Sample records for volcano pyroclastic flows

  1. Unique and remarkable dilatometer measurements of pyroclastic flow generated tsunamis

    NASA Astrophysics Data System (ADS)

    Mattioli, G. S.; Voight, B.; Linde, A. T.; Sacks, I. S.; Watts, P.; Widiwijayanti, C.; Young, S. R.; Hidayat, D.; Elsworth, D.; Malin, P. E.; Shalev, E.; van Boskirk, E.; Johnston, W.; Sparks, R. S. J.; Neuberg, J.; Bass, V.; Dunkley, P.; Herd, R.; Syers, T.; Williams, P.; Williams, D.

    2007-01-01

    Pyroclastic flows entering the sea may cause tsunamis at coastal volcanoes worldwide, but geophysically monitored field occurrences are rare. We document the process of tsunami generation during a prolonged gigantic collapse of the Soufrière Hills volcano lava dome on Montserrat on 12 13 July 2003. Tsunamis were initiated by large-volume pyroclastic flows entering the ocean. We reconstruct the collapse from seismic records and report unique and remarkable borehole dilatometer observations, which recorded clearly the passage of wave packets at periods of 250 500 s over several hours. Strain signals are consistent in period and amplitude with water loading from passing tsunamis; each wave packet can be correlated with individual pyroclastic flow packages recorded by seismic data, proving that multiple tsunamis were initiated by pyroclastic flows. Any volcano within a few kilometers of water and capable of generating hot pyroclastic flows or cold debris flows with volumes greater than 5 × 106 m3 may generate significant and possibly damaging tsunamis during future eruptions.

  2. Mobility of pyroclastic flows and surges at the Soufriere Hills Volcano, Montserrat

    USGS Publications Warehouse

    Calder, E.S.; Cole, P.D.; Dade, W.B.; Druitt, T.H.; Hoblitt, R.P.; Huppert, H.E.; Ritchie, L.; Sparks, R.S.J.; Young, S.R.

    1999-01-01

    The Soufriere Hills Volcano on Montserrat has produced avalanche-like pyroclastic flows formed by collapse of the unstable lava dome or explosive activity. Pyroclastic flows associated with dome collapse generate overlying dilute surges which detach from and travel beyond their parent flows. The largest surges partially transform by rapid sedimentation into dense secondary pyroclastic flows that pose significant hazards to distal areas. Different kinds of pyroclastic density currents display contrasting mobilities indicated by ratios of total height of fall H, run-out distance L, area inundated A and volume transported V. Dome-collapse flow mobilities (characterised by either L/H or A/V 2/3) resemble those of terrestrial and extraterrestrial cold-rockfalls (Dade and Huppert, 1998). In contrast, fountain-fed pumice flows and fine-grained, secondary pyroclastic flows travel slower but, for comparable initial volumes and heights, can inundate greater areas.

  3. Radiocarbon dates for lava flows and pyroclastic deposits on Sao Miguel, Azores

    USGS Publications Warehouse

    Moore, R.B.; Rubin, M.

    1991-01-01

    We report 63 new radiocarbon analyses of samples from Sao Miguel, the largest island in the Azores archipelago. The samples are mainly carbonized tree roots and other plant material collected from beneath 20 mafic lava flows and spatter deposits and from within and beneath 42 trachytic pyroclastic flow, pyroclastic surge, mudflow, pumice-fall and lacustrine deposits and lava flows. One calcite date is reported. These dates establish ages for 48 previously undated lava flows and pyroclastic deposits, and revise three ages previously reported. These data are critical to deciphering the Holocene and late Pleistocene eruptive history of Sao Miguel and evaluating its potential volcanic hazards. Average dormant intervals during the past 3000 years are about 400 years for Sete Cidades volcano, 145 years for volcanic Zone 2, 1150 years for Agua de Pau volcano and 320 years for Furnas volcano. No known eruptions have occurred in volcanic Zone 4 during the past 3000 years. -from Authors

  4. Stratigraphic framework of Holocene volcaniclastic deposits, Akutan Volcano, east-central Aleutian Islands, Alaska

    USGS Publications Warehouse

    Waythomas, C.F.

    1999-01-01

    Akutan Volcano is one of the most active volcanoes in the Aleutian arc, but until recently little was known about its history and eruptive character. Following a brief but sustained period of intense seismic activity in March 1996, the Alaska Volcano Observatory began investigating the geology of the volcano and evaluating potential volcanic hazards that could affect residents of Akutan Island. During these studies new information was obtained about the Holocene eruptive history of the volcano on the basis of stratigraphic studies of volcaniclastic deposits and radiocarbon dating of associated buried soils and peat. A black, scoria-bearing, lapilli tephra, informally named the 'Akutan tephra,' is up to 2 m thick and is found over most of the island, primarily east of the volcano summit. Six radiocarbon ages on the humic fraction of soil A-horizons beneath the tephra indicate that the Akutan tephra was erupted approximately 1611 years B.P. At several locations the Akutan tephra is within a conformable stratigraphic sequence of pyroclastic-flow and lahar deposits that are all part of the same eruptive sequence. The thickness, widespread distribution, and conformable stratigraphic association with overlying pyroclastic-flow and lahar deposits indicate that the Akutan tephra likely records a major eruption of Akutan Volcano that may have formed the present summit caldera. Noncohesive lahar and pyroclastic-flow deposits that predate the Akutan tephra occur in the major valleys that head on the volcano and are evidence for six to eight earlier Holocene eruptions. These eruptions were strombolian to subplinian events that generated limited amounts of tephra and small pyroclastic flows that extended only a few kilometers from the vent. The pyroclastic flows melted snow and ice on the volcano flanks and formed lahars that traveled several kilometers down broad, formerly glaciated valleys, reaching the coast as thin, watery, hyperconcentrated flows or water floods. Slightly cohesive lahars in Hot Springs valley and Long valley could have formed from minor flank collapses of hydrothermally altered volcanic bedrock. These lahars may be unrelated to eruptive activity.

  5. Paleomagnetic evidence for high-temperature emplacement of the 1883 subaqueous pyroclastic flows from Krakatau Volcano, Indonesia

    NASA Astrophysics Data System (ADS)

    Mandeville, Charles W.; Carey, Steven; Sigurdsson, Haraldur; King, John

    1994-05-01

    The paroxysmal 1883 eruption of Krakatau volcano in Indonesia discharge at least 6.5 cu km (dense rock equivalent) of pyroclastic material into the shallow waters of the Sunda Straits within a 15-km radius of the volcano. Progressive thermal demagnetization studies of individually oriented pumice clasts from a core sample of the submarine pyroclastic deposits show that 41 out of 47 clasts exhibit single-component remanence with mean inclination of -24 deg. The partial thermoremanent magnetization components of both pumice and lithic clasts are well grouped in orientation, indicating that substantial cooling of clasts must have occurred following deposition. Estimated subaqueous emplacement temperature for such clasts is greater than 500 C. Rare two-component lithic fragments exhibit inflection points on vector endpoint diagrams that mark the temperature below which the fragments acquired magnetization of similar orientation. These inflection points range from 350 to 550 C, indicating a minimum subaqueous emplacement temperature of 350 C. Paleomagnetic evidence for high-emplacement temperature supports the hypothesis that proximal 1883 submarine pyroclastic deposits resulted from entrance of hot, subaerially generated pyroclastic flows into the sea. Similar deposits have been interpreted from the geologic record, but this is the first documented example of submarine pyroclastic flows from a historic eruption. The Kratatau deposits thus serve as an important modern analog for the study of pyroclastic flow/seawater interactions.

  6. A comparison of the Landsat image and LAHARZ-simulated lahar inundation hazard zone by the 2010 Merapi eruption

    NASA Astrophysics Data System (ADS)

    Lee, Seul-Ki; Lee, Chang-Wook; Lee, Saro

    2015-06-01

    Located above the Java subduction zone, Merapi Volcano is an active stratovolcano with a volcanic activity cycle of 1-5 years. Most Merapi eruptions are relatively small with volcanic explosivity index (VEI) of 1-3. However, the most recent eruption, which occurred in 2010, was quite violent with a VEI of 4 and 386 people were killed. In this study, lahars and pyroclastic flow zones were detected using optical Landsat images and the lahar and pyroclastic flow zone simulated using the LAHARZ program. To detect areal extents of lahar and pyroclastic flows using Landsat images, supervised classification was performed after atmospheric correction by using a cosine of the solar zenith correction (COST) model. As a result, the extracted dimensions of pyroclastic flows are nearly identical to the Calatrava Volcanic Province (CVP) monthly reports. Then, areas of potential lahar and pyroclastic flow inundation based on flow volume using the LAHARZ program were simulated and mapped. Finally, the detected lahars and pyroclastic flow zones were compared with the simulated potential zones using LAHARZ program and verified. Results showed satisfactory similarity (55.63 %) between the detected and simulated zone. The simulated zones using the LAHARZ program can be used as an essential volcanic hazard map for preventing life and property damages for Merapi Volcano and other hazardous volcanic areas. Also, the LAHARZ program can be used to map volcano hazards in other hazardous volcanic areas.

  7. Swift snowmelt and floods (lahars) caused by great pyroclastic surge at Mount St Helens volcano, Washington, 18 May 1980

    USGS Publications Warehouse

    Waitt, R.B.

    1989-01-01

    The initial explosions at Mount St. Helens, Washington, on the moring of 18 May 1980 developed into a huge pyroclastic surge that generated catastrophic floods off the east and west flanks of the volcano. Near-source surge deposits on the east and west were lithic, sorted, lacking in accretionary lapilli and vesiculated ash, not plastered against upright obstacles, and hot enough to char wood - all attributes of dry pyroclastic surge. Material deposited at the surge base on steep slopes near the volcano transformed into high-concentration lithic pyroclastic flows whose deposits contain charred wood and other features indicating that these flows were hot and dry. Stratigraphy shows that even the tail of the surge had passed the east and west volcano flanks before the geomorphically distinct floods (lahars) arrived. This field evidence undermines hypotheses that the turbulent surge was itself wet and that its heavy components segregated out to transform directly into lahars. Nor is there evidence that meters-thick snow-slab avalanches intimately mixed with the surge to form the floods. The floods must have instead originated by swift snowmelt at the base of a hot and relatively dry turbulent surge. Impacting hot pyroclasts probably transferred downslope momentum to the snow surface and churned snow grains into the surge base. Melting snow and accumulating hot surge debris may have moved initially as thousands of small thin slushflows. As these flows removed the surface snow and pyroclasts, newly uncovered snow was partly melted by the turbulent surge base; this and accumulating hot surge debris in turn began flowing, a self-sustaining process feeding the initial flows. The flows thus grew swiftly over tens of seconds and united downslope into great slushy ejecta-laden sheetfloods. Gravity accelerated the floods to more than 100 km/h as they swept down and off the volcano flanks while the snow component melted to form great debris-rich floods (lahars) channeled into valleys. ?? 1989 Springer-Verlag.

  8. Snow and ice perturbation during historical volcanic eruptions and the formation of lahars and floods

    USGS Publications Warehouse

    Major, Jon J.; Newhall, Christopher G.

    1989-01-01

    Historical eruptions have produced lahars and floods by perturbing snow and ice at more than 40 volcanoes worldwide. Most of these volcanoes are located at latitudes higher than 35°; those at lower latitudes reach altitudes generally above 4000 m. Volcanic events can perturb mantles of snow and ice in at least five ways: (1) scouring and melting by flowing pyroclastic debris or blasts of hot gases and pyroclastic debris, (2) surficial melting by lava flows, (3) basal melting of glacial ice or snow by subglacial eruptions or geothermal activity, (4) ejection of water by eruptions through a crater lake, and (5) deposition of tephra fall. Historical records of volcanic eruptions at snow-clad volcanoes show the following: (1) Flowing pyroclastic debris (pyroclastic flows and surges) and blasts of hot gases and pyroclastic debris are the most common volcanic events that generate lahars and floods; (2) Surficial lava flows generally cannot melt snow and ice rapidly enough to form large lahars or floods; (3) Heating the base of a glacier or snowpack by subglacial eruptions or by geothermal activity can induce basal melting that may result in ponding of water and lead to sudden outpourings of water or sediment-rich debris flows; (4) Tephra falls usually alter ablation rates of snow and ice but generally produce little meltwater that results in the formation of lahars and floods; (5) Lahars and floods generated by flowing pyroclastic debris, blasts of hot gases and pyroclastic debris, or basal melting of snow and ice commonly have volumes that exceed 105 m3.The glowing lava (pyroclastic flow) which flowed with force over ravines and ridges...gathered in the basin quickly and then forced downwards. As a result, tremendously wide and deep pathways in the ice and snow were made and produced great streams of water (Wolf 1878).

  9. Snow and ice perturbation during historical volcanic eruptions and the formation of lahars and floods

    NASA Astrophysics Data System (ADS)

    Major, Jon J.; Newhall, Christopher G.

    1989-10-01

    Historical eruptions have produced lahars and floods by perturbing snow and ice at more than 40 volcanoes worldwide. Most of these volcanoes are located at latitudes higher than 35°; those at lower latitudes reach altitudes generally above 4000 m. Volcanic events can perturb mantles of snow and ice in at least five ways: (1) scouring and melting by flowing pyroclastic debris or blasts of hot gases and pyroclastic debris, (2) surficial melting by lava flows, (3) basal melting of glacial ice or snow by subglacial eruptions or geothermal activity, (4) ejection of water by eruptions through a crater lake, and (5) deposition of tephra fall. Historical records of volcanic eruptions at snow-clad volcanoes show the following: (1) Flowing pyroclastic debris (pyroclastic flows and surges) and blasts of hot gases and pyroclastic debris are the most common volcanic events that generate lahars and floods; (2) Surficial lava flows generally cannot melt snow and ice rapidly enough to form large lahars or floods; (3) Heating the base of a glacier or snowpack by subglacial eruptions or by geothermal activity can induce basal melting that may result in ponding of water and lead to sudden outpourings of water or sediment-rich debris flows; (4) Tephra falls usually alter ablation rates of snow and ice but generally produce little meltwater that results in the formation of lahars and floods; (5) Lahars and floods generated by flowing pyroclastic debris, blasts of hot gases and pyroclastic debris, or basal melting of snow and ice commonly have volumes that exceed 105 m3. The glowing lava (pyroclastic flow) which flowed with force over ravines and ridges...gathered in the basin quickly and then forced downwards. As a result, tremendously wide and deep pathways in the ice and snow were made and produced great streams of water (Wolf 1878).

  10. Potential hazards from future eruptions of Mount St. Helens Volcano, Washington

    USGS Publications Warehouse

    Crandell, Dwight Raymond; Mullineaux, Donal Ray

    1978-01-01

    Mount St. Helens has been more active and more explosive during the last 4,500 years than any other volcano in the conterminous United States. Eruptions of that period repeatedly formed domes, large volumes of pumice, hot pyroclastic flows, and, during the last 2,500 years, lava flows. Some of this activity resulted in mudflows that extended tens of kilometers down the floors of valleys that head at the volcano. This report describes the nature of the phenomena and their threat to people and property; the accompanying maps show areas likely to be affected by future eruptions of Mount St. Helens. Explosive eruptions that produce large volumes of pumice affect large areas because winds can carry the lightweight material hundreds of kilometers from the volcano. Because of prevailing winds, the 180-degree sector east of the volcano will be affected most often and most severely by future eruptions of this kind. However, the pumice from any one eruption will fall in only a small part of that sector. Pyroclastic flows and mudflows also can affect areas far from the volcano, but the areas they affect are smaller because they follow valleys. Mudflows and possibly pyroclastic flows moving rapidly down Swift and Pine Creeks could displace water in Swift Reservoir, which could cause disastrous floods farther downvalley.

  11. Pyroclastic sulphur eruption at Poás volcano, Costa Rica

    NASA Astrophysics Data System (ADS)

    Francis, P. W.; Thorpe, R. S.; Brown, G. C.

    1980-02-01

    The recent Voyager missions to Jupiter have highlighted the role of sulphur in volcanic processes on Io1-7. Although fumarolic sulphur and SO2 gas are almost universal in terrestrial active volcanoes, and rare instances of sulphur lava flows have been reported8,9, sulphur in a pyroclastic form has only been described from Poás volcano, Costa Rica10. Here we amplify the original descriptions by Bennett and Raccichini10 and describe a recent eruption of pyroclastic sulphur scoria and ejected blocks that are characterised by miniature sulphur stalactites and stalagmites.

  12. Catastrophic lava dome failure at Soufrière Hills Volcano, Montserrat, 12-13 July 2003

    USGS Publications Warehouse

    Herd, Richard A.; Edmonds, Marie; Bass, Venus A.

    2005-01-01

    The lava dome collapse of 12–13 July 2003 was the largest of the Soufrière Hills Volcano eruption thus far (1995–2005) and the largest recorded in historical times from any volcano; 210 million m3 of dome material collapsed over 18 h and formed large pyroclastic flows, which reached the sea. The evolution of the collapse can be interpreted with reference to the complex structure of the lava dome, which comprised discrete spines and shear lobes and an apron of talus. Progressive slumping of talus for 10 h at the beginning of the collapse generated low-volume pyroclastic flows. It undermined the massive part of the lava dome and eventually prompted catastrophic failure. From 02:00 to 04:40 13 July 2003 large pyroclastic flows were generated; these reached their largest magnitude at 03:35, when the volume flux of material lost from the lava dome probably approached 16 million m3 over two minutes. The high flux of pyroclastic flows into the sea caused a tsunami and a hydrovolcanic explosion with an associated pyroclastic surge, which flowed inland. A vulcanian explosion occurred during or immediately after the largest pyroclastic flows at 03:35 13 July and four further explosions occurred at progressively longer intervals during 13–15 July 2003. The dome collapse lasted approximately 18 h, but 170 of the total 210 million m3 was removed in only 2.6 h during the most intense stage of the collapse.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    G.A. Valentine; F.V. Perry; D. Krier

    Five Pleistocene basaltic volcanoes in Crater Flat (southern Nevada) demonstrate the complexity of eruption processes associated with small-volume basalts and the effects of initial emplacement characteristics on post-eruptive geomorphic evolution of the volcanic surfaces. The volcanoes record eruptive processes in their pyroclastic facies ranging from ''classical'' Strombolian mechanisms to, potentially, violent Strombolian mechanisms. Cone growth was accompanied, and sometimes disrupted, by effusion of lavas from the bases of cones. Pyroclastic cones were built upon a gently southward-sloping surface and were prone to failure of their down-slope (southern) flanks. Early lavas flowed primarily southward and, at Red and Black Cone volcanoes,more » carried abundant rafts of cone material on the tops of the flows. These resulting early lava fields eventually built platforms such that later flows erupted from the eastern (at Red Cone) and northern (at Black Cone) bases of the cones. Three major surface features--scoria cones, lava fields with abundant rafts of pyroclastic material, and lava fields with little or no pyroclastic material--experienced different post-eruptive surficial processes. Contrary to previous interpretations, we argue that the Pleistocene Crater Flat volcanoes are monogenetic, each having formed in a single eruptive episode lasting months to a few years, and with all eruptive products having emanated from the area of the volcanoes main cones rather than from scattered vents. Geochemical variations within the volcanoes must be interpreted within a monogenetic framework, which implies preservation of magma source heterogeneities through ascent and eruption of the magmas.« less

  14. Variations in eruptive style and depositional processes of Neoproterozoic terrestrial volcano-sedimentary successions in the Hamid area, North Eastern Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Khalaf, Ezz El Din Abdel Hakim

    2013-07-01

    Two contrasting Neoproterozoic volcano-sedimentary successions of ca. 600 m thickness were recognized in the Hamid area, Northeastern Desert, Egypt. A lower Hamid succession consists of alluvial sediments, coherent lava flows, pyroclastic fall and flow deposits. An upper Hamid succession includes deposits from pyroclastic density currents, sills, and dykes. Sedimentological studies at different scales in the Hamid area show a very complex interaction of fluvial, eruptive, and gravitational processes in time and space and thus provided meaningful insights into the evolution of the rift sedimentary environments and the identification of different stages of effusive activity, explosive activity, and relative quiescence, determining syn-eruptive and inter-eruptive rock units. The volcano-sedimentary deposits of the study area can be ascribed to 14 facies and 7 facies associations: (1) basin-border alluvial fan, (2) mixed sandy fluvial braid plain, (3) bed-load-dominated ephemeral lake, (4) lava flows and volcaniclastics, (5) pyroclastic fall deposits, (6) phreatomagmatic volcanic deposits, and (7) pyroclastic density current deposits. These systems are in part coeval and in part succeed each other, forming five phases of basin evolution: (i) an opening phase including alluvial fan and valley flooding together with a lacustrine period, (ii) a phase of effusive and explosive volcanism (pulsatory phase), (iii) a phase of predominant explosive and deposition from base surges (collapsing phase), and (iv) a phase of caldera eruption and ignimbrite-forming processes (climactic phase). The facies architectures record a change in volcanic activity from mainly phreatomagmatic eruptions, producing large volumes of lava flows and pyroclastics (pulsatory and collapsing phase), to highly explosive, pumice-rich plinian-type pyroclastic density current deposits (climactic phase). Hamid area is a small-volume volcano, however, its magma compositions, eruption styles, and inter-eruptive breaks suggest, that it closely resembles a volcanic architecture commonly associated with large, composite volcanoes.

  15. Sedimentology and geomorphology of the deposits from the August 2006 pyroclastic density currents at Tungurahua volcano, Ecuador.

    PubMed

    Douillet, Guilhem Amin; Tsang-Hin-Sun, Ève; Kueppers, Ulrich; Letort, Jean; Pacheco, Daniel Alejandro; Goldstein, Fabian; Von Aulock, Felix; Lavallée, Yan; Hanson, Jonathan Bruce; Bustillos, Jorge; Robin, Claude; Ramón, Patricio; Hall, Minard; Dingwell, Donald B

    The deposits of the pyroclastic density currents from the August 2006 eruption of Tungurahua show three facies associations depending on the topographic setting: the massive, proximal cross-stratified, and distal cross-stratified facies. (1) The massive facies is confined to valleys on the slopes of the volcano. It contains clasts of >1 m diameter to fine ash material, is massive, and interpreted as deposited from dense pyroclastic flows. Its surface can exhibit lobes and levees covered with disk-shaped and vesicular large clasts. These fragile large clasts must have rafted at the surface of the flows all along the path in order to be preserved, and thus imply a sharp density boundary near the surface of these flows. (2) The proximal cross-stratified facies is exposed on valley overbanks on the upper part of the volcano and contains both massive coarse-grained layers and cross-stratified ash and lapilli bedsets. It is interpreted as deposited from (a) dense pyroclastic flows that overflowed the gentle ridges of valleys of the upper part of the volcano and (b) dilute pyroclastic density currents created from the dense flows by the entrainment of air on the steep upper flanks. (3) The distal cross-stratified facies outcrops as spatially limited, isolated, and wedge-shaped bodies of cross-stratified ash deposits located downstream of cliffs on valleys overbanks. It contains numerous aggrading dune bedforms, whose crest orientations reveal parental flow directions. A downstream decrease in the size of the dune bedforms, together with a downstream fining trend in the grain size distribution are observed on a 100-m scale. This facies is interpreted to have been deposited from dilute pyroclastic density currents with basal tractional boundary layers. We suggest that the parental flows were produced from the dense flows by entrainment of air at cliffs, and that these diluted currents might rapidly deposit through "pneumatic jumps". Three modes are present in the grain size distribution of all samples independently of the facies, which further supports the interpretation that all three facies derive from the same initial flows. This study emphasizes the influence of topography on small volume pyroclastic density currents, and the importance of flow transformation and flow-stripping processes.

  16. Pyroclastic flow hazard at Volcán Citlaltépetl

    USGS Publications Warehouse

    Sheridan, Michael F.; Hubbard, Bernard E.; Carrasco-Nunez, Gerardo; Siebe, Claus

    2004-01-01

    Volcán Citlaltépetl (Pico de Orizaba) with an elevation of 5,675 m is the highest volcano in North America. Its most recent catastrophic events involved the production of pyroclastic flows that erupted approximately 4,000, 8,500, and 13,000 years ago. The distribution of mapped deposits from these eruptions gives an approximate guide to the extent of products from potential future eruptions. Because the topography of this volcano is constantly changing computer simulations were made on the present topography using three computer algorithms: energy cone, FLOW2D, and FLOW3D. The Heim Coefficient (μ), used as a code parameter for frictional sliding in all our algorithms, is the ratio of the assumed drop in elevation (H) divided by the lateral extent of the mapped deposits (L). The viscosity parameter for the FLOW2D and FLOW3D codes was adjusted so that the paths of the flows mimicked those inferred from the mapped deposits. We modeled two categories of pyroclastic flows modeled for the level I and level II events. Level I pyroclastic flows correspond to small but more frequent block-and-ash flows that remain on the main cone. Level II flows correspond to more widespread flows from catastrophic eruptions with an approximate 4,000-year repose period. We developed hazard maps from simulations based on a National Imagery and Mapping Agency (NIMA) DTED-1 DEM with a 90 m grid and a vertical accuracy of ±30 m. Because realistic visualization is an important aid to understanding the risks related to volcanic hazards we present the DEM as modeled by FLOW3D. The model shows that the pyroclastic flows extend for much greater distances to the east of the volcano summit where the topographic relief is nearly 4,300 m. This study was used to plot hazard zones for pyroclastic flows in the official hazard map that was published recently.

  17. The 7-8 August 2008 eruption of Kasatochi Volcano, central Aleutian Islands, Alaska

    NASA Astrophysics Data System (ADS)

    Waythomas, Christopher F.; Scott, William E.; Prejean, Stephanie G.; Schneider, David J.; Izbekov, Pavel; Nye, Christopher J.

    2010-12-01

    Kasatochi volcano in the central Aleutian Islands erupted unexpectedly on 7-8 August 2008. Kasatochi has received little study by volcanologists and has had no confirmed historical eruptions. The island is an important nesting area for seabirds and a long-term biological study site of the U.S. Fish and Wildlife Service. After a notably energetic preeruptive earthquake swarm, the volcano erupted violently in a series of explosive events beginning in the early afternoon of 7 August. Each event produced ash-gas plumes that reached 14-18 km above sea level. The volcanic plume contained large amounts of SO2 and was tracked around the globe by satellite observations. The cumulative volcanic cloud interfered with air travel across the North Pacific, causing many flight cancelations that affected thousands of travelers. Visits to the volcano in 2008-2009 indicated that the eruption generated pyroclastic flows and surges that swept all flanks of the island, accumulated several tens of meters of pyroclastic debris, and increased the diameter of the island by about 800 m. Pyroclastic flow deposits contain abundant accidental lithic debris derived from the inner walls of the Kasatochi crater. Juvenile material is crystal-rich silicic andesite that ranges from slightly pumiceous to frothy pumice. Fine-grained pyroclastic surge and fall deposits with accretionary lapilli cover the lithic-rich pyroclastic flow deposits and mark a change in eruptive style from episodic explosive activity to more continuous ash emission with smaller intermittent explosions. Pyroclastic deposits completely cover the island, but wave erosion and gully development on the flanks have begun to modify the surface mantle of volcanic deposits.

  18. Inland-directed base surge generated by the explosive interaction of pyroclastic flows and seawater at Soufrière Hills volcano, Montserrat

    USGS Publications Warehouse

    Edmonds, Marie; Herd, Richard A.

    2005-01-01

    The largest and most intense lava-dome collapse during the eruption of Soufrière Hills volcano, Montserrat, 1995–2004, occurred 12–13 July 2003. The dome collapse involved around 200 × 106 m3 of material and was associated with a phenomenon previously unknown at this volcano. Large pyroclastic flows at the peak of the dome collapse interacted explosively with seawater at the mouth of the Tar River Valley and generated a hot, dry base surge that flowed 4 km inland and 300 m uphill. The surge was destructive to at least 25 m above the ground and it carbonized vegetation. The resulting two-layer deposits were as much as 0.9 m thick. Although the entire collapse lasted 18 h, the base surge greatly increased the land area affected by the dome collapse in a few minutes at the peak of the event, illustrating the complex nature of the interaction between pyroclastic flows and seawater.

  19. Submarine Pyroclastic Flow Deposits; July 2003 Dome Collapse Event of the Soufrière Hills Volcano, Montserrat, West Indies

    NASA Astrophysics Data System (ADS)

    Trofimovs, J.; Sparks, S.; Talling, P.

    2006-12-01

    What happens when pyroclastic flows enter the ocean? To date, the subject of submarine pyroclastic flow behaviour has been controversial. Ambiguity arises from inconclusive evidence of a subaqueous depositional environment in ancient successions, to difficulty in sampling the in situ products of modern eruptions. A research voyage of the RRS James Clark Ross (9-18 May 2005) sampled 52 sites offshore from the volcanic island of Montserrat. The Soufrière Hills volcano, Montserrat, has been active since 1995 with eruptive behaviour dominated by andesite lava dome growth and collapse. Over 90% of the pyroclastic material produced has been deposited into the ocean. In July 2003 the Soufrière Hills volcano produced the largest historically documented dome collapse event. 210 x 106 m3 of pyroclastic material avalanched down the Tar River Valley, southeast Montserrat, to be deposited into the ocean. Bathymetric imaging and coring of offshore pyroclastic deposits, with a specific focus on the July 2003 units, reveals that the pyroclastic flows mix rapidly and violently with the water as they enter the ocean. Mixing takes place between the shore and 500 m depth where the deposition of basal coarse-grained parts of the flow initiates on slopes of 15° or less. The coarse components (pebbles to boulders) are deposited proximally from dense basal slurries to form steep sided, near linear ridges that amalgamate to form a kilometer-scale submarine fan. These proximal deposits contain <1% of ash-grade material. The finer components (dominantly ash-grade) are mixed into the overlying water column to form turbidity currents that flow distances >40 km from source. The total volume of pyroclastic material deposited within the submarine environment during this event exceeds 170 x 106 m3, with 65% deposited in proximal lobes and 35% deposited as distal turbidites. This broadly correlates with the block and ash components respectively, of the source subaerial pyroclastic flow. However, the efficient sorting and physical differentiation of the submarine flows, in comparison to the original mixture of their subaerial counterparts, suggests that the pyroclastic flows mix thoroughly with seawater and generate sediment gravity currents which are stratified in grain size and concentration.

  20. Pyroclastic Flow Remnants at Shiveluch Volcano

    NASA Image and Video Library

    2017-12-08

    NASA image acquired February 25, 2011 Pyroclastic flows are some of the most fearsome hazards posed by erupting volcanoes. These avalanches of superheated ash, gas, and rock are responsible for some of the most famous volcanic disasters in history, including the burial of the ancient Roman city of Pompei and the destruction of Saint-Pierre in 1902. More recently, pyroclastic flows from Mount Merapi in Indonesia caused most of the casualties during the volcano’s 2010 eruption. The intense heat—over 1,000° Celsius (1800° Fahrenheit)—the terrific speed—up to 720 kilometers (450 miles) per hour—and the mixture of toxic gases all contribute to the deadly potential. Pyroclastic flows can incinerate, burn, or asphyxiate people who cannot get out of the flow path. This false-color satellite image from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on the Terra satellite shows the remnants of a large pyroclastic flow on the slopes of Shiveluch Volcano. Fortunately, no one was hurt during the eruption and flow in the sparsely-populated area. ASTER detected heat from the flow during or shortly after an event on January 25, 2011. Note how the heat signatures from January line up with the dark surface deposits visible on February 25; those deposits cover more than 10 square kilometers (4 square miles). Light brown ash covers the snow above the flow deposits, and a tiny plume rises from Shiveluch’s growing lava dome. Vegetation surrounding the volcano is colored dark red. NASA Earth Observatory image by Robert Simmon, using data from the NASA/GSFC/METI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team. Caption by Robert Simmon. Instrument: Terra - ASTER Credit: NASA Earth Observatory NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  1. Tracking Pyroclastic Flows at Soufrière Hills Volcano

    NASA Astrophysics Data System (ADS)

    Ripepe, Maurizio; De Angelis, Silvio; Lacanna, Giorgio; Poggi, Pasquale; Williams, Carlisle; Marchetti, Emanuele; Delle Donne, Dario; Ulivieri, Giacomo

    2009-07-01

    Explosive volcanic eruptions typically show a huge column of ash and debris ejected into the stratosphere, crackling with lightning. Yet equally hazardous are the fast moving avalanches of hot gas and rock that can rush down the volcano's flanks at speeds approaching 280 kilometers per hour. Called pyroclastic flows, these surges can reach temperatures of 400°C. Fast currents and hot temperatures can quickly overwhelm communities living in the shadow of volcanoes, such as what happened to Pompeii and Herculaneum after the 79 C.E. eruption of Italy's Mount Vesuvius or to Saint-Pierre after Martinique's Mount Pelée erupted in 1902.

  2. Pyroclastic flows generated by gravitational instability of the 1996-97 lava dome of Soufriere Hills Volcano, Montserrat

    USGS Publications Warehouse

    Cole, P.D.; Calder, E.S.; Druitt, T.H.; Hoblitt, R.; Robertson, R.; Sparks, R.S.J.; Young, S.R.

    1998-01-01

    Numerous pyroclastic flows were produced during 1996-97 by collapse of the growing andesitic lava dome at Soufriere Hills Volcano, Montserrat. Measured deposit volumes from these flows range from 0.2 to 9 ?? 106 m3. Flows range from discrete, single pulse events to sustained large scale dome collapse events. Flows entered the sea on the eastern and southern coasts, depositing large fans of material at the coast. Small runout distance (<1 km) flows had average flow front velocities in the order of 3-10 m/s while flow fronts of the larger runout distance flows (up to 6.5 km) advanced in the order of 15-30 m/s. Many flows were locally highly erosive. Field relations show that development of the fine grained ash cloud surge component was enhanced during the larger sustained events. Periods of elevated pyroclastic flow productivity and sustained dome collapse events are linked to pulses of high magma extrusion rates.Numerous pyroclastic flows were produced during 1996-97 by collapse of the growing andesitic lava dome at Soufriere Hills Volcano, Montserrat. Measured deposit volumes from these flows range from 0.2 to 9??106 m3. Flows range from discrete, single pulse events to sustained large scale dome collapse events. Flows entered the sea on the eastern and southern coasts, depositing large fans of material at the coast. Small runout distance (<1 km) flows had average flow front velocities in the order of 3-10 m/s while flow fronts of the larger runout distance flows (up to 6.5 km) advanced in the order of 15-30 m/s. Many flows were locally highly erosive. Field relations show that development of the fine grained ash cloud surge component was enhanced during the larger sustained events. Periods of elevated dome pyroclastic flow productivity and sustained collapse events are linked to pulses of high magma extrusion rates.

  3. Tracking in Real-Time Pyroclastic Flows at Soufriere Hills Volcano, Montserrat, by infrasonic array.

    NASA Astrophysics Data System (ADS)

    Ripepe, M.; de Angelis, S.; Lacanna, G.; Poggi, P.; Williams, C.

    2008-12-01

    Active volcanoes produce infrasonic airwaves, which provide valuable insight into the eruption dynamics and the level of volcanic activity. On open conduit volcanoes, infrasound can be used to monitor the gas overpressure in the magma and the degassing rate of active volcanic vents. On volcanoes characterized by dome growth, infrasound can also be generated by non-explosive sources related to dome collapses and pyroclastic flows. In March 2008, the Department of Earth Science (DST) of Firenze (Italy) in cooperation with Montserrat Volcano Observatory (MVO) has installed a small-aperture infrasonic array at a distance of ~3000 m from the dome of the Soufriere Hill Volcano (SHV). The array has an aperture of 200 m and a "star" geometry, with 3 satellite stations at 100 m distance from the receiving central station. Each element of the array is linked to the receiver station by fiber optics cable, and the signal is acquired with a resolution of 16 bits at a rate of 50 samples/sec. The data collected by the array are sent via a radio modem link to the MVO offices, on Montserrat, where they are archived and processed in real-time. Real-time location of infrasonic events are obtained and displayed on computer monitors for use in monitoring of volcanic activity. After a period of very low levels of activity, starting from the end of May 2008, SHV has produced several small explosions without any short-term precursory sign. Some of these events have generated ash plumes reaching up to a few thousands of meters above the sea level, and were accompanied by moderate-to-large size pyroclastic flows that descended the western flanks of the volcanic edifice. The array was able to detect and locate in real-time the clear infrasound associated both with the explosions and the pyroclastic flows. In the latter case, the array estimated the speed and the direction of the flux revealing the presence of several pulses within the same flow. The variable azimuth of the signal during the flow indicated a mean speed of 160-175 km/h. The ability to detect and track such events in a real-time fashion has a strong impact on understanding the dynamics of pyroclastic flow propagation as well as on monitoring operations and risk management in Montserrat.

  4. Proximal pyroclastic deposits from the 1989-1990 eruption of Redoubt Volcano, Alaska - stratigraphy, distribution, and physical characteristics

    USGS Publications Warehouse

    Gardner, C.A.; Neal, C.A.; Waitt, R.B.; Janda, R.J.

    1994-01-01

    More than 20 eruptive events during the 1989-1990 eruption of Redoubt Volcano emplaced a complex sequence of lithic pyroclastic-flow, -surge, -fall, ice-diamict, and lahar deposits mainly on the north side of the volcano. The deposits record the changing eruption dynamics from initial gas-rich vent-clearing explosions to episodic gas-poor lava-dome extrusions and failures. The repeated dome failures produced lithic pyroclastic flows that mixed with snow and glacial ice to generate lahars that were channelled off Drift glacier into the Drift River valley. Some of the dome failures occurred without precursory seismic warning and appeared to result solely from gravitational instability. Material from the disrupted lava domes avalanched down a steep, partly ice-filled canyon incised on the north flank of the volcano and came to rest on the heavily crevassed surface of the piedmont lobe of Drift glacier. Most dome-collapse events resulted in single, monolithologic, massive to reversely graded, medium- to coarse-grained, sandy pyroclastic-flow deposits containing abundant dense dome clasts. These deposits vary in thickness, grain size, and texture depending on distance from the vent and local topography; deposits are finer and better sorted down flow, thinner and finer on hummocks, and thicker and coarser where ponded in channels cut through the glacial ice. The initial vent-clearing explosions emplaced unusual deposits of glacial ice, snow, and rock in a frozen matrix on the north and south flanks of the volcano. Similar deposits were described at Nevado del Ruiz, Columbia and have probably been emplaced at other snow-and-ice-clad volcanoes, but poor preservation makes them difficult to recognize in the geologic record. In a like fashion, most deposits from the 1989-1990 eruption of Redoubt Volcano may be difficult to recognize and interpret in the future because they were emplaced in an environment where glacio-fluvial processes dominate and quickly obscure the primary depositional record. ?? 1994.

  5. Hierarchy of facies of pyroclastic flow deposits generated by Laacher See type eruptions

    NASA Astrophysics Data System (ADS)

    Freundt, A.; Schmincke, H.-U.

    1985-04-01

    The upper Quaternary pyroclastic flow deposits of Laacher See volcano show compositional and structural facies variations on four different scales: (1) eruptive units of pyroclastic flows, composed of many flow units; (2) depositional cycles of as many as five flow units; flow units containing (3) regional intraflow-unit facies; and (4) local intraflow-unit subfacies. These facies can be explained by successively overlapping processes beginning in the magma column and ending with final deposition. The pyroclastic flow deposits thus reflect major aspects of the eruptive history of Laacher See volcano: (a) drastic changes in eruptive mechanism due to increasing access of water to the magma chamber and (b) change in chemical composition and crystal and gas content as evacuation of a compositionally zoned magma column progressed. The four scales of facies result from four successive sets of processes: (1) differentiation in the magma column and external factors governing the mechanism of eruption; (2) temporal variations of factors inducing eruption column collapse; (3) physical conditions in the eruption column and the way in which its collapse proceeds; and (4) interplay of flow-inherent and morphology-induced transport mechanics.

  6. Lahar Hazards at Concepción volcano, Nicaragua

    USGS Publications Warehouse

    Vallance, J.W.; Schilling, S.P.; Devoli, G.; Howell, M.M.

    2001-01-01

    Concepción is one of Nicaragua’s highest and most active volcanoes. The symmetrical cone occupies the northeastern half of a dumbbell shaped island called Isla Ometepa. The dormant volcano, Maderas, occupies the southwest half of the island. A narrow isthmus connects Concepción and Maderas volcanoes. Concepción volcano towers more than 1600 m above Lake Nicaragua and is within 5 to 10 km of several small towns situated on its aprons at or near the shoreline. These towns have a combined population of nearly 5,000. The volcano has frequently produced debris flows (watery flows of mud, rock, and debris—also known as lahars when they occur on a volcano) that could inundate these nearby populated areas. Concepción volcano has erupted more than 25 times in the last 120 years. Its first recorded activity was in AD 1883. Eruptions in the past century, most of which have originated from a small summit crater, comprise moderate explosions, ash that falls out of eruption plumes (called tephra), and occasional lava flows. Near the summit area, there are accumulations of rock that were emplaced hot (pyroclastic deposits), most of which were hot enough to stick together during deposition (a process called welding). These pyroclastic rocks are rather weak, and tend to break apart easily. The loose volcanic rock remobilizes during heavy rain to form lahars. Volcanic explosions have produced blankets of tephra that are distributed downwind, which on Isla Ometepe is mostly to the west. Older deposits at the west end of the island that are up to 1 m thick indicate larger explosive events have happened at Concepción volcano in prehistoric time. Like pyroclastic-flow deposits, loose tephra on the steep slopes of the volcano provides source material that heavy rainstorms and earthquakes can mobilize to trigger debris flow.

  7. Hierarchical Bayesian modelling of mobility metrics for hazard model input calibration

    NASA Astrophysics Data System (ADS)

    Calder, Eliza; Ogburn, Sarah; Spiller, Elaine; Rutarindwa, Regis; Berger, Jim

    2015-04-01

    In this work we present a method to constrain flow mobility input parameters for pyroclastic flow models using hierarchical Bayes modeling of standard mobility metrics such as H/L and flow volume etc. The advantage of hierarchical modeling is that it can leverage the information in global dataset for a particular mobility metric in order to reduce the uncertainty in modeling of an individual volcano, especially important where individual volcanoes have only sparse datasets. We use compiled pyroclastic flow runout data from Colima, Merapi, Soufriere Hills, Unzen and Semeru volcanoes, presented in an open-source database FlowDat (https://vhub.org/groups/massflowdatabase). While the exact relationship between flow volume and friction varies somewhat between volcanoes, dome collapse flows originating from the same volcano exhibit similar mobility relationships. Instead of fitting separate regression models for each volcano dataset, we use a variation of the hierarchical linear model (Kass and Steffey, 1989). The model presents a hierarchical structure with two levels; all dome collapse flows and dome collapse flows at specific volcanoes. The hierarchical model allows us to assume that the flows at specific volcanoes share a common distribution of regression slopes, then solves for that distribution. We present comparisons of the 95% confidence intervals on the individual regression lines for the data set from each volcano as well as those obtained from the hierarchical model. The results clearly demonstrate the advantage of considering global datasets using this technique. The technique developed is demonstrated here for mobility metrics, but can be applied to many other global datasets of volcanic parameters. In particular, such methods can provide a means to better contain parameters for volcanoes for which we only have sparse data, a ubiquitous problem in volcanology.

  8. Digital Data for Volcano Hazards from Mount Rainier, Washington, Revised 1998

    USGS Publications Warehouse

    Schilling, S.P.; Doelger, S.; Hoblitt, R.P.; Walder, J.S.; Driedger, C.L.; Scott, K.M.; Pringle, P.T.; Vallance, J.W.

    2008-01-01

    Mount Rainier at 4393 meters (14,410 feet) is the highest peak in the Cascade Range; a dormant volcano having glacier ice that exceeds that of any other mountain in the conterminous United States. This tremendous mass of rock and ice, in combination with great topographic relief, poses a variety of geologic hazards, both during inevitable future eruptions and during the intervening periods of repose. The volcano's past behavior is the best guide to possible future hazards. The written history (about A.D. 1820) of Mount Rainier includes one or two small eruptions, several small debris avalanches, and many small lahars (debris flows originating on a volcano). In addition, prehistoric deposits record the types, magnitudes, and frequencies of other events, and areas that were affected. Mount Rainier deposits produced since the latest ice age (approximately during the past 10,000 years) are well preserved. Studies of these deposits indicate we should anticipate potential hazards in the future. Some phenomena only occur during eruptions such as tephra falls, pyroclastic flows and surges, ballistic projectiles, and lava flows while others may occur without eruptive activity such as debris avalanches, lahars, and floods. The five geographic information system (GIS) volcano hazard data layers used to produce the Mount Rainier volcano hazard map in USGS Open-File Report 98-428 (Hoblitt and others, 1998) are included in this data set. Case 1, case 2, and case 3 layers were delineated by scientists at the Cascades Volcano Observatory and depict various lahar innundation zones around the mountain. Two additional layers delineate areas that may be affected by post-lahar sedimentation (postlahar layer) and pyroclastic flows (pyroclastic layer).

  9. Recent eruptive history of Mount Hood, Oregon, and potential hazards from future eruptions

    USGS Publications Warehouse

    Crandell, Dwight Raymond

    1980-01-01

    Each of three major eruptive periods at Mount Hood (12,000-15,000(?), 1,500-1,800, and 200-300 years ago) produced dacite domes, pyroclastic flows, and mudflows, but virtually no pumice. Most of the fine lithic ash that mantles the slopes of the volcano and the adjacent mountains fell from ash clouds that accompanied the pyroclastic flows. Widely scattered pumice lapilli that are present at the ground surface on the south, east, and north sides of Mount Hood may have been erupted during the mid-1800's, when the last known activity of the volcano occurred. The geologically recent history of Mount Hood suggests that the most likely eruptive event in the future will be the formation of another dome, probably within the present south-facing crater. The principal hazards that could accompany dome formation include pyroclastic flows and mudflows moving from the upper slopes of the volcano down the floors of valleys. Ash clouds which accompany pyroclastic flows may deposit as much as a meter of fine ash close to their source, and as much as 20 centimeters at a distance of 11 kilometers downwind from the pyroclastic flows. Other hazards that could result from such eruptions include laterally directed explosive blasts that could propel rock fragments outward from the sides of a dome at high speed, and toxic volcanic gases. The scarcity of pumiceous ash erupted during the last 15,000 years suggests that explosive pumice eruptions are not a major hazard at Mount Hood; thus, there seems to be little danger that such an eruption will significantly affect the Portland (Oregon) metropolitan area in the near future.

  10. Interrelations among pyroclastic surge, pyroclastic flow, and lahars in Smith Creek valley during first minutes of 18 May 1980 eruption of Mount St. Helens, USA

    USGS Publications Warehouse

    Brantley, S.R.; Waitt, R.B.

    1988-01-01

    A devastating pyroclastic surge and resultant lahars at Mount St. Helens on 18 May 1980 produced several catastrophic flowages into tributaries on the northeast volcano flank. The tributaries channeled the flows to Smith Creek valley, which lies within the area devastated by the surge but was unaffected by the great debris avalanche on the north flank. Stratigraphy shows that the pyroclastic surge preceded the lahars; there is no notable "wet" character to the surge deposits. Therefore the lahars must have originated as snowmelt, not as ejected water-saturated debris that segregated from the pyroclastic surge as has been inferred for other flanks of the volcano. In stratigraphic order the Smith Creek valley-floor materials comprise (1) a complex valley-bottom facies of the pyroclastic surge and a related pyroclastic flow, (2) an unusual hummocky diamict caused by complex mixing of lahars with the dry pyroclastic debris, and (3) deposits of secondary pyroclastic flows. These units are capped by silt containing accretionary lapilli, which began falling from a rapidly expanding mushroom-shaped cloud 20 minutes after the eruption's onset. The Smith Creek valley-bottom pyroclastic facies consists of (a) a weakly graded basal bed of fines-poor granular sand, the deposit of a low-concentration lithic pyroclastic surge, and (b) a bed of very poorly sorted pebble to cobble gravel inversely graded near its base, the deposit of a high-concentration lithic pyroclastic flow. The surge apparently segregated while crossing the steep headwater tributaries of Smith Creek; large fragments that settled from the turbulent surge formed a dense pyroclastic flow along the valley floor that lagged behind the front of the overland surge. The unusual hummocky diamict as thick as 15 m contains large lithic clasts supported by a tough, brown muddy sand matrix like that of lahar deposits upvalley. This unit contains irregular friable lenses and pods meters in diameter, blocks incorporated from the underlying dry and hot pyroclastic material that had been deposited only moments earlier. The hummocky unit is the deposit of a high-viscosity debris flow which formed when lahars mingled with the pyroclastic materials on Smith Creek valley floor. Overlying the debris flow are voluminous pyroclastic deposits of pebbly sand cut by fines-poor gas-escape pipes and containing charred wood. The deposits are thickest in topographic lows along margins of the hummocky diamict. Emplaced several minutes after the hot surge had passed, this is the deposit of numerous secondary pyroclastic flows derived from surge material deposited unstably on steep valley sides. ?? 1988 Springer-Verlag.

  11. Using InSAR for Characterizing Pyroclastic Flow Deposits at Augustine Volcano Across Two Eruptive Cycles

    NASA Astrophysics Data System (ADS)

    McAlpin, D. B.; Meyer, F. J.; Lu, Z.; Beget, J. E.

    2014-12-01

    Augustine Island is a small, 8x11 km island in South Central Alaska's lower Cook Inlet. It is approximately 280 km southwest of Anchorage, and occupied entirely by its namesake Augustine Volcano. At Augustine Volcano, SAR data suitable for interferometry is available from 1992 to 2005, from March 2006 to April 2007, and from July 2007 to October 2010. Its last two eruptive episodes, in 1986 and 2006, resulted in substantial pyroclastic flow deposits (PFDs) on the Volcano's north flank. Earlier InSAR analyses of the area, from 1992-1999, identified local subsidence, but no volcano-wide deformation indicative of magma-chamber evacuation. In contrast to previous studies, we use InSAR data to determine a range of geophysical parameters for PFDs emplaced during the Augustine's two most recent eruption cycles. Based on InSAR measurements between 1992 and 2010, we reconstruct the deformation behavior of PFDs emplaced during Augustine's last two eruption cycles. Using a combination of InSAR measurements and modeling, we determine the thickness and long-term deformation of overlaying pyroclastic flow deposits emplaced in 1986 and 2006. Consistent with previous observations of pyroclastic flows, we found that the PFDs on Augustine Island rapidly subsided after emplacement due to an initial compaction of the material. We determined the length of this initial settling period and measured the compaction rate. Subsequent to this initial rapid subsidence, we found that PFD deformation slowed to a more persistent, linear, long-term rate, related to cooling of the deposits. We established that the deposits' contraction rate is linearly related to their thickness and measured the contraction rate. Finally, a study of long term coherence properties of the Augustine PFDs showed remarkable stability of the surface over long time periods. This information provides clues on the structural properties and composition of the emplaced material.

  12. Workshops on Volcanoes at Santiaguito (Guatemala): A community effort to inform and highlight the outstanding science opportunities at an exceptional laboratory volcano

    NASA Astrophysics Data System (ADS)

    Johnson, J. B.; Escobar-Wolf, R. P.; Pineda, A.

    2016-12-01

    Santiaguito is one of Earth's most reliable volcanic spectacles and affords opportunity to investigate dome volcanism, including hourly explosions, pyroclastic flows, block lava flows, and sporadic paroxysmal eruptions. The cubic km dome, active since 1922, comprises four coalescing structures. Lava effusion and explosions are ideally observed from a birds-eye perspective at the summit of Santa Maria volcano (1200 m above and 2700 km from the active Caliente vent). Santiaguito is also unstable and dangerous. Thousands of people in farms and local communities are exposed to hazards from frequent lahars, pyroclastic flows, and potentially large sector-style dome collapses. In January 2016 more than 60 volcano scientists, students, postdocs, and observatory professionals traveled to Santiaguito to participate in field study and discussion about the science and hazards of Santiaguito. The event facilitated pre- and syn-workshop field experiments, including deployment of seismic, deformation, infrasound, multi-spectral gas and thermal sensing, UAV reconnaissance, photogrammetry, and petrologic and rheologic sampling. More than 55 participants spent the night on the 3770-m summit of Santa Maria to partake in field observations. The majority of participants also visited lahar and pyroclastic flow-impacted regions south of the volcano. A goal of the workshop was to demonstrate how multi-disciplinary observations are critical to elucidate volcano eruption dynamics. Integration of geophysical and geochemical observation, and open exchange of technological advances, is vital to achieve the next generation of volcano discovery. Toward this end data collected during the workshop are openly shared within the broader volcanological community. Another objective of the workshop was to bring attention to an especially hazardous and little-studied volcanic system. The majority of workshop attendees had not visited the region and their participation was hoped to seed future collaboration and study in Guatemala. This presentation highlights both the multi-disciplinary science and scientists' experiences at Santiaguito and argues for future similar meetings at other open-vent volcanoes.

  13. Effects of volcano profile on dilute pyroclastic density currents: Numerical simulations

    NASA Astrophysics Data System (ADS)

    Doronzo, D. M.; Valentine, G. A.; Dellino, P.; de Tullio, M. D.

    2012-04-01

    Explosive activity and lava dome collapse at stratovolcanoes can lead to pyroclastic density currents (PDCs; mixtures of volcanic gas, air, and volcanic particles) that produce complex deposits and pose a hazard to surrounding populations. Two-dimensional numerical simulations of dilute PDCs (characterized by a turbulent suspended load and deposition through a bed load) are carried out with the Euler-Lagrange approach of multiphase physics. The fluid phase is modeled as a dusty gas (1.88 kg/m3 dense), and the solid phase is modeled as discrete particles (1 mm, 5 mm, and 10 mm; 1500 kg/m3 dense and irregularly-shaped), which are two-way coupled to the gas, i.e. they affect the fluid turbulence. The initial PDC, which enters a volcano domain 5 km long and 1.9 km high, has the following characteristics: thickness of 200 m, velocity of 20 m/s, temperature of 573 K, turbulence of 5 %, and sediment concentration of 3 % by volume. The actual physics of flow boundary zone is simulated at the PDC base, by monitoring the sediment flux toward the substrate, which acts through the flow boundary zone, and the grain-size distribution. Also, the PDC velocity and dynamic pressure are calculated. The simulations show that PDC transport, deposition, and hazard potential are sensitive to the shape of the volcano slope (profile) down which they flow. In particular, three generic volcano profiles, straight, concave-upward, and convex-upward are focused on. Dilute PDCs that flow down a constant slope gradually decelerate over the simulated run-out distance (5 km in the horizontal direction) due to a combination of sedimentation, which reduces the density of the PDC, and mixing with the atmosphere. However, dilute PDCs down a concave-upward slope accelerate high on the volcano flanks and have less sedimentation until they begin to decelerate over the shallow lower slopes. A convex-upward slope causes dilute PDCs to lose relatively more of their pyroclast load on the upper slopes of a volcano, and although they accelerate as they reach the lower, steeper slopes, the acceleration is reduced because of the upstream loss of pyroclasts (lower density contrast with the atmosphere). The dynamic pressure, a measure of the damage that can be caused by PDCs, reflects these complex relations. Details are found in Valentine et al. (2011). Reference Valentine G.A., Doronzo D.M., Dellino P., de Tullio M.D. (2011), Effects of volcano profile on dilute pyroclastic density currents: Numerical simulations, Geology, 39, 947-950.

  14. Classification of volcanoes of the Kane Patera Quadrangle of Io: Proportions of lava flows and pyroclastic flows

    NASA Technical Reports Server (NTRS)

    Elston, W. E.

    1984-01-01

    Voyager 1 images show 14 volcanic centers wholly or partly within the Kane Patera quadrangle of Io, which are divided into four major classes: (1) shield with parallel flows; (2) shield with early radial fan shapd flows; (3) shield with radial fan shaped flows, surfaces of flows textured with longitudinal ridges; and (4) depression surrounded by plateau-forming scarp-bounded, untextured deposits. The interpretation attempted here hinges largely on the ability to distinguish lava flows from pyroclastic flows by remote sensing.

  15. The A.D. 1835 eruption of Volcán Cosigüina, Nicaragua: A guide for assessing local volcanic hazards

    USGS Publications Warehouse

    Scott, William E.; Gardner, Cynthia A.; Devoli, Graziella; Alvarez, Antonio

    2006-01-01

    The January 1835 eruption of Volcán Cosigüina in northwestern Nicaragua was one of the largest and most explosive in Central America since Spanish colonization. We report on the results of reconnaissance stratigraphic studies and laboratory work aimed at better defining the distribution and character of deposits emplaced by the eruption as a means of developing a preliminary hazards assessment for future eruptions. On the lower flanks of the volcano, a basal tephra-fall deposit comprises either ash and fine lithic lapilli or, locally, dacitic pumice. An overlying tephra-fall deposit forms an extensive blanket of brown to gray andesitic scoria that is 35–60 cm thick at 5–10 km from the summit-caldera rim, except southwest of the volcano, where it is considerably thinner. The scoria fall produced the most voluminous deposit of the eruption and underlies pyroclastic-surge and -flow deposits that chiefly comprise gray andesitic scoria. In northern and southeastern sectors of the volcano, these flowage deposits form broad fans and valley fills that locally reach the Gulf of Fonseca. An arcuate ridge 2 km west of the caldera rim and a low ridge east of the caldera deflected pyroclastic flows northward and southeastward. Pyroclastic flows did not reach the lower west and southwest flanks, which instead received thick, fine-grained, accretionary-lapilli–rich ashfall deposits that probably derived chiefly from ash clouds elutriated from pyroclastic flows. We estimate the total bulk volume of erupted deposits to be ∼6 km3. Following the eruption, lahars inundated large portions of the lower flanks, and erosion of deposits and creation of new channels triggered rapid alluviation. Pre-1835 eruptions are poorly dated; however, scoria-fall, pyroclastic-flow, and lahar deposits record a penultimate eruption of smaller magnitude than that of 1835. It occurred a few centuries earlier—perhaps in the fifteenth century. An undated sequence of thick tephra-fall deposits on the west flank of the volcano records tens of eruptions, some of which were greater in magnitude than that of 1835. Weathering evidence suggests this sequence is at least several thousand years old. The wide extent of pyroclastic flows and thick tephra fall during 1835, the greater magnitude of some previous Holocene eruptions, and the location of Cosigüina on a peninsula limit the options to reduce risk during future unrest and eruption.

  16. Generation of pyroclastic flows and surges by hot-rock avalanches from the dome of Mount St. Helens volcano, USA

    USGS Publications Warehouse

    Mellors, R.A.; Waitt, R.B.; Swanson, D.A.

    1988-01-01

    Several hot-rock avalanches have occurred during the growth of the composite dome of Mount St. Helens, Washington between 1980 and 1987. One of these occurred on 9 May 1986 and produced a fan-shaped avalanche deposit of juvenile dacite debris together with a more extensive pyroclastic-flow deposit. Laterally thinning deposits and abrasion and baking of wooden and plastic objects show that a hot ash-cloud surge swept beyond the limits of the pyroclastic flow. Plumes that rose 2-3 km above the dome and vitric ash that fell downwind of the volcano were also effects of this event, but no explosion occurred. All the facies observed originated from a single avalanche. Erosion and melting of craterfloor snow by the hot debris caused debris flows in the crater, and a small flood that carried juvenile and other clasts north of the crater. A second, broadly similar event occured in October 1986. Larger events of this nature could present a significant volcanic hazard. ?? 1988 Springer-Verlag.

  17. Causes, Dynamics and Impacts of Lahar Mass Flows due to the April 2015 Eruption of Calbuco Volcano, Chile

    NASA Astrophysics Data System (ADS)

    Dussaillant, Alejandro; Russell, Andy; Meier, Claudio; Rivera, Andres; Mella, Mauricio; Garrido, Natalia; Hernandez, Jorge; Napoleoni, Felipe; Gonzalez, Cristian

    2016-04-01

    Calbuco is a 2015m high, glacier capped, stratovolcano in the heavily populated Los Lagos region of southern Chile with a history of large volcanic eruptions in 1893-95, 1906-7, 1911-12, 1917, 1932, 1945, 1961 and 1972. Calbuco volcano experienced a powerful 90 minute eruption at 18:04h on 22 April, 2015 followed by additional major eruptions at 01:00h and 13:10h on 23 & 30 April, respectively, resulting in the evacuation of 6500 people and the imposition of a 20 km radius exclusion zone. Pyroclastic flows descended into several river catchments radiating from the volcano with lahars travelling distances of up to 14 km, reaching populated areas. We present findings from detailed field observations from April and July 2015, and January 2016, regarding the causes, dynamics and impacts of lahars generated by the April 2015 eruption, supported by satellite imagery, LiDAR and detailed rtkGPS & TLS surveys, as well as sediment sampling. Pyroclastic flows melted glacier ice and snow generating the largest lahars in the Rio Este and Rio Blanco Sur on the southern flanks of the volcano. Lahar deposits in the Rio Blanco Norte were buried by pyroclastic flow deposits with measured temperatures of up to 282°C three months after emplacement. Lahar erosional impacts included bedrock erosion, alluvial channel incision, erosion of surficial deposits and the felling of large areas of forest. Depositional landforms included boulder run-ups on the outsides of channel bends, boulder clusters and large woody debris jams. Lahars deposited up to 8m of sediment within distal reaches. Deposits on the southern flanks of Calbuco indicate the passage of multiple pulses of contrasting rheology. Lahar occurrence and magnitude was controlled by the pre-eruption distribution of snow and ice on the volcano. Pre-existing lahar channels controlled flows to lower piedmont zones where routing was determined by palaeo-lahar geomorphology. Ongoing erosion of proximal pyroclastic flow and lahar deposits provides large volumes of sediment to distal portions of fluvial systems radiating from Calbuco, continuing impact on infrastructure and settlements, including secondary lahars due to rain and melt events. The database generated by this study hopes to contribute to further studies into lahars, including its use to test lahar numerical models.

  18. Kulanaokuaiki Tephra (ca, A.D. 400-1000): Newly recognized evidence for highly explosive eruptions at Kilauea Volcano, Hawai'i

    USGS Publications Warehouse

    Fiske, R.S.; Rose, T.R.; Swanson, D.A.; Champion, D.E.; McGeehin, J.P.

    2009-01-01

    K??lauea may be one of the world's most intensively monitored volcanoes, but its eruptive history over the past several thousand years remains rather poorly known. Our study has revealed the vestiges of thin basaltic tephra deposits, overlooked by previous workers, that originally blanketed wide, near-summit areas and extended more than 17 km to the south coast of Hawai'i. These deposits, correlative with parts of tephra units at the summit and at sites farther north and northwest, show that K??lauea, commonly regarded as a gentle volcano, was the site of energetic pyroclastic eruptions and indicate the volcano is significantly more hazardous than previously realized. Seventeen new calibrated accelerator mass spectrometry (AMS) radiocarbon ages suggest these deposits, here named the Kulanaokuaiki Tephra, were emplaced ca. A.D. 400-1000, a time of no previously known pyroclastic activity at the volcano. Tephra correlations are based chiefly on a marker unit that contains unusually high values of TiO2 and K2O and on paleomagnetic signatures of associated lava flows, which show that the Kulanaokuaiki deposits are the time-stratigraphic equivalent of the upper part of a newly exhumed section of the Uw??kahuna Ash in the volcano's northwest caldera wall. This section, thought to have been permanently buried by rockfalls in 1983, is thicker and more complete than the previously accepted type Uw??kahuna at the base of the caldera wall. Collectively, these findings justify the elevation of the Uw??kahuna Ash to formation status; the newly recognized Kulanaokuaiki Tephra to the south, the chief focus of this study, is defined as a member of the Uw??kahuna Ash. The Kulanaokuaiki Tephra is the product of energetic pyroclastic falls; no surge- or pyroclastic-flow deposits were identified with certainty, despite recent interpretations that Uw??kahuna surges extended 10-20 km from K??lauea's summit. ?? 2009 Geological Society of America.

  19. Pyroclastic flow generated by crater-wall collapse and outpouring of the lava pool of Arenal Volcano, Costa Rica

    NASA Astrophysics Data System (ADS)

    Alvarado, Guillermo E.; Soto, Gerardo J.

    2002-01-01

    The pyroclastic flow that issued from the Arenal summit crater on 28 August 1993 came from the collapse of the crater wall of the cone and the drainage of a lava pool. The 3-km-long pyroclastic flow, 2.2±0.8×106 m3 in volume, was confined to narrow valleys (30-100 m wide). The thickness of the pyroclastic deposit ranged from 1 to 10 m, and its temperature was about 400 °C, although single bombs were up to 1,000 °C. The deposit is clast-supported, has a bimodal grain size distribution, and consists of an intimate mixture of finely pulverized rock ash, lapilli, small blocks, and cauliflower bread-crusted bombs, in which are set meter-size lava fragments and juvenile and non-juvenile angular blocks, and bombs up to 7 m in diameter. Large faceted blocks make up 50% of the total volume of the deposit. The cauliflower bombs have deep and intricate bread-crust texture and post-depositional vesiculation. It is proposed that the juvenile material was produced entirely from a lava pool, whereas faceted non-juvenile blocks come from the crater-wall collapse. The concentration and maximum diameter of cauliflower bread-crusted bombs increases significantly from the base (rockslide + pyroclastic flow) to the top (the pyroclastic flow) of the deposit. An ash cloud deposited accretionary lapilli in the proximal region (outside of the pyroclastic flow deposit), and very fine ash fell in the distal region (between 5 and 30 km). The accretionary lapilli deposit is derived from the fine, elutriated products of the flow as it moved. A turbulent overriding surge blew down the surrounding shrubbery in the flow direction. The pyroclastic flow from August 1993, similar to the flows of June 1975, May 1998, August 2000, and March 2001, slid and rolled rather than being buoyed up by gas. They grooved, scratched, and polished the surfaces over which they swept, similar to a Merapi-type pyroclastic flow. However, the mechanism of the outpouring of a lava pool and the resulting flows composed of high- to moderate-vesiculated, cauliflower bread-crusted bombs and juvenile blocks have not been described before. High-frequency earthquake swarms, followed by an increase in low-frequency volcanic events, preceded the 1975, 1993, and 2000 eruptions 2-4 months before. These pyroclastic flow events, therefore, may be triggered by internal expansion of the unstable cone in the upper part because of a slight change in the pressure of the magma column (gas content and/or effusive rate). This phenomenon has important short-term, volcanic hazard implications for touristic development of some parts on the flanks of the volcano.

  20. Deployment of broadband seismic and infrasonic networks on Tungurahua and Cotopaxi Volcanoes, Ecuador

    NASA Astrophysics Data System (ADS)

    Kumagai, H.; Yepes, H.; Vaca, M.; Caceres, V.; Nagai, T.; Yokoe, K.; Imai, T.; Miyakawa, K.; Yamashina, T.; Arrais, S.; Vasconez, F.; Pinajota, E.; Cisneros, C.; Ramos, C.; Paredes, M.; Gomezjurado, L.; Garcia-Aristizabal, A.; Molina, I.; Ramon, P.; Segovia, M.; Palacios, P.; Enriquez, W.; Inoue, I.; Nakano, M.; Inoue, H.

    2006-12-01

    Tungurahua and Cotopaxi are andesitic active volcanoes in Ecuadorian Andes. Tungurahua continues its eruptive activity since 1999, in which explosive eruptions accompanying pyroclastic flows occurred in July- August, 2006. Cotopaxi is one of the world's highest glacier-clad active volcanoes, and its seismic activity remains high since 2001. To enhance the monitoring capability of these volcanoes, we have installed broadband seismometers (Guralp CMG-40T: 60 s-50 Hz) and infrasonic sensors (ACO TYPE7144/4144: 10 s- 100 Hz) on these volcanoes through the technical cooperation program of Japan International Cooperation Agency (JICA). Three and five stations are currently installed at Tungurahua and Cotopaxi, respectively, and additional two stations will be installed at Tungurahua. Both seismic and infrasonic waveform data at each station are digitized by a Geotech Smart24D datalogger with a sampling frequency of 50 Hz, and transmitted by a digital telemetry system using 2.4 GHz Wireless LAN to the central office in Quito. The Tungurahua's eruptive activity accompanying pyroclastic flows in July-August 2006 was monitored in real-time by the network. The observed waveforms show a wide variety of signatures in response to various eruption styles: intermittent tremor during Strombolian eruptions, five-hour-long continuous strong tremor during heightened eruptions, very-long-period (VLP) seismic signals (10-50 s) associated with pyroclastic flows, and impulsive seismic and infrasonic events of explosions. At Cotopaxi Volcano, VLP signals (2 s) accompanying long- period signals (1-2 Hz) were detected by our network. Similar events occurred in 2002, and are interpreted as gas-release process from magma in an intruded dike beneath Cotopaxi (Molina et al, submitted to JGR). The present observation of the same type of events suggests that the intruded dike is still active beneath Cotopaxi. These signals detected by our networks are highly useful to understand volcanic processes beneath Tungurahua and Cotopaxi, which contribute to improve the monitoring capability of these volcanoes.

  1. Volcanic mixed avalanches: a distinct eruption-triggered mass-flow process at snow-clad volcanoes

    USGS Publications Warehouse

    Pierson, T.C.; Janda, R.J.

    1994-01-01

    A generally unrecognized type of pyroclastic deposit was produced by rapid avalanches of intimately mixed snow and hot pyroclastic debris during eruptions at Mount St. Helens, Nevado del Ruiz, and Redoubt Volcano between 1982 and 1989. These "mixed avalanches' traveled as far as 14 km at velocities up to ~27 m/s, involved as much as 107 m3 of rock and ice, and left unmelted deposits of single flow units as thick as 5 m. During flow downslope, heat transfer from hot rocks to snow produced meltwater that partially saturated the mixtures, apparently giving these mixed avalanches mobilities equal to or greater than those of "dry' debris avalanches of similar volume. After melting and desiccation, the deposits are highly susceptible to erosion and unlikely to be well preserved in the stratigraphic record. -Authors

  2. First Volcanological-Probabilistic Pyroclastic Density Current and Fallout Hazard Map for Campi Flegrei and Somma Vesuvius Volcanoes.

    NASA Astrophysics Data System (ADS)

    Mastrolorenzo, G.; Pappalardo, L.; Troise, C.; Panizza, A.; de Natale, G.

    2005-05-01

    Integrated volcanological-probabilistic approaches has been used in order to simulate pyroclastic density currents and fallout and produce hazard maps for Campi Flegrei and Somma Vesuvius areas. On the basis of the analyses of all types of pyroclastic flows, surges, secondary pyroclastic density currents and fallout events occurred in the volcanological history of the two volcanic areas and the evaluation of probability for each type of events, matrixs of input parameters for a numerical simulation have been performed. The multi-dimensional input matrixs include the main controlling parameters of the pyroclasts transport and deposition dispersion, as well as the set of possible eruptive vents used in the simulation program. Probabilistic hazard maps provide of each points of campanian area, the yearly probability to be interested by a given event with a given intensity and resulting demage. Probability of a few events in one thousand years are typical of most areas around the volcanoes whitin a range of ca 10 km, including Neaples. Results provide constrains for the emergency plans in Neapolitan area.

  3. Digital Data for Volcano Hazards at Newberry Volcano, Oregon

    USGS Publications Warehouse

    Schilling, S.P.; Doelger, S.; Sherrod, D.R.; Mastin, L.G.; Scott, W.E.

    2008-01-01

    Newberry volcano is a broad shield volcano located in central Oregon, the product of thousands of eruptions, beginning about 600,000 years ago. At least 25 vents on the flanks and summit have been active during the past 10,000 years. The most recent eruption 1,300 years ago produced the Big Obsidian Flow. Thus, the volcano's long history and recent activity indicate that Newberry will erupt in the future. Newberry Crater, a volcanic depression or caldera has been the focus of Newberry's volcanic activity for at least the past 10,000 years. Newberry National Volcanic Monument, which is managed by the U.S. Forest Service, includes the caldera and extends to the Deschutes River. Newberry volcano is quiet. Local earthquake activity (seismicity) has been trifling throughout historic time. Subterranean heat is still present, as indicated by hot springs in the caldera and high temperatures encountered during exploratory drilling for geothermal energy. The report USGS Open-File Report 97-513 (Sherrod and others, 1997) describes the kinds of hazardous geologic events that might occur in the future at Newberry volcano. A hazard-zonation map is included to show the areas that will most likely be affected by renewed eruptions. When Newberry volcano becomes restless, the eruptive scenarios described herein can inform planners, emergency response personnel, and citizens about the kinds and sizes of events to expect. The geographic information system (GIS) volcano hazard data layers used to produce the Newberry volcano hazard map in USGS Open-File Report 97-513 are included in this data set. Scientists at the USGS Cascades Volcano Observatory created a GIS data layer to depict zones subject to the effects of an explosive pyroclastic eruption (tephra fallout, pyroclastic flows, and ballistics), lava flows, volcanic gasses, and lahars/floods in Paulina Creek. A separate GIS data layer depicts drill holes on the flanks of Newberry Volcano that were used to estimate the probability of coverage by future lava flows.

  4. The effect of topography on pyroclastic flow mobility

    NASA Astrophysics Data System (ADS)

    Ogburn, S. E.; Calder, E. S.

    2010-12-01

    Pyroclastic flows are among the most destructive volcanic phenomena. Hazard mitigation depends upon accurate forecasting of possible flow paths, often using computational models. Two main metrics have been proposed to describe the mobility of pyroclastic flows. The Heim coefficient, height-dropped/run-out (H/L), exhibits an inverse relationship with flow volume. This coefficient corresponds to the coefficient of friction and informs computational models that use Coulomb friction laws. Another mobility measure states that with constant shear stress, planimetric area is proportional to the flow volume raised to the 2/3 power (A∝V^(2/3)). This relationship is incorporated in models using constant shear stress instead of constant friction, and used directly by some empirical models. Pyroclastic flows from Soufriere Hills Volcano, Montserrat; Unzen, Japan; Colima, Mexico; and Augustine, Alaska are well described by these metrics. However, flows in specific valleys exhibit differences in mobility. This study investigates the effect of topography on pyroclastic flow mobility, as measured by the above mentioned mobility metrics. Valley width, depth, and cross-sectional area all influence flow mobility. Investigating the appropriateness of these mobility measures, as well as the computational models they inform, indicates certain circumstances under which each model performs optimally. Knowing which conditions call for which models allows for better model selection or model weighting, and therefore, more realistic hazard predictions.

  5. Cape Wanbrow: A stack of Surtseyan-style volcanoes built over millions of years in the Waiareka-Deborah volcanic field, New Zealand

    NASA Astrophysics Data System (ADS)

    Moorhouse, B. L.; White, J. D. L.; Scott, J. M.

    2015-06-01

    Volcanic fields typically include many small, monogenetic, volcanoes formed by single eruptions fed by short-lived magma plumbing systems that solidify after eruption. The Cape Wanbrow coastline of the northeast Otago region in the South Island of New Zealand exposes an Eocene-Oligocene intraplate basaltic field that erupted in Surtseyan style onto a submerged continental shelf, and the stratigraphy of Cape Wanbrow suggests that eruptions produced multiple volcanoes whose edifices overlapped within a small area, but separated by millions of years. The small Cape Wanbrow highland is shown to include the remains of 6 volcanoes that are distinguished by discordant to locally concordant inter-volcano contacts marked by biogenic accumulations or other slow-formed features. The 6 volcanoes contain several lithofacies associations: (a) the dominantly pyroclastic E1 comprising well-bedded tuff and lapilli-tuff, emplaced by traction-dominated unsteady, turbulent high-density currents; (b) E2, massive to diffusely laminated block-rich tuff deposited by grain-dominant cohesionless debris flows; (c) E3, broadly cross-stratified tuff with local lenses of low- to high-angle cross-stratification which was deposited by either subaerial pyroclastic currents or subaqueously by unstable antidune- and chute-and-pool-forming supercritical flows; (d) E4, very-fine- to medium-grained tuff deposited by turbidity currents; (e) E5, bedded bioclast-rich tuff with increasing glaucony content upward, emplaced by debris flows; (f) E6, pillow lava and inter-pillow bioclastic sediment; and (g) E7, hyaloclastite breccia. These lithofacies associations aid interpretation of the eruptive evolution of each separate volcano, which in turn grew and degraded during build-up of the overall volcanic pile. Sedimentary processes played a prominent role in the evolution of the volcanic pile with both syn- and post-eruptive re-mobilization of debris from the growing pile of primary pyroclastic deposits of multiple volcanoes separated by time. An increase in bioclastic detritus upsequence suggests that the stack of deposits from overlapping volcanoes built up into shallow enough waters for colonization to occur. This material was periodically shed from the top of the edifice to form bioclast-rich debris flow deposits of volcanoes 4, 5 and 6. Since the eruption of Surtsey (1963-1965) many studies have been made of the resulting island, but the pre-emergent base remains submarine, unincised and little studied. Eruption-fed density currents that formed deposits of the volcanoes of Cape Wanbrow are inferred to be typical products of submarine processes such as those that built Surtsey to the sea surface.

  6. Utilizing NASA Earth Observations to Model Volcanic Hazard Risk Levels in Areas Surrounding the Copahue Volcano in the Andes Mountains

    NASA Astrophysics Data System (ADS)

    Keith, A. M.; Weigel, A. M.; Rivas, J.

    2014-12-01

    Copahue is a stratovolcano located along the rim of the Caviahue Caldera near the Chile-Argentina border in the Andes Mountain Range. There are several small towns located in proximity of the volcano with the two largest being Banos Copahue and Caviahue. During its eruptive history, it has produced numerous lava flows, pyroclastic flows, ash deposits, and lahars. This isolated region has steep topography and little vegetation, rendering it poorly monitored. The need to model volcanic hazard risk has been reinforced by recent volcanic activity that intermittently released several ash plumes from December 2012 through May 2013. Exposure to volcanic ash is currently the main threat for the surrounding populations as the volcano becomes more active. The goal of this project was to study Copahue and determine areas that have the highest potential of being affected in the event of an eruption. Remote sensing techniques were used to examine and identify volcanic activity and areas vulnerable to experiencing volcanic hazards including volcanic ash, SO2 gas, lava flow, pyroclastic density currents and lahars. Landsat 7 Enhanced Thematic Mapper Plus (ETM+), Landsat 8 Operational Land Imager (OLI), EO-1 Advanced Land Imager (ALI), Terra Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Shuttle Radar Topography Mission (SRTM), ISS ISERV Pathfinder, and Aura Ozone Monitoring Instrument (OMI) products were used to analyze volcanic hazards. These datasets were used to create a historic lava flow map of the Copahue volcano by identifying historic lava flows, tephra, and lahars both visually and spectrally. Additionally, a volcanic risk and hazard map for the surrounding area was created by modeling the possible extent of ash fallout, lahars, lava flow, and pyroclastic density currents (PDC) for future eruptions. These model results were then used to identify areas that should be prioritized for disaster relief and evacuation orders.

  7. Preventing volcanic catastrophe; the U.S. International Volcano Disaster Assistance Program

    USGS Publications Warehouse

    Ewert, J.W.; Murray, T.L.; Lockhart, A. B.; Miller, C.D.

    1993-01-01

    Unfortunately, a storm on November 13, 1985, obscured the glacier-clad summit of Nevado del Ruiz. On that night an explosive eruption tore through the summit and spewed approximately 20 million cubic meters of hot ash and rocks across the snow-covered glacier. These materials were transported across the snow pack by avalanches of hot volcanic debris (pyroclastic flows) and fast-moving, hot, turbulent clouds of gas and ash (pyroclastic surges). The hot pyroclastic flows and surges caused rapid melting of the snow and ice and created large volumes of water that swept down canyons leading away from the summit. As these floods of water descended the volcano, they picked up loose debris and soil from the canyon floors and walls, growing both in volume and density, to form hot lahars. In the river valleys farther down the volcano's flanks, the lahars were as much as 40 m thick and traveled at velocities as fast as 50 km/h. Two and a half hours after the start of the eruption one of the lahars reachered Armero, 74 km from the explosion crater. In a few short minutes most of the town was swept away or buried in a torrent of mud and boulders, and three quaters of the townspeople perished.  

  8. Sensitivity of OMI SO2 measurements to variable eruptive behaviour at Soufrière Hills Volcano, Montserrat

    NASA Astrophysics Data System (ADS)

    Hayer, C. S.; Wadge, G.; Edmonds, M.; Christopher, T.

    2016-02-01

    Since 2004, the satellite-borne Ozone Mapping Instrument (OMI) has observed sulphur dioxide (SO2) plumes during both quiescence and effusive eruptive activity at Soufrière Hills Volcano, Montserrat. On average, OMI detected a SO2 plume 4-6 times more frequently during effusive periods than during quiescence in the 2008-2010 period. The increased ability of OMI to detect SO2 during eruptive periods is mainly due to an increase in plume altitude rather than a higher SO2 emission rate. Three styles of eruptive activity cause thermal lofting of gases (Vulcanian explosions; pyroclastic flows; a hot lava dome) and the resultant plume altitudes are estimated from observations and models. Most lofting plumes from Soufrière Hills are derived from hot domes and pyroclastic flows. Although Vulcanian explosions produced the largest plumes, some produced only negligible SO2 signals detected by OMI. OMI is most valuable for monitoring purposes at this volcano during periods of lava dome growth and during explosive activity.

  9. Volcanic ash: a potential hazard for aviation in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Whelley, P. L.; Newhall, C. G.

    2012-12-01

    There are more than 400 volcanoes in Southeast Asia. Ash from eruptions of Volcanic Explosivity Index 3 (VEI 3) and larger pose local hazards and eruptions of VEI 4 or greater could disrupt trade, travel, and daily life in large parts of the region. To better manage and understand the risk volcanic ash poses to Southeast Asia, this study quantifies the long-term probability of a large eruption sending ash into the Singapore Flight Information Region (FIR), which is a 1,700 km long, quasi-rectangular zone from the Strait of Malacca to the South China Sea. Southeast Asian volcanoes are classified into 6 groups, using satellite data, by their morphology, and where known, their eruptive history. 'Laguna' type are fields of maars, cinder cones and spatter cones, named for the Laguna Volcanic Field, Philippines (13.204, 123.525). 'Kembar' type are broad, gently sloping shield volcanoes with extensive lava flows (Kembar Volcano, Indonesia: 3.850, 097.664). 'Mayon' type volcanoes are open-vent, frequently active, steep sided stratocones with small summit craters, spatter ramparts, small pyroclastic fans (typically < 3 km but up to 5 km) and lava flows (Mayon Volcano, Philippines: 13.257, 123.685). 'Kelut' type are semi-plugged composite cones with dome complexes, pyroclastic fans, and/or debris avalanche deposits (Kelut Volcano, Indonesia: -7.933, 112.308). 'Pinatubo' type are large plugged stratovolcanoes with extensive (tens of km) pyroclastic fans and large summit craters or calderas up to 5 km in diameter (Pinatubo Volcano, Philippines: 15.133, 120.350). 'Toba' type are calderas with long axes > 5 km and surrounded by ignimbrite sheets (Toba Caldera, Indonesia: 02.583, 098.833). In addition silicic dome complexes that might eventually produce large caldera-forming eruptions are also classified as Toba type. The eruptive histories of most volcanoes in Southeast Asia are poorly constrained. Assuming that volcanoes with similar morphologies have had similar eruption histories, we use eruption histories of well-studied examples of each morphologic category as proxy histories for all volcanoes in the class. Results from this work will be used to model volcanic ash contamination scenarios for the Singapore FIR.

  10. Using Clay Models to Understand Volcanic Mudflows

    ERIC Educational Resources Information Center

    Laney, Eric; Mattox, Steve

    2007-01-01

    Gravity is a subtle but ubiquitous force that influences nearly all geologic processes from the formation of ores to the flow of glaciers and rivers. Gravity also determines the path some materials take as they flow down volcanoes. Lava flows, mudflows (also called lahars), and pyroclastic flows are three such materials. Understanding the factors…

  11. Dynamic Statistical Models for Pyroclastic Density Current Generation at Soufrière Hills Volcano

    NASA Astrophysics Data System (ADS)

    Wolpert, Robert L.; Spiller, Elaine T.; Calder, Eliza S.

    2018-05-01

    To mitigate volcanic hazards from pyroclastic density currents, volcanologists generate hazard maps that provide long-term forecasts of areas of potential impact. Several recent efforts in the field develop new statistical methods for application of flow models to generate fully probabilistic hazard maps that both account for, and quantify, uncertainty. However a limitation to the use of most statistical hazard models, and a key source of uncertainty within them, is the time-averaged nature of the datasets by which the volcanic activity is statistically characterized. Where the level, or directionality, of volcanic activity frequently changes, e.g. during protracted eruptive episodes, or at volcanoes that are classified as persistently active, it is not appropriate to make short term forecasts based on longer time-averaged metrics of the activity. Thus, here we build, fit and explore dynamic statistical models for the generation of pyroclastic density current from Soufrière Hills Volcano (SHV) on Montserrat including their respective collapse direction and flow volumes based on 1996-2008 flow datasets. The development of this approach allows for short-term behavioral changes to be taken into account in probabilistic volcanic hazard assessments. We show that collapses from the SHV lava dome follow a clear pattern, and that a series of smaller flows in a given direction often culminate in a larger collapse and thereafter directionality of the flows change. Such models enable short term forecasting (weeks to months) that can reflect evolving conditions such as dome and crater morphology changes and non-stationary eruptive behavior such as extrusion rate variations. For example, the probability of inundation of the Belham Valley in the first 180 days of a forecast period is about twice as high for lava domes facing Northwest toward that valley as it is for domes pointing East toward the Tar River Valley. As rich multi-parametric volcano monitoring dataset become increasingly available, eruption forecasting is becoming an increasingly viable and important research field. We demonstrate an approach to utilize such data in order to appropriately 'tune' probabilistic hazard assessments for pyroclastic flows. Our broader objective with development of this method is to help advance time-dependent volcanic hazard assessment, by bridging the

  12. Pyroclast Tracking Velocimetry: A particle tracking velocimetry-based tool for the study of Strombolian explosive eruptions

    NASA Astrophysics Data System (ADS)

    Gaudin, Damien; Moroni, Monica; Taddeucci, Jacopo; Scarlato, Piergiorgio; Shindler, Luca

    2014-07-01

    Image-based techniques enable high-resolution observation of the pyroclasts ejected during Strombolian explosions and drawing inferences on the dynamics of volcanic activity. However, data extraction from high-resolution videos is time consuming and operator dependent, while automatic analysis is often challenging due to the highly variable quality of images collected in the field. Here we present a new set of algorithms to automatically analyze image sequences of explosive eruptions: the pyroclast tracking velocimetry (PyTV) toolbox. First, a significant preprocessing is used to remove the image background and to detect the pyroclasts. Then, pyroclast tracking is achieved with a new particle tracking velocimetry algorithm, featuring an original predictor of velocity based on the optical flow equation. Finally, postprocessing corrects the systematic errors of measurements. Four high-speed videos of Strombolian explosions from Yasur and Stromboli volcanoes, representing various observation conditions, have been used to test the efficiency of the PyTV against manual analysis. In all cases, >106 pyroclasts have been successfully detected and tracked by PyTV, with a precision of 1 m/s for the velocity and 20% for the size of the pyroclast. On each video, more than 1000 tracks are several meters long, enabling us to study pyroclast properties and trajectories. Compared to manual tracking, 3 to 100 times more pyroclasts are analyzed. PyTV, by providing time-constrained information, links physical properties and motion of individual pyroclasts. It is a powerful tool for the study of explosive volcanic activity, as well as an ideal complement for other geological and geophysical volcano observation systems.

  13. Volcanic Hazards Associated with the NE Sector of Tacaná Volcano, Guatemala.

    NASA Astrophysics Data System (ADS)

    Hughes, S. R.; Saucedo, R.; Macias, J.; Arce, J.; Garcia-Palomo, A.; Mora, J.; Scolamacchia, T.

    2003-12-01

    Tacaná volcano, with a height of 4,030 m above sea level, straddles the southern Mexico/Guatemala border. Last active in 1986, when there was a small phreatic event with a duration of a few days, this volcano presents an impending hazard to over 250,000 people. The NE sector of the volcano reveals the violent volcanic history of Tacaná that may be indicative of a serious potential risk to the area. Its earliest pyroclastic history appears to consist of fall, flow, and surge deposits, together with lavas, that have formed megablocks within a series of old debris avalanche deposits. This sector collapse event is overlain by a sequence of pumice fall and ash flow deposits, of which the youngest, less-altered pumice fall deposit shows a minimum thickness of > 4 m, with a dispersal axis trending toward the NE. A second debris avalanche deposit, separated from the above deposits by a paleosoil, is dominated by megablocks of lava and scoriaceous dome material. The current topography around the northeastern flank of the volcano is determined by a third, and most recent debris avalanche deposit, a thick (> 20 m) sequence of six block and ash flows dated at around 16,000 years BP, each separated by 1-10 cm thick ash cloud surge deposit, together with secondary lahar deposits. These are followed by a at least 4 lava flows that extend 2 km down the flank of the volcano. It appears that the most recent pyroclastic event at Tacaná is also recorded in this sector of the volcano: above the block and ash flows occurs a > 1 m thick ash flow unit that can be seen at least 5 km from the vent. Lastly, the Santa Maria Ash fall deposit, produced in 1902, has capped most of the deposits at Tacaná.

  14. Effects of volcanic and hydrologic processes on forest vegetation: Chaitén Volcano, Chile

    Treesearch

    Frederick J. Swanson; Julia A. Jones; Charles M. Crisafulli; Antonio Lara

    2013-01-01

    The 2008-2009 eruption of Chaiten Volcano (Chile) involved a variety of volcanic and associated hydrologic processes that damaged nearby forests. These processes included coarse (gravel) and fine (silt to sand) tephra fall, a laterally directed blast, fluvial deposition of remobilized tephra, a variety of low-temperature mass-movement processes, and a pyroclastic flow...

  15. Origin and age of the Volcanic Rocks of Tláloc Volcano, Sierra Nevada, Central Mexico

    NASA Astrophysics Data System (ADS)

    Meier, M.; Grobéty, B.; Arce, J. L.; Rueda, H.

    2007-05-01

    The Tláloc volcano (TV) is a 4125 m high stratovolcano of the Trans Mexican Volcanic Belt (TMVB) and is located in the northern end of the N-S trending Sierra Nevada, 30 km NE of Mexico City. Few data on the petrological and temporal evolution of TV have been published to date. Recently dated deposits gave ages between 32'000 and 34'500±500 years BP (Huddart and Gonzalez, 2004). Mapping and sampling of extrusive rocks in the summit region of TV revealed a dome structure with radiating lava flows consisting of dacitic rocks containing plagioclase and hornblende phenocrysts. Some flows, however, seem to be associated with a collapse structure E of the main summit. Crossing relationships indicate that this structure is older (“Paleo Tláloc”). A stratigraphy of the pyroclastic deposits was established along the northern slope of TV. From the numerous pyroclastic flows, separated by paleosoils and fluviatile deposits, only two pumice and one block and ash flow (BAF) have regional extent. Their thickness - distance relationship and their granulometry point to major explosive events. A carbonized wood sample from the BAF deposit gave ages similar to the previous ages (33'180±550 yr BP and 23'170±270 yr BP), a sample from a pyroclastic flow gave even a younger age (16'620±110 yr BP), suggesting that TV remained active also after the volcanoes Iztaccíhuatl and Popocatépetl further to the South started their activity. Based on these preliminary data it may be necessary to reconsider the accepted scenario of the temporal evolution of the central section of the TMVB, which assumes that the activity migrates from North to South with time. Huddart, D. and Gonzalez, S., 2004. Pyroclastic flows and associated sediments, Tláloc-Telapón, piedmont fringe of the eastern basin of Mexico. In: G.J. Aguirre-Diaz, Macías, J.L., and Siebe, C., (Editor), Penrose Conference. UNAM, Metepec, Puebla, Mexico, pp. 35.

  16. Volcanoes Behave as Composite Materials: Implications for Modeling Magma Chambers, Dikes, and Surface Deformation

    NASA Astrophysics Data System (ADS)

    Leiss, B.; Gudmundsson, A.; Philipp, S. L.

    2005-12-01

    By definition, composite volcanoes are composed of numerous alternating material units or layers such as lavas, sediments, and pyroclastics. Commonly, these layers have widely different mechanical properties. In particular, some lava flows and welded pyroclastic flows may be stiff (with a high Young's modulus), whereas others, such as non-welded pyroclastic units and sediments, may be soft (with a low Young's modulus). As a consequence, even if the loading (tectonic stress, magmatic pressure, or displacement) is uniform, the stresses within the composite volcano will vary widely. In this sense, the behavior of composite volcanoes is similar to that of general composite materials. The deformation of the surface of a volcano during an unrest period results from stresses generated by processes and parameters such as fluid pressure in a geothermal field or a magma chamber, a regional tectonic event, and a dike injection. Here we present new numerical models on mechanics of magma chambers and dikes, and the associated surface deformation of composite volcanoes. The models show that the surface deformation during magma-chamber inflation and deflation depends much on the chamber geometry, the loading conditions, and the mechanical properties of the rock units that constitute the volcano. The models also indicate that the surface deformation induced by a propagating dike depends much on the mechanical properties of the layers between the dike tip and the surface. In particular, the numerical results show that soft layers and weak contacts between layers may suppress the dike-induced tensile stresses and the associated surface deformation. Many dikes may therefore become injected and arrested at shallow depths in a volcano while giving rise to little or no surface deformation. Traditional analytical surface-deformation models such as a point source (Mogi model) for a magma-chamber pressure change and a dislocation for a dike normally assume the volcano to behave as a homogeneous, isotropic half space. The present numerical results, combined with field studies, indicate that such analytical models may yield results that have little similarity with the actual structure being modeled.

  17. Volcaniclastic stratigraphy of Gede volcano in West Java

    NASA Astrophysics Data System (ADS)

    Belousov, A.; Belousova, M.; Zaennudin, A.; Prambada, O.

    2012-12-01

    Gede volcano (2958 m a.s.l.) and the adjacent Pangrango volcano (3019 m a.s.l.) form large (base diameter 35 km) volcanic massif 60 km south of Jakarta. While Pangrango has no recorded eruptions, Gede is one of the most active volcanoes in Indonesia: eruptions were reported 26 times starting from 1747 (Petroeschevsky 1943; van Bemmelen 1949). Historic eruptions were mildly explosive (Vulcanian) with at least one lava flow. Modern activity of the volcano includes persistent solfataric activity in the summit crater and periodic seismic swarms - in 1990, 1991, 1992, 1995, 1996, 1997, 2000, 2010, and 2012 (CVGHM). Lands around the Gede-Pangrango massif are densely populated with villages up to 1500-2000 m a.s.l. Higher, the volcano is covered by rain forest of the Gede-Pangrango Natural Park, which is visited every day by numerous tourists who camp in the summit area. We report the results of the detailed reinvestigation of volcaniclastic stratigraphy of Gede volcano. This work has allowed us to obtain 24 new radiocarbon dates for the area. As a result the timing and character of activity of Gede in Holocene has been revealed. The edifice of Gede volcano consists of main stratocone (Gumuruh) with 1.8 km-wide summit caldera; intra-caldera lava cone (Gede proper) with a 900 m wide summit crater, having 2 breaches toward N-NE; and intra-crater infill (lava dome/flow capped with 3 small craters surrounded by pyroclastic aprons). The Gumuruh edifice, composed mostly of lava flows, comprises more than 90% of the total volume of the volcano. Deep weathering of rocks and thick (2-4 m) red laterite soil covering Gumuruh indicates its very old age. Attempts to get 14C dates in 4 different locations of Gumuruh (including a large debris avalanche deposit on its SE foot) provided ages older than 45,000 years - beyond the limit for 14C dating. Outside the summit caldera, notable volumes of fresh, 14C datable volcaniclastic deposits were found only in the NNE sector of the volcano where they form a fan below the breached summit crater. The fan is composed of pyroclastic flows (PFs) and lahars of Holocene age that were deposited in 4 major stages: ~ 10 000 BP - voluminous PF of black scoria; ~ 4000 BP - two PFs of mingled grey/black scoria; ~ 1200 BP - multiple voluminous PFs strongly enriched by accidental material; ~ 1000 BP - a small scale debris avalanche (breaching of the crater wall) followed by small scale PFs of black scoria. The intra-crater lava dome/flow was erupted in 1840 (Petroeschevsky, 1943). Three small craters on the top of the lava dome were formed by multiple post-1840 small-scale phreatomagmatic eruptions. Ejected pyroclasts are lithic hydrothermally altered material containing a few breadcrust bombs. The Holocene eruptive history of Gede indicates that the volcano can produce moderately strong (VEI 3-4) explosive eruptions and send PFs and lahars onto the NE foot of the volcano.

  18. 14C ages and activity for the past 50 ka at Volcán Galeras, Colombia

    USGS Publications Warehouse

    Banks, N.G.; Calvache, V.M.L.; Williams, S.N.

    1997-01-01

    Volcán Galeras is the southernmost Colombian volcano with well-recorded historic activity. The volcano is part of a large and complex volcanic center upon which 400,000 people live. Historic activity has centered on a small-volume cone inside the youngest of several large amphitheaters that breach the west flank of the volcano, away from the city of Pasto (population 300,000). Lava flows (SiO2 between 54.6 and 64.7 wt.%) have dominated activity for more than 1 Ma, but explosive events have also occurred. Joint studies by volcanologists from Colombia, Ecuador, Peru, Bolivia, Argentina, and the United States produced 24 new14C ages and more than 100 stratigraphic sections to interpret the past 50 ka of activity at Galeras, including sector collapse events. The youngest collapse event truncated 12.8 ka lava flows and may have occurred as recently as 8 to 10 ka. Tephra-fall material rapidly thins and becomes finer away from the vent area. The only widespread marker in the < 10 ka section is a biotite-bearing tephra deposited between 4.1 and 4.5 ka from a source south of Galeras. It separates cryoturbated from largely undisturbed layers on Galeras, and thus dates a stratigraphic horizon which is useful in the interpretation of other volcanoes and geotectonics in the equatorial Andes. Pyroclastic flows during the past 50 ka have been small to moderate in volume, but they have left numerous thin deposits on the north and east flanks where lava flows have been impeded by crater and amphitheater walls. Many of the pyroclastic-flow deposits are lithic rich, with fines and clasts so strongly altered by hydrothermal action before eruption that they, as well as the sector collapse deposits, resemble waste dumps of leached cappings from disseminated sulfide deposits more than volcanogenic deposits. This evidence of a long-lived hydrothermal system indicates susceptibility to mass failure and explosive events higher than expected for a volcano built largely by lava flows and modest Vulcanian eruptions. Photographs, written accounts, and our study document historic north and east flank pyroclastic flows as far as 10 km from the summit; however, none have left recognizable deposits in Pasto for more than 40 ka.

  19. 14C ages and activity for the past 50 ka at Volcán Galeras, Colombia

    NASA Astrophysics Data System (ADS)

    Banks, N. G.; Calvache V, M. L.; Williams, S. N.

    1997-05-01

    Volcán Galeras is the southernmost Colombian volcano with well-recorded historic activity. The volcano is part of a large and complex volcanic center upon which 400,000 people live. Historic activity has centered on a small-volume cone inside the youngest of several large amphitheaters that breach the west flank of the volcano, away from the city of Pasto (population 300,000). Lava flows (SiO 2 between 54.6 and 64.7 wt.%) have dominated activity for more than 1 Ma, but explosive events have also occurred. Joint studies by volcanologists from Colombia, Ecuador, Peru, Bolivia, Argentina, and the United States produced 24 new 14C ages and more than 100 stratigraphic sections to interpret the past 50 ka of activity at Galeras, including sector collapse events. The youngest collapse event truncated 12.8 ka lava flows and may have occurred as recently as 8 to 10 ka. Tephra-fall material rapidly thins and becomes finer away from the vent area. The only widespread marker in the < 10 ka section is a biotite-bearing tephra deposited between 4.1 and 4.5 ka from a source south of Galeras. It separates cryoturbated from largely undisturbed layers on Galeras, and thus dates a stratigraphic horizon which is useful in the interpretation of other volcanoes and geotectonics in the equatorial Andes. Pyroclastic flows during the past 50 ka have been small to moderate in volume, but they have left numerous thin deposits on the north and east flanks where lava flows have been impeded by crater and amphitheater walls. Many of the pyroclastic-flow deposits are lithic rich, with fines and clasts so strongly altered by hydrothermal action before eruption that they, as well as the sector collapse deposits, resemble waste dumps of leached cappings from disseminated sulfide deposits more than volcanogenic deposits. This evidence of a long-lived hydrothermal system indicates susceptibility to mass failure and explosive events higher than expected for a volcano built largely by lava flows and modest Vulcanian eruptions. Photographs, written accounts, and our study document historic north and east flank pyroclastic flows as far as 10 km from the summit; however, none have left recognizable deposits in Pasto for more than 40 ka.

  20. Characterization of pyroclastic deposits and pre-eruptive soils following the 2008 eruption of Kasatochi Island Volcano, Alaska

    USGS Publications Warehouse

    Wang, B.; Michaelson, G.; Ping, C.-L.; Plumlee, G.; Hageman, P.

    2010-01-01

    The 78 August 2008 eruption of Kasatochi Island volcano blanketed the island in newly generated pyroclastic deposits and deposited ash into the ocean and onto nearby islands. Concentrations of water soluble Fe, Cu, and Zn determined from a 1:20 deionized water leachate of the ash were sufficient to provide short-term fertilization of the surface ocean. The 2008 pyroclastic deposits were thicker in concavities at bases of steeper slopes and thinner on steep slopes and ridge crests. By summer 2009, secondary erosion had exposed the pre-eruption soils along gulley walls and in gully bottoms on the southern and eastern slopes, respectively. Topographic and microtopographic position altered the depositional patterns of the pyroclastic flows and resulted in pre-eruption soils being buried by as little as 1 m of ash. The different erosion patterns gave rise to three surfaces on which future ecosystems will likely develop: largely pre-eruptive soils; fresh pyroclastic deposits influenced by shallowly buried, pre-eruptive soil; and thick (>1 m) pyroclastic deposits. As expected, the chemical composition differed between the pyroclastic deposits and the pre-eruptive soils. Pre-eruptive soils hold stocks of C and N important for establishing biota that are lacking in the fresh pyroclastic deposits. The pyroclastic deposits are a source for P and K but have negligible nutrient holding capacity, making these elements vulnerable to leaching loss. Consequently, the pre-eruption soils may also represent an important long-term P and K source. ?? 2010 Regents of the University of Colorado.

  1. Keeping watch over Colombia’s slumbering volcanoes

    USGS Publications Warehouse

    Ordoñez, Milton; López, Christian; Alpala, Jorge; Narváez, Lourdes; Arcos, Dario; Battaglia, Maurizio

    2015-01-01

    Located in the Central Cordillera (Colombian Andes), Nevado del Ruiz is a volcanic complex, topped by glaciers, rising 5,321 m above sea level. A relatively small explosive eruption from Ruiz's summit crater on November 13, 1985, generated an eruption column and sent a series of pyroclastic flows and surges across the volcano's ice-covered summit. Pumice and meltwater produced by the hot pyroclastic flows and surges swept into gullies and channels on the slopes of Ruiz as a series of lahars. Within two hours of the beginning of the eruption, lahars had traveled 100 km and left behind a wake of destruction: more than 25,000 people were killed (23,000 in the town of Armero and 2,000 in the town of Chinchiná), about 5,000 injured, and more than 5,000 homes destroyed along the Chinchiná, Gualí, and Lagunillas rivers.

  2. Continuous monitoring of Mount St. Helens Volcano

    USGS Publications Warehouse

    Spall, H.

    1980-01-01

    Day by day monitoring of the Mount St. Helens Volcano. These are four scenarios, very different scenarios, that can occur in a average week at Mount St. Helens. Ranging from eruptions of gas and to steam to eruptions of ash and pyroclastic flows to even calm days. This example of monitoring illustrates the differences from day to day volcanic activities at Mount St. Helens. 

  3. Volcanic hazard map for Telica, Cerro Negro and El Hoyo volcanoes, Nicaragua

    NASA Astrophysics Data System (ADS)

    Asahina, T.; Navarro, M.; Strauch, W.

    2007-05-01

    A volcano hazard study was conducted for Telica, Cerro Negro and El Hoyo volcanoes, Nicaragua, based on geological and volcanological field investigations, air photo analyses, and numerical eruption simulation. These volcanoes are among the most active volcanoes of the country. This study was realized 2004-2006 through technical cooperation of Japan International Cooperation Agency (JICA) with INETER, upon the request of the Government of Nicaragua. The resulting volcanic hazard map on 1:50,000 scale displays the hazards of lava flow, pyroclastic flows, lahars, tephra fall, volcanic bombs for an area of 1,300 square kilometers. The map and corresponding GIS coverage was handed out to Central, Departmental and Municipal authorities for their use and is included in a National GIS on Georisks developed and maintained by INETER.

  4. Surficial Geologic Map of Mount Veniaminof Volcano, Alaska

    NASA Astrophysics Data System (ADS)

    Waythomas, C. F.; Miller, T. P.; Wallace, K.

    2015-12-01

    Mount Veniaminof volcano is a >300 km3 andesite to dacite stratovolcano, characterized by an 8 x 11 km diameter ice-filled summit caldera. Veniaminof is one of the most active volcanoes in the Aleutian arc and has erupted at least 15 times in the past 200 years. The volcano is located on the Alaska Peninsula (56.1979° N, 159.3931° W) about 780 km SW of Anchorage. Our geologic investigations have documented two large (>VEI 5) caldera-forming or -modifying eruptions (V1, V2) of Holocene age whose eruptive products make up most of the surficial deposits around the volcano. These deposits and other unconsolidated glacial, fluvial, and colluvial deposits are depicted on the accompanying map. The the V2 eruption occurred 4.1-4.4 ka (cal 2-sigma age range) and produced an extensive landscape-mantling sequence of pyroclastic deposits >50 km3 in volume that cover or partly obscure older unconsolidated eruptive products. The V1 eruption occurred 8-9 ka and its deposits lie stratigraphically below the pyroclastic deposits associated with the V2 eruption and a prominent, widespread tephra fall deposit erupted from nearby Black Peak volcano 4.4-4.6 ka. The V2 pyroclastic-flow deposits range from densely welded, columnar jointed units exposed along the main valley floors, to loose, unconsolidated, blanketing accumulations of scoriaceous (55-57% SiO2) and lithic material found as far as 75 km from the edifice. Large lahars also formed during the V2 eruption and flowed as far as 50 km from the volcano. The resulting deposits are present in all glacial valleys that head on the volcano and are 10-15 m thick in several locations. Lahar deposits cover an area of about 800-1000 km2, have an approximate volume of 1-2 km3, and record substantial inundation of the major valleys on all flanks of the edifice. Significant amounts of water are required to form lahars of this size, which suggests that an ice-filled summit caldera probably existed when the V2 eruption occurred.

  5. Thematic mapper studies of Andean volcanoes

    NASA Technical Reports Server (NTRS)

    Francis, P. W.

    1986-01-01

    The primary objective was to identify all the active volcanoes in the Andean region of Bolivia. Morphological features of the Tata Sabaya volcano, Bolivia, were studied with the thematic mapper. Details include marginal levees on lava and pyroclastic flows, and summit crater structure. Valley glacier moraine deposits, not easily identified on the multispectral band scanner, were also unambiguous, and provide useful marker horizons on large volcanic edifices which were built up in preglacial times but which were active subsequently. With such high resolution imagery, it is not only possible to identify potentially active volcanoes, but also to use standard photogeological interpretation to outline the history of individual volcanoes.

  6. Numerical modeling of a sub Plinian eruption at La Soufrière de Guadeloupe: implications for pyroclastic density currents hazard assessment.

    NASA Astrophysics Data System (ADS)

    Esposti Ongaro, Tomaso; Neri, Augusto; Komorowski, Jean-Christophe

    2013-04-01

    We present three-dimensional numerical simulations of a sub-Plinian eruptive scenario at La Soufrière de Guadeloupe, aimed at assessing the capability of pyroclastic density currents to reach the inhabited regions on the volcano slopes, in case of the future resumption of the explosive activity. The selected eruptive scenario is similar to that hypothesized for the 1530 a.D. eruption, but several eruptive conditions have been analyzed to account for different behaviours of the eruptive column and percentages of collapse. Numerical results describe, in 3D and in time, the formation, instability and partial collapse of the eruptive column, and the simultaneous formation of a convective plume and several branched pyroclastic density currents. The proximal volcano morphology, characterized by the presence of ancient caldera rims and the remnants of the old edifice, controls the areal distribution of the collapsed material and the paths of channelized flows along the incised topography. The analysis of the 3D runs suggests that partial collapse scenarios produce steeply stratified pyroclastic density currents, which are strongly controlled by the topography and whose propagation is likely driven by the dynamics of the dense, basal layer. Although vertical grid size still does not allow the resolution of the dynamics of such concentrated flows, preliminary georeferenced maps of pyroclastic density currents' hazardous actions (temperature and dynamic pressure) provide interesting and useful information which can serve as a basis for elaborating a quantitative framework for the assessment of their impact on vulnerable infrastructures, networks, and population.

  7. Dense Pyroclastic Flows of the 16 -17 August 2006 Eruption of Tungurahua Volcano, Ecuador

    NASA Astrophysics Data System (ADS)

    Hall, M. L.; Mothes, P. A.; Ramon, P.; Arellano, S.; Barba, D.; Palacios, P.

    2007-05-01

    The 16-17 August 2006 eruption of Tungurahua volcano in central Ecuador was preceded by 7 years of threatening activity and finally a VEI=2 eruption on 14-15 July 2006. The larger August eruption witnessed tens of pyroclastic flows that descended 17 different channels up to 8.5 km to the volcano's base on the NW, N, W, and SW sides. Tungurahua (5023m) is a steep-sided, low SiO2 andesitic volcano with 2600 to 3200m of relief. The initial, small nuee ardentes began around 1700hr (local time), the larger flows occurred between 2147hr and 0100hr (17 Aug.), and a total of 31 events were indicated by seismic signals. The deposits of three distinct flow cycles are recognized at the NW base of the cone. On the Los Pajaros depositional fan, deposits of flows 1 and 2 are widespread laterally (<600m) and have low-aspect morphologies with low snouts and without levees. Their outer surfaces are covered with accessory > juvenile clasts that mainly range from 15 to 25cm in diameter, conversely their interiors are comprised of 40-42% clasts of 1-25cm size and a matrix (58-60%) of sand-size grains. The earlier flow 1 was accompanied by an ash cloud surge that leveled, but did not scorch, all trees, brush, even metal antenna posts, leaving a 1-10cm thick sandy ash layer upon flow 1's deposit. On the fan as well as in gullies on the upper flanks, flow 3 deposits form long narrow lobes with 1-2m high frontal snouts that are followed by empty flow channels, 5-15m wide, bounded by parallel levees 1-1.5m high. Within these channels subsequent flow lobes are found as remnant pulses. Unlike flows 1 and 2, flow 3 lobes are covered with 0.5-3m cauliflower-shaped, slightly vesiculated bombs that are rarely abraded; the deposit's interior has a 45% sandy matrix. During the climatic eruptive phase continuous lava fountaining, 500-700m high, and crater spilling likely fed a continual stream of fragmented lava onto the cone's upper steep flanks, from which dense pyroclastic mass flows were initiated by gravity. Flows 1 and 2 were more fluidized (due to entrained air and fines), faster, and had wider lateral extents. Flow 3 was poorly fluidized, highly channelized, and behaved more like an inertial granular flow that formed as a continuous avalanche stream that separated into consecutive pulses along the runout channel.

  8. Viewing inside Pyroclastic Flows - Large-scale Experiments on hot pyroclast-gas mixture flows

    NASA Astrophysics Data System (ADS)

    Breard, E. C.; Lube, G.; Cronin, S. J.; Jones, J.

    2014-12-01

    Pyroclastic density currents are the largest threat from volcanoes. Direct observations of natural flows are persistently prevented because of their violence and remain limited to broad estimates of bulk flow behaviour. The Pyroclastic Flow Generator - a large-scale experimental facility to synthesize hot gas-particle mixture flows scaled to pyroclastic flows and surges - allows investigating the physical processes behind PDC behaviour in safety. The ability to simulate natural eruption conditions and to view and measure inside the hot flows allows deriving validation and calibration data sets for existing numerical models, and to improve the constitutive relationships necessary for their effective use as powerful tools in hazard assessment. We here report on a systematic series of large-scale experiments on up to 30 ms-1 fast, 2-4.5 m thick, 20-35 m long flows of natural pyroclastic material and gas. We will show high-speed movies and non-invasive sensor data that detail the internal structure of the analogue pyroclastic flows. The experimental PDCs are synthesized by the controlled 'eruption column collapse' of variably diluted suspensions into an instrumented channel. Experiments show four flow phases: mixture acceleration and dilution during free fall; impact and lateral blasting; PDC runout; and co-ignimbrite cloud formation. The fully turbulent flows reach Reynolds number up to 107 and depositional facies similar to natural deposits. In the PDC runout phase, the shear flows develop a four-partite structure from top to base: a fully turbulent, strongly density-stratified ash cloud with average particle concentrations <<1vol%; a transient, turbulent dense suspension region with particle concentrations between 1 and 10 vol%; a non-turbulent, aerated and highly mobile dense underflows with particle concentrations between 40 and 50 vol%; and a vertically aggrading bed of static material. We characterise these regions and the exchanges of energy and momentum through their interfaces via vertical time-series profiles of velocity, particle concentration, gas and particle transport directionality and turbulent eddy characteristics. We highlight the importance of each region for the PDC runout dynamics and introduce a new transport and sedimentation model for downslope evolving pyroclastic flows.

  9. A Stratigraphic, Granulometric, and Textural Comparison of recent pyroclastic density current deposits exposed at West Island and Burr Point, Augustine Volcano, Alaska

    NASA Astrophysics Data System (ADS)

    Rath, C. A.; Browne, B. L.

    2011-12-01

    Augustine Volcano (Alaska) is the most active volcano in the eastern Aleutian Islands, with 6 violent eruptions over the past 200 years and at least 12 catastrophic debris-avalanche deposits over the past ~2,000 years. The frequency and destructive nature of these eruptions combined with the proximity of Augustine Volcano to commercial ports and populated areas represents a significant hazard to the Cook Inlet region of Alaska. The focus of this study examines the relationship between debris-avalanche events and the subsequent emplacement of pyroclastic density currents by comparing the stratigraphic, granulometric, and petrographic characteristics of pyroclastic deposits emplaced following the 1883 A.D. Burr Point debris-avalanche and those emplaced following the ~370 14C yr B.P. West Island debris-avalanche. Data from this study combines grain size and componentry analysis of pyroclastic deposits with density, textural, and compositional analysis of juvenile clasts contained in the pyroclastic deposits. The 1883 A.D. Burr Point pyroclastic unit immediately overlies the 1883 debris avalanche deposit and underlies the 1912 Katmai ash. It ranges in thickness from 4 to 48 cm and consists of fine to medium sand-sized particles and coarser fragments of andesite. In places, this unit is normally graded and exhibits cross-bedding. Many of these samples are fines-enriched, with sorting coefficients ranging from -0.1 to 1.9 and median grain size ranging from 0.1 to 2.4 mm. The ~370 14C yr B.P. West Island pyroclastic unit is sandwiched between the underlying West Island debris-avalanche deposit and the overlying 1912 Katmai Ash deposit, and at times a fine-grained gray ash originating from the 1883 eruption. West Island pyroclastic deposit is sand to coarse-sand-sized and either normally graded or massive with sorting coefficients ranging from 0.9 to 2.8 and median grain sizes ranging from 0.4 to 2.6 mm. Some samples display a bimodal distribution of grain sizes, while most display a fines-depleted distribution. Juvenile andesite clasts exist as either subrounded to subangular fragments with abundant vesicles that range in color from white to brown or dense clasts characterized by their porphyritic and glassy texture. Samples from neither eruption correlate in sorting or grain size with distance from the vent. Stratigraphic and granulometric data suggest differences in the manner in which these two pyroclastic density currents traveled and groundmass textures are interpreted as recording differences in how the two magmas ascended and erupted, whereas juvenile Burr Point clasts resemble other lava flows erupted from Augustine Volcano, vesicular and glassy juvenile West Island clasts bear resemblance to clasts derived from so-called "blast-generated" pyroclastic density deposits at Mt. St. Helens in 1980 and Bezymianny in 1956.

  10. Volcanic history and 40Ar/39Ar and 14C geochronology of Terceira Island, Azores, Portugal

    USGS Publications Warehouse

    Calvert, Andrew T.; Moore, Richard B.; McGeehin, John P.; Rodrigues da Silva, Antonio

    2006-01-01

    Seven new 40Ar/39Ar and 23 new radiocarbon ages of eruptive units, in support of new geologic mapping, improve the known chronology of Middle to Late Pleistocene and Holocene volcanic activity on the island of Terceira, Azores and define an east-to-west progression in stratovolcano growth. The argon ages indicate that Cinco Picos Volcano, the oldest on Terceira, completed its main subaerial cone building activity by about 370–380 ka. Collapse of the upper part of the stratovolcanic edifice to form a 7 × 9 km caldera occurred some time after 370 ka. Postcaldera eruptions of basalt from cinder cones on and near the caldera floor and trachytic pyroclastic flow and pumice fall deposits from younger volcanoes west of Cinco Picos have refilled much of the caldera. The southern portion of Guilherme Moniz Volcano, in the central part of the island, began erupting prior to 270 ka and produced trachyte domes, flows, and minor pyroclastic deposits until at least 111 ka. The northern part of Guilherme Moniz Caldera is less well exposed than the southern part, but reflects a similar age range. The northwest portion of the caldera was formed sometime after 44 ka. Several well-studied ignimbrites that blanket much of the island likely erupted from Guilherme Moniz Volcano. The Pico Alto Volcanic Center, a tightly spaced cluster of trachyte domes and short flows, is a younger part of Guilherme Moniz Volcano. Stratigraphic studies and our new radiocarbon ages suggest that most of the Pico Alto eruptions occurred during the period from about 9000 to 1000 years BP. Santa Barbara Volcano is the youngest stratovolcano on Terceira, began erupting prior to 29 ka, and has been active historically.

