Power Quality Improvement Using an Enhanced Network-Side-Shunt-Connected Dynamic Voltage Restorer
NASA Astrophysics Data System (ADS)
Fereidouni, Alireza; Masoum, Mohammad A. S.; Moghbel, Moayed
2015-10-01
Among the four basic dynamic voltage restorer (DVR) topologies, the network-side shunt-connected DVR (NSSC-DVR) has a relatively poor performance and is investigated in this paper. A new configuration is proposed and implemented for NSSC-DVR to enhance its performance in compensating (un)symmetrical deep and long voltage sags and mitigate voltage harmonics. The enhanced NSSC-DVR model includes a three-phase half-bridge semi-controlled network-side-shunt-connected rectifier and a three-phase full-bridge series-connected inverter implemented with a back-to-back configuration through a bidirectional buck-boost converter. The network-side-shunt-connected rectifier is employed to inject/draw the required energy by NSSC-DVR to restore the load voltage to its pre-fault value under sag/swell conditions. The buck-boost converter is responsible for maintaining the DC-link voltage of the series-connected inverter at its designated value in order to improve the NSSC-DVR capability in compensating deep and long voltage sags/swells. The full-bridge series-connected inverter permits to compensate unbalance voltage sags containing zero-sequence component. The harmonic compensation of the load voltage is achieved by extracting harmonics from the distorted network voltage using an artificial neural network (ANN) method called adaptive linear neuron (Adaline) strategy. Detailed simulations are performed by SIMULINK/MATLAB software for six case studies to verify the highly robustness of the proposed NSSC-DVR model under various conditions.
NASA Astrophysics Data System (ADS)
Jimichi, Takushi; Fujita, Hideaki; Akagi, Hirofumi
This paper deals with a dynamic voltage restorer (DVR) characterized by installing the shunt converter at the load side. The DVR can compensate for the load voltage when a voltage sag appears in the supply voltage. An existing DVR requires a large capacitor bank or other energy-storage elements such as double-layer capacitors or batteries. The DVR presented in this paper requires only a small dc capacitor intended for smoothing the dc-link voltage. Moreover, three control methods for the series converter are compared and discussed to reduce the series-converter rating, paying attention to the zero-sequence voltages included in the supply voltage and the compensating voltage. Experimental results obtained from a 200-V, 5-kW laboratory system are shown to verify the viability of the system configuration and the control methods.
NASA Astrophysics Data System (ADS)
Jian, Le; Cao, Wang; Jintao, Yang; Yinge, Wang
2018-04-01
This paper describes the design of a dynamic voltage restorer (DVR) that can simultaneously protect several sensitive loads from voltage sags in a region of an MV distribution network. A novel reference voltage calculation method based on zero-sequence voltage optimisation is proposed for this DVR to optimise cost-effectiveness in compensation of voltage sags with different characteristics in an ungrounded neutral system. Based on a detailed analysis of the characteristics of voltage sags caused by different types of faults and the effect of the wiring mode of the transformer on these characteristics, the optimisation target of the reference voltage calculation is presented with several constraints. The reference voltages under all types of voltage sags are calculated by optimising the zero-sequence component, which can reduce the degree of swell in the phase-to-ground voltage after compensation to the maximum extent and can improve the symmetry degree of the output voltages of the DVR, thereby effectively increasing the compensation ability. The validity and effectiveness of the proposed method are verified by simulation and experimental results.
Rini Ann Jerin, A; Kaliannan, Palanisamy; Subramaniam, Umashankar
2017-09-01
Fault ride through (FRT) capability in wind turbines to maintain the grid stability during faults has become mandatory with the increasing grid penetration of wind energy. Doubly fed induction generator based wind turbine (DFIG-WT) is the most popularly utilized type of generator but highly susceptible to the voltage disturbances in grid. Dynamic voltage restorer (DVR) based external FRT capability improvement is considered. Since DVR is capable of providing fast voltage sag mitigation during faults and can maintain the nominal operating conditions for DFIG-WT. The effectiveness of the DVR using Synchronous reference frame (SRF) control is investigated for FRT capability in DFIG-WT during both balanced and unbalanced fault conditions. The operation of DVR is confirmed using time-domain simulation in MATLAB/Simulink using 1.5MW DFIG-WT. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Modelling voltage sag mitigation using dynamic voltage restorer and analyzing power quality issue
NASA Astrophysics Data System (ADS)
Ismail, Nor Laili; Hidzir, Hizrin Dayana Mohd; Thanakodi, Suresh; Nazar, Nazatul Shiema Moh; Ibrahim, Pungut; Ali, Che Ku Muhammad Sabri Che Ku
2018-02-01
Power quality problem which are arise due to a fault or a pulsed load can have caused an interruption of critical load. The modern power systems are becoming more sensitive to the quality of the power supplied by the utility company. Voltage sags and swells, flicker, interruptions, harmonic distortion and other distortion to the sinusoidal waveform are the examples of the power quality problems. The most affected due to these problems is industrial customers who use a lot of sensitive equipment. There has suffered a huge loss to these problems. Resulting of broken or damage equipment if voltage sag exceeds the sensitive threshold of the equipment. Thus, device such as Static Synchronous Compensator (STATCOM) and Dynamic Voltage Restorer (DVR) has been created to solve this problem among users. DVR is a custom power device that most effective and efficient. This paper intended to report the DVR operations during voltage sag compensation.
Power conditioning using dynamic voltage restorers under different voltage sag types.
Saeed, Ahmed M; Abdel Aleem, Shady H E; Ibrahim, Ahmed M; Balci, Murat E; El-Zahab, Essam E A
2016-01-01
Voltage sags can be symmetrical or unsymmetrical depending on the causes of the sag. At the present time, one of the most common procedures for mitigating voltage sags is by the use of dynamic voltage restorers (DVRs). By definition, a DVR is a controlled voltage source inserted between the network and a sensitive load through a booster transformer injecting voltage into the network in order to correct any disturbance affecting a sensitive load voltage. In this paper, modelling of DVR for voltage correction using MatLab software is presented. The performance of the device under different voltage sag types is described, where the voltage sag types are introduced using the different types of short-circuit faults included in the environment of the MatLab/Simulink package. The robustness of the proposed device is evaluated using the common voltage sag indices, while taking into account voltage and current unbalance percentages, where maintaining the total harmonic distortion percentage of the load voltage within a specified range is desired. Finally, several simulation results are shown in order to highlight that the DVR is capable of effective correction of the voltage sag while minimizing the grid voltage unbalance and distortion, regardless of the fault type.
Power conditioning using dynamic voltage restorers under different voltage sag types
Saeed, Ahmed M.; Abdel Aleem, Shady H.E.; Ibrahim, Ahmed M.; Balci, Murat E.; El-Zahab, Essam E.A.
2015-01-01
Voltage sags can be symmetrical or unsymmetrical depending on the causes of the sag. At the present time, one of the most common procedures for mitigating voltage sags is by the use of dynamic voltage restorers (DVRs). By definition, a DVR is a controlled voltage source inserted between the network and a sensitive load through a booster transformer injecting voltage into the network in order to correct any disturbance affecting a sensitive load voltage. In this paper, modelling of DVR for voltage correction using MatLab software is presented. The performance of the device under different voltage sag types is described, where the voltage sag types are introduced using the different types of short-circuit faults included in the environment of the MatLab/Simulink package. The robustness of the proposed device is evaluated using the common voltage sag indices, while taking into account voltage and current unbalance percentages, where maintaining the total harmonic distortion percentage of the load voltage within a specified range is desired. Finally, several simulation results are shown in order to highlight that the DVR is capable of effective correction of the voltage sag while minimizing the grid voltage unbalance and distortion, regardless of the fault type. PMID:26843975
Sliding Mode Control of Dynamic Voltage Restorer by Using a New Adaptive Reaching Law
NASA Astrophysics Data System (ADS)
Pandey, Achala; Agrawal, Rekha; Mandloi, Ravindra S.; Sarkar, Biswaroop
2017-12-01
This paper presents a new kind of adaptive reaching law for sliding mode control of Dynamic Voltage Restorer (DVR). Such an adaptive reaching law follows under-damped sinusoidal nature that causes the initial state to reach the sliding regime in extremely less time with negligible chattering. Moreover, it is robust in the sense the trajectory does not deviate from the sliding surface. This new approach is developed and successfully applied to DVR. The simulation results are presented that show its robustness.
NASA Astrophysics Data System (ADS)
Khoshkbar Sadigh, Arash
Part I: Dynamic Voltage Restorer In the present power grids, voltage sags are recognized as a serious threat and a frequently occurring power-quality problem and have costly consequence such as sensitive loads tripping and production loss. Consequently, the demand for high power quality and voltage stability becomes a pressing issue. Dynamic voltage restorer (DVR), as a custom power device, is more effective and direct solutions for "restoring" the quality of voltage at its load-side terminals when the quality of voltage at its source-side terminals is disturbed. In the first part of this thesis, a DVR configuration with no need of bulky dc link capacitor or energy storage is proposed. This fact causes to reduce the size of the DVR and increase the reliability of the circuit. In addition, the proposed DVR topology is based on high-frequency isolation transformer resulting in the size reduction of transformer. The proposed DVR circuit, which is suitable for both low- and medium-voltage applications, is based on dc-ac converters connected in series to split the main dc link between the inputs of dc-ac converters. This feature makes it possible to use modular dc-ac converters and utilize low-voltage components in these converters whenever it is required to use DVR in medium-voltage application. The proposed configuration is tested under different conditions of load power factor and grid voltage harmonic. It has been shown that proposed DVR can compensate the voltage sag effectively and protect the sensitive loads. Following the proposition of the DVR topology, a fundamental voltage amplitude detection method which is applicable in both single/three-phase systems for DVR applications is proposed. The advantages of proposed method include application in distorted power grid with no need of any low-pass filter, precise and reliable detection, simple computation and implementation without using a phased locked loop and lookup table. The proposed method has been verified by simulation and experimental tests under various conditions considering all possible cases such as different amounts of voltage sag depth (VSD), different amounts of point-on-wave (POW) at which voltage sag occurs, harmonic distortion, line frequency variation, and phase jump (PJ). Furthermore, the ripple amount of fundamental voltage amplitude calculated by the proposed method and its error is analyzed considering the line frequency variation together with harmonic distortion. The best and worst detection time of proposed method were measured 1ms and 8.8ms, respectively. Finally, the proposed method has been compared with other voltage sag detection methods available in literature. Part 2: Power System Modeling for Renewable Energy Integration: As power distribution systems are evolving into more complex networks, electrical engineers have to rely on software tools to perform circuit analysis. There are dozens of powerful software tools available in the market to perform the power system studies. Although their main functions are similar, there are differences in features and formatting structures to suit specific applications. This creates challenges for transferring power system circuit models data (PSCMD) between different software and rebuilding the same circuit in the second software environment. The objective of this part of thesis is to develop a Unified Platform (UP) to facilitate transferring PSCMD among different software packages and relieve the challenges of the circuit model conversion process. UP uses a commonly available spreadsheet file with a defined format, for any home software to write data to and for any destination software to read data from, via a script-based application called PSCMD transfer application. The main considerations in developing the UP are to minimize manual intervention and import a one-line diagram into the destination software or export it from the source software, with all details to allow load flow, short circuit and other analyses. In this study, ETAP, OpenDSS, and GridLab-D are considered, and PSCMD transfer applications written in MATLAB have been developed for each of these to read the circuit model data provided in the UP spreadsheet. In order to test the developed PSCMD transfer applications, circuit model data of a test circuit and a power distribution circuit from Southern California Edison (SCE) - a utility company - both built in CYME, were exported into the spreadsheet file according to the UP format. Thereafter, circuit model data were imported successfully from the spreadsheet files into above mentioned software using the PSCMD transfer applications developed for each software. After the SCE studied circuit is transferred into OpenDSS software using the proposed UP scheme and developed application, it has been studied to investigate the impacts of large-scale solar energy penetration. The main challenge of solar energy integration into power grid is its intermittency (i.e., discontinuity of output power) nature due to cloud shading of photovoltaic panels which depends on weather conditions. In order to conduct this study, OpenDSS time-series simulation feature, which is required due to intermittency of solar energy, is utilized. In this study, the impacts of intermittency of solar energy penetration, especially high-variability points, on voltage fluctuation and operation of capacitor bank and voltage regulator is provided. In addition, the necessity to interpolate and resample unequally spaced time-series measurement data and convert them to equally spaced time-series data as well as the effect of resampling time-interval on the amount of error is discussed. Two applications are developed in Matlab to do interpolation and resampling as well as to calculate the amount of error for different resampling time-intervals to figure out the suitable resampling time-interval. Furthermore, an approach based on cumulative distribution, regarding the length for lines/cables types and the power rating for loads, is presented to prioritize which loads, lines and cables the meters should be installed at to have the most effect on model validation.
Power Quality Improvement in Induction Furnace by Harmonic Reduction Using Dynamic Voltage Restorer
NASA Astrophysics Data System (ADS)
Saggu, Tejinder Singh; Singh, Lakhwinder
2016-06-01
Induction furnaces are used in wide quantity under different capacities for annual production of around 25 million tons of iron and steel in India. It plays a vital role in various manufacturing processes around the world for melting different types of metal scraps i. e. Copper, Cast Iron, Aluminium, Steel, Brass, Bronze, Silicon, Gold, Silver etc. which are further used in many other industrial applications. The induction furnace causes a huge disturbance to the utility and nearby consumers during its operation due to its non-linear characteristics. This is a serious phenomenon responsible for power quality degradation in the power system. This paper presents methodology to improve the power quality degradation caused by induction furnace using Dynamic Voltage Restorer (DVR) which is a type of custom power device. The real time data has been taken from an industry employing induction furnace for production of ingots from scrap material. The experimental readings are measured using power quality analyser equipment. The simulation of whole plant is done by analysing this same data and the simulation results are compared with actual onsite results. Then, solution methodology using DVR is presented which revealed that the implementation of DVR is an effective solution for voltage sag mitigation and harmonics improvement in induction furnace.
Kawamura, Iwanari; Fukamizu, Seiji; Miyazawa, Satoshi; Hojo, Rintaro; Ito, Fusahiko; Watanabe, Masazumi; Nishizaki, Mitsuhiro; Sakurada, Harumizu; Hiraoka, Masayasu
2018-02-01
A 58-year-old man with dilated cardiomyopathy was admitted with heart failure. He had a history of two catheter ablation procedures for ventricular tachycardia (VT) originating from the intraventricular septum (IVS). Before dual valve replacement (DVR), he suffered a VT storm. An electrophysiological study revealed an extended low-voltage area at the IVS with the exit of the induced VT at the anterior side. Radiofrequency application was performed at the VT exit as a landmark for surgical cryoablation (SA). During the DVR, SA was performed at the IVS using this landmark. After SA, the patient had no ventricular tachyarrhythmia.
Urbanski, Wiktor; Wolanczyk, Michal J; Jurasz, Wojciech; Kulej, Miroslaw; Morasiewicz, Piotr; Dragan, Szymon Lukasz; Sasiadek, Marek; Dragan, Szymon Feliks
2017-07-01
Recent developments of spinal instruments allow to address nearly all components of idiopathic scoliosis. Direct vertebral rotation (DVR) maneuver was introduced to correct apical axial vertebral rotation. It is however still not well established how efficiently DVR affects results of scoliosis correction. The object of the study was to evaluate en bloc apical vertebral rotation (DVR) and its impact on coronal and sagittal correction of the spine in patients undergoing surgical scoliosis treatment. Thirty-six consecutive patients who underwent posterior spinal fusion with pedicle screws only constructs for idiopathic scoliosis. Fifteen patients (20 curves) were corrected by rod derotation only and 21 patients (26 curves) had both rod derotation and DVR. Curve measurements were performed on x-rays obtained before and postoperatively-coronal curves, kyphosis (T2-T12, T5-T12). Spine flexibility was assessed on prone bending x-rays. Apical axial rotation was determined on CT scans obtained intraoperatively and postoperatively. Rotation angle (RAsag) was measured according to Aaro and Dahlborn. We observed reduction of RAsag in all patients; however, in DVR group, decrease was greater, by 31.8% comparing to non-DVR group, by 8.6% (p = 0.0003). Mean coronal correction in DVR group was 68.8% and in rod derotation group without DVR 55% (p = 0.002). No significant correlation was found between degree of derotation obtained and coronal correction. In DVR group T2-T12 kyphosis has increased in 28 (65%) patients whereas in non-DVR group in 31 (69%) cases. Mean value of T2-T12 kyphosis growth was 16.7% in DVR and 22.1% in non-DVR group. These differences however did not occur statistically significant. Direct vertebral rotation (DVR) maneuver reduces significantly apical rotation of the spine, enhances ability of coronal correction, and it does not reduce thoracic kyphosis.
Szidarovszky, Tamás; Császár, Attila G; Czakó, Gábor
2010-08-01
Several techniques of varying efficiency are investigated, which treat all singularities present in the triatomic vibrational kinetic energy operator given in orthogonal internal coordinates of the two distances-one angle type. The strategies are based on the use of a direct-product basis built from one-dimensional discrete variable representation (DVR) bases corresponding to the two distances and orthogonal Legendre polynomials, or the corresponding Legendre-DVR basis, corresponding to the angle. The use of Legendre functions ensures the efficient treatment of the angular singularity. Matrix elements of the singular radial operators are calculated employing DVRs using the quadrature approximation as well as special DVRs satisfying the boundary conditions and thus allowing for the use of exact DVR expressions. Potential optimized (PO) radial DVRs, based on one-dimensional Hamiltonians with potentials obtained by fixing or relaxing the two non-active coordinates, are also studied. The numerical calculations employed Hermite-DVR, spherical-oscillator-DVR, and Bessel-DVR bases as the primitive radial functions. A new analytical formula is given for the determination of the matrix elements of the singular radial operator using the Bessel-DVR basis. The usually claimed failure of the quadrature approximation in certain singular integrals is revisited in one and three dimensions. It is shown that as long as no potential optimization is carried out the quadrature approximation works almost as well as the exact DVR expressions. If wave functions with finite amplitude at the boundary are to be computed, the basis sets need to meet the required boundary conditions. The present numerical results also confirm that PO-DVRs should be constructed employing relaxed potentials and PO-DVRs can be useful for optimizing quadrature points for calculations applying large coordinate intervals and describing large-amplitude motions. The utility and efficiency of the different algorithms is demonstrated by the computation of converged near-dissociation vibrational energy levels for the H molecular ion.
Yamamoto, Shingo; Tanooka, Masao; Ando, Kumiko; Yamano, Toshiko; Ishikura, Reiichi; Nojima, Michio; Hirota, Shozo; Shima, Hiroki
2009-12-01
To evaluate the diagnostic accuracy of computed tomography (CT)-based imaging methods for assessing renal vascular anatomy, imaging studies, including standard axial CT, three-dimensional volume-rendered CT (3DVR-CT), and a 3DVR-CT movie, were performed on 30 patients who underwent laparoscopic donor nephrectomy (10 right side, 20 left side) for predicting the location of the renal arteries and renal, adrenal, gonadal, and lumbar veins. These findings were compared with videos obtained during the operation. Two of 37 renal arteries observed intraoperatively were missed by standard axial CT and 3DVR-CT, whereas all arteries were identified by the 3DVR-CT movie. Two of 36 renal veins were missed by standard axial CT and 3DVR-CT, whereas 1 was missed by the 3DVR-CT movie. In 20 left renal hilar anatomical structures, 20 adrenal, 20 gonadal, and 22 lumbar veins were observed during the operation. Preoperatively, the standard axial CT, 3DVR-CT, and 3DVR-CT movie detected 11, 19, and 20 adrenal veins; 13, 14, and 19 gonadal veins; and 6, 11, and 15 lumbar veins, respectively. Overall, of 135 renal vascular structures, the standard axial CT, 3DVR-CT, and 3DVR-CT movie accurately detected 99 (73.3%), 113 (83.7%), and 126 (93.3%) vessels, respectively, which indicated that the 3DVR-CT movie demonstrated a significantly higher detection rate than other CT-based imaging methods (P < 0.05). The 3DVR-CT movie accurately provides essential information about the renal vascular anatomy before laparoscopic donor nephrectomy.
van Beukering, Pieter J H; Bartelings, Heleen; Linderhof, Vincent G M; Oosterhuis, Frans H
2009-11-01
Differential and variable rates (DVR) in waste collection charging give a price incentive to households to reduce their waste and increase recycling. International empirical evidence confirms the effectiveness of DVR schemes, with limited unwanted side effects. In the Netherlands, currently some 20% of the population is charged at DVR. This is less than in several other countries. Taking into account differences between types of households and dwellings, this study analyses various scenarios for extended use of DVR in the Netherlands. The analysis shows that further penetration of DVR is a cost-effective instrument for waste reduction and more recycling. Moreover, DVR can itself be seen as a necessary condition for the successful implementation of other economic instruments, such as waste taxes. It is therefore recommended to stimulate municipalities to adopt DVR schemes in the Netherlands, accompanied by the provision of adequate facilities for waste separation by households. Before introducing DVR in 'very strongly urbanized' municipalities (i.e. the 12 largest cities in the Netherlands) a pilot experiment in one of them might be useful to test the behavioral response in this category.
Folic acid protects against arsenic-mediated embryo toxicity by up-regulating the expression of Dvr1
Ma, Yan; Zhang, Chen; Gao, Xiao-Bo; Luo, Hai-Yan; Chen, Yang; Li, Hui-hua; Ma, Xu; Lu, Cai-Ling
2015-01-01
As a nutritional factor, folic acid can prevent cardiac and neural defects during embryo development. Our previous study showed that arsenic impairs embryo development by down-regulating Dvr1/GDF1 expression in zebrafish. Here, we investigated whether folic acid could protect against arsenic-mediated embryo toxicity. We found that folic acid supplementation increases hatching and survival rates, decreases malformation rate and ameliorates abnormal cardiac and neural development of zebrafish embryos exposed to arsenite. Both real-time PCR analysis and whole in-mount hybridization showed that folic acid significantly rescued the decrease in Dvr1 expression caused by arsenite. Subsequently, our data demonstrated that arsenite significantly decreased cell viability and GDF1 mRNA and protein levels in HEK293ET cells, while folic acid reversed these effects. Folic acid attenuated the increase in subcellular reactive oxygen species (ROS) levels and oxidative adaptor p66Shc protein expression in parallel with the changes in GDF1 expression and cell viability. P66Shc knockdown significantly inhibited the production of ROS and the down-regulation of GDF1 induced by arsenite. Our data demonstrated that folic acid supplementation protected against arsenic-mediated embryo toxicity by up-regulating the expression of Dvr1/GDF1, and folic acid enhanced the expression of GDF1 by decreasing p66Shc expression and subcellular ROS levels. PMID:26537450
Helde, K A; Grunwald, D J
1993-10-01
It is not known how region- or tissue-specific differences are generated in the zebrafish embryo. To look at the potential role of maternal transcripts in generating cell diversity, we have isolated and characterized the zebrafish homologue of Xenopus DVR-1 (Vg1), a maternally supplied RNA that encodes a member of the transforming growth factor-beta superfamily. The zebrafish DVR-1 RNA is maternally supplied and its protein product shares a high degree of sequence identity with Xenopus DVR-1. These conserved features indicate that DVR-1 is likely to have an essential function in early embryogenesis. However, unlike the frog transcript, which is restricted to vegetal cells, DVR-1 RNA is distributed equally among all zebrafish blastomeres. We suggest that the ubiquitous distribution of DVR-1 RNA reflects a significant aspect of the developmental strategy of the zebrafish in which each blastomere retains an equivalent developmental potential throughout the cleavage period.
Zhai, Zhen; Li, Yu Yi; Zhang, Li; Pang, Bo; Pang, Huan Cheng; Wei, Ben Hui; Wang, Qing Wei; Qi, Shao Wei
2017-04-18
Annual rotary tillage can often create a compacted plough pan and shallow arable layer which hampers the high crop yield in Huang-Huai-Hai region. A brand new farming method named Vertically Rotary Tillage was introduced to solve this problem. One short-term field experiment was conducted to explore the effect of deep vertically rotary tillage on soil physical properties and photosynthetic characteristics at flowering stage of winter wheat. Two tillage treatments were designed including subsoiling tillage with 20 cm depth (SS 20 , CK) and deep vertically rotary tillage with 30 cm depth (DVR 30 ). The result showed that compared with SS 20 treatment, DVR 30 treatment could thoroughly break the plow pan and loose the arable layer. The soil bulk density at 10-20 cm and 20-30 cm layers under DVR 30 treatment was decreased by 9.5% and 11.2% respectively than that under SS 20 treatment. Meanwhile, the penetration resistance at 20-30 cm layer under DVR 30 treatment was also decreased by 42.3% than that under SS 20 treatment. Moreover, water infiltration under DVR 30 treatment and the soil water storage in the deep soil layers was then increased. The mass water content of soil increased significantly with the increase of soil depth. There was significant difference of mass water content of 30-40 cm 40-50 cm between SS 20 and DVR 30 . The mass water content 30-40 cm and 40-50 cm layers under DVR 30 treatment was increased by 16.9% and 10.6% compared with SS 20 treatment, respectively. Furthermore, DVR 30 treatment promoted the improvement of the photosynthetic capacity of wheat which could contribute to the dry matter accumulation of winter wheat. The net photosynthesis rate and SPAD at flowering stage of winter wheat leaves under DVR 30 treatment were increased by 1.3% and 15.5% respectively than that under SS 20 treatment, thereby the above and underground dry matter accumulation of winter wheat under DVR 30 was increased significantly. Due to all the superiority of DVR 30 treatment over SS 20 treatment showed above, the winter wheat yield under DVR 30 treatment was increased by 12.4% than that under SS 20 . It was concluded that deep vertically rotary tillage could provide a new and effective way to break up the compacted plough pan, build a reasonable soil structure and increase crop yield.
Tracer Kinetic Analysis of (S)-¹⁸F-THK5117 as a PET Tracer for Assessing Tau Pathology.
Jonasson, My; Wall, Anders; Chiotis, Konstantinos; Saint-Aubert, Laure; Wilking, Helena; Sprycha, Margareta; Borg, Beatrice; Thibblin, Alf; Eriksson, Jonas; Sörensen, Jens; Antoni, Gunnar; Nordberg, Agneta; Lubberink, Mark
2016-04-01
Because a correlation between tau pathology and the clinical symptoms of Alzheimer disease (AD) has been hypothesized, there is increasing interest in developing PET tracers that bind specifically to tau protein. The aim of this study was to evaluate tracer kinetic models for quantitative analysis and generation of parametric images for the novel tau ligand (S)-(18)F-THK5117. Nine subjects (5 with AD, 4 with mild cognitive impairment) received a 90-min dynamic (S)-(18)F-THK5117 PET scan. Arterial blood was sampled for measurement of blood radioactivity and metabolite analysis. Volume-of-interest (VOI)-based analysis was performed using plasma-input models; single-tissue and 2-tissue (2TCM) compartment models and plasma-input Logan and reference tissue models; and simplified reference tissue model (SRTM), reference Logan, and SUV ratio (SUVr). Cerebellum gray matter was used as the reference region. Voxel-level analysis was performed using basis function implementations of SRTM, reference Logan, and SUVr. Regionally averaged voxel values were compared with VOI-based values from the optimal reference tissue model, and simulations were made to assess accuracy and precision. In addition to 90 min, initial 40- and 60-min data were analyzed. Plasma-input Logan distribution volume ratio (DVR)-1 values agreed well with 2TCM DVR-1 values (R(2)= 0.99, slope = 0.96). SRTM binding potential (BP(ND)) and reference Logan DVR-1 values were highly correlated with plasma-input Logan DVR-1 (R(2)= 1.00, slope ≈ 1.00) whereas SUVr(70-90)-1 values correlated less well and overestimated binding. Agreement between parametric methods and SRTM was best for reference Logan (R(2)= 0.99, slope = 1.03). SUVr(70-90)-1 values were almost 3 times higher than BP(ND) values in white matter and 1.5 times higher in gray matter. Simulations showed poorer accuracy and precision for SUVr(70-90)-1 values than for the other reference methods. SRTM BP(ND) and reference Logan DVR-1 values were not affected by a shorter scan duration of 60 min. SRTM BP(ND) and reference Logan DVR-1 values were highly correlated with plasma-input Logan DVR-1 values. VOI-based data analyses indicated robust results for scan durations of 60 min. Reference Logan generated quantitative (S)-(18)F-THK5117 DVR-1 parametric images with the greatest accuracy and precision and with a much lower white-matter signal than seen with SUVr(70-90)-1 images. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Enhanced High Performance Power Compensation Methodology by IPFC Using PIGBT-IDVR
Arumugom, Subramanian; Rajaram, Marimuthu
2015-01-01
Currently, power systems are involuntarily controlled without high speed control and are frequently initiated, therefore resulting in a slow process when compared with static electronic devices. Among various power interruptions in power supply systems, voltage dips play a central role in causing disruption. The dynamic voltage restorer (DVR) is a process based on voltage control that compensates for line transients in the distributed system. To overcome these issues and to achieve a higher speed, a new methodology called the Parallel IGBT-Based Interline Dynamic Voltage Restorer (PIGBT-IDVR) method has been proposed, which mainly spotlights the dynamic processing of energy reloads in common dc-linked energy storage with less adaptive transition. The interline power flow controller (IPFC) scheme has been employed to manage the power transmission between the lines and the restorer method for controlling the reactive power in the individual lines. By employing the proposed methodology, the failure of a distributed system has been avoided and provides better performance than the existing methodologies. PMID:26613101
Research on distributed virtual reality system in electronic commerce
NASA Astrophysics Data System (ADS)
Xue, Qiang; Wang, Jiening; Sun, Jizhou
2004-03-01
In this paper, Distributed Virtual Reality (DVR) technology applied in Electronical Commerce (EC) is discussed. DVR has the capability of providing a new means for human being to recognize, analyze and resolve the large scale, complex problems, which makes it develop quickly in EC fields. The technology of CSCW (Computer Supported Cooperative Work) and middleware is introduced into the development of EC-DVR system to meet the need of a platform which can provide the necessary cooperation and communication services to avoid developing the basic module repeatedly. Finally, the paper gives a platform structure of EC-DVR system.
Effect of sodium chloride gradients on water flux in rat descending vasa recta.
Pallone, T L
1991-01-01
In the hydropenic kidney, volume efflux from descending vasa recta (DVR) occurs despite an intracapillary oncotic pressure that exceeds hydraulic pressure. That finding has been attributed to small solute gradients which may provide an additional osmotic driving force favoring water transport from DVR plasma to the papillary interstitium. To test this hypothesis, axial gradients of NaCl and urea in the papilla were eliminated by administration of furosemide and saline. DVR were then blocked with paraffin and microperfused at 10 nl/min with a buffer containing albumin, fluorescein isothiocyanate labeled dextran (FITC-Dx), 22Na, and NaCl in a concentration of 0 (hypotonic to the interstitium), 161 (isotonic) or 322 mM (hypertonic). Collectate was obtained from the perfused DVR by micropuncture and the collectate-to-perfusate ratios of FITC-Dx and 22Na were measured. A mathematical model was employed to determine DVR permeability (Ps) and reflection coefficient to NaCl (sigma NaCl). The rate of transport of water from the DVR lumen to the papillary interstitium was 2.8 +/- 0.3 (Nv = 22), -0.19 +/- 0.4 (Nv = 15), and -2.3 +/- 0.3 nl/min (Nv = 21) (mean +/- SE) when perfusate NaCl was 0, 161, or 322 mM, respectively (Nv = number of DVR perfused). The collectate-to-perfusate 22Na concentration ratios were 0.34 +/- 0.04, 0.36 +/- 0.04 and 0.37 +/- 0.03 for those groups, respectively. Based on these data, Ps is calculated to be 60.4 x 10(-5) +/- 4.0 x 10(-5) cm/s and sigma NaCl less than 0.05. The results of this study confirm that transcapillary NaCl concentrations gradients induce water movement across the wall of the DVR.
Parrish, Robert M; Hohenstein, Edward G; Martínez, Todd J; Sherrill, C David
2013-05-21
We investigate the application of molecular quadratures obtained from either standard Becke-type grids or discrete variable representation (DVR) techniques to the recently developed least-squares tensor hypercontraction (LS-THC) representation of the electron repulsion integral (ERI) tensor. LS-THC uses least-squares fitting to renormalize a two-sided pseudospectral decomposition of the ERI, over a physical-space quadrature grid. While this procedure is technically applicable with any choice of grid, the best efficiency is obtained when the quadrature is tuned to accurately reproduce the overlap metric for quadratic products of the primary orbital basis. Properly selected Becke DFT grids can roughly attain this property. Additionally, we provide algorithms for adopting the DVR techniques of the dynamics community to produce two different classes of grids which approximately attain this property. The simplest algorithm is radial discrete variable representation (R-DVR), which diagonalizes the finite auxiliary-basis representation of the radial coordinate for each atom, and then combines Lebedev-Laikov spherical quadratures and Becke atomic partitioning to produce the full molecular quadrature grid. The other algorithm is full discrete variable representation (F-DVR), which uses approximate simultaneous diagonalization of the finite auxiliary-basis representation of the full position operator to produce non-direct-product quadrature grids. The qualitative features of all three grid classes are discussed, and then the relative efficiencies of these grids are compared in the context of LS-THC-DF-MP2. Coarse Becke grids are found to give essentially the same accuracy and efficiency as R-DVR grids; however, the latter are built from explicit knowledge of the basis set and may guide future development of atom-centered grids. F-DVR is found to provide reasonable accuracy with markedly fewer points than either Becke or R-DVR schemes.
Impact of distributed virtual reality on engineering knowledge retention and student engagement
NASA Astrophysics Data System (ADS)
Sulbaran, Tulio Alberto
Engineering Education is facing many problems, one of which is poor knowledge retention among engineering students. This problem affects the Architecture, Engineering, and Construction (A/E/C) industry, because students are unprepared for many necessary job skills. This problem of poor knowledge retention is caused by many factors, one of which is the mismatch between student learning preferences and the media used to teach engineering. The purpose of this research is to assess the impact of Distributed Virtual Reality (DVR) as an engineering teaching tool. The implementation of DVR addresses the issue of poor knowledge retention by impacting the mismatch between learning and teaching style in the visual versus verbal spectrum. Using as a point of departure three knowledge domain areas (Learning and Instruction, Distributed Virtual Reality and Crane Selection as Part of Crane Lift Planning), a DVR engineering teaching tool is developed, deployed and assessed in engineering classrooms. The statistical analysis of the data indicates that: (1) most engineering students are visual learners; (2) most students would like more classes using DVR; (3) engineering students find DVR more engaging than traditional learning methods; (4) most students find the responsiveness of the DVR environments to be either good or very good; (5) all students are able to interact with DVR and most of the students found it easy or very easy to navigate (without previous formal training in how to use DVR); (6) students' knowledge regarding the subject (crane selection) is higher after the experiment; and, (7) students' using different instructional media do not demonstrate statistical difference in knowledge retained after the experiment. This inter-disciplinary research offers opportunities for direct and immediate application in education, research, and industry, due to the fact that the instructional module developed (on crane selection as part of construction crane lift planning) can be used to convey knowledge to engineers beyond the classrooms. This instructional module can also be used as a workbench to assess parameters on engineering education such as time on task, assessment media, and long-term retention among others.
HO2 rovibrational eigenvalue studies for nonzero angular momentum
NASA Astrophysics Data System (ADS)
Wu, Xudong T.; Hayes, Edward F.
1997-08-01
An efficient parallel algorithm is reported for determining all bound rovibrational energy levels for the HO2 molecule for nonzero angular momentum values, J=1, 2, and 3. Performance tests on the CRAY T3D indicate that the algorithm scales almost linearly when up to 128 processors are used. Sustained performance levels of up to 3.8 Gflops have been achieved using 128 processors for J=3. The algorithm uses a direct product discrete variable representation (DVR) basis and the implicitly restarted Lanczos method (IRLM) of Sorensen to compute the eigenvalues of the polyatomic Hamiltonian. Since the IRLM is an iterative method, it does not require storage of the full Hamiltonian matrix—it only requires the multiplication of the Hamiltonian matrix by a vector. When the IRLM is combined with a formulation such as DVR, which produces a very sparse matrix, both memory and computation times can be reduced dramatically. This algorithm has the potential to achieve even higher performance levels for larger values of the total angular momentum.
Business Enterprise Program | Division of Vocational Rehabilitation
About Us > Business Enterprise Program Business Enterprise Program The Division of Vocational Rehabilitation's (DVR) Business Enterprise Program (BEP) provides employment opportunities to people who experience contact their DVR counselor or the BEP coordinator. List of Business Enterprise Program Vendors BEP Policy
Architecture of the human renal inner medulla and functional implications
Wei, Guojun; Rosen, Seymour; Dantzler, William H.
2015-01-01
The architecture of the inner stripe of the outer medulla of the human kidney has long been known to exhibit distinctive configurations; however, inner medullary architecture remains poorly defined. Using immunohistochemistry with segment-specific antibodies for membrane fluid and solute transporters and other proteins, we identified a number of distinctive functional features of human inner medulla. In the outer inner medulla, aquaporin-1 (AQP1)-positive long-loop descending thin limbs (DTLs) lie alongside descending and ascending vasa recta (DVR, AVR) within vascular bundles. These vascular bundles are continuations of outer medullary vascular bundles. Bundles containing DTLs and vasa recta lie at the margins of coalescing collecting duct (CD) clusters, thereby forming two regions, the vascular bundle region and the CD cluster region. Although AQP1 and urea transporter UT-B are abundantly expressed in long-loop DTLs and DVR, respectively, their expression declines with depth below the outer medulla. Transcellular water and urea fluxes likely decline in these segments at progressively deeper levels. Smooth muscle myosin heavy chain protein is also expressed in DVR of the inner stripe and the upper inner medulla, but is sparsely expressed at deeper inner medullary levels. In rodent inner medulla, fenestrated capillaries abut CDs along their entire length, paralleling ascending thin limbs (ATLs), forming distinct compartments (interstitial nodal spaces; INSs); however, in humans this architecture rarely occurs. Thus INSs are relatively infrequent in the human inner medulla, unlike in the rodent where they are abundant. UT-B is expressed within the papillary epithelium of the lower inner medulla, indicating a transcellular pathway for urea across this epithelium. PMID:26290371
Embryonic development of connections in turtle pallium.
Cordery, P; Molnár, Z
1999-10-11
We are interested in similarities and conserved mechanisms in early development of the reptilian and mammalian thalamocortical connections. We set out to analyse connectivity in embryonic turtle brains (Pseudemys scripta elegans, between stages 17 and 25), by using carbocyanine dye tracing. From the earliest stages studied, labelling from dorsal and ventral thalamus revealed backlabelled cells among developing thalamic fibres within the lateral forebrain bundle and striatum, which had similar morphology to backlabelled internal capsule cells in embryonic rat (Molnár and Cordery, 1999). However, thalamic crystal placements did not label cells in the dorsal ventricular ridge (DVR) at any stage examined. Crystal placements into both dorsal and lateral cortex labelled cells in the DVR and, reciprocally, DVR crystal placements labelled cells in the dorsal and lateral cortices. Retrograde labelling revealed that thalamic fibres arrive in the DVR and dorsal cortex by stage 19. The DVR received projections from the nucleus rotundus and the dorsal cortex exclusively from the perirotundal complex (including lateral geniculate nucleus). Thalamic fibres show this remarkable degree of specificity from the earliest stage we could examine with selective retrograde labelling (stage 19). Our study demonstrates that axons of similar cells are among the first to reach dorsal and ventral thalamus in mammals and reptiles. Our connectional analysis in turtle suggests that some cells of the mammalian primitive internal capsule are homologous to a cell group within the reptilian lateral forebrain bundle and striatum and that diverse vertebrate brains might use a highly conserved pattern of early thalamocortical development. Copyright 1999 Wiley-Liss, Inc.
Gender differences in a sample of vocational rehabilitation clients with TBI.
