) we simulate earthquakes and calculate the resulting normal stress change at volcanic active zones of Mauna Loa, and (ii) we simulate intrusions in Mauna Loa and calculate the Coulomb stress change at the active fault zones. Our models suggest that Hilea earthquakes encourage dike intrusion in the SWRZ, Kona earthquakes encourage dike intrusion at the summit and in the SWRZ, and Kaoiki earthquakes encourage dike intrusion in the NERZ. Moreover, a dike in the SWRZ encourages earthquakes in the Hilea and Kona areas. A dike in the NERZ may encourage and discourage earthquakes in the Hilea and Kaoiki areas. The modeled stress change patterns coincide remarkably with the patterns of several historic eruption-earthquake pairs, clarifying the mechanisms of bi-directional volcano-earthquake interaction for Mauna Loa. The results imply that at Mauna Loa volcanic activity influences the timing and location of earthquakes, and that earthquakes influence the timing, location and the volume of eruptions. In combination with near real-time geodetic and seismic monitoring, these findings may improve volcano-tectonic risk assessment.
NASA Astrophysics Data System (ADS)
Fedotov, S. A.; Slavina, L. B.; Senyukov, S. L.; Kuchay, M. S.
2015-12-01
Seismic and volcanic processes in the area of the northern group of volcanoes (NGV) in Kamchatka Peninsula that accompanied the Great Tolbachik Fissure Eruption (GTFE) of 1975-1976 and the Tolbachik Fissure Eruption (TFE, or "50 let IViS" due to anniversary of the Institute of Volcanology and Seismology, Far East Branch, Russian Academy of Sciences) of 2012-2013 and the seismic activity between these events are considered. The features of evolution of seismic processes of the major NGV volcanoes (Ploskii Tolbachik, Klyuchevskoy, Bezymannyi, and Shiveluch) are revealed. The distribution of earthquakes along depth, their spatial and temporal migration, and the relation of seismic and volcanic activity are discussed. The major features of seismic activity during the GTFE preparation and evolution and a development of earthquake series preceding the origin of the northern and southern breaks are described. The character of seismic activity between the GTFE and TFE is shown. The major peculiarities of evolution of seismic activity preceding and accompanying the TFE are described. The major magma sources and conduits of the NGV volcanoes are identified, as is the existence of a main conduit in the mantle and a common intermediate source for the entire NGV, the depth of which is 25-35 km according to seismic data. The depth of a neutral buoyancy layer below the NGV is 15-20 km and the source of areal volcanism of magnesian basalts northeast of the Klyuchevskoy volcano is located at depth of ~20 km. These data support the major properties of a 2010 geophysical model of magmatic feeding system of the Klyuchevskoy group of volcanoes. The present paper covers a wider NGV area and is based on the real experimental observations.
NASA Astrophysics Data System (ADS)
Ko, Bokyun; Yun, Sung-Hyo
2016-04-01
Jeju Island located in the southwestern part of Korea Peninsula is a volcanic island composed of lavaflows, pyroclasts, and around 450 monogenetic volcanoes. The volcanic activity of the island commenced with phreatomagmatic eruptions under subaqueous condition ca. 1.8-2.0 Ma and lasted until ca. 1,000 year BP. For evaluating volcanic activity of the most recently erupted volcanoes with reported age, volcanic explosivity index (VEI) and volcanic sulfur dioxide index (VSI) of three volcanoes (Ilchulbong tuff cone, Songaksan tuff ring, and Biyangdo scoria cone) are inferred from their eruptive volumes. The quantity of eruptive materials such as tuff, lavaflow, scoria, and so on, is calculated using a model developed in Auckland Volcanic Field which has similar volcanic setting to the island. The eruptive volumes of them are 11,911,534 m3, 24,987,557 m3, and 9,652,025 m3, which correspond to VEI of 3, 3, and 2, respectively. According to the correlation between VEI and VSI, the average quantity of SO2 emission during an eruption with VEI of 3 is 2-8 × 103 kiloton considering that the island was formed under intraplate tectonic setting. Jeju Island was regarded as an extinct volcano, however, several studies have recently reported some volcanic eruption ages within 10,000 year BP owing to the development in age dating technique. Thus, the island is a dormant volcano potentially implying high probability to erupt again in the future. The volcanoes might have explosive eruptions (vulcanian to plinian) with the possibility that SO2 emitted by the eruption reaches stratosphere causing climate change due to backscattering incoming solar radiation, increase in cloud reflectivity, etc. Consequently, recommencement of volcanic eruption in the island is able to result in serious volcanic hazard and this study provides fundamental and important data for volcanic hazard mitigation of East Asia as well as the island. ACKNOWLEDGMENTS: This research was supported by a grant [MPSS-NH-2015-81] through the Natural Hazard Mitigation Research Group funded by Ministry of Public Safety and Security of Korean government.