  11. Argon geochronology of late Pleistocene to Holocene Westdahl volcano, Unimak Island, Alaska

    USGS Publications Warehouse

    Calvert, Andrew T.; Moore, Richard B.; McGimsey, Robert G.

    2005-01-01

    High-precision 40Ar/39Ar geochronology of selected lavas from Westdahl Volcano places time constraints on several key prehistoric eruptive phases of this large active volcano. A dike cutting old pyroclastic-flow and associated lahar deposits from a precursor volcano yields an age of 1,654+/-11 k.y., dating this precursor volcano as older than early Pleistocene. A total of 11 geographically distributed lavas with ages ranging from 47+/-14 to 127+/-2 k.y. date construction of the Westdahl volcanic center. Lava flows cut by an apparent caldera-rim structure yielded ages of 81+/-5 and 121+/-8 k.y., placing a maximum date of 81 ka on caldera formation. Late Pleistocene and Holocene lavas fill the caldera, but most of them are obscured by the large summit icecap.

  12. The 15 September 1991 pyroclastic flows at Unzen Volcano (Japan): a flow model for associated ash-cloud surges

    NASA Astrophysics Data System (ADS)

    Fujii, Toshitsugu; Nakada, Setsuya

    1999-04-01

    Large-scale collapse of a dacite dome in the late afternoon of 15 September 1991 generated a series of pyroclastic-flow events at Unzen Volcano. Pyroclastic flows with a volume of 1×10 6 m 3 (as DRE) descended the northeastern slope of the volcano, changing their courses to the southeast due to topographic control. After they exited a narrow gorge, an ash-cloud surge rushed straight ahead, detaching the main body of the flow that turned and followed the topographic lows to the east. The surge swept the Kita-Kamikoba area, which had been devastated by the previous pyroclastic-flow events, and transported a car as far as 120 m. Following detachment, the surge lost its force after it moved several hundred meters, but maintained a high temperature. The deposits consist of a bottom layer of better-sorted ash (unit 1), a thick layer of block and ash (unit 2), and a thin top layer of fall-out ash (unit 3). Unit 2 overlies unit 1 with an erosional contact. The upper part of unit 2 grades into better-sorted ash. At distal block-and-ash flow deposits, the bottom part of unit 2 also consists of better-sorted ash, and the contact with the unit 1 deposits becomes ambiguous. Video footage of cascading pyroclastic flows during the 1991-1995 eruption, traveling over surfaces without any topographic barriers, revealed that lobes of ash cloud protruded intermittently from the moving head and sides, and that these lobes surged ahead on the ground surface. This fact, together with the inspection by helicopter shortly after the events, suggests that the protruded lobes consisted of better-sorted ash, and resulted in the deposits of unit 1. The highest ash-cloud plume at the Oshigadani valley exit, and the thickest deposition of fall-out ash over Kita-Kamikoba and Ohnokoba, indicate that abundant ash was also produced when the flow passed through a narrow gorge. In the model presented here, the ash clouds from the pyroclastic flows were composed of a basal turbulent current of high concentration (main body), an overriding and intermediate fluidization zone, and an overlying dilute cloud. Release of pressurized gas in lava block pores, due to collisions among blocks and the resulting upward current, caused a zone of fluidization just above the main body. The mixture of gas and ash sorted in the fluidization zone moved ahead and to the side of the main body as a gravitational current, where the ash was deposited as surge deposits. The main body, which had high internal friction and shear near its base, then overran the surge deposits, partially eroding them. When the upward current of gas (fluidization) waned, better-sorted ash suspended in the fluidization zone was deposited on block-and-ash deposits. In the distal places of block-and-ash deposits, unit 2 probably was deposited in non-turbulent fashion without any erosion of the underlying layer (unit 1).

  13. Earth observations taken during STS-83 mission

    NASA Image and Video Library

    2016-08-12

    STS083-747-088 (4-8 April 1997)--- Mayon Volcano with a Plume, Luzon, the Philippines Mayon has the classic conical shape of a strato volcano. It is the most active volcano in the Philippines and continues to be active as demonstrated by the plume in the photo. Since 1616, Mayon has erupted 47 times. The most recent major eruption, in 1993, began unexpectedly with an explosion. The initial eruption lasted only 30 minutes but it generated pyroclastic flows that killed 68 people and prompted the evacuation of 60,000 others.

  14. Earth observations taken by the Expedition Seven crew

    NASA Image and Video Library

    2003-08-24

    ISS007-E-13327 (24 August 2003) --- This view featuring Java’s Merapi volcano was photographed by one of the Expedition 7 crewmembers onboard the International Space Station (ISS). At 2,911 meters, the summit of Merapi and its vigorous steam plume rises above a bank of stratus clouds. One of Indonesia’s most active volcanoes, it has been almost continuously active for nearly ten years, including periodic pyroclastic flows and avalanches. The volcano is located less than 25 miles north of the city of Yogykarta in central Java.

  15. Stratigraphic and sedimetological study of relevant lahar deposits of La Lumbre ravine, Colima volcano (Mexico): preliminary results.

    NASA Astrophysics Data System (ADS)

    Sarocchi, D.; Rodriguez-Sedano, L. A.; Saucedo, R.; Capra, L.

    2009-04-01

    Volcán de Colima is the most active volcano of Mexico with more than fifty eruptions documented in the last four centuries. The great amount of pyroclastic material deposited in the volcano slopes represents a perfect source for an intense lahar activity. Despite the intense volcanic activity with production of explosive eruptions and pyroclastic flows, lahars are greatly the most dangerous phenomena at Volcán de Colima. Pyroclastic flows did not reach long distances, generally less than 5 km from the crater. In contrast, lahars travel long distances, up to 10 km, causing damage to infrastructure and being able to affect populated areas. For this reason in the last 100 years more than 350 people died for lahars in the Colima Volcanic Complex and only 8 lost their lives for pyroclastic flows in 1913 plinian eruption. "La Lumbre" ravine is a very important morphological feature in the western-southwestern sector of the volcano, there, it gathers the main drainage system and collects water from "El Playon", a wide intra-caldera basin delimited by the Volcán de Colima to the south and the "Paleofuego" caldera rim to the north. This ravine produced huge lahars such as the 1906 lahar which killed almost 325 people, or the lahars associated with the great 1913 eruption, other associated with de 1990-91 volcanic crisis, and is still very active, continuously remobilizing the 1998-99 pyroclastic flow deposits. In 2002 near the confluence between "La Lumbre" and "El Zarco" Ravine, a house was destroyed fortunately with no danger for people. In order to perform future accurate lahar numerical simulation and obtain reliable hazard study along this ravine, is very important to reconstruct the complex stratigraphy and understand which of such important deposits is related with the 1906, 1913 or 1991 eruptive crisis. For this reason we are performing a detailed stratigraphic study of the lahars sequence. We selected the best outcrops at different distances from the crater. In each site we obtained vertical granulometric sections in order to point out the presence of granulometric structures. Each unit was studied in order to obtain the total granulometric distribution at different depths, and of each sample we performed component analysis and clast shape study. Preliminary results point out the presence of almost three important lahar units that can be well followed along the ravine. All the studied deposits are related with no-cohesive lahars. The important thickness, the very coarse granulometry and the presence of abundant juvenile clasts, suggest that they are related with important volcanic crisis.

  16. Rheology of the 2006 eruption at Tungurahua volcano, Ecuador

    NASA Astrophysics Data System (ADS)

    Hanson, J. B.; Lavallée, Y.; Hess, K.-U.; von Aulock, F. W.; Dingwell, D. B.

    2009-04-01

    During August 16th to 18th 2006, the eruptive crisis at Tungurahua volcano (Ecuador) culminated in VEI 2 eruption with tens of pyroclastic flows and the extrusion of a lava flow. The nearly simultaneous occurrence of a lava flow and a pyroclastic flow from a single vent deserves attention. Generally, the rheology is a chief determinant of eruption style. Specifically, magmas are ductile (effusive) at low strain rates whereas they are brittle (explosive) at high strain rates. Although this distinction has been extensively described for single-phase magmas, there remain many questions as to the rheological implications of crystals and bubbles present in magmas. Here we present preliminary characterizations of the complex rheology of the magma involved in the 2006 eruption at Tungurahua volcano. The magma present in this eruption was andesitic with an interstitial melt composition averaging ~58 wt.% SiO2. The bombs present in the pyroclastic deposit show an open porosity ranging from 15 to 35 vol.% and a crystallinity generally greater than ~30 vol.% and occasionally up to 60 vol.% in samples affected by microlite growth. Petrographic analyses revealed magma batches with different crystallization histories. In high-porosity samples containing microlites, a recrystallization rim around clinopyroxene and resorption of the plagioclase were observed. In contrast, the dense samples show pristine, euhedral crystals and a near absence of microlites. The heterogeneous petrographic structures suggest the possibilities of mingling in the conduit or of magma batches with different decompression rates. Dilatometric analyses suggest glass transition temperatures (Tg) of ~974 °C for the dense material (porosity~15 vol.%) and as high as ~1060 °C for the high-porosity bombs (porosity~35 vol.%). Successive series of heating and cooling of the glass reveal an increase of Tg by as much as 60 °C indicative of significant water left in the melt. Preliminary analyses of images obtained via high-resolution neutron tomography also suggest the remnant of water in the bombs. This work in progress suggests that the large eruptive event in mid-August 2006 were caused by recharge in the magma reservoir or possibly in the conduit. Subsequently, both magma batches ascended through the pipe-like conduit, but rheological differences and possibly different ascent rates impeded complete mixing. This distinction may also explain the simultaneous occurrence of a lava flow and pyroclastic flows.

  17. Volcaniclastic dykes tell on fracturing, explosive eruption and lateral collapse at Stromboli volcano (Italy)

    NASA Astrophysics Data System (ADS)

    Vezzoli, Luigina; Corazzato, Claudia

    2016-05-01

    In the upper part of the Stromboli volcano, in the Le Croci and Bastimento areas, two dyke-like bodies of volcanic breccia up to two-metre thick crosscut and intrude the products of Vancori and Neostromboli volcanoes. We describe the lithofacies association of these unusual volcaniclastic dykes, interpret the setting of dyke-forming fractures and the emplacement mechanism of internal deposits, and discuss their probable relationships with the explosive eruption and major lateral collapse events that occurred at the end of the Neostromboli period. The dyke volcaniclastic deposits contain juvenile magmatic fragments (pyroclasts) suggesting a primary volcanic origin. Their petrographic characteristics are coincident with the Neostromboli products. The architecture of the infilling deposits comprises symmetrically-nested volcaniclastic units, separated by sub-vertical boundaries, which are parallel to the dyke margins. The volcanic units are composed of distinctive lithofacies. The more external facies is composed of fine and coarse ash showing sub-vertical laminations, parallel to the contact wall. The central facies comprises stratified, lithic-rich breccia and lapilli-tuff, whose stratification is sub-horizontal and convolute, discordant to the dyke margins. Only at Le Croci dyke, the final unit shows a massive tuff-breccia facies. The volcaniclastic dykes experienced a polyphasic geological evolution comprising three stages. The first phase consisted in fracturing, explosive intrusion related to magma rising and upward injection of magmatic fluids and pyroclasts. The second phase recorded the dilation of fractures and their role as pyroclastic conduits in an explosive eruption possibly coeval with the lateral collapse of the Neostromboli lava cone. Finally, in the third phase, the immediately post-eruption mass-flow remobilization of pyroclastic deposits took place on the volcano slopes.

  18. The Utilization of Remotely Sensed Data to Analyze the Estimated Volume of Pyroclastic Deposits and Morphological Changes Caused by the 2010-2015 Eruption of Sinabung Volcano, North Sumatra, Indonesia

    NASA Astrophysics Data System (ADS)

    Yulianto, Fajar; Suwarsono; Sofan, Parwati

    2016-08-01

    In this research, remotely sensed data has been used to estimate the volume of pyroclastic deposits and analyze morphological changes that have resulted from the eruption of Sinabung volcano. Topographic information was obtained from these data and used for rapid mapping to assist in the emergency response. Topographic information and change analyses (pre- and syn- eruption) were conducted using digital elevation models (DEMs) for the period 2010-2015. Advanced spaceborne thermal emission and reflection radiometer (ASTER) global digital elevation model (GDEM) data from 2009 were used to generate the initial DEMs for the condition prior to the eruption of 2010. Satellite pour l'observation de la terre 6 (SPOT 6) stereo images acquired on 21 June 2015 and were used to make a DEM for that time. The results show that the estimated total volume of lava and pyroclastic deposits, produced during the period 2010 to mid-2015 is approximately 2.8 × 108 m3. This estimated volume of pyroclastic deposits can be used to predict the magnitude of future secondary lahar hazards, which are also related to the capacity of rivers in the area. Morphological changes are illustrated using cross-sectional analysis of the deposits, which are currently deposited to the east, southeast and south of the volcano. Such analyses can also help in forecasting the direction of the future flow hazards. The remote sensing and analysis methods used at Sinabung can also be applied at other volcanoes and to assess the threats of other types of hazards such as landslides and land subsidence.

  19. Geology of Tok Island, Korea: eruptive and depositional processes of a shoaling to emergent island volcano

    NASA Astrophysics Data System (ADS)

    Sohn, Y. K.

    1995-02-01

    Detailed mapping of Tok Island, located in the middle of the East Sea (Sea of Japan), along with lithofacies analysis and K-Ar age determinations reveal that the island is of early to late Pliocene age and comprises eight rock units: Trachyte I, Unit P-I, Unit P-II, Trachyandesite (2.7±0.1 Ma), Unit P-III, Trachyte II (2.7±0.1 Ma), Trachyte III (2.5±0.1 Ma) and dikes in ascending stratigraphic order. Trachyte I is a mixture of coherent trachytic lavas and breccias that are interpreted to be subaqueous lavas and related hyaloclastites. Unit P-I comprises massive and inversely graded basaltic breccias which resulted from subaerial gain flows and subaqueous debris flows. A basalt clast from the unit, derived from below Trachyte I, has an age of 4.6±0.4 Ma. Unit P-II is composed of graded and stratified lapilli tuffs with the characteristics of proximal pyroclastic surge deposits. The Trachyandesite is a massive subaerial lava ponded in a volcano-tectonic depression, probably a summit crater. A pyroclastic sequence containing flattened scoria clasts (Unit P-III) and a small volume subaerial lava (Trachyte II) occur above the Trachyandesite, suggesting resumption of pyroclastic activity and lava effusion. Afterwards, shallow intrusion of magma occurred, producing Trachyte III and trachyte dikes. The eight rock units provide an example of the changing eruptive and depositional processes and resultant succession of lithofacies as a seamount builds up above sea level to form an island volcano: Trachyte I represents a wholly subaqueous and effusive stage; Units P-I and P-II represent Surtseyan and Taalian eruptive phases during an explosive transitional (subaqueous to emergent) stage; and the other rock units represent later subaerial effusive and explosive stages. Reconstruction of volcano morphology suggests that the island is a remnant of the south-western crater rim of a volcano the vent of which lies several hundred meters to the north-east.

  20. Morphological changes at Colima volcano caused the 2015 Hurricane Patricia investigated by repeated drone surveys and time lapse cameras

    NASA Astrophysics Data System (ADS)

    Walter, Thomas R.; Navarro, Carlos; Arambula, Raul; Salzer, Jackie; Reyes, Gabriel

    2016-04-01

    Colima is one of the most active volcanoes in Latin America, with frequent dome building eruptions and pyroclastic flow hazards. In July 2015 Colima had a new climax of eruptive activity, profoundly changing the summit morphology and redistributing volcanic ashes to the lower volcano apron. These unconsolidated ashes are prone to be mobilized by rainfall events, and therefore required close monitoring. A major hurricane then had landfall in western Mexico in October 2015, accumulating c. 450 mm of rainfall at a meteorological station at Nevado de Colima (3461 m) and immense lahar and ash deposit mobilization from Colima Volcano. Hurricane Patricia was the largest ever recorded category 5 storm, directly crossing the state of Colima. Due to the successful scientific advice and civil protection no human losses were directly associated to this lahar hazards. We have conducted drone overflight in profound valleys that directed the pyroclastic flows and lahars two days before and three days after the hurricane. Over 8,000 close range aerial photographs could be recorded, along with GPS locations of ground stations. Images were processed using the structure from motion methodology, and digital elevation models compared. Erosion locally exceeded 10 m vertically and caused significant landscape change. Mass mobilization unloaded the young pyroclastic deposits and led to significant underground heat loss and water boiling in the affected areas. We also firstly report the use of camera array set-ups along the same valley to monitor lahar deposition and erosion from different perspectives. Combining these photos using photogrammetric techniques allow time series of digital elevation change studies at the deepening erosional ravines, with large potential for future geomorphic monitoring. This study shows that photo monitoring is very useful for studying the link of volcano landscape evolution and hydrometerological extremes and for rapid assessment of indirect volcanic hazards.

  1. Social and environmental impact of volcaniclastic flows related to 472 AD eruption at Vesuvius from stratigraphic and geoarcheological data

    NASA Astrophysics Data System (ADS)

    Di Vito, Mauro A.; de Vita, Sandro; Rucco, Ilaria; Bini, Monica; Zanchetta, Giovanni; Aurino, Paola; Cesarano, Mario; Ebanista, Carlo; Rosi, Mauro; Ricciardi, Giovanni

    2017-04-01

    There is a growing number of evidences in the surrounding plain of Somma-Vesuvius volcano which indicate that along with primary volcanic processes (i.e. fallout, pyroclastic density currents) the syn-eruptive and post-eruptive volcaniclastic remobilization has severely impacted the ancient civilizations, which flourished in the area. This represents an important starting point for understanding the future hazard related to a potential (and not remote) renewal of volcanic activity of the Campaniana volcanoes. We present geoarcheological and stratigraphic data obtained from the analysis of more than 160 sections in the Campanian plain showing the widespread impact of volcaniclastic debris flows and floods originated from the rapid remobilization of the products of the AD 472 eruption of Somma-Vesuvius, both on the environment and on the human landscape. This eruption was one of the two sub-Plinian historical events of Somma Vesuvius. This event largely impacted the northern and eastern territory surrounding the volcano with deposition of a complex sequence of pyroclastic-fallout and -current deposits. These sequences were variably affected by syn- and post-eruptive mobilization both along the Somma-Vesuvius slopes and the Apennine valleys with the emplacement of thick mud- and debris-flows which strongly modified the preexisting paleogeography of the Plain with irretrievable damages to the agricultural and urban landscape. The multidisciplinary approach to the study of the sequences permitted to reconstruct the palaeoenvironment before the eruption and the timing of the emplacement of both pyroclastic and volcanoclastic deposits. The preexisting landscape was characterized by intense human occupation, although showing strong evidences of degradation and abandonment due to the progressive decline of the Roman Empire. The impact of volcaniclastic flows continued for decades after the eruption as highlighted in the studied sequences by stratigraphic and archaeologic data. In fact the volcanoclastic flows emplacement continued at least until the following AD 512 eruption of Somma-Vesuvius, and likely contributed to the final decline of the Roman civilization in the area.

  2. Soufriere Hills Volcano Resumes Activity

    NASA Image and Video Library

    2017-12-08

    A massive eruption of Montserrat’s Soufrière Hills Volcano covered large portions of the island in debris. The eruption was triggered by a collapse of Soufrière Hills’ summit lava dome on February 11, 2010. Pyroclastic flows raced down the northern flank of the volcano, leveling trees and destroying buildings in the village of Harris, which was abandoned after Soufrière Hills became active in 1995. The Montserrat Volcano Observatory reported that some flows, about 15 meters (49 feet) thick, reached the sea at Trant’s Bay. These flows extended the island’s coastline up to 650 meters (2,100 feet). These false-color satellite images show the southern half of Montserrat before and after the dome collapse. The top image shows Montserrat on February 21, 2010, just 10 days after the event. For comparison, the bottom image shows the same area on March 17, 2007. Red areas are vegetated, clouds are white, blue/black areas are ocean water, and gray areas are covered by flow deposits. Fresh deposits tend to be lighter than older deposits. On February 21, the drainages leading down from Soufrière Hills, including the White River Valley, the Tar River Valley, and the Belham River Valley, were filled with fresh debris. According to the Montserrat Volcano Observatory, pyroclastic flows reached the sea through Aymers Ghaut on January 18, 2010, and flows entered the sea near Plymouth on February 5, 2010. NASA Earth Observatory image by Robert Simmon, using data from the NASA/GSFC/METI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team. Caption by Robert Simmon. To read more go to: earthobservatory.nasa.gov/IOTD/view.php?id=42792 NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook

  3. The Summer 2006 Volcanic Crisis of Tungurahua, Ecuador: No Lessons Learned

    NASA Astrophysics Data System (ADS)

    Toulkeridis, T.

    2007-05-01

    More than 250 volcanoes are exposed in the Ecuadorian part of the Northern Andean Volcanic Zone of which the 5019 m a.s.l. high Tungurahua, is one of the seventeen considered active volcanoes in the country. The Tungurahua volcanic complex is located in the Eastern metamorphic belt and is made up of three different edifices. The actual active stratovolcano, Tungurahua III, is build up above debris-avalanche deposits of the last sector collapse and contains also series of lavas of either andesitic affinities, which reached in past VEI's of 3 while the occasionally dacitic lavas have been associated with eruptive phases reaching VEI's of up to 4. The growth of the steep-sided volcano is based on eruptive phases with the repeated generation of ash falls, lahars, lava and pyroclastic flows demonstrating a frequency of approximate once per century, lasting each up to a decade. The volcano remained relatively dormant until 1993 when seismic activity gradually increased, while in August of 1999 after some 80 years of rest, Tungurahua III entered into a new eruptive phase lasting up to date, now eight years of continuous activity. The new magmatic, andesitic activity was characterized mainly by strombolian types of explosions, gas, ash and tephra emissions covering usually the southwestern area of the volcano and occasionally minor lahars due to the accumulation of ash on the flanks of the volcano. Since the beginning of the new eruptive activity in late 1999, the volcano exhibited different eruptive cycles, usually every 12 to 18 months up to the spring-summer of 2006. Between the 10th to the 16th of May a new eruptive cycle started with the usual ash showers due to the high frequency of phreatic and strombolian explosions of which one reached a height of 19km. Shortly later after an apparent calmness, a 15 km high eruptive column produced the very first pyroclastic flows (and minor lava flows), which descended on the western volcanic flank reaching small villages. About a month later, the strongest eruption since the reactivation of Tungurahua in 1999, with a VEI of 3, produced some 20 pyroclastic flows, which covered a big part of the western volcanic flank, killing seven persons in a previously stated safe zone and devastating at least five small villages, destroying some 20,000 hectars of cultivated land. This eruption of the 16th to the 17th of August of 2006, which had a very high social and economic impact, covered a huge area of Ecuador of which ash and gas clouds reached a length of at least 800 km and a width of some 200 km mainly towards the western side of the volcano. Since 1999 as result of the volcanic activity, authorities changed frequently the alert levels between yellow, moderate orange and orange, which leaded to one evacuation of some 26,000 persons from the foothill-situated, but due natural barriers protected city of Banios and some other nearby minor villages in the volcano area in October 1999. Due to the failed prediction of a major event, people went back violently three months later despite the orders of the authorities. Later in 2006 due to the presence of the first pyroclastic flows, a few hundred people fled from their homes situated in the western flank of the volcano and after the eruption of the 16th to the 17th of August 2006, some 5,000 people of the same area fled or were evacuated into refuge camps in the surrounding of the volcano. Promised and assured financial assistance by different ministries for the relocation of the public, never reached the affected families. New previously unpublished photographic and video material as well as statistics of the interviewed, affected public will be shown within this presentation.

  4. Effects of slope on the formation of dunes in dilute, turbulent pyroclastic currents: May 18th, 1980 Mt. St. Helens eruption

    NASA Astrophysics Data System (ADS)

    Bendana, Sylvana; Brand, Brittany D.; Self, Stephen

    2014-05-01

    The flanks of Mt St Helens volcano (MSH) are draped with thin, cross-stratified and stratified pyroclastic density current (PDC) deposits. These are known as the proximal bedded deposits produced during the May 18th, 1980 eruption of MSH. While the concentrated portions of the afternoon PDCs followed deep topographic drainages down the steep flanks of the volcano, the dilute overriding cloud partially decoupled to develop fully dilute, turbulent PDCs on the flanks of the volcano (Beeson, D.L. 1988. Proximal Flank Facies of the May 18, 1980 Ignimbrite: Mt. St. Helens, Washington.). The deposits along the flank thus vary greatly from those found in the pumice plain, which are generally thick, massive, poorly-sorted, block-rich deposits associated with the more concentrated portions of the flow (Brand et al, accepted. Dynamics of pyroclastic density currents: Conditions that promote substrate erosion and self-channelization - Mount St Helens, Washington (USA). JVGR). We explore the influence of topography on the formation of these dilute currents and influence of slope on the currents transport and depositional mechanisms. The deposits on steeper slopes (>15°) are fines depleted relative to the proximal bedded deposits on shallower slopes (<15°). Bedform amplitude and wavelength increase with increasing slope, as does the occurrence of regressive dunes. Increasing slope causes an increase in flow velocity and thus an increase in flow turbulence. The fines depleted deposits suggest that fine ash elutriation is more efficient in flows with stronger turbulence. The longer wavelength and amplitudes suggest that bedform morphology is directly related to flow velocity, an important finding since the controls on bedform wavelength and amplitude in density stratified flows remains poorly constrained. The occurrence of regressive dunes, often interpreted as high flow-regime bedforms, on steeper slopes relative to progressive dunes on shallower slopes further attests to the control of velocity and flow regime on bedform morphology. Samples collected from recently exposed deposits and analyzed by grain size measurements, density analyses, and crystal morphoscopy studies further assess modes of origin and transport of dilute PDCs.

  5. Disruption of Drift glacier and origin of floods during the 1989-1990 eruptions of Redoubt Volcano, Alaska

    USGS Publications Warehouse

    Trabant, D.C.; Waitt, R.B.; Major, J.J.

    1994-01-01

    Melting of snow and glacier ice during the 1989-1990 eruption of Redoubt Volcano caused winter flooding of the Drift River. Drift glacier was beheaded when 113 to 121 ?? 106 m3 of perennial snow and ice were mechanically entrained in hot-rock avalanches and pyroclastic flows initiated by the four largest eruptions between 14 December 1989 and 14 March 1990. The disruption of Drift glacier was dominated by mechanical disaggregation and entrainment of snow and glacier ice. Hot-rock avalanches, debris flows, and pyroclastic flows incised deep canyons in the glacier ice thereby maintaining a large ice-surface area available for scour by subsequent flows. Downvalley flow rheologies were transformed by the melting of snow and ice entrained along the upper and middle reaches of the glacier and by seasonal snowpack incorporated from the surface of the lower glacier and from the river valley. The seasonal snowpack in the Drift River valley contributed to lahars and floods a cumulative volume equivalent to about 35 ?? 106 m3 of water, which amounts to nearly 30% of the cumulative flow volume 22 km downstream from the volcano. The absence of high-water marks in depressions and of ice-collapse features in the glacier indicated that no large quantities of meltwater that could potentially generate lahars were stored on or under the glacier; the water that generated the lahars that swept Drift River valley was produced from the proximal, eruption-induced volcaniclastic flows by melting of snow and ice. ?? 1994.

  6. Stratigraphic reconstruction of two debris avalanche deposits at Colima Volcano (Mexico): Insights into pre-failure conditions and climate influence

    NASA Astrophysics Data System (ADS)

    Roverato, M.; Capra, L.; Sulpizio, R.; Norini, G.

    2011-10-01

    Throughout its history, Colima Volcano has experienced numerous partial edifice collapses with associated emplacement of debris avalanche deposits of contrasting volume, morphology and texture. A detailed stratigraphic study in the south-eastern sector of the volcano allowed the recognition of two debris avalanche deposits, named San Marcos (> 28,000 cal yr BP, V = ~ 1.3 km 3) and Tonila (15,000-16,000 cal yr BP, V = ~ 1 km 3 ). This work sheds light on the pre-failure conditions of the volcano based primarily on a detailed textural study of debris avalanche deposits and their associated pyroclastic and volcaniclastic successions. Furthermore, we show how the climate at the time of the Tonila collapse influenced the failure mechanisms. The > 28,000 cal yr BP San Marcos collapse was promoted by edifice steep flanks and ongoing tectonic and volcanotectonic deformation, and was followed by a magmatic eruption that emplaced pyroclastic flow deposits. In contrast, the Tonila failure occurred just after the Last Glacial Maximum (22,000-18,000 cal BP) and, in addition to the typical debris avalanche textural characteristics (angular to sub-angular clasts, coarse matrix, jigsaw fit) it shows a hybrid facies characterized by debris avalanche blocks embedded in a finer, homogenous and partially cemented matrix, a texture more characteristic of debris flow deposits. The Tonila debris avalanche is directly overlain by a 7-m thick hydromagmatic pyroclastic succession. Massive debris flow deposits, often more than 10 m thick and containing large amounts of tree trunk logs, represent the top unit in the succession. Fluvial deposits also occur throughout all successions; these represent periods of highly localized stream reworking. All these lines of evidence point to the presence of water in the edifice prior to the Tonila failure, suggesting it may have been a weakening factor. The Tonila failure appears to represent an anomalous event related to the particular climatic conditions at the time of the collapse. The presence of extensive water at the onset of deglaciation modified the mobility of the debris avalanche, and led to the formation of a thick sequence of debris flows. The possibility that such a combination of events can occur, and that their probability is likely to increase during the rainy season, should be taken into consideration when evaluating hazards associated with future collapses at Colima volcano.

  7. The CALIPSO Borehole Project at Soufrière Hills Volcano, Montserrat, BWI: Status and Scientific Overview of Prodigious Dome Collapse of July 2003

    NASA Astrophysics Data System (ADS)

    Mattioli, G. S.; Voight, B.; Linde, A. T.; Sacks, I. S.; Watts, P.; Hidayat, D.; Young, S. R.; Widiwijayanti, C.; Shalev, E.; Malin, P. E.; Elsworth, D.; Williams, P.; van Boskirk, E.; Thompson, G.; Syers, T.; Sparks, R. S.; Schleigh, B.; Norton, G.; Neuberg, J.; Miller, V.; McWhorter, N.; Johnston, W.; Dunkley, P.; Clarke, A. B.; Bass, V.

    2005-05-01

    The CALIPSO Project (Caribbean Andesite Lava Island-volcano Precision Seismo-geodetic Observatory) has greatly enhanced the monitoring and scientific infrastructure at the Soufrière Hills Volcano, Montserrat with the recent installation of an integrated array of borehole and surface geophysical instrumentation at four sites (Mattioli et al., 2004). The sensor package at each site includes: a single-component, very broad band, Sacks-Evertson strainmeter, a three-component seismometer (~Hz to 1 kHz), a Pinnacle Technologies series 5000 tiltmeter, and a surface Ashtech u-Z CGPS station with choke ring antenna, SCIGN mount and radome. The project has been successfully launched with its capture of the tremendous SHV lava dome collapse of 12-13 July 2003 (Herd et al., 2003), involving about 120 million cubic meters--the largest lava dome collapse in the historical record. A wide variety of unique geophysical signals were acquired CALIPSO instrumentation during the July 2003 collapse and important constraints on a variety of volcanic processes are being obtained. For example, tsunami waves were generated 2 km east of the volcanic dome by pyroclastic flows entering the sea. We reconstruct collapse volume-time history from seismic signals generated by pyroclastic flows, using the method of Brodscholl et al. (2000). The tsunami left flotsam strandlines of runup >8m high along the east coast of Montserrat, and waves ~0.5m high were reported from Guadaloupe. Unique borehole dilatometer data (Voight et al., 2003; Mattioli et al., 2003; 2004) record details of tsunami wave passage. One station is located 40m from the sea, with the instrument ~180m below MSL. Strain wave packets at periods of ~200-500s occurred, consistent in period and amplitude with water loading from passing tsunami waves. Wave packets between ~0600-1130 LT can be correlated with pyroclastic flow seismic data. Non-linear Boussinesq hydrodynamic modeling fits wave decay from source to instrument site and is consistent with wave periods and delay times. Coherent near-field waves depend on flow volume, submerged time of motion, and bathymetry. The model matches the delay time between pyroclastic flow entry time and arrival of tsunami waves at the instrument site.

  8. Inside pyroclastic density currents - uncovering the enigmatic flow structure and transport behaviour in large-scale experiments

    NASA Astrophysics Data System (ADS)

    Breard, Eric C. P.; Lube, Gert

    2017-01-01

    Pyroclastic density currents (PDCs) are the most lethal threat from volcanoes. While there are two main types of PDCs (fully turbulent, fully dilute pyroclastic surges and more concentrated pyroclastic flows encompassing non-turbulent to turbulent transport) pyroclastic flows, which are the subject of the present study, are far more complex than dilute pyroclastic surges and remain the least understood type despite their far greater hazard, greater runout length and ability to transport vast quantities of material across the Earth's surface. Here we present large-scale experiments of natural volcanic material and gas in order to provide the missing quantitative view of the internal structure and gas-particle transport mechanisms in pyroclastic flows. We show that the outer flow structure with head, body and wake regions broadly resembles current PDC analogues of dilute gravity currents. However, the internal structure, in which lower levels consist of a concentrated granular fluid and upper levels are more dilute, contrasts significantly with the internal structure of fully dilute gravity currents. This bipartite vertical structure shows strong analogy to current conceptual models of high-density turbidity currents, which are responsible for the distribution of coarse sediment in marine basins and of great interest to the hydrocarbon industry. The lower concentrated and non-turbulent levels of the PDC (granular-fluid basal flow) act as a fast-flowing carrier for the more dilute and turbulent upper levels of the current (ash-cloud surge). Strong kinematic coupling between these flow parts reduces viscous dissipation and entrainment of ambient air into the lower part of the ash-cloud surge. This leads to a state of forced super-criticality whereby fast and destructive PDCs can endure even at large distances from volcanoes. Importantly, the basal flow/ash-cloud surge coupling yields a characteristically smooth rheological boundary across the non-turbulent/turbulent interface, as well as vertical velocity and density profiles in the ash-cloud surge, which strongly differ from current theoretical predictions. Observed generation of successive pulses of high dynamic pressure within the upper dilute levels of the PDC may be important to understand the destructive potential of PDCs. The experiments further show that a wide range in the degree of coupling between particle and gas phases is critical to the vertical and longitudinal segregation of the currents into reaches that have starkly contrasting sediment transport capacities. In particular, the formation of mesoscale turbulence clusters under strong particle-gas feedback controls vertical stratification inside the turbulent upper levels of the current (ash-cloud surge) and triggers significant transfers of mass and momentum from the ash-cloud surge onto the granular-fluid basal flow. These results open up new pathways to advance current computational PDC hazard models and to describe and interpret PDCs as well as other types of high-density gravity currents transported across the surfaces of Earth and other planets and across marine basins.

  9. Natural hazards and risk reduction in Hawai'i: Chapter 10 in Characteristics of Hawaiian volcanoes

    USGS Publications Warehouse

    Kauahikaua, James P.; Tilling, Robert I.; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    Although HVO has been an important global player in advancing natural hazards studies during the past 100 years, it faces major challenges in the future, among which the following command special attention: (1) the preparation of an updated volcano hazards assessment and map for the Island of Hawai‘i, taking into account not only high-probability lava flow hazards, but also hazards posed by low-probability, high-risk events (for instance, pyroclastic flows, regional ashfalls, volcano flank collapse and associated megatsunamis), and (2) the continuation of timely and effective communications of hazards information to all stakeholders and the general public, using all available means (conventional print media, enhanced Web presence, public-education/outreach programs, and social-media approaches).

  10. Geology of the Side Crater of the Erebus volcano, Antarctica

    NASA Astrophysics Data System (ADS)

    Panter, Kurt S.; Winter, Brian

    2008-11-01

    The summit cone of the Erebus volcano contains two craters. The Main crater is roughly circular (˜ 500 m diameter) and contains an active persistent phonolite lava lake ˜ 200 m below the summit rim. The Side Crater is adjacent to the southwestern rim of the Main Crater. It is a smaller spoon-shaped Crater (250-350 m diameter, 50-100 m deep) and is inactive. The floor of the Side Crater is covered by snow/ice, volcanic colluvium or weakly developed volcanic soil in geothermal areas (a.k.a. warm ground). But in several places the walls of the Side Crater provide extensive vertical exposure of rock which offers an insight into the recent eruptive history of Erebus. The deposits consist of lava flows with subordinate volcanoclastic lithologies. Four lithostratigraphic units are described: SC 1 is a compound lava with complex internal flow fabrics; SC 2 consists of interbedded vitric lavas, autoclastic and pyroclastic breccias; SC 3 is a thick sequence of thin lavas with minor autoclastic breccias; SC 4 is a pyroclastic fall deposit containing large scoriaceous lava bombs in a matrix composed primarily of juvenile lapilli-sized pyroclasts. Ash-sized pyroclasts from SC 4 consist of two morphologic types, spongy and blocky, indicating a mixed strombolian-phreatomagmatic origin. All of the deposits are phonolitic and contain anorthoclase feldspar. The stratigraphy and morphology of the Side Crater provides a record of recent volcanic activity at the Erebus volcano and is divided into four stages. Stage I is the building of the main summit cone and eruption of lavas (SC 1 and SC 3) from Main Crater vent(s). A secondary cone was built during Stage II by effusive and explosive activity (SC 2) from the Side Crater vent. A mixed strombolian and phreatomagmatic eruption (SC 4) delimits Stage III. The final stage (IV) represents a period of erosion and enlargement of the Side Crater.

  11. Earth Observations taken by the Expedition 21 Crew

    NASA Image and Video Library

    2009-10-16

    ISS021-E-008370 (16 Oct. 2009) --- El Misti volcano in Peru is featured in this image photographed by an Expedition 21 crew member on the International Space Station. The symmetric conical shape of El Misti is typical of a stratovolcano ? a type of volcano characterized by interlayered lavas and products of explosive eruptions, such as ash and pyroclastic flow deposits. Stratovolcanoes are usually located on the continental crust above a subducting tectonic plate. Magma feeding the stratovolcanoes of the Andes Mountains ? including 5,822 meter-high El Misti ? is associated with ongoing subduction of the Nazca Plate beneath the South American Plate. El Misti?s most recent -- and relatively minor -- eruption occurred in 1985. The city center of Arequipa, Peru lies only 17 kilometers away from the summit of El Misti; the gray urban area is bordered by green agricultural fields (right). With almost one million residents in 2009, it is the second city of Peru in terms of population. Much of the building stone for Arequipa, known locally as sillar, is quarried from nearby pyroclastic flow deposits that are white in color. Arequipa is known as ?the White City? because of the prevalence of this building material. The Chili River extends northeastwards from the city center, and flows through a canyon (left) between El Misti volcano and Nevado Chachani to the north.

  12. Volcanic Tsunami Generation in the Aleutian Arc of Alaska

    NASA Astrophysics Data System (ADS)

    Waythomas, C. F.; Watts, P.

    2003-12-01

    Many of the worlds active volcanoes are situated on or near coastlines, and during eruptions the transfer of mass from volcano to sea is a potential source mechanism for tsunamis. Flows of granular material off of volcanoes, such as pyroclastic flow, debris avalanche, and lahar, often deliver large volumes of unconsolidated debris to the ocean that have a large potential tsunami hazard. The deposits of both hot and cold volcanic grain flows produced by eruptions of Aleutian arc volcanoes are exposed at many locations along the coastlines of the Bering Sea, North Pacific Ocean, and Cook Inlet indicating that the flows entered the sea and in some cases may have initiated tsunamis. We evaluate the process of tsunami generation by granular subaerial volcanic flows using examples from Aniakchak volcano in southwestern Alaska, and Augustine volcano in southern Cook Inlet. Evidence for far-field tsunami inundation coincident with a major caldera-forming eruption of Aniakchak volcano ca. 3.5 ka has been described and is the basis for one of our case studies. We perform a numerical simulation of the tsunami using a large volume pyroclastic flow as the source mechanism and compare our results to field measurements of tsunami deposits preserved along the north shore of Bristol Bay. Several attributes of the tsunami simulation, such as water flux and wave amplitude, are reasonable predictors of tsunami deposit thickness and generally agree with the field evidence for tsunami inundation. At Augustine volcano, geological investigations suggest that as many as 14 large volcanic-rock avalanches have reached the sea in the last 2000 years, and a debris avalanche emplaced during the 1883 eruption may have initiated a tsunami observed about 80 km east of the volcano at the village of English Bay (Nanwalek) on the coast of the southern Kenai Peninsula. By analogy with the 1883 event, previous studies concluded that tsunamis could have been generated many times in the past. If so, geological evidence of tsunamis, such as tsunami deposits on land, should be found in the area around Augustine Island. Paradoxically, unequivocal evidence for tsunami inundation has been found. Augustine Volcano is the most historically active volcano in the Cook Inlet region and a future tsunami from the volcano would have devastating consequences to villages, towns, oil-production facilities, and the fishing industry, especially if it occurred at high tide (the tidal range in this area is about 5 m). Numerical simulation experiments of tsunami generation, propagation and inundation using a subaerial debris avalanche source at Augustine volcano indicate only modest wave generation because of the shallow water surrounding the volcano (maximum water depth about 25 m). Lahar flows produced during eruptions at snow and ice clad volcanoes in the Aleutian arc also deliver copious amounts of sediment to the sea. These flows only rarely transform to subaqueous debris flows that may become tsunamigenic. However, the accumulation of loose, unconsolidated sediment on the continental shelf may lead to subaqueous debris flows and landslides if these deposits become mobilized by large earthquakes. Tsunamis produced by this mechanism could potentially reach coastlines all along the Pacific Rim. Finally, recent work in the western Aleutian Islands indicates that many of the island volcanoes in this area have experienced large-scale flank collapse. Because these volcanoes are surrounded by deep water, the tsunami hazard associated with a future sector collapse could be significant.

  13. Eruptive history, current activity and risk estimation using geospatial information in the Colima volcano, Mexico

    NASA Astrophysics Data System (ADS)

    Suarez-Plascencia, C.; Camarena-Garcia, M.; Nunez-Cornu, F. J.; Flores-Peña, S.

    2013-12-01

    Colima volcano, also known as Volcan de Fuego (19 30.696 N, 103 37.026 W), is located on the border between the states of Jalisco and Colima, and is the most active volcano in Mexico. In January 20, 1913, Colima had its biggest explosion of the twentieth century, with VEI 4, after the volcano had been dormant for almost 40 years. In 1961, a dome reached the northeastern edge of the crater and started a new lava flow, and from this date maintains constant activity. In February 10, 1999, a new explosion occurred at the summit dome. The activity during the 2001-2005 period was the most intense, but did not exceed VEI 3. The activity resulted in the formation of domes and their destruction after explosive events. The explosions originated eruptive columns, reaching altitudes between 4,500 and 9,000 masl, further pyroclastic flows reaching distances up to 3.5 km from the crater. During the explosive events, ash emissions were generated in all directions reaching distances up to 100 km, slightly affecting the nearby villages: Tuxpan, Tonila, Zapotlan, Cuauhtemoc, Comala, Zapotitlan de Vadillo and Toliman. During 2005 to July 2013, this volcano has had an intense effusive-explosive activity; similar to the one that took place during the period of 1890 through 1905. That was before the Plinian eruption of 1913, where pyroclastic flows reached a distance of 15 km from the crater. In this paper we estimate the risk of Colima volcano through the analysis of the vulnerability variables, hazard and exposure, for which we use: satellite imagery, recurring Fenix helicopter over flights of the state government of Jalisco, the use of the images of Google Earth and the population census 2010 INEGI. With this information and data identified changes in economic activities, development, and use of land. The expansion of the agricultural frontier in the lower sides of the volcano Colima, and with the advancement of traditional crops of sugar cane and corn, increased the growth of avocado orchards and fruits like blueberries, raspberries, and blackberries within the radius of 15 km from the crater. The population dynamics in the Colima volcano area had a population of 552,954 inhabitants in 2010, and a growth at an annual rate of 1.6 percent of the total population. 60 percent of the populations live in 105 towns with a population less than 250 inhabitants. Also, the region showed an increase in vulnerability for the development of economic activities, supported by the highway, railway, natural gas pipelines and electrical infrastructure that connect to the Port of Manzanillo to Guadalajara city. With the use of geospatial information quantify the vulnerability, together with the hazard maps and exposure, enabled us to build the following volcanic risk maps: a) Exclusion areas and moderate hazard for explosive events (ballistic) and pyroclastic flows, b) Hazard map of lahars and debris flow, and c) Hazard map of ash-fall. The geospatial database, a GIS mapping and current volcano monitoring, are the basis of the Operational Plan Colima Volcano. Civil Protection by the state of Jalisco and the updating of urban development plans of municipalities converge on the volcano. These instruments of land planning will help reduce volcanic risk in the region.

  14. The latest explosive eruptions of Ciomadul (Csomád) volcano, East Carpathians - A tephrostratigraphic approach for the 51-29 ka BP time interval

    NASA Astrophysics Data System (ADS)

    Karátson, D.; Wulf, S.; Veres, D.; Magyari, E. K.; Gertisser, R.; Timar-Gabor, A.; Novothny, Á.; Telbisz, T.; Szalai, Z.; Anechitei-Deacu, V.; Appelt, O.; Bormann, M.; Jánosi, Cs.; Hubay, K.; Schäbitz, F.

    2016-06-01

    The most recent, mainly explosive eruptions of Ciomadul, the youngest volcano in the Carpatho-Pannonian Region, have been constrained by detailed field volcanological studies, major element pumice glass geochemistry, luminescence and radiocarbon dating, and a critical evaluation of available geochronological data. These investigations were complemented by the first tephrostratigraphic studies of the lacustrine infill of Ciomadul's twin craters (St. Ana and Mohoş) that received tephra deposition during the last eruptions of the volcano. Our analysis shows that significant explosive activity, collectively called EPPA (Early Phreatomagmatic and Plinian Activity), started at Ciomadul in or around the present-day Mohoş, the older crater, at ≥ 51 ka BP. These eruptions resulted in a thick succession of pyroclastic-fall deposits found in both proximal and medial/distal localities around the volcano, characterized by highly silicic (rhyolitic) glass chemical compositions (ca. 75.2-79.8 wt.% SiO2). The EPPA stage was terminated by a subplinian/plinian eruption at ≥ 43 ka BP, producing pumiceous pyroclastic-fall and -flow deposits of similar glass composition, probably from a "Proto-St. Ana" vent located at or around the younger crater hosting the present-day Lake St. Ana. After a quiescent period with a proposed lava dome growth in the St. Ana crater, a new explosive stage began, defined as MPA (Middle Plinian Activity). In particular, a significant two-phase eruption occurred at 31.5 ka BP, producing pyroclastic flows from vulcanian explosions disrupting the preexisting lava dome of Sf. Ana, and followed by pumiceous fallout from a plinian eruption column. Related pyroclastic deposits show a characteristic, less evolved rhyolitic glass composition (ca. 70.2-74.5 wt.% SiO2) and occur both in proximal and medial/distal localities up to 21 km from source. The MPA eruptions, that may have pre-shaped a crater similar to, but possibly smaller than, the present-day St. Ana crater, was followed by a so far unknown, but likewise violent last eruptive stage from the same vent, creating the final morphology of the crater. This stage, referred to as LSPA (Latest St. Ana Phreatomagmatic Activity), produced pyroclastic-fall deposits of more evolved rhyolitic glass composition (ca. 72.8-78.8 wt.% SiO2) compared to that of the previous MPA stage. According to radiocarbon age constraints on bulk sediment, charcoal and organic matter from lacustrine sediments recovered from both craters, the last of these phreatomagmatic eruptions - that draped the landscape toward the east and southeast of the volcano - occurred at 29.6 ka BP, some 2000 years later than the previously suggested last eruption of Ciomadul.

  15. Volcaniclastic stratigraphy of Gede Volcano, West Java, Indonesia: How it erupted and when

    NASA Astrophysics Data System (ADS)

    Belousov, A.; Belousova, M.; Krimer, D.; Costa, F.; Prambada, O.; Zaennudin, A.

    2015-08-01

    Gede Volcano, West Java (Indonesia), is located 60 km south of Jakarta within one of the regions with highest population density in the world. Therefore, knowledge of its eruption history is necessary for hazard evaluation, because even a small eruption would have major societal and economic consequences. Here we report the results of the investigation of the stratigraphy of Gede (with the focus on its volcaniclastic deposits of Holocene age) and include 23 new radiocarbon dates. We have found that a major part of the volcanic edifice was formed in the Pleistocene when effusions of lavas of high-silica basalt dominated. During this period the volcano experienced large-scale lateral gravitational failure followed by complete reconstruction of the edifice, formation of the summit subsidence caldera and its partial refilling. After a repose period of > 30,000 years the volcanic activity resumed at the Pleistocene/Holocene boundary. In the Holocene the eruptions were dominantly explosive with magma compositions ranging from basaltic andesite to rhyodacite; many deposits show heterogeneity at the macroscopic hand specimen scale and also in the minerals, which indicates interactions between mafic (basaltic andesite) and silicic (rhyodacite) magmas. Significant eruptions of the volcano were relatively rare and of moderate violence (the highest VEI was 3-4; the largest volume of erupted pyroclasts 0.15 km3). There were 4 major Holocene eruptive episodes ca. 10,000, 4000, 1200, and 1000 yr BP. The volcanic plumes of these eruptions were not buoyant and most of the erupted products were transported in the form of highly concentrated valley-channelized pyroclastic flows. Voluminous lahars were common in the periods between the eruptions. The recent eruptive period of the volcano started approximately 800 years ago. It is characterized by frequent and weak VEI 1-2 explosive eruptions of Vulcanian type and rare small-volume extrusions of viscous lava. We estimate that during last 10,000 years, Gede erupted less than 0.3 km3 DRE (Dense Rock Equivalent) of magma. Such small productivity suggests that the likelihood of future large-volume (VEI ≥ 5) eruptions of the volcano is low, although moderately strong (VEI 3-4) explosive eruptions capable of depositing pyroclastic flows and lahars onto the NE foot of the volcano are more likely.

  16. Preliminary volcano-hazard assessment for Mount Spurr Volcano, Alaska

    USGS Publications Warehouse

    Waythomas, Christopher F.; Nye, Christopher J.

    2001-01-01

    Mount Spurr volcano is an ice- and snow-covered stratovolcano complex located in the north-central Cook Inlet region about 100 kilometers west of Anchorage, Alaska. Mount Spurr volcano consists of a breached stratovolcano, a lava dome at the summit of Mount Spurr, and Crater Peak vent, a small stratocone on the south flank of Mount Spurr volcano. Historical eruptions of Crater Peak occurred in 1953 and 1992. These eruptions were relatively small but explosive, and they dispersed volcanic ash over areas of interior, south-central, and southeastern Alaska. Individual ash clouds produced by the 1992 eruption drifted east, north, and south. Within a few days of the eruption, the south-moving ash cloud was detected over the North Atlantic. Pyroclastic flows that descended the south flank of Crater Peak during both historical eruptions initiated volcanic-debris flows or lahars that formed temporary debris dams across the Chakachatna River, the principal drainage south of Crater Peak. Prehistoric eruptions of Crater Peak and Mount Spurr generated clouds of volcanic ash, pyroclastic flows, and lahars that extended to the volcano flanks and beyond. A flank collapse on the southeast side of Mount Spurr generated a large debris avalanche that flowed about 20 kilometers beyond the volcano into the Chakachatna River valley. The debris-avalanche deposit probably formed a large, temporary debris dam across the Chakachatna River. The distribution and thickness of volcanic-ash deposits from Mount Spurr volcano in the Cook Inlet region indicate that volcanic-ash clouds from most prehistoric eruptions were as voluminous as those produced by the 1953 and 1992 eruptions. Clouds of volcanic ash emitted from the active vent, Crater Peak, would be a major hazard to all aircraft using Ted Stevens Anchorage International Airport and other local airports and, depending on wind direction, could drift a considerable distance beyond the volcano. Ash fall from future eruptions could disrupt many types of economic and social activities, including oil and gas operations and shipping activities in the Cook Inlet area. Eruptions of Crater Peak could involve significant amounts of ice and snow that would lead to the formation of large lahars, formation of volcanic debris dams, and downstream flooding. The greatest hazards in order of importance are described below and shown on plate 1.

  17. Stratigraphy of Late Pleistocene-Holocene pyroclastic deposits of Tacana Volcano, Mexico-Guatemala

    NASA Astrophysics Data System (ADS)

    Macias, J. L.; Arce, J. L.; Garcia-Palomo, A.; Mora, J. C.; Saucedo, R.; Hughes, S.; Scolamacchia, T.

    2005-12-01

    Tacana volcano (4,060 masl), the highest peak of the Tacana Volcanic Complex, is an acitve volcano located on the Mexico-Guatemala border. Tacana resumed phreatic activity in 1950 and again in 1986. After this last event, the volcano became the locus of attention of authorities and local scientists began to study the complex. Tacana's stratigraphic record has been studied using radiocarbon dating and these indicate that the volcano has been very active in the past producing at least 12 explosive eruptions during the last 40 ka years as follow: a) Four partial dome destruction events with the generation of block-and-ash flow deposits at 40, 28, <26, and 16 ka. b) Four small-volume phreatomagmatic events that emplaced dilute density currents at 10.6, 7.5, 6, and 2.5 ka. c) Four eruptions that emplaced pumice-rich fall deposits, three of them widely dispersed towards the NE flank of the volcano in Guatemala and dated at ~32, <24 and <14 ka, and finally a 0.8 ka fall deposit restricted to the crater vicinity that might represent the youngest magmatic eruption of the volcano. Although refining of these stratigraphic sequence is still underway, the eruptive chronology of Tacana volcano cleary indicates that explosive eruptions producing plinian fall and pyroclastic density currents have taken place every 1 to 8 ka years. This record constrasts with the small phreatic eruptions that occur 1-2 per century. So, this indicates that Tacana volcano is more active than previously considered and these results must be considered for future researches on hazards maps and mitigation.

  18. Quantification of L-band InSAR coherence over volcanic areas using LiDAR and in situ measurements

    NASA Astrophysics Data System (ADS)

    Arab-Sedze, Melanie; Heggy, Essam; Bretard, Frederic; Berveiller, Daniel; Jacquemoud, Stephane

    2014-07-01

    Interferometric Synthetic Aperture Radar (InSAR) is a powerful tool to monitor large-scale ground deformation at active volcanoes. However, vegetation and pyroclastic deposits degrade the radar coherence and therefore the measurement of 3-D surface displacements. In this article, we explore the complementarity between ALOS - PALSAR coherence images, airborne LiDAR data and in situ measurements acquired over the Piton de La Fournaise volcano (Reunion Island, France) to determine the sources of errors that may affect repeat-pass InSAR measure- ments. We investigate three types of surfaces: terrains covered with vegetation, lava flows (a'a, pahoehoe or slabby pahoehoe lava flows) and pyroclastic deposits (lapilli). To explain the loss of coherence observed over the Dolomieu crater between 2008 and 2009, we first use laser altimetry data to map topographic variations. The LiDAR intensity, which depends on surface reflectance, also provides ancillary information about the potential sources of coherence loss. In addition, surface roughness and rock dielectric properties of each terrain have been determined in situ to better understand how electromagnetic waves interact with such media: rough and porous surfaces, such as the a'a lava flows, produce a higher coherence loss than smoother surfaces, such as the pahoehoe lava flows. Variations in dielectric properties suggest a higher penetration depth in pyroclasts than in lava flows at L-band frequency. Decorrelation over the lapilli is hence mainly caused by volumetric effects. Finally, a map of LAI (Leaf Area Index) produced using SPOT 5 imagery allows us to quantify the effect of vegeta- tion density: radar coherence is negatively correlated with LAI and is unreliable for values higher than 7.5.

  19. The AD 1300 1700 eruptive periods at Tungurahua volcano, Ecuador, revealed by historical narratives, stratigraphy and radiocarbon dating

    NASA Astrophysics Data System (ADS)

    Le Pennec, J.-L.; Jaya, D.; Samaniego, P.; Ramón, P.; Moreno Yánez, S.; Egred, J.; van der Plicht, J.

    2008-09-01

    Tungurahua is a frequently active and hazardous volcano of the Ecuadorian Andes that has experienced pyroclastic flow-forming eruption in 1773, 1886, 1916-18 and 2006-08. Earlier eruptions in Late Pre-Hispanic and Early Colonial times have remained poorly known and are debated in the literature. To reconstruct the eruptive chronology in that time interval we examine relevant historical narratives recently found in Sevilla, Spain, and Rome, Italy, and we combine stratigraphic field constraints with 22 new radiocarbon age determinations. Results show that pyroclastic flow-forming eruptions and tephra falls took place repeatedly since ~ 700 14C yr BP, when the Tungurahua region was already populated. Radiocarbon ages averaging around 625 yr BP reveal a period of notable eruptive activity in the 14th century (Late Integration cultural period). The associated andesitic eruptions produced ash and scoria falls of regional extent and left scoria flow deposits on the western flanks of the edifice. The fact that Tungurahua was known by the Puruhás Indians as a volcano at the time of the Spanish Conquest in 1533 perhaps refers to these eruptions. A group of ages ranging from 380 to 270 yr BP is attributed to younger periods of activity that also predates the 1773 event, and calibration results yield eruption dates from late 15th to late 17th centuries (i.e. Inca and Early Colonial Periods). The historical narratives mention an Early Colonial eruption between the Spanish Conquest and the end of the 16th century, followed by a distinct eruptive period in the 1640s. The descriptions are vague but point to destructive eruptions likely accompanied by pyroclastic flows. The dated tephras consist of andesitic scoria flow deposits and the contemporaneous fallout layers occur to the west. These findings reveal that the eruption recurrence rate at Tungurahua is at least one pyroclastic flow-forming event per century since the 13th century and the occurrence of such eruptions in 2006-08 is thus fully consistent with the rate inferred for the past seven centuries. In addition, historical chronicles suggest that a notch opened in the crater margin during the 1640 decade, as has occurred repeatedly in the past millennium at Tungurahua. Such small-volume collapse events represent a previously unrecognized source of hazards which deserve special attention for risk assessment purposes in the context of the currently ongoing eruption.

  20. Late Pleistocene and Holocene Geology and Hazards at Glacier Peak Volcano, Washington

    NASA Astrophysics Data System (ADS)

    Vallance, J. W.; Van Eaton, A. R.; Ramsey, D. W.

    2015-12-01

    Recent fieldwork, improved radiocarbon dating, and mapping on recently acquired LiDAR base have better delineated timing, frequency, and style of volcanism at Glacier Peak. The work shows that, after Mount St. Helens, Glacier Peak is one of the most frequently active Cascade volcanoes. The volcano has erupted multiple times 13-14 ka, 5­-7 ka, 1-2.5 ka, and perhaps as recently as a few hundred years ago. The plinian eruptions of ~13.5 ka were much more voluminous than those of Mount St. Helens in 1980 and show that Glacier Peak is among the most explosive of Cascade volcanoes. These eruptions dispersed ash fallout hundreds of kilometers downwind in Idaho, Montana and Wyoming; produced a partly welded ignimbrite and a small debris avalanche; and caused lahars and flooding far across Puget Sound lowland. Numerous more recent eruptions during the periods 5-7 ka and 1-2.5 ka extruded lava domes whose hot rock avalanched across snow and ice to produce pyroclastic flows and lahars. These eruptions dispersed ash tens of to a hundred or more kilometers downwind. Resulting lahars and floods inundated as far as Puget Sound lowland. Glacier Peak is remote and hidden from most areas of the densely populated Puget Sound lowland; hence, it gets less attention than other prominent Cascade volcanoes like Mounts Rainier, Baker, and St. Helens. Despite its remote location, Glacier Peak poses substantial hazard because even small eruptions on ice-clad volcanoes can have devastating consequences. Distal threats include hazard to air traffic owing to ash plumes. Lahars and potential long-term sedimentation and flooding downstream pose threats to communities near rivers along Skagit and Stillaguamish River drainages. Farther downstream, sedimentation is likely to decrease channel capacity, increasing likelihood of floods. Lava flows, pyroclastic flows, and debris avalanches will threaten hikers in the wilderness near Glacier Peak.

  1. Numerical simulation of tsunami generation by cold volcanic mass flows at Augustine Volcano, Alaska

    USGS Publications Warehouse

    Waythomas, C.F.; Watts, P.; Walder, J.S.

    2006-01-01

    Many of the world's active volcanoes are situated on or near coastlines. During eruptions, diverse geophysical mass flows, including pyroclastic flows, debris avalanches, and lahars, can deliver large volumes of unconsolidated debris to the ocean in a short period of time and thereby generate tsunamis. Deposits of both hot and cold volcanic mass flows produced by eruptions of Aleutian arc volcanoes are exposed at many locations along the coastlines of the Bering Sea, North Pacific Ocean, and Cook Inlet, indicating that the flows entered the sea and in some cases may have initiated tsunamis. We evaluate the process of tsunami generation by cold granular subaerial volcanic mass flows using examples from Augustine Volcano in southern Cook Inlet. Augustine Volcano is the most historically active volcano in the Cook Inlet region, and future eruptions, should they lead to debris-avalanche formation and tsunami generation, could be hazardous to some coastal areas. Geological investigations at Augustine Volcano suggest that as many as 12-14 debris avalanches have reached the sea in the last 2000 years, and a debris avalanche emplaced during an A.D. 1883 eruption may have initiated a tsunami that was observed about 80 km east of the volcano at the village of English Bay (Nanwalek) on the coast of the southern Kenai Peninsula. Numerical simulation of mass-flow motion, tsunami generation, propagation, and inundation for Augustine Volcano indicate only modest wave generation by volcanic mass flows and localized wave effects. However, for east-directed mass flows entering Cook Inlet, tsunamis are capable of reaching the more populated coastlines of the southwestern Kenai Peninsula, where maximum water amplitudes of several meters are possible.

  2. Volcanic mercury in Pinus canariensis.

    PubMed

    Rodríguez Martín, José Antonio; Nanos, Nikos; Miranda, José Carlos; Carbonell, Gregoria; Gil, Luis

    2013-08-01

    Mercury (Hg) is a toxic element that is emitted to the atmosphere by both human activities and natural processes. Volcanic emissions are considered a natural source of mercury in the environment. In some cases, tree ring records taken close to volcanoes and their relation to volcanic activity over time are contradictory. In 1949, the Hoyo Negro volcano (La Palma-Canary Islands) produced significant pyroclastic flows that damaged the nearby stand of Pinus canariensis. Recently, 60 years after the eruption, we assessed mercury concentrations in the stem of a pine which survived volcano formation, located at a distance of 50 m from the crater. We show that Hg content in a wound caused by pyroclastic impacts (22.3 μg kg(-1)) is an order of magnitude higher than the Hg concentrations measured in the xylem before and after the eruption (2.3 μg kg(-1)). Thus, mercury emissions originating from the eruption remained only as a mark-in pyroclastic wounds-and can be considered a sporadic and very high mercury input that did not affect the overall Hg input in the xylem. In addition, mercury contents recorded in the phloem (9.5 μg kg(-1)) and bark (6.0 μg kg(-1)) suggest that mercury shifts towards non-living tissues of the pine, an aspect that can be related to detoxification in volcanism-adapted species.

  3. Volcanic mercury in Pinus canariensis

    NASA Astrophysics Data System (ADS)

    Rodríguez Martín, José Antonio; Nanos, Nikos; Miranda, José Carlos; Carbonell, Gregoria; Gil, Luis

    2013-08-01

    Mercury (Hg) is a toxic element that is emitted to the atmosphere by both human activities and natural processes. Volcanic emissions are considered a natural source of mercury in the environment. In some cases, tree ring records taken close to volcanoes and their relation to volcanic activity over time are contradictory. In 1949, the Hoyo Negro volcano (La Palma-Canary Islands) produced significant pyroclastic flows that damaged the nearby stand of Pinus canariensis. Recently, 60 years after the eruption, we assessed mercury concentrations in the stem of a pine which survived volcano formation, located at a distance of 50 m from the crater. We show that Hg content in a wound caused by pyroclastic impacts (22.3 μg kg-1) is an order of magnitude higher than the Hg concentrations measured in the xylem before and after the eruption (2.3 μg kg-1). Thus, mercury emissions originating from the eruption remained only as a mark—in pyroclastic wounds—and can be considered a sporadic and very high mercury input that did not affect the overall Hg input in the xylem. In addition, mercury contents recorded in the phloem (9.5 μg kg-1) and bark (6.0 μg kg-1) suggest that mercury shifts towards non-living tissues of the pine, an aspect that can be related to detoxification in volcanism-adapted species.

  4. The volcano-sedimentary succession of Upper Permian in Wuli area, central Qinghai-Tibetan Plateau: Sedimentology, geochemistry and paleogeography

    NASA Astrophysics Data System (ADS)

    Liu, Shengqian; Jiang, Zaixing; Gao, Yi

    2017-04-01

    Detailed observations on cores and thin sections well documented a volcano-sedimentary succession from Well TK2, which is located in Wuli area, central Qinghai-Tibetan Plateau. The TK2 volcano-sedimentary succession reflects an active sedimentary-tectonic setting in the north margin of North Qiangtang-Chamdo terrane in the late Permian epoch. Based on the observation and recognition on lithology and mineralogy, the components of TK2 succession are mainly volcanic and volcaniclastic rocks and four main lithofacies are recognized, including massive volcanic lithofacies (LF1), pyroclastic tuff lithofacies (LF2), tuffaceous sandstone lithofacies (LF3) and mudstone lithofacies (LF4). LF1 is characterized by felsic components, massive structure and porphyrotopic structure with local flow structure, which indicates submarine intrusive domes or extrusion-fed lavas that formed by magma ascents via faults or dykes. Meanwhile, its eruption style may reflect a relative high pressure compensation level (PCL) that mainly determined by water depth, which implies a deep-water environment. LF2 is composed of volcanic lapilli or ash and featured with massive structure, parallel bedding and various deformed laminations including convolve structure, slide deformation, ball-and-pillow structure, etc.. LF2 indicates the sedimentation of initial or reworked explosive products not far away from volcano centers, reflecting the proximal accumulation of volcano eruption-fed clasts or their resedimentation as debris flows. In addition, the submarine volcano eruptions may induced earthquakes that facilitate the resedimentation of unconsolidated sediments. LF3 contains abundant pyroclastic components and is commonly massive with rip-up mudstone clasts or usually interbedded with LF4. In addition, typical flute casts, scour structures and graded beddings in thin-interbedded layers of sandstone and mudstone are commonly observed, which also represents the sedimentation of debris flows or turbidity flows in a relative deep-water environment. LF4 indicates suspension deposits of distal turbidity sediments in deeper-water setting, which is mainly tuffaceous and ordinary mudstone, commonly interbedded with thin pyroclastic layers. Geochemically, the felsic volcanic rocks belong to tholeiitic to calc-alkaline series, exhibiting characteristics of right-leaning rare earth element (REE) patterns with conspicuous Eu negative anomalies, enrichments in large ion lithophile elements (LILEs) and depletions in high field-strength elements (HFSEs), which reflect an island arc environment that corresponds to the late-Permian subduction of slabs. The TK2 volcanic-sedimentary succession reveals a submarine volcano-dominated depositional model and proves the existence of a deeper water environment, at least in a restricted zone of Wuli area. However, the traditional sedimentary and paleogeographic knowledges are mostly about coal-forming transitional facies in stable environment. Therefore, the proposing of a deep-water volcano-sedimentary model will provide a further comprehension of paleogeography in southern Qinghai at late-Permian, which will also supplement the previous cognition of stable ocean-land transitional environments and provide a new sight to the paleogeographic framework of late-Permian in North Qiangtang-Chamdo terrane.

  5. Volcano monitoring using short wavelength infrared data from satellites

    NASA Technical Reports Server (NTRS)

    Rothery, D. A.; Francis, P. W.; Wood, C. A.

    1988-01-01

    It is shown that Landsat TM and MSS data provide useful and sometimes unique information on magmatic and fumarolic events at poorly monitored active volcanoes. The digital number data recorded in each spectral band by TM and MSS can be converted into spectral radiance, measured in W/sq m per micron per sr, using calibration data such as those provided by Markham and Barker (1986) and can provide temperature information on the lava fountain, lava lakes, pahoehoe flows, blocky lava, pyroclastic flow, and fumarole. The examples of Landsat data documenting otherwise unobserved precursors and/or activity include the September 1986 eruption of Lascar volcano, Chile; the continued presence of lava lakes at Erta 'Ale, Ethiopia (in the absence of any ground-based observations); and minor eruptions at Mount Erebus, Antarctica.

  6. Geology of the Ugashik-Mount Peulik Volcanic Center, Alaska

    USGS Publications Warehouse

    Miller, Thomas P.

    2004-01-01

    The Ugashik-Mount Peulik volcanic center, 550 km southwest of Anchorage on the Alaska Peninsula, consists of the late Quaternary 5-km-wide Ugashik caldera and the stratovolcano Mount Peulik built on the north flank of Ugashik. The center has been the site of explosive volcanism including a caldera-forming eruption and post-caldera dome-destructive activity. Mount Peulik has been formed entirely in Holocene time and erupted in 1814 and 1845. A large lava dome occupies the summit crater, which is breached to the west. A smaller dome is perched high on the southeast flank of the cone. Pyroclastic-flow deposits form aprons below both domes. One or more sector-collapse events occurred early in the formation of Mount Peulik volcano resulting in a large area of debris-avalanche deposits on the volcano's northwest flank. The Ugashik-Mount Peulik center is a calcalkaline suite of basalt, andesite, dacite, and rhyolite, ranging in SiO2 content from 51 to 72 percent. The Ugashik-Mount Peulik magmas appear to be co-genetic in a broad sense and their compositional variation has probably resulted from a combination of fractional crystallization and magma-mixing. The most likely scenario for a future eruption is that one or more of the summit domes on Mount Peulik are destroyed as new magma rises to the surface. Debris avalanches and pyroclastic flows may then move down the west and, less likely, east flanks of the volcano for distances of 10 km or more. A new lava dome or series of domes would be expected to form either during or within some few years after the explosive disruption of the previous dome. This cycle of dome disruption, pyroclastic flow generation, and new dome formation could be repeated several times in a single eruption. The volcano poses little direct threat to human population as the area is sparsely populated. The most serious hazard is the effect of airborne volcanic ash on aircraft since Mount Peulik sits astride heavily traveled air routes connecting the U.S. and Europe to Asia. Activity of the type described could produce eruption columns to heights of 15 km and result in significant amounts of ash 250-300 km downwind.

  7. Intra-cone plumbing system and eruptive dynamics of small-volume basaltic volcanoes: A case study in the Calatrava Volcanic Field

    NASA Astrophysics Data System (ADS)

    Carracedo-Sánchez, M.; Sarrionandia, F.; Ábalos, B.; Errandonea-Martin, J.; Gil Ibarguchi, J. I.

    2017-12-01

    The Manoteras volcano (Tortonian to Pleistocene, Calatrava Volcanic Field, Spain) is composed of a scoria and spatter cone surrounded by a field of pahoehoe lava. The volcanic cone is made essentially of vitreous lapilli-tuffs with intercalations of vitreous tuffs and spatter deposits, without any intercalations of lava flows. Erosion has uncovered an intra-cone plumbing system formed by coherent dykes and pyroclastic dykes (mixed-type dykes). This dyke swarm reflects processes of intrusion at the end of the eruption or even post-eruption. All the volcanic products are nephelinitic in composition. The main dyke is up to 3.4 m thick and has an exposed length of 1000 m. It is composed mostly of coherent nephelinite with some pyroclastic sections at its northern extremity. This dyke is regarded as a feeder dyke of the volcano, although the upper parts of the dike have been eroded, which prevents the observation of the characteristics and nature of the possible overlying vent(s). Mixed-type dykes could also have acted as small linear vents and indicate that the magma fragmentation level during final waning stages of the eruption was located inside the volcanic cone. The pyroclastic deposits that make up the volcanic cone at the current exposure level were probably developed during a major phase of violent Strombolian style that formed the scoria cone, followed by a Hawaiian phase that formed the summital intracrater spatter deposit. Three central-type vents have been identified: one at the highest point of the remnant volcanic cone (summital vent), from where the earlier explosive eruptions took place, and the other two at the fringe of the cone base, from where emissions were only effusive. The lava flows were emitted from these boccas through the scoria cone feeding the lava field. The results obtained, based on careful field observations, add substantial complexity to the proposed eruptive models for small-volume basaltic volcanoes as it appears evident that there may exist and evolution through time from central conduit settings to fissure eruptions. Moreover, it is shown that intracone plumbing systems can integrate coherent and clastic dykes of variable thicknesses, which, in some cases could represent feeder dykes. Table 2. Petrographic characteristics of the coherent rocks (dykes and lava flows) from the Manoteras volcano. See Fig. 2 supplementary.

  8. Deposits from the 12 July Dome Collapse and Explosive Activity at Soufriere Hills Volcano, 12-15 July 2003

    NASA Astrophysics Data System (ADS)

    Edmonds, M.; Herd, R.; Strutt, M.; Mann, C.

    2003-12-01

    A large dome collapse took place on 12-13 July 2003 at Soufriere Hills Volcano. This event was the largest in magnitude during the 1995-2003 eruption and involved over 120 million m3 andesite dome and talus material. The collapse took place over 18 hours and culminated in an explosive phase that continued intermittently until 15 July 2003. Prior to the collapse, the total volume of the dome was 230 million m3 and was made up of remnants of lava erupted 1997-2001, talus material and fresh andesite dome lava erupted during the last two years. Talus made up around 50% of the total dome volume. This paper describes and interprets the pyroclastic flow and airfall deposits from this event, using other monitoring data and empirical evidence to reconstruct the dome collapse. The airfall and pyroclastic flow deposits were studied in detail over the weeks following the collapse. Airfall deposits were studied at 45 locations around the island and 75 samples were collected for analysis. The surge deposit stretched over 10 km2 on land and 35 pits were dug at intervals through it. The sections were described and sampled, yielding a further 60 samples for grain size analysis. Further sampling was carried out on the block and ash deposits in the Tar River Valley and on the Tar River Fan. Pumices from the post-collapse explosion sequence were collected and their densities measured and mass coverage estimated. Deposit maps for airfall, lithics and pumices were constructed for all of the individual events and a map to show the distribution of the main surge unit was generated. The collapse was monitored in real-time using the MVO seismic network and observations from the field. The sequence of events was as follows. From 09:00 to 18:00, low-energy pyroclastic flows took place, confined to the Tar River Valley, which reached the sea at the mouth of Tar River. These flows gradually increased in energy throughout the day but were not associated with energetic, large surges. By 18:00 the pyroclastic flows had increased in volume and were causing phreatic explosions as large, hot blocks hit the sea on the Tar River Fan. By 20:00 the pyroclastic flows had changed in character and were associated with a larger seismic signal and powerful surges that traveled up to 3 km off the coast over the surface of the sea. The most energetic phase of the eruption took place between 22:30 12 July and 01:30 13 July. The dome collapse of 12-13 July culminated in several very large individual pyroclastic flows, representing the collapse of the massive, hot, gas-rich interior of the lava dome. One very large flow was associated with a destructive and energetic surge that swept over topography to the north of the Tar River, killed 40-50 cows, removed trees at their bases and caused large clasts to become embedded in trees at a height of 1.5 m above the ground surface north of Irish Ghaut. The unloading of such large masses of lava dome from over the vent area caused large and powerful explosions. The mapping of the deposits from this event has shed light on the origins of the surge and the timing of large phreatic and magmatic explosions and has led to a new understanding of the hazard potential of large surges derived from the Tar River Valley during large dome collapses at Soufriere Hills Volcano.

  9. Pyroclastic Flow Generated Tsunami Waves Detected by CALIPSO Borehole Strainmeters at Soufriere Hills, Montserrat During Massive Dome Collapse: Numerical Simulations and Observations

    NASA Astrophysics Data System (ADS)

    van Boskirk, E. J.; Voight, B.; Watts, P.; Widiwijayanti, C.; Mattioli, G. S.; Elsworth, D.; Hidayat, D.; Linde, A.; Malin, P.; Neuberg, J.; Sacks, S.; Shalev, E.; Sparks, R. J.; Young, S. R.

    2004-12-01

    The July 12-13, 2003 eruption (dome collapse plus explosions) of Soufriere Hills Volcano in Montserrat, WI, is the largest historical lava dome collapse with ˜120 million cubic meters of the dome lost. Pyroclastic flows entered the sea at 18:00 AST 12 July at the Tar River Valley (TRV) and continued until the early hours of 13 July. Low-amplitude tsunamis were reported at Antigua and Guadaloupe soon after the dome collapse. At the time of eruption, four CALIPSO borehole-monitoring stations were in the process of being installed, and three very-broad-band Sacks-Evertson dilatometers were operational and recorded the event at 50 sps. The strongest strain signals were recorded at the Trants site, 5 km north of the TRV entry zone, suggesting tsunami waves >1 m high. Debris strandlines closer to TRV recorded runup heights as much as 8 m. We test the hypothesis that the strain signal is related to tsunami waves generated by successive pyroclastic flows induced during the dome collapse. Tsunami simulation models have been generated using GEOWAVE, which uses simple physics to recreate waves generated by idealized pyroclastic flows entering the sea at TRV. Each simulation run contains surface wave amplitude gauges located in key positions to the three borehole sites. These simulated wave amplitudes and periods are compared quantitatively with the data recorded by the dilatometers and with field observations of wave runup, to elucidate the dynamics of pyroclastic flow tsunami genesis and its propagation in shallow ocean water.

  10. Geomorphological classification of post-caldera volcanoes in the Buyan-Bratan caldera, North Bali, Indonesia

    NASA Astrophysics Data System (ADS)

    Okuno, Mitsuru; Harijoko, Agung; Wayan Warmada, I.; Watanabe, Koichiro; Nakamura, Toshio; Taguchi, Sachihiro; Kobayashi, Tetsuo

    2017-12-01

    A landform of the post-caldera volcanoes (Lesung, Tapak, Sengayang, Pohen, and Adeng) in the Buyan-Bratan caldera on the island of Bali, Indonesia can be classified by topographic interpretation. The Tapak volcano has three craters, aligned from north to south. Lava effused from the central crater has flowed downward to the northwest, separating the Tamblingan and Buyan Lakes. This lava also covers the tip of the lava flow from the Lesung volcano. Therefore, it is a product of the latest post-caldera volcano eruption. The Lesung volcano also has two craters, with a gully developing on the pyroclastic cone from the northern slope to the western slope. Lava from the south crater has flowed down the western flank, beyond the caldera rim. Lava distributed on the eastern side from the south also surrounds the Sengayang volcano. The Adeng volcano is surrounded by debris avalanche deposits from the Pohen volcano. Based on these topographic relationships, Sengayang volcano appears to be the oldest of the post-caldera volcanoes, followed by the Adeng, Pohen, Lesung, and Tapak volcanoes. Coarse-grained scoria falls around this area are intercalated with two foreign tephras: the Samalas tephra (1257 A.D.) from Lombok Island and the Penelokan tephra (ca. 5.5 kBP) from the Batur caldera. The source of these scoria falls is estimated to be either the Tapak or Lesung volcano, implying that at least two volcanoes have erupted during the Holocene period.

  11. Effects of slope on the dynamics of dilute pyroclastic density currents from May 18th, 1980 Mt. St. Helens eruption

    NASA Astrophysics Data System (ADS)

    Bendana, S.; Self, S.; Dufek, J.

    2012-12-01

    The infamous, May 18th, 1980 eruption of Mt St Helens in the state of Washington produced several episodes of pyroclastic density currents (PDCs) including the initial lateral blast, which traveled nearly 30 km, and later PDCs, which filled in the area up to 8 km north of the volcano. The focus of this research is on the later PDCs, which differed from the lateral blast in that they have a higher particle concentration and filled in the topography up to 40 m. While the concentrated portions of the afternoon PDCs followed deep topographic drainages down the steep flanks of the volcano, the dilute overriding cloud partially decoupled to develop fully dilute, turbulent PDCs on the flanks of the volcano (Beeson, D.L. 1988. Proximal Flank Facies of the May 18, 1980 Ignimbrite: Mt. St. Helens, Washington.). The dilute PDCs deposited thin, cross-stratified and stratified pyroclastic deposits, known as the proximal bedded deposits, which differ greatly in depositional characteristics from the thick, massive, poorly-sorted, block-rich deposits associated with the more concentrated portions of the flow. We explore the influence of topography on the formation of these dilute currents and influence of slope on the currents transport and depositional mechanisms. The deposits on steeper slopes (>15°) are fines depleted relative to the proximal bedded deposits on shallower slopes (<15°). Bedform amplitude and wavelength increase with increasing slope, as does the occurrence of regressive dunes. Increasing slope causes an increase in flow velocity and thus an increase in flow turbulence. The fines depleted deposits suggest that fine ash elutriation is more efficient in flows with stronger turbulence. The longer wavelength and amplitudes suggest that bedform morphology is directly related to flow velocity, an important finding since the controls on bedform wavelength and amplitude in density stratified flows remains poorly constrained. The occurrence of regressive dunes, often interpreted as high flow-regime bedforms, on steeper slopes relative to progressive dunes on shallower slopes further attests to the control of velocity and flow regime on bedform morphology. Samples collected from recently exposed deposits and analyzed by grain size measurements, density analyses, and crystal morphoscopy studies further assess modes of origin and transport of dilute PDCs. The collected data will be used to validate numerical models that attempt to quantify the hazards of decoupled, dilute PDCs.

  12. A new high-performance 3D multiphase flow code to simulate volcanic blasts and pyroclastic density currents: example from the Boxing Day event, Montserrat

    NASA Astrophysics Data System (ADS)

    Ongaro, T. E.; Clarke, A.; Neri, A.; Voight, B.; Widiwijayanti, C.

    2005-12-01

    For the first time the dynamics of directed blasts from explosive lava-dome decompression have been investigated by means of transient, multiphase flow simulations in 2D and 3D. Multiphase flow models developed for the analysis of pyroclastic dispersal from explosive eruptions have been so far limited to 2D axisymmetric or Cartesian formulations which cannot properly account for important 3D features of the volcanic system such as complex morphology and fluid turbulence. Here we use a new parallel multiphase flow code, named PDAC (Pyroclastic Dispersal Analysis Code) (Esposti Ongaro et al., 2005), able to simulate the transient and 3D thermofluid-dynamics of pyroclastic dispersal produced by collapsing columns and volcanic blasts. The code solves the equations of the multiparticle flow model of Neri et al. (2003) on 3D domains extending up to several kilometres in 3D and includes a new description of the boundary conditions over topography which is automatically acquired from a DEM. The initial conditions are represented by a compact volume of gas and pyroclasts, with clasts of different sizes and densities, at high temperature and pressure. Different dome porosities and pressurization models were tested in 2D to assess the sensitivity of the results to the distribution of initial gas pressure, and to the total mass and energy stored in the dome, prior to 3D modeling. The simulations have used topographies appropriate for the 1997 Boxing Day directed blast on Montserrat, which eradicated the village of St. Patricks. Some simulations tested the runout of pyroclastic density currents over the ocean surface, corresponding to observations of over-water surges to several km distances at both locations. The PDAC code was used to perform 3D simulations of the explosive event on the actual volcano topography. The results highlight the strong topographic control on the propagation of the dense pyroclastic flows, the triggering of thermal instabilities, and the elutriation of finest particles, and demonstrated the formation of dense pyroclastic flows by drainage of clasts sedimented from dilute flows. Fundamental and accurate hazard information can be obtained from the simulations, and the 3D displays are readily comprehended by officials and the public, making them very effective tools for risk mitigation.

  13. Volcanism at Hualca Hualca Volcano, Southern Peru

    NASA Astrophysics Data System (ADS)

    Burkett, B.

    2005-12-01

    Nevado Hualca Hualca (6025m), in southern Peru, is the northernmost edifice in a north-south trending chain of 3 volcanoes that includes Ampato and the active Sabancaya stratovolcano. The oldest in the chain and considered extinct, virtually no research exists about the history of this large volcano. The summit of the volcano shows deep incision by glaciation, which from aerial photographs appears unaffected by later volcanism. Its north slope, however, possesses numerous volcanic domes, extensive lava flows with distinct levees and transverse ridges, and pyroclastic flow deposits. Deposits on the northwestern slope of Hualca Hualca include breadcrust-rich block-and-ash flows (BAF), several dacite lava flows including one with an identifiable source dome about 15km from the summit, and a sequence of small pyroclastic flow deposits with minor associated tephra. Analyses of these deposits show a restricted range of compositions (63-68 wt% SiO2). The PF sequence has an upward decrease in SiO2 and basaltic andesite (56 wt% SiO2) inclusions occur in the uppermost PFs. Principal phenocrysts include plagioclase, biotite, hornblende, clinopyroxene, orthopyroxene, Fe-Ti oxides, and sphene. Fine grained, angular to sub-rounded magmatic enclaves occur within the breadcrust-rich BAF deposits and the youngest lava flow. They are characterized by randomly oriented acicular hornblende, lack of chilled margins, and a few voids indicative of a quench texture. Plagioclase crystals with "dusty" rims or cores present in most of the deposits suggest resorption caused by magma recharge. These features imply a stratified magma chamber subject to magma recharge events and mingling to produce the quench texture enclaves. Chemical analyses indicate that the volcanic products result from magma mixing processes; the basaltic andesite inclusions may represent the mafic end-member of the mixing process. The physical characteristics of the deposits and chemical analyses were compared with data from the 1990-98 eruptive episode of Sabancaya volcano. Quench-texture enclaves and dusty-rimmed plagioclase exist in practically all of the Sabancaya deposits. The Sabancaya chemical analyses plot in line with those from the Hualca Hualca deposits; the Hualca Hualca samples are more evolved in almost every case except for the basaltic-andesite inclusions. This indicates a common formational history for the products of these two volcanoes and suggests a longer crustal storage time for the more evolved Hualca Hualca volcanics.

  14. Earth Observations taken by the Expedition 23 Crew

    NASA Image and Video Library

    2010-04-23

    ISS023-E-027737 (23 April 2010) --- Nevado del Ruiz volcano in Colombia is featured in this image photographed by an Expedition 23 crew member on the International Space Station. The large Nevado del Ruiz volcano (center) is located approximately 140 kilometers to the northwest of the capital city of Bogota and covers an area of over 200 square kilometers. Nevado del Ruiz is a stratovolcano – a type of volcano built from successive layers of lava, ash, and pyroclastic flow deposits – formed by magma generated above the boundary between the subducting Nazca and overriding South American tectonic plates. The historical record of eruptions extends back to 1570, but the most damaging eruption in recent times took place in 1985. On Nov. 13, 1985, an explosive eruption at the Arenas Crater (center) melted ice and snow at the summit of the volcano. This lead to the formation of mudflows (or lahars) that swept tens of kilometers down river valleys along the volcano’s flanks, resulting in the deaths of at least 23,000 people. Most of the fatalities occurred in the town of Armero which was completely inundated by lahars. Eruptive activity at Nevado del Ruiz may have occurred in 1994, but this is not confirmed. The volcano’s summit and upper flanks are covered by several glaciers that appear as a white mass surrounding the one-kilometer-wide Arenas Crater; meltwater from these glaciers has incised the gray to tan ash and pyroclastic flow deposits mantling the lower slopes. A well-defined lava flow is visible at lower right. This photograph was taken at approximately 7:45 a.m. local time when the sun was still fairly low above the horizon, leading to shadowing to the west of topographic high points.

  15. System for ranking relative threats of U.S. volcanoes

    USGS Publications Warehouse

    Ewert, J.W.

    2007-01-01

    A methodology to systematically rank volcanic threat was developed as the basis for prioritizing volcanoes for long-term hazards evaluations, monitoring, and mitigation activities. A ranking of 169 volcanoes in the United States and the Commonwealth of the Northern Mariana Islands (U.S. volcanoes) is presented based on scores assigned for various hazard and exposure factors. Fifteen factors define the hazard: Volcano type, maximum known eruptive explosivity, magnitude of recent explosivity within the past 500 and 5,000 years, average eruption-recurrence interval, presence or potential for a suite of hazardous phenomena (pyroclastic flows, lahars, lava flows, tsunami, flank collapse, hydrothermal explosion, primary lahar), and deformation, seismic, or degassing unrest. Nine factors define exposure: a measure of ground-based human population in hazard zones, past fatalities and evacuations, a measure of airport exposure, a measure of human population on aircraft, the presence of power, transportation, and developed infrastructure, and whether or not the volcano forms a significant part of a populated island. The hazard score and exposure score for each volcano are multiplied to give its overall threat score. Once scored, the ordered list of volcanoes is divided into five overall threat categories from very high to very low. ?? 2007 ASCE.

  16. Preliminary analyses of SIB-B radar data for recent Hawaii lava flows

    NASA Technical Reports Server (NTRS)

    Kaupp, V. H.; Derryberry, B. A.; Macdonald, H. C.; Gaddis, L. R.; Mouginis-Mark, P. J.

    1986-01-01

    The Shuttle Imaging Radar (SIR-B) experiment acquired two L-band (23 cm wavelength) radar images (at about 28 and 48 deg incidence angles) over the Kilauea Volcano area of southeastern Hawaii. Geologic analysis of these data indicates that, although aa lava flows and pyroclastic deposits can be discriminated, pahoehoe lava flows are not readily distinguished from surrounding low return materials. Preliminary analysis of data extracted from isolated flows indicates that flow type (i.e., aa or pahoehoe) and relative age can be determined from their basic statistics and illumination angle.

  17. Physical properties of lava flows on the southwest flank of Tyrrhena Patera, Mars

    NASA Technical Reports Server (NTRS)

    Crown, David A.; Porter, Tracy K.; Greeley, Ronald

    1991-01-01

    Tyrrhena Patera (TP) (22 degrees S, 253.5 degrees W), a large, low-relief volcano located in the ancient southern highlands of Mars, is one of four highland paterae thought to be structurally associated with the Hellas basin. The highland paterae are Hesperian in age and among the oldest central vent volcanoes on Mars. The morphology and distribution of units in the eroded shield of TP are consistent with the emplacement of pyroclastic flows. A large flank unit extending from TP to the SW contains well-defined lava flow lobes and leveed channels. This flank unit is the first definitive evidence of effusive volcanic activity associated with the highland paterae and may include the best preserved lava flows observed in the Southern Hemisphere of Mars. Flank flow unit averages, channelized flow, flow thickness, and yield strength estimates are discussed. Analysis suggests the temporal evolution of Martian magmas.

  18. Magnetic mineralogy and rock magnetic properties of silicate and carbonatite rocks from Oldoinyo Lengai volcano (Tanzania)

    NASA Astrophysics Data System (ADS)

    Mattsson, H. B.; Balashova, A.; Almqvist, B. S. G.; Bosshard-Stadlin, S. A.; Weidendorfer, D.

    2018-06-01

    Oldoinyo Lengai, a stratovolcano in northern Tanzania, is most famous for being the only currently active carbonatite volcano on Earth. The bulk of the volcanic edifice is dominated by eruptive products produced by silica-undersaturated, peralkaline, silicate magmas (effusive, explosive and/or as cumulates at depth). The recent (2007-2008) explosive eruption produced the first ever recorded pyroclastic flows at this volcano and the accidental lithics incorporated into the pyroclastic flows represent a broad variety of different rock types, comprising both extrusive and intrusive varieties, in addition to various types of cumulates. This mix of different accidental lithics provides a unique insight into the inner workings of the world's only active carbonatite volcano. Here, we focus on the magnetic mineralogy and the rock magnetic properties of a wide selection of samples spanning the spectrum of Oldoinyo Lengai rock types compositionally, as well from a textural point of view. Here we show that the magnetic properties of most extrusive silicate rocks are dominated by magnetite-ulvöspinel solid solutions, and that pyrrhotite plays a larger role in the magnetic properties of the intrusive silicate rocks. The natrocarbonatitic lavas, for which the volcano is best known for, show distinctly different magnetic properties in comparison with the silicate rocks. This discrepancy may be explained by abundant alabandite crystals/blebs in the groundmass of the natrocarbonatitic lavas. A detailed combination of petrological/mineralogical studies with geophysical investigations is an absolute necessity in order to understand, and to better constrain, the overall architecture and inner workings of the subvolcanic plumbing system. The results presented here may also have implications for the quest in order to explain the genesis of the uniquely natrocarbonatitic magmas characteristic of Oldoinyo Lengai.

  19. Geology, tectonics, and the 2002-2003 eruption of the Semeru volcano, Indonesia: Interpreted from high-spatial resolution satellite imagery

    NASA Astrophysics Data System (ADS)

    Solikhin, Akhmad; Thouret, Jean-Claude; Gupta, Avijit; Harris, Andy J. L.; Liew, Soo Chin

    2012-02-01

    The paper illustrates the application of high-spatial resolution satellite images in interpreting volcanic structures and eruption impacts in the Tengger-Semeru massif in east Java, Indonesia. We use high-spatial resolution images (IKONOS and SPOT 5) and aerial photos in order to analyze the structures of Semeru volcano and map the deposits. Geological and tectonic mapping is based on two DEMs and on the interpretation of aerial photos and four SPOT and IKONOS optical satellite images acquired between 1996 and 2002. We also compared two thermal Surface Kinetic Temperature ASTER images before and after the 2002-2003 eruption in order to delineate and evaluate the impacts of the pyroclastic density currents. Semeru's principal structural features are probably due to the tectonic setting of the volcano. A structural map of the Tengger-Semeru massif shows four groups of faults orientated N40, N160, N75, and N105 to N140. Conspicuous structures, such as the SE-trending horseshoe-shaped scar on Semeru's summit cone, coincide with the N160-trending faults. The direction of minor scars on the east flank parallels the first and second groups of faults. The Semeru composite cone hosts the currently active Jonggring-Seloko vent. This is located on, and buttressed against, the Mahameru edifice at the head of a large scar that may reflect a failure plane at shallow depth. Dipping 35° towards the SE, this failure plane may correspond to a weak basal layer of weathered volcaniclastic rocks of Tertiary age. We suggest that the deformation pattern of Semeru and its large scar may be induced by flank spreading over the weak basal layer of the volcano. It is therefore necessary to consider the potential for flank and summit collapse in the future. The last major eruption took place in December 2002-January 2003, and involved emplacement of block-and-ash flows. We have used the 2003 ASTER Surface Kinetic Temperature image to map the 2002-2003 pyroclastic density current deposits. We have also compared two 10 m-pixel images acquired before and after the event to describe the extent and impact of an estimated volume of 5.45 × 10 6 m 3 of block-and-ash flow deposits. An ash-rich pyroclastic surge escaped from one of the valley-confined block-and ash flows at 5 to 8 km distance from the crater and swept across the forest and tilled land on the SW side of the Bang River Valley. Downvalley, the temperature of the pyroclastic surge decreased and a mud-rich deposit coated the banks of the Bang River Valley. Thus, hazard mitigation at Semeru should combine: (1) continuous monitoring of the eruptive activity through an early-warning system, and (2) continuous remote sensing of the morphological changes in the drainage system due to the impact of frequent pyroclastic density currents and lahars.

  20. Long-term contraction of pyroclastic flow deposits at Augustine Volcano using InSAR

    NASA Astrophysics Data System (ADS)

    McAlpin, D. B.; Meyer, F. J.; Lu, Z.; Beget, J. E.

    2013-12-01

    Augustine Island is a small, 8x11 km island in South Central Alaska's lower Cook Inlet. It is approximately 280 km southwest of Anchorage, and occupied entirely by its namesake Augustine Volcano. The volcano's nearly symmetrical central cone reaches an altitude of 1260 m, and the surrounding island is composed almost entirely of volcanic deposits. It is the youngest and most frequently active volcano in the lower Cook Inlet, with at least seven known eruptions since the beginning of written records in 1812. Its two most recent eruptions occurred during March-August 1986, and January-March 2006 The 1986 and 2006 Augustine eruptions produced significant pyroclastic flow deposits (PFDs) on the island, both which have been well mapped by previous studies. Subsidence of material deposited by these pyroclastic flows has been measured by InSAR data, and can be attributed to at least four processes: (1) initial, granular settling; (2) thermal contraction; (3) loading of 1986 PFDs from overlying 2006 deposits; and (4) continuing subsidence of 1986 PFDs buried beneath 2006 flows. For this paper, SAR data for PFDs from Augustine Volcano were obtained from 1992 through 2005, from 2006-2007, and from 2007-2011. These time frames provided InSAR data for long-term periods after both 1986 and 2006 eruptions. From time-series analysis of these datasets, deformation rates of 1986 PFDs and 2006 PFDs were determined, and corrections applied where newer deposits were emplaced over old deposits. The combination of data sets analyzed in this study enabled, for the first time, an analysis of long and short term subsidence rates of volcanic deposits emplaced by the two eruptive episodes. The generated deformation time series provides insight into the significance and duration of the initial settling period and allows us to study the thermal regime and heat loss of the PFDs. To extract quantitative information about thermal properties and composition of the PFDs, we measured the thickness of the PFDs using both multiple DEM comparison and InSAR time-series analysis. Together with the deformation measurements this thickness information will be used as input to a finite element model of a PFD and will allow us to investigate the PFD's thermo-elastic properties. The thickness information will be further used to understand whether the loading of 1986 PFDs from overlying 2006 deposits had a significant impact on the subsidence rate of buried 1986 deposits. Results from this investigation provide insight into post-emplacement behavior of PFDs and similar eruptive flows, and allow us to better understand the behavior of post emplacement volcanic deposits and their impacts on mapping magma-related deformation.

  1. Pyroclastic density current dynamics and associated hazards at ice-covered volcanoes

    NASA Astrophysics Data System (ADS)

    Dufek, J.; Cowlyn, J.; Kennedy, B.; McAdams, J.

    2015-12-01

    Understanding the processes by which pyroclastic density currents (PDCs) are emplaced is crucial for volcanic hazard prediction and assessment. Snow and ice can facilitate PDC generation by lowering the coefficient of friction and by causing secondary hydrovolcanic explosions, promoting remobilisation of proximally deposited material. Where PDCs travel over snow or ice, the reduction in surface roughness and addition of steam and meltwater signficantly changes the flow dynamics, affecting PDC velocities and runout distances. Additionally, meltwater generated during transit and after the flow has come to rest presents an immediate secondary lahar hazard that can impact areas many tens of kilometers beyond the intial PDC. This, together with the fact that deposits emplaced on ice are rarely preserved means that PDCs over ice have been little studied despite the prevalence of summit ice at many tall stratovolcanoes. At Ruapehu volcano in the North Island of New Zealand, a monolithologic welded PDC deposit with unusually rounded clasts provides textural evidence for having been transported over glacial ice. Here, we present the results of high-resolution multiphase numerical PDC modeling coupled with experimentaly determined rates of water and steam production for the Ruapehu deposits in order to assess the effect of ice on the Ruapehu PDC. The results suggest that the presence of ice significantly modified the PDC dynamics, with implications for assessing the PDC and associated lahar hazards at Ruapehu and other glaciated volcanoes worldwide.

  2. Unusual ice diamicts emplaced during the December 15, 1989 eruption of redoubt volcano, Alaska

    USGS Publications Warehouse

    Waitt, R.B.; Gardner, C.A.; Pierson, T.C.; Major, J.J.; Neal, C.A.

    1994-01-01

    Ice diamict comprising clasts of glacier ice and subordinate rock debris in a matrix of ice (snow) grains, coarse ash, and frozen pore water was deposited during the eruption of Redoubt Volcano on December 15, 1989. Rounded clasts of glacier ice and snowpack are as large as 2.5 m, clasts of Redoubt andesite and basement crystalline rocks reach 1 m, and tabular clasts of entrained snowpack are as long as 10 m. Ice diamict was deposited on both the north and south volcano flanks. On Redoubt's north flank along the east side of Drift piedmont glacier and outwash valley, ice diamict accumulated as at least 3 units, each 1-5 m thick. Two ice-diamict layers underlie a pumice-lithic fall tephra that accumulated on December 15 from 10:15 to 11:45 AST. A third ice diamict overlies the pumiceous tephra. Some of the ice diamicts have a basal 'ice-sandstone' layer. The north side icy flows reached as far as 14 km laterally over an altitude drop of 2.3 km and covered an area of about 5.7 km2. On Crescent Glacier on the south volcano flank, a composite ice diamict is locally as thick as 20 m. It travelled 4.3 km over an altitude drop of 1.7 km, covering about 1 km2. The much higher mobility of the northside flows was influenced by their much higher water contents than the southside flow(s). Erupting hot juvenile andesite triggered and turbulently mixed with snow avalanches at snow-covered glacier heads. These flows rapidly entrained more snow, firn, and ice blocks from the crevassed glacier. On the north flank, a trailing watery phase of each ice-diamict flow swept over and terraced the new icy deposits. The last (and perhaps each) flood reworked valley-floor snowpack and swept 35 km downvalley to the sea. Ice diamict did not form during eruptions after December 15 despite intervening snowfalls. These later pyroclastic flows swept mainly over glacier ice rather than snowpack and generated laharic floods rather than snowflows. Similar flows of mixed ice grains and pyroclastic debris resulted from the November 13, 1985 eruption of Nevado del Ruiz volcano and from eruptions of snowclad Mount St. Helens in 1982-1984. Such deposits at snowclad volcanoes are initially broad and geomorphically distinct, but they soon become extensively reworked and hard to recognize in the geologic record. ?? 1994.

  3. Volcanology and eruptive styles of Barren Island: an active mafic stratovolcano in the Andaman Sea, NE Indian Ocean

    NASA Astrophysics Data System (ADS)

    Sheth, Hetu C.; Ray, Jyotiranjan S.; Bhutani, Rajneesh; Kumar, Alok; Smitha, R. S.

    2009-11-01

    Barren Island (India) is a relatively little studied, little known active volcano in the Andaman Sea, and the northernmost active volcano of the great Indonesian arc. The volcano is built of prehistoric (possibly late Pleistocene) lava flows (dominantly basalt and basaltic andesite, with minor andesite) intercalated with volcaniclastic deposits (tuff breccias, and ash beds deposited by pyroclastic falls and surges), which are exposed along a roughly circular caldera wall. There are indications of a complete phreatomagmatic tephra ring around the exposed base of the volcano. A polygenetic cinder cone has existed at the centre of the caldera and produced basalt-basaltic andesite aa and blocky aa lava flows, as well as tephra, during historic eruptions (1787-1832) and three recent eruptions (1991, 1994-95, 2005-06). The recent aa flows include a toothpaste aa flow, with tilted and overturned crustal slabs carried atop an aa core, as well as locally developed tumuli-like elliptical uplifts having corrugated crusts. Based on various evidence we infer that it belongs to either the 1991 or the 1994-95 eruptions. The volcano has recently (2008) begun yet another eruption, so far only of tephra. We make significantly different interpretations of several features of the volcano than previous workers. This study of the volcanology and eruptive styles of the Barren Island volcano lays the ground for detailed geochemical-isotopic and petrogenetic work, and provides clues to what the volcano can be expected to do in the future.

  4. Subterranean fragmentation of magma during conduit initiation and evolution in the shallow plumbing system of the small-volume Jagged Rocks volcanoes (Hopi Buttes Volcanic Field, Arizona, USA)

    NASA Astrophysics Data System (ADS)

    Re, Giuseppe; White, James D. L.; Muirhead, James D.; Ort, Michael H.

    2016-08-01

    Monogenetic volcanoes have limited magma supply and lack long-lived sustained magma plumbing systems. They erupt once, often from multiple vents and sometimes over several years, and are rarely or never re-activated. Eruptive behavior is very sensitive to physical processes (e.g., volatile exsolution, magma-water interaction) occurring in the later stages of magma ascent at shallow crustal depths (<1 km), which yield a spectrum of eruptive styles including weak to moderate explosive activity, violent phreatomagmatism, and lava effusion. Jagged Rocks Complex in the late Miocene Hopi Buttes Volcanic field (Arizona, USA) exposes the frozen remnants of the feeding systems for one or a few monogenetic volcanoes. It provides information on how a shallow magmatic plumbing system evolved within a stable non-marine sedimentary basin, and the processes by which magma flowing through dikes fragmented and conduits were formed. We have identified three main types of fragmental deposits, (1) buds (which emerge from dikes), (2) pyroclastic massifs, and (3) diatremes; these represent three different styles and intensities of shallow-depth magma fragmentation. They may develop successively and at different sites during the evolution of a monogenetic volcano. The deposits consist of a mixture of pyroclasts with varying degrees of welding and country-rock debris in various proportions. Pyroclasts are commonly welded together, but also reveal in places features consistent with phreatomagmatism, such as blocky shapes, dense groundmasses, and composite clasts (loaded and cored). The extent of fragmentation and the formation of subterranean open space controlled the nature of the particles and the architecture and geometry of these conduit structures and their deposits.

  5. Earth Girl Volcano: An Interactive Casual Game about Complex Volcanic Hazards

    NASA Astrophysics Data System (ADS)

    Kerlow, I.

    2017-12-01

    Earth Girl Volcano is an interactive casual strategy game for disaster preparedness. The project is designed for mainstream audiences, particularly for children, as an engaging and fun way to learn about volcano hazards, monitoring, and mitigation strategies. The game is deceptively simple but it provides a toolbox to address practically all volcanic hazards ranging from gas and ash fall to pyroclastic flows, lava and lahars. This presentation shows the basic dynamic to explore the area, assess the risk, choose the best-suited tools and execute a mitigation strategy within the available budget. This game is a real-time simulation of a crowd evacuation that allows players to intervene before and during the disaster.

  6. Volcanic Processes and Geology of Augustine Volcano, Alaska

    USGS Publications Warehouse

    Waitt, Richard B.; Beget, James E.

    2009-01-01

    Augustine Island (volcano) in lower Cook Inlet, Alaska, has erupted repeatedly in late-Holocene and historical times. Eruptions typically beget high-energy volcanic processes. Most notable are bouldery debris avalanches containing immense angular clasts shed from summit domes. Coarse deposits of these avalanches form much of Augustine's lower flanks. A new geologic map at 1:25,000 scale depicts these deposits, these processes. We correlate deposits by tephra layers calibrated by many radiocarbon dates. Augustine Volcano began erupting on the flank of a small island of Jurassic clastic-sedimentary rock before the late Wisconsin glaciation (late Pleistocene). The oldest known effusions ranged from olivine basalt explosively propelled by steam, to highly explosive magmatic eruptions of dacite or rhyodacite shed as pumice flows. Late Wisconsin piedmont glaciers issuing from the mountainous western mainland surrounded the island while dacitic eruptive debris swept down the south volcano flank. Evidence is scant for eruptions between the late Wisconsin and about 2,200 yr B.P. On a few south-flank inliers, thick stratigraphically low pumiceous pyroclastic-flow and fall deposits probably represent this period from which we have no radiocarbon dates on Augustine Island. Eruptions between about 5,350 and 2,200 yr B.P. we know with certainty by distal tephras. On Shuyak Island 100 km southeast of Augustine, two distal fall ashes of Augustinian chemical provenance (microprobe analysis of glass) date respectively between about 5,330 and 5,020 yr B.P. and between about 3,620 and 3,360 yr B.P. An Augustine ash along Kamishak Creek 70 km southwest of Augustine dates between about 3,850 and 3,660 yr B.P. A probably Augustinian ash lying within peat near Homer dates to about 2,275 yr B.P. From before 2,200 yr B.P. to the present, Augustine eruptive products abundantly mantle the island. During this period, numerous coarse debris avalanches swept beyond Augustine's coast, most recently in A.D. 1883. The decapitated summit after the 1883 eruption, replaced by andesite domes of six eruptions since, shows a general process: collapse of steep summit domes, then the summit regrown by later dome eruptions. The island's stratigraphy is based on six or seven coarse-pumice tephra 'marker beds'. In upward succession they are layers G (2,100 yr B.P.), I (1,700 yr B.P.), H (1,400 yr B.P.), C (1,200-1,000 yr B.P.), M (750 yr B.P.), and B (390 yr B.P.). A coarse, hummocky debris-avalanche deposit older than about 2,100 yr B.P. - or perhaps a stack of three of them - lies along the east coast, the oldest exposed such bouldery diamicts on Augustine Island. Two large debris avalanches swept east and southeast into the sea between about 2,100 and 1,800 yr B.P. A large debris avalanche shed east and east-northeast into the sea between 1,700 and 14,00 yr B.P. Between about 1,400 and 1,100 yr B.P. debris avalanches swept into the sea on the volcano's south, southwest, and north-northwest. Pumiceous pyroclastic fans spread to the southeast and southwest, lithic pyroclastic flows and lahars (?) to the south and southeast. Pyroclastic flows, pyroclastic surges, and lahars swept down the west and south flanks between about 1,000 and 750 yr B.P. A debris avalanche swept into the sea on the west, and a small one on the south-southeast, between about 750 and 400 yr B.P. Large lithic pyroclastic flows shed to the southeast; smaller ones descended existing swales on the southwest and south. Between about 400 yr B.P. and historical time (late 1770s), three debris avalanches swept into the sea on the west-northwest, north-northwest, and north flanks. One of them (West Island) was large and fast: most of it rode to sea far beyond a former sea cliff, and its surface includes geomorphic evidence of having initiating a tsunami. Augustine's only conspicuous lava flow erupted on the north flank. During this prehistoric period numerous domes grew at th

  7. Santa Maria Volcano, Guatemala

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The eruption of Santa Maria volcano in 1902 was one of the largest eruptions of the 20th century, forming a large crater on the mountain's southwest flank. Since 1922, a lava-dome complex, Santiaguito, has been forming in the 1902 crater. Growth of the dome has produced pyroclastic flows as recently as the 2001-they can be identified in this image. The city of Quezaltenango (approximately 90,000 people in 1989) sits below the 3772 m summit. The volcano is considered dangerous because of the possibility of a dome collapse such as one that occurred in 1929, which killed about 5000 people. A second hazard results from the flow of volcanic debris into rivers south of Santiaguito, which can lead to catastrophic flooding and mud flows. More information on this volcano can be found at web sites maintained by the Smithsonian Institution, Volcano World, and Michigan Tech University. ISS004-ESC-7999 was taken 17 February 2002 from the International Space Station using a digital camera. The image is provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Searching and viewing of additional images taken by astronauts and cosmonauts is available at the NASA-JSC Gateway to

  8. Seismic monitoring of effusive-explosive activity and large lava dome collapses during 2013-2015 at Volcán de Colima, Mexico

    NASA Astrophysics Data System (ADS)

    Arámbula-Mendoza, Raúl; Reyes-Dávila, Gabriel; Vargas-Bracamontes Dulce, M.; González-Amezcua, Miguel; Navarro-Ochoa, Carlos; Martínez-Fierros, Alejandro; Ramírez-Vázquez, Ariel

    2018-02-01

    Volcán de Colima, the most active volcano in Mexico, started a new eruptive cycle in January 2013. Since this date, the volcano has presented effusive and explosive activity. The beginning of the cycle was marked by a moderate Vulcanian explosion which had hyperbolical behavior in its precursory seismicity, possibly related to a shallow rupture process. Then, during the whole eruptive stage, the effusive activity was accompanied by low to moderate explosions. The explosions had energies mainly of 106 joules and were located between 0 and 1600 m below the crater, whereas the locations of tremor sources were found to be deeper, reaching up to 3800 m beneath the crater. Very-long-period signals (VLPs) have been observed with Vulcanian explosions that produce pyroclastic flows. A few number of volcano-tectonic events (VTs) were recognized during the studied period (2013-2015), indicating that the volcano is an open system. This was particularly evidenced in July 2015, when a new batch of magma rose rapidly without large precursors, only an accelerated increase in the number of rockfalls and associated RSEM. This event generated two large lava dome collapses with several pulses of material and pyroclastic flows that travelled up to 10.3 km from the summit. The seismic monitoring of Volcán de Colima is currently the only tool in real-time employed to assess the state of the volcanic activity. It is thus necessary to integrate new seismic methods as well as other geophysical monitoring techniques able to detect precursory signals of an impending hazardous event.

  9. Constraining recent Shiveluch volcano eruptions (Kamchatka, Russia) by means of dendrochronology

    NASA Astrophysics Data System (ADS)

    Solomina, O.; Pavlova, I.; Curtis, A.; Jacoby, G.; Ponomareva, V.; Pevzner, M.

    2008-10-01

    Shiveluch (N 56°38´, E 161°19´; elevation: active dome ~2500 m, summit of Old Shiveluch 3283 m) is one of the most active volcanoes in Kamchatka. The eruptions of Shiveluch commonly result in major environmental damage caused by debris avalanches, hot pyroclastic flows, tephra falls and lahars. Constraining these events in time and space is important for the understanding and prediction of these natural hazards. The last major eruption of Shiveluch occurred in 2005; earlier ones, dated by instrumental, historical, 14C and tephrochronological methods, occurred in the last millennium around AD 1030, 1430, 1650, 1739, 1790 1810, 1854, 1879 1883, 1897 1898, 1905, 1927 1929, 1944 1950, and 1964. A lava dome has been growing in the 1964 crater since 1980, occasionally producing tephra falls and pyroclastic flows. Several Shiveluch eruptions (~AD 1050, 1650, 1854, 1964) may have been climatically effective and are probably recorded in the Greenland ice cores. Previously, most dates for eruptions before AD 1854 were obtained by tephrochronology and constrained by radiocarbon dating with an accuracy of several decades or centuries. In this paper we report tree-ring dates for a recent pyroclastic flow in Baidarnaia valley. Though the wood buried in these deposits is carbonized, fragile and poorly preserved, we were able to measure ring-width using standard tree-ring equipment or photographs and to cross-date these samples against the regional Kamchatka larch ring-width chronology. The dates of the outer rings indicate the date of the eruptions. In the Baidarnaia valley the eruption occurred shortly after AD 1756, but not later than AD 1758. This date coincides with the decrease of ring-width in trees growing near Shiveluch volcano in 1758 1763 in comparison with the control "non-volcanic" chronology. The pyroclastic flow in Kamenskaia valley, although similar in appearance to the one in Baidarnaia valley, definitively yielded a different age. Due to the age limit of the reference chronology (AD 1632 2005) and its short overlap with the sample chronology in Kamenskaia valley the dates of these deposits are very preliminary. The deposits probably date back to approximately AD 1649 or a few years later. This date is in close agreement with the previously obtained radiocarbon date of these sediments to AD 1641(1652)1663. Our data agree well with the tephrochronological findings, and further constrain the chronology of volcanic events in this remote area.

  10. Field-trip guide to Mount St. Helens, Washington - An overview of the eruptive history and petrology, tephra deposits, 1980 pyroclastic density current deposits, and the crater

    USGS Publications Warehouse

    Pallister, John S.; Clynne, Michael A.; Wright, Heather M.; Van Eaton, Alexa R.; Vallance, James W.; Sherrod, David R.; Kokelaar, B. Peter

    2017-08-02

    This field trip will provide an introduction to several fascinating features of Mount St. Helens. The trip begins with a rigorous hike of about 15 km from the Johnston Ridge Observatory (9 km north-northeast of the crater vent), across the 1980 Pumice Plain, to Windy Ridge (3.6 km northeast of the crater vent) to examine features that document the dynamics and progressive emplacement of pyroclastic flows. The next day, we examine classic tephra outcrops of the past 3,900 years and observe changes in thickness and character of these deposits as we traverse their respective lobes. We examine clasts in the deposits and discuss how the petrology and geochemistry of Mount St. Helens deposits reveal the evolution of the magmatic system through time. We also investigate the stratigraphy of the 1980 blast deposit and review the chronology of this iconic eruption as we travel through the remains of the blown-down forest. The third day is another rigorous hike, about 13 km round trip, climbing from the base of Windy Ridge (elevation 1,240 m) to the front of the Crater Glacier (elevation 1,700 m). En route we examine basaltic andesite and basalt lava flows emplaced between 1,800 and 1,700 years before present, a heterolithologic flow deposit produced as the 1980 blast and debris avalanche interacted, debris-avalanche hummocks that are stranded on the north flank and in the crater mouth, and shattered dacite lava domes that were emplaced between 3,900 and 2,600 years before present. These domes underlie the northern part of the volcano. In addition, within the crater we traverse well-preserved pyroclastic-flow deposits that were emplaced on the crater floor during the summer of 1980, and a beautiful natural section through the 1980 deposits in the upper canyon of the Loowit River.Before plunging into the field-trip log, we provide an overview of Mount St. Helens geology, geochemistry, petrology, and volcanology as background. The volcano has been referred to as a “master teacher.” The 1980 eruption and studies both before and after 1980 played a major role in the establishment of the modern U.S. Geological Survey Volcano Hazards Program and our understanding of flank collapses, debris avalanches, cryptodomes, blasts, pyroclastic density currents, and lahars, as well as the dynamics of magma ascent and eruption.