Bounds, Thomas A; Schopp, Laura; Johnstone, Brick; Unger, Clarinda; Goldman, Herb
2003-01-01
Because traumatic brain injury affects between 1.5 and 2 million individuals per year and results in long term vocational and financial difficulties, there is growing interest in determining those factors that predict successful outcomes for specific groups of individuals with TBI. An NIH consensus panel on TBI has suggested that women are one group that needs more attention, particularly given the studies indicating that men and women experience different cognitive [14], emotional [19], and vocational outcomes following TBI [5]. The current study evaluated differences in injury severity, demographics, neuropsychological abilities, and vocational and financial outcomes for 78 persons with TBI (55 male, 23 female) who received services from a state Vocational Rehabilitation Division (DVR). Despite similar injury severity, neuropsychological and demographic characteristics, more men (43.6%) received Maintenance services from MO-DVR than women (21.7%). Of note, only 4.4% of the women were successfully employed through DVR, compared to 23.6% of the men. In addition, 73.9% of the women had services terminated after being accepted by DVR but before services were initiated, compared to 56.4% of the men. The significance of these results is discussed, as are the limitations of the current project.
Smid, Lojze M; Kepe, Vladimir; Vinters, Harry V; Bresjanac, Mara; Toyokuni, Tatsushi; Satyamurthy, Nagichettiar; Wong, Koon-Pong; Huang, Sung-Cheng; Silverman, Daniel H S; Miller, Karen; Small, Gary W; Barrio, Jorge R
2013-01-01
This work is aimed at correlating pre-mortem [18F]FDDNP positron emission tomography (PET) scan results in a patient with dementia with Lewy bodies (DLB), with cortical neuropathology distribution determined postmortem in three physical dimensions in whole brain coronal sections. Analysis of total amyloid-β (Aβ) distribution in frontal cortex and posterior cingulate gyrus confirmed its statistically significant correlation with cortical [18F]FDDNP PET binding values (distribution volume ratios, DVR) (p < 0.001, R = 0.97, R2 = 0.94). Neurofibrillary tangle (NFT) distribution correlated significantly with cortical [18F]FDDNP PET DVR in the temporal lobe (p < 0.001, R = 0.87, R2 = 0.76). Linear combination of Aβ and NFT densities was highly predictive of [18F]FDDNP PET DVR through all analyzed regions of interest (p < 0.0001, R = 0.92, R2 = 0.85), and both densities contributed significantly to the model. Lewy bodies were present at a much lower level than either Aβ or NFTs and did not significantly contribute to the in vivo signal. [18F]FDG PET scan results in this patient were consistent with the distinctive DLB pattern of hypometabolism. This work offers a mapping brain model applicable to all imaging probes for verification of imaging results with Aβ and/or tau neuropathology brain distribution using immunohistochemistry, fluorescence microscopy, and autoradiography.
Imagama, Shiro; Ito, Zenya; Wakao, Norimitsu; Ando, Kei; Hirano, Kenichi; Tauchi, Ryoji; Muramoto, Akio; Matsui, Hiroki; Matsumoto, Tomohiro; Sakai, Yoshihito; Katayama, Yoshito; Matsuyama, Yukihiro; Ishiguro, Naoki
2016-10-01
Prospective clinical case series. To describe our surgical procedure and results for posterior correction and fusion with a hybrid approach using pedicle screws, hooks, and ultrahigh-molecular weight polyethylene tape with direct vertebral rotation (DVR) (the PSTH-DVR procedure) for treatment of adolescent idiopathic scoliosis (AIS) with satisfactory correction in the coronal and sagittal planes. Introduction of segmental pedicle screws in posterior surgery for AIS has facilitated good correction and fusion. However, procedures using only pedicle screws have risks during screw insertion, higher costs, and decreased postoperative thoracic kyphosis. We have obtained good outcomes compared with segmental pedicle screw fixation in surgery for AIS using a relatively simple operative procedure (PSTH-DVR) that uses fewer pedicle screws. The subjects were 30 consecutive patients with AIS who underwent the PSTH-DVR procedure and were followed for a minimum of 2 years. Preoperative flexibility, preoperative and postoperative Cobb angles, correction rates, loss of correction, thoracic kyphotic angles (T5-T12), coronal balance, sagittal balance, and shoulder balance were measured on plain radiographs. Rib hump, operation time, estimated blood loss, spinal cord monitoring findings, complications, and scoliosis research society (SRS)-22 scores were also examined. The mean preoperative curve of 58.0 degrees (range, 40-96 degrees) was corrected to a mean of 9.9 degrees postoperatively, and the correction rate was 83.6%. Fusion was obtained in all patients without loss of correction. In 10 cases with preoperative kyphosis angles (T5-T12) <10 degrees, the preoperative mean of 5.8 degrees improved to 20.2 degrees at the final follow-up. Rib hump and coronal, sagittal and shoulder balances were also improved, and good SRS-22 scores were achieved at final follow-up. The correction of deformity with PSTH-DVR is equivalent to that of all-pedicle screw constructs. The procedure gives favorable correction, is advantageous for kyphosis compared with segmental screw fixation, and uses the minimum number of pedicle screws. Therefore, the PSTH-DVR procedure may be useful for treatment of idiopathic scoliosis.
Zhou, Yun; Sojkova, Jitka; Resnick, Susan M.; Wong, Dean F.
2012-01-01
Both the standardized uptake value ratio (SUVR) and the Logan plot result in biased distribution volume ratios (DVR) in ligand-receptor dynamic PET studies. The objective of this study is to use a recently developed relative equilibrium-based graphical plot (RE plot) method to improve and simplify the two commonly used methods for quantification of [11C]PiB PET. Methods The overestimation of DVR in SUVR was analyzed theoretically using the Logan and the RE plots. A bias-corrected SUVR (bcSUVR) was derived from the RE plot. Seventy-eight [11C]PiB dynamic PET scans (66 from controls and 12 from mildly cognitively impaired participants (MCI) from the Baltimore Longitudinal Study of Aging (BLSA)) were acquired over 90 minutes. Regions of interest (ROIs) were defined on coregistered MRIs. Both the ROI and pixelwise time activity curves (TACs) were used to evaluate the estimates of DVR. DVRs obtained using the Logan plot applied to ROI TACs were used as a reference for comparison of DVR estimates. Results Results from the theoretical analysis were confirmed by human studies. ROI estimates from the RE plot and the bcSUVR were nearly identical to those from the Logan plot with ROI TACs. In contrast, ROI estimates from DVR images in frontal, temporal, parietal, cingulate regions, and the striatum were underestimated by the Logan plot (controls 4 – 12%; MCI 9 – 16%) and overestimated by the SUVR (controls 8 – 16%; MCI 16 – 24%). This bias was higher in the MCI group than in controls (p < 0.01) but was not present when data were analyzed using either the RE plot or the bcSUVR. Conclusion The RE plot improves pixel-wise quantification of [11C]PiB dynamic PET compared to the conventional Logan plot. The bcSUVR results in lower bias and higher consistency of DVR estimates compared to SUVR. The RE plot and the bcSUVR are practical quantitative approaches that improve the analysis of [11C]PiB studies. PMID:22414634
Architecture of the human renal inner medulla and functional implications.
Wei, Guojun; Rosen, Seymour; Dantzler, William H; Pannabecker, Thomas L
2015-10-01
The architecture of the inner stripe of the outer medulla of the human kidney has long been known to exhibit distinctive configurations; however, inner medullary architecture remains poorly defined. Using immunohistochemistry with segment-specific antibodies for membrane fluid and solute transporters and other proteins, we identified a number of distinctive functional features of human inner medulla. In the outer inner medulla, aquaporin-1 (AQP1)-positive long-loop descending thin limbs (DTLs) lie alongside descending and ascending vasa recta (DVR, AVR) within vascular bundles. These vascular bundles are continuations of outer medullary vascular bundles. Bundles containing DTLs and vasa recta lie at the margins of coalescing collecting duct (CD) clusters, thereby forming two regions, the vascular bundle region and the CD cluster region. Although AQP1 and urea transporter UT-B are abundantly expressed in long-loop DTLs and DVR, respectively, their expression declines with depth below the outer medulla. Transcellular water and urea fluxes likely decline in these segments at progressively deeper levels. Smooth muscle myosin heavy chain protein is also expressed in DVR of the inner stripe and the upper inner medulla, but is sparsely expressed at deeper inner medullary levels. In rodent inner medulla, fenestrated capillaries abut CDs along their entire length, paralleling ascending thin limbs (ATLs), forming distinct compartments (interstitial nodal spaces; INSs); however, in humans this architecture rarely occurs. Thus INSs are relatively infrequent in the human inner medulla, unlike in the rodent where they are abundant. UT-B is expressed within the papillary epithelium of the lower inner medulla, indicating a transcellular pathway for urea across this epithelium. Copyright © 2015 the American Physiological Society.
Voneida, T J; Sligar, C M
1979-07-01
A H3 proline-leucine mixture was injected into the dorsal ventricular ridge (DVR) and striatum of the Tegu lizard in order to determine their efferent projections. The brains were processed according to standard radioautographic technique, and counterstained with cresyl violet. DVR projections were generally restricted to the telencephalon, while striatal projections were limited to diencephalic and mesencephalic structures. Thus the anterior DVR projects ipsilaterally to nuclei sphericus and lateralis amygdalae, striatum (ipsilateral and contralateral) ventromedial nucleus of the hypothalamus, nucleus accumbens, anterior olfactory nucleus, nucleus of the lateral olfactory tract and lateral pallium. Posterior DVR projections enter ipsilateral anterior olfactory nucleus, lateral and interstitial amygdalar nuclei, olfactory tubercle and bulb, nucleus of the lateral olfactory tract and a zone surrounding the ventromedial hypothalamic nucleus. Labeled axons from striatal injections pass caudally in the lateral forebrain bundle to enter (via dorsal peduncle) nuclei dorsomedialis, medialis posterior, entopeduncularis anterior, and a zone surrounding nucleus rotundus. Others join the ventral peduncle of LFB and enter ventromedial nucleus (thalami), while the remaining fibers continue caudally in the ventral peduncle to the mesencephalic prerubral field, central gray, substantia nigra, nucleus intercollicularis, reticular formation and pretectal nucleus posterodorsalis. These results are discussed in relation to the changing notions regarding terminology, classification and functions of dorsl ventricular ridge and striatum.
Assessment and mitigation of power quality problems for PUSPATI TRIGA Reactor (RTP)
NASA Astrophysics Data System (ADS)
Zakaria, Mohd Fazli; Ramachandaramurthy, Vigna K.
2017-01-01
An electrical power systems are exposed to different types of power quality disturbances. Investigation and monitoring of power quality are necessary to maintain accurate operation of sensitive equipment especially for nuclear installations. This paper will discuss the power quality problems observed at the electrical sources of PUSPATI TRIGA Reactor (RTP). Assessment of power quality requires the identification of any anomalous behavior on a power system, which adversely affects the normal operation of electrical or electronic equipment. A power quality assessment involves gathering data resources; analyzing the data (with reference to power quality standards) then, if problems exist, recommendation of mitigation techniques must be considered. Field power quality data is collected by power quality recorder and analyzed with reference to power quality standards. Normally the electrical power is supplied to the RTP via two sources in order to keep a good reliability where each of them is designed to carry the full load. The assessment of power quality during reactor operation was performed for both electrical sources. There were several disturbances such as voltage harmonics and flicker that exceeded the thresholds. To reduce these disturbances, mitigation techniques have been proposed, such as to install passive harmonic filters to reduce harmonic distortion, dynamic voltage restorer (DVR) to reduce voltage disturbances and isolate all sensitive and critical loads.
Exposure Render: An Interactive Photo-Realistic Volume Rendering Framework
Kroes, Thomas; Post, Frits H.; Botha, Charl P.
2012-01-01
The field of volume visualization has undergone rapid development during the past years, both due to advances in suitable computing hardware and due to the increasing availability of large volume datasets. Recent work has focused on increasing the visual realism in Direct Volume Rendering (DVR) by integrating a number of visually plausible but often effect-specific rendering techniques, for instance modeling of light occlusion and depth of field. Besides yielding more attractive renderings, especially the more realistic lighting has a positive effect on perceptual tasks. Although these new rendering techniques yield impressive results, they exhibit limitations in terms of their exibility and their performance. Monte Carlo ray tracing (MCRT), coupled with physically based light transport, is the de-facto standard for synthesizing highly realistic images in the graphics domain, although usually not from volumetric data. Due to the stochastic sampling of MCRT algorithms, numerous effects can be achieved in a relatively straight-forward fashion. For this reason, we have developed a practical framework that applies MCRT techniques also to direct volume rendering (DVR). With this work, we demonstrate that a host of realistic effects, including physically based lighting, can be simulated in a generic and flexible fashion, leading to interactive DVR with improved realism. In the hope that this improved approach to DVR will see more use in practice, we have made available our framework under a permissive open source license. PMID:22768292
Evolution of the amniote pallium and the origins of mammalian neocortex
Butler, Ann B.; Reiner, Anton; Karten, Harvey J.
2012-01-01
Karten's neocortex hypothesis holds that many component cell populations of the sauropsid dorsal ventricular ridge (DVR) are homologous to particular cell populations in layers of auditory and visual tectofugal-recipient neocortex of mammals (i.e., temporal neocortex), as well as to some amygdaloid populations. The claustroamygdalar hypothesis, based on gene expression domains, proposes that mammalian homologues of DVR are found in the claustrum, endopiriform nuclei, and/or pallial amygdala. Because hypotheses of homology need to account for the totality of the evidence, the available data on multiple forebrain features of sauropsids and mammals are reviewed here. While some genetic data are compatible with the claustroamygdalar hypothesis, and developmental (epigenetic) data are indecisive, hodological, morphological, and topographical data favor the neocortex hypothesis and are inconsistent with the claustroamygdalar hypothesis. Detailed studies of gene signaling cascades that establish neuronal cell-type identity in DVR, tectofugal-recipient neocortex, and claustroamygdala will be needed to resolve this debate about the evolution of neocortex. PMID:21534989
Blue phase-change recording at high data densities and data rates
NASA Astrophysics Data System (ADS)
Dekker, Martijn K.; Pfeffer, Nicola; Kuijper, Maarten; Ubbens, Igolt P.; Coene, Wim M. J.; Meinders, E. R.; Borg, Herman J.
2000-09-01
For the DVR system with the use of a blue laser diode (wavelength 405 nm) we developed (12 cm) discs with a total capacity of 22.4 GB. The land/groove track pitch is 0.30 micrometers and the channel bit length is 87 nm. The DVR system uses a d equals 1 code. These phase change discs can be recorded at continuous angular velocity at a maximum of 50 Mbps user data rate (including all format and ECC overhead) and meet the system specifications. Fast growth determined phase change materials (FGM) are used for the active layer. In order to apply these FGM discs at small track pitch special attention has been paid to the issue of thermal cross-write. Finally routes towards higher capacities such as advanced bit detection schemes and the use of a smaller track pitch are considered. These show the feasibility in the near future of at least 26.0 GB on a disc for the DVR system with a blue laser diode.
Zhou, Yun; Sojkova, Jitka; Resnick, Susan M; Wong, Dean F
2012-04-01
Both the standardized uptake value ratio (SUVR) and the Logan plot result in biased distribution volume ratios (DVRs) in ligand-receptor dynamic PET studies. The objective of this study was to use a recently developed relative equilibrium-based graphical (RE) plot method to improve and simplify the 2 commonly used methods for quantification of (11)C-Pittsburgh compound B ((11)C-PiB) PET. The overestimation of DVR in SUVR was analyzed theoretically using the Logan and the RE plots. A bias-corrected SUVR (bcSUVR) was derived from the RE plot. Seventy-eight (11)C-PiB dynamic PET scans (66 from controls and 12 from participants with mild cognitive impaired [MCI] from the Baltimore Longitudinal Study of Aging) were acquired over 90 min. Regions of interest (ROIs) were defined on coregistered MR images. Both the ROI and the pixelwise time-activity curves were used to evaluate the estimates of DVR. DVRs obtained using the Logan plot applied to ROI time-activity curves were used as a reference for comparison of DVR estimates. Results from the theoretic analysis were confirmed by human studies. ROI estimates from the RE plot and the bcSUVR were nearly identical to those from the Logan plot with ROI time-activity curves. In contrast, ROI estimates from DVR images in frontal, temporal, parietal, and cingulate regions and the striatum were underestimated by the Logan plot (controls, 4%-12%; MCI, 9%-16%) and overestimated by the SUVR (controls, 8%-16%; MCI, 16%-24%). This bias was higher in the MCI group than in controls (P < 0.01) but was not present when data were analyzed using either the RE plot or the bcSUVR. The RE plot improves pixelwise quantification of (11)C-PiB dynamic PET, compared with the conventional Logan plot. The bcSUVR results in lower bias and higher consistency of DVR estimates than of SUVR. The RE plot and the bcSUVR are practical quantitative approaches that improve the analysis of (11)C-PiB studies.
Koertke, Heinrich; Zittermann, Armin; Wagner, Otto; Secer, Songuel; Sciangula, Alfonso; Saggau, Werner; Sack, Falk-Udo; Ennker, Jürgen; Cremer, Jochen; Musumeci, Francesco; Gummert, Jan F
2015-06-01
To study in patients performing international normalized ratio (INR) self-control the efficacy and safety of an INR target range of 1.6-2.1 for aortic valve replacement (AVR) and 2.0-2.5 for mitral valve replacement (MVR) or double valve replacement (DVR). In total, 1304 patients undergoing AVR, 189 undergoing MVR and 78 undergoing DVR were randomly assigned to low-dose INR self-control (LOW group) (INR target range, AVR: 1.8-2.8; MVR/DVR: 2.5-3.5) or very low-dose INR self-control once a week (VLO group) and twice a week (VLT group) (INR target range, AVR: 1.6-2.1; MVR/DVR: 2.0-2.5), with electronically guided transfer of INR values. We compared grade III complications (major bleeding and thrombotic events; primary end-points) and overall mortality (secondary end-point) across the three treatment groups. Two-year freedom from bleedings in the LOW, VLO, and VLT groups was 96.3, 98.6, and 99.1%, respectively (P = 0.008). The corresponding values for thrombotic events were 99.0, 99.8, and 98.9%, respectively (P = 0.258). The risk-adjusted composite of grade III complications was in the per-protocol population (reference: LOW-dose group) as follows: hazard ratio = 0.307 (95% CI: 0.102-0.926; P = 0.036) for the VLO group and = 0.241 (95% CI: 0.070-0.836; P = 0.025) for the VLT group. The corresponding values of 2-year mortality were = 1.685 (95% CI: 0.473-5.996; P = 0.421) for the VLO group and = 4.70 (95% CI: 1.62-13.60; P = 0.004) for the VLT group. Telemedicine-guided very low-dose INR self-control is comparable with low-dose INR in thrombotic risk, and is superior in bleeding risk. Weekly testing is sufficient. Given the small number of MVR and DVR patients, results are only valid for AVR patients. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.
Chen, Jing; Edwards, Aurélie; Layton, Anita T
2009-08-01
we extended the region-based mathematical model of the urine-concentrating mechanism in the rat outer medulla (OM) developed by Layton and Layton (Am J Physiol Renal Physiol 289: F1346-F1366, 2005) to examine the impact of the complex structural organization of the OM on O(2) transport and distribution. In the present study, we investigated the sensitivity of predicted Po(2) profiles to several parameters that characterize the degree of OM regionalization, boundary conditions, structural dimensions, transmural transport properties, and relative positions and distributions of tubules and vessels. Our results suggest that the fraction of O(2) supplied to descending vasa recta (DVR) that reaches the inner medulla, i.e., a measure of the axial Po(2) gradient in the OM, is insensitive to parameter variations as a result of the sequestration of long DVR in the vascular bundles. In contrast, O(2) distribution among the regions surrounding the vascular core strongly depends on the radial positions of medullary thick ascending limbs (mTALs) relative to the vascular core, the degree of regionalization, and the distribution of short DVR along the corticomedullary axis. Moreover, if it is assumed that the mTAL active Na(+) transport rate decreases when mTAL Po(2) falls below a critical level, O(2) availability to mTALs has a significant impact on the concentrating capability of the model OM. The model also predicts that when the OM undergoes hypertrophy, its concentrating capability increases significantly only when anaerobic metabolism supports a substantial fraction of the mTAL active Na(+) transport and is otherwise critically reduced by low interstitial and mTAL luminal Po(2) in a hypertrophied OM.
Ríos, A; López-Navas, A I; De-Francisco, C; Sánchez, Á; Hernández, A M; Ramírez, P; Parrilla, P
2018-03-01
The attitude toward living kidney donation is important for certain promotion campaigns, however, there are few validated questionnaires in this regard. The aim of this work was to analyze the psychometric characteristics of the attitudes questionnaire about living renal donation, PCID-DVR-Ríos (Cuestionario del Proyecto Colaborativo Internacional Donante sobre Donación de Vivo Renal [Questionnaire of the International Collaborative Donor Project on Living Kidney Donation] developed by Dr Ríos) for the validation of the questionnaire in population of Spanish speakers. The sample studied represented the population >18 years of age, native and resident of Spain, stratified by age and sex. The measurement instrument was the PCID-DVR-Ríos questionnaire. Analysis of data was structured in several stages: an initial description of the data, exploratory factor analysis, item analysis, and internal consistency of the factors. The questionnaire consists of 11 items, distributed in 3 factors of 6, 3, and 2 items. This structure accounts for 63.995% of the total variance. By factors, the variance is distributed as follows: factor 1: 38.461%; factor 2: 14.228%; and factor 3: 11.306%. The analysis of items and internal consistency supported the trifactorial composition. Each factor is internally consistent (α1 = .80; α2 = .70; α3 = .55). The analyzed dimensions of the PCID-DVR Ríos questionnaire to analyze attitude toward living kidney donation showed a good fit in terms of factorial validity and internal consistency values. Copyright © 2017 Elsevier Inc. All rights reserved.
Wardak, Mirwais; Wong, Koon-Pong; Shao, Weber; Dahlbom, Magnus; Kepe, Vladimir; Satyamurthy, Nagichettiar; Small, Gary W.; Barrio, Jorge R.; Huang, Sung-Cheng
2010-01-01
Head movement during a PET scan (especially, dynamic scan) can affect both the qualitative and quantitative aspects of an image, making it difficult to accurately interpret the results. The primary objective of this study was to develop a retrospective image-based movement correction (MC) method and evaluate its implementation on dynamic [18F]-FDDNP PET images of cognitively intact controls and patients with Alzheimer’s disease (AD). Methods Dynamic [18F]-FDDNP PET images, used for in vivo imaging of beta-amyloid plaques and neurofibrillary tangles, were obtained from 12 AD and 9 age-matched controls. For each study, a transmission scan was first acquired for attenuation correction. An accurate retrospective MC method that corrected for transmission-emission misalignment as well as emission-emission misalignment was applied to all studies. No restriction was assumed for zero movement between the transmission scan and first emission scan. Logan analysis with cerebellum as the reference region was used to estimate various regional distribution volume ratio (DVR) values in the brain before and after MC. Discriminant analysis was used to build a predictive model for group membership, using data with and without MC. Results MC improved the image quality and quantitative values in [18F]-FDDNP PET images. In this subject population, medial temporal (MTL) did not show a significant difference between controls and AD before MC. However, after MC, significant differences in DVR values were seen in frontal, parietal, posterior cingulate (PCG), MTL, lateral temporal (LTL), and global between the two groups (P < 0.05). In controls and AD, the variability of regional DVR values (as measured by the coefficient of variation) decreased on average by >18% after MC. Mean DVR separation between controls and ADs was higher in frontal, MTL, LTL and global after MC. Group classification by discriminant analysis based on [18F]-FDDNP DVR values was markedly improved after MC. Conclusion The streamlined and easy to use MC method presented in this work significantly improves the image quality and the measured tracer kinetics of [18F]-FDDNP PET images. The proposed MC method has the potential to be applied to PET studies on patients having other disorders (e.g., Down syndrome and Parkinson’s disease) and to brain PET scans with other molecular imaging probes. PMID:20080894
Synchronous high speed multi-point velocity profile measurement by heterodyne interferometry
NASA Astrophysics Data System (ADS)
Hou, Xueqin; Xiao, Wen; Chen, Zonghui; Qin, Xiaodong; Pan, Feng
2017-02-01
This paper presents a synchronous multipoint velocity profile measurement system, which acquires the vibration velocities as well as images of vibrating objects by combining optical heterodyne interferometry and a high-speed CMOS-DVR camera. The high-speed CMOS-DVR camera records a sequence of images of the vibrating object. Then, by extracting and processing multiple pixels at the same time, a digital demodulation technique is implemented to simultaneously acquire the vibrating velocity of the target from the recorded sequences of images. This method is validated with an experiment. A piezoelectric ceramic plate with standard vibration characteristics is used as the vibrating target, which is driven by a standard sinusoidal signal.
Compartmental and Data-Based Modeling of Cerebral Hemodynamics: Linear Analysis.
Henley, B C; Shin, D C; Zhang, R; Marmarelis, V Z
Compartmental and data-based modeling of cerebral hemodynamics are alternative approaches that utilize distinct model forms and have been employed in the quantitative study of cerebral hemodynamics. This paper examines the relation between a compartmental equivalent-circuit and a data-based input-output model of dynamic cerebral autoregulation (DCA) and CO2-vasomotor reactivity (DVR). The compartmental model is constructed as an equivalent-circuit utilizing putative first principles and previously proposed hypothesis-based models. The linear input-output dynamics of this compartmental model are compared with data-based estimates of the DCA-DVR process. This comparative study indicates that there are some qualitative similarities between the two-input compartmental model and experimental results.
[11C]-(R)-PK11195 positron emission tomography in patients with complex regional pain syndrome
Jeon, So Yeon; Seo, Seongho; Lee, Jae Sung; Choi, Soo-Hee; Lee, Do-Hyeong; Jung, Ye-Ha; Song, Man-Kyu; Lee, Kyung-Jun; Kim, Yong Chul; Kwon, Hyun Woo; Im, Hyung-Jun; Lee, Dong Soo; Cheon, Gi Jeong; Kang, Do-Hyung
2017-01-01
Abstract Complex regional pain syndrome (CRPS) is characterized by severe and chronic pain, but the pathophysiology of this disease are not clearly understood. The primary aim of our case–control study was to explore neuroinflammation in patients with CRPS using positron emission tomography (PET), with an 18-kDa translocator protein specific radioligand [11C]-(R)-PK11195. [11C]-(R)-PK11195 PET scans were acquired for 11 patients with CRPS (30–55 years) and 12 control subjects (30–52 years). Parametric image of distribution volume ratio (DVR) for each participant was generated by applying a relative equilibrium-based graphical analysis. The DVR of [11C]-(R)-PK11195 in the caudate nucleus (t(21) = −3.209, P = 0.004), putamen (t(21) = −2.492, P = 0.022), nucleus accumbens (t(21) = −2.218, P = 0.040), and thalamus (t(21) = −2.395, P = 0.026) were significantly higher in CRPS patients than in healthy controls. Those of globus pallidus (t(21) = −2.045, P = 0.054) tended to be higher in CRPS patients than in healthy controls. In patients with CRPS, there was a positive correlation between the DVR of [11C]-(R)-PK11195 in the caudate nucleus and the pain score, the visual analog scale (r = 0.661, P = 0.026, R2 = 0.408) and affective subscales of McGill Pain Questionnaire (r = 0.604, P = 0.049, R2 = 0.364). We demonstrated that neuroinflammation of CRPS patients in basal ganglia. Our results suggest that microglial pathology can be an important pathophysiology of CRPS. Association between the level of caudate nucleus and pain severity indicated that neuroinflammation in this region might play a key role. These results may be essential for developing effective medical treatments. PMID:28072713
Reiner, A; Stern, E A; Wilson, C J
2001-01-01
Much of the Wulst and dorsal ventricular ridge (DVR) in birds, which together make up the part of the avian telencephalon functionally resembling mammalian cerebral cortex, projects to the striatum. Those connections arise from neurons projecting additionally to the brainstem as well as from neurons projecting only within the telencephalon. As part of an effort to further characterize corticostriatal-type projection neurons in birds, we recorded intracellularly from neurons of the outer DVR, identified neurons projecting to the striatum by antidromic stimulation from the ipsilateral rostromedial striatum or subsequently by their axonal projection, characterized these neurons physiologically and then filled them with biocytin. As neurons in the outer DVR only project within telencephalon, neurons within it projecting to the striatum are of the intratelencephalically projecting (IT) type. Our studies suggest that: (1) the membrane potentials of avian IT-type neurons fluctuate between two preferred subthreshold values, and action potentials occur only in the 'up' state, (2) avian IT-type neurons show a time-dependent inward rectification in response to hyperpolarization and regular firing in response to constant current injection, (3) the conduction velocity of avian IT-type neurons is slow (about 0.2 m/s), (4) avian IT-type neurons possess radially disposed densely spiny dendrites but no apical dendrite, (5) avian IT-type neurons have local and distant collateral projections within the DVR, and (6) individual avian IT-type neurons give rise to an extensive terminal field within the striatum. Aside from the shape of their dendritic tree, IT-type neurons in birds closely resemble IT-type corticostriatal neurons in mammals in these various aspects, although it is presently uncertain whether this neuron type has been inherited in common by birds and mammals from stem amniotes. Copyright 2002 S. Karger AG, Basel
Hwang, Janice J.; Yeckel, Catherine W.; Gallezot, Jean-Dominique; Aguiar, Renata Belfort-De; Ersahin, Devrim; Gao, Hong; Kapinos, Michael; Nabulsi, Nabeel; Huang, Yiyun; Cheng, David; Carson, Richard E.; Sherwin, Robert; Ding, Yu-Shin
2015-01-01
Introduction Brown adipose tissue (BAT) plays a critical role in adaptive thermogenesis and is tightly regulated by the sympathetic nervous system (SNS). However, current BAT imaging modalities require cold stimulation and are often unreliable to detect BAT in the basal state, at room temperature (RT). We have shown previously that BAT can be detected in rodents under both RT and cold conditions with 11C-MRB ((S,S)-11C-O-methylreboxetine), a highly selective ligand for the norepinephrine transporter (NET). Here, we evaluate this novel approach for BAT detection in adult humans under RT conditions. Methods Ten healthy, Caucasian subjects (5 M: age 24.6±2.6, BMI 21.6±2.7 kg/m2; 5 F: age 25.4±2.1, BMI 22.1±1.0 kg/m2) underwent 11C-MRB PET-CT imaging for cervical/supraclavicular BAT under RT and cold-stimulated conditions (RPCM Cool vest; enthalpy 15°C) compared to 18F-FDG PET-CT imaging. Uptake of 11C-MRB, was quantified as the distribution volume ratio (DVR) using the occipital cortex as a low NET density reference region. Total body fat and lean body mass were assessed via bioelectrical impedance analysis. Results As expected, 18F-FDG uptake in BAT was difficult to identify at RT but easily detected with cold stimulation (p=0.01). In contrast, BAT 11C-MRB uptake (also normalized for muscle) was equally evident under both RT and cold conditions (BAT DVR: RT 1.0±0.3 vs. cold 1.1±0.3, p=0.31; BAT/muscle DVR: RT 2.3±0.7 vs. cold 2.5±0.5, p=0.61). Importantly, BAT DVR and BAT/muscle DVR of 11C-MRB at RT correlated positively with core body temperature (r=0.76, p=0.05 and r=0.92, p=0.004, respectively), a relationship not observed with 18F-FDG (p=0.63). Furthermore, there were gender differences in 11C-MRB uptake in response to cold (p=0.03), which reflected significant differences in the change in 11C-MRB as a function of both body composition and body temperature. Conclusions Unlike 18F-FDG, the uptake of 11C-MRB in BAT offers a unique opportunity to investigate the role of BAT in humans under basal, room temperature conditions. PMID:25798999
Hwang, Janice J; Yeckel, Catherine W; Gallezot, Jean-Dominique; Aguiar, Renata Belfort-De; Ersahin, Devrim; Gao, Hong; Kapinos, Michael; Nabulsi, Nabeel; Huang, Yiyun; Cheng, David; Carson, Richard E; Sherwin, Robert; Ding, Yu-Shin
2015-06-01
Brown adipose tissue (BAT) plays a critical role in adaptive thermogenesis and is tightly regulated by the sympathetic nervous system (SNS). However, current BAT imaging modalities require cold stimulation and are often unreliable to detect BAT in the basal state, at room temperature (RT). We have shown previously that BAT can be detected in rodents under both RT and cold conditions with (11)C-MRB ((S,S)-(11)C-O-methylreboxetine), a highly selective ligand for the norepinephrine transporter (NET). Here, we evaluate this novel approach for BAT detection in adult humans under RT conditions. Ten healthy, Caucasian subjects (5 M: age 24.6±2.6, BMI 21.6±2.7kg/m(2); 5 F: age 25.4±2.1, BMI 22.1±1.0kg/m(2)) underwent (11)C-MRB PET-CT imaging for cervical/supraclavicular BAT under RT and cold-stimulated conditions (RPCM Cool vest; enthalpy 15°C) compared to (18)F-FDG PET-CT imaging. Uptake of (11)C-MRB, was quantified as the distribution volume ratio (DVR) using the occipital cortex as a low NET density reference region. Total body fat and lean body mass were assessed via bioelectrical impedance analysis. As expected, (18)F-FDG uptake in BAT was difficult to identify at RT but easily detected with cold stimulation (p=0.01). In contrast, BAT (11)C-MRB uptake (also normalized for muscle) was equally evident under both RT and cold conditions (BAT DVR: RT 1.0±0.3 vs. cold 1.1±0.3, p=0.31; BAT/muscle DVR: RT 2.3±0.7 vs. cold 2.5±0.5, p=0.61). Importantly, BAT DVR and BAT/muscle DVR of (11)C-MRB at RT correlated positively with core body temperature (r=0.76, p=0.05 and r=0.92, p=0.004, respectively), a relationship not observed with (18)F-FDG (p=0.63). Furthermore, there were gender differences in (11)C-MRB uptake in response to cold (p=0.03), which reflected significant differences in the change in (11)C-MRB as a function of both body composition and body temperature. Unlike (18)F-FDG, the uptake of (11)C-MRB in BAT offers a unique opportunity to investigate the role of BAT in humans under basal, room temperature conditions. Copyright © 2015. Published by Elsevier Inc.
Baptista, Talita Siara Almeida; Petersen, Laura Esteves; Molina, Julia K; de Nardi, Tatiana; Wieck, Andréa; do Prado, Aline; Piovesan, Deise Marcela; Keisermann, Mauro; Grassi-Oliveira, Rodrigo; Bauer, Moisés Evandro
2017-09-01
Rheumatoid arthritis (RA) has been associated with cognitive impairment and peripheral production of autoantibodies. Autoantibodies against central nervous system (CNS) proteins and S100 calcium-binding β (S100β) were found increased in diseases characterized by cognitive impairment like Alzheimer disease and Neuropsychiatric Systemic Lupus Erythematosus (NPSLE). The aim of this study was to investigate the plasma levels of autoantibodies against myelin basic protein (anti-MBP), myelin oligodendrocyte glycoprotein (anti-MOG) and S100β, and their relationships with cognitive performance in RA patients. Twenty patients with active rheumatoid arthritis and 19 age-, sex-, and schooling-matched healthy controls were recruited. Multiple dimensions of cognitive function were evaluated by structured clinical questionnaires. Autoantibodies and S100β levels were assessed by ELISAs. Patients had significantly higher levels of anti-MBP IgG (17.51 ± 1.36 vs. 5.24 ± 0.53 ng/mL), anti-MOG IgG (5.68 ± 1.34 vs. 0.51 ± 0.49 ng/mL), and S100β protein (2.24 ± 0.50 vs. 0.47 ± 0.06) than controls (all p < 0.0001). After adjusting for potential confounders, RA group presented worse cognitive performance involving the working memory and executive functions such as inhibition, flexibility, and mental control in parallel to higher autoantibodies and S100β levels than healthy controls (all p < 0.001). Levels of anti-MBP were negatively associated with delayed verbal recall (DVR; r = -0.42, p = 0.005), Stroop Color-Word (r = -0.48, p = 0.004), and N-Back Total scores (r = -0.59, p < 0.0001) and positively with Trail Making Test B (TMB, r = 0.53, p = 0.001). Negative correlation was found between levels of anti-MOG and DVR (r = -0.64, p < 0.0001), N-Back Total scores (r = -0.35, p = 0.03), Stroop Color-Word (r = -0.51, p = 0.001), and positively with TMB (r = 0.50, p = 0.003). S100β levels were associated with DVR (r = -0.51, p = 0.002), TMB (r = 0.46, p = 0.008), Stroop Color-Word (r = -0.67, p < 0.0001), and N-Back Total (r = -0.52, p = 0.003). RA is associated with impaired cognitive performance associated with higher levels of CNS-related autoantibodies and S100β levels. Given the importance of myelin integrity to cognition, our data indicate that these autoantibodies may be harmful to proper cognitive function.
Investigations into the use of energy storage in power system applications
NASA Astrophysics Data System (ADS)
Leung, Ka Kit
This thesis embodies research work on the design and implementation of novel fast responding battery energy storage systems, which, with sufficient capacity and rating, could remove the uncertainty in forecasting the annual peak demand. They would also benefit the day to day operation by curtailing the fastest demand variations, particularly at the daily peak periods. Energy storage that could curtail peak demands, when the most difficult operational problems occur offers a promising approach. Although AC energy cannot be stored, power electronic developments offer a fast responding interface between the AC network and DC energy stored in batteries. The attractive feature of the use of this energy storage could most effectively be located near the source of load variations, i.e. near consumers in the distribution networks. The proposed, three phase multi-purpose, Battery Energy Storage System will provide active and reactive power independent of the supply voltage with excellent power quality in terms of its waveform. Besides the above important functions applied at the distribution side of the utility, several new topologies have been developed to provide both Dynamic Voltage Regulator (DVR) and Unified Power Flow Controller (UPFC) functions for line compensation. These new topologies can provide fast and accurate control of power flow along a distribution corridor. The topologies also provide for fast damping of system oscillation due to transient or dynamic disturbances. Having demonstrated the various functions that the proposed Battery Energy Storage System can provide, the final part of the thesis investigates means of improving the performance of the proposed BESS. First, there is a need to reduce the switching losses by using soft switching instead of hard switching. A soft switching inverter using a parallel resonant dc-link (PRDCL) is proposed for use with the proposed BESS. The proposed PRDCL suppresses the dc-link voltage to zero for a very short time to allow zero voltage switching of inverter main switches without imposing excessive voltage and current stresses. Finally, in practice the battery terminal voltage fluctuates significantly as large current is being drawn or absorbed by the battery bank. When a hysteresis controller is used to control the supply line current, the ripple magnitude and frequency of the controlled current is highly dependent on the battery voltage, line inductance and the band limits of the controller. Even when these parameters are constant, the switching frequency can vary over quite a large range. A novel method is proposed to overcome this problem by controlling the dc voltage level by means of a dc-dc converter to provide a controllable voltage at the inverter dc terminal irrespective of the battery voltage variations. By proper control of the magnitude and frequency of the output of the DC-DC converter, the switching frequency can be made close to constant. A mathematical proof has been formulated and results from the simulation confirm that using the proposed technique, the frequency band has been significantly reduced and for the theoretical case, a single switching frequency is observed. The main disadvantage is the need to have an extra dc-dc converter, but this is relatively cheap and easy to obtain.
Novel 3D/VR interactive environment for MD simulations, visualization and analysis.
Doblack, Benjamin N; Allis, Tim; Dávila, Lilian P
2014-12-18
The increasing development of computing (hardware and software) in the last decades has impacted scientific research in many fields including materials science, biology, chemistry and physics among many others. A new computational system for the accurate and fast simulation and 3D/VR visualization of nanostructures is presented here, using the open-source molecular dynamics (MD) computer program LAMMPS. This alternative computational method uses modern graphics processors, NVIDIA CUDA technology and specialized scientific codes to overcome processing speed barriers common to traditional computing methods. In conjunction with a virtual reality system used to model materials, this enhancement allows the addition of accelerated MD simulation capability. The motivation is to provide a novel research environment which simultaneously allows visualization, simulation, modeling and analysis. The research goal is to investigate the structure and properties of inorganic nanostructures (e.g., silica glass nanosprings) under different conditions using this innovative computational system. The work presented outlines a description of the 3D/VR Visualization System and basic components, an overview of important considerations such as the physical environment, details on the setup and use of the novel system, a general procedure for the accelerated MD enhancement, technical information, and relevant remarks. The impact of this work is the creation of a unique computational system combining nanoscale materials simulation, visualization and interactivity in a virtual environment, which is both a research and teaching instrument at UC Merced.
Novel 3D/VR Interactive Environment for MD Simulations, Visualization and Analysis
Doblack, Benjamin N.; Allis, Tim; Dávila, Lilian P.
2014-01-01
The increasing development of computing (hardware and software) in the last decades has impacted scientific research in many fields including materials science, biology, chemistry and physics among many others. A new computational system for the accurate and fast simulation and 3D/VR visualization of nanostructures is presented here, using the open-source molecular dynamics (MD) computer program LAMMPS. This alternative computational method uses modern graphics processors, NVIDIA CUDA technology and specialized scientific codes to overcome processing speed barriers common to traditional computing methods. In conjunction with a virtual reality system used to model materials, this enhancement allows the addition of accelerated MD simulation capability. The motivation is to provide a novel research environment which simultaneously allows visualization, simulation, modeling and analysis. The research goal is to investigate the structure and properties of inorganic nanostructures (e.g., silica glass nanosprings) under different conditions using this innovative computational system. The work presented outlines a description of the 3D/VR Visualization System and basic components, an overview of important considerations such as the physical environment, details on the setup and use of the novel system, a general procedure for the accelerated MD enhancement, technical information, and relevant remarks. The impact of this work is the creation of a unique computational system combining nanoscale materials simulation, visualization and interactivity in a virtual environment, which is both a research and teaching instrument at UC Merced. PMID:25549300
Spectral difference Lanczos method for efficient time propagation in quantum control theory
NASA Astrophysics Data System (ADS)
Farnum, John D.; Mazziotti, David A.
2004-04-01
Spectral difference methods represent the real-space Hamiltonian of a quantum system as a banded matrix which possesses the accuracy of the discrete variable representation (DVR) and the efficiency of finite differences. When applied to time-dependent quantum mechanics, spectral differences enhance the efficiency of propagation methods for evolving the Schrödinger equation. We develop a spectral difference Lanczos method which is computationally more economical than the sinc-DVR Lanczos method, the split-operator technique, and even the fast-Fourier-Transform Lanczos method. Application of fast propagation is made to quantum control theory where chirped laser pulses are designed to dissociate both diatomic and polyatomic molecules. The specificity of the chirped laser fields is also tested as a possible method for molecular identification and discrimination.
Snellman, Anniina; Rokka, Johanna; López-Picón, Francisco R; Eskola, Olli; Salmona, Mario; Forloni, Gianluigi; Scheinin, Mika; Solin, Olof; Rinne, Juha O; Haaparanta-Solin, Merja
2014-01-01
The purpose of the study was to evaluate the applicability of (18) F-labelled amyloid imaging positron emission tomography (PET) agent [ (18) F]flutemetamol to detect changes in brain beta-amyloid (Aβ) deposition in vivo in APP23, Tg2576 and APPswe-PS1dE9 mouse models of Alzheimer's disease. We expected that the high specific activity of [ (18) F]flutemetamol would make it an attractive small animal Aβ imaging agent. [ (18) F]flutemetamol uptake in the mouse brain was evaluated in vivo at 9 to 22 months of age with an Inveon Multimodality PET/CT camera (Siemens Medical Solutions USA, Knoxville, TN, USA). Retention in the frontal cortex (FC) was evaluated by Logan distribution volume ratios (DVR) and FC/cerebellum (CB) ratios during the late washout phase (50 to 60 min). [ (18) F]flutemetamol binding to Aβ was also evaluated in brain slices by in vitro and ex vivo autoradiography. The amount of Aβ in the brain slices was determined with Thioflavin S and anti-Aβ1-40 immunohistochemistry. In APP23 mice, [ (18) F]flutemetamol retention in the FC increased from 9 to 18 months. In younger mice, DVR and FC/CB50-60 were 0.88 (0.81) and 0.88 (0.89) at 9 months (N = 2), and 0.98 (0.93) at 12 months (N = 1), respectively. In older mice, DVR and FC/CB50-60 were 1.16 (1.15) at 15 months (N = 1), 1.13 (1.16) and 1.35 (1.35) at 18 months (N = 2), and 1.05 (1.31) at 21 months (N = 1). In Tg2576 mice, DVR and FC/CB50-60 showed modest increasing trends but also high variability. In APPswe-PS1dE9 mice, DVR and FC/CB50-60 did not increase with age. Thioflavin S and anti-Aβ1-40 positive Aβ deposits were present in all transgenic mice at 19 to 22 months, and they co-localized with [ (18) F]flutemetamol binding in the brain slices examined with in vitro and ex vivo autoradiography. Increased [ (18) F]flutemetamol retention in the brain was detected in old APP23 mice in vivo. However, the high specific activity of [ (18) F]flutemetamol did not provide a notable advantage in Tg2576 and APPswe-PS1dE9 mice compared to the previously evaluated structural analogue [(11)C]PIB. For its practical benefits, [ (18) F]flutemetamol imaging with a suitable mouse model like APP23 is an attractive alternative.
2014-01-01
Background The purpose of the study was to evaluate the applicability of 18F-labelled amyloid imaging positron emission tomography (PET) agent [18F]flutemetamol to detect changes in brain beta-amyloid (Aβ) deposition in vivo in APP23, Tg2576 and APPswe-PS1dE9 mouse models of Alzheimer's disease. We expected that the high specific activity of [18F]flutemetamol would make it an attractive small animal Aβ imaging agent. Methods [18F]flutemetamol uptake in the mouse brain was evaluated in vivo at 9 to 22 months of age with an Inveon Multimodality PET/CT camera (Siemens Medical Solutions USA, Knoxville, TN, USA). Retention in the frontal cortex (FC) was evaluated by Logan distribution volume ratios (DVR) and FC/cerebellum (CB) ratios during the late washout phase (50 to 60 min). [18F]flutemetamol binding to Aβ was also evaluated in brain slices by in vitro and ex vivo autoradiography. The amount of Aβ in the brain slices was determined with Thioflavin S and anti-Aβ1−40 immunohistochemistry. Results In APP23 mice, [18F]flutemetamol retention in the FC increased from 9 to 18 months. In younger mice, DVR and FC/CB50-60 were 0.88 (0.81) and 0.88 (0.89) at 9 months (N = 2), and 0.98 (0.93) at 12 months (N = 1), respectively. In older mice, DVR and FC/CB50-60 were 1.16 (1.15) at 15 months (N = 1), 1.13 (1.16) and 1.35 (1.35) at 18 months (N = 2), and 1.05 (1.31) at 21 months (N = 1). In Tg2576 mice, DVR and FC/CB50-60 showed modest increasing trends but also high variability. In APPswe-PS1dE9 mice, DVR and FC/CB50-60 did not increase with age. Thioflavin S and anti-Aβ1−40 positive Aβ deposits were present in all transgenic mice at 19 to 22 months, and they co-localized with [18F]flutemetamol binding in the brain slices examined with in vitro and ex vivo autoradiography. Conclusions Increased [18F]flutemetamol retention in the brain was detected in old APP23 mice in vivo. However, the high specific activity of [18F]flutemetamol did not provide a notable advantage in Tg2576 and APPswe-PS1dE9 mice compared to the previously evaluated structural analogue [11C]PIB. For its practical benefits, [18F]flutemetamol imaging with a suitable mouse model like APP23 is an attractive alternative. PMID:25977876
Issaian, Tadeh; Urity, Vinoo B; Dantzler, William H; Pannabecker, Thomas L
2012-10-01
We hypothesize that the inner medulla of the kangaroo rat Dipodomys merriami, a desert rodent that concentrates its urine to over 6,000 mosmol/kg H(2)O, provides unique examples of architectural features necessary for production of highly concentrated urine. To investigate this architecture, inner medullary vascular segments in the outer inner medulla were assessed with immunofluorescence and digital reconstructions from tissue sections. Descending vasa recta (DVR) expressing the urea transporter UT-B and the water channel aquaporin 1 lie at the periphery of groups of collecting ducts (CDs) that coalesce in their descent through the inner medulla. Ascending vasa recta (AVR) lie inside and outside groups of CDs. DVR peel away from vascular bundles at a uniform rate as they descend the inner medulla, and feed into networks of AVR that are associated with organized clusters of CDs. These AVR form interstitial nodal spaces, with each space composed of a single CD, two AVR, and one or more ascending thin limbs or prebend segments, an architecture that may lead to solute compartmentation and fluid fluxes essential to the urine concentrating mechanism. Although we have identified several apparent differences, the tubulovascular architecture of the kangaroo rat inner medulla is remarkably similar to that of the Munich Wistar rat at the level of our analyses. More detailed studies are required for identifying interspecies functional differences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fowler, Joanna; Furey, Michael
Results from human studies with the PET radiotracer (S,S)-[(11)C]O-methyl reboxetine ([(11)C](S,S)-MRB), a ligand targeting the norepinephrine transporter (NET), are reported. Quantification methods were determined from test/retest studies, and sensitivity to pharmacological blockade was tested with different doses of atomoxetine (ATX), a drug that binds to the NET with high affinity (K(i)=2-5 nM). METHODS: Twenty-four male subjects were divided into different groups for serial 90-min PET studies with [(11)C](S,S)-MRB to assess reproducibility and the effect of blocking with different doses of ATX (25, 50 and 100 mg, po). Region-of-interest uptake data and arterial plasma input were analyzed for the distribution volumemore » (DV). Images were normalized to a template, and average parametric images for each group were formed. RESULTS: [(11)C](S,S)-MRB uptake was highest in the thalamus (THL) and the midbrain (MBR) [containing the locus coeruleus (LC)] and lowest for the caudate nucleus (CDT). The CDT, a region with low NET, showed the smallest change on ATX treatment and was used as a reference region for the DV ratio (DVR). The baseline average DVR was 1.48 for both the THL and MBR with lower values for other regions [cerebellum (CB), 1.09; cingulate gyrus (CNG) 1.07]. However, more accurate information about relative densities came from the blocking studies. MBR exhibited greater blocking than THL, indicating a transporter density approximately 40% greater than THL. No relationship was found between DVR change and plasma ATX level. Although the higher dose tended to induce a greater decrease than the lower dose for MBR (average decrease for 25 mg=24+/-7%; 100 mg=31+/-11%), these differences were not significant. The different blocking between MBR (average decrease=28+/- 10%) and THL (average decrease=17+/-10%) given the same baseline DVR indicates that the CDT is not a good measure for non-NET binding in both regions. Threshold analysis of the difference between the average baseline DV image and the average blocked image showed the expected NET distribution with the MBR (LC) and hypothalamus>THL>CNG and CB, as well as a significant change in the supplementary motor area. DVR reproducibility for the different brain regions was approximately 10%, but intersubject variability was large. CONCLUSIONS: The highest density of NETs was found in the MBR where the LC is located, followed by THL, whereas the lowest density was found in basal ganglia (lowest in CDT), consistent with the regional localization of NETs in the nonhuman primate brain. While all three doses of ATX were found to block most regions, no significant differences between doses were found for any region, although the average percent change across subjects of the MBR did correlate with ATX dose. The lack of a dose effect could reflect a low signal-to-noise ratio coupled with the possibility that a sufficient number of transporters were blocked at the lowest dose and further differences could not be detected. However, since the lowest (25 mg) dose is less than the therapeutic doses used in children for the treatment of attention-deficit/hyperactivity disorder ( approximately 1.0 mg/kg/day), this would suggest that there may be additional targets for ATX's therapeutic actions.« less
Huang, Zifang; Wang, Qifei; Yang, Junlin; Yang, Jingfan; Li, Fobao
2016-04-01
This was a retrospective study. The aim of this study was to compare radiographic outcomes of Lenke 5C adolescent idiopathic scoliosis (AIS) patients treated by vertebral column manipulator (VCM) or simple rod derotation (SRD) maneuver. The direct vertebral rotation (DVR) technique has demonstrated better rotational and coronal correction than SRD, but clinical radiographic outcomes for Lenke 5C AIS following DVR using a VCM derotational device have not been described. A retrospective study was carried out in 39 Lenke 5C AIS patients treated by VCM (n=20) or SRD (n=19) techniques between April 2008 and June 2011. All patients had complete clinical record and radiographic data. Nine radiographic variables were collected and compared at 3 time points (preoperative, immediate postoperative, and minimum 2-year follow-up) between both groups. Scoliosis was successfully corrected in both groups. All patients obtained good coronal and sagittal balance, and no severe complications occurred. The postoperative apical rotation corrective rate of the VCM and SRD groups were 55.1% and 25.5%, respectively (P < 0.05). Lowest instrumented vertebra and stable vertebra (LIV-SV) was statistically significant between the VCM and SRD groups, the mean values were 1.2 ± 0.4 level and 0.7 ± 0.5 level (P < 0.05). The main curve corrective rates and LIV-tilt angle correction rates were not significantly different between groups, but it showed a spontaneous correction for the coronal LIV-tilt angle for both groups at the last follow-up. VCM improved postoperative apical axial rotational correction and lessened the lumbar fusion segment compared with the SRD technique, which might have a potential trend to reserve lumbar mobility.
Helyar, Vincent G; Gupta, Yuri; Blakeway, Lyndall; Charles-Edwards, Geoff; Katsanos, Konstantinos; Karunanithy, Narayan
2018-02-01
This study evaluates the use of balanced steady-state free precession MRI (bSSFP-MRI) in the diagnostic work-up of patients undergoing interventional deep venous reconstruction (I-DVR). Intravenous digital subtraction angiography (IVDSA) was used as the gold-standard for comparison to assess disease extent and severity. A retrospective comparison of bSSFP-MRI to IVDSA was performed in all patients undergoing both examinations for treatment planning prior to I-DVR. The severity of disease in each venous segment was graded by two board-certified radiologists working independently, according to a predetermined classification system. In total, 44 patients (225 venous segments) fulfilled the inclusion criteria. A total of 156 abnormal venous segments were diagnosed using bSSFP-MRI compared with 151 using IVDSA. The prevalence of disease was higher in the iliac and femoral segments (range, 79.6-88.6%). Overall sensitivity, specificity, positive likelihood ratio, negative likelihood ratio and the diagnostic ratio for bSSFP-MRI were 99.3%, 91.9%, 12.3, 0.007 and 1700, respectively. This study supports the use of non-contrast balanced SSFP-MRI in the assessment of the deep veins of the lower limb prior to I-DVR. The technique offers an accurate, fast and non-invasive alternative to IVDSA. Advances in Knowledge: Although balanced SSFP-MRI is commonly used in cardiac imaging, its use elsewhere is limited and its use in evaluating the deep veins prior to interventional reconstruction is not described. Our study demonstrates the usefulness of this technique in the work-up of patients awaiting interventional venous reconstruction compared with the current gold standard.
DAY-CARE REHABILITATION CENTER FOR EMOTIONALLY DISTURBED ADOLESCENTS. FINAL REPORT.
ERIC Educational Resources Information Center
CRAWFORD, HUGH A.; VAN DUYNE, WILLIAM V.
IN THIS FIVE YEAR DEMONSTRATION PROJECT, EMOTIONALLY DISTURBED ADULTS AND ADOLESCENTS RECEIVED TREATMENT AT A DAY CARE REHABILITATION CENTER SPONSORED BY THE RHODE ISLAND DIVISION OF VOCATIONAL REHABILITATION (DVR) LOCATED IN A PRIVATE PSYCHIATRIC HOSPITAL (BUTLER HOSPITAL). THE MAJOR TREATMENT GOALS WERE PRESERVATION AND RESTORATION OF…
Revisiting the Logan plot to account for non-negligible blood volume in brain tissue.
Schain, Martin; Fazio, Patrik; Mrzljak, Ladislav; Amini, Nahid; Al-Tawil, Nabil; Fitzer-Attas, Cheryl; Bronzova, Juliana; Landwehrmeyer, Bernhard; Sampaio, Christina; Halldin, Christer; Varrone, Andrea
2017-08-18
Reference tissue-based quantification of brain PET data does not typically include correction for signal originating from blood vessels, which is known to result in biased outcome measures. The bias extent depends on the amount of radioactivity in the blood vessels. In this study, we seek to revisit the well-established Logan plot and derive alternative formulations that provide estimation of distribution volume ratios (DVRs) that are corrected for the signal originating from the vasculature. New expressions for the Logan plot based on arterial input function and reference tissue were derived, which included explicit terms for whole blood radioactivity. The new methods were evaluated using PET data acquired using [ 11 C]raclopride and [ 18 F]MNI-659. The two-tissue compartment model (2TCM), with which signal originating from blood can be explicitly modeled, was used as a gold standard. DVR values obtained for [ 11 C]raclopride using the either blood-based or reference tissue-based Logan plot were systematically underestimated compared to 2TCM, and for [ 18 F]MNI-659, a proportionality bias was observed, i.e., the bias varied across regions. The biases disappeared when optimal blood-signal correction was used for respective tracer, although for the case of [ 18 F]MNI-659 a small but systematic overestimation of DVR was still observed. The new method appears to remove the bias introduced due to absence of correction for blood volume in regular graphical analysis and can be considered in clinical studies. Further studies are however required to derive a generic mapping between plasma and whole-blood radioactivity levels.
New vibration-rotation code for tetraatomic molecules exhibiting wide-amplitude motion: WAVR4
NASA Astrophysics Data System (ADS)
Kozin, Igor N.; Law, Mark M.; Tennyson, Jonathan; Hutson, Jeremy M.
2004-11-01
A general computational method for the accurate calculation of rotationally and vibrationally excited states of tetraatomic molecules is developed. The resulting program is particularly appropriate for molecules executing wide-amplitude motions and isomerizations. The program offers a choice of coordinate systems based on Radau, Jacobi, diatom-diatom and orthogonal satellite vectors. The method includes all six vibrational dimensions plus three rotational dimensions. Vibration-rotation calculations with reduced dimensionality in the radial degrees of freedom are easily tackled via constraints imposed on the radial coordinates via the input file. Program summaryTitle of program: WAVR4 Catalogue number: ADUN Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADUN Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: Persons requesting the program must sign the standard CPC nonprofit use license Computer: Developed under Tru64 UNIX, ported to Microsoft Windows and Sun Unix Operating systems under which the program has been tested: Tru64 Unix, Microsoft Windows, Sun Unix Programming language used: Fortran 90 Memory required to execute with typical data: case dependent No. of lines in distributed program, including test data, etc.: 11 937 No. of bytes in distributed program, including test data, etc.: 84 770 Distribution format: tar.gz Nature of physical problem: WAVR4 calculates the bound ro-vibrational levels and wavefunctions of a tetraatomic system using body-fixed coordinates based on generalised orthogonal vectors. Method of solution: The angular coordinates are treated using a finite basis representation (FBR) based on products of spherical harmonics. A discrete variable representation (DVR) [1] based on either Morse-oscillator-like or spherical-oscillator functions [2] is used for the radial coordinates. Matrix elements are computed using an efficient Gaussian quadrature in the angular coordinates and the DVR approximation in the radial coordinates. The solution of the secular problem is carried through a series of intermediate diagonalisations and truncations. Restrictions on the complexity of the problem: (1) The size of the final Hamiltonian matrix that can be practically diagonalised; (2) The DVR approximation for a radial coordinate fails for values of the coordinate near zero—this is remedied only for one radial coordinate by using analytical integration. Typical running time: problem-dependent Unusual features of the program: A user-supplied subroutine to evaluate the potential energy is a program requirement. External routines: BLAS and LAPACK are required. References: [1] J.C. Light, I.P. Hamilton, J.V. Lill, J. Chem. Phys. 92 (1985) 1400. [2] J.R. Henderson, C.R. Le Sueur, J. Tennyson, Comp. Phys. Comm. 75 (1993) 379.
Acton, Paul D; Choi, Seok-Rye; Plössl, Karl; Kung, Hank F
2002-05-01
Functional imaging of small animals, such as mice and rats, using ultra-high resolution positron emission tomography (PET) and single-photon emission tomography (SPET), is becoming a valuable tool for studying animal models of human disease. While several studies have shown the utility of PET imaging in small animals, few have used SPET in real research applications. In this study we aimed to demonstrate the feasibility of using ultra-high resolution SPET in quantitative studies of dopamine transporters (DAT) in the mouse brain. Four healthy ICR male mice were injected with (mean+/-SD) 704+/-154 MBq [(99m)Tc]TRODAT-1, and scanned using an ultra-high resolution SPET system equipped with pinhole collimators (spatial resolution 0.83 mm at 3 cm radius of rotation). Each mouse had two studies, to provide an indication of test-retest reliability. Reference tissue kinetic modeling analysis of the time-activity data in the striatum and cerebellum was used to quantitate the availability of DAT. A simple equilibrium ratio of striatum to cerebellum provided another measure of DAT binding. The SPET imaging results were compared against ex vivo biodistribution data from the striatum and cerebellum. The mean distribution volume ratio (DVR) from the reference tissue kinetic model was 2.17+/-0.34, with a test-retest reliability of 2.63%+/-1.67%. The ratio technique gave similar results (DVR=2.03+/-0.38, test-retest reliability=6.64%+/-3.86%), and the ex vivo analysis gave DVR=2.32+/-0.20. Correlations between the kinetic model and the ratio technique ( R(2)=0.86, P<0.001) and the ex vivo data ( R(2)=0.92, P=0.04) were both excellent. This study demonstrated clearly that ultra-high resolution SPET of small animals is capable of accurate, repeatable, and quantitative measures of DAT binding, and should open up the possibility of further studies of cerebral binding sites in mice using pinhole SPET.
Logan, Jean; Ding, Yu-Shin; Lin, Kuo-Shyan; Pareto, Deborah; Fowler, Joanna; Biegon, Anat
2005-07-01
The development of positron emission tomography (PET) ligands for the norepinephrine transporter (NET) has been slow compared to the development of radiotracers for others systems, such as the dopamine (DAT) or the serotonin transporters (SERT). The main reason for this appears to be the high nonspecific (non-NET) binding exhibited by many of these tracers, which makes the identification of a reference region difficult. With other PET ligands the use of a reference region increases the reproducibility of the outcome measure in test/retest studies. The focus of this work is to identify a suitable reference region or means of normalizing data for the NET ligands investigated. We have analyzed the results of PET studies in the baboon brain with labeled reboxetine derivatives (S,S)-[(11)C]O-methyl reboxetine (SS-MRB), (S,S)-[(18)F]fluororeboxetine (SS-FRB) as well as O-[(11)C]nisoxetine and N-[(11)C]nisoxetine (NIS), and, for comparison, the less active (R,R) enantiomers (RR-MRB, RR-FRB) in terms of the distribution volume (DV) using measured arterial input functions. (1) For a given subject, a large variation in DV for successive baseline studies was observed in regions with both high and low NET density. (2) The occipital cortex and the basal ganglia were found to be the regions with the smallest change between baseline (SS-MRB) and pretreatment with cocaine, and were therefore used as a composite reference region for calculation of a distribution volume ratio (DVR). (3) The variability [as measured by the coefficient of variation (CV) = standard deviation/mean] in the distribution volume ratio (DVR) of thalamus (to reference region) was considerably reduced over that of the DV using this composite reference region. (4) Pretreatment with nisoxetine (1.0 mg/kg 10 min prior to tracer) in one study produced (in decreasing order) reductions in thalamus, cerebellum, cingulate and frontal cortex consistent with known NET densities. (5) [(11)C]Nisoxetine had a higher background non-NET binding (DV) than the other tracers reported here with basal ganglia (a non-NET region) higher than thalamus. The reboxetine derivatives show a lot of promise as tracers for human PET studies of the norepinephrine system. We have identified a strategy for normalizing DVs to a reference region with the understanding that the DVR for these tracers may not be related to the binding potential in the same way as, for example, for the dopamine tracers, since the non-NET binding may differ between the target and nontarget regions. From our baboon studies the average DVR for thalamus (n = 18) for SS-MRB is 1.8; however, the lower limit is most likely less than 1 due to this difference in non-NET binding.
Vertebrate brains and evolutionary connectomics: on the origins of the mammalian ‘neocortex’
Karten, Harvey J.
2015-01-01
The organization of the non-mammalian forebrain had long puzzled neurobiologists. Unlike typical mammalian brains, the telencephalon is not organized in a laminated ‘cortical’ manner, with distinct cortical areas dedicated to individual sensory modalities or motor functions. The two major regions of the telencephalon, the basal ventricular ridge (BVR) and the dorsal ventricular ridge (DVR), were loosely referred to as being akin to the mammalian basal ganglia. The telencephalon of non-mammalian vertebrates appears to consist of multiple ‘subcortical’ groups of cells. Analysis of the nuclear organization of the avian brain, its connections, molecular properties and physiology, and organization of its pattern of circuitry and function relative to that of mammals, collectively referred to as ‘evolutionary connectomics’, revealed that only a restricted portion of the BVR is homologous to the basal ganglia of mammals. The remaining dorsal regions of the DVR, wulst and arcopallium of the avian brain contain telencephalic inputs and outputs remarkably similar to those of the individual layers of the mammalian ‘neocortex’, hippocampus and amygdala, with instances of internuclear connections strikingly similar to those found between cortical layers and within radial ‘columns’ in the mammalian sensory and motor cortices. The molecular properties of these ‘nuclei’ in birds and reptiles are similar to those of the corresponding layers of the mammalian neocortex. The fundamental pathways and cell groups of the auditory, visual and somatosensory systems of the thalamus and telencephalon are homologous at the cellular, circuit, network and gene levels, and are of great antiquity. A proposed altered migration of these homologous neurons and circuits during development is offered as a mechanism that may account for the altered configuration of mammalian telencephalae. PMID:26554047
NASA Astrophysics Data System (ADS)
Hirano, Tsuneo; Nagashima, Umpei; Jensen, Per
2018-04-01
For NCS in the X ˜ 2 Π electronic ground state, three-dimensional potential energy surfaces (3D PESs) have been calculated ab initio at the core-valence, full-valence MR-SDCI+Q/[aug-cc-pCVQZ (N, C, S)] level of theory. The ab initio 3D PESs are employed in second-order-perturbation-theory and DVR3D calculations to obtain various molecular constants and ro-vibrationally averaged structures. The 3D PESs show that the X ˜ 2 Π NCS has its potential minimum at a linear configuration, and hence it is a "linear molecule." The equilibrium structure has re (N-C) = 1.1778 Å, re (C-S) = 1.6335 Å, and ∠e (N-C-S) = 180°. The ro-vibrationally averaged structure, determined as expectation values over DVR3D wavefunctions, has 〈 r (N-C)〉0 = 1.1836 Å, 〈 r (C-S)〉0 = 1.6356 Å, and 〈 ∠ (N-C-S)〉0 = 172.5°. Using these expectation values as the initial guess, a bent r0 structure having an 〈 ∠ (N-C-S)〉0 of 172.2° is deduced from the experimentally reported B0 values for NC32S and NC34S. Our previous prediction that a linear molecule, in any ro-vibrational state including the ro-vibrational ground state, is to be "observed" as being bent on ro-vibrational average, has been confirmed here theoretically through the expectation value for the bond-angle deviation from linearity, 〈 ρ bar 〉 , and experimentally through the interpretation of the experimentally derived rotational-constant values.
Preventive Rehabilitation; A Promise for the Future.
ERIC Educational Resources Information Center
Rhode Island State Dept. of Education, Providence. Div. of Vocational-Technical Education.
To provide preventive treatment, counselors from the Division of Vocational Rehabilitation (DVR) worked through a school project to serve adolescents with disabilities which might make job adjustment difficult. During the 5-year project, over 5,000 adolescents were referred; 1,800 or 40% of whom were in the school project; more than 1,000 or 55%…
Phase aberration simulation study of MRgFUS breast treatments
Farrer, Alexis I.; Almquist, Scott; Dillon, Christopher R.; Neumayer, Leigh A.; Parker, Dennis L.; Christensen, Douglas A.; Payne, Allison
2016-01-01
Purpose: This simulation study evaluates the effects of phase aberration in breast MR-guided focused ultrasound (MRgFUS) ablation treatments performed with a phased-array transducer positioned laterally to the breast. A quantification of these effects in terms of thermal dose delivery and the potential benefits of phase correction is demonstrated in four heterogeneous breast numerical models. Methods: To evaluate the effects of varying breast tissue properties on the quality of the focus, four female volunteers with confirmed benign fibroadenomas were imaged using 3T MRI. These images were segmented into numerical models with six tissue types, with each tissue type assigned standard acoustic properties from the literature. Simulations for a single-plane 16-point raster-scan treatment trajectory centered in a fibroadenoma in each modeled breast were performed for a breast-specific MRgFUS system. At each of the 16 points, pressure patterns both with and without applying a phase correction technique were determined with the hybrid-angular spectrum method. Corrected phase patterns were obtained using a simulation-based phase aberration correction technique to adjust each element’s transmit phase to obtain maximized constructive interference at the desired focus. Thermal simulations were performed for both the corrected and uncorrected pressure patterns using a finite-difference implementation of the Pennes bioheat equation. The effect of phase correction was evaluated through comparison of thermal dose accumulation both within and outside a defined treatment volume. Treatment results using corrected and uncorrected phase aberration simulations were compared by evaluating the power required to achieve a 20 °C temperature rise at the first treatment location. The extent of the volumes that received a minimum thermal dose of 240 CEM at 43 °C inside the intended treatment volume as well as the volume in the remaining breast tissues was also evaluated in the form of a dose volume ratio (DVR), a DVR percent change between corrected and uncorrected phases, and an additional metric that measured phase spread. Results: With phase aberration correction applied, there was an improvement in the focus for all breast anatomies as quantified by a reduction in power required (13%–102%) to reach 20 °C when compared to uncorrected simulations. Also, the DVR percent change increased by 5%–77% in seven out of eight cases, indicating an improvement to the treatment as measured by a reduction in thermal dose deposited to the nontreatment tissues. Breast compositions with a higher degree of heterogeneity along the ultrasound beam path showed greater reductions in thermal dose delivered outside of the treatment volume with correction applied than beam trajectories that propagated through more homogeneous breast compositions. An increasing linear trend was observed between the DVR percent change and the phase-spread metric (R2 = 0.68). Conclusions: These results indicate that performing phase aberration correction for breast MRgFUS treatments is beneficial for the small-aperture transducer (14.4 × 9.8 cm) evaluated in this work. While all breast anatomies could benefit from phase aberration correction, greater benefits are observed in more heterogeneous anatomies. PMID:26936722
Foell, Kirsten; Finelli, Antonio; Yasufuku, Kazuhiro; Bernardini, Marcus Q.; Waddell, Thomas K.; Pace, Kenneth T.; Honey, R. John D.’A.; Lee, Jason Y.
2013-01-01
Purpose: Simulation-based training improves clinical skills, while minimizing the impact of the educational process on patient care. We present results of a pilot multidisciplinary, simulation-based robotic surgery basic skills training curriculum (BSTC) for robotic novices. Methods: A 4-week, simulation-based, robotic surgery BSTC was offered to the Departments of Surgery and Obstetrics & Gynecology (ObGyn) at the University of Toronto. The course consisted of various instructional strategies: didactic lecture, self-directed online-training modules, introductory hands-on training with the da Vinci robot (dVR) (Intuitive Surgical Inc., Sunnyvale, CA), and dedicated training on the da Vinci Skills Simulator (Intuitive Surgical Inc., Sunnyvale, CA) (dVSS). A third of trainees participated in competency-based dVSS training, all others engaged in traditional time-based training. Pre- and post-course skill testing was conducted on the dVR using 2 standardized skill tasks: ring transfer (RT) and needle passing (NP). Retention of skills was assessed at 5 months post-BSTC. Results: A total of 37 participants completed training. The mean task completion time and number of errors improved significantly post-course on both RT (180.6 vs. 107.4 sec, p < 0.01 and 3.5 vs. 1.3 sec, p < 0.01, respectively) and NP (197.1 vs. 154.1 sec, p < 0.01 and 4.5 vs. 1.8 sec, p = 0.04, respectively) tasks. No significant difference in performance was seen between specialties. Competency-based training was associated with significantly better post-course performance. The dVSS demonstrated excellent face validity. Conclusions: The implementation of a pilot multidisciplinary, simulation-based robotic surgery BSTC revealed significantly improved basic robotic skills among novice trainees, regardless of specialty or level of training. Competency-based training was associated with significantly better acquisition of basic robotic skills. PMID:24381662
Czakó, Gábor; Szalay, Viktor; Császár, Attila G
2006-01-07
The currently most efficient finite basis representation (FBR) method [Corey et al., in Numerical Grid Methods and Their Applications to Schrodinger Equation, NATO ASI Series C, edited by C. Cerjan (Kluwer Academic, New York, 1993), Vol. 412, p. 1; Bramley et al., J. Chem. Phys. 100, 6175 (1994)] designed specifically to deal with nondirect product bases of structures phi(n) (l)(s)f(l)(u), chi(m) (l)(t)phi(n) (l)(s)f(l)(u), etc., employs very special l-independent grids and results in a symmetric FBR. While highly efficient, this method is not general enough. For instance, it cannot deal with nondirect product bases of the above structure efficiently if the functions phi(n) (l)(s) [and/or chi(m) (l)(t)] are discrete variable representation (DVR) functions of the infinite type. The optimal-generalized FBR(DVR) method [V. Szalay, J. Chem. Phys. 105, 6940 (1996)] is designed to deal with general, i.e., direct and/or nondirect product, bases and grids. This robust method, however, is too general, and its direct application can result in inefficient computer codes [Czako et al., J. Chem. Phys. 122, 024101 (2005)]. It is shown here how the optimal-generalized FBR method can be simplified in the case of nondirect product bases of structures phi(n) (l)(s)f(l)(u), chi(m) (l)(t)phi(n) (l)(s)f(l)(u), etc. As a result the commonly used symmetric FBR is recovered and simplified nonsymmetric FBRs utilizing very special l-dependent grids are obtained. The nonsymmetric FBRs are more general than the symmetric FBR in that they can be employed efficiently even when the functions phi(n) (l)(s) [and/or chi(m) (l)(t)] are DVR functions of the infinite type. Arithmetic operation counts and a simple numerical example presented show unambiguously that setting up the Hamiltonian matrix requires significantly less computer time when using one of the proposed nonsymmetric FBRs than that in the symmetric FBR. Therefore, application of this nonsymmetric FBR is more efficient than that of the symmetric FBR when one wants to diagonalize the Hamiltonian matrix either by a direct or via a basis-set contraction method. Enormous decrease of computer time can be achieved, with respect to a direct application of the optimal-generalized FBR, by employing one of the simplified nonsymmetric FBRs as is demonstrated in noniterative calculations of the low-lying vibrational energy levels of the H3+ molecular ion. The arithmetic operation counts of the Hamiltonian matrix vector products and the properties of a recently developed diagonalization method [Andreozzi et al., J. Phys. A Math. Gen. 35, L61 (2002)] suggest that the nonsymmetric FBR applied along with this particular diagonalization method is suitable to large scale iterative calculations. Whether or not the nonsymmetric FBR is competitive with the symmetric FBR in large-scale iterative calculations still has to be investigated numerically.
A Generic Modeling Approach to Biomass Dynamics of Sagittaria latifolia and Spartina alterniflora
2011-01-01
ammonium nitrate pulse of the growth and elemental composition of natural stands of Spartina alterniflora and Juncus roemerianus. American Journal of...calibration values become available. This modelling approach was applied to submersed aquatic vegetation (SAV) also (Best and Boyd 2008). The approach is... the models. The DVS is dimensionless and its value increases gradually within a growing season. The development rate (DVR) has the dimension d-1
An FPGA-Based System for Tracking Digital Information Transmitted Via Peer-to-Peer Protocols
2009-03-01
Sullivan. ISPs are Pressed to Become Child Porn Cops, October 2008. http://www.msnbc.msn.com/id/27198621. DVR07. Hamza Dahmouni, Sandrine Vaton, and David...of child pornography. The Federal Bureau of Investigation’s (FBI) Re- gional Computer Forensics Laboratory states in its 2007 annual report that...cyber- crime, which includes crimes against children and child pornography, is the offense for which law enforcement requested assistance most often
Zak, Emil J; Tennyson, Jonathan
2017-09-07
A procedure for calculating ro-vibronic transition intensities for triatomic molecules within the Born-Oppenheimer approximation is reported. Ro-vibrational energy levels and wavefunctions are obtained with the DVR3D suite, which solves the nuclear motion problem with an exact kinetic energy operator. Absolute transition intensities are calculated both with the Franck-Condon approximation and with a full transition dipole moment surface. The theoretical scheme is tested on C̃ 1 B 2 ← X̃ 1 A 1 ro-vibronic transitions of SO 2 . Ab initio potential energy and dipole moment surfaces are generated for this purpose. The calculated ro-vibronic transition intensities and cross sections are compared with the available experimental and theoretical data.
Azeredo, Lucas A de; De Nardi, Tatiana; Levandowski, Mateus L; Tractenberg, Saulo G; Kommers-Molina, Julia; Wieck, Andrea; Irigaray, Tatiana Q; Silva, Irênio G da; Grassi-Oliveira, Rodrigo
2017-01-01
Memory impairment is an important contributor to the reduction in quality of life experienced by older adults, and genetic risk factors seem to contribute to variance in age-related cognitive decline. Brain-derived neurotrophic factor (BDNF) is an important nerve growth factor linked with development and neural plasticity. The Val66Met polymorphism in the BDNF gene has been associated with impaired episodic memory in adults, but whether this functional variant plays a role in cognitive aging remains unclear. The purpose of this study was to investigate the effects of the BDNF Val66Met polymorphism on memory performance in a sample of elderly adults. Eighty-seven subjects aged > 55 years were recruited using a community-based convenience sampling strategy in Porto Alegre, Brazil. The logical memory subset of the Wechsler Memory Scale-Revised was used to assess immediate verbal recall (IVR), delayed verbal recall (DVR), and memory retention rate. BDNF Met allele carriers had lower DVR scores (p = 0.004) and a decline in memory retention (p = 0.017) when compared to Val/Val homozygotes. However, we found no significant differences in IVR between the two groups (p = 0.088). These results support the hypothesis of the BDNF Val66Met polymorphism as a risk factor associated with cognitive impairment, corroborating previous findings in young and older adults.
NASA Technical Reports Server (NTRS)
Mumaw, Susan J. (Inventor); Evers, Jeffrey (Inventor); Craig, Calvin L., Jr. (Inventor); Walker, Stuart D. (Inventor)
2001-01-01
The invention is a circuit and method of limiting the charging current voltage from a power supply net work applied to an individual cell of a plurality of cells making up a battery being charged in series. It is particularly designed for use with batteries that can be damaged by overcharging, such as Lithium-ion type batteries. In detail. the method includes the following steps: 1) sensing the actual voltage level of the individual cell; 2) comparing the actual voltage level of the individual cell with a reference value and providing an error signal representative thereof; and 3) by-passing the charging current around individual cell necessary to keep the individual cell voltage level generally equal a specific voltage level while continuing to charge the remaining cells. Preferably this is accomplished by by-passing the charging current around the individual cell if said actual voltage level is above the specific voltage level and allowing the charging current to the individual cell if the actual voltage level is equal or less than the specific voltage level. In the step of bypassing the charging current, the by-passed current is transferred at a proper voltage level to the power supply. The by-pass circuit a voltage comparison circuit is used to compare the actual voltage level of the individual cell with a reference value and to provide an error signal representative thereof. A third circuit, designed to be responsive to the error signal, is provided for maintaining the individual cell voltage level generally equal to the specific voltage level. Circuitry is provided in the third circuit for bypassing charging current around the individual cell if the actual voltage level is above the specific voltage level and transfers the excess charging current to the power supply net work. The circuitry also allows charging of the individual cell if the actual voltage level is equal or less than the specific voltage level.