  11. Guatemala Volcanic Eruption Captured in NASA Spacecraft Image

    NASA Image and Video Library

    2015-02-19

    Guatemala's Fuego volcano continued its frequent moderate eruptions in early February 2015. Pyroclastic flows from the eruptions descended multiple drainages, and the eruptions sent ash plumes spewing over Guatemala City 22 miles (35 kilometers) away, and forced closure of the international airport. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument onboard NASA's Terra spacecraft captured a new image of the region on February 17. Fuego is on the left side of the image. The thermal infrared inset image shows the summit crater activity (white equals hot), and remnant heat in the flows on the flank. Other active volcanoes shown in the image are Acatenango close by to the north, Volcano de Agua in the middle of the image, and Pacaya volcano to the east. The image covers an area of 19 by 31 miles (30 by 49.5 kilometers), and is located at 14.5 degrees north, 90.9 degrees west. http://photojournal.jpl.nasa.gov/catalog/PIA19297

  12. Posteruption arthropod succession on the Mount St. Helens volcano: the ground-dwelling beetle fauna (Coleoptera).

    Treesearch

    R.R. Parmenter; C.M. Crisafulli; N. Korbe; G. Parsons; M. Edgar; J.A. MacMahon

    2005-01-01

    The 1980 eruptions of Mount St. Helens created a complex mosaic of disturbance types over a 600 km2 area. From 1980 through 2000 we monitored beetle species relative abundance and faunal composition of assemblages at undisturbed reference sites and in areas subjected to tephra-fall, blowdown, and pyroclastic flow volcanic disturbance. We...

  13. Dynamics of an unusual cone-building trachyte eruption at Pu`u Wa`awa`a, Hualālai volcano, Hawai`i

    NASA Astrophysics Data System (ADS)

    Shea, Thomas; Leonhardi, Tanis; Giachetti, Thomas; Lindoo, Amanda; Larsen, Jessica; Sinton, John; Parsons, Elliott

    2017-04-01

    The Pu`u Wa`awa`a pyroclastic cone and Pu`u Anahulu lava flow are two prominent monogenetic eruptive features assumed to result from a single eruption during the trachyte-dominated early post-shield stage of Hualālai volcano (Hawaíi). Púu Wa`awa`a is composed of complex repetitions of crudely cross-stratified units rich in dark dense clasts, which reversely grade into coarser pumice-rich units. Pyroclasts from the cone are extremely diverse texturally, ranging from glassy obsidian to vesicular scoria or pumice, in addition to fully crystalline end-members. The >100-m thick Pu`u Anahulu flow is, in contrast, entirely holocrystalline. Using field observations coupled with whole rock analyses, this study aimed to test whether the Pu`u Wa`awa`a tephra and Pu`u Anahulu lava flows originated from the same eruption, as had been previously assumed. Crystal and vesicle textures are characterized along with the volatile contents of interstitial glasses to determine the origin of textural variability within Pu`u Wáawáa trachytes (e.g., magma mixing vs. degassing origin). We find that (1) the two eruptions likely originated from distinct vents and magma reservoirs, despite their proximity and similar age, (2) the textural diversity of pyroclasts forming Pu`u Wa`awa`a can be fully explained by variable magma degassing and outgassing within the conduit, (3) the Pu`u Wa`awa`a cone was constructed during explosions transitional in style between violent Strombolian and Vulcanian, involving the formation of a large cone and with repeated disruption of conduit plugs, but without production of large pyroclastic density currents (PDCs), and (4) the contrasting eruption styles of Hawaiian trachytes (flow-, cone-, and PDC-forming) are probably related to differences in the outgassing capacity of the magmas prior to reaching the surface and not in intrinsic compositional or temperature properties. These results further highlight that trachytes are "kinetically faster" magmas compared to dacites or rhyolites, likely degassing and crystallizing more rapidly.

  14. Parametric analysis of lava dome-collapse events and pyroclastic deposits at Shiveluch volcano, Kamchatka, using visible and infrared satellite data

    NASA Astrophysics Data System (ADS)

    Krippner, Janine B.; Belousov, Alexander B.; Belousova, Marina G.; Ramsey, Michael S.

    2018-04-01

    For the years 2001 to 2013 of the ongoing eruption of Shiveluch volcano, a combination of different satellite remote sensing data are used to investigate the dome-collapse events and the resulting pyroclastic deposits. Shiveluch volcano in Kamchatka, Russia, is one of the world's most active dome-building volcanoes, which has produced some of the largest known historical block-and-ash flows (BAFs). Globally, quantitative data for deposits resulting from such large and long-lived dome-forming eruptions, especially like those at Shiveluch, are scarce. We use Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) thermal infrared (TIR), shortwave infrared (SWIR), and visible-near infrared (VNIR) data to analyze the dome-collapse scars and BAF deposits that were formed during eruptions and collapse events in 2001, 2004, 2005, 2007, 2009, 2010, and two events in 2013. These events produced flows with runout distances of as far as 19 km from the dome, and with aerial extents of as much as 22.3 km2. Over the 12 years of this period of investigation, there is no trend in deposit area or runout distances of the flows through time. However, two potentially predictive features are apparent in our data set: 1) the largest dome-collapse events occurred when the dome exceeded a relative height (from dome base to top) of 500 m; 2) collapses were preceded by thermal anomalies in six of the cases in which ASTER data were available, although the areal extent of these precursory thermal areas did not generally match the size of the collapse events as indicated by scar area (volumes are available for three collapse events). Linking the deposit distribution to the area, location, and temperature profiles of the dome-collapse scars provides a basis for determining similar future hazards at Shiveluch and at other dome-forming volcanoes. Because of these factors, we suggest that volcanic hazard analysis and mitigation at volcanoes with similar BAF emplacement behavior may be improved with detailed, synoptic studies, especially when it is possible to access and interpret appropriate remote sensing data in near-real time.

  15. Lateral blasts at Mount St. Helens and hazard zonation

    USGS Publications Warehouse

    Crandell, D.R.; Hoblitt, R.P.

    1986-01-01

    Lateral blasts at andesitic and dacitic volcanoes can produce a variety of direct hazards, including ballistic projectiles which can be thrown to distances of at least 10 km and pyroclastic density flows which can travel at high speed to distances of more than 30 km. Indirect effect that may accompany such explosions include wind-borne ash, pyroclastic flows formed by the remobilization of rock debris thrown onto sloping ground, and lahars. Two lateral blasts occurred at a lava dome on the north flank of Mount St. Helens about 1200 years ago; the more energetic of these threw rock debris northeastward across a sector of about 30?? to a distance of at least 10 km. The ballistic debris fell onto an area estimated to be 50 km2, and wind-transported ash and lapilli derived from the lateral-blast cloud fell on an additional lobate area of at least 200 km2. In contrast, the vastly larger lateral blast of May 18, 1980, created a devastating pyroclastic density flow that covered a sector of as much as 180??, reached a maximum distance of 28 km, and within a few minutes directly affected an area of about 550 km2. The May 18 lateral blast resulted from the sudden, landslide-induced depressurization of a dacite cryptodome and the hydrothermal system that surrounded it within the volcano. We propose that lateral-blast hazard assessments for lava domes include an adjoining hazard zone with a radius of at least 10 km. Although a lateral blast can occur on any side of a dome, the sector directly affected by any one blast probably will be less than 180??. Nevertheless, a circular hazard zone centered on the dome is suggested because of the difficulty of predicting the direction of a lateral blast. For the purpose of long-term land-use planning, a hazard assessment for lateral blasts caused by explosions of magma bodies or pressurized hydrothermal systems within a symmetrical volcano could designate a circular potential hazard area with a radius of 35 km centered on the volcano. For short-term hazard assessments, if seismicity and deformation indicate that magma is moving toward the flank of a volcano, it should be recognized that a landslide could lead to the sudden unloading of a magmatic or hydrothermal system and thereby cause a catastrophic lateral blast. A hazard assessment should assume that a lateral blast could directly affect an area at least 180?? wide to a distance of 35 km from the site of the explosion, irrespective of topography. ?? 1986 Springer-Verlag.

  16. Earth Observations taken by the Expedition 21 Crew

    NASA Image and Video Library

    2009-10-16

    ISS021-E-008371 (16 Oct. 2009) --- The city of Arequipa, Peru is featured in this image photographed by an Expedition 21 crew member on the International Space Station. Several Latin American cities have grown up on the flanks of active volcanoes. The city center of Arequipa, Peru lies only 17 kilometers away from the summit of El Misti volcano (partially out of frame at left); the gray urban area is bordered by green agricultural fields. With almost one million residents in 2009, it is the second city of Peru in terms of population. Much of the building stone for Arequipa, known locally as sillar, is quarried from nearby pyroclastic flow deposits that are white in color. Arequipa is known as ?the White City? because of the prevalence of this building material. The Chili River extends northeastwards from the city center, and flows through a canyon (left) between El Misti volcano and Nevado Chachani to the north.

  17. The Ongoing Lava Flow Eruption of Sinabung Volcano (Sumatra, Indonesia): Observations from Structure-from-Motion and Satellite Remote Sensing

    NASA Astrophysics Data System (ADS)

    Carr, B. B.; Clarke, A. B.; Arrowsmith, R.; Vanderkluysen, L.

    2015-12-01

    Sinabung is a 2460 m high andesitic stratovolcano in North Sumatra, Indonesia. Its ongoing eruption has produced a 2.9 km long lava flow with two active summit lobes and frequent pyroclastic flows (≤ 5 km long) with associated plumes over 5 km high. Large viscous lava flows of this type are common at volcanoes around the world, but are rarely observed while active. This eruption therefore provides a special opportunity to observe and study the mechanisms of emplacement and growth of an active lava flow. In September 2014, we conducted a field campaign to collect ground-based photographs to analyze with Structure-from-Motion photogrammetric techniques. We built multiple 3D models from which we estimate the volume of the lava flow and identify areas where the flow was most active. Thermal infrared and visual satellite images provide information on the effusive eruption from its initiation in December 2013 to the present and allow us to estimate the eruption rate, advance rate and rheological characteristics of the flow. According to our DEMs the flow volume as of September 2014 was 100 Mm3, providing an average flow rate of 4.5 m3/s, while comparison of two DEMs from that month suggests that most growth occurred at the SE nose of the flow. Flow advancement was initially controlled by the yield strength of the flow crust while eruption and flow advance rates were at their highest in January-March 2014. A period of slow front advancement and inflation from March - October 2014 suggests that the flow's interior had cooled and that propagation was limited by the interior yield strength. This interpretation is supported by the simultaneous generation of pyroclastic flows due to collapse of the upper portion of the lava flow and consequent lava breakout and creation of new flow lobes originating from the upper reaches in October 2014 and June 2015. Both lobes remain active as of August 2015 and present a significant hazard for collapse and generation of pyroclastic flows. We use a pre-eruption DEM of Sinabung provided by the Badan Informasi Geospasial (Indonesia) to identify over 20 older lava flows at Sinabung. The active flow appears to represent a typical eruption of Sinabung, with its length and area similar to previous flows.

  18. Post-eruptive flooding of Santorini caldera and implications for tsunami generation.

    PubMed

    Nomikou, P; Druitt, T H; Hübscher, C; Mather, T A; Paulatto, M; Kalnins, L M; Kelfoun, K; Papanikolaou, D; Bejelou, K; Lampridou, D; Pyle, D M; Carey, S; Watts, A B; Weiß, B; Parks, M M

    2016-11-08

    Caldera-forming eruptions of island volcanoes generate tsunamis by the interaction of different eruptive phenomena with the sea. Such tsunamis are a major hazard, but forward models of their impacts are limited by poor understanding of source mechanisms. The caldera-forming eruption of Santorini in the Late Bronze Age is known to have been tsunamigenic, and caldera collapse has been proposed as a mechanism. Here, we present bathymetric and seismic evidence showing that the caldera was not open to the sea during the main phase of the eruption, but was flooded once the eruption had finished. Inflow of water and associated landsliding cut a deep, 2.0-2.5 km 3 , submarine channel, thus filling the caldera in less than a couple of days. If, as at most such volcanoes, caldera collapse occurred syn-eruptively, then it cannot have generated tsunamis. Entry of pyroclastic flows into the sea, combined with slumping of submarine pyroclastic accumulations, were the main mechanisms of tsunami production.

  19. Post-eruptive flooding of Santorini caldera and implications for tsunami generation

    NASA Astrophysics Data System (ADS)

    Nomikou, P.; Druitt, T. H.; Hübscher, C.; Mather, T. A.; Paulatto, M.; Kalnins, L. M.; Kelfoun, K.; Papanikolaou, D.; Bejelou, K.; Lampridou, D.; Pyle, D. M.; Carey, S.; Watts, A. B.; Weiß, B.; Parks, M. M.

    2016-11-01

    Caldera-forming eruptions of island volcanoes generate tsunamis by the interaction of different eruptive phenomena with the sea. Such tsunamis are a major hazard, but forward models of their impacts are limited by poor understanding of source mechanisms. The caldera-forming eruption of Santorini in the Late Bronze Age is known to have been tsunamigenic, and caldera collapse has been proposed as a mechanism. Here, we present bathymetric and seismic evidence showing that the caldera was not open to the sea during the main phase of the eruption, but was flooded once the eruption had finished. Inflow of water and associated landsliding cut a deep, 2.0-2.5 km3, submarine channel, thus filling the caldera in less than a couple of days. If, as at most such volcanoes, caldera collapse occurred syn-eruptively, then it cannot have generated tsunamis. Entry of pyroclastic flows into the sea, combined with slumping of submarine pyroclastic accumulations, were the main mechanisms of tsunami production.

  20. Post-eruptive flooding of Santorini caldera and implications for tsunami generation

    PubMed Central

    Nomikou, P.; Druitt, T. H.; Hübscher, C.; Mather, T. A.; Paulatto, M.; Kalnins, L. M.; Kelfoun, K.; Papanikolaou, D.; Bejelou, K.; Lampridou, D.; Pyle, D. M.; Carey, S.; Watts, A. B.; Weiß, B.; Parks, M. M.

    2016-01-01

    Caldera-forming eruptions of island volcanoes generate tsunamis by the interaction of different eruptive phenomena with the sea. Such tsunamis are a major hazard, but forward models of their impacts are limited by poor understanding of source mechanisms. The caldera-forming eruption of Santorini in the Late Bronze Age is known to have been tsunamigenic, and caldera collapse has been proposed as a mechanism. Here, we present bathymetric and seismic evidence showing that the caldera was not open to the sea during the main phase of the eruption, but was flooded once the eruption had finished. Inflow of water and associated landsliding cut a deep, 2.0–2.5 km3, submarine channel, thus filling the caldera in less than a couple of days. If, as at most such volcanoes, caldera collapse occurred syn-eruptively, then it cannot have generated tsunamis. Entry of pyroclastic flows into the sea, combined with slumping of submarine pyroclastic accumulations, were the main mechanisms of tsunami production. PMID:27824353

  1. Preliminary volcano-hazard assessment for Great Sitkin Volcano, Alaska

    USGS Publications Warehouse

    Waythomas, Christopher F.; Miller, Thomas P.; Nye, Christopher J.

    2003-01-01

    Great Sitkin Volcano is a composite andesitic stratovolcano on Great Sitkin Island (51°05’ N latitude, 176°25’ W longitude), a small (14 x 16 km), circular volcanic island in the western Aleutian Islands of Alaska. Great Sitkin Island is located about 35 kilometers northeast of the community of Adak on Adak Island and 130 kilometers west of the community of Atka on Atka Island. Great Sitkin Volcano is an active volcano and has erupted at least eight times in the past 250 years (Miller and others, 1998). The most recent eruption in 1974 caused minor ash fall on the flanks of the volcano and resulted in the emplacement of a lava dome in the summit crater. The summit of the composite cone of Great Sitkin Volcano is 1,740 meters above sea level. The active crater is somewhat lower than the summit, and the highest point along its rim is about 1,460 meters above sea level. The crater is about 1,000 meters in diameter and is almost entirely filled by a lava dome emplaced in 1974. An area of active fumaroles, hot springs, and bubbling hot mud is present on the south flank of the volcano at the head of Big Fox Creek (see the map), and smaller ephemeral fumaroles and steam vents are present in the crater and around the crater rim. The flanking slopes of the volcano are gradual to steep and consist of variously weathered and vegetated blocky lava flows that formed during Pleistocene and Holocene eruptions. The modern edifice occupies a caldera structure that truncates an older sequence of lava flows and minor pyroclastic rocks on the east side of the volcano. The eastern sector of the volcano includes the remains of an ancestral volcano that was partially destroyed by a northwest-directed flank collapse. In winter, Great Sitkin Volcano is typically completely snow covered. Should explosive pyroclastic eruptions occur at this time, the snow would be a source of water for volcanic mudflows or lahars. In summer, much of the snowpack melts, leaving only a patchy distribution of snow on the volcano. Glacier ice is no longer present on the volcano or on other parts of Great Sitkin Island as previously reported by Simons and Mathewson (1955). Great Sitkin Island is presently uninhabited and is part of the Alaska Maritime National Wildlife Refuge, managed by the U.S. Fish and Wildlife Service.

  2. Arenal-type pyroclastic flows: A probabilistic event tree risk analysis

    NASA Astrophysics Data System (ADS)

    Meloy, Anthony F.

    2006-09-01

    A quantitative hazard-specific scenario-modelling risk analysis is performed at Arenal volcano, Costa Rica for the newly recognised Arenal-type pyroclastic flow (ATPF) phenomenon using an event tree framework. These flows are generated by the sudden depressurisation and fragmentation of an active basaltic andesite lava pool as a result of a partial collapse of the crater wall. The deposits of this type of flow include angular blocks and juvenile clasts, which are rarely found in other types of pyroclastic flow. An event tree analysis (ETA) is a useful tool and framework in which to analyse and graphically present the probabilities of the occurrence of many possible events in a complex system. Four event trees are created in the analysis, three of which are extended to investigate the varying individual risk faced by three generic representatives of the surrounding community: a resident, a worker, and a tourist. The raw numerical risk estimates determined by the ETA are converted into a set of linguistic expressions (i.e. VERY HIGH, HIGH, MODERATE etc.) using an established risk classification scale. Three individually tailored semi-quantitative risk maps are then created from a set of risk conversion tables to show how the risk varies for each individual in different areas around the volcano. In some cases, by relocating from the north to the south, the level of risk can be reduced by up to three classes. While the individual risk maps may be broadly applicable, and therefore of interest to the general community, the risk maps and associated probability values generated in the ETA are intended to be used by trained professionals and government agencies to evaluate the risk and effectively manage the long-term development of infrastructure and habitation. With the addition of fresh monitoring data, the combination of both long- and short-term event trees would provide a comprehensive and consistent method of risk analysis (both during and pre-crisis), and as such, an ETA is considered to be a valuable quantitative decision support tool.

  3. Preliminary volcano-hazard assessment for Augustine Volcano, Alaska

    USGS Publications Warehouse

    Waythomas, Christopher F.; Waitt, Richard B.

    1998-01-01

    Augustine Volcano is a 1250-meter high stratovolcano in southwestern Cook Inlet about 280 kilometers southwest of Anchorage and within about 300 kilometers of more than half of the population of Alaska. Explosive eruptions have occurred six times since the early 1800s (1812, 1883, 1935, 1964-65, 1976, and 1986). The 1976 and 1986 eruptions began with an initial series of vent-clearing explosions and high vertical plumes of volcanic ash followed by pyroclastic flows, surges, and lahars on the volcano flanks. Unlike some prehistoric eruptions, a summit edifice collapse and debris avalanche did not occur in 1812, 1935, 1964-65, 1976, or 1986. However, early in the 1883 eruption, a portion of the volcano summit broke loose forming a debris avalanche that flowed to the sea. The avalanche initiated a small tsunami reported on the Kenai Peninsula at English Bay, 90 kilometers east of the volcano. Plumes of volcanic ash are a major hazard to jet aircraft using Anchorage International and other local airports. Ashfall from future eruptions could disrupt oil and gas operations and shipping activities in Cook Inlet. Eruptions similar to the historical and prehistoric eruptions are likely in Augustine's future.

  4. The activity of the Colima volcano and morphological changes in the summit between 2004 and 2013

    NASA Astrophysics Data System (ADS)

    Suarez-Plascencia, C.; Nunez-Cornu, F. J.; Camarena Garcia, M. A.

    2013-05-01

    Colima Volcano, located in the West of the Volcanic Mexican Belt (19° 30.696 N, 103° 37.026 W), has shown a new cycle of explosive activity beginning May 30 1999, and reaching its maximum in March-April of 2005 and January 2013. In the 2005 the explosive activity increased gradually, having the largest event on May 23, when a new dome was created. Hours later this dome was destroyed by a strong explosion, forming an ash column 5.6 km high with subsequent pyroclastic flows that reached a distance of 4.2 km flowing along the ravines of the South sector. On May 30 the most intense explosion in 1999 occurred, when the plume reached heights in excess of 4.4 km above the crater, and pyroclastic flows were created. On the same year in July two explosive events occurred of characteristics similar to those in May. These constant explosions caused continuous morphological changes in the summit, the most significant being the collapse of the North and South walls of the crater, in the first week of June of 2005, and the creation of a new crater in July. In 2006 the most significant explosive activity took place during April, May and July, when the eruptive columns reached heights of more than 1500 meters above the crater, occasionally forming small pyroclastic flows. In May of 2007 morphological changes were observed in the summit. Among them a crater explosion on the East side, a dome was formed on the West side, with 20 m in high and 50 m in diameter. Since the end of 2008 to December of 2012 the volcano remained calm, with a dome diameter of 220 m and height of 60 m, in January 2013 three explosions occurred, destroying the dome and throwing a volume of 1.5 million cubic meters. The eruptive column reached a height of 3000 above the crater. It reported light ashfall to the NE to 100 km away from the volcano. The explosive events continue to date, but they have diminished in size and intensity. This activity was similar to the one observed in 1902-1903 and reported by Severo Diaz and J.M. Arreola (1906), but without reaching the maximum levels of activity reported for 1903, where it had levels of three to five maximum explosive events per day. The photographs and the digital mapping have provided detailed information to quantify the dynamic evolution of the volcanic structures that developed on the summit of the volcano in the course of the last for years. The cartographic and database information obtained will be the basis for updating the Operational Plan of the Colima Volcano by the State Civil & Fire Protection Unit of Jalisco, Mexico, and the urban development plans of surrounding municipalities, in order to reduce their vulnerability to the hazards of the volcanic activity.

  5. Hazard map for volcanic ballistic impacts at El Chichón volcano (Mexico)

    NASA Astrophysics Data System (ADS)

    Alatorre-Ibarguengoitia, Miguel; Ramos-Hernández, Silvia; Jiménez-Aguilar, Julio

    2014-05-01

    The 1982 eruption of El Chichón Volcano in southeastern Mexico had a strong social and environmental impact. The eruption resulted in the worst volcanic disaster in the recorded history of Mexico, causing about 2,000 casualties, displacing thousands, and producing severe economic losses. Even when some villages were relocated after the 1982 eruption, many people still live and work in the vicinities of the volcano and may be affected in the case of a new eruption. The hazard map of El Chichón volcano (Macías et al., 2008) comprises pyroclastic flows, pyroclastic surges, lahars and ash fall but not ballistic projectiles, which represent an important threat to people, infrastructure and vegetation in the case of an eruption. In fact, the fatalities reported in the first stage of the 1982 eruption were caused by roof collapse induced by ashfall and lithic ballistic projectiles. In this study, a general methodology to delimit the hazard zones for volcanic ballistic projectiles during volcanic eruptions is applied to El Chichón volcano. Different scenarios are defined based on the past activity of the volcano and parameterized by considering the maximum kinetic energy associated with ballistic projectiles ejected during previous eruptions. A ballistic model is used to reconstruct the "launching" kinetic energy of the projectiles observed in the field. The maximum ranges expected for the ballistics in the different explosive scenarios defined for El Chichón volcano are presented in a ballistic hazard map which complements the published hazard map. These maps assist the responsible authorities to plan the definition and mitigation of restricted areas during volcanic crises.

  6. GlobVolcano pre-operational services for global monitoring active volcanoes

    NASA Astrophysics Data System (ADS)

    Tampellini, Lucia; Ratti, Raffaella; Borgström, Sven; Seifert, Frank Martin; Peltier, Aline; Kaminski, Edouard; Bianchi, Marco; Branson, Wendy; Ferrucci, Fabrizio; Hirn, Barbara; van der Voet, Paul; van Geffen, J.

    2010-05-01

    The GlobVolcano project (2007-2010) is part of the Data User Element programme of the European Space Agency (ESA). The project aims at demonstrating Earth Observation (EO) based integrated services to support the Volcano Observatories and other mandate users (e.g. Civil Protection) in their monitoring activities. The information services are assessed in close cooperation with the user organizations for different types of volcano, from various geographical areas in various climatic zones. In a first phase, a complete information system has been designed, implemented and validated, involving a limited number of test areas and respective user organizations. In the currently on-going second phase, GlobVolcano is delivering pre-operational services over 15 volcanic sites located in three continents and as many user organizations are involved and cooperating with the project team. The set of GlobVolcano offered EO based information products is composed as follows: Deformation Mapping DInSAR (Differential Synthetic Aperture Radar Interferometry) has been used to study a wide range of surface displacements related to different phenomena (e.g. seismic faults, volcanoes, landslides) at a spatial resolution of less than 100 m and cm-level precision. Permanent Scatterers SAR Interferometry method (PSInSARTM) has been introduced by Politecnico of Milano as an advanced InSAR technique capable of measuring millimetre scale displacements of individual radar targets on the ground by using multi-temporal data-sets, estimating and removing the atmospheric components. Other techniques (e.g. CTM) have followed similar strategies and have shown promising results in different scenarios. Different processing approaches have been adopted, according to data availability, characteristic of the area and dynamic characteristics of the volcano. Conventional DInSAR: Colima (Mexico), Nyiragongo (Congo), Pico (Azores), Areanal (Costa Rica) PSInSARTM: Piton de la Fournaise (La Reunion Island), Stromboli and Volcano (Italy), Hilo (Hawai), Mt. St. Helens (United States), CTM (Coherent Target Monitoring): Cumbre Vieja (La Palma) To generate products either Envisat ASAR, Radarsat 1or ALOS PALSAR data have been used. Surface Thermal Anomalies Volcanic hot-spots detection, radiant flux and effusion rate (where applicable) calculation of high temperature surface thermal anomalies such as active lava flow, strombolian activity, lava dome, pyroclastic flow and lava lake can be performed through MODIS (Terra / Aqua) MIR and TIR channels, or ASTER (Terra), HRVIR/HRGT (SPOT4/5) and Landsat family SWIR channels analysis. ASTER and Landsat TIR channels allow relative radiant flux calculation of low temperature anomalies such as lava and pyroclastic flow cooling, crater lake and low temperature fumarolic fields. MODIS, ASTER and SPOT data are processed to detect and measure the following volcanic surface phenomena: Effusive activity Piton de la Fournaise (Reunion Island); Mt Etna (Italy). Lava dome growths, collapses and related pyroclastic flows Soufrière Hills (Montserrat); Arenal - (Costa Rica). Permanent crater lake and ephemeral lava lake Karthala (Comores Islands). Strombolian activity Stromboli (Italy). Low temperature fumarolic fields Nisyros (Greece), Vulcano (Italy), Mauna Loa (Hawaii). Volcanic Emission The Volcanic Emission Service is provided to the users by a link to GSE-PROMOTE - Support to Aviation Control Service (SACS). The aim of the service is to deliver in near-real-time data derived from satellite measurements regarding SO2 emissions (SO2 vertical column density - Dobson Unit [DU]) possibly related to volcanic eruptions and to track the ash injected into the atmosphere during a volcanic eruption. SO2 measurements are derived from different satellite instruments, such as SCIAMACHY, OMI and GOME-2. The tracking of volcanic ash is accomplished by using SEVIRI-MSG data and, in particular, the following channels VIS 0.6 and IR 3.9, and along with IR8.7, IR 10.8 and IR 12.0. The GlobVolcano information system and its current experimentation represent a significant step ahead towards the implementation of an operational, global observatory of volcanoes by the synergetic use of data from available Earth Observation satellites.

  7. Geology of proximal, small-volume trachyte-trachyandesite pyroclastic flows and associated surge deposits, Roccamonfina volcano, Italy

    NASA Astrophysics Data System (ADS)

    Giannetti, Bernardino

    1998-01-01

    This paper describes the 232 ka B.P. MTTT trachyte-trachyandesite pyroclastic succession of Roccamonfina volcano. This small-volume, proximal sequence crops out along Mulino di Sotto, Paratone, and Pisciariello ravines in the southwest sector of the central caldera, and covers a minimum extent of 3.5 km 2 area. It is made up of seven pyroclastic flows and pyroclastic surge units consisting of trachytic ash matrix containing juvenile trachyandesitic scoria and dense lava fragments, pumice clasts of uncertain trachyandesite, and a foreign trachyandesitic lithic facies. Two stratigraphic markers allow correlation of the units. No paleosoils and Plinian fallout have been observed at the base and within the succession. Some lateral grading of scoria and lithic clasts suggests that MTTT derived from three distinct source vents. The sequence consists of a basal ash flow passing laterally to laminated surge deposits (Unit A). This is overlain by a reversely graded scoria and pumice lapilli flow (Unit B) which is in turn overlain by a thinly cross-stratified scoria lapilli surge (Unit C). Unit C is capped by a prominent ash-and-scoria flow (Unit D). A ground layer (Marker MK1) divides Unit D from a massive ignimbrite which grades upcurrent to sand-wave surge deposits (Unit E). Another ground layer (Marker MK2) separates Unit E from Unit F. This unit consists of a basal ignimbrite passing laterally to bedded surge deposits with convolute structures (subunit Fl), and grading upcurrent to a subhorizontally plane-laminated ash cloud (subunit F2) containing near the top a layer of millimetric lithic clasts embedded in fine ash. The succession is closed by the pyroclastic flow Unit G. Surge Unit C can be interpreted in terms of vertical gradients in turbulence, particle concentration, and velocity during flowage, whereas the bedded surge parts present in the massive deposits of Units A and E-F1 can be related to abrupt changes of velocity down the steep slopes of ravines. Reverse grading in Unit B is probably due to grain dispersive pressures. The convolute structures within Fl are related to zones of diagenetic cementation associated with groundwater. Finally, the laminated, fine-grained nature of subunit F2 is interpreted as due to ash clouds elutriated from the basal part of Unit F. Stratigraphic markers MK1-MK2 are ground layer breccias formed by settling of lithic and scoria clasts from overlying units E and F, respectively. Vesiculation and morphologies of glass shards of the MTTT succession suggest that eruptions were essentially driven by magmatic explosions which had an appreciable hydromagmatic component.

  8. Using paleomagnetism to uncover long-runout pyroclastic flows

    NASA Astrophysics Data System (ADS)

    Lerner, G. A.; Cronin, S. J.; Turner, G. M.

    2017-12-01

    Understanding the conditions under which volcanic deposits were emplaced is vital to better preparing for hazards at an active stratovolcano. The coherence of paleomagnetic directions in different parts of the blocking temperature spectrum between the clasts of mass flow deposits has proven to be a useful tool for ascertaining emplacement temperatures. These temperature estimates can help in distinguishing between hot pyroclastic density currents (PDCs) and cold lahars. In the case of more clast-poor distal deposits, however, it can be difficult to obtain sufficient clast material for effective paleomagnetic study. In this study, the problem was remedied by using oriented and strengthened samples of matrix material from mass flow deposits in the 11,500 BP Warea Formation from Mt. Taranaki, New Zealand. Paleomagnetic data from matrix samples was used to supplement the limited data obtained from the traditional clast analysis in order to determine the emplacement temperature of the deposits. Comparison of paleomagnetic directions obtained from matrix samples at several sites within the Warea Formation revealed it as a PDC with matrix temperatures over 200°C and clasts reaching temperatures of up to 410°C at the time of deposition. This discovery of hot PDC deposits at distances >20 km from the summit of the volcano extends their known range at this volcano by 5 km. These findings will significantly change the hazard mapping and emergency planning for this region.

  9. Friction weakening in granular flows deduced from seismic records at the Soufrière Hills Volcano, Montserrat

    NASA Astrophysics Data System (ADS)

    Levy, Clara; Mangeney, Anne; Bonilla, Fabian; Hibert, Clément; Calder, Eliza S.; Smith, Patrick J.

    2015-11-01

    Accurate modeling of rockfalls and pyroclastic flows is still an open issue, partly due to a lack of measurements related to their dynamics. Using seismic data from the Soufrière Hills Volcano, Montserrat, and granular flow modeling, we show that the power laws relating the seismic energy Es to the seismic duration ts and relating the loss of potential energy ΔEp to the flow duration tf are very similar, like the power laws observed at Piton de la Fournaise, Reunion Island. Observations showing that tf≃ts suggest a constant ratio Es/ΔEp≃10-5. This similarity in these two power laws can be obtained only when the granular flow model uses a friction coefficient that decreases with the volume transported. Furthermore, with this volume-dependent friction coefficient, the simulated force applied by the flow to the ground correlates well with the seismic energy, highlighting the signature of this friction weakening effect in seismic data.

  10. Friction weakening in granular flows deduced from seismic records at the Soufrière Hills Volcano, Montserrat

    NASA Astrophysics Data System (ADS)

    Levy, Clara; Mangeney, Anne; Bonilla, Fabian; Hibert, Clément; Calder, Eliza; Smith, Paddy

    2015-04-01

    Accurate modelling of rockfalls and pyroclastic flows is still an open issue, partly due the lack of measurements related to the dynamics of such events. Using seismic data from the Soufrière Hills Volcano and granular flow modelling, we show that the power laws relating the seismic energy Es to the seismic duration ts and relating the loss of potential energy ΔEp to the flow duration tf are very similar (Ei ≈ tiβ with i = s,p), as observed previously at Piton de la Fournaise, Reunion Island. Observations showing that tf ≃ ts suggest a constant ratio Es/ΔEp ≃ 10-5. This similarity in the power laws can be obtained only when the granular flow model uses a friction coefficient that decreases with the volume involved. Furthermore, with this volume-dependent friction coefficient, the simulated force applied by the flow to the ground correlates well with the seismic energy, highlighting the signature of this friction weakening effect in seismic data.

  11. Subsurface architecture of Las Bombas volcano circular structure (Southern Mendoza, Argentina) from geophysical studies

    NASA Astrophysics Data System (ADS)

    Prezzi, Claudia; Risso, Corina; Orgeira, María Julia; Nullo, Francisco; Sigismondi, Mario E.; Margonari, Liliana

    2017-08-01

    The Plio-Pleistocene Llancanelo volcanic field is located in the south-eastern region of the province of Mendoza, Argentina. This wide back-arc lava plateau, with hundreds of monogenetic pyroclastic cones, covers a large area behind the active Andean volcanic arc. Here we focus on the northern Llancanelo volcanic field, particularly in Las Bombas volcano. Las Bombas volcano is an eroded, but still recognizable, scoria cone located in a circular depression surrounded by a basaltic lava flow, suggesting that Las Bombas volcano was there when the lava flow field formed and, therefore, the lava flow engulfed it completely. While this explanation seems reasonable, the common presence of similar landforms in this part of the field justifies the need to establish correctly the stratigraphic relationship between lava flow fields and these circular depressions. The main purpose of this research is to investigate Las Bombas volcano 3D subsurface architecture by means of geophysical methods. We carried out a paleomagnetic study and detailed topographic, magnetic and gravimetric land surveys. Magnetic anomalies of normal and reverse polarity and paleomagnetic results point to the occurrence of two different volcanic episodes. A circular low Bouguer anomaly was detected beneath Las Bombas scoria cone indicating the existence of a mass deficit. A 3D forward gravity model was constructed, which suggests that the mass deficit would be related to the presence of fracture zones below Las Bombas volcano cone, due to sudden degassing of younger magma beneath it, or to a single phreatomagmatic explosion. Our results provide new and detailed information about Las Bombas volcano subsurface architecture.

  12. Observation of infrasonic and gravity waves at Soufrière Hills Volcano, Montserrat

    NASA Astrophysics Data System (ADS)

    Ripepe, Maurizio; De Angelis, Silvio; Lacanna, Giorgio; Voight, Barry

    2010-04-01

    The sudden ejection of material during an explosive eruption generates a broad spectrum of pressure oscillations, from infrasonic to gravity waves. An infrasonic array, installed at 3.5 km from the Soufriere Hills Volcano has successfully detected and located, in real-time, the infrasound generated by several pyroclastic flows (PF) estimating mean flow speeds of 30-75 m/s. On July 29 and December 3, 2008, two differential pressure transducers, co-located with the array, recorded ultra long-period (ULP) oscillations at frequencies of 0.97 and 3.5 mHz, typical of atmospheric gravity waves, associated with explosive eruptions. The observation of gravity waves in the near-field (<6 km) at frequencies as low as about 1 mHz is unprecedented during volcanic eruptions.

  13. The monogenetic Bayuda Volcanic Field, Sudan - New insights into geology and volcanic morphology

    NASA Astrophysics Data System (ADS)

    Lenhardt, Nils; Borah, Suranjana B.; Lenhardt, Sukanya Z.; Bumby, Adam J.; Ibinoof, Montasir A.; Salih, Salih A.

    2018-05-01

    The small monogenetic Bayuda Volcanic Field (BVF; 480 km2), comprising at least 53 cinder cones and 15 maar volcanoes in the Bayuda desert of northern Sudan is one of a few barely studied volcanic occurrences of Quaternary age in Sudan. The exact age of the BVF and the duration of volcanic activity has not yet been determined. Furthermore, not much is known about the eruptional mechanisms and the related magmatic and tectonic processes that led to the formation of the volcanic field. In the framework of a larger project focusing on these points it is the purpose of this contribution to provide a first account of the general geology of the BVF volcanoes as well as a first description of a general stratigraphy, including a first description of their morphological characteristics. This was done by means of fieldwork, including detailed rock descriptions, as well as the analysis of satellite images (SRTM dataset at 30 m spatial resolution). The BVF cinder cones are dominated by scoracious lapilli tephra units, emplaced mainly by pyroclastic fallout from Strombolian eruptions. Many cones are breached and are associated with lava flows. The subordinate phreatomagmatism represented by maar volcanoes suggests the presence of ground and/or shallow surface water during some of the eruptions. The deposits constituting the rims around the maar volcanoes are interpreted as having mostly formed due to pyroclastic surges. Many of the tephra rings around the maars are underlain by thick older lava flows. These are inferred to be the horizons where rising magma interacted with groundwater. The existence of phreatomagmatic deposits may point to a time of eruptive activity during a phase with wetter conditions and therefore higher groundwater levels than those encountered historically. This is supported by field observations as well as the morphological analysis, providing evidence for relatively high degrees of alteration of the BVF volcanoes and therefore older eruption ages as suggested by some researchers. A Lower Holocene to Upper Pleistocene age is proposed.

  14. The effect of paleotopography on lithic distribution and facies associations of small volume ignimbrites: the WTT Cupa (Roccamonfina volcano, Italy)

    NASA Astrophysics Data System (ADS)

    Giordano, Guido

    1998-12-01

    The distribution of lithic clasts within two trachytic, small volume, pumiceous ignimbrites are described from the Quaternary `White Trachytic Tuff Cupa' formation of Roccamonfina volcano, Italy. The ignimbrites show a downslope grading of lithics, with a maximum size where there is a major break in the volcano's slope, rather than at proximal locations. This is also the location where ignimbrites are thickest and most massive. The break in slope is interpreted to have reduced flow capacity and velocity, increasing the sedimentation rate, so that massive ignimbrite formed by hindered settling sedimentation. Ignimbrite Cc, exhibits no vertical grading of lithics, though it does show downslope grading with maximum size at the major break in slope and a rapid decrease further downslope. Ignimbrite Cc thins away from the break in slope, and shows an upward fining of the grain size within the topmost few decimeters of the unit. The ignimbrite is stratified proximally, and grades to massive facies at the break in slope, and distally to stratified facies with numerous inverse-graded beds. The simplest mechanism accounting for these downslope variations is progressive aggradation from a quasi-steady, nonuniform pyroclastic density current. The changes in deposit thickness and facies are interpreted to record downcurrent changes in sedimentation rate. The upward fining reflects waning flow. Inversely graded, bedded depositional facies in distal areas is interpreted to reflect flow unsteadiness and a decrease in suspended sediment load. Ignimbrite Cd shows vertical, as well as downslope grading of lithics. This characteristic, coupled with the widespread massive facies of the deposit and the tabular unit geometry are features that can be reconciled with both the debris flow/plug analogy for pyroclastic flows ( Sparks, 1976) and the progressive aggradation model ( Branney and Kokelaar, 1992). However, none of them appears to satisfy completely the field evidences, implying that when dealing with massive ignimbrites, other evidence than lithic grading needs to be presented to better understand the related transport and depositional processes.

  15. Morphological analysis of Cerro Bravo Volcano, Central Andes of Colombia

    NASA Astrophysics Data System (ADS)

    Arango-Palacio, E.; Murcia, H. F.; Robayo, C.; Chica, P.; Piedrahita, D. A.; Aguilar-Casallas, C.

    2017-12-01

    Keywords: Cerro Bravo Volcano, Volcanic landforms, Craters. Cerro Bravo Volcano (CBV) belongs to the San Diego-Cerro Machín Volcano - Tectonic Province in the Central Andes of Colombia. CVB is located 150 km NW from Bogotá, the capital of Colombia, and 25 km E from Manizales city ( 350,00 inhabitants). The volcanic activity of CBV began at 50,000 years ago and has been characterized by produce effusive and explosive (subplinian to plinian) eruptions with dacitic and andesitic in composition products. The effusive activity is evidenced by lava flows and lava domes, while the explosive activity is evidenced by pyroclastic density current deposits and pyroclastic fall deposits; some secondary deposits such as debris avalanches and lahares has been also recognised. Currently, the CBV is considered as a hazard for the Manizales city. In order to characterise the volcanic edifice, a morphological analysis was carried out and a map was created from a digital elevations model (DEM) with 12.5 m resolution as well as aerial photographs. Thus, it was possible to associate the landforms with the evolution of the volcano. Based on this analysis, it was possible to identify the base and top of the CBV edifice as 2400 and 4020 m.a.s.l., respectively, with a diameter in its major axis of 5.8 km. The volcanic edifice has four main craters opening to the north. The craters are apart from each other by heights and distances between 120 m.a.s.l. and 1 km, respectively; this geomorphology is an evidence of different eruptive stages of the volcano construction. Morphological analysis has shown that some craters were created from explosive eruptions, however the different heights between each crater suggest the creation of lava domes and their collapse as a response of the final effusive activity.

  16. Lahar Hazards at Casita and San Cristóbal Volcanoes, Nicaragua

    USGS Publications Warehouse

    Vallance, J.W.; Schilling, S.P.; Devoli, G.; Reid, M.E.; Howell, M.M.; Brien, D.L.

    2004-01-01

    Casita and San Cristóbal volcanoes are part of a volcano complex situated at the eastern end of the Cordillera de los Maribios. Other centers of volcanism in the complex include El Chonco, Cerro Moyotepe, and La Pelona. At 1745 m, San Cristóbal is the highest and only historically active volcano of the complex. The volcano’s crater is 500 to 600 m across and elongate east to west; its western rim is more than 100 m higher than its eastern rim. The conical volcano is both steep and symmetrical. El Chonco, which lies west of San Cristóbal, is crudely conical but has been deeply dissected by streams. Cerro Moyotepe to the northeast of San Cristóbal is even more deeply incised by erosion than El Chonco, and its crater is breached by erosion. Casita volcano, about 5 km east of San Cristóbal volcano, comprises a broad ridge like form, elongate along an eastwest axis, that is deeply dissected. Nested along the ridge are two craters. The younger one, La Ollada crater, truncates an older smaller crater to the east near Casita’s summit (1430 m). La Ollada crater is about 1 km across and 100 m deep. Numerous small fumarole fields occur near the summit of Casita and on nearby slopes outside of the craters. Casita volcano overlaps the 3-km-wide crater of La Pelona to the east. Stream erosion has deeply incised the slopes of La Pelona, and it is likely the oldest center of the Casita-San Cristóbal volcano complex. In late October and early November 1998, torrential rains of Hurricane Mitch caused numerous slope failures in Central America. The most catastrophic occurred at Casita volcano, on October 30, 1998. At Casita, five days of heavy rain triggered a 1.6-million-cubic-meter rock and debris avalanche that generated an 2- to 4- million-cubic-meter debris flow that swept down the steep slopes of the volcano. The debris flow spread out across the volcano’s apron, destroyed two towns, and killed more than 2500 people. In prehistoric time, Casita erupted explosively to form ash-fall deposits (tephra), debris avalanches, lava flows, and hot flowing mixtures of ash and rock (called pyroclastic flows). The chronology of activity at Casita is rather poorly known. Its last documented eruption occurred 8300 years ago, and included a pyroclastic flow. Tephra deposits exposed in the east crater suggest the possibility of subsequent eruptions. Work prior to Hurricane Mitch suggested that a part of the volcano’s apron that included the area inundated during the 1998 event south of Casita was a lahar pathway. Erosion during Hurricane Mitch revealed that at least three large lahars descended this pathway to distances of up to 10 km. This report describes the hazards of landslides and lahars in general, and discusses potential hazards from future landslides and lahars at San Cristóbal and Casita volcanoes in particular. The report also shows, in the accompanying lahar hazard-zonation maps, which areas are likely to be at risk from future landslides and lahars at Casita and San Cristóbal.

  17. Multiphase flow modeling and simulation of explosive volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Neri, Augusto

    Recent worldwide volcanic activity, such as eruptions at Mt. St. Helens, Washington, in 1980, Mt. Pinatubo, Philippines, in 1991, as well as the ongoing eruption at Montserrat, West Indies, highlighted again the complex nature of explosive volcanic eruptions as well as the tremendous risk associated to them. In the year 2000, about 500 million people are expected to live under the shadow of an active volcano. The understanding of pyroclastic dispersion processes produced by explosive eruptions is, therefore, of primary interest, not only from the scientific point of view, but also for the huge worldwide risk associated with them. The thesis deals with an interdisciplinary research aimed at the modeling and simulation of explosive volcanic eruptions by using multiphase thermo-fluid-dynamic models. The first part of the work was dedicated to the understanding and validation of recently developed kinetic theory of two-phase flow. The hydrodynamics of fluid catalytic cracking particles in the IIT riser were simulated and compared with lab experiments. Simulation results confirm the validity of the kinetic theory approach. Transport of solids in the riser is due to dense clusters. On a time-average basis the bottom of the riser and the walls are dense, in agreement with IIT experimental data. The low frequency of oscillation (about 0.2 Hz) is also in agreement with data. The second part of the work was devoted to the development of transient two-dimensional multiphase and multicomponent flow models of pyroclastic dispersion processes. In particular, the dynamics of ground-hugging high-speed and high-temperature pyroclastic flows generated by the collapse of volcanic columns or by impulsive discrete explosions, was investigated. The model accounts for the mechanical and thermal non-equilibrium between a multicomponent gas phase and N different solid phases representative of pyroclastic particles of different sizes. Pyroclastic dispersion dynamics describes the formation of the initial vertical jet, the column collapse, and the building of the pyroclastic fountain, followed by the generation of radially spreading pyroclastic flows. The development of thermal convective instabilities in the flow lead to the formation of co-ignimbritic or phoenix clouds. Simulation results strongly highlight the importance of the multiphase flow formulation of the mixture. Large particles tend to segregate and sediment along the ground, whereas fine particles tend to form ascending buoyant plumes. Mixtures rich in fine grained particles produce larger runout of the flow and larger ascending plumes than mixtures rich in coarse particles. Simulation results appear to be qualitatively in agreement with field observations, but require to be fully validated by the simulation of well-known test cases.

  18. Earth Observations taken by the Expedition 18 Crew

    NASA Image and Video Library

    2009-02-07

    ISS018-E-028898 (7 Feb. 2009) --- The summit of Popocatepetl Volcano in Mexico is featured in this image photographed by an Expedition 18 crewmember on the International Space Station. Volcano Popocatepetl, a large stratovolcano located approximately 70 kilometers to the southeast of Mexico City, is considered by many volcanologists to be ?the planet?s riskiest volcano?. The volcano warrants this distinction because of its proximity to one of the most densely populated megacities on Earth (population near 23 million in 2009). The variety of potential volcanic hazards at Popocatepetl is also considerable, including explosive eruptions of ash, pyroclastic flows (hot, fluidized masses of rock and gas that flow rapidly downhill), and debris avalanches. This detailed photograph of the summit crater of Popocatepetl (center) also highlights Ventorillo and Noroccidental Glaciers ? together with ice on nearby Iztaccihuatl Volcano and Pico de Orizaba (Mexico?s highest peak and the highest volcano in North America), these are the only mountain glaciers in tropical North America. The presence of glaciers on Popocatepetl is also connected with another volcanic hazard ? the creation of dangerous mudflows, or lahars, should the ice melt during eruptive activity. At the time this image was taken, steam and ash plumes were observed at the volcano ? a faint white steam plume is visible against gray ash deposits on the eastern and southern flanks of the volcano.

  19. Surface deformation monitoring of Sinabung volcano using multi temporal InSAR method and GIS analysis for affected area assessment

    NASA Astrophysics Data System (ADS)

    Aditiya, A.; Aoki, Y.; Anugrah, R. D.

    2018-04-01

    Sinabung Volcano which located in northern part of Sumatera island is part of a hundred active volcano in Indonesia. Surface deformation is detected over Sinabung Volcano and surrounded area since the first eruption in 2010 after 400 years long rest. We present multi temporal Interferometric Synthetic Aperture Radar (InSAR) time-series method of ALOS-2 L-band SAR data acquired from December 2014 to July 2017 to reveal surface deformation with high spatial resolution. The method includes focusing the SAR data, generating interferogram and phase unwrapping using SNAPHU tools. The result reveal significant deformation over Sinabung Volcano areas at rates up to 10 cm during observation period and the highest deformation occurs in western part which is trajectory of lava. We concluded the observed deformation primarily caused by volcanic activity respectively after long period of rest. In addition, Geographic Information System (GIS) analysis produces disaster affected areas of Sinabung eruption. GIS is reliable technique to estimate the impact of the hazard scenario to the exposure data and develop scenarios of disaster impacts to inform their contingency and emergency plan. The GIS results include the estimated affected area divided into 3 zones based on pyroclastic lava flow and pyroclastic fall (incandescent rock and ash). The highest impact is occurred in zone II due to many settlements are scattered in this zone. This information will be support stakeholders to take emergency preparation for disaster reduction. The continuation of this high rate of decline tends to endanger the population in next periods.

  20. Geological and geotechnical characterization of the debris avalanche and pyroclastic deposits of Cotopaxi Volcano (Ecuador). A contribute to instability-related hazard studies

    NASA Astrophysics Data System (ADS)

    Vezzoli, L.; Apuani, T.; Corazzato, C.; Uttini, A.

    2017-02-01

    The huge volcanic debris avalanche occurred at 4.5 ka is a major event in the evolution of the Cotopaxi volcano, Ecuador. The present volcanic hazard in the Cotopaxi region is related to lahars generated by volcanic eruptions and concurrent ice melting. This paper presents the geological and geotechnical field and laboratory characterization of the 4.5 ka Cotopaxi debris avalanche deposit and of the younger unconsolidated pyroclastic deposits, representing the probable source of future shallow landslides. The debris avalanche formed a deposit with a well-developed hummocky topography, and climbed a difference in height of about 260 m along the slopes of the adjacent Sincholagua volcano. The debris avalanche deposit includes four lithofacies (megablock, block, mixed, and sheared facies) that represent different flow regimes and degrees of substratum involvement. The facies distribution suggests that, in the proximal area, the debris avalanche slid predominantly confined to the valleys along the N and NE flank of the volcanic cone, emplacing a stack of megablocks. When the flow reached the break in slope at the base of the edifice, it became unconfined and spread laterally over most of the area of the Rio Pita valley. A dynamic block fragmentation and dilation occurred during the debris avalanche transport, emplacing the block facies. The incorporation of the older Chalupas Ignimbrite is responsible for the mixed facies and the sheared facies. Geotechnical results include a full-range grain size characterization, which enabled to make broader considerations on possible variability among the sampled facies. Consolidated drained triaxial compression tests, carried out on the fine fraction < 4.76 mm, point out that shear strength for cohesionless sandy materials is only due to effective friction angle, and show a quite homogeneous behaviour over the set of tested samples. The investigated post-4.5 pyroclastic deposits constitute a 5-12 m thick sequence of poorly consolidated materials that are interlayered with lava flows. Their geotechnical analyses have evidenced a strong variability in grain size distribution, reflecting the depositional processes, and a generally high porosity. Consolidated drained triaxial compression tests delineated a similar shear stress-strain behaviour among the different units, where shear strength is only due to friction angle. Failure surfaces are always well developed, indicating that the poorly consolidated pyroclastic cover could undergo failure leading to the formation of a gravity driven instability phenomena, like granular or debris flows, which are mainly controlled by the fine fraction. This work underlies the general necessity for a site-specific, and interdisciplinary approach in the characterization of volcanic successions to provide reliable data for gravitational instability studies.

  1. Modeling lunar volcanic eruptions

    NASA Technical Reports Server (NTRS)

    Housley, R. M.

    1978-01-01

    Simple physical arguments are used to show that basaltic volcanos on different planetary bodies would fountain to the same height if the mole fraction of gas in the magma scaled with the acceleration of gravity. It is suggested that the actual eruption velocities and fountain heights are controlled by the velocities of sound in the two phase gas/liquid flows. These velocities are in turn determined by the gas contents in the magma. Predicted characteristics of Hawaiian volcanos are in excellent accord with observations. Assuming that the only gas in lunar volcano is the CO which would be produced if the observed Fe metal in lunar basalts resulted from graphite reduction, lunar volcanos would fountain vigorously, but not as spectacularly as their terrestrial counterparts. The volatile trace metals, halogens, and sulfur released would be transported over the entire moon by the transient atmosphere. Orange and black glass type pyroclastic materials would be transported in sufficient amounts to produce the observed dark mantle deposits.

  2. Earth Observations taken by the Expedition 21 Crew

    NASA Image and Video Library

    2009-10-11

    ISS021-E-005555 (11 Oct. 2009) --- This picture of the active Soufriere Hills volcano on Montserrat Island was photographed on Oct. 11, 2009 by the Expedition 21 crew members onboard the International Space Station. Meteorologists and other scientists note that this area is nearly always cloudy so it is considered rare when astronauts get good images of the plumes or volcanic activity. Soufriere Hills is identified as a "stratovolcano" by geologists because it is built of layers (the “strato” part of the name) of both lavas and pyroclastic flows from older eruptions. Another name for this kind of volcano is a "composite volcano" referring to the fact that when it erupts it produces both lava and fragmented deposits during explosive eruptions. Scientists point out that the magma feeding the Soufriere Hills volcano is created by the subduction of local tectonic plates – stratovolcanoes are commonly associated with this type of geologic environment. Photo credit: NASA

  3. Field characteristics of deposits from spatter-rich pyroclastic density currents at Summer Coon volcano, Colorado

    NASA Astrophysics Data System (ADS)

    Valentine, G. A.; Perry, F. V.; WoldeGabriel, G.

    2000-12-01

    The Oligocene, deeply eroded Summer Coon composite volcano contains mafic andesite deposits that are massive to poorly bedded, have abundant flattened and deformed spatter clasts, have varying proportions of dense lithic clasts, and are supported mostly by a coarse-ash matrix. Although superficially these deposits resemble typical facies from Strombolian eruptions (emplaced ballistically, by fallout, and by rolling and local grain-avalanches down steep cone slopes), there are several lines of evidence that lead to an interpretation that the deposits were emplaced by pyroclastic density currents. These include local coarse-tail grading, deformation of spatter clasts in a down-flow direction, incorporation of matrix ash and lapilli into flattened spatter clasts, imbrication of large clasts, plastering of spatter on stoss sides of large lithic blocks and lenses of lithic-rich material on lee sides, deposition on angles less than the angle of repose, and a paucity of clast shapes associated with Strombolian mechanisms. The deposit characteristics are consistent with rapid sedimentation from a low-particle-concentration, turbulent flow onto an aggrading bed. We infer two potential mechanisms for generating these density currents: (1) explosive magma-water interaction involving lithic debris and relatively unfragmented melt; and (2) collapse of oversteepened upper cone slopes due to rapid accumulation of spatter from voluminous Strombolian eruptions.

  4. Hazard maps of Colima volcano, Mexico

    NASA Astrophysics Data System (ADS)

    Suarez-Plascencia, C.; Nunez-Cornu, F. J.; Escudero Ayala, C. R.

    2011-12-01

    Colima volcano, also known as Volcan de Fuego (19° 30.696 N, 103° 37.026 W), is located on the border between the states of Jalisco and Colima and is the most active volcano in Mexico. Began its current eruptive process in February 1991, in February 10, 1999 the biggest explosion since 1913 occurred at the summit dome. The activity during the 2001-2005 period was the most intense, but did not exceed VEI 3. The activity resulted in the formation of domes and their destruction after explosive events. The explosions originated eruptive columns, reaching attitudes between 4,500 and 9,000 m.a.s.l., further pyroclastic flows reaching distances up to 3.5 km from the crater. During the explosive events ash emissions were generated in all directions reaching distances up to 100 km, slightly affected nearby villages as Tuxpan, Tonila, Zapotlán, Cuauhtemoc, Comala, Zapotitlan de Vadillo and Toliman. During the 2005 this volcano has had an intense effusive-explosive activity, similar to the one that took place during the period of 1890 through 1900. Intense pre-plinian eruption in January 20, 1913, generated little economic losses in the lower parts of the volcano due to low population density and low socio-economic activities at the time. Shows the updating of the volcanic hazard maps published in 2001, where we identify whit SPOT satellite imagery and Google Earth, change in the land use on the slope of volcano, the expansion of the agricultural frontier on the east and southeast sides of the Colima volcano, the population inhabiting the area is approximately 517,000 people, and growing at an annual rate of 4.77%, also the region that has shown an increased in the vulnerability for the development of economic activities, supported by the construction of highways, natural gas pipelines and electrical infrastructure that connect to the Port of Manzanillo to Guadalajara city. The update the hazard maps are: a) Exclusion areas and moderate hazard for explosive events (rockfall) and pyroclastic flows, b) Hazard map of lahars and debris flow, and c) Hazard map of ash-fall. The cartographic and database information obtained will be the basis for updating the Operational Plan of the Colima Volcano by the State Civil & Fire Protection Unit of Jalisco, Mexico, and the urban development plans of surrounding municipalities, in order to reduce their vulnerability to the hazards of the volcanic activity.

  5. Postglacial volcanic deposits at Glacier Peak, Washington, and potential hazards from future eruptions; a preliminary report

    USGS Publications Warehouse

    Beget, J.E.

    1982-01-01

    Eruptions and other geologic events at Glacier Peak volcano in northern Washington have repeatedly affected areas near the volcano as well as areas far downwind and downstream. This report describes the evidence of this activity preserved in deposits on the west and east flanks of the volcano. On the west side of Glacier Peak the oldest postglacial deposit is a large, clayey mudflow which traveled at least 35 km down the White Chuck River valley sometime after 14,000 years ago. Subsequent large explosive eruptions produced lahars and at least 10 pyroclastic-flow deposits, including a semiwelded vitric tuff in the White Chuck River valley. These deposits, known collectively as the White Chuck assemblage, form a valley fill which is locally preserved as far as 100 km downstream from the volcano in the Stillaguamish River valley. At least some of the assemblage is about 11,670-11,500 radiocarbon years old. A small clayey lahar, containing reworked blocks of the vitric tuff, subsequently traveled at least 15 km down the White Chuck River. This lahar is overlain by lake sediments containing charred wood which is about 5,500 years old. A 150-m-thick assemblage of pyroclastic-flow deposits and lahars, called the Kennedy Creek assemblage, is in part about 5,500-5,100 radiocarbon years old. Lithic lahars from this assemblage extend at least 100 km downstream in the Skagit River drainage. The younger lahar assemblages, each containing at least three lahars and reaching at least 18 km downstream from Glacier Peak in the White Chuck River valley, are about 2,800 and 1,800 years old, respectively. These are postdated by a lahar containing abundant oxyhornblende dacite, which extends at least 30 km to the Sauk River. A still younger lahar assemblage that contains at least five lahars, and that also extends at least 30 km to the Sauk River, is older than a mature forest growing on its surface. At least one lahar and a flood deposit form a low terrace at the confluence of the White Chuck and Sauk Rivers, and were deposited before 300 years ago, but more recently than about 1,800 years ago. Several small outburst floods, including one in 1975, have affected Kennedy and Baekos Creek and the upper White Chuck River in the last hundred years. East of Glacier Peak the oldest postglacial deposits consist of ash-cloud deposits that underlie tephra erupted by Glacier Peak between 12,750 and 11,250 radiocarbon years ago. Although pyroclastic-flow deposits correlative with the ash-cloud deposits have not been recognized, late Pleistocene pumiceous lahars extend at least 50 km downstream in the Suiattle River valley. A younger clayey mudflow extends at least 6 km down Dusty Creek. This lahar is overlain by deposits of lithic pyroclastic flows and lahars that form the Dusty assemblage. This assemblage is at least 300 m thick in the upper valleys of Dusty and Chocolate Creeks, and contains more than 10 km3 of lithic debris. Lahars derived from the Dusty assemblage extend at least 100 km down the Skagit River valley from Glacier Peak. This assemblage is younger than tephra layer 0 from Mount Mazama, and older than tephra layer Yn from Mount St. Helens, and thus was formed between about 7,000 and 3,400 years ago. The Dusty assemblage may have been formed at the same time as the Kennedy Creek assemblage. A 100-m-thick assemblage of pyroclastic flows and lahars preserved in the Chocolate Creek valley is about 1,800 radiocarbon years old. A clayey lahar in the upper Chocolate Creek valley extended at least 2 km downvalley after 1,800 years ago, but before pyroclastic flows and lahars were deposited in upper Chocolate Creek 1,100 radiocarbon years ago. Several clayey lahars in the Dusty Creek valley east of Glacier Peak are also about 1,100 years old. A lahar in the valley of Dusty Creek, which contains rare prismatically jointed blocks of vesiculated dacite, and a white ash that is locally as much as 50 cm thick may be the products of small

  6. The initial giant umbrella cloud of the May 18th, 1980, explosive eruption of Mount St. Helens

    USGS Publications Warehouse

    Sparks, R.S.J.; Moore, J.G.; Rice, C.J.

    1986-01-01

    The initial eruption column of May 18th, 1980 reached nearly 30 km altitude and released 1017 joules of thermal energy into the atmosphere in only a few minutes. Ascent of the cloud resulted in forced intrusion of a giant umbrella-shaped cloud between altitudes of 10 and 20 km at radial horizontal velocities initially in excess of 50 m/s. The mushroom cloud expanded 15 km upwind, forming a stagnation point where the radial expansion velocity and wind velocity were equal. The cloud was initiated when the pyroclastic blast flow became buoyant. The flow reduced its density as it moved away from the volcano by decompression, by sedimentation, and by mixing with and heating the surrounding air. Observations indicate that much of the flow, covering an area of 600 km2, became buoyant within 1.5 minutes and abruptly ascended to form the giant cloud. Calculations are presented for the amount of air that must have been entrained into the flow to make it buoyant. Assuming an initial temperature of 450??C and a magmatic origin for the explosion, these calculations indicate that the flow became buoyant when its temperature was approximately 150??C and the flow consisted of a mixture of 3.25 ?? 1011 kg of pyroclasts and 5.0 ?? 1011 kg of air. If sedimentation is considered, these figures reduce to 1.1 ?? 1011 kg of pyroclasts and 1.0 ?? 1011 kg of air. ?? 1986.

  7. Role of large wood (LW) in rivers affected by the 2008 Chaitén volcano explosive eruption

    NASA Astrophysics Data System (ADS)

    Iroume, A.; Andreoli, A.; Ulloa, H.; Merino, A.; da Canal, M.; Iroume, A., Jr.

    2010-12-01

    In January 2010 we begun a research to study LW quantity, spatial distribution and transport rate, sediment and discharge quantification and channel morphology in different rivers affected by 2008 Chaitén volcano eruption. This document presents some insights from a first survey on LW characterization and its effect on river channel morphology. We monitored the following streams in the Chaiten area: Rio Chaitén (Rio Blanco) heavily impacted by pyroclastic flow, lahars flow and seasonal floods, the Rio Negro affected by ash deposits and seasonal flows and the Rio Rayas impacted by lahars flow and glacial melting. In this document we concentrated on Rio Chaitén. We are characterizing longitudinal distribution, volume and structures of LW (wood elements of more than 10 cm of diameter and 1 m of longitude) through field sampling and photogrammetric interpretation and studying LW mobilization using active (RFID) and passive tags. We select representative cross-sections for repeated measurements. Future surveys will include seasonal suspended and bedload sampling, LW spatial distribution and influence on channel morphology and bank erosion and LW mobilization linked with floods and channel geometry changes. During the first field survey we found huge LW input rate due to eruption influence (killed trees and pyroclastic flows and floods), erosion of different terraces generated from intense debris-flow sedimentations caused by Chaitén Volcano explosion, typical on stream LW structures (log-steps, jams) contributing to streambed stability and channel avulsion caused by log-dams. Also, LW deposited parallel to stream indicates high mobilization and LW deposited on external curve contribute to bank stabilization. We measured high sediment transport rate also in low-flow conditions due to huge availability of fine volcanic sediments. Associated risks to LW are: dam break processes, more channel avulsion caused by log accumulations, flow resistance increase favoring channel divagation (especially important for town segment) and logs floating downstream can obstruct/damage bridges and culverts. Funding for this research has been provided by Chile's National Research Foundation through FONDECYT Projects N 1080249 and 1090774. The authors thank USGS and SERNAGEOMIN for their cooperation.

  8. Catastrophic debris avalanche deposit of Socompa volcano, northern Chile

    NASA Technical Reports Server (NTRS)

    Francis, P. W.; Gardeweg, M.; Ramirez, C. F.; Rothery, D. A.

    1985-01-01

    Between 10,000 and 500 yr ago the Socompa volcano in northern Chile experienced a catastrophic collapse of a 70 deg sector of the original cone, causing a debris avalanche that descended nearly 3000 m vertically and traveled more than 35 km from the volcano. The deposits cover some 490 sq km and have a minimum volume of 15 cu km. Parts of the original cone slumped in a nearly coherent form and are now preserved as large blocks more than 400 m high. The primary avalanche traveled northwestward over sloping ground before coming to rest transiently, forming a prominent marginal ridge, and then slid away northeastward to form a secondary flow, overriding much of the primary avalanche deposit. Abundant, prismatic, jointed dacite blocks within the debris avalanche deposit and a thin, fine-grained pumiceous deposit beneath it suggest that the collapse was triggered by magmatic activity and may have been accompanied by a violent lateral blast. Collapse was followed by eruption of pumiceous pyroclastic flows and extrusion of voluminous dacite domes.

  9. Geologic Map of the MTM -30262 and -30267 Quadrangles, Hadriaca Patera Region of Mars

    USGS Publications Warehouse

    Crown, David A.; Greeley, Ronald

    2007-01-01

    Introduction Mars Transverse Mercator (MTM) -30262 and -30267 quadrangles cover the summit region and east margin of Hadriaca Patera, one of the Martian volcanoes designated highland paterae. MTM -30262 quadrangle includes volcanic deposits from Hadriaca Patera and Tyrrhena Patera (summit northeast of map area) and floor deposits associated with the Dao and Niger Valles canyon systems (south of map area). MTM -30267 quadrangle is centered on the caldera of Hadriaca Patera. The highland paterae are among the oldest, central-vent volcanoes on Mars and exhibit evidence for explosive eruptions, which make a detailed study of their geology an important component in understanding the evolution of Martian volcanism. Photogeologic mapping at 1:500,000-scale from analysis of Viking Orbiter images complements volcanological studies of Hadriaca Patera, geologic investigations of the other highland paterae, and an analysis of the styles and evolution of volcanic activity east of Hellas Planitia in the ancient, cratered highlands of Mars. This photogeologic study is an extension of regional geologic mapping east of Hellas Planitia. The Martian highland paterae are low-relief, areally extensive volcanoes exhibiting central calderas and radial channels and ridges. Four of these volcanoes, Hadriaca, Tyrrhena, Amphitrites, and Peneus Paterae, are located in the ancient cratered terrains surrounding Hellas Planitia and are thought to be located on inferred impact basin rings or related fractures. Based on analyses of Mariner 9 images, Potter (1976), Peterson (1977), and King (1978) suggested that the highland paterae were shield volcanoes formed by eruptions of fluid lavas. Later studies noted morphologic similarities between the paterae and terrestrial ash shields and the lack of primary lava flow features on the flanks of the volcanoes. The degraded appearances of Hadriaca and Tyrrhena Paterae and the apparently easily eroded materials composing their low, broad shields further suggest that the highland paterae are composed predominantly of pyroclastic deposits. Analyses of eruption and flow processes indicate that the distribution of units at Hadriaca and Tyrrhena Paterae is consistent with emplacement by gravity-driven pyroclastic flows. Detailed geologic study of the summit caldera and flanks of Hadriaca Patera is essential to determine the types of volcanic materials exposed, the nature of the processes forming these deposits, and the role of volcanism in the evolution of the cratered highlands that are characteristic of the southern hemisphere of Mars.

  10. A Late Holocene explosive mafic eruption of Villarrica volcano, Southern Andes: The Chaimilla deposit

    NASA Astrophysics Data System (ADS)

    Costantini, L.; Pioli, L.; Bonadonna, C.; Clavero, J.; Longchamp, C.

    2011-03-01

    Villarrica (Chile) is one of the most active volcanoes in South America having erupted about 60 times in the last 460 years. Although its historical eruptive activity has been mainly effusive and weakly explosive, it had strong explosive behaviour in postglacial times. Chaimilla (< 3.1 ka) is one of the best exposed and widely dispersed pyroclastic deposits, related to both fall and flow activity. The deposit is dispersed over an area of 250 km 2 and consists of 8 units (A-H) which were grouped into four sequences. Stratigraphic data suggest that the eruption had a relatively short duration and evolved from i) an Opening phase, dispersing ash, lapilli clasts, accretionary lapilli, blocks and bombs, to ii) a Pulsatory phase, originating a series of magmatic explosions, to iii) a Collapsing phase, characterised by unstable plumes which emplaced a series of pyroclastic density currents intercalated with thin fallout layers and finally to iv) a Climactic phase forming a more sustained plume which eventually collapsed generating the final pyroclastic density currents. The deposit (fall and flow) has a minimum cumulative volume of 0.6 km 3, with the main sustained phase being associated with a VEI 4 and the flow units having a minimum estimated total volume of 0.04 km 3. The erupted material has a homogenous chemical composition but displays a remarkable variability in both textural and physical properties. The density distribution of juvenile products shows a clear bimodality characterised by two main populations: P1 and P2. Population P1 consists of highly vesicular clasts (modal density around 1000 kg m - 3 ) with mostly sub-spherical bubbles and moderately crystallised groundmass with large-sized microlites. Clasts from population P2 are poorly vesicular (modal density around 1600 kg m - 3 ) with irregular to collapsed bubbles and numerous smaller microlites. The variability of both vesicularity and microlite characteristics suggests the involvement of two magma batches with distinct pre-eruptive degassing and rising histories. Our eruption conceptual model implies the arrival of new magma (represented in the deposit by P1 clasts) into a small, outgassed magma body which was accumulated at shallow level (mainly represented by P2 clasts). A new Chaimilla-type eruption could significantly affect the communities that have recently developed around Villarrica volcano and subsist mainly on tourism and forestry. As a result, a better understanding of the dynamics and evolution of the Chaimilla eruption is necessary for the identification of potential hazard scenarios at Villarrica volcano and, ultimately, for the risk mitigation of this populated area of Southern Chile.

  11. Geology of El Chichon volcano, Chiapas, Mexico

    NASA Astrophysics Data System (ADS)

    Duffield, Wendell A.; Tilling, Robert I.; Canul, Rene

    1984-03-01

    The (pre-1982) 850-m-high andesitic stratovolcano El Chichón, active during Pleistocene and Holocene time, is located in rugged, densely forested terrain in northcentral Chiapas, México. The nearest neighboring Holocene volcanoes are 275 km and 200 km to the southeast and northwest, respectively. El Chichón is built on Tertiary siltstone and sandstone, underlain by Cretaceous dolomitic limestone; a 4-km-deep bore hole near the east base of the volcano penetrated this limestone and continued 770 m into a sequence of Jurassic or Cretaceous evaporitic anhydrite and halite. The basement rocks are folded into generally northwest-trending anticlines and synclines. El Chichón is built over a small dome-like structure superposed on a syncline, and this structure may reflect cumulative deformation related to growth of a crustal magma reservoir beneath the volcano. The cone of El Chichón consists almost entirely of pyroclastic rocks. The pre-1982 cone is marked by a 1200-m-diameter (explosion?) crater on the southwest flank and a 1600-m-diameter crater apparently of similar origin at the summit, a lava dome partly fills each crater. The timing of cone and dome growth is poorly known. Field evidence indicates that the flank dome is older than the summit dome, and K-Ar ages from samples high on the cone suggest that the flank dome is older than about 276,000 years. At least three pyroclastic eruptions have occurred during the past 1250 radiocarbon years. Nearly all of the pyroclastic and dome rocks are moderately to highly porphyritic andesite, with plagioclase, hornblende and clinopyroxene the most common phenocrysts. Geologists who mapped El Chichón in 1980 and 1981 warned that the volcano posed a substantial hazard to the surrounding region. This warning was proven to be prophetic by violent eruptions that occurred in March and April of 1982. These eruptions blasted away nearly all of the summit dome, blanketed the surrounding region with tephra, and sent pyroclastic flows down radial drainages on the flanks of the cone; about 0.3 km 3 of material (density of all products normalized to 2.6 g cm -3) was erupted. More debris entered the stratosphere than from any other volcanic eruption within at least the past two decades. Halite and a calcium sulfate mineral (anhydrite?) recovered from the stratospheric cloud, and anhydrite as a common accessory mineral in 1982 juvenile erupted products may reflect contamination of El Chichón magma by the evaporite sequence revealed by drilling.

  12. Geology of El Chichon volcano, Chiapas, Mexico

    USGS Publications Warehouse

    Duffield, W.A.; Tilling, R.I.; Canul, R.

    1984-01-01

    The (pre-1982) 850-m-high andesitic stratovolcano El Chicho??n, active during Pleistocene and Holocene time, is located in rugged, densely forested terrain in northcentral Chiapas, Me??xico. The nearest neighboring Holocene volcanoes are 275 km and 200 km to the southeast and northwest, respectively. El Chicho??n is built on Tertiary siltstone and sandstone, underlain by Cretaceous dolomitic limestone; a 4-km-deep bore hole near the east base of the volcano penetrated this limestone and continued 770 m into a sequence of Jurassic or Cretaceous evaporitic anhydrite and halite. The basement rocks are folded into generally northwest-trending anticlines and synclines. El Chicho??n is built over a small dome-like structure superposed on a syncline, and this structure may reflect cumulative deformation related to growth of a crustal magma reservoir beneath the volcano. The cone of El Chicho??n consists almost entirely of pyroclastic rocks. The pre-1982 cone is marked by a 1200-m-diameter (explosion?) crater on the southwest flank and a 1600-m-diameter crater apparently of similar origin at the summit, a lava dome partly fills each crater. The timing of cone and dome growth is poorly known. Field evidence indicates that the flank dome is older than the summit dome, and K-Ar ages from samples high on the cone suggest that the flank dome is older than about 276,000 years. At least three pyroclastic eruptions have occurred during the past 1250 radiocarbon years. Nearly all of the pyroclastic and dome rocks are moderately to highly porphyritic andesite, with plagioclase, hornblende and clinopyroxene the most common phenocrysts. Geologists who mapped El Chicho??n in 1980 and 1981 warned that the volcano posed a substantial hazard to the surrounding region. This warning was proven to be prophetic by violent eruptions that occurred in March and April of 1982. These eruptions blasted away nearly all of the summit dome, blanketed the surrounding region with tephra, and sent pyroclastic flows down radial drainages on the flanks of the cone; about 0.3 km3 of material (density of all products normalized to 2.6 g cm-3) was erupted. More debris entered the stratosphere than from any other volcanic eruption within at least the past two decades. Halite and a calcium sulfate mineral (anhydrite?) recovered from the stratospheric cloud, and anhydrite as a common accessory mineral in 1982 juvenile erupted products may reflect contamination of El Chicho??n magma by the evaporite sequence revealed by drilling. ?? 1984.

  13. TECTONIC VERSUS VOLCANIC ORIGIN OF THE SUMMIT DEPRESSION AT MEDICINE LAKE VOLCANO, CALIFORNIA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mark Leon Gwynn

    Medicine Lake Volcano is a Quaternary shield volcano located in a tectonically complex and active zone at the transition between the Basin and Range Province and the Cascade Range of the Pacific Province. The volcano is topped by a 7x12 km elliptical depression surrounded by a discontinuous constructional ring of basaltic to rhyolitic lava flows. This thesis explores the possibility that the depression may have formed due to regional extension (rift basin) or dextral shear (pull-apart basin) rather than through caldera collapse and examines the relationship between regional tectonics and localized volcanism. Existing data consisting of temperature and magnetotelluric surveys,more » alteration mineral studies, and core logging were compiled and supplemented with additional core logging, field observations, and fault striae studies in paleomagnetically oriented core samples. These results were then synthesized with regional fault data from existing maps and databases. Faulting patterns near the caldera, extension directions derived from fault striae P and T axes, and three-dimensional temperature and alteration mineral models are consistent with slip across arcuate ring faults related to magma chamber deflation during flank eruptions and/or a pyroclastic eruption at about 180 ka. These results are not consistent with a rift or pull-apart basin. Limited subsidence can be attributed to the relatively small volume of ash-flow tuff released by the only known major pyroclastic eruption and is inconsistent with the observed topographic relief. The additional relief can be explained by constructional volcanism. Striae from unoriented and oriented core, augmented by striae measurements in outcrop suggest that Walker Lane dextral shear, which can be reasonably projected from the southeast, has probably propagated into the Medicine Lake area. Most volcanic vents across Medicine Lake Volcano strike north-south, suggesting they are controlled by crustal weakness related to Basin and Range extension. Interaction of dextral shear, Basin and Range extension, and the zone of crustal weakness expressed as the Mount Shasta-Medicine Lake volcanic highland controlled the location and initiation of Medicine Lake Volcano at about 500 ka.« less

  14. Tectonic versus volcanic origin of the summit depression at Medicine Lake Volcano, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mark Leon Gwynn

    Medicine Lake Volcano is a Quaternary shield volcano located in a tectonically complex and active zone at the transition between the Basin and Range Province and the Cascade Range of the Pacific Province. The volcano is topped by a 7x12 km elliptical depression surrounded by a discontinuous constructional ring of basaltic to rhyolitic lava flows. This thesis explores the possibility that the depression may have formed due to regional extension (rift basin) or dextral shear (pull-apart basin) rather than through caldera collapse and examines the relationship between regional tectonics and localized volcanism. Existing data consisting of temperature and magnetotelluric surveys,more » alteration mineral studies, and core logging were compiled and supplemented with additional core logging, field observations, and fault striae studies in paleomagnetically oriented core samples. These results were then synthesized with regional fault data from existing maps and databases. Faulting patterns near the caldera, extension directions derived from fault striae P and T axes, and three-dimensional temperature and alteration mineral models are consistent with slip across arcuate ring faults related to magma chamber deflation during flank eruptions and/or a pyroclastic eruption at about 180 ka. These results are not consistent with a rift or pull-apart basin. Limited subsidence can be attributed to the relatively small volume of ash-flow tuff released by the only known major pyroclastic eruption and is inconsistent with the observed topographic relief. The additional relief can be explained by constructional volcanism. Striae from unoriented and oriented core, augmented by striae measurements in outcrop suggest that Walker Lane dextral shear, which can be reasonably projected from the southeast, has probably propagated into the Medicine Lake area. Most volcanic vents across Medicine Lake Volcano strike north-south, suggesting they are controlled by crustal weakness related to Basin and Range extension. Interaction of dextral shear, Basin and Range extension, and the zone of crustal weakness expressed as the Mount Shasta-Medicine Lake volcanic highland controlled the location and initiation of Medicine Lake Volcano at about 500 ka.« less

  15. The 2013 eruption of Pavlof Volcano, Alaska: a spatter eruption at an ice- and snow-clad volcano

    USGS Publications Warehouse

    Waythomas, Christopher F.; Haney, Matthew M.; Fee, David; Schneider, David J.; Wech, Aaron G.

    2014-01-01

    The 2013 eruption of Pavlof Volcano, Alaska began on 13 May and ended 49 days later on 1 July. The eruption was characterized by persistent lava fountaining from a vent just north of the summit, intermittent strombolian explosions, and ash, gas, and aerosol plumes that reached as high as 8 km above sea level and on several occasions extended as much as 500 km downwind of the volcano. During the first several days of the eruption, accumulations of spatter near the vent periodically collapsed to form small pyroclastic avalanches that eroded and melted snow and ice to form lahars on the lower north flank of the volcano. Continued lava fountaining led to the production of agglutinate lava flows that extended to the base of the volcano, about 3–4 km beyond the vent. The generation of fountain-fed lava flows was a dominant process during the 2013 eruption; however, episodic collapse of spatter accumulations and formation of hot spatter-rich granular avalanches was a more efficient process for melting snow and ice and initiating lahars. The lahars and ash plumes generated during the eruption did not pose any serious hazards for the area. However, numerous local airline flights were cancelled or rerouted, and trace amounts of ash fall occurred at all of the local communities surrounding the volcano, including Cold Bay, Nelson Lagoon, Sand Point, and King Cove.

  16. Constraints for recently discovered ignimbrites in the Altiplano-Puna Volcanic Complex (APVC), northern Chile

    NASA Astrophysics Data System (ADS)

    Layana, S.; Aguilera, F.

    2014-12-01

    One of most voluminous ignimbrite provinces in the world (>30.000 km3) is located in the Central Andean Volcanic Zone (CAVZ), which has been continuously active since Upper Oligocene. Altiplano-Puna Volcanic Complex (APVC), located between 21 and 24ºS, is a volcano-tectonic province constituted by diverse caldera complexes and ignimbrite deposits (Upper Miocene - Lower Pleistocene) that covers an area ~50.000 km2. In this work, we present data from three new ignimbrites discovered in a portion of APVC (22°-22,4°S), with the objective to establish its origin and provenance. Were identified 3 new ignimbrites: 1) Cabana ignimbrite (>7.5 Ma), constituted by 3 pyroclastic flow and 1 pyroclastic surge units of crystal-glass rich dacitic tuffs, 80 m maximum thick, 0.18 km3 volume and 0.14 km3 DRE; 2) Inacaliri ignimbrite (7.5 Ma) constituted by two members, corresponding to glassy dacitic (basal member) and basaltic andesites (upper member) tuffs, the total thick reach up 20 m, 0.003 km3 volume and 0.002 km3 DRE; 3) Tolar ignimbrite (>1.3 Ma), constituted by a single pyroclastic flow and a basal fall glassy dacitic deposits, 50 m maximum thick, 0.04 km3 volume and 0.03 km3 DRE. Cabana ignimbrite seems to have been originated from a single caldera complex, whose cannot be recognized in the field. Inacaliri ignimbrite could be related to initial phases of building of Inacaliri and Apacheta-Aguilucho volcanic complexes, or originated to a buried caldera located below both volcanic complexes. Finally, Tolar ignimbrite corresponds to initial building stage of Toconce volcano, located 2 km at NE from these deposits.

  17. Compound Antidunes: a Key to Detect Catastrophic Volcanic Eruptions

    NASA Astrophysics Data System (ADS)

    Yoshida, S.; Nemoto, Y.

    2008-12-01

    Antidunes are common in pyroclastic flow and surge deposits. However, the compound or nested occurrence of antidunes, where smaller antidunes reside within a larger-scale antidune, has seldom been documented or discussed in both pyroclastic and siliciclastic depositional settings. Without realizing this complexity, the frequency and magnitude of volcanic eruptions estimated from pyroclastic deposits are severely unrealistic. We have documented the Holocene outcrops of the antidune-bearing pyroclastites in Niijima Island, 100 miles SSW of Tokyo, Japan. The pyroclastites were formed by the eruptions in 886 AD Along the Habushiura coast in the southeastern part of the island, these outcrops form up to 50 m high cliffs, and are laterally traceable over 5 km from the volcano crater that shed the pyroclastites in the northward (downcurrent) direction. These pyroclastites were previously interpreted as recording about 30 small eruptions, each forming a 0.5-2 meter thick subhorizontal couplet of pumice (inversely grading) and lithic (normal grading) debris, with cm-m thick antidunes. However, we postulate that each of these couplets does not record a single volcanic eruption, but a much shorter time. These couplets occur between concave-up vertical accretion surfaces, which have both upstream- and downstream-migration components, within a 5-15 meter thick compound antidune (our "rank-1" antidune). Three erosively stacked compound antidunes form the coastal cliffs in the Habushiura coast, and each compound antidune is about ten times thicker than antidunes reported by earlier workers (corresponding to our "rank-2 antidunes" that nest within a rank-1 antidune, and "rank-3 antidunes" that nest within a rank-2 antidune). Hence, the Habushiura cliffs represent only three eruption events (instead of 30 events), but each representing much larger magnitude of eruptions. The geometry of these antidunes is comparable to "sediment waves" or "cyclic steps" of siliciclastic deposits recently reported from the modern deep sea (continental slope) and jökulhlaup (glacial outburst flood on land), and from flume studies. The erosional surfaces that separate rank-1 antidunes and hence individual eruption events are subhorizontal to slightly inclined to the upstream direction, and appear to onlap to the volcano's slope. Similar compound antidunes and erosion surfaces, both in size and geometry, occur within the older (c. 10-20 ka) pyroclastic deposits in Niijima and nearby volcanic islands, even though the chemical, mineral and lithologic compositions of pyroclastites associated with each volcano and eruption are highly variable. The geometry and size of these compound antidunes are remarkably similar to large "dunes" within the subaqueous pyroclastic-flow deposits within the Bay of Naples, associated with the AD 79 Mt. Vesuvius eruptions, recently reported by Italian researchers.

  18. Deterministic estimation of hydrological thresholds for shallow landslide initiation and slope stability models: case study from the Somma-Vesuvius area of southern Italy

    USGS Publications Warehouse

    Baum, Rex L.; Godt, Jonathan W.; De Vita, P.; Napolitano, E.

    2012-01-01

    Rainfall-induced debris flows involving ash-fall pyroclastic deposits that cover steep mountain slopes surrounding the Somma-Vesuvius volcano are natural events and a source of risk for urban settlements located at footslopes in the area. This paper describes experimental methods and modelling results of shallow landslides that occurred on 5–6 May 1998 in selected areas of the Sarno Mountain Range. Stratigraphical surveys carried out in initiation areas show that ash-fall pyroclastic deposits are discontinuously distributed along slopes, with total thicknesses that vary from a maximum value on slopes inclined less than 30° to near zero thickness on slopes inclined greater than 50°. This distribution of cover thickness influences the stratigraphical setting and leads to downward thinning and the pinching out of pyroclastic horizons. Three engineering geological settings were identified, in which most of the initial landslides that triggered debris flows occurred in May 1998 can be classified as (1) knickpoints, characterised by a downward progressive thinning of the pyroclastic mantle; (2) rocky scarps that abruptly interrupt the pyroclastic mantle; and (3) road cuts in the pyroclastic mantle that occur in a critical range of slope angle. Detailed topographic and stratigraphical surveys coupled with field and laboratory tests were conducted to define geometric, hydraulic and mechanical features of pyroclastic soil horizons in the source areas and to carry out hydrological numerical modelling of hillslopes under different rainfall conditions. The slope stability for three representative cases was calculated considering the real sliding surface of the initial landslides and the pore pressures during the infiltration process. The hydrological modelling of hillslopes demonstrated localised increase of pore pressure, up to saturation, where pyroclastic horizons with higher hydraulic conductivity pinch out and the thickness of pyroclastic mantle reduces or is interrupted. These results lead to the identification of a comprehensive hydrogeomorphological model of susceptibility to initial landslides that links morphological, stratigraphical and hydrological conditions. The calculation of intensities and durations of rainfall necessary for slope instability allowed the identification of deterministic hydrological thresholds that account for uncertainty in properties and observed rainfall intensities.

  19. Erosion, transport and segregation of pumice and lithic clasts in pyroclastic flows inferred from ignimbrite at Lascar Volcano, Chile

    NASA Astrophysics Data System (ADS)

    Calder, E. S.; Sparks, R. S. J.; Gardeweg, M. C.

    2000-12-01

    Investigations have been made on the distribution of pumice and lithic clasts in the lithic rich Soncor ignimbrite (26.5 ka) and the 1993 pumice flow deposits of Lascar Volcano, Chile. The Soncor ignimbrite shows three main lithofacies which grade into one another. Coarse lithic breccias range from matrix poor stratified varieties, irregular shaped sheets and elongate hummocks in proximal environments, to breccia lenses with pumiceous ignimbrite matrix. Massive, lithic rich facies comprise the bulk of the ignimbrite. Pumice rich facies are bimodal with abundant large pumice clasts (often with reverse grading), rare lithic clasts and occur distally and on high ground adjacent to deep proximal valleys. In the 1993 pyroclastic flow deposits lithic rich facies are deposited on slopes up to 14° whereas pumice rich facies are deposited only on slopes <4°. Lithic rich parts show a thin pumice rich corrugated surface which can be traced into the pumice rich facies. The high lithic content in the Soncor ignimbrite is attributed to the destruction of a pre-existing dome complex, deep explosive cratering into the interior of the volcano and erosion during pyroclastic flow emplacement. Lithic clasts incorporated into the flows during erosion of the basement substrate have been distinguished from those derived from the vent. Categorisation of these lithics and knowledge of the local geology allows these clasts to be used as tracers to interpret former flow dynamics. Lithic populations demonstrate local flow paths and show that lithics are picked up preferentially where flows move around or over obstacles, or through constrictions. Eroded lithics can be anomalously large, particularly close to the location of erosion. Observations of both the Soncor ignimbrite and the 1993 deposits show that lithic rich parts of flows were much more erosive than pumice rich parts. Both the Soncor and 1993 deposits are interpreted as resulting from predominantly high concentration granular suspensions where particle-particle interactions played a major role. The concentrated flows segregated from more expanded and turbulent suspension currents within a few kilometres of the source. During emplacement some degree of internal mixing is inferred to have occurred enabling entrained lithics to migrate into flow interiors. The facies variations and distributions and the strong negative correlation between maximum pumice and lithic clast size are interpreted as the consequence of efficient density segregation within the concentrated flows. The frictional resistance of the lithic rich part is greater so that it deposits on steeper slopes and generally closer to the source. The lower density and more mobile pumice rich upper portions continued to flow and sequentially detached from the lithic rich base of the flow. Pumice rich portions moved to the margins and distal parts of the flow so that distal deposits are lithic poor and non-erosive. The flows are therefore envisaged as going though several important transformations. Proximally, dense, granular flow, undercurrents are formed by rapid sedimentation of suspension currents. Medially to distally the undercurrents evolve to flows with significantly different rheology and mobility characteristics as lithic clasts are sedimented out and distal flows become dominated by pumice.

  20. Cristobalite in volcanic ash of the soufriere hills volcano, montserrat, british west indies

    PubMed

    Baxter; Bonadonna; Dupree; Hards; Kohn; Murphy; Nichols; Nicholson; Norton; Searl; Sparks; Vickers

    1999-02-19

    Crystalline silica (mostly cristobalite) was produced by vapor-phase crystallization and devitrification in the andesite lava dome of the Soufriere Hills volcano, Montserrat. The sub-10-micrometer fraction of ash generated by pyroclastic flows formed by lava dome collapse contains 10 to 24 weight percent crystalline silica, an enrichment of 2 to 5 relative to the magma caused by selective crushing of the groundmass. The sub-10-micrometer fraction of ash generated by explosive eruptions has much lower contents (3 to 6 percent) of crystalline silica. High levels of cristobalite in respirable ash raise concerns about adverse health effects of long-term human exposure to ash from lava dome eruptions.

  1. Textural evolution of magma during the 9.4-ka trachytic explosive eruption at Kilian Volcano, Chaîne des Puys, France

    NASA Astrophysics Data System (ADS)

    Colombier, M.; Gurioli, L.; Druitt, T. H.; Shea, T.; Boivin, P.; Miallier, D.; Cluzel, N.

    2017-02-01

    Textural parameters such as density, porosity, pore connectivity, permeability, and vesicle size distributions of vesiculated and dense pyroclasts from the 9.4-ka eruption of Kilian Volcano, were quantified to constrain conduit and eruptive processes. The eruption generated a sequence of five vertical explosions of decreasing intensity, producing pyroclastic density currents and tephra fallout. The initial and final phases of the eruption correspond to the fragmentation of a degassed plug, as suggested by the increase of dense juvenile clasts (bimodal density distributions) as well as non-juvenile clasts, resulting from the reaming of a crater. In contrast, the intermediate eruptive phases were the results of more open-conduit conditions (unimodal density distributions, decreases in dense juvenile pyroclasts, and non-juvenile clasts). Vesicles within the pyroclasts are almost fully connected; however, there are a wide range of permeabilities, especially for the dense juvenile clasts. Textural analysis of the juvenile clasts reveals two vesiculation events: (1) an early nucleation event at low decompression rates during slow magma ascent producing a population of large bubbles (>1 mm) and (2) a syn-explosive nucleation event, followed by growth and coalescence of small bubbles controlled by high decompression rates immediately prior to or during explosive fragmentation. The similarities in pyroclast textures between the Kilian explosions and those at Soufrière Hills Volcano on Montserrat, in 1997, imply that eruptive processes in the two systems were rather similar and probably common to vulcanian eruptions in general.

  2. Deep pyroclastic deposits and evidence for explosive volcanism on the ultraslow spreading Gakkel Ridge at 85E

    NASA Astrophysics Data System (ADS)

    Pontbriand, C. W.; Soule, S. A.; Sohn, R. A.; Humphris, S. E.

    2008-12-01

    Seafloor surveys conducted during the 2007 Arctic Gakkel Vents (AGAVE) expedition provide evidence for widespread explosive volcanism within the axial valley of the ultraslow spreading Gakkel Ridge at 85°E. We have used high-definition video and high-resolution bathymetry to map out the extent of the deposits as well as lava flows. The video imagery reveals that unconsolidated pyroclastic material lightly blankets the axial valley at 85°E with thicknesses up to ~10cm over an area 10km2. The bathymetric data show that the axial valley contains ubiquitous cratered volcanoes, that we interpret as potential source vents for the clastic material. We collected detailed visual imagery from one of these volcanoes, and found that the crater center as well as the proximal portions of the rim and outer flanks are covered with talus, suggesting the possibility that Vulcanian explosions played a role in crater formation and pyroclast deposition. We collected samples of the pyroclasts from two locations within the axial valley. The pyroclasts are dominated by low vesicularity angular fragments, with a small weight fraction (~ 12%) of bubble-wall fragments (limu o Pele). Many bubble-wall fragments have fluidal morphologies and stretched vesicles. The morphology of the clasts help constrain multiple models of fragmentation that may have occurred. The distribution of clasts suggests explosive discharge from multiple source vents within the axial valley over a prolonged period of time (i.e, not a single eruption in 1999). In order to explain the generation of pyroclastic material in water depths of ~3800 m (well below the critical pressure for steam generation), we present a model wherein volatiles exsolve from ascending magmas and are sequestered and stored in a lithospheric reservoir before being explosively discharged during a volcanic eruption. The long inter-eruption interval (100s to 1000s of years) and strong spatial heterogeneity of melt delivery associated with ultra-slow spreading may be especially conducive to the build-up of lithospheric volatile reservoirs and explosive volcanic eruptions.

  3. Boiling-over dense pyroclastic density currents during the formation of the 100 km3 Huichapan ignimbrite in Central Mexico: Stratigraphic and lithofacies analysis

    NASA Astrophysics Data System (ADS)

    Pacheco-Hoyos, Jaime G.; Aguirre-Díaz, Gerardo J.; Dávila-Harris, Pablo

    2018-01-01

    A lithofacies analysis of the Huichapan ignimbrite has been undertaken to evaluate its depositional history from large pyroclastic density currents. The Huichapan ignimbrite is a massive ignimbrite sheet with a maximum runout of at least 55 km and thickness variations between 6 and 80 m. The lower portion of the Huichapan ignimbrite consists of a large plateau [ 100 km3; 69 km3 as dense-rock equivalent (DRE)] of massive ignimbrites with welding variations from densely welded to partly welded, devitrification, and high-temperature vapor-phase alteration. The lower part grades laterally to moderately welded and non-devitrified ignimbrites. These variations are interpreted as the sedimentation of density-stratified pyroclastic density currents erupted as boiling-over pulses from the Huichapan-Donguinyó caldera complex at a continuous rate, supporting deposition by quasi-steady progressive aggradation of sustained and hot currents. To the north of the caldera, the lower portion of the ignimbrite consists of a small plateau (< 10 km3) in which the densely welded and devitrified lithofacies are absent. Our interpretation is that the pyroclastic density currents flowed late to the north of the caldera and formed a smaller ignimbrite plateau with respect to the western one. This northern ignimbrite plateau cooled faster than the western ignimbrite plateau. Deposition-induced topographic modifications suggest that topographic obstacles, such as remnants of older volcanoes, may have promoted the deviation of the density currents to the north. The upper portion of the ignimbrite is composed of extensive, massive, coarse clast-rich, non-devitrified, and non-welded ignimbrites with abundant fines-poor pipes. This upper part was deposited from largely sustained and rapidly aggrading high-concentration currents in a near end-member, fluid escape-dominated flow boundary zone. The absence of welding in the upper portion may record pyroclastic density currents cooling during the formation of a relatively high pyroclastic fountain at the vent. We have established a depositional model for the Huichapan ignimbrite that explains the differences between the western and northern plateaus. The Huichapan ignimbrite was formed during a large caldera-forming eruption with concentrated pyroclastic fountains. High mass-flow rate was maintained for long periods, promoting the mobility of the pyroclastic density currents.

  4. A new look at mobility metrics for pyroclastic density currents: collection, interpretation, and use

    NASA Astrophysics Data System (ADS)

    Ogburn, S. E.; Lopes, D.; Calder, E. S.

    2012-12-01

    Mitigation of risk associated with pyroclastic density currents (PDCs) depends upon accurate forecasting of possible flow paths, often using empirical models that rely on mobility metrics or the stochastic application of computational flow models. Mobility metrics often inform computational models, sometimes as direct model inputs (e.g. energy cone model), or as estimates for input parameters (e.g. basal friction parameter in TITAN2D). These mobility metrics are often compiled from PDCs at many volcanoes, generalized to reveal empirical constants, or sampled for use in probabilistic models. In practice, however, there are often inconsistencies in how mobility metrics have been collected, reported, and used. For instance, the runout of PDCs often varies depending on the method used (e.g. manually measured from a paper map, automated using GIS software); and the distance traveled by the center of mass of PDCs is rarely reported due to the difficulty in locating it. This work reexamines the way we measure, report, and analyze PDC mobility metrics. Several metrics, such as the Heim coefficient (height dropped/runout, H/L) and the proportionality of inundated area to volume (A∝V2/3) have been used successfully with PDC data (Sparks 1976; Nairn and Self 1977; Sheridan 1979; Hayashi and Self 1992; Calder et al. 1999; Widiwijayanti et al. 2008) in addition to the non-volcanic flows they were originally developed for. Other mobility metrics have been investigated by the debris avalanche community but have not yet been extensively applied to pyroclastic flows (e.g. the initial aspect ratio of collapsing pile). We investigate the relative merits and suitability of contrasting mobility metrics for different types of PDCs (e.g. dome-collapse pyroclastic flows, ash-cloud surges, pumice flows), and indicate certain circumstances under which each model performs optimally. We show that these metrics can be used (with varying success) to predict the runout of a PDC of given volume, or vice versa. The problem of locating the center of mass of PDCs is also investigated by comparing field measurements, geometric centroids, linear thickness models, and computational flow models. Comparing center of mass measurements with runout provides insight into the relative roles of sliding vs. spreading in PDC emplacement. The effect of topography on mobility is explored by comparing mobility metrics to valley morphology measurements, including sinuosity, cross-sectional area, and valley slope. Lastly, we examine the problem of compiling and generalizing mobility data from worldwide databases using a hierarchical Bayes model for weighting mobility metrics for use as model inputs, which offers an improved method over simple space-filling strategies. This is especially useful for calibrating models at data-sparse volcanoes.

  5. Preliminary volcano-hazard assessment for Iliamna Volcano, Alaska

    USGS Publications Warehouse

    Waythomas, Christopher F.; Miller, Thomas P.

    1999-01-01

    Iliamna Volcano is a 3,053-meter-high, ice- and snow-covered stratovolcano in the southwestern Cook Inlet region about 225 kilometers southwest of Anchorage and about 100 kilometers northwest of Homer. Historical eruptions of Iliamna Volcano have not been positively documented; however, the volcano regularly emits steam and gas, and small, shallow earthquakes are often detected beneath the summit area. The most recent eruptions of the volcano occurred about 300 years ago, and possibly as recently as 90-140 years ago. Prehistoric eruptions have generated plumes of volcanic ash, pyroclastic flows, and lahars that extended to the volcano flanks and beyond. Rock avalanches from the summit area have occurred numerous times in the past. These avalanches flowed several kilometers down the flanks and at least two large avalanches transformed to cohesive lahars. The number and distribution of known volcanic ash deposits from Iliamna Volcano indicate that volcanic ash clouds from prehistoric eruptions were significantly less voluminous and probably less common relative to ash clouds generated by eruptions of other Cook Inlet volcanoes. Plumes of volcanic ash from Iliamna Volcano would be a major hazard to jet aircraft using Anchorage International Airport and other local airports, and depending on wind direction, could drift at least as far as the Kenai Peninsula and beyond. Ashfall from future eruptions could disrupt oil and gas operations and shipping activities in Cook Inlet. Because Iliamna Volcano has not erupted for several hundred years, a future eruption could involve significant amounts of ice and snow that could lead to the formation of large lahars and downstream flooding. The greatest hazards in order of importance are described below and shown on plate 1.

  6. Current and future use of TOPSAR digital topographic data for volcanological research

    NASA Technical Reports Server (NTRS)

    Mouginis-Mark, Peter J.; Rowland, Scott K.; Garbeil, Harold

    1993-01-01

    In several investigations of volcanoes, high quality digital elevation models (DEM's) are required to study either the geometry of the volcano or to investigate temporal changes in relief due to eruptions. Examples include the analysis of volume changes of a volcanic dome, the prediction of flow paths for pyroclastic flows, and the quantitative investigation of the geometry of valleys carved by volcanic mudflows. Additionally, to provide input data for models of lava flow emplacement, accurate measurements are needed of the thickness of lava flows as a function of distance from the vent and local slope. Visualization of volcano morphology is also aided by the ability to view a DEM from oblique perspectives. Until recently, the generation of these DEM's has required either high resolution stereo air photographs or extensive field surveying using the Global Positioning System (GPS) and other field techniques. Through the use of data collected by the NASA/JPL TOPSAR system, it is now possible to remotely measure the topography of volcanoes using airborne radar interferometry. TOPSAR data can be collected day or night under any weather conditions, thereby avoiding the problems associated with the derivation of DEM's from air photographs that may often contain clouds. Here we describe some of our initial work on volcanoes using TOPSAR data for Mt. Hekla (Iceland) and Vesuvius (Italy). We also outline various TOPSAR topographic studies of volcanoes in the Galapagos and Hawaii that will be conducted in the near future, describe how TOPSAR complements the volcanology investigations to be conducted with orbital radars (SIR-C/X-SAR, JERS-1 and ERS-1), and place these studies into the broader context of NASA's Global Change Program.

  7. U.S. Geological Survey (USGS) Western Region Kasatochi Volcano Coastal and Ocean Science

    USGS Publications Warehouse

    DeGange, Anthony

    2010-01-01

    Alaska is noteworthy as a region of frequent seismic and volcanic activity. The region contains 52 historically active volcanoes, 14 of which have had at least one major eruptive event since 1990. Despite the high frequency of volcanic activity in Alaska, comprehensive studies of how ecosystems respond to volcanic eruptions are non-existent. On August 7, 2008, Kasatochi Volcano, in the central Aleutian Islands, erupted catastrophically, covering the island with ash and hot pyroclastic flow material. Kasatochi Island was an annual monitoring site of the U.S. Fish and Wildlife Service, Alaska Maritime National Wildlife Refuge (AMNWR); therefore, features of the terrestrial and nearshore ecosystems of the island were well known. In 2009, the U.S. Geological Survey (USGS), AMNWR, and University of Alaska Fairbanks began long-term studies to better understand the effects of the eruption and the role of volcanism in structuring ecosystems in the Aleutian Islands, a volcano-dominated region with high natural resource values.

  8. Dendrogeomorphic reconstruction of lahar activity and triggers: Shiveluch volcano, Kamchatka Peninsula, Russia

    NASA Astrophysics Data System (ADS)

    Salaorni, E.; Stoffel, M.; Tutubalina, O.; Chernomorets, S.; Seynova, I.; Sorg, A.

    2017-01-01

    Lahars are highly concentrated, water-saturated volcanic hyperconcentrated flows or debris flows containing pyroclastic material and are a characteristic mass movement process on volcanic slopes. On Kamchatka Peninsula (Russian Federation), lahars are widespread and may affect remote settlements. Historical records of past lahar occurrences are generally sparse and mostly limited to events which damaged infrastructure on the slopes or at the foot of volcanoes. In this study, we present a tree-ring-based reconstruction of spatiotemporal patterns of past lahar activity at Shiveluch volcano. Using increment cores and cross sections from 126 Larix cajanderi trees, we document 34 events covering the period AD 1729-2012. Analyses of the seasonality of damage in trees reveal that 95% of all lahars occurred between October and May and thus point to the predominant role of the sudden melt of the snow cover by volcanic material. These observations suggest that most lahars were likely syn-eruptive and that lahar activity is largely restricted to periods of volcanic activity. By contrast, rainfall events do not seem to play a significant role in lahar triggering.

  9. Felsic maar-diatreme volcanoes: a review

    NASA Astrophysics Data System (ADS)

    Ross, Pierre-Simon; Carrasco Núñez, Gerardo; Hayman, Patrick

    2017-02-01

    Felsic maar-diatreme volcanoes host major ore deposits but have been largely ignored in the volcanology literature, especially for the diatreme portion of the system. Here, we use two Mexican tuff rings as analogs for the maar ejecta ring, new observations from one diatreme, and the economic geology literature on four other mineralized felsic maar-diatremes to produce an integrated picture of this type of volcano. The ejecta rings are up to 50 m+ thick and extend laterally up to ˜1.5 km from the crater edge. In two Mexican examples, the lower part of the ejecta ring is dominated by pyroclastic surge deposits with abundant lithic clasts (up to 80% at Hoya de Estrada). These deposits display low-angle cross-bedding, dune bedforms, undulating beds, channels, bomb sags, and accretionary lapilli and are interpreted as phreatomagmatic. Rhyolitic juvenile clasts at Tepexitl have only 0-25% vesicles in this portion of the ring. The upper parts of the ejecta ring sequences in the Mexican examples have a different character: lithic clasts can be less abundant, the grain size is typically coarser, and the juvenile clasts can be different in character (with some more vesicular fragments). Fragmentation was probably shallower at this stage. The post-eruptive maar crater infill is known at Wau and consists of reworked pyroclastic deposits as well as lacustrine and other sediments. Underneath are bedded upper diatreme deposits, interpreted as pyroclastic surge and fall deposits. The upper diatreme and post-eruptive crater deposits have dips larger than 30° at Wau, with approximately centroclinal attitudes. At still lower structural levels, the diatreme pyroclastic infill is largely unbedded; Montana Tunnels and Kelian are good examples of this. At Cerro de Pasco, the pyroclastic infill seems bedded despite about 500 m of post-eruptive erosion relative to the pre-eruptive surface. The contact between the country rocks and the diatreme is sometimes characterized by country rock breccias (Kelian, Mt. Rawdon). Pyroclastic rocks in the diatreme are typically poorly sorted, and ash-rich. They contain a heterolithic mix of juvenile clasts and lithic clasts from various stratigraphic levels. Megablocks derived from the ejecta ring or the country rocks are often found in the diatremes. Evidence for multiple explosions is in the form of steep crosscutting pyroclastic bodies within some diatremes and fragments of pyroclastic rocks within other pyroclastic facies. Pyroclastic rocks are cut by coherent felsic dikes and plugs which may have been feeders to lava domes at the surface. Allowing for the difference in magma composition, felsic maar-diatreme volcanoes have many similarities with their ultramafic to mafic equivalents. Differences include a common association with felsic domes, inside the crater or just outside (Wau), although the domes within the crater may be destroyed during the eruption (Hoya de Estrada, Tepexitl); the dikes and plugs feeding and invading felsic diatremes seem larger; the processes of phreatomagmatic explosions involving felsic magmas may be different.

  10. Titanium dioxide in pyroclastic layers from volcanoes in the cascade range

    USGS Publications Warehouse

    Czamanske, G.K.; Porter, S.C.

    1965-01-01

    Rapid determinations of titanium dioxide have been made by x-ray emission techniques to evaluate the potentiality of using the TiO2 content of samples for checking field correlations and assisting in identification of pyroclastic units from Cascade volcanoes. Preliminary data suggest that the two most wide-spread units have characteristic ranges of TiO2 content and that other, less extensive layers have ranges which, though characteristic, often overlap the ranges of the more widespread layers. Relative to fresh samples, weathered samples from B and C soil horizons are enriched in TiO 2.

  11. Frequent eruptions of Mount Rainier over the last ˜2,600 years

    NASA Astrophysics Data System (ADS)

    Sisson, T. W.; Vallance, J. W.

    2009-08-01

    Field, geochronologic, and geochemical evidence from proximal fine-grained tephras, and from limited exposures of Holocene lava flows and a small pyroclastic flow document ten-12 eruptions of Mount Rainier over the last 2,600 years, contrasting with previously published evidence for only 11-12 eruptions of the volcano for all of the Holocene. Except for the pumiceous subplinian C event of 2,200 cal year BP, the late-Holocene eruptions were weakly explosive, involving lava effusions and at least two block-and-ash pyroclastic flows. Eruptions were clustered from ˜2,600 to ˜2,200 cal year BP, an interval referred to as the Summerland eruptive period that includes the youngest lava effusion from the volcano. Thin, fine-grained tephras are the only known primary volcanic products from eruptions near 1,500 and 1,000 cal year BP, but these and earlier eruptions were penecontemporaneous with far-traveled lahars, probably created from newly erupted materials melting snow and glacial ice. The most recent magmatic eruption of Mount Rainier, documented geochemically, was the 1,000 cal year BP event. Products from a proposed eruption of Mount Rainier between AD 1820 and 1854 (X tephra of Mullineaux (US Geol Surv Bull 1326:1-83, 1974)) are redeposited C tephra, probably transported onto young moraines by snow avalanches, and do not record a nineteenth century eruption. We found no conclusive evidence for an eruption associated with the clay-rich Electron Mudflow of ˜500 cal year BP, and though rare, non-eruptive collapse of unstable edifice flanks remains as a potential hazard from Mount Rainier.

  12. Modeling lahar behavior and hazards

    USGS Publications Warehouse

    Manville, Vernon; Major, Jon J.; Fagents, Sarah A.

    2013-01-01

    Lahars are highly mobile mixtures of water and sediment of volcanic origin that are capable of traveling tens to > 100 km at speeds exceeding tens of km hr-1. Such flows are among the most serious ground-based hazards at many volcanoes because of their sudden onset, rapid advance rates, long runout distances, high energy, ability to transport large volumes of material, and tendency to flow along existing river channels where populations and infrastructure are commonly concentrated. They can grow in volume and peak discharge through erosion and incorporation of external sediment and/or water, inundate broad areas, and leave deposits many meters thick. Furthermore, lahars can recur for many years to decades after an initial volcanic eruption, as fresh pyroclastic material is eroded and redeposited during rainfall events, resulting in a spatially and temporally evolving hazard. Improving understanding of the behavior of these complex, gravitationally driven, multi-phase flows is key to mitigating the threat to communities at lahar-prone volcanoes. However, their complexity and evolving nature pose significant challenges to developing the models of flow behavior required for delineating their hazards and hazard zones.

  13. Phreatomagmatic eruptions through unconsolidated coastal plain sequences, Maungataketake, Auckland Volcanic Field (New Zealand)

    NASA Astrophysics Data System (ADS)

    Agustín-Flores, Javier; Németh, Károly; Cronin, Shane J.; Lindsay, Jan M.; Kereszturi, Gábor; Brand, Brittany D.; Smith, Ian E. M.

    2014-04-01

    Maungataketake is a monogenetic basaltic volcano formed at ~ 85-89 ka in the southern part of the Auckland Volcanic Field (AVF), New Zealand. It comprises a basal 1100-m diameter tuff ring, with a central scoria/spatter cone and lava flows. The tuff ring was formed under hydrogeological and geographic conditions very similar to the present. The tuff records numerous density stratified, wet base surges that radiated outward up to 1 km, decelerating rapidly and becoming less turbulent with distance. The pyroclastic units dominantly comprise fine-grained expelled grains from various sedimentary deposits beneath the volcano mixed with a minor component of juvenile pyroclasts (~ 35 vol.%). Subtle lateral changes relate to deceleration with distance and vertical transformations are minor, pointing to stable explosion depths and conditions, with gradual transitions between units and no evidence for eruptive pauses. This volcano formed within and on ~ 60 m-thick Plio/Pleistocene, poorly consolidated, highly permeable shelly sands and silts (Kaawa Formation) capped by near-impermeable, water-saturated muds (Tauranga Group). These sediments rest on moderately consolidated Miocene-aged permeable turbiditic sandstones and siltstones (Waitemata Group). Magma-water fuelled thermohydraulic explosions remained in the shallow sedimentary layers, excavating fine-grained sediments without brittle fragmentation required. On the whole, the resulting cool, wet pyroclastic density currents were of low energy. The unconsolidated shallow sediments deformed to accommodate rapidly rising magma, leading to development of complex sill-like bodies and a range of magma-water contact conditions at any time. The weak saturated sediments were also readily liquefied to provide an enduring supply of water and fine sediment to the explosion loci. Changes in magma flux and/or subsequent stabilisation of the conduit area by a lava ring-barrier led to ensuing Strombolian and fire-fountaining eruption phases. Future eruptions in littoral environments around Auckland are likely to be of this type, producing base surges that rapidly decrease in energy over short runout distances (~ 1 km).

  14. Theoretical analysis of tsunami generation by pyroclastic flows

    USGS Publications Warehouse

    Watts, P.; Waythomas, C.F.

    2003-01-01

    Pyroclastic flows are a common product of explosive volcanism and have the potential to initiate tsunamis whenever thick, dense flows encounter bodies of water. We evaluate the process of tsunami generation by pyroclastic flow by decomposing the pyroclastic flow into two components, the dense underflow portion, which we term the pyroclastic debris flow, and the plume, which includes the surge and coignimbrite ash cloud parts of the flow. We consider five possible wave generation mechanisms. These mechanisms consist of steam explosion, pyroclastic debris flow, plume pressure, plume shear, and pressure impulse wave generation. Our theoretical analysis of tsunami generation by these mechanisms provides an estimate of tsunami features such as a characteristic wave amplitude and wavelength. We find that in most situations, tsunami generation is dominated by the pyroclastic debris flow component of a pyroclastic flow. This work presents information sufficient to construct tsunami sources for an arbitrary pyroclastic flow interacting with most bodies of water. Copyright 2003 by the American Geophysical Union.

  15. Preeruptive inflation and surface interferometric coherence characteristics revealed by satellite radar interferometry at Makushin Volcano, Alaska: 1993-2000

    USGS Publications Warehouse

    Lu, Z.; Power, J.A.; McConnell, V.S.; Wicks, C.; Dzurisin, D.

    2002-01-01

    Pilot reports in January 1995 and geologic field observations from the summer of 1996 indicate that a relatively small explosive eruption of Makushin, one of the more frequently active volcanoes in the Aleutian arc of Alaska, occured on 30 January 1995. Several independent radar interferograms that each span the time period from October 1993 to September 1995 show evidence of ???7 cm of uplift centered on the volcano's east flank, which we interpret as preeruptive inflation of a ???7-km-deep magma source (??V = 0.022 km3). Subsequent interferograms for 1995-2000, a period that included no reported eruptive activity, show no evidence of additional ground deformation. Interferometric coherence at C band is found to persist for 3 years or more on lava flow and other rocky surfaces covered with short grass and sparsely distributed tall grass and for at least 1 year on most pyroclastic deposits. On lava flow and rocky surfaces with dense tall grass and on alluvium, coherence lasts for a few months. Snow and ice surfaces lose coherence within a few days. This extended timeframe of coherence over a variety of surface materials makes C band radar interferometry an effective tool for studying volcano deformation in Alaska and other similar high-latitude regions.