Mathematical Modeling of Resonant Processes in Confined Geometry of Atomic and Atom-Ion Traps
NASA Astrophysics Data System (ADS)
Melezhik, Vladimir S.
2018-02-01
We discuss computational aspects of the developed mathematical models for resonant processes in confined geometry of atomic and atom-ion traps. The main attention is paid to formulation in the nondirect product discrete-variable representation (npDVR) of the multichannel scattering problem with nonseparable angular part in confining traps as the boundary-value problem. Computational efficiency of this approach is demonstrated in application to atomic and atom-ion confinement-induced resonances we predicted recently.
All the nonadiabatic (J=0) bound states of NO{sub 2}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salzgeber, R.F.; Mandelshtam, V.A.; Schlier, C.
1999-02-01
We calculated all 3170 A{sub 1} and B{sub 2} (J=0) vibronic bound states of the coupled electronic ground ({tilde X}&hthinsp;{sup 2}A{sub 1}) and the first excited ({tilde A}&hthinsp;{sup 2}B{sub 2}) surfaces of NO{sub 2}, using a modification of the {ital ab initio} potentials of Leonardi {ital et al.} [J. Chem. Phys. {bold 105}, 9051 (1996)]. The calculation was performed by harmonic inversion of the Chebyshev correlation function generated from a DVR Hamiltonian in Radau coordinates. The rms error of the eigenenergies is about 2.5 cm{sup {minus}1}, corresponding to a relative error of 10{sup {minus}4} near the dissociation energy. The resultsmore » are compared with the adiabatic and diabatic levels calculated from the same surfaces, with experimental data, and with some approximations for the number of states function N(E). The experimental levels are reproduced fairly well up to an energy of 12&hthinsp;000 cm{sup {minus}1} above the potential minimum while the total number of bound levels agrees to within 2{percent} with that calculated from the phase space volume. {copyright} {ital 1999 American Institute of Physics.}« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schlegel, J.R.; Kriegstein, A.R.
1987-11-22
The distribution of muscarinic and benzodiazepine receptors was investigated in the turtle forebrain by the technique of in vitro receptor autoradiography. Muscarinic binding sites were labeled with 1 nM /sup 3/H-quinuclidinyl benzilate (/sup 3/H-QNB), and benzodiazepine sites were demonstrated with the aid of 1 nM /sup 3/H-flunitrazepam (/sup 3/H-FLU). Autoradiograms generated on /sup 3/H-Ultrofilm apposed to tissue slices revealed regionally specific distributions of muscarinic and benzodiazepine binding sites that are comparable with those for mammalian brain. Dense benzodiazepine binding was found in the anterior olfactory nucleus, the lateral and dorsal cortices, and the dorsal ventricular ridge (DVR), a structure withmore » no clear mammalian homologue. Muscarinic binding sites were most dense in the striatum, accumbens, DVR, lateral geniculate, and the anterior olfactory nucleus. Cortical binding sites were studied in greater detail by quantitative analysis of autoradiograms generated by using emulsion-coated coverslips. Laminar gradients of binding were observed that were specific for each radioligand; /sup 3/H-QNB sites were most dense in the inner molecular layer in all cortical regions, whereas /sup 3/H-FLU binding was generally most concentrated in the outer molecular layer and was least dense through all layers in the dorsomedial cortex. Because pyramidal cells are arranged in register in turtle cortex, the laminar patterns of receptor binding may reflect different receptor density gradients along pyramidal cell dendrites.« less
Elevated voltage level I.sub.DDQ failure testing of integrated circuits
Righter, Alan W.
1996-01-01
Burn in testing of static CMOS IC's is eliminated by I.sub.DDQ testing at elevated voltage levels. These voltage levels are at least 25% higher than the normal operating voltage for the IC but are below voltage levels that would cause damage to the chip.
Elevated voltage level I{sub DDQ} failure testing of integrated circuits
Righter, A.W.
1996-05-21
Burn in testing of static CMOS IC`s is eliminated by I{sub DDQ} testing at elevated voltage levels. These voltage levels are at least 25% higher than the normal operating voltage for the IC but are below voltage levels that would cause damage to the chip. 4 figs.
A coherent discrete variable representation method on a sphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Hua -Gen
Here, the coherent discrete variable representation (ZDVR) has been extended for construct- ing a multidimensional potential-optimized DVR basis on a sphere. In order to deal with the non-constant Jacobian in spherical angles, two direct product primitive basis methods are proposed so that the original ZDVR technique can be properly implemented. The method has been demonstrated by computing the lowest states of a two dimensional (2D) vibrational model. Results show that the extended ZDVR method gives accurate eigenval- ues and exponential convergence with increasing ZDVR basis size.
A coherent discrete variable representation method on a sphere
Yu, Hua -Gen
2017-09-05
Here, the coherent discrete variable representation (ZDVR) has been extended for construct- ing a multidimensional potential-optimized DVR basis on a sphere. In order to deal with the non-constant Jacobian in spherical angles, two direct product primitive basis methods are proposed so that the original ZDVR technique can be properly implemented. The method has been demonstrated by computing the lowest states of a two dimensional (2D) vibrational model. Results show that the extended ZDVR method gives accurate eigenval- ues and exponential convergence with increasing ZDVR basis size.
NASA Technical Reports Server (NTRS)
Dateo, Christopher E.; Arnold, James O. (Technical Monitor)
1994-01-01
A new analytic global potential energy surface describing the hydroperoxyl radical system H((sup 2)S) + O2(X (sup 3)Sigma((sup -)(sub g))) (reversible reaction) HO2 ((X-tilde) (sup 2)A'') (reversible reaction) O((sup 3)P) + O H (X (sup 2)Pi) has been fitted using the ab initio complete active space SCF (self-consistent-field)/externally contracted configuration interaction (CASSCF/CCI) energy calculations of Walch and Duchovic. Results of quasiclassical trajectory studies to determine the rate coefficients of the forward and reverse reactions at combustion temperatures will be presented. In addition, vibrational energy levels were calculated using the quantum DVR-DGB (discrete variable representation-distributed Gaussian basis) method and the splitting due to H atom migration is investigated. The material of the proposed presentation was reviewed and the technical content will not reveal any information not already in the public domain and will not give any foreign industry or government a competitive advantage.
Low voltage to high voltage level shifter and related methods
NASA Technical Reports Server (NTRS)
Mentze, Erik J. (Inventor); Buck, Kevin M. (Inventor); Hess, Herbert L. (Inventor); Cox, David F. (Inventor)
2006-01-01
A shifter circuit comprises a high and low voltage buffer stages and an output buffer stage. The high voltage buffer stage comprises multiple transistors arranged in a transistor stack having a plurality of intermediate nodes connecting individual transistors along the stack. The transistor stack is connected between a voltage level being shifted to and an input voltage. An inverter of this stage comprises multiple inputs and an output. Inverter inputs are connected to a respective intermediate node of the transistor stack. The low voltage buffer stage has an input connected to the input voltage and an output, and is operably connected to the high voltage buffer stage. The low voltage buffer stage is connected between a voltage level being shifted away from and a lower voltage. The output buffer stage is driven by the outputs of the high voltage buffer stage inverter and the low voltage buffer stage.
Hybrid electric vehicle power management system
Bissontz, Jay E.
2015-08-25
Level voltage levels/states of charge are maintained among a plurality of high voltage DC electrical storage devices/traction battery packs that are arrayed in series to support operation of a hybrid electric vehicle drive train. Each high voltage DC electrical storage device supports a high voltage power bus, to which at least one controllable load is connected, and at least a first lower voltage level electrical distribution system. The rate of power transfer from the high voltage DC electrical storage devices to the at least first lower voltage electrical distribution system is controlled by DC-DC converters.
Longitudinal cognitive decline is associated with fibrillar amyloid-beta measured by [11C]PiB.
Resnick, S M; Sojkova, J; Zhou, Y; An, Y; Ye, W; Holt, D P; Dannals, R F; Mathis, C A; Klunk, W E; Ferrucci, L; Kraut, M A; Wong, D F
2010-03-09
To investigate whether longitudinal declines in cognition are associated with higher fibrillar amyloid-beta (Abeta) deposition in vivo in individuals without dementia. [(11)C]PiB images were obtained to measure fibrillar Abeta burden in 57 participants without dementia from the Baltimore Longitudinal Study of Aging. Participants (33 men, 24 women) had a mean (SD) age of 78.7 (6.2) years. Six participants (4 men, 2 women) had mild cognitive impairment defined as Clinical Dementia Rating = 0.5. To measure [(11)C]PiB retention, distribution volume ratios (DVR) for 15 regions of interest were estimated by fitting a simplified reference tissue model to the measured time activity curves. Mixed effects regression was used to predict cognitive trajectories over time using data before and including time of PiB (mean follow-up 10.8 years), with mean cortical DVR, age at baseline, sex, and education as independent predictors. Voxel-based analysis identified local associations. [(11)C]PiB retention was higher in older individuals. Greater declines over time in mental status and verbal learning and memory, but not visual memory, were associated significantly with higher PiB retention. Voxel-based analysis showed significant associations in frontal and lateral temporal regions. Higher Abeta deposition is associated with greater longitudinal decline in mental status and verbal memory in the preceding years. The differential association for verbal but not visual memory may reflect the greater reliance of verbal word list learning on prefrontal regions, which show early Abeta deposition. Prospective imaging may help distinguish between individuals with evolving neuropathology who develop accelerated cognitive decline vs those with normal aging.
Low Power, High Voltage Power Supply with Fast Rise/Fall Time
NASA Technical Reports Server (NTRS)
Bearden, Douglas B. (Inventor)
2007-01-01
A low power, high voltage power supply system includes a high voltage power supply stage and a preregulator for programming the power supply stage so as to produce an output voltage which is a predetermined fraction of a desired voltage level. The power supply stage includes a high voltage, voltage doubler stage connected to receive the output voltage from the preregulator and for, when activated, providing amplification of the output voltage to the desired voltage level. A first feedback loop is connected between the output of the preregulator and an input of the preregulator while a second feedback loop is connected between the output of the power supply stage and the input of the preregulator.
Low power, high voltage power supply with fast rise/fall time
NASA Technical Reports Server (NTRS)
Bearden, Douglas B. (Inventor)
2007-01-01
A low power, high voltage power supply system includes a high voltage power supply stage and a preregulator for programming the power supply stage so as to produce an output voltage which is a predetermined fraction of a desired voltage level. The power supply stage includes a high voltage, voltage doubler stage connected to receive the output voltage from the preregulator and for, when activated, providing amplification of the output voltage to the desired voltage level. A first feedback loop is connected between the output of the preregulator and an input of the preregulator while a second feedback loop is connected between the output of the power supply stage and the input of the preregulator.
NASA Technical Reports Server (NTRS)
Woods, J. M. (Inventor)
1973-01-01
An electrical power distribution system is described for use in providing different dc voltage levels. A circuit is supplied with DC voltage levels and commutates pulses for timed intervals onto a pair of distribution wires. The circuit is driven by a command generator which places pulses on the wires in a timed sequence. The pair of wires extend to voltage strippers connected to the various loads. The voltage strippers each respond to the pulse dc levels on the pair of wires and form different output voltages communicated to each load.
High-voltage supply for neutron tubes in well-logging applications
Humphreys, D.R.
1982-09-15
A high voltage supply is provided for a neutron tube used in well logging. The biased pulse supply of the invention combines DC and full pulse techniques and produces a target voltage comprising a substantial negative DC bias component on which is superimposed a pulse whose negative peak provides the desired negative voltage level for the neutron tube. The target voltage is preferably generated using voltage doubling techniques and employing a voltage source which generates bipolar pulse pairs having an amplitude corresponding to the DC bias level.
High voltage supply for neutron tubes in well logging applications
Humphreys, D. Russell
1989-01-01
A high voltage supply is provided for a neutron tube used in well logging. The "biased pulse" supply of the invention combines DC and "full pulse" techniques and produces a target voltage comprising a substantial negative DC bias component on which is superimposed a pulse whose negative peak provides the desired negative voltage level for the neutron tube. The target voltage is preferably generated using voltage doubling techniques and employing a voltage source which generates bipolar pulse pairs having an amplitude corresponding to the DC bias level.
Infrared spectroscopic study of super-critical water across the Widom line
NASA Astrophysics Data System (ADS)
Samanta, Tuhin; Dutta, Rajesh; Biswas, Rajib; Bagchi, Biman
2018-06-01
When density is varied at a constant temperature just above the gas-liquid critical temperature, the system is found to exhibit large scale density fluctuations which are often rationalized in terms of crossing of a Widom line. We use the discrete variable representation (DVR) scheme to construct the spectroscopic maps for transition frequencies and transition dipoles, and obtain the infrared spectrum of the Osbnd H stretch in the said temperature-density region of the phase diagram. The infrared lineshape shows a crossover from Lorentzian to Gaussian as we approach the Widom line. The width of the lineshape displays a pronounced maximum.
Morgan, W James; Matthews, Devin A; Ringholm, Magnus; Agarwal, Jay; Gong, Justin Z; Ruud, Kenneth; Allen, Wesley D; Stanton, John F; Schaefer, Henry F
2018-03-13
Geometric energy derivatives which rely on core-corrected focal-point energies extrapolated to the complete basis set (CBS) limit of coupled cluster theory with iterative and noniterative quadruple excitations, CCSDTQ and CCSDT(Q), are used as elements of molecular gradients and, in the case of CCSDT(Q), expansion coefficients of an anharmonic force field. These gradients are used to determine the CCSDTQ/CBS and CCSDT(Q)/CBS equilibrium structure of the S 0 ground state of H 2 CO where excellent agreement is observed with previous work and experimentally derived results. A fourth-order expansion about this CCSDT(Q)/CBS reference geometry using the same level of theory produces an exceptional level of agreement to spectroscopically observed vibrational band origins with a MAE of 0.57 cm -1 . Second-order vibrational perturbation theory (VPT2) and variational discrete variable representation (DVR) results are contrasted and discussed. Vibration-rotation, anharmonicity, and centrifugal distortion constants from the VPT2 analysis are reported and compared to previous work. Additionally, an initial application of a sum-over-states fourth-order vibrational perturbation theory (VPT4) formalism is employed herein, utilizing quintic and sextic derivatives obtained with a recursive algorithmic approach for response theory.
Ground difference compensating system
Johnson, Kris W.; Akasam, Sivaprasad
2005-10-25
A method of ground level compensation includes measuring a voltage of at least one signal with respect to a primary ground potential and measuring, with respect to the primary ground potential, a voltage level associated with a secondary ground potential. A difference between the voltage level associated with the secondary ground potential and an expected value is calculated. The measured voltage of the at least one signal is adjusted by an amount corresponding to the calculated difference.
The Rated Voltage Determination of DC Building Power Supply System Considering Human Beings Safety
NASA Astrophysics Data System (ADS)
Wang, Zhicheng; Yu, Kansheng; Xie, Guoqiang; Zou, Jin
2018-01-01
Generally two-level voltages are adopted for DC building power supply system. From the point of view of human beings safety, only the lower level voltage which may be contacted barehanded is discussed in this paper based on the related safety thresholds of human beings current effect. For several voltage levels below 100V recommended by IEC, the body current and current density of human electric shock under device normal work condition, as well as effect of unidirectional single impulse currents of short durations are calculated and analyzed respectively. Finally, DC 60V is recommended as the lower level rating voltage through the comprehensive consideration of technical condition and cost of safety criteria.
Guo, Shaoyin; Hihath, Joshua; Díez-Pérez, Ismael; Tao, Nongjian
2011-11-30
We report on the measurement and statistical study of thousands of current-voltage characteristics and transition voltage spectra (TVS) of single-molecule junctions with different contact geometries that are rapidly acquired using a new break junction method at room temperature. This capability allows one to obtain current-voltage, conductance voltage, and transition voltage histograms, thus adding a new dimension to the previous conductance histogram analysis at a fixed low-bias voltage for single molecules. This method confirms the low-bias conductance values of alkanedithiols and biphenyldithiol reported in literature. However, at high biases the current shows large nonlinearity and asymmetry, and TVS allows for the determination of a critically important parameter, the tunneling barrier height or energy level alignment between the molecule and the electrodes of single-molecule junctions. The energy level alignment is found to depend on the molecule and also on the contact geometry, revealing the role of contact geometry in both the contact resistance and energy level alignment of a molecular junction. Detailed statistical analysis further reveals that, despite the dependence of the energy level alignment on contact geometry, the variation in single-molecule conductance is primarily due to contact resistance rather than variations in the energy level alignment.
NASA Astrophysics Data System (ADS)
Citarsa, I. B. F.; Satiawan, I. N. W.; Wiryajati, I. K.; Supriono
2016-01-01
Multilevel inverters have been widely used in many applications since the technology is advantageous to increase the converter capability as well as to improve the output voltage quality. According to the applied switching frequency, multilevel modulations can be subdivided into three classes, i.e: fundamental switching frequency, high switching frequency and mixed switching frequency. This paper investigates the performance of cascaded H-bridge (CHB) multilevel inverter that is modulated using mixed switching frequency (MSF) PWM with various dc-link voltage ratios. The simulation results show the nearly sinusoidal load output voltages are successfully achieved. It is revealed that there is improvement in output voltages quality in terms of THD and low-order harmonics content. The CHB inverter that is modulated using MSF PWM with equal dc-link voltage ratio (½ Vdc: ½ Vdc) produces output voltage with the lowest low-order harmonics (less than 1% of fundamental) while the CHB inverter that is modulated using MSF PWM with un-equal dc-link voltage ratio (2/3 Vdc: 1/3 Vdc) produces a 7-level output voltage with the lowest THD (16.31%) compared to the other PWM methods. Improvement of the output voltage quality here is also in line with improvement of the number of available levels provided in the output voltage. Here only 2 cells H-bridge inverter (contain 8 switches) are needed to produce a 7- level output voltage, while in the conventional CHB inverter at least 3 cells of H-bridge inverter (contain 12 switches) are needed to produce a 7-level output voltage. Hence it is valuable in term of saving number of component.
NASA Astrophysics Data System (ADS)
Zhang, Yonggao; Gao, Yanli; Long, Lizhong
2012-04-01
More and more researchers have great concern on the issue of Common-mode voltage (CMV) in high voltage large power converter. A novel common-mode voltage suppression scheme based on zero-vector PWM strategy (ZVPWM) is present in this paper. Taking a diode-clamped five-level converter as example, the principle of zero vector PWM common-mode voltage (ZCMVPWM) suppression method is studied in detail. ZCMVPWM suppression strategy is including four important parts, which are locating the sector of reference voltage vector, locating the small triangular sub-sector of reference voltage vector, reference vector synthesis, and calculating the operating time of vector. The principles of four important pars are illustrated in detail and the corresponding MATLAB models are established. System simulation and experimental results are provided. It gives some consultation value for the development and research of multi-level converters.
Development of Multi-Functional Voltage Restore System
NASA Astrophysics Data System (ADS)
Suzuki, Satoshi; Ueda, Yoshinobu; Koganezawa, Takehisa; Ogihara, Yoshinori; Mori, Kenjiro; Fukazu, Naoaki
Recently, with the dawn of the electric deregulation, the installation of distributed generation with power electronics device has grown. This current causes a greater concern of power quality, primarily voltage disturbance for power companies, and their interest in power quality is peaking. Utilities are also interested in keeping their customers satisfied, as well as keeping them on-line and creating more revenue for the utility. As a countermeasure against the above surroundings, a variety type of devices based on power electronics has been developed to protect customers' load from power line voltage disturbance. One of them is the series type voltage restore. The series device is an active device, designed to provide a pure sinusoidal load voltage at all times, correcting voltage disturbance. Series type device compensates for voltage anomalies by inserting the ‘missing’ voltage onto the line through insertion transformer and inverter. This paper shows the setting guideline of target level to compensate voltage disturbance, that is, voltage dip, voltage harmonics, voltage imbalance and voltage flicker, and the design approach of the prototype of series voltage restores to accomplish the required compensation level. The prototype system gives satisfactory compensation performance through evaluation tests, which confirm the validity and effectiveness of the system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Xiangqi; Wang, Jiyu; Mulcahy, David
This paper presents a voltage-load sensitivity matrix (VLSM) based voltage control method to deploy demand response resources for controlling voltage in high solar penetration distribution feeders. The IEEE 123-bus system in OpenDSS is used for testing the performance of the preliminary VLSM-based voltage control approach. A load disaggregation process is applied to disaggregate the total load profile at the feeder head to each load nodes along the feeder so that loads are modeled at residential house level. Measured solar generation profiles are used in the simulation to model the impact of solar power on distribution feeder voltage profiles. Different casemore » studies involving various PV penetration levels and installation locations have been performed. Simulation results show that the VLSM algorithm performance meets the voltage control requirements and is an effective voltage control strategy.« less
NASA Astrophysics Data System (ADS)
Hamzah, H. H.; Ponniran, A.; Kasiran, A. N.; Harimon, M. A.; Gendum, D. A.; Yatim, M. H.
2018-04-01
This paper discussing design principles of inverter structure with reduced number of semiconductor devices of seven levels symmetric H-bridge multilevel inverter (MLI) topology. The aim of this paper is to design an inverter circuit with reduction of semiconductor losses, converter size and development cost. The H-bridge and auxiliary structures were considered in order to achieve seven levels output voltage. The performance of design circuit is compared with conventional seven levels structure in terms of voltage output. The circuit development consists of seven switches and three diode. A basic modulation technique is used to confirm the designed circuit. The results show that the designed circuit is able to convert seven level output voltage with low total harmonics distortion (THD) in voltage fundamental output. According to the results, fundamental output voltage is increased up to 8.314%, and the THD is decreased up to 0.81% compared to the conventional seven level inverter.
Kosmider, Leon; Sobczak, Andrzej; Fik, Maciej; Knysak, Jakub; Zaciera, Marzena; Kurek, Jolanta; Goniewicz, Maciej Lukasz
2014-10-01
Glycerin (VG) and propylene glycol (PG) are the most common nicotine solvents used in e-cigarettes (ECs). It has been shown that at high temperatures both VG and PG undergo decomposition to low molecular carbonyl compounds, including the carcinogens formaldehyde and acetaldehyde. The aim of this study was to evaluate how various product characteristics, including nicotine solvent and battery output voltage, affect the levels of carbonyls in EC vapor. Twelve carbonyl compounds were measured in vapors from 10 commercially available nicotine solutions and from 3 control solutions composed of pure glycerin, pure propylene glycol, or a mixture of both solvents (50:50). EC battery output voltage was gradually modified from 3.2 to 4.8V. Carbonyl compounds were determined using the HPLC/DAD method. Formaldehyde and acetaldehyde were found in 8 of 13 samples. The amounts of formaldehyde and acetaldehyde in vapors from lower voltage EC were on average 13- and 807-fold lower than in tobacco smoke, respectively. The highest levels of carbonyls were observed in vapors generated from PG-based solutions. Increasing voltage from 3.2 to 4.8V resulted in a 4 to more than 200 times increase in formaldehyde, acetaldehyde, and acetone levels. The levels of formaldehyde in vapors from high-voltage device were in the range of levels reported in tobacco smoke. Vapors from EC contain toxic and carcinogenic carbonyl compounds. Both solvent and battery output voltage significantly affect levels of carbonyl compounds in EC vapors. High-voltage EC may expose users to high levels of carbonyl compounds. © The Author 2014. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Three-Level 48-Pulse STATCOM with Pulse Width Modulation
NASA Astrophysics Data System (ADS)
Singh, Bhim; Srinivas, Kadagala Venkata
2016-03-01
In this paper, a new control strategy of a three-level 48-pulse static synchronous compensator (STATCOM) is proposed with a constant dc link voltage and pulse width modulation at fundamental frequency switching. The proposed STATCOM is realized using eight units of three-level voltage source converters (VSCs) to form a three-level 48-pulse STATCOM. The conduction angle of each three-level VSC is modulated to control the ac converter output voltage, which controls the reactive power of the STATCOM. A fuzzy logic controller is used to control the STATCOM. The dynamic performance of the STATCOM is studied for the control of the reference reactive power, the reference terminal voltage and under the switching of inductive and capacitive loads.
Voltage scheduling for low power/energy
NASA Astrophysics Data System (ADS)
Manzak, Ali
2001-07-01
Power considerations have become an increasingly dominant factor in the design of both portable and desk-top systems. An effective way to reduce power consumption is to lower the supply voltage since voltage is quadratically related to power. This dissertation considers the problem of lowering the supply voltage at (i) the system level and at (ii) the behavioral level. At the system level, the voltage of the variable voltage processor is dynamically changed with the work load. Processors with limited sized buffers as well as those with very large buffers are considered. Given the task arrival times, deadline times, execution times, periods and switching activities, task scheduling algorithms that minimize energy or peak power are developed for the processors equipped with very large buffers. A relation between the operating voltages of the tasks for minimum energy/power is determined using the Lagrange multiplier method, and an iterative algorithm that utilizes this relation is developed. Experimental results show that the voltage assignment obtained by the proposed algorithm is very close (0.1% error) to that of the optimal energy assignment and the optimal peak power (1% error) assignment. Next, on-line and off-fine minimum energy task scheduling algorithms are developed for processors with limited sized buffers. These algorithms have polynomial time complexity and present optimal (off-line) and close-to-optimal (on-line) solutions. A procedure to calculate the minimum buffer size given information about the size of the task (maximum, minimum), execution time (best case, worst case) and deadlines is also presented. At the behavioral level, resources operating at multiple voltages are used to minimize power while maintaining the throughput. Such a scheme has the advantage of allowing modules on the critical paths to be assigned to the highest voltage levels (thus meeting the required timing constraints) while allowing modules on non-critical paths to be assigned to lower voltage levels (thus reducing the power consumption). A polynomial time resource and latency constrained scheduling algorithm is developed to distribute the available slack among the nodes such that power consumption is minimum. The algorithm is iterative and utilizes the slack based on the Lagrange multiplier method.
MIS capacitor studies on silicon carbide single crystals
NASA Technical Reports Server (NTRS)
Kopanski, J. J.
1990-01-01
Cubic SIC metal-insulator-semiconductor (MIS) capacitors with thermally grown or chemical-vapor-deposited (CVD) insulators were characterized by capacitance-voltage (C-V), conductance-voltage (G-V), and current-voltage (I-V) measurements. The purpose of these measurements was to determine the four charge densities commonly present in an MIS capacitor (oxide fixed charge, N(f); interface trap level density, D(it); oxide trapped charge, N(ot); and mobile ionic charge, N(m)) and to determine the stability of the device properties with electric-field stress and temperature. The section headings in the report include the following: Capacitance-voltage and conductance-voltage measurements; Current-voltage measurements; Deep-level transient spectroscopy; and Conclusions (Electrical characteristics of SiC MIS capacitors).
Automated movement correction for dynamic PET/CT images: evaluation with phantom and patient data.
Ye, Hu; Wong, Koon-Pong; Wardak, Mirwais; Dahlbom, Magnus; Kepe, Vladimir; Barrio, Jorge R; Nelson, Linda D; Small, Gary W; Huang, Sung-Cheng
2014-01-01
Head movement during a dynamic brain PET/CT imaging results in mismatch between CT and dynamic PET images. It can cause artifacts in CT-based attenuation corrected PET images, thus affecting both the qualitative and quantitative aspects of the dynamic PET images and the derived parametric images. In this study, we developed an automated retrospective image-based movement correction (MC) procedure. The MC method first registered the CT image to each dynamic PET frames, then re-reconstructed the PET frames with CT-based attenuation correction, and finally re-aligned all the PET frames to the same position. We evaluated the MC method's performance on the Hoffman phantom and dynamic FDDNP and FDG PET/CT images of patients with neurodegenerative disease or with poor compliance. Dynamic FDDNP PET/CT images (65 min) were obtained from 12 patients and dynamic FDG PET/CT images (60 min) were obtained from 6 patients. Logan analysis with cerebellum as the reference region was used to generate regional distribution volume ratio (DVR) for FDDNP scan before and after MC. For FDG studies, the image derived input function was used to generate parametric image of FDG uptake constant (Ki) before and after MC. Phantom study showed high accuracy of registration between PET and CT and improved PET images after MC. In patient study, head movement was observed in all subjects, especially in late PET frames with an average displacement of 6.92 mm. The z-direction translation (average maximum = 5.32 mm) and x-axis rotation (average maximum = 5.19 degrees) occurred most frequently. Image artifacts were significantly diminished after MC. There were significant differences (P<0.05) in the FDDNP DVR and FDG Ki values in the parietal and temporal regions after MC. In conclusion, MC applied to dynamic brain FDDNP and FDG PET/CT scans could improve the qualitative and quantitative aspects of images of both tracers.
Automated Movement Correction for Dynamic PET/CT Images: Evaluation with Phantom and Patient Data
Ye, Hu; Wong, Koon-Pong; Wardak, Mirwais; Dahlbom, Magnus; Kepe, Vladimir; Barrio, Jorge R.; Nelson, Linda D.; Small, Gary W.; Huang, Sung-Cheng
2014-01-01
Head movement during a dynamic brain PET/CT imaging results in mismatch between CT and dynamic PET images. It can cause artifacts in CT-based attenuation corrected PET images, thus affecting both the qualitative and quantitative aspects of the dynamic PET images and the derived parametric images. In this study, we developed an automated retrospective image-based movement correction (MC) procedure. The MC method first registered the CT image to each dynamic PET frames, then re-reconstructed the PET frames with CT-based attenuation correction, and finally re-aligned all the PET frames to the same position. We evaluated the MC method's performance on the Hoffman phantom and dynamic FDDNP and FDG PET/CT images of patients with neurodegenerative disease or with poor compliance. Dynamic FDDNP PET/CT images (65 min) were obtained from 12 patients and dynamic FDG PET/CT images (60 min) were obtained from 6 patients. Logan analysis with cerebellum as the reference region was used to generate regional distribution volume ratio (DVR) for FDDNP scan before and after MC. For FDG studies, the image derived input function was used to generate parametric image of FDG uptake constant (Ki) before and after MC. Phantom study showed high accuracy of registration between PET and CT and improved PET images after MC. In patient study, head movement was observed in all subjects, especially in late PET frames with an average displacement of 6.92 mm. The z-direction translation (average maximum = 5.32 mm) and x-axis rotation (average maximum = 5.19 degrees) occurred most frequently. Image artifacts were significantly diminished after MC. There were significant differences (P<0.05) in the FDDNP DVR and FDG Ki values in the parietal and temporal regions after MC. In conclusion, MC applied to dynamic brain FDDNP and FDG PET/CT scans could improve the qualitative and quantitative aspects of images of both tracers. PMID:25111700
System and method for charging electrochemical cells in series
DeLuca, William H.; Hornstra, Jr, Fred; Gelb, George H.; Berman, Baruch; Moede, Larry W.
1980-01-01
A battery charging system capable of equalizing the charge of each individual cell at a selected full charge voltage includes means for regulating charger current to first increase current at a constant rate until a bulk charging level is achieved or until any cell reaches a safe reference voltage. A system controller then begins to decrease the charging rate as long as any cell exceeds the reference voltage until an equalization current level is reached. At this point, the system controller activates a plurality of shunt modules to permit shunting of current around any cell having a voltage exceeding the reference voltage. Leads extending between the battery of cells and shunt modules are time shared to permit alternate shunting of current and voltage monitoring without the voltage drop caused by the shunt current. After each cell has at one time exceeded the reference voltage, the charging current is terminated.
Electrochemically controlled charging circuit for storage batteries
Onstott, E.I.
1980-06-24
An electrochemically controlled charging circuit for charging storage batteries is disclosed. The embodiments disclosed utilize dc amplification of battery control current to minimize total energy expended for charging storage batteries to a preset voltage level. The circuits allow for selection of Zener diodes having a wide range of reference voltage levels. Also, the preset voltage level to which the storage batteries are charged can be varied over a wide range.
NASA Astrophysics Data System (ADS)
Villegas, Brendon Josef
This investigation of [18F]FDDNP was conducted in an effort to confirm the presence of disease in a patient with Progressive Supranuclear Palsy (PSP) and to correlate the ante mortem PET scan results to the post mortem pathology. The immunohistochemical and immunofluorescent staining of Paired Helical Filamentous (PHF) tau (AT8) and Amyloid Beta (6F/3D) misfolded proteins demonstrated a widespread deposition in the cortical and subcortical nuclei, the white matter, cerebellar white matter and the medulla oblongata. The in vitro autoradiography demonstrated a neocortical signal comprised of well-delineated amyloid beta in the nucleated layers I/II and hyperphosphorylated tau in the deeper layers III through VI. The autoradiography was well correlated with the immunohistochemical staining in adjacent tissue slides. The binding of the parametric [ 18F]FDDNP distribution volume ratio (DVR) correlated well (Spearman's rho = 0.962, p = .004) with the deposition of tau but not with the presence of amyloid beta (Spearman's rho = -0.829, p = .041). The [ 18F]FDDNP DVR signal appears to be primarily due to the large amount of bound hyperphosphorylated tau (p-tau) and the amyloid beta negligibly contributes to the total signal. Unlabeled FDDNP was shown to bind to tau in the form of globose tangles in the rostral ventromedial medulla as confirmed with both Thioflavin S and PHF-tau Immunofluorescence. The binding of [18F]FDDNP to the human neuroanatomy was investigated in two cohorts of distinct tauopathies and compared to the binding in two tau-negative cohorts against control patients. A cohort of PSP patients (n = 12) with a mean age of 63.8 years and a cohort of Chronic Traumatic Encephalopathy (CTE) patients (n = 14) with a mean age of 58.1 years are both characterized by the presence of various degrees of tau pathology in their brains. The cohort of Parkinson's Disease (PD) patients (n = 16) with a mean age of 63.2 years is initially characterized by clinical symptoms similar to PSP [18F]FDDNP is able to differentiate between PD and PSP with statistical significance (p < .05) in the striatum; particularly within the caudate nucleus. The Huntington's Disease (HD) patients (n = 15) with a mean age of 36.8 years display motor degeneration from a loss of striatal medium spiny neurons with no presence of amyloid beta or p-tau. It has further been demonstrated with statistical certainty that CTE is discernible from control patients in the amygdala, the midbrain, the caudate nucleus and the anterior cingulate gyrus (p < .05). On the other hand, the HD and PD cohort were both found to have decreased binding of [18F]FDDNP binding in caudate nucleus when compared to all the control patients (p < .05). In the tauopathy cases studied, [18F]FDDNP has successfully demonstrated its differential capability to discriminate between PSP, CTE and PD. The [18F]FDDNP DVR signal in the cases of PSP and CTE closely correlated with hyperphosphorylated tau deposition, as confirmed by the post mortem autopsy of a case with PSP.
Anode reactive bleed and injector shift control strategy
Cai, Jun [Rochester, NY; Chowdhury, Akbar [Pittsford, NY; Lerner, Seth E [Honeoye Falls, NY; Marley, William S [Rush, NY; Savage, David R [Rochester, NY; Leary, James K [Rochester, NY
2012-01-03
A system and method for correcting a large fuel cell voltage spread for a split sub-stack fuel cell system. The system includes a hydrogen source that provides hydrogen to each split sub-stack and bleed valves for bleeding the anode side of the sub-stacks. The system also includes a voltage measuring device for measuring the voltage of each cell in the split sub-stacks. The system provides two levels for correcting a large stack voltage spread problem. The first level includes sending fresh hydrogen to the weak sub-stack well before a normal reactive bleed would occur, and the second level includes sending fresh hydrogen to the weak sub-stack and opening the bleed valve of the other sub-stack when the cell voltage spread is close to stack failure.
DIFFERENTIAL FAULT SENSING CIRCUIT
Roberts, J.H.
1961-09-01
A differential fault sensing circuit is designed for detecting arcing in high-voltage vacuum tubes arranged in parallel. A circuit is provided which senses differences in voltages appearing between corresponding elements likely to fault. Sensitivity of the circuit is adjusted to some level above which arcing will cause detectable differences in voltage. For particular corresponding elements, a group of pulse transformers are connected in parallel with diodes connected across the secondaries thereof so that only voltage excursions are transmitted to a thyratron which is biased to the sensitivity level mentioned.
High-Voltage Characterization for the Prototype Induction Cells
NASA Astrophysics Data System (ADS)
Huacen, Wang; Kaizhi, Zhang; Long, Wen; Qinggui, Lai; Linwen, Zhang; Jianjun, Deng
2002-12-01
Two linear induction prototype cells expected to work at 250kV, 3kA,with accelerating voltage flattop (±1%) ⩾ 70ns, have been tested to determine their high-voltage characteristics. Each cell is composed of a ferrite core immersed in oil, a gap with curved stainless steel electrodes, a solenoid magnet, and a insulator. The experiments were carried out with full-scale cells. The high voltage pulses were applied to two cells using a 100ns, 12Ω pulse Blumlein. The tests were performed at various high-voltage levels ranging from -250kV to -350kV. No breakdown was observed during the test at vacuum level (7-10) ṡ10-4 Pa. The cell schematic, the experimental set up, and the measured voltage waveforms are presented in this paper.
Effects of Electrode Material on the Voltage of a Tree-Based Energy Generator.
Hao, Zhibin; Wang, Guozhu; Li, Wenbin; Zhang, Junguo; Kan, Jiangming
2015-01-01
The voltage between a standing tree and its surrounding soil is regarded as an innovative renewable energy source. This source is expected to provide a new power generation system for the low-power electrical equipment used in forestry. However, the voltage is weak, which has caused great difficulty in application. Consequently, the development of a method to increase the voltage is a key issue that must be addressed in this area of applied research. As the front-end component for energy harvesting, a metal electrode has a material effect on the level and stability of the voltage obtained. This study aimed to preliminarily ascertain the rules and mechanisms that underlie the effects of electrode material on voltage. Electrodes of different materials were used to measure the tree-source voltage, and the data were employed in a comparative analysis. The results indicate that the conductivity of the metal electrode significantly affects the contact resistance of the electrode-soil and electrode-trunk contact surfaces, thereby influencing the voltage level. The metal reactivity of the electrode has no significant effect on the voltage. However, passivation of the electrode materials markedly reduces the voltage. Suitable electrode materials are demonstrated and recommended.
NASA Astrophysics Data System (ADS)
Kunisetti, V. Praveen Kumar; Thippiripati, Vinay Kumar
2018-01-01
Open End Winding Induction Motors (OEWIM) are popular for electric vehicles, ship propulsion applications due to less DC link voltage. Electric vehicles, ship propulsions require ripple free torque. In this article, an enhanced three-level voltage switching state scheme for direct torque controlled OEWIM drive is implemented to reduce torque and flux ripples. The limitations of conventional Direct Torque Control (DTC) are: possible problems during low speeds and starting, it operates with variable switching frequency due to hysteresis controllers and produces higher torque and flux ripple. The proposed DTC scheme can abate the problems of conventional DTC with an enhanced voltage switching state scheme. The three-level inversion was obtained by operating inverters with equal DC-link voltages and it produces 18 voltage space vectors. These 18 vectors are divided into low and high frequencies of operation based on rotor speed. The hardware results prove the validity of proposed DTC scheme during steady-state and transients. From simulation and experimental results, proposed DTC scheme gives less torque and flux ripples on comparison to two-level DTC. The proposed DTC is implemented using dSPACE DS-1104 control board interface with MATLAB/SIMULINK-RTI model.
NASA Astrophysics Data System (ADS)
Kunisetti, V. Praveen Kumar; Thippiripati, Vinay Kumar
2018-06-01
Open End Winding Induction Motors (OEWIM) are popular for electric vehicles, ship propulsion applications due to less DC link voltage. Electric vehicles, ship propulsions require ripple free torque. In this article, an enhanced three-level voltage switching state scheme for direct torque controlled OEWIM drive is implemented to reduce torque and flux ripples. The limitations of conventional Direct Torque Control (DTC) are: possible problems during low speeds and starting, it operates with variable switching frequency due to hysteresis controllers and produces higher torque and flux ripple. The proposed DTC scheme can abate the problems of conventional DTC with an enhanced voltage switching state scheme. The three-level inversion was obtained by operating inverters with equal DC-link voltages and it produces 18 voltage space vectors. These 18 vectors are divided into low and high frequencies of operation based on rotor speed. The hardware results prove the validity of proposed DTC scheme during steady-state and transients. From simulation and experimental results, proposed DTC scheme gives less torque and flux ripples on comparison to two-level DTC. The proposed DTC is implemented using dSPACE DS-1104 control board interface with MATLAB/SIMULINK-RTI model.
Reliable low-cost battery voltage indicator for light aircraft and automobiles
NASA Technical Reports Server (NTRS)
Miller, R. L.
1973-01-01
Voltage indicator fits into cigarette lighter socket and utilizes light emitting and Zener diodes to display three levels of battery voltage. Indicator is superior to typical conventional electrical system indicators in that it gives a positive discrete indication of battery voltage. It is simple, inexpensive, and rugged.
Qin, Qi-Zhong; Chen, Yu; Fu, Ting-Ting; Ding, Li; Han, Ling-Li; Li, Jian-Chao
2012-03-01
To understand electromagnetic radiation field strength and its influencing factors of certain 110-kV high-voltage lines in one urban area of Chongqing by measuring 110-kV high-voltage line's electromagnetic radiation level. According to the methodology as determined by the National Hygienic Standards, we selected certain adjacent residential buildings, high-voltage lines along a specific street and selected different distances around its vertical projection point as monitoring points. The levels of electromagnetic radiations were measured respectively. In this investigation within the frequency of 5-1,000 Hz both the electric field strength and magnetic field strength of each monitoring sites were lower than the public exposure standards as determined by the International Commission on Non-Ionizing Radiation Protection. However, the electrical field strength on the roof adjacent to the high-voltage lines was significantly higher than that as measured on the other floors in the same buildings (p < 0.05). The electromagnetic radiation measurements of different monitoring points, under the same high-voltage lines, showed the location which is nearer the high-voltage line maintain a consistently higher level of radiation than the more distant locations (p < 0.05). Electromagnetic radiation generated by high-voltage lines decreases proportionally to the distance from the lines. The buildings can to some extent shield (or absorb) the electric fields generated by high-voltage lines nearby. The electromagnetic radiation intensity near high-voltage lines may be mitigated or intensified by the manner in which the high-voltage lines are set up, and it merits attention for the potential impact on human health.
Characterization of Low Noise, Precision Voltage Reference REF5025-HT Under Extreme Temperatures
NASA Technical Reports Server (NTRS)
Patterson, Richard; Hammoud, Ahmad
2010-01-01
The performance of Texas Instruments precision voltage reference REF5025-HT was assessed under extreme temperatures. This low noise, 2.5 V output chip is suitable for use in high temperature down-hole drilling applications, but no data existed on its performance at cryogenic temperatures. The device was characterized in terms of output voltage and supply current at different input voltage levels as a function of temperature between +210 C and -190 C. Line and load regulation characteristics were also established at six load levels and at different temperatures. Restart capability at extreme temperatures and the effects of thermal cycling, covering the test temperature range, on its operation and stability were also investigated. Under no load condition, the voltage reference chip exhibited good stability in its output over the temperature range of -50 C to +200 C. Outside that temperature range, output voltage did change as temperature was changed. For example, at the extreme temperatures of +210 C and - 190 C, the output level dropped to 2.43 V and 2.32 V, respectively as compared to the nominal value of 2.5 V. At cryogenic test temperatures of -100 C and -150 C the output voltage dropped by about 20%. The quiescent supply current of the voltage reference varied slightly with temperature but remained close to its specified value. In terms of line regulation, the device exhibited excellent stability between -50 C and +150 C over the entire input voltage range and load levels. At the other test temperatures, however, while line regulation became poor at cryogenic temperatures of -100 C and below, it suffered slight degradation at the extreme high temperature but only at the high load level of 10 mA. The voltage reference also exhibited very good load regulation with temperature down to -100 C, but its output dropped sharply at +210 C only at the heavy load of 10 mA. The semiconductor chip was able restart at the extreme temperatures of -190 C and +210 C, and the limited thermal cycling did not influence its characteristics and had no impact on its packaging as no structural or physical damage was observed.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-18
... Basic Impulse Level 4. Dual/Multiple-Voltage Primary Windings 5. Dual/Multiple-Voltage Secondary Windings 6. Loading B. Technological Feasibility 1. General 2. Maximum Technologically Feasible Levels C...
Modeling, Development and Control of Multilevel Converters for Power System Application =
NASA Astrophysics Data System (ADS)
Vahedi, Hani
The main goal of this project is to develop a multilevel converter topology to be useful in power system applications. Although many topologies are introduced rapidly using a bunch of switches and isolated dc sources, having a single-dc-source multilevel inverter is still a matter of controversy. In fact, each isolated dc source means a bulky transformer and a rectifier that have their own losses and costs forcing the industries to avoid entering in this topic conveniently. On the other hand, multilevel inverters topologies with single-dc-source require associated controllers to regulate the dc capacitors voltages in order to have multilevel voltage waveform at the output. Thus, a complex controller would not interest investors properly. Consequently, developing a single-dc-source multilevel inverter topology along with a light and reliable voltage control is still a challenging topic to replace the 2-level inverters in the market effectively. The first effort in this project was devoted to the PUC7 inverter to design a simple and yet efficient controller. A new modelling is performed on the PUC7 inverter and it has been simplified to first order system. Afterwards, a nonlinear cascaded controller is designed and applied to regulate the capacitor voltage at 1/3 of the DC source amplitude and to generate 7 identical voltage levels at the output supplying different type of loads such as RL or rectifier harmonic ones. In next work, the PUC5 topology is proposed as a remedy to the PUC7 that requires a complicated controller to operate properly. The capacitor voltage is regulated at half of dc source amplitude to generate 5 voltage levels at the output. Although the 7-level voltage waveform is replaced by a 5-level one in PUC5 topology, it is shown that the PUC5 needs a very simple and reliable voltage balancing technique due to having some redundant switching states. Moreover, a sensor-less voltage balancing technique is designed and implemented on the PUC5 inverter successfully to work in both stand-alone and gridconnected mode of operation. Eventually, a modified configuration of the PUC5 topology is presented to work as a buck PFC rectifier. The internal performance of the rectifier is like a buck converter to generate stepped down DC voltages at the two output terminals while the grid sees a boost converter externally. As well, a decoupled voltage/current controller is designed and applied to balance the output voltages identically and synchronize the input current with grid voltage to have a PFC operation acceptably. A power balance analysis is done to show the load variation range limit. All the theoretical and simulation studies are validated by experimental results completely.
Architecture, Voltage, and Components for a Turboelectric Distributed Propulsion Electric Grid
NASA Technical Reports Server (NTRS)
Armstrong, Michael J.; Blackwelder, Mark; Bollman, Andrew; Ross, Christine; Campbell, Angela; Jones, Catherine; Norman, Patrick
2015-01-01
The development of a wholly superconducting turboelectric distributed propulsion system presents unique opportunities for the aerospace industry. However, this transition from normally conducting systems to superconducting systems significantly increases the equipment complexity necessary to manage the electrical power systems. Due to the low technology readiness level (TRL) nature of all components and systems, current Turboelectric Distributed Propulsion (TeDP) technology developments are driven by an ambiguous set of system-level electrical integration standards for an airborne microgrid system (Figure 1). While multiple decades' worth of advancements are still required for concept realization, current system-level studies are necessary to focus the technology development, target specific technological shortcomings, and enable accurate prediction of concept feasibility and viability. An understanding of the performance sensitivity to operating voltages and an early definition of advantageous voltage regulation standards for unconventional airborne microgrids will allow for more accurate targeting of technology development. Propulsive power-rated microgrid systems necessitate the introduction of new aircraft distribution system voltage standards. All protection, distribution, control, power conversion, generation, and cryocooling equipment are affected by voltage regulation standards. Information on the desired operating voltage and voltage regulation is required to determine nominal and maximum currents for sizing distribution and fault isolation equipment, developing machine topologies and machine controls, and the physical attributes of all component shielding and insulation. Voltage impacts many components and system performance.
Voltage Impacts of Utility-Scale Distributed Wind
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, A.
2014-09-01
Although most utility-scale wind turbines in the United States are added at the transmission level in large wind power plants, distributed wind power offers an alternative that could increase the overall wind power penetration without the need for additional transmission. This report examines the distribution feeder-level voltage issues that can arise when adding utility-scale wind turbines to the distribution system. Four of the Pacific Northwest National Laboratory taxonomy feeders were examined in detail to study the voltage issues associated with adding wind turbines at different distances from the sub-station. General rules relating feeder resistance up to the point of turbinemore » interconnection to the expected maximum voltage change levels were developed. Additional analysis examined line and transformer overvoltage conditions.« less
APPARATUS FOR REGULATING HIGH VOLTAGE
Morrison, K.G.
1951-03-20
This patent describes a high-voltage regulator of the r-f type wherein the modulation of the r-f voltage is accomplished at a high level, resulting in good stabilization over a large range of load conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eslami, E., E-mail: eeslami@iust.ac.ir; Barjasteh, A.; Morshedian, N.
2015-06-15
In this work, we numerically compare the effect of a sinusoidal, triangular, and rectangular pulsed voltage profile on the calculated particle production, electric current, and gas voltage in a dielectric barrier discharge. The total argon gas pressure of 400 Pa, the distance between dielectrics of 5 mm, the dielectric thickness of 0.7 mm, and the temperature of T = 300 K were considered as input parameters. The different driving voltage pulse shapes (triangular, rectangular, and sinusoidal) are considered as applied voltage with a frequency of 7 kHz and an amplitude of 700 V peak to peak. It is shown thatmore » applying a rectangular voltage, as compared with a sinusoidal or triangle voltage, increases the current peak, while the peak width is decreased. Higher current density is related to high production of charged particles, which leads to the generation of some highly active species, such as Ar* (4s level), and Ar** (4p level) in the gap.« less
A quick response four decade logarithmic high-voltage stepping supply
NASA Technical Reports Server (NTRS)
Doong, H.
1978-01-01
An improved high-voltage stepping supply, for space instrumentation is described where low power consumption and fast settling time between steps are required. The high-voltage stepping supply, utilizing an average power of 750 milliwatts, delivers a pair of mirror images with 64 level logarithmic outputs. It covers a four decade range of + or - 2500 to + or - 0.29 volts having an output stability of + or - 0.5 percent or + or - 20 millivolts for all line load and temperature variations. The supply provides a typical step setting time of 1 millisecond with 100 microseconds for the lower two decades. The versatile design features of the high-voltage stepping supply provides a quick response staircase generator as described or a fixed voltage with the option to change levels as required over large dynamic ranges without circuit modifications. The concept can be implemented up to + or - 5000 volts. With these design features, the high-voltage stepping supply should find numerous applications where charged particle detection, electro-optical systems, and high voltage scientific instruments are used.
High-voltage measurements on the 5 ppm relative uncertainty level with collinear laser spectroscopy
NASA Astrophysics Data System (ADS)
Krämer, J.; König, K.; Geppert, Ch; Imgram, P.; Maaß, B.; Meisner, J.; Otten, E. W.; Passon, S.; Ratajczyk, T.; Ullmann, J.; Nörtershäuser, W.
2018-04-01
We present the results of high-voltage collinear laser spectroscopy measurements on the 5 ppm relative uncertainty level using a pump and probe scheme at the 4s ^2S1/2 → 4p ^2P3/2 transition of {\\hspace{0pt}}40Ca+ involving the 3d ^2D5/2 metastable state. With two-stage laser interaction and a reference measurement we can eliminate systematic effects such as differences in the contact potentials due to different electrode materials and thermoelectric voltages, and the unknown starting potential of the ions in the ion source. Voltage measurements were performed between -5 kV and -19 kV and parallel measurements with stable high-voltage dividers calibrated to 5 ppm relative uncertainty were used as a reference. Our measurements are compatible with the uncertainty limits of the high-voltage dividers and demonstrate an unprecedented (factor of 20) increase in the precision of direct laser-based high-voltage measurements.
Voltage Stress on Y Capacitors from Indirect Lightning Pulses According to ED-14/DO-160
NASA Astrophysics Data System (ADS)
Meier, F.
2012-05-01
Transients due to lightning strikes on an aircraft's fuselage impose stress on the input filters of elec- tronic equipment. Permanent damage can occur when exceeding the voltage handling capacity of filter components causing a short circuit to ground. In ED-14/DO-160, section 22, a number of waveforms and levels are defined which are used to check the airworthiness of avionics equipment. Depending on pro- cedure and level, Y-capacitors are stressed by transient voltages which exceed their dielectric strength. The design engineer's task is a properly select the type and voltage rating of capacitors. With moderate simplifications, a LCR-series network is justified to calculate the peak voltage dependent on the capacitance.
Multilevel cascade voltage source inverter with seperate DC sources
Peng, Fang Zheng; Lai, Jih-Sheng
1997-01-01
A multilevel cascade voltage source inverter having separate DC sources is described herein. This inverter is applicable to high voltage, high power applications such as flexible AC transmission systems (FACTS) including static VAR generation (SVG), power line conditioning, series compensation, phase shifting and voltage balancing and fuel cell and photovoltaic utility interface systems. The M-level inverter consists of at least one phase wherein each phase has a plurality of full bridge inverters equipped with an independent DC source. This inverter develops a near sinusoidal approximation voltage waveform with only one switching per cycle as the number of levels, M, is increased. The inverter may have either single-phase or multi-phase embodiments connected in either wye or delta configurations.
Multilevel cascade voltage source inverter with seperate DC sources
Peng, Fang Zheng; Lai, Jih-Sheng
2002-01-01
A multilevel cascade voltage source inverter having separate DC sources is described herein. This inverter is applicable to high voltage, high power applications such as flexible AC transmission systems (FACTS) including static VAR generation (SVG), power line conditioning, series compensation, phase shifting and voltage balancing and fuel cell and photovoltaic utility interface systems. The M-level inverter consists of at least one phase wherein each phase has a plurality of full bridge inverters equipped with an independent DC source. This inverter develops a near sinusoidal approximation voltage waveform with only one switching per cycle as the number of levels, M, is increased. The inverter may have either single-phase or multi-phase embodiments connected in either wye or delta configurations.
Multilevel cascade voltage source inverter with seperate DC sources
Peng, Fang Zheng; Lai, Jih-Sheng
2001-04-03
A multilevel cascade voltage source inverter having separate DC sources is described herein. This inverter is applicable to high voltage, high power applications such as flexible AC transmission systems (FACTS) including static VAR generation (SVG), power line conditioning, series compensation, phase shifting and voltage balancing and fuel cell and photovoltaic utility interface systems. The M-level inverter consists of at least one phase wherein each phase has a plurality of full bridge inverters equipped with an independent DC source. This inverter develops a near sinusoidal approximation voltage waveform with only one switching per cycle as the number of levels, M, is increased. The inverter may have either single-phase or multi-phase embodiments connected in either wye or delta configurations.
Multilevel cascade voltage source inverter with separate DC sources
Peng, F.Z.; Lai, J.S.
1997-06-24
A multilevel cascade voltage source inverter having separate DC sources is described herein. This inverter is applicable to high voltage, high power applications such as flexible AC transmission systems (FACTS) including static VAR generation (SVG), power line conditioning, series compensation, phase shifting and voltage balancing and fuel cell and photovoltaic utility interface systems. The M-level inverter consists of at least one phase wherein each phase has a plurality of full bridge inverters equipped with an independent DC source. This inverter develops a near sinusoidal approximation voltage waveform with only one switching per cycle as the number of levels, M, is increased. The inverter may have either single-phase or multi-phase embodiments connected in either wye or delta configurations. 15 figs.
Electrostatic shielding of transformers
De Leon, Francisco
2017-11-28
Toroidal transformers are currently used only in low-voltage applications. There is no published experience for toroidal transformer design at distribution-level voltages. Toroidal transformers are provided with electrostatic shielding to make possible high voltage applications and withstand the impulse test.
Universal single point liquid level sensor
Kronberg, J.W.
1992-10-27
A liquid level detector comprises a thermistor and circuitry for determining electrically if the thermistor is wet or dry and additionally, and continuously, if the thermistor is open or shorted. The voltage across the thermistor is filtered to remove low frequency electrical noise, then compared with a reference low voltage to determine if shorted and to a transition voltage chosen to be between the thermistor's normal wet and dry voltages to determine if the thermistor is wet or dry. The voltage is also compared to the supply voltage using a CMOS gate circuit element to determine if the thermistor is open. The gate passes both faults on to an LED to signal that a fault condition exists or indicates by another LED the wet or dry condition of the thermistor. A pump may be activated through a relay if the thermistor tests wet or dry, as desired. 1 figure.
Universal single point liquid level sensor
Kronberg, James W.
1992-01-01
A liquid level detector comprises a thermistor and circuitry for determining electrically if the thermistor is wet or dry and additionally, and continuously, if the thermistor is open or shorted. The voltage across the thermistor is filtered to remove low frequency electrical noise, then compared with a reference low voltage to determine if shorted and to a transition voltage chosen to be between the thermistor's normal wet and dry voltages to determine if the thermistor is wet or dry. The voltage is also compared to the supply voltage using a CMOS gate circuit element to determine if the thermistor is open. The gate passes both faults on to an LED to signal that a fault condition exists or indicates by another LED the wet or dry condition of the thermistor. A pump may be activated through a relay if the thermistor tests wet or dry, as desired.
Design considerations for large space electric power systems
NASA Technical Reports Server (NTRS)
Renz, D. D.; Finke, R. C.; Stevens, N. J.; Triner, J. E.; Hansen, I. G.
1983-01-01
As power levels of spacecraft rise to the 50 to 100 kW range, it becomes apparent that low voltage (28 V) dc power distribution and management systems will not operate efficiently at these higher power levels. The concept of transforming a solar array voltage at 150 V dc into a 1000 V ac distribution system operating at 20 kHz is examined. The transformation is accomplished with series-resonant inverter by using a rotary transformer to isolate the solar array from the spacecraft. The power can then be distributed in any desired method such as three phase delta to delta. The distribution voltage can be easily transformed to any desired load voltage and operating frequency. The reasons for the voltage limitations on the solar array due to plasma interactions and the many advantages of a high voltage, high frequency at distribution system are discussed.
NASA Astrophysics Data System (ADS)
Kiss, Gellért Zsolt; Borbély, Sándor; Nagy, Ladislau
2017-12-01
We have presented here an efficient numerical approach for the ab initio numerical solution of the time-dependent Schrödinger Equation describing diatomic molecules, which interact with ultrafast laser pulses. During the construction of the model we have assumed a frozen nuclear configuration and a single active electron. In order to increase efficiency our system was described using prolate spheroidal coordinates, where the wave function was discretized using the finite-element discrete variable representation (FE-DVR) method. The discretized wave functions were efficiently propagated in time using the short-iterative Lanczos algorithm. As a first test we have studied here how the laser induced bound state dynamics in H2+ is influenced by the strength of the driving laser field.
Partial discharge testing under direct voltage conditions
NASA Technical Reports Server (NTRS)
Bever, R. S.; Westrom, J. L.
1982-01-01
DC partial discharge (PD) (corona) testing is performed using a multichannel analyzer for pulse storing, and data is collected during increase of voltage and at quiescent voltage levels. Thus high voltage ceramic disk capacitors were evaluated by obtaining PD data interspersed during an accelerated life test. Increased PD activity was found early in samples that later failed catastrophically. By this technique, trends of insulation behavior are revealed sensitively and nondestructively in high voltage dc components.
NASA Technical Reports Server (NTRS)
Zoutendyk, John A. (Inventor); Malone, Carl J. (Inventor)
1987-01-01
Electric-field funneling length is measured while irradiating a semiconductor charge-collecting junction with electron-hole-pair generating charged particles at a first junction bias voltage. The bias voltage is then reduced to a second level in order to reduce the depth of the depletion region such that the total charge can no longer be collected by drift and measured in the energy band previously displayed in the multichannel analyzer. This is representative of the maximum electric field funnelling length which may be calculated by measuring the difference at the second bias voltage level of the depletion width and the ion penetration range. The bias voltage is further lowered to a third level at which the particles are collected over a spread of energy levels while at least some of the particles are still collected at the selected energy level. From this the different depths of penetration of the particles are determined while additional effects due to diffusion are minimized.
NASA Technical Reports Server (NTRS)
Zoutendyk, J. A. (Inventor)
1985-01-01
Electric-field funneling length is measured while irradiating a semiconductor charge-collecting junction with electron-hole-pair generating charged particles at a first junction bias voltage. The bias voltage is then reduced to a second level in order to reduce the depth of the depletion region such that the total charge can no longer be collected by drift and measured in the energy band previously displayed in the multichannel analyzer. This is representative of the maximum electric field funneling length which may be calculated by measuring the difference at the second bias voltage level of the depletion width and the ion penetration range. The bias voltage is further lowered to a third level at which the particles are collected over a spread of energy levels while at least some of the particles are still collected at the selected energy level. From this the different depths of penetration of the particles are determined while additional effects due to diffusion are minimized.
Multilevel-Dc-Bus Inverter For Providing Sinusoidal And Pwm Electrical Machine Voltages
Su, Gui-Jia [Knoxville, TN
2005-11-29
A circuit for controlling an ac machine comprises a full bridge network of commutation switches which are connected to supply current for a corresponding voltage phase to the stator windings, a plurality of diodes, each in parallel connection to a respective one of the commutation switches, a plurality of dc source connections providing a multi-level dc bus for the full bridge network of commutation switches to produce sinusoidal voltages or PWM signals, and a controller connected for control of said dc source connections and said full bridge network of commutation switches to output substantially sinusoidal voltages to the stator windings. With the invention, the number of semiconductor switches is reduced to m+3 for a multi-level dc bus having m levels. A method of machine control is also disclosed.
NASA Astrophysics Data System (ADS)
Wu, H.; Zhou, L.; Xu, T.; Fang, W. L.; He, W. G.; Liu, H. M.
2017-11-01
In order to improve the situation of voltage violation caused by the grid-connection of photovoltaic (PV) system in a distribution network, a bi-level programming model is proposed for battery energy storage system (BESS) deployment. The objective function of inner level programming is to minimize voltage violation, with the power of PV and BESS as the variables. The objective function of outer level programming is to minimize the comprehensive function originated from inner layer programming and all the BESS operating parameters, with the capacity and rated power of BESS as the variables. The differential evolution (DE) algorithm is applied to solve the model. Based on distribution network operation scenarios with photovoltaic generation under multiple alternative output modes, the simulation results of IEEE 33-bus system prove that the deployment strategy of BESS proposed in this paper is well adapted to voltage violation regulation invariable distribution network operation scenarios. It contributes to regulating voltage violation in distribution network, as well as to improve the utilization of PV systems.
Fluorescence branching ratios and magnetic tuning of the visible spectrum of SrOH
NASA Astrophysics Data System (ADS)
Nguyen, Duc-Trung; Steimle, Timothy C.; Kozyryev, Ivan; Huang, Meng; McCoy, Anne B.
2018-05-01
The magnetic tuning of the low rotational levels in the X ˜ 2Σ+ (0,0,0), A ˜ 2Πr (0,0,0), and B ˜ 2Σ+ (0,0,0) electronic states of strontium hydroxide, SrOH, have been experimentally investigated using high resolution optical field-free and Zeeman spectroscopy of a cold molecular beam sample. The observed Zeeman shifts and splittings are successfully modeled using a traditional effective Hamiltonian approach to account for the interaction between the A ˜ 2Πr and B ˜ 2Σ+ states. The determined magnetic g-factors for the X ˜ 2Σ+ , A ˜ 2Πr , and B ˜ 2Σ+ states are compared to those predicted by perturbation theory. The dispersed fluorescence resulting from laser excitation of rotationally resolved branch features of the 000 B ˜ 2Σ+ ← X ˜ 2Σ+ , 000 A ˜ 2Π3/2 ← X ˜ 2Σ+ and 000 A ˜ 2Π1/2 ← X ˜ 2Σ+ transitions have been recorded and analyzed. The measured fluorescence branching ratios are compared with Franck-Condon calculations. The required bending motion wave functions are derived using a discrete variable representation (DVR) method. Implications for laser slowing and magneto-optical trapping experiments for SrOH are described.
Cheng, K S; Simske, S J; Isaacson, D; Newell, J C; Gisser, D G
1990-01-01
Electric current computed tomography is a process for determining the distribution of electrical conductivity inside a body based upon measurements of voltage or current made at the body's surface. Most such systems use different electrodes for the application of current and the measurement of voltage. This paper shows that when a multiplicity of electrodes are attached to a body's surface, the voltage data are most sensitive to changes in resistivity in the body's interior when voltages are measured from all electrodes, including those carrying current. This assertion is true despite the presence of significant levels of skin impedance at the electrodes. This conclusion is supported both theoretically and by experiment. Data were first taken using all electrodes for current and voltage. Then current was applied only at a pair of electrodes, with voltages measured on all other electrodes. We then constructed the second data set by calculation from the first. Targets could be detected with better signal-to-noise ratio by using the reconstructed data than by using the directly measured voltages on noncurrent-carrying electrodes. Images made from voltage data using only noncurrent-carrying electrodes had higher noise levels and were less able to accurately locate targets. We conclude that in multiple electrode systems for electric current computed tomography, current should be applied and voltage should be measured from all available electrodes.
Matovic, Milovan; Jeremic, Marija; Urosevic, Vlade; Ravlic, Miroslav; Vlajkovic, Marina
2015-01-01
Following radionuclide therapy, patients usually must remain hospitalised in special "restricted access area" 2-5 days, until radiation in their body drops below a certain level. During this period medical personnel can be faced with some challenges. Based on our previous experience, we used telemedicine approach as solution for it. We have developed comprehensive telemedicine system, which consists of three own developed hardware & software modules which are accessible remotely. Challenge #1 Some of patients can experiencing serious complications related to radionuclide therapy or related to co-morbidities, if they have any of it. In some of those cases audio-visual contact with patients and follow-up their vital functions can be of high importance in case of patient needs urgent intervention. Solution #1 System for on-line remote monitoring of patients' vital functions registered with bed side monitor and video surveillance of area which use patients during hospitalisation. This system is established by IP cameras and bedside patient monitor, equipped with appropriate network card and software. Using remote connection (LAN or internet), a physician can watch at personal computer or mobile phone the waves and vital signs patterns from the bedside monitor, as well as live video from surveillance cameras. It provides prompt intervention in case of emergency. Challenge #2 Having in mind the overall costs of radionuclide therapy and patients hospital stay on the one hand, and limited capacity of the hospital premises for radionuclide therapy, on the other, it is of high importance to estimate as early as possible the time period after which the radiation in a patient's body will drop below the limit imposed by the law. Solution #2 On-line remote radiation monitoring system, which measures the radiation exposure rate by means of a pancake probe, which is connected to a PTZ (Pan-tilt-zoom) device and DVR (Digital video recorder). Those devices enable precise positioning of the detector on target region of the patient's body. The positioning of the detector can be visually controlled by a micro camera, placed at the center of detector's plane. Furthermore, there are three LASER pointers placed around the detector in order to mark the area where it is directed. In addition, two ultrasound sensors placed on the edge of the detector holder in order to estimate the exact distance between the probe and the patient's body. All those devices are controlled by the DVR. The data collected by the detector are acquired and processed by a PC, using customized hardware/software system developed by Italian ThereminoR group. Using remote connection, a physician can watch on-line radiation exposure rate in any time and can use commands of PTZ and DVR device for proper positioning of probe during measurement and control it by micro camera, LASER pointers and US sensors. Physician demands from the patients to take the same position for 5 minutes on each hour, during first 10 hours. Those data we use as reference points for further processing by our software. Based on two exponential matematical model, our software estimates the whole process of elimination of radioactivity from the patient's body, using reference points collected during the first day after radionuclide therapy. Based on that, physician can predict (on first day after therapy!) when patient will be able to leave the restricted access area". Challenge #3 Despite strict instructions given to them by physician and nurse before administration of radionuclide therapy, some patients sometimes try to leave "restricted access area". Solution #3 We have developed a system which continuously monitors the corridor which a patient must use in case of an attempt to leave the "restricted access area". Our system consists of a survey meter equipped with pancake probe directed towards the corridor. The survey meter is connected to a trigger circuit which gives signal in the case when the measeured count rate exceeds previously adjusted value. Trigger circuit is connected to the programmable siren, blinking light, alarm device unit with SIM card and IP surveillance camera. On the siren we previously recorded the voice alarm. In the case when the system is triggered, the patient will hear warning message and see blinking light. When the alarm device is triggered it will call responsible physician and nurse on mobile phone and IP camera simultaneously records this event. System also sending via email appropriate data about each event, when it happens. From our experience gained over the past 4 years, our telemonitoring system dedicated for patients receiving radionuclide therapy ensures a high level of safety for the patient and medical staff.
Low Voltage Electrowetting-on-Dielectric Platform using Multi-Layer Insulators
Lin, Yan-You; Evans, Randall D.; Welch, Erin; Hsu, Bang-Ning; Madison, Andrew C.; Fair, Richard B.
2010-01-01
A low voltage, two-level-metal, and multi-layer insulator electrowetting-on-dielectric (EWD) platform is presented. Dispensing 300pl droplets from 140nl closed on-chip reservoirs was accomplished with as little as 11.4V solely through EWD forces, and the actuation threshold voltage was 7.2V with a 1Hz voltage switching rate between electrodes. EWD devices were fabricated with a multilayer insulator consisting of 135nm sputtered tantalum pentoxide (Ta2O5) and 180nm parylene C coated with 70nm of CYTOP. Furthermore, the minimum actuation threshold voltage followed a previously published scaling model for the threshold voltage, VT, which is proportional to (t/εr)1/2, where t and εr are the insulator thickness and dielectric constant respectively. Device threshold voltages are compared for several insulator thicknesses (200nm, 500nm, and 1µm), different dielectric materials (parylene C and tantalum pentoxide), and homogeneous versus heterogeneous compositions. Additionally, we used a two-level-metal fabrication process, which enables the fabrication of smaller and denser electrodes with high interconnect routing flexibility. We also have achieved low dispensing and actuation voltages for scaled devices with 30pl droplets. PMID:20953362
NASA Astrophysics Data System (ADS)
Sosnowski, M.; Eager, G. S., Jr.
1983-06-01
Threshold voltage of oil-impregnated paper insulated cables are investigaed. Experimental work was done on model cables specially manufactured for this project. The cables were impregnated with mineral and with synthetic oils. Standard impulse breakdown voltage tests and impulse voltage breakdown tests with dc prestressing were performed at room temperature and at 1000C. The most important result is the finding of very high level of threshold voltage stress for oil-impregnated paper insulated cables. This threshold voltage is approximately 1.5 times higher than the threshold voltage or crosslinked polyethylene insulated cables.
Fuel cell serves as oxygen level detector
NASA Technical Reports Server (NTRS)
1965-01-01
Monitoring the oxygen level in the air is accomplished by a fuel cell detector whose voltage output is proportional to the partial pressure of oxygen in the sampled gas. The relationship between output voltage and partial pressure of oxygen can be calibrated.
Design and Implementation of 13 Levels Multilevel Inverter for Photovoltaic System
NASA Astrophysics Data System (ADS)
Subramani, C.; Dhineshkumar, K.; Palanivel, P.
2018-04-01
This paper approaches the appearing and modernization of S-Type PV based 13- level multilevel inverter with less quantity of switch. The current S-Type Multi level inverter contains more number of switches and voltage sources. Multilevel level inverter is a be understandable among the most gainful power converters for high power application and present day applications with reduced switches. The fundamental good arrangement of the 13-level multilevel inverter is to get ventured voltage from a couple of levels of DC voltages.. The controller gives actual way day and age to switches through driver circuit using PWM methodology. The execution assessment of proposed multilevel inverter is checked using MATLAB/Simulink. This is the outstanding among other techniquem appeared differently in relation to all other existing system
A new low voltage level-shifted FVF current mirror with enhanced bandwidth and output resistance
NASA Astrophysics Data System (ADS)
Aggarwal, Bhawna; Gupta, Maneesha; Gupta, Anil Kumar; Sangal, Ankur
2016-10-01
This paper proposes a new high-performance level-shifted flipped voltage follower (LSFVF) based low-voltage current mirror (CM). The proposed CM utilises the low-supply voltage and low-input resistance characteristics of a flipped voltage follower (FVF) CM. In the proposed CM, level-shifting configuration is used to obtain a wide operating current range and resistive compensation technique is employed to increase the operating bandwidth. The peaking in frequency response is reduced by using an additional large MOSFET. Moreover, a very high output resistance (in GΩ range) along with low-current transfer error is achieved through super-cascode configuration for a wide current range (0-440 µA). Small signal analysis is carried out to show the improvements achieved at each step. The proposed CM is simulated by Mentor Graphics Eldospice in TSMC 0.18 µm CMOS, BSIM3 and Level 53 technology. In the proposed CM, a bandwidth of 6.1799 GHz, 1% settling time of 0.719 ns, input and output resistances of 21.43 Ω and 1.14 GΩ, respectively, are obtained with a single supply voltage of 1 V. The layout of the proposed CM has been designed and post-layout simulation results have been shown. The post-layout simulation results for Monte Carlo and temperature analysis have also been included to show the reliability of the CM against the variations in process parameters and temperature changes.
Stray voltage and milk quality: a review.
Reinemann, Douglas J
2012-07-01
If animal contact voltage reaches sufficient levels, animals coming into contact with grounded devices may receive a mild electric shock that can cause a behavioral response. At voltage levels that are just perceptible to the animal, behaviors indicative of perception (eg, flinches) may result with little change in normal routines. At higher exposure levels, avoidance behaviors may result. The direct effect of animal contact with electrical current can range from: • Mild behavioral reactions indicative of sensation, to • Involuntary muscle contraction, or twitching, to • Intense behavioral responses indicative of pain. The indirect effects of these behaviors can vary considerably depending on the specifics of the contact location, level of current flow, body pathway, frequency of occurrence, and many other factors related to the daily activities of animals. There are several common situations of concern in animal environments: • Animals avoiding certain exposure locations, which may result in: X Reduced water intake if exposure is required for animals to access watering devices, X Reduced feed intake if exposure is required for animals to accesses feeding devices or locations. • Difficulty of moving or handling animals in areas of voltage/current exposure• The physiologic implications of the release of stress hormones produced by contact with painful stimuli. The severity of response will depend on the amount of electrical current (measured in milliamps) flowing through the animal’s body, the pathway it takes through the body, and the sensitivity of the individual animal. The results of the combined current dose-response experiments, voltage exposure response experiments, and measurements of body and contact resistances is consistent with the lowest (worst case) cow + contact resistance as low as 500 as estimated by Lefcourt that may occur in some unusual situations on farms (firm application of the muzzle to a wet metallic watering device and hoof contact on a clean, wet, contoured metallic plate on the floor). These studies on responses of dairy cows to electrical exposure agree well with each other and with predictions from neuroelectric theory and practice. There is a high degree of repeatability across studies in which exposures and responses have been appropriately quantified. For confirmation, a potential of 2 to 4 V (60 Hz, rms) must be measured between 2 points that an animal might contact (or animal contact measurement), and some animals should exhibit signs of avoidance behavior. The animal contact voltage measurement with an appropriate shunt resistor value provides the only reliable indication of exposure levels. Voltage readings at cow contact points should be made with a 500- or 1000- resistor across the 2 measuring leads to the cow contact points in addition to open circuit measurements. The only studies that have documented adverse effects of voltage and current on cows had both sufficient current applied to cause aversion and forced exposures (ie, animals could not eat or drink without being exposed to voltage and current) and all of the indirect responses (reduced water or intake and milk production) were behaviorally mediated. It is typical for voltage levels to vary considerably at different locations on a farm. Decreased water and/or feed intake or undesired behaviors result only if current levels are sufficient to produce aversion at locations that are critical to daily animal activity, such as feeders, waterers, and milking areas. If an aversive current occurs only a few times per day, it is not likely to have an adverse effect on cow behavior. The more often an aversive voltage occurs in areas critical to cows’ normal feeding, drinking, or resting, the more likely it is to affect cows. A number of studies have been done to investigate potential detrimental physiologic responses that may result from animals’ exposure to voltage and current. The literature review presented here summarizes 46 research trials on groups of cows exposed to know levels of voltage and/or current. Many of these were part of the same experiment but exposed cows at different levels of voltage or current. None of these trials or experiments (some using aggressive exposure of cows to mastitis organisms) showed a significant effect of voltage/current exposure on SCC or the incidence of mastitis. Many of these studies showed behavioral modification and some showed minor changes in milk yield, milk composition, or stress hormones (especially cortisol). These studies have shown that increased concentrations of the stress hormone cortisol do not occur at levels below behavioral response levels and only become apparent in some, but not all, cows at substantially higher voltage/current exposures than the threshold required for behavioral modification. This body of research indicates that while exposure to stray voltage at levels of 2 V to 4 V may be a mild stressor to dairy cows, it does not contribute to increased SCC or incidence of mastitis or reduced milk yield.
Evolution of the Mobile Information SysTem (MIST)
NASA Technical Reports Server (NTRS)
Litaker, Harry L., Jr.; Thompson, Shelby; Archer, Ronald D.
2008-01-01
The Mobile Information SysTem (MIST) had its origins in the need to determine whether commercial off the shelf (COTS) technologies could improve intervehicular activities (IVA) on International Space Station (ISS) crew maintenance productivity. It began with an exploration of head mounted displays (HMDs), but quickly evolved to include voice recognition, mobile personal computing, and data collection. The unique characteristic of the MIST lies within its mobility, in which a vest is worn that contains a mini-computer and supporting equipment, and a headband with attachments for a HMD, lipstick camera, and microphone. Data is then captured directly by the computer running Morae(TM) or similar software for analysis. To date, the MIST system has been tested in numerous environments such as two parabolic flights on NASA's C-9 microgravity aircraft and several mockup facilities ranging from ISS to the Altair Lunar Sortie Lander. Functional capabilities have included its lightweight and compact design, commonality across systems and environments, and usefulness in remote collaboration. Human Factors evaluations of the system have proven the MIST's ability to be worn for long durations of time (approximately four continuous hours) with no adverse physical deficits, moderate operator compensation, and low workload being reported as measured by Corlett Bishop Discomfort Scale, Cooper-Harper Ratings, and the NASA Total Workload Index (TLX), respectively. Additionally, through development of the system, it has spawned several new applications useful in research. For example, by only employing the lipstick camera, microphone, and a compact digital video recorder (DVR), we created a portable, lightweight data collection device. Video is recorded from the participants point of view (POV) through the use of the camera mounted on the side of the head. Both the video and audio is recorded directly into the DVR located on a belt around the waist. This data is then transferred to another computer for video editing and analysis. Another application has been discovered using simulated flight, in which, a kneeboard is replaced with mini-computer and the HMD to project flight paths and glide slopes for lunar ascent. As technologies evolve, so will the system and its application for research and space system operations.
Voltage Sag due to Pollution Induced Flashover Across Ceramic Insulator Strings
NASA Astrophysics Data System (ADS)
Reddy B, Subba; Goswami, Arup Kumar
2017-11-01
Voltage sag or voltage dips are significant to industrial reliability. There is a necessity to characterize the feeder level power quality (PQ) and the PQ performance among various utility companies. Contamination/pollution induced flashover is the ultimate consequence of the creeping discharges across the insulator strings which induce voltage sag. These have a severe threat on the safe and reliable operation of power systems. In the present work an attempt has been made to experimentally investigate the occurrence of voltage sag/dips during pollution induced flashovers. Results show significant dip/sag in the voltage magnitude during the flashover process.