  16. Eruptive and Geomorphic Processes at the Lathrop Wells Scoria Cone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    G. Valentine; D.J. Krier; F.V. Perry

    2006-08-03

    The {approx}80 ka Lathrop Wells volcano (southern Nevada, U.S.A.) preserves evidence for a range of explosive processes and emplacement mechanisms of pyroclastic deposits and lava fields in a small-volume basaltic center. Early cone building by Strombolian bursts was accompanied by development of a fan-like lava field reaching {approx}800 m distance from the cone, built upon a gently sloping surface. Lava flows carried rafts of cone deposits, which provide indirect evidence for cone facies in lieu of direct exposures in the active quarry. Subsequent activity was of a violent Strombolian nature, with many episodes of sustained eruption columns up to amore » few km in height. These deposited layers of scoria lapilli and ash in different directions depending upon wind direction at the time of a given episode, reaching up to {approx}20 km from the vent, and also produced the bulk of the scoria cone. Lava effusion migrated from south to north around the eastern base of the cone as accumulation of lavas successively reversed the topography at the base of the cone. Late lavas were emplaced during violent Strombolian activity and continued for some time after explosive eruptions had waned. Volumes of the eruptive products are: fallout--0.07 km{sup 3}, scoria cone--0.02 km{sup 3}, and lavas--0.03 km{sup 3}. Shallow-derived xenolith concentrations suggest an upper bound on average conduit diameter of {approx}21 m in the uppermost 335 m beneath the volcano. The volcano was constructed over a period of at least seven months with cone building occurring only during part of that time, based upon analogy with historical eruptions. Post-eruptive geomorphic evolution varied for the three main surface types that were produced by volcanic activity: (1) scoria cone, (2) low relief surfaces (including lavas) with abundant pyroclastic material, and (3) lavas with little pyroclastic material. The role of these different initial textures must be accounted for in estimating relative ages of volcanic surfaces, and failure to account for this resulted in previous erroneous interpretation that the volcano is polycyclic (eruptions separated by 1,000s-10,000s of years). Lathrop Wells volcano provides an example of the wide range of eruptive processes that can occur with little change in major element composition; the variation in explosive and effusive processes, including their simultaneous occurrence, must result entirely from fluid dynamic, crystallization, and degassing processes in the ascending multiphase magma. The volcano also provides key analog information regarding processes that are important for volcanic risk assessment at the proposed Yucca Mountain radioactive waste repository, {approx}18 km north of the volcano.« less

  17. Earth Observation taken by the Expedition 19 crew

    NASA Image and Video Library

    2009-04-28

    ISS019-E-011922 (28 April 2009) --- Mauna Kea Volcano in Hawaii is featured in this image photographed by an Expedition 19 crewmember on the International Space Station. The island of Hawaii is home to four volcanoes monitored by volcanologists ? Mauna Loa, Hualalai, Kilauea, and Mauna Kea. Mauna Kea is depicted in this view; of the four volcanoes, it is the only one that has not erupted during historical times. The Hawaiian Islands chain, together with the submerged Emperor Chain to the northwest, form an extended line of volcanic islands and seamounts that is thought to record passage of the Pacific Plate over a ?hotspot? (or thermal plume) in the Earth?s mantle. Areas of active volcanism in the southern Hawaiian Islands today mark the general location of the hotspot. This detailed photograph illustrates why the volcano is called Mauna Kea (?white mountain? in Hawaiian). While the neighboring Mauna Loa volcano is a classic shield volcano comprised of dark basaltic lava flows, Mauna Kea experienced more explosive activity during its last eruptive phase. This covered its basalt lava flows with pyroclastic deposits that are visible as the light brown area surrounding snow on the summit (center). Numerous small red to dark gray cinder cones are another distinctive feature of Mauna Loa. The cinder cones represent the most recent type of volcanic activity at the volcano. A small area of buildings and roadways at upper right is the Pohakuloa Training Area. This is the largest US Department of Defense facility in the state of Hawaii. The site is used for U.S. Army and Marine Corps exercises.

  18. An Integrative Approach for Defining Plinian and Sub-Plinian Eruptive Scenarios at Andesitic Volcanoes: Event-Lithostratigraphy, Eruptive Parameters and Pyroclast Textural Variations of the Largest Late-Holocene Eruptions of Mt. Taranaki, New Zealand.

    NASA Astrophysics Data System (ADS)

    Torres-Orozco, R.; Cronin, S. J.; Damaschke, M.; Kosik, S.; Pardo, N.

    2016-12-01

    Three eruptive scenarios were determined based on the event-lithostratigraphic reconstruction of the largest late-Holocene eruptions of the andesitic Mt. Taranaki, New Zealand: a) sustained dome-effusion followed by sudden stepwise collapse and unroofing of gas-rich magma; b) repeated plug and burst events generated by transient open-/closed-vent conditions; and c) open-vent conditions of more mafic magmas erupting from a satellite vent. Pyroclastic density currents (PDCs) are the most frequent outcome in every scenario. They can be produced in any/every eruption phase by formation and either repetitive-partial or total gravity-driven collapse of lava domes in the summit crater (block-and-ash flows), frequently followed by sudden magma decompression and violent, highly unsteady to quasi-steady lateral expansion (blast-like PDCs); by collapse or single-pulse fall-back of unsteady eruption columns (pyroclastic flow- and surge-type currents); or during highly unsteady and explosive hydromagmatic phases (wet surges). Fall deposits are produced during the climatic phase of each eruptive scenario by the emplacement of (i) high, sustained and steady, (ii) sustained and height-oscillating, (iii) quasi-steady and pulsating, or (iv) unsteady and totally collapsing eruption columns. Volumes, column heights and mass- and volume-eruption rates indicate that these scenarios correspond to VEI 4-5 plinian and sub-plinian multi-phase and style-shifting episodes, similar or larger than the most recent 1655 AD activity, and comparable to plinian eruptions of e.g. Apoyeque, Colima, Merapi and Tarawera volcanoes. Whole-rock chemistry, textural reconstructions and density-porosity determinations suggest that the different eruptive scenarios are mainly driven by variations in the density structure of magma in the upper conduit. Assuming a simple single conduit model, the style transitions can be explained by differing proportions of alternating gas-poor/degassed and gas-rich magma.

  19. Catastrophic eruptions of the directed-blast type at Mount St. Helens, bezymianny and Shiveluch volcanoes

    USGS Publications Warehouse

    Bogoyavlenskaya, G.E.; Braitseva, O.A.; Melekestsev, I.V.; Kiriyanov, V. Yu; Dan, Miller C.

    1985-01-01

    This paper describes catastrophic eruptions of Mount St. Helens (1980), Bezymianny (1955-1956), and Shiveluch (1964) volcanoes. A detailed description of eruption stages and their products, as well as the quantitative characteristics of the eruptive process are given. The eruptions under study belong to the directed-blast type. This type is characterized by the catastrophic character of the climatic stage during which a directed blast, accompanied by edifice destruction, the profound ejection of juvenile pyroclastics and the formation of pyroclastic flows, occur. The climatic stage of all three eruptions has similar characteristics, such as duration, kinetic energy of blast (1017-1018 J), the initial velocity of debris ejection, morphology and size of newly-formed craters. But there are also certain differences. At Mount St. Helens the directed blast was preceeded by failure of the edifice and these events produced separable deposits, namely debris avalanche and directed blast deposits which are composed of different materials and have different volumes, thickness and distribution. At Bezymianny, failure did not precede the blast and the whole mass of debris of the old edifice was outburst only by blast. The resulting deposits, represented by the directed blast agglomerate and sand facies, have characteristics of both the debris avalanche and the blast deposit at Mount St. Helens. At Shiveluch directed-blast deposits are represented only by the directed-blast agglomerate; the directed-blast sand facies, or blast proper, seen at Mount St. Helens is absent. During the period of Plinian activity, the total volumes of juvenile material erupted at Mount St. Helens and at Besymianny were roughly comparable and exceeded the volume of juvenile material erupted at Shiveluch, However, the volume of pyroclastic-flow deposits erupted at Mount St. Helens was much less. The heat energy of all three eruptions is comparable: 1.3 ?? 1018, 3.8-4.8 ?? 1018 and 1 ?? 1017 J for Shiveluch, Bezymianny, and Mount St. Helens, respectively. ?? 1985.

  20. Clast morphologies and heating experiments constrain the thermal conditions during pyroclastic density current emplacement at Tungurahua volcano, Ecuador

    NASA Astrophysics Data System (ADS)

    Garman, K. A.; Swarr, G. J.; Dufek, J.; Harpp, K. S.; Geist, D.

    2009-12-01

    Clasts within pyroclastic density current deposits (PDCs) record information about the dynamic processes and thermal history of erosion, transportation, and deposition. The August 2006 eruption of Tungurahua produced PDCs with exceptional clast abundances and morphologies. This eruption was of the “boiling over” type, where the PDCs were not accompanied by a high column. Rather, they were fed by strong, low (less than 2 km), and persistent fountaining. Granulometric, clast morphology, and flow dimension data were obtained by detailed study of the four largest PDC deposits produced during this eruption. The individual flow units have ratios of height loss to travel distance (H/L) ranging from 0.38 to 0.51, which lie in the upper range of H/L ratios for pyroclastic density currents, generally typical of small-volume events. The flow deposits are characterized by oblate scoria bombs up to 1.78 m in diameter, and the bombs are best preserved in levees, flow snouts, and the upper parts of some deposits. The interiors of the deposits are all poorly sorted, with particles less than 8 mm in diameter ranging from 0.55 to 0.87 weight percent. Pyroclastic surges originated from PDCs at locations of abrupt topographic steepening and channel curvature. In both of these locations, we observed evidence of bedload deposition and enhanced mobility of surge material. Some of the bombs were solid at the time of their deposition, whereas others deformed plastically after deposition, which constrains their thermal history. Clast size controls the internal forces and thermal evolution of a clast, which are critical in determining its post-fragmentation plastic deformation. Heating experiments on slabs made from the bombs constrain the deformation of the clasts as a function of temperature and torque. We will discuss the thermal history of individual clasts, field observation of individual clast deformation, and the information they provide on the entrainment of the ambient atmosphere.

  1. Lava dome growth and mass wasting measured by a time series of ground-based radar and seismicity observations

    NASA Astrophysics Data System (ADS)

    Wadge, G.; Macfarlane, D. G.; Odbert, H. M.; James, M. R.; Hole, J. K.; Ryan, G.; Bass, V.; de Angelis, S.; Pinkerton, H.; Robertson, D. A.; Loughlin, S. C.

    2008-08-01

    Exogenous growth of Peléean lava domes involves the addition of lava from a central summit vent and mass wasting on the flanks as rockfalls and pyroclastic flows. These processes were investigated at the Soufrière Hills Volcano, Montserrat, between 30 March and 10 April 2006, using a ground-based imaging millimeter-wave radar, AVTIS, to measure the shape of the dome and talus surface and rockfall seismicity combined with camera observations to infer pyroclastic flow deposit volumes. The topographic evolution of the lava dome was recorded in a time series of radar range and intensity measurements from a distance of 6 km, recording a southeastward shift in the locus of talus deposition with time, and an average height increase for the talus surface of about 2 m a day. The AVTIS measurements show an acceleration in lava extrusion rate on 5 April, with a 2-day lag in the equivalent change in the rockfall seismicity record. The dense rock equivalent volumetric budget of lava added and dispersed, including the respective proportions of the total for each component, was calculated using: (1) AVTIS range and intensity measurements of the change in summit lava (˜1.5 × 106 m3, 22%), (2) AVTIS range measurements to measure the talus growth (˜3.9 × 106 m3, 57%), and (3) rockfall seismicity to measure the pyroclastic flow deposit volumes (˜1.4 × 106 m3, 21%), which gives an overall dense rock equivalent extrusion rate of about 7 m3·s-1. These figures demonstrate how efficient nonexplosive lava dome growth can be in generating large volumes of primary clastic deposits, a process that, by reducing the proportion of erupted lava stored in the summit region, will reduce the likelihood of large hazardous pyroclastic flows.

  2. Earth Observations taken by the Expedition 15 Crew

    NASA Image and Video Library

    2007-07-10

    ISS015-E-16913 (10 July 2007) --- Shiveluch Volcano, Kamchatka, Russian Far East is featured in this image photographed by an Expedition 15 crewmember on the International Space Station. Shiveluch is one of the biggest and most active of a line of volcanoes along the spine of the Kamchatka peninsula in easternmost Russia. In turn the volcanoes and peninsula are part of the tectonically active "Ring of Fire" that almost surrounds the Pacific Ocean, denoted by active volcanoes and frequent earthquakes. Shiveluch occupies the point where the northeast-trending Kamchatka volcanic line intersects the northwest-trending Aleutian volcanic line. Junctions such as this are typically points of intense volcanic activity. According to scientists, the summit rocks of Shiveluch have been dated at approximately 65,000 years old. Lava layers on the sides of the volcano reveal at least 60 major eruptions in the last 10,000 years, making it the most active volcano in the 2,200 kilometer distance that includes the Kamchatka peninsula and the Kuril island chain. Shiveluch rises from almost sea level to well above 3,200 miles (summit altitude 3,283 miles) and is often capped with snow. In this summer image however, the full volcano is visible, actively erupting ash and steam in late June or early July, 2007. The dull brown plume extending from the north of the volcano summit is most likely a combination of ash and steam (top). The two larger white plumes near the summit are dominantly steam, a common adjunct to eruptions, as rain and melted snow percolate down to the hot interior of the volcano. The sides of the volcano show many eroded stream channels. The south slope also reveals a long sloping apron of collapsed material, or pyroclastic flows. Such debris flows have repeatedly slid down and covered the south side of the volcano during major eruptions when the summit lava domes explode and collapse (this occurred during major eruptions in 1854 and 1964). Regrowth of the forest on the south slope (note the contrast with the eastern slope) has been foiled by the combined effects of continued volcanic activity, instability of the debris flows and the short growing season.

  3. Quantifying entrainment in pyroclastic density currents from the Tungurahua eruption, Ecuador: Integrating field proxies with numerical simulations

    NASA Astrophysics Data System (ADS)

    Benage, M. C.; Dufek, J.; Mothes, P. A.

    2016-07-01

    The entrainment of air into pyroclastic density currents (PDCs) impacts the dynamics and thermal history of these highly mobile currents. However, direct measurement of entrainment in PDCs is hampered due to hazardous conditions and opaqueness of these flows. We combine three-dimensional multiphase Eulerian-Eulerian-Lagrangian calculations with proxies of thermal conditions preserved in deposits to quantify air entrainment in PDCs at Tungurahua volcano, Ecuador. We conclude that small-volume PDCs develop a particle concentration gradient that results in disparate thermal characteristics for the concentrated bed load (>600 to ~800 K) and the overlying dilute suspended load (~300-600 K). The dilute suspended load has effective entrainment coefficients 2-3 times larger than the bed load. This investigation reveals a dichotomy in entrainment and thermal history between two regions in the current and provides a mechanism to interpret the depositional thermal characteristics of small-volume but frequently occurring PDCs.

  4. The thermal evolution of pyroclastic density currents: Exploring the thermal histories of juvenile clasts of Tungurahua and Cotopaxi, Ecuador

    NASA Astrophysics Data System (ADS)

    Benage, M. C.; Dufek, J.; Degruyter, W.

    2010-12-01

    The thermal history of pyroclastic density currents (PDCs) is critical in determining flow dynamics and deposit characteristics. The thermal history of these flows depends on the particles’ internal rate of heat transfer and heat exchange between discrete particles and a gas phase. We examine the thermal history of a class of dense PDC exemplified by the eruption of Tungurahua (2006) and Cotopaxi (1877) that have abundant breadcrust bombs segregated in levees and in flow snouts. An open question in this type of PDC is the amount of air entrainment (and cooling) during transport. To understand the entrainment and cooling history of these flows we use a multiphase numerical model coupled with a Lagrangian model (Eulerian-Eulerian-Lagrangian [EEL]) that tracks the internal heat transfer and post-eruption bubble evolution in juvenile clasts. We combine the numerical study with the observation of the morphology and vesicularity of breadcrust bombs from dense pyroclastic density currents from Tungurahua and Cotopaxi. Breadcrust bombs are common in many deposits from mafic explosive eruptions, e.g. Montserrat, Cotopaxi, Guagua Pichincha, and Tungurahua volcanoes. At many locations these bombs have likely been transported as ballistics (interacting mostly with ambient air), although several instances of dense scoria bomb flows have been noted (e.g. Cotopaxi and Tungurahua, Ecuador). The dense flow deposits are generally rich in unabraided breadcrust bombs along the flow levee and occasionally along the entire transect of the flow. The breadcrust bombs range in size from tens of centimeters to meters. They can also be found draping around previous deposits suggesting a high temperature of deposition. We discuss the use of clast morphology with other thermal proxies to better understand the thermal evolution of individual PDC and the proportion of time clasts underwent transport in dense flows as compared to ballistic transport.

  5. Preliminary Volcano-Hazard Assessment for Redoubt Volcano, Alaska

    USGS Publications Warehouse

    Waythomas, Christopher F.; Dorava, Joseph M.; Miller, Thomas P.; Neal, Christina A.; McGimsey, Robert G.

    1997-01-01

    Redoubt Volcano is a stratovolcano located within a few hundred kilometers of more than half of the population of Alaska. This volcano has erupted explosively at least six times since historical observations began in 1778. The most recent eruption occurred in 1989-90 and similar eruptions can be expected in the future. The early part of the 1989-90 eruption was characterized by explosive emission of substantial volumes of volcanic ash to altitudes greater than 12 kilometers above sea level and widespread flooding of the Drift River valley. Later, the eruption became less violent, as developing lava domes collapsed, forming short-lived pyroclastic flows associated with low-level ash emission. Clouds of volcanic ash had significant effects on air travel as they drifted across Alaska, over Canada, and over parts of the conterminous United States causing damage to jet aircraft. Economic hardships were encountered by the people of south-central Alaska as a result of ash fallout. Based on new information gained from studies of the 1989-90 eruption, an updated assessment of the principal volcanic hazards is now possible. Volcanic hazards from a future eruption of Redoubt Volcano require public awareness and planning so that risks to life and property are reduced as much as possible.

  6. Observing changes at Santiaguito Volcano, Guatemala with an Unmanned Aerial Vehicle (UAV)

    NASA Astrophysics Data System (ADS)

    De Angelis, S.; von Aulock, F.; Lavallée, Y.; Hornby, A. J.; Kennedy, B.; Lamb, O. D.; Kendrick, J. E.

    2016-12-01

    Santiaguito Volcano (Guatemala) is one of the most active volcanoes in Central America, producing several ash venting explosions per day for almost 100 years. Lahars, lava flows and dome and flank collapses that produce major pyroclastic density currents also present a major hazard to nearby farms and communities. Optical observations of both the vent as well as the lava flow fronts can provide scientists and local monitoring staff with important information on the current state of volcanic activity and hazard. Due to the strong activity, and difficult terrain, unmanned aerial vehicles can help to provide valuable data on the activities of the volcano at a safe distance. We collected a series of images and video footage of the active vent of Caliente and the flow front of the active lava flow and its associated lahar channels, both in May 2015 and in December 2015- January 2016. Images of the crater and the lava flows were used for the reconstruction of 3D terrain models using structure-from-motion. These models can be used to constrain topographical changes and distribution of ballistics via cloud comparisons. The preliminary data of aerial images and videos of the summit crater (during two separate ash venting episodes) and the lava flow fronts indicate the following differences in activity during those two field campaigns: - A recorded explosive event in December 2015 initiates at subparallel linear faults near the centre of the dome, with a later, separate, and more ash-laden burst occurring from an off-centre fracture. - A comparison of the point clouds before and after a degassing explosion shows minor subsidence of the dome surface and the formation of several small craters at the main venting locations. - The lava flow fronts did not advance more than a few meters between May and December 2015. - Damming of river valleys by the lava flows has established new stream channels that have modified established pathways for the recurring lahars, one of the major hazards of Santiaguito volcano. The preliminary results of this study from two fieldtrips to Santiaguito Volcano are exemplary for the plethora of applications of UAVs in the field of volcano monitoring, and we urge funding agencies and legislative bodies to consider the value of these scientific instruments in future decisions and allocation of funding.

  7. Multiple Origins of Pyroclastic Obsidian and Implications for Changes in the Dynamics of the 1300 BP eruption of Newberry Volcano, USA

    NASA Astrophysics Data System (ADS)

    Rust, A. C.; Cashman, K. V.

    2005-12-01

    Like many rhyolite tephras, the pyroclastic deposits of the 1300 B.P. eruption of Newberry Volcano, USA, contain minor amounts of obsidian. The H2O and CO2 contents and textures of these clasts vary considerably and provide information on eruption history and dynamics. Early in the eruption, obsidian probably derived from veins of vanguard magma or tuffisite that, together with wall rock fragments, were eroded and incorporated into the eruption column as the vent widened. Later, following a temporary cessation of activity, the proportion of obsidian to lithic fragments increased and new types of obsidian dominated, types that represent remnants of a shallow conduit plug and welded fallback material. Analysis of bubble geometries provide flow parameters and time scales operative for deformation within the shallow conduit. Furthermore, spatial variations in CO2 help constrain welding and wall rock assimilation time scales. Comparison of obsidian characteristics from the Newberry eruption with those of the well-studied Mono Craters eruption shows intriguing differences in obsidian formation that may relate to the nature of the conduit feeding the two events. From this comparison we conclude that obsidian is less likely to provide information on magmatic fragmentation than on time scales and mechanisms of pre-fragmentation magma ascent.

  8. Frequent eruptions of Mount Rainier over the last ∼2,600 years

    USGS Publications Warehouse

    Sisson, T.W.; Vallance, J.W.

    2009-01-01

    Field, geochronologic, and geochemical evidence from proximal fine-grained tephras, and from limited exposures of Holocene lava flows and a small pyroclastic flow document ten–12 eruptions of Mount Rainier over the last 2,600 years, contrasting with previously published evidence for only 11–12 eruptions of the volcano for all of the Holocene. Except for the pumiceous subplinian C event of 2,200 cal year BP, the late-Holocene eruptions were weakly explosive, involving lava effusions and at least two block-and-ash pyroclastic flows. Eruptions were clustered from ∼2,600 to ∼2,200 cal year BP, an interval referred to as the Summerland eruptive period that includes the youngest lava effusion from the volcano. Thin, fine-grained tephras are the only known primary volcanic products from eruptions near 1,500 and 1,000 cal year BP, but these and earlier eruptions were penecontemporaneous with far-traveled lahars, probably created from newly erupted materials melting snow and glacial ice. The most recent magmatic eruption of Mount Rainier, documented geochemically, was the 1,000 cal year BP event. Products from a proposed eruption of Mount Rainier between AD 1820 and 1854 (X tephra of Mullineaux (US Geol Surv Bull 1326:1–83, 1974)) are redeposited C tephra, probably transported onto young moraines by snow avalanches, and do not record a nineteenth century eruption. We found no conclusive evidence for an eruption associated with the clay-rich Electron Mudflow of ∼500 cal year BP, and though rare, non-eruptive collapse of unstable edifice flanks remains as a potential hazard from Mount Rainier.

  9. A facies model for a quaternary andesitic composite volcano: Ruapehu, New Zealand

    NASA Astrophysics Data System (ADS)

    Hackett, W. R.; Houghton, B. F.

    1989-01-01

    Ruapehu composite volcano is a dynamic volcanic-sedimentary system, characterised by high accumulation rates and by rapid lateral and vertical change in facies. Four major cone-building episodes have occurred over 250 Ka, from a variety of summit, flank and satellite vents. Eruptive styles include subplinian, strombolian, phreatomagmatic, vulcanian and dome-related explosive eruptions, and extrusion of lava flows and domes. The volcano can be divided into two parts: a composite cone of volume 110 km3, surrounded by an equally voluminous ring plain. Complementary portions of Ruapehu's history are preserved in cone-forming and ring plain environments. Cone-forming sequences are dominated by sheet- and autobrecciated-lava flows, which seldom reach the ring plain. The ring plain is built predominantly from the products of explosive volcanism, both the distal primary pyroclastic deposits and the reworked material eroded from the cone. Much of the material entering the ring plain is transported by lahars either generated directly by eruptions or triggered by the high intensity rain storms which characterise the region. Ring plain detritus is reworked rapidly by concentrated and hyperconcentrated streams in pulses of rapid aggradation immediately following eruptions and more gradually in the longer intervals between eruptions.

  10. "MERAPIDATA": New Petrologic and Geochemical Database of the Merapi Volcano, Central Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Borisova, A. Y.; Martel, C.; Pratomo, I.; Toutain, J.; Sumarti, S.; Surono, S.

    2011-12-01

    Petrologic and geochemical databases of erupted products are critical for monitoring and predicting the evolution of active volcanoes. To monitor the activity of one of the most dangerous volcanoes in the world, Merapi Volcano in Indonesia, in the framework of the new instrumental site VELI (Volcans Explosifs - Laboratoires Indonésiens labelled by INSU in 2009 in France), we generated "MERAPIDATA", a complete database of available petrologic and geochemical data published in the literature on pyroclastic flows, tephra, lavas and xenoliths coupled with the exact ages of historical flows [1] or estimated ages based on 14C geochronology [2]. "MERAPIDATA" permits to access complete petrologic, geochemical, and geochronological information (e.g., major, trace element and Sr-Nd-Pb-O isotopic composition of the bulk volcanic rocks, xenoliths, minerals and glasses; textural information; type of eruption; classification) of a given volcanic product or series. In addition to ~300 published volcanic products, new data on 2 pyroclastic flows, 1 tephra and 4 ash samples collected on northern and western slopes of the volcano in October and November 2010 during subplinian type eruption have been added to "MERAPIDATA". The 2010 ash sample chemistry allows classifying them as high-K basaltic andesite. The ash samples demonstrate major and trace element compositions typical for the high-K series. For the first time, we obtained complete data on the Merapi ash samples which characterized by low L.O.I. ≤ 0.58 wt%, CO2total ≤ 0.05 wt%, H2Ototal = 0.3 - 0.5 wt%, Stotal ≤ 0.13 wt% and moderate Cl (550 - 1120 ppm) contents. The ash-leachates produced by leaching experiments demonstrate constant F/Cl ratios (0.05 ± 0.01) and Ca-Na-K enrichment (Ca/Na= 3 - 7, Na/K = 1 - 5). Sr-Nd-Pb-O isotopic analyses on the 2010 Merapi products are in progress. New petrologic (e.g., melt and fluid inclusion data, T - P - fO2 - aH2O - aCO2) and geochemical (e.g., volatile, major, trace element and isotopic composition of the bulk volcanic rocks and glassy matrix) data will permit to explain unexpected subplinian type of the 2010 eruption. The complete "MERAPIDATA" programmed with MS Access 2007 will be available in English version for open access at the website of the Observatory of Midi-Pyrénées (Toulouse, France): "http://www.get.obs-mip.fr/index.php/Annuaire/Borisova-Anastassia/MERAPIDATA". [1] Camus et al., (2000). JVGR 100, 139-163. [2] Gertisser & Keller (2003). JVGR 123, 1-23.

  11. Volcano Modelling and Simulation gateway (VMSg): A new web-based framework for collaborative research in physical modelling and simulation of volcanic phenomena

    NASA Astrophysics Data System (ADS)

    Esposti Ongaro, T.; Barsotti, S.; de'Michieli Vitturi, M.; Favalli, M.; Longo, A.; Nannipieri, L.; Neri, A.; Papale, P.; Saccorotti, G.

    2009-12-01

    Physical and numerical modelling is becoming of increasing importance in volcanology and volcanic hazard assessment. However, new interdisciplinary problems arise when dealing with complex mathematical formulations, numerical algorithms and their implementations on modern computer architectures. Therefore new frameworks are needed for sharing knowledge, software codes, and datasets among scientists. Here we present the Volcano Modelling and Simulation gateway (VMSg, accessible at http://vmsg.pi.ingv.it), a new electronic infrastructure for promoting knowledge growth and transfer in the field of volcanological modelling and numerical simulation. The new web portal, developed in the framework of former and ongoing national and European projects, is based on a dynamic Content Manager System (CMS) and was developed to host and present numerical models of the main volcanic processes and relationships including magma properties, magma chamber dynamics, conduit flow, plume dynamics, pyroclastic flows, lava flows, etc. Model applications, numerical code documentation, simulation datasets as well as model validation and calibration test-cases are also part of the gateway material.

  12. Seismic and deformation precursory to the small explosions of Marapi Volcano, West Sumatra, Indonesia

    NASA Astrophysics Data System (ADS)

    Hidayat, D.; Patria, C.; Gunawan, H.; Taisne, B.; Nurfiani, D.; Avila, E. J.

    2015-12-01

    Marapi Volcano is one of the active volcanoes of Indonesia located near the city of Bukittinggi, West Sumatra, Indonesia. Its activity is characterized by small vulcanian explosions with occasional VEI 2 producing tephra and pyroclastic flows. Due to its activity, it is being monitored by Centre for Volcanology and Geological Hazard Mitigation (CVGHM). Four seismic stations consists of 2 broadband and 2 short period instruments have been established since 2009. In collaboration with CVGHM, Earth Observatory of Singapore added 5 seismic stations around the volcano in 2014, initially with short period instruments but later upgraded to broadbands. We added one tilt station at the summit of Marapi. These seismic and tilt stations are telemetered by 5.8GHz radio to Marapi Observatory Post where data are archived and displayed for Marapi observers for their daily volcanic activity monitoring work. We also archive the data in the EOS and CVGHM main offices. Here we are presenting examples of seismic and deformation data from Marapi prior, during, and after the vulcanian explosion. Our study attempt to understand the state of the volcano based on monitoring data and in order to enable us to better estimate the hazards associated with the future eruptions of this or similar volcano.

  13. Stratigraphy of the Grande Savane Ignimbrite Sequence, Dominica, Lesser Antilles

    NASA Astrophysics Data System (ADS)

    Schneider, S.; Smith, A. L.; Deuerling, K.; Killingsworth, N.; Daly, G.

    2007-12-01

    The island of Dominica, located in the central part of the Lesser Antilles island arc has eight potentially active volcanoes. One of these, Morne Diablotins, is a composite stratovolcano with several superimposed stratigraphic sequences ranging in age from Pliocene (4-2 Ma) to "Younger" Pleistocene (<1.8 Ma). The most recent major eruptive activity from this volcano was a series of Plinian eruptions that produced ignimbrites that gave dates of >22,000 and >40,000 years B.P. The ignimbrite sequences form four flow fans that reached both the east and west coasts of the island. One of these flow fans, the Grande Savane, on the west coast of the island, also extends off-shore for a distance of at least 14 km as a distinctive submarine fan. Stratigraphical studies of the on- shore deposits that make up this fan indicate an older sequence of block and ash flow deposits, within which occurs a distinctive vulcanian fall deposit. These are overlain, with no evidence of an intervening paleosol, by a sequence of ignimbrites containing welded horizons (ranging in thickness from around 4 m to 16m). The lack of fall deposits beneath the ignimbrites suggest they may have been formed by instantaneous continuous collapse of the eruption column. This whole succession is overlain by a series of planar and dune bedded pumiceous surge deposits with interbedded pumiceous lapilli fall and ash fall deposits, that extend laterally outside of the main area of ignimbrite deposition. Beds within this upper sequence often contain accretionary lapilli and gas cavities suggesting magma-water interaction. The youngest deposits from Morne Diablotins appear to be valley- fill deposits of both ignimbrite and block and ash flow. A comparison of the of the Grande Savane pyroclastic sequence with the Pointe Ronde (west coast) and Londonderry (east coast) pyroclastic flow fans will provide information on the eruptive history of this major Plinian episode.

  14. Soufriere Hills Volcano

    NASA Image and Video Library

    2002-11-07

    In this ASTER image of Soufriere Hills Volcano on Montserrat in the Caribbean, continued eruptive activity is evident by the extensive smoke and ash plume streaming towards the west-southwest. Significant eruptive activity began in 1995, forcing the authorities to evacuate more than 7,000 of the island's original population of 11,000. The primary risk now is to the northern part of the island and to the airport. Small rockfalls and pyroclastic flows (ash, rock and hot gases) are common at this time due to continued growth of the dome at the volcano's summit. This image was acquired on October 29, 2002 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. http://photojournal.jpl.nasa.gov/catalog/PIA03880

  15. The 2014 eruptions of Pavlof Volcano, Alaska

    USGS Publications Warehouse

    Waythomas, Christopher F.; Haney, Matthew M.; Wallace, Kristi; Cameron, Cheryl E.; Schneider, David J.

    2017-12-22

    Pavlof Volcano is one of the most frequently active volcanoes in the Aleutian Island arc, having erupted more than 40 times since observations were first recorded in the early 1800s . The volcano is located on the Alaska Peninsula (lat 55.4173° N, long 161.8937° W), near Izembek National Wildlife Refuge. The towns and villages closest to the volcano are Cold Bay, Nelson Lagoon, Sand Point, and King Cove, which are all within 90 kilometers (km) of the volcano (fig. 1). Pavlof is a symmetrically shaped stratocone that is 2,518 meters (m) high, and has about 2,300 m of relief. The volcano supports a cover of glacial ice and perennial snow roughly 2 to 4 cubic kilometers (km3) in volume, which is mantled by variable amounts of tephra fall, rockfall debris, and pyroclastic-flow deposits produced during historical eruptions. Typical Pavlof eruptions are characterized by moderate amounts of ash emission, lava fountaining, spatter-fed lava flows, explosions, and the accumulation of unstable mounds of spatter on the upper flanks of the volcano. The accumulation and subsequent collapse of spatter piles on the upper flanks of the volcano creates hot granular avalanches, which erode and melt snow and ice, and thereby generate watery debris-flow and hyperconcentrated-flow lahars. Seismic instruments were first installed on Pavlof Volcano in the early 1970s, and since then eruptive episodes have been better characterized and specific processes have been documented with greater certainty. The application of remote sensing techniques, including the use of infrasound data, has also aided the study of more recent eruptions. Although Pavlof Volcano is located in a remote part of Alaska, it is visible from Cold Bay, Sand Point, and Nelson Lagoon, making distal observations of eruptive activity possible, weather permitting. A busy air-travel corridor that is utilized by a numerous transcontinental and regional air carriers passes near Pavlof Volcano. The frequency of air travel across the region results in a relatively large number of airborne observations of eruptive activity. During the 2014 Pavlof eruptions, the Alaska Volcano Observatory received observations and photographs from pilots and local observers, which aided evaluation of the eruptive activity and the areas affected by eruptive products.This report outlines the chronology of events associated with the 2014 eruptive activity at Pavlof Volcano, provides documentation of the style and character of the eruptive episodes, and reports briefly on the eruptive products and impacts. The principal observations are described and portrayed on maps and photographs, and the 2014 eruptive activity is compared to historical eruptions.

  16. Geological evolution of Paniri volcano, Central Andes, northern Chile

    NASA Astrophysics Data System (ADS)

    Godoy, Benigno; Lazcano, José; Rodríguez, Inés; Martínez, Paula; Parada, Miguel Angel; Le Roux, Petrus; Wilke, Hans-Gerhard; Polanco, Edmundo

    2018-07-01

    Paniri volcano, in northern Chile, belongs to a volcanic chain trending across the main orientation of the Central Andean volcanic province. Field work mapping, stratigraphic sequences, and one new 40Ar/39Ar and eleven previous published 40Ar/39Ar, and K/Ar ages, indicate that the evolution of Paniri involved eruption of seven volcanic units (Malku, Los Gordos, Las Lenguas, Las Negras, Viscacha, Laguna, and Llareta) during four main stages occurring over more than 1 Myr: Plateau Shield (>800 ka); Main Edifice (800-400 ka); Old Cone (400-250 ka); and New Cone (250-100 ka). Considering glacial and fluvial action, an estimated 85.3 km3 of volcanic material were erupted during the eruptive history of Paniri volcano, giving a bulk eruption rate of 0.061 km3/ka, with major activity in the last 150 kyr (eruption rate of 0.101 km3/ka). Lava flows from Paniri show abundant plagioclase together with subordinate ortho-, and clino-pyroxene, and amphibole as main phenocrysts. Moreover, although true basalts are scarce in the Central Andes, olivine-bearing lavas were erupted at Paniri at ∼400 ka. Also, scarce phenocrysts of biotite, quartz, rutile, and opaque minerals (Fe-Ti oxides) were identified. The groundmass of these flows is composed mainly of glass along with pyroxene and plagioclase microlites. Consolidated and unconsolidated pyroclastic deposits of dacitic composition are also present. The consolidated deposits correspond to vitreous tuffs, whilst unconsolidated deposits are composed of pumice clasts up to 5 cm in diameter. Both pyroclastic deposits are composed of glassy groundmass (up to 80% vol.), and subordinated plagioclase, hornblende, and biotite phenocrysts up to 1 cm in length. Results of twenty-four new, coupled with previous published compositional analyses show that volcanic products of Paniri vary from 57% (basaltic-andesite) to 71% (rhyolite) vol. SiO2, with significant linear correlations between major element-oxide and trace-element concentrations. 87Sr/86Sr isotope ratios range from 0.7070 to 0.7075, indicating that Paniri, similar to other volcanoes of the San Pedro - Linzor volcanic chain, have undergone significant crustal contamination of its parental magmas. However, the almost constant Sr-isotope compositions of the different volcanic units defined for Paniri volcano, suggested later fractional crystallization of magmas at upper crustal levels.

  17. Volcanic hazards from Bezymianny- and Bandai-type eruptions

    USGS Publications Warehouse

    Siebert, L.; Glicken, H.; Ui, T.

    1987-01-01

    Major slope failures are a significant degradational process at volcanoes. Slope failures and associated explosive eruptions have resulted in more than 20 000 fatalities in the past 400 years; the historic record provides evidence for at least six of these events in the past century. Several historic debris avalanches exceed 1 km3 in volume. Holocene avalanches an order of magnitude larger have traveled 50-100 km from the source volcano and affected areas of 500-1500 km2. Historic eruptions associated with major slope failures include those with a magmatic component (Bezymianny type) and those solely phreatic (Bandai type). The associated gravitational failures remove major segments of the volcanoes, creating massive horseshoe-shaped depressions commonly of caldera size. The paroxysmal phase of a Bezymianny-type eruption may include powerful lateral explosions and pumiceous pyroclastic flows; it is often followed by construction of lava dome or pyroclastic cone in the new crater. Bandai-type eruptions begin and end with the paroxysmal phase, during which slope failure removes a portion of the edifice. Massive volcanic landslides can also occur without related explosive eruptions, as at the Unzen volcano in 1792. The main potential hazards from these events derive from lateral blasts, the debris avalanche itself, and avalanche-induced tsunamis. Lateral blasts produced by sudden decompression of hydrothermal and/or magmatic systems can devastate areas in excess of 500km2 at velocities exceeding 100 m s-1. The ratio of area covered to distance traveled for the Mount St. Helens and Bezymianny lateral blasts exceeds that of many pyroclastic flows or surges of comparable volume. The potential for large-scale lateral blasts is likely related to the location of magma at the time of slope failure and appears highest when magma has intruded into the upper edifice, as at Mount St. Helens and Bezymianny. Debris avalanches can move faster than 100 ms-1 and travel tens of kilometers. When not confined by valley walls, avalanches can affect wide areas beyond the volcano's flanks. Tsunamis from debris avalanches at coastal volcanoes have caused more fatalities than have the landslides themselves or associated eruptions. The probable travel distance (L) of avalanches can be estimated by considering the potential vertical drop (H). Data from a catalog of around 200 debris avalanches indicates that the H/L rations for avalanches with volumes of 0.1-1 km3 average 0.13 and range 0.09-0.18; for avalanches exceeding 1 km3, H/L ratios average 0.09 and range 0.5-0.13. Large-scale deformation of the volcanic edefice and intense local seismicity precede many slope failures and can indicate the likely failure direction and orientation of potential lateral blasts. The nature and duration of precursory activity vary widely, and the timing of slope faliure greatly affects the type of associated eruption. Bandai-type eruptions are particularly difficult to anticipate because they typically climax suddenly without precursory eruptions and may be preceded by only short periods of seismicity. ?? 1987 Springer-Verlag.

  18. Earth observation taken by the Expedition 29 crew

    NASA Image and Video Library

    2011-10-07

    ISS029-E-020003 (7 Oct. 2011) --- Parinacota Volcano in the Chile-Bolivia border region, South America is featured in this image photographed by an Expedition 29 crew member on the International Space Station. Volcan Parinacota (?flamingo lake? in the regional Aymara language) is a potentially active stratovolcano located on the Altiplano, a high plateau situated within the Andes Mountains of west-central South America. While no direct observations of eruptive activity are recorded, surface exposure age-dating of lava flows suggests that activity occurred as recently as 290 AD approximately 300 years, according to scientists. Local Aymara stories also suggest that the volcano has erupted during the past 1,000 years. This detailed photograph highlights the symmetrical cone of Parinacota, with its well-developed summit crater (elevation 6,348 meters above sea level) at center. Dark brown to dark gray surfaces to the east and west of the summit include lava flows, pyroclastic deposits, and ash. A companion volcano, Pomerape, is located across a low saddle to the north ? scientists believe this volcano last erupted during the Pleistocene Epoch (extending from approximately 3 million to 12,000 years ago). The summits of both volcanoes are covered by white permanent snowpack and small glaciers. Together, the two volcanoes form the Nevados de Payachata volcanic area. Eruptive activity at Parinacota has directly influenced development of the local landscape beyond the emplacement of volcanic deposits ? approximately 8,000 years ago the western flank of the volcano collapsed, creating a debris avalanche that traveled 22 kilometers to the west. This debris avalanche blocked drainages, leading to the formation of Lake Chungara to the south (upper right). The uneven, hummocky surface of the debris avalanche deposit provides ample catchments for water, as evidenced by the numerous small ponds and Cotacotani Lake to the west.

  19. Earth Observations taken by the Expedition 20 crew

    NASA Image and Video Library

    2009-08-05

    ISS020-E-028123 (5 Aug. 2009) --- Mount Hood, Oregon is featured in this image photographed by an Expedition 20 crew member on the International Space Station. Mount Hood is located within the Cascade Range of the western United States, and is the highest peak (3,426 m) in Oregon. The Cascade Range is characterized by a line of volcanoes associated with a slab of oceanic crust that is subducting, or descending underneath, the westward moving continental crust of North America. Magma generated by the subduction process rises upward through the crust and feeds a line of active volcanoes that extends from northern California in the United States to southern British Columbia in Canada. While hot springs and steam vents are still active on Mount Hood, the last eruption from the volcano occurred in 1866. The volcano is considered dormant, but still actively monitored. Separate phases of eruptive activity produced pyroclastic flows and lahars ? mudflows ? that carried erupted materials down all of the major rivers draining the volcano. Gray volcanic deposits extend southwards along the banks of the White River (upper right), and form several prominent ridges along the southeast to southwest flanks of the volcano. The deposits contrast sharply with the green vegetated lower flanks of the volcano. The Mount Hood stratovolcano ? a typically cone-shaped volcanic structure formed by interlayered lava flows and explosive eruption deposits ? hosts twelve mapped glaciers along its upper flanks (center). Like other glaciers in the Pacific Northwest, the Hood glaciers have been receding due to global warming, and have lost an estimated 61 percent of their volume over the past century. The predicted loss of glacial meltwater under future warming scenarios will have significant effects on regional hydrology and water supplies.

  20. Reconstructing Volatile Evolution at Lastarria Volcano (CVZ, Northern Chile) Using Melt Inclusions Analysis

    NASA Astrophysics Data System (ADS)

    Pizarro, M.; Cannatelli, C.; Morata, D.

    2017-12-01

    Melt inclusions Assemblages (MIAs) are considered the best tool available to provide insights into the pre-eruptive volatile contents in the magma and define the pattern of degassing at depth. Lastarria volcano is located in northern Chile, in the Central Volcanic Zone (CVZ). Lastarria's fumarolic activity is currently the most important source of gases of the CVZ and the volcano also exhibits constant deformation. The study of volatile contents in MIAs, allows us to determine the magmatic processes beneath Lastarria volcano, and there for, understand the current status of the volcanic system (deformation and fumarolic activity). We determined the pre-eruptive volatile content (H2O, CO2, F, S, Cl) in the magma by analyzing MIs hosted in feldspars and pyroxenes from 7 samples of lava and pyroclastic rocks, belonging to different eruptive periods of the volcano. All the samples are andesitic in composition. Lava samples contain phenocrysts of plagioclase and pyroxene (up to 45%) and a vitreous groundmass with microlites of plagioclase, pyroxenes, opaque minerals, and limited biotites. Pyroclastic samples contain phenocrysts of plagioclase and pyroxene (up to 30%), and a vitreous matrix with microlites of plagioclase and pyroxene. At least 3 MIAs have been described in feldspars from the lava samples: MIA1, completely homogenized, MIA2 composed of homogeneous glass and one bubble, and MIA3 composed of homogeneous glass and multiple bubbles. All MIAs display sizes between 3 and 200 um. In the pyroxenes, we have observed a wide range of MIAs, showing different sizes and various degrees of recrystallization, from completely homogenized to totally recrystallized. The petrographic study in the feldespars from the pyroclastic rocks shows two types of MIAs: MIA1, containing homogeneous glass associated with a single bubble, and MIA2, showing homogeneous glass with multiple bubbles. Few MIs appear to be slightly recrystallized. The size of this MIAs varies between 3 and 150 um. Pyroxene-hosted MIs are almost all recrystallized, with sizes varying between 3 and 60 um. Preliminary observations show that MIAs hosted in pyroclastic rocks contain a greater amount of bubbles than MIAs hosted in the lava, possibly indicating that a greater degree of volatile saturation can be linked with the explosive phase of Lastarria volcano.

  1. Post Eruption Hazards at Mt. Pinatubo, Philippines

    NASA Technical Reports Server (NTRS)

    Mouginis-Mark, Peter J.

    2004-01-01

    Our project focused on the investigation of the post-eruption hazards at Mt. Pinatubo (Philippines) using remote sensing data, and field observations of the 1991 eruption deposits. Through the use of multiple satellite images, field work, and the 1996/2000 PacRim data sets, we conducted studies of the co- and post-eruption hazards of the volcano due to erosion and re-deposition of the extensive pyroclastic flow deposits. A major part of this project was the assembly and analysis of a database of over 50 high resolution (1 - 50 m/pixel) images that will facilitate this study. We collected Ikonos, SPOT, SIR-C/X-SAR, Landsat, ERS, RADARSAT, and ASTER images of the area around Mt. Pinatubo. An example of the changes that could be seen in these data is shown. Our investigation focused on a retrospective analysis of the erosion, redeposition, and re-vegetation of the 1991 pyroclastic flow deposits of Mt. Pinatubo. The primary geologic goal of our work was the analysis of the spatial distribution and volume change of the sources and sinks of materials associated with mudflow ('lahar') events. This included the measurement of river valley gradients and cross-sections using TOPSAR digital elevation data, as we are participating in the PacRim 2000 deployment to the Philippines specifically so that we can collect a second set of TOPSAR data that can then be used to create a topographic difference image of the volcano. The main results from this multi-sensor study have been published as Torres et al.. A discussion of the methodology that we used to assemble an appropriate database was included in Mouginis-Mark and Domergue-Schmidt. As part of an educational outreach effort, we also helped the Philippine Institute of Volcanology and Seismology (PHIVOLCS) in the Philippines to use NASA data to study Mt. Pinatubo and other Filipino volcanoes.

  2. Time Series Radar Observations of a Growing Lava Dome

    NASA Astrophysics Data System (ADS)

    Wadge, G.; Macfarlane, D. G.; Odbert, H. M.; James, M. R.; Hole, J. K.; Ryan, G.; Bass, V.; de Angelis, S.; Pinkerton, H.; Robertson, D. A.; Loughlin, S. C.

    2007-12-01

    Exogenous growth of Peléean lava domes occurs by addition of lava from a central summit vent and mass wasting on the flanks as rockfalls and pyroclastic flows, forming an apron of talus. We observed this process at the Soufrière Hills Volcano, Montserrat between 30 March and 10 April 2006 using a ground-based imaging mm-wave radar, AVTIS, to measure the shape of the dome surface.From a time series of range and intensity measurements at a distance of six kilometres we measured the topographic evolution of the lava dome. The locus of talus deposition moved to the southeast with time and the talus surface grew upwards on average at about 2 metres per day. The AVTIS measurements show an acceleration in lava extrusion rate on 5 April, with a 2-day lag in the equivalent rockfall seismicity record. We account for the budget of lava addition and dispersal during the eleven days of measurements using: AVTIS range measurements to measure the talus growth (7.2 Mm3, 67%), AVTIS range and intensity measurements to measure the summit lava growth (1.7 Mm3, 16%), and rockfall seismicity and visual observations to measure the pyroclastic flow deposits (1.8 Mm3, 17%). This gives an overall dense rock equivalent extrusion rate of about 9.7 m3s-1. These figures demonstrate how efficient non-explosive lava dome growth can be in generating large volumes of primary clastic deposits, and how this process could also reduce the propensity for large hazardous pyroclastic flows. andrews.ac.uk/~mmwave/mmwave/avtis.shtml

  3. The September 14, 2015 phreatomagmatic eruption of Nakadake first crater, Aso Volcano, Japan: Eruption sequence inferred from ballistic, pyroclastic density current and fallout deposits

    NASA Astrophysics Data System (ADS)

    Miyabuchi, Yasuo; Iizuka, Yoshiyuki; Hara, Chihoko; Yokoo, Akihiko; Ohkura, Takahiro

    2018-02-01

    An explosive eruption occurred at Nakadake first crater, Aso Volcano in central Kyushu, southwestern Japan, on September 14, 2015. The sequence and causes of the eruption were reconstructed from the distribution, textures, grain-size, component and chemical characteristics of the related deposits, and video record. The eruptive deposits are divided into ballistics, pyroclastic density current and ash-fall deposits. A large number of ballistic clasts (mostly < 10 cm in diameter; maximum size 1.6 m) are scattered within about 500 m from the center of the crater. Almost half of the ballistics appear as fresh and unaltered basaltic andesite rocks interpreted to be derived from a fresh batch of magma, while the rest is weakly to highly altered clasts. A relatively thin ash derived from pyroclastic density currents covered an area of 2.3 km2 with the SE-trending main axis and two minor axes to the NE and NW. The pyroclastic density current deposit (maximum thickness < 10 cm even at the crater rim) is wholly fine grained, containing no block-sized clasts. Based on the isopach map, the mass of the pyroclastic density current deposit was estimated at ca. 5.2 × 104 tons. The ash-fall deposit is finer grained and clearly distributed to about 8 km west of the source crater. The mass of the ash-fall deposit was calculated at about 2.7 × 104 tons. Adding the mass of the pyroclastic density current deposit, the total discharged mass of the September 14, 2015 eruption was 7.9 × 104 tons. The September 14 pyroclastic density current and ash-fall deposits consist of glass shards (ca. 30%), crystals (20-30%) and lithic (40-50%) grains. Most glass shards are unaltered poorly crystallized pale brown glasses which probably resulted from quenching of juvenile magma. This suggests that the September 14, 2015 event at the Nakadake first crater was a phreatomagmatic eruption. Similar phreatomagmatic eruptions occurred at the same crater on September 6, 1979 and April 20, 1990 whose eruptive masses were one order larger than that of the September 14, 2015 eruption. These events highlight the potential hazard from phreatic or phreatomagmatic eruptions at Nakadake first crater, and provide useful information that will assist in preventing or mitigating future disasters at other similar volcanoes worldwide.

  4. Insights into lahar deposition processes in the Curah Lengkong (Semeru Volcano, Indonesia) using photogrammetry-based geospatial analysis, near-surface geophysics and CFD modelling

    NASA Astrophysics Data System (ADS)

    Gomez, C.; Lavigne, F.; Sri Hadmoko, D.; Wassmer, P.

    2018-03-01

    Semeru Volcano is an active stratovolcano located in East Java (Indonesia), where historic lava flows, occasional pyroclastic flows and vulcanian explosions (on average every 5 min to 15 min) generate a stock of material that is remobilized by lahars, mostly occurring during the rainy season between October and March. Every year, several lahars flow down the Curah Lengkong Valley on the South-east flank of the volcano, where numerous lahar studies have been conducted. In the present contribution, the objective was to study the spatial distribution of boulder-size clasts and try to understand how this distribution relates to the valley morphology and to the dynamic and deposition dynamic of lahars. To achieve this objective, the method relies on a combination of (1) aerial photogrammetry-derived geospatial data on boulders' distribution, (2) ground penetrating radar data collected along a 2 km series of transects and (3) a CFD model of flow to analyse the results from the deposits. Results show that <1 m diameter boulders are evenly distributed along the channel, but that lava flow deposits visible at the surface of the river bed and SABO dams increase the concentration of clasts upstream of their position. Lateral input of boulders from collapsing lava-flow deposits can bring outsized clasts in the system that tend to become trapped at one location. Finally, the comparison between the CFD simulation and previous research using video imagery of lahars put the emphasis the fact that there is no direct link between the sedimentary units observed in the field and the flow that deposited them. Both grain size, flow orientation, matrix characteristics can be very different in a deposit for one single flow, even in confined channels like the Curah Lengkong.

  5. Stratigraphy of Pyroclastic Deposits of EL Aguajito Caldera, Baja California Sur, MÉXICO

    NASA Astrophysics Data System (ADS)

    Osorio Ocampo, L. S.; Macias, J. L.; García Sánchez, L.; Pola, A.; Saucedo, R.; Sánchez, J. M.; Avellán, D. R.; Cardona, S.; Reyes-Agustín, G.; Arce, J. L.

    2015-12-01

    El Aguajito caldera is located in the State of Baja California Sur, it comprises an area of 450 km2 and sits within the Santa Rosalía Basin which is controlled by NE-SW extensional structures and the NW-SE Cimarron Fault that transects the caldera structure. The oldest rocks are ~90 Ma granodiorites covered by an Oligocene-Miocene volcano-sedimentary sequence, the Miocene Santa Lucia Formation and La Esperanza basalt. Pliocene volcanism is represented by La Reforma caldera, El Aguajito caldera, and the Tres Vírgenes Volcanic complex. This study focuses on the cartography and stratigraphy of area in order to understand the evolution of the volcanic system. The stratigraphy from base to top consists of a series of shallow marine sediments (fossiliferous sandstones) covered by a thick sequence of ignimbrites and pyroclastic flows interbedded with volcaniclastic deposits (Gloria and El Infierno Formations). On top of these deposits is El Aguajito caldera, it consists of a 2 m thick pumice fallout followed by an ignimbrite with three transitional lithofacies: a ≤30-m thick light-pink pyroclastic flow enriched in pumice at the base that gradually becomes enrich in lithics towards the top with the occurrence of degasing pipes. On top rests a 15 m-thick light-purple ignimbrite slightly welded with fiammes and a sequence of pumiceous pyroclastic flows and fallouts. These deposits have been associate to the caldera formation with a collapse diameter of ~8 km marked by rhyolitic domes exposed along a ring collapse crowned the sequence as well as NW-SE aligned rhyolitic domes parallel to the seashore. This cartography allowed to present a preliminary new geological map with four stratigraphic units recognized so far, that were emplaced under subaerial conditions beginning with a Plinian column followed by the emplacement of El Aguajito ignimbrite with its subsequent caldera collapse and finally the extrusion of resurgent domes.

  6. Tephrostratigraphy of Changbaishan volcano, northeast China, since the mid-Holocene

    NASA Astrophysics Data System (ADS)

    Sun, Chunqing; Liu, Jiaqi; You, Haitao; Nemeth, Karoly

    2017-12-01

    A detailed tephrostratigraphy of an active volcano is essential for evaluating its eruptive history, forecasting future eruptions and correlation with distal tephra records. Changbaishan volcano is known for its Millennium eruption (ME, AD 940s; VEI 7) and the ME tephra has been detected in Greenland ice cores ∼9000 km from the vent. However, the pre-Millennium (pre-ME) and post-Millennium (post-ME) eruptions are still poorly characterized. In this study, we present a detailed late Holocene eruptive sequence of Changbaishan volcano based on single glass shard compositions from tephra samples collected from around the caldera rim and flanks. Tephra ages are constrained by optically stimulated luminescence (OSL) and AMS 14C dates. Tephra from the mid-Holocene pre-ME eruption can be divided into two pyroclastic fall subunits, and it cannot be correlated with any known Changbaishan-sourced tephra recorded in the Japan Sea based on major element composition of glass shards, such as the B-J (Baegdusan-Japan Basin) and B-V (Baegdusan-Vladivostok-oki) tephras. ME pyroclastic fall deposits from the caldera rims and volcanic flanks can be correlated to the juvenile pumice lapilli or blocks within the pyroclastic density current (PDC) deposits deposited in the valleys around the volcano based on glass shard compositions. Our results indicate that the glass shard compositions of proximal ME tephra are more varied than previously thought and can be correlated with distal ME tephra. In addition, widely-dispersed mafic scoria was ejected by the ME Plinian column and deposited on the western and southern summits and the eastern flank of the volcano. Data for glass from post-ME eruptions, such as the historically-documented AD 1403, AD 1668 and AD 1702 eruptions, are reported here for the first time. Except for the ME, other Holocene eruptions, including pre-ME and post-ME eruptions, had the potential to form widely-distributed tephra layers around northeast Asia, and our dataset provides a proximal reference for tephra and cryptotephra studies in surrounding areas.

  7. Massive Pyroclastic Eruptions Accompanied the Sector Collapse of Oahu and the Nu`uanu Landslide: Petrological Evidence for a Submarine Directed Blast

    NASA Astrophysics Data System (ADS)

    Natland, J. H.; Atlas, Z.

    2003-12-01

    During ODP Leg 200 in December, 2002, a series of thinly bedded volcaniclastic turbidites and silty muds interbedded with two thicker and strongly indurated vitric tuffs was drilled at Site 1223 on the crest of the Hawaiian arch east of the island of Oahu. The massive Nu`uanu landslide debris field, derived from a massive collapse of the eastern half of Oahu at about 2 Ma, lies in the flexural moat between the site and the island. The shipboard interpretation (1) was that the muds and silts are typical turbidites derived by redeposition from beaches and nearshore benches, but that the tuffs represent the distal portions of large submarine pyroclastic eruptions that may have attended the landslide. We report electron probe microanalyses of basaltic glass, olivine, Cr-spinel, palagonite and secondary minerals in the tuffs supporting the shipboard interpretation. In particular, the glass compositions from individual thin sections match precisely the range of compositions obtained from numerous samples of coarse volcaniclastic breccia sampled from the steep flanks of landslide blocks in the moat (2). This includes somewhat higher SiO2 and lower total iron as FeO(T) at given MgO than similar basaltic glasses from other Hawaiian volcanoes, a distinctive attribute of tholeiitic basalt from Oahu's Ko`olau volcano. Key attributes of the glasses in the tuffs and the minerals in them are that they are poly-compositional and they are strongly differentiated, with a range of compositions typical of those erupted from modern Hawaiian volcanic rift systems supplied by lateral diking from central conduits. The finer-grained tuffs at Site 1223 thus are indeed a distal pyroclastic facies that seemingly tapped much of the suddenly exposed, magma-inflated, deep flanking rift system of Ko`olau volcano. Over-steepening of the NE flank of the volcano coupled with internal weakening provided by near saturation of its rift system with magma may have triggered the landslide. This was almost immediately followed by massive submarine pyroclastic eruptions of magma mainly at submarine levels in the rift that, accelerated by steep downslope descent, were directed all the way to the ENE in rapidly-moving debris flows. These sorted themselves by size (mass) with the coarsest material plastering the sides of the landslide blocks, and the finer grained material, mainly glass and olivine grains, reaching the crest of the Hawaiian arch. The palagonite is compositionally-modified glass that probably formed by leaching in response to lateral migration of warm hydrothermal fluids from beneath thicker and still hot proximal pyroclastic material that was abruptly deposited in the moat to the west following the landslide. (1)Shipboard Scientific Party, 2003. Site 1223. In Stephen, R.A., Kasahara, J., Acton, G.D., et al., Proc. ODP, Init. Rept. 200 [CD-ROM], College Station, TX (Ocean Drill. Prog), 1-159. (2)Clague, D.A., Moore, J.G., and Davis, A.S., 2002. In Takahashi, E.,Lipman, P., Garcia, M.O., and Aramaki, S., (Eds.), Geophys. Monog. 128: Washington (AGU), 279-296.

  8. The flow structure of pyroclastic density currents: evidence from particle models and large-scale experiments

    NASA Astrophysics Data System (ADS)

    Dellino, Pierfrancesco; Büttner, Ralf; Dioguardi, Fabio; Doronzo, Domenico Maria; La Volpe, Luigi; Mele, Daniela; Sonder, Ingo; Sulpizio, Roberto; Zimanowski, Bernd

    2010-05-01

    Pyroclastic flows are ground hugging, hot, gas-particle flows. They represent the most hazardous events of explosive volcanism, one striking example being the famous historical eruption of Pompeii (AD 79) at Vesuvius. Much of our knowledge on the mechanics of pyroclastic flows comes from theoretical models and numerical simulations. Valuable data are also stored in the geological record of past eruptions, i.e. the particles contained in pyroclastic deposits, but they are rarely used for quantifying the destructive potential of pyroclastic flows. In this paper, by means of experiments, we validate a model that is based on data from pyroclastic deposits. It allows the reconstruction of the current's fluid-dynamic behaviour. We show that our model results in likely values of dynamic pressure and particle volumetric concentration, and allows quantifying the hazard potential of pyroclastic flows.

  9. Recent SO2 camera and OP-FTIR field measurements in Mexico and Guatemala

    NASA Astrophysics Data System (ADS)

    La Spina, Alessandro; Salerno, Giuseppe; Burton, Michael

    2013-04-01

    Between 22 and 30 November 2012 a field campaign was carried out at Mexico and Guatemala with the objectives of state the volcanic gas composition and flux fingerprints of Popocatepetl, Santiaguito, Fuego and Pacaya by exploiting simultaneously UV-camera and FTIR measurements. Gases were measured remotely using instruments sensitive to ultraviolet and infrared radiation (UV spectrometer, SO2-camera and OP-FTIR). Data collection depended on the requirements of the methodology, weather condition and eruptive stage of the volcanoes. OP-FTIR measurements were carried out using the MIDAC interferometer with 0.5 cm-1 resolution. Spectra were collected in solar occultation mode in which the Sun acts as an infrared source and the volcanic plume is interposed between the Sun and the spectrometer. At Santiaguito spectra were also collected in passive mode using the lava flow as a radiation source. The SO2-camera used for this study was a dual camera system consisting of two QS Imaging 640s cameras. Each of the two cameras was outfitted with two quartz 25mm lens, coupled with two band-pass filters centred at 310nm and at 330nm. The imaging system was managed by a custom-made software developed in LabView. The UV-camera system was coupled with a USB2000+ spectrometer connected to a QP1000-2-SR 1000 micron optical fiber with a 74-UV collimating lens. For calibration of plume imagery, images of five quartz cells containing known concentration path-lengths of SO2 were taken at the end of each sampling. Between 22 and 23 November 2012 UV-camera and FTIR observations were carried out at Popocatepetl. During the time of our observation, the volcano was characterised by pulsing degassing from the summit crater forming a whitish plume that dispersed rapidly in the atmosphere according to wind direction and speed. Data were collected from the Observatorio Atmosférico Altzomoni (Universidad Nacional Autónoma de México) at 4000 metre a.s.l. and at a distance of ~12 km from the volcano summit. SO2 camera observations were made for ~30 and 130 minutes on the 22 and 23 November, respectively, with a sampling rate of ~7 seconds. FTIR measurements were carried out for 20 and 15 minutes on 22 and 23 November. At Santiaguito volcano, we carried out volcanic gas measurements on 27 and 28 November 2012. During the period of our observations the volcano activity was characterised by lava flow extrusion on the S flank of dome edifice. Occasionally, incandescent blocks detached from the lava flow front rolling onto the dome flanks. During the time of our survey the explosive activity was low frequency (every ~5 - 6 hours). We observed a persistent and sustained degassing plume was observed occasionally polluted by ash. However, on 28 November at 5:25 local time, a violent pyroclastic flow occurred generating an ash-plume that rose ~5 km passing Santa Maria's summit and spreading ~30 km south. SO2 camera and FTIR data were simultaneously collected on 27 November from El Mirador at a distance of ~2 Km from the lava-dome. Data were collected for ~75 and ~90 minutes for SO2-camera and FTIR, respectively. On 28 November, due to the pyroclastic flow event, only distal solar occultation FTIR measurements and open-path UV spectra (using a USB spectrometer) were collected from the west flank of Santa Maria volcano. Both UV and IR spectra were recorded for ~60 minutes Ash released by the pyroclastic flow was sampled from a distance of 6.5 km from the volcano collecting the fallout products along a 60 minute time interval Data from the volcanic plumes of Pacaya and Fuego were collected on 29 and 30 November 2012. During our survey the eruptive activity of Pacaya consisted of weak puffing from the summit crater, while Fuego showed a weak outgassing occasionally interrupted by explosion from its summit crater. In both days, we carried out only SO2 camera measurements due to the poor weather conditions which prevented solar FTIR measurments. At both volcanoes, UV images were taken for a period of ~45 minutes from a distance of ~ 3 km and ~ 10 km, respectively. In this paper we summarise the results from the field campaign and interpret the gas observations in light of the current activity of each volcanic source.

  10. Preliminary volcano-hazard assessment for Akutan Volcano east-central Aleutian Islands, Alaska

    USGS Publications Warehouse

    Waythomas, Christopher F.; Power, John A.; Richter, Donlad H.; McGimsey, Robert G.

    1998-01-01

    Akutan Volcano is a 1100-meter-high stratovolcano on Akutan Island in the east-central Aleutian Islands of southwestern Alaska. The volcano is located about 1238 kilometers southwest of Anchorage and about 56 kilometers east of Dutch Harbor/Unalaska. Eruptive activity has occurred at least 27 times since historical observations were recorded beginning in the late 1700?s. Recent eruptions produced only small amounts of fine volcanic ash that fell primarily on the upper flanks of the volcano. Small amounts of ash fell on the Akutan Harbor area during eruptions in 1911, 1948, 1987, and 1989. Plumes of volcanic ash are the primary hazard associated with eruptions of Akutan Volcano and are a major hazard to all aircraft using the airfield at Dutch Harbor or approaching Akutan Island. Eruptions similar to historical Akutan eruptions should be anticipated in the future. Although unlikely, eruptions larger than those of historical time could generate significant amounts of volcanic ash, fallout, pyroclastic flows, and lahars that would be hazardous to life and property on all sectors of the volcano and other parts of the island, but especially in the major valleys that head on the volcano flanks. During a large eruption an ash cloud could be produced that may be hazardous to aircraft using the airfield at Cold Bay and the airspace downwind from the volcano. In the event of a large eruption, volcanic ash fallout could be relatively thick over parts of Akutan Island and volcanic bombs could strike areas more than 10 kilometers from the volcano.

  11. Experimental evidence links volcanic particle characteristics to pyroclastic flow hazard

    NASA Astrophysics Data System (ADS)

    Dellino, Pierfrancesco; Büttner, Ralf; Dioguardi, Fabio; Doronzo, Domenico M.; La Volpe, Luigi; Mele, Daniela; Sonder, Ingo; Sulpizio, Roberto; Zimanowski, Bernd

    2010-06-01

    Pyroclastic flows represent the most hazardous events of explosive volcanism, one striking example being the famous historical eruption of Vesuvius that destroyed Pompeii (AD 79). Much of our knowledge of the mechanics of pyroclastic flows comes from theoretical models and numerical simulations. Valuable data are also stored in the geological record of past eruptions, including the particles contained in pyroclastic deposits, but the deposit characteristics are rarely used for quantifying the destructive potential of pyroclastic flows. By means of experiments, we validate a model that is based on data from pyroclastic deposits. The model allows the reconstruction of the current's fluid-dynamic behaviour. Model results are consistent with measured values of dynamic pressure in the experiments, and allow the quantification of the damage potential of pyroclastic flows.

  12. Probabilistic Volcanic Multi-Hazard Assessment at Somma-Vesuvius (Italy): coupling Bayesian Belief Networks with a physical model for lahar propagation

    NASA Astrophysics Data System (ADS)

    Tierz, Pablo; Woodhouse, Mark; Phillips, Jeremy; Sandri, Laura; Selva, Jacopo; Marzocchi, Warner; Odbert, Henry

    2017-04-01

    Volcanoes are extremely complex physico-chemical systems where magma formed at depth breaks into the planet's surface resulting in major hazards from local to global scales. Volcano physics are dominated by non-linearities, and complicated spatio-temporal interrelationships which make volcanic hazards stochastic (i.e. not deterministic) by nature. In this context, probabilistic assessments are required to quantify the large uncertainties related to volcanic hazards. Moreover, volcanoes are typically multi-hazard environments where different hazardous processes can occur whether simultaneously or in succession. In particular, explosive volcanoes are able to accumulate, through tephra fallout and Pyroclastic Density Currents (PDCs), large amounts of pyroclastic material into the drainage basins surrounding the volcano. This addition of fresh particulate material alters the local/regional hydrogeological equilibrium and increases the frequency and magnitude of sediment-rich aqueous flows, commonly known as lahars. The initiation and volume of rain-triggered lahars may depend on: rainfall intensity and duration; antecedent rainfall; terrain slope; thickness, permeability and hydraulic diffusivity of the tephra deposit; etc. Quantifying these complex interrelationships (and their uncertainties), in a tractable manner, requires a structured but flexible probabilistic approach. A Bayesian Belief Network (BBN) is a directed acyclic graph that allows the representation of the joint probability distribution for a set of uncertain variables in a compact and efficient way, by exploiting unconditional and conditional independences between these variables. Once constructed and parametrized, the BBN uses Bayesian inference to perform causal (e.g. forecast) and/or evidential reasoning (e.g. explanation) about query variables, given some evidence. In this work, we illustrate how BBNs can be used to model the influence of several variables on the generation of rain-triggered lahars and, finally, assess the probability of occurrence of lahars of different volumes. The information utilized to parametrize the BBNs includes: (1) datasets of lahar observations; (2) numerical modelling of tephra fallout and PDCs; and (3) literature data. The BBN framework provides an opportunity to quantitatively combine these different types of evidence and use them to derive a rational approach to lahar forecasting. Lastly, we couple the BBN assessments with a shallow-water physical model for lahar propagation in order to attach probabilities to the simulated hazard footprints. We develop our methodology at Somma-Vesuvius (Italy), an explosive volcano prone to rain-triggered lahars or debris flows whether right after an eruption or during inter-eruptive periods. Accounting for the variability in tephra-fallout and dense-PDC propagation and the main geomorphological features of the catchments around Somma-Vesuvius, the areas most likely of forming medium-large lahars are the flanks of the volcano and the Sarno mountains towards the east.

  13. Quaternary silicic pyroclastic deposits of Atitlán Caldera, Guatemala

    USGS Publications Warehouse

    Rose, William I.; Newhall, Christopher G.; Bornhorst, Theodore J.; Self, Stephen

    1987-01-01

    Atitlán caldera has been the site of several silicic eruptions within the last 150,000 years, following a period of basalt/andesite volcanism. The silicic volcanism began with 5–10 km3 of rhyodacites, erupted as plinian fall and pyroclastic flows, about 126,000 yr. B.P. At 85,000 yr. B.P. 270–280 km3 of compositionally distinct rhyolite was erupted in the Los Chocoyos event which produced widely dispersed, plinian fall deposits and widespread, mobile pyroclastic flows. In the latter parts of this eruption rhyodacite and minor dacite were erupted which compositionally resembled the earliest silicic magmas of the Atitlán center. As a result of this major eruption, the modern Atitlán (III) caldera formed. Following this event, rhyodacites were again erupted in smaller (5–13 km3) volumes, partly through the lake, and mafic volcanism resumed, forming three composite volcanoes within the caldera. The bimodal mafic/silicic Atitlán volcanism is similar to that which has occurred elsewhere in the Guatemalan Highlands, but is significantly more voluminous. Mafic lavas are thought to originate in the mantle, but rise, intrude and underplate the lower crust and partly escape to the surface. Eventually, silicic melts form in the crust, possibly partly derived from underplated basaltic material, rise, crystallize and erupt. The renewed mafic volcanism could reflect either regional magmato-tectonic adjustment after the large silicic eruption or the onset of a new cycle.

  14. New geophysical views of Mt.Melbourne Volcano (East Antarctica)

    NASA Astrophysics Data System (ADS)

    Armadillo, E.; Gambetta, M.; Ferraccioli, F.; Corr, H.; Bozzo, E.

    2009-05-01

    Mt. Melbourne volcano is located along the transition between the Transantarctic Mountains and the West Antarctic Rift System. Recent volcanic activity is suggested by the occurrence of blankets of pyroclastic pumice and scoria fall around the eastern and southern flanks of Mt Melbourne and by pyroclastic layers interbedded with the summit snows. Geothermal activity in the crater area of Mount Melbourne may be linked to the intrusion of dykes within the last 200 years. Geophysical networks suggest that Mount Melbourne is a quiescent volcano, possibly characterised by slow internal dynamics. During the 2002-2003 Italian Antarctic campaign a high-resolution aeromagnetic survey was performed within the TIMM (Tectonics and Interior of Mt. Melbourne area) project. This helicopter-borne survey was flown at low-altitude and in drape-mode configuration (305 m above terrain) with a line separation less than 500 m. Our new high-resolution magnetic maps reveal the largely ice-covered magmatic and tectonic patters in the Mt. Melbourne volcano area. Additionally, in the frame of the UK-Italian ISODYN-WISE project (2005-06), an airborne ice-sounding radar survey was flown. We combine the sub-ice topography with images and models of the interior of Mt. Melbourne volcano, as derived from the high resolution aeromagnetic data and land gravity data. Our new geophysical maps and models also provide a new tool to study the regional setting of the volcano. In particular we re-assess whether there is geophysical evidence for coupling between strike-slip faulting, the Terror Rift, and Mount Melbourne volcano.

  15. Uranium-Series Isotopic Constraints on Recent Changes in the Eruptive Behaviour of Merapi Volcano, Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Gertisser, R.; Handley, H. K.; Reagan, M. K.; Berlo, K.; Barclay, J.; Preece, K.; Herd, R.

    2011-12-01

    Merapi volcano (Central Java) is one of the most active and deadly volcanoes in Indonesia. The 2010 eruption was the volcano's largest eruption since 1872 and erupted much more violently than expected. Prior to 2010, volcanic activity at Merapi was characterised by several months of slow dome growth punctuated by gravitational dome failures, generating small-volume pyroclastic density currents (Merapi-type nuées ardentes). The unforeseen, large-magnitude events in 2010 were different in many respects: pyroclastic density currents travelled > 15 km beyond the summit causing widespread devastation in proximal areas on Merapi's south flank and ash emissions from sustained eruption columns resulted in ash fall tens of kilometres away from the volcano. The 2010 events have proved that Merapi's relatively small dome-forming activity can be interrupted at relatively short notice by larger explosive eruptions, which appear more common in the geological record. We present new geochemical and Uranium-series isotope data for the volcanic products of both the 2006 and 2010 eruptions at Merapi to investigate the driving forces behind this unusual explosive behaviour and their timescales. An improved knowledge of these processes and of changes in the pre-eruptive magma system has important implications for the assessment of hazards and risks from future eruptive activity at Merapi.

  16. Stratigraphy and Petrology of the Grande Soufriere Hills Volcano, Dominica, Lesser Antilles

    NASA Astrophysics Data System (ADS)

    Daly, G.; Smith, A. L.; Garcia, R.; Killingsworth, N.

    2007-12-01

    The Grande Soufriere Hills volcanic center is located on the south east coast of the island of Dominica in the Lesser Antilles. Although the volcano is deeply dissected, a distinct circular crater that opens to the east can be observed. Within the crater is a lava dome and unconsolidated pyroclastic deposits mantle the southeast flanks of the volcano. These pyroclastic deposits are almost entirely matrix-supported block and ash flows and surges suggesting that Pelean-style eruptions have dominated its most recent activity. Within this sequence is a relatively thin (30-50 cm) clast-supported deposit that has been interpreted as a possible blast deposit. Two age dates from these younger deposits suggest that much of this activity occurred between l0,000 and 12,000 years ago. On the southeastern coast at Pointe Mulâtre and extending approximately 4 km north and at a maximum 2 km west, is a megabreccia of large (up to 3 m) flow-banded andesite clasts set in a semi-lithified medium grained ash matrix. At Pointe Mulâtre this megabreccia is overlain by unconsolidated block and ash flow deposits. To the north of the megabreccia, exposures in the sea cliffs reveal a consolidated sequence of well-bedded alternating coarse and fine deposits suggesting deltaic foreset beds; which in turn appears to be overlain by a yellow- colored relatively coarse flow deposit with an irregular upper surface. The uppermost deposits in the sea cliffs are a sequence of unconsolidated block and ash flow deposits and interbedded fluviatile conglomerates equivalent to the younger flow deposits logged inland. Volcanic rocks from the Grande Soufriere Hills are all porphyritic andesites often containing hypabyssal inclusions. Dominant phenocrysts are plagioclase often with inclusion-rich cores and well developed zoning. Mafic phenocrysts include hornblende, augite and hypersthene. Geochemically these andesites range from 58- 63% SiO2 and show trends of decreasing values for Al2O3, FeO, MgO, CaO, TiO2, Sr, V, and Sc and increasing values for Na2O, K2O, Ba, Rb, and Zr with increasing silica. Samples from the megabreccia can be chemically distinguished from the younger rocks of this center. Petrologic models suggest that the younger rocks from the Grand Soufriere Hills can be produced by fractional crystallization of basaltic magma such as those erupted from other centers (such as Morne Anglais to the west). Minor variations within this suite of andesites can be related to upper crustal fractionation of phenocryst phases.

  17. Major Holocene block-and-ash fan at the western slope of ice-capped Pico de Orizaba volcano, México: Implications for future hazards

    NASA Astrophysics Data System (ADS)

    Siebe, Claus; Abrams, Michael; Sheridan, Michael F.

    1993-12-01

    A major block-and-ash fan extends more than 14 km westward from the summit of Pico de Orizaba volcano in the eastern part of the Trans-Mexican Volcanic Belt. Radiocarbon dating of charcoal within the fan deposits yielded Holocene ages that range between 4040 ± 80 and 4660 ± 100 y.B.P. Stratigraphical, sedimentological, geochemical, and scanning electron microscope studies indicate that this fan originated within a relatively short time-span by multiple volcanic explosions at the summit crater. This activity produced a series of pyroclastic flows (mainly block-and-ash flows) and lahars which were channelized by a glacial cirque and connecting U-shaped valleys as they descended toward the base of the volcano. A recurrence of a similar eruption today would pose severe hazards to the population of more than 50,000 people, who live in a potentially dangerous zone. A detailed reconstruction of the sequence of events that led to the formation of the block-and-ash fan is presented to help mitigate the risk. Special attention is given to the effects of an ice-cap and the role of pre-existing glacial morphology on the distribution of products from such an eruption.

  18. Earth Observations taken by the Expedition 18 Crew

    NASA Image and Video Library

    2009-02-24

    ISS018-E-035716 (24 Feb. 2009) --- Minchinmavida and Chaiten Volcanoes in Chile are featured in this image photographed by an Expedition 18 crewmember on the International Space Station. The Andes mountain chain along the western coastline of South America includes numerous active stratovolcanoes. The majority of these volcanoes are formed, and fed, by magma generated as the oceanic Nazca tectonic plate moves northeastward and plunges beneath the less dense South American continental tectonic plate (a process known as subduction). The line of Andean volcanoes marks the approximate location of the subduction zone. This astronaut photograph highlights two volcanoes located near the southern boundary of the Nazca ? South America subduction zone in southern Chile. Dominating the scene is the massive Minchinmavida stratovolcano at center. An eruption of this glaciated volcano was observed by Charles Darwin during his Galapagos Island voyage in 1834; the last recorded eruption took place the following year. The white, snow covered summit of Minchinmavida is blanketed by gray ash erupted from its much smaller but now active neighbor to the west, Volcan (volcano) Chaiten. The historically inactive Chaiten volcano, characterized by a large lava dome within a caldera (an emptied and collapsed magma chamber beneath a volcano) roared back to life unexpectedly on May 2, 2008, generating dense ash plumes and forcing the evacuation of the nearby town of Chaiten. Volcanic activity continues at Chaiten, including partial collapse of a new lava dome and generation of a pyroclastic flow several days before this photograph was taken. A steam and ash plume is visible extending to the northeast from the eruptive center of the volcano.

  19. Earth Observations taken by the Expedition 16 Crew

    NASA Image and Video Library

    2007-11-17

    ISS016-E-010894 (17 Nov. 2007) --- Cosiguina Volcano, Nicaragua is featured in this image photographed by an Expedition 16 crewmember on the International Space Station. Three Central American countries (El Salvador, Honduras, and Nicaragua) include coastline along the Gulf of Fonseca that opens into the Pacific Ocean. The southern boundary of the Gulf is a peninsula formed by the Cosiguina volcano illustrated in this view. Cosiguina is a stratovolcano, typically tall cone-shaped structures formed by alternating layers of solidified lava and volcanic rocks (ash, pyroclastic flows, breccias) produced by explosive eruptions. The summit crater is filled with a lake (Laguna Cosiguina). The volcano last erupted in 1859, but its most famous activity occurred in 1835 when it produced the largest historical eruption in Nicaragua. Ash from the 1835 eruption has been found in Mexico, Costa Rica, and Jamaica. The volcano has been quiet since 1859, only an instant in terms of geological time. An earthquake swarm was measured near Cosiguina in 2002, indicating that tectonic forces are still active in the region although the volcano is somewhat isolated from the line of more recently active Central American volcanoes to the northwest and southeast. Intermittently observed gas bubbles in Laguna Cosiguina, and a hot spring along the eastern flank of the volcano are the only indicators of hydrothermal activity at the volcano. The fairly uniform vegetation cover (green) on the volcano's sides also attest to a general lack of gas emissions or "hot spots" on the 872 meter high cone, according to NASA scientists who study the photos downlinked from the orbital outpost.

  20. Volcanic hazard at Vesuvius: An analysis for the revision of the current emergency plan

    NASA Astrophysics Data System (ADS)

    Rolandi, G.

    2010-01-01

    Mt Somma-Vesuvius is a composite volcano on the southern margin of the Campanian Plain which has been active since 39 ka BP and which poses a hazard and risk for the people living around its base. The volcano last erupted in 1944, and since this date has been in repose. As the level of volcanic risk perception is very high in the scientific community, in 1995 a hazard and risk evaluation, and evacuation plan, was published by the Italian Department of Civil Protection ( Dipartimento della Protezione Civile) . The plan considered the response to a worst-case scenario, taken to be a subplinian eruption on the scale of the 1631 AD eruption, and based on a volcanological reconstruction of this eruption, assumes that a future eruption will be preceded by about two weeks of ground uplift at the volcano's summit, and about one week of locally perceptible seismic activity. Moreover, by analogy with the 1631 events, the plan assumes that ash fall and pyroclastic flow should be recognized as the primary volcanic hazard. To design the response to this subplinian eruption, the emergency plan divided the Somma-Vesuvius region into three hazard zones affected by pyroclastic flows (Red Zone), tephra fall (Yellow and Green Zone), and floods (Blue Zone). The plan at present is the subject of much controversy, and, in our opinion, several assumptions need to be modified according to the following arguments: a) For the precursory unrest problem, recent scientific studies show that at present neither forecast capability is realistic, so that the assumption that a future eruption will be preceded by about two weeks of forecasts need to be modified; b) Regarding the exposure of the Vesuvius region to flow phenomena, the Red Zone presents much inconsistency near the outer border as it has been defined by the administrative limits of the eighteen municipality area lying on the volcano. As this outer limit shows no uniformity, a pressing need exists to define appropriately the flow hazard zone, since there are some important public structures not considered in the current Red Zone that could be exposed to flow risk; c) Modern wind records clearly indicate that at the time of a future eruption winds could blow not only from the west, but also from the east, so that the Yellow Zone (the area with the potential to be affected by significant tephra fall deposits) must be redefined. As a result the relationship between the Yellow Zone and Green Zone (the area within and beyond which the impact of tephra fall is expected to be insignificant) must be reconsidered mainly in the Naples area; d) The May 1998 landslide, caused in the Apennine region east of the volcano by continuous rain fall, led to the definition of a zone affected by re-mobilisation of tephra (Blue Zone), confined in the Nola valley. However, as described in the 1631 chronicles of the eruption, if generation of debris flows occurs during and after a future eruption, a much wider region east of the Somma-Vesuvius must be affected by events of this type.

  1. Pyroclastic flow transport dynamics for a Montserrat volcano eruption

    NASA Astrophysics Data System (ADS)

    Cordoba, G.; Sparks, S.; del Risco, E.

    2003-04-01

    A two phase model of pyroclastic flows dynamics which account for the bed load and suspended load is shown. The model uses the compressible Navier-Stokes equations coupled with the convection-diffusion equation in order to take into account for the sedimentation. The skin friction is taken into account by using the wall functions. In despite of the complex mathematical formulation of the model, it has been implemented in a Personal Computer due to an assumption of two phase one velocity model which reduce the number of equations in the system. This non-linear equation system is solved numerically by using the Finite Element Method. This numerical method let us move the mesh in the direction of the deposition and then accounting for the shape of the bed and the thickness of the deposit The model is applied to the Montserrat's White River basin which extend from the dome to the sea, located about 4 Km away and then compared with the field data from the Boxing Day (26 December, 1997) eruption. Additionally some features as the temporary evolution of the dynamical pressure, particle concentration and temperature along the path at each time step is shown.

  2. Source mechanisms of volcanic tsunamis.

    PubMed

    Paris, Raphaël

    2015-10-28

    Volcanic tsunamis are generated by a variety of mechanisms, including volcano-tectonic earthquakes, slope instabilities, pyroclastic flows, underwater explosions, shock waves and caldera collapse. In this review, we focus on the lessons that can be learnt from past events and address the influence of parameters such as volume flux of mass flows, explosion energy or duration of caldera collapse on tsunami generation. The diversity of waves in terms of amplitude, period, form, dispersion, etc. poses difficulties for integration and harmonization of sources to be used for numerical models and probabilistic tsunami hazard maps. In many cases, monitoring and warning of volcanic tsunamis remain challenging (further technical and scientific developments being necessary) and must be coupled with policies of population preparedness. © 2015 The Author(s).

  3. Monitoring so2 emission at the Soufriere Hills volcano: Implications for changes in eruptive conditions

    USGS Publications Warehouse

    Young, S.R.; Francis, P.W.; Barclay, J.; Casadevall, T.J.; Gardner, C.A.; Darroux, B.; Davies, M.A.; Delmelle, P.; Norton, G.E.; Maciejewski, A.J.H.; Oppenheimer, C.M.M.; Stix, J.; Watson, I.M.

    1998-01-01

    Correlation spectrometer measurements of sulfur dioxide (SO2) emission rates during the current eruption of the Soufriere Hills volcano, Montserrat, have contributed towards identifying different phases of volcanic activity. SO2 emission rate has increased from 550 td-1 (>6.4 kgs-1) after July 1996, with the uncertainty associated with any individual measurement ca. 30%. Significantly enhanced SO2 emission rates have been identified in association with early phreatic eruptions (800 td-1 (9.3 kgs-1)) and episodes of vigorous dome collapse and pyroclastic flow generation (900 to 1500 td-1 (10.4 to 17.4 kgs-1)). SO2 emission rate has proved a useful proxy measurement for magma production rate. Observed SO2 emission rates are significantly higher than those inferred from analyses of glass inclusions in phenocrysts, implying the existence of a S-rich magmatic vapour phase.

  4. Characteristics and petrology of the effusive-explosive activity of Colima volcano, in the years 2015-2017

    NASA Astrophysics Data System (ADS)

    Suarez-Plascencia, C.; Nuñez-Cornu, F. J.; Arreola-Ochoa, L. C.; Suarez, G. B. V.; Carrillo-Gonzalez, D. A.

    2017-12-01

    The Colima volcano, during the years 2015-2017, presented an important effusive and explosive activity, which began in January 2015 with the growth of a dome that was destroyed by explosions, forming pyroclastic flows reaching distances of up to 2 km by the north and south flanks of the volcano. In May a new dome was extruded, forming three thick lava flows along the northern and southern slopes; the extruded volume was approximately 6 million cubic meters, with a rate in 52 days of 1.3 m3/sec. On July 11 merapi flows were formed it flowed through by the ravines of Montegrande and San Antonio, on the south and southwest flank, reaching distances of 10.4 km. The following days the activity had decreased substantially, leaving a crater of 60 m of depth and 270 m of diameter. In February 2016, a small dome occupied the central part of the main crater, and it was until September that an episode of volcanic tremor began, that was associated with its rapid growth, which in 48 hours filled the crater and formed a lava flow that descended by the south slope. By October 2, 2.3 million m3 of lava were extruded, which caused a deflation of the dome. In October 7, the volcano emitted a great amount of gases and steam of water that formed an acid rain that affected forests and crops of the south and southwest slope, causing losses by 1 million dollars. In November, a series of explosions occurred that destroyed two thirds of the dome. In January 2017, the explosive activity increased and again destroyed the dome. Five events were recorded that reached between 3 km and 4 km of height on the top of the volcano, the dispersion of the ash generally went to the northeast, reaching distances of up to 200 km. Currently the volcano is sustaining reduced seismic and fumarole activity. In 2005, 2015 and 2017, the geochemical analysis of major elements such as SiO2 from the ash emitted by the volcano showed an increase from 54.51% to 60.05% and 60.24%, respectively, which was associated with the increase in volcanic explosions, affecting and causing damages to the economic activities and the localities and settlements in its valleys and piedmont.

  5. Swarms of small earthquakes on Marapi Volcano, West Sumatra, Indonesia: are these precursors to explosion event?

    NASA Astrophysics Data System (ADS)

    Hidayat, D.; Patria, C.; Adi, S.; Gunawan, H.; Taisne, B.; Nurfiani, D.; Tan, C. T.

    2016-12-01

    Marapi Volcano's activity is characterized by Strombolian to small Vulcanian explosions with occasional VEI 2 producing tephra and pyroclastic flows. Currently in collaboration between Earth Observatory of Singapore (EOS) and Centre for Volcanology and Geological Hazard Mitigation (CVGHM) the volcano is seismically monitored with 7 broadband stations, and 2 short-period stations. In addition, we deployed 2 tiltmeters and an experimental soil CO2 sensor. These stations are telemetered by 5.8GHz radio to Marapi Observatory Post where data are archived and displayed for Marapi observers for their daily volcano activity monitoring work. We also archive the data in the EOS and CVGHM main offices. Data are being utilized by volcano scientists of CVGHM and researchers in both institutes as well as university students in and around them. We presented seismic earthquake sequences (swarm) prior to small explosion on Marapi in July 2016. These earthquakes are small, better identified after the deployment of seismic stations at summit, and located at depths < 1km near the volcano active vents. Similar swarms occurred prior to small explosions of Marapi. We also presented VLP-LP signals associated with an explosion which can be explained as volumetric change of sub-vertical crack at depth similar to the occurrence of small earthquake swarms. Our study attempt to understand the state of the volcano based on monitoring data and enable us to better estimate the hazards associated with future small explosions or eruptions.

  6. The ~ 2500 yr B.P. Chicoral non-cohesive debris flow from Cerro Machín Volcano, Colombia

    NASA Astrophysics Data System (ADS)

    Murcia, H. F.; Hurtado, B. O.; Cortés, G. P.; Macías, J. L.; Cepeda, H.

    2008-04-01

    Cerro Machín Volcano (CMV) is located in the central part of the Colombian Andes (2750 m asl), 150 km southwest of Bogotá. It is considered the most dangerous active volcano of Colombia. CMV has experienced at least six major explosive eruptions during the last 5000 years. These eruptions have emplaced many types of pyroclastic deposits with associated lahars that have traveled more than 100 km. One of these lahars is called Chicoral Debris Flow Deposit (DFD2). This deposit is exposed as discontinuous terraces (3-20 m thick) along the Coello and Magdalena rivers up to 109 km from the source. The DFD2 covers a minimum area of 62 km 2 and has a minimum volume of 0.57 km 3. It comprises two dacite-rich volcaniclastic units. Grain-size analysis reveals that the matrix content and sorting increase with distance while the average grain size decreases. The clay content of the DFD2 matrix is approximately 1%, thus categorizing it as a non-cohesive debris flow. Radiocarbon dates obtained from underlying and overlying paleosols yielded ages of 2505 + 65 and 1640 + 45 yr B.P., respectively. These dates suggest that DFD2 is related to the ~ 2600 yr B.P. El Guaico eruption of CMV. This eruption produced a block-and-ash flow that filled and blocked the Toche River up to 5 km from the volcano. Subsequent remobilization of this loose material by runoff water generated a massive debris flow that traveled 91 km along the Toche and Coello rivers and continued across the Espinal Alluvial Fan debouching into the Magdalena River where it continued another 18 km prior to its transformation into a sediment-laden flow. Because the last eruption of the volcano occurred ca. 900 years ago, no historic activity of CMV is known among inhabitants of the region. Hence the region has developed without awareness of volcanic hazards. Therefore an assessment of volcanic hazards is essential for understanding and evaluating the vulnerability and risk to which people are exposed in case of a future eruption. Such assessment is critical for urban planning, development, contingency, emergency and education planning.

  7. Dune bedforms produced by dilute pyroclastic density currents from the August 2006 eruption of Tungurahua volcano, Ecuador.

    PubMed

    Douillet, Guilhem Amin; Pacheco, Daniel Alejandro; Kueppers, Ulrich; Letort, Jean; Tsang-Hin-Sun, Ève; Bustillos, Jorge; Hall, Minard; Ramón, Patricio; Dingwell, Donald B

    A series of pyroclastic density currents were generated at Tungurahua volcano (Ecuador) during a period of heightened activity in August 2006. Dense pyroclastic flows were confined to valleys of the drainage network, while dilute pyroclastic density currents overflowed on interfluves where they deposited isolated bodies comprising dune bedforms of cross-stratified ash exposed on the surface. Here, the description, measurement, and classification of more than 300 dune bedforms are presented. Four types of dune bedforms are identified with respect to their shape, internal structure, and geometry (length, width, thickness, stoss and lee face angles, and stoss face length). (1) "Elongate dune bedforms" have smooth shapes and are longer (in the flow direction) than wide or thick. Internal stratification consists of stoss-constructional, thick lensoidal layers of massive and coarse-grained material, alternating with bedsets of fine laminae that deposit continuously on both stoss and lee sides forming aggrading structures with upstream migration of the crests. (2) "Transverse dune bedforms" show linear crests perpendicular to the flow direction, with equivalent lengths and widths. Internally, these bedforms exhibit finely stratified bedsets of aggrading ash laminae with upstream crest migration. Steep truncations of the bedsets are visible on the stoss side only. (3) "Lunate dune bedforms" display a barchanoidal shape and have stratification patterns similar to those of the transverse ones. Finally, (4) "two-dimensional dune bedforms" are much wider than long, exhibit linear crests and are organized into trains. Elongate dune bedforms are found exclusively in proximal deposition zones. Transverse, lunate, and two-dimensional dune bedforms are found in distal ash bodies. The type of dune bedform developed varies spatially within an ash body, transverse dune bedforms occurring primarily at the onset of deposition zones, transitioning to lunate dune bedforms in intermediate zones, and two-dimensional dune bedforms exclusively on the lateral and distal edges of the deposits. The latter are also found where flows moved upslope. Elongate dune bedforms were deposited from flows with both granular-based and tractional flow boundaries that possessed high capacity and competence. They may have formed in a subcritical context by the blocking of material on the stoss side. We do not interpret them as antidune or "chute-and-pool" structures. The dimensions and cross-stratification patterns of transverse dune bedforms are interpreted as resulting from low competence currents with a significant deposition rate, but we rule out their interpretation as "antidunes". A similar conclusion holds for lunate dune bedforms, whose curved shape results from a sedimentation rate dependent on the thickness of the bedform. Finally, two-dimensional dune bedforms were formed where lateral transport exceeds longitudinal transport; i.e., in areas where currents were able to spread laterally in low velocity zones. We suggest that the aggrading ash bedsets with upstream crest migration were formed under subcritical flow conditions where the tractional bedload transport was less important than the simultaneous fallout from suspension. This produced differential draping with no further reworking. We propose the name "regressive climbing dunes" for structures produced by this process. A rapid decrease in current velocity, possibly triggered by hydraulic jumps affecting the entire parent flows, is inferred to explain their deposition. This process can in principle hold for any kind of particulate density current.

  8. Post-depositional fracturing and subsidence of pumice flow deposits: Lascar Volcano, Chile.

    PubMed

    Whelley, Patrick L; Jay, J; Calder, E S; Pritchard, M E; Cassidy, N J; Alcaraz, S; Pavez, A

    Unconsolidated pyroclastic flow deposits of the 1993 eruption of Lascar Volcano, Chile, have, with time, become increasingly dissected by a network of deeply penetrating fractures. The fracture network comprises orthogonal sets of decimeter-wide linear voids that form a pseudo-polygonal grid visible on the deposit surface. In this work, we combine shallow surface geophysical imaging tools with remote sensing observations and direct field measurements of the deposit to investigate these fractures and their underlying causal mechanisms. Based on ground penetrating radar images, the fractures are observed to have propagated to depths of up to 10 m. In addition, orbiting radar interferometry shows that deposit subsidence of up to 1 cm/year -1 occurred between 1993 and 1996 with continued subsidence occurring at a slower rate thereafter. In situ measurements show that 1 m below the surface, the 1993 deposits remain 5°C to 15°C hotter, 18 years after emplacement, than adjacent deposits. Based on the observed subsidence as well as estimated cooling rates, the fractures are inferred to be the combined result of deaeration, thermal contraction, and sedimentary compaction in the months to years following deposition. Significant environmental factors, including regional earthquakes in 1995 and 2007, accelerated settling at punctuated moments in time. The spatially variable fracture pattern relates to surface slope and lithofacies variations as well as substrate lithology. Similar fractures have been reported in other ignimbrites but are generally exposed only in cross section and are often attributed to formation by external forces. Here we suggest that such interpretations should be invoked with caution, and deformation including post-emplacement subsidence and fracturing of loosely packed ash-rich deposits in the months to years post-emplacement is a process inherent in the settling of pyroclastic material.

  9. Thickness distribution of a cooling pyroclastic flow deposit on Augustine Volcano, Alaska: Optimization using InSAR, FEMs, and an adaptive mesh algorithm

    USGS Publications Warehouse

    Masterlark, Timothy; Lu, Zhong; Rykhus, Russell P.

    2006-01-01

    Interferometric synthetic aperture radar (InSAR) imagery documents the consistent subsidence, during the interval 1992–1999, of a pyroclastic flow deposit (PFD) emplaced during the 1986 eruption of Augustine Volcano, Alaska. We construct finite element models (FEMs) that simulate thermoelastic contraction of the PFD to account for the observed subsidence. Three-dimensional problem domains of the FEMs include a thermoelastic PFD embedded in an elastic substrate. The thickness of the PFD is initially determined from the difference between post- and pre-eruption digital elevation models (DEMs). The initial excess temperature of the PFD at the time of deposition, 640 °C, is estimated from FEM predictions and an InSAR image via standard least-squares inverse methods. Although the FEM predicts the major features of the observed transient deformation, systematic prediction errors (RMSE = 2.2 cm) are most likely associated with errors in the a priori PFD thickness distribution estimated from the DEM differences. We combine an InSAR image, FEMs, and an adaptive mesh algorithm to iteratively optimize the geometry of the PFD with respect to a minimized misfit between the predicted thermoelastic deformation and observed deformation. Prediction errors from an FEM, which includes an optimized PFD geometry and the initial excess PFD temperature estimated from the least-squares analysis, are sub-millimeter (RMSE = 0.3 mm). The average thickness (9.3 m), maximum thickness (126 m), and volume (2.1 × 107m3) of the PFD, estimated using the adaptive mesh algorithm, are about twice as large as the respective estimations for the a priori PFD geometry. Sensitivity analyses suggest unrealistic PFD thickness distributions are required for initial excess PFD temperatures outside of the range 500–800 °C.

  10. Volcanic activity: a review for health professionals.

    PubMed Central

    Newhall, C G; Fruchter, J S

    1986-01-01

    Volcanoes erupt magma (molten rock containing variable amounts of solid crystals, dissolved volatiles, and gas bubbles) along with pulverized pre-existing rock (ripped from the walls of the vent and conduit). The resulting volcanic rocks vary in their physical and chemical characteristics, e.g., degree of fragmentation, sizes and shapes of fragments, minerals present, ratio of crystals to glass, and major and trace elements composition. Variability in the properties of magma, and in the relative roles of magmatic volatiles and groundwater in driving an eruption, determine to a great extent the type of an eruption; variability in the type of an eruption in turn influences the physical characteristics and distribution of the eruption products. The principal volcanic hazards are: ash and larger fragments that rain down from an explosion cloud (airfall tephra and ballistic fragments); flows of hot ash, blocks, and gases down the slopes of a volcano (pyroclastic flows); "mudflows" (debris flows); lava flows; and concentrations of volcanic gases in topographic depressions. Progress in volcanology is bringing improved long- and short-range forecasts of volcanic activity, and thus more options for mitigation of hazards. Collaboration between health professionals and volcanologists helps to mitigate health hazards of volcanic activity. Images FIGURE 1 FIGURE 2 FIGURE 6a-6e FIGURE 6a-6e FIGURE 8 FIGURE 9 FIGURE 10 FIGURE 11 PMID:3946726

  11. Ignimbrites of Armenia - Paleomagnetic constraints on flow direction and stratigraphy of pyroclastic activity of Mount Aragats

    NASA Astrophysics Data System (ADS)

    Kirscher, Uwe; Meliksetian, Khachatur; Gevorgyan, Hripsime; Navasardyan, Gevorg; Bachtadse, Valerian

    2017-04-01

    The Aragats volcano is one of the largest stratovolcanoes within the Turkish-Armenian-Iranian orogenic plateau. It is located close to the Armenian capital Yerevan, and only 30 km from the only nuclear power plant within the country. Additional to numerous lava flows, Mount Aragats is thought to be the source of at least two large pyroclastic eruptions leading to a huge number of ignimbrite outcrops, which are located surrounding Mount Aragats with an evaluated eruption radius of 50 km. The age of several ignimbrite outcrops has recently been determined to be 0.65 Ma (Meliksetian et al., 2014). The different ignimbrite flows are characterized by huge diversity of colors, degree of welding and textures. Due to that reason some disagreement exist on how these outcrops can be linked and how the eruption process actually happened in terms of different eruption phases and mixing mechanism of magmas during the eruption. To add constraints to this debate we carried out an intensive paleomagnetic investigation on most of the ignimbrite outcrops (32 sites) in terms of directional and anisotropy measurements. Paleomagnetic directional measurements yield basically two polarities: (1) a well grouped normal polarity is present in the majority of the studied sites including 3 sites which have supposedly originated from a different vent located on Turkish territory in the west; (2) a reversed polarity of the remaining sites with a somewhat increased scatter. Based on secular variation arguments and considering the high quality of the data we suggest that at least all young outcrops represent a single eruption phase in the area at 0.65 Ma, which is in agreement with an occurrence during the Brunhes geomagnetic chron. Additional to that, at least one earlier phase of pyroclastic activity took place prior to the Brunhes-Matuyama boundary (0.781 Ma). Anisotropy of magnetic susceptibility (AMS) suggests initial radial flow directions, which shortly after the eruption become topographically controlled. Such explosive eruptions with VEI≥5 are usually considered among most hazardous volcanic phenomena, therefore detailed multidisciplinary studies of such events occurred in the past are significantly important to estimate recurrence rates of such eruptions, their magnitudes to probabilistically access potential volcanic hazards to populated places and critical infrastructure. Melisketian, K., Savov, I., Connor, C., Halama, R., Jrbashyan, R., Navasardyan, G., Ghukasyan, Y., Gevorgyan, H., Manucharyan, D., Ishizuka, O., Quidelleur, X., Germa, A., 2014. Aragats stratovolcano in Armenia - volcano-stratigraphy and petrology. EGU General Assembly Conference Abstracts 16, 567.

  12. Effect of antecedent-hydrological conditions on rainfall triggering of debris flows in ash-fall pyroclastic mantled slopes of Campania (southern Italy)

    USGS Publications Warehouse

    Napolitano, E.; Fusco, F; Baum, Rex L.; Godt, Jonathan W.; De Vita, P.

    2016-01-01

    Mountainous areas surrounding the Campanian Plain and the Somma-Vesuvius volcano (southern Italy) are among the most risky areas of Italy due to the repeated occurrence of rainfallinduced debris flows along ash-fall pyroclastic soil-mantled slopes. In this geomorphological framework, rainfall patterns, hydrological processes taking place within multi-layered ash-fall pyroclastic deposits and soil antecedent moisture status are the principal factors to be taken into account to assess triggering rainfall conditions and the related hazard. This paper presents the outcomes of an experimental study based on integrated analyses consisting of the reconstruction of physical models of landslides, in situ hydrological monitoring, and hydrological and slope stability modeling, carried out on four representative source areas of debris flows that occurred in May 1998 in the Sarno Mountain Range. The hydrological monitoring was carried out during 2011 using nests of tensiometers and Watermark pressure head sensors and also through a rainfall and air temperature recording station. Time series of measured pressure head were used to calibrate a hydrological numerical model of the pyroclastic soil mantle for 2011, which was re-run for a 12-year period beginning in 2000, given the availability of rainfall and air temperature monitoring data. Such an approach allowed us to reconstruct the regime of pressure head at a daily time scale for a long period, which is representative of about 11 hydrologic years with different meteorological conditions. Based on this simulated time series, average winter and summer hydrological conditions were chosen to carry out hydrological and stability modeling of sample slopes and to identify Intensity- Duration rainfall thresholds by a deterministic approach. Among principal results, the opposing winter and summer antecedent pressure head (soil moisture) conditions were found to exert a significant control on intensity and duration of rainfall triggering events. Going from winter to summer conditions requires a strong increase of intensity and/or duration to induce landslides. The results identify an approach to account for different hazard conditions related to seasonality of hydrological processes inside the ash-fall pyroclastic soil mantle. Moreover, they highlight another important factor of uncertainty that potentially affects rainfall thresholds triggering shallow landslides reconstructed by empirical approaches.

  13. Decompression Induced Crystallization of Basaltic Andesite Magma: Constraints on the Eruption of Arenal Volcano, Costa Rica.

    NASA Astrophysics Data System (ADS)

    Szramek, L. A.; Gardner, J. E.; Larsen, J. F.

    2004-12-01

    Arenal Volcano is a small stratovolcano located 90 km NW of San Jose, Costa Rica. In 1968 current activity began with a Plinian phase, and has continued to erupt lava flows and pyroclastic flows intermittently since. Samples from the Plinian, pyroclastic flow, strombolian, and effusive phases have been studied texturally. Little variation in crystallinity occurs amongst the different phases. Number density of crystals, both 2D and 3D are 50-70 mm-2 and 30,000-50,000 mm-3 in the Plinian sample, compared to the lesser values in other eruptive types. Characteristic crystal size also increases as explosivity decreases. Two samples, both lava flows collected while warm, overlap with the Plinian sample. This suggests that the variations seen may be a result of cooling history. Plagioclase differs between the Plinian sample, in which they are only tabular in shape, and the other eruptive types, which contain both tabular and equant crystals. To link decompression paths of the Arenal magma to possible pre-eruptive conditions, we have carried out hydrothermal experiments. The experiments were preformed in TZM pressure vessels buffered at a fugacity of Ni-NiO and water saturation. Phase equilibria results in conjunction with mineral compositions and temperature estimates by previous workers from active lava flows and two-pyroxene geothermometry, constrain the likely pre-eruptive conditions for the Arenal magma to 950-1040° C with a water pressure of 50-80 MPa. Samples that started from conditions that bracket our estimated pre-eruptive conditions were decompressed in steps of 5-30 MPa and held for various times at each step until 20 MPa was reached, approximating average decompression rates of 0.25, 0.025, 0.0013 MPa/s. Comparison of textures found in the natural samples to the experimentally produced textures suggest that the Plinian eruption likely was fed by magma ascending at 0.05-1 m/s, whereas the less explosive phases were fed by magma ascending at 0.05 m/s or less.

  14. Basaltic ignimbrites in monogenetic volcanism: the example of La Garrotxa volcanic field

    NASA Astrophysics Data System (ADS)

    Martí, J.; Planagumà, L. l.; Geyer, A.; Aguirre-Díaz, G.; Pedrazzi, D.; Bolós, X.

    2017-05-01

    Ignimbrites are pyroclastic density current deposits common in explosive volcanism involving intermediate and silicic magmas and in less abundance in eruptions of basaltic central and shield volcanoes. However, they are not widely described in association with monogenetic volcanism, where typical products include lava flows, scoria and lapilli fall deposits, as well as various kinds of pyroclastic density current deposits and explosion breccias. In La Garrotxa basaltic monogenetic volcanic field, part of the Neogene-Quaternary European rift system located in the northeast of the Iberian Peninsula, we have identified a particular group of pyroclastic density current deposits that show similar textural characteristics to silicic ignimbrites, indicating an overlap in transport and depositional processes. These deposits can be clearly distinguished from other pyroclastic density current deposits generated during phreatomagmatic phases that typically correspond to thinly laminated units with planar-to-cross-bedded stratification. The monogenetic ignimbrite deposits correspond to a few meters to several tens of meters thick units rich in lithic- and lapilli scoria fragments, with an abundant ash matrix, and internally massive structure, emplaced along valleys and gullies, with run-out distances up to 6 km and individual volumes ranging from 106 to 1.5 × 107 m3. The presence of flattened scoria and columnar jointing in some of these deposits suggests relatively high emplacement temperatures, coinciding with available paleomagnetic data that suggests an emplacement temperature around 450-500 °C. In this work, we describe the main characteristics of these pyroclastic deposits that were generated by a number of phreatomagmatic episodes. Comparison with similar deposits from silicic eruptions and previous examples of ignimbrites associated with basaltic volcanism allows us to classify them as `basaltic ignimbrites'. The recognition in monogenetic volcanism of such pyroclastic products, which may extend several kilometres from source, has an important consequence for hazard assessment in these volcanic fields, which previously have been considered to present only minor hazards and risks.

  15. Observing changes at Santiaguito Volcano, Guatemala with an Unmanned Aerial Vehicle (UAV)

    NASA Astrophysics Data System (ADS)

    von Aulock, Felix W.; Lavallée, Yan; Hornby, Adrian J.; Lamb, Oliver D.; Andrews, Benjamin J.; Kendrick, Jackie E.

    2016-04-01

    Santiaguito Volcano (Guatemala) is one of the most active volcanoes in Central America, producing several ash venting explosions per day for almost 100 years. Lahars, lava flows and dome and flank collapses that produce major pyroclastic density currents also present a major hazard to nearby farms and communities. Optical observations of both the vent as well as the lava flow fronts can provide scientists and local monitoring staff with important information on the current state of volcanic activity and hazard. Due to the strong activity, and difficult terrain, unmanned aerial vehicles can help to provide valuable data on the activities of the volcano at a safe distance. We collected a series of images and video footage of A.) The active vent of Caliente and B.) The flow front of the active lava flow and its associated lahar channels, both in May 2015 and in December 2015- January 2016. Images of the crater and the lava flows were used for the reconstruction of 3D terrain models using structure-from-motion. These were supported by still frames from the video recording. Video footage of the summit crater (during two separate ash venting episodes) and the lava flow fronts indicate the following differences in activity during those two field campaigns: A.) - A new breach opened on the east side of the crater rim, possibly during the collapse in November 2015. - The active lava dome is now almost completely covered with ash, only leaving the largest blocks and faults exposed in times without gas venting - A recorded explosive event in December 2015 initiates at subparallel linear faults near the centre of the dome, rather than arcuate or ring faults, with a later, separate, and more ash-laden burst occurring from an off-centre fracture, however, other explosions during the observation period were seen to persist along the ring fault system observed on the lava dome since at least 2007 - suggesting a diversification of explosive activity. B.) - The lava flow fronts did not advance more than a few metres between May and December 2015 . - The width and thickness of the lava flows can be estimated by relative comparison of the 3D models. - Damming of river valleys by the lava flows has established new stream channels that have modified established pathways for the recurring lahars, one of the major hazards of Santiaguito volcano. The preliminary results of this study from two fieldtrips to Santiaguito Volcano are exemplary for the plethora of applications of UAVs in the field of volcano monitoring, and we urge funding agencies and legislative bodies to consider the value of these scientific instruments in future decisions and allocation of funding.

  16. A Preliminary Study of Hazus-MH Volcano for Korea

    NASA Astrophysics Data System (ADS)

    Yu, S.; An, H.; Oh, J.

    2013-12-01

    This presentation will introduce our design to develop a volcano risk modeling capacity within the Hazus-MH loss estimation framework. In particular, we will present how to build fragility curves within the Hazus-MH framework for loss estimation from volcanoes. This capability is designed to analyze the risk from volcanic hazards in Korea. The Korean peninsula has Mt. Baekdu in North Korea, which will soon enter an active phase, according to some volcanologists. The anticipated eruption will be explosive given the viscous and grassy silica-rich magma, and is expected to be one of the largest in recent millennia. We aim to assess the impacts of this eruption, in particular to South Korea. There are several types of hazards related to volcanic eruption, including ash, pyroclastic flows, volcanic floods and earthquakes. However, our initial efforts focus on modeling losses from volcanic ash. The proposed volcanic ash model is anticipated to be used to estimate losses caused by yellow dust in East Asia as well. Also, many countries, which are exposed to potentially dangerous volcanoes, can benefit from the proposed Hazus-MH Volcano risk model. Acknowledgement: this research was supported by a grant [NEMA-BAEKDUSAN-2012-1-3] from the Volcanic Disaster Preparedness Research Center sponsored by National Emergency Management Agency of Korea. We would like to thank Federal Emergency Management Agency which develops Hazus-MH and allows the international use of Hazus-MH.

  17. The volcanoes of an oceanic arc from origin to destruction: A case from the northern Luzon Arc

    NASA Astrophysics Data System (ADS)

    Lai, Yu-Ming; Song, Sheng-Rong

    2013-09-01

    Volcanoes were created, grew, uplifted, became dormant or extinct, and were accreted as part of continents during continuous arc-continent collision. Volcanic rocks in Eastern Taiwan's Coastal Range (CR) are part of the northern Luzon Arc, an oceanic island arc produced by the subduction of the South China Sea Plate beneath the Philippine Sea Plate. Igneous rocks are characterized by intrusive bodies, lava and pyroclastic flows, and volcaniclastic rocks with minor tephra deposits. Based on volcanic facies associations, Sr-Nd isotopic geochemistry, and the geography of the region, four volcanoes were identified in the CR: Yuemei, Chimei, Chengkuangao, and Tuluanshan. Near-vent facies associations show different degrees of erosion in the volcanic edifices for Chimei, Chengkuangao, and Tuluanshan. Yuemei lacks near-vent rocks, implying that Yuemei's main volcanic body may have been subducted at the Ryukyu Trench with the northward motion of the Philippine Sea Plate. These data suggest a hypothesis for the evolution of volcanism and geomorphology during arc growth and ensuing arc-continent collision in the northern Luzon Arc, which suggests that these volcanoes were formed from the seafloor, emerging as islands during arc volcanism. They then became dormant or extinct during collision, and finally, were uplifted and accreted by additional collision. The oldest volcano, Yuemei, may have already been subducted into the Ryukyu Trench.

  18. Emplacement of Zebín Hill, Jičín Volcanic Field, Bohemian Paradise, Czech Republic: Anisotropy of Magnetic Susceptibility, Ground Magnetometry, Electric Resistivity Tomography, and Paleomagnetic Data

    NASA Astrophysics Data System (ADS)

    Petronis, M. S.; Rapprich, , V.; Valenta, J.; Leman, J.; Brister, A. R.; van Wyk de Vries, B.

    2014-12-01

    A well-preserved set of mid-Miocene tuff-cones and their feeders outcrop in the Jičín Volcanic Field, Czech Republic. Zebín Hill is a tuff cone that has been quarried to reveal the volcanoes feeder system. This edifice offers the opportunity to understand how magma is transported through a monogenetic pyroclastic cone. Rock types include a coarse-grained basal phreatomagmatic layer and a stratified upper wall facies both of which are penetrated by feeder dikes. Anisotropy of magnetic susceptibility (AMS) and paleomagnetic data were collected at twenty-one sites from feeder dikes and the main conduit of the volcano. A high-resolution ground magnetometry survey, electric resistivity tomography and seismic tomography were also conducted. Magnetic susceptibility intensity indicates that the dominant magnetic mineral is a ferromagnetic phase with little contribution from paramagnetic minerals. AMS ellipsoids shapes are both oblate and prolate and inferred magma flow directions indicate magma flow away from the central vent area and subhorizontal flow towards and away from the axial conduit; both upward and downward magma flow is evident at some sites. Curie point estimates yield a spectrum of results indicating a mixture of high-Ti titanomagnetite, iron sulfide, and low-Ti titanomagnetite. Ground magnetometry data indicate that both normal and reverse polarity rocks are present at Zebín Hill. Paleomagnetic data confirm the ground magnetic data in that both normal and reverse polarity rocks are present. Most sites yield a single component magnetization that is well grouped at the site level and carried by pseudosingle domain titanomagnetite. The presence of both normal and reverse polarity magnetizations from the volcano indicate that significant time passed during the growth of this monogenic system. Complex system of branching dikes has been also observed from electric resistivity tomography. The simple external structure of monogenetic volcanoes hides a rather complex magmatic plumbing system that dynamically evolves during the life of the volcano. As we show, the well-exposed roots of Zebín Hill reveals that the growth of a volcano occurs not due to simple central axis feeder systems but rather through interplay of local structures, magmatic effects, and construct evolution during the life of the volcano

  19. Insights into Proximal-Medial Pyroclastic Density Current Deposits at a High-Risk Glaciated Volcano: Mt Ruapehu, New Zealand

    NASA Astrophysics Data System (ADS)

    Cowlyn, J.; Kennedy, B.; Gravley, D. M.; Cronin, S. J.; Pardo, N.; Wilson, T. M.; Leonard, G.; Townsend, D.; Dufek, J.