Polymer solar cells with enhanced open-circuit voltage and efficiency
NASA Astrophysics Data System (ADS)
Chen, Hsiang-Yu; Hou, Jianhui; Zhang, Shaoqing; Liang, Yongye; Yang, Guanwen; Yang, Yang; Yu, Luping; Wu, Yue; Li, Gang
2009-11-01
Following the development of the bulk heterojunction structure, recent years have seen a dramatic improvement in the efficiency of polymer solar cells. Maximizing the open-circuit voltage in a low-bandgap polymer is one of the critical factors towards enabling high-efficiency solar cells. Study of the relation between open-circuit voltage and the energy levels of the donor/acceptor in bulk heterojunction polymer solar cells has stimulated interest in modifying the open-circuit voltage by tuning the energy levels of polymers. Here, we show that the open-circuit voltage of polymer solar cells constructed based on the structure of a low-bandgap polymer, PBDTTT, can be tuned, step by step, using different functional groups, to achieve values as high as 0.76 V. This increased open-circuit voltage combined with a high short-circuit current density results in a polymer solar cell with a power conversion efficiency as high as 6.77%, as certified by the National Renewable Energy Laboratory.
Voltage dips at the terminals of wind power installations
NASA Astrophysics Data System (ADS)
Bollen, Math H. J.; Olguin, Gabriel; Martins, Marcia
2005-07-01
This article gives an overview of the kind of voltage dips that can be expected at the terminals of a wind power installation. The overview is based on the study of those dips at the terminals of industrial installations and provides a guideline for the testing of wind power installations against voltage dips. For voltage dips due to faults, a classification into different types is presented. Five types appear at the terminals of sensitive equipment and thus have to be included when testing the wind power installation against disturbances coming from the grid. A distinction is made between installations connected at transmission level and those connected at distribution level. For the latter the phase angle jump has to be considered. Dips due to other causes (motor, transformer and capacitor switching) are briefly discussed as well as the voltage recovery after a dip. Finally some thoughts are presented on the way in which voltage tolerance requirements should be part of the design process for wind power installations. Copyright
Direct current uninterruptible power supply method and system
Sinha, Gautam
2003-12-02
A method and system are described for providing a direct current (DC) uninterruptible power supply with the method including, for example: continuously supplying fuel to a turbine; converting mechanical power from the turbine into alternating current (AC) electrical power; converting the AC electrical power to DC power within a predetermined voltage level range; supplying the DC power to a load; and maintaining a DC load voltage within the predetermined voltage level range by adjusting the amount of fuel supplied to the turbine.
Method and system for controlling a rotational speed of a rotor of a turbogenerator
Stahlhut, Ronnie Dean; Vuk, Carl Thomas
2008-12-30
A system and method controls a rotational speed of a rotor or shaft of a turbogenerator in accordance with a present voltage level on a direct current bus. A lower threshold and a higher threshold are established for a speed of a rotor or shaft of a turbogenerator. A speed sensor determines speed data or a speed signal for the rotor or shaft associated with a turbogenerator. A voltage regulator adjusts a voltage level associated with a direct current bus within a target voltage range if the speed data or speed signal indicates that the speed is above the higher threshold or below the lower threshold.
Technical Trend of Environment-friendly High Voltage Vacuum Circuit Breaker (VCB)
NASA Astrophysics Data System (ADS)
Okubo, Hitoshi
Vacuum Circuit Breakers (VCBs) have widely been used for low and medium voltage level, because of their high current interruption performance, maintenance free operations and environment-friendly characteristics. The VCB is now going to be applied to higher voltage systems for transmission and substation use. In this paper, the recent technical trend and future perspectives of high voltage VCBs are described, as well as their technical background.
Sakata, Souhei; Jinno, Yuka; Kawanabe, Akira; Okamura, Yasushi
2016-01-01
The cytoplasmic region of voltage-sensing phosphatase (VSP) derives the voltage dependence of its catalytic activity from coupling to a voltage sensor homologous to that of voltage-gated ion channels. To assess the conformational changes in the cytoplasmic region upon activation of the voltage sensor, we genetically incorporated a fluorescent unnatural amino acid, 3-(6-acetylnaphthalen-2-ylamino)-2-aminopropanoic acid (Anap), into the catalytic region of Ciona intestinalis VSP (Ci-VSP). Measurements of Anap fluorescence under voltage clamp in Xenopus oocytes revealed that the catalytic region assumes distinct conformations dependent on the degree of voltage-sensor activation. FRET analysis showed that the catalytic region remains situated beneath the plasma membrane, irrespective of the voltage level. Moreover, Anap fluorescence from a membrane-facing loop in the C2 domain showed a pattern reflecting substrate turnover. These results indicate that the voltage sensor regulates Ci-VSP catalytic activity by causing conformational changes in the entire catalytic region, without changing their distance from the plasma membrane. PMID:27330112
Sakata, Souhei; Jinno, Yuka; Kawanabe, Akira; Okamura, Yasushi
2016-07-05
The cytoplasmic region of voltage-sensing phosphatase (VSP) derives the voltage dependence of its catalytic activity from coupling to a voltage sensor homologous to that of voltage-gated ion channels. To assess the conformational changes in the cytoplasmic region upon activation of the voltage sensor, we genetically incorporated a fluorescent unnatural amino acid, 3-(6-acetylnaphthalen-2-ylamino)-2-aminopropanoic acid (Anap), into the catalytic region of Ciona intestinalis VSP (Ci-VSP). Measurements of Anap fluorescence under voltage clamp in Xenopus oocytes revealed that the catalytic region assumes distinct conformations dependent on the degree of voltage-sensor activation. FRET analysis showed that the catalytic region remains situated beneath the plasma membrane, irrespective of the voltage level. Moreover, Anap fluorescence from a membrane-facing loop in the C2 domain showed a pattern reflecting substrate turnover. These results indicate that the voltage sensor regulates Ci-VSP catalytic activity by causing conformational changes in the entire catalytic region, without changing their distance from the plasma membrane.
NASA Astrophysics Data System (ADS)
Chen, Y.; Wang, J.; Wang, H. H.; Yang, L.; Chen, W.; Xu, Y. T.
2016-08-01
Double-fed induction generator (DFIG) is sensitive to the disturbances of grid, so the security and stability of the grid and the DFIG itself are under threat with the rapid increase of DFIG. Therefore, it is important to study dynamic response of the DFIG when voltage drop failure is happened in power system. In this paper, firstly, mathematical models and the control strategy about mechanical and electrical response processes is respectively introduced. Then through the analysis of response process, it is concluded that the dynamic response characteristics are related to voltage drop level, operating status of DFIG and control strategy adapted to rotor side. Last, the correctness of conclusion is validated by the simulation about mechanical and electrical response processes in different voltage levels drop and different DFIG output levels under DIgSILENT/PowerFactory software platform.
High-Voltage Clock Driver for Photon-Counting CCD Characterization
NASA Technical Reports Server (NTRS)
Baker, Robert
2013-01-01
A document discusses the CCD97 from e2v technologies as it is being evaluated at Goddard Space Flight Center's Detector Characterization Laboratory (DCL) for possible use in ultra-low background noise space astronomy applications, such as Terrestrial Planet Finder Coronagraph (TPF-C). The CCD97 includes a photoncounting mode where the equivalent output noise is less than one electron. Use of this mode requires a clock signal at a voltage level greater than the level achievable by the existing CCD (charge-coupled-device) electronics. A high-voltage waveform generator has been developed in code 660/601 to support the CCD97 evaluation. The unit generates required clock waveforms at voltage levels from -20 to +50 V. It deals with standard and arbitrary waveforms and supports pixel rates from 50 to 500 kHz. The system is designed to interface with existing Leach CCD electronics.
Fast, Low-Power, Hysteretic Level-Detector Circuit
NASA Technical Reports Server (NTRS)
Arditti, Mordechai
1993-01-01
Circuit for detection of preset levels of voltage or current intended to replace standard fast voltage comparator. Hysteretic analog/digital level detector operates at unusually low power with little sacrifice of speed. Comprises low-power analog circuit and complementary metal oxide/semiconductor (CMOS) digital circuit connected in overall closed feedback loop to decrease rise and fall times, provide hysteresis, and trip-level control. Contains multiple subloops combining linear and digital feedback. Levels of sensed signals and hysteresis level easily adjusted by selection of components to suit specific application.
High Power Microwave (HPM) and Ionizing Radiation Effects on CMOS Devices
2010-03-01
24 xviii Symbol Page VIH minimum input voltage for proper high voltage output...38 VOH output voltage corresponding to VIH ...design. The high level at the input, VIH , along with VDD, define the maximum permitted “Logic 1” region, which allows for proper state change for a
Grid Integration of Single Stage Solar PV System using Three-level Voltage Source Converter
NASA Astrophysics Data System (ADS)
Hussain, Ikhlaq; Kandpal, Maulik; Singh, Bhim
2016-08-01
This paper presents a single stage solar PV (photovoltaic) grid integrated power generating system using a three level voltage source converter (VSC) operating at low switching frequency of 900 Hz with robust synchronizing phase locked loop (RS-PLL) based control algorithm. To track the maximum power from solar PV array, an incremental conductance algorithm is used and this maximum power is fed to the grid via three-level VSC. The use of single stage system with three level VSC offers the advantage of low switching losses and the operation at high voltages and high power which results in enhancement of power quality in the proposed system. Simulated results validate the design and control algorithm under steady state and dynamic conditions.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-07
... system, which could cause voltage levels to go beyond original design levels between fuel tank probes and... following methods: Federal eRulemaking Portal: Go to http://www.regulations.gov . Follow the instructions...-induced transients to the fuel quantity indication system, which could cause voltage levels to go beyond...
High Voltage Design Concepts for Launch Vehicles and Orbital Spacecraft Applications
NASA Technical Reports Server (NTRS)
Hall, David K.; Kirkici, Hulya; Hillard, G. Barry; Schweickart, Daniel; Dunbar, Bill
2000-01-01
With the advent of design concepts such as, electromechanical actuation and "more electric" initiatives, has come the need for electrical power buses and electronic equipment to operate at higher than normal dc voltages to meet power requirements while keeping current levels to manageable levels. This new bus voltage has been typically 270 Volts dc nominal for launch vehicles, and 120 Volt dc for the International Space Station. This paper will discuss the new design applications for high voltage dc power in existing and future launch vehicles and spacecraft and the potential problems associated therewith. These new applications must be operational from lift-off, ascent, on orbit and descent in all of the pressure and temperature conditions for each, i.e. through the "Paschen region" twice. This paper will also attempt to stimulate an interest in the academic and professional communities to support and conduct research needed for design data applicable to high voltage dc usage.
Multijunction high voltage concentrator solar cells
NASA Technical Reports Server (NTRS)
Valco, G. J.; Kapoor, V. J.; Evans, J. C.; Chai, A.-T.
1981-01-01
The standard integrated circuit technology has been developed to design and fabricate new innovative planar multi-junction solar cell chips for concentrated sunlight applications. This 1 cm x 1 cm cell consisted of several voltage generating regions called unit cells which were internally connected in series within a single chip resulting in high open circuit voltages. Typical open-circuit voltages of 3.6 V and short-circuit currents of 90 ma were obtained at 80 AM1 suns. A dramatic increase in both short circuit current and open circuit voltage with increased light levels was observed.
An Estimation Method of System Voltage Sag Profile using Recorded Sag Data
NASA Astrophysics Data System (ADS)
Tanaka, Kazuyuki; Sakashita, Tadashi
The influence of voltage sag to electric equipment has become big issues because of wider utilization of voltage sensitive devices. In order to reduce the influence of voltage sag appearing at each customer side, it is necessary to recognize the level of receiving voltage drop due to lightning faults for transmission line. However it is hard to measure directly those sag level at every load node. In this report, a new method of efficiently estimating system voltage sag profile is proposed based on symmetrical coordinate. In the proposed method, limited recorded sag data is used as the estimation condition which is recorded at each substation in power systems. From the point of view that the number of the recorded node is generally far less than those of the transmission route, a fast solution method is developed to calculate only recorder faulted voltage by applying reciprocity theorem for Y matrix. Furthermore, effective screening process is incorporated, in which the limited candidate of faulted transmission line can be chosen. Demonstrative results are presented using the IEEJ East10 standard system and actual 1700 bus system. The results show that estimation accuracy is sufficiently acceptable under less computation labor.
Bidirectional buck boost converter
Esser, Albert Andreas Maria
1998-03-31
A bidirectional buck boost converter and method of operating the same allows regulation of power flow between first and second voltage sources in which the voltage level at each source is subject to change and power flow is independent of relative voltage levels. In one embodiment, the converter is designed for hard switching while another embodiment implements soft switching of the switching devices. In both embodiments, first and second switching devices are serially coupled between a relatively positive terminal and a relatively negative terminal of a first voltage source with third and fourth switching devices serially coupled between a relatively positive terminal and a relatively negative terminal of a second voltage source. A free-wheeling diode is coupled, respectively, in parallel opposition with respective ones of the switching devices. An inductor is coupled between a junction of the first and second switching devices and a junction of the third and fourth switching devices. Gating pulses supplied by a gating circuit selectively enable operation of the switching devices for transferring power between the voltage sources. In the second embodiment, each switching device is shunted by a capacitor and the switching devices are operated when voltage across the device is substantially zero.
Bidirectional buck boost converter
Esser, A.A.M.
1998-03-31
A bidirectional buck boost converter and method of operating the same allows regulation of power flow between first and second voltage sources in which the voltage level at each source is subject to change and power flow is independent of relative voltage levels. In one embodiment, the converter is designed for hard switching while another embodiment implements soft switching of the switching devices. In both embodiments, first and second switching devices are serially coupled between a relatively positive terminal and a relatively negative terminal of a first voltage source with third and fourth switching devices serially coupled between a relatively positive terminal and a relatively negative terminal of a second voltage source. A free-wheeling diode is coupled, respectively, in parallel opposition with respective ones of the switching devices. An inductor is coupled between a junction of the first and second switching devices and a junction of the third and fourth switching devices. Gating pulses supplied by a gating circuit selectively enable operation of the switching devices for transferring power between the voltage sources. In the second embodiment, each switching device is shunted by a capacitor and the switching devices are operated when voltage across the device is substantially zero. 20 figs.
Design, Control, and Modeling of a New Voltage Source Converter for HVDC System
NASA Astrophysics Data System (ADS)
Mohan, Madhan; Singh, Bhim; Ketan Panigrahi, Bijaya
2013-05-01
Abstract: A New Voltage Source Converter (VSC) based on neutral clamped three-level circuit is proposed for High Voltage DC (HVDC) system. The proposed VSC is designed in a multipulse configuration. The converter is operated by Fundamental Frequency Switching (FFS). A new control method is developed for achieving all the necessary control aspects of HVDC system such as independent real and reactive power control, bidirectional real and reactive power control. The basic of the control method is varying the pulse width and by keeping the dc link voltage constant. The steady state and dynamic performances of HVDC system interconnecting two different frequencies network are demonstrated for active and reactive power control. Total number of transformers used in this system are reduced to half in comparison with the two-level VSCs for both active and reactive power control. The performance of the HVDC system is improved in terms of reduced harmonics level even at fundamental frequency switching. The harmonic performance of the designed converter is also studied for different value of the dead angle (β), and the optimized range of the dead angle is achieved for varying reactive power requirement. Simulation results are presented for the designed three level multipulse voltage source converters with the proposed control algorithm.
Novel switching method for single-phase NPC three-level inverter with neutral-point voltage control
NASA Astrophysics Data System (ADS)
Lee, June-Seok; Lee, Seung-Joo; Lee, Kyo-Beum
2018-02-01
This paper proposes a novel switching method with the neutral-point voltage control in a single-phase neutral-point-clamped three-level inverter (SP-NPCI) used in photovoltaic systems. A proposed novel switching method for the SP-NPCI improves the efficiency. The main concept is to fix the switching state of one leg. As a result, the switching loss decreases and the total efficiency is improved. In addition, it enables the maximum power-point-tracking operation to be performed by applying the proposed neutral-point voltage control algorithm. This control is implemented by modifying the reference signal. Simulation and experimental results provide verification of the performance of a novel switching method with the neutral-point voltage control.
Charging system and method for multicell storage batteries
Cox, Jay A.
1978-01-01
A battery-charging system includes a first charging circuit connected in series with a plurality of battery cells for controlled current charging. A second charging circuit applies a controlled voltage across each individual cell for equalization of the cells to the fully charged condition. This controlled voltage is determined at a level above the fully charged open-circuit voltage but at a sufficiently low level to prevent corrosion of cell components by electrochemical reaction. In this second circuit for cell equalization, a transformer primary receives closely regulated, square-wave voltage which is coupled to a plurality of equal secondary coil windings. Each secondary winding is connected in parallel to each cell of a series-connected pair of cells through half-wave rectifiers and a shared, intermediate conductor.
Chebabhi, Ali; Fellah, Mohammed Karim; Kessal, Abdelhalim; Benkhoris, Mohamed F
2016-07-01
In this paper is proposed a new balancing three-level three dimensional space vector modulation (B3L-3DSVM) strategy which uses a redundant voltage vectors to realize precise control and high-performance for a three phase three-level four-leg neutral point clamped (NPC) inverter based Shunt Active Power Filter (SAPF) for eliminate the source currents harmonics, reduce the magnitude of neutral wire current (eliminate the zero-sequence current produced by single-phase nonlinear loads), and to compensate the reactive power in the three-phase four-wire electrical networks. This strategy is proposed in order to gate switching pulses generation, dc bus voltage capacitors balancing (conserve equal voltage of the two dc bus capacitors), and to switching frequency reduced and fixed of inverter switches in same times. A Nonlinear Back Stepping Controllers (NBSC) are used for regulated the dc bus voltage capacitors and the SAPF injected currents to robustness, stabilizing the system and to improve the response and to eliminate the overshoot and undershoot of traditional PI (Proportional-Integral). Conventional three-level three dimensional space vector modulation (C3L-3DSVM) and B3L-3DSVM are calculated and compared in terms of error between the two dc bus voltage capacitors, SAPF output voltages and THDv, THDi of source currents, magnitude of source neutral wire current, and the reactive power compensation under unbalanced single phase nonlinear loads. The success, robustness, and the effectiveness of the proposed control strategies are demonstrated through simulation using Sim Power Systems and S-Function of MATLAB/SIMULINK. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Voltage-controlled spin selection in a magnetic resonant tunneling diode.
Slobodskyy, A; Gould, C; Slobodskyy, T; Becker, C R; Schmidt, G; Molenkamp, L W
2003-06-20
We have fabricated all II-VI semiconductor resonant tunneling diodes based on the (Zn,Mn,Be)Se material system, containing dilute magnetic material in the quantum well, and studied their current-voltage characteristics. When subjected to an external magnetic field the resulting spin splitting of the levels in the quantum well leads to a splitting of the transmission resonance into two separate peaks. This is interpreted as evidence of tunneling transport through spin polarized levels, and could be the first step towards a voltage controlled spin filter.
NASA Astrophysics Data System (ADS)
Fukuda, Koichi; Asai, Hidehiro; Hattori, Junichi; Shimizu, Mitsuaki; Hashizume, Tamotsu
2018-04-01
In this study, GaN MOS capacitance-voltage device simulations considering various interface and bulk traps are performed in the transient mode. The simulations explain various features of capacitance-voltage curves, such as plateau, hysteresis, and frequency dispersions, which are commonly observed in measurements of GaN MOS capacitors and arise from complicated combinations of interface and bulk deep-level traps. The objective of the present study is to provide a good theoretical tool to understand the physics of various nonideal measured curves.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-14
... transients to the fuel quantity indication system, which could cause voltage levels to go beyond original..., which could cause voltage levels to go beyond original design levels between fuel tank probes and... this material at an NARA facility, call 202-741-6030, or go to http://www.archives.gov/federal_register...
High-temperature, gas-filled ceramic rectifiers, thyratrons, and voltage-reference tubes
NASA Technical Reports Server (NTRS)
Baum, E. A.
1969-01-01
Thyratron, capable of being operated as a rectifier and a voltage-reference tube, was constructed and tested for 1000 hours at temperatures to 800 degrees C. With current levels at 15 amps and peak voltages of 2000 volts and frequencies at 6000 cps, tube efficiency was greater than 97 percent.
An analog RF gap voltage regulation system for the Advanced Photon Source storage ring.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horan, D.
1999-04-13
An analog rf gap voltage regulation system has been designed and built at Argonne National Laboratory to maintain constant total storage ring rf gap voltage, independent of beam loading and cavity tuning effects. The design uses feedback control of the klystron mod-anode voltage to vary the amount of rf power fed to the storage ring cavities. The system consists of two independent feedback loops, each regulating the combined rf gap voltages of eight storage ring cavities by varying the output power of either one or two rf stations, depending on the mode of operation. It provides full operator control andmore » permissive logic to permit feedback control of the rf system output power only if proper conditions are met. The feedback system uses envelope-detected cavity field probe outputs as the feedback signal. Two different methods of combining the individual field probe signals were used to generate a relative DC level representing one-half of the total storage ring rf voltage, an envelope-detected vector sum of the field probe rf signals, and the DC sum of individual field probe envelope detector outputs. The merits of both methods are discussed. The klystron high-voltage power supply (HVPS) units are fitted with an analog interface for external control of the mod-anode voltage level, using a four-quadrant analog multiplier to modulate the HVPS mod-anode voltage regulator set-point in response to feedback system commands.« less
Serial Charging Test on High Capacity Li-Ion Cells for the Orbiter Advanced Hydraulic Power System
NASA Technical Reports Server (NTRS)
Jeevarajan, Judith A.; Irlbeck, Brad
2006-01-01
Although it looks like module level voltage drives the cutoff for charge, the actual cutoff is due to unbalanced cell voltages that drive the module voltage up. Individual cell voltage drives the cutoff for discharge Low resistance cells are the first to reach the low-voltage cutoff Cell-to-Cell voltage differences are generally small and show similar trends for each cycle Increase for a distinct window during charge and at the end of discharge Increase in max to min cell voltage difference with time/cycles Decrease in max to min cell voltage difference during high current pulses with time/cycles Individual cell voltage trends (with respect to other cells) are very repeatable from cycle to cycle, although voltage slowly degrades with time/cycles (resistance growth) Much more difference observed near end of discharge Little change in order of cell voltage (cell with highest voltage to cell with lowest voltage) Temp sensor on the side of cell (between 2 cells) shows much greater rise during discharge than for single cell tests (18 C vs 5 C) Conclusion: Serial Charging of this string of cells is feasible as it has only a minor impact on useful capacity
NASA Technical Reports Server (NTRS)
Youngquist, Robert C.; Ihlefeld, Curtis M.; Starr, Stanley O.
2013-01-01
A component level dc transformer is described in which no alternating currents or voltages are present. It operates by combining features of a homopolar motor and a homopolar generator, both de devices, such that the output voltage of a de power supply can be stepped up (or down) with a corresponding step down (or up) in current. The basic theory for this device is developed, performance predictions are made, and the results from a small prototype are presented. Based on demonstrated technology in the literature, this de transformer should be scalable to low megawatt levels, but it is more suited to high current than high voltage applications. Significant development would be required before it could achieve the kilovolt levels needed for de power transmission.
Gender-Adjustment and Cutoff Values of Cornell Product in Hypertensive Japanese Patients.
Ishikawa, Joji; Yamanaka, Yuko; Toba, Ayumi; Watanabe, Shintaro; Harada, Kazumasa
2017-12-12
In the Japanese population, the electrocardiographic (ECG) Cornell voltage and product predict cardiovascular events at lower values (Cornell voltage of 2.04 mV in males and 1.71 mV in females, and Cornell product of 158.7 mV× msec) than in the guidelines (2.8 mV, 2.0 mV, and 244 mV× msec, respectively). We evaluated the ECG criteria for left ventricular hypertrophy (LVH) corresponding to echocardiographic LVH (Echo-LVH) in Japanese patients.We reviewed data on 345 consecutive hypertensive patients who underwent echocardiography, and evaluated the Cornell voltage (S in leads V3 + R in leads aVL), Cornell product [ (Cornell voltage + 0.6 mV for females) × QRS duration], and left ventricular mass index (LVMI) (Echo-LVH: LVMI ≥ 116 g/m 2 in males and ≥ 96 g/m 2 in females).The mean age was 63.8 ± 12.5 years (174 males/172 females). Echo-LVH was found in 22.7% of males and 37.2% of females. The equations for estimating LVMI from the Cornell voltage were (1) LVMI = 14.5 × Cornell voltage + 78.9 for males and (2) LVMI = 21.5 × Cornell voltage + 61.5 for females. The Cornell voltage corresponding to Echo-LVH was 2.6 mV in males and 1.6 mV in females, which were below the guideline levels and close to the values indicating cardiovascular risk. The equation for estimating LVMI from the Cornell product was LVMI = 0.15 × Cornell product + 68.8. The Cornell product corresponding to Echo-LVH was 170 mV× msec (sensitivity: 0.730, specificity: 0.601), which was also close to the cardiovascular risk level.Cornell voltage and product values indicating Echo-LVH are lower than those in the current guidelines and closer to the cardiovascular risk levels.
Systems and methods for initializing a charging system
Ransom, Ray M.; Perisic, Milun; Kajouke, Lateef A.
2014-09-09
Systems and methods are provided for initiating a charging system. The method, for example, may include, but is not limited to, providing, by the charging system, an incrementally increasing voltage to a battery up to a first predetermined threshold while the energy conversion module has a zero-percent duty cycle, providing, by the charging system, an incrementally increasing voltage to the battery from an initial voltage level of the battery up to a peak voltage of a voltage source while the energy conversion module has a zero-percent duty cycle, and providing, by the charging system, an incrementally increasing voltage to the battery by incrementally increasing the duty cycle of the energy conversion module.
Control of Grid Connected Photovoltaic System Using Three-Level T-Type Inverter
NASA Astrophysics Data System (ADS)
Zorig, Abdelmalik; Belkeiri, Mohammed; Barkat, Said; Rabhi, Abdelhamid
2016-08-01
Three-level T-Type inverter (3LT2I) topology has numerous advantageous compared to three-level neutral-point-clamped (NPC) inverter. The main benefits of 3LT2I inverter are the efficiency, inverter cost, switching losses, and the quality of output voltage waveforms. In this paper, a photovoltaic distributed generation system based on dual-stage topology of DC-DC boost converter and 3LT2I is introduced. To that end, a decoupling control strategy of 3LT2I is proposed to control the current injected into the grid, reactive power compensation, and DC-link voltage. The resulting system is able to extract the maximum power from photovoltaic generator, to achieve sinusoidal grid currents, and to ensure reactive power compensation. The voltage-balancing control of two split DC capacitors of the 3LT2I is achieved using three-level space vector modulation with balancing strategy based on the effective use of the redundant switching states of the inverter voltage vectors. The proposed system performance is investigated at different operating conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marzoughi, Alinaghi; Burgos, Rolando; Boroyevich, Dushan
This paper presents the design procedure and comparison of converters currently used in medium-voltage high-power motor drive applications. For this purpose, the cascaded H-bridge (CHB), modular multilevel converter (MMC), and five-level active neutral point clamped (5-L ANPC) topologies are targeted. The design is performed using 1.7-kV insulated gate bipolar transistors (IGBTs) for CHB and MMC converters, and utilizing 3.3- and 4.5-kV IGBTs for 5-L ANPC topology as normally done in industry. The comparison is done between the designed converter topologies at three different voltage levels (4.16, 6.9, and 13.8 kV, with only the first two voltage levels in case ofmore » the 5-L ANPC) and two different power levels (3 and 5 MVA), in order to elucidate the dependence of different parameters on voltage and power rating. Finally, the comparison is done from several points of view such as efficiency, capacitive energy storage, semiconductor utilization, parts count (for measure of reliability), and power density.« less
Experiments of a 100 kV-level pulse generator based on metal-oxide varistor
NASA Astrophysics Data System (ADS)
Cui, Yan-cheng; Wu, Qi-lin; Yang, Han-wu; Gao, Jing-ming; Li, Song; Shi, Cheng-yu
2018-03-01
This paper introduces the development and experiments of a 100 kV-level pulse generator based on a metal-oxide varistor (MOV). MOV has a high energy handling capacity and nonlinear voltage-current (V-I) characteristics, which makes it useful for high voltage pulse shaping. Circuit simulations based on the measured voltage-current characteristics of MOV verified the shaping concept and showed that a circuit containing a two-section pulse forming network (PFN) will result in better defined square pulse than a simple L-C discharging circuit. A reduced-scale experiment was carried out and the result agreed well with simulation prediction. Then a 100 kV-level pulse generator with multiple MOVs in a stack and a two-section pulse forming network (PFN) was experimented. A pulse with a voltage amplitude of 90 kV, rise time of about 50 ns, pulse width of 500 ns, and flat top of about 400 ns was obtained with a water dummy load of 50 Ω. The results reveal that the combination of PFN and MOV is a practical way to generate high voltage pulses with better flat top waveforms, and the load voltage is stable even if the load's impedance varies. Such pulse generator can be applied in many fields such as surface treatment, corona plasma generation, industrial dedusting, and medical disinfection.
Exposure to Electrical Contact Currents and the Risk of Childhood Leukemia
Does, Monique; Scélo, Ghislaine; Metayer, Catherine; Selvin, Steve; Kavet, Robert; Buffler, Patricia
2011-01-01
The objectives of this study were to examine the association between contact current exposure and the risk of childhood leukemia and to investigate the relationship between residential contact currents and magnetic fields. Indoor and outdoor contact voltage and magnetic-field measurements were collected for the diagnosis residence of 245 cases and 269 controls recruited in the Northern California Childhood Leukemia Study (2000–2007). Logistic regression techniques produced odds ratios (OR) adjusted for age, sex, Hispanic ethnicity, mother’s race and household income. No statistically significant associations were seen between childhood leukemia and indoor contact voltage level [exposure ≥90th percentile (10.5 mV): OR = 0.83, 95% confidence interval (CI): 0.45, 1.54], outdoor contact voltage level [exposure ≥90th percentile (291.2 mV): OR = 0.89, 95% CI: 0.48, 1.63], or indoor magnetic-field levels (>0.20 μT: OR = 0.76, 95% CI: 0.30, 1.93). Contact voltage was weakly correlated with magnetic field; correlation coefficients were r = 0.10 (P = 0.02) for indoor contact voltage and r = 0.15 (P = 0.001) for outdoor contact voltage. In conclusion, in this California population, there was no evidence of an association between childhood leukemia and exposure to contact currents or magnetic fields and a weak correlation between measures of contact current and magnetic fields. PMID:21388283
Performance of a low-power subsonic-arc-attachment arcjet thruster
NASA Technical Reports Server (NTRS)
Sankovic, John M.; Berns, Darren H.
1993-01-01
A subsonic-arc-attachment thruster design was scaled from a 30 kW 1960's vintage thruster to operate at nominally 3 kW. Performance measurements were obtained over a 1-4 kW power range using hydrogen as the propellant. Several modes of operation were identified and were characterized by varying degrees of voltage instability. A stability map was developed showing that the voltage oscillations were brought upon by elevated current or propellant levels. At a given specific energy level the specific impulse increased asymptotically with increased flow rates. Comparisons of performance were made between radial and tangential propellant injection. When the vortex flow was eliminated using radial injection, the operating voltages were lower at a given current, and the specific impulse and efficiency decreased. Tests were also conducted to determine the effects of background pressure on operation, and performance data were obtained at pressures of 0.047 Pa and 18 Pa. For a given specific energy level, the performance increased with a decrease in facility background pressure. Lowering the background pressure also caused a dramatic change in the voltage-current characteristic and the voltage stability, a phenomenon not previously reported with conventional supersonic-arc-attachment thrusters.
Magnetically switched power supply system for lasers
NASA Technical Reports Server (NTRS)
Pacala, Thomas J. (Inventor)
1987-01-01
A laser power supply system is described in which separate pulses are utilized to avalanche ionize the gas within the laser and then produce a sustained discharge to cause the gas to emit light energy. A pulsed voltage source is used to charge a storage device such as a distributed capacitance. A transmission line or other suitable electrical conductor connects the storage device to the laser. A saturable inductor switch is coupled in the transmission line for containing the energy within the storage device until the voltage level across the storage device reaches a predetermined level, which level is less than that required to avalanche ionize the gas. An avalanche ionization pulse generating circuit is coupled to the laser for generating a high voltage pulse of sufficient amplitude to avalanche ionize the laser gas. Once the laser gas is avalanche ionized, the energy within the storage device is discharged through the saturable inductor switch into the laser to provide the sustained discharge. The avalanche ionization generating circuit may include a separate voltage source which is connected across the laser or may be in the form of a voltage multiplier circuit connected between the storage device and the laser.
Open-circuit voltage improvements in low-resistivity solar cells
NASA Technical Reports Server (NTRS)
Godlewski, M. P.; Klucher, T. M.; Mazaris, G. A.; Weizer, V. G.
1979-01-01
Mechanisms limiting the open-circuit voltage in 0.1 ohm-cm solar cells were investigated. It was found that a rather complicated multistep diffusion process could produce cells with significantly improved voltages. The voltage capabilities of various laboratory cells were compared independent of their absorption and collection efficiencies. This was accomplished by comparing the cells on the basis of their saturation currents or, equivalently, comparing their voltage outputs at a constant current-density level. The results show that for both the Lewis diffused emitter cell and the Spire ion-implanted emitter cell the base component of the saturation current is voltage controlling. The evidence for the University of Florida cells, although not very conclusive, suggests emitter control of the voltage in this device. The data suggest further that the critical voltage-limiting parameter for the Lewis cell is the electron mobility in the cell base.
Temporal Dynamics of Microbial Rhodopsin Fluorescence Reports Absolute Membrane Voltage
Hou, Jennifer H.; Venkatachalam, Veena; Cohen, Adam E.
2014-01-01
Plasma membrane voltage is a fundamentally important property of a living cell; its value is tightly coupled to membrane transport, the dynamics of transmembrane proteins, and to intercellular communication. Accurate measurement of the membrane voltage could elucidate subtle changes in cellular physiology, but existing genetically encoded fluorescent voltage reporters are better at reporting relative changes than absolute numbers. We developed an Archaerhodopsin-based fluorescent voltage sensor whose time-domain response to a stepwise change in illumination encodes the absolute membrane voltage. We validated this sensor in human embryonic kidney cells. Measurements were robust to variation in imaging parameters and in gene expression levels, and reported voltage with an absolute accuracy of 10 mV. With further improvements in membrane trafficking and signal amplitude, time-domain encoding of absolute voltage could be applied to investigate many important and previously intractable bioelectric phenomena. PMID:24507604
Chakrabarti, Somsubhra; Ginnaram, Sreekanth; Jana, Surajit; Wu, Zong-Yi; Singh, Kanishk; Roy, Anisha; Kumar, Pankaj; Maikap, Siddheswar; Qiu, Jian-Tai; Cheng, Hsin-Ming; Tsai, Ling-Na; Chang, Ya-Ling; Mahapatra, Rajat; Yang, Jer-Ren
2017-07-05
Negative voltage modulated multi-level resistive switching with quantum conductance during staircase-type RESET and its transport characteristics in Cr/BaTiO x /TiN structure have been investigated for the first time. The as-deposited amorphous BaTiO x film has been confirmed by high-resolution transmission electron microscopy. X-ray photo-electron spectroscopy shows different oxidation states of Ba in the switching material, which is responsible for tunable more than 10 resistance states by varying negative stop voltage owing to slow decay value of RESET slope (217.39 mV/decade). Quantum conductance phenomenon has been observed in staircase RESET cycle of the memory devices. By inspecting the oxidation states of Ba + and Ba 2+ through measuring H 2 O 2 with a low concentration of 1 nM in electrolyte/BaTiO x /SiO 2 /p-Si structure, the switching mechanism of each HRS level as well as the multi-level phenomenon has been explained by gradual dissolution of oxygen vacancy filament. Along with negative stop voltage modulated multi-level, current compliance dependent multi-level has also been demonstrated and resistance ratio up to 2000 has been achieved even for a thin (<5 nm) switching material. By considering oxidation-reduction of the conducting filaments, the current-voltage switching curve has been simulated as well. Hence, multi-level resistive switching of Cr/BaTiO x /TiN structure implies the promising applications in high dense, multistate non-volatile memories in near future.
Electrical safety for high voltage arrays
NASA Technical Reports Server (NTRS)
Marshall, N. A.
1983-01-01
A number of key electrical safety requirements for the high voltage arrays of central station photovoltaic power systems are explored. The suitability of representative industrial DC power switchgear for control and fault protection was evaluated. Included were AC/DC circuit breakers, electromechanical contactors and relays, load interruptors, cold disconnect devices, sectionalizing switches, and high voltage DC fuses. As appropriate, steady state and transient characteristics were analyzed. Failure modes impacting upon operation and maintenance safety were also identified, as were the voltage withstand and current interruption levels.
Reproducible and controllable induction voltage adder for scaled beam experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakai, Yasuo; Nakajima, Mitsuo; Horioka, Kazuhiko
2016-08-15
A reproducible and controllable induction adder was developed using solid-state switching devices and Finemet cores for scaled beam compression experiments. A gate controlled MOSFET circuit was developed for the controllable voltage driver. The MOSFET circuit drove the induction adder at low magnetization levels of the cores which enabled us to form reproducible modulation voltages with jitter less than 0.3 ns. Preliminary beam compression experiments indicated that the induction adder can improve the reproducibility of modulation voltages and advance the beam physics experiments.
Room temperature linelists for CO2 asymmetric isotopologues with ab initio computed intensities
NASA Astrophysics Data System (ADS)
Zak, Emil J.; Tennyson, Jonathan; Polyansky, Oleg L.; Lodi, Lorenzo; Zobov, Nikolay F.; Tashkun, Sergei A.; Perevalov, Valery I.
2017-12-01
The present paper reports room temperature line lists for six asymmetric isotopologues of carbon dioxide: 16O12C18O (628), 16O12C17O (627), 16O13C18O (638),16O13C17O (637), 17O12C18O (728) and 17O13C18O (738), covering the range 0-8000 cm-1. Variational rotation-vibration wavefunctions and energy levels are computed using the DVR3D software suite and a high quality semi-empirical potential energy surface (PES), followed by computation of intensities using an ab initio dipole moment surface (DMS). A theoretical procedure for quantifying sensitivity of line intensities to minor distortions of the PES/DMS renders our theoretical model as critically evaluated. Several recent high quality measurements and theoretical approaches are discussed to provide a benchmark of our results against the most accurate available data. Indeed, the thesis of transferability of accuracy among different isotopologues with the use of mass-independent PES is supported by several examples. Thereby, we conclude that the majority of line intensities for strong bands are predicted with sub-percent accuracy. Accurate line positions are generated using an effective Hamiltonian, constructed from the latest experiments. This study completes the list of relevant isotopologues of carbon dioxide; these line lists are available to remote sensing studies and inclusion in databases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bai, Jianmei; Ahmed, E. H.; Beser, B.
2011-03-15
We present experimentally derived potential curves and spin-orbit interaction functions for the strongly perturbed A {sup 1{Sigma}}{sub u}{sup +} and b {sup 3{Pi}}{sub u} states of the cesium dimer. The results are based on data from several sources. Laser-induced fluorescence Fourier transform spectroscopy (LIF FTS) was used some time ago in the Laboratoire Aime Cotton primarily to study the X {sup 1{Sigma}}{sub g}{sup +} state. More recent work at Tsinghua University provides information from moderate resolution spectroscopy on the lowest levels of the b {sup 3{Pi}}{sub 0u}{sup {+-}} state as well as additional high-resolution data. From Innsbruck University, we havemore » precision data obtained with cold Cs{sub 2} molecules. Recent data from Temple University was obtained using the optical-optical double resonance polarization spectroscopy technique, and finally, a group at the University of Latvia has added additional LIF FTS data. In the Hamiltonian matrix, we have used analytic potentials (the expanded Morse oscillator form) with both finite-difference (FD) coupled-channel and discrete variable representation (DVR) calculations of the term values. Fitted diagonal and off-diagonal spin-orbit functions are obtained and compared with ab initio results from Temple and Moscow State universities.« less
NASA Astrophysics Data System (ADS)
Kim, Tae-Soo; Lim, Seung-Young; Park, Yong-Keun; Jung, Gunwoo; Song, Jung-Hoon; Cha, Ho-Young; Han, Sang-Woo
2018-06-01
We investigated the distributions and the energy levels of defects in SiO2/AlGaN/GaN highelectron-mobility transistors (HEMTs) by using frequency-dependent ( F- D) capacitance-voltage ( C- V) measurements with resonant optical excitation. A Schottky barrier (SB) and a metal-oxidesemiconductor (MOS) HEMT were prepared to compare the effects of defects in their respective layers. We also investigated the effects of those layers on the threshold voltage ( V th ). A drastic voltage shift in the C- V curve at higher frequencies was caused by the large number of defect levels in the SiO2/GaN interface. A significant shift in V th with additional light illumination was observed due to a charging of the defect states in the SiO2/GaN interface. The voltage shifts were attributed to the detrapping of defect states at the SiO2/GaN interface.
Hardening communication ports for survival in electrical overstress environments
NASA Technical Reports Server (NTRS)
Clark, O. Melville
1991-01-01
Greater attention is being focused on the protection of data I/O ports since both experience and lab tests have shown that components at these locations are extremely vulnerable to electrical overstress (EOS) in the form of transient voltages. Lightning and electrostatic discharge (ESD) are the major contributors to these failures; however, these losses can be prevented. Hardening against transient voltages at both the board level and system level has a proven record of improving reliability by orders of magnitude. The EOS threats, typical failure modes, and transient voltage mitigation techniques are reviewed. Case histories are also reviewed.
A test technique for measuring lightning-induced voltages on aircraft electrical circuits
NASA Technical Reports Server (NTRS)
Walko, L. C.
1974-01-01
The development of a test technique used for the measurement of lightning-induced voltages in the electrical circuits of a complete aircraft is described. The resultant technique utilizes a portable device known as a transient analyzer capable of generating unidirectional current impulses similar to lightning current surges, but at a lower current level. A linear relationship between the magnitude of lightning current and the magnitude of induced voltage permitted the scaling up of measured induced values to full threat levels. The test technique was found to be practical when used on a complete aircraft.
King, M. P.; Kaplar, R. J.; Dickerson, J. R.; ...
2016-10-31
Electrical performance and characterization of deep levels in vertical GaN P-i-N diodes grown on low threading dislocation density (~10 4 –10 6 cm –2) bulk GaN substrates are investigated. The lightly doped n drift region of these devices is observed to be highly compensated by several prominent deep levels detected using deep level optical spectroscopy at E c-2.13, 2.92, and 3.2 eV. A combination of steady-state photocapacitance and lighted capacitance-voltage profiling indicates the concentrations of these deep levels to be N t = 3 × 10 12, 2 × 10 15, and 5 × 10 14 cm –3, respectively. Themore » E c-2.92 eV level is observed to be the primary compensating defect in as-grown n-type metal-organic chemical vapor deposition GaN, indicating this level acts as a limiting factor for achieving controllably low doping. The device blocking voltage should increase if compensating defects reduce the free carrier concentration of the n drift region. Understanding the incorporation of as-grown and native defects in thick n-GaN is essential for enabling large V BD in the next-generation wide-bandgap power semiconductor devices. Furthermore, controlling the as-grown defects induced by epitaxial growth conditions is critical to achieve blocking voltage capability above 5 kV.« less
Electrical system architecture
Algrain, Marcelo C [Peoria, IL; Johnson, Kris W [Washington, IL; Akasam, Sivaprasad [Peoria, IL; Hoff, Brian D [East Peoria, IL
2008-07-15
An electrical system for a vehicle includes a first power source generating a first voltage level, the first power source being in electrical communication with a first bus. A second power source generates a second voltage level greater than the first voltage level, the second power source being in electrical communication with a second bus. A starter generator may be configured to provide power to at least one of the first bus and the second bus, and at least one additional power source may be configured to provide power to at least one of the first bus and the second bus. The electrical system also includes at least one power consumer in electrical communication with the first bus and at least one power consumer in electrical communication with the second bus.
Su, Gui-Jia
2003-06-10
A multilevel DC link inverter and method for improving torque response and current regulation in permanent magnet motors and switched reluctance motors having a low inductance includes a plurality of voltage controlled cells connected in series for applying a resulting dc voltage comprised of one or more incremental dc voltages. The cells are provided with switches for increasing the resulting applied dc voltage as speed and back EMF increase, while limiting the voltage that is applied to the commutation switches to perform PWM or dc voltage stepping functions, so as to limit current ripple in the stator windings below an acceptable level, typically 5%. Several embodiments are disclosed including inverters using IGBT's, inverters using thyristors. All of the inverters are operable in both motoring and regenerating modes.
Skuginna, Veronika; Nguyen, Daniel P; Seiler, Roland; Kiss, Bernhard; Thalmann, George N; Roth, Beat
2016-02-01
Renal damage is more frequent with new-generation lithotripters. However, animal studies suggest that voltage ramping minimizes the risk of complications following extracorporeal shock wave lithotripsy (SWL). In the clinical setting, the optimal voltage strategy remains unclear. To evaluate whether stepwise voltage ramping can protect the kidney from damage during SWL. A total of 418 patients with solitary or multiple unilateral kidney stones were randomized to receive SWL using a Modulith SLX-F2 lithotripter with either stepwise voltage ramping (n=213) or a fixed maximal voltage (n=205). SWL. The primary outcome was sonographic evidence of renal hematomas. Secondary outcomes included levels of urinary markers of renal damage, stone disintegration, stone-free rate, and rates of secondary interventions within 3 mo of SWL. Descriptive statistics were used to compare clinical outcomes between the two groups. A logistic regression model was generated to assess predictors of hematomas. Significantly fewer hematomas occurred in the ramping group(12/213, 5.6%) than in the fixed group (27/205, 13%; p=0.008). There was some evidence that the fixed group had higher urinary β2-microglobulin levels after SWL compared to the ramping group (p=0.06). Urinary microalbumin levels, stone disintegration, stone-free rate, and rates of secondary interventions did not significantly differ between the groups. The logistic regression model showed a significantly higher risk of renal hematomas in older patients (odds ratio [OR] 1.03, 95% confidence interval [CI] 1.00-1.05; p=0.04). Stepwise voltage ramping was associated with a lower risk of hematomas (OR 0.39, 95% CI 0.19-0.80; p=0.01). The study was limited by the use of ultrasound to detect hematomas. In this prospective randomized study, stepwise voltage ramping during SWL was associated with a lower risk of renal damage compared to a fixed maximal voltage without compromising treatment effectiveness. Lithotripsy is a noninvasive technique for urinary stone disintegration using ultrasonic energy. In this study, two voltage strategies are compared. The results show that a progressive increase in voltage during lithotripsy decreases the risk of renal hematomas while maintaining excellent outcomes. ISRCTN95762080. Copyright © 2015 European Association of Urology. Published by Elsevier B.V. All rights reserved.
3D Simulation: Microgravity Environments and Applications
NASA Technical Reports Server (NTRS)
Hunter, Steve L.; Dischinger, Charles; Estes, Samantha; Parker, Nelson C. (Technical Monitor)
2001-01-01
Most, if not all, 3-D and Virtual Reality (VR) software programs are designed for one-G gravity applications. Space environments simulations require gravity effects of one one-thousandth to one one-million of that of the Earth's surface (10(exp -3) - 10(exp -6) G), thus one must be able to generate simulations that replicate those microgravity effects upon simulated astronauts. Unfortunately, the software programs utilized by the National Aeronautical and Space Administration does not have the ability to readily neutralize the one-G gravity effect. This pre-programmed situation causes the engineer or analysis difficulty during micro-gravity simulations. Therefore, microgravity simulations require special techniques or additional code in order to apply the power of 3D graphic simulation to space related applications. This paper discusses the problem and possible solutions to allow microgravity 3-D/VR simulations to be completed successfully without program code modifications.
All the adiabatic bound states of NO{sub 2}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salzgeber, R.F.; Mandelshtam, V.; Schlier, C.
1998-07-01
We calculated all 2967 even and odd bound states of the adiabatic ground state of NO{sub 2}, using a modification of the abthinspinitio potential energy surface of Leonardi {ital et al.} [J. Chem. Phys. {bold 105}, 9051 (1996)]. The calculation was performed by harmonic inversion of the Chebyshev correlation function generated by a DVR Hamiltonian in Radau coordinates. The relative error for the computed eigenenergies (measured from the potential minimum), is 10{sup {minus}4} or better, corresponding to an absolute error of less than about 2.5thinspcm{sup {minus}1}. Near the dissociation threshold the average density of states is about 0.2/cm{sup {minus}1} formore » each symmetry. Statistical analysis of the states shows some interesting structure of the rigidity parameter {Delta}{sub 3} as a function of energy. {copyright} {ital 1998 American Institute of Physics.}« less
NASA Astrophysics Data System (ADS)
Lan, Chunbo; Tang, Lihua; Qin, Weiyang
2017-07-01
Nonlinear energy harvesters have attracted wide research attentions to achieve broadband performances in recent years. Nonlinear structures have multiple solutions in certain frequency region that contains high-energy and low-energy orbits. It is effectively the frequency region of capturing a high-energy orbit that determines the broadband performance. Thus, maintaining large-amplitude high-energy-orbit oscillations is highly desired. In this paper, a voltage impulse perturbation approach based on negative resistance is applied to trigger high-energy-orbit responses of piezoelectric nonlinear energy harvesters. First, the mechanism of the voltage impulse perturbation and the implementation of the synthetic negative resistance circuit are discussed in detail. Subsequently, numerical simulation and experiment are conducted and the results demonstrate that the high-energy-orbit oscillations can be triggered by the voltage impulse perturbation method for both monostable and bistable configurations given various scenarios. It is revealed that the perturbation levels required to trigger and maintain high-energy-orbit oscillations are different for various excitation frequencies in the region where multiple solutions exist. The higher gain in voltage output when high-energy-orbit oscillations are captured is accompanied with the demand of a higher voltage impulse perturbation level.
Modeling the instability behavior of thin film devices: Fermi Level Pinning
NASA Astrophysics Data System (ADS)
Moeini, Iman; Ahmadpour, Mohammad; Gorji, Nima E.
2018-05-01
We investigate the underlying physics of degradation/recovery of a metal/n-CdTe Schottcky junction under reverse or forward bias stressing conditions. We used Sah-Noyce-Shockley (SNS) theory to investigate if the swept of Fermi level pinning at different levels (under forward/reverse bias) is the origin of change in current-voltage characteristics of the device. This theory is based on Shockley-Read-Hall recombination within the depletion width and takes into account the interface defect levels. Fermi Level Pinning theory was primarily introduced by Ponpon and developed to thin film solar cells by Dharmadasa's group in Sheffield University-UK. The theory suggests that Fermi level pinning at multiple levels occurs due to high concentration of electron-traps or acceptor-like defects at the interface of a Schottky or pn junction and this re-arranges the recombination rate and charage collection. Shift of these levels under stress conditions determines the change in current-voltage characteristics of the cell. This theory was suggested for several device such as metal/n-CdTe, CdS/CdTe, CIGS/CdS or even GaAs solar cells without a modeling approach to clearly explain it's physics. We have applied the strong SNS modeling approach to shed light on Fermi Level Pinning theory. The modeling confirms that change in position of Fermi Level and it's pining in a lower level close to Valence band increases the recombination and reduces the open-circuit voltage. In contrast, Fermi Level pinning close to conduction band strengthens the electric field at the junction which amplifies the carrier collection and boosts the open-circuit voltage. This theory can well explain the stress effect on device characteristics of various solar cells or Schottky junctions by simply finding the right Fermi level pinning position at every specific stress condition.
NASA Astrophysics Data System (ADS)
Kumano, Teruhisa
As known well, two of the fundamental processes which give rise to voltage collapse in power systems are the on load tap changers of transformers and dynamic characteristics of loads such as induction machines. It has been well established that, comparing among these two, the former makes slower collapse while the latter makes faster. However, in realistic situations, the load level of each induction machine is not uniform and it is well expected that only a part of loads collapses first, followed by collapse process of each load which did not go into instability during the preceding collapses. In such situations the over all equivalent collapse behavior viewed from bulk transmission level becomes somewhat different from the simple collapse driven by one aggregated induction machine. This paper studies the process of cascaded voltage collapse among many induction machines by time simulation, where load distribution on a feeder line is modeled by several hundreds of induction machines and static impedance loads. It is shown that in some cases voltage collapse really cascades among induction machines, where the macroscopic load dynamics viewed from upper voltage level makes slower collapse than expected by the aggregated load model. Also shown is the effects of machine protection of induction machines, which also makes slower collapse.
Switching Characteristics of Ferroelectric Transistor Inverters
NASA Technical Reports Server (NTRS)
Laws, Crystal; Mitchell, Coey; MacLeod, Todd C.; Ho, Fat D.
2010-01-01
This paper presents the switching characteristics of an inverter circuit using a ferroelectric field effect transistor, FeFET. The propagation delay time characteristics, phl and plh are presented along with the output voltage rise and fall times, rise and fall. The propagation delay is the time-delay between the V50% transitions of the input and output voltages. The rise and fall times are the times required for the output voltages to transition between the voltage levels V10% and V90%. Comparisons are made between the MOSFET inverter and the ferroelectric transistor inverter.
High-voltage crowbar circuit with cascade-triggered series ignitrons
Baker, William R. [Orinda, CA
1980-11-04
A series string of ignitrons for switching a large current at high voltage to ground. Switching is initiated by means of a negative trigger pulse applied to the cathode of the lowest voltage level ignitron next to ground to draw ground current through diodes in the ignitor circuit. The trigger pulse is applied thereby to the next higher ignitron cathode and sequentially to the remainder of the ignitrons in the string through diodes in respective ignitor circuits. Full line voltage is held off of nonconducting diodes and ignitrons by means of varistors.
High-voltage crowbar circuit with cascade-triggered series ignitrons
Baker, W.R.
A series string of ignitrons for switching a large current at high voltage to ground is discussed. Switching is initiated by means of a negative trigger pulse applied to the cathode of the lowest voltage level ignitron next to ground to draw ground current through diodes in the ignitor circuit. The trigger pulse is applied thereby to the next higher ignitron cathode and sequentially to the remainder of the ignitrons in the string through diodes in respective ignitor circuits. Full line voltage is held off of nonconducting diodes and ignitrons by means of varistors.
High-voltage crowbar circuit with cascade-triggered series ignitrons
Baker, W.R.
1980-11-04
A series string of ignitrons for switching a large current at high voltage to ground. Switching is initiated by means of a negative trigger pulse applied to the cathode of the lowest voltage level ignitron next to ground to draw ground current through diodes in the ignitor circuit. The trigger pulse is applied thereby to the next higher ignitron cathode and sequentially to the remainder of the ignitrons in the string through diodes in respective ignitor circuits. Full line voltage is held off of nonconducting diodes and ignitrons by means of varistors. 1 fig.
NASA Astrophysics Data System (ADS)
Haller, Julian; Wilkens, Volker
2012-11-01
For power levels up to 200 W and sonication times up to 60 s, the electrical power, the voltage and the electrical impedance (more exactly: the ratio of RMS voltage and RMS current) have been measured for a piezocomposite high intensity therapeutic ultrasound (HITU) transducer with integrated matching network, two piezoceramic HITU transducers with external matching networks and for a passive dummy 50 Ω load. The electrical power and the voltage were measured during high power application with an inline power meter and an RMS voltage meter, respectively, and the complex electrical impedance was indirectly measured with a current probe, a 100:1 voltage probe and a digital scope. The results clearly show that the input RMS voltage and the input RMS power change unequally during the application. Hence, the indication of only the electrical input power or only the voltage as the input parameter may not be sufficient for reliable characterizations of ultrasound transducers for high power applications in some cases.
Kronberg, James W.
1992-01-01
A sequential power-up circuit for starting several electrical load elements in series to avoid excessive current surge, comprising a voltage ramp generator and a set of voltage comparators, each comparator having a different reference voltage and interfacing with a switch that is capable of turning on one of the load elements. As the voltage rises, it passes the reference voltages one at a time and causes the switch corresponding to that voltage to turn on its load element. The ramp is turned on and off by a single switch or by a logic-level electrical signal. The ramp rate for turning on the load element is relatively slow and the rate for turning the elements off is relatively fast. Optionally, the duration of each interval of time between the turning on of the load elements is programmable.
1978-09-01
AWACS EMP Guidelines presents two different models to predict the damage pcwer of the dev-ce and the circuit damage EMP voltage ( VEMP ). Neither of...calculated as K P~ I V BD 6. The damage EMP voltage ( VEMP ) is calculated KZ EMP +IZ =D +BD VBD1F 7. The damage EMP voltage is calculated for collector
Fuel Cell Technology Status Composite Data Products | Hydrogen and Fuel
Hours to 10% Stack Voltage Degradation CDP LAB 01, 5/8/17 Durability Lab Data Projection Sensitivity to Voltage Degradation Levels CDP LAB 02, 5/8/17 Field and Lab Durability Projection Comparison for LAB 04, 5/5/17 Comparison of MHE Field and Lab Data Voltage Durability CDP LAB 05, 5/3/2016 Data Set
Open circuit voltage-decay behavior in amorphous p-i-n solar due to injection
NASA Astrophysics Data System (ADS)
Smrity, Manu; Dhariwal, S. R.
2018-05-01
The paper deals with the basic recombination processes at the dangling bond and the band tail states at various levels of injection, expressed in terms of short-circuit current density and their role in the behavior of amorphous solar cells. As the level of injection increases the fill factor decreases whereas the open circuit voltage increases very slowly, showing a saturation tendency. Calculations have been done for two values of tail state densities and shows that with an increase in tail state densities both, the fill factor and open circuit voltage decreases, results an overall degradation of the solar cell.
Warnock, Geoffrey; Sommerauer, Michael; Mu, Linjing; Pla Gonzalez, Gloria; Geistlich, Susanne; Treyer, Valerie; Schibli, Roger; Buck, Alfred; Krämer, Stefanie D; Ametamey, Simon M
2018-06-01
Non-invasive imaging of metabotropic glutamate receptor 5 (mGlu 5 ) in the brain using PET is of interest in e.g., anxiety, depression, and Parkinson's disease. Widespread application of the most widely used mGlu 5 tracer, [ 11 C]ABP688, is limited by the short physical half-life of carbon-11. [ 18 F]PSS232 is a fluorinated analog with promising preclinical properties and high selectivity and specificity for mGlu 5 . In this first-in-man study, we evaluated the brain uptake pattern and kinetics of [ 18 F]PSS232 in healthy volunteers. [ 18 F]PSS232 PET was performed with ten healthy male volunteers aged 20-40 years. Seven of the subjects received a bolus injection and the remainder a bolus/infusion protocol. Cerebral blood flow was determined in seven subjects using [ 15 O]water PET. Arterial blood activity was measured using an online blood counter. Tracer kinetics were evaluated by compartment modeling and parametric maps were generated for both tracers. At 90 min post-injection, 59.2 ± 11.1% of total radioactivity in plasma corresponded to intact tracer. The regional first pass extraction fraction of [ 18 F]PSS232 ranged from 0.41 ± 0.06 to 0.55 ± 0.03 and brain distribution pattern matched that of [ 11 C]ABP688. Uptake kinetics followed a simple two-tissue compartment model. The volume of distribution of total tracer (V T , ml/cm 3 ) ranged from 1.18 ± 0.20 for white matter to 2.91 ± 0.51 for putamen. The respective mean distribution volume ratios (DVR) with cerebellum as the reference tissue were 0.88 ± 0.06 and 2.12 ± 0.10, respectively. The tissue/cerebellum ratios of a bolus/infusion protocol (30/70 dose ratio) were close to the DVR values. Brain uptake of [ 18 F]PSS232 matched the distribution of mGlu 5 and followed a two-tissue compartment model. The well-defined kinetics and the possibility to use reference tissue models, obviating the need for arterial blood sampling, make [ 18 F]PSS232 a promising fluorine-18 labeled radioligand for measuring mGlu 5 density in humans.
Goldschen-Ohm, Marcel P.; Capes, Deborah L.; Oelstrom, Kevin M.; Chanda, Baron
2013-01-01
Voltage-dependent Na+ channels are crucial for electrical signalling in excitable cells. Membrane depolarization initiates asynchronous movements in four non-identical voltage-sensing domains of the Na+ channel. It remains unclear to what extent this structural asymmetry influences pore gating as compared with outwardly rectifying K+ channels, where channel opening results from a final concerted transition of symmetric pore gates. Here we combine single channel recordings, cysteine accessibility and voltage clamp fluorimetry to probe the relationships between voltage sensors and pore conformations in an inactivation deficient Nav1.4 channel. We observe three distinct conductance levels such that DI-III voltage sensor activation is kinetically correlated with formation of a fully open pore, whereas DIV voltage sensor movement underlies formation of a distinct subconducting pore conformation preceding inactivation in wild-type channels. Our experiments reveal that pore gating in sodium channels involves multiple transitions driven by asynchronous movements of voltage sensors. These findings shed new light on the mechanism of coupling between activation and fast inactivation in voltage-gated sodium channels. PMID:23322038
A Single-Phase Embedded Z-Source DC-AC Inverter
Kim, Se-Jin; Lim, Young-Cheol
2014-01-01
In the conventional DC-AC inverter consisting of two DC-DC converters with unipolar output capacitors, the output capacitor voltages of the DC-DC converters must be higher than the DC input voltage. To overcome this weakness, this paper proposes a single-phase DC-AC inverter consisting of two embedded Z-source converters with bipolar output capacitors. The proposed inverter is composed of two embedded Z-source converters with a common DC source and output AC load. Though the output capacitor voltages of the converters are relatively low compared to those of a conventional inverter, an equivalent level of AC output voltages can be obtained. Moreover, by controlling the output capacitor voltages asymmetrically, the AC output voltage of the proposed inverter can be higher than the DC input voltage. To verify the validity of the proposed inverter, experiments were performed with a DC source voltage of 38 V. By controlling the output capacitor voltages of the converters symmetrically or asymmetrically, the proposed inverter can produce sinusoidal AC output voltages. The experiments show that efficiencies of up to 95% and 97% can be achieved with the proposed inverter using symmetric and asymmetric control, respectively. PMID:25133241
A single-phase embedded Z-source DC-AC inverter.
Kim, Se-Jin; Lim, Young-Cheol
2014-01-01
In the conventional DC-AC inverter consisting of two DC-DC converters with unipolar output capacitors, the output capacitor voltages of the DC-DC converters must be higher than the DC input voltage. To overcome this weakness, this paper proposes a single-phase DC-AC inverter consisting of two embedded Z-source converters with bipolar output capacitors. The proposed inverter is composed of two embedded Z-source converters with a common DC source and output AC load. Though the output capacitor voltages of the converters are relatively low compared to those of a conventional inverter, an equivalent level of AC output voltages can be obtained. Moreover, by controlling the output capacitor voltages asymmetrically, the AC output voltage of the proposed inverter can be higher than the DC input voltage. To verify the validity of the proposed inverter, experiments were performed with a DC source voltage of 38 V. By controlling the output capacitor voltages of the converters symmetrically or asymmetrically, the proposed inverter can produce sinusoidal AC output voltages. The experiments show that efficiencies of up to 95% and 97% can be achieved with the proposed inverter using symmetric and asymmetric control, respectively.
A Smart Load Interface and Voltage Regulator for Electrostatic Vibration Energy Harvester
NASA Astrophysics Data System (ADS)
Bedier, Mohammed; Basset, Philippe; Galayko, Dimitri
2016-11-01
This paper presents a new implementation in ams 0.35μm HV technology of a complete energy management system for an electrostatic vibrational energy harvester (e-VEH). It is based on the Bennet's doubler architecture and includes a load voltage regulator (LVR) and a smart Load Interface (LI) that are self-controlled with internal voltages for maximum power point tracking (MMPT). The CMOS implementation makes use of an energy harvester that is capable of producing up to 1.8μW at harmonic excitation, given its internal voltage is kept within its optimum. An intermediate LI stage and its controller makes use of a high side switch with zero static power level shifter, and a low power hysteresis comparator. A full circuit level simulation with a VHDL-AMS model of the e-VEH presented was successfully achieved, indicating that the proposed load interface controller consumes less than 100nW average power. Moreover, a LVR regulates the buffer and discharge the harvested energy into a generic resistive load maintaining the voltage within a nominal value of 2 Volts.
Photovoltaic array: Power conditioner interface characteristics
NASA Technical Reports Server (NTRS)
Gonzalez, C. C.; Hill, G. M.; Ross, R. G., Jr.
1982-01-01
The electrical output (power, current, and voltage) of flat plate solar arrays changes constantly, due primarily to changes in cell temperature and irradiance level. As a result, array loads such as dc-to-ac power conditioners must be capable of accommodating widely varying input levels while maintaining operation at or near the maximum power point of the array. The array operating characteristics and extreme output limits necessary for the systematic design of array load interfaces under a wide variety of climatic conditions are studied. A number of interface parameters are examined, including optimum operating voltage, voltage energy, maximum power and current limits, and maximum open circuit voltage. The effect of array degradation and I-V curve fill factor or the array power conditioner interface is also discussed. Results are presented as normalized ratios of power conditioner parameters to array parameters, making the results universally applicable to a wide variety of system sizes, sites, and operating modes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lustikova, J., E-mail: lustikova@imr.tohoku.ac.jp; Shiomi, Y.; Handa, Y.
2015-02-21
We report on the deformation of microwave absorption spectra and of the inverse spin Hall voltage signals in thin film bilayers of yttrium iron garnet (YIG) and platinum at high microwave power levels in a 9.45-GHz TE{sub 011} cavity. As the microwave power increases from 0.15 to 200 mW, the resonance field shifts to higher values, and the initially Lorentzian spectra of the microwave absorption intensity as well as the inverse spin Hall voltage signals become asymmetric. The contributions from opening of the magnetization precession cone and heating of YIG cannot well reproduce the data. Control measurements of inverse spinmore » Hall voltages on thin-film YIG|Pt systems with a range of line widths underscore the role of spin-wave excitations in spectral deformation.« less
Improved High/Low Junction Silicon Solar Cell
NASA Technical Reports Server (NTRS)
Neugroschel, A.; Pao, S. C.; Lindholm, F. A.; Fossum, J. G.
1986-01-01
Method developed to raise value of open-circuit voltage in silicon solar cells by incorporating high/low junction in cell emitter. Power-conversion efficiency of low-resistivity silicon solar cell considerably less than maximum theoretical value mainly because open-circuit voltage is smaller than simple p/n junction theory predicts. With this method, air-mass-zero opencircuit voltage increased from 600 mV level to approximately 650 mV.
NASA Astrophysics Data System (ADS)
Goh, Chin-Teng; Cruden, Andrew
2014-11-01
Capacitance and resistance are the fundamental electrical parameters used to evaluate the electrical characteristics of a supercapacitor, namely the dynamic voltage response, energy capacity, state of charge and health condition. In the British Standards EN62391 and EN62576, the constant capacitance method can be further improved with a differential capacitance that more accurately describes the dynamic voltage response of supercapacitors. This paper presents a novel bivariate quadratic based method to model the dynamic voltage response of supercapacitors under high current charge-discharge cycling, and to enable the derivation of the differential capacitance and energy capacity directly from terminal measurements, i.e. voltage and current, rather than from multiple pulsed-current or excitation signal tests across different bias levels. The estimation results the author achieves are in close agreement with experimental measurements, within a relative error of 0.2%, at various high current levels (25-200 A), more accurate than the constant capacitance method (4-7%). The archival value of this paper is the introduction of an improved quantification method for the electrical characteristics of supercapacitors, and the disclosure of the distinct properties of supercapacitors: the nonlinear capacitance-voltage characteristic, capacitance variation between charging and discharging, and distribution of energy capacity across the operating voltage window.
Kronberg, J.W.
1992-06-02
A sequential power-up circuit for starting several electrical load elements in series to avoid excessive current surge, comprising a voltage ramp generator and a set of voltage comparators, each comparator having a different reference voltage and interfacing with a switch that is capable of turning on one of the load elements. As the voltage rises, it passes the reference voltages one at a time and causes the switch corresponding to that voltage to turn on its load element. The ramp is turned on and off by a single switch or by a logic-level electrical signal. The ramp rate for turning on the load element is relatively slow and the rate for turning the elements off is relatively fast. Optionally, the duration of each interval of time between the turning on of the load elements is programmable. 2 figs.
Voltage controlled oscillator is easily aligned, has low phase noise
NASA Technical Reports Server (NTRS)
Sydnor, R. L.
1965-01-01
Voltage Controlled Oscillator /VCO/, represented by an equivalent RF circuit, is easily adjusted for optimum performance by varying the circuit parameter. It contains a crystal drive level which is also easily adjusted to obtain minimum phase noise.
Electronic circuit provides accurate sensing and control of dc voltage
NASA Technical Reports Server (NTRS)
Loftus, W. D.
1966-01-01
Electronic circuit used relay coil to sense and control dc voltage. The control relay is driven by a switching transistor that is biased to cutoff for all input up to slightly less than the threshold level.
The characteristics and limitations of the MPS/MMS battery charging system
NASA Technical Reports Server (NTRS)
Ford, F. E.; Palandati, C. F.; Davis, J. F.; Tasevoli, C. M.
1980-01-01
A series of tests was conducted on two 12 ampere hour nickel cadmium batteries under a simulated cycle regime using the multiple voltage versus temperature levels designed into the modular power system (MPS). These tests included: battery recharge as a function of voltage control level; temperature imbalance between two parallel batteries; a shorted or partially shorted cell in one of the two parallel batteries; impedance imbalance of one of the parallel battery circuits; and disabling and enabling one of the batteries from the bus at various charge and discharge states. The results demonstrate that the eight commandable voltage versus temperature levels designed into the MPS provide a very flexible system that not only can accommodate a wide range of normal power system operation, but also provides a high degree of flexibility in responding to abnormal operating conditions.
Origin of large dark current increase in InGaAs/InP avalanche photodiode
NASA Astrophysics Data System (ADS)
Wen, J.; Wang, W. J.; Chen, X. R.; Li, N.; Chen, X. S.; Lu, W.
2018-04-01
The large dark current increase near the breakdown voltage of an InGaAs/InP avalanche photodiode is observed and analyzed from the aspect of bulk defects in the device materials. The trap level information is extracted from the temperature-dependent electrical characteristics of the device and the low temperature photoluminescence spectrum of the materials. Simulation results with the extracted trap level taken into consideration show that the trap is in the InP multiplication layer and the trap assisted tunneling current induced by the trap is the main cause of the large dark current increase with the bias from the punch-through voltage to 95% breakdown voltage.
Solar bus regulator and battery charger for IMP's H, I, and J
NASA Technical Reports Server (NTRS)
Paulkovich, J.
1972-01-01
Interplanetary Monitoring Probe (IMP) spacecrafts H, I, and J utilize a direct energy transfer (DET) type of power system operating from a solar array source. A shunt type of regulator prevents the bus voltage from exceeding a preset voltage level. The power system utilizes a single differential amplifier with dual outputs to control the battery charge/shunt regulator and the discharge regulator. A two-voltage level, current limited, series charger and a current sensor control battery state of charge of the silver-cadmium battery pack. Premature termination of the battery charge is prevented by a power available gate that also initiates charge current to the battery upon availability of excess power.
Sugarman, R.M.
1960-08-30
An oscilloscope is designed for displaying transient signal waveforms having random time and amplitude distributions. The oscilloscopc is a sampling device that selects for display a portion of only those waveforms having a particular range of amplitudes. For this purpose a pulse-height analyzer is provided to screen the pulses. A variable voltage-level shifter and a time-scale rampvoltage generator take the pulse height relative to the start of the waveform. The variable voltage shifter produces a voltage level raised one step for each sequential signal waveform to be sampled and this results in an unsmeared record of input signal waveforms. Appropriate delay devices permit each sample waveform to pass its peak amplitude before the circuit selects it for display.
Self-calibrating multiplexer circuit
Wahl, Chris P.
1997-01-01
A time domain multiplexer system with automatic determination of acceptable multiplexer output limits, error determination, or correction is comprised of a time domain multiplexer, a computer, a constant current source capable of at least three distinct current levels, and two series resistances employed for calibration and testing. A two point linear calibration curve defining acceptable multiplexer voltage limits may be defined by the computer by determining the voltage output of the multiplexer to very accurately known input signals developed from predetermined current levels across the series resistances. Drift in the multiplexer may be detected by the computer when the output voltage limits, expected during normal operation, are exceeded, or the relationship defined by the calibration curve is invalidated.
Insulation Requirements of High-Voltage Power Systems in Future Spacecraft
NASA Technical Reports Server (NTRS)
Qureshi, A. Haq; Dayton, James A., Jr.
1995-01-01
The scope, size, and capability of the nation's space-based activities are limited by the level of electrical power available. Long-term projections show that there will be an increasing demand for electrical power in future spacecraft programs. The level of power that can be generated, conditioned, transmitted, and used will have to be considerably increased to satisfy these needs, and increased power levels will require that transmission voltages also be increased to minimize weight and resistive losses. At these projected voltages, power systems will not operate satisfactorily without the proper electrical insulation. Open or encapsulated power supplies are currently used to keep the volume and weight of space power systems low and to protect them from natural and induced environmental hazards. Circuits with open packaging are free to attain the pressure of the outer environment, whereas encapsulated circuits are imbedded in insulating materials, which are usually solids, but could be liquids or gases. Up to now, solid insulation has usually been chosen for space power systems. If the use of solid insulation is continued, when voltages increase, the amount of insulation for encapsulation also will have to increase. This increased insulation will increase weight and reduce system reliability. Therefore, non-solid insulation media must be examined to satisfy future spacecraft power and voltage demands. In this report, we assess the suitability of liquid, space vacuum, and gas insulation for space power systems.
Batteryless magneto-driven portable radiac
Waechter, D.A.; Bjarke, G.O.; Trujillo, F.; Wolf, M.A.; Umbarger, C.J.
1984-10-19
A hand-powerd alternator for generating an alternating voltage provides same through a rectifier to a high capacity capacitor which stores the resultant dc voltage and drives a voltage regulator to provide a constant low voltage output for a portable radiation detection instrument. The instrument includes a Geiger-Mueller detector tube whose output is fed to a pulse detector and then through an event counter and LCD driver circuit to an LCD bar graph for visual display. An audio driver and an audio output is also provided. All circuitry used is low power so that the capacitor can be readily charged to a sufficient level to provide power for at least 30 minutes. A low voltage indicator is provided on the LCD display to indicate the need for manual recharging.
Batteryless magneto-driven portable radiac
Waechter, David A.; Bjarke, George O.; Trujillo, Faustin; Wolf, Michael A.; Umbarger, C. John
1986-01-01
A hand-powered alternator for generating an alternating voltage provides same through a rectifier to a high capacity capacitor which stores the resultant dc voltage and drives a voltage regulator to provide a constant low voltage output for a portable radiation detection instrument. The instrument includes a Geiger-Muller detector tube whose output is fed to a pulse detector and then through an event counter and LCD driver circuit to an LCD bar graph for visual display. An audio driver and an audio output is also provided. All circuitry used is low power so that the capacitor can be readily charged to a sufficient level to provide power for at least 30 minutes. A low voltage indicator is provided on the LCD display to indicate the need for manual recharging.
Switched-capacitor isolated LED driver
Sanders, Seth R.; Kline, Mitchell
2016-03-22
A switched-capacitor voltage converter which is particularly well-suited for receiving a line voltage from which to drive current through a series of light emitting diodes (LEDs). Input voltage is rectified in a multi-level rectifier network having switched capacitors in an ascending-bank configuration for passing voltages in uniform steps between zero volts up to full received voltage V.sub.DC. A regulator section, operating on V.sub.DC, comprises switched-capacitor stages of H-bridge switching and flying capacitors. A current controlled oscillator drives the states of the switched-capacitor stages and changes its frequency to maintain a constant current to the load. Embodiments are described for isolating the load from the mains, utilizing an LC tank circuit or a multi-primary-winding transformer.
PMU-Aided Voltage Security Assessment for a Wind Power Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Huaiguang; Zhang, Yingchen; Zhang, Jun Jason
2015-10-05
Because wind power penetration levels in electric power systems are continuously increasing, voltage stability is a critical issue for maintaining power system security and operation. The traditional methods to analyze voltage stability can be classified into two categories: dynamic and steady-state. Dynamic analysis relies on time-domain simulations of faults at different locations; however, this method needs to exhaust faults at all locations to find the security region for voltage at a single bus. With the widely located phasor measurement units (PMUs), the Thevenin equivalent matrix can be calculated by the voltage and current information collected by the PMUs. This papermore » proposes a method based on a Thevenin equivalent matrix to identify system locations that will have the greatest impact on the voltage at the wind power plant's point of interconnection. The number of dynamic voltage stability analysis runs is greatly reduced by using the proposed method. The numerical results demonstrate the feasibility, effectiveness, and robustness of the proposed approach for voltage security assessment for a wind power plant.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erdman, W.; Keller, J.; Grider, D.
A high-efficiency, 2.3-MW, medium-voltage, three-level inverter utilizing 4.5-kV Si/SiC (silicon carbide) hybrid modules for wind energy applications is discussed. The inverter addresses recent trends in siting the inverter within the base of multimegawatt turbine towers. A simplified split, three-layer laminated bus structure that maintains low parasitic inductances is introduced along with a low-voltage, high-current test method for determining these inductances. Feed-thru bushings, edge fill methods, and other design features of the laminated bus structure provide voltage isolation that is consistent with the 10.4-kV module isolation levels. Inverter efficiency improvement is a result of the (essential) elimination of the reverse recoverymore » charge present in 4.5-kV Si PIN diodes, which can produce a significant reduction in diode turn-off losses as well as insulated-gate bipolar transistor (IGBT) turn-on losses. The hybrid modules are supplied in industry-standard 140 mm x 130 mm and 190 mm x 130 mm packages to demonstrate direct module substitution into existing inverter designs. A focus on laminated bus/capacitor-bank/module subassembly level switching performance is presented.« less
NASA Astrophysics Data System (ADS)
Yoshida, Minori; Miyaji, Kousuke
2018-04-01
A start-up charge pump circuit for an extremely low input voltage (V IN) is proposed and demonstrated. The proposed circuit uses an inverter level shifter to generate a 2V IN voltage swing to the gate of both main NMOS and PMOS power transistors in a charge pump to reduce the channel resistance. The proposed circuit is fully implemented in a standard 0.18 µm CMOS process, and the measurement result shows that a minimum input voltage of 190 mV is achieved and output power increases by 181% compared with the conventional forward-body-bias scheme at a 300 mV input voltage. The proposed scheme achieves a maximum efficiency of 59.2% when the input voltage is 390 mV and the output current is 320 nA. The proposed circuit is suitable as a start-up circuit in ultralow power energy harvesting power management applications to boost-up from below threshold voltage.
NASA Technical Reports Server (NTRS)
Johnson, Steven D.; Byers, Jerry W.; Martin, James A.
2012-01-01
A method has been developed for continuous cell voltage balancing for rechargeable batteries (e.g. lithium ion batteries). A resistor divider chain is provided that generates a set of voltages representing the ideal cell voltage (the voltage of each cell should be as if the cells were perfectly balanced). An operational amplifier circuit with an added current buffer stage generates the ideal voltage with a very high degree of accuracy, using the concept of negative feedback. The ideal voltages are each connected to the corresponding cell through a current- limiting resistance. Over time, having the cell connected to the ideal voltage provides a balancing current that moves the cell voltage very close to that ideal level. In effect, it adjusts the current of each cell during charging, discharging, and standby periods to force the cell voltages to be equal to the ideal voltages generated by the resistor divider. The device also includes solid-state switches that disconnect the circuit from the battery so that it will not discharge the battery during storage. This solution requires relatively few parts and is, therefore, of lower cost and of increased reliability due to the fewer failure modes. Additionally, this design uses very little power. A preliminary model predicts a power usage of 0.18 W for an 8-cell battery. This approach is applicable to a wide range of battery capacities and voltages.
Extension algorithm for generic low-voltage networks
NASA Astrophysics Data System (ADS)
Marwitz, S.; Olk, C.