    2014-12-01

    Pyroclastic density currents (PDCs) are a destructive volcanic hazard. Quantifying the types, frequency and magnitudes of PDC events in the geological record is essential for effective risk management. However small-medium volume valley-confined PDC deposits have low preservation potential, especially when emplaced in active drainages or onto snow or ice. Where PDC deposits are preserved they can be difficult to distinguish from other surficial deposits and are frequently misinterpreted or overlooked. This is the case at Mt. Ruapehu; a much visited, high-risk active volcano in New Zealand with no historical PDCs. Through systematic field observations we identified several young proximal-medial andesitic PDC deposits exposed on Ruapehu's eastern flanks. The oldest deposits (Ohinewairua PDCs, <13.6 ka) are massive pumice-rich deposits that are preserved at least 7km from source (North Crater) and correlate with Ruapehu's largest plinian eruptions. Overlying these, the pumice-rich Pourahu PDC deposit reaches >10km from source (South Crater) and correlates with Ruapehu's last known plinian eruption (~11.6 ka). Several younger locally preserved PDC deposits (Tukino PDCs) with denser juvenile clasts represent proximal PDCs from smaller eruptions at South Crater. Finally, a variably welded, bedded deposit containing clasts of welded spatter is interpreted to represent multiple failures of near-vent (North Ruapehu) accumulations of erupted material. Here, PDC initiation appears to have been controlled by the topographic gradient and deposition rate, without requiring a collapsing eruption column. The Ruapehu deposits highlight the limited preservation of PDC deposits, which appears to be favoured at PDC margins. Lateral and vertical flow stratification means the resulting deposits may not then represent the bulk flow. Additionally, deposit textures, distributions, and associations with moraines indicate that many of Ruapehu's PDCs encountered glacial ice during transport. This affected their distribution, mobility and preservation, and has implications for assessing the PDC hazard at Ruapehu and other glaciated volcanoes. The deposits reinforce that hazardous PDCs threatening life and infrastructure may be generated even from small eruptions and across a wide range of eruption styles.

  20. The 1989-1990 eruptions of Redoubt Volcano: an introduction

    USGS Publications Warehouse

    Miller, T.P.; Chouet, B.A.

    1994-01-01

    Redoubt Volcano, located on the west side of Cook Inlet in south-central Alaska, erupted explosively on over 20 separate occasions between December 14, 1989 and April 21, 1990. Fourteen lava domes were emplaced in the summit area, thirteen of which were subsequently destroyed. The eruption caused economic losses estimated at over $160,000,000 making this the second most costly eruption in U.S. history. This economic impact provided the impetus for a integrated comprehensive account of an erupting volcano using both modern and classical research and modern techniques which in turn led to advances in eruption monitoring and interpretation. Research on such topics as dome formation and collapse and the resulting pyroclastic flows, elutriated ash, lightning, tephra, and flooding was blended with the rapid communication of associated hazards to a large user group. The seismology successes in predicting and monitoring eruption dynamics were due in part to (1) the recognition of long-period seismic events as indicators of the readiness of the volcano to erupt, and (2) to the development of new tools that allowed the seismicity to be assessed instantaneously. Integrated studies of the petrology of erupted products and volatile content over time gave clues as to the progress of the eruption towards completion. ?? 1994.

  1. Deformation of the Augustine Volcano, Alaska, 1992-2005, measured by ERS and ENVISAT SAR interferometry

    USGS Publications Warehouse

    Lee, Chang-Wook; Lu, Zhong; Kwoun, Oh-Ig; Won, Joong-Sun

    2008-01-01

    The Augustine Volcano is a conical-shaped, active stratovolcano located on an island of the same name in Cook Inlet, about 290 km southwest of Anchorage, Alaska. Augustine has experienced seven significant explosive eruptions - in 1812, 1883, 1908, 1935, 1963, 1976, 1986, and in January 2006. To measure the ground surface deformation of the Augustine Volcano before the 2006 eruption, we applied satellite radar interferometry using Synthetic Aperture Radar (SAR) images from three descending and three ascending satellite tracks acquired by European Remote Sensing Satellite (ERS) 1 and 2 and the Environment Satellite (ENVISAT). Multiple interferograms were stacked to reduce artifacts caused by atmospheric conditions, and we used a singular value decomposition method to retrieve the temporal deformation history from several points on the island. Interferograms during 1992 and 2005 show a subsidence of about 1-3 cm/year, caused by the contraction of pyroclastic flow deposits from the 1986 eruption. Subsidence has decreased exponentially with time. Multiple interferograms between 1992 and 2005 show no significant inflation around the volcano before the 2006 eruption. The lack of a pre-eruption deformation signal suggests that the deformation signal from 1992 to August 2005 must have been very small and may have been obscured by atmospheric delay artifacts. 

  2. The unrest of the San Miguel volcano (El Salvador, Central America): installation of the monitoring network and observed volcano-tectonic ground deformation

    NASA Astrophysics Data System (ADS)

    Bonforte, Alessandro; Hernandez, Douglas Antonio; Gutiérrez, Eduardo; Handal, Louis; Polío, Cecilia; Rapisarda, Salvatore; Scarlato, Piergiorgio

    2016-08-01

    On 29 December 2013, the Chaparrastique volcano in El Salvador, close to the town of San Miguel, erupted suddenly with explosive force, forming a column more than 9 km high and projecting ballistic projectiles as far as 3 km away. Pyroclastic density currents flowed to the north-northwest side of the volcano, while tephras were dispersed northwest and north-northeast. This sudden eruption prompted the local Ministry of Environment to request cooperation with Italian scientists in order to improve the monitoring of the volcano during this unrest. A joint force, made up of an Italian team from the Istituto Nazionale di Geofisica e Vulcanologia and a local team from the Ministerio de Medio Ambiente y Recursos Naturales, was organized to enhance the volcanological, geophysical and geochemical monitoring system to study the evolution of the phenomenon during the crisis. The joint team quickly installed a multiparametric mobile network comprising seismic, geodetic and geochemical sensors (designed to cover all the volcano flanks from the lowest to the highest possible altitudes) and a thermal camera. To simplify the logistics for a rapid installation and for security reasons, some sensors were colocated into multiparametric stations. Here, we describe the prompt design and installation of the geodetic monitoring network, the processing and results. The installation of a new ground deformation network can be considered an important result by itself, while the detection of some crucial deforming areas is very significant information, useful for dealing with future threats and for further studies on this poorly monitored volcano.

  3. The unrest of S. Miguel volcano (El Salvador, CA): installation of the monitoring network and observed volcano-tectonic ground deformation

    NASA Astrophysics Data System (ADS)

    Bonforte, A.; Hernandez, D.; Gutiérrez, E.; Handal, L.; Polío, C.; Rapisarda, S.; Scarlato, P.

    2015-10-01

    On 29 December 2013, the Chaparrastique volcano in El Salvador, close to the town of S. Miguel, erupted suddenly with explosive force, forming a more than 9 km high column and projecting ballistic projectiles as far as 3 km away. Pyroclastic Density Currents flowed to the north-northwest side of the volcano, while tephras were dispersed northwest and north-northeast. This sudden eruption prompted the local Ministry of Environment to request cooperation with Italian scientists in order to improve the monitoring of the volcano during this unrest. A joint force made up of an Italian team from the Istituto Nazionale di Geofisica e Vulcanologia and a local team from the Ministerio de Medio Ambiente y Recursos Naturales was organized to enhance the volcanological, geophysical and geochemical monitoring system to study the evolution of the phenomenon during the crisis. The joint team quickly installed a multi-parametric mobile network comprising seismic, geodetic and geochemical sensors, designed to cover all the volcano flanks from the lowest to the highest possible altitudes, and a thermal camera. To simplify the logistics for a rapid installation and for security reasons, some sensors were co-located into multi-parametric stations. Here, we describe the prompt design and installation of the geodetic monitoring network, the processing and results. The installation of a new ground deformation network can be considered an important result by itself, while the detection of some crucial deforming areas is very significant information, useful for dealing with future threats and for further studies on this poorly monitored volcano.

  4. Experimental insights into pyroclast-ice heat transfer in water-drained, low-pressure cavities during subglacial explosive eruptions

    NASA Astrophysics Data System (ADS)

    Woodcock, D. C.; Lane, S. J.; Gilbert, J. S.

    2017-07-01

    Subglacial explosive volcanism generates hazards that result from magma-ice interaction, including large flow rate meltwater flooding and fine-grained volcanic ash. We consider eruptions where subglacial cavities produced by ice melt during eruption establish a connection to the atmosphere along the base of the ice sheet that allows accumulated meltwater to drain. The resulting reduction of pressure initiates or enhances explosive phreatomagmatic volcanism within a steam-filled cavity with pyroclast impingement on the cavity roof. Heat transfer rates to melt ice in such a system have not, to our knowledge, been assessed previously. To study this system, we take an experimental approach to gain insight into the heat transfer processes and to quantify ice melt rates. We present the results of a series of analogue laboratory experiments in which a jet of steam, air, and sand at approximately 300°C impinged on the underside of an ice block. A key finding was that as the steam to sand ratio was increased, behavior ranged from predominantly horizontal ice melting to predominantly vertical melting by a mobile slurry of sand and water. For the steam to sand ratio that matches typical steam to pyroclast ratios during subglacial phreatomagmatic eruptions at 300°C, we observed predominantly vertical melting with upward ice melt rates of 1.5 mm s-1, which we argue is similar to that within the volcanic system. This makes pyroclast-ice heat transfer an important contributing ice melt mechanism under drained, low-pressure conditions that may precede subaerial explosive volcanism on sloping flanks of glaciated volcanoes.

  5. Building vulnerability and human casualty estimation for a pyroclastic flow: a model and its application to Vesuvius

    NASA Astrophysics Data System (ADS)

    Spence, Robin J. S.; Baxter, Peter J.; Zuccaro, Giulio

    2004-05-01

    Pyroclastic flows clearly present a serious threat to life for the inhabitants of settlements on the slopes of volcanoes with a history of explosive eruptions; but it is increasingly realised that buildings can provide a measure of protection to occupants trapped by such flows. One important example is Vesuvius, whose eruption history includes many events which were lethal for the inhabitants of the neighbouring Vesuvian villages. Recent computational fluid dynamics computer modelling for Vesuvius [Todesco et al., Bull. Volcanol. 64 (2002) 155-177] has enabled a realistic picture of an explosive eruption to be modelled, tracing the time-dependent development of the physical parameters of a simulated flow at a large three-dimensional mesh of points, based on assumed conditions of temperature, mass-flow rate and particle size distribution at the vent. The output includes mapping of temperature, mixture density and mixture velocity over the whole adjacent terrain. But to date this information has not been used to assess the impacts of such flows on buildings and their occupants. In the project reported in this paper, estimates of the near-ground flow parameters were used to assess the impact of a particular simulated pyroclastic flow (modelled roughly on the 1631 eruption) on the buildings and population in four of the Vesuvian villages considered most at risk. The study had five components. First, a survey of buildings and the urban environment was conducted to identify the incidence of characteristics and elements likely to affect human vulnerability, and to classify the building stock. The survey emphasised particularly the number, location and type of openings characteristic of the major classes of the local building stock. In the second part of the study, this survey formed the basis for estimates of the probable impact of the pyroclastic flow on the envelope and internal air conditions of typical buildings. In the third part, a number of distinct ways in which human casualties would occur were identified, and estimates were made of the relationship between casualty rates and environmental conditions for each casualty type. In the fourth part of the study, the assumed casualty rates were used to estimate the proportions of occupants who would be killed or seriously injured for the assumed pyroclastic flow scenario in the Vesuvian villages studied, and their distribution by distance from the vent. It was estimated that in a daytime eruption, 25 min after the start of the eruption, there would be 480 deaths and a further 190 serious injuries, for every 1000 remaining in the area. In a night-time scenario, there would be 360 deaths with a further 230 serious injuries per 1000 after the same time interval. Finally, a set of risk factors for casualties was identified, and factors were discussed and ranked for their mitigation impact in the eruption scenario. The most effective mitigation action would of course be total evacuation before the start of the eruption. But if this were not achieved, barred window openings or sealed openings to slow the ingress of hot gases, together with a reduction of the fire load, could be effective means of reducing casualty levels.

  6. [Effects of volcanic eruptions on environment and health].

    PubMed

    Zuskin, Eugenija; Mustajbegović, Jadranka; Doko Jelinić, Jagoda; Pucarin-Cvetković, Jasna; Milosević, Milan

    2007-12-01

    Volcanoes pose a threat to almost half a billion people; today there are approximately 500 active volcanoes on Earth, and every year there are 10 to 40 volcanic eruptions. Volcanic eruptions produce hazardous effects for the environment, climate, and the health of the exposed persons, and are associated with the deterioration of social and economic conditions. Along with magma and steam (H2O), the following gases surface in the environment: carbon dioxide (CO2) and sulphur dioxide (SO2), carbon monoxide (CO), hydrogen sulphide (H2S), carbon sulphide (CS), carbon disulfide (CS2), hydrogen chloride (HCl), hydrogen (H2), methane (CH4), hydrogen fluoride (HF), hydrogen bromide (HBr) and various organic compounds, as well as heavy metals (mercury, lead, gold).Their unfavourable effects depend on the distance from a volcano, on magma viscosity, and on gas concentrations. The hazards closer to the volcano include pyroclastic flows, flows of mud, gases and steam, earthquakes, blasts of air, and tsunamis. Among the hazards in distant areas are the effects of toxic volcanic ashes and problems of the respiratory system, eyes and skin, as well as psychological effects, injuries, transport and communication problems, waste disposal and water supplies issues, collapse of buildings and power outage. Further effects are the deterioration of water quality, fewer periods of rain, crop damages, and the destruction of vegetation. During volcanic eruptions and their immediate aftermath, increased respiratory system morbidity has been observed as well as mortality among those affected by volcanic eruptions. Unfavourable health effects could partly be prevented by timely application of safety measures.

  7. Seismic time-frequency analysis of the recent 2015 eruptive activity of Volcán de Colima, Mexico

    NASA Astrophysics Data System (ADS)

    Vargas-Bracamontes, D. M.; Nava Pichardo, F. A.; Reyes Dávila, G. A.; Arámbula-Mendoza, R.; Martínez Fierros, A.; Ramírez Vázquez, A.; González Amezcua, M.

    2015-12-01

    Volcán de Colima is an andesitic stratovolcano located in western Mexico. It is considered the most active volcano in Mexico, with activity characterized mainly by intermittent effusive and explosive episodes. On July 10th-12th 2015, Volcán de Colima underwent its most intense eruptive phase since its Plinian eruption in 1913. A partial collapse of the dome and of the crater wall generated several pyroclastic flows, the largest of which reached almost 10 km to the south of the volcano. Lava flows along with incandescent rockfalls descended through various flanks of the volcanic edifice. Ashfall affected people up to 40 km from the volcano's summit. Inhabitants from the small villages closest to the volcano were evacuated and authorities sealed off a 12 km area. We present an overview of the seismic activity that preceded and accompanied this eruptive phase, with data from the closest broadband and short period seismic stations of the Volcán de Colima monitoring network. We focus on the search of temporal information within the spectral content of the seismic signals. We first employ common time-frequency representations such as Fourier and wavelet transforms, but we also apply more recent techniques proposed for the analysis of non-stationary signals, such as empirical mode decomposition and the synchrosqueezing transform. We present and discuss the performances of these various methods characterizing and quantifying spectral changes which could be used to forecast future eruptive events and to evaluate the course of volcanic processes during ongoing eruptions.

  8. The human impact of volcanoes: a historical review of events 1900-2009 and systematic literature review.

    PubMed

    Doocy, Shannon; Daniels, Amy; Dooling, Shayna; Gorokhovich, Yuri

    2013-04-16

    Introduction. More than 500 million people live within the potential exposure range of a volcano. The risk of catastrophic losses in future eruptions is significant given population growth, proximities of major cities to volcanoes, and the possibility of larger eruptions. The objectives of this review are to describe the impact of volcanoes on the human population, in terms of mortality, injury, and displacement and, to the extent possible, identify risk factors associated with these outcomes. This is one of five reviews on the human impact of natural disasters. Methods. Data on the impact of volcanoes were compiled using two methods, a historical review of volcano events from 1900 to 2009 from multiple databases and a systematic literature review of publications ending in October 2012. Analysis included descriptive statistics and bivariate tests for associations between volcano mortality and characteristics using STATA 11. Findings. There were a total of 91,789 deaths (range: 81,703-102,372), 14,068 injuries (range 11,541-17,922), and 4.72 million people affected by volcanic events between 1900 and 2008. Inconsistent reporting suggests this is an underestimate, particularly in terms of numbers injured and affected. The primary causes of mortality in recent volcanic eruptions were ash asphyxiation, thermal injuries from pyroclastic flow, and trauma. Mortality was concentrated with the ten deadliest eruptions accounting for more than 80% of deaths; 84% of fatalities occurred in four locations (the Island of Martinique (France), Colombia, Indonesia, and Guatemala). Conclusions. Changes in land use practices and population growth provide a background for increasing risk; in conjunction with increasing urbanization in at risk areas, this poses a challenge for future volcano preparedness and mitigation efforts.

  9. The Human Impact of Volcanoes: a Historical Review of Events 1900-2009 and Systematic Literature Review

    PubMed Central

    Doocy, Shannon; Daniels, Amy; Dooling, Shayna; Gorokhovich, Yuri

    2013-01-01

    Introduction. More than 500 million people live within the potential exposure range of a volcano. The risk of catastrophic losses in future eruptions is significant given population growth, proximities of major cities to volcanoes, and the possibility of larger eruptions. The objectives of this review are to describe the impact of volcanoes on the human population, in terms of mortality, injury, and displacement and, to the extent possible, identify risk factors associated with these outcomes. This is one of five reviews on the human impact of natural disasters. Methods. Data on the impact of volcanoes were compiled using two methods, a historical review of volcano events from 1900 to 2009 from multiple databases and a systematic literature review of publications ending in October 2012. Analysis included descriptive statistics and bivariate tests for associations between volcano mortality and characteristics using STATA 11. Findings. There were a total of 91,789 deaths (range: 81,703-102,372), 14,068 injuries (range 11,541-17,922), and 4.72 million people affected by volcanic events between 1900 and 2008. Inconsistent reporting suggests this is an underestimate, particularly in terms of numbers injured and affected. The primary causes of mortality in recent volcanic eruptions were ash asphyxiation, thermal injuries from pyroclastic flow, and trauma. Mortality was concentrated with the ten deadliest eruptions accounting for more than 80% of deaths; 84% of fatalities occurred in four locations (the Island of Martinique (France), Colombia, Indonesia, and Guatemala). Conclusions. Changes in land use practices and population growth provide a background for increasing risk; in conjunction with increasing urbanization in at risk areas, this poses a challenge for future volcano preparedness and mitigation efforts. PMID:23857374

  10. Fertility of the early post-eruptive surfaces of Kasatochi Island volcano

    USGS Publications Warehouse

    Michaelson, G. J.; Wang, Bronwen; Ping, C. L.

    2016-01-01

    In the four years after the 2008 eruption and burial of Kasatochi Island volcano, erosion and the return of bird activity have resulted in new and altered land surfaces and initiation of ecosystem recovery. We examined fertility characteristics of the recently deposited pyroclastic surfaces, patches of legacy pre-eruptive surface soil (LS), and a post-eruptive surface with recent bird roosting activity. Pyroclastic materials were found lacking in N, but P, K, and other macronutrients were in sufficient supply for plants. Erosion and leaching are moving mobile P and Fe downslope to deposition fan areas. Legacy soil patches that currently support plants have available-N at levels (10–22 mg N kg-1) similar to those added by birds in a recent bird roosting area. Roosting increased surface available N from <1 mg N kg-1 in the new pyroclastic surfaces to up to 42 mg N kg-1 and increased soil biological respiration of CO2 from essentially zero to a level about 40% that of the LS surface. Laboratory plant growth trials using Lupinus nootkatensis and Leymus mollis indicated that the influence of eroded and redeposited LS in amounts as little as 10% by volume mixed with new pyroclastic materials could aid plant recovery by supplying vital N and soil biota to plants as propagules are introduced to the new surface. Erosion-exposure of fertile pre-eruptive soils and erosion-mixing of pre-eruptive soils with newly erupted materials, along with inputs of nutrients from bird activities, each will exert significant influences on the surface fertility and recovery pattern of the new post-eruptive Kasatochi volcano. For this environment, these influences could help to speed recovery of a more diverse plant community by providing N (LS and bird inputs) as alternatives to relying most heavily on N-fixing plants to build soil fertility.

  11. Geophysical image of the hydrothermal system of Merapi volcano

    NASA Astrophysics Data System (ADS)

    Byrdina, S.; Friedel, S.; Vandemeulebrouck, J.; Budi-Santoso, A.; Suhari; Suryanto, W.; Rizal, M. H.; Winata, E.; Kusdaryanto

    2017-01-01

    We present an image of the hydrothermal system of Merapi volcano based on results from electrical resistivity tomography (ERT), self-potential, and CO2 flux mappings. The ERT models identify two distinct low-resistivity bodies interpreted as two parts of a probably interconnected hydrothermal system: at the base of the south flank and in the summit area. In the summit area, a sharp resistivity contrast at ancient crater rim Pasar-Bubar separates a conductive hydrothermal system (20-50 Ω m) from the resistive andesite lava flows and pyroclastic deposits (2000-50,000 Ω m). The existence of preferential fluid circulation along this ancient crater rim is also evidenced by self-potential data. The significative diffuse CO2 degassing (with a median value of 400 g m-2 d-1) is observed in a narrow vicinity of the active crater rim and close to the ancient rim of Pasar-Bubar. The total CO2 degassing across the accessible summital area with a surface of 1.4 ṡ 105 m2 is around 20 t d-1. Before the 2010 eruption, Toutain et al. (2009) estimated a higher value of the total diffuse degassing from the summit area (about 200-230 t d-1). This drop in the diffuse degassing from the summit area can be related to the decrease in the magmatic activity, to the change of the summit morphology, to the approximations used by Toutain et al. (2009), or, more likely, to a combination of these factors. On the south flank of Merapi, the resistivity model shows spectacular stratification. While surficial recent andesite lava flows are characterized by resistivity exceeding 100,000 Ω m, resistivity as low as 10 Ω m has been encountered at a depth of 200 m at the base of the south flank and was interpreted as a presence of the hydrothermal system. No evidence of the hydrothermal system is found on the basis of the north flank at the same depth. This asymmetry might be caused by the asymmetry of the heat supply source of Merapi whose activity is moving south or/and to the asymmetry in topography caused by the presence of Merbabu volcano in the north. On the basis of our results we suggest that stratified pyroclastic deposits on the south flank of Merapi screen and separate the flow of hydrothermal fluids with the gaseous part rising through the crater rims, while the liquid part is flowing downwards to the base of the edifice.

  12. The critical need for moderate to high resolution thermal infrared data for volcanic hazard mitigation and process monitoring from the micron to the kilometer scale

    NASA Astrophysics Data System (ADS)

    Ramsey, M. S.

    2006-12-01

    The use of satellite thermal infrared (TIR) data to rapidly detect and monitor transient thermal events such as volcanic eruptions commonly relies on datasets with coarse spatial resolution (1.0 - 8.0 km) and high temporal resolution (minutes to hours). However, the growing need to extract physical parameters at meter to sub- meter scales requires data with improved spectral and spatial resolution. Current orbital systems such as the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and the Landsat Enhanced Thematic Mapper plus (ETM+) can provide TIR data ideal for this type of scientific analysis, assessment of hazard risks, and to perform smaller scale monitoring; but at the expense of rapid repeat observations. A potential solution to this apparent conflict is to combine the spatial and temporal scales of TIR data in order to provide the benefits of rapid detection together with the potential of detailed science return. Such a fusion is now in place using ASTER data collected in the north Pacific region to monitor the Aleutian and Kamchatka arcs. However, this approach of cross-instrument/cross-satellite monitoring is in jeopardy with the lack of planned moderate resolution TIR instruments following ETM+ and ASTER. This data collection program is also being expanded globally, and was used in 2006 to assist in the response and monitoring of the volcanic crisis at Merapi Volcano in Indonesia. Merapi Volcano is one of the most active volcanoes in the country and lies in central Java north of the densely-populated city of Yogyakarta. Pyroclastic flows and lahars are common following the growth and collapse of the summit lava dome. These flows can be fatal and were the major hazard concern during a period of renewed activity beginning in April 2006. Lava at the surface was confirmed on 25 April and ASTER was tasked with an urgent request observation, subsequently collecting data on 26 April (daytime) and 28 April (nighttime). The TIR revealed thermally-elevated pixels (max = 25.9 C) clustered near the summit with a lesser anomaly (max = 15.5 C) approximately 650 m to the southwest and down slope from the summit. Such small-scale and low-grade thermal features confirmed the increased activity state of the volcano and were only made possible with the moderate spatial, spectral, and radiometric resolution of ASTER. ASTER continued to collect data for the next 12 weeks tracking the progress of large scale pyroclastic flows, the growth of the lava dome, and the path of ash-rich plumes. Data from these observations were reported world-wide and used for evacuation and hazard planning purposes. With the pending demise of such TIR data from orbit, research is also focused on the use of handheld TIR instruments such as the forward-looking infrared radiometer (FLIR) camera. These instruments provide the highest spatial resolution in-situ TIR data and have been used to observe numerous volcanic phenomena and quantitatively model others (e.g., the rise of the magma body preceding the eruption of Mt. St. Helens Volcano; the changes on the lava dome at Bezymianny Volcano; the behavior of basalt crusts during pahoehoe flow inflation). Studies such as these confirm the utility and importance of future moderate to high resolution TIR data in order to understand volcanic processes and their accompanying hazards.

  13. Observations of the eruptions of July 22 and August 7, 1980, at Mount St. Helens, Washington

    USGS Publications Warehouse

    Hoblitt, Richard P.

    1986-01-01

    The explosive eruptions of July 22 and August 7, 1980, at Mount St. Helens, Wash., both included multiple eruptive pulses. The beginnings of three of the pulses-two on July 22 and one on August 7-were witnessed and photographed. Each of these three began with a fountain of gases and pyroclasts that collapsed around the vent and generated a pyroclastic density flow. Significant vertical-eruption columns developed only after the density flows were generated. This behavior is attributable to either an increase in the gas content of the eruption jet or a decrease in vent radius with time. An increase in the gas content may have occurred as the vent was cleared (by expulsion of a plug of pyroclasts) or as the eruption began to tap deeper, gas-rich magma after first expelling the upper, gas-depleted part of the magma body. An effective decrease of the vent radius with time may have occurred as the eruption originated from progressively deeper levels in the vent. All of these processes-vent clearing; tapping of deeper, gas-rich magma; and effective decrease in vent radius-probably operated to some extent. A 'relief-valve' mechanism is proposed here to account for the occurrence of multiple eruptive pulses. This mechanism requires that the conduit above the magma body be filled with a bed of pyroclasts, and that the vesiculation rate in the magma body be inadequate to sustain continuous eruption. During a repose interval, vesiculation of the magma body would cause gas to flow upward through the bed of pyroclasts. If the rate at which the magma produced gas exceeded the rate at which gas escaped to the atmosphere, the vertical pressure difference across the bed of pyroclastic debris would increase, as would the gas-flow rate. Eventually a gas-flow rate would be achieved that would suddenly diminish the ability of the bed to maintain a pressure difference between the magma body and the atmosphere. The bed of pyroclasts would then be expelled (that is, the relief valve would open) and an eruption would commence. During the eruption, gas would be lost faster than it could be replaced by vesiculation, so the gas-flow rate in the conduit would decrease. Eventually the gas-flow rate would decrease to a value that would be inadequate to expel pyroclasts, so the conduit would again become choked with pyroclasts (that is, the relief valve would close). Another period of repose would commence. The eruption/repose sequence would be repeated until gas-production rates were inadequate to reopen the valve, either because the depth of the pyroclast bed had become too great, the volatile content of the magma had become too low, or the magma had been expended. A timed sequence of photographs of a pyroclastic density flow on August 7 indicates that, in general, the velocity of the flow front was determined by the underlying topography. Observations and details of the velocity/topography relationship suggest that both pyroclastic flows and pyroclastic surges formed. The following mechanism is consistent with the data. During initial fountain collapse and when the flow passed over steep, irregular terrain, a highly inflated suspension of gases and pyroclasts formed. In this suspension, the pyroclasts underwent rapid differential settling according to size and density; a relatively low-concentration, fine-grained upper phase formed over a relatively high-concentration coarse-grained phase. The low-particle-concentration phase (the pyroclastic surge) was subject to lower internal friction than the basal high-concentration phase (the pyroclastic flow), and so accelerated away from it. The surge advanced until it had deposited so much of its solid fraction that its net density became less than that of the ambient air. At this point it rose convectively off the ground, quickly decelerated, and was overtaken by the pyroclastic flow. The behavior of the flow of August 7 suggests that a pyroclastic density flow probably expands through the ingestion of ai

  14. Dome growth, collapse, and valley fill at Soufrière Hills Volcano, Montserrat, from 1995 to 2013: Contributions from satellite radar measurements of topographic change

    USGS Publications Warehouse

    Arnold, D. W. D.; Biggs, J.; Wadge, G.; Ebmeier, S. K.; Odbert, H. M.; Poland, Michael P.

    2016-01-01

    Frequent high-resolution measurements of topography at active volcanoes can provide important information for assessing the distribution and rate of emplacement of volcanic deposits and their influence on hazard. At dome-building volcanoes, monitoring techniques such as LiDAR and photogrammetry often provide a limited view of the area affected by the eruption. Here, we show the ability of satellite radar observations to image the lava dome and pyroclastic density current deposits that resulted from 15 years of eruptive activity at Soufrière Hills Volcano, Montserrat, from 1995 to 2010. We present the first geodetic measurements of the complete subaerial deposition field on Montserrat, including the lava dome. Synthetic aperture radar observations from the Advanced Land Observation Satellite (ALOS) and TanDEM-X mission are used to map the distribution and magnitude of elevation changes. We estimate a net dense-rock equivalent volume increase of 108 ± 15M m3 of the lava dome and 300 ± 220M m3 of talus and subaerial pyroclastic density current deposits. We also show variations in deposit distribution during different phases of the eruption, with greatest on-land deposition to the south and west, from 1995 to 2005, and the thickest deposits to the west and north after 2005. We conclude by assessing the potential of using radar-derived topographic measurements as a tool for monitoring and hazard assessment during eruptions at dome-building volcanoes.

  15. A new approach to investigate an eruptive paroxysmal sequence using camera and strainmeter networks: Lessons from the 3-5 December 2015 activity at Etna volcano

    NASA Astrophysics Data System (ADS)

    Bonaccorso, A.; Calvari, S.

    2017-10-01

    Explosive sequences are quite common at basaltic and andesitic volcanoes worldwide. Studies aimed at short-term forecasting are usually based on seismic and ground deformation measurements, which can be used to constrain the source region and quantify the magma volume involved in the eruptive process. However, during single episodes of explosive sequences, integration of camera remote sensing and geophysical data are scant in literature, and the total volume of pyroclastic products is not determined. In this study, we calculate eruption parameters for four powerful lava fountains occurring at the main and oldest Mt. Etna summit crater, Voragine, between 3 and 5 December 2015. These episodes produced impressive eruptive columns and plume clouds, causing lapilli and ash fallout to more than 100 km away. We analyse these paroxysmal events by integrating the images recorded by a network of monitoring cameras and the signals from three high-precision borehole strainmeters. From the camera images we calculated the total erupted volume of fluids (gas plus pyroclastics), inferring amounts from 1.9 ×109 m3 (first event) to 0.86 ×109 m3 (third event). Strain changes recorded during the first and most powerful event were used to constrain the depth of the source. The ratios of strain changes recorded at two stations during the four lava fountains were used to constrain the pyroclastic fraction for each eruptive event. The results revealed that the explosive sequence was characterized by a decreasing trend of erupted pyroclastics with time, going from 41% (first event) to 13% (fourth event) of the total erupted pyroclastic volume. Moreover, the volume ratio fluid/pyroclastic decreased markedly in the fourth and last event. To the best of our knowledge, this is the first time ever that erupted volumes of both fluid and pyroclastics have been estimated for an explosive sequence from a monitoring system using permanent cameras and high precision strainmeters. During future explosive paroxysmal sequences this new approach might help in monitoring their evolution also to understand when/if they are going to finish. Knowledge of the total gas and pyroclastic fractions erupted during each lava fountain episode would improve our understanding of their processes and eruptive behaviour.

  16. Seismic evolution of the 1989-1990 eruption sequence of Redoubt Volcano, Alaska

    USGS Publications Warehouse

    Power, J.A.; Lahr, J.C.; Page, R.A.; Chouet, B.A.; Stephens, C.D.; Harlow, D.H.; Murray, T.L.; Davies, J.N.

    1994-01-01

    Redoubt Volcano in south-central Alaska erupted between December 1989 and June 1990 in a sequence of events characterized by large tephra eruptions, pyroclastic flows, lahars and debris flows, and episodes of dome growth. The eruption was monitored by a network of five to nine seismic stations located 1 to 22 km from the summit crater. Notable features of the eruption seismicity include : (1) small long-period events beginning in September 1989 which increased slowly in number during November and early December; (2) an intense swarm of long-period events which preceded the initial eruptions on December 14 by 23 hours; (3) shallow swarms (0 to 3 km) of volcano-tectonic events following each eruption on December 15; (4) a persistent cluster of deep (6 to 10 km) volcano-tectonic earthquakes initiated by the eruptions on December 15, which continued throughout and beyond the eruption; (5) an intense swarm of long-period events which preceded the eruptions on January 2; and (6) nine additional intervals of increased long-period seismicity each of which preceded a tephra eruption. Hypocenters of volcano-tectonic earthquakes suggest the presence of a magma source region at 6-10 km depth. Earthquakes at these depths were initiated by the tephra eruptions on December 15 and likely represent the readjustment of stresses in the country rock associated with the removal of magma from these depths. The locations and time-history of these earthquakes coupled with the eruptive behavior of the volcano suggest this region was the source of most of the erupted material during the 1989-1990 eruption. This source region appears to be connected to the surface by a narrow pipe-like conduit as inferred from the hypocenters of volcano-tectonic earthquakes. Concentrations of shallow volcano-tectonic earthquakes followed each of the tephra eruptions on December 15; these shocks may represent stress readjustment in the wall rock related to the removal of magma and volatiles at these depths. This shallow zone was the source area of the majority of long-period seismicity through the remainder of the eruption. The long-period seismicity likely reflects the pressurization of the shallow portions of the magmatic system. ?? 1994.

  17. Hydrogeomorphic effects of explosive volcanic eruptions on drainage basins

    USGS Publications Warehouse

    Pierson, Thomas C.; Major, Jon J.

    2014-01-01

    Explosive eruptions can severely disturb landscapes downwind or downstream of volcanoes by damaging vegetation and depositing large volumes of erodible fragmental material. As a result, fluxes of water and sediment in affected drainage basins can increase dramatically. System-disturbing processes associated with explosive eruptions include tephra fall, pyroclastic density currents, debris avalanches, and lahars—processes that have greater impacts on water and sediment discharges than lava-flow emplacement. Geo-morphic responses to such disturbances can extend far downstream, persist for decades, and be hazardous. The severity of disturbances to a drainage basin is a function of the specific volcanic process acting, as well as distance from the volcano and magnitude of the eruption. Postdisturbance unit-area sediment yields are among the world's highest; such yields commonly result in abundant redeposition of sand and gravel in distal river reaches, which causes severe channel aggradation and instability. Response to volcanic disturbance can result in socioeconomic consequences more damaging than the direct impacts of the eruption itself.

  18. Realizing life-scalable experimental pyroclastic density currents

    NASA Astrophysics Data System (ADS)

    Cronin, S. J.; Lube, G.; Breard, E.; Jones, J.; Valentine, G.; Freundt, A.; Hort, M. K.; Bursik, M. I.

    2013-12-01

    Pyroclastic Density Currents (PDCs) - the most deadly threat from volcanoes - are extremely hot, ground-hugging currents of rock fragments and gas that descend slopes at hundreds of kilometers per hour. These hostile flows are impossible to internally measure, thus volcanologists are persistently blocked in efforts to realistically forecast their internal mechanics and hazards. Attempts to fill this gap via laboratory-scale experiments continue to prove difficult, because they usually mismatch the dynamic and kinematic scaling of real-world flows by several orders of magnitude. In a multi-institutional effort, the first large-scale pyroclastic flow generator that can synthesize repeatable hot high-energy gas-particle mixture flows in safety has been commissioned in New Zealand. The final apparatus stands 15 m high, consisting of a tower/elevator system; an instrumented hopper that can hold >6000 kg (or 3.2 m3) of natural volcanic materials, which can be discharged at a range of controlled rates onto an instrumented, variably inclinable (6-25°) glass-sided chute for examining the vertical profiles of PDCs in motion. The use of rhyolitic pyroclastic material from the 1800 AD Taupo Eruption (with its natural grain-size, sorting and shape characteristics) and gas ensures natural coupling between the solids and fluid phases. PDC analogues with runout of >15 meters and flow depths of 1.5-6 meters are created by generating variably heated falling columns of natural volcanic particles (50-1300 kg/s), dispersed and aerated to controlled particle densities between 3 and 60 vol.% at the base of the elevated hopper. The descending columns rapidly generate high-velocity flows (up to 14 m/s) once impacting on the inclined channel, reproducing many features of natural flows, including segregation into dense and dilute regimes, progressive aggradational and en masse deposition of particles and the development of high internal gas-pore-pressures during flow. The PDC starting conditions (velocity, mass flux, particle solids concentration and temperature) can be precisely varied to obtain a wide range of PDC gas-particle transport and sedimentation conditions that match dynamic and kinematic scaling of natural flows. For instance, bulk flow scaling shows full turbulence (Re>106); while at the same time, the variation in Stokes and Stability numbers (describing Lagrangian acceleration of particles due to gravity and viscous drag) cover a wide range of natural conditions. The resulting PDC flow regimes include convection dominated dilute suspension that produce lateral ash-cloud surges, inertial dry granular to partially fluidised flows with high dynamic pressures, and, intermittent flow regimes of intermediate particle solids concentration. Depending on the PDC starting conditions, stratified, dune-bedded or inversely graded bedforms are created, whose formation can be tracked using high-speed cinematography and particle-image-velocimetry. We present here the first overview results from these experiments and invite further multi-organisational collaboration in ongoing simulations.

  19. Pyroclastic chronology of the Sancy stratovolcano (Mont-Dore, French Massif Central): New high-precision 40Ar/39Ar constraints

    NASA Astrophysics Data System (ADS)

    Nomade, Sébastien; Scaillet, Stéphane; Pastre, Jean-François; Nehlig, Pierre

    2012-05-01

    The Sancy (16 km2) is the youngest of the two stratovolcanoes that constitute the Mont-Dore Massif (Massif Central, France). The restricted number of high precision radio-isotopic ages currently limits our knowledge of the pyroclastic chronology of this edifice which is the source of many tephra layers detected in middle Pleistocene sequences in southeast Europe. To improve our knowledge of the building phases of this stratovolcano, we collected thirteen pyroclastic units covering the entire proximal record. We present 40Ar/39Ar single grain laser dating performed in the facility hosted at the LSCE (Gif-sur-Yvette, France). The 40Ar/39Ar ages range from 1101 ± 11 ka to 392 ± 7 ka (1σ external). Four pyroclastic cycles lasting on average 100 ka were identified (C. I to C. IV). C. I corresponds to the earlier explosive phase between 1101 ka and 1000 ka and starts about 100 ka earlier than previously thought. The second pyroclastic cycle (C. II) is the main pyroclastic episode spanning from 818 to 685 ka. This cycle is constituted of a minimum of 8 major pyroclastic eruptions and includes a major event that corresponds to a large plinian eruption at 719 ± 10 ka (1σ external) and recorded as a 1.4 m thick layer 60 km south-east of the Sancy volcano. The link between this large eruption and formation of a caldera stays however, hypothetical. The third pyroclastic cycle (C. III) found in the northeastern part of the Sancy (Mont-Dore valley) spanned from 642 to 537 ka. Finally, the youngest pyroclastic cycle (C. IV) starts at 392 ka and probably ends around 280 ka. The age versus geographic location of each pyroclastic cycle indicates three preferential directions of channeling of the pyroclastic events and/or collapse of the volcanic edifice: northwest to west (C. I), southeast (C. II) and finally north to northeast (C. III and IV). The new high precision 40Ar/39Ar age for the Queureuilh bas pyroclastic unit (642 ± 9 ka) is identical within error with the U/Pb age obtained by Cocherie et al. (2009) [Geochimica et Cosmochimica Acta, 73, 1095-1108] and suggests a short residence time of the magma in a shallow, short-lived, small magmatic chamber. Finally, the source of the t21d tephra layer found in the Piànico Séllere varved sequence (Northern Italy) is not the Rivaux pumice flow as proposed by Brauer et al. (2007) [Journal of Quaternary Science 22, 85-96] and neither one of the C. II pyroclastic units as suggested by Roulleau et al. (2009) [Quaternary International 204, 31-43]. Accordingly, the source for the t21d layer has yet to be found at Sancy or elsewhere.

  20. Multiple origins of obsidian pyroclasts and implications for changes in the dynamics of the 1300 B.P. eruption of Newberry Volcano, USA

    NASA Astrophysics Data System (ADS)

    Rust, A. C.; Cashman, K. V.

    2007-07-01

    The pyroclastic deposits of the 1300 B.P. eruption of Newberry Volcano, OR, USA, contain minor amounts of obsidian (1-6 wt.%). The volatile (H2O and CO2) contents and textures of these clasts vary considerably. FTIR measurements of H2O in obsidian pyroclasts range from 0.1 to 1.5 wt.% indicating equilibration pressures ≤20 MPa. CO2 contents are low (<10 ppm) except in clasts that also contain xenolith powder that provided a local CO2 source. Obsidian clasts exhibit a range of color and textural types that changed in relative proportion as the eruption progressed. Together these data indicate that there were multiple origins of obsidian and that the dominant source changed during the eruption. Early in the eruption, obsidian was almost entirely black or grey (microlite-bearing) and probably derived from dikes or wall rock fractures filled with vanguard magma or tuffisite that, together with wall rocks, were eroded and incorporated into the eruption column as the vent widened. Later in the eruption, following a brief cessation of activity, the proportion of obsidian to wallrock lithic clasts increased and new types of obsidian dominated, types that represent remnants of a shallow conduit plug, welded fallback material from within the conduit, and sheared and degassed magma from near the conduit walls. Analysis of bubble shapes preserved within obsidian indicates that shear stresses and shear rates varied by over two orders of magnitude, with maxima of 88 kPa and 10-2.3 s-1, respectively, based on an assumed magma temperature of 850°C. Furthermore, the highest shear rates and stresses, and the shortest flow times (10-20 min), are preserved in clasts that also contain wall rock. The longest deformation times (5 and 8 h) correspond to two microlite-rich clasts, suggesting that the higher microlite content results from slower ascent rates and/or longer magma residence times at shallow levels. Differences between obsidian pyroclasts from the Newberry eruption and those of the Mono Craters may relate to the nature of the conduit feeding the two events. From this comparison, we conclude that obsidian can provide information on time scales and mechanisms of pre-fragmentation magma ascent.

  1. Post-eruptive flooding of Santorini caldera and implications for tsunami generation

    NASA Astrophysics Data System (ADS)

    Nomikou, Paraskevi; Druitt, Tim; Hübscher, Christian; Mather, Tamsin; Paulatto, Michele; Kalnins, Lara; Kelfoun, Karim; Papanikolaou, Dimitris; Bejelou, Konstantina; Lampridou, Danai; Pyle, David; Carey, Steven; Watts, Anthony; Weiß, Benedikt; Parks, Michelle

    2017-04-01

    Caldera-forming eruptions of island volcanoes generate tsunamis by the interaction of different eruptive phenomena with the sea. Such tsunamis are a major hazard, but forward models of their impacts are limited by poor understanding of source mechanisms. The eruption of Santorini 3600 years ago was one of the largest of eruptions known worldwide from the past 10,000 years - and was at least 3 times larger than the catastrophic eruption of Krakatoa. This huge eruption evacuated large volumes of magma, causing collapse of the large caldera, which is now filled with seawater. Tsunamis from this eruption have been proposed to have played a role in the demise of the Minoan culture across the southern Aegean, through damage to coastal towns, harbors, shipping and maritime trade. Before the eruption, there was an older caldera in the northern part of Santorini, partly filled with a shallow lagoon. In our study, we present bathymetric and seismic evidence showing that the caldera was not open to the sea during the main phase of the eruption, but was flooded once the eruption had finished. Following subsidence of the caldera floor, rapid inflow of seawater and landslides cut a deep 2.0-2.5 km3 submarine channel into the northern flank of the caldera wall. Hydrodynamic modelling indicates that the caldera was flooded through this breach in less than a couple of days. It was previously proposed that collapse of the caldera could have led to the formation of a major tsunami; but this is ruled out by our new evidence. Any tsunami's generated were most likely caused by entry of pyroclastic flows into the sea, combined with slumping of submarine pyroclastic accumulations. This idea is consistent with previous assertions that pyroclastic flows were the main cause of tsunamis at Krakatau.

  2. Validation and Analysis of SRTM and VCL Data Over Tropical Volcanoes

    NASA Technical Reports Server (NTRS)

    Mouginis-Mark, Peter J.

    2004-01-01

    The focus of our investigation was on the application of digital topographic data in conducting first-order volcanological and structural studies of tropical volcanoes, focusing on the Java, the Philippines and the Galapagos Islands. Kilauea volcano, Hawaii, served as our test site for SRTM data validation. Volcanoes in humid tropical environments are frequently cloud covered, typically densely vegetated and erode rapidly, so that it was expected that new insights into the styles of eruption of these volcanoes could be obtained from analysis of topographic data. For instance, in certain parts of the world, such as Indonesia, even the regional structural context of volcanic centers is poorly known, and the distribution of volcanic products (e.g., lava flows, pyroclastic flows, and lahars) are not well mapped. SRTM and Vegetation Canopy Lidar (VCL) data were expected to provide new information on these volcanoes. Due to the cancellation of the VCL mission, we did not conduct any lidar studies during the duration of this project. Digital elevation models (DEMs) such as those collected by SRTM provide quantitative information about the time-integrated typical activity on a volcano and allow an assessment of the spatial and temporal contributions of various constructional and destructional processes to each volcano's present morphology. For basaltic volcanoes, P_c?w!m-d and Garbed (2000) have shown that gradual slopes (less than 5 deg.) occur where lava and tephra pond within calderas or in the saddles between adjacent volcanoes, as well as where lava deltas coalesce to form coastal plains. Vent concentration zones (axes of rift zones) have slopes ranging from 10 deg. to 12 deg. Differential vertical growth rates between vent concentration zones and adjacent mostly-lava flanks produce steep constructional slopes up to 40". The steepest slopes (locally approaching 90 deg.) are produced by fluvial erosion, caldera collapse, faulting, and catastrophic avalanches, all of which are usually identifiable. Due to the delay in the release of the SRTM data following the February 2000 flight, a significant part of our effort was devoted to the analog studies of the SRTM topographic data using topographic data from airborne interferometric radars. As part of the original SRTM Science Team, we proposed four study sites (Kilauea, Hawaii; Mt. Pinatubo, Philippines; Cerro Am1 and Femandina volcanoes, Galapagos Islands; and Tengger caldera, Java) where we could conduct detailed geologic studies to evaluate the uses of SRTM data for the analysis of lava flows, lahars, erosion of ash deposits, and an evaluation of the structural setting of the volcanoes. Only near the end of this project was one of these SRTM Science Team products (Luzon Island, the Philippines) released to the community, and we only had limited time to work on these data.

  3. Simply pyroclastic currents

    NASA Astrophysics Data System (ADS)

    Palladino, Danilo M.

    2017-07-01

    Gravity-driven, ground-hugging gas-pyroclast mixtures produced during explosive volcanic eruptions define a full spectrum of particle concentration, flow regime and particle support mechanisms. To describe these phenomena, the term "pyroclastic density current" (PDC) has become increasingly popular in the last few tens of years. Here, I question the general application of the term PDC to the whole flow spectrum and, instead, I propose the simpler term "pyroclastic current".

  4. Pyroclastic density currents associated with the 2008-2009 eruption of Chaitén Volcano (Chile): forest disturbances, deposits, and dynamics

    USGS Publications Warehouse

    Major, Jon J.; Pierson, Thomas C.; Hoblitt, Richard P.; Moreno, Hugo

    2013-01-01

    Explosive activity at Chaitén Volcano in May 2008 and subsequent dome collapses over the following nine months triggered multiple, small-volume pyroclastic density currents (PDCs). The explosive activity triggered PDCs to the north and northeast, which felled modest patches of forest as far as 2 km from the caldera rim. Felled trees pointing in the down-current direction dominate the disturbance zones. The PDC on the north flank of Chaitén left a decimeters-thick, bipartite deposit having a basal layer of poorly sorted, fines-depleted pumice-and-lithic coarse ash and lapilli, which transitions abruptly to fines-enriched pumice-and-lithic coarse ash. The deposit contains fragments of mostly uncharred organics near its base; vegetation protruding above the deposit is uncharred. The nature of the forest disturbance and deposit characteristics suggest the PDC was dilute, of relatively low temperature (-1. It was formed by directionally focused explosions throughout the volcano's prehistoric, intracaldera lava dome. Dilute, low-temperature PDCs that exited the caldera over a low point on the east-southeast caldera rim deposited meters-thick fill of stratified beds of pumice-and-lithic coarse ash and lapilli. They did not fell large trees more than a few hundred of meters from the caldera rim and were thus less energetic than those on the north and northeast flanks. They likely formed by partial collapses of the margins of vertical eruption columns. In the Chaitén River valley south of the volcano, several-meter-thick deposits of two block-and-ash flow (BAF) PDCs are preserved. Both have a coarse ash matrix that supports blocks and lapilli predominantly of lithic rhyolite dome rock, minor obsidian, and local bedrock. One deposit was emplaced by a BAF that traveled an undetermined distance downvalley between June and November 2008, apparently triggered by partial collapse of a newly effused lava dome on that started growing on 12 May. A second, and larger, BAF related to another collapse of the new lava dome on 19 February 2009 traveled to within 3 km of the village of Chaitén, 10 km downstream of the volcano. It deposited as much as 8-10 m of diamict having sedimentary characteristics very similar to the previous BAF deposit. Charred trees locally encased within the BAD deposits suggest that the flows were of moderate temperature, perhaps as much as 300°C. Erosion of the BAD deposits filling the Chaitén River channel has delivered substantial sediment loads downstream, contributing to channel instability and challenged river management.

  5. Digital Data for Volcano Hazards in the Crater Lake Region, Oregon

    USGS Publications Warehouse

    Schilling, S.P.; Doelger, S.; Bacon, C.R.; Mastin, L.G.; Scott, K.E.; Nathenson, M.

    2008-01-01

    Crater Lake lies in a basin, or caldera, formed by collapse of the Cascade volcano known as Mount Mazama during a violent, climactic eruption about 7,700 years ago. This event dramatically changed the character of the volcano so that many potential types of future events have no precedent there. This potentially active volcanic center is contained within Crater Lake National Park, visited by 500,000 people per year, and is adjacent to the main transportation corridor east of the Cascade Range. Because a lake is now present within the most likely site of future volcanic activity, many of the hazards at Crater Lake are different from those at most other Cascade volcanoes. Also significant are many faults near Crater Lake that clearly have been active in the recent past. These faults, and historic seismicity, indicate that damaging earthquakes can occur there in the future. The USGS Open-File Report 97-487 (Bacon and others, 1997) describes the various types of volcano and earthquake hazards in the Crater Lake area, estimates of the likelihood of future events, recommendations for mitigation, and a map of hazard zones. The geographic information system (GIS) volcano hazard data layers used to produce the Crater Lake earthquake and volcano hazard map in USGS Open-File Report 97-487 are included in this data set. USGS scientists created one GIS data layer, c_faults, that delineates these faults and one layer, cballs, that depicts the downthrown side of the faults. Additional GIS layers chazline, chaz, and chazpoly were created to show 1)the extent of pumiceous pyroclastic-flow deposits of the caldera forming Mount Mazama eruption, 2)silicic and mafic vents in the Crater Lake region, and 3)the proximal hazard zone around the caldera rim, respectively.

  6. Syn-eruptive, soft-sediment deformation of dilute pyroclastic density current deposits: triggers from granular shear, dynamic pore pressure, ballistic impacts and shock waves

    NASA Astrophysics Data System (ADS)

    Douillet, G. A.; Taisne, B.; Tsang-Hin-Sun, È.; Müller, S. K.; Kueppers, U.; Dingwell, D. B.

    2014-12-01

    Soft-sediment deformation produces intriguing sedimentary structures and can occur in diverse environments and from a variety of triggers. From the observation of such structures and their interpretation in terms of trigger mechanisms, valuable information can be extracted about former conditions. Here we document examples of syn-eruptive deformation in dilute pyroclastic density current deposits. Outcrops from 6 different volcanoes have been compiled in order to provide a broad perspective on the variety of structures: Ubehebe craters (USA), Tungurahua (Ecuador), Soufrière Hills (Montserrat), Laacher See (Germany), Tower Hill and Purrumbete lake (both Australia). Isolated slumps as well as sinking pseudonodules are driven by their excess weight and occur after deposition but penecontemporaneous to the eruption. Isolated, cm-scale, overturned beds with vortex forms have been interpreted to be the signature of shear instabilities occurring at the boundary of two granular media. They may represent the frozen record of granular, pseudo Kelvin-Helmholtz instabilities. Their recognition can be a diagnostic for flows with a granular basal boundary layer. The occurrence of degassing pipes together with basal intrusive dikes suggest fluidization during flow stages, and can facilitate the development of Kelvin-Helmholtz structures. The occurrence at the base of flow units of injection dikes in some outcrops compared with suction-driven local uplifts in others indicates the role of dynamic pore pressure. Variations of the latter are possibly related to local changes between depletive and accumulative dynamics of flows. Ballistic impacts can trigger unconventional sags producing local displacement or liquefaction. Based on the deformation depth, these can yield precise insights into depositional unit boundaries. Such impact structures may also be at the origin of some of the steep truncation planes visible at the base of the so-called "chute and pool" structures. Finally, the passage of shock waves emanating from the vent may be preserved in the form of trains of isolated, fine-grained overturned beds which may disturb the surface bedding without occurrence of a sedimentation phase in the vicinity of a vent. Dilute pyroclastic density currents occur contemporaneously with seismogenic volcanic explosions. They are often deposited on steep slopes and can incorporate large amounts of water and gas in the sediment. They can experience extremely high sedimentation rates and may flow at the border between traction, granular and fluid-escape boundary zones. These are just some of the many possible triggers acting in a single environment, and reveal the potential for insights into the eruptive mechanisms of dilute pyroclastic density currents.

  7. Human Impact on the Geomorphological Evolution of the Opak River Following the 2010 Large Volcanic Event of the Merapi (Indonesia)

    NASA Astrophysics Data System (ADS)

    Gob, F.; Gautier, E.; Virmoux, C.; Grancher, D.; Tamisier, V.; Primanda, K. W.; Wibowo, S. B.

    2016-12-01

    During large eruptions, active volcanos may introduce very large quantities of sediment to the drainage system through tephra falls and pyroclastic flows, thus modifying the river system. Once remobilized, the sediment inputs propagate downstream as a sediment wave modifying the channel geometry of the river and reloading the sediment cascade of the catchments. Considering the extreme nature of the volcanic events, the parameters that control the post-eruption evolution of the river system are generally only described as natural and the role played by human activities seems negligible. Communities that live on the volcano slopes and foothills are rather considered to suffer from natural disasters associated with the eruption and its consequences (lahars, etc.) or take advantage of the benefits of the volcanic environment (rich soil, mining and geothermal resources, etc.). This study examines the impact of human influence on the fluvial readjustment of a Javanese river impacted by a major eruption of the Merapi volcano (Indonesia) in October/November 2010. The basin of the Opak River was subject to substantial sediment input related to massive pyroclastic deposits that were remobilized by numerous lahars during the year after the eruption. Two study sites were equipped in order to evaluate the morphodynamic evolution of the riverbed of the Opak River. Topographic surveys, bedload particle marking and suspended sediment sampling revealed an important sediment mobilization during efficient flash-floods. Surprisingly, no bed aggradation related to the progradation of a sediment wave was observed. Two years after the eruptive event, marked bed incision was observed. The Opak River readjustment differs from that of other fluvial systems affected by massive eruptions in two ways. Firstly, the local population massively extracted the sand and blocks injected by the eruption as they represent a valuable economic resource. Secondly, several dams trapped the major part of the sediment load remobilized by lahars.

  8. Burial of Emperor Augustus' villa at Somma Vesuviana (Italy) by post-79 AD Vesuvius eruptions and reworked (lahars and stream flow) deposits

    NASA Astrophysics Data System (ADS)

    Perrotta, Annamaria; Scarpati, Claudio; Luongo, Giuseppe; Aoyagi, Masanori

    2006-11-01

    A new archaeological site of Roman Age has been recently found engulfed in the products of Vesuvius activity at Somma Vesuviana, on the northern flank of the Somma-Vesuvius, 5 km from the vent. A 9 m deep, 30 by 35 m trench has revealed a monumental edifice tentatively attributed to the Emperor Augustus. Different than Pompeii and Herculaneum sites which were completely buried in the catastrophic eruption of 79 AD, this huge roman villa survived the effects of the 79 AD plinian eruption as suggested by stratigraphic and geochronologic data. It was later completely engulfed in the products of numerous explosive volcanic eruptions ranging from 472 AD to 1631 AD, which were separated by reworked material and paleosols. The exposed burial sequence is comprised of seven stratigraphic units. Four units are composed exclusively of pyroclastic products each emplaced during a unique explosive event. Two units are composed of volcaniclastic material (stream flow and lahars) emplaced during quiescent periods of the volcano. Finally, one unit is composed of both pyroclastic and volcaniclastic deposits. One of the more relevant volcanological results of this study is the detailed reconstruction of the destructive events that buried the Emperor Augustus' villa. Stratigraphic evidence shows the absence of any deposit associated with the 79 AD eruption at this site and that the building was extensively damaged (sacked) before it was engulfed by the products of subsequent volcanic eruptions and lahars. The products of the 472 AD eruption lie directly on the roman structures. They consist of scoria fall layers intercalated with massive and stratified pyroclastic density current deposits that caused limited damage to the structure. The impact on the building of penecontemporaneous lahars was more important; these caused the collapse of some structures. The remaining part of the building was subsequently entombed by the products of explosive eruptions (e.g. 512/536 eruption, 1631 eruption) and mass flows.

  9. Lethal Thermal Impact at Periphery of Pyroclastic Surges: Evidences at Pompeii

    PubMed Central

    Mastrolorenzo, Giuseppe; Petrone, Pierpaolo; Pappalardo, Lucia; Guarino, Fabio M.

    2010-01-01

    Background The evaluation of mortality of pyroclastic surges and flows (PDCs) produced by explosive eruptions is a major goal in risk assessment and mitigation, particularly in distal reaches of flows that are often heavily urbanized. Pompeii and the nearby archaeological sites preserve the most complete set of evidence of the 79 AD catastrophic eruption recording its effects on structures and people. Methodology/Principal Findings Here we investigate the causes of mortality in PDCs at Pompeii and surroundings on the bases of a multidisciplinary volcanological and bio-anthropological study. Field and laboratory study of the eruption products and victims merged with numerical simulations and experiments indicate that heat was the main cause of death of people, heretofore supposed to have died by ash suffocation. Our results show that exposure to at least 250°C hot surges at a distance of 10 kilometres from the vent was sufficient to cause instant death, even if people were sheltered within buildings. Despite the fact that impact force and exposure time to dusty gas declined toward PDCs periphery up to the survival conditions, lethal temperatures were maintained up to the PDCs extreme depositional limits. Conclusions/Significance This evidence indicates that the risk in flow marginal zones could be underestimated by simply assuming that very thin distal deposits, resulting from PDCs with poor total particle load, correspond to negligible effects. Therefore our findings are essential for hazard plans development and for actions aimed to risk mitigation at Vesuvius and other explosive volcanoes. PMID:20559555

  10. Lethal thermal impact at periphery of pyroclastic surges: evidences at Pompeii.

    PubMed

    Mastrolorenzo, Giuseppe; Petrone, Pierpaolo; Pappalardo, Lucia; Guarino, Fabio M

    2010-06-15

    The evaluation of mortality of pyroclastic surges and flows (PDCs) produced by explosive eruptions is a major goal in risk assessment and mitigation, particularly in distal reaches of flows that are often heavily urbanized. Pompeii and the nearby archaeological sites preserve the most complete set of evidence of the 79 AD catastrophic eruption recording its effects on structures and people. Here we investigate the causes of mortality in PDCs at Pompeii and surroundings on the bases of a multidisciplinary volcanological and bio-anthropological study. Field and laboratory study of the eruption products and victims merged with numerical simulations and experiments indicate that heat was the main cause of death of people, heretofore supposed to have died by ash suffocation. Our results show that exposure to at least 250 degrees C hot surges at a distance of 10 kilometres from the vent was sufficient to cause instant death, even if people were sheltered within buildings. Despite the fact that impact force and exposure time to dusty gas declined toward PDCs periphery up to the survival conditions, lethal temperatures were maintained up to the PDCs extreme depositional limits. This evidence indicates that the risk in flow marginal zones could be underestimated by simply assuming that very thin distal deposits, resulting from PDCs with poor total particle load, correspond to negligible effects. Therefore our findings are essential for hazard plans development and for actions aimed to risk mitigation at Vesuvius and other explosive volcanoes.

  11. Hazard Assessment for POPOCATÉPETL Volcano Using Hasset: a Probability Event Tree Tool to Evaluate Future Eruptive Scenarios

    NASA Astrophysics Data System (ADS)

    Ferrés, D.; Reyes Pimentel, T. A.; Espinasa-Pereña, R.; Nieto, A.; Sobradelo, R.; Flores, X.; González Huesca, A. E.; Ramirez, A.

    2013-05-01

    Popocatépetl volcano is one of the most active in Latin America. During its last cycle of activity, beginning at the end of 1994, more than 40 episodes of dome construction and destruction have occurred inside the summit crater. Most of these episodes finished with eruptions of VEI 1-2. Eruptions of higher intensity were also registered in 1997, 2001 and 2009, of VEI≥3, which produced eruptive columns up to 8 km high and abundant and frequent ash falls on the villages at the eastern sector of the volcano. The January 22nd 2001 eruption also produced pyroclastic flows that followed several streams on the volcanic cone, reaching 4 to 6 km, and transforming to mudflows with ranges up to 15 km. The capital, Mexico City, is within the radius of 80 km from Popocatépetl volcano and can be affected by ash fall during the first months of the rainy season (May to July). Other important cities, such as Puebla and Atlixco, are located 15 to 30 km from the crater. Several villages of the states of México, Puebla and Morelos, which have a total population of 40,000 people, are inside the radius of 12 to 15 km, where the impacts of any of the products of an eruption, including pyroclastic flows, are possible. This high exposure of people and infrastructure around Popocatépetl volcano emphasizes the need of tools for early warning and the development of preventive actions to protect the population from volcanic phenomena. The diagnosis of the volcanic activity, based on the information provided by the monitoring systems, and the prognosis of the evolution of the volcano in the short-term is made by the Scientific Advisory Committee, formed by volcanologists of the National Autonomous University of Mexico, and by CENAPRED staff. From this prognosis, the alert level for the people is determined and it is spread by the code of the traffic light of volcanic alert. A volcanic event tree was constructed with the advisory of the scientific committee in the recent seismic-eruptive crisis of April-May 2012, in order to identify the most probable processes in which this unrest could have developed and to contribute to the diagnosis task. In this research, we propose a comparison between the processes identified in this preliminary volcanic event tree and another elaborated using a Hazard Assessment Event Tree probability tool (HASSET), built on a bayesian event tree structure, using mainly the information of the known eruptive history of Popocatépetl. The HASSET method is based on Bayesian Inference and is used to assess volcanic hazard of future eruptive scenarios, by evaluating the most relevant sources of uncertainty that play a role in estimating the future probability of occurrence of a specific volcanic event. The final goal is to find the most useful tools to make the diagnosis and prognosis of the Popocatépetl volcanic activity, integrating the known eruptive history of the volcano, the experience of the scientific committee and the information provided by the monitoring systems, in an interactive and user-friendly way.

  12. The hazards of eruptions through lakes and seawater

    USGS Publications Warehouse

    Mastin, L.G.; Witter, J.B.

    2000-01-01

    Eruptions through crater lakes or shallow seawater, referred to here as subaqueous eruptions, present hazards from hydromagmatic explosions, such as base surges, lahars, and tsunamis, which may not exist at volcanoes on dry land. We have systematically compiled information from eruptions through surface water in order to understand the circumstances under which these hazards occur and what disastrous effects they have caused in the past. Subaqueous eruptions represent only 8% of all recorded eruptions but have produced about 20% of all fatalities associated with volcanic activity in historical time. Excluding eruptions that have resulted in about a hundred deaths or less, lahars have killed people in the largest number of historical subaqueous eruptions (8), followed by pyroclastic flows (excluding base surges; 5) tsunamis (4), and base surges (2). Subaqueous eruptions have produced lahars primarily on high (>1000 m), steep-sided volcanoes containing small (<1 km diameter) crater lakes. Tsunamis and other water waves have caused death or destroyed man-made structures only at submarine volcanoes and at Lake Taal in the Philippines. In spite of evidence that magma-water mixing makes eruptions more explosive, such explosions and their associated base surges have caused fewer deaths, and have been implicated in fewer eruptions involving large numbers of fatalities than lahars and tsunamis. The latter hazards are more deadly because they travel much farther from a volcano and inundate coastal areas and stream valleys that tend to be densely settled.

  13. Earth Observations taken by the Expedition 14 crew

    NASA Image and Video Library

    2007-04-02

    ISS014-E-18844 (2 April 2007) --- A plume at Mt. Bagana, Bougainville Island is featured in this image photographed by an Expedition 14 crewmember on the International Space Station. Bougainville Island, part of the Solomon Islands chain to the east of Papua New Guinea, is typical of many Pacific Rim islands in that volcanism has played a large part in both its geological and recorded history. The island hosts three large volcanoes along its northwest-southeast trending axis: Mt. Balbi, Mt. Bagana, and the Mt. Takuan volcanic complex. Mt. Bagana (near center) is the only volcano on the island that has been historically active. Light green stressed vegetation, and brown lobate lava flows mark the 1,750 meter high lava cone of Mt. Bagana within the verdant landscape of Bougainville Island. The eruptive style of the volcano is typically non-explosive, producing thick lobes of andesitic lava that run down the flanks and maintain a dome in the summit crater. Occasional pyroclastic flows have also been noted. The most recent phase of activity, which began on March 7, has been characterized by vapor plumes with occasional ash-producing emissions. This photograph, acquired almost one month (twenty days) after the last reported activity at Bagana, records a diffuse white vapor plume extending west-southwest from the summit. The Solomon Island region experiences other effects due to the geologic setting: earlier this week, a large but shallow earthquake shook the region and induced a tsunami that hit the western part of the Solomon Island chain.

  14. Juvenile pumice and pyroclastic obsidian reveal the eruptive conditions necessary for the stability of Plinian eruption of rhyolitic magma

    NASA Astrophysics Data System (ADS)

    Giachetti, T.; Shea, T.; Gonnermann, H. M.; McCann, K. A.; Hoxsie, E. C.

    2016-12-01

    Significant explosive activity generally precedes or coexists with the large effusion of rhyolitic lava (e.g., Mono Craters; Medicine Lake Volcano; Newberry; Chaitén; Cordón Caulle). Such explosive-to-effusive transitions and, ultimately, cessation of activity are commonly explained by the overall waning magma chamber pressure accompanying magma withdrawal, albeit modulated by magma outgassing. The tephra deposits of such explosive-to-effusive eruptions record the character of the transition - abrupt or gradual - as well as potential changes in eruptive conditions, such as magma composition, volatiles content, mass discharge rate, conduit size, magma outgassing. Results will be presented from a detailed study of both the gas-rich (pumice) and gas-poor (obsidian) juvenile pyroclasts produced during the Plinian phase of the 1060 CE Glass Mountain eruption of Medicine Lake Volcano, California. In the proximal deposits, a multitude of pumice-rich sections separated by layers rich in dense clasts suggests a pulsatory behavior of the explosive phase. Density measurements on 2,600 pumices show that the intermediate, most voluminous deposits have a near constant median porosity of 65%. However, rapid increase in porosity to 75-80% is observed at both the bottom and the top of the fallout deposits, suggestive of rapid variations in magma degassing. In contrast, a water content of pyroclastic obsidians of approximately 0.6 wt% does remain constant throughout the eruption, suggesting that the pyroclastic obsidians degassed up to a constant pressure of a few megapascals. Numerical modeling of eruptive magma ascent and degassing is used to provide constraints on eruption conditions.

  15. Presenting Numerical Modelling of Explosive Volcanic Eruption to a General Public

    NASA Astrophysics Data System (ADS)

    Demaria, C.; Todesco, M.; Neri, A.; Blasi, G.

    2001-12-01

    Numerical modeling of explosive volcanic eruptions has been widely applied, during the last decades, to study pyroclastic flows dispersion along volcano's flanks and to evaluate their impact on urban areas. Results from these transient multi-phase and multi-component simulations are often reproduced in form of computer animations, representing the spatial and temporal evolution of relevant flow variables (such as temperature, or particle concentration). Despite being a sophisticated, technical tool to analyze and share modeling results within the scientific community, these animations truly look like colorful cartoons showing an erupting volcano and are especially suited to be shown to a general public. Thanks to their particular appeal, and to the large interest usually risen by exploding volcanoes, these animations have been presented several times on television and magazines and are currently displayed in a permanent exposition, at the Vesuvius Observatory in Naples. This work represents an effort to produce an accompanying tool for these animations, capable of explaining to a large audience the scientific meaning of what can otherwise look as a graphical exercise. Dealing with research aimed at the study of dangerous, explosive volcanoes, improving the general understanding of these scientific results plays an important role as far as risk perception is concerned. An educated population has better chances to follow an appropriate behavior, i.e.: one that could lead, on the long period, to a reduction of the potential risk. In this sense, a correct divulgation of scientific results, while improving the confidence of the population in the scientific community, should belong to the strategies adopted to mitigate volcanic risk. Due to the relevance of the long term final goal of such divulgation experiment, this work represents an interdisciplinary effort, combining scientific expertise and specific competence from the modern communication science and risk perception studies.

  16. 2014 Mount Ontake eruption: characteristics of the phreatic eruption as inferred from aerial observations

    NASA Astrophysics Data System (ADS)

    Kaneko, Takayuki; Maeno, Fukashi; Nakada, Setsuya

    2016-05-01

    The sudden eruption of Mount Ontake on September 27, 2014, led to a tragedy that caused more than 60 fatalities including missing persons. In order to mitigate the potential risks posed by similar volcano-related disasters, it is vital to have a clear understanding of the activity status and progression of eruptions. Because the erupted material was largely disturbed while access was strictly prohibited for a month, we analyzed the aerial photographs taken on September 28. The results showed that there were three large vents in the bottom of the Jigokudani valley on September 28. The vent in the center was considered to have been the main vent involved in the eruption, and the vents on either side were considered to have been formed by non-explosive processes. The pyroclastic flows extended approximately 2.5 km along the valley at an average speed of 32 km/h. The absence of burned or fallen trees in this area indicated that the temperatures and destructive forces associated with the pyroclastic flow were both low. The distribution of ballistics was categorized into four zones based on the number of impact craters per unit area, and the furthest impact crater was located 950 m from the vents. Based on ballistic models, the maximum initial velocity of the ejecta was estimated to be 111 m/s. Just after the beginning of the eruption, very few ballistic ejecta had arrived at the summit, even though the eruption plume had risen above the summit, which suggested that a large amount of ballistic ejecta was expelled from the volcano several tens-of-seconds after the beginning of the eruption. This initial period was characterized by the escape of a vapor phase from the vents, which then caused the explosive eruption phase that generated large amounts of ballistic ejecta via sudden decompression of a hydrothermal reservoir.

  17. Studies of volcanoes of Alaska by satellite radar interferometry

    USGS Publications Warehouse

    Lu, Z.; Wicks, C.; Dzurisin, D.; Thatcher, W.; Power, J.; ,

    2000-01-01

    Interferometric synthetic aperture radar (InSAR) has provided a new imaging geodesy technique to measure the deformation of volcanoes at tens-of-meter horizontal resolution with centimeter to subcentimeter vertical precision. The two-dimensional surface deformation data enables the construction of detailed numerical models allowing the study of magmatic and tectonic processes beneath volcanoes. This paper summarizes our recent: InSAR studies over the Alaska-Aleutian volcanoes, which include New Trident, Okmok, Akutan, Augustine, Shishaldin, and Westdahl volcanoes. The first InSAR surface deformation over the Alaska volcanoes was applied to New Trident. Preliminary InSAR study suggested that New Trident volcano experienced several centimeters inflation from 1993 to 1995. Using the InSAR technique, we studied the 1997 eruption of Okmok. We have measured ???1.4 m deflation during the eruption, ???20 cm pre-eruptive inflation during 1992 to 1995, and >10 cm post-eruptive inflation within a year after the eruption, and modeled the deformations using Mogi sources. We imaged the ground surface deformation associated with the 1996 seismic crisis over Akutan volcano. Although seismic swarm did not result in an eruption, we found that the western part of the volcano uplifted ???60 cm while the eastern part of the island subsided. The majority of the complex deformation field at the Akutan volcano was modeled by dike intrusion and Mogi inflation sources. Our InSAR results also indicate that the pyroclastic flows from last the last eruption have been undergoing contraction/subsidence at a rate of about 3 cm per year since 1992. InSAR measured no surface deformation before and during the 1999 eruption of Shishaldin and suggested the eruption may be a type of open system. Finally, we applied satellite radar interferometry to Westdahl volcano which erupted 1991 and has been quiet since. We discovered this volcano had inflated about 15 cm from 1993 to 1998. In summary, satellite radar interferometry can not only be used to study a volcanic eruption, but also to detect aseismic deformation at quiescent volcanoes preceding a seismic swarm; it is a useful technique to study volcanic eruptions as well as to guide scientists to better focus their monitoring efforts.

  18. Neogene-Quaternary Volcanic forms in the Carpathian-Pannonian Region: a review

    NASA Astrophysics Data System (ADS)

    Lexa, Jaroslav; Seghedi, Ioan; Németh, Karoly; Szakács, Alexandru; Koneĉny, Vlastimil; Pécskay, Zoltan; Fülöp, Alexandrina; Kovacs, Marinel

    2010-09-01

    Neogene to Quaternary volcanic/magmatic activity in the Carpathian-Pannonian Region (CPR) occurred between 21 and 0.1 Ma with a distinct migration in time from west to east. It shows a diverse compositional variation in response to a complex interplay of subduction with rollback, back-arc extension, collision, slab break-off, delamination, strike-slip tectonics and microplate rotations, as well as in response to further evolution of magmas in the crustal environment by processes of differentiation, crustal contamination, anatexis and magma mixing. Since most of the primary volcanic forms have been affected by erosion, especially in areas of post-volcanic uplift, based on the level of erosion we distinguish: (1) areas eroded to the basement level, where paleovolcanic reconstruction is not possible; (2) deeply eroded volcanic forms with secondary morphology and possible paleovolcanic reconstruction; (3) eroded volcanic forms with remnants of original morphology preserved; and (4) the least eroded volcanic forms with original morphology quite well preserved. The large variety of volcanic forms present in the area can be grouped in a) monogenetic volcanoes and b) polygenetic volcanoes and their subsurface/intrusive counterparts that belong to various rock series found in the CPR such as calc-alkaline magmatic rock-types (felsic, intermediate and mafic varieties) and alkalic types including K-alkalic, shoshonitic, ultrapotassic and Na-alkalic. The following volcanic/subvolcanic forms have been identified: (i) domes, shield volcanoes, effusive cones, pyroclastic cones, stratovolcanoes and calderas with associated intrusive bodies for intermediate and basic calclkaline volcanism; (ii) domes, calderas and ignimbrite/ash-flow fields for felsic calc-alkaline volcanism and (iii) dome flows, shield volcanoes, maars, tuffcone/tuff-rings, scoria-cones with or without related lava flow/field and their erosional or subsurface forms (necks/ plugs, dykes, shallow intrusions, diatreme, lava lake) for various types of K- and Na-alkalic and ultra-potassic magmatism. Finally, we provide a summary of the eruptive history and distribution of volcanic forms in the CPR using several sub-region schemes.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kravtsov, A.I.

    To determine the effect of geologic factors on the composition of abyssal derivates (complementing existing information on the geochemistry of volcanic gases) isotopic analysis of carbon was used to obtain physicochemical criteria of the origin of gases, independent of geologic-petrographic data. The investigations include component analysis of all the gases, particularly hydrocarbon compounds, repeatedly found in the fumarole emanations of pyroclastic streams. Volcanic carbon dioxide which is the principal component of gases of active volcanoes and hot springs in the Kuril-Kamchatka volcanic arc and of other volcanoes was investigated.

  20. Understanding and modeling volcanotectonic processes that generate surface deformation on active stratovolcanoes

    NASA Astrophysics Data System (ADS)

    Gudmundsson, A.

    2005-05-01

    Surface deformation on stratovolcanoes is the result of local stresses generated by various volcanotectonic processes. These processes include changes in fluid pressure in the associated geothermal fields and magma chambers, regional seismic or tectonic events, fault development, and dike injections. Here the focus is on magma-chamber pressure changes and dike injections. Surface deformation associated with magma-chamber pressure changes is normally referred to as inflation when the pressure increases, and as deflation when the pressure decreases. The processes that lead to inflation are primarily addition of new magma to the chamber and rapid exsolution of gas from the magma in the chamber. The processes that lead to deflation are primarily cooling (and contraction) of magma in the chamber, regional tectonic extension of the crust holding the chamber, and eruption and/or dike injection. Injection of dikes (including inclined sheets) is common in most active stratovolcanoes. However, no dike-fed eruptions can take place unless the local stress field within the volcano is favorable to feeder-dike formation. By contrast, if at any location - in any layer - in the stratovolcano the stress field is unfavorable to dike propagation, the dike becomes arrested and no eruption occurs. Detailed studies of dikes in stratovolcanoes worldwide indicate that most dikes become arrested and never reach the surface. However, arrested dikes may give rise to surface deformation, such as is commonly monitored during volcanic unrest periods. By definition, stratovolcanoes are composed of numerous alternating strata (layers) of pyroclastic material and lava flows. Commonly, these layers have widely different mechanical properties. In particular, some layers such as lava flows and welded pyroclastic flows may be stiff (with a high Young's modulus), whereas other layers, such as non-welded pyroclastic units, may be soft (with a low Young's modulus). Here I present new numerical models on the surface deformation on typical stratovolcanoes. The models show, first, that the surface deformation during magma-chamber inflation and deflation depends much on the chamber geometry, the loading conditions, and the mechanical properties of the rock units that constitute the volcano. Second, the models show that dike-induced stresses and surface deformation depend much on the mechanical properties of the layers between the dike tip and the surface. In particular, the models indicate that soft layers and weak contacts between layers may suppress the dike-induced tensile stresses and the associated surface deformation. Thus, many dikes may become injected and arrested with little or no surface deformation. Generally, the numerical models suggest that standard analytical surface-deformation models such as point sources (nuclei of strain) for magma-chamber pressure changes and dislocations for dikes should be used with great caution. These models normally assume the volcanoes and rift zones to behave as homogeneous, isotropic half spaces or semi-infinite plates. When applied to stratovolcanoes composed of layers of contrasting mechanical properties and, particularly at shallow depths, weak or open contacts, inversions using these analytical models may yield results that, at best, are unreliable.

  1. Quantification of vesicle characteristics in some diatreme-filling deposits, and the explosivity levels of magma-water interactions within diatremes

    NASA Astrophysics Data System (ADS)

    Ross, Pierre-Simon; White, James D. L.

    2012-11-01

    Vesicles within juvenile fragments in mafic pyroclastic deposits contain important information about the state of the magma at the time of fragmentation. There have been few vesicle studies of juvenile pyroclasts from mafic phreatomagmatic deposits, however, and none we can find from maar-diatreme volcanoes. In this paper we document the vesicularity and vesicle-population characteristics of juvenile fragments sampled from non-bedded lithified deposits of the Coombs Hills diatreme complex, part of the Ferrar large igneous province, Antarctica. The diatreme-filling pyroclastic deposits, dominated by lapilli tuffs and tuff breccias, contain typically abundant lithic clasts derived mostly from the enclosing sedimentary sequence, and several types of juvenile clasts ranging from blocky to fluidal or "raggy". In the samples measured, 77-80% of the juvenile pyroclasts ranging in size from 0.5 mm to fine lapilli is in the 'non-vesicular' to 'incipiently vesicular' range (< 20% vesicles). Such low vesicularities are expected for pyroclasts from maar-diatreme volcanoes where fragmentation takes place at depth in the diatreme or root zone due to magma-water interaction. A few juvenile clasts, however, are more vesicular, and seven of these were chosen and sectioned for 2D analysis of vesicle shapes and orientation, vesicle number densities (Nv), and vesicle volume distributions. The shapes of the vesicles in the studied sections are mostly elliptical (sometimes polylobate), with mean aspect ratios ranging between 0.67 and 0.72. Circular statistics are used to test for trends in the vesicle long-axis orientation data; non-uniformity of orientations is found in most cases, but the trends are weak. Vesicle volume distributions are often bimodal due to variable coalescence. Total Nv values range from 1.0 × 102 to 5.7 × 103 mm- 3; taking the effects of bubble coalescence into account, these values are similar to those found in pyroclasts from other phreatomagmatic volcanoes, although they also overlap partly with those seen in fire fountain deposits and some basaltic Plinian eruptions. Fluidal- or rag-shaped juvenile clasts, some circular vesicles, and the lack of microlites all suggest that the Coombs Hills magma had a relatively low viscosity prior to fragmentation, despite the basaltic andesite composition. This low viscosity allowed parts of the magma to be fragmented in a non-brittle fashion during phreatomagmatic explosions and to form fluidal clasts. Phreatomagmatic explosions in diatremes can therefore produce diverse types of juvenile clasts simultaneously, and the proportions of each will depend on the explosivity of the magma-water (slurry) interaction and other factors. Recycling of fragments is also thought to be an important factor in generating mixtures of different types of juvenile fragments in diatremes.

  2. The Colima Volcano WebGIS: system acquisition, application and database development in an open-source environment

    NASA Astrophysics Data System (ADS)

    Manea, M.; Norini, G.; Capra, L.; Manea, V. C.

    2009-04-01

    The Colima Volcano is currently the most active Mexican volcano. After the 1913 plinian activity the volcano presented several eruptive phases that lasted few years, but since 1991 its activity became more persistent with vulcanian eruptions, lava and dome extrusions. During the last 15 years the volcano suffered several eruptive episodes as in 1991, 1994, 1998-1999, 2001-2003, 2004 and 2005 with the emplacement of pyroclastic flows. During rain seasons lahars are frequent affecting several infrastructures such as bridges and electric towers. Researchers from different institutions (Mexico, USA, Germany, Italy, and Spain) are currently working on several aspects of the volcano, from remote sensing, field data of old and recent deposits, structural framework, monitoring (rain, seismicity, deformation and visual observations) and laboratory experiments (analogue models and numerical simulations). Each investigation is focused to explain a single process, but it is fundamental to visualize the global status of the volcano in order to understand its behavior and to mitigate future hazards. The Colima Volcano WebGIS represents an initiative aimed to collect and store on a systematic basis all the data obtained so far for the volcano and to continuously update the database with new information. The Colima Volcano WebGIS is hosted on the Computational Geodynamics Laboratory web server and it is based entirely on Open Source software. The web pages, written in php/html will extract information from a mysql relational database, which will host the information needed for the MapBender application. There will be two types of intended users: 1) researchers working on the Colima Volcano, interested in this project and collaborating in common projects will be provided with open access to the database and will be able to introduce their own data, results, interpretation or recommendations; 2) general users, interested in accessing information on Colima Volcano will be provided with restricted access and will be able to visualize maps, images, diagrams, and current activity. The website can be visited at: http://www.geociencias.unam.mx/colima

  3. Engaging with the Public on Volcanic Risk through Hands-on Interaction with the London Volcano.

    NASA Astrophysics Data System (ADS)

    Rodgers, M.; Pyle, D. M.; Barclay, J.; Mather, T. A.; Hicks, A.; Ratner, J.; Leonard, H.; Woods, C.

    2015-12-01

    London Volcano is a major public engagement and outreach effort that emerged from a large-scale interdisciplinary research project on Strengthening Resilience in Volcanic Areas (STREVA). The activity was created for a 5-day public exhibition in London, in 2014, and brought together 3 elements to illustrate the timeline of a volcanic crisis: a 5m x 3m scale model of Soufrière St Vincent, an interactive 'monitoring station' to explore technology used in monitoring and an engaging 'bin bang' sequence to simulate a volcanic explosion. Having a large hands-on volcano as a centrepiece to the exhibit enabled interaction with primary-age school children through the use of creativity and imagination. They looked at seismic traces of 'bin bang' explosions; measured dispersal of projectile ducks; and decided where to place a model house on the island, on which the model volcano sat. Over the 5-days we evolved the activity of the volcano to re-create the 1902 eruption. During the first 3 days, 94 houses were placed around the volcano, but after the cataclysmic eruption mid-week, 12 of these houses were destroyed by simulated pyroclastic flows and lahars down the flanks of the volcano model. Light and sound were key parts of the London Volcano simulation. A sound track was created to mimic the sounds reported by eyewitnesses. Between eruptions, the volcano would intermittently rumble, adding excitement and unpredictability to the eruptions. Explosions were simulated with compressed-CO2 jets, and a G-flame; but these events were rare. Creative arts are an effective mechanism for transfer of knowledge from communities living with volcanic activity, so artwork from school children living near Tungurahua, Ecuador and poems from school children on Montserrat were on display. The London Volcano was a unique opportunity to engage with over 2,000 people on volcanic risk and what it means to live near a volcano. Encouraging school children to be creative and to use their imagination allowed the volcano to come alive in ways that would have otherwise been impossible.

  4. Update of map the volcanic hazard in the Ceboruco volcano, Nayarit, Mexico

    NASA Astrophysics Data System (ADS)

    Suarez-Plascencia, C.; Camarena-Garcia, M. A.; Nunez-Cornu, F. J.

    2012-12-01

    The Ceboruco Volcano (21° 7.688 N, 104° 30.773 W) is located in the northwestern part of the Tepic-Zacoalco graben. Its volcanic activity can be divided in four eruptive cycles differentiated by their VEI and chemical variations as well. As a result of andesitic effusive activity, the "paleo-Ceboruco" edifice was constructed during the first cycle. The end of this cycle is defined by a plinian eruption (VEI between 3 and 4) which occurred some 1020 years ago and formed the external caldera. During the second cycle an andesitic dome built up in the interior of the caldera. The dome collapsed and formed the internal caldera. The third cycle is represented by andesitic lava flows which partially cover the northern and south-southwestern part of the edifice. The last cycle is represented by the andesitic lava flows of the nineteenth century located in the southwestern flank of the volcano. Actually, moderate fumarolic activity occurs in the upper part of the volcano showing temperatures ranging between 20° and 120°C. Some volcanic high frequency tremors have also been registered near the edifice. Shows the updating of the volcanic hazard maps published in 1998, where we identify with SPOT satellite imagery and Google Earth, change in the land use on the slope of volcano, the expansion of the agricultural frontier on the east sides of the Ceboruco volcano. The population inhabiting the area is 70,224 people in 2010, concentrated in 107 localities and growing at an annual rate of 0.37%, also the region that has shown an increased in the vulnerability for the development of economic activities, supported by highway, high road, railroad, and the construction of new highway to Puerto Vallarta, which is built in the southeast sector of the volcano and electrical infrastructure that connect the Cajon and Yesca Dams to Guadalajara city. The most important economic activity in the area is agriculture, with crops of sugar cane (Saccharum officinarum), corn, and jamaica (Hibiscus sabdariffa). Recently it has established tomato and green pepper crops in greenhouses. The regional commercial activities are concentrated in the localities of Ixtlán, Jala and Ahuacatlán. The updated hazard maps are: a) Hazard map of pyroclastic flows, b) Hazard map of lahars and debris flow, and c) Hazard map of ash-fall. The cartographic and database information obtained will be the basis for updating the Operational Plan of the Ceboruco Volcano by the State Civil & Fire Protection Unit of Nayarit, Mexico, and the urban development plans of surrounding municipalities, in order to reduce their vulnerability to the hazards of the volcanic activity.

  5. On the morphometry of terrestrial shield volcanoes

    NASA Astrophysics Data System (ADS)

    Grosse, Pablo; Kervyn, Matthieu

    2016-04-01

    Shield volcanoes are described as low angle edifices that have convex up topographic profiles and are built primarily by the accumulation of lava flows. This generic view of shields' morphology is based on a limited number of monogenetic shields from Iceland and Mexico, and a small set of large oceanic islands (Hawaii, Galapagos). Here, the morphometry of over 150 monogenetic and polygenetic shield volcanoes, identified inthe Global Volcanism Network database, are analysed quantitatively from 90-meter resolution DEMs using the MORVOLC algorithm. An additional set of 20 volcanoes identified as stratovolcanoes but having low slopes and being dominantly built up by accumulation of lava flows are documented for comparison. Results show that there is a large variation in shield size (volumes range from 0.1 to >1000 km3), profile shape (height/basal width ratios range from 0.01 to 0.1), flank slope gradients, elongation and summit truncation. Correlation and principal component analysis of the obtained quantitative database enables to identify 4 key morphometric descriptors: size, steepness, plan shape and truncation. Using these descriptors through clustering analysis, a new classification scheme is proposed. It highlights the control of the magma feeding system - either central, along a linear structure, or spatially diffuse - on the resulting shield volcano morphology. Genetic relationships and evolutionary trends between contrasted morphological end-members can be highlighted within this new scheme. Additional findings are that the Galapagos-type morphology with a central deep caldera and steep upper flanks are characteristic of other shields. A series of large oceanic shields have slopes systematically much steeper than the low gradients (<4-8°) generally attributed to large Hawaiian-type shields. Finally, the continuum of morphologies from flat shields to steeper complex volcanic constructs considered as stratovolcanoes calls for a revision of this oversimplified distinction, taking into account the lava/pyroclasts ratio and the spatial distribution of eruptive vents.

  6. Morphometry of terrestrial shield volcanoes

    NASA Astrophysics Data System (ADS)

    Grosse, Pablo; Kervyn, Matthieu

    2018-03-01

    Shield volcanoes are described as low-angle edifices built primarily by the accumulation of successive lava flows. This generic view of shield volcano morphology is based on a limited number of monogenetic shields from Iceland and Mexico, and a small set of large oceanic islands (Hawaii, Galápagos). Here, the morphometry of 158 monogenetic and polygenetic shield volcanoes is analyzed quantitatively from 90-meter resolution SRTM DEMs using the MORVOLC algorithm. An additional set of 24 lava-dominated 'shield-like' volcanoes, considered so far as stratovolcanoes, are documented for comparison. Results show that there is a large variation in shield size (volumes from 0.1 to > 1000 km3), profile shape (height/basal width (H/WB) ratios mostly from 0.01 to 0.1), flank slope gradients (average slopes mostly from 1° to 15°), elongation and summit truncation. Although there is no clear-cut morphometric difference between shield volcanoes and stratovolcanoes, an approximate threshold can be drawn at 12° average slope and 0.10 H/WB ratio. Principal component analysis of the obtained database enables to identify four key morphometric descriptors: size, steepness, plan shape and truncation. Hierarchical cluster analysis of these descriptors results in 12 end-member shield types, with intermediate cases defining a continuum of morphologies. The shield types can be linked in terms of growth stages and shape evolution, related to (1) magma composition and rheology, effusion rate and lava/pyroclast ratio, which will condition edifice steepness; (2) spatial distribution of vents, in turn related to the magmatic feeding system and the tectonic framework, which will control edifice plan shape; and (3) caldera formation, which will condition edifice truncation.

  7. Fine-grained linings of leveed channels facilitate runout of granular flows

    NASA Astrophysics Data System (ADS)

    Kokelaar, B. P.; Graham, R. L.; Gray, J. M. N. T.; Vallance, J. W.

    2014-01-01

    Catastrophic dense granular flows, such as occur in rock avalanches, debris flows and pyroclastic flows, move as fully shearing mixtures that have approximately 60 vol.% solids and tend to segregate to form coarse-grained fronts and leveed channels. Levees restrict spreading of unconfined flows and form as coarse particles that become concentrated in the top of the flow are transported to the front and then advect to the sides in the flow head. Channels from which most material has drained away down slope are commonly lined with fine-grained deposit, widely thought to remain from the tail of the waning flow. We show how segregation in experimental dense flows of carborundum or sand (300-425 μm) mixed with spherical fine ballotini (150-250 μm), on rough slopes of 27-29°, produces fine-grained channel linings that are deposited with the levees, into which they grade laterally. Maximum runout distance is attained with mixtures containing 30-40% sand, just sufficient to segregate and form levees that are adequately robust to restrict the spreading attributable to the low-friction fines. Resin impregnation and serial sectioning of deliberately arrested experimental flows shows how fines-lined levees form from the flow head; the flows create their own stable ‘conduit’ entirely from the front, which in a geophysical context can play an important mechanistic role in facilitating runout. The flow self-organization ensures that low-friction fines at the base of the segregated channel flow shear over fine-grained substrate in the channel, thus reducing frictional energy losses. We propose that in pyroclastic flows and debris flows, which have considerable mobility attributable to pore-fluid pressures, such fine-grained flow-contact zones form similarly and not only reduce frictional energy losses but also reduce flow-substrate permeability so as to enhance pore-fluid pressure retention. Thus the granular flow self-organization that produces fine-grained channel linings can be an important factor in facilitating long runout of catastrophic geophysical flows on the low slopes (few degrees) of depositional fans and aprons around mountains and volcanoes.

  8. Multiphase-flow numerical modeling of the 18 May 1980 lateral blast at Mount St. Helens, USA

    USGS Publications Warehouse

    Ongaro, T.E.; Widiwijayanti, C.; Clarke, A.B.; Voight, B.; Neri, A.

    2011-01-01

    Volcanic lateral blasts are among the most spectacular and devastating of natural phenomena, but their dynamics are still poorly understood. Here we investigate the best documented and most controversial blast at Mount St. Helens (Washington State, United States), on 18 May 1980. By means of three-dimensional multiphase numerical simulations we demonstrate that the blast front propagation, fi nal runout, and damage can be explained by the emplacement of an unsteady, stratifi ed pyroclastic density current, controlled by gravity and terrain morphology. Such an interpretation is quantitatively supported by large-scale observations at Mount St. Helens and will infl uence the defi nition and predictive mapping of hazards on blast-dangerous volcanoes worldwide. ?? 2011 Geological Society of America.

  9. Fine-grained linings of leveed channels facilitate runout of granular flows

    USGS Publications Warehouse

    Kokelaar, B.P.; Graham, R. L.; Gray, J.M.N.T.; Vallance, James W.

    2014-01-01

    Catastrophic dense granular flows, such as occur in rock avalanches, debris flows and pyroclastic flows, move as fully shearing mixtures that have approximately 60 vol.% solids and tend to segregate to form coarse-grained fronts and leveed channels. Levees restrict spreading of unconfined flows and form as coarse particles that become concentrated in the top of the flow are transported to the front and then advect to the sides in the flow head. Channels from which most material has drained away down slope are commonly lined with fine-grained deposit, widely thought to remain from the tail of the waning flow. We show how segregation in experimental dense flows of carborundum or sand (300–425 μm) mixed with spherical fine ballotini (150–250 μm), on rough slopes of 27–29°, produces fine-grained channel linings that are deposited with the levees, into which they grade laterally. Maximum runout distance is attained with mixtures containing 30–40% sand, just sufficient to segregate and form levees that are adequately robust to restrict the spreading attributable to the low-friction fines. Resin impregnation and serial sectioning of deliberately arrested experimental flows shows how fines-lined levees form from the flow head; the flows create their own stable ‘conduit’ entirely from the front, which in a geophysical context can play an important mechanistic role in facilitating runout. The flow self-organization ensures that low-friction fines at the base of the segregated channel flow shear over fine-grained substrate in the channel, thus reducing frictional energy losses. We propose that in pyroclastic flows and debris flows, which have considerable mobility attributable to pore-fluid pressures, such fine-grained flow-contact zones form similarly and not only reduce frictional energy losses but also reduce flow–substrate permeability so as to enhance pore-fluid pressure retention. Thus the granular flow self-organization that produces fine-grained channel linings can be an important factor in facilitating long runout of catastrophic geophysical flows on the low slopes (few degrees) of depositional fans and aprons around mountains and volcanoes.

  10. Paleoproterozoic andesitic volcanism in the southern Amazonian craton (northern Brazil); lithofacies analysis and geodynamic setting

    NASA Astrophysics Data System (ADS)

    Roverato, Matteo; Juliani, Caetano; Capra, Lucia; Dias Fernandes, Carlos Marcelo

    2016-04-01

    Precambrian volcanism played an important role in geological evolution and formation of new crust. Most of the literature on Precambrian volcanic rocks describes settings belonging to subaqueous volcanic systems. This is likely because subaerial volcanic rocks in Proterozoic and Archean volcano-sedimentary succession are poorly preserved due to erosive/weathering processes. The late Paleoproterozoic Sobreiro Formation (SF) here described, seems to be one of the rare exceptions to the rule and deserves particular attention. SF represents the subaerial expression of an andesitic magmatism that, linked with the upper felsic Santa Rosa F., composes the Uatumã Group. Uatumã Group is an extensive magmatic event located in the Xingú region, southwestern of Pará state, Amazonian Craton (northern Brazil). The Sobreiro volcanism is thought to be related to an ocean-continent convergent margin. It is characterized by ~1880 Ma well-preserved calc-alkaline basaltic/andesitic to andesitic lava flows, pyroclastic rocks and associated reworked successions. The superb preservation of its rock-textures allowed us to describe in detail a large variety of volcaniclastic deposits. We divided them into primary and secondary, depending if they result from a direct volcanic activity (pyroclastic) or reworked processes. Our study reinforces the importance of ancient volcanic arcs and rocks contribution to the terrestrial volcaniclastic sedimentation and evolution of plate tectonics. The volcanic activity that produced pyroclastic rocks influenced the amount of detritus shed into sedimentary basins and played a major role in the control of sedimentary dispersal patterns. This study aims to provide, for the first time, an analysis of the physical volcanic processes for the subaerial SF, based in field observation, lithofacies analysis, thin section petrography and less geochemical data. The modern volcanological approach here used can serve as a model about the evolution of Precambrian volcano-sedimentary basins. Our approach permits to better identify different processes operating on volcanic edifices and to constrain the depositional environment and thus geodynamic setting of Precambrian continental volcanic belts. Acknowledgments: We acknowledge CAPES/CNPq project n° 402564/2012-0 (Programa Ciências sem Fronteiras), CNPq/CT-Mineral (Proc. 550.342/2011-7) and INCT-Geociam (573733/2008-2) - CNPq/MCT/FAPESPA/PETROBRAS.

  11. Partitioning of pyroclasts between ballistic transport and a convective plume: Kīlauea volcano, 19 March 2008

    NASA Astrophysics Data System (ADS)

    Houghton, B. F.; Swanson, D. A.; Biass, S.; Fagents, S. A.; Orr, T. R.

    2017-05-01

    We describe the discrete ballistic and wind-advected products of a small, but exceptionally well-characterized, explosive eruption of wall-rock-derived pyroclasts from Kīlauea volcano on 19 March 2008 and, for the first time, integrate the size distribution of the two subpopulations to reconstruct the true size distribution of a population of pyroclasts as it exited from the vent. Based on thinning and fining relationships, the wind-advected fraction had a mass of 6.1 × 105 kg and a thickness half distance of 110 m, placing it at the bottom end of the magnitude and intensity spectra of pyroclastic falls. The ballistic population was mapped, in the field and by using structure-from-motion techniques, to a diameter of > 10-20 cm over an area of 0.1 km2, with an estimated mass of 1 × 105 kg. Initial ejection velocities of 50-80 m/s were estimated from inversion of isopleths. The total grain size distribution was estimated by using a mass partitioning of 98% of wind-advected material and 2% of ballistics, resulting in median and sorting values of -1.7ϕ and 3.1ϕ. It is markedly broader than those calculated for the products of magmatic explosive eruptions, because the grain size of 19 March 2008 clast population is unrelated to a volcanic fragmentation event and instead was "inherited" from a population of talus clasts that temporary blocked the vent prior to the eruption. Despite a conspicuous near-field presence, the ballistic subpopulation has only a minor influence on the grain size distribution because of its rapid thinning and fining away from source.

  12. LREE Enrichments of Altered Alkaline Pyroclastics at Kuyubasi Region Burdur, SW Turkey

    NASA Astrophysics Data System (ADS)

    Budakoglu, Murat; Tugcan Unluer, Ali; Doner, Zeynep; Kocaturk, Huseyin; Sezai Kırıkoǧlu, M.

    2017-04-01

    ABSTRACT In the Kuyubasi region of Burdur, Bucak district, Inner Isparta Apex, SW Anatolia, Turkey, the investigation carried out for the potential in-situ enrichments of REE in highly altered alkaline tuffs originated from Golcuk volcano. This volcano is the most significant product of the widely known post collisional, Afyon-Isparta potassic-ultrapotassic volcanic province in southwestern Turkey. Partial melting of oceanic crust and subcontinental lithospheric mantle resulted in the formation of florocarbonates and pyrochlore group minerals which are responsible for the LREE enrichment in Golcuk volcanics. These extrusive rocks are mainly trachyandesites, augite-trachytes, porphyry trachytes and tephriphonolite dikes which are formed in several eruptive cycles. Pyroclastics from the last eruptions can be encountered in various locations beneath the Isparta apex. The pyroclastics in study area described as mafic crystal metatuffs which predominantly consist of calcic-plagioclase with clinopyroxene, K-feldspar, and quartz set in a hyalo-microcrystalline tuffaceous matrix of microcrystalline aggregates of kaolinized and sericitized feldspar, biotite, chlorite, quartz, and dusty iron oxide. The results indicate high values for the LREE elements such as La (251-369 ppm), Ce (412-660 ppm), Sc (45-48 ppm). The average ΣREE content of samples are 1012 ppm. These results are compatible with the samples from Golcuk Caldera which is located 30 km north of study area in terms of LREE contents (La and Ce values are 400-500 ppm and 500-600 ppm respectively). Key words: Rare earth elements (REE), Pyroclastic occurrences, Bucak region, Burdur, Southwest Turkey *This research was supported by The Scientific and Technological Research Council of Turkey (TUBITAK) project. Principal Investigator (PI) of this ongoing TUBITAK, CAYDAG-114Y646 project is Prof.Dr. M. Sezai KIRIKOGLU.

  13. Storage conditions of the mafic and silicic magmas at Cotopaxi, Ecuador

    NASA Astrophysics Data System (ADS)

    Martel, Caroline; Andújar, Joan; Mothes, Patricia; Scaillet, Bruno; Pichavant, Michel; Molina, Indira

    2018-04-01

    The 2015 reactivation of the Cotopaxi volcano urges us to understand the complex eruptive dynamics of Cotopaxi for better management of a potential major crisis in the near future. Cotopaxi has commonly transitioned from andesitic eruptions of strombolian style (lava flows and scoria ballistics) or nuées ardentes (pyroclastic flows and ash falls) to highly explosive rhyolitic ignimbrites (pumiceous pyroclastic flows), which entail drastically different risks. To better interpret geophysical and geochemical signals, Cotopaxi magma storage conditions were determined via existing phase-equilibrium experiments that used starting materials chemically close to the Cotopaxi andesites and rhyolites. The results suggest that Cotopaxi's most mafic andesites (last erupted products) can be stored over a large range of depth from 7 km to ≥16 km below the summit (pressure from 200 to ≥400 MPa), 1000 °C, NNO +2, and contain 4.5-6.0±0.7 wt% H2O dissolved in the melt in equilibrium with 30-40% phenocrysts of plagioclase, two pyroxenes, and Fe-Ti oxides. These mafic andesites sometimes evolve towards more silicic andesites by cooling to 950 °C. Rhyolitic magmas are stored at 200-300 MPa (i.e. 7-11 km below the summit), 750 °C, NNO +2, and contain 6-8 wt% H2O dissolved in a nearly aphyric melt (<5% phenocrysts of plagioclase, biotite, and Fe-Ti oxides). Although the andesites produce the rhyolitic magmas by fractional crystallization, the Cotopaxi eruptive history suggests reactivation of either reservoirs at distinct times, likely reflecting flux or time fluctuations during deep magma recharge.

  14. Towards an Effective Decision Support System for Merapi Volcano (Yogyakarta Region, Indonesia)

    NASA Astrophysics Data System (ADS)

    Setijadji, L. D.

    2011-12-01

    The 2010 explosive eruption of Merapi has raised questions on how to develop a near real-time decision support system of multi volcanic hazards (e.g., ash plumes, pyroclastic flow and lahar floods) in populated volcanic terrains such as Yogyakarta region in Indonesia. Despite Merapi has been the most monitored volcano in the nation for a long time, the 2010 eruption behaviors have told us how dynamic a volcano is, and we have to anticipate for any scenarios. The Centre of Volcanology and Geo-hazards Mitigation (PVMBG) has long learned from the well-known Merapi-style eruption (i.e. typically starts with formation of lava dome and is followed by dome-collapse pyroclastic flows) to produce a long-established robust monitoring and prediction system for Merapi. However, the complex magmatic-volcanic system within volcano has proven that Merapi erupted violently in 2010 without a lava dome phase. The existing monitoring instruments which were mainly ground-based geophysical tools were destroyed and in large extent there were times during the crisis that no monitoring system was available in producing near real-time data input. Satellite images data could probably support this mission, but they were not part of existing monitoring systems of PVMBG. Partly as results of this failure, the 2010 eruption took large number of victims (reported loss of life 324) and as much as 320,000 citizens were displaced. The 2010 experience told us that we have to be ready with different styles of eruptions and that the current monitoring system needs to be supported by a reliable decision support system that allow scientists and decision makers to evaluate different scenarios quickly during the crisis, utilizing huge data sets from different instrumentations and platforms. For that purpose we initiated a research which is aimed to study the use of multi data sources such as satellite images and their integration within a Geographic Information System as key elements for a monitoring system during a volcanic eruption crisis and the following events, especially lahar hazards, using the case study of Merapi volcano. Remote sensing is still one of the most cost-effective tools, however the presence of so many different types of Earth Observation (EO) platforms and data make it difficult to select the most appropriate one, especially when we face a limited budget. Data are probably available within several institutions, but so far there is no strong coordination among governmental organizations who deal with geo-hazards. We are still on the progress to evaluate all possible sources of data, their platforms and formats, and building a scenario to use them within an integrative decision support system. We will test and improve the system when we now deal with the lahar flood hazards of Merapi that will likely to be the main hazard threat for people living surrounding Merapi for the next several years.

  15. Significance of a near-source tephra-stratigraphic sequence to the eruptive history of Hayes Volcano, south-central Alaska

    USGS Publications Warehouse

    Wallace, Kristi; Coombs, Michelle L.; Hayden, Leslie A.; Waythomas, Christopher F.

    2014-01-01

    Bluffs along the Hayes River valley, 31 km northeast and 40 km downstream from Hayes Volcano, reveal volcanic deposits that shed new light on its eruptive history. Three thick (>10 cm) and five thin (<10 cm) tephra-fall deposits are dacitic in whole rock composition and contain high proportions of amphibole to pyroxene and minor biotite and broadly correlate to Hayes tephra set H defined by earlier investigators. Two basal ages for the tephra-fall sequence of 3,690±30 and 3,750±30 14C yr B.P. are also consistent with the Hayes tephra set H timeframe. Distinguishing among Hayes tephra set H units is critical because the set is an important time-stratigraphic marker in south-central Alaska and this section provides a new reference section for Hayes tephra set H. Analysis of Fe-Ti oxide grains in the tephras shows promise for identifying individual Hayes deposits. Beneath the dacitic tephra sequence lies an older, poorly sorted tephra (tephra A) that contains dacite and rhyolite lapilli and whose basal age is 4,450±30 14C yr B.P. Immediately below the tephra-fall sequence (Unit III) lies a series of mass-flow deposits that are rich in rhyodacitic clasts (Unit II). Below Unit II and possibly coeval with it, is a 20–30 m thick pumiceous pyroclastic-flow deposit (Unit I) that extends to the valley floor. Here informally named the Hayes River ignimbrite, this deposit contains pumice clasts of rhyolite with quartz, sanidine, plagioclase, and biotite phenocrysts, an assemblage that is unique among known Quaternary volcanic products of Hayes and other Alaskan volcanoes. Units I, II, and tephra A of Unit III represent at least two previously unrecognized eruptions of Hayes Volcano that occurred prior to ~3,700 yr B.P. No compositionally equivalent distal tephra deposits correlative with Hayes Volcano rhyodacites or rhyolites have yet been identified, perhaps indicating that some of these deposits are pre-Holocene, and were largely removed by glacial ice during the last ice age. More field and analytical work is needed to further refine the eruptive history of Hayes Volcano.

  16. Recharge area of the Umbulan spring on the basis of the geology, hydrochemistry and isotopic approach, a high discharge spring of the Bromo-Tengger volcano, East Java

    NASA Astrophysics Data System (ADS)

    Jourde, H.; Toulier, A.; Baud, B.; De Montety, V.; Leonardi, V.; Pistre, S.; Hendrayana, H.

    2017-12-01

    Hydrogeochemical analysis and geological mapping, together with water Isotopes analysis, were performed to identify the recharge area of Umbulan spring, a high discharge spring located in the Bromo-Tengger volcano. The volcanic edifice, situated in a tropical climatic context, is the origin of exceptionally high discharge springs in such a volcanic context. This is the case of Umbulan spring whose discharge is about 3500 l/s that supply drinking water to the city of Surabaya, the second biggest city of Indonesia. Groundwater flows through fractured/weathered andesitic lava flow and pyroclastic deposits. The main groundwater outlet corresponds to gravity springs on the flanks of the volcano and to artesian springs in the plain. To improve the hydrogeological knowledge of the study area, the geological mapping of the North volcano flank has been performed to identify the aquiferous formations and refine the geological limits defined in the literature. Based on this geological survey, a new geological map was proposed. Water samples of gravity springs, artesian springs and deep wells were collected with elevations ranging from 40 to 2700 m above sea level, for water major ions elements and stable isotope (δ18O, δD). The meteoric local gradient of δ18O is assessed from the water isotope contents of springs, which are considered as "local pluviometer" representative of the precipitation isotope content at a given elevation corresponding to the mean elevation of their recharge catchment. Based on the analysis of the meteoric local gradient of δ18O, the mean elevation of Umbulan spring recharge catchment ranges between 700 to 1300 m a.s.l, which in agreement with geological observations. Many interrogations subsist but these first hydrogeological data collected in the field allowed to propose a first conceptual model of the Bromo-Tengger volcano, which will help improving the hydrogeological knowledge of the study area and thus preserve and manage the groundwater resource of Bromo-Tengger volcano.

  17. Earth observation taken by the Expedition 33 crew.

    NASA Image and Video Library

    2012-11-18

    ISS033-E-022852 (18 Nov. 2012) --- This view, photographed by an Expedition 33 crew member on the International Space Station, highlights the 24-kilometer wide Aso caldera on the Japanese Island of Kyushu, formed during four explosive eruptions that took place from 300,000 to 90,000 years ago, according to scientists. These major eruptions produced pyroclastic flows and airfall tephra that covered much of Kyushu. As the eruptions emptied the magma chambers beneath the ancient volcanoes, they collapsed ? forming the caldera. Shadows highlight the caldera rim at left, while green vegetation covers slopes between the rim and caldera floor at right. Volcanic activity continued in the caldera following its formation, represented by 17 younger volcanoes including Naka-dake at center. Naka-dake is one of Japan?s most active volcanoes, with ash plumes produced from the summit crater as recently as June 2011. Another prominent crater, Kusasenri, is visible to the west of Naka-dake. This crater is the site of the Aso Volcano Museum as well as pasture for cows and horses. The Aso caldera floor is largely occupied by urban and agricultural land uses that present a gray to white speckled appearance in the image. Fields and cities surround the younger volcanic structures in the caldera center to the north, west, and south. Tan to yellow-brown regions along the crater rim, and along the lower slopes of the younger volcanic highlands in the central caldera, are lacking the dense tree cover indicated by greener areas in the image.

  18. Crew Earth Observations (CEO) taken during Expedition Six

    NASA Image and Video Library

    2003-02-16

    ISS006-E-28546 (16 February 2003) --- Popocatepetl and Iztaccíhuatl Volcanoes in Mexico are featured in this digital image photographed by an Expedition 6 crewmember on the International Space Station (ISS). As part of the circum-Pacific “Ring of Fire”, Mexico hosts several of the world’s most continually active volcanoes including the massive Popocatepetl (Aztec for “Smoking Mountain”). This detailed oblique photograph also depicts a neighboring volcano, Iztaccíhuatl (the “Woman in White”). Popocatepetl has produced small, intermittent eruptions since 1994. In addition to the constant potential of eruptions producing ash deposits, pyroclastic flows, and lava, the summit of Popocatepetl also hosts glaciers. These can melt during eruptions to form mudflows that blanket areas to the south. In contrast to Popocatepetl’s well-defined symmetrical cone, Iztaccíhuatl is formed from several overlapping smaller cones that trend north-northwest to south-southeast. Glaciers and year-round snow are also present on Iztaccíhuatl (white regions along the peaks). According to NASA scientists, deep valleys have been eroded into the massive apron of ash and pumice deposits, glacial outwash, and alluvium to the east of the volcano. Despite its close proximity, similar age, and similar geologic character to Popocatepetl, Iztaccíhuatl has not erupted in historic times. This has encouraged the establishment of numerous agricultural fields (visible as faint rectilinear patterns in the lower half of the image) on the eastern flank of the mountain.

  19. Fundamental changes in the activity of the natrocarbonatite volcano Oldoinyo Lengai, Tanzania

    USGS Publications Warehouse

    Kervyn, M.; Ernst, G.G.J.; Keller, J.; Vaughan, R. Greg; Klaudius, J.; Pradal, E.; Belton, F.; Mattsson, H.B.; Mbede, E.; Jacobs, P.M.

    2010-01-01

    On September 4, 2007, after 25 years of effusive natrocarbonatite eruptions, the eruptive activity of Oldoinyo Lengai (OL), N Tanzania, changed abruptly to episodic explosive eruptions. This transition was preceded by a voluminous lava eruption in March 2006, a year of quiescence, resumption of natrocarbonatite eruptions in June 2007, and a volcano-tectonic earthquake swarm in July 2007. Despite the lack of ground-based monitoring, the evolution in OL eruption dynamics is documented based on the available field observations, ASTER and MODIS satellite images, and almost-daily photos provided by local pilots. Satellite data enabled identification of a phase of voluminous lava effusion in the 2 weeks prior to the onset of explosive eruptions. After the onset, the activity varied from 100 m high ash jets to 2–15 km high violent, steady or unsteady, eruption columns dispersing ash to 100 km distance. The explosive eruptions built up a ∼400 m wide, ∼75 m high intra-crater pyroclastic cone. Time series data for eruption column height show distinct peaks at the end of September 2007 and February 2008, the latter being associated with the first pyroclastic flows to be documented at OL. Chemical analyses of the erupted products, presented in a companion paper (Keller et al.2010), show that the 2007–2008 explosive eruptions are associated with an undersaturated carbonated silicate melt. This new phase of explosive eruptions provides constraints on the factors causing the transition from natrocarbonatite effusive eruptions to explosive eruptions of carbonated nephelinite magma, observed repetitively in the last 100 years at OL.

  20. Tephra architecture, pyroclast texture and magma rheology of mafic, ash-dominated eruptions: the Violent Strombolian phase of the Pleistocene Croscat (NE Spain) eruption.

    NASA Astrophysics Data System (ADS)

    Cimarelli, C.; Di Traglia, F.; Vona, A.,; Taddeucci, J.