2018-02-01
Distributed energy resources (DERs) are increasingly penetrating the energy system which is driven by climate and sustainability goals. These technologies are mostly connected to low- voltage electrical networks and change the demand and supply situation in these networks. This can cause critical network states. Network topologies vary significantly and depend on several conditions including geography, historical development, network design or number of network connections. In the past, only some of these aspects were taken into account when estimating the network investment needs for Germany on the low-voltage level. Typically, fixed network topologies are examined or a Monte Carlo approach is used to quantify the investment needs at this voltage level. Recent research has revealed that DERs differ substantially between rural, suburban and urban regions. The low-voltage network topologies have different design concepts in these regions, so that different network topologies have to be considered when assessing the need for network extensions and investments due to DERs. An extension algorithm is needed to calculate network extensions and investment needs for the different typologies of generic low-voltage networks. We therefore present a new algorithm, which is capable of calculating the extension for generic low-voltage networks of any given topology based on voltage range deviations and thermal overloads. The algorithm requires information about line and cable lengths, their topology and the network state only. We test the algorithm on a radial, a loop, and a heavily meshed network. Here we show that the algorithm functions for electrical networks with these topologies. We found that the algorithm is able to extend different networks efficiently by placing cables between network nodes. The main value of the algorithm is that it does not require any information about routes for additional cables or positions for additional substations when it comes to estimating network extension needs.
Network-Cognizant Voltage Droop Control for Distribution Grids
Baker, Kyri; Bernstein, Andrey; Dall'Anese, Emiliano; ...
2017-08-07
Our paper examines distribution systems with a high integration of distributed energy resources (DERs) and addresses the design of local control methods for real-time voltage regulation. Particularly, the paper focuses on proportional control strategies where the active and reactive output-powers of DERs are adjusted in response to (and proportionally to) local changes in voltage levels. The design of the voltage-active power and voltage-reactive power characteristics leverages suitable linear approximation of the AC power-flow equations and is network-cognizant; that is, the coefficients of the controllers embed information on the location of the DERs and forecasted non-controllable loads/injections and, consequently, on themore » effect of DER power adjustments on the overall voltage profile. We pursued a robust approach to cope with uncertainty in the forecasted non-controllable loads/power injections. Stability of the proposed local controllers is analytically assessed and numerically corroborated.« less
Network-Cognizant Voltage Droop Control for Distribution Grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, Kyri; Bernstein, Andrey; Dall'Anese, Emiliano
Our paper examines distribution systems with a high integration of distributed energy resources (DERs) and addresses the design of local control methods for real-time voltage regulation. Particularly, the paper focuses on proportional control strategies where the active and reactive output-powers of DERs are adjusted in response to (and proportionally to) local changes in voltage levels. The design of the voltage-active power and voltage-reactive power characteristics leverages suitable linear approximation of the AC power-flow equations and is network-cognizant; that is, the coefficients of the controllers embed information on the location of the DERs and forecasted non-controllable loads/injections and, consequently, on themore » effect of DER power adjustments on the overall voltage profile. We pursued a robust approach to cope with uncertainty in the forecasted non-controllable loads/power injections. Stability of the proposed local controllers is analytically assessed and numerically corroborated.« less
PV source based high voltage gain current fed converter
NASA Astrophysics Data System (ADS)
Saha, Soumya; Poddar, Sahityika; Chimonyo, Kudzai B.; Arunkumar, G.; Elangovan, D.
2017-11-01
This work involves designing and simulation of a PV source based high voltage gain, current fed converter. It deals with an isolated DC-DC converter which utilizes boost converter topology. The proposed converter is capable of high voltage gain and above all have very high efficiency levels as proved by the simulation results. The project intends to produce an output of 800 V dc from a 48 V dc input. The simulation results obtained from PSIM application interface were used to analyze the performance of the proposed converter. Transformer used in the circuit steps up the voltage as well as to provide electrical isolation between the low voltage and high voltage side. Since the converter involves high switching frequency of 100 kHz, ultrafast recovery diodes are employed in the circuitry. The major application of the project is for future modeling of solar powered electric hybrid cars.
NASA Technical Reports Server (NTRS)
Schwarz, F. C. (Inventor)
1974-01-01
A class of power converters is described for supplying direct current at one voltage from a source at another voltage. It includes a simple passive circuit arrangement of solid-state switches, inductors, and capacitors by which the output voltage of the converter tends to remain constant in spite of changes in load. The switches are sensitive to the current flowing in the circuit and are employed to permit the charging of capacitance devices in accordance with the load requirements. Because solid-state switches (such as SCR's) may be used with relatively high voltage and because of the inherent efficiency of the invention that permits relatively high switching frequencies, power supplies built in accordance with the invention, together with their associated cabling, can be substantially lighter in weight for a given output power level and efficiency of operation than systems of the prior art.
Chloride Anions Regulate Kinetics but Not Voltage-Sensor Qmax of the Solute Carrier SLC26a5.
Santos-Sacchi, Joseph; Song, Lei
2016-06-07
In general, SLC26 solute carriers serve to transport a variety of anions across biological membranes. However, prestin (SLC26a5) has evolved, now serving as a motor protein in outer hair cells (OHCs) of the mammalian inner ear and is required for cochlear amplification, a mechanical feedback mechanism to boost auditory performance. The mechanical activity of the OHC imparted by prestin is driven by voltage and controlled by anions, chiefly intracellular chloride. Current opinion is that chloride anions control the Boltzmann characteristics of the voltage sensor responsible for prestin activity, including Qmax, the total sensor charge moved within the membrane, and Vh, a measure of prestin's operating voltage range. Here, we show that standard narrow-band, high-frequency admittance measures of nonlinear capacitance (NLC), an alternate representation of the sensor's charge-voltage (Q-V) relationship, is inadequate for assessment of Qmax, an estimate of the sum of unitary charges contributed by all voltage sensors within the membrane. Prestin's slow transition rates and chloride-binding kinetics adversely influence these estimates, contributing to the prevalent concept that intracellular chloride level controls the quantity of sensor charge moved. By monitoring charge movement across frequency, using measures of multifrequency admittance, expanded displacement current integration, and OHC electromotility, we find that chloride influences prestin kinetics, thereby controlling charge magnitude at any particular frequency of interrogation. Importantly, however, this chloride dependence vanishes as frequency decreases, with Qmax asymptoting at a level irrespective of the chloride level. These data indicate that prestin activity is significantly low-pass in the frequency domain, with important implications for cochlear amplification. We also note that the occurrence of voltage-dependent charge movements in other SLC26 family members may be hidden by inadequate interrogation timescales, and that revelation of such activity could highlight an evolutionary means for kinetic modifications within the family to address hearing requirements in mammals. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Zhu, Lingyu; Ji, Shengchang; Shen, Qi; Liu, Yuan; Li, Jinyu; Liu, Hao
2013-01-01
The capacitors in high-voltage direct-current (HVDC) converter stations radiate a lot of audible noise which can reach higher than 100 dB. The existing noise level prediction methods are not satisfying enough. In this paper, a new noise level prediction method is proposed based on a frequency response function considering both electrical and mechanical characteristics of capacitors. The electro-mechanical frequency response function (EMFRF) is defined as the frequency domain quotient of the vibration response and the squared capacitor voltage, and it is obtained from impulse current experiment. Under given excitations, the vibration response of the capacitor tank is the product of EMFRF and the square of the given capacitor voltage in frequency domain, and the radiated audible noise is calculated by structure acoustic coupling formulas. The noise level under the same excitations is also measured in laboratory, and the results are compared with the prediction. The comparison proves that the noise prediction method is effective. PMID:24349105
NASA Astrophysics Data System (ADS)
Jia, Yun-Peng; Zhao, Bao; Yang, Fei; Wu, Yu; Zhou, Xuan; Li, Zhe; Tan, Jian
2015-12-01
The temperature dependences of forward voltage drop (VF) of the fast recovery diodes (FRDs) are remarkably influenced by different lifetime controlled treatments. In this paper the results of an experimental study are presented, which are the lifetime controls of platinum treatment, electron irradiation treatment, and the combined treatment of the above ones. Based on deep level transient spectroscopy (DLTS) measurements, a new level E6 (EC-0.376 eV) is found in the combined lifetime treated (CLT) sample, which is different from the levels of the individual platinum and electron irradiation ones. Comparing the tested VF results of CLT samples with the others, the level E6 is responsible for the degradation of temperature dependence of the forward voltage drop in the FRD. Project supported by the Doctoral Fund of Ministry of Education of China (Grant No. 20111103120016) and the State Grid Corporation of China Program of Science and Technology, China (Grant No. 5455DW140003).
Zhu, Lingyu; Ji, Shengchang; Shen, Qi; Liu, Yuan; Li, Jinyu; Liu, Hao
2013-01-01
The capacitors in high-voltage direct-current (HVDC) converter stations radiate a lot of audible noise which can reach higher than 100 dB. The existing noise level prediction methods are not satisfying enough. In this paper, a new noise level prediction method is proposed based on a frequency response function considering both electrical and mechanical characteristics of capacitors. The electro-mechanical frequency response function (EMFRF) is defined as the frequency domain quotient of the vibration response and the squared capacitor voltage, and it is obtained from impulse current experiment. Under given excitations, the vibration response of the capacitor tank is the product of EMFRF and the square of the given capacitor voltage in frequency domain, and the radiated audible noise is calculated by structure acoustic coupling formulas. The noise level under the same excitations is also measured in laboratory, and the results are compared with the prediction. The comparison proves that the noise prediction method is effective.
Human-rated Safety Certification of a High Voltage Robonaut Lithium-ion Battery
NASA Technical Reports Server (NTRS)
Jeevarajan, Judith; Yayathi, S.; Johnson, M.; Waligora, T.; Verdeyen, W.
2013-01-01
NASA's rigorous certification process is being followed for the R2 high voltage battery program for use of R2 on International Space Station (ISS). Rigorous development testing at appropriate levels to credible off-nominal conditions and review of test data led to design improvements for safety at the virtual cell, cartridge and battery levels. Tests were carried out at all levels to confirm that both hardware and software controls work. Stringent flight acceptance testing of the flight battery will be completed before launch for mission use on ISS.
Hellén-Halme, Kristina
2011-04-01
This study evaluated the effect of two different tube voltages on clinicians' ability to diagnose approximal carious lesions in digital radiographs. One hundred extracted teeth were radiographed twice at two voltage settings, 60 and 70 kV, using a standardized procedure. Seven observers evaluated the radiographs on a standard color monitor pre-calibrated according to DICOM part 14. Evaluations were made at ambient light levels below 50 lx. All observations were analyzed with receiver operating characteristic curves. A histological examination of the teeth served as the criterion standard. A paired t test compared the effects of the two voltages. The significance level was set to p < 0.05. Weighted kappa statistics estimated intra-observer agreement. No significant difference in accuracy of approximal carious lesion diagnosis was found between the two voltage settings. But five observers rated dentin lesions on radiographs exposed at 70 kV better than on radiographs exposed at 60 kV. Intra-observer agreement differed from fair to moderate. There was no significant difference in accuracy of approximal carious lesion diagnosis between digital radiographs exposed with 60 or 70 kV.
Sassani, Farrokh
2014-01-01
The simulation results for electromagnetic energy harvesters (EMEHs) under broad band stationary Gaussian random excitations indicate the importance of both a high transformation factor and a high mechanical quality factor to achieve favourable mean power, mean square load voltage, and output spectral density. The optimum load is different for random vibrations and for sinusoidal vibration. Reducing the total damping ratio under band-limited random excitation yields a higher mean square load voltage. Reduced bandwidth resulting from decreased mechanical damping can be compensated by increasing the electrical damping (transformation factor) leading to a higher mean square load voltage and power. Nonlinear EMEHs with a Duffing spring and with linear plus cubic damping are modeled using the method of statistical linearization. These nonlinear EMEHs exhibit approximately linear behaviour under low levels of broadband stationary Gaussian random vibration; however, at higher levels of such excitation the central (resonant) frequency of the spectral density of the output voltage shifts due to the increased nonlinear stiffness and the bandwidth broadens slightly. Nonlinear EMEHs exhibit lower maximum output voltage and central frequency of the spectral density with nonlinear damping compared to linear damping. Stronger nonlinear damping yields broader bandwidths at stable resonant frequency. PMID:24605063
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elizondo, Marcelo A.; Samaan, Nader A.; Makarov, Yuri V.
Voltage and reactive power system control is generally performed following usual patterns of loads, based on off-line studies for daily and seasonal operations. This practice is currently challenged by the inclusion of distributed renewable generation, such as solar. There has been focus on resolving this problem at the distribution level; however, the transmission and sub-transmission levels have received less attention. This paper provides a literature review of proposed methods and solution approaches to coordinate and optimize voltage control and reactive power management, with an emphasis on applications at transmission and sub-transmission level. The conclusion drawn from the survey is thatmore » additional research is needed in the areas of optimizing switch shunt actions and coordinating all available resources to deal with uncertain patterns from increasing distributed renewable generation in the operational time frame. These topics are not deeply explored in the literature.« less
NASA Astrophysics Data System (ADS)
Jizhi, Liu; Xingbi, Chen
2009-12-01
A new quasi-three-dimensional (quasi-3D) numeric simulation method for a high-voltage level-shifting circuit structure is proposed. The performances of the 3D structure are analyzed by combining some 2D device structures; the 2D devices are in two planes perpendicular to each other and to the surface of the semiconductor. In comparison with Davinci, the full 3D device simulation tool, the quasi-3D simulation method can give results for the potential and current distribution of the 3D high-voltage level-shifting circuit structure with appropriate accuracy and the total CPU time for simulation is significantly reduced. The quasi-3D simulation technique can be used in many cases with advantages such as saving computing time, making no demands on the high-end computer terminals, and being easy to operate.
A three-level support method for smooth switching of the micro-grid operation model
NASA Astrophysics Data System (ADS)
Zong, Yuanyang; Gong, Dongliang; Zhang, Jianzhou; Liu, Bin; Wang, Yun
2018-01-01
Smooth switching of micro-grid between the grid-connected operation mode and off-grid operation mode is one of the key technologies to ensure it runs flexible and efficiently. The basic control strategy and the switching principle of micro-grid are analyzed in this paper. The reasons for the fluctuations of the voltage and the frequency in the switching process are analyzed from views of power balance and control strategy, and the operation mode switching strategy has been improved targeted. From the three aspects of controller’s current inner loop reference signal, voltage outer loop control strategy optimization and micro-grid energy balance management, a three-level security strategy for smooth switching of micro-grid operation mode is proposed. From the three aspects of controller’s current inner loop reference signal tracking, voltage outer loop control strategy optimization and micro-grid energy balance management, a three-level strategy for smooth switching of micro-grid operation mode is proposed. At last, it is proved by simulation that the proposed control strategy can make the switching process smooth and stable, the fluctuation problem of the voltage and frequency has been effectively improved.
Methods and devices for optimizing the operation of a semiconductor optical modulator
Zortman, William A.
2015-07-14
A semiconductor-based optical modulator includes a control loop to control and optimize the modulator's operation for relatively high data rates (above 1 GHz) and/or relatively high voltage levels. Both the amplitude of the modulator's driving voltage and the bias of the driving voltage may be adjusted using the control loop. Such adjustments help to optimize the operation of the modulator by reducing the number of errors present in a modulated data stream.
NASA Astrophysics Data System (ADS)
Brylevskiy, Viktor; Smirnova, Irina; Gutkin, Andrej; Brunkov, Pavel; Rodin, Pavel; Grekhov, Igor
2017-11-01
We present a comparative study of silicon high-voltage diodes exhibiting the effect of delayed superfast impact-ionization breakdown. The effect manifests itself in a sustainable picosecond-range transient from the blocking to the conducting state and occurs when a steep voltage ramp is applied to the p+-n-n+ diode in the reverse direction. Nine groups of diodes with graded and abrupt pn-junctions have been specially fabricated for this study by different techniques from different Si substrates. Additionally, in two groups of these structures, the lifetime of nonequilibrium carriers was intentionally reduced by electron irradiation. All diodes have identical geometrical parameters and similar stationary breakdown voltages. Our experimental setup allows measuring both device voltage and current during the kilovolt switching with time resolution better than 50 ps. Although all devices are capable of forming a front with kilovolt amplitude and 100 ps risetime in the in-series load, the structures with graded pn-junctions have anomalously large residual voltage. The Deep Level Transient Spectroscopy study of all diode structures has been performed in order to evaluate the effect of deep centers on device performance. It was found that the presence of deep-level electron traps negatively correlates with parameters of superfast switching, whereas a large concentration of recombination centers created by electron irradiation has virtually no influence on switching characteristics.
Multiple high voltage output DC-to-DC power converter
NASA Technical Reports Server (NTRS)
Cronin, Donald L. (Inventor); Farber, Bertrand F. (Inventor); Gehm, Hartmut K. (Inventor); Goldin, Daniel S. (Inventor)
1977-01-01
Disclosed is a multiple output DC-to-DC converter. The DC input power is filtered and passed through a chopper preregulator. The chopper output is then passed through a current source inverter controlled by a squarewave generator. The resultant AC is passed through the primary winding of a transformer, with high voltages induced in a plurality of secondary windings. The high voltage secondary outputs are each solid-state rectified for passage to individual output loads. Multiple feedback loops control the operation of the chopper preregulator, one being responsive to the current through the primary winding and another responsive to the DC voltage level at a selected output.
High-resolution simultaneous voltage and Ca2+ imaging
Vogt, Kaspar E; Gerharz, Stephan; Graham, Jeremy; Canepari, Marco
2011-01-01
Combining voltage and Ca2+ imaging allows the correlation of electrical and chemical activity at sub-cellular level. Here we describe a novel apparatus designed to obtain simultaneous voltage and Ca2+ measurements with single-trial resolution from sites as small as a few microns. These measurements can be obtained with negligible optical cross-talk between the two signals and negligible photo-damage of the preparation. The capability of the technique was assessed recording either from individual neurons in brain slices or from networks of cultured neurons. The present achievements open the gate to many novel physiological investigations requiring simultaneous measurement of voltage and Ca2+ signals. PMID:21115640
Evaluation of biasing and protection circuitry components for cryogenic MMIC low-noise amplifiers
NASA Astrophysics Data System (ADS)
Lamb, James W.
2014-05-01
Millimeter-wave integrated circuits with gate lengths as short as 35 nm are demonstrating extremely low-noise performance, especially when cooled to cryogenic temperatures. These operate at low voltages and are susceptible to damage from electrostatic discharge and improper biasing, as well as being sensitive to low-level interference. Designing a protection circuit for low voltages and temperatures is challenging because there is very little data available on components that may be suitable. Extensive testing at low temperatures yielded a set of components and a circuit topology that demonstrates the required level of protection for critical MMICs and similar devices. We present a circuit that provides robust protection for low voltage devices from room temperature down to 4 K.
Thermoelectric effect in molecular electronics
NASA Astrophysics Data System (ADS)
Paulsson, Magnus; Datta, Supriyo
2003-06-01
We provide a theoretical estimate of the thermoelectric current and voltage over a Phenyldithiol molecule. We also show that the thermoelectric voltage is (1) easy to analyze, (2) insensitive to the detailed coupling to the contacts, (3) large enough to be measured, and (4) give valuable information, which is not readily accessible through other experiments, on the location of the Fermi energy relative to the molecular levels. The location of the Fermi-energy is poorly understood and controversial even though it is a central factor in determining the nature of conduction (n or p type). We also note that the thermoelectric voltage measured over Guanine molecules with a scanning tunneling microscope by Poler et al., indicate conduction through the highest occupied molecular orbital level, i.e., p-type conduction.
Single-Cell Electric Lysis on an Electroosmotic-Driven Microfluidic Chip with Arrays of Microwells
Jen, Chun-Ping; Amstislavskaya, Tamara G.; Liu, Ya-Hui; Hsiao, Ju-Hsiu; Chen, Yu-Hung
2012-01-01
Accurate analysis at the single-cell level has become a highly attractive tool for investigating cellular content. An electroosmotic-driven microfluidic chip with arrays of 30-μm-diameter microwells was developed for single-cell electric lysis in the present study. The cellular occupancy in the microwells when the applied voltage was 5 V (82.4%) was slightly higher than that at an applied voltage of 10 V (81.8%). When the applied voltage was increased to 15 V, the cellular occupancy in the microwells dropped to 64.3%. More than 50% of the occupied microwells contain individual cells. The results of electric lysis experiments at the single-cell level indicate that the cells were gradually lysed as the DC voltage of 30 V was applied; the cell was fully lysed after 25 s. Single-cell electric lysis was demonstrated in the proposed microfluidic chip, which is suitable for high-throughput cell lysis. PMID:22969331
High voltage interactions of a sounding rocket with the ambient and system-generated environments
NASA Technical Reports Server (NTRS)
Kuharski, Robert A.; Jongeward, Gary A.; Wilcox, Katherine G.; Rankin, Thomas V.; Roche, James C.
1990-01-01
EPSAT (environment power system analysis tool) is used to examine the design of SPEAR III, which is scheduled to fly in early 1991. It will test high-voltage designs in both ambient and system-generated environments. Two of the key questions that the experiment hopes to address are whether or not the earth's magnetic field can cause the current that a high-voltage object draws from the plasma to be far less than the current that would be drawn in the absence of the magnetic field and under what neutral environmental conditions a discharge from the high-voltage object to the plasma will occur. The EPSAT program makes it possible to perform a variety of analyses on a preliminary or conceptual-level description of a system in a short period of time. The calculations presented on SPEAR III are all done for a conceptual-level description. The calculations indicate that the experiment will produce the conditions necessary to address these questions.
Fiber optic current monitor for high-voltage applications
Renda, G.F.
1992-04-21
A current monitor which derives its power from the conductor being measured for bidirectionally measuring the magnitude of current (from DC to above 50 khz) flowing through a conductor across which a relatively high level DC voltage is applied, includes a pair of identical transmitter modules connected in opposite polarity to one another in series with the conductor being monitored, for producing from one module a first light signal having an intensity directly proportional to the magnitude of current flowing in one direction through the conductor during one period of time, and from the other module a second light signal having an intensity directly proportional to the magnitude of current flowing in the opposite direction through the conductor during another period of time, and a receiver located in a safe area remote from the high voltage area for receiving the first and second light signals, and converting the same to first and second voltage signals having levels indicative of the magnitude of current being measured at a given time. 6 figs.
Fiber optic current monitor for high-voltage applications
Renda, George F.
1992-01-01
A current monitor which derives its power from the conductor being measured for bidirectionally measuring the magnitude of current (from DC to above 50 khz) flowing through a conductor across which a relatively high level DC voltage is applied, includes a pair of identical transmitter modules connected in opposite polarity to one another in series with the conductor being monitored, for producing from one module a first light signal having an intensity directly proportional to the magnitude of current flowing in one direction through the conductor during one period of time, and from the other module a second light signal having an intensity directly proportional to the magnitude of current flowing in the opposite direction through the conductor during another period of time, and a receiver located in a safe area remote from the high voltage area for receiving the first and second light signals, and converting the same to first and second voltage signals having levels indicative of the magnitude of current being measured at a given time.
NASA Astrophysics Data System (ADS)
Shen, Jian Qi; Gu, Jing
2018-04-01
Atomic phase coherence (quantum interference) in a multilevel atomic gas exhibits a number of interesting phenomena. Such an atomic quantum coherence effect can be generalized to a quantum-dot molecular dielectric. Two quantum dots form a quantum-dot molecule, which can be described by a three-level Λ-configuration model { |0> ,|1> ,|2> } , i.e., the ground state of the molecule is the lower level |0> and the highly degenerate electronic states in the two quantum dots are the two upper levels |1> ,|2> . The electromagnetic characteristics due to the |0>-|1> transition can be controllably manipulated by a tunable gate voltage (control field) that drives the |2>-|1> transition. When the gate voltage is switched on, the quantum-dot molecular state can evolve from one steady state (i.e., |0>-|1> two-level dressed state) to another steady state (i.e., three-level coherent-population-trapping state). In this process, the electromagnetic characteristics of a quantum-dot molecular dielectric, which is modified by the gate voltage, will also evolve. In this study, the transient evolutional behavior of the susceptibility of a quantum-dot molecular thin film and its reflection spectrum are treated by using the density matrix formulation of the multilevel systems. The present field-tunable and frequency-sensitive electromagnetic characteristics of a quantum-dot molecular thin film, which are sensitive to the applied gate voltage, can be utilized to design optical switching devices.
2015-01-01
The voltage sensor domain (VSD) of voltage-gated cation (e.g., Na+, K+) channels central to neurological signal transmission can function as a distinct module. When linked to an otherwise voltage-insensitive, ion-selective membrane pore, the VSD imparts voltage sensitivity to the channel. Proteins homologous with the VSD have recently been found to function themselves as voltage-gated proton channels or to impart voltage sensitivity to enzymes. Determining the conformational changes associated with voltage gating in the VSD itself in the absence of a pore domain thereby gains importance. We report the direct measurement of changes in the scattering-length density (SLD) profile of the VSD protein, vectorially oriented within a reconstituted phospholipid bilayer membrane, as a function of the transmembrane electric potential by time-resolved X-ray and neutron interferometry. The changes in the experimental SLD profiles for both polarizing and depolarizing potentials with respect to zero potential were found to extend over the entire length of the isolated VSD’s profile structure. The characteristics of the changes observed were in qualitative agreement with molecular dynamics simulations of a related membrane system, suggesting an initial interpretation of these changes in terms of the VSD’s atomic-level 3-D structure. PMID:24697545
NASA Astrophysics Data System (ADS)
Omura, Yasuhisa; Mori, Yoshiaki; Sato, Shingo; Mallik, Abhijit
2018-04-01
This paper discusses the role of trap-assisted-tunneling process in controlling the ON- and OFF-state current levels and its impacts on the current-voltage characteristics of a tunnel field-effect transistor. Significant impacts of high-density traps in the source region are observed that are discussed in detail. With regard to recent studies on isoelectronic traps, it has been discovered that deep level density must be minimized to suppress the OFF-state leakage current, as is well known, whereas shallow levels can be utilized to control the ON-state current level. A possible mechanism is discussed based on simulation results.
A new type of single-phase five-level inverter
NASA Astrophysics Data System (ADS)
Xu, Zhi; Li, Shengnan; Qin, Risheng; Zhao, Yanhang
2017-11-01
At present, Neutral Point Clamped (NPC) multilevel inverter is widely applied in new energy field. However, it has some disadvantages including low utilization rate of direct current (DC) voltage source and the unbalance of neutral potential. Therefore, a new single-phase five level inverter is proposed in this paper. It has two stage structure, the former stage is equivalent to three level DC/DC converter, and the back stage uses H bridge to realize inverter. Compared with the original central clamp type inverter, the new five level inverter can improve the utilization of DC voltage, and realize the neutral point potential balance with hysteresis comparator.
Distribution Feeder Modeling for Time-Series Simulation of Voltage Management Strategies: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giraldez Miner, Julieta I; Gotseff, Peter; Nagarajan, Adarsh
This paper presents techniques to create baseline distribution models using a utility feeder from Hawai'ian Electric Company. It describes the software-to-software conversion, steady-state, and time-series validations of a utility feeder model. It also presents a methodology to add secondary low-voltage circuit models to accurately capture the voltage at the customer meter level. This enables preparing models to perform studies that simulate how customer-sited resources integrate into legacy utility distribution system operations.
Role of Copper in the Performance of CdS/CdTe Solar Cells (Poster)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demtsu, S.; Albin, D.; Sites, J.
2006-05-01
The performance of CdS/CdTe solar cells made with evaporated Cu as a primary back contact was studied through current-voltage (JV) at different intensities, quantum efficiency (QE) under light and voltage bias, capacitance-voltage (CV), and drive-level capacitance profiling (DLCP) measurements. The results show that while modest amounts of Cu enhance cell performance, excessive amounts degrade device quality and reduce performance. The analysis is supported with numerical simulations to reproduce and explain some of the experimental results.
Characterization of compounds by time-of-flight measurement utilizing random fast ions
Conzemius, R.J.
1989-04-04
An apparatus is described for characterizing the mass of sample and daughter particles, comprising a source for providing sample ions; a fragmentation region wherein a fraction of the sample ions may fragment to produce daughter ion particles; an electrostatic field region held at a voltage level sufficient to effect ion-neutral separation and ion-ion separation of fragments from the same sample ion and to separate ions of different kinetic energy; a detector system for measuring the relative arrival times of particles; and processing means operatively connected to the detector system to receive and store the relative arrival times and operable to compare the arrival times with times detected at the detector when the electrostatic field region is held at a different voltage level and to thereafter characterize the particles. Sample and daughter particles are characterized with respect to mass and other characteristics by detecting at a particle detector the relative time of arrival for fragments of a sample ion at two different electrostatic voltage levels. The two sets of particle arrival times are used in conjunction with the known altered voltage levels to mathematically characterize the sample and daughter fragments. In an alternative embodiment the present invention may be used as a detector for a conventional mass spectrometer. In this embodiment, conventional mass spectrometry analysis is enhanced due to further mass resolving of the detected ions. 8 figs.
Characterization of compounds by time-of-flight measurement utilizing random fast ions
Conzemius, Robert J.
1989-01-01
An apparatus for characterizing the mass of sample and daughter particles, comprising a source for providing sample ions; a fragmentation region wherein a fraction of the sample ions may fragment to produce daughter ion particles; an electrostatic field region held at a voltage level sufficient to effect ion-neutral separation and ion-ion separation of fragments from the same sample ion and to separate ions of different kinetic energy; a detector system for measuring the relative arrival times of particles; and processing means operatively connected to the detector system to receive and store the relative arrival times and operable to compare the arrival times with times detected at the detector when the electrostatic field region is held at a different voltage level and to thereafter characterize the particles. Sample and daughter particles are characterized with respect to mass and other characteristics by detecting at a particle detector the relative time of arrival for fragments of a sample ion at two different electrostatic voltage levels. The two sets of particle arrival times are used in conjunction with the known altered voltage levels to mathematically characterize the sample and daughter fragments. In an alternative embodiment the present invention may be used as a detector for a conventional mass spectrometer. In this embodiment, conventional mass spectrometry analysis is enhanced due to further mass resolving of the detected ions.
NASA Astrophysics Data System (ADS)
Kim, Sungjun; Park, Byung-Gook
2017-01-01
In this letter, we compare three different types of reset switching behavior in a bipolar resistive random-access memory (RRAM) system that is housed in a Ni/Si3N4/Si structure. The abrupt, step-like gradual and continuous gradual reset transitions are largely determined by the low-resistance state (LRS). For abrupt reset switching, the large conducting path shows ohmic behavior or has a weak nonlinear current-voltage (I-V) characteristics in the LRS. For gradual switching, including both the step-like and continuous reset types, trap-assisted direct tunneling is dominant in the low-voltage regime, while trap-assisted Fowler-Nordheim tunneling is dominant in the high-voltage regime, thus causing nonlinear I-V characteristics. More importantly, we evaluate the multi-level capabilities of the two different gradual switching types, including both step-like and continuous reset behavior, using identical and incremental voltage conditions. Finer control of the conductance level with good uniformity is achieved in continuous gradual reset switching when compared to that in step-like gradual reset switching. For continuous reset switching, a single conducting path, which initially has a tunneling gap, gradually responds to pulses with even and identical amplitudes, while for step-like reset switching, the multiple conducting paths only respond to incremental pulses to obtain effective multi-level states.
Influence of Ambient Humidity on the Voltage Response of Ionic Polymer-Metal Composite Sensor.
Zhu, Zicai; Horiuchi, Tetsuya; Kruusamäe, Karl; Chang, Longfei; Asaka, Kinji
2016-03-31
Electrical potential based on ion migration exists not only in natural systems but also in ionic polymer materials. In order to investigate the influence of ambient humidity on voltage response, classical Au-Nafion IPMC was chosen as the reference sample. Voltage response under a bending deformation was measured in two ways: first, continuous measurement of voltage response in the process of absorption and desorption of water to study the tendency of voltage variation at all water states; second, measurements at multiple fixed ambient humidity levels to characterize the process of voltage response quantitatively. Ambient humidity influences the voltage response mainly by varying water content in ionic polymer. Under a step bending, the amplitude of initial voltage peak first increases and then decreases as the ambient humidity and the inherent water content decrease. This tendency is explained semiquantitatively by mass storage capacity related to the stretchable state of the Nafion polymer network. Following the initial peak, the voltage shows a slow decay to a steady state, which is first characterized in this paper. The relative voltage decay during the steady state always decreases as the ambient humidity is lowered. It is ascribed to progressive increase of the ratio between the water molecules in the cation hydration shell to the free water. Under sinusoidal mechanical bending excitation in the range of 0.1-10 Hz, the voltage magnitude increases with frequency at high ambient humidity but decreases with frequency at low ambient humidity. The relationship is mainly controlled by the voltage decay effect and the response speed.
NASA Technical Reports Server (NTRS)
Adell, Philippe C.; Mojarradi, Mohammad; DelCastillo, Linda Y.; Vo, Tuan A.
2011-01-01
A paper discusses the successful development of a miniaturized radiation hardened high-voltage switching module operating at 2.5 kV suitable for space application. The high-voltage architecture was designed, fabricated, and tested using a commercial process that uses a unique combination of 0.25 micrometer CMOS (complementary metal oxide semiconductor) transistors and high-voltage lateral DMOS (diffusion metal oxide semiconductor) device with high breakdown voltage (greater than 650 V). The high-voltage requirements are achieved by stacking a number of DMOS devices within one module, while two modules can be placed in series to achieve higher voltages. Besides the high-voltage requirements, a second generation prototype is currently being developed to provide improved switching capabilities (rise time and fall time for full range of target voltages and currents), the ability to scale the output voltage to a desired value with good accuracy (few percent) up to 10 kV, to cover a wide range of high-voltage applications. In addition, to ensure miniaturization, long life, and high reliability, the assemblies will require intensive high-voltage electrostatic modeling (optimized E-field distribution throughout the module) to complete the proposed packaging approach and test the applicability of using advanced materials in a space-like environment (temperature and pressure) to help prevent potential arcing and corona due to high field regions. Finally, a single-event effect evaluation would have to be performed and single-event mitigation methods implemented at the design and system level or developed to ensure complete radiation hardness of the module.
An inherent curvature-compensated voltage reference using non-linearity of gate coupling coefficient
NASA Astrophysics Data System (ADS)
Hande, Vinayak; Shojaei Baghini, Maryam
2015-08-01
A novel current-mode voltage reference circuit which is capable of generating sub-1 V output voltage is presented. The proposed architecture exhibits the inherent curvature compensation ability. The curvature compensation is achieved by utilizing the non-linear behavior of gate coupling coefficient to compensate non-linear temperature dependence of base-emitter voltage. We have also utilized the developments in CMOS process to reduce power and area consumption. The proposed voltage reference is analyzed theoretically and compared with other existing methods. The circuit is designed and simulated in 180 nm mixed-mode CMOS UMC technology which gives a reference level of 246 mV. The minimum required supply voltage is 1 V with maximum current drawn of 9.24 μA. A temperature coefficient of 9 ppm/°C is achieved over -25 to 125 °C temperature range. The reference voltage varies by ±11 mV across process corners. The reference circuit shows the line sensitivity of 0.9 mV/V with area consumption of 100 × 110 μm2
Voltage-dependent formation of gramicidin channels in lipid bilayers.
Sandblom, J; Galvanovskis, J; Jilderos, B
2001-01-01
The formation kinetics of gramicidin A channels in lipid bilayer membranes has been characterized as a function of voltage for different solution conditions and membrane composition. The frequency of channel events was measured during the application of voltage ramps and counted in given intervals, a procedure that eliminated the effects of drift in gramicidin concentration. The formation rate was found to increase strongly with voltages up to approximately 50 mV and then to level off slightly. The shape of the voltage dependence was independent of lipid solvent and ramp speed but differed for different ions and different solution concentrations. This suggested an ion occupancy effect on the formation rate that was further supported by the fact that the minimum of the formation rate was shifted toward the equilibrium potential in asymmetric solution concentrations. The effects are explained in terms of a model that contains two contributions to the voltage dependence, a voltage-dependent ion binding to the monomers and a polarization of monomers by the applied electric field and by the occupied ions. The theory is found to give a good fit to experimental data. PMID:11463628
NASA Astrophysics Data System (ADS)
Pitsevich, G.; Doroshenko, I.; Malevich, A..; Shalamberidze, E.; Sapeshko, V.; Pogorelov, V.; Pettersson, L. G. M.
2017-02-01
Using two sets of effective rotational constants for the ground (000) and the excited bending (010) vibrational states the calculation of frequencies and intensities of vibration-rotational transitions for J″ = 0 - 2; and J‧ = 0 - 3; was carried out in frame of the model of a rigid asymmetric top for temperatures from 0 to 40 K. The calculation of the intensities of vibration-rotational absorption bands of H2O in an Ar matrix was carried out both for thermodynamic equilibrium and for the case of non-equilibrium population of para- and ortho-states. For the analysis of possible interaction of vibration-rotational and translational motions of a water molecule in an Ar matrix by 3D Schrödinger equation solving using discrete variable representation (DVR) method, calculations of translational frequencies of H2O in a cage formed after one argon atom deleting were carried out. The results of theoretical calculations were compared to experimental data taken from literature.
Continuation of surge life of transient voltage suppressor
NASA Technical Reports Server (NTRS)
Clark, O. M.
1977-01-01
Efforts expended in testing, analyzing and the development of a meaningful definition of the mean number of peak pulses before failure (mp2bf) levels of a family of transient voltage suppressor devices were documented. Tests were done to determine the ability of the transient suppressor to effectively and reliably protect against severe short term, millisecond range, and transient voltages of the types resulting from inductive load switching and induced lightning. Existing pulse testing instrumentation was utilized, interfaced to an automatic sequencing test rack accommodating up to 50 devices. Tests were performed in step stress increments of 25% beginning at 25% and extending thru 100% rated I(pp) for each voltage category. The four voltage types test were the 6.8V, 33V, 91V, and 190V. Engineering efforts addressed the problem of improving the reliability of the 190V types.
RESONANT CAVITY EXCITATION SYSTEM
Baker, W.R.; Kerns, Q.A.; Riedel, J.
1959-01-13
An apparatus is presented for exciting a cavity resonator with a minimum of difficulty and, more specifically describes a sub-exciter and an amplifier type pre-exciter for the high-frequency cxcitation of large cavities. Instead of applying full voltage to the main oscillator, a sub-excitation voltage is initially used to establish a base level of oscillation in the cavity. A portion of the cavity encrgy is coupled to the input of the pre-exciter where it is amplified and fed back into the cavity when the pre-exciter is energized. After the voltage in the cavity resonator has reached maximum value under excitation by the pre-exciter, full voltage is applied to the oscillator and the pre-exciter is tunned off. The cavity is then excited to the maximum high voltage value of radio frequency by the oscillator.
Method for reducing fuel cell output voltage to permit low power operation
Reiser, Carl A.; Landau, Michael B.
1980-01-01
Fuel cell performance is degraded by recycling a portion of the cathode exhaust through the cells and, if necessary, also reducing the total air flow to the cells for the purpose of permitting operation below a power level which would otherwise result in excessive voltage.
NREL Collaboration Breaks 1-Volt Barrier in CdTe Solar Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
2016-05-01
NREL scientists have worked with Washington State University and the University of Tennessee to improve the maximum voltage available from CdTe solar cells. Changes in dopants, stoichiometry, interface design, and defect chemistry improved the CdTe conductivity and carrier lifetime by orders of magnitude, thus enabling CdTe solar cells with open-circuit voltages exceeding 1 volt for the first time. Values of current density and fill factor for CdTe solar cells are already at high levels, but sub-par voltages has been a barrier to improved efficiencies. With voltages pushed beyond 1 volt, CdTe cells have a path to produce electricity at costsmore » less than fossil fuels.« less
An earth-isolated optically coupled wideband high voltage probe powered by ambient light.
Zhai, Xiang; Bellan, Paul M
2012-10-01
An earth-isolated optically-coupled wideband high voltage probe has been developed for pulsed power applications. The probe uses a capacitive voltage divider coupled to a fast light-emitting diode that converts high voltage into an amplitude-modulated optical signal, which is then conveyed to a receiver via an optical fiber. A solar cell array, powered by ambient laboratory lighting