    2012-04-01

    A broad range of low- to mid-intensity explosive activity is dominated by the emission of ash-sized pyroclasts. Among this activity, Violent Strombolian phases characterize the climax of many mafic explosive eruptions. Such phases last months to years, and produce ash-charged plumes several kilometers in height, posing severe threats to inhabited areas. To tackle the dominant processes leading to ash formation during Violent Strombolian eruptions, we investigated the magma rheology and the field and textural features of products from the 11 ka Croscat basaltic complex scoria cone in the Quaternary Garrotxa Volcanic Field (GVF). Field, grain-size, chemical (XRF, FE-SEM and electron microprobe) and textural analyses of the Croscat pyroclastic succession outlined the following eruption evolution: activity at Croscat began with fissural, Hawaiian-type fountaining that rapidly shifted towards Strombolian style from a central vent. Later, a Violent Strombolian explosion included several stages, with different emitted volumes and deposit features indicative of differences within the same eruptive style: at first, quasi-sustained fire-fountaining with ash jet and plume produced a massive, reverse to normal graded, scoria deposit; later, a long lasting series of ash-explosions produced a laminated scoria deposit. The eruption ended with a lava flow breaching the western-side of the volcano. Scoria clasts from the Croscat succession ubiquitously show micrometer- to centimeter-sized, microlite-rich domains (MRD) intermingled with volumetrically dominant, microlite-poor domains (MPD). MRD magmas resided longer in a relatively cooler, degassed zone lining the conduit walls, while MPD ones travelled faster along the central, hotter streamline, the two interminging along the interface between the two velocity zones. The preservation of two distinct domains in the short time-scale of the eruption was favoured by their rheological contrast related to the different microlite abundances. The proportion of MPD and MRD, in agreement with bubble-number density (BND), in different tephra layers reflects the extent of the fast- and slow-flowing zones, thus reflecting the ascent velocity profile of magma during the different phases. Recent works (Kueppers et al. 2006, "Explosive energy" during volcanic eruptions from fractal analysis of pyroclasts) indicate that fractal fragmentation theory may allow for quantifying fragmentation processes during explosive volcanic eruptions by calculating the fractal dimension (D) of the size distribution of pyroclasts. At Croscat, BND and MPD/MRD volume ratio decreased during the violent Strombolian activity while D increased, suggesting that the decrease in the magma flow rate was accompanied by the increase in fragmentation efficiency, i.e. by the increase in the ash production capability. This trend may be tentatively attributed to an increased rheological stiffness of the magma progressively enhancing its brittle, more efficient fragmentation.

  1. Comparing Pyroclastic Density Current (PDC) deposits at Colima (Mexico) and Tungurahua (Ecuador) volcanoes

    NASA Astrophysics Data System (ADS)

    Goldstein, Fabian; Varley, Nick; Bustillos, Jorge; Kueppers, Ulrich; Lavallee, Yan; Dingwell, Donald B.

    2010-05-01

    Sudden transitions from effusive to explosive eruptive behaviour have been observed at several volcanoes. As a result of explosive activity, pyroclastic density currents represent a major threat to life and infrastructure, mostly due to their unpredictability, mass, and velocity. Difficulties in direct observation force us to deduce crucial information from their deposits. Here, we present data from field work performed in 2009 on primary deposits from recent explosive episodes at Volcán de Colima (Mexico) and Tungurahua (Ecuador). Volcán de Colima, located 40km away from the Capital city Colima with 300,000 inhabitants, has been active since 1999. Activity has been primarily characterized by the slow effusion of lava dome with the daily occurrence of episodic gas (and sometimes ash) explosion events. During a period of peak activity in 2005, explosive eruptions repeatedly destroyed the dome and column collapse resulted in several PDCs that travelled down the W, S, and SE flanks. Tungurahua looms over the 20,000 inhabitants of the city of Baños, located 5km away, and is considered one of the most active volcanoes in Ecuador. The most recent eruptive cycle began in 1999 and climaxed in July and August of 2006 with the eruptions of several PDCs that traveled down the western flanks, controlled by the hydrological network. During two field campaigns, we collected an extensive data set of porosity and grain size distribution on PDCs at both volcanoes. The deposits have been mapped in detail and the porosity distribution of clasts across the surface of the deposits has been measured at more than 30 sites (> 3.000 samples). Our porosity distribution data (mean porosity values range between 17 and 24%) suggests an influence of run out distance and lateral position. Preliminary results of grain size analysis of ash and lapilli (< 5mm) has been performed at approximately 50 sites at varying longitudinal, lateral and vertical positions, and show a correlation with run-out distance, morphology, and stratigraphic context. Sedimentary structures such as dunes, grain size distribution, and the observed damage to vegetation help depict the progression of the flow and its dynamics. We also present optical microscopic analysis of ash and lapilli particles which portray the fundamental processes occurring during PDCs.

  2. The Quaternary history of effusive volcanism of the Nevado de Toluca area, Central Mexico

    NASA Astrophysics Data System (ADS)

    Torres-Orozco, R.; Arce, J. L.; Layer, P. W.; Benowitz, J. A.

    2017-11-01

    Andesite and dacite lava flows and domes, and intermediate-mafic cones from the Nevado de Toluca area were classified into five groups using field data and 40Ar/39Ar geochronology constraints. Thirty-four lava units of diverse mineralogy and whole-rock major-element geochemistry, distributed between the groups, were identified. These effusive products were produced between ∼1.5 and ∼0.05 Ma, indicating a mid-Pleistocene older-age for Nevado de Toluca volcano, coexisting with explosive products that suggest a complex history for this volcano. A ∼0.96 Ma pyroclastic deposit attests for the co-existence of effusive and explosive episodes in the mid-Pleistocene history. Nevado de Toluca initiated as a composite volcano with multiple vents until ∼1.0 Ma, when the activity began to centralize in an area close to the present-day crater. The modern main edifice reached its maximum height at ca. 50 ka after bulky, spiny domes erupted in the current summit of the crater. Distribution and geochemical behavior in major elements of lavas indicate a co-magmatic relationship between different andesite and dacite domes and flows, although unrelated to the magmatism of the monogenetic volcanism. Mafic-intermediate magma likely replenished the system at Nevado de Toluca since ca. ∼1.0 Ma and contributed to the eruption of new domes, cones, as well as effusive-explosive activity. Altogether, field and laboratory data suggest that a large volume of magma was ejected around 1 Ma in and around the Nevado de Toluca.

  3. Syn-eruptive, soft-sediment deformation of deposits from dilute pyroclastic density current: triggers from granular shear, dynamic pore pressure, ballistic impacts and shock waves

    NASA Astrophysics Data System (ADS)

    Douillet, G. A.; Taisne, B.; Tsang-Hin-Sun, E.; Muller, S. K.; Kueppers, U.; Dingwell, D. B.

    2015-05-01

    Soft-sediment deformation structures can provide valuable information about the conditions of parent flows, the sediment state and the surrounding environment. Here, examples of soft-sediment deformation in deposits of dilute pyroclastic density currents are documented and possible syn-eruptive triggers suggested. Outcrops from six different volcanoes have been compiled in order to provide a broad perspective on the variety of structures: Soufriere Hills (Montserrat), Tungurahua (Ecuador), Ubehebe craters (USA), Laacher See (Germany), and Tower Hill and Purrumbete lakes (both Australia). The variety of features can be classified in four groups: (1) tubular features such as pipes; (2) isolated, laterally oriented deformation such as overturned or oversteepened laminations and vortex-shaped laminae; (3) folds-and-faults structures involving thick (>30 cm) units; (4) dominantly vertical inter-penetration of two layers such as potatoids, dishes, or diapiric flame-like structures. The occurrence of degassing pipes together with basal intrusions suggest fluidization during flow stages, and can facilitate the development of other soft-sediment deformation structures. Variations from injection dikes to suction-driven, local uplifts at the base of outcrops indicate the role of dynamic pore pressure. Isolated, centimeter-scale, overturned beds with vortex forms have been interpreted to be the signature of shear instabilities occurring at the boundary of two granular media. They may represent the frozen record of granular, pseudo Kelvin-Helmholtz instabilities. Their recognition can be a diagnostic for flows with a granular basal boundary layer. Vertical inter-penetration and those folds-and-faults features related to slumps are driven by their excess weight and occur after deposition but penecontemporaneous to the eruption. The passage of shock waves emanating from the vent may also produce trains of isolated, fine-grained overturned beds that disturb the surface bedding without occurrence of a sedimentation phase in the vicinity of explosion centers. Finally, ballistic impacts can trigger unconventional sags producing local displacement or liquefaction. Based on the deformation depth, these can yield precise insights into depositional unit boundaries. Such impact structures may also be at the origin of some of the steep truncation planes visible at the base of the so-called "chute and pool" structures. Dilute pyroclastic density currents occur contemporaneously with seismogenic volcanic explosions. They can experience extremely high sedimentation rates and may flow at the border between traction, granular and fluid-escape boundary zones. They are often deposited on steep slopes and can incorporate large amounts of water and gas in the sediment. These are just some of the many possible triggers acting in a single environment, and they reveal the potential for insights into the eruptive and flow mechanisms of dilute pyroclastic density currents.

  4. Towards Developing Systematics for Using Periodic Studies of the Hydrothermal Manifestations as Effective Tool for Monitoring Largely 'inaccessible' Volcanoes

    NASA Astrophysics Data System (ADS)

    Alam, M.

    2010-12-01

    The San José and Tupungatito volcanoes, located near Santiago (Chile), are the potential hazards, given their geological and historical record of explosive eruptions with pyroclastic flows, most recently in 1960 and 1987 respectively (Global Volcanism Program, Smithsonian Institution). What aggravates the potential risk of these very high (>5290m elevation) snow- and ice-covered volcanoes is their location at the source of relatively narrow mountain drainage systems that feed into the Maipo River, flowing through the southern outskirts of Santiago. Sector-collapse and debris-flow, as a result of volcano-ice/snow interaction, can form lahars causing immense destruction to the life and property in the Maipo Valley (Cajón del Maipo). These lahars can cause submergence and burial of vast downstream areas under several meters thick sediment, as in the case of 1980 eruption of Mount St. Helens, USA. In the event of a major eruption, Santiago city will be at peril, with all the drinking water supply installations either destroyed or contaminated to the extent of being abandoned. Besides, ash and tephra will halt the air traffic in the region, particularly in Santiago-Mendoza sector between Chile and Argentina. In a proposed research project (for which funding is awaited from CONICYT, Chile under its Initiation into Research Funding Competition), hydrothermal systems associated with the aforementioned volcanoes will be periodically studied to monitor these volcanoes, in order to develop a Systematics for using the peripheral hydrothermal manifestations, together with nearby surface water bodies, as means for monitoring the activities of the volcano(es). Basic premise of this proposal is to use the relationship between volcanic and hydrothermal activities. Although this association has been observed at many volcanic centers, no attempt has been made to use this relation effectively as a tool for monitoring the volcanoes. Before an eruption or even with increased solfataric activities, the geochemical signatures of the peripheral hydrothermal systems and nearby surface water bodies change significantly. These geochemical changes can be correlated and verified with the observed volcanic activities. Ground deformation of the volcanoes will be studied through Synthetic Aperture Radar (SAR) Interferometry (InSAR), while thermal infrared remote sensing will be used for monitoring thermal anomalies. The reason for choosing these remote methods over the conventional ground based on-site monitoring, is the difficulty in accessing the aforementioned volcanic centers and risk involved in carrying such instruments for frequent observations, as required for the proposed work. In fact, the idea of developing such a Systematics is because of the risk involved in ground based monitoring of these volcanoes. However, microgravity study, which is relatively easier and safer, will be done to validate the results of the remote sensing studies. The expected outcome of the proposed work will not only help in the mitigation of potential hazard of the aforementioned volcanoes, which are currently unmonitored for the reasons mentioned earlier; but will also serve as a model for monitoring remote and largely ‘inaccessible’ volcanoes elsewhere.

  5. Les amas sulfurés du massif miocène d'El Aouana (Algérie)— I. Dynamisme de mise en place des roches volcaniques et implications métallogéniques

    NASA Astrophysics Data System (ADS)

    Villemaire, Cl.

    Two main units have been distinguished in the Miocene El Aouana area. A tectonic event occurs between their respective deposits inducing faulting, tilting of the lower volcanic unit and caldeira structure. The lower unit comprises first continental air fall pyroclastic rocks and dacitic flows, then marine flow pyroclastic rocks, dacitic flows and epiclastic rocks. The upper volcanic unit, announced by extensive andesitic flows, is characterized by pyroclastic flow sheets. The two units are intruded by dacitic domes. These volcanic rocks belong to the calco-alcaline succession, with well-expressed acidic terms. The ore deposits are formed by lenses, stockworks and lodes. They are massive sulphides ore type. Mineralizations are strictly localized at the contact boundary between dacitic intrusive rocks and marine pyroclastic flows and epiclastic rocks. We suggest that the systematic research of dacitic domes would be successful to increase the mining reserves of this area.

  6. The Uwekahuna Ash Member of the Puna Basalt: product of violent phreatomagmatic eruptions at Kilauea volcano, Hawaii, between 2800 and 2100 14C years ago

    USGS Publications Warehouse

    Dzurisin, D.; Lockwood, J.P.; Casadevall, T.J.; Rubin, M.

    1995-01-01

    Kilauea volcano's reputation for relatively gentle effusive eruptions belies a violent geologic past, including several large phreatic and phreatomagmatic eruptions that are recorded by Holocene pyroclastic deposits which mantle Kilauea's summit area and the southeast flank of adjacent Mauna Loa volcano. The most widespread of these deposits is the Uwekahuna Ash Member, a basaltic surge and fall deposit emplaced during two or more eruptive episodes separated by a few decades to several centuries. It is infered that the eruptions which produced the Uwekahuna were driven by water interacting with a fluctuating magma column. The volume, extent and character of the Uwekahuna deposits underscore the hazards posed by relatively infrequent but potentially devastating explosive eruptions at Kilauea, as well as at other basaltic volcanoes. -from Authors

  7. Pyroclast/snow interactions and thermally driven slurry formation. Part 1: Theory for monodisperse grain beds

    USGS Publications Warehouse

    Walder, J.S.

    2000-01-01

    Lahars are often produced as pyroclastic flows move over snow. This phenomenon involves a complicated interplay of mechanical and thermal processes that need to be separated to get at the fundamental physics. The thermal physics of pyroclast/snow interactions form the focus of this paper. A theoretical model is developed of heat- and mass transfer at the interface between a layer of uniformly sized pyroclasts and an underlying bed of snow, for the case in which there is no relative shear motion between pyroclasts and snow. A microscale view of the interface is required to properly specify boundary conditions. The physical model leads to the prediction that the upward flux of water vapor - which depends upon emplacement temperature, pyroclast grain size, pyroclast-layer thickness, and snow permeability - is sometimes sufficient to fluidize the pyroclasts. Uniform fluidization is usually unstable to bubble formation, which leads to vigorous convection of the pyroclasts themselves. Thus, predicted threshold conditions for fluidization are tantamount to predicted thresholds for particle convection. Such predictions are quantitatively in good agreement with results of experiments described in part 2 of this paper. Because particle convection commonly causes scour of the snow bed and transformation of the pyroclast layer to a slurry, there exists a 'thermal scour' process for generating lahars from pyroclastic flows moving over snow regardless of the possible role of mechanical scour.

  8. Late Pleistocene-Holocene cataclysmic eruptions at Nevado de Toluca and Jocotitlan volcanoes, central Mexico

    USGS Publications Warehouse

    Macias, J.L.; Garcia, P.A.; Arce, J.L.; Siebe, C.; Espindola, J.M.; Komorowski, J.C.; Scott, K.

    1997-01-01

    This field guide describes a five day trip to examine deposits of Late Pleistocene-Holocene cataclysmic eruptions at Nevado de Toluca and Jocotitlan volcanoes in central Mexico. We will discuss the stratigraphy, petrology, and sedimentological characteristics of these deposits which provide insights into the eruptive history, type of volcanic activity, and transport and emplacement mechanisms of pyroclastic materials. These parameters will allow us to discuss the kinds of hazards and the risk that they pose to populations around these volcanoes. The area to be visited is tectonically complex thus we will also discuss the location of the volcanoes with respect to the tectonic environment. The first four days of the field trip will be dedicated to Nevado de Toluca Volcano (19 degrees 09'N; 99 degrees 45'W) located at 23 km. southwest of the City of Toluca, and is the fourth highest peak in the country, reaching an elevation of 4,680 meters above sea level (m.a.s.l.). Nevado de Toluca is an andesitic-dacitic stratovolcano, composed of a central vent excavated upon the remains of older craters destroyed by former events. Bloomfield and Valastro, (1974, 1977) concluded that the last cycle of activity occurred nearly equal 11,600 yr. ago. For this reason Nevado de Toluca has been considered an extinct volcano. Our studies, however, indicate that Nevado de Toluca has had at least two episodes of cone destruction by sector collapse as well as several explosive episodes including plinian eruptions and dome-destruction events. These eruptions occurred during the Pleistocene but a very young eruption characterized by surge and ash flows occurred ca. 3,300 yr. BP. This new knowledge of the volcano's eruptive history makes the evaluation of its present state of activity and the geological hazards necessary. This is important because the area is densely populated and large cities such as Toluca and Mexico are located in its proximity.

  9. In vitro toxicology of respirable Montserrat volcanic ash.

    PubMed

    Wilson, M R; Stone, V; Cullen, R T; Searl, A; Maynard, R L; Donaldson, K

    2000-11-01

    In July 1995 the Soufriere Hills volcano on the island of Montserrat began to erupt. Preliminary reports showed that the ash contained a substantial respirable component and a large percentage of the toxic silica polymorph, cristobalite. In this study the cytotoxicity of three respirable Montserrat volcanic ash (MVA) samples was investigated: M1 from a single explosive event, M2 accumulated ash predominantly derived from pyroclastic flows, and M3 from a single pyroclastic flow. These were compared with the relatively inert dust TiO(2) and the known toxic quartz dust, DQ12. Surface area of the particles was measured with the Brunauer, Emmet, and Teller (BET) adsorption method and cristobalite content of MVA was determined by x ray diffraction (XRD). After exposure to particles, the metabolic competence of the epithelial cell line A549 was assessed to determine cytotoxic effects. The ability of the particles to induce sheep blood erythrocyte haemolysis was used to assess surface reactivity. Treatment with either MVA, quartz, or titanium dioxide decreased A549 epithelial cell metabolic competence as measured by ability to reduce 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). On addition of mannitol, the cytotoxic effect was significantly less with M1, quartz, and TiO(2). All MVA samples induced a dose dependent increase in haemolysis, which, although less than the haemolysis induced by quartz, was significantly greater than that induced by TiO(2). Addition of mannitol and superoxide dismutase (SOD) significantly reduced the haemolytic activity only of M1, but not M2 or M3, the samples derived from predominantly pyroclastic flow events. Neither the cristobalite content nor the surface area of the MVA samples correlated with observed in vitro reactivity. A role for reactive oxygen species could only be shown in the cytotoxicity of M1, which was the only sample derived from a purely explosive event. These results suggest that in general the bioreactivity of MVA samples in vitro is low compared with pure quartz, but that the bioreactivity and mechanisms of biological interaction may vary according to the ash source.

  10. Mihi Breccia: A stack of lacustrine sediments and subaqueous pyroclastic flows within the Taupo Volcanic Zone, New Zealand

    USGS Publications Warehouse

    Downs, Drew

    2016-01-01

    The Taupo Volcanic Zone (TVZ), New Zealand, encompasses a wide variety of arc-related strata, although most of its small-volume (non-caldera-forming) eruptions are poorly-exposed and extensively hydrothermally altered. The Mihi Breccia is a stratigraphic sequence consisting of interbedded rhyolitic pyroclastic flows and lacustrine sediments with eruption ages of 281 ± 18 to at least 239 ± 6 ka (uncertainties at 2σ). In contrast to other small-volume rhyolitic eruptions within the TVZ, Mihi Breccia is relatively well-exposed within the Paeroa fault block, and contains minimal hydrothermal alteration. Pyroclastic flow characteristics and textures including: 1) breadcrusted juvenile clasts, 2) lack of welding, 3) abundant ash-rich matrix, 4) lack of fiamme and eutaxitic textures, 5) lack of thermal oxidation colors, 6) lack of cooling joints, 7) exclusive lacustrine sediment lithic clasts, and 8) interbedding with lacustrine sediments, all indicating that Mihi Breccia strata originated in a paleo-lake system. This ephemeral paleo-lake system is inferred to have lasted for > 50 kyr (based on Mihi Breccia age constraints), and referred to as Huka Lake. Mihi Breccia pyroclastic flow juvenile clast geochemistry and petrography correspond with similar-aged (264 ± 8, 263 ± 10, and 247 ± 4 ka) intra-caldera rhyolite domes filling the Reporoa caldera (source of the 281 ± 81 Kaingaroa Formation ignimbrite). These exposed intra-caldera rhyolite domes (as well as geophysically inferred subsurface domes) are proposed to be source vents for the Mihi Breccia pyroclastic flows. Soft-sediment deformation associated with Mihi Breccia strata indicate either seismic shock, rapid sediment loading during pyroclastic flow emplacement, or both. Thus, the Mihi Breccia reflects a prolonged series of subaqueous rhyolite dome building and associated pyroclastic flows, accompanied by seismic activity, emplaced into a large paleo-lake system within the TVZ.

  11. Mihi Breccia: A stack of lacustrine sediments and subaqueous pyroclastic flows within the Taupo Volcanic Zone, New Zealand

    NASA Astrophysics Data System (ADS)

    Downs, Drew T.

    2016-11-01

    The Taupo Volcanic Zone (TVZ), New Zealand, encompasses a wide variety of arc-related strata, although most of its small-volume (non-caldera-forming) eruptions are poorly-exposed and extensively hydrothermally altered. The Mihi Breccia is a stratigraphic sequence consisting of interbedded rhyolitic pyroclastic flows and lacustrine sediments with eruption ages of 281 ± 18 to at least 239 ± 6 ka (uncertainties at 2σ). In contrast to other small-volume rhyolitic eruptions within the TVZ, Mihi Breccia is relatively well-exposed within the Paeroa fault block, and contains minimal hydrothermal alteration. Pyroclastic flow characteristics and textures include: 1) prismatically jointed juvenile clasts, 2) lack of welding, 3) abundant ash-rich matrix, 4) lack of fiamme and eutaxitic textures, 5) lack of thermal oxidation colors, 6) lack of cooling joints, 7) exclusive lacustrine sediment lithic clasts, and 8) interbedding with lacustrine sediments, all indicating that Mihi Breccia strata originated in a paleo-lake system. This ephemeral paleo-lake system is inferred to have lasted for > 50 kyr (based on Mihi Breccia age constraints), and referred to as Huka Lake. Mihi Breccia pyroclastic flow juvenile clast geochemistry and petrography correspond with similar-aged (264 ± 8, 263 ± 10, and 247 ± 4 ka) intra-caldera rhyolite domes filling the Reporoa caldera (source of the 281 ka Kaingaroa Formation ignimbrite). These exposed intra-caldera rhyolite domes (as well as geophysically inferred subsurface domes) are proposed to be source vents for the Mihi Breccia pyroclastic flows. Soft-sediment deformation associated with Mihi Breccia strata indicates either seismic shock, rapid sediment loading during pyroclastic flow emplacement, or both. Thus, the Mihi Breccia reflects a prolonged series of subaqueous rhyolite dome building and associated pyroclastic flows, accompanied by seismic activity, emplaced into a large paleo-lake system within the TVZ.

  12. Cyclic Explosivity in High Elevation Phreatomagmatic Eruptions at Ocean Island Volcanoes: Implications for Aquifer Pressurization and Volcano Flank Destabilization.

    NASA Astrophysics Data System (ADS)

    Tarff, R.; Day, S. J.; Downes, H.; Seghedi, I.

    2015-12-01

    Groundwater heating and pressurization of aquifers trapped between dikes in ocean island volcanoes has been proposed as a mechanism for destabilizing and triggering large-volume flank collapses. Previous modelling has indicated that heat transfer from sustained magma flow through dikes during eruption has the potential to produce destabilizing levels of pressure on time scales of 4 to 400 days, if the aquifers remain confined. Here we revisit this proposal from a different perspective. We examine evidence for pressure variations in dike-confined aquifers during eruptions at high elevation vents on ocean island volcanoes. Initially magmatic, these eruptions change to mostly small-volume explosive phreatomagmatic activity. A recent example is the 1949 eruption on La Palma, Canary Islands. Some such eruptions involve sequences of larger-volume explosive phases or cycles, including production of voluminous low-temperature, pyroclastic density currents (PDC). Here we present and interpret data from the Cova de Paul crater eruption (Santo Antao, Cape Verde Islands). The phreatomagmatic part of this eruption formed two cycles, each culminating with eruption of PDCs. Compositional and textural variations in the products of both cycles indicate that the diatreme fill began as coarse-grained and permeable which allowed gas to escape. During the eruption, the fill evolved to a finer grained, poorly sorted, less permeable material, in which pore fluid pressures built up to produce violent explosive phases. This implies that aquifers adjacent to the feeder intrusion were not simply depressurized at the onset of phreatomagmatic explosivity but experienced fluctuations in pressure throughout the eruption as the vent repeatedly choked and emptied. In combination with fluctuations in magma supply rate, driving of aquifer pressurization by cyclical vent choking will further complicate the prediction of flank destabilization during comparable eruptions on ocean island volcanoes.

  13. Perturbation and melting of snow and ice by the 13 November 1985 eruption of Nevado del Ruiz, Colombia, and consequent mobilization, flow and deposition of lahars

    USGS Publications Warehouse

    Pierson, T.C.; Janda, R.J.; Thouret, J.-C.; Borrero, C.A.

    1990-01-01

    A complex sequence of pyroclastic flows and surges erupted by Nevado del Ruiz volcano on 13 November 1985 interacted with snow and ice on the summit ice cap to trigger catastrophic lahars (volcanic debris flows), which killed more than 23,000 people living at or beyond the base of the volcano. The rapid transfer of heat from the hot eruptive products to about 10 km2 of the snowpack, combined with seismic shaking, produced large volumes of meltwater that flowed downslope, liquefied some of the new volcanic deposits, and generated avalanches of saturated snow, ice and rock debris within minutes of the 21:08 (local time) eruption. About 2 ?? 107 m3 of water was discharged into the upper reaches of the Molinos, Nereidas, Guali, Azufrado and Lagunillas valleys, where rapid entrainment of valley-fill sediment transformed the dilute flows and avalanches to debris flows. Computed mean velocities of the lahars at peak flow ranged up to 17 m s-1. Flows were rapid in the steep, narrow upper canyons and slowed with distance away from the volcano as flow depth and channel slope diminished. Computed peak discharges ranged up to 48,000 m3 s-1 and were greatest in reaches 10 to 20 km downstream from the summit. A total of about 9 ?? 107 m3 of lahar slurry was transported to depositional areas up to 104 km from the source area. Initial volumes of individual lahars increased up to 4 times with distance away from the summit. The sedimentology and stratigraphy of the lahar deposits provide compelling evidence that: (1) multiple initial meltwater pulses tended to coalesce into single flood waves; (2) lahars remained fully developed debris flows until they reached confluences with major rivers; and (3) debris-flow slurry composition and rheology varied to produce gradationally density-stratified flows. Key lessons and reminders from the 1985 Nevado del Ruiz volcanic eruption are: (1) catastrophic lahars can be generated on ice- and snow-capped volcanoes by relatively small eruptions; (2) the surface area of snow on an ice cap can be more critical than total ice volume when considering lahar potential; (3) placement of hot rock debris on snow is insufficient to generate lahars; the two materials must be mechanically mixed together for sufficiently rapid head transfer; (4) lahars can increase their volumes significantly by entrainment of water and eroded sediment; and (5) valley-confined lahars can maintain relatively high velocities and can have catastrophic impacts as far as 100 km downstream. ?? 1990.

  14. Preliminary volcano hazard assessment for the Emmons Lake volcanic center, Alaska

    USGS Publications Warehouse

    Waythomas, Christopher; Miller, Thomas P.; Mangan, Margaret T.

    2006-01-01

    The Emmons Lake volcanic center is a large stratovolcano complex on the Alaska Peninsula near Cold Bay, Alaska. The volcanic center includes several ice- and snow-clad volcanoes within a nested caldera structure that hosts Emmons Lake and truncates a shield-like ancestral Mount Emmons edifice. From northeast to southwest, the main stratovolcanoes of the center are: Pavlof Sister, Pavlof, Little Pavlof, Double Crater, Mount Hague, and Mount Emmons. Several small cinder cones and vents are located on the floor of the caldera and on the south flank of Pavlof Volcano. Pavlof Volcano, in the northeastern part of the center, is the most historically active volcano in Alaska (Miller and others, 1998) and eruptions of Pavlof pose the greatest hazards to the region. Historical eruptions of Pavlof Volcano have been small to moderate Strombolian eruptions that produced moderate amounts of near vent lapilli tephra fallout, and diffuse ash plumes that drifted several hundreds of kilometers from the vent. Cold Bay, King Cove, Nelson Lagoon, and Sand Point have reported ash fallout from Pavlof eruptions. Drifting clouds of volcanic ash produced by eruptions of Pavlof would be a major hazard to local aircraft and could interfere with trans-Pacific air travel if the ash plume achieved flight levels. During most historical eruptions of Pavlof, pyroclastic material erupted from the volcano has interacted with the snow and ice on the volcano producing volcanic mudflows or lahars. Lahars have inundated most of the drainages heading on the volcano and filled stream valleys with variable amounts of coarse sand, gravel, and boulders. The lahars are often hot and would alter or destroy stream habitat for many years following the eruption. Other stratocones and vents within the Emmons Lake volcanic center are not known to have erupted in the past 300 years. However, young appearing deposits and lava flows suggest there may have been small explosions and minor effusive eruptive activity within the caldera during this time interval. Mount Hague may have experienced minor steam eruptions. The greatest hazards in order of importance are described below and summarized on plate 1.

  15. October 2005 Debris Flows at Panabaj, Guatemala:Hazard Assessment

    NASA Astrophysics Data System (ADS)

    Sheridan, M. F.; Connor, C.; Connor, L.; Stinton, A.; Galacia, O. R.; Barrios, G.

    2007-05-01

    In October, 2005, tropical storm Stan caused heavy precipitation throughout much of Guatemala. In the community of Panabaj, Santiago Atitlán, a landslide of pyroclastic material originating high on the slopes of Tolimán volcano buried much of the community, leaving approximately 400 people dead. Current estimates by the Coordinadora Nacional para la Reducción de Desastres (CONRED) suggest that at least 2,600 people from the community of Panabaj, Santiago Atitlán have been displaced by the debris flows. Because the temporary housing for people displaced by the debris flows is located in an area that is geologically and morphologically similar to the area inundated by flows in October, 2005, this area may be potentially inundated by debris flows as well. In addition to the thousands of people living in temporary shelters, many hundreds of people are currently reoccupying land adjacent to or on the October, 2005 debris flows. Thus a large fraction of the surviving Panabaj community appears to remain at risk from future debris flows. We used differential GPS (Global Positioning System) to outline the boundaries of the debris flows, to estimate variation in flow thicknesses, and to determine their volumes. Mass movement on Tolimán volcano resulted in the generation of a moderate size debris flow (360,000 m3 of sediment plus water) that descended the volcano rapidly, bifurcated into two stream valleys high on the flanks of the volcano, and continued to descend both channels until these flows reached the alluvial fan near the shores of Lago de Atitlán. After bifurcating into two flows high on the flanks of the volcano, about 65% of the flow (by volume) descended the western channel, forming the Western flow. Approximately one kilometer above the alluvial fan, this channel descends steep topography, with a slope of 11.5°. This average slope gradually decreases down the channel, reaching only 5.3° just above the alluvial fan. In contrast, average slopes on the Eastern channel are up to 16.7°. Also, this channel thalweg steepens dramatically to 12.8° just above the alluvial fan. Flow velocities in channelized sections were estimated by superelevation at bends at two locations for each of the two flow branches. In measured cross sectional areas between 144 and 160 m2 the calculated velocities ranged from 8.3-10.6 ms-1 yielding fluxes between 1280 and 1680 m3s- 1. The fluxes for the two flows are surprisingly similar. The planimetric area inundated by the Western flow is approximately 180,000 m2 and the area inundated by the Eastern debris flow is 77,000 m2. On reaching the gently-sloping (2.8°) depositional fan where the village of Panabaj is located, the flows thinned to 0.5-3.0 m and spread laterally as a broad sheet flow bounded by distinct flow fronts of 0.30-0.6 m height. Although thin, the flows had sufficient power to sweep away most of the concrete block houses in their paths. Based on observations of high water marks preserved on buildings, up to 40% of the flow by volume consisted of water and fine grained sediments that have been dewatered from the deposit during and since deposition.

  16. PYFLOW 2.0. A new open-source software for quantifying the impact and depositional properties of dilute pyroclastic density currents

    NASA Astrophysics Data System (ADS)

    Dioguardi, Fabio; Dellino, Pierfrancesco

    2017-04-01

    Dilute pyroclastic density currents (DPDC) are ground-hugging turbulent gas-particle flows that move down volcano slopes under the combined action of density contrast and gravity. DPDCs are dangerous for human lives and infrastructures both because they exert a dynamic pressure in their direction of motion and transport volcanic ash particles, which remain in the atmosphere during the waning stage and after the passage of a DPDC. Deposits formed by the passage of a DPDC show peculiar characteristics that can be linked to flow field variables with sedimentological models. Here we present PYFLOW_2.0, a significantly improved version of the code of Dioguardi and Dellino (2014) that was already extensively used for the hazard assessment of DPDCs at Campi Flegrei and Vesuvius (Italy). In the latest new version the code structure, the computation times and the data input method have been updated and improved. A set of shape-dependent drag laws have been implemented as to better estimate the aerodynamic drag of particles transported and deposited by the flow. A depositional model for calculating the deposition time and rate of the ash and lapilli layer formed by the pyroclastic flow has also been included. This model links deposit (e.g. componentry, grainsize) to flow characteristics (e.g. flow average density and shear velocity), the latter either calculated by the code itself or given in input by the user. The deposition rate is calculated by summing the contributions of each grainsize class of all components constituting the deposit (e.g. juvenile particles, crystals, etc.), which are in turn computed as a function of particle density, terminal velocity, concentration and deposition probability. Here we apply the concept of deposition probability, previously introduced for estimating the deposition rates of turbidity currents (Stow and Bowen, 1980), to DPDCs, although with a different approach, i.e. starting from what is observed in the deposit (e.g. the weight fractions ratios between the different grainsize classes). In this way, more realistic estimates of the deposition rate can be obtained, as the deposition probability of different grainsize constituting the DPDC deposit could be different and not necessarily equal to unity. Calculations of the deposition rates of large-scale experiments, previously computed with different methods, have been performed as experimental validation and are presented. Results of model application to DPDCs and turbidity currents will also be presented. Dioguardi, F, and P. Dellino (2014), PYFLOW: A computer code for the calculation of the impact parameters of Dilute Pyroclastic Density Currents (DPDC) based on field data, Powder Technol., 66, 200-210, doi:10.1016/j.cageo.2014.01.013 Stow, D. A. V., and A. J. Bowen (1980), A physical model for the transport and sorting of fine-grained sediment by turbidity currents, Sedimentology, 27, 31-46

  17. Slow-moving and far-travelled dense pyroclastic flows during the Peach Spring super-eruption.

    PubMed

    Roche, O; Buesch, D C; Valentine, G A

    2016-03-07

    Explosive volcanic super-eruptions of several hundred cubic kilometres or more generate long run-out pyroclastic density currents the dynamics of which are poorly understood and controversial. Deposits of one such event in the southwestern USA, the 18.8 Ma Peach Spring Tuff, were formed by pyroclastic flows that travelled >170 km from the eruptive centre and entrained blocks up to ∼ 70-90 cm diameter from the substrates along the flow paths. Here we combine these data with new experimental results to show that the flow's base had high-particle concentration and relatively modest speeds of ∼ 5-20 m s(-1), fed by an eruption discharging magma at rates up to ∼ 10(7)-10(8) m(3) s(-1) for a minimum of 2.5-10 h. We conclude that sustained high-eruption discharge and long-lived high-pore pressure in dense granular dispersion can be more important than large initial velocity and turbulent transport with dilute suspension in promoting long pyroclastic flow distance.

  18. Tephrostratigraphy of the A.D. 79 pyroclastic deposits in perivolcanic areas of Mt. Vesuvio (Italy)

    NASA Astrophysics Data System (ADS)

    Lirer, Lucio; Munno, Rosalba; Petrosino, Paola; Vinci, Anna

    1993-11-01

    Correlations between pyroclastic deposits in perivolcanic areas are often complicated by lateral and vertical textural variations linked to very localized depositional effects. In this regard, a detailed sampling of A.D. 79 eruption products has been performed in the main archaeological sites of the perivolcanic area, with the aim of carrying out a grain-size, compositional and geochemical investigation so as to identify the marker layers from different stratigraphic successions and thus reconstruct the eruptive sequence. In order to process the large number of data available, a statistical approach was considered the most suitable. Statistical processing highlighted 14 marker layers among the fall, stratified surge and pyroclastic flow deposits. Furthermore statistical analysis made it possible to correlate pyroclastic flow and surge deposits interbedded with fall, interpreted as a lateral facies variation. Finally, the passage from magmatic to hydromagmatic activity is marked by the deposition of pyroclastic flow, surge and accretionary lapilli-bearing deposits. No transitional phase from magmatic to hydromagmatic activity has been recognized.

  19. Eruption and deposition of the Fisher Tuff (Alaska)--Evidence for the evolution of pyroclastic flows

    USGS Publications Warehouse

    Burgisser, Alain; Gardner, J.E.; Stelling, P.

    2007-01-01

    Recognition that the Fisher Tuff (Unimak Island, Alaska) was deposited on the leeside of an ∼500–700‐m‐high mountain range (Tugamak Range) more than 10 km away from its source played a major role in defining pyroclastic flows as momentum‐driven currents. We reexamined the Fisher Tuff to evaluate whether deposition from expanded turbulent clouds can better explain its depositional features. We studied the tuff at 89 sites and sieved bulk samples from 27 of those sites. We find that the tuff consists of a complex sequence of deposits that record the evolution of the eruption from a buoyant plume (22 km) that deposited ∼0.2 km3 of dacite magma as a pyroclastic fall layer to erupting ∼10–100 km3 of andesitic magma as Scoria‐rich pyroclastic falls and flows that were mainly deposited to the north and northwest of the caldera, including those in valleys within the Tugamak Range. The distribution of the flow deposits and their welding, internal stratification, and the occurrence of lithic breccia all suggest that the pyroclastic flows were fed from a fountaining column that vented from an inclined conduit, the first time such a conduit has been recognized during a large‐volume caldera eruption. Pyroclastic flow deposits before and after the mountain range and thin veneer deposits high in the range are best explained by a flow that was stratified into a dense undercurrent and an overriding dilute turbulent cloud, from which deposition before the range was mainly from the undercurrent. When the flow ran into the mountain range, however, the undercurrent was blocked, but the turbulent cloud continued on. As the flow continued north, it restratified, forming another undercurrent. The Fisher Tuff thus records the passing of a flow that was significantly higher (800–1100 m thick) than the mountain range and thus did not require excessive momentum.

  20. Landslides density map of S. Miguel Island, Azores archipelago

    NASA Astrophysics Data System (ADS)

    Valadão, P.; Gaspar, J. L.; Queiroz, G.; Ferreira, T.

    The Azores archipelago is located in the Atlantic Ocean and is composed of nine volcanic islands. S. Miguel, the largest one, is formed by three active, E-W trending, trachytic central volcanoes with caldera (Sete Cidades, Fogo and Furnas). Chains of basaltic cinder cones link those major volcanic structures. An inactive trachytic central volcano (Povoação) and an old basaltic volcanic complex (Nordeste) comprise the easternmost part of the island. Since the settlement of the island early in the 15th century, several destructive landslides triggered by catastrophic rainfall episodes, earthquakes and volcanic eruptions occurred in different areas of S. Miguel. One unique event killed thousands of people in 1522. Houses and bridges were destroyed, roads were cut, communications, water and energy supply systems became frequently disrupted and areas of fertile land were often buried by mud. Based on (1) historical documents, (2) aerial photographs and (3) field observations, landslide sites were plotted on a topographic map, in order to establish a landslide density map for the island. Data obtained showed that landslide hazard is higher on (1) the main central volcanoes where the thickness of unconsolidated pyroclastic deposits is considerable high and (2) the old basaltic volcanic complex, marked by deep gullies developed on thick sequences of lava flows. In these areas, caldera walls, fault scarps, steep valley margins and sea cliffs are potentially hazardous.

  1. Earth Observations taken by the Expedition 21 Crew

    NASA Image and Video Library

    2009-11-11

    ISS021-E-023475 (11 Nov. 2009) --- Lake Ilopango, El Salvador is featured in this image photographed by an Expedition 21 crew member on the International Space Station. The Central American country of El Salvador occupies a land area nearly the same as the US State of Massachusetts, and includes numerous historically active volcanoes. This detailed photograph highlights the Ilopango Caldera that is located approximately 16 kilometers to the east of the capital city of San Salvador. Calderas are the geologic record of powerful volcanic eruptions that empty out a volcano?s magma chamber ? following the eruption, the overlying volcanic structure collapses into the newly-formed void, leaving a large crater-like feature (the caldera). The last caldera-forming eruption at Ilopango occurred during the 5th century AD; it was a powerful event that produced pyroclastic flows that destroyed early Mayan cities in the region. Later volcanic activity included the formation of several lava domes within the lake-filled caldera and near the shoreline. The only historical eruption at Ilopango took place in 1879-80. This activity resulted in the formation of a lava dome in the center of Lake Ilopango, the summit of which forms small islets today known as Islas Quemadas. The city of Ilopango borders the lake to the west (left) while green vegetated hillslopes ring the rest of the shoreline. White patchy cumulus clouds are also visible in the image (center and upper left).

  2. Summit crater lake observations, and the location, chemistry, and pH of water samples near Mount Chiginagak volcano, Alaska: 2004-2012

    USGS Publications Warehouse

    Schaefer, Janet R.; Scott, William E.; Evans, William C.; Wang, Bronwen; McGimsey, Robert G.

    2013-01-01

    Mount Chiginagak is a hydrothermally active volcano on the Alaska Peninsula, approximately 170 km south–southwest of King Salmon, Alaska (fig. 1). This small stratovolcano, approximately 8 km in diameter, has erupted through Tertiary to Permian sedimentary and igneous rocks (Detterman and others, 1987). The highest peak is at an elevation of 2,135 m, and the upper ~1,000 m of the volcano are covered with snow and ice. Holocene activity consists of debris avalanches, lahars, and lava flows. Pleistocene pyroclastic flows and block-and-ash flows, interlayered with andesitic lava flows, dominate the edifice rocks on the northern and western flanks. Historical reports of activity are limited and generally describe “steaming” and “smoking” (Coats, 1950; Powers, 1958). Proximal tephra collected during recent fieldwork suggests there may have been limited Holocene explosive activity that resulted in localized ash fall. A cluster of fumaroles on the north flank, at an elevation of ~1,750 m, commonly referred to as the “north flank fumarole” have been emitting gas throughout historical time (location shown in fig. 2). The only other thermal feature at the volcano is the Mother Goose hot springs located at the base of the edifice on the northwestern flank in upper Volcano Creek, at an elevation of ~160 m (fig. 2, near sites H1, H3, and H4). Sometime between November 2004 and May 2005, a ~400-m-wide, 100-m-deep lake developed in the snow- and ice-filled summit crater of the volcano (Schaefer and others, 2008). In early May 2005, an estimated 3 million cubic meters (3×106 m3) of sulfurous, clay-rich debris and acidic water exited the crater through tunnels at the base of a glacier that breaches the south crater rim. More than 27 km downstream, these acidic flood waters reached approximately 1.3 m above normal water levels and inundated a fertile, salmon-spawning drainage, acidifying the entire water column of Mother Goose Lake from its surface waters to its maximum depth of 45 m (resulting pH ~2.9), and preventing the annual salmon run in the King Salmon River. A simultaneous release of gas and acidic aerosols from the crater caused widespread vegetation damage along the flow path. Since 2005, we have been monitoring the crater lake water that continues to flow into Mother Goose Lake by collecting surface water samples for major cation and anion analysis, measuring surface-water pH of affected drainages, and photo-documenting the condition of the summit crater lake. This report describes water sampling locations, provides a table of chemistry and pH measurements, and documents the condition of the summit crater between 2004 and 2011. In September 2013, the report was updated with results of water-chemistry samples collected in 2011 and 2012, which were added as an addendum.

  3. Activity at Shiveluch Volcano

    NASA Image and Video Library

    2017-12-08

    NASA image acquired Sept 7, 2010 Shiveluch (also spelled Sheveluch) is one of the largest and most active volcanoes on Russia’s Kamchatka Peninsula. It has been spewing ash and steam intermittently—with occasional dome collapses, pyroclastic flows, and lava flows, as well—for the past decade. Shiveluch is a stratovolcano, a steep-sloped formation of alternating layers of hardened lava, ash, and rocks thrown out by earlier eruptions. A lava dome has been growing southwest of the 3,283-meter (10,771-foot) summit. The Advanced Land Imager (ALI) on NASA’s Earth Observing-1 (EO-1) satellite acquired this image on September 7, 2010. Brown and tan debris—perhaps ash falls, perhaps mud from lahars—covers the southern landscape of the volcano, while the hills on the northern side remain covered in snow and ice. The Kamchatkan Volcanic Eruption Response Team (KVERT) reported that seismic activity at Shiveluch was "above background levels" from September 3-10. Ash plumes rose to an altitude of 6.5 kilometers (21,300 feet) on September 3-4, and gas-and-ash plumes were reported on September 7, when this image was acquired. According to the Smithsonian Institution's volcano program, at least 60 large eruptions of Shiveluch have occurred during the current Holocene Epoch of geological history. Intermittent explosive eruptions began in the 1990s, and the largest historical eruptions from Shiveluch occurred in 1854 and 1964. NASA Earth Observatory image created by Jesse Allen and Robert Simmon, using EO-1 ALI data provided courtesy of the NASA EO-1 team. Caption by Mike Carlowicz. Instrument: EO-1 - ALI Credit: NASA Earth Observatory NASA Goddard Space Flight Center contributes to NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s endeavors by providing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  4. Rangitoto Volcano Drilling Project: Life of a Small 'Monogenetic' Basaltic Shield in the Auckland Volcanic Field

    NASA Astrophysics Data System (ADS)

    Shane, P. A. R.; Linnell, T.; Lindsay, J. M.; Smith, I. E.; Augustinus, P. M.; Cronin, S. J.

    2014-12-01

    Rangitoto is a small basaltic shield volcano representing the most recent and most voluminous episode of volcanism in the Auckland Volcanic Field, New Zealand. Auckland City is built on the field, and hence, Rangitoto's importance in hazard-risk modelling. The symmetrical edifice, ~6 km wide and 260 m high, has volume of 1.78 km3. It comprises summit scoria cones and a lava field. However, the lack of deep erosion dissection has prevented the development of an eruptive stratigraphy. Previous studies suggested construction in a relatively short interval at 550-500 yrs BP. However, microscopic tephra have been interpreted as evidence of intermittent activity from 1498 +/- 140 to 504 +/- 6 yrs BP, a longevity of 1000 years. A 150-m-deep hole was drilled through the edifice in February 2014 to obtain a continuous core record. The result is an unparalleled stratigraphy of the evolution of a small shield volcano. The upper 128 m of core comprises at least 27 lava flows with thicknesses in the range 0.3-15 m, representing the main shield-building phase. Underlying marine sediments are interbedded with 8 m of pyroclastic lapilli, and a thin lava flow, representing the explosive phreatomagmatic birth of the volcano. Preliminary geochemical analyses reveal suite of relatively uniform transitional basalts (MgO = 8.1 to 9.7 wt %). However, 4 compositional groups are distinguished that were erupted in sequential order. High-MgO magmas were erupted first, followed by a two more heterogeneous groups displaying differentiation trends with time. Finally, distinct low-MgO basalts were erupted. Each magma type appears to represent a new magma batch. The core places the magma types in a time series, which can be correlated to the surface lava field. Hence, allowing a geometrical reconstruction of the shield growth. Additional petrologic investigations are providing insight to magmatic ascent processes, while radiocarbon and paleomagnetic secular variation studies will reveal the duration of activity.

  5. Volcanic Hazard Education through Virtual Field studies of Vesuvius and Laki Volcanoes

    NASA Astrophysics Data System (ADS)

    Carey, S.; Sigurdsson, H.

    2011-12-01

    Volcanic eruptions pose significant hazards to human populations and have the potential to cause significant economic impacts as shown by the recent ash-producing eruptions in Iceland. Demonstrating both the local and global impact of eruptions is important for developing an appreciation of the scale of hazards associated with volcanic activity. In order to address this need, Web-based virtual field exercises at Vesuvius volcano in Italy and Laki volcano in Iceland have been developed as curriculum enhancements for undergraduate geology classes. The exercises are built upon previous research by the authors dealing with the 79 AD explosive eruption of Vesuvius and the 1783 lava flow eruption of Laki. Quicktime virtual reality images (QTVR), video clips, user-controlled Flash animations and interactive measurement tools are used to allow students to explore archeological and geological sites, collect field data in an electronic field notebook, and construct hypotheses about the impacts of the eruptions on the local and global environment. The QTVR images provide 360o views of key sites where students can observe volcanic deposits and formations in the context of a defined field area. Video sequences from recent explosive and effusive eruptions of Carribean and Hawaiian volcanoes are used to illustrate specific styles of eruptive activity, such as ash fallout, pyroclastic flows and surges, lava flows and their effects on the surrounding environment. The exercises use an inquiry-based approach to build critical relationships between volcanic processes and the deposits that they produce in the geologic record. A primary objective of the exercises is to simulate the role of a field volcanologist who collects information from the field and reconstructs the sequence of eruptive processes based on specific features of the deposits. Testing of the Vesuvius and Laki exercises in undergraduate classes from a broad spectrum of educational institutions shows a preference for the web-based interactive tools compared with traditional paper-based laboratory exercises. The exercises are freely accessible for undergraduate classes such as introductory geology, geologic hazards, or volcanology. Accompany materials, such as lecture-based Powerpoint presentations about Vesuvius and Laki, are also being developed for instructors to better integrate the web-based exercises into their existing curriculum.

  6. Analysis of the 2006 block-and-ash flow deposits of Merapi Volcano, Java, Indonesia, using high-spatial resolution IKONOS images and complementary ground based observations

    NASA Astrophysics Data System (ADS)

    Thouret, Jean-Claude; Gupta, Avijit; Liew, Soo Chin; Lube, Gert; Cronin, Shane J.; Surono, Dr

    2010-05-01

    On 16 June 2006 an overpass of IKONOS coincided with the emplacement of an active block-and-ash flow fed by a lava dome collapse event at Merapi Volcano (Java, Indonesia). This was the first satellite image recorded for a moving pyroclastic flow. The very high-spatial resolution data displayed the extent and impact of the pyroclastic deposits emplaced during and prior to, the day of image acquisition. This allowed a number of features associated with high-hazard block-and-ash flows emplaced in narrow, deep gorges to be mapped, interpreted and understood. The block-and-ash flow and surge deposits recognized in the Ikonos images include: (1) several channel-confined flow lobes and tongues in the box-shaped valley; (2) thin ash-cloud surge deposit and knocked-down trees in constricted areas on both slopes of the gorge; (3) fan-like over bank deposits on the Gendol-Tlogo interfluves from which flows were re-routed in the Tlogo secondary valley; (4) massive over bank lobes on the right bank from which flows devastated the village of Kaliadem 0.5 km from the main channel, a small part of this flow being re-channeled in the Opak secondary valley. The high-resolution IKONOS images also helped us to identify geomorphic obstacles that enabled flows to ramp and spill out from the sinuous channel, a process called flow avulsion. Importantly, the avulsion redirected flows to unexpected areas away from the main channel. In the case of Merapi we see that the presence of valley fill by previous deposits, bends and man-made dams influence the otherwise valley-guided course of the flows. Sadly, Sabo dams (built to ameliorate the effect of high sediment load streams) can actually cause block-and-ash flows to jump out of their containing channel and advance into sensitive areas. Very-high-spatial resolution satellite images are very useful for mapping and interpreting the distribution of freshly erupted volcanic deposits. IKONOS-type images with 1-m resolution provide opportunities to study and map the meter-scale detail of volcanic deposits. When such high-spatial-resolution satellite remote sensing data are combined with in situ field work, geomorphic analyses can be applied that allow us to more fully understand the dynamics and hazards of eruptions. In the case given here, IKONOS imagery allowed two qualitative hazard assessments for block-and-ash flow activity in drainages around Merapi. Firstly, the interpretation of IKONOS images provides insights in factors that control the propagation of secondary flows as the avulsion of the main flows is driven by longitudinal change in channel capacity due to increased sinuosity in the valley and decreased containment space. Secondly, the sinuosity and obstacles (including Sabo dams) may create over bank flows over adjacent low relief, allowing them to reach unexpectedly vulnerable areas distant from an active dome and away from the volcanically active valleys. Hazard assessment should therefore consider the geometry of secondary channels outside the principal valleys.

  7. Pyroclastic density current hazard maps at Campi Flegrei caldera (Italy): the effects of event scale, vent location and time forecasts.

    NASA Astrophysics Data System (ADS)

    Bevilacqua, Andrea; Neri, Augusto; Esposti Ongaro, Tomaso; Isaia, Roberto; Flandoli, Franco; Bisson, Marina

    2016-04-01

    Today hundreds of thousands people live inside the Campi Flegrei caldera (Italy) and in the adjacent part of the city of Naples making a future eruption of such volcano an event with huge consequences. Very high risks are associated with the occurrence of pyroclastic density currents (PDCs). Mapping of background or long-term PDC hazard in the area is a great challenge due to the unknown eruption time, scale and vent location of the next event as well as the complex dynamics of the flow over the caldera topography. This is additionally complicated by the remarkable epistemic uncertainty on the eruptive record, affecting the time of past events, the location of vents as well as the PDCs areal extent estimates. First probability maps of PDC invasion were produced combining a vent-opening probability map, statistical estimates concerning the eruptive scales and a Cox-type temporal model including self-excitement effects, based on the eruptive record of the last 15 kyr. Maps were produced by using a Monte Carlo approach and adopting a simplified inundation model based on the "box model" integral approximation tested with 2D transient numerical simulations of flow dynamics. In this presentation we illustrate the independent effects of eruption scale, vent location and time of forecast of the next event. Specific focus was given to the remarkable differences between the eastern and western sectors of the caldera and their effects on the hazard maps. The analysis allowed to identify areas with elevated probabilities of flow invasion as a function of the diverse assumptions made. With the quantification of some sources of uncertainty in relation to the system, we were also able to provide mean and percentile maps of PDC hazard levels.

  8. Hydrological sensitivity of volcanically disturbed watersheds—a lesson reinforced at Pinatubo

    NASA Astrophysics Data System (ADS)

    Major, J. J.; Janda, R. J.

    2016-12-01

    The climactic June 1991 eruption of Mount Pinatubo devastated many surrounding catchments with thick pyroclastic fall and flow deposits, and subsequent hydrogeomorphic responses were dramatic and persisted for years. But in the 24 hours preceding the climactic eruption there was less devastating eruptive activity that had more subtle, yet significant, impact on catchment hydrology. Stratigraphic relations show damaging lahars swept all major channels east of the volcano, starting late on June 14 and continuing through (and in some instances after) midday on June 15, before the climactic phase of the eruption began and before Typhoon Yunya struck the region. These early lahars were preceded by relatively small explosions and pyroclastic surges that emplaced fine-grained ash in the upper catchments, locally damaged or destroyed vegetation, reduced hillside infiltration capacity, and smoothed surface roughness. Thus the lahars, likely triggered by typical afternoon monsoon storms perhaps enhanced by local thermal influences of fresh volcanic deposits, did not result from extraordinary tropical rainfall or exceptional volcaniclastic deposition. Instead, direct rainfall-runoff volume increased substantially as a consequence of vegetation damage and moderate deposition of fine ash. Rapid runoff from hillsides to channels initiated hillside and bank erosion as well as channel scour, producing debris flows and hyperconcentrated flows. Timing of some lahars varied across catchments as well as downstream within catchments with respect to climactic pumice fall, demonstrating complex interplay among volcanic processes, variations in catchment disturbance, and rainfall timing and intensity. Occurrence of these early lahars supports the hypothesis that eruptions that deposit fine ash in volcanic catchments can instigate major hydrogeomorphic responses even when volcanic disturbances are modest—an effect that can be masked by later eruption impacts.

  9. Detecting the brightness temperature from Landsat-8 thermal infra red scanner preceding the Rinjani strombolian eruption 2015

    NASA Astrophysics Data System (ADS)

    Suwarsono, Hidayat, Suprapto, Totok; Prasasti, Indah; Parwati, Rokhis Khomarudin, M.

    2017-07-01

    At the end of October to early November 2015, Rinjani Volcano that is located in Lombok Island was erupted and has catapulted the ash, pyroclastic and lava flow. The dispersion of this volcanic ash in the atmosphere has been disrupting flights and the three closest airports to be closed for a while. The existence of Rinjani Volcano geographically plays an important role in the survival of life on the island of Lombok, because large areas of land on the island are a part of the Rinjani Volcano landscape. Based on the experience of violent eruptions that have occurred in the 13th century ago, the monitoring of the volcanism activity of this volcano needs to be done intensively and continuously. This is something important to do an early detection efforts of the volcanic eruption. These efforts need to be done as a preparedness effort in order to minimize adverse impacts that may occur as a result of this eruption. This research tries to detect the volcanic eruption precursor based on changes in temperature conditions of the crater and the surrounding area. We use the medium resolution satellite data, Thermal Infra Red Scanner (TIRS), on board Landsat-8, to monitor the brightness temperature as a representative of surface temperature of the volcanic region. The results showed that the brightness temperature derived from Landsat-8 TIRS is very usefull to predict the strombolian eruption which will occur in the near future. The use of multitemporal image data is important to understand the dynamics of volcanism activity over time.

  10. Venus volcanism - Initial analysis from Magellan data

    NASA Astrophysics Data System (ADS)

    Head, J. W.; Campbell, D. B.; Elachi, C.; Guest, J. E.; McKenzie, D. P.; Saunders, R. S.; Schaber, G. G.; Schubert, G.

    1991-04-01

    Magellan images confirm that volcanism is widespread and has been fundamentally important in the formation and evolution of the crust of Venus. High-resolution imaging data reveal evidence for intrusion (dike formation and cryptodomes) and extrusion (a wide range of lava flows). Also observed are thousands of small shield volcanoes, larger edifices up to several hundred kilometers in diameter, massive outpourings of lavas, and local pyroclastic deposits. Although most features are consistent with basaltic compositions, a number of large pancake-like domes are morphologically similar to rhyolite-dacite domes on earth. Flows and sinuous channels with lengths of many hundreds of kilometers suggest that extremely high effusion rates or very fluid magmas (perhaps komantiites) may be present. Volcanism is evident in various tectonic settings (coronae, linear extensional and compressional zones, mountain belts, upland rises, highland plateaus, and tesserae). Volcanic resurfacing rates appear to be low (less than 2 cu km/yr) but the significance of dike formation and intrusions, and the mode of crustal formation and loss remain to be established.

  11. Venus volcanism: Initial analysis from Magellan data

    USGS Publications Warehouse

    Head, J.W.; Campbell, D.B.; Elachi, C.; Guest, J.E.; Mckenzie, D.P.; Saunders, R.S.; Schaber, G.G.; Schubert, G.

    1991-01-01

    Magellan images confirm that volcanism is widespread and has been fundamentally important in the formation and evolution of the crust of Venus. High-resolution imaging data reveal evidence for intrusion (dike formation and cryptodomes) and extrusion (a wide range of lava flows). Also observed are thousands of small shield volcanoes, larger edifices up to several hundred kilometers in diameter, massive outpourings of lavas, and local pyroclastic deposits. Although most features are consistent with basaltic compositions, a number of large pancake-like domes are morphologically similar to rhyolite-dacite domes on Earth. Flows and sinuous channels with lengths of many hundreds of kilometers suggest that extremely high effusion rates or very fluid magmas (perhaps komatiites) may be present. Volcanism is evident in various tectonic settings (coronae, linear extensional and compressional zones, mountain belts, upland rises, highland plateaus, and tesserae). Volcanic resurfacing rates appear to be low (less than 2 km3/yr) but the significance of dike formation and intrusions, and the mode of crustal formation and loss remain to be established.

  12. Erosion and entrainment of snow and ice by pyroclastic density currents: some outstanding questions (Invited)

    NASA Astrophysics Data System (ADS)

    Walder, J. S.

    2010-12-01

    A pyroclastic density current moving over snow is likely to transform to a lahar if the pyroclasts incorporate enough (melting) snow and meltwater to bring the bulk water content of the mixture to about 35% by volume. However, the processes by which such a mixture forms are still not well understood. Walder (Bull. Volcanol., v. 62, 2000) showed experimentally the existence of an erosion mechanism that functions even in the absence of relative shear motion between pyroclasts and snow substrate: a portion of the snow melted by a blanket of pyroclasts is vaporized; the flux of water vapor upward through the pyroclasts may be enough to fluidize the pyroclasts, which then convect, rapidly scour the snow substrate and transform into a slurry. But these experiments do not tell us how moving pyroclasts would erode snow, and simply releasing a hot grain flow over a snow surface in the lab gives misleading results owing to improper scaling of τ/σ , the ratio of the shear stress τ exerted by the pyroclastic flow to the shear strength σ of snow. There seems to be no way around this problem for experiments with actual snow. However, it may be possible to circumvent the scaling problem by replacing the snow substrate by a gas-fluidized particle bed: by varying the gas flux, the apparent shear strength of the particle bed can be varied. Such an investigation of erosional processes could be done at room temperature. Snow-avalanche studies (for example, Gauer and Issler, Ann. Glaciol. v. 38, 2003) may provide some insight into snow erosion by a pyroclastic density current. Snow is eroded at the base of a dense snow avalanche by abrasion, particle impacts, and—at the avalanche head—by plowing and a “blasting” mechanism associated with compression of the snowpack and expulsion of pore fluid (air). Erosion at the avalanche head seems to be particularly important. Similar processes are likely to occur when the over-riding flow comprises hot grains. The laboratory release of a hot grain flow over snow, although improperly scaled for investigating erosive processes, does demonstrate that snow hydrology and snowpack stability may be critical in the transformation of pyroclastic density currents to lahars. When such an experiment is run in a sloping flume, with meltwater able to drain freely at the base of the snow layer, the hot grain flow spreads over the snow surface and then comes to rest--no slurry is produced. In contrast, if meltwater drainage is blocked, the wet snow layer fails at its bed, mobilizes as a slush flow, and mixes with the hot grains to form a slurry. Ice layers within a natural snowpack would likewise block meltwater drainage and be conducive to the formation of slush flows. Abrasion and particle impacts—processes that have been studied intensively by engineers concerned with the wear of surfaces in machinery—probably play an important role in the erosion of glacier ice by pyroclastic density currents. A prime example may be the summit ice cap of Nevado del Ruiz, Colombia, which was left grooved by the eruption of 1985 (Thouret, J. Volcanol. Geotherm. Res., v. 41, 1990). Erosion of glacier ice is also strongly controlled by the orientation of crevasses, which can “capture” pyroclastic currents. This phenomenon was well displayed at Mount Redoubt, Alaska during the eruptions of 1989-90 and 2009.

  13. Stability of unsaturated pyroclastic deposits at La Fossa flank (Vulcano Island, Italy): Do soil suction variations establish a link with crater degassing ?

    NASA Astrophysics Data System (ADS)

    Olivares, L.; Tommasi, P.; Madonia, P.; Moretti, R.

    2012-04-01

    The stability of steep ( > 40°) slopes in loose or poorly cemented pyroclastic materials mantling some of the Italian mountain areas is guaranteed by the positive effects of matrix suction on shear strength until an increase in saturation (and hence a decrease in suction) occurs. Therefore, unsaturated cohesionless or slightly-bonded pyroclastic steep deposits are relatively stable. Slope instability, initiated by wetting, can occur through different processes, such as vapor condensation and, most typically, rainfall infiltration. The main effect is the decrease in suction up to possible development of positive pore pressures. Here, we examine the peculiar case of a landslide on the flank of the pyroclastic cone of La Fossa volcanic edifice in Vulcano Island (Aeolian Archipelago, Southern Italy). Its initiation is believed to have been influenced by a sharp increase in condensed vapor produced by the degassing of the active volcano. In active volcanoes hydraulic conditions are affected not only by infiltrating rainwater but also by volcanic activity, which produces complex changes in the state variables of pore fluids (i.e. pore fluid pressure). In particular, volcanic activity can modify pore fluid pressure as far as to induce slope instability. At La Fossa crater the phenomenon was evidenced by in situ monitoring of soil suction and soil temperature. In situ observations and measurements indicate that seepage of condensed vapor is appreciable. Simple models based on the geotechnical characterization of pyroclastic materials suggest the hypothesis that variations in suction can be significant to stability of volcano slopes when these are very close to limit conditions and if material hydraulic anisotropy is considered. Noteworthy, at La Fossa at Vulcano Island steam condensation increased and variations of chemical ratios at fumaloles occurred while large slope movements developed on the NE flank of the cone during the most intense well documented volcanic unrest. The validation of this hypothesis requires further monitoring data during periods of intense unrest and more comprehensive models that account for non-isothermal multiphase pore fluid pressure and groundwater circulation, influencing the state of stress and hence stability. Our in-progress approach points toward a correlation between degassing activity of the hydrothermal-magmatic system and slope movements, that may bear significant implications for the definition of the scenarios of joint volcanic-hydrogeological hazard and for the development of monitoring techniques in the frame of volcanic surveillance. However, much more efforts are needed to establish phenomenological relationships with the budgets of volcanic steam condensation. This should include extensive field measurement of CO2 and thermal fluxes from the soil, as well as electrical measurements.

  14. Field Investigations of the July 2015 Pyroclastic Density Current Deposits of Volcán de Colima, Mexico

    NASA Astrophysics Data System (ADS)

    Atlas, Z. D.; Macorps, E.; Charbonnier, S. J.; Varley, N. R.

    2016-12-01

    Small-volume pyroclastic density currents (PDCs) occur relatively frequently and pose severe threats to surrounding populations and infrastructures at active explosive volcanoes. They are characterized by short duration and complex multiphase flow dynamics due to time and space variability in their properties, which include amongst others, particle concentration, granulometry, componentry, bulk rheology and velocity. Field investigations of the deposits emplaced by small-volume concentrated PDCs aim to improve our understanding of the transport and depositional processes of these flows: time and space variations in flow dynamics within a PDC moving downslope will reflect on the distribution, grainsize and component characteristics of its deposits. Our study focuses on the recent events of July 10th and 11th, 2015 at Volcán de Colima (Mexico) where the collapse of the recent lava dome complex and a portion of the southern crater rim led to the emplacement of successive pulses of small-volume concentrated PDCs on the southern flank, along the Montegrande and San Antonio ravines. A 3-dimensional field analysis of the PDCs' deposit architecture, total grain size distribution and component properties together with a geomorphic analysis of the affected ravines provide new insights on the lateral and vertical variations of flow dynamics for some of these small-volume concentrated PDCs. Preliminary results reveal three stratigraphic units with massive block, lapilli, ash facies within the valley confined and concentrated overbank deposits with increasing content in fines with distance from the summit, suggesting an increase in fragmentation processes within the PDCs. The middle unit is characterized by a finer grainsize, a higher accidental lithic content and a lower free crystal content. Moreover, direct correlations are found between rapid changes in channel morphology and generation of overbank (unconfined) flows that escaped valley confines, which could provide the basis for defining hazard zonations of key areas at risk from future eruptions at Colima.

  15. Local to global: a collaborative approach to volcanic risk assessment

    NASA Astrophysics Data System (ADS)

    Calder, Eliza; Loughlin, Sue; Barsotti, Sara; Bonadonna, Costanza; Jenkins, Susanna

    2017-04-01

    Volcanic risk assessments at all scales present challenges related to the multitude of volcanic hazards, data gaps (hazards and vulnerability in particular), model representation and resources. Volcanic hazards include lahars, pyroclastic density currents, lava flows, tephra fall, ballistics, gas dispersal and also earthquakes, debris avalanches, tsunamis and more ... they can occur in different combinations and interact in different ways throughout the unrest, eruption and post-eruption period. Volcanoes and volcanic hazards also interact with other natural hazards (e.g. intense rainfall). Currently many hazards assessments consider the hazards from a single volcano but at national to regional scales the potential impacts of multiple volcanoes over time become important. The hazards that have the greatest tendency to affect large areas up to global scale are those transported in the atmosphere: volcanic particles and gases. Volcanic ash dispersal has the greatest potential to directly or indirectly affect the largest number of people worldwide, it is currently the only volcanic hazard for which a global assessment exists. The quantitative framework used (primarily at a regional scale) considers the hazard at a given location from any volcano. Flow hazards such as lahars and floods can have devastating impacts tens of kilometres from a source volcano and lahars can be devastating decades after an eruption has ended. Quantitative assessment of impacts is increasingly undertaken after eruptions to identify thresholds for damage and reduced functionality. Some hazards such as lava flows could be considered binary (totally destructive) but others (e.g. ash fall) have varying degrees of impact. Such assessments are needed to enhance available impact and vulnerability data. Currently, most studies focus on physical vulnerability but there is a growing emphasis on social vulnerability showing that it is highly variable and dynamic with pre-eruption socio-economic conditions tending to influence longer term well-being and recovery. The volcanological community includes almost 100 Volcano Observatories worldwide, the official institutions responsible for monitoring volcanoes. They may be dedicated institutions, or operate from national institutions (geological surveys, universities, met agencies). They have a key role in early warning, forecasting and long term hazard assessment (often in the form of volcanic hazards maps). The complexity of volcanic systems means that once unrest begins there are multiple potential eruptive outcomes and short term forecasts can change rapidly. This local knowledge of individual volcanoes underpins hazard and risk assessments developed at national, regional and global scales. Combining this local expertise with the knowledge of the international research community (including interdisciplinary perspectives) creates a powerful partnership. A collaborative approach is therefore needed to develop effective volcanic risk assessments at regional to global scale. The World Organisation of Volcano Observatories is a Commission of IAVCEI, alongside other Commissions such as 'Hazard and Risk' (with an active working group on volcanic hazards maps) and the 'Cities and Volcanoes' Commission. The Global Volcano Model network is a collaborative initiative developing hazards and risk information at national to global scales, underpinned by local expertise. Partners include IAVCEI, Smithsonian Institution, International Volcanic Health Hazard Network, VHub and other initiatives and institutions.

  16. High-resolution DEM generation from multiple remote sensing data sources for improved volcanic hazard assessment - a case study from Nevado del Ruiz, Colombia

    NASA Astrophysics Data System (ADS)

    Deng, Fanghui; Dixon, Timothy H.; Rodgers, Mel; Charbonnier, Sylvain J.; Gallant, Elisabeth A.; Voss, Nicholas; Xie, Surui; Malservisi, Rocco; Ordoñez, Milton; López, Cristian M.

    2017-04-01

    Eruptions of active volcanoes in the presence of snow and ice can cause dangerous floods, avalanches and lahars, threatening millions of people living close to such volcanoes. Colombia's deadliest volcanic hazard in recorded history was caused by Nevado del Ruiz Volcano. On November 13, 1985, a relatively small eruption triggered enormous lahars, killing over 23,000 people in the city of Armero and 2,000 people in the town of Chinchina. Meltwater from a glacier capping the summit of the volcano was the main contributor to the lahars. From 2010 to present, increased seismicity, surface deformation, ash plumes and gas emissions have been observed at Nevado del Ruiz. The DEM is a key parameter for accurate prediction of the pathways of lava flows, pyroclastic flows, and lahars. While satellite coverage has greatly improved the quality of DEMs around the world, volcanoes remain a challenging target because of extremely rugged terrain with steep slopes and deeply cut valleys. In this study, three types of remote sensing data sources with different spatial scales (satellite radar interferometry, terrestrial radar interferometry (TRI), and structure from motion (SfM)) were combined to generate a high resolution DEM (10 m) of Nevado del Ruiz. 1) Synthetic aperture radar (SAR) images acquired by TSX/TDX satellites were applied to generate DEM covering most of the study area. To reduce the effect of geometric distortion inherited from SAR images, TSX/TDX DEMs from ascending and descending orbits were merged to generate a 10×10 m DEM. 2) TRI is a technique that uses a scanning radar to measure the amplitude and phase of a backscattered microwave signal. It provides a more flexible and reliable way to generate DEMs in steep-slope terrain compared with TSX/TDX satellites. The TRI was mounted at four different locations to image the upper slopes of the volcano. A DEM with 5×5 m resolution was generated by TRI. 3) SfM provides an alternative for shadow zones in both TSX/TDX and TRI images. It is a low-cost and effective method to generate high-quality DEMs in relatively small spatial scales. More than 2000 photos were combined to create a DEM of the deep valley in the shadow zones. DEMs from the above three remote sensing data sources were merged into a final DEM with 10×10 m resolution. The effect of this improved DEM on hazard assessment can be evaluated using numerical flow models.

  17. Swarms of small volcano-tectonic events preceding paroxysmal explosions of Tungurahua volcano (Ecuador)

    NASA Astrophysics Data System (ADS)

    Battaglia, J.; Hidalgo, S.; Douchain, J. M.; Pacheco, D. A.; Cordova, J.; Alvarado, A. P.; Parra, R.

    2017-12-01

    Tungurahua (5023 m a.s.l.) is an andesitic volcano located in Central Ecuador. It has been erupting since September 1999. It's activity transitioned in late 2008 towards the occurrence of distinct eruptive phases separated by periods of quiescence. These phases display a great variability of eruptive patterns. In particular the onsets of these phases are quite variable, ranging from progressive increase of surface activity to violent paroxysmal explosions eventually generating pyroclastic flows and plumes up to 13.000 m elevation. The volcano is monitored by the Instituto Geofisico in Quito whose permanent monitoring network include 6 broadband and 6 short period stations. These instruments record various signals related to eruptive processes as well as Long Period and volcano-tectonique (VT) events. However, most of the VT events are scattered around the volcano at depths up to 5-10 km b.s.l.. Their relationship with eruptive activity and precursory aspect are unclear. Since October 2013, we operate a temporary network of 13 broadband stations located up to 4275 m a.s.l., including on the Eastern flank which is remote. We examined data from a reference station located near the summit (3900 m a.s.l.) with a detection and classification procedure, searching for families of similar events. This processing enlights the presence of several families of small VTs previously poorly identified. We located manually some of these events and proceeded with similarity picking using cross-correlation and waveform similarity for nearly 400 events. Finally we applied precise relocation techniques. These events are located 2-3 km below the summit and define vertically elongated streaks. Their temporal evolution shows that they occur in swarms during the days or hours preceding the paroxysmal vent opening explosions in February and April 2014. These short-term precursors could indicate the rupturing of a barrier prior to the large explosions of Tungurahua.

  18. Using rocks to reveal the inner workings of magma chambers below volcanoes in Alaska’s National Parks

    USGS Publications Warehouse

    Coombs, Michelle L.; Bacon, Charles R.

    2012-01-01

    Alaska is one of the most vigorously volcanic regions on the planet, and Alaska’s national parks are home to many of the state’s most active volcanoes. These pose both local and more distant hazards in the form of lava and pyroclastic flows, lahars (mudflows), ash clouds, and ash fall. Alaska’s volcanoes lie along the arc of the Aleutian-Alaskan subduction zone, caused as the oceanic Pacific plate moves northward and dips below the North American plate. These volcanoes form as water-rich fluid from the down-going Pacific plate is released, lowering the melting temperature of rock in the overlying mantle and enabling it to partially melt. The melted rock (magma) migrates upward, collecting at the base of the approximately 25 mile (40 km) thick crust, occasionally ascending into the shallow crust, and sometimes erupting at the earth’s surface.During volcanic unrest, scientists use geophysical signals to remotely visualize volcanic processes, such as movement of magma in the upper crust. In addition, erupted volcanic rocks, which are quenched samples of magmas, can tell us about subsurface magma characteris-tics, history, and the processes that drive eruptions. The chemical compositions of and the minerals present in the erupted magmas can reveal conditions under which these magmas were stored in crustal “chambers”. Studies of the products of recent eruptions of Novarupta (1912), Aniakchak (1931), Trident (1953-74), and Redoubt (2009) volcanoes reveal the depths and temperatures of magma storage, and tell of complex interactions between magmas of different compositions. One goal of volcanology is to determine the processes that drive or trigger eruptions. Information recorded in the rocks tells us about these processes. Here, we demonstrate how geologists gain these insights through case studies from four recent eruptions of volcanoes in Alaska national parks.

  19. Towards a Comprehensive Catalog of Volcanic Seismicity

    NASA Astrophysics Data System (ADS)

    Thompson, G.

    2014-12-01

    Catalogs of earthquakes located using differential travel-time techniques are a core product of volcano observatories, and while vital, they represent an incomplete perspective of volcanic seismicity. Many (often most) earthquakes are too small to locate accurately, and are omitted from available catalogs. Low frequency events, tremor and signals related to rockfalls, pyroclastic flows and lahars are not systematically catalogued, and yet from a hazard management perspective are exceedingly important. Because STA/LTA detection schemes break down in the presence of high amplitude tremor, swarms or dome collapses, catalogs may suggest low seismicity when seismicity peaks. We propose to develop a workflow and underlying software toolbox that can be applied to near-real-time and offline waveform data to produce comprehensive catalogs of volcanic seismicity. Existing tools to detect and locate phaseless signals will be adapted to fit within this framework. For this proof of concept the toolbox will be developed in MATLAB, extending the existing GISMO toolbox (an object-oriented MATLAB toolbox for seismic data analysis). Existing database schemas such as the CSS 3.0 will need to be extended to describe this wider range of volcano-seismic signals. WOVOdat may already incorporate many of the additional tables needed. Thus our framework may act as an interface between volcano observatories (or campaign-style research projects) and WOVOdat. We aim to take the further step of reducing volcano-seismic catalogs to sets of continuous metrics that are useful for recognizing data trends, and for feeding alarm systems and forecasting techniques. Previous experience has shown that frequency index, peak frequency, mean frequency, mean event rate, median event rate, and cumulative magnitude (or energy) are potentially useful metrics to generate for all catalogs at a 1-minute sample rate (directly comparable with RSAM and similar metrics derived from continuous data). Our framework includes tools to plot these metrics in a consistent manner. We work with data from unrest at Redoubt volcano and Soufriere Hills volcano to develop our framework.

  20. A contribution to the hazards assessment at Copahue volcano (Argentina-Chile) by facies analysis of a recent pyroclastic density current deposit

    NASA Astrophysics Data System (ADS)

    Balbis, C.; Petrinovic, I. A.; Guzmán, S.

    2016-11-01

    We recognised and interpreted a recent pyroclastic density current (PDC) deposit at the Copahue volcano (Southern Andes), through a field survey and a sedimentological study. The relationships between the behaviour of the PDCs, the morphology of the Río Agrio valley and the eruptive dynamics were interpreted. We identified two lithofacies in the deposit that indicate variations in the eruptive dynamics: i) the opening of the conduit and the formation of a highly explosive eruption that formed a diluted PDC through the immediate collapse of the eruptive column; ii) a continued eruption which followed immediately and records the widening of the conduit, producing a dense PDC. The eruption occurred in 2000 CE, was phreatomagmatic (VEI ≤ 2), with a vesiculation level above 4000 m depth and fragmentation driven by the interaction of magma with an hydrothermal system at ca. 1500 m depth. As deduced from the comparison between the accessory lithics of this deposit and those of the 2012 CE eruption, the depth of onset of vesiculation and fragmentation level in this volcano is constant in depth. In order to reproduce the distribution pattern of this PDC's deposit and to simulate potential PDC's forming-processes, we made several computational modelling from "denser" to "more diluted" conditions. The latter fairly reproduces the distribution of the studied deposit and represents perhaps one of the most dangerous possible scenarios of the Copahue volcanic activity. PDCs occurrence has been considered in the last volcanic hazards map as a low probability process; evidences found in this contribution suggest instead to include them as more probable and thus very important for the hazards assessment of the Copahue volcano.

  1. Geologic Map of The Volcanoes Quadrangle, Bernalillo and Sandoval Counties, New Mexico

    USGS Publications Warehouse

    Thompson, Ren A.; Shroba, Ralph R.; Menges, Christopher M.; Schmidt, Dwight L.; Personius, Stephen F.; Brandt, Theodore R.

    2009-01-01

    This geologic map, in support of the U.S. Geological Survey Middle Rio Grande Basin Geologic Mapping Project, shows the spatial distribution of surficial deposits, lava flows, and related sediments of the Albuquerque volcanoes, upper Santa Fe Group sediments, faults, and fault-related structural features. These deposits are on, along, and beneath the Llano de Albuquerque (West Mesa) west of Albuquerque, New Mexico. Some of these deposits are in the western part of Petroglyph National Monument. Artificial fill deposits are mapped chiefly beneath and near the City of Albuquerque Soil Amendment Facility and the Double Eagle II Airport. Alluvial deposits were mapped in and along stream channels, beneath terrace surfaces, and on the Llano de Albuquerque and its adjacent hill slopes. Deposits composed of alluvium and colluvium are also mapped on hill slopes. Wedge-shaped deposits composed chiefly of sandy sheetwash deposits, eolian sand, and intercalated calcic soils have formed on the downthrown-sides of faults. Deposits of active and inactive eolian sand and sandy sheetwash deposits mantle the Llano de Albuquerque. Lava flows and related sediments of the Albuquerque volcanoes were mapped near the southeast corner of the map area. They include eleven young lava flow units and, where discernable, associated vent and near-vent pyroclastic deposits associated with cinder cones. Upper Santa Fe Group sediments are chiefly fluvial in origin, and are well exposed near the western boundary of the map area. From youngest to oldest they include a gravel unit, pebbly sand unit, tan sand and mud unit, tan sand unit, tan sand and clay unit, and silty sand unit. Undivided upper Santa Fe Group sediments are mapped in the eastern part of the map area. Faults were identified on the basis of surface expression determined from field mapping and interpretation of aeromagnetic data where concealed beneath surficial deposits. Fault-related structural features are exposed and were mapped near the western boundary of the map area.

  2. Chronology, morphology and stratigraphy of pumiceous pyroclastic-flow (ignimbrite) deposits from the eruption of Mount St. Helens on 18 May 1983

    NASA Technical Reports Server (NTRS)

    Criswell, C. W.; Elston, W. E.

    1984-01-01

    Between 1217 and 1620 hours (PDT), on May 18, 1980, the magmatic eruption column of Mount St. Helens formed an ash fountain and pyroclastic flows dominated the eruption process over tephra ejection. Eurption-rate pulsations generally increased to a maximum at 1600 to 1700 hrs. After 1620 hrs, the eruption assumed an open-vent discharge with strong, vertical ejection of tephra. Relative eruption rates (relative mass flux rates) of the pyroclastic flows were determined by correlating sequential photographs and SLAR images, obtained during the eruption, with stratigraphy and surface morphology of the deposits.

  3. Pyroclastic Eruption Boosts Organic Carbon Fluxes Into Patagonian Fjords

    NASA Astrophysics Data System (ADS)

    Mohr, Christian H.; Korup, Oliver; Ulloa, Héctor; Iroumé, Andrés.

    2017-11-01

    Fjords and old-growth forests store large amounts of organic carbon. Yet the role of episodic disturbances, particularly volcanic eruptions, in mobilizing organic carbon in fjord landscapes covered by temperate rainforests remains poorly quantified. To this end, we estimated how much wood and soils were flushed to nearby fjords following the 2008 eruption of Chaitén volcano in south-central Chile, where pyroclastic sediments covered >12 km2 of pristine temperate rainforest. Field-based surveys of forest biomass, soil organic content, and dead wood transport reveal that the reworking of pyroclastic sediments delivered 66,500 + 14,600/-14,500 tC of large wood to two rivers entering the nearby Patagonian fjords in less than a decade. A similar volume of wood remains in dead tree stands and buried beneath pyroclastic deposits ( 79,900 + 21,100/-16,900 tC) or stored in active river channels (5,900-10,600 tC). We estimate that bank erosion mobilized 132,300+21,700/-30,600 tC of floodplain forest soil. Eroded and reworked forest soils have been accreting on coastal river deltas at >5 mm yr-1 since the eruption. While much of the large wood is transported out of the fjord by long-shore drift, the finer fraction from eroded forest soils is likely to be buried in the fjords. We conclude that the organic carbon fluxes boosted by rivers adjusting to high pyroclastic sediment loads may remain elevated for up to a decade and that Patagonian temperate rainforests disturbed by excessive loads of pyroclastic debris can be episodic short-lived carbon sources.

  4. Graben calderas of the Sierra Madre Occidental: The case of Guanajuato, central Mexico

    NASA Astrophysics Data System (ADS)

    Aguirre-Diaz, G. J.; Tristán-González, M.; Labarthe-Hernández, G.; Marti, J.

    2013-12-01

    The Sierra Madre Occidental (SMO) volcanic province is characterized by voluminous silicic ignimbrites that reach an accumulated thickness of 500 to 1500 m. A single ignimbrite can reach up to 350 m thick in its outflow facies. This ignimbrite sequence formed mostly within 38-23 Ma, building up a total estimated volume of ca. 580,000 km3 making the SMO the largest ignimbrite province of the world. We have showed that several and probably most of the SMO ignimbrites were erupted from fissures associated to Basin and Range fault systems or grabens (Geology, 2003), thus naming these volcano-tectonic structures as graben calderas (Caldera Volcanism book, Elsevier, 2008). Generally, the sequence observed in graben calderas include, from oldest to youngest, alluvial fan deposits combined with lacustrine deposits, pyroclastic surge deposits and minor volume ignimbrites, a large-volume ignimbrite that could be massive or made of successive layers, and sometimes silicic lava domes and/or mafic fissural lavas both with vents aligned with the graben trend. Fallout deposits, plinian or non-plinian, are not observed in the sequence. Thus, onset of caldera collapse represented by the major ignimbrite must occur just after deposition of continental sediments within the graben domain. A similar volcano-tectonic development is observed in pull-apart grabens. Therefore, extensional or transtensional tectonics, before and during caldera collapse, and the emplacement of a subgraben shallow silicic magma chamber are the necessary conditions for the development of graben calderas. We describe here the case of the Guanajuato graben caldera, located in the central part of Mexico and in the southeastern portion of the SMO volcanic province. The caldera is part of the economically important mining district of Guanajuato, with 28 silver mines, some active since the 16th century. The caldera structure, a rectangle of 10 x 16 km, was controlled by NW and NE regional fault systems. Most ore deposits occur along this orthogonal faulting network, but mainly along the NW fault of Veta Madre that crosses through the center of the caldera. The mid-Tertiary stratigraphy in Guanajuato follows the general sequence observed in graben calderas; i.e., from oldest to youngest includes 1) at least 1,500 m of alluvial fan deposits within a tectonic basin (Guanajuato Red Conglomerate), 2) pyroclastic flow deposits, consisting of surge deposits (Loseros Formation) that are concordant with a massive, large volume, rhyolitic ignimbrite (Bufa Rhyolite), which is covered by a layered series of pyroclastic flow deposits (Calderones Formation), and 3) effusive volcanism in the form of rhyolitic lava domes (Chichíndaro Rhyolite) and basaltic-andesite dikes and lavas (Cedros Andesite). The Guanajuato graben caldera formed at about 33 Ma, based on our new U-Pb zr age of the main ignimbrite, Bufa Rhyolite.

  5. Hybrid Pyroclastic Deposits Accumulated From The Eruptive Transitional Regime of Plinian Eruptions.

    NASA Astrophysics Data System (ADS)

    di Muro, Andrea; Rosi, Mauro

    In the past 15 years sedimentological studies (Valentine and Giannetti, 1995; Wilson and Hildreth, 1997; Rosi et al., 2001), physical models (Neri et al., 1988; Veitch and Woods, 2000; Kaminski and Jaupart, 2001) and laboratory experiments (Carey et al., 1988) converge at defining a new eruptive regime transitional between the fully convective and the fully collapsing end -members. Buoyant columns and density currents are contemporaneously fed in the transitional dynamic regime and fall beds are intercalated with the density current deposits in the area invested by them. The sedimentological analysis of the well exposed 800yr B.P. plinian eruption of the volcano Quilotoa (Ecuador) enabled us to i) recognize a gradual evolution of the eruptive regime, ii) characterize the fall and density current deposits emplaced during the transitional regime. The eruptive activity began with at least two phreatic explosions and the effusion of a small volume lava dome. Eruptive behaviour then switched to explosive and fed a purely convective column that accumulated a reverse graded pumice fall while rising up to an height of 30 km. A small volume, diluted and slow density current (S1 current) was emplaced in the proximal SW sector just before the column reached its maximum height. Two group s of more voluminous and faster intra-plinian density currents (S2 and S3 currents) were subsequently emplaced contemporaneously with the accumulation of the lower and upper part respectively of a normal graded pumice fall bed. S2 and S3 currents were radially distributed around the crater and deposited bedded layers with facies of decreasing energy when moving away from the crater. Massive beds of small volume were emplaced only i) inside the proximal valley channel near the topography break in slope, ii) outside the valley channel in medial area where the currents impinged against relieves. A thick sequence of pyroclastic flow deposits (S4 currents) accumulated in the valley channels around the crater only in a post-plinian phase. During this phase, the convective plume was purely coignimbritic. The runout (from 4 to 11 km) and the degree of valley -confinement progressively increased from S1 to S4 currents. The eruption ended with the collapse of a 2.6 km summit caldera. During this last eruptive phase, coarse lithic-rich flow units with runout shorter than previously were emplaced. The parallel evolution of column height (grain-size), fountain height (size of ballistics) and flow properties (surges vs. flows) compares well with the numerical simulations of pyroclastic dispersion performed by Neri et al. (2002). In the whole dispersion area, the fall bed has a polymodal grain-size. The coarse modes of the fall appear related to the plinian column, while the fines ones have a co-ignimbrite fall origin. Sub-pop ulation analysis shows that the fine modes are related to ash aggregation that in transitional eruptions plays a significant role in the deposition of very fine sizzes also in very proximal areas. The fall deposit is totally eroded and reworked by the syn-plinian currents in the proximal areas and partially eroded in the medial areas. Grain-size and maximum clast analysis indicate that a significant fraction of the intraplinian beds is of primary fall origin. Strong similarities are found between the Quilot oa deposits and that accumulated during the transitional phase of the 1991 Pinatubo eruption (Rosi et al., 2001). These evidences should be carefully taken in account for risk assessment when analysing deposits accumulated in the transitional eruptive regi me with the aim at calculating the physical parameters characterizing the density currents ( Brissette and Lajoie, 1990). References : Brissette FP and Lajoie J (1990) Depositional mechanics of turbulent nuées ardentes (surges) from their grain-sizes. Bull Volcanol 53:60-66. Carey S, Sigurdsson H, Sparks RSJ (1988) Experimental studies of particle-laden plumes. J Geophys Res 93:15314-15328 Kaminski E and Jaupart C (2001) Marginal stability of atmospheric eruption columns and pyroclastic flow generation J Geophys Res 106: 21785-21798 Neri A, Papale P and Macedonio G (1998) The role of magma composition and water content in explosive eruptions: 2. Pyroclastic dispersion dynamics. J Volcanol Geotherm Res 87: 95-115 Neri A, Di Muro A, Rosi M (2002) Mass partition during collapsing and transitional columns by using numerical simulations. In press on J Volcanol Geotherm Res Rosi M., Paladio-Melosantos M.L., Di Muro A., Leoni R., Bacolcol T. (2001) Fall vs Flow Activity During the 1991 Climactic Eruption of Mt. Pinatubo (Philippines). Bull Volcanol 62: 549-566 Valentine G.A., Giannetti B. (1995) Single Pyroclastic beds deposited by simultaneous fallout and surge processes: Roccamonfina volcano, Italy. J Volcanol Geotherm Res 64:129-137. Veitch G and Woods A (2002) Particle recycling and oscillations of volcanic eruption columns. J of Geophys Res, 105: 2829-2842. Wilson C.J.N., Hildreth W. (1997) The Bishop Tuff: new insights from eruptive stratigraphy J of Geol. 105:407-439.

  6. Naples between two fires: eruptive scenarios for the next eruptions by an integrated volcanological-probabilistic approach.

    NASA Astrophysics Data System (ADS)

    Mastrolorenzo, G.; Pappalardo, L.; de Natale, G.; Troise, C.; Rossano, S.; Panizza, A.

    2009-04-01

    Probabilistic approaches based on available volcanological data from real eruptions of Campi Flegrei and Somma-Vesuvius, are assembled in a comprehensive assessment of volcanic hazards at the Neapolitan area. This allows to compare the volcanic hazards related to the different types of events, which can be used for evaluating the conditional probability of flows and falls hazard in case of a volcanic crisis. Hazard maps are presented, based on a rather complete set of numerical simulations, produced using field and laboratory data as input parameters relative to a large range (VEI 1 to 5) of fallout and pyroclastic-flow events and their relative occurrence. The results allow us to quantitatively evaluate and compare the hazard related to pyroclastic fallout and density currents (PDCs) at the Neapolitan volcanoes and their surroundings, including the city of Naples. Due to its position between the two volcanic areas, the city of Naples is particularly exposed to volcanic risk from VEI>2 eruptions, as recorded in the local volcanic succession. Because dominant wind directions, the area of Naples is particularly prone to fallout hazard from Campi Flegrei caldera eruptions in the VEI range 2-5. The hazard from PDCs decreases roughly radially with distance from the eruptive vents and is strongly controlled by the topographic heights. Campi Flegrei eruptions are particularly hazardous for Naples, although the Camaldoli and Posillipo hills produce an effective barrier to propagation to the very central part of Naples. PDCs from Vesuvius eruptions with VEI>4 can cover the city of Naples, whereas even VEI>3 eruptions have a moderate fallout hazard there.

  7. Preliminary report on the July 10-11, 2015 eruption at Volcán de Colima: Pyroclastic density currents with exceptional runouts and volume

    NASA Astrophysics Data System (ADS)

    Capra, L.; Macías, J. L.; Cortés, A.; Dávila, N.; Saucedo, R.; Osorio-Ocampo, S.; Arce, J. L.; Gavilanes-Ruiz, J. C.; Corona-Chávez, P.; García-Sánchez, L.; Sosa-Ceballos, G.; Vázquez, R.

    2016-01-01

    On July 10-11, 2015 an eruption occurred at Colima volcano produced 10.5 km long pyroclastic density currents (PDCs) along the Montegrande, and 6.5 km long along the San Antonio ravines. The summit dome was destroyed and a new crater excavated and breached to the south. This new breach connects to a narrow channel that descends along Colima's southern flank and was used by a subsequent lava flow. The Montegrande PDCs represent the longest and hottest flow of this type recorded during the past 30 years but are still smaller in comparison to the 15-km long PDCs produced during the 1913 Plinian eruption. Data obtained from field reconnaissance, lahar monitoring stations, and satellite imagery suggest that at least six PDCs occurred. The two largest PDCs (H/L 0.2) were able to surmount topographic barriers or bends. Based on field reconnaissance and digital elevation models extracted from SPOT satellite imageries we estimate a minimum volume for the valley-pond and distal fan deposits of 4.5 × 106 m3. After one week, the deposits were still hot with burning trees on the surface and millimeter-sized holes from which fumes were emanating. The juvenile components of the deposits consist of gray dense blocks and vesicular dark-gray blocks and bombs with bread-crust textures and cooling joints. The mineral association of these rocks consists of plagioclase + clinopyroxene + orthopyroxene + FeTi-oxides ± olivine and resorbed hornblende in a dark glassy matrix that corresponds to an andesitic composition.

  8. Detection and characterization of debris avalanche and pyroclastic flow dynamics from the simulation of the seismic signal they generate: application to Montserrat, Lesser Antilles

    NASA Astrophysics Data System (ADS)

    Zhao, J.; Mangeney, A.; Moretti, L.; Stutzmann, E.; Calder, E. S.; Smith, P. J.; Capdeville, Y.; Le Friant, A.; Cole, P.; Luckett, R.; Robertson, R.

    2011-12-01

    Gravitational instabilities such as debris avalanches or pyroclastic flows represent one of the major natural hazards for populations who live in mountainous or volcanic areas. Detection and understanding of the dynamics of these events is crucial for risk assessment. Furthermore, during an eruption, a series of explosions and gravitational flows can occur, making it difficult to retrieve the characteristics of the individual gravitational events such as their volume, velocity, etc. In this context, the seismic signal generated by these events provides a unique tool to extract information on the history of the eruptive process and to validate gravitational flow models. We analyze here a series of events including explosions, debris avalanche and pyroclastic flows occurring in Montserrat in December 1997. This seismic signal is composed of six main pulses. The characteristics of the seismic signals generated by pyroclastic flows (amplitude, emergent onset, frequency spectrum, etc.) are described and linked to the volume of the individual events estimated from past field surveys. As a first step, we simulate the waveform of each event by assuming that the generation process reduces to a simple force applied at the surface of the topography. Going further, we perform detailed numerical simulation of the Boxing Day debris avalanche and of the following pyroclastic flow using a landslide model able to take into account the 3D topography. The stress field generated by the gravitational flows on the topography is then applied as surface boundary condition in a wave propagation model, making it possible to simulate the seismic signal generated by the avalanche and pyroclastic flow. Comparison between the simulated signal and the seismic signal recorded at the Puerto Rico seismic station located 450 km away from the source, show that this method allows us to reproduce the low frequency seismic signal and to constrain the volume and frictional behavior of the individual events. As a result, simulation of seismic signals generated by gravitational flows provides insight into the history of eruptive sequences and into the characteristics of the individual events.

  9. Developing Regional Tephrostratigraphic Frameworks: Applications and Challenges.

    NASA Astrophysics Data System (ADS)

    Fontijn, K.; Pyle, D. M.; Smith, V.; Mather, T. A.

    2017-12-01

    Detailed stratigraphic studies of pyroclastic deposits form arguably the best tool to estimate the frequency and magnitude of explosive eruptions at volcanoes where limited or no historical records exist. As such tephrostratigraphy forms a first-order assessment of potential future eruptive behavior at poorly known volcanoes. Alternations of soils and pyroclastic deposits at proximal to medial distances of the volcano however typically only allow reconstructing eruptive behavior within the Holocene. Moreover, they only tend to preserve relatively large explosive eruptions, of magnitude 3-4 and above, and therefore almost invariably form a biased view of the frequency-magnitude relationships at a particular volcano. Long lacustrine records in medial to distal regions offer significant potential to obtain a more complete view of the explosive eruptive record as they often preserve thin fine-grained tephra deposits representing either small-scale explosive eruptions not preserved on land, or distal ash deposits from large explosive eruptions. Furthermore, these sedimentary records often contain material that can be dated to establish a detailed age-depth model that can be used to date the eruptions and estimate the tempo of activity. In settings where volcanoes and lakes closely co-exist, integrating terrestrial and lacustrine data therefore allows the development of regional-scale tephrostratigraphic frameworks. Such frameworks provide a view of temporal trends in volcanic activity and mid/long-term eruptive rates on a regional scale rather than at the level of an individual volcano, i.e. in interaction with regional tectonic stress regimes. They also highlight the spatial distribution of deposits from large explosive eruptions, allowing improved estimates of magnitudes of individual eruptions as well as of frequency of impact by volcanic ash in specific regions. Provided such tephra horizons are well characterized and dated they can be used as age marker horizons and help fine-tune age models for palaeoenvironmental studies. In this presentation we will highlight a few key examples of both local and regional-scale tephrostratigraphic frameworks in East Africa, Chile and South-East Asia, and discuss the multidisciplinary applications as well as challenges posed by data acquisition.

  10. Stratigraphy, sedimentology and inferred flow dynamics from the July 2015 block-and-ash flow deposits at Volcán de Colima, Mexico

    NASA Astrophysics Data System (ADS)

    Macorps, Elodie; Charbonnier, Sylvain J.; Varley, Nick R.; Capra, Lucia; Atlas, Zachary; Cabré, Josep

    2018-01-01

    The July 2015 block-and-ash flow (BAF) events represent the first documented series of large-volume and long-runout BAFs generated from sustained dome collapses at Volcán de Colima. This eruption is particularly exceptional at this volcano due to (1) the large volume of BAF material emplaced (0.0077 ± 0.001 km3), (2) the long runout reached by the associated BAFs (max. 10 km), and (3) the short period ( 18 h) over which two main long-sustained dome collapse events occurred (on 10 and 11 July, respectively). Stratigraphy and sedimentology of the 2015 BAF deposits exposed in the southern flank of the volcano based on lithofacies description, grain size measurements and clast componentry allowed the recognition of three main deposit facies (i.e., valley-confined, overbank and ash-cloud surge deposits). Correlations and lithofacies variations inside three main flow units from both the valley-confined and overbank deposits left from the emplacement of the second series of BAFs on 11 July provide detailed information about: (1) the distribution, volumes and sedimentological characteristics of the different units; (2) flow parameters (i.e., velocity and dynamic pressure) and mobility metrics as inferred from associated deposits; and (3) changes in the dynamics of the different flows and their material during emplacement. These data were coupled with geomorphic analyses to assess the role of the topography in controlling the behaviour and impacts of the successive BAF pulses on the volcano flanks. Finally, these findings are used to propose a conceptual model for transport and deposition mechanisms of the July 2015 BAFs at Volcán de Colima. In this model, deposition occurs by rapid stepwise aggradation of successive BAF pulses. Flow confinement in a narrow and sinuous channel enhance the mobility and runout of individual channelized BAF pulses. When these conditions occur, the progressive valley infilling from successive sustained dome-collapse events promote the overspill and lateral spreading of the upper and marginal regions of the main flow body, generating highly mobile overbank flows that travel outside of the main valley. Volume- and distance-dependent critical channel capacities for the generation of overbank flows are used to better estimate the inundation area of these hazardous unconfined pyroclastic flows. These results highlight the importance of including and correctly assessing the hazards posed by large volume and long runout BAFs associated with frequent, small VEI, sustained dome-collapse eruptions.

  11. Volcanic hotspots of the central and southern Andes as seen from space by ASTER and MODVOLC between the years 2000-2011

    NASA Astrophysics Data System (ADS)

    Jay, J.; Pritchard, M. E.; Mares, P. J.; Mnich, M. E.; Welch, M. D.; Melkonian, A. K.; Aguilera, F.; Naranjo, J.; Sunagua, M.; Clavero, J. E.

    2011-12-01

    We examine 153 volcanoes and geothermal areas in the central, southern, and austral Andes for temperature anomalies between 2000-2011 from two different spacebourne sensors: 1) those automatically detected by the MODVOLC algorithm (Wright et al., 2004) from MODIS and 2) manually identified hotspots in nighttime images from ASTER. Based on previous work, we expected to find 8 thermal anomalies (volcanoes: Ubinas, Villarrica, Copahue, Láscar, Llaima, Chaitén, Puyehue-Cordón Caulle, Chiliques). We document 31 volcanic areas with pixel integrated temperatures of 4 to more than 100 K above background in at least two images, and another 29 areas that have questionable hotspots with either smaller anomalies or a hotspot in only one image. Most of the thermal anomalies are related to known activity (lava and pyroclastic flows, growing lava domes, fumaroles, and lakes) while others are of unknown origin or reflect activity at volcanoes that were not thought to be active. A handful of volcanoes exhibit temporal variations in the magnitude and location of their temperature anomaly that can be related to both documented and undocumented pulses of activity. Our survey reveals that low amplitude volcanic hotspots detectable from space are more common than expected (based on lower resolution data) and that these features could be more widely used to monitor changes in the activity of remote volcanoes. We find that the shape, size, magnitude, and location on the volcano of the thermal anomaly vary significantly from volcano to volcano, and these variations should be considered when developing algorithms for hotspot identification and detection. We compare our thermal results to satellite InSAR measurements of volcanic deformation and find that there is no simple relationship between deformation and thermal anomalies - while 31 volcanoes have continuous hotspots, at least 17 volcanoes in the same area have exhibited deformation, and these lists do not completely overlap. In order to investigate the relationship between seismic and thermal volcanic activity, we examine seismic data for 5 of the volcanoes (Uturuncu, Olca-Paruma, Ollague, Irruputuncu, and Sol de Mañana) as well as seismological reports from the Chilean geological survey SERNAGEOMIN for 11 additional volcanoes. Although there were 7 earthquakes with Mw > 7 in our study area from 2000-2010, there is essentially no evidence from ASTER or MODVOLC that the thermal anomalies were affected by seismic shaking.

  12. Volcanic Ash Hazards and Risk in Argentina: Scientific and Social Collaborative Approaches.

    NASA Astrophysics Data System (ADS)

    Rovere, E. I., II; Violante, R. A.; Vazquez Herrera, M. D.; Martinez Fernandez, M. D. L. P.

    2015-12-01

    Due to the absence of alerts or volcanic impacts during 60 years (from 1932, Quizapu-Descabezado Grande -one of the major eruptions of the XX Century- until 1991 Hudson eruption) there was mild remembrance of volcanic hazards in the collective memory of the Argentina citizens. Since then and until April 2015, the social perception changed according to different factors: age, location, education, culture, vulnerability. This variability produces a maze of challenges that go beyond the scientific knowledge. Volcanic health hazards began to be understood in 2008 after the eruption of Chaiten volcano. The particle size of ashfall (<10 μ) and the silica composition were the main factors of concern on epidemiological monitoring. In 2011 the volcanic complex Puyehue - Cordon Caulle eruption produced ashfall through plumes that reached densely populated cities like San Carlos de Bariloche and Buenos Aires. Farther away in South Africa and New Zealand ash plumes forced airlines to cancel local and international flights for several weeks. The fear of another eruption did not wait long when Calbuco volcano started activity in April 2015, it came at a time when Villarrica volcano was also in an eruptive phase, and the SERNAGEOMIN Chile, through the Observatory OVDAS of the Southern Andes, faced multiple natural disasters at the same time, 3 volcanoes in activity, lahars, pyroclastic flows and floods in the North. In Argentina, critical infrastructure, farming, livestock and primary supplies were affected mainly in the western region. Copahue volcano, is increasing unstability on seismic and geochemistry data since 2012. Caviahue resort village, distant only 8 Km. from the active vent happens to be a high vulnerable location. In 2014 GEVAS (Geology, Volcanoes, Environment and Health) Network ARGENTINA Civil Association started collaborative activities with SEGEMAR and in 2015 with the IAPG (Geoethics, Argentina), intending to promote Best Practices in volcanic and geological hazards. Geoscientists and the volcano vulnerable population are aware about the governmental commitment to assume a strategic planning for mitigation, facing a volcanic emergency. Recently, university undergraduate students from Chile and Argentina are networking to acquire the skills needed for a better preparedness to the next volcanic eruption.

  13. The Tharsis Montes, Mars - Comparison of volcanic and modified landforms

    NASA Technical Reports Server (NTRS)

    Zimbelman, James R.; Edgett, Kenneth S.

    1992-01-01

    The three Tharsis Montes shield volcanos, Arsia Mons, Pavonis Mons, and Ascraeus Mons, have broad similarities that have been recognized since the Mariner 9 reconnaissance in 1972. Upon closer examination the volcanos are seen to have significant differences that are due to individual volcanic histories. All three volcanos exhibit the following characteristics: gentle (less than 5 deg) flank slopes, entrants in the northwestern and southeastern flanks that were the source for lavas extending away from each shield, summit caldera(s), and enigmatic lobe-shaped features extending over the plains to the west of each volcano. The three volcanos display different degrees of circumferential graben and trough development in the summit regions, complexity of preserved caldera collapse events, secondary summit-region volcanic construction, and erosion on the lower western flanks due to mass wasting and the processes that formed the large lobe-shaped features. All three lobe-shaped features start at elevations of 10 to 11 km and terminate at 6 km. The complex morphology of the lobe deposits appear to involve some form of catastrophic mass movement followed by effusive and perhaps pyroclastic volcanism.

  14. Slow-moving and far-travelled dense pyroclastic flows during the Peach Spring super-eruption

    USGS Publications Warehouse

    Roche, Olivier; Buesch, David C.; Valentine, Greg A.

    2016-01-01

    Explosive volcanic super-eruptions of several hundred cubic kilometres or more generate long run-out pyroclastic density currents the dynamics of which are poorly understood and controversial. Deposits of one such event in the southwestern USA, the 18.8 Ma Peach Spring Tuff, were formed by pyroclastic flows that travelled >170 km from the eruptive centre and entrained blocks up to ~70–90 cm diameter from the substrates along the flow paths. Here we combine these data with new experimental results to show that the flow’s base had high-particle concentration and relatively modest speeds of ~5–20 m s−1, fed by an eruption discharging magma at rates up to ~107–108 m3 s−1 for a minimum of 2.5–10 h. We conclude that sustained high-eruption discharge and long-lived high-pore pressure in dense granular dispersion can be more important than large initial velocity and turbulent transport with dilute suspension in promoting long pyroclastic flow distance.

  15. Reconstruction of a phreatic eruption on 27 September 2014 at Ontake volcano, central Japan, based on proximal pyroclastic density current and fallout deposits

    NASA Astrophysics Data System (ADS)

    Maeno, Fukashi; Nakada, Setsuya; Oikawa, Teruki; Yoshimoto, Mitsuhiro; Komori, Jiro; Ishizuka, Yoshihiro; Takeshita, Yoshihiro; Shimano, Taketo; Kaneko, Takayuki; Nagai, Masashi

    2016-05-01

    The phreatic eruption at Ontake volcano on 27 September 2014, which caused the worst volcanic disaster in the past half-century in Japan, was reconstructed based on observations of the proximal pyroclastic density current (PDC) and fallout deposits. Witness observations were also used to clarify the eruption process. The deposits are divided into three major depositional units (Units A, B, and C) which are characterized by massive, extremely poorly sorted, and multimodal grain-size distribution with 30-50 wt% of fine ash (silt-clay component). The depositional condition was initially dry but eventually changed to wet. Unit A originated from gravity-driven turbulent PDCs in the relatively dry, vent-opening phase. Unit B was then produced mainly by fallout from a vigorous moist plume during vent development. Unit C was derived from wet ash fall in the declining stage. Ballistic ejecta continuously occurred during vent opening and development. As observed in the finest population of the grain-size distribution, aggregate particles were formed throughout the eruption, and the effect of water in the plume on the aggregation increased with time and distance. Based on the deposit thickness, duration, and grain-size data, and by applying a scaling analysis using a depth-averaged model of turbulent gravity currents, the particle concentration and initial flow speed of the PDC at the summit area were estimated as 2 × 10-4-2 × 10-3 and 24-28 m/s, respectively. The tephra thinning trend in the proximal area shows a steeper slope than in similar-sized magmatic eruptions, indicating a large tephra volume deposited over a short distance owing to the wet dispersal conditions. The Ontake eruption provided an opportunity to examine the deposits from a phreatic eruption with a complex eruption sequence that reflects the effect of external water on the eruption dynamics.

  16. Chronology and impact of the 2011 Puyehue-Cordón Caulle eruption, Chile

    NASA Astrophysics Data System (ADS)

    Elissondo, M.; Baumann, V.; Bonadonna, C.; Pistolesi, M.; Cioni, R.; Bertagnini, A.; Biass, S.; Herrero, J. C.; Gonzalez, R.

    2015-09-01

    We present a detailed chronological reconstruction of the 2011 eruption of Puyehue-Cordón Caulle volcano (Chile) based on information derived from newspapers, scientific reports and satellite images. Chronology of associated volcanic processes and their local and regional effects (i.e. precursory activity, tephra fallout, lahars, pyroclastic density currents, lava flows) are also presented. The eruption had a severe impact on the ecosystem and on various economic sectors, including aviation, tourism, agriculture, and fishing industry. Urban areas and critical infrastructures, such as airports, hospitals and roads, were also impacted. The concentration of PM10 (Particulate Matter ≤ 10 μm) was measured during and after the eruption, showing that maximum safety threshold levels of daily and annual exposures were surpassed in several occasions. Probabilistic analysis of atmospheric and eruptive conditions have shown that the main direction of dispersal is directly towards east of the volcano and that the climactic phase of the eruption, dispersed toward south-east, has a probability of occurrence within 1 %. The management of the crisis, including evacuation of people, is discussed, as well as the comparison with the impact associated with other recent eruptions located in similar areas and having similar characteristics (i.e. Quizapu, Hudson, and Chaitén volcanoes). This comparison shows that the regions downwind and very close to the erupting volcanoes suffered very similar problems, without a clear relation with the intensity of the eruption (e.g. health problems, damage to vegetation, death of animals, roof collapse, air traffic disruptions, road closure, lahars and flooding). This suggests that a detailed collection of impact data can be largely beneficial for the development of plans for the management of an eruptive crisis and the mitigation of associated risk of the Andean region.

  17. Local infrasound observations of large ash explosions at Augustine Volcano, Alaska, during January 11–28, 2006

    USGS Publications Warehouse

    Petersen, Tanja; De Angelis, Silvio; Tytgat, Guy; McNutt, Stephen R.

    2006-01-01

    We present and interpret acoustic waveforms associated with a sequence of large explosion events that occurred during the initial stages of the 2006 eruption of Augustine Volcano, Alaska. During January 11–28, 2006, 13 large explosion events created ash-rich plumes that reached up to 14 km a.s.l., and generated atmospheric pressure waves that were recorded on scale by a microphone located at a distance of 3.2 km from the active vent. The variety of recorded waveforms included sharp N-shaped waves with durations of a few seconds, impulsive signals followed by complex codas, and extended signals with emergent character and durations up to minutes. Peak amplitudes varied between 14 and 105 Pa; inferred acoustic energies ranged between 2×108 and 4×109 J. A simple N-shaped short-duration signal recorded on January 11, 2006 was associated with the vent-opening blast that marked the beginning of the explosive eruption sequence. During the following days, waveforms with impulsive onsets and extended codas accompanied the eruptive activity, which was characterized by explosion events that generated large ash clouds and pyroclastic flows along the flanks of the volcano. Continuous acoustic waveforms that lacked a clear onset were more common during this period. On January 28, 2006, the occurrence of four large explosion events marked the end of this explosive eruption phase at Augustine Volcano. After a transitional period of about two days, characterized by many small discrete bursts, the eruption changed into a stage of more sustained and less explosive activity accompanied by the renewed growth of a summit lava dome.

  18. Mass budget partitioning during explosive eruptions: insights from the 2006 paroxysm of Tungurahua volcano, Ecuador

    NASA Astrophysics Data System (ADS)

    Bernard, Julien; Eychenne, Julia; Le Pennec, Jean-Luc; Narváez, Diego

    2016-08-01

    How and how much the mass of juvenile magma is split between vent-derived tephra, PDC deposits and lavas (i.e., mass partition) is related to eruption dynamics and style. Estimating such mass partitioning budgets may reveal important for hazard evaluation purposes. We calculated the volume of each product emplaced during the August 2006 paroxysmal eruption of Tungurahua volcano (Ecuador) and converted it into masses using high-resolution grainsize, componentry and density data. This data set is one of the first complete descriptions of mass partitioning associated with a VEI 3 andesitic event. The scoria fall deposit, near-vent agglutinate and lava flow include 28, 16 and 12 wt. % of the erupted juvenile mass, respectively. Much (44 wt. %) of the juvenile material fed Pyroclastic Density Currents (i.e., dense flows, dilute surges and co-PDC plumes), highlighting that tephra fall deposits do not depict adequately the size and fragmentation processes of moderate PDC-forming event. The main parameters controlling the mass partitioning are the type of magmatic fragmentation, conditions of magma ascent, and crater area topography. Comparisons of our data set with other PDC-forming eruptions of different style and magma composition suggest that moderate andesitic eruptions are more prone to produce PDCs, in proportions, than any other eruption type. This finding may be explained by the relatively low magmatic fragmentation efficiency of moderate andesitic eruptions. These mass partitioning data reveal important trends that may be critical for hazard assessment, notably at frequently active andesitic edifices.

  19. Reconstruction of the 2014 eruption sequence of Ontake Volcano from recorded images and interviews

    NASA Astrophysics Data System (ADS)

    Oikawa, Teruki; Yoshimoto, Mitsuhiro; Nakada, Setsuya; Maeno, Fukashi; Komori, Jiro; Shimano, Taketo; Takeshita, Yoshihiro; Ishizuka, Yoshihiro; Ishimine, Yasuhiro

    2016-05-01

    A phreatic eruption at Mount Ontake (3067 m) on September 27, 2014, led to 64 casualties, including missing people. In this paper, we clarify the eruption sequence of the 2014 eruption from recorded images (photographs and videos obtained by climbers) and interviews with mountain guides and workers in mountain huts. The onset of eruption was sudden, without any clear precursory surface phenomena (such as ground rumbling or strong smell of sulfide). Our data indicate that the eruption sequence can be divided into three phases. Phase 1: The eruption started with dry pyroclastic density currents (PDCs) caused by ash column collapse. The PDCs flowed down 2.5 km SW and 2 km NW from the craters. In addition, PDCs moved horizontally by approximately 1.5 km toward N and E beyond summit ridges. The temperature of PDCs at the summit area partially exceeded 100 °C, and an analysis of interview results suggested that the temperature of PDCs was mostly in the range of 30-100 °C. At the summit area, there were violent falling ballistic rocks. Phase 2: When the outflow of PDCs stopped, the altitude of the eruption column increased; tephra with muddy rain started to fall; and ambient air temperature decreased. Falling ballistic rocks were almost absent during this phase. Phase 3: Finally, muddy hot water flowed out from the craters. These models reconstructed from observations are consistent with the phreatic eruption models and typical eruption sequences recorded at similar volcanoes.

  20. Composite volcanoes in the south-eastern part of İzmir-Balıkesir Transfer Zone, Western Anatolia, Turkey

    NASA Astrophysics Data System (ADS)

    Seghedi, Ioan; Helvacı, Cahit; Pécskay, Zoltan

    2015-01-01

    During the Early-Middle Miocene (Western Anatolia) several volcanic fields occur along a NE-SW-trending shear zone, known as İzmir-Balıkesir Transfer Zone. This is a deformed crustal-scale sinistral strike-slip fault zone crossing the Bornova flysch and extending along the NW-boundary of the Menderes Massif by accommodating the differential deformation between the Cycladic and Menderes core complexes within the Aegean extensional system. Here we discuss the volcanic activity in Yamanlar and Yuntdağı fields that is closely related to the extensional tectonics of the İzmir-Balıkesir Transfer Zone and in the same time with the episodic core complex denudation of the Menderes Massif. This study documents two composite volcanoes (Yamanlar and Yuntdağı), whose present vent area is strongly eroded and cut by a variety of strike-slip and normal fault systems, the transcurrent NW-SE being the dominant one. The erosional remnants of the vent areas, resembling a shallow crater intrusive complex, illustrate the presence of numerous dykes or variably sized neck-like intrusions and lava flows, typically associated with hydrothermal alteration processes (propylitic and argillic). Such vent areas were observed in both the examined volcanic fields, having ~ 6 km in diameter and being much more eroded toward the south, along the NW-SE fault system. Lava flows and lava domes are sometimes associated with proximal block and ash flow deposits. In the cone-building association part, besides lava flows and remnants of lava domes, rare block and ash and pumice-rich pyroclastic flow deposits, as well as a series of debris-flow deposits, have been observed. The rocks display a porphyritic texture and contain various proportions of plagioclase, clinopyroxene, orthopyroxene, amphibole, rare biotite and corroded quartz. The examined rocks fall at the limit between calc-alkaline to alkaline field, and plot predominantly in high-K andesite and dacite fields and one is rhyolite. The trace element distribution suggests fractional crystallization processes and mixing in upper crustal magma chambers and suggests a metasomatized lithospheric mantle/lower crust source. This preliminary volcanological-petrological and geochronological base study allowed documenting the Yamanlar and Yuntdağı as composite volcanoes generated during post-collisional Early-Middle Miocene transtensional tectonic movements.

  1. In vitro toxicology of respirable Montserrat volcanic ash

    PubMed Central

    Wilson, M.; Stone, V.; Cullen, R.; Searl, A.; Maynard, R.; Donaldson, K.

    2000-01-01

    OBJECTIVES—In July 1995 the Soufriere Hills volcano on the island of Montserrat began to erupt. Preliminary reports showed that the ash contained a substantial respirable component and a large percentage of the toxic silica polymorph, cristobalite. In this study the cytotoxicity of three respirable Montserrat volcanic ash (MVA) samples was investigated: M1 from a single explosive event, M2 accumulated ash predominantly derived from pyroclastic flows, and M3 from a single pyroclastic flow. These were compared with the relatively inert dust TiO2 and the known toxic quartz dust, DQ12.
METHODS—Surface area of the particles was measured with the Brunauer, Emmet, and Teller (BET) adsorption method and cristobalite content of MVA was determined by x ray diffraction (XRD). After exposure to particles, the metabolic competence of the epithelial cell line A549 was assessed to determine cytotoxic effects. The ability of the particles to induce sheep blood erythrocyte haemolysis was used to assess surface reactivity.
RESULTS—Treatment with either MVA, quartz, or titanium dioxide decreased A549 epithelial cell metabolic competence as measured by ability to reduce 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). On addition of mannitol, the cytotoxic effect was significantly less with M1, quartz, and TiO2. All MVA samples induced a dose dependent increase in haemolysis, which, although less than the haemolysis induced by quartz, was significantly greater than that induced by TiO2. Addition of mannitol and superoxide dismutase (SOD) significantly reduced the haemolytic activity only of M1, but not M2 or M3, the samples derived from predominantly pyroclastic flow events.
CONCLUSIONS—Neither the cristobalite content nor the surface area of the MVA samples correlated with observed in vitro reactivity. A role for reactive oxygen species could only be shown in the cytotoxicity of M1, which was the only sample derived from a purely explosive event. These results suggest that in general the bioreactivity of MVA samples in vitro is low compared with pure quartz, but that the bioreactivity and mechanisms of biological interaction may vary according to the ash source.


Keywords: volcanic ash; cristobalite; surface reactivity PMID:11024195

  2. Identifying open and closed system behaviors at Tungurahua volcano (Ecuador) using SO2 and seismo-acoustic measurements

    NASA Astrophysics Data System (ADS)

    Hidalgo, Silvana; Battaglia, Jean; Bernard, Benjamin; Steele, Alexander; Arellano, Santiago; Galle, Bo

    2014-05-01

    Tungurahua is one of the most active volcanoes in Ecuador. It is located in Central Ecuador, 160 km South of Quito and 8 km South of the touristic town of Baños. Tungurahua had one eruption every century since 1500, with an activity characterized by ash fallouts and pyroclastic and lava flows. The current eruptive period of Tungurahua began in 1999 with multiple episodes of explosive activity that have threatened the local population. The monitoring network is constituted by 5 short period and 5 broadband seismic stations, 4 DOAS permanent instruments, 4 tiltmeters, 2 permanent high resolution GPS, 4 digital cameras and 10 acoustic flow monitors. The correct interpretation of the different data acquired by this network allows a better understanding of the eruptive behavior of Tungurahua in order to provide early warning to the local population. Tungurahua changed its behavior from a continuously erupting volcano, as it was until 2008, to a sporadically erupting one, showing clear quiescence phases lasting from 40 to 184 days, and intense activity phases lasting from 15 to 70 days. Activity phases are characterized by Strombolian and Vulcanian eruptive styles, producing ash fallouts and in a few occasions pyroclastic flows. In terms of hazard to the local population, one of the goals of monitoring Tungurahura is to forecast the onset and evolution of eruptive phases. In particular the occurrence of large Vulcanian explosions which occur when the conduit is closed is a major issue. Since 2010 we focused our study on the relation between SO2 gas emissions, the seismic and acoustic energies of explosions and the tremor amplitudes. The first observation of comparing these different datasets is that the correlation between seismic and SO2 degassing is not straightforward, and actually the relation reflects the conditions at the vent: open or closed. The onset of eruptive phases in open conduit conditions can be identified which leads to an effective eruption forecasting. An example of this behavior is the eruptive phase between December 2009 and March 2010 when SO2 measurements increased 4 days before the amplitude of tremor and 9 days before the occurrence of the first explosions. Conversely, if the vent is closed at the beginning of a phase and no evident seismic precursors are observed forecasting is hardly possible. During an ongoing eruptive phase, the relation between these parameters allows to identify periods when the conduit is totally open as degassing may occur almost without generating any seismicity. Therefore the forecasting of escalating open conduit activity or a partial closing of the system is possible. Such a case was observed and forecasted on December 2011. In this work, we present observational evidence of these mechanisms which are used to identify possible patterns of evolution of the activity, contributing to a more effective volcanic hazard assessment.

  3. Constructing event trees for volcanic crises

    USGS Publications Warehouse

    Newhall, C.; Hoblitt, R.

    2002-01-01

    Event trees are useful frameworks for discussing probabilities of possible outcomes of volcanic unrest. Each branch of the tree leads from a necessary prior event to a more specific outcome, e.g., from an eruption to a pyroclastic flow. Where volcanic processes are poorly understood, probability estimates might be purely empirical - utilizing observations of past and current activity and an assumption that the future will mimic the past or follow a present trend. If processes are better understood, probabilities might be estimated from a theoritical model, either subjectively or by numerical simulations. Use of Bayes' theorem aids in the estimation of how fresh unrest raises (or lowers) the probabilities of eruptions. Use of event trees during volcanic crises can help volcanologists to critically review their analysis of hazard, and help officials and individuals to compare volcanic risks with more familiar risks. Trees also emphasize the inherently probabilistic nature of volcano forecasts, with multiple possible outcomes.

  4. Deposits, petrology and mechanism of the 2010-2013 eruption of Kizimen volcano in Kamchatka, Russia

    NASA Astrophysics Data System (ADS)

    Auer, A.; Belousov, A.; Belousova, M.

    2018-04-01

    Kizimen volcano in Kamchatka is well known as a source of highly heterogeneous poorly mingled magmas ranging from dacites to basaltic andesites. In 2010-2013, the volcano produced its first historical magmatic eruption with the deposition of 0.27 km3 of block and ash pyroclastic flows accompanied by slow extrusion of a 200-m-thick, highly viscous (1010-1011 Pa s) block lava flow with a volume of 0.3 km3. The total volume of erupted magma comprised approximately 0.4 km3 DRE. We provide description of the eruption chronology, as well as the lithology and petrology of eruptive products. The erupted material is represented by banded dacite and high-silica andesite. The dacitic magma was formed during a long dormancy after the previous magmatic eruption several hundred years ago with mineral compositions indicating average pre-eruptive temperatures of 810 °C, fO2 of 0.9-1.6 log units above the nickel-nickel oxide (NNO) buffer and shallow crustal storage conditions at 123 MPa. The silica-rich andesite represents a hybrid magma, which shows signs of recent thermal and compositional disequilibrium. We suggest that the hybrid magma started to form in 1963 when a swarm of deep earthquakes indicated an input of mafic magma from depth into the 6-11-km-deep silicic magma chamber. It took the following 46 years until the magma filling the chamber reached an eruptible state. Poor mingling of the two melts is attributed to its unusually high viscosity that could be associated with the pre-eruptive long-term leakage of volatiles from the chamber through a regional tectonic fault. Our investigations have shown that shallow magma chambers of dormant volcanoes demonstrating strong persistent fumarolic activity can contain highly viscous, degassed magma of evolved composition. Reactivation of such magma chambers by injection of basic magma takes a long time (several decades). Thus, eruption forecasts at such volcanoes should include a possibility of long time lag between a swarm of deep earthquakes (indicating the recharge of basic magma from depth) and the following swarm of shallow earthquakes (indicating final ascent of the hybrid magma towards the surface). Due to the high viscosity of the magma, the shallow swarm can last for more than a year. The forthcoming eruption can be of moderate to low explosivity and include extrusion of viscous lava flows and domes composed of poorly mingled magmas of contrasting compositions.

  5. The anatomy of a pyroclastic density current: the 10 July 2015 event at Volcán de Colima (Mexico)

    NASA Astrophysics Data System (ADS)

    Capra, L.; Sulpizio, R.; Márquez-Ramirez, V. H.; Coviello, V.; Doronzo, D. M.; Arambula-Mendoza, R.; Cruz, S.

    2018-04-01

    Pyroclastic density currents (PDCs) represent one of the most dangerous phenomena occurring in explosive volcanic eruptions, and any advance in the physical understanding of their transport and sedimentation processes can contribute to improving their hazard assessment. The 10-11 July 2015 eruption at Volcán de Colima provided a unique opportunity to better understand the internal behaviour of PDCs based on seismic monitoring data. On 10 July 2015, the summit dome collapsed, producing concentrated PDCs that filled the main channel of the Montegrande ravine. A lahar monitoring station installed 6 km from the volcano summit recorded a PDC before being completely destroyed. Real-time data acquisition from a camcorder and a geophone that were part of the station, along with field observations and grain-size data of the pyroclastic deposits, are used here to interpret the internal flow structure and time-variant transport dynamics of low-volume, valley-confined concentrated PDCs. The PDC that reached the monitoring station moved at a velocity of 7 m/s and filled a 12-m-deep channel. The outcrops show massive, block-and-ash flow deposits with trains of coarse clasts in the middle and towards the top of the depositional units. The seismic record gathered with the geophone was analysed for the time window when the flow travelled past the sensor. The geophone record was also compared with the recordings of a broadband seismic station located nearby. Two main frequency ranges were recognised which could be correlated with the basal frictional forces exerted by the flow on the channel bed (10-20 Hz) and a collisional regime (20-40 Hz) interpreted to be associated with a clast segregation process (i.e. kinematic squeezing). This latter regime promoted the upward migration of large blocks, which subsequently deviated towards the margin of the flow where they interacted with the sidewall of the main channel. The energy calculated for both seismic components shows that the collisional regime represents 30% of the total energy including an important sidewall-stress component. These results, gathered directly from a moving flow, contribute to unravelling the internal behaviour of concentrated PDCs providing information on energy partitioning and particle-particle interactions. This confirms previous assumptions inferred from field observations, and tested by analogue or numerical modelling. The nature of the contact between grains is still poorly documented in natural PDCs, and there is still much uncertainty and discussion about dominant forces in such currents. Data reported here may thus be useful to better constrain the physics of low-volume, valley-confined concentrated PDCs and our findings need to be considered in theoretical models. In parallel, this study shows how geophones can provide a cheap alternative for PDC detection.

  6. Summary of the Oahu, Hawaii, Regional Aquifer-System Analysis

    USGS Publications Warehouse

    Nichols, William D.; Shade, Patricia J.; Hunt, Charles D.

    1996-01-01

    Oahu, the third largest of the Hawaiian islands, is formed by the eroded remnants of two elongated shield volcanoes with broad, low profiles. Weathering and erosion have modified the original domed surfaces of the volcanoes, leaving a landscape of deep valleys and steep interfluvial ridges in the interior highlands. The Koolau Range in eastern Oahu and the Waianae Range in western Oahu are the eroded remnants of the Koolau and Waianae Volcanoes. The origin, mode of emplacement, texture, and composition of the rocks of Oahu affect their ability to store and transmit water. The volcanic rocks are divided into four groups: (1) lava flows, (2) dikes, (3) pyroclastic deposits, and (4) saprolite and weathered basalt. Stratified sequences of thin-bedded lava flows form the most productive aquifers in Hawaii. Dikes are near-vertical sheets of massive intrusive rock that typically contain only fracture permeability. Pyroclastic deposits include ash, cinder, and spatter; they are essentially granular, with porosity and permeability similar to those of granular sediments. Weathering of basaltic rocks in the humid, subtropical climate of Oahu alters igneous minerals to clays and oxides, reducing the permeability of the parent rock. Saprolite is weathered material that has retained textural features of the parent rock. Estimates of hydraulic conductivity along the plane of dike-free lava flows tend to fall within about one order of magnitude, from about 500 to about 5,000 feet per day. Estimates of specific yield range from about 1 to 20 percent; most of the values lie within a narrow range of about 5 to 10 percent. The occurrence of ground water on Oahu is determined by the type and character of the rocks and by the presence of geohydrologic barriers. The primary modes of freshwater occurrence on Oahu are as a basal lens of fresh ground water floating on saltwater, as dike-impounded ground water, and as perched ground water. Saltwater occurs at depth throughout much of the island. A regional aquifer system composed of the Waianae aquifer in the Waianae Volcanics and the Koolau aquifer in the Koolau Basalt is subdivided into well-defined areas by geohydrologic barriers. The aquifers are separated by the Waianae confining unit formed by weathering along the Waianae-Koolau unconformity. In some coastal areas, a caprock of sedimentary deposits overlies and confines the aquifers. The island of Oahu has been divided into seven major ground-water areas delineated by deep-seated structural geohydrologic barriers; these areas are further subdivided by shallower internal barriers to ground-water flow. The Koolau rift zone along the eastern (windward) side of the island and the Waianae rift zone to the west (Waianae area) constitute two of the major ground-water areas. North-central Oahu is divided into three smaller ground-water areas, Mokuleia, Waialua, and Kawailoa. The Schofield ground-water area encompasses much of the Schofield Plateau of central Oahu. Southern Oahu is divided into six areas, Ewa, Pearl Harbor, Moanalua, Kalihi, Beretania, and Kaimuki. Southeastern Oahu is divided into the Waialae and Wailupe-Hawaii Kai areas. Along the northeast coast of windward Oahu is the Kahuku ground-water area. The aquifers of Oahu contain shallow freshwater and deeper saltwater flow systems. There are five fresh ground-water flow systems: meteoric freshwater flow diverges from ground-water divides that lie somewhere within the Waianae and Koolau rift zones, forming an interior flow system in central Oahu (which is divided into the northern and southern Oahu flow systems) and exterior flow systems in western (Waianae area) Oahu, eastern (windward) Oahu, and southeastern Oahu. Development of the ground-water resources on Oahu began when the first well was drilled near Honouliuli in the summer of 1879. By 1890, 86 wells had been drilled on the island. From about 1891 to about 1910, development increased rapidly with the drilling of a

  7. Introduction to Augustine Volcano and Overview of the 2006 Eruption

    NASA Astrophysics Data System (ADS)

    Nye, C. J.

    2006-12-01

    This overview represents the combined efforts of scores of people, including Alaska Volcano Observatory staff from the US Geological Survey, the University of Alaska Fairbanks Geophysical Institute, and the Alaska Division of Geological and Geophysical Surveys; additional members of those agencies outside of AVO; and volcanologists from elsewhere. Augustine is a young, and therefore small island volcano in the Cook Inlet region of the eastern Aleutian arc. It is among the most active volcanoes in the arc, with six major historic eruptions, and a vigorous eruptive history going back at least 2,500 years. Eruptions typically begin explosively, and finish with the extrusion of domes and sometimes short, steep lava flows. At least 14 times (most recently in 1883) the -summit has become over-steepened and failed, producing debris avalanches which reached tidewater. Magmas within each of the well-studied eruptions are crystal-rich andesite spanning up to seven weight percent silica. Mixing and mingling are ubiquitous and occur at scales from meters to microns. In general, magmagenesis at Augustine is open, messy, and transcrustal. The 2006 eruption was broadly similar to the 20th century eruptions. Unrest began midway through 2005, with steadily increasing numbers of microearthquakes and continuous inflation of the edifice. By mid-December there were obvious morphological and thermal changes at the summit, as well as phreatic explosions and more passive venting of S-rich gasses. In mid-January 2006 phreatomagmatic explosions gave way to magmatic explosions, producing pyroclastic flows dominated by low-silica andesite, as well as lahars, followed by a small summit dome. In late January the nature of seismicity, eruptive style, and type of erupted magma all changed, and block-and-ash flows of high-silica, crystal-rich andesite were emplaced as the edifice deflated. Re-inflation well below the edifice and low-level effusion continued through February. During the second week in March there was a marked increase in extrusion, resulting in two short, steep lava flows dominantly composed of low-silica andesite. Effusion slowly waned through March and deformation ceased. Previous eruptions have had months-long repose followed be renewed effusion, but this has not yet happened during this eruption. Our ability to describe this eruption is based on a richness of data. The volcano was well instrumented with AVO seismometers and Earthscope/PBO continuous GPS instruments. Additional instruments were added as unrest increased, and substitutes for stations destroyed during initial explosions were deployed. As many as two-dozen AVHRR satellite passes were analyzed each day, providing thermal monitoring and ash-plume tracking. Overflights collected both visual and quantitative IR imagery on a regular basis. Georeferenced imagery acquired by satellite (ASTER) and repeated conventional aerial photography permitted detailed, accurate, mapping of many deposits as an aid to (but not substitute for) field mapping. Web cameras (both visual and near-IR) and conventional time-lapse cameras aided understanding of ongoing processes. Data sets less common to volcano monitoring (infrasound, lightning detection) extended our understanding.

  8. Relating the physical properties of volcanic rocks to the characteristics of ash generated by experimental abrasion

    NASA Astrophysics Data System (ADS)

    Buckland, Hannah M.; Eychenne, Julia; Rust, Alison C.; Cashman, Katharine V.

    2018-01-01

    Interactions between clasts in pyroclastic density currents (PDCs) generate volcanic ash that can be dispersed to the atmosphere in co-PDC plumes, and due to its small size, is far-travelled. We designed a series of experiments to determine the effects of pyroclast vesicularity and crystal content on the efficiency and type of ash generated by abrasion. Two different pyroclastic materials were used: (1) basaltic-andesite pyroclasts from Fuego volcano (Guatemala) with 26-46% vesicularity and high groundmass crystallinity and (2) tephri-phonolite Avellino pumice (Vesuvius, Italy) with 55-75% vesicularity and low groundmass crystallinity. When milled, both clast types produced bimodal grain size distributions with fine ash modes between 4 and 5φ (32-63 μm). Although the vesicular Avellino pumice typically generated more ash than the denser Fuego pyroclasts, the ash-generating potential of a single pyroclast was independent of density, and instead governed by heterogeneous crystal and vesicle textures. One consequence of these heterogeneities was to cause the vesicular Avellino clasts to split in addition to abrading, which further enhanced abrasion efficiency. The matrix characteristics also affected ash shape and componentry, which will influence the elutriation and transport properties of ash in the atmosphere. The experimental abrasion successfully replicated some of the characteristics of natural co-PDC ash samples, as shown by similarities in the Adherence Factor, which measures the proportion of attached matrix on phenocrysts, of both the experimentally generated ash and natural co-PDC ash samples. Our results support previous studies, which have shown that abrasion is an effective mechanism for generating fine ash that is similar in size ( 5φ; 30 μm) to that found in co-PDC deposits. We further show that both the abundance and nature (shape, density, components, size distribution) of those ash particles are strongly controlled by the matrix properties of the abraded pyroclasts.

  9. The Past 20,000 Years of Plinian Explosive Activity at Mt Pelée Volcano (Lesser Antilles)

    NASA Astrophysics Data System (ADS)

    Carazzo, G.; Michaud-Dubuy, A.; Kaminski, E. C.; Tait, S.

    2017-12-01

    Major volcanic hazards in the Lesser Antilles arc include powerful Plinian explosive eruptions that inject ash into the atmosphere and produce dangerous pyroclastic density currents (PDC) on the ground. Reconstructions of past eruptive activities based on stratigraphic records are crucial to assessing specific hazards in this region where large eruptions do not occur frequently. The present study focuses on the dynamics of the last Plinian eruptions of Mount Pelée volcano in Martinique. Previous field-based studies identified 6 major Plinian eruptions over the past 5,000 years but limited information on their dynamics exist, except for the most recent one dated at AD 1300. Based on a new comprehensive field study and physical models of volcanic plumes, we largely improve our knowledge of the number of Plinian eruptions that occurred in Martinique over the past 20,000 years. We also provide a detailed reconstruction of important eruptive parameters such as mass eruption rates, maximum column heights, volumes, and impacted areas. Among the 6 Plinian eruptions newly identified during our field campaign, one is found to have produced voluminous pyroclastic density currents that reached the sea and partially rose as a co-PDC plume above a region that is beyond the existing hazard map. The estimated mass eruption rates for the 12 Plinian eruptions identified over the last 20,000 years range from 107 to 108 kg/s, producing 15-30 km-high Plinian columns, initially stable but ultimately collapsing and forming PDC. Empirical models of deposit thinning suggest that the minimum volume of pyroclastic deposits systematically ranges between 0.1 and 1 km3, corresponding to VEI 4 to 5 events. Archaeological evidences suggest that the impact of several eruptions forced the first Caribbean inhabitants to flee to other islands for decades.

  10. Peralkaline Rhyolite Achneliths with Evidence of Post-Emplacement Vesiculation at Aluto Volcano, Main Ethiopian Rift: What can these unusual pyroclasts tell us?

    NASA Astrophysics Data System (ADS)

    Calder, E.; Clarke, B. A.; Cortes, J. A.; Butler, I. B.; Yirgu, G.

    2016-12-01

    In peralkaline rhyolitic melts, Na+ and K+ combined with halogens act to disrupt silicate polymers reducing melt viscosity in comparison to other melts of equivalent silica content. As a result, such magmas are often associated with somewhat unusual deposits for which the associated eruptive behaviours are relatively poorly understood. We have discovered unusual globule-shaped clasts within an unconsolidated pyroclastic succession associated with a pumice cone at Aluto volcano in the Main Ethiopian Rift. The clasts are lapilli to ash sized, often have a droplet-like morphology and are characterised by a distinctive obsidian skin indicative of having been shaped by surface tension. We adopt Walker's term achneliths for these clasts. These achneliths however, unlike their mafic counterparts, are highly vesicular ( 78 vol %), and the glassy skin often shows a bread-crusted texture. Importantly, there is strong evidence for post-depositional, in-situ, inflation, including expanding against other clasts and in some cases fusing together. The unconsolidated nature of the deposit at Aluto means that these peralkaline achneliths are easily separated and investigated in 3D, providing an unprecedented opportunity to study their features in detail through the use of µCT, SEM and EPMA. Textural observations and preliminary 3D vesicle size distribution data suggest that surface tension is an important factor in shaping these clasts, and that vesiculation and degassing occurs over a prolonged period post-emplacement. MELTS model calculations on the EPMA analyses assuming dry conditions, suggest maximum liquidus temperatures of 1030 °C and minimum viscosities of 6 Log(poise). These observations have important implications for understanding the nature of late stage degassing, fragmentation and eruption style in peralkaline rhyolite systems as well as incipient welding in peralkaline pyroclastic units.

  11. The 2011-2012 eruption of Cordón Caulle volcano (Southern Andes): Evolution, crisis management and current hazards

    NASA Astrophysics Data System (ADS)

    Silva Parejas, C.; Lara, L. E.; Bertin, D.; Amigo, A.; Orozco, G.

    2012-04-01

    A new kind of integrated approach was for first time achieved during the eruptive crisis of Cordón Caulle volcano (Southern Andes, 40.59°S, 72.12°W) in Chile. The monitoring network of SERNAGEOMIN around the volcano detected the increasing precursory seismicity, alerting the imminence of an eruption about 5 hours before its onset, on June 4, 2011. In addition, SERNAGEOMIN generated daily forecasts of tephra dispersal and fall (ASHFALL advection-diffusion model), and prepared simulations of areas affected by the possible occurrence of lahars and pyroclastic flows. Models were improved with observed effects on the field and satellite imagery, resulting in a good correlation. The information was timely supplied to the authorities as well as recommendations in order to better precise the vulnerable areas. Eruption has initially occurred from a couple of overlapped cones located along the eastern fault scarp of the Pleistocene-Holocene extensional graben of Cordón Caulle. Eruptive products have virtually the same bulk composition as those of the historical 1921 and 1960 eruptions, corresponding to phenocryst-poor rhyodacites (67-70 % SiO2). During the first eruptive stage, a ca. 15-km strong Plinian column lasting 27 hours emitted 0.2-0.4 km3 of magma (DRE). Thick tephra deposits have been accumulated in Chile and Argentina, whereas fine particles and aerosols dispersion disrupted air navigation across the Southern Hemisphere. The second ongoing eruptive stage, which started in mid-June, has been characterized by lava emission already covering a total area comparable to the 1960 lava flows with a total estimated volume <0.25 km3 (at the end of December 2011). Weak but persistent plumes have caused preventive flight suspensions in Chile and Argentina until the end of the year. Main current hazards at Cordón Caulle volcano are fine tephra fallout, secondary lahars, minor explosions and lava flow front collapse. Even if this case can be considered successful from the point of view of eruption forecast and hazard assessment, a new protocol of volcanic alerts has been recently signed between SERNAGEOMIN and the National Emergency Agency (ONEMI) in order to improve the communication, information transfer and roles of those institutions during risky volcanic crises.

  12. Gas and ash emissions associated with the 2010–present activity of Sinabung Volcano, Indonesia

    USGS Publications Warehouse

    Primulyana, Sofyan; Kern, Christoph; Lerner, Allan; Saing, Ugan; Kunrat, Syegi; Alfianti, Hilma; Marlia, Mitha

    2017-01-01

    Sinabung Volcano (Sumatra, Indonesia) awoke from over 1200 years of dormancy with multiple phreatic explosions in 2010. After a period of quiescence, Sinabung activity resumed in 2013, producing frequent explosions, lava dome extrusion, and pyroclastic flows from dome collapses, becoming one of the world's most active volcanoes and displacing over 20,000 citizens. This study presents a compilation of the geochemical datasets collected by the Indonesian Center for Volcanology and Geological Hazard Mitigation (CVGHM) from 2010 - current (2016), which provides insights into the evolution of the eruption. Based on observations of SO2 emissions, ash componentry, leachate chemistry, and bulk ash geochemistry, the eruption can be split into five distinct phases. The initial stage of phreatic summit explosions occurred from August - October 2010, during which background SO2 emissions averaged ~550 ± 180 t/d (1 s.d.). An eruptive pause (phase two) starting in October 2010 abruptly ended in September 2013 with a resumption of conduit-clearing eruptions. This third phase had a relatively modest background SO2 emission rate (avg. ~410 ± 275 t/d) and produced ash consisting entirely of accidental ejecta with high S/Cl leachate ratios (up to 30), suggestive of deep-sourced magma and the incorporation of hydrothermal sulfur-bearing phases. The most intense phase of the eruption (phase four) occurred from December 2013 to February 2014, when juvenile magma first reached the surface. This period included dozens of large eruptions per day, high SO2 emission rates (average: 1,120 ± 1,030 t/d, peak: ~3,800 t/d), the onset of lava dome extrusion, and a dramatic drop in S/Cl ash leachates to ratios < 5, all reflecting increased degassing from shallow magma and the clearing out of sulfurous phases from the old hydrothermal system. From late February 2014 through the time of writing (September 2016), Sinabung settled into a relatively steady state of lower activity (phase five). Ash emissions now consist of dominantly juvenile material, and background SO2 emission rates have been progressively decreasing to an average of ~250 - 300 t/d. Starting August 2016, SO2 emissions started being measured in a continuous manner using a network of permanent scanning DOAS instruments. We find that long-term SO2 emission rates have been gradually declining at Sinabung since early 2014, consistent with an apparent decrease in magma supply. Our degassing model suggests that large explosions and pyroclastic flows could continue in the near-term owing to conduit plugging and dome collapses, remaining a major threat until the magma supply rate decreases further and the eruption ends.

  13. From hot rocks to glowing avalanches: Numerical modelling of gravity-induced pyroclastic density currents and hazard maps at the Stromboli volcano (Italy)

    NASA Astrophysics Data System (ADS)

    Salvatici, Teresa; Di Roberto, Alessio; Di Traglia, Federico; Bisson, Marina; Morelli, Stefano; Fidolini, Francesco; Bertagnini, Antonella; Pompilio, Massimo; Hungr, Oldrich; Casagli, Nicola

    2016-11-01

    Gravity-induced pyroclastic density currents (PDCs) can be produced by the collapse of volcanic crater rims or due to the gravitational instability of materials deposited in proximal areas during explosive activity. These types of PDCs, which are also known as ;glowing avalanches;, have been directly observed, and their deposits have been widely identified on the flanks of several volcanoes that are fed by mafic to intermediate magmas. In this research, the suitability of landslide numerical models for simulating gravity-induced PDCs to provide hazard assessments was tested. This work also presents the results of a back-analysis of three events that occurred in 1906, 1930 and 1944 at the Stromboli volcano by applying a depth-averaged 3D numerical code named DAN-3D. The model assumes a frictional internal rheology and a variable basal rheology (i.e., frictional, Voellmy and plastic). The numerical modelling was able to reproduce the gravity-induced PDCs' extension and deposit thicknesses to an order of magnitude of that reported in the literature. The best results when compared with field data were obtained using a Voellmy model with a frictional coefficient of f = 0.19 and a turbulence parameter ξ = 1000 m s- 1. The results highlight the suitability of this numerical code, which is generally used for landslides, to reproduce the destructive potential of these events in volcanic environments and to obtain information on hazards connected with explosive-related, mass-wasting phenomena in Stromboli Island and at volcanic systems characterized by similar phenomena.

  14. A multidisciplinary approach for high-resolution reconstruction of the eruptive past of La Soufrière (Guadeloupe) over the last 12 000 years: Implications for hazards assessment.

    NASA Astrophysics Data System (ADS)

    Legendre, Yoann; Komorowski, Jean-Christophe; Boudon, Georges

    2010-05-01

    La Soufrière de Guadeloupe is a dangerous andesitic composite volcano characterized over the last 12 000 years by numerous phreatic eruptions that alternate with few magmatic eruptions, including the last magmatic and best-studied "Soufrière" subplinian eruption in 1530 AD, and unusually numerous flank-collapse events. Field analysis of the deposits provide constraints for values of the physical input parameters for simple models which provide with first-order simulation of eruptive phenomena, and from which quantitative probabilistic hazard maps can be elaborated in which epistemic and aleatory uncertainty can be incorporated and quantified. The study of yesterday's eruptions provide key insights for elaborating realistic simulations and describing potential eruptive scenarios for tomorrow's eruptions. However hazard assessment is biased towards eruptions of significant magnitude that produce extensive, and relatively thick deposits. Nevertheless, eruptions of moderate magnitude which are often more frequent, can significantly affect vulnerable island communities living at short distances from the vent. However, their deposits are ephemeral in the geologic record on account of intense erosion from tropical rainfall, important soil development and erosion by the emplacement of recurrent pyroclastic density currents, debris avalanches, and mudflows. We have developed a novel approach by using a manual sediment corer to obtain undisturbed sedimentary eruptive archives in sheltered zones on the volcano where a longer eruption record has been preserved. We describe two such cores (6.32 and 6.64 m long) that extend over at least 8700 years and that contain several thin tephra layers missing at the outcrop scale. We combine these new data with the analysis of more than 120 stratigraphic sections on outcrops studied over the last decade to provide a new eruptive chronology for La Soufriere volcano over the last 12 000 years. This chronology is robustly constrained by 105 new 14C age dates of wood, charcoal, and paleosoil samples that complete the existing 14C database (total of about 261 dates). A multidisciplinary analysis (sedimentology, lithology, microtextures, magnetic susceptibility) of the sediment cores and field data has allowed us to identify hidden, and missing eruptions, and to re-interpret mis-identified eruptions. For the last 12 000 years we have identified at least 5 distinct new pumice fallout deposits, some of which are associated with pumice pyroclastic flow deposits. We also identified several deposits formed by magmatic turbulent pyroclastic density currents (blasts) mostly associated with flank-collapse events. Thus, the number of Holocene magmatic eruptions has significantly increased compared to previous knowledge. More over we have identified eruptive sequences that consist of a diverse range of phenomena including edifice-collapse, associated laterally directed explosions (blasts), pumice fallout with column-collapse and dome growth similar to the AD1530 most recent magmatic eruption. The magmatic eruptive rate could be twice as important with 11-13 magmatic eruptions in 12 000 years, a rate of about 0.92-1.08 magmatic eruption by 1000 years. This new data will allow a better determination of the recurrence, magnitude, intensity, and the spatio-temporal evolution of deposit types that define different eruptive scenarios. Hence, this high-resolution reconstruction of the eruptive past will provide the basis for an improved probabilistic hazard and risk assessment for La Soufrière of Guadeloupe, a dangerous volcano, currently experiencing prolongued unrest since 1992.

  15. RiskScape Volcano: Development of a risk assessment tool for volcanic hazards

    NASA Astrophysics Data System (ADS)

    Deligne, Natalia; King, Andrew; Jolly, Gill; Wilson, Grant; Wilson, Tom; Lindsay, Jan

    2013-04-01

    RiskScape is a multi-hazard risk assessment tool developed by GNS Science and the National Institute of Water and Atmospheric Research Ltd. (NIWA) in New Zealand that models the risk and impact of various natural hazards on a given built environment. RiskScape has a modular structure: the hazard module models hazard exposure (e.g., ash thickness at a given location), the asset module catalogues assets (built environment, infrastructure, and people) and their attributes exposed to the hazard, and the vulnerability module models the consequences of asset exposure to the hazard. Hazards presently included in RiskScape are earthquakes, river floods, tsunamis, windstorms, and ash from volcanic eruptions (specifically from Ruapehu). Here we present our framework for incorporating other volcanic hazards (e.g., pyroclastic density currents, lava flows, lahars, ground deformation) into RiskScape along with our approach for assessing asset vulnerability. We also will discuss the challenges of evaluating risk for 'point source' (e.g., stratovolcanoes) vs 'diffuse' (e.g., volcanic fields) volcanism using Ruapehu and the Auckland volcanic field as examples. Once operational, RiskScape Volcano will be a valuable resource both in New Zealand and internationally as a practical tool for evaluating risk and also as an example for how to predict the consequences of volcanic eruptions on both rural and urban environments.

  16. Combining slope stability and groundwater flow models to assess stratovolcano collapse hazard

    NASA Astrophysics Data System (ADS)

    Ball, J. L.; Taron, J.; Reid, M. E.; Hurwitz, S.; Finn, C.; Bedrosian, P.

    2016-12-01

    Flank collapses are a well-documented hazard at volcanoes. Elevated pore-fluid pressures and hydrothermal alteration are invoked as potential causes for the instability in many of these collapses. Because pore pressure is linked to water saturation and permeability of volcanic deposits, hydrothermal alteration is often suggested as a means of creating low-permeability zones in volcanoes. Here, we seek to address the question: What alteration geometries will produce elevated pore pressures in a stratovolcano, and what are the effects of these elevated pressures on slope stability? We initially use a finite element groundwater flow model (a modified version of OpenGeoSys) to simulate `generic' stratovolcano geometries that produce elevated pore pressures. We then input these results into the USGS slope-stability code Scoops3D to investigate the effects of alteration and magmatic intrusion on potential flank failure. This approach integrates geophysical data about subsurface alteration, water saturation and rock mechanical properties with data about precipitation and heat influx at Cascade stratovolcanoes. Our simulations show that it is possible to maintain high-elevation water tables in stratovolcanoes given specific ranges of edifice permeability (ideally between 10-15 and 10-16 m2). Low-permeability layers (10-17 m2, representing altered pyroclastic deposits or altered breccias) in the volcanoes can localize saturated regions close to the surface, but they may actually reduce saturation, pore pressures, and water table levels in the core of the volcano. These conditions produce universally lower factor-of-safety (F) values than at an equivalent dry edifice with the same material properties (lower values of F indicate a higher likelihood of collapse). When magmatic intrusions into the base of the cone are added, near-surface pore pressures increase and F decreases exponentially with time ( 7-8% in the first year). However, while near-surface impermeable layers create elevated water tables and pore pressures, they do not necessarily produce the largest or deepest collapses. This suggests that mechanical properties of both the edifice and layers still exert a significant control, and collapse volumes depend on a complex interplay of mechanical factors and layering.

  17. Synergistic Use of Satellite Volcano Detection and Science: A Fifteen Year Perspective of ASTER on Terra

    NASA Astrophysics Data System (ADS)

    Ramsey, M. S.

    2014-12-01

    The success of Terra-based observations using the ASTER instrument of active volcanic processes early in the mission gave rise to a funded NASA program designed to both increase the number of ASTER observations following an eruption and validate the satellite data. The urgent request protocol (URP) system for ASTER grew out of this initial study and has now operated in conjunction with and the support of the Alaska Volcano Observatory, the University of Alaska Fairbanks, the University of Hawaii, the USGS Land Processes DAAC, and the ASTER science team. The University of Pittsburgh oversees this rapid response/sensor-web system, which until 2011 had focused solely on the active volcanoes in the North Pacific region. Since that time, it has been expanded to operate globally with AVHRR and MODIS and now ASTER VNIR/TIR data are being acquired at numerous erupting volcanoes around the world. This program relies on the increased temporal resolution of AVHRR/MODIS midwave infrared data to trigger the next available ASTER observation, which results in ASTER data as frequently as every 2-5 days. For many targets, the URP has increased the observational frequency over active eruptions by as much 50%. The data have been used for operational response to new eruptions, longer-term scientific studies such as capturing detailed changes in lava domes/flows, pyroclastic flows and lahars. These data have also been used to infer the emplacement of new lava lobes, detect endogenous dome growth, and interpret hazardous dome collapse events. The emitted TIR radiance from lava surfaces has also been used effectively to model composition, texture and degassing. Now, this long-term archive of volcanic image data is being mined to provide statistics on the expectations of future high-repeat TIR data such as that proposed for the NASA HyspIRI mission. In summary, this operational/scientific program utilizing the unique properties of ASTER and the Terra mission has shown the potential for providing innovative and integrated synoptic measurements of geothermal activity, volcanic eruptions and their subsequent hazards globally.

  18. The NASA ASTER Urgent Request Program: The Last Eight Plus Years of Monitoring Kamchatka's Volcanoes From Space

    NASA Astrophysics Data System (ADS)

    Ramsey, M.; Wessels, R.; Dehn, J.; Duda, K.; Harris, A.; Watson, M.

    2008-12-01

    From soon after its launch in December 1999, the ASTER sensor on the NASA Terra satellite has been acquiring data of volcanic eruptions and other natural disasters around the world. ASTER has the capability to acquire high spatial resolution data from the visible to thermal infrared wavelength region. Those data, in conjunction with its ability to generate digital elevation models (DEMs), makes ASTER particularly useful for numerous aspects of volcanic remote sensing. However, the nature of the ASTER scheduling/data collection/calibration pathway makes rapid observations of hazard locations nearly impossible. The sensor's acquisitions are scheduled in advance and the data are processed and calibrated in Japan prior to archiving in the United States. This can produce a lag of at least several days from the initial request to data scheduling and another several days after acquisition until the data are available. However, there exists a manual "rapid response" mode that provides faster data scheduling, processing and availability. This mode has now been semi-automated and linked to larger-scale and more rapid monitoring alert system. The first phase has been to integrate with the Alaska Volcano Observatory's current near-real-time satellite monitoring system, which relies on high temporal/low spatial resolution orbital data. This phase of the project has focused on eruptions in the north Pacific region, and in particular over Kamchatka, Russia. Several beneficial factors have combined that resulted in over 1350 ASTER images being acquired for the five most thermally-active Kamchatka volcanoes (Bezymianny, Karimsky, Kluichevskoi, Sheveluch and Tolbachik). These factors include the orbital alignment of Terra, the high latitude of the peninsula, and the many eruptions and volcanic activity in Kamchatka. From the inception of the automated rapid response program in 2003, an additional 350 scenes have been acquired over the Kamchatka volcanoes, which have targeted both small-scale activity and larger eruptions for science and hazard response. Numerous eruptions have been observed that displayed varying volcanic styles including basaltic lava flow emplacement, silicic lava dome growth, pyroclastic flow production, volcanic ash plume production, fumarolic activity, and geothermal emission. The focus of this presentation is to summarize the current ASTER rapid response program in Kamchatka, focus on two specific eruptions of Sheveluch volcano, and discuss the future expansion plans for global hazard response.

  19. Identifying glacial influences on sedimentation in tectonically-active, mass flow dominated arc basins with reference to the Neoproterozoic Gaskiers glaciation (c. 580 Ma) of the Avalonian-Cadomian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Carto, Shannon L.; Eyles, Nick

    2012-06-01

    Neoproterozoic 'Avalonian-Cadomian' volcanic arc basins once lay peripheral to Gondwana and are now found around the North Atlantic Ocean in New England, Atlantic Canada and northwestern Europe as 'peri-Gondwanan terranes.' Their thick (up to 9 km) marine fills are dominated by turbidites, debrites (diamictites and variably graded conglomerates), slumps and olistostromes recording the dominance of mass flow processes in arc basins oversupplied with volcaniclastic sediment. Several diamictite horizons in these basins were identified as glacial tillites more than one hundred years ago on the basis of poor textural sorting, and the lack of any understanding of mass flow processes. An association with thin-bedded turbidite facies, then interpreted as glaciolacustrine varvites, was seen as evidence for widespread glacial conditions which is still the basis today of a near global 'Gaskiers glaciation' at c. 580 Ma, despite classic sedimentological work which shows that the 'tillites' and 'varvites' of these basins are deep marine sediment gravity flow deposits. Only in two basins (Gaskiers Formation, Avalon Peninsula in Newfoundland, and the Konnarock Formation of Virginia) is a distal and regionally-restricted glacial influence on marine sedimentation identified from ice-rafted, striated dropstones in turbidites but terrestrial 'ice-contact' facies are absent. As revealed in this study, terrestrial glacial facies may not have survived frequent volcanic activity such as seen today on glaciated active plate margin volcanoes such as Mount Rainier in Washington USA, and Cotopaxi Volcano in Ecuador where primary glacial sediment is frequently reworked by lahars, pyroclastic flows, debris avalanches and outburst floods. The weight of evidence presented in this study indicates that ice covers during the Gaskiers glaciation were not widespread across the Avalonian-Cadomian back arc basins; the deep marine Grenada Basin (Caribbean Sea) filled with turbidites, debrites (lahars) and debris avalanches from the adjacent Lesser Antilles Arc is identified here as a modern analogue for these ancient basins.

  20. Objective rapid delineation of areas at risk from block-and-ash pyroclastic flows and surges

    USGS Publications Warehouse

    Widiwijayanti, C.; Voight, B.; Hidayat, D.; Schilling, S.P.

    2009-01-01

    Assessments of pyroclastic flow (PF) hazards are commonly based on mapping of PF and surge deposits and estimations of inundation limits, and/or computer models of varying degrees of sophistication. In volcanic crises a PF hazard map may be sorely needed, but limited time, exposures, or safety aspects may preclude fieldwork, and insufficient time or baseline data may be available for reliable dynamic simulations. We have developed a statistically constrained simulation model for block-and-ash type PFs to estimate potential areas of inundation by adapting methodology from Iverson et al. (Geol Soc America Bull 110:972-984, (1998) for lahars. The predictive equations for block-and-ash PFs are calibrated with data from several volcanoes and given by A = (0.05 to 0.1) V2/3, B = (35 to 40) V2/3, where A is cross-sectional area of inundation, B is planimetric area and V is deposit volume. The proportionality coefficients were obtained from regression analyses and comparison of simulations to mapped deposits. The method embeds the predictive equations in a GIS program coupled with DEM topography, using the LAHARZ program of Schilling (1998). Although the method is objective and reproducible, any PF hazard zone so computed should be considered as an approximate guide only, due to uncertainties on the coefficients applicable to individual PFs, the authenticity of DEM details, and the volume of future collapses. The statistical uncertainty of the predictive equations, which imply a factor of two or more in predicting A or B for a specified V, is superposed on the uncertainty of forecasting V for the next PF to descend a particular valley. Multiple inundation zones, produced by simulations using a selected range of volumes, partly accommodate these uncertainties. The resulting maps show graphically that PF inundation potentials are highest nearest volcano sources and along valley thalwegs, and diminish with distance from source and lateral distance from thalweg. The model does not explicitly consider dynamic behavior, which can be important. Ash-cloud surge impact limits must be extended beyond PF hazard zones and we provide several approaches to do this. The method has been used to supply PF and surge hazard maps in two crises: Merapi 2006; and Montserrat 2006-2007. ?? Springer-Verlag 2008.

  1. Preliminary observations of voluminous ice-rich and water-rich lahars generated during the 2009 eruption of Redoubt, Alaska

    USGS Publications Warehouse

    Waythomas, Christopher F.; Pierson, Thomas C.; Major, Jon J.; Scott, William E.

    2012-01-01

    Redoubt Volcano in south-central Alaska began erupting on March 15, 2009, and by April 4, 2009, had produced at least 20 explosive events that generated plumes of ash and lahars. The 3,108-m high, snow- and -ice-clad stratovolcano has an ice-filled summit crater that is breached to the north. The volcano supports about 4 km3 of ice and snow and about 1 km3 of this makes up the Drift glacier on the northern side of the volcano. Explosive eruptions between March 22 and April 4, which included the destruction of at least two lava domes, triggered significant lahars in the Drift River valley on March 23 and April 4 and several smaller lahars between March 24 and March 31. High-flow marks, character of deposits, areas of inundation, and estimates of flow velocity revealed that the lahars on March 23 and April 4 were the largest of the eruption. In the 2-km-wide upper Drift River valley, average flow depths were about 3–5 m. Average peak-flow velocities were likely between 10 and 15 ms-1, and peak discharges were on the order of 104–105 m3s-1. The area inundated by lahars on March 23 was at least 100 km2 and on April 4 about 125 km2. The lahars emplaced on March 23 and April 4 had volumes on the order of 107–108 m3 and were similar in size to the largest lahar of the 1989–90 eruption. The March 23 lahars were primarily flowing slurries of snow and ice entrained from the Drift glacier and seasonal snow and tabular blocks of river ice from the Drift River valley. Only a single, undifferentiated deposit up to 5 m thick was found and contained about 80–95 percent of poorly sorted, massive to imbricate assemblages of snow and ice. The deposit was frozen soon after it was emplaced and later eroded and buried by the April 4 lahar. The lahar of April 4, in contrast, was primarily a hyperconcentrated flow, as interpreted from 1- to 6-m thick deposits of massive to horizontally stratified sand-to-fine-gravel. Rock material in the April 4 lahar deposit is predominantly juvenile andesite. We infer that the lahars generated on March 23 were initiated by a rapid succession of vent-clearing explosions that blasted through about 50–100 m of crater-filling glacier ice and snow, producing a voluminous release of meltwater from the Drift glacier. The resulting flood eroded and entrained snow, fragments of glacier and river ice, and liquid water along its flow path. Small-volume pyroclastic flows, possibly associated with destruction of a small dome or minor eruption-column collapses, may have contributed additional meltwater to the lahar. Meltwater generated by subglacial hydrothermal activity and stored beneath the Drift glacier may have been ejected or released rapidly as well. The April 4 lahar was initiated when hot dome-collapse pyroclastic flows entrained and swiftly melted snow and ice, and incorporated additional rock debris from the Drift glacier. The peak discharge of the April 4 lahar was in the range of 60,000–160,000 m3s-1. For comparison, the largest lahar of the 1989–90 eruption had a peak discharge of about 80,000 m3s-1. Lahars generated by the 2009 eruption led to significant channel aggradation in the lower Drift River valley and caused extensive inundation at an oil storage and transfer facility located there. The April 4, 2009, lahar was 6–30 times larger than the largest meteorological floods known or estimated in the Drift River drainage.

  2. Simultaneous pyroclastic and effusive venting at rhyolite volcanoes: the cases of Puyehue-Cordón Caulle and Chaitén

    NASA Astrophysics Data System (ADS)

    Castro, J. M.; Schipper, C. I.; Tuffen, H.

    2012-04-01

    The recent silicic eruptions at volcán Chaiten and Puyehue-Cordón Caulle (PCC) demonstrate that ash and pyroclast production characterizes not only the vigorous initial stages of these eruptions, but can continue on for months, even during the effusive phases of activity. As we observed at PCC in January, 2012 and at Chaitén in 2008-2009, pyroclastic venting taking the form of ash jetting and punctuated Vulcanian blasts (Schipper et al. this session) occurs simultaneously with lava effusion (Tuffen et al., this session) and does so from what appears to be a common vent. This close spatial and temporal correlation implies a genetic and/or causal relation between two very different eruption styles. In this paper, we explore the chemical and physical signatures of this pyroclastic-effusive bridge, and discuss mechanisms by which silicic magma degasses to produce simultaneous, but apparently disparate eruption styles. Geochemical and textural analyses are underway on a range of eruption products from PCC and Chaitén, including early air-fall pyroclastic obsidian and pumice lapilli, ballistic bombs collected within 2 km of the vents, and glassy lavas. Ballistic bombs display a variety of textures ranging from homogeneous glassy obsidian through breadcrusted and highly brecciated bombs with re-annealing textures (e.g., collapsed foams and rewelded obsidian fragments). Bombs from Chaitén contain abundant tuffisites, comprising planar to anastomising veins filled with variably welded juvenile ash. At Chaiten, ballistic bomb water contents (~0.3-1.2 wt.% H2O) and H2O/OH speciation suggest that bombs are shallowly sourced (<<1 km) in the conduit and experienced similar pre-ejection cooling paths to magma that would become obsidian lava. These preliminary observations suggest that bombs are aliquots of magma attempting to become obsidian lava but this development was arrested by the build up of overpressure in the conduit followed by explosive evacuation. The build up of pressure depends on the permeability of the ascending magma, which is likely a function of the density of fractures and vesicularity of magma bodies. Thus factors that affect permeable flow through fractures and interconnected bubble pathways, such as magma deformation, ascent rate and rheology (relating to degassing path and cooling), likely control the cycling of explosive episodes during effusive activity. We are currently exploring how rheological and dynamical parameters inferred from samples can be related back to eruption observations at PCC, including the frequency of explosions and effusion and degassing rates, in order to evaluate the role of pyroclastic venting on the production of dense degassed rhyolite magma (lava). That explosive activity has persisted at PCC for several months suggests that a balance is maintained between the overpressure driving magma supply and the cycles of mechanical failure that typify pyroclastic and effusive activity at the PCC vent.

  3. Numerical Simulation using VolcFlow for Pyroclastic Density Currents by Explosive Eruption of Mt. Baekdu, Korea

    NASA Astrophysics Data System (ADS)

    Yun, S. H.; Chang, C.

    2015-12-01

    It is the numerical simulation using a VolcFlow model to determine the runout range of pyroclastic density currents where an eruption column had been formed by the explosive Plinian eruption and the collapse of the column had caused to occur on Mt. Baekdu. We assumed that the most realistic way for the simulation of a sustained volcanic column is to modify the topography with a cone above the crater to follow expert advice from Dr. Karim Kelfoun, the developer of VolcFlow. Then we set the radius and height of the cone, the volume of pyroclastic flow, and the duration and simulation time accoding to the volcanic explosivity index (VEI). Also we set the yield stress as 5,000 Pa, 10,000 Pa, 15,000 Pa, the basal friction angle as 3°, 5°, 10°, respectively. As the simulation results, the longest runout range was 2.3 km, 9.1 km, 14.4 km, 18.6 km, 23.4 km from VEI 3 to VEI 7, respectively. It can be used as a very important material to predict the impact range of pyroclastic density currents and to minimize human and material damages caused by pyroclastic density currents derived from the future explosive eruption of Mt. Baekdu. This research was supported by a grant 'Development of Advanced Volcanic Disaster Response System considering Potential Volcanic Risk around Korea' [MPSS-NH-2015-81] from the Natural Hazard Mitigation Research Group, National Emergency Management Agency of Korea.

  4. Reconstructing the deadly eruptive events of 1790 CE at Kīlauea Volcano, Hawai‘i

    USGS Publications Warehouse

    Swanson, Don; Weaver, Samantha J; Houghton, Bruce F.

    2014-01-01

    A large number of people died during an explosive eruption of Kīlauea Volcano in 1790 CE. Detailed study of the upper part of the Keanakāko‘i Tephra has identified the deposits that may have been responsible for the deaths. Three successive units record shifts in eruption style that agree well with accounts of the eruption based on survivor interviews 46 yr later. First, a wet fall of very fine, accretionary-lapilli–bearing ash created a “cloud of darkness.” People walked across the soft deposit, leaving footprints as evidence. While the ash was still unconsolidated, lithic lapilli fell into it from a high eruption column that was seen from 90 km away. Either just after this tephra fall or during its latest stage, pulsing dilute pyroclastic density currents, probably products of a phreatic eruption, swept across the western flank of Kīlauea, embedding lapilli in the muddy ash and crossing the trail along which the footprints occur. The pyroclastic density currents were most likely responsible for the fatalities, as judged from the reported condition and probable location of the bodies. This reconstruction is relevant today, as similar eruptions will probably occur in the future at Kīlauea and represent its most dangerous and least predictable hazard.

  5. Update of the volcanic risk map of Colima volcano, Mexico

    NASA Astrophysics Data System (ADS)

    Suarez-Plascencia, C.; Nuñez Cornu, F. J.; Marquez-Azua, B.

    2010-12-01

    The Colima volcano, located in western Mexico (19° 30.696 N, 103° 37.026 W) began its current eruptive process in February 10, 1999. This event was the basis for the development of two volcanic hazard maps: one for ballistics (rock fall) lahars, and another one for ash fall. During the period of 2003 to 2008 this volcano has had an intense effusive-explosive activity, similar to the one that took place during the period of 1890 through 1900. Intense pre-Plinian eruption in January 20, 1913, generated little economic losses in the lower parts of the volcano thanks to the low population density and low socio-economic activities at the time The current volcanic activity has triggered ballistic projections, pyroclastic and ash flows, and lahars, all have exceeded the maps limits established in 1999. Vulnerable elements within these areas have gradually changed due to the expansion of the agricultural frontier on the east and southeast sides of the Colima volcano. On the slopes of the northwest side, new blue agave Tequilana weber and avocado orchard crops have emerged along with important production of greenhouse tomato, alfalfa and fruit (citrus) crops that will eventually be processed and dried for exportation to the United States and Europe. Also, in addition to the above, large expanses of corn and sugar cane have been planted on the slopes of the volcano since the nineteenth century. The increased agricultural activity has had a direct impact in the reduction of the available forest land area. Coinciding with this increased activity, the 0.8% growth population during the period of 2000 - 2005, - due to the construction of the Guadalajara-Colima highway-, also increased this impact. The growth in vulnerability changed the level of risk with respect to the one identified in the year 1999 (Suarez, 2000), thus motivating us to perform an update to the risk map at 1:25,000 using vector models of the INEGI, SPOT images of different dates, and fieldwork done in order to obtain new agricultural development and socioeconomic status data.

  6. Earth Observations taken by the Expedition 20 crew

    NASA Image and Video Library

    2009-06-12

    ISS020-E-009048 (12 June 2009) --- Sarychev Peak Volcano eruption, Kuril Islands, is featured in this image photographed by an Expedition 20 crew member on the International Space Station. A fortuitous orbit of the International Space Station allowed the astronauts this striking view of Sarychev volcano (Russia?s Kuril Islands, northeast of Japan) in an early stage of eruption on June 12, 2009. Sarychev Peak is one of the most active volcanoes in the Kuril Island chain and is located on the northwestern end of Matua Island. Prior to June 12, the last explosive eruption had occurred in 1989 with eruptions in 1986, 1976, 1954, and 1946 also producing lava flows. Ash from the June 2009 eruption has been detected 2407 kilometers ESE and 926 kilometers WNW of the volcano, and commercial airline flights are being diverted away from the region to minimize the danger of engine failures from ash intake. This detailed photograph is exciting to volcanologists because it captures several phenomena that occur during the earliest stages of an explosive volcanic eruption. The main column is one of a series of plumes that rose above Matua Island (48.1 degrees north latitude and 153.2 degrees east longitude) on June 12. The plume appears to be a combination of brown ash and white steam. The vigorously rising plume gives the steam a bubble-like appearance; the surrounding atmosphere has been shoved up by the shock wave of the eruption. The smooth white cloud on top may be water condensation that resulted from rapid rising and cooling of the air mass above the ash column, and is probably a transient feature (the eruption plume is starting to punch through). The structure also indicates that little to no shearing winds were present at the time to disrupt the plume. Another series of images, acquired 2-3 days after the start of eruptive activity, illustrate the effect of shearing winds on extent of the ash plumes across the Pacific Ocean. By contrast, a cloud of denser, gray ash ? most probably a pyroclastic flow -- appears to be hugging the ground, descending from the volcano summit. The rising eruption plume casts a shadow to the northwest of the island (bottom center). Brown ash at a lower altitude of the atmosphere spreads out above the ground at upper right. Low-level stratus clouds approach Matua Island from the east, wrapping around the lower slopes of the volcano. Only about 1.5 kilometers of the coastline of Matua Island (upper center) can be seen beneath the clouds and ash.

  7. Unifying tephrostratigraphic approaches to redefine major Holocene marker tephras, Mt. Taranaki, New Zealand

    NASA Astrophysics Data System (ADS)

    Damaschke, M.; Cronin, S. J.; Torres-Orozco, R.; Wallace, R. C.

    2017-05-01

    In this study, geochemical fingerprinting of glass shards and titanomagnetite phenocrysts was used to match twenty complex pyroclastic deposits from the flanks of Mt. Taranaki to major tephra fall ;marker beds; in medial and distal deposition sites. These correlations hinged upon identifying time-bound compositional changes (a chemostratigraphy) in distal Taranaki tephra-fall sequences preserved in lake and peat sediment records around the volcano. The current work shows that previous soil-stratigraphy based studies led to miscorrelations, because they relied upon radiocarbon dates, a ;counting back; approach, and an underestimate of the number of eruptions that actually occurred in any time frame. The new tephrostratigraphy proposed at Mt. Taranaki resulted from stratigraphic rearranging of several earlier-defined units. Some tephra units are older than previously determined (e.g., Waipuku, Tariki, and Mangatoki; 6 to 9 cal ka BP), while one of the most prominent Taranaki marker tephra deposit, the Korito, is shown to lie stratigraphically above a widespread rhyolitic marker bed from Taupo volcano, the Stent Tephra (also known as unit Q; 4.3 cal ka BP). Pyroclastic tephra deposits previously dated between 6 to 4 cal ka BP at a key tephra section, c. 40 km NE of Mt. Taranaki's summit, were misidentified and are now shown to comprise new marker tephra deposits, including the Kokowai ( 4.7 cal ka BP), which is a prominent marker horizon on the eastern flanks of the volcano. A new local proximal stratigraphy for < 5 cal ka BP tephra units can be well correlated to tephra layers within distal lake and peat sequences, but the differences between the two records indicates an overall larger number of eruptions have occurred at this volcano than previously thought. This study additionally demonstrates the utility of titanomagnetite chemistry for discrimination and correlation of groups or sequences of tephra deposits - even if unique compositions cannot be identified.

  8. Field-trip guide for exploring pyroclastic density current deposits from the May 18, 1980, eruption of Mount St. Helens, Washington

    USGS Publications Warehouse

    Brand, Brittany D.; Pollock, Nicholas; Sarocchi, Damiano; Dufek, Josef; Clynne, Michael A.

    2017-07-05

    Pyroclastic density currents (PDCs) are one of the most dangerous phenomena associated with explosive volcanism. To help constrain damage potential, a combination of field studies, laboratory experiments, and numerical modeling are used to establish conditions that influence PDC dynamics and depositional processes, including runout distance. The objective of this field trip is to explore field relations that may constrain PDCs at the time of emplacement.The PDC deposits from the May 18, 1980, eruption of Mount St. Helens are well exposed along the steep flanks (10–30° slopes) and across the pumice plain (5–12° slopes) as far as 8 km north of the volcano. The pumice plain deposits represent deposition from a series of concentrated PDCs and are primarily thick (3–12 m), massive, and poorly sorted. In contrast, the steep east-flank deposits are stratified to cross-stratified, suggesting deposition from PDCs where turbulence strongly influenced transport and depositional processes.The PDCs that descended the west flank were largely nondepositional; they maintained a higher flow energy and carrying capacity than PDCs funneled through the main breach, as evidenced by the higher concentration of large blocks in their deposits. The PDC from the west flank collided with PDCs funneled through the breach at various points along the pumice plain. Evidence for flow collision will be explored and debated throughout the field trip.Evidence for substrate erosion and entrainment is found (1) along the steep eastern flank of the volcano, which has a higher degree of rough, irregular topography relative to the west flanks where PDCs were likely nonerosive, (2) where PDCs encountered debris-avalanche hummocks across the pumice plain, and (3) where PDCs eroded and entrained material deposited by PDCs produced during earlier phases of the eruption. Two features interpreted as large-scale (tens of meters wide) levees and a large (~200 m wide) channel scour-and-fill feature provide the first evidence of self-channelization within PDCs sustained for minutes to tens of minutes (total volume of deposits is ~0.12 km3; area covered is ~15.5 km2; Rowley and others, 1981).Our ability to interpret the deposits of PDCs is critical for understanding transport and depositional processes that control PDC dynamics. The results of extensive work on the May 18, 1980, PDC deposits show that slope and irregular topography strongly influence PDC flow path, dynamics, criticality (for example, supercritical versus subcritical), carrying capacity, and erosive capacity. However, the influence of these conditions on ultimate flow runout and damage potential warrants further exploration through the combination of field, experimental, and numerical approaches.

  9. Long-term multi-hazard assessment for El Misti volcano (Peru)

    NASA Astrophysics Data System (ADS)

    Sandri, Laura; Thouret, Jean-Claude; Constantinescu, Robert; Biass, Sébastien; Tonini, Roberto

    2014-02-01

    We propose a long-term probabilistic multi-hazard assessment for El Misti Volcano, a composite cone located <20 km from Arequipa. The second largest Peruvian city is a rapidly expanding economic centre and is classified by UNESCO as World Heritage. We apply the Bayesian Event Tree code for Volcanic Hazard (BET_VH) to produce probabilistic hazard maps for the predominant volcanic phenomena that may affect c.900,000 people living around the volcano. The methodology accounts for the natural variability displayed by volcanoes in their eruptive behaviour, such as different types/sizes of eruptions and possible vent locations. For this purpose, we treat probabilistically several model runs for some of the main hazardous phenomena (lahars, pyroclastic density currents (PDCs), tephra fall and ballistic ejecta) and data from past eruptions at El Misti (tephra fall, PDCs and lahars) and at other volcanoes (PDCs). The hazard maps, although neglecting possible interactions among phenomena or cascade effects, have been produced with a homogeneous method and refer to a common time window of 1 year. The probability maps reveal that only the north and east suburbs of Arequipa are exposed to all volcanic threats except for ballistic ejecta, which are limited to the uninhabited but touristic summit cone. The probability for pyroclastic density currents reaching recently expanding urban areas and the city along ravines is around 0.05 %/year, similar to the probability obtained for roof-critical tephra loading during the rainy season. Lahars represent by far the most probable threat (around 10 %/year) because at least four radial drainage channels can convey them approximately 20 km away from the volcano across the entire city area in heavy rain episodes, even without eruption. The Río Chili Valley represents the major concern to city safety owing to the probable cascading effect of combined threats: PDCs and rockslides, dammed lake break-outs and subsequent lahars or floods. Although this study does not intend to replace the current El Misti hazard map, the quantitative results of this probabilistic multi-hazard assessment can be incorporated into a multi-risk analysis, to support decision makers in any future improvement of the current hazard evaluation, such as further land-use planning and possible emergency management.

  10. Nuées ardentes of 22 November 1994 at Merapi volcano, Java, Indonesia

    USGS Publications Warehouse

    Abdurachman, E.K.; Bourdier, J.-L.; Voight, B.

    2000-01-01

    Nuées ardentes associated with dome collapse on 22 November 1994, at Merapi volcano traveled to the south–southwest as far as 6.5 km, and collectively accumulated roughly 2.5–3 million cubic meters of deposits. The damaged area comprises 9.5 km2 and is covered by two nuée ardente facies, a conventional “Merapi-type”, valley-fill block-and-ash flow facies and a pyroclastic surge facies. The proximal deposits reflect the accumulation of dozens of nuées ardentes, with many subsidiary flow units. The distal deposits are more simply organized, as only a few individual events reached to distances >3.5 km. The stratigraphic relationships north of Turgo hill indicate that the surge deposits are a facies of particularly mobile nuées ardentes that also deposited channeled block-and-ash flow facies. They further suggest that the surge facies beyond the channel margins correlate laterally with a finer-grained sublayer locally developed at the base of the block-and-ash flow facies. Eyewitness reports suggest that the emplacement of the block-and-ash flow facies in the distal part of the Boyong river may have followed, by a short time interval, the destruction and deposition of the surge facies at Turgo village. The stratigraphy is in accord with the eyewitness reports. The surge facies was emplaced by a dilute surge current, detached from the same dome-collapse nuée ardente that, as a separate flow unit, subsequently emplaced the distal block-and-ash deposit in the Boyong valley. The detachment occurred at higher elevations, likely at or above the slope break at about 2000 m elevation. This flow separation enabled the surge current to shortcut over the landscape and to emplace its deposit even as the block-and-ash flow continued its tortuous southward movement in the Boyong channel. Dome-collapse nuée ardente activity formed the bulk of the eruption, which was accompanied by virtually no significant vertical summit explosive activity.

  11. Temporal variation in chemical composition of phenocrysts and magmatic temperature at Daisen volcano, southwest Japan

    NASA Astrophysics Data System (ADS)

    Tsukui, Masashi

    1985-12-01

    Daisen volcano, located in the San'in district, southwest Japan, started its activity in the middle Pleistocene and continued until at least ca. 20,000 yr B.P. The volcano is composed entirely of dacitic pyroclastic materials, lava domes and subordinate thick lava flows. Its activity is divided into two groups, Older (1.0-0.4 Ma) and Younger (0.4 Ma to ca. 17.000 yr B.P.). Chemical compositions of phenocrysts in the members of the Upper Tephra Group (the last 150,000 years) in the Younger Group were examined in detail by electron microprobe analysis. The compositions of phenocryst minerals change systematically and cyclically with the order of eruptions. Phenocrysts with less differentiated compositions were found in the products of eruptions 60,000 and 20,000 years ago. The variation patterns of inferred magma temperature (estimated by the Fe-Ti oxide geothermometer) with time are well correlated with those of the chemical compositions of phenocrysts. Orthopyroxene phenocrysts generally show both reversed and normal zoning in single rock specimens and the compositional range of rims is much smaller than that of the core, indicating that the process of re-equilibration of two compositionally distinct orthopyroxenes took place. These facts could be explained by injection of less differentiated, higher-temperature magmas from a deeper level into the shallower more differentiated magma reservoir. A relatively active (frequent and/or voluminous) injection episode seems to have taken place twice during the last 150,000 years; 60,000 and 20,000 years ago.

  12. Exploring the factors that influence the perception of risk: The case of Volcán de Colima, Mexico

    NASA Astrophysics Data System (ADS)

    Gavilanes-Ruiz, Juan Carlos; Cuevas-Muñiz, Alicia; Varley, Nick; Gwynne, Gemma; Stevenson, John; Saucedo-Girón, Ricardo; Pérez-Pérez, Anaid; Aboukhalil, Mary; Cortés-Cortés, Abel

    2009-10-01

    Volcán de Colima has increased its activity considerably since 1998 with four periods of effusion and since 2003, daily Vulcanian explosions. During 2005 the magnitude of the explosivity increased, producing many pyroclastic flows, two of which reached over 5 km from the volcano, making them the largest events since the last Plinian eruption in 1913. A significant risk is also presented by the lahar hazard, with various examples of damage to infrastructure during the last few years and 23 people killed in 1955. Nearly 5000 people live in small settlements within 15 km of the volcano. Since 1997 six studies have been carried out in the region in an attempt to define the relationship that exists between the population and its neighbour. Although the methodologies used were different, each study considered the results of the previous and attempted to contribute further data to define geographical variation in the perception of risk. The results of the studies highlight the minor role of increasing activity on risk perception, and distance from the volcano was shown to not directly influence risk perception. In most cases it is the combination of various socio-cultural, historical and political factors that defines the perception of volcanic risk within these villages. By studying the social representation of the risk, such complexity could be better understood. The 1997-2000 information campaign evidently improved risk perception; however, it is clear that this type of program needs to be continued to achieve a long lasting impact. Increased knowledge, however, does not guarantee willing participation in official risk mitigation strategies.

  13. Can tephra be recognized in Hawaiian drill core, and if so, what can be learned about the explosivity of Hawaiian volcanoes?

    NASA Astrophysics Data System (ADS)

    Lautze, N. C.; Haskins, E.; Thomas, D. M.

    2013-12-01

    Nearly 6000 feet of drill core was recently recovered from the Pohakula Training Area (PTA) near the Saddle Road between Mauna Loa and Mauna Kea volcanoes on Hawaii Island. Drilling was funded by the US Army with an objective to find a potable water source; the rock core was logged and archived thanks to funding from the National Science Foundation. Within the first few hundred meters, alluvial outwash from the slopes of Mauna Kea is underlain by post-shield Mauna Kea lavas. Below this depth the core is predominantly pahoehoe and to a lesser extent a'a lavas expected to be from Mauna Kea's shield stage volcanism. During the logging effort, and throughout the core, a number of suspect-pyroclastic deposits were identified (largely based on particle texture). These deposits will be examined in more detail, with results presented here. An effort will be made to determine whether explosive deposits can, in fact, be unequivocally identified in drill core. Two anticipated challenges are differentiating between: scoria and 'clinker' (the latter associated with a'a lava flows), and primary volcanic ash, loess, and glacial sediments. Recognition of explosive deposits in the PTA drill core would lend insight into Mauna Kea's explosive history, and potentially that of other Big Island volcanoes as well. If the characteristics of tephra in Hawaiian drill core can be identified, core from the Hawaiian Scientific Drilling Project (HSDP) and Scientific Observation Holes (SOH-1,2,4) may also be examined.

  14. Ash and Steam, Soufriere Hills Volcano, Monserrat

    NASA Technical Reports Server (NTRS)

    2002-01-01

    International Space Station crew members are regularly alerted to dynamic events on the Earth's surface. On request from scientists on the ground, the ISS crew observed and recorded activity from the summit of Soufriere Hills on March 20, 2002. These two images provide a context view of the island (bottom) and a detailed view of the summit plume (top). When the images were taken, the eastern side of the summit region experienced continued lava growth, and reports posted on the Smithsonian Institution's Weekly Volcanic Activity Report indicate that 'large (50-70 m high), fast-growing, spines developed on the dome's summit. These spines periodically collapsed, producing pyroclastic flows down the volcano's east flank that sometimes reached the Tar River fan. Small ash clouds produced from these events reached roughly 1 km above the volcano and drifted westward over Plymouth and Richmond Hill. Ash predominately fell into the sea. Sulfur dioxide emission rates remained high. Theodolite measurements of the dome taken on March 20 yielded a dome height of 1,039 m.' Other photographs by astronauts of Montserrat have been posted on the Earth Observatory: digital photograph number ISS002-E-9309, taken on July 9, 2001; and a recolored and reprojected version of the same image. Digital photograph numbers ISS004-E-8972 and 8973 were taken 20 March, 2002 from Space Station Alpha and were provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Additional images taken by astronauts and cosmonauts can be viewed at the NASA-JSC Gateway to Astronaut Photography of Earth.

  15. The recent pumice eruptions of Mt. Pelée volcano, Martinique. Part I: Depositional sequences, description of pumiceous deposits

    NASA Astrophysics Data System (ADS)

    Traineau, Hervé; Westercamp, Denis; Bardintzeff, Jacques-Marie; Miskovsky, Jean-Claude

    1989-08-01

    Mount Pelée is one of the most active volcanoes of the Lesser Antilles arc, with more than twenty eruptions over the last 5000 years. Both nuée ardente-type eruptions, which are well known, and pumice eruptions, although little known, are very common in the stratigraphic record. The four younger pumice eruptions, P4 (2440 y.B.P.), P3 (2010 y.B.P.), P2 (1670 y.B.P.) and P1 (650 y.B.P.) can be used to reconstruct the eruption sequences. The various pumiceous deposits can be described as fine lithic ash layer, Plinian fall deposits, pumice and ash flow deposits with associated ash cloud fall deposits, and pumice surge deposits. Three kinds of depositional sequences have been defined. The distinctions between them are based on the occurrence of an initial Plinian phase and the generation of intraflow pyroclastic surges. The pumice eruptions of Mt. Pelée are small in intensity and magnitude, as expressed by the dispersal of their products and by the total mass of erupted material which is estimated to be less than 1 km 3 in each case. The pumice fall deposits have dispersal characteristics of small Plinian eruptions, close to the sub-Plinian type. Nevertheless, the probability of an occurrence of a new pumice eruption at Mt. Pelée is high, and the widespread distribution of pumice deposits around the volcano suggests that such an eruption is a major volcanic risk during the present stage of activity.

  16. Chronology and impact of the 2011 Cordón Caulle eruption, Chile

    NASA Astrophysics Data System (ADS)

    Elissondo, Manuela; Baumann, Valérie; Bonadonna, Costanza; Pistolesi, Marco; Cioni, Raffaello; Bertagnini, Antonella; Biass, Sébastien; Herrero, Juan-Carlos; Gonzalez, Rafael

    2016-03-01

    We present a detailed chronological reconstruction of the 2011 eruption of the Cordón Caulle volcano (Chile) based on information derived from newspapers, scientific reports and satellite images. Chronology of associated volcanic processes and their local and regional effects (i.e. precursory activity, tephra fallout, lahars, pyroclastic density currents, lava flows) are also presented. The eruption had a severe impact on the ecosystem and on various economic sectors, including aviation, tourism, agriculture and fishing industry. Urban areas and critical infrastructures, such as airports, hospitals and roads, were also impacted. The concentration of PM10 (particulate matter ≤ 10 µm) was measured during and after the eruption, showing that maximum safety threshold levels of daily and annual exposures were surpassed in several occasions. Probabilistic analyses suggest that this combination of atmospheric and eruptive conditions has a probability of occurrence of about 1 %. The management of the crisis, including evacuation of people, is discussed, as well as the comparison with the impact associated with other recent eruptions located in similar areas and having similar characteristics (i.e. Quizapu, Hudson and Chaitén volcanoes). This comparison shows that the regions downwind and very close to the erupting volcanoes suffered very similar problems, without a clear relation to the intensity of the eruption (e.g. health problems, damage to vegetation, death of animals, roof collapse, air traffic disruptions, road closure, lahars and flooding). This suggests that a detailed collection of impact data can be largely beneficial for the development of plans for the management of an eruptive crisis and the mitigation of associated risk of the Andean region.

  17. Analysis of gas jetting and fumarole acoustics at Aso Volcano, Japan

    DOE PAGES

    McKee, Kathleen; Fee, David; Yokoo, Akihiko; ...

    2017-03-30

    The gas-thrust region of a large volcanic eruption column is predominately a momentum-driven, fluid flow process that perturbs the atmosphere and produces sound akin to noise from jet and rocket engines, termed “jet noise”. In this paper, we aim to enhance understanding of large-scale volcanic jets by studying an accessible, less hazardous fumarolic jet. We characterize the acoustic signature of ~ 2.5-meter wide vigorously jetting fumarole at Aso Volcano, Japan using a 5-element infrasound array located on the nearby crater. The fumarole opened on 13 July 2015 on the southwest flank of the partially collapsed pyroclastic cone within Aso Volcano'smore » Naka-dake crater and had persistent gas jetting, which produced significant audible jet noise. The array was ~ 220 m from the fumarole and 57.6° from the vertical jet axis, a recording angle not typically feasible in volcanic environments. Array processing is performed to distinguish fumarolic jet noise from wind. Highly correlated periods are characterized by sustained, low-amplitude signal with a 7–10 Hz spectral peak. Finite difference time domain method numerical modeling suggests the influence of topography near the vent and along the propagation path significantly affects the spectral content, complicating comparisons with laboratory jet noise. The fumarolic jet has a low estimated Mach number (0.3 to 0.4) and measured temperature of ~ 260 °C. The Strouhal number for infrasound from volcanic jet flows and geysers is not known; thus we assume a peak Strouhal number of 0.19 based on pure-air laboratory jet experiments. This assumption leads to an estimated exit velocity of the fumarole of ~ 79 to 132 m/s. Finally, using published gas composition data from 2003 to 2009, the fumarolic vent area estimated from thermal infrared images, and estimated jet velocity, we estimate total volatile flux at ~ 160–270 kg/s (14,000–23,000 t/d).« less

  18. Analysis of gas jetting and fumarole acoustics at Aso Volcano, Japan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKee, Kathleen; Fee, David; Yokoo, Akihiko

    The gas-thrust region of a large volcanic eruption column is predominately a momentum-driven, fluid flow process that perturbs the atmosphere and produces sound akin to noise from jet and rocket engines, termed “jet noise”. In this paper, we aim to enhance understanding of large-scale volcanic jets by studying an accessible, less hazardous fumarolic jet. We characterize the acoustic signature of ~ 2.5-meter wide vigorously jetting fumarole at Aso Volcano, Japan using a 5-element infrasound array located on the nearby crater. The fumarole opened on 13 July 2015 on the southwest flank of the partially collapsed pyroclastic cone within Aso Volcano'smore » Naka-dake crater and had persistent gas jetting, which produced significant audible jet noise. The array was ~ 220 m from the fumarole and 57.6° from the vertical jet axis, a recording angle not typically feasible in volcanic environments. Array processing is performed to distinguish fumarolic jet noise from wind. Highly correlated periods are characterized by sustained, low-amplitude signal with a 7–10 Hz spectral peak. Finite difference time domain method numerical modeling suggests the influence of topography near the vent and along the propagation path significantly affects the spectral content, complicating comparisons with laboratory jet noise. The fumarolic jet has a low estimated Mach number (0.3 to 0.4) and measured temperature of ~ 260 °C. The Strouhal number for infrasound from volcanic jet flows and geysers is not known; thus we assume a peak Strouhal number of 0.19 based on pure-air laboratory jet experiments. This assumption leads to an estimated exit velocity of the fumarole of ~ 79 to 132 m/s. Finally, using published gas composition data from 2003 to 2009, the fumarolic vent area estimated from thermal infrared images, and estimated jet velocity, we estimate total volatile flux at ~ 160–270 kg/s (14,000–23,000 t/d).« less

  19. Implications of new stratigraphic data on volcanic hazard assessment for Nisyros volcano, Greece

    NASA Astrophysics Data System (ADS)

    Volentik, A.; Vanderkluysen, L.; Principe, C.; Hernandez, J.; Hunziker, J. C.

    2003-04-01

    The active quaternary Nisyros volcano, at the eastern end of the Aegean volcanic arc, is composed of a succession of lava flows, tephra layers and interbedded epiclastic deposits. The volcano is topped by a recent caldera, on average 4 km in diameter and 200 m in depth. A detailed geological map including 35 stratigraphic units (lava flows, tephra layers and epiclastic deposits) has been recently completed at the 1:10'000 scale, based on new stratigraphical data. Based on the identification of new plinian sequences (Lakki and Melisseri pyroclastic series) in the lowermost section of the reconstructed stratigraphical succession, on the re-interpretation of previously described deposits and on the discovery of eruptive facies, we construct a set of hazard maps for volcanic events at Nisyros. Sequences of sub-marine lavas to subaerial epiclastites combined with the occurrence of a marine terrace deposit in the north-western sector of the island highlight the potential for rapid vertical movements, in particular in the area of Mandraki. A period of intense off-centred strombolian to phreatomagmatic activity occurred in quite recent times on Nisyros along the major tectonic trends (N^o030, No070, N^o120 and N^o340), building up several scoria cones and tuff cones all around the island. A number of these tectonic trends are still active, as demonstrated by faults cutting through recent deposits (including the youngest deposits of the hydrothermal eruptions, inside the present caldera of Nisyros). This implies that not only intra-caldera phreatic eruptions, but also potential magmatic eruption may occur along the island’s major zones of weakness, with increased hazards where magma/water interaction may take place. Finally a newly recognized debris avalanche deposit (the so-called Vunàri debris avalanche), affecting a wide sector in the northern part of the island, unveils a new type of volcanic hazard on Nisyros, related to flank collapse and destruction of the volcanic edifice.

  20. Geology of the Uranius Group Volcanic Constructs: Uranius Patera, Ceraunius Tholus, and Uranius Tholus

    USGS Publications Warehouse

    Plescia, J.B.

    2000-01-01

    Uranius Patera, Ceraunius Tholus, and Uranius Tholus (three small constructs in the northeast Tharsis region) date to the Late Hesperian Epoch and define the earliest phases of constructional volcanism in the Tharsis province. All three volcanoes are interpreted as shields, built by effusive eruptions of low-viscosity lavas, presumably basalt. Ceraunius Tholus and Uranius Tholus also record pyroclastic volcanism in the form of mantling deposits on their flanks; Uranius Patera either did not experience pyroclastic volcanism or the deposits were subsequently buried by later effusive eruptions. Troughs observed on the flanks of Ceraunius Tholus and Uranius Tholus are interpreted to have been formed by fluvial surface runoff. These constructs are coeval with other small edifices in western Tharsis province and are coeval with plains volcanism in the southern Tharsis, Syria, and Sinai regions. ?? 2000 Academic Press.

  1. Volcanic monitoring techniques applied to controlled fragmentation experiments

    NASA Astrophysics Data System (ADS)

    Kueppers, Ulrich; Alatorre-Ibarguengoitia, Miguel; Hort, Matthias; Kremers, Simon; Meier, Kristina; Scharff, Lea; Scheu, Bettina; Taddeucci, Jacopo; Dingwell, Donald B.

    2010-05-01

    A rapidly growing number of people is threatened by natural hazards such as volcanic eruptions, earthquakes, floods, or storms. Volcanic eruptions not only have an impact on their direct neighbourhood but may also affect aviation, infrastructure and climate, regionally as well as globally. In respect to several other natural threats, volcanoes exhibit the advantage of a usually known location of the pending threat, allowing the deployment of sophisticated monitoring networks. Such networks deliver information about volcanic systems and the correct interpretation of monitoring data is a viable key to a successful hazard mitigation strategy. Today a large number of volcanoes is equipped with a variety of scientific instruments that help elucidate the secrets of volcanic phenomena. However, our mechanistic understanding of the processes behind recorded signals or a solid interpretation of the state of a volcano is poor. Experimental volcanology is a chief source of mechanistic understanding of volcanic systems. Here, we bring volcanic monitoring and experimental volcanology together in a campaign of well-monitored, field-based, experimental volcanology. We present results from a multi-parametric combination of well-controlled experiments and several tools commonly used for monitoring active volcanoes. We performed rapid decompression experiments with natural rock samples from Colima volcano (Mexico) to simulate explosive volcanic eruptions. We used 2 sample varieties of approx. 25 and 35 vol.% open porosity. Sample size was 60 mm height and 25 mm and 60 mm diameter, respectively. Applied pressure ranges from 4 to 18 MPa. The pressurised volume above the samples ranges from 60 - 170 cm³. The experiments have been thoroughly monitored with 1) Doppler-Radar, 2) High-speed and video camera, 3) acoustic and infrasonic sensors, 4) pressure transducers, and 5) electrically conducting wires to shed light on fragmentation, ejection, and ejection speed of volcanic pyroclasts. Although the involved volumes of pressurised sample and gas were small, we were able to record the experimental eruption. Thereby, we could validate in parallel the applicability of two independent methods (1 and 2) currently used to estimate the ejection velocity of erupted pyroclasts, an essential factor in ballistic hazard evaluation and eruption energy estimation. Additionally, infrasound measurements could be correlated with autoclave volume and applied pressure. We are positive that this link of experimental volcanology and monitoring techniques will profoundly enlarge our understanding of the behaviour of active volcanoes in general. If applied to a single volcano, a more refined knowledge of the state of the art will allow an adequate hazard assessment and risk mitigation.

  2. Hydrothermal element fluxes from Copahue, Argentina: A “beehive” volcano in turmoil

    NASA Astrophysics Data System (ADS)

    Varekamp, Johan C.; Ouimette, Andrew P.; Herman, Scott W.; Bermúdez, Adriana; Delpino, Daniel

    2001-11-01

    Copahue volcano erupted altered rock debris, siliceous dust, pyroclastic sulfur, and rare juvenile fragments between 1992 and 1995, and magmatic eruptions occurred in July October 2000. Prior to 2000, the Copahue crater lake, acid hot springs, and rivers carried acid brines with compositions that reflected close to congruent rock dissolution. The ratio between rock-forming elements and chloride in the central zone of the volcano-hydrothermal system has diminished over the past few years, reflecting increased water/rock ratios as a result of progressive rock dissolution. Magmatic activity in 2000 provided fresh rocks for the acid fluids, resulting in higher ratios between rock-forming elements and chloride in the fluids and enhanced Mg fluxes. The higher Mg fluxes started several weeks prior to the eruption. Model data on the crater lake and river element flux determinations indicate that Copahue volcano was hollowed out at a rate of about 20000 25000 m3/yr, but that void space was filled with about equal amounts of silica and liquid elemental sulfur. The extensive rock dissolution has weakened the internal volcanic structure, making flank collapse a volcanic hazard at Copahue.

  3. È VIVO: Virtual eruptions at Vesuvius; A multimedia tool to illustrate numerical modeling to a general public

    NASA Astrophysics Data System (ADS)

    Todesco, Micol; Neri, Augusto; Demaria, Cristina; Marmo, Costantino; Macedonio, Giovanni

    2006-07-01

    Dissemination of scientific results to the general public has become increasingly important in our society. When science deals with natural hazards, public outreach is even more important: on the one hand, it contributes to hazard perception and it is a necessary step toward preparedness and risk mitigation; on the other hand, it contributes to establish a positive link of mutual confidence between scientific community and the population living at risk. The existence of such a link plays a relevant role in hazard communication, which in turn is essential to mitigate the risk. In this work, we present a tool that we have developed to illustrate our scientific results on pyroclastic flow propagation at Vesuvius. This tool, a CD-ROM that we developed joining scientific data with appropriate knowledge in communication sciences is meant to be a first prototype that will be used to test the validity of this approach to public outreach. The multimedia guide contains figures, images of real volcanoes and computer animations obtained through numerical modeling of pyroclastic density currents. Explanatory text, kept as short and simple as possible, illustrates both the process and the methodology applied to study this very dangerous natural phenomenon. In this first version, the CD-ROM will be distributed among selected categories of end-users together with a short questionnaire that we have drawn to test its readability. Future releases will include feedback from the users, further advancement of scientific results as well as a higher degree of interactivity.

  4. Multiphase modeling of channelized pyroclastic density currents and the effect of confinement on mobility and entrainment

    NASA Astrophysics Data System (ADS)

    Kubo, A. I.; Dufek, J.

    2017-12-01

    Around explosive volcanic centers such as Mount Saint Helens, pyroclastic density currents (PDCs) pose a great risk to life and property. Understanding of the mobility and dynamics of PDCs and other gravity currents is vital to mitigating hazards of future eruptions. Evidence from pyroclastic deposits at Mount Saint Helens and one-dimensional modeling suggest that channelization of flows effectively increases run out distances. Dense flows are thought to scour and erode the bed leading to confinement for subsequent flows and could result in significant changes to predicted runout distance and mobility. Here, we present the results of three-dimensional multiphase models comparing confined and unconfined flows using simplified geometries. We focus on bed stress conditions as a proxy for conditions that could influence subsequent erosion and self-channelization. We also explore the controls on gas entrainment in all scenarios to determine how confinement impacts the particle concentration gradient, granular interactions, and mobility.

  5. Geology and radiometric dating of Quaternary monogenetic volcanism in the western Zacapu lacustrine basin (Michoacán, México): implications for archeology and future hazard evaluations

    NASA Astrophysics Data System (ADS)

    Reyes-Guzmán, Nanci; Siebe, Claus; Chevrel, Magdalena Oryaëlle; Guilbaud, Marie-Noëlle; Salinas, Sergio; Layer, Paul

    2018-02-01

    The Zacapu lacustrine basin is located in the north-central part of the Michoacán-Guanajuato volcanic field (MGVF), which constitutes the west-central segment of the Trans-Mexican Volcanic Belt. Geological mapping of a 395 km2 quadrangle encompassing the western margin of the basin, 40Ar/39Ar and 14C radiometric dating, whole-rock chemical and petrographic analyses of volcanic products provide information on the stratigraphy, erupted volumes, age, and composition of the volcanoes. Although volcanism in the MGVF initiated since at least 5 Ma ago, rocks in the western Zacapu lacustrine basin are all younger than 2.1 Ma. A total of 47 volcanoes were identified and include 19 viscous lava flows ( 40 vol.%), 17 scoria cones with associated lava flows ( 36 vol.%), seven lava shields ( 15 vol.%), three domes ( 6 vol.%), and one maar ( 2 vol.%). Erupted products are dominantly andesites with 42 km3 ( 86 vol.%) followed by 4 km3 of dacite ( 8 vol.%), 1.4 km3 of basaltic trachy-andesite ( 3 vol.%), 1 km3 of basaltic andesite ( 2 vol.%), and 0.14 km3 of rhyolite ( 0.3 vol.%). Eruptive centers are commonly aligned ENE-WSW following the direction of the regional Cuitzeo Fault System. Over time, the high frequency of eruptions and consequent accumulation of lavas and pyroclastic materials pushed the lake's shore stepwise toward the southeast. Eruptions appear to have clustered through time. One cluster occurred during the Late Pleistocene between 27,000 and 21,300 BC when four volcanoes erupted. A second cluster formed during the Late Holocene, between 1500 BC and AD 900, when four closely spaced monogenetic vents erupted forming thick viscous `a'a to blocky flows on the margin of the lacustrine flats. For still poorly understood reasons, these apparently inhospitable lava flows were attractive to human settlement and eventually became one of the most densely populated heartlands of the pre-Hispanic Tarascan civilization. With an average eruption recurrence interval of 900 years during the Late Holocene the western Zacapu lacustrine basin is one of the most active areas in the MGVF and should hence be of focal interest for regional volcanic risk evaluations.

  6. Magmatic evolution of the Ilopango Caldera, El Salvador, Central America

    NASA Astrophysics Data System (ADS)

    Zezin, D.; Mann, C. P.; Hernández, W.; Stix, J.

    2010-12-01

    The Ilopango caldera (16 x 13 km) is an active, long-lived magmatic system, erupting voluminous amounts of pyroclastic material numerous times over the course of its evolution. The caldera is presently water filled and the most recent activity is a dome growth event in 1880. Established age constraints from extracaldera pyroclastic sequences, indicate caldera forming events occur ~ every 10,000 years over the last 40,000 years. The most recent pyroclastic eruption (TBJ) is constrained to A.D. 429 erupting 70 km3 DRE of pyroclastic material. We combine major element and trace element chemistry with 40Ar/39Ar age constraints of the intracaldera domes and intracaldera pyroclastic deposits to extent the caldera history. The intracaldera domes are andesitic to rhyolitic in composition (57 - 76 wt. % SiO2), some with basaltic enclaves (54 wt. % SiO2) and pyroclastic units observed inside the caldera (San Agustín Pumice Breccia) are dacitic to rhyolitic in composition (69 -75 wt. % SiO2). Formation of an intracaldera andesitic dome at 359±7.9 ka provides a minimum age of caldera formation and extends the caldera history back ~ 320 ka years. The variable composition of the intracaldera domes, the presence of mafic enclaves in the dome lavas, mafic clasts in the TB4 plinian fall, mafic banding in the TB3 and TB2, attest to the obvious involvement of a more mafic magma The highly evolved compositions of the pyroclastic units and the volume of erupted material, point towards a large evolving magma reservoir at depth. The mafic magma may replenish the subsurface reservoir and act as a catalyst for volcanic eruption. The presence of an intracaldera lake, the regularity with which the volcano erupts and the presence of a more mafic magma are the ingredients for a catastrophic disaster. The Ilopango caldera, located 10 km to the east of the capital city of San Salvador (~ 1.5 million people) poses a threat both locally and globally as demonstrated 1600 years ago as it devastated the Early Classic Mayan civilization.

  7. Definition of a mobilizing volume of sediment in a valley interested by volcanic eruption: Rio Blanco valley (Chile)

    NASA Astrophysics Data System (ADS)

    Oss-Cazzador, Daniele; Iroumé, Andrés; Picco, Lorenzo

    2016-04-01

    Volcanic explosive activity can strongly affect the riverine environments. Deposition of tephra, pyroclastic and hyperconcentrated flows along both the valley bottom and hillslopes can radically change the environmental morphology. Accumulation and transport of pyroclastic material can increase hazards and risks for anthropic activities. The aims of this research are to evaluate and quantify the amount of erodible sediment that can be transported along a gravel bed river affected by a volcanic eruption. The Rio Blanco valley (Chile) was upset by the plinian-type eruption of Chaiten volcano in 2008. The great amount of tephra released in the initial phase and the subsequent pyroclastic flows, accumulated up to 8 m of sediment over a great portion of the Rio Blanco valley. Using aerial photographs was possible to define the extension of vegetated zones affected by the eruption. The area was interested by a high mortality of vegetation, as confirmed by field surveys. Dendrometric measurements permitted to quantify the volume of wood and observe that renewal and herbal layer are almost absent, determining low soil cohesion and easier erosion by superficial and river erosion processes. Analysis of sediment accumulation allowed quantifying the volume of sediment that can be transported downstream. The analyses were carried out considering 7 km-long a reach, from the river mouth to the confluence between Caldera creek and Rio Blanco. After the eruption, was possible to define as a total area of about 2.19 km2 was affected by tephra deposition, the 40% (0,87 km2) was eroded by flows, while 60% (1,32 km2) is still present and composed by tephra, buried large wood (LW) and dead standing trees. Considering an average high of 5 m, the potential erodible sediment is around 6,5 x 106 m3, moreover there is a potential amount of about 7,3 x 104 m3 of LW that can be transported towards mouth. These analyses can be useful to better define the management plan for the river delta. In fact, in this area there is the Chaiten port, a fundamental structure for the human activities. These results can permit to better define the dragging activities and sediment abstraction. This research is funded within the Department of TESAF, University of Padua (Italy), and Chilean research Project FONDECYT 1141064 "Effects of vegetation on channel morphodynamics: a multiscale investigation in Chilean gravel-bed rivers".

  8. Record of late holocene debris avalanches and lahars at Iliamna Volcano, Alaska

    USGS Publications Warehouse

    Waythomas, C.F.; Miller, T.P.; Beget, J.E.

    2000-01-01

    Iliamna Volcano is a 3053-meter high, glaciated stratovolcano in the southern Cook Inlet region of Alaska and is one of seven volcanoes in this region that have erupted multiple times during the past 10,000 yr. Prior to our studies of Iliamna Volcano, little was known about the frequency, magnitude, and character of Holocene volcanic activity. Here we present geologic evidence of the most recent eruptive activity of the volcano and provide the first outline of Late Holocene debris-avalanche and lahar formation. Iliamna has had no documented historical eruptions but our recent field investigations indicate that the volcano has erupted at least twice in the last 300 yr. Clay-rich lahar deposits dated by radiocarbon to ???1300 and ???90 yr BP are present in two major valleys that head on the volcano. These deposits indicate that at least two large, possibly deep-seated, flank failures of the volcanic edifice have occurred in the last 1300 yr. Noncohesive lahar deposits likely associated with explosive pyroclastic eruptions date to 2400-1300,>1500,???300, and <305 yr BP. Debris-avalanche deposits from recent and historical small-volume slope failures of the hydrothermally altered volcanic edifice cover most of the major glaciers on the volcano. Although these deposits consist almost entirely of hydrothermally altered rock debris and snow and ice, none of the recently generated debris avalanches evolved to lahars. A clay-rich lahar deposit that formed <90??60 radiocarbon yr BP and entered the Johnson River Valley southeast of the volcano cannot be confidently related to an eruption of Iliamna Volcano, which has had no known historical eruptions. This deposit may record an unheralded debris avalanche and lahar. ?? 2000 Elsevier Science B.V. All rights reserved.

  9. EPITHERMAL GOLD-SILVER MINERALIZATION RELATED TO VOLCANIC SUBSIDENCE IN THE CUSTER GRABEN, CUSTER COUNTY, IDAHO.

    USGS Publications Warehouse

    Johnson, Kathleen M.; McIntyre, David H.

    1984-01-01

    The Custer graben is a 13 by 32 km northeast-trending volcano-tectonic graben in the Challis volcanic field of central Idaho. Andesites, rhyolites, and associated pyroclastic rocks host vein and disseminated gold-silver deposits that are localized along discrete northeast- and northwest-trending fracture zones. Ore minerals in vein deposits are electrum, native gold and silver, chalcopyrite, and various sulfosalts in a gangue of pyrite and fine-grained quartz. At the Sunbeam Mine, near the center of the graben, vein and disseminated gold-silver mineralization occurred in hydrothermally altered rhyolite and pyroclastic rocks. The host rock has been pervasively silicified, and the feldspars altered to clay minerals. Analyses of surface and drill-core samples show that altered rocks are variably enriched in gold, silver, molybdenum, arsenic, zirconium, and selenium. Intense silicification is shown by SiO//2 values at high as 93%.

  10. Syn- and posteruptive hazards of maar diatreme volcanoes

    NASA Astrophysics Data System (ADS)

    Lorenz, Volker

    2007-01-01

    Maar-diatreme volcanoes represent the second most common volcano type on continents and islands. This study presents a first review of syn- and posteruptive volcanic and related hazards and intends to stimulate future research in this field. Maar-diatreme volcanoes are phreatomagmatic monogenetic volcanoes. They may erupt explosively for days to 15 years. Above the preeruptive surface a relatively flat tephra ring forms. Below the preeruptive surface the maar crater is incised because of formation and downward penetration of a cone-shaped diatreme and its root zone. During activity both the maar-crater and the diatreme grow in depth and diameter. Inside the diatreme, which may penetrate downwards for up to 2.5 km, fragmented country rocks and juvenile pyroclasts accumulate in primary pyroclastic deposits but to a large extent also as reworked deposits. Ejection of large volumes of country rocks results in a mass deficiency in the root zone of the diatreme and causes the diatreme fill to subside, thus the diatreme represents a kind of growing sinkhole. Due to the subsidence of the diatreme underneath, the maar-crater is a subsidence crater and also grows in depth and diameter with ongoing activity. As long as phreatomagmatic eruptions continue the tephra ring grows in thickness and outer slope angle. Syneruptive hazards of maar-diatreme volcanoes are earthquakes, eruption clouds, tephra fall, base surges, ballistic blocks and bombs, lahars, volcanic gases, cutting of the growing maar crater into the preeruptive ground, formation of a tephra ring, fragmentation of country rocks, thus destruction of area and ground, changes in groundwater table, and potential renewal of eruptions. The main hazards mostly affect an area 3 to possibly 5 km in radius. Distal effects are comparable to those of small eruption clouds from polygenetic volcanoes. Syneruptive effects on infrastructure, people, animals, vegetation, agricultural land, and drainage are pointed out. Posteruptive hazards concern erosion and formation of lahars. Inside the crater a lake usually forms and diverse types of sediments accumulate in the crater. Volcanic gases may be released in the crater. Compaction and other diagenetic processes within the diatreme fill result in its subsidence. This posteruptive subsidence of the diatreme fill and thus crater floor is relatively large initially but will decrease with time. It may last millions of years. Various studies and monitoring are suggested for syn- and posteruptive activities of maar-diatreme volcanoes erupting in the future. The recently formed maar-diatreme volcanoes should be investigated repeatedly to understand more about their syneruptive behaviour and hazards and also their posteruptive topographic, limnic, and biologic evolution, and potential posteruptive hazards. For future maar-diatreme eruptions a hazard map with four principal hazard zones is suggested with the two innermost ones having a joint radius of up to 5 km. Areas that are potentially endangered by maar-diatreme eruptions in the future are pointed out.

  11. New Proposed Drilling at Surtsey Volcano, Iceland

    NASA Astrophysics Data System (ADS)

    Jackson, Marie D.

    2014-12-01

    Surtsey, an isolated oceanic island and a World Heritage Site of the United Nations Educational, Scientific and Cultural Organization, is a uniquely well-documented natural laboratory for investigating processes of rift zone volcanism, hydrothermal alteration of basaltic tephra, and biological colonization and succession in surface and subsurface pyroclastic deposits. Deposits from Surtsey's eruptions from 1963 to 1967 were first explored via a 181-meter hole drilled in 1979 by the U.S. Geological Survey and Icelandic Museum of Natural History.

  12. Explosive eruptive history of Pantelleria, Italy: Repeated caldera collapse and ignimbrite emplacement at a peralkaline volcano

    NASA Astrophysics Data System (ADS)

    Jordan, Nina J.; Rotolo, Silvio G.; Williams, Rebecca; Speranza, Fabio; McIntosh, William C.; Branney, Michael J.; Scaillet, Stéphane

    2018-01-01

    A new, pre-Green Tuff (46 ka) volcanic stratigraphy is presented for the peralkaline Pantelleria Volcano, Italy. New 40Ar/39Ar and paleomagnetic data are combined with detailed field studies to develop a comprehensive stratigraphic reconstruction of the island. We find that the pre-46 ka succession is characterised by eight silica-rich peralkaline (trachyte to pantellerite) ignimbrites, many of which blanketed the entire island. The ignimbrites are typically welded to rheomorphic, and are commonly associated with lithic breccias and/or pumice deposits. They record sustained radial pyroclastic density currents fed by low pyroclastic fountains. The onset of ignimbrite emplacement is typically preceded (more rarely followed) by pumice fallout with limited dispersal, and some eruptions lack any associated pumice fall deposit, suggesting the absence of tall eruption columns. Particular attention is given to the correlation of well-developed lithic breccias in the ignimbrites, interpreted as probable tracers of caldera collapses. They record as many as five caldera collapse events, in contrast to the two events reported to date. Inter-ignimbrite periods are characterised by explosive and effusive eruptions with limited dispersal, such as small pumice cones, as well as pedogenesis. These periods have similar characteristics as the current post-Green Tuff activity on the island, and, while not imminent, it is reasonable to postulate the occurrence of another ignimbrite-forming eruption sometime in the future.

  13. Pyroclast/snow interactions and thermally driven slurry formation. Part 2: Experiments and theoretical extension to polydisperse tephra

    USGS Publications Warehouse

    Walder, J.S.

    2000-01-01

    Erosion of snow by pyroclastic flows and surges presumably involves mechanical scour, but there may be thermally driven phenomena involved as well. To investigate this possibility, layers of hot (up to 400??C), uniformly sized, fine- to medium-grained sand were emplaced vertically onto finely shaved ice ('snow'); thus there was no relative shear motion between sand and snow and no purely mechanical scour. In some cases large vapor bubbles, commonly more than 10 mm across, rose through the sand layer, burst at the surface, and caused complete convective overturn of the sand, which then scoured and mixed with snow and transformed into a slurry. In other cases no bubbling occurred and the sand passively melted its way downward into the snow as a wetting front moved upward into the sand. A continuum of behaviors between these two cases was observed. Vigorous bubbling and convection were generally favored by high temperature, small grain size, and small layer thickness. A physically based theory of heat- and mass transfer at the pyroclast/snow interface, developed in Part 1 of this paper, does a good job of explaining the observations as a manifestation of unstable vapor-driven fluidization. The theory, when extrapolated to the behavior of actual, poorly sorted pyroclastic flow sediments, leads to the prediction that the observed 'thermal-scour' phenomenon should also occur for many real pyroclastic flows passing over snow. 'Thermal scour' is therefore likely to be involved in the generation of lahars.

  14. Lakes in Valles Marineris

    NASA Astrophysics Data System (ADS)

    Lucchitta, Baerbel K.

    2010-10-01

    The paper reviews the evolution of hypotheses of lakes in Valles Marineris through observations made from the time of Mariner and continuing through the Viking, MGS, MO, MEx, and MRO missions. Several pertinent findings from these missions are addressed, including: The morphology and composition of the interior layered deposits (ILD); the question whether ILD are deposited inside the troughs or exhumed from the walls; the possible existence of ancestral basins; the derivation of water; arguments for an origin as aqueous, eolian, or pyroclastic sediments, or sub/ice volcanoes; origin of inclined layers, mounds and moats; and age relations of features within and peripheral to the troughs. A possible scenario begins with the collapse of ice-charged ground into ancestral basins along structural planes of weakness due to Tharsis stresses, about 3.5 Ga ago. The basins rapidly filled with water from ground ice, subterranean aquifers, or nearby valley networks. The water spilled out of the peripheral troughs and flowed across high plateaus into early outflow channels. The ancestral basins then filled with sediments derived from valley networks or from trapped eolian or pyroclastic deposits. Alternatively, volcanoes rose under the water or ice to form tuyas. The water was highly acidic, and sediments may have been deposited directly as evaporites or were later altered to evaporites by the brines or by hydrothermal activity. Percolating fluids produced iron oxide concretions. Similar alteration would have affected the putative volcanoes. Most of the ILD were emplaced early in the troughs' history. Shortly thereafter, more water erupted from the peripheral troughs and formed additional chaos and outflow channels. The ancestral basins were breached by erosion and tectonism, and the through-going Coprates/Ius graben system developed. Major lakes within the Valles Marineris dried up and vigorous wind erosion reduced the friable, evaporite-rich sediments to isolated mounds. Simultaneously, the iron oxide concretions weat hered out to form lag deposits mostly at the base of scarps. During that time, some of the ILD may have become tilted by structural deformation. Alternatively, inclined beds on the mounds may have come from draping by volcanic ash or eolian deposits, or by gravity sliding on the steep, evaporite-charged flanks of the mounds. Inclined layers could be readily explained if the ILD were tuyas. Landslides fell into the newly created voids and occasional sliding persisted throughout most of the troughs' history. Minor volcanic activity continued and may have spewed mafic ash onto the eroded ILD-mound surfaces and onto the trough floors. Eventually, only wind persisted, producing yardangs on the ILD and reworking ash, trapped eolian sediments, and debris eroded from the ILD.

  15. Assessing volcanic risk in regions with low frequency eruptions: the Laacher See case study

    NASA Astrophysics Data System (ADS)

    Riede, Felix; Blong, Russell

    2017-04-01

    Approximately 13,000 years ago, the Laacher See volcano located in present-day western Germany (East Eifel volcanic field, Rhenish Shield) erupted cataclysmically and, to-date, for the last time. In addition to the near-vent destruction wrought by pyroclastic flows and massive tephra deposition, a swath of airfall ash covered Europe from the Alps to the Baltic. Mofettes in the caldera lake as well as tomography studies clearly reveal the presence of a still-active hot spot in the Eifel suggestive of the possibility of renewed activity. Previous studies have focused on the near-vent situation and on unraveling the eruption sequence. Archive legacy data harvested from a variety of disciplinary and often obscure sources (palynology, pedology, archaeology, geological grey literature) now provide new insights into the medial, distal and ultra-distal distribution of Laacher See fallout. This tephra-fall distribution and its utility as a chronostratigraphic marker at archaeological sites allow a detailed reconstruction of contemporaneous human impacts. At the same time, tephra samples collected from sites across northern Europe also reveal the causal contributions of different hazard phenomena (dental abrasion, vegetation impacts, health hazards). Given the high density of key infrastructure installations and of population in the region, risk calculations using the recently proposed Volcanic Risk Coefficient (VRC) place the Laacher See volcano on par with many more active and routinely monitored volcanoes (e.g. Teide, Ischia) - despite the Laacher See's long repose period. Indeed, the lack of prior exposure of Western European populations, coupled with the large number of countries likely to be affected by any future eruption would further aggravate any given impact. The data extant now could be used to construct robust Realistic Disaster Scenarios, and to improve outreach efforts aimed at raising awareness of this major volcano in the heart of Europe.

  16. Pyroclastic Deposits in Floor-Fractured Craters: A Unique Style or Lunar Basaltic Volcanism?

    NASA Technical Reports Server (NTRS)

    Allen, Carlton C.; DonaldsonHanna, Kerri L.; Pieters, Carle M.; Moriarty, Daniel P.; Greenhagen, Benjamin T.; Bennett, Kristen A.; Kramer, Georgiana Y.; Paige, David A.

    2013-01-01

    The lunar maria were formed by effusive fissure flows of low-viscosity basalt. Regional pyroclastic deposits were formed by deep-sourced fire-fountain eruptions dominated by basaltic glass. Basaltic material is also erupted from small vents within floor-fractured impact craters. These craters are characterized by shallow, flat floors cut by radial, concentric and/or polygonal fractures. Schultz [1] identified and classified over 200 examples. Low albedo pyroclastic deposits originate from depressions along the fractures in many of these craters.

  17. An investigation of volcanic depressions. Part 1: Airfall and intrusive pyroclastic deposits. Part 2: Subaerial pyroclastic flows and their deposits

    NASA Technical Reports Server (NTRS)

    Williams, H.; Mcbirney, A. R.

    1969-01-01

    Pyroclastic ejecta and the deposits they form were classified in many ways, and many interpretations were given to individual terms. Some classifications are based on the modes of orgin and deposition of the ejecta; others emphasized the chemical and physical composition of the ejecta. Particle-size was used as the prime basis of subdivision, and the same size-limits were used as those employed in the classification of sediments and sedimentary rocks.

  18. Preliminary Study on Ground-Magnetic Data Near the Active Volcanoes in Konga Bay, East Flores Indonesia

    NASA Astrophysics Data System (ADS)

    Laesanpura, Agus; Dahrin, Darharta; Nurseptian, Ivan

    2017-04-01

    East Flores is part of Nusa Tenggara island belongs to volcanic arc zone, hence the active volcanoes surround the area about 60 × 50 square km. It is located at latitude south 8° 30’, and longitude east 122° 45’. Geologically, the rock is mostly of volcanic material since Miocene age. The Intriguing question is where the volcanic feeder, pyroclastic, and how it vanish in subsurface. The magnetic data acquisitions were executed on land for 500 meter interval and denser through the bay surrounded by volcanoes. The combine reduction to pole and forward modelling is apply for serve interpretation using forward modelling technique. The two interpretation sections, show the body of magmatic may present at depth about 2 to 3 km. The observation show no significant decreasing or loosening of magnetic anomaly although near the active volcano. We suggest the thermal anomaly is just disturbing magnetic data in near surface but not in the depth one. Meanwhile the reduction to pole’s section could distinguish the two group of rock. In assuming the layer is flat. The inferred peak of magmatic body near the existing volcano; and the active demagnetization associated through evidence of hot spring and inferred fault structure.

  19. The Ottaviano eruption of Somma-Vesuvio (8000 y B.P.): a magmatic alternating fall and flow-forming eruption

    NASA Astrophysics Data System (ADS)

    Rolandi, G.; Maraffi, S.; Petrosino, P.; Lirer, L.

    1993-11-01

    The Ottaviano eruption occurred in the late neolithic (8000 y B.P.). 2.40 km 3 of phonolitic pyroclastic material (0.61 km 3 DRE) were emplaced as pyroclastic flow, surge and fall deposits. The eruption began with a fall phase, with a model column height of 14 km, producing a pumice fall deposit (LA). This phase ended with short-lived weak explosive activity, giving rise to a fine-grained deposit (L1), passing to pumice fall deposits as the result of an increasing column height and mass discharge rate. The subsequent two fall phases (producing LB and LC deposits), had model column heights of 20 and 22 km with eruption rates of 2.5 × 10 7 and 2.81 × 10 7 kg/s, respectively. These phases ended with the deposition of ash layers (L2 and L3), related to a decreasing, pulsing explosive activity. The values of dynamic parameters calculated for the eruption classify it as a sub-plinian event. Each fall phase was characterized by variations in the eruptive intensity, and several pyroclastic flows were emplaced (F1 to F3). Alternating pumice and ash fall beds record the waning of the eruption. Finally, owing to the collapse of a eruptive column of low gas content, the last pyroclastic flow (F4) was emplaced.

  20. Volcanic Eruptions in Kamchatka

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Sheveluch Stratovolcano Click on the image for full resolution TIFF Klyuchevskoy Stratovolcano Click on the image for full resolution TIFF

    One of the most volcanically active regions of the world is the Kamchatka Peninsula in eastern Siberia, Russia. It is not uncommon for several volcanoes to be erupting at the same time. On April 26, 2007, the Advanced Spaceborne Thermal Emission and Reflection Radioneter (ASTER) on NASA's Terra spacecraft captured these images of the Klyuchevskoy and Sheveluch stratovolcanoes, erupting simultaneously, and 80 kilometers (50 miles) apart. Over Klyuchevskoy, the thermal infrared data (overlaid in red) indicates that two open-channel lava flows are descending the northwest flank of the volcano. Also visible is an ash-and-water plume extending to the east. Sheveluch volcano is partially cloud-covered. The hot flows highlighted in red come from a lava dome at the summit. They are avalanches of material from the dome, and pyroclastic flows.

    With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra spacecraft. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

    Size: 19.2 by 21 kilometers (11.9 by 13.0 miles) Location: 57 degrees North latitude, 161 degrees East longitude Orientation: North at top Image Data: ASTER Bands 3, 2, and 1, and 12 in red Original Data Resolution: ASTER 15 meters (49.2 feet) visible; 90 meters (295.2 feet) thermal infrared Date Acquired: April 26, 2007

  1. Voluminous lava-like precursor to a major ash-flow tuff: Low-column pyroclastic eruption of the Pagosa Peak Dacite, San Juan volcanic field, Colorado

    USGS Publications Warehouse

    Bachmann, Olivier; Dungan, M.A.; Lipman, P.W.

    2000-01-01

    The Pagosa Peak Dacite is an unusual pyroclastic deposit that immediately predated eruption of the enormous Fish Canyon Tuff (~5000 km3) from the La Garita caldera at 28 Ma. The Pagosa Peak Dacite is thick (to 1 km), voluminous (>200 km3), and has a high aspect ratio (1:50) similar to those of silicic lava flows. It contains a high proportion (40-60%) of juvenile clasts (to 3-4 m) emplaced as viscous magma that was less vesiculated than typical pumice. Accidental lithic fragments are absent above the basal 5-10% of the unit. Thick densely welded proximal deposits flowed rheomorphically due to gravitational spreading, despite the very high viscosity of the crystal-rich magma, resulting in a macroscopic appearance similar to flow-layered silicic lava. Although it is a separate depositional unit, the Pagosa Peak Dacite is indistinguishable from the overlying Fish Canyon Tuff in bulk-rock chemistry, phenocryst compositions, and 40Ar/39Ar age. The unusual characteristics of this deposit are interpreted as consequences of eruption by low-column pyroclastic fountaining and lateral transport as dense, poorly inflated pyroclastic flows. The inferred eruptive style may be in part related to synchronous disruption of the southern margin of the Fish Canyon magma chamber by block faulting. The Pagosa Peak eruptive sources are apparently buried in the southern La Garita caldera, where northerly extensions of observed syneruptive faults served as fissure vents. Cumulative vent cross-sections were large, leading to relatively low emission velocities for a given discharge rate. Many successive pyroclastic flows accumulated sufficiently rapidly to weld densely as a cooling unit up to 1000 m thick and to retain heat adequately to permit rheomorphic flow. Explosive potential of the magma may have been reduced by degassing during ascent through fissure conduits, leading to fracture-dominated magma fragmentation at low vesicularity. Subsequent collapse of the 75 x 35 km2 La Garita caldera and eruption of the Fish Canyon Tuff were probably triggered by destabilization of the chamber roof as magma was withdrawn during the Pagosa Peak eruption. (C) 2000 Elsevier Science B.V. All rights reserved.

  2. Gas Concentration Mapping of Arenal Volcano Using AVEMS

    NASA Technical Reports Server (NTRS)

    Diaz, J. Andres; Arkin, C. Richard; Griffin, Timothy P.; Conejo, Elian; Heinrich, Kristel; Soto, Carlomagno

    2005-01-01

    The Airborne Volcanic Emissions Mass Spectrometer (AVEMS) System developed by NASA-Kennedy Space Center and deployed in collaboration with the National Center for Advanced Technology (CENAT) and the University of Costa Rica was used for mapping the volcanic plume of Arenal Volcano, the most active volcano in Costa Rica. The measurements were conducted as part of the second CARTA (Costa Rica Airborne Research and Technology Application) mission conducted in March 2005. The CARTA 2005 mission, involving multiple sensors and agencies, consisted of three different planes collecting data over all of Costa Rica. The WB-57F from NASA collected ground data with a digital camera, an analog photogrametric camera (RC-30), a multispectral scanner (MASTER) and a hyperspectral sensor (HYMAP). The second aircraft, a King Air 200 from DoE, mounted with a LIDAR based instrument, targeted topography mapping and forest density measurements. A smaller third aircraft, a Navajo from Costa Rica, integrated with the AVEMS instrument and designed for real-time measurements of air pollutants from both natural and anthropogenic sources, was flown over the volcanoes. The improved AVEMS system is designed for deployment via aircraft, car or hand-transport. The 85 pound system employs a 200 Da quadrupole mass analyzer, has a volume of 92,000 cubic cm, requires 350 W of power at steady state, can operate up to an altitude of 41,000 feet above sea level (-65 C; 50 torr). The system uses on-board gas bottles on-site calibration and is capable of monitoring and quantifying up to 16 gases simultaneously. The in-situ gas data in this work, consisting of helium, carbon dioxide, sulfur dioxide and acetone, was acquired in conjunction of GPS data which was plotted with the ground imagery, topography and remote sensing data collected by the other instruments, allowing the 3 dimensional visualization of the volcanic plume at Arenal Volcano. The modeling of possible scenarios of Arenal s activity and its direct impact on the surrounding populated areas in now possible with the combined set of data, linking in-situ data with remote sensing data. The study also helps in the understanding of pyroclastic flow behavior in case of a major eruption.

  3. The 2010 explosive eruption of Java's Merapi volcano—A ‘100-year’ event

    USGS Publications Warehouse

    Surono,; Jousset, Philippe; Pallister, John S.; Boichu, Marie; Buongiorno, M. Fabrizia; Budisantoso, Agus; Costa, Fidel; Andreastuti, Supriyati; Prata, Fred; Schneider, David; Clarisse, Lieven; Humaida, Hanik; Sumarti, Sri; Bignami, Christian; Griswold, Julia P.; Carn, Simon A.; Oppenheimer, Clive; Lavigne, Franck

    2012-01-01

    Merapi volcano (Indonesia) is one of the most active and hazardous volcanoes in the world. It is known for frequent small to moderate eruptions, pyroclastic flows produced by lava dome collapse, and the large population settled on and around the flanks of the volcano that is at risk. Its usual behavior for the last decades abruptly changed in late October and early November 2010, when the volcano produced its largest and most explosive eruptions in more than a century, displacing at least a third of a million people, and claiming nearly 400 lives. Despite the challenges involved in forecasting this ‘hundred year eruption’, we show that the magnitude of precursory signals (seismicity, ground deformation, gas emissions) was proportional to the large size and intensity of the eruption. In addition and for the first time, near-real-time satellite radar imagery played an equal role with seismic, geodetic, and gas observations in monitoring eruptive activity during a major volcanic crisis. The Indonesian Center of Volcanology and Geological Hazard Mitigation (CVGHM) issued timely forecasts of the magnitude of the eruption phases, saving 10,000–20,000 lives. In addition to reporting on aspects of the crisis management, we report the first synthesis of scientific observations of the eruption. Our monitoring and petrologic data show that the 2010 eruption was fed by rapid ascent of magma from depths ranging from 5 to 30 km. Magma reached the surface with variable gas content resulting in alternating explosive and rapid effusive eruptions, and released a total of ~ 0.44 Tg of SO2. The eruptive behavior seems also related to the seismicity along a tectonic fault more than 40 km from the volcano, highlighting both the complex stress pattern of the Merapi region of Java and the role of magmatic pressurization in activating regional faults. We suggest a dynamic triggering of the main explosions on 3 and 4 November by the passing seismic waves generated by regional earthquakes on these days.

  4. Extraordinary sediment delivery and rapid geomorphic response following the 2008–2009 eruption of Chaitén Volcano, Chile

    USGS Publications Warehouse

    Major, Jon J.; Bertin, Daniel; Pierson, Thomas C.; Amigo, Alvaro; Iroume, Andres; Ulloa, Hector; Castro, Jonathan M.

    2016-01-01

    The 10 day explosive phase of the 2008–2009 eruption of Chaitén volcano, Chile, draped adjacent watersheds with a few cm to >1 m of tephra. Subsequent lava-dome collapses generated pyroclastic flows that delivered additional sediment. During the waning phase of explosive activity, modest rainfall triggered an extraordinary sediment flush which swiftly aggraded multiple channels by many meters. Ten kilometer from the volcano, Chaitén River channel aggraded 7 m and the river avulsed through a coastal town. That aggradation and delta growth below the abandoned and avulsed channels allow estimates of postdisturbance traction-load transport rate. On the basis of preeruption bathymetry and remotely sensed measurements of delta-surface growth, we derived a time series of delta volume. The initial flush from 11 to 14 May 2008 deposited 0.5–1.5 × 106 m3 of sediment at the mouth of Chaitén River. By 26 May, after channel avulsion, a second delta amassed about 2 × 106 m3 of sediment; by late 2011 it amassed about 11 × 106 m3. Accumulated sediment consists of low-density vesicular pumice and lithic rhyolite sand. Rates of channel aggradation and delta growth, channel width, and an assumed deposit bulk density of 1100–1500 kg m−3 indicate mean traction-load transport rate just before and shortly after avulsion (∼14–15 May) was very high, possibly as great as several tens of kg s−1 m−1. From October 2008 to December 2011, mean traction-load transport rate declined from about 7 to 0.4 kg−1 m−1. Despite extraordinary sediment delivery, disturbed channels recovered rapidly (a few years).

  5. Unzen Volcano, Japan

    NASA Image and Video Library

    1996-11-13

    This is a space radar image of the area around the Unzen volcano, on the west coast of Kyushu Island in southwestern Japan. Unzen, which appears in this image as a large triangular peak with a white flank near the center of the peninsula, has been continuously active since a series of powerful eruptions began in 1991. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on its 93rd orbit on April 15, 1994. The image shows an area 41.5 kilometers by 32.8 kilometers (25.7 miles by 20.3 miles) that is centered at 32.75 degrees north latitude and 130.15 degrees east longitude. North is toward the upper left of the image. The radar illumination is from the top of the image. The colors in this image were obtained using the following radar channels: red represents the L-band (vertically transmitted and received); green represents the average of L-band and C-band (vertically transmitted and received); blue represents the C-band (vertically transmitted and received). Unzen is one of 15 "Decade" volcanoes identified by the scientific community as posing significant potential threats to large local populations. The city of Shimabara sits along the coast at the foot of Unzen on its east and northeast sides. At the summit of Unzen a dome of thick lava has been growing continuously since 1991. Collapses of the sides of this dome have generated deadly avalanches of hot gas and rock known as pyroclastic flows. Volcanologists can use radar image data to monitor the growth of lava domes, to better understand and predict potentially hazardous collapses. http://photojournal.jpl.nasa.gov/catalog/PIA00504

  6. Structural control on arc volcanism: The Caviahue Copahue complex, Central to Patagonian Andes transition (38°S)

    NASA Astrophysics Data System (ADS)

    Melnick, Daniel; Folguera, Andrés; Ramos, Victor A.

    2006-11-01

    This paper describes the volcanostratigraphy, structure, and tectonic implications of an arc volcanic complex in an oblique subduction setting: the Caviahue caldera Copahue volcano (CAC) of the Andean margin. The CAC is located in a first-order morphotectonic transitional zone, between the low and narrow Patagonian and the high and broad Central Andes. The evolution of the CAC started at approximately 4-3 Ma with the opening of the 20 × 15 km Caviahue pull-apart caldera; Las Mellizas volcano formed inside the caldera and collapsed at approximately 2.6 Ma; and the Copahue volcano evolved in three stages: (1) 1.2-0.7 Ma formed the approximately 1 km thick andesitic edifice, (2) 0.7-0.01 Ma erupted andesitic-dacitic subglacial pillow lavas, and (3) 0.01-0 Ma erupted basaltic-andesites and pyroclastic flows from fissures, aligned cones, and summit craters. Magma ascent has occurred along planes perpendicular to the least principal horizontal stress, whereas hydrothermal activity and hot springs also occur along parallel planes. At a regional scale, Quaternary volcanism concentrates along the NE-trending, 90 km long Callaqui-Copahue-Mandolegüe lineament, the longest of the southern volcanic zone, which is here interpreted as an inherited crustal-scale transfer zone from a Miocene rift basin. At a local scale within the CAC, effusions are controlled by local structures that formed at the intersection of regional fault systems. The Central to Patagonian Andes transition occurs at the Callaqui-Copahue-Mandolegüe lineament, which decouples active deformation from the intra-arc strike-slip Liquiñe-Ofqui fault zone to the south and the backarc Copahue-Antiñir thrust system.

  7. What more have we learned from thermal infrared remote sensing of active volcanoes other than they are hot? (Invited)

    NASA Astrophysics Data System (ADS)

    Ramsey, M.

    2009-12-01

    Thermal infrared (TIR) remote sensing has been used for decades to detect changes in the heat output of active and reawakening volcanoes. The data from these thermally anomalous pixels are commonly used either as a monitoring tool or to calculate parameters such as effusion rate and eruptive style. First and second generation TIR data have been limited in the number of spectral channels and/or the spatial resolution. Two spectral channels with only one km spatial resolution has been the norm and therefore the number of science applications is limited to very large or very hot events. The one TIR channel of the Landsat ETM+ instrument improved the spatial resolution to 60 m, but it was not until the launch of ASTER in late 1999 that orbital TIR spectral resolution increased to five channels at 90 m per pixel. For the first time, the ability existed to capture multispectral emitted radiance from volcanic surfaces, which has allowed the extraction of emissivity as well as temperature. Over the past decade ASTER TIR emissivity data have been examined for a variety of volcanic processes including lava flow emplacement at Kilauea and Kluichevskoi, silicic lava dome composition at Sheveluch, Bezymianny and Mt. St. Helens, low temperature fumaroles emissions at Cerro Negro, and textural changes on the pyroclastic flow deposits at Merapi, Sheveluch and Bezymianny. Thermal-temporal changes at the 90 m scale are still an important monitoring tool for active volcanoes using ASTER TIR data. However, the ability to extract physical parameters such as micron-scale roughness and bulk mineralogy has added tremendously to the science derived from the TIR region. This new information has also presented complications such as the effects of sub-pixel thermal heterogeneities and amorphous glass on the emissivity spectra. If better understood, these complications can provide new insights into the physical state of the volcanic surfaces. Therefore, new data processing algorithms, laboratory, and field-based TIR instrumentation have been developed to more accurately model and correct these data. This presentation will summarize the results from nearly a decade of ASTER TIR remote sensing of active volcanoes around the globe. It will also document the first results of a micro furnace designed to capture emission of molten surfaces in real time as well as a field TIR camera modified to extract emissivity of surfaces at the cm pixel scale. The integration of laboratory, field, and orbital TIR remote sensing of active volcanoes provide a more complete picture of processes operating a variety of spatial, temporal and physical scales.

  8. Holocene tephra succession of Puyehue-Cordón Caulle and Antillanca/Casablanca volcanic complexes, southern Andes (40-41°S)

    NASA Astrophysics Data System (ADS)

    Naranjo, J. A.; Singer, B. S.; Jicha, B. R.; Moreno, H.; Lara, L. E.

    2017-02-01

    Puyehue-Cordón Caulle and Antillanca volcanic complexes are two of at least 50 active frontal arc volcanoes that define the 1400 km-long Southern Volcanic Zone of Chile. Holocene tephra deposits in Chile and Argentina (40-41°S) up to 100 km east of these volcanoes comprise at least five voluminous ( 1 to 8 km3) pyroclastic-fall layers that preceded several recently deposited Cordón Caulle pumice fallouts. Field observations of proximal, medium, and distal facies of the deposits, in conjunction with geochronology and geochemistry of the volcanic complexes, indicate that three fall layers are derived from Puyehue volcano (Puyehue 1 and 2, and Mil Hojas), whereas two are sourced from the Antillanca complex (Playas Blanca-Negra, and Nahuel Huapi Tephra), 20 km to the south. The oldest tephra (calibrated 14C age 10.49 ± 0.12 ka, 2σ), found only at medium-distal facies, is deposited directly on granitic moraine boulders and consists of deeply weathered, orange dacitic pumice lapilli. The next prominent tephra at 7 ka comprises dacitic pumice and its age is equivalent to a rhyodacitic dome exposed in the Puyehue summit crater. Above these deposits there are phases of a complex eruption consisting of a conspicuous compositionally-zoned tephra. It also comprises a pyroclastic density current, together with lithic rich and scoriaceous fallout deposits. Mineralogical, geochemical, and Sr isotope evidence, plus the isopach maps, confirm that this sequence of eruptive events is sourced from Antillanca at 1932 ± 68 yrBP. The total volume of this eruptive sequence exceeds 8 km3, making it the largest Holocene eruption from either volcanic complex. This eruption was likely responsible for the destruction of an ancestral Antillanca volcano and the formation of a 4.5 km diameter caldera. A distinctive younger unit in the region is a voluminous rhyodacitic pumice fall (calibrated 14C age 1.11 ± 0.07 ka), above which a series of several alternating dark lithic and pumice lapilli beds accumulated. Correlation with proximal deposits indicates that the 1.11 ka eruption was derived from Puyehue and destroyed 3 km3 of rhyodacitic domes at this volcano summit. Historic explosive activity at the nascent Casablanca volcano and along Cordón Caulle, including the 2011-2012 eruption ( 1 km3 of uncompacted pumice), the largest from this fissural zone, emphasizes an increased risk for volcanic hazards in central Chile and Argentina.

  9. Mud Flow - Slow and Fast

    NASA Astrophysics Data System (ADS)

    Mei, C. C.; Liu, K.-F.; Yuhi, M.

    Heavy and persistent rainfalls in mountainous areas can loosen the hillslope and induce mud flows which can move stones, boulders and even trees, with destructive power on their path. In China where 70% of the land surface is covered by mountains, debris flows due to landslides or rainfalls affect over 18.6% of the nation. Over 10,000 debris flow ravines have been identified; hundreds of lives are lost every year [1]. While accurate assessment is still pending, mud flows caused by Hurr icane Mitch in 1998 have incurred devastating floods in Central America. In Honduras alone more than 6000 people perished. Half of the nation's infrastructures were damaged. Mud flows can also be the result of volcanic eruption. Near the volcano, lava and pyroclastic flows dominate. Further downstream solid particles become smaller and can mix with river or lake water, rainfall, melting snow or ice, or eroded soil, resulting in hyperconcentrated mud mixed with rocks. The muddy debris can travel at high speeds over tens of miles down the hill slopes and devastate entire communities. In 1985 the catastrophic eruption of Nevado del Ruiz in Colombia resulted in mud flows which took the life of 23,000 inhabitants in the town of Amero [2]. During the eruption of Mt. Pinatubo in Phillipnes in 1991, one cubic mile of volcanic ash and rock fragments fell on the mountain slopes. Seasonal rain in the following months washed down much of the loose deposits, causing damage to 100,000 villages. These catastrophes have been vividly recorded in the film documentary by Lyons [3].

  10. Impact of explosive eruption scenarios at Vesuvius

    NASA Astrophysics Data System (ADS)

    Zuccaro, G.; Cacace, F.; Spence, R. J. S.; Baxter, P. J.

    2008-12-01

    In the paper the first attempt at the definition of a model to assess the impact of a range of different volcanic hazards on the building structures is presented. This theoretical approach has been achieved within the activities of the EXPLORIS Project supported by the EU. A time history for Sub-Plinian I eruptive scenario of the Vesuvius is assumed by taking advantage of interpretation of historical reports of volcanic crises of the past [Carafa, G. 1632. In opusculum de novissima Vesuvij conflagratione, epistola isagogica, 2 a ed. Napoli, Naples; Mascolo, G.B., 1634. De incendio Vesuvii excitato xvij. Kal. Ianuar. anno trigesimo primo sæculi Decimiseptimi libri X. Cum Chronologia superiorum incendiorum; & Ephemeride ultimi. Napoli; Varrone, S., 1634. Vesuviani incendii historiae libri tres. Napoli], numerical simulations [Neri, A., Esposti Ongaro, T., Macedonio, G., Gidaspow, D., 2003. Multiparticle simulation of collapsing volcanic columns and pyroclastic flows. J. Geophys. Res. Lett. 108, 2202. doi:10.1029/2001 JB000508; Macedonio, G., Costa, A., Longo, A., 2005. HAZMAP: a computer model for volcanic ash fallout and assessment of subsequent hazard. Comput. Geosci. 31,837-845; Costa, A., Macedonio, G., Folch, A., 2006. A three-dimensional Eulerian model for transport and deposition of volcanic ashes. Earth Planet. Sci. Lett. 241,634-647] and experts' elicitations [Aspinall, W.P., 2006. Structured elicitation of expert judgment for probabilistic hazard and risk assessment in volcanic eruptions. In: Mader, H.M. Coles, S.G. Connor, C.B. Connor, L.J. (Eds), Statistics in Volcanology. Geological Society of London on behalf of IAVCEI, pp.15-30; Woo, G., 1999. The Mathematics of Natural Catastrophes. Imperial College Press, London] from which the impact on the building structures is derived. This is achieved by an original definition of vulnerability functions for multi-hazard input and a dynamic cumulative damage model. Factors affecting the variability of the final scenario are highlighted. The results show the high sensitivity of hazard combinations in time and space distribution and address how to mitigate building vulnerability to subsequent eruptive phenomena [Baxter, P., Spence, R., Zuccaro, G., 2008-this issue. Risk mitigation and emergency measures at Vesuvius]. The first part of the work describes the numerical modelling and the methodology adopted to evaluate the resistance of buildings under the combined action of volcanic phenomena. Those considered here for this multi-hazard approach are limited to the following: earthquakes, pyroclastic flows and ash falls. Because of the lack of a systematic and extensive database of building damages observed after eruptions of such intensity of the past, approaches to this work must take a hybrid form of stochastic and deterministic analyses, taking into account written histories of volcanic eruptions and expertise from field geologists to build up a semi-deterministic model of the possible combinations of the above hazards that are situated both in time and space. Once a range of possible scenarios has been determined, a full stochastic method can be applied to find a sub-set of permutations and combinations of possible effects. This preliminary study of identification of the possible combination of the phenomena, subdividing them into those which are discrete and those which are continuous in time and space, enables consideration the vulnerability functions of the combinations to be feasible. In previous works [Spence, R., Brichieri-Colombi, N., Holdsworth, F., Baxter, P., Zuccaro, G., 2004a. Vesuvius: building vulnerability and human casualty estimation for a pyroclastic flow (25 pages). J. Volcanol. Geotherm. Res. 133, 321-343. ISSN 0377-0273; Spence, R., Zuccaro, G., Petrazzuoli, S., Baxter, P.J., 2004b. The resistance of buildings to pyroclastic flows: theoretical and experimental studies in relation to Vesuvius, ASCE Nat. Hazards Rev. 5, 48-50. ISSN 1527-6988; Spence, R., Kelman, I., Petrazzuoli, S., Zuccaro, G., 2005. Residential Buildings and Occupant Vulnerability to Tephra Fall. Nat. Hazards Earth Syst. Sci. vol. 5. European Geosciences Union, pp.1-18; Baxter, P.J., Cole, P.D., Spence, R., Zuccaro, G., Boyd, R., Neri, A., 2005. The impacts of pyroclastic density currents on buildings during the eruption of the Soufrière hills volcano, Montserrat. Bull. Volcanol. vol. 67,292-313] the authors investigated, by means of experimental and analytical methods, the limiting resistance of masonry and reinforced concrete buildings assuming each action separately. In this work the first attempt to estimate the response of the buildings to the volcanic seismic action or to the lateral dynamic pressure due to pyroclastic flow combined with an extra vertical load on the roof due to ash fall is performed. The results show that up to a certain limit of ash fall deposit, the increment of structure weight increases the resistance of a building to pyroclastic flow action while it reduces its seismic resistance. In particular the collapse of the top storey of R.C. buildings having large roofs could occur by accumulation of ash and a strong earthquake. Seismic and pyroclastic flow vulnerability of tall R.C. and masonry buildings with rigid floors is less sensitive to ash fall load combination. The model allows any sequence of events (earthquake, ash fall, pyroclastic flow) to be assumed and evaluates the spatial distribution of the cumulative impact at a given time. Single impact scenarios have been derived and mapped on a suitable grid into which the territory around Vesuvius has been subdivided. The buildings have been classified according to the constructional characteristics that mostly affect their response under the action of the phenomena; hence the vulnerability distribution of the buildings are assigned to each cell of the grid and by taking advantage from the combined vulnerability functions the impact is derived at time t. In the paper the following impact simulations are presented: single cases of selected seismic sequence during the unrest phase (Sub-Plinian I) ash fall damage distribution compatible to a Sub-Plinian I eruption pyroclastic flow cumulative damage scenarios for selected cases (Sub-Plinian I). The model also allows either Monte Carlo simulation to evaluate the most probable final scenario or maximisation of some parameter sensitive to Civil Protection preparedness. The analysis of the results derived for a Sub-Plinian I-like eruption has shown the importance of the seismic intensities released during the unrest phase that could interfere with the evacuation of the area and the huge number of partial collapses (roofs) due to ash fall.

  11. Hydrothermal element fluxes from Copahue, Argentina: A "beehive" volcano in turmoil

    USGS Publications Warehouse

    Varekamp, J.C.; Ouimette, A.P.; Herman, S.W.; Bermudez, A.; Delpino, D.

    2001-01-01

    Copahue volcano erupted altered rock debris, siliceous dust, pyroclastic sulfur, and rare juvenile fragments between 1992 and 1995, and magmatic eruptions occurred in July-October 2000. Prior to 2000, the Copahue crater lake, acid hot springs, and rivers carried acid brines with compositions that reflected close to congruent rock dissolution. The ratio between rock-forming elements and chloride in the central zone of the volcano-hydrothermal system has diminished over the past few years, reflecting increased water/rock ratios as a result of progressive rock dissolution. Magmatic activity in 2000 provided fresh rocks for the acid fluids, resulting in higher ratios between rock-forming elements and chloride in the fluids and enhanced Mg fluxes. The higher Mg fluxes started several weeks prior to the eruption. Model data on the crater lake and river element flux determinations indicate that Copahue volcano was hollowed out at a rate of about 20 000-25 000 m3/yr, but that void space was filled with about equal amounts of silica and liquid elemental sulfur. The extensive rock dissolution has weakened the internal volcanic structure, making flank collapse a volcanic hazard at Copahue.

  12. Estimation of a Stopping Criterion for Geophysical Granular Flows Based on Numerical Experimentation

    NASA Astrophysics Data System (ADS)

    Yu, B.; Dalbey, K.; Bursik, M.; Patra, A.; Pitman, E. B.

    2004-12-01

    Inundation area may be the most important factor for mitigation of natural hazards related to avalanches, debris flows, landslides and pyroclastic flows. Run-out distance is the key parameter for inundation because the front deposits define the leading edge of inundation. To define the run-out distance, it is necessary to know when a flow stops. Numerical experiments are presented for determining a stopping criterion and exploring the suitability of a Savage-Hutter granular model for computing inundation areas of granular flows. The TITAN2D model was employed to run numerical experiments based on the Savage-Hutter theory. A potentially reasonable stopping criterion was found as a function of dimensionless average velocity, aspect ratio of pile, internal friction angle, bed friction angle and bed slope in the flow direction. Slumping piles on a horizontal surface and geophysical flows over complex topography were simulated. Several mountainous areas, including Colima volcano (MX), Casita (Nic.), Little Tahoma Peak (WA, USA) and the San Bernardino Mountains (CA, USA) were used to simulate geophysical flows. Volcanic block and ash flows, debris avalanches and debris flows occurred in these areas and caused varying degrees of damage. The areas have complex topography, including locally steep open slopes, sinuous channels, and combinations of these. With different topography and physical scaling, slumping piles and geophysical flows have a somewhat different dependence of dimensionless stopping velocity on power-law constants associated with aspect ratio of pile, internal friction angle, bed friction angle and bed slope in the flow direction. Visual comparison of the details of the inundation area obtained from the TITAN2D model with models that contain some form of viscous dissipation point out weaknesses in the model that are not evident by investigation of the stopping criterion alone.

  13. Emplacement temperatures of the November 22, 1994 nuee ardente deposits, Merapi Volcano, Java

    USGS Publications Warehouse

    Voight, B.; Davis, M.J.

    2000-01-01

    A study of emplacement temperatures was carried out for the largest of the 22 November 1994 nuée ardente deposits at Merapi Volcano, based mainly on the response of plastic and woody materials subjected to the hot pyroclastic current and the deposits, and to some extent on eyewitness observations. The study emphasizes the Turgo–Kaliurang area in the distal part of the area affected by the nuée ardente, where nearly 100 casualties occurred. The term nuée ardente as used here includes channeled block-and-ash flows, and associated ash-clouds of surge and fallout origins. The emplacement temperature of the 8 m thick channeled block-and-ash deposit was relatively high, ∼550°C, based mainly on eyewitness reports of visual thermal radiance. Emplacement temperatures for ash-cloud deposits a few cm thick were deduced from polymer objects collected at Turgo and Kaliurang. Most polymers do not display a sharp melting range, but polyethylene terephthalate used in water bottles melts between 245 and 265°C, and parts of the bottles that had been deformed during fabrication molding turn a milky color at 200°C. The experimental evidence suggests that deposits in the Turgo area briefly achieved a maximum temperature near 300°C, whereas those near Kaliurang were <200°C. Maximum ash deposit temperatures occurred in fallout with a local source in the channeled block-and-ash flow of the Boyong river valley; the surge deposit was cooler (∼180°C) due to entrainment of cool air and soils, and tree singe-zone temperatures were around 100°C.

  14. A review of laboratory and numerical modelling in volcanology

    NASA Astrophysics Data System (ADS)

    Kavanagh, Janine L.; Engwell, Samantha L.; Martin, Simon A.

    2018-04-01

    Modelling has been used in the study of volcanic systems for more than 100 years, building upon the approach first applied by Sir James Hall in 1815. Informed by observations of volcanological phenomena in nature, including eye-witness accounts of eruptions, geophysical or geodetic monitoring of active volcanoes, and geological analysis of ancient deposits, laboratory and numerical models have been used to describe and quantify volcanic and magmatic processes that span orders of magnitudes of time and space. We review the use of laboratory and numerical modelling in volcanological research, focussing on sub-surface and eruptive processes including the accretion and evolution of magma chambers, the propagation of sheet intrusions, the development of volcanic flows (lava flows, pyroclastic density currents, and lahars), volcanic plume formation, and ash dispersal. When first introduced into volcanology, laboratory experiments and numerical simulations marked a transition in approach from broadly qualitative to increasingly quantitative research. These methods are now widely used in volcanology to describe the physical and chemical behaviours that govern volcanic and magmatic systems. Creating simplified models of highly dynamical systems enables volcanologists to simulate and potentially predict the nature and impact of future eruptions. These tools have provided significant insights into many aspects of the volcanic plumbing system and eruptive processes. The largest scientific advances in volcanology have come from a multidisciplinary approach, applying developments in diverse fields such as engineering and computer science to study magmatic and volcanic phenomena. A global effort in the integration of laboratory and numerical volcano modelling is now required to tackle key problems in volcanology and points towards the importance of benchmarking exercises and the need for protocols to be developed so that models are routinely tested against real world data.

  15. The Tibesti Volcanoes of Chad: an ASTER-based Remote Sensing Analysis

    NASA Astrophysics Data System (ADS)

    Permenter, J. L.; Oppenheimer, C.

    2002-12-01

    Situated in the central Sahara desert, the Tibesti volcanic province of northern Chad, Africa, is a superb example of large-scale continental hot spot volcanism. The massif is comprised of seven major volcanoes and an assembly of related volcanic and tectonic structures, with a total surface area of over 350 km2. Its highest peak (Emi Koussi) rises above the surrounding desert to ~3415 m above sea level. Due, in part, to its remoteness, the Tibesti has never been described in volcanological detail. This study aims to provide the first modern synthesis of the volcanology of this significant hot spot province. It is based primarily on a detailed analysis and interpretation of a comprehensive set of multi-band imagery from NASA's Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). ASTER has 14 spectral bands, divided between 3 optical subsystems; 3 in the very-near infrared (VNIR), 6 in the short-wave infrared, and 5 in the thermal infrared regions. In addition, the VNIR subsystem has aft-viewing optics for stereoscopic observation in the along-track direction, which permits generation of digital elevation models. The preliminary results presented here focus on the discrimination of lava composition, identification of pyroclastic deposits, and characterisation of the dimension of flows, craters, and other structural elements of the massif, using spectral and textural information gathered from the ASTER imagery. Furthermore, stratigraphic detail is obtained from the superposition of flow units and craters. The application of ASTER data to the Tibesti volcanic complex permits an initial first order description of the relative proportions and timing of different erupted materials, providing a framework for further interpretation of the volcanology and magmatic evolution of the Tibesti, based on modern geologic and tectonic concepts. It also allows intercomparisons to be made with other continental hot spot provinces.

  16. The impacts of pyroclastic surges on buildings at the eruption of the Soufrière Hills volcano, Montserrat

    NASA Astrophysics Data System (ADS)

    Baxter, Peter J.; Boyle, Robin; Cole, Paul; Neri, Augusto; Spence, Robin; Zuccaro, Giulio

    2005-04-01

    We investigated the impacts on buildings of three pyroclastic surges that struck three separate villages on 25 June, 21 September and 26 December, 1997, during the course of the andesitic dome building eruption of the Soufrière Hills Volcano, Montserrat, which began on 18 July, 1995. A detailed analysis of the building damage of the 26 December event was used to compare the findings on the flow and behaviour of dilute pyroclastic density currents (PDCs) with the classical reports of PDCs from historical eruptions of similar size. The main characteristics of the PDC, as inferred from the building damage, were the lateral loading and directionality of the current; the impacts corresponded to the dynamic pressure of the PDC, with a relatively slow rate of rise and without the peak overpressure or a shock front associated with explosive blast; and the entrainment of missiles and ground materials which greatly added to the destructiveness of the PDC. The high temperature of the ash, causing the rapid ignition of furniture and other combustibles, was a major cause of damage even where the dynamic pressure was low at the periphery of the current. The vulnerability of buildings lay in the openings, mainly windows, which allowed the current to enter the building envelope, and in the flammable contents, as well as the lack of resistance to the intense heat and dynamic pressure of some types of vernacular building construction, such as wooden chattel houses, rubble masonry walls and galvanised steel-sheet roofs. Marked variability in the level of damage due to dynamic pressure (in a range 1-5 kPa, or more) was evident throughout most of the impact area, except for the zone of total loss, and this was attributable to the effects of topography and sheltering, and projectiles, and probably localised variations in current velocity and density. A marked velocity gradient existed from the outer part to the central axis of the PDC, where buildings and vegetation were razed to the ground. The gradient correlated with the impacts due to lateral loading and heat transfer, as well as the size of the projectiles, whilst the temperature of the ash in the undiluted PDC was probably uniform across the impact area. The main hazard characteristics of the PDCs were very consistent with those described by other authors in the classic eruptions of Pelée (1902), Lamington (1951) and St Helens (1980), despite differences in the eruptive styles and scales. We devised for the first time a building damage scale for dynamic pressure which can be used in research and in future volcanic emergencies for modelling PDCs and making informed judgements on their potential impacts.

  17. Lava flow hazard at the new South-East Crater of Etna volcano

    NASA Astrophysics Data System (ADS)

    Cappello, Annalisa; Ganci, Gaetana; Bilotta, Giuseppe; Hérault, Alexis; Zago, Vito; Del Negro, Ciro

    2017-04-01

    The summit area of Mount Etna has frequently undergone major morphological changes due to its persistent eruptive activity. Since its creation during the 1971 eruption, the Southeast Crater (SEC) has been the most active of the summit craters of Etna. At first, it was a degassing pit located close to the southeast base of the Central Crater cone. During the first 40 years of activity, SEC erupted quite frequently producing almost one hundred of lava flows. Between 2011 and 2016, more than 50 lava fountains occurred, leading to the formation of a new pyroclastic cone (NSEC) on the eastern flank of the SEC. All SEC eruptions are likely to give rise to lava flow, which is the greatest hazard presented to the tourist facilities on the south flank of Etna. For this reason, in 2011 we produced a lava flow hazard map for SEC eruptions using the 2005 DEM as topographic base, where the NSEC was not yet formed. Here we present the new 1-m DEM of Etna updated to 18 December 2015 obtained from high resolution stereo Pléiades images (0.5 m). Processing of Pléiades data was performed by using the DEM Extraction Module of ENVI through three steps: epipolar image creation, image matching, and DEM geocoding. This DEM was used as the new topographic base to produce the first hazard map from lava flow inundation in the NSEC area allowing key at-risk zones to be rapidly and appropriately identified.

  18. Volcanic hazards to airports

    USGS Publications Warehouse

    Guffanti, M.; Mayberry, G.C.; Casadevall, T.J.; Wunderman, R.

    2009-01-01

    Volcanic activity has caused significant hazards to numerous airports worldwide, with local to far-ranging effects on travelers and commerce. Analysis of a new compilation of incidents of airports impacted by volcanic activity from 1944 through 2006 reveals that, at a minimum, 101 airports in 28 countries were affected on 171 occasions by eruptions at 46 volcanoes. Since 1980, five airports per year on average have been affected by volcanic activity, which indicates that volcanic hazards to airports are not rare on a worldwide basis. The main hazard to airports is ashfall, with accumulations of only a few millimeters sufficient to force temporary closures of some airports. A substantial portion of incidents has been caused by ash in airspace in the vicinity of airports, without accumulation of ash on the ground. On a few occasions, airports have been impacted by hazards other than ash (pyroclastic flow, lava flow, gas emission, and phreatic explosion). Several airports have been affected repeatedly by volcanic hazards. Four airports have been affected the most often and likely will continue to be among the most vulnerable owing to continued nearby volcanic activity: Fontanarossa International Airport in Catania, Italy; Ted Stevens Anchorage International Airport in Alaska, USA; Mariscal Sucre International Airport in Quito, Ecuador; and Tokua Airport in Kokopo, Papua New Guinea. The USA has the most airports affected by volcanic activity (17) on the most occasions (33) and hosts the second highest number of volcanoes that have caused the disruptions (5, after Indonesia with 7). One-fifth of the affected airports are within 30 km of the source volcanoes, approximately half are located within 150 km of the source volcanoes, and about three-quarters are within 300 km; nearly one-fifth are located more than 500 km away from the source volcanoes. The volcanoes that have caused the most impacts are Soufriere Hills on the island of Montserrat in the British West Indies, Tungurahua in Ecuador, Mt. Etna in Italy, Rabaul caldera in Papua New Guinea, Mt. Spurr and Mt. St. Helens in the USA, Ruapehu in New Zealand, Mt. Pinatubo in the Philippines, and Anatahan in the Commonwealth of the Northern Mariana Islands (part of the USA). Ten countries - USA, Indonesia, Ecuador, Papua New Guinea, Italy, New Zealand, Philippines, Mexico, Japan, and United Kingdom - have the highest volcanic hazard and/or vulnerability measures for airports. The adverse impacts of volcanic eruptions on airports can be mitigated by preparedness and forewarning. Methods that have been used to forewarn airports of volcanic activity include real-time detection of explosive volcanic activity, forecasts of ash dispersion and deposition, and detection of approaching ash clouds using ground-based Doppler radar. Given the demonstrated vulnerability of airports to disruption from volcanic activity, at-risk airports should develop operational plans for ashfall events, and volcano-monitoring agencies should provide timely forewarning of imminent volcanic-ash hazards directly to airport operators. ?? Springer Science+Business Media B.V. 2008.

  19. Eruptive style and construction of shallow marine mafic tuff cones in the Narakay Volcanic Complex (Proterozoic, Hornby Bay Group, Northwest Territories, Canada)

    NASA Astrophysics Data System (ADS)

    Ross, Gerald M.

    1986-03-01

    The Early Proterozoic (1663 Ma) Narakay Volcanic Complex, exposed in Great Bear Lake (Northwest Territories, Canada), is a bimodal suite of basalt and rhyolite erupted in a continental setting and consisting largely of pyroclastic rocks interlayered with shallow marine sedimentary rocks of the Hornby Bay Group. Mafic pyroclastic rocks consist of lapilli tuff, tuff, tuff breccia and agglomerate that represent the remnants of small subaerial tuff cones (0.5 to 2 km in diameter) that in most cases have subsided into the volcanic conduit. Stratification styles, sedimentary structures and grain morphologies in pyroclastic rocks reflect variations in the water:magma ratio during eruptions and have been used to help elucidate eruptive mechanisms and reconstruct volcanic edifices. Basaltic pyroclasts are commonly bounded by fracture surfaces and are morphologically similar to modern pyroclasts produced by thermal quench fragmentation or steam-blast disruption of magma. Most fragments have low vesicularity and scoria is only locally abundant which indicates that eruptive energy was supplied mostly by water—melt interaction rather than exsolution of magmatic gases. Cored bombs and lapilli, fusiform bombs, and pyroclasts similar in texture to those of Strombolian cinder and agglutinate spatter, are uncommon but are stratigraphically widespread and imply the occurrence of Strombolian eruptions, presumably when water access to the vent was impeded. Massive bedding is typical of the tuffs and, in addition to the poorly sorted ash-rich nature of the tuffs, implies deposition from water- and/or steam-rich hydrovolcanic eruption clouds and cypressoid jets by airfall and dense pyroclastic flows. Uncommon well-stratified and sorted ash and lapilli tuff record airfall and pyroclastic flow(?) deposition from eruption clouds rich in magmatic gases. Base surge deposits are uncommon and occur only in the subaerial portion of a sequence of tuffs inferred to record the progradation of a cone-margin surge platform into standing water. Few of the tuff cone deposits display a systematic vertical sequence of stratification styles, structures and grain morphologies. This indicates that either the eruptive style varied irregularly between hydrovolcanic and Strombolian and/or that pyroclasts of different origin were mixed during eruptions.

  20. An aeromagnetic survey in the Valley of Ten Thousand Smokes, Alaska. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Anma, K.

    1971-01-01

    Geologic and magnetic studies of the Katmai area have further demonstrated the close relationship between the Katmai Caldera, Novarupta plug, and the pyroclastic flows in the Valley of Ten Thousand Smokes. The magnetic fields observed appear to be associated with the thickness of the pyroclastic flow and the different rock units within it for lower flight levels, and also the contrast between the valley fill and the rock units at the Valley margins. Consistent magnetic anomalies are associated with the larger fumarole lines, which were presumably sites of large scale activity, while the smaller fumaroles are not usually seen in the aeromagnetic map. A possible correlation between low positive anomalies and nuee ardente deposits was revealed by the aeromagnetic survey, but was not strong. A ground survey was also carried out in several parts of the Valley with a view to detailed delineation of the magnetic signatures of the pyroclastic flow, as an aid to interpreting the aeromagnetic date.

  1. Recognition and characterisation of high-grade ignimbrites from the Neoproterozoic rhyolitic volcanism in southernmost Brazil

    NASA Astrophysics Data System (ADS)

    Sommer, Carlos Augusto; Lima, Evandro Fernandes; Machado, Adriane; Rossetti, Lucas de Magalhães May; Pierosan, Ronaldo

    2013-11-01

    Neoproterozoic magmatism in southern Brazil is associated with translithospheric shear belts and strike-slip basins in a post-collisional setting related to the last stages of the Brasilian-Pan African Orogenic Cycle. It evolved from an association of high-K calc-alkaline, leucocratic-peraluminous and continental tholeiitic magmas, to an association with shoshonitic magmas and, eventually, to an association with magmas of the sodic mildly alkaline series. This magmatism varies from metaluminous to peralkaline and exhibits alkaline sodic affinity. A large volcanism is related to this alkaline sodic magmatism and is named the Acampamento Velho Formation. This unit was coeval with subaerial siliciclastic sedimentation in post-collisional basins preserved in the region. The Acampamento Velho Formation consists of pyroclastic and effusive volcanic deposits, which are mainly silicic, emplaced under subaerial conditions. The best exposures of this volcanism occur on the Ramada and Taquarembó plateaus, located southwest of Rio Grande do Sul in southernmost Brazil. The pyroclastic flow deposits are composed mainly of juvenile fragments such as pumices, shards and crystal fragments. Welding is very effective in these units. High-grade ignimbrites occur at the base and intermediate portions of the deposits and rheoignimbrites are observed at the top. The pre-eruptive temperature calculations, which were obtained at the saturation of zircon, revealed values between 870 °C and 978 °C for Taquarembó Plateau and 850 °C-946 °C for Ramada Plateau. The calculated viscosity values vary from 6.946 to 8.453 log η (Pas) for the rheoignimbrites and 7.818 to 10.588 log η (Pas) for the ignimbrites. Zr contents increase toward the top of the pyroclastic sequence, which indicates an increase in peralkalinity and determines the reduction in viscosity for clasts at the upper portions of the flows. The patterns of the structures of the ignimbrites and rheoignimbrites in the Taquarembó and Ramada plateaus accords well with successive pyroclastic flows that halts en masse. In this model the entire pyroclastic flow halts en masse, so complex vertical changes in grain size and composition are interpreted as recording deposition from successive discrete pyroclastic flows. The stratification observed in intermediate units in Taquarembó Plateau might reflect in this case variation in eruptive dynamics and short pauses.

  2. Mechanical resilience and cementitious processes in Imperial Roman architectural mortar.

    PubMed

    Jackson, Marie D; Landis, Eric N; Brune, Philip F; Vitti, Massimo; Chen, Heng; Li, Qinfei; Kunz, Martin; Wenk, Hans-Rudolf; Monteiro, Paulo J M; Ingraffea, Anthony R

    2014-12-30

    The pyroclastic aggregate concrete of Trajan's Markets (110 CE), now Museo Fori Imperiali in Rome, has absorbed energy from seismic ground shaking and long-term foundation settlement for nearly two millenia while remaining largely intact at the structural scale. The scientific basis of this exceptional service record is explored through computed tomography of fracture surfaces and synchroton X-ray microdiffraction analyses of a reproduction of the standardized hydrated lime-volcanic ash mortar that binds decimeter-sized tuff and brick aggregate in the conglomeratic concrete. The mortar reproduction gains fracture toughness over 180 d through progressive coalescence of calcium-aluminum-silicate-hydrate (C-A-S-H) cementing binder with Ca/(Si+Al) ≈ 0.8-0.9 and crystallization of strätlingite and siliceous hydrogarnet (katoite) at ≥ 90 d, after pozzolanic consumption of hydrated lime was complete. Platey strätlingite crystals toughen interfacial zones along scoria perimeters and impede macroscale propagation of crack segments. In the 1,900-y-old mortar, C-A-S-H has low Ca/(Si+Al) ≈ 0.45-0.75. Dense clusters of 2- to 30-µm strätlingite plates further reinforce interfacial zones, the weakest link of modern cement-based concrete, and the cementitious matrix. These crystals formed during long-term autogeneous reaction of dissolved calcite from lime and the alkali-rich scoriae groundmass, clay mineral (halloysite), and zeolite (phillipsite and chabazite) surface textures from the Pozzolane Rosse pyroclastic flow, erupted from the nearby Alban Hills volcano. The clast-supported conglomeratic fabric of the concrete presents further resistance to fracture propagation at the structural scale.

  3. Mechanical resilience and cementitious processes in Imperial Roman architectural mortar

    PubMed Central

    Landis, Eric N.; Brune, Philip F.; Vitti, Massimo; Chen, Heng; Li, Qinfei; Kunz, Martin; Wenk, Hans-Rudolf; Monteiro, Paulo J. M.; Ingraffea, Anthony R.

    2014-01-01

    The pyroclastic aggregate concrete of Trajan’s Markets (110 CE), now Museo Fori Imperiali in Rome, has absorbed energy from seismic ground shaking and long-term foundation settlement for nearly two millenia while remaining largely intact at the structural scale. The scientific basis of this exceptional service record is explored through computed tomography of fracture surfaces and synchroton X-ray microdiffraction analyses of a reproduction of the standardized hydrated lime–volcanic ash mortar that binds decimeter-sized tuff and brick aggregate in the conglomeratic concrete. The mortar reproduction gains fracture toughness over 180 d through progressive coalescence of calcium–aluminum-silicate–hydrate (C-A-S-H) cementing binder with Ca/(Si+Al) ≈ 0.8–0.9 and crystallization of strätlingite and siliceous hydrogarnet (katoite) at ≥90 d, after pozzolanic consumption of hydrated lime was complete. Platey strätlingite crystals toughen interfacial zones along scoria perimeters and impede macroscale propagation of crack segments. In the 1,900-y-old mortar, C-A-S-H has low Ca/(Si+Al) ≈ 0.45–0.75. Dense clusters of 2- to 30-µm strätlingite plates further reinforce interfacial zones, the weakest link of modern cement-based concrete, and the cementitious matrix. These crystals formed during long-term autogeneous reaction of dissolved calcite from lime and the alkali-rich scoriae groundmass, clay mineral (halloysite), and zeolite (phillipsite and chabazite) surface textures from the Pozzolane Rosse pyroclastic flow, erupted from the nearby Alban Hills volcano. The clast-supported conglomeratic fabric of the concrete presents further resistance to fracture propagation at the structural scale. PMID:25512521

  4. The location and timing of magma degassing during Plinian eruptions

    NASA Astrophysics Data System (ADS)

    Giachetti, T.; Gonnermann, H. M.

    2014-12-01

    Water is the most abundant volatile species in explosively erupting silicic magmas and significantly affects magma viscosity, magma fragmentation and the dynamics of the eruption column. The effect that water has on these eruption processes can be modulated by outgassing degassing from a permeable magma. The magnitude, rate and timing of outgassing during magma ascent, in particular in relation to fragmentation, remains a subject of debate. Here we constrain how much, how fast and where the erupting magma lost its water during the 1060 CE Plinian phase of the Glass Mountain eruption of Medicine Lake Volcano, California. Using thermogravimetric analysis coupled with numerical modeling, we show that the magma lost >90% of its initial water upon eruption. Textural analyses of natural pumices, together with numerical modeling of magma ascent and degassing, indicate that 65-90% of the water exsolved before fragmentation, but very little was able to outgas before fragmentation. The magma attained permeability only within about 1 to 10 seconds before fragmenting and during that time interval permeable gas flow resulted in only a modest amount of gas flux from the un-fragmented magma. Instead, most of the water is lost shortly after fragmentation, because gas can escape rapidly from lapilli-size pyroclasts. This results in an efficient rarefaction of the gas-pyroclast mixture above the fragmentation level, indicating that the development of magma permeability and ensuing permeable outgassing are a necessary condition for sustain explosive eruptions of silicic magma. Magma permeability is thus a double-edged sword, it facilitates both, the effusive and the explosive eruption of silicic magma.

  5. Persistent growth of a young andesite lava cone: Bagana volcano, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Wadge, G.; McCormick Kilbride, B. T.; Edmonds, M.; Johnson, R. W.

    2018-05-01

    Bagana, an andesite lava cone on Bougainville Island, Papua New Guinea, is thought to be a very young central volcano. We have tested this idea by estimating the volumes of lava extruded over different time intervals (1-, 2-, 3-, 9-, 15-, 70-years) using digital elevation models (DEMs), mainly created from satellite data. Our results show that the long-term extrusion rate at Bagana, measured over years to decades, has remained at about 1.0 m3 s-1. We present models of the total edifice volume, and show that, if our measured extrusion rates are representative, the volcano could have been built in only 300 years. It could also possibly have been built at a slower rate during a longer, earlier period of growth. Six kilometres NNW of Bagana, an andesite-dacite volcano, Billy Mitchell, had a large, caldera-forming plinian eruption 437 years ago. We consider the possibility that, as a result of this eruption, the magma supply was diverted from Billy Mitchell to Bagana. It seems that Bagana is a rare example of a very youthful, polygenetic, andesite volcano. The characteristics of such a volcano, based on the example of Bagana, are: a preponderance of lava products over pyroclastic products, a high rate of lava extrusion maintained for decades, a very high rate of SO2 emission, evidence of magma batch fractionation and location in a trans-tensional setting at the end of an arc segment above a very steeply dipping and rapidly converging subduction zone.

  6. Structure and physical characteristics of pumice from the climactic eruption of Mount Mazama (Crater Lake), Oregon

    USGS Publications Warehouse

    Klug, C.; Cashman, K.; Bacon, C.

    2002-01-01

    The vesicularity, permeability, and structure of pumice clasts provide insight into conditions of vesiculation and fragmentation during Plinian fall and pyroclastic flow-producing phases of the ???7,700 cal. year B.P. climactic eruption of Mount Mazama (Crater Lake), Oregon. We show that bulk properties (vesicularity and permeability) can be correlated with internal textures and that the clast structure can be related to inferred changes in eruption conditions. The vesicularity of all pumice clasts is 75-88%, with >90% interconnected pore volume. However, pumice clasts from the Plinian fall deposits exhibit a wider vesicularity range and higher volume percentage of interconnected vesicles than do clasts from pyroclastic-flow deposits. Pumice permeabilities also differ between the two clast types, with pumice from the fall deposit having higher minimum permeabilities (???5??10-13 m2) and a narrower permeability range (5-50??10-13 m2) than clasts from pyroclastic-flow deposits (0.2-330??10-13 m2). The observed permeability can be modeled to estimate average vesicle aperture radii of 1-5 ??m for the fall deposit clasts and 0.25-1 ??m for clasts from the pyroclastic flows. High vesicle number densities (???109 cm-3) in all clasts suggest that bubble nucleation occured rapidly and at high supersaturations. Post-nucleation modifications to bubble populations include both bubble growth and coalescence. A single stage of bubble nucleation and growth can account for 35-60% of the vesicle population in clasts from the fall deposits, and 65-80% in pumice from pyroclastic flows. Large vesicles form a separate population which defines a power law distribution with fractal dimension D=3.3 (range 3.0-3.5). The large D.value, coupled with textural evidence, suggests that the large vesicles formed primarily by coalescence. When viewed together, the bulk properties (vesicularity, permeability) and textural characteristics of all clasts indicate rapid bubble nucleation followed by bubble growth, coalescence and permeability development. This sequence of events is best explained by nucleation in response to a downward-propagating decompression wave, followed by rapid bubble growth and coalescence prior to magma disruption by fragmentation. The heterogeneity of vesicle sizes and shapes, and the absence of differential expansion across individual clasts, suggest that post-fragmentation expansion played a limited role in the development of pumice structure. The higher vesicle number densities and lower permeabilities of pyroclastic-flow clasts indicate limited coalescence and suggest that fragmentation occurred shortly after decompression. Either increased eruption velocities or increased depth of fragmentation accompanying caldera collapse could explain compression of the pre-fragmentation vesiculation interval.

  7. Emplacement temperature estimation of the 2015 dome collapse of Volcán de Colima as key proxy for flow dynamics of confined and unconfined pyroclastic density currents

    NASA Astrophysics Data System (ADS)

    Pensa, Alessandra; Capra, Lucia; Giordano, Guido; Corrado, Sveva

    2018-05-01

    The recent 10th-11th of July 2015 Volcán de Colima eruption involved the collapse of the summit dome that breached to the south generating pyroclastic density currents (PDCs) along the Montegrande ravine on the southern flank of the volcano. Trees within the valley were buried, uprooted and variably transported by the PDCs, while the trees on the edges of the valley and on the overbanks, were mainly burned and folded. The emplacement temperature of valley confined and overbank PDC deposits were reconstructed using Partial Thermal Remanent Magnetization (pTRM) analysis of lithic clasts and Charcoal Reflectance analysis (Ro %) applied to the charred wood. A total of 13 sites were sampled for the pTRM study and 39 charcoaled wood fragments were collected for the charcoal optical analysis along the entire deposit length in order to detect temperature variation from proximal to distal zone. The result overlap from both data sets display a T max from ≃345°-385 °C in valley-confined area (from 3.5 to 8.5 km from the vent) and ≃170°-220 °C (from 8.0 to 10.5 km from the vent) in unconfined distal area. The emplacement temperature pattern along the 10.5 km long deposit appears related to the degree of topography confinement: valley confined and unconfined. In particular the valley confined setting is very conservative in terms of temperature, while the major drop occurs in a very narrow space where the PDC expanded over unconfined flat topography just at the exit of the main valley. This study represents the first attempt in determining the relationship between PDCs flow dynamics variation and topographic confining using deposit emplacement temperature as key proxy.

  8. Volcanic eruption volume flux estimations from very long period infrasound signals

    NASA Astrophysics Data System (ADS)

    Yamada, Taishi; Aoyama, Hiroshi; Nishimura, Takeshi; Iguchi, Masato; Hendrasto, Muhamad

    2017-01-01

    We examine very long period infrasonic signals accompanying volcanic eruptions near active vents at Lokon-Empung volcano in Indonesia, Aso, Kuchinoerabujima, and Kirishima volcanoes in Japan. The excitation of the very long period pulse is associated with an explosion, the emerging of an eruption column, and a pyroclastic density current. We model the excitation of the infrasound pulse, assuming a monopole source, to quantify the volume flux and cumulative volume of erupting material. The infrasound-derived volume flux and cumulative volume can be less than half of the video-derived results. A largely positive correlation can be seen between the infrasound-derived volume flux and the maximum eruption column height. Therefore, our result suggests that the analysis of very long period volcanic infrasound pulses can be helpful in estimating the maximum eruption column height.

  9. Magmatic controls on eruption dynamics of the 1950 yr B.P. eruption of San Antonio Volcano, Tacaná Volcanic Complex, Mexico-Guatemala

    NASA Astrophysics Data System (ADS)

    Mora, Juan Carlos; Gardner, James Edward; Macías, José Luis; Meriggi, Lorenzo; Santo, Alba Patrizia

    2013-07-01

    San Antonio Volcano, in the Tacaná Volcanic Complex, erupted ~ 1950 yr. B.P., with a Pelean type eruption that produced andesitic pyroclastic surges and block-and-ash flows destroying part of the volcano summit and producing a horse-shoe shaped crater open to the SW. Between 1950 and 800 yr B.P. the eruption continued with effusive andesites followed by a dacite lava flow and a summit dome, all from a single magma batch. All products consist of phenocrysts and microphenocrysts of zoned plagioclase, amphibole, pyroxene, magnetite ± ilmenite, set in partially crystallized groundmass of glass and microlites of the same mineral phases, except for the lack of amphibole. Included in the andesitic blocks of the block-and-ash flow deposit are basaltic andesite enclaves with elongated and ellipsoidal forms and chilled margins. The enclaves have intersertal textures with brown glass between microphenocrysts of plagioclase, hornblende, pyroxene, and olivine, and minor proportions of phenocrysts of plagioclase, hornblende, and pyroxene. A compositional range obtained of blocks and enclaves resulted from mixing between andesite (866 °C ± 22) and basaltic andesite (enclaves, 932 °C ± 22), which may have triggered the explosive Pelean eruption. Vestiges of that mixing are preserved as complex compositional zones in plagioclase and clinopyroxene-rich reaction rims in amphibole in the andesite. Whole-rock chemistry, geothermometry, experimental petrology and modeling results suggest that after the mixing event the eruption tapped hybrid andesitic magma (≤ 900 °C) and ended with effusive dacitic magma (~ 825 °C), all of which were stored at ~ 200 MPa water pressure. A complex open-system evolution that involved crustal end-members best explains the generation of effusive dacite from the hybrid andesite. Amphibole in the dacite is rimmed by reaction products of plagioclase, orthopyroxene, and Fe-Ti oxides produced by decompression during ascent. Amphibole in the andesite, however, lacks such rims. Because the andesite was at 866 ± 22 °C and the dacite was at ~ 825 °C, the reaction rims indicate that the andesitic magma ascended at 0.023 m s- 1 during the explosive phase of the eruption, whereas the dacitic magma rose more slowly at ~ 0.002-0.004 m s- 1.

  10. An experiment to detect and locate lightning associated with eruptions of Redoubt Volcano

    USGS Publications Warehouse

    Hoblitt, R.P.

    1994-01-01

    A commercially-available lightning-detection system was temporarily deployed near Cook Inlet, Alaska in an attempt to remotely monitor volcanogenic lightning associated with eruptions of Redoubt Volcano. The system became operational on February 14, 1990; lightning was detected in 11 and located in 9 of the 13 subsequent eruptions. The lightning was generated by ash clouds rising from pyroclastic density currents produced by collapse of a lava dome emplaced near Redoubt's summit. Lightning discharge (flash) location was controlled by topography, which channeled the density currents, and by wind direction. In individual eruptions, early flashes tended to have a negative polarity (negative charge is lowered to ground) while late flashes tended to have a positive polarity (positive charge is lowered to ground), perhaps because the charge-separation process caused coarse, rapid-settling particles to be negatively charged and fine, slow-settling particles to be positively charged. Results indicate that lightning detection and location is a useful adjunct to seismic volcano monitoring, particularly when poor weather or darkness prevents visual observation. The simultaneity of seismicity and lightning near a volcano provides the virtual certainty that an ash cloud is present. This information is crucial for aircraft safety and to warn threatened communities of impending tephra falls. The Alaska Volcano Observatory has now deployed a permanent lightning-detection network around Cook Inlet. ?? 1994.

  11. Pyroclastic density currents at Etna volcano, Italy: The 11 February 2014 case study

    NASA Astrophysics Data System (ADS)

    Andronico, Daniele; Di Roberto, Alessio; De Beni, Emanuela; Behncke, Boris; Bertagnini, Antonella; Del Carlo, Paola; Pompilio, Massimo

    2018-05-01

    On 11 February 2014, a considerable volume (0.82 to 1.29 × 106 m3) of unstable and hot rocks detached from the lower-eastern flank of the New Southeast Crater (NSEC) at Mt. Etna, producing a pyroclastic density current (PDC). This event was by far the most extensive ever recorded at Mt. Etna since 1999 and has attracted the attention of the scientific community and civil protection to this type of volcanic phenomena, usually occurring without any clear volcanological precursor and especially toward the mechanisms which led to the crater collapse, the PDC flow dynamics and the related volcanic hazard. We present here the results of the investigation carried out on the 11 February 2014 collapse and PDC events; data were obtained through a multidisciplinary approach which includes the analysis of photograph, images from visible and thermal surveillance cameras, and the detailed stratigraphic, textural and petrographic investigations of the PDC deposits. Results suggest that the collapse and consequent PDC was the result of a progressive thermal and mechanical weakening of the cone by repeated surges of magma passing through it during the eruptive activity prior to the 11 February 2014 events, as well as pervasive heating and corrosion by volcanic gas. The collapse of the lower portion of the NSEC was followed by the formation of a relatively hot (up to 750 °C) dense flow which travelled about 2.3 km from the source, stopping shortly after the break of the slope and emplacing the main body of the deposit which ranges between 0.39 and 0.92 × 106 m3. This flow was accompanied a relatively hot cloud of fine ash that dispersed over a wider area. The results presented may contribute to the understanding of this very complex type of volcanic phenomena at Mt. Etna and in similar volcanic settings of the world. In addition, results will lay the basis for the modeling of crater collapse and relative PDC events and consequently for the planning of hazard assessment strategies aimed at reducing the potential risks to scientists and tens of thousands of tourists visiting Etna's summit areas every year.

  12. The flow dynamics of an extremely large volume pyroclastic flow, the 2.08-Ma Cerro Galán Ignimbrite, NW Argentina, and comparison with other flow types

    USGS Publications Warehouse

    Cas, Ray A.F.; Wright, Heather M.; Folkes, Christopher B.; Lesti, Chiara; Porreca, Massimiliano; Giordano, Guido; Viramonte, Jose G.

    2011-01-01

    The 2.08-Ma Cerro Galán Ignimbrite (CGI) represents a >630-km3 dense rock equivalent (VEI 8) eruption from the long-lived Cerro Galán magma system (∼6 Ma). It is a crystal-rich (35–60%), pumice (<10% generally) and lithic-poor (<5% generally) rhyodacitic ignimbrite, lacking a preceding plinian fallout deposit. The CGI is preserved up to 80 km from the structural margins of the caldera, but almost certainly was deposited up to 100 km from the caldera in some places. Only one emplacement unit is preserved in proximal to medial settings and in most distal settings, suggesting constant flow conditions, but where the pyroclastic flow moved into a palaeotopography of substantial valleys and ridges, it interacted with valley walls, resulting in flow instabilities that generated multiple depositional units, often separated by pyroclastic surge deposits. The CGI preserves a widespread sub-horizontal fabric, defined by aligned elongate pumice and lithic clasts, and minerals (e.g. biotite). A sub-horizontal anisotropy of magnetic susceptibility fabric is defined by minute magnetic minerals in all localities where it has been analysed. The CGI is poor in both vent-derived (‘accessory’) lithics and locally derived lithics from the ground surface (‘accidental’) lithics. Locally derived lithics are small (<20 cm) and were not transported far from source points. All data suggest that the pyroclastic flow system producing the CGI was characterised throughout by high sedimentation rates, resulting from high particle concentration and suppressed turbulence at the depositional boundary layer, despite being a low aspect ratio ignimbrite. Based on these features, we question whether high velocity and momentum are necessary to account for extensive flow mobility. It is proposed that the CGI was deposited by a pyroclastic flow system that developed a substantial, high particle concentration granular under-flow, which flowed with suppressed turbulence. High particle concentration and fine-ash content hindered gas loss and maintained flow mobility. In order to explain the contemporaneous maintenance of high particle concentration, high sedimentation rate at the depositional boundary layer and a high level of mobility, it is also proposed that the flow(s) was continuously supplied at a high mass feeding rate. It is also proposed that internal gas pressure within the flow, directed downwards onto the substrate over which the flow was passing, reduced the friction between the flow and the substrate and also enhanced its mobility. The pervasive sub-horizontal fabric of aligned pumice, lithic and even biotite crystals indicates a consistent horizontal shear force existed during transport and deposition in the basal granular flow, consistent with the existence of a laminar, shearing, granular flow regime during the final stages of transport and deposition.

  13. Volcanic hazards at Mount Rainier, Washington

    USGS Publications Warehouse

    Crandell, Dwight Raymond; Mullineaux, Donal Ray

    1967-01-01

    Mount Rainier is a large stratovolcano of andesitic rock in the Cascade Range of western Washington. Although the volcano as it now stands was almost completely formed before the last major glaciation, geologic formations record a variety of events that have occurred at the volcano in postglacial time. Repetition of some of these events today without warning would result in property damage and loss of life on a catastrophic scale. It is appropriate, therefore, to examine the extent, frequency, and apparent origin of these phenomena and to attempt to predict the effects on man of similar events in the future. The present report was prompted by a contrast that we noted during a study of surficial geologic deposits in Mount Rainier National Park, between the present tranquil landscape adjacent to the volcano and the violent events that shaped parts of that same landscape in the recent past. Natural catastrophes that have geologic causes - such as eruptions, landslides, earthquakes, and floods - all too often are disastrous primarily because man has not understood and made allowance for the geologic environment he occupies. Assessment of the potential hazards of a volcanic environment is especially difficult, for prediction of the time and kind of volcanic activity is still an imperfect art, even at active volcanoes whose behavior has been closely observed for many years. Qualified predictions, however, can be used to plan ways in which hazards to life and property can be minimized. The prediction of eruptions is handicapped because volcanism results from conditions far beneath the surface of the earth, where the causative factors cannot be seen and, for the most part, cannot be measured. Consequently, long-range predictions at Mount Rainier can be based only on the past behavior of the volcano, as revealed by study of the deposits that resulted from previous eruptions. Predictions of this sort, of course, cannot be specific as to time and locale of future events, and clearly are valid only if the past behavior is, as we believe, a reliable guide. The purpose of this report is to infer the events recorded by certain postglacial deposits at Mount Rainier and to suggest what bearing similar events in the future might have on land use within and near the park. In addition, table 2 (page 22) gives possible warning signs of an impending eruption. We want to increase man's understanding of a possibly hazardous geologic environment around Mount Rainier volcano, yet we do not wish to imply for certain that the hazards described are either immediate or inevitable. However, we do believe that hazards exist, that some caution is warranted, and that some major hazards can be avoided by judicious planning. Most of the events with which we are concerned are sporadic phenomena that have resulted directly or indirectly from volcanic eruptions. Although no eruptions (other than steam emission) of the volcano in historic time are unequivocally known (Hopson and others, 1962), pyroclastic (air-laid) deposits of pumice and rock debris attest to repeated, widely spaced eruptions during the 10,000 years or so of postglacial time. In addition, the constituents of some debris flows indicate an origin during eruptions of molten rock; other debris flows, because of their large size and constituents, are believed to have been caused by steam explosions. Some debris flows, however, are not related to volcanism at all.

  14. The Tyrrhena-Malea Volcanic Province, Mars: Overview

    NASA Astrophysics Data System (ADS)

    Williams, D.; Greeley, R.; Ferguson, R.; Kuzmin, R.; McCord, T.; Combe, J.-P.; Head, J.; Xiao, L.; Manfredi, L.; Poulet, F.; Pinet, P.; Baratoux, D.; Plaut, J. J.; Raitala, J.; Neukum, G.

    2008-09-01

    Building on previous studies of volcanoes around the Hellas basin with new studies of imaging (HRSC, THEMIS, MOC, HiRISE, CTX), multispectral (HRSC, OMEGA), topographic (MOLA) and gravity data, we define a new Martian volcanic province as the Tyrrhena-Malea Volcanic Province (T-MVP). With an area of >2.1 million sq. km, it contains the six oldest central vent volcanoes on Mars, which formed after the Hellas impact basin, between 4.0 to 3.6 Ga. These volcanoes mark a transition from the flood volcanism that formed Malea Planum ~3.8 Ga, to localized point source eruptions. The T-MVP volcanoes have two general morphologies: 1) shieldlike edifices (Tyrrhena, Hadriaca, and Amphitrites Paterae), and 2) caldera-like depressions surrounded by ridged plains (Peneus, Malea, and Pityusa Paterae). Positive gravity anomalies are found at Tyrrhena, Hadriaca, and Amphitrites, perhaps indicative of dense magma bodies below the surface. The lack of shield-like edifices and weak gravity anomalies at Peneus, Malea, and Pityusa suggest a fundamental difference in their formation, styles of eruption, and/or compositions. The northernmost volcanoes, the ~3.7- 3.9 Ga Tyrrhena and Hadriaca Paterae, have low slopes, well-channeled flanks, and smooth caldera floors (at tens of meters/pixel scale), indicative of ash shields formed from poorly-consolidated pyroclastic deposits that have been modified by fluvial and aeolian erosion and deposition. The ~3.6 Ga Amphitrites Patera also has a well-channeled flank, but it and the ~3.8 Ga Peneus Patera are dominated by scalloped and pitted terrain, pedestal and ejecta flow craters, and a general `softened' appearance. This morphology is indicative not only of surface materials subjected to periglacial processes involving water ice, but also of a surface composed of easily eroded materials such as ash and dust. The southernmost volcanoes, the ~3.8 Ga Malea and Pityusa Paterae, have no channeled flanks, no scalloped and pitted terrain, and lack the `softened' appearance of their surfaces, but they do contain pedestal and ejecta flow craters and large, smooth, bright plateaus in their central depressions. This morphology is indicative of a surface with not only a high water ice content, but also a more consolidated material that is less susceptible to degradation (relative to the other four volcanoes). We suggest that Malea and Pityusa (and possibly Peneus) Paterae are Martian equivalents to Earth's giant calderas (e.g., Yellowstone, Long Valley) that erupted large volumes of volcanic materials, and that Malea and Pityusa are probably composed of either lava flows or ignimbrites. HRSC and OMEGA spectral data indicate that dark gray to slightly red materials (often represented as blue or black pixels in HRSC color images), found in the patera floors and topographic lows throughout the T-MVP, have a basaltic composition. A key issue is whether this dark material represents concentrations of underlying basaltic material exposed by aeolian winnowing, or if the material was transported from elsewhere on Mars by regional winds. Understanding the provenance of these dark materials may be the key to understanding the volcanic diversity of the Tyrrhena-Malea Volcanic Province. References [1] Crown, D. and Greeley, R. (2007) U.S. Geol. Surv. Sci. Inves. Ser. Map 2936. [2] Gregg, T., et al. (1998) U.S. Geol. Surv. Map I- 2556. [3] Leonard, G. and Tanaka, K. (2001) U. S. Geol. Survey Misc. Invest. Series Map I-2694. [4] Kolb, E. and Tanaka, K. (2008) Geologic Map of the Planum Australe Region of Mars. U. S. Geol. Survey. Misc. Investigation Series, in review. [5] Peterson, J. (1978) Proc. 9th LPSC, 3411-3432.

  15. Nested Architecture of Pyroclastic Bedforms Generated by a Single Flow Event: Outcrop Examples from the Izu Volcanic Islands, Japan

    NASA Astrophysics Data System (ADS)

    Nemoto, Y.; Yoshida, S.

    2009-12-01

    We claim that compound bedforms, where small bedforms (e.g., dunes and antidunes) occur within and around the larger bedforms, are common in pyroclastic-flow deposits, using Quaternary-Holocene outcrop examples from the modern Izu volcanic island chain some 100-150 km SSW of Tokyo. The nested occurrence of bedforms have been well documented for siliciclastic deposits, as exemplified by compound dunes where small dunes (c. cm- dm thick) occur between the avalanche surfaces within larger dunes, indicating that these dunes of different sizes were produced simultaneously. However, compound dunes have rarely been reported from pyroclastic deposits. In contrast, we have discovered that compound dunes are common in pyroclastic flow deposits in the late Pleistocene & Holocene outcrops in Niijima and Oshima of the Izu volcanic island chain. Moreover, these outcrops contain abundant compound antidunes, which have been reported from neither siliciclastic or pyroclastic deposits. This is probably because flume studies, where most of published antidune studies are based, focus on small (c. cm-dm high) antidunes. In Niijima Island, we examined pyroclastic-flow deposits shed from Mt. Miyatsuka (14 ka) and Mt. Mukai (886 A.D.). Both groups of deposits contain abundant antidune stratifications, which commonly form nested structures in a two- or three-fold hierarchy, with subordinate crossbeddings originated from dune migrations. Each class of antidunes is characterized by multiple scour surfaces and vertical aggradations around mounds of lag deposits above erosion surfaces, and typically has both upstream and downstream accretion components with different proportions. The late Pleistocene pyroclastic outcrops of the nearby Oshima Island exhibit similar patterns. The geometry of the accretion surfaces vary significantly in the outcrops of both Niijima and Oshima. Whereas the antidunes dominated by upstream accretion are characterized by (1) gently inclined accretion surface and (2) round crest shape, the antidunes dominated by downstream accretion are characterized by (i) steep accretion surface that commonly exceed the angle of repose and (ii) angular to cuspate crest shape. The mechanism in charge of generating the compound antidunes is unclear; however, observations of standing waves in the modern siliciclastic depositional environments (e.g., shallow running water on the beach) suggest that compound antidunes are produced by a gravitational collapse of the crest of large and exceedingly steepened standing waves. When the crest collapes, it commonly breaks into two smaller standing waves that are positioned on the flanks of the large (but now slightly deflated) standing wave, and stay there until the angle of the flanks increases again to form a new large standing wave. The collapse-rebuilding cycle persists as long as the flow condition is sustained.

  16. Flow-permeability feedbacks and the development of segregation pipes in volcanic materials

    NASA Astrophysics Data System (ADS)

    Rust, Alison

    2014-05-01

    Flow and transformation in volcanic porous media is important for the segregation of melts and aqueous fluids from magmas as well as elutriation of fine ash from pyroclastic flows and vents. The general topic will be discussed in the framework of understanding sets of vertical pipes found in two very different types of volcanic deposits: 1) vesicular (bubbly) cylinders in basalt lava flows and 2) gas escape pipes in pyroclastic flow deposits. In both cases the cylinders can be explained by a flow-permeability feedback where perturbations in porosity and thus permeability cause locally higher flow speeds that in turn locally increase the permeability. For vesicular cylinders in lava flows, the porous medium is a framework of crystals within the magma. Above a critical crystallinity, which depends on the shape and size distribution of the crystals, the crystals form a touching framework. As the water-saturated magma continues to cool, it crystallizes anhydrous minerals, resulting in the exsolution of water vapour bubbles that can drive flow of bubbly melt through the crystal network. It is common to find sets of vertical cylinders of bubby melt in solidified lava flows, with compositions that match the residual melt from 35-50% crystallization of the host basalt. These cylinders resemble chimneys in experiments of crystallising ammonium chloride solution that are explained by reactive flow with porous medium convection. The Rayleigh number for the magmatic case is too low for convection but the growth of steam bubbles as the magma crystallizes induces pore fluid flow up through the permeable crystal pile even if there is no convective instability. This bubble-growth-driven upward flow is reactive and can lead to channelization because of a feedback between velocity and permeability. For the gas escape pipes in pyroclastic flows, the porous medium is a very poorly sorted granular material composed of fragments of solid magma with a huge range of grain sizes from ash (microns to 2 mm) to clasts of decimeters or greater. The vertical gas escape pipes are distinguished from the surrounding pyroclastic flow deposit by the lack of fine ash in the pipes; this missing ash was transported up out of the pyroclastic flow by gas flow, a process called elutriation. Laboratory experiments with beds of binary mixtures of spheres aerated through a porous plate at the base, demonstrate that the size ratio, density ratio, and proportions of the two populations of spheres all affect the pattern and efficiency of segregation. Decompaction of the upper portion of the bed separates the grains and thus facilitated the elutriation of the finer particles, which must be transported up through the spaces between the larger particles. A variety of segregation feature are found including pipes lacking fines that grow down from the top of the bed. These could be explained by channelizing of gas flow due to a feedback between local reduction in fines increasing the local permeability and gas velocity.

  17. Permeability and microstructural changes due to weathering of pyroclastic rocks in Cappadocia, central Turkey

    NASA Astrophysics Data System (ADS)

    Sato, M.; Takahashi, M.; Anma, R.; Shiomi, K.

    2014-12-01

    Studies of permeability changes of rocks during weathering are important to understand the processes of geomorphological development and how they are influenced by cyclic climatic conditions. Especially volcanic tuffs and pyroclastic flow deposits are easily affected by water absorption and freezing-thawing cycle (Erguler. 2009, Çelik and Ergül 2014). Peculiar erosional landscapes of Cappadocia, central Turkey, with numerous underground cities and carved churches, that made this area a world heritage site, are consists of volcanic tuffs and pyroclastic flow deposits. Understanding permeability changes of such rocks under different conditions are thus important not only to understand fundamental processes of weathering, but also to protect the landscapes of the world heritage sites and archaeological remains. In this study, we aim to evaluate internal void structures and bulk permeability of intact and weathered pyroclastic rocks from Cappadocia using X-ray CT, mercury intrusion porosimetry data and permeability measurement method of flow pump test. Samples of pyroclastic deposits that comprise the landscapes of Rose Valley and Ihlara Valley, were collected from the corresponding strata outside of the preservation areas. Porosity and pore-size distribution for the same samples measured by mercury intrusion porosimetry, indicate that the intact samples have lower porosity than weathered samples and pore sizes were dominantly 1-10μm in calculated radii, whereas weathered samples have more micropores (smaller than 1 μm). X-ray CT images were acquired to observe internal structure of samples. Micro-fractures, probably caused by repeated expansion and contraction due to temperature changes, were observed around clast grains. The higher micropore ratio in weathered samples could be attributed to the development of the micro-farctures. We will discuss fundamental processes of weathering and geomorphological development models using these data.

  18. Gigantic self-confined pahoehoe inflated lava flows in Argentina

    NASA Astrophysics Data System (ADS)

    Pasquare', G.; Bistacchi, A.

    2007-05-01

    The largest lava flows on Earth are pahoehoe basalts emplaced by inflation, a process which can change lava lobes initially a few decimetres thick into large lava sheets several metres thick. Inflation involves the initial formation of a thin, solidified, viscoelastic crust, under which liquid lava is continually added. This thermally efficient endogenous growth process explains the spread of huge volumes of lava over large, almost flat areas, as in the sheet flows which characterise the distal portions of Hawaiian volcanoes or some continental flood basalt provinces. Long, narrow, inflated pahoehoe flows have occasionally been described, either emplaced along pre-existing river channels or confined within topographic barriers. In this contribution we present previously unknown inflated pahoehoe lava flows following very long, narrow pathways over an almost flat surface, with no topographic confinement. Lava, which erupted in Late Quaternary times from the eastern tip of a 60 km long volcanic fissure in Argentina, formed several discrete flows extending as far as 180 km from the source. This fissure was characterized by a long-lasting and complex activity. Alkali-basaltic lava flows were emitted at the two extremities of the fissure system. In the intermediate section of the fissure, the Payun Matru, a great trachitic composite volcano, developed, giving rise to a large caldera which produced large pyroclastic flows. Alkali-basalts predate and postdate the trachitic activity, in fact at the end of the trachitic activity, new basaltic lava flows (mainly aa) were emitted from both ends of the fissure. We studied in details the youngest of the gigantic flows (Pampas Onduladas lava flow), which progressively develops through differing thermally-efficient flow mechanisms. The flow created a large shield volcanic structure at the eastern tip of the E-W fissure and spread to the E forming a very large and thick inflated pahoehoe sheet flow. Leaving the flanks of the volcano, the flow spreads all over a large tectonic depression, forming a large inflated pahoehoe sheet flow. The flow continues downstream, always showing typical inflation features, forming a very long and narrow tongue, developed over the nearly flat Pampa plain (gradient 0.5%) with an average width of 3 km and a length of 120 km. A peculiar feature of this portion of the flow, apart from its exceptional length, is the very low width-to-length ratio. This is even more surprising if we consider that no pre-existing topographic feature (e.g. river channel, etc.) is responsible for this behaviour, which appears to be only the result of some kind of self-confinement mechanism. The structural, morphological and eruptive complexities of this volcanic structure are exceptional by themselves since there are no similar features both in the Andes calcalkaline volcanism or in the Patagonian basaltic plateaus and they pose problems even in the nomenclatural definition of the Payun Matru as an individual volcanic construct. Moreover, understanding the mechanisms responsible for the exceptional behaviour of this lava flow may provide new constraints on the physics of inflated pahoehoe flow emplacement. Results in this direction may also offer useful proxies for interpreting volcanic processes on terrestrial planets such as Mars and Venus, on which individual lava flows of similar shape and dimensions have been observed.

  19. Contrasting patterns of vesiculation in low, intermediate, and high Hawaiian fountains: A case study of the 1969 Mauna Ulu eruption

    USGS Publications Warehouse

    Parcheta, Carolyn E.; Houghton, Bruce F.; Swanson, Donald A.

    2013-01-01

    Hawaiian-style eruptions, or Hawaiian fountains, typically occur at basaltic volcanoes and are sustained, weakly explosive jets of gas and dominantly coarse, juvenile ejecta (dense spatter to delicate reticulite). Almost the entire range of styles and mass eruption rates within Hawaiian fountaining occurred during twelve fountaining episodes recorded at Mauna Ulu, Kīlauea between May and December 1969. Such diversity in intensity and style is controlled during magma ascent by many processes that can be constrained by the size and shape of vesicles in the 1969 pyroclasts. This paper describes pyroclast vesicularity from high, intermediate, and low fountaining episodes with eruption rates from 0.05 to 1.3 × 106 m3 h− 1. As each eruptive episode progressed, magma ascent slowed in and around the vent system, offering extended time for bubbles to grow and coalesce. Late ejected pyroclasts are thus characterized by populations of fewer and larger vesicles with relaxed shapes. This progression continued in the intervals between episodes after termination of fountain activity. The time scale for this process of shallow growth, coalescence and relaxation of bubbles is typically tens of hours. Rims and cores of pumiceous pyroclasts from moderate to high fountaining episodes record a second post-fragmentation form of vesicle maturation. Partially thermally insulated pyroclasts can have internal bubble populations evolve more dynamically with continued growth and coalescence, on a time scale of only minutes, during transport in the fountains. Reticulite, which formed in a short-lived fountain 540 m in height, underwent late, short-lived bubble nucleation followed by rapid growth of a uniform bubble population in a thermally insulated fountain, and quenched at the onset of permeability before significant coalescence. These contrasting patterns of shallow degassing and outgassing were the dominant controls in determining both the form and duration of fountaining episodes at Mauna Ulu, and probably for many other Hawaiian-style eruptions.

  20. Oldest human footprints dated by Ar/Ar

    NASA Astrophysics Data System (ADS)

    Scaillet, Stéphane; Vita-Scaillet, Grazia; Guillou, Hervé

    2008-11-01

    Fossilized human trackways are extremely rare in the geologic record. These bear indirect but invaluable testimony of human/hominid locomotion in open air settings and can provide critical information on biomechanical changes relating to bipedalism evolution throughout the primitive human lineage. Among these, the "Devil's footsteps" represent one of the best preserved human footprints suite recovered so far in a Pleistocene volcanic ash of the Roccamonfina volcano (southern Italy). Until recently, the age of these footprints remained speculative and indirectly correlated with a loosely dated caldera-forming eruption that produced the Brown Leucitic Tuff. Despite extensive hydrothermal alteration of the pyroclastic deposit and variable contamination with excess 40Ar, detailed and selective 40Ar/ 39Ar laser probe analysis of single leucite crystals recovered from the ash deposit shows that the pyroclastic layer and the footprints are 345 ± 6 kyr old (1 σ), confirming for the first time that these are the oldest human trackways ever dated, and that they were presumably left by the modern human predecessor, Homo heidelbergensis, close to Climatic Termination IV.

  1. Density and lithospheric structure at Tyrrhena Patera, Mars, from gravity and topography data

    NASA Astrophysics Data System (ADS)

    Grott, M.; Wieczorek, M. A.

    2012-09-01

    The Tyrrhena Patera highland volcano, Mars, is associated with a relatively well localized gravity anomaly and we have carried out a localized admittance analysis in the region to constrain the density of the volcanic load, the load thickness, and the elastic thickness at the time of load emplacement. The employed admittance model considers loading of an initially spherical surface, and surface as well as subsurface loading is taken into account. Our results indicate that the gravity and topography data available at Tyrrhena Patera is consistent with the absence of subsurface loading, but the presence of a small subsurface load cannot be ruled out. We obtain minimum load densities of 2960 kg m-3, minimum load thicknesses of 5 km, and minimum load volumes of 0.6 × 106 km3. Photogeological evidence suggests that pyroclastic deposits make up at most 30% of this volume, such that the bulk of Tyrrhena Patera is likely composed of competent basalt. Best fitting model parameters are a load density of 3343 kg m-3, a load thickness of 10.8 km, and a load volume of 1.7 × 106 km3. These relatively large load densities indicate that lava compositions are comparable to those at other martian volcanoes, and densities are comparable to those of the martian meteorites. The elastic thickness in the region is constrained to be smaller than 27.5 km at the time of loading, indicating surface heat flows in excess of 24 mW m-2.

  2. Using video games for volcanic hazard education and communication: an assessment of the method and preliminary results

    NASA Astrophysics Data System (ADS)

    Mani, Lara; Cole, Paul D.; Stewart, Iain

    2016-07-01

    This paper presents the findings from a study aimed at understanding whether video games (or serious games) can be effective in enhancing volcanic hazard education and communication. Using the eastern Caribbean island of St. Vincent, we have developed a video game - St. Vincent's Volcano - for use in existing volcano education and outreach sessions. Its twin aims are to improve residents' knowledge of potential future eruptive hazards (ash fall, pyroclastic flows and lahars) and to integrate traditional methods of education in a more interactive manner. Here, we discuss the process of game development including concept design through to the final implementation on St. Vincent. Preliminary results obtained from the final implementation (through pre- and post-test knowledge quizzes) for both student and adult participants provide indications that a video game of this style may be effective in improving a learner's knowledge. Both groups of participants demonstrated a post-test increase in their knowledge quiz score of 9.3 % for adults and 8.3 % for students and, when plotted as learning gains (Hake, 1998), show similar overall improvements (0.11 for adults and 0.09 for students). These preliminary findings may provide a sound foundation for the increased integration of emerging technologies within traditional education sessions. This paper also shares some of the challenges and lessons learnt throughout the development and testing processes and provides recommendations for researchers looking to pursue a similar study.

  3. Transport and deposition processes of the hydrothermal blast of the 6 August 2012 Te Maari eruption, Mt. Tongariro

    NASA Astrophysics Data System (ADS)

    Breard, E. C. P.; Lube, G.; Cronin, S. J.; Valentine, G. A.

    2015-11-01

    The 2012 eruption of Tongariro volcano (New Zealand) produced highly mobile, low-temperature, blast-derived pyroclastic density currents after partial collapse of the western flank of the Upper Te Maari crater. Despite a low volume (340,000 m3), the flows traveled up to 2.5 km from source, covering a total area of 6.1 km2. Along one of the blast axes, freshly exposed, proximal-to-distal sedimentary structures and grain-size data suggest emplacement of the fining upward tripartite depositional sequence (massive, stratified, and laminated) under a dilute and strongly longitudinally zoned turbulent density current. While the zoning formed in the deposit in the first 1500 m of runout, the current progressively waned to the extent where it transported a nearly homogenous grain-size mixture at the liftoff position. Our data indicate that after the passage of an erosive flow front, massive unit A was deposited under a rapid-suspension sedimentation regime. Unit B was deposited under a traction-dominated regime generated by a subsequent portion of the flow moving at lower velocities and with lower sediment transport capacity than the portion depositing unit A. The final and slowest flow zone deposited the finest particles under weakly tractive conditions. Transport and emplacement dynamics inferred in this study show strong similarities between hydrothermal explosions, magmatic blasts, and high-energy dilute PDCs. The common occurrence of hydrothermal fields on volcanic flanks points to this hazard being an under-appreciated one at stratovolcanoes worldwide.

  4. Raman spectroscopy of volcanic lavas and inclusions of relevance to astrobiological exploration.

    PubMed

    Jorge-Villar, Susana E; Edwards, Howell G M

    2010-07-13

    Volcanic eruptions and lava flows comprise one of the most highly stressed terrestrial environments for the survival of biological organisms; the destruction of botanical and biological colonies by molten lava, pyroclastic flows, lahars, poisonous gas emissions and the deposition of highly toxic materials from fumaroles is the normal expectation from such events. However, the role of lichens and cyanobacteria in the earlier colonization of volcanic lava outcrops has now been recognized. In this paper, we build upon earlier Raman spectroscopic studies on extremophilic colonies in old lava flows to assess the potential of finding evidence of biological colonization in more recent lava deposits that would inform, first, the new colonization of these rocks and also provide evidence for the relict presence of biological colonies that existed before the volcanism occurred and were engulfed by the lava. In this research, samples were collected from a recent expedition to the active volcano at Kilauea, Hawaii, which comprises very recent lava flows, active fumaroles and volcanic rocks that had broken through to the ocean and had engulfed a coral reef. The Raman spectra indicated that biological and geobiological signatures could be identified in the presence of geological matrices, which is encouraging for the planned exploration of Mars, where it is believed that there is evidence of an active volcanism that perhaps could have preserved traces of biological activity that once existed on the planet's surface, especially in sites near the old Martian oceans.

  5. New evidence suggests pyroclastic flows are responsible for the remarkable preservation of the Jehol biota

    NASA Astrophysics Data System (ADS)

    Jiang, Baoyu; Harlow, George E.; Wohletz, Kenneth; Zhou, Zhonghe; Meng, Jin

    2014-02-01

    The lower Cretaceous Yixian and Jiufotang formations contain numerous exceptionally well-preserved invertebrate, vertebrate and plant fossils that comprise the Jehol Biota. Freshwater and terrestrial fossils of the biota usually occur together within some horizons and have been interpreted as deposits of mass mortality events. The nature of the events and the mechanisms behind the exceptional preservation of the fossils, however, are poorly understood. Here, after examining and analysing sediments and residual fossils from several key horizons, we postulate that the causal events were mainly phreatomagmatic eruptions. Pyroclastic density currents were probably responsible for the major causalities and for transporting the bulk of the terrestrial vertebrates from different habitats, such as lizards, birds, non-avian dinosaurs and mammals, into lacustrine environments for burial. Terrestrial vertebrate carcasses transported by and sealed within the pyroclastic flows were clearly preserved as exceptional fossils through this process.

  6. Volcanic Monitoring Techniques Applied to Controlled Fragmentation Experiments

    NASA Astrophysics Data System (ADS)

    Kueppers, U.; Alatorre-Ibarguengoitia, M. A.; Hort, M. K.; Kremers, S.; Meier, K.; Scharff, L.; Scheu, B.; Taddeucci, J.; Dingwell, D. B.

    2010-12-01

    Volcanic eruptions are an inevitable natural threat. The range of eruptive styles is large and short term fluctuations of explosivity or vent position pose a large risk that is not necessarily confined to the immediate vicinity of a volcano. Explosive eruptions rather may also affect aviation, infrastructure and climate, regionally as well as globally. Multiparameter monitoring networks are deployed on many active volcanoes to record signs of magmatic processes and help elucidate the secrets of volcanic phenomena. However, our mechanistic understanding of many processes hiding in recorded signals is still poor. As a direct consequence, a solid interpretation of the state of a volcano is still a challenge. In an attempt to bridge this gap, we combined volcanic monitoring and experimental volcanology. We performed 15 well-monitored, field-based, experiments and fragmented natural rock samples from Colima volcano (Mexico) by rapid decompression. We used cylindrical samples of 60 mm height and 25 mm and 60 mm diameter, respectively, and 25 and 35 vol.% open porosity. The applied pressure range was from 4 to 18 MPa. Using different experimental set-ups, the pressurised volume above the samples ranged from 60 - 170 cm3. The experiments were performed at ambient conditions and at controlled sample porosity and size, confinement geometry, and applied pressure. The experiments have been thoroughly monitored with 1) Doppler Radar (DR), 2) high-speed and high-definition cameras, 3) acoustic and infrasound sensors, 4) pressure transducers, and 5) electrically conducting wires. Our aim was to check for common results achieved by the different approaches and, if so, calibrate state-of-the-art monitoring tools. We present how the velocity of the ejected pyroclasts was measured by and evaluated for the different approaches and how it was affected by the experimental conditions and sample characteristics. We show that all deployed instruments successfully measured the pyroclast ejection and that the evaluated results were mostly in good agreement. We will discuss the technical difficulties encountered, e.g. the temporal synchronisation of the different techniques. Furthermore, the internal data management of the DR prevents at present a continuous recording and only a limited number of snapshots is stored. Nonetheless, in at least three experiments the onset of particle ejection was measured by all different techniques and gave coherent results of up to 100 m/s. This is a very encouraging result and of paramount importance as it proofs the applicability of these independent methods to volcano monitoring. Each method by itself may enhance our understanding of the pressurisation state of a volcano, an essential factor in ballistic hazard evaluation and eruption energy estimation. Technical adaptations of the DR will overcome the encountered problems and allow a more refined data analysis during the next campaign.

  7. Geological evolution of the Boset-Bericha Volcanic Complex, Main Ethiopian Rift: 40Ar/39Ar evidence for episodic Pleistocene to Holocene volcanism

    NASA Astrophysics Data System (ADS)

    Siegburg, Melanie; Gernon, Thomas M.; Bull, Jonathan M.; Keir, Derek; Barfod, Dan N.; Taylor, Rex N.; Abebe, Bekele; Ayele, Atalay

    2018-02-01

    The Boset-Bericha Volcanic Complex (BBVC) is one of the largest stratovolcanoes of the northern Main Ethiopian Rift (MER). However, very little is known about its eruptive history, despite the fact that approximately 4 million people live within 100 km of the complex. Here, we combine field observations, morphometric analysis using high-resolution LiDAR data, geochemistry and 40Ar/39Ar geochronology to report the first detailed account of the geological evolution of the BBVC, with a focus on extensive young lava flows covering the two edifices, Gudda and Bericha. These lavas exhibit a bimodal composition ranging dominantly from basaltic rift floor lavas and scoria cones, to pantelleritic trachytes and rhyolite flows at Gudda, and comenditic rhyolites at Bericha. Further, several intermediate compositions are associated with fissure vents along the Boset-Kone segment that also appear to link the silicic centres. We divide the BBVC broadly into four main eruptive stages, comprising: (1) early rift floor emplacement, (2) formation of Gudda Volcano within two main cycles, separated by caldera formation, (3) formation of the Bericha Volcano, and (4) sporadic fissure eruptions. Our new 40Ar/39Ar geochronology, targeting a representative array of these flows, provides evidence for episodic activity at the BBVC from 120 ka to the present-day. We find that low-volume mafic episodes are more frequent ( 10 ka cyclicity) than felsic episodes ( 100 ka cyclicity), but the latter are more voluminous. Over the last 30 ka, mafic to intermediate fissure activity might have reinvigorated felsic activity (over the last 16 ka), manifested as peralkaline lava flows and pyroclastic deposits at Gudda and Bericha. Felsic episodes have on average a higher eruption rate (2-5/1000 years) and productivity at Gudda compared to Bericha (1-2/1000 years). The young age of lavas and current fumarolic activity along the fault system, suggest that the BBVC is still potentially active. Coincident episodic activity within the BBVC and at several rift segments in the MER is observed, and facilitates continental rifting.

  8. The relationship between carbonate facies, volcanic rocks and plant remains in a late Palaeozoic lacustrine system (San Ignacio Fm, Frontal Cordillera, San Juan province, Argentina)

    NASA Astrophysics Data System (ADS)

    Busquets, P.; Méndez-Bedia, I.; Gallastegui, G.; Colombo, F.; Cardó, R.; Limarino, O.; Heredia, N.; Césari, S. N.

    2013-07-01

    The San Ignacio Fm, a late Palaeozoic foreland basin succession that crops out in the Frontal Cordillera (Argentinean Andes), contains lacustrine microbial carbonates and volcanic rocks. Modification by extensive pedogenic processes contributed to the massive aspect of the calcareous beds. Most of the volcanic deposits in the San Ignacio Fm consist of pyroclastic rocks and resedimented volcaniclastic deposits. Less frequent lava flows produced during effusive eruptions led to the generation of tabular layers of fine-grained, greenish or grey andesites, trachytes and dacites. Pyroclastic flow deposits correspond mainly to welded ignimbrites made up of former glassy pyroclasts devitrified to microcrystalline groundmass, scarce crystals of euhedral plagioclase, quartz and K-feldspar, opaque minerals, aggregates of fine-grained phyllosilicates and fiammes defining a bedding-parallel foliation generated by welding or diagenetic compaction. Widespread silicified and silica-permineralized plant remains and carbonate mud clasts are found, usually embedded within the ignimbrites. The carbonate sequences are underlain and overlain by volcanic rocks. The carbonate sequence bottoms are mostly gradational, while their tops are usually sharp. The lower part of the carbonate sequences is made up of mud which appear progressively, filling interstices in the top of the underlying volcanic rocks. They gradually become more abundant until they form the whole of the rock fabric. Carbonate on volcanic sandstones and pyroclastic deposits occur, with the nucleation of micritic carbonate and associated production of pyrite. Cyanobacteria, which formed the locus of mineral precipitation, were related with this nucleation. The growth of some of the algal mounds was halted by the progressive accumulation of volcanic ash particles, but in most cases the upper boundary is sharp and suddenly truncated by pyroclastic flows or volcanic avalanches. These pyroclastic flows partially destroyed the carbonate beds and palaeosols. Microbial carbonate clasts, silicified and silica-permineralized tree trunks, log stumps and other plant remains such as small branches and small roots inside pieces of wood (interpreted as fragments of nurse logs) are commonly found embedded within the ignimbrites. The study of the carbonate and volcanic rocks of the San Ignacio Fm allows the authors to propose a facies model that increases our understanding of lacustrine environments that developed in volcanic settings.

  9. Chronology and dispersal characteristics of recently (last 5000 years) erupted tephra of Cotopaxi (Ecuador): implications for long-term eruptive forecasting

    NASA Astrophysics Data System (ADS)

    Barberi, F.; Coltelli, M.; Frullani, A.; Rosi, M.; Almeida, E.

    1995-12-01

    Cotopaxi, the highest active volcano on earth and one of the most dangerous of Ecuador is constituted by a composite cone made up of lava and tephra erupted from the summit crater. The activity of the present volcano begun with large-volume plinian eruptions followed by a succession of small-volume lava emissions and pyroclastic episodes which led to the edification of a symmetrical cone. The growth of the cone was broken by an episode of slope failure, the scar of which is now obliterated by recent and historical products. Volcanic history, eruptive frequency and characteristics of the activity were investigated by studying the stratigraphy of tephra and carrying out fifteen new 14C dating on paleosols and charcoals. The investigated period is comprised between the slope failure and the present. The deposit of the volcanic landside (dry debris avalanche of Rio Pita), previously believed to be between 13,000 and 25,000 yr B.P., is now considered to have an age slightly older than 5000 yr B.P. The stratigraphy of tephra of the last 2000 years reveals the existence of 22 fallout layers. Seven of them were dated with 14C whereas three were ascribed to the eruptions of 1534, 1768 and 1877 on the basis of comparison with historical information. Maximum clast size distribution (isopleths) of 9 tephra layers points out that the sustained explosive eruptions of Cotopaxi during the last 2000 years are characterized by very high dispersive power (plinian plumes with column heights between 28 and 39 km) and high intensity (peak mass discharges from 1.1 to 4.1 × 10 8kg/s). The magnitude (mass) of tephra fallout deposits calculated from distribution of thickness (isopaches) are, however, moderate (from 0.8 to 7.2 × 10 11 kg). The limited volume of magma erupted during each explosive episode is consistent with the lack of caldera collapses. Small-volume pyroclastic flows and surges virtually accompanied all identified tephra fallouts. During such an activity large scale snow/ice melting of the summit glacier produced devastating mudflows comparable in scale to those of 1877 eruption. By assuming a 1:1 correspondence between fallout episodes and generation of large-scale lahar, we have estimated an average recurrence of one explosive, lahartriggering event every 117 years over the last two millennia. This value compares well with that calculated by considering the period since Spanish Conquest. The probability of having an eruption like this in 100 or 200 years is respectively of 0.57 and 0.82. Such an high probability underscores the need for quick actions aimed at the mitigation of Cotopaxi lahar hazard along all the main valleys which originate from the volcano.

  10. The longevity of lava dome eruptions: analysis of the global DomeHaz database

    NASA Astrophysics Data System (ADS)

    Ogburn, S. E.; Wolpert, R.; Calder, E.; Pallister, J. S.; Wright, H. M. N.

    2015-12-01

    The likely duration of ongoing volcanic eruptions is a topic of great interest to volcanologists, volcano observatories, and communities near volcanoes. Lava dome forming eruptions can last from days to centuries, and can produce violent, difficult-to-forecast activity including vulcanian to plinian explosions and pyroclastic density currents. Periods of active dome extrusion are often interspersed with periods of relative quiescence, during which extrusion may slow or pause altogether, but persistent volcanic unrest continues. This contribution focuses on the durations of these longer-term unrest phases, hereafter eruptions, that include periods of both lava extrusion and quiescence. A new database of lava dome eruptions, DomeHaz, provides characteristics of 228 eruptions at 127 volcanoes; for which 177 have duration information. We find that while 78% of dome-forming eruptions do not continue for more than 5 years, the remainder can be very long-lived. The probability distributions of eruption durations are shown to be heavy-tailed and vary by magma composition. For this reason, eruption durations are modeled with generalized Pareto distributions whose governing parameters depend on each volcano's composition and eruption duration to date. Bayesian predictive distributions and associated uncertainties are presented for the remaining duration of ongoing eruptions of specified composition and duration to date. Forecasts of such natural events will always have large uncertainties, but the ability to quantify such uncertainty is key to effective communication with stakeholders and to mitigation of hazards. Projections are made for the remaining eruption durations of ongoing eruptions, including those at Soufrière Hills Volcano, Montserrat and Sinabung, Indonesia. This work provides a quantitative, transferable method and rationale on which to base long-term planning decisions for dome forming volcanoes of different compositions, regardless of the quality of an individual volcano's eruptive record, by leveraging a global database.

  11. Volcanic unrest in Kenya: geological history from a satellite perspective

    NASA Astrophysics Data System (ADS)

    Robertson, E.; Biggs, J.; Edmonds, M.; Vye-Brown, C.

    2013-12-01

    The East African Rift (EAR) system is a 5,000 km long series of fault bounded depressions that run from Djibouti to Mozambique. In the Kenyan Rift, fourteen Quaternary volcanoes lie along the central rift axis. These volcanoes are principally composed of trachyte pyroclastics and trachyte and basaltic lavas forming low-angle multi-vent edifices. Between 1997 and 2008, geodetic activity has been observed at five Kenyan volcanoes, all of which have undergone periods of caldera collapse and explosive activity. We present a remote-sensing study to investigate the temporal and spatial development of volcanic activity at Longonot volcano. High-resolution mapping using ArcGIS and an immersive 3D visualisation suite (GeovisionaryTM) has been used with imagery derived from ASTER, SPOT5 and GDEM data to identify boundaries of eruptive units and establish relative age in order to add further detail to Longonot's recent eruptive history. Mapping of the deposits at Longonot is key to understand the recent geological history and forms the basis for future volcanic hazard research to inform risk assessments and mitigation programs in Kenya. Calderas at Kenyan volcanoes are elliptical in plan view and we use high-resolution imagery to investigate the regional stresses and structural control leading to the formation of these elliptical calderas. We find that volcanoes in the central and northern segments of the Kenyan rift are elongated nearly parallel to the direction of least horizontal compressive stress, likely as a reflection of the direction of the plate motion vector at the time of caldera collapse. The southern volcanoes however are elongated at an acute angle to the plate motion vector, most likely as a result of oblique opening of the Kenyan rift in this region.

  12. Voluminous eruption from a zoned magma body after an increase in supply rate at Axial Seamount

    NASA Astrophysics Data System (ADS)

    Chadwick, W. W.; Paduan, J. B.; Clague, D. A.; Dreyer, B. M.; Merle, S. G.; Bobbitt, A. M.; Caress, D. W.; Philip, B. T.; Kelley, D. S.; Nooner, S. L.

    2016-12-01

    Axial Seamount is the best monitored submarine volcano in the world, providing an exceptional window into the dynamic interactions between magma storage, transport, and eruption processes in a mid-ocean ridge setting. An eruption in April 2015 produced the largest volume of erupted lava since monitoring and mapping began in the mid-1980s after the shortest repose time, due to a recent increase in magma supply. The higher rate of magma replenishment since 2011 resulted in the eruption of the most mafic lava in the last 500-600 years. Eruptive fissures at the volcano summit produced pyroclastic ash that was deposited over an area of at least 8 km2. A systematic spatial distribution of compositions is consistent with a single dike tapping different parts of a thermally and chemically zoned magma reservoir that can be directly related to previous multichannel seismic-imaging results.

  13. Chronology and pyroclastic stratigraphy of the May 18, 1980, eruption of Mount St. Helens, Washington

    NASA Technical Reports Server (NTRS)

    Criswell, C. William

    1987-01-01

    The eruption of Mount St. Helens on May 18, 1980 can be subdivided into six phases: the paroxysmal phase I, the early Plinian phase II, the early ash flow phase III, the climactic phase IV, the late ash flow phase V, and phase VI, the activity of which consisted of a low-energy ash plume. These phases are correlated with stratigraphic subunits of ash-fall tephra and pyroclastic flow deposits. Sustained vertical discharge of phase II produced evolved dacite with high S/Cl ratios. Ash flow activity of phase III is attributed to decreases in gas content, indicated by reduced S/Cl ratios and increased clast density of the less evolved gray pumice. Climactic events are attributed to vent clearing and exhaustion of the evolved dacite.

  14. A closer look at the pyroclastic density current deposits of the May 18, 1980 eruption of Mt St Helens

    NASA Astrophysics Data System (ADS)

    Mackaman-Lofland, C. A.; Brand, B. D.; Dufek, J.

    2010-12-01

    Pyroclastic Density Currents (PDCs) are the most dangerous hazard associated with explosive volcanic eruptions. Due to the danger associated with observing these ground-hugging currents of searing hot gas, ash, and rock in real time, their processes are poorly understood. In order to understand flow dynamics, including what controls how far PDCs travel and how they interact with topography, it is necessary to study their deposits. The May 18th, 1980 eruption of Mt. St. Helens produced multiple PDCs, burying the area north of the volcano under 10s of meters of PDC deposits. Because the eruption is one of the best observed on record, individual flow units can be correlated to changes in eruptive intensity throughout the day (e.g., Criswell, 1987). Deep drainage erosion over the past 30 years has exposed the three-dimensional structure of the PDC deposits, making this intensive study possible. Up to six flow units have been identified along the large western drainage of the pumice plain. Each flow unit has intricate vertical and lateral facies changes and complex cross-cutting relationships away from source. The most proximal PDC deposits associated with the afternoon flows on May 18 are exposed 4 km from source in tributaries of the large drainage on the western side of the pumice plain. Hummocks from the debris avalanche are also exposed above and within these proximal drainages. It is apparent that the PDCs were often erosional, entraining large blocks from the hummocks and depositing them in close proximity downstream. The currents were also depositional, as thick sequences of PDC deposits are found in areas between hummocks, which thin to veneers above them. This indicates that the currents were interacting with complex topography early in their propagation, and is reflected by spatially variable bed conditions including rapid changes in bedding and granulometry characteristics within individual flow units. For example, within 20 lateral meters of a given flow unit, depositional features can vary from massive, diffusely-stratified to stratified, and cross stratified. We interpret this variability as a result of interaction with nearby topography, rapid sedimentation of large blocks, or a combination of the two; this implies rapid spatial and temporal instabilities in the current. For each flow unit we measure deposit thickness, bedding style, clast size, density and sorting, and degree of pumice rounding with distance from source. We use this data to better understand and interpret flow dynamics from depositional characteristics. The data we collect will be used to refine and validate numerical models of PDCs, ultimately providing a more accurate hazard assessment for explosive eruptions.

  15. A zonation map for volcaniclastic-flow hazard in the area surrounding the Neapolitan volcanoes (Campania Region, Italy)

    NASA Astrophysics Data System (ADS)

    Bisson, M.; Sulpizio, R.; Zanchetta, G.; Demi, F.; Tarquini, S.

    2009-04-01

    The triggering of destructive volcaniclastic flows is a one of the most recurrent and dangerous natural phenomena that can occur in volcanic areas. They can originate not only during or shortly after an eruption (syn-eruptive) but also during a volcanic quiescence (inter-eruptive), when heavy rains remobilize the loose pyroclastic deposits. One of most important example of inter-eruptive volcaniclastic flow hazard is represented by the Apennine relieves that border the southern Campanian Plain. These steep relieves are covered by variable thickness (from few cm to some m) of volcaniclastic material dispersed by the explosive activity of Somma-Vesuvius and Campi Flegrei volcanoes, located few km to the west. The most recent, large dangerous event is certainly that occurred on May 5, 1998, which caused the death of more than 150 people and considerable damage in the villages at the feet of the Apennine relieves. However, this tragic event was only the last of a number of volcaniclastic flow generation that affected the area in historical and pre-historical times. Historical accounts testify for several previous disastrous episodes, like the 40 volcaniclastic-flow events recorded in the southern Campanian Plain relieves during the last 200 years. These events claimed the life of 40 people in AD 1640, 43 people in AD 1764, 120 people in AD 1823, 120 people in AD 1841, 170 people in AD 1910, 30 people in AD 1924, and 30 people in AD 1954. These disasters clearly indicate that a volcanic hazard mitigation strategy urges for the area. With the aim to contribute to the improvement of volcaniclastic flow hazard and risk mitigation in the study area, we produced a zonation map that identifies the drainage basins potentially more prone to disruption. This map has been obtained combining few morphological characteristics (concavity and basin shape factor) and mean slope distribution of the drainage basins, derived from a digital elevation model with resolution of 10 m. The analysed parameters allowed the classification of 1069 drainage basins, which have been grouped into four different classes of disruption proneness: low, medium, high and very high. The map was organised in a GIS environment which allows a rapid query of the different information stored in the linked data base.

  16. 2013 Mt. Etna Pyroclastic Activity through the ADCP Recordings of NEMO-SN1 Multidisciplinary Seafloor Observatory

    NASA Astrophysics Data System (ADS)

    Lo Bue, N.; Sgroi, T.; Giovinetti, G.; Marinaro, G.; Favali, P.

    2014-12-01

    The Acoustic Doppler Current Profiler (ADCP) is one of the most useful sensor used to measure speed and direction of sea currents in the water column. More often ADCPs are being also used to monitor concentration of suspended matter in rivers or in marine environments by the analysis of the acoustic backscatter intensity. In the framework of the European Research Infrastructure EMSO (European Multidisciplinary Seafloor and water-column Observatory, www.emso-eu.org), its cabled node, the NEMO-SN1 multidisciplinary seafloor observatory, was deployed in the Western Ionian Sea (Southern Italy) at a depth of 2100 m, about 25 km off-shore Eastern Sicily close to the submarine slope of the Mt. Etna volcano. Starting from February 2013, the Mt. Etna was interested by thirteen different parossistic events producing intense eruption followed by pyroclastic fallout that reached distances of tens kilometres from the eruptive centre. Four of these events affected the ESE sector with a consequent fallout in the Western Ionian Sea and they were detected by NEMO-SN1. In fact, its scientific payload also included an ADCP (RDI WorkHorse 600 kHz) with the main aim to monitor the hydrodynamic conditions of about 30 metres of the water column above the station. Surprisingly, this sensor offered spectacular recordings of the Mt. Etna pyroclastic activity occurred on 2013 wich affected the ESE sector. This work aims to present new records of pyroclastic fallout associated to explosive events observed at sea bottom by the analysis of backscatter signal of the ADCP. A multidisciplinary approach taking into account the Mt. Etna eruptive activity as well as the local oceanographic dynamic is necessary to describe marine processes involved in volcanic ash sedimentation.

  17. Merging field mapping and numerical simulation to interpret the lithofacies variations from unsteady pyroclastic density currents on uneven terrain: The case of La Fossa di Vulcano (Aeolian Islands, Italy)

    NASA Astrophysics Data System (ADS)

    Doronzo, Domenico M.; Dellino, Pierfrancesco; Sulpizio, Roberto; Lucchi, Federico

    2017-01-01

    In order to obtain results from computer simulations of explosive volcanic eruptions, one either needs a statistical approach to test a wide range of initial and boundary conditions, or needs using a well-constrained field case study via stratigraphy. Here we followed the second approach, using data obtained from field mapping of the Grotta dei Palizzi 2 pyroclastic deposits (Vulcano Island, Italy) as input for numerical modeling. This case study deals with impulsive phreatomagmatic explosions of La Fossa Cone that generated ash-rich pyroclastic density currents, interacting with the topographic high of the La Fossa Caldera rim. One of the simplifications in dealing with well-sorted ash (one particle size in the model) is to highlight the topographic effects on the same pyroclastic material in an unsteady current. We demonstrate that by merging field data with 3D numerical simulation results it is possible to see key details of the dynamical current-terrain interaction, and to interpret the lithofacies variations of the associated deposits as a function of topography-induced sedimentation (settling) rate. Results suggest that a value of the sedimentation rate lower than 5 kg/m2 s at the bed load can still be sheared by the overlying current, producing tractional structures (laminae) in the deposits. Instead, a sedimentation rate higher than that threshold can preclude the formation of tractional structures, producing thicker massive deposits. We think that the approach used in this study could be applied to other case studies (both for active and ancient volcanoes) to confirm or refine such threshold value of the sedimentation rate, which is to be considered as an upper value as for the limitations of the numerical model.

  18. Surface morphology of caldera-forming eruption deposits revealed by lidar mapping of Crater Lake National Park, Oregon- Implications for emplacement and surface modification

    USGS Publications Warehouse

    Robinson, Joel E.; Bacon, Charles R.; Major, Jon J.; Wright, Heather M.; Vallance, James W.

    2017-01-01

    Large explosive eruptions of silicic magma can produce widespread pumice fall, extensive ignimbrite sheets, and collapse calderas. The surfaces of voluminous ignimbrites are rarely preserved or documented because most terrestrial examples are heavily vegetated, or severely modified by post-depositional processes. Much research addresses the internal sedimentary characteristics, flow processes, and depositional mechanisms of ignimbrites, however, surface features of ignimbrites are less well documented and understood, except for comparatively small-volume deposits of historical eruptions. The ~7,700 calendar year B.P. climactic eruption of Mount Mazama, USA vented ~50 km3 of magma, deposited first as rhyodacite pumice fall and then as a zoned rhyodacite-to-andesite ignimbrite as Crater Lake caldera collapsed. Lidar collected during summer 2010 reveals the remarkably well-preserved surface of the Mazama ignimbrite and related deposits surrounding Crater Lake caldera in unprecedented detail despite forest cover. The ±1 m lateral and ±4 cm vertical resolution lidar allows surface morphologies to be classified. Surface morphologies are created by internal depositional processes and can point to the processes at work when pyroclastic flows come to rest. We describe nine surface features including furrow-ridge sets and wedge-shaped mounds in pumice fall eroded by high-energy pyroclastic surges, flow- parallel ridges that record the passage of multiple pyroclastic flows, perched benches of marginal deposits stranded by more-mobile pyroclastic-flow cores, hummocks of dense clasts interpreted as lag deposit, transverse ridges that mark the compression and imbrication of flows as they came to rest, scarps indicating ignimbrite remobilization, fields of pit craters caused by phreatic explosions, fractures and cracks caused by extensional processes resulting from ignimbrite volume loss, and stream channels eroded in the newly formed surface. The nine morphologies presented here illustrate a dynamic depositional environment that varied spatially and with time during the eruption, and show that multiple processes modified the ignimbrite after deposition, both during and after the eruption.

  19. Surface morphology of caldera-forming eruption deposits revealed by lidar mapping of Crater Lake National Park, Oregon - Implications for deposition and surface modification

    NASA Astrophysics Data System (ADS)

    Robinson, Joel E.; Bacon, Charles R.; Major, Jon J.; Wright, Heather M.; Vallance, James W.

    2017-08-01

    Large explosive eruptions of silicic magma can produce widespread pumice fall, extensive ignimbrite sheets, and collapse calderas. The surfaces of voluminous ignimbrites are rarely preserved or documented because most terrestrial examples are heavily vegetated, or severely modified by post-depositional processes. Much research addresses the internal sedimentary characteristics, flow processes, and depositional mechanisms of ignimbrites, however, surface features of ignimbrites are less well documented and understood, except for comparatively small-volume deposits of historical eruptions. The 7700 calendar year B.P. climactic eruption of Mount Manama, USA, vented 50 km3 of magma, deposited first as rhyodacite pumice fall and then as a zoned rhyodacite-to-andesite ignimbrite as Crater Lake caldera collapsed. Lidar collected during summer 2010 reveals the remarkably well-preserved surface of the Manama ignimbrite and related deposits surrounding Crater Lake caldera in unprecedented detail despite forest cover. The ± 1 m lateral and ± 4 cm vertical resolution lidar allows surface morphologies to be classified. Surface morphologies are created by internal depositional processes and can point to the processes at work when pyroclastic flows come to rest. We describe nine surface features including furrow-ridge sets and wedge-shaped mounds in pumice fall eroded by high-energy pyroclastic surges, flow-parallel ridges that record the passage of multiple pyroclastic flows, perched benches of marginal deposits stranded by more-mobile pyroclastic-flow cores, hummocks of dense clasts interpreted as lag deposit, transverse ridges that mark the compression and imbrication of flows as they came to rest, scarps indicating ignimbrite remobilization, fields of closely spaced pits caused by phreatic explosions, fractures and cracks due to extensional processes resulting from ignimbrite volume loss, and stream channels eroded in the newly formed surface. The nine morphologies presented here illustrate a dynamic depositional environment that varied spatially and with time during the eruption, and show that multiple processes modified the ignimbrite after deposition, both during and after the eruption.

  20. Volcanic Lightning, Pyroclastic Density Currents, Ballistic Fall, Vent Tremor, and One Very Loud Blast: Acoustic Analysis of the 14 July 2013 Vulcanian Eruption at Tungurahua, Ecuador.

    NASA Astrophysics Data System (ADS)

    Anderson, J.; Johnson, J. B.; Steele, A. L.; Anzieta, J. C.; Ortiz, H. D.; Hall, M. L.; Ruiz, M. C.

    2014-12-01

    Acoustic recordings reveal a variety of volcanic activities during an exceptionally loud vulcanian eruption at Tungurahua. A period of several months of mild surface activity came to an abrupt end with the emission of a powerful blast wave heard at least 180 km away. Sensors 2080 m from the vent recorded a stepped rise to its maximum overpressure of 1220 Pa (corresponding to a sound pressure level of 156 dB) and its unusually long dominant period of 5.6 s. We discuss source processes that produced the blast wave, considering that wave propagation could be nonlinear near the vent because of high overpressures. More than an hour of acoustic activity was recorded after the blast wave, including sound from falling ballistics, reflections of the blast wave from nearby mountains, pyroclastic density currents, and acoustic tremor at the vent. Glitches in the acoustic records related to plume lightning were also serendipitously observed, although thunder could not be unambiguously identified. We discuss acoustic signatures of falling ballistics and pyroclastic density currents and how array-style deployments and analytic methods can be used to reveal them. Placement of sensors high on the volcano's slopes facilitated resolving these distinct processes. This study demonstrates that near-vent, array-style acoustic installations can be used to monitor various types of volcanic activity.

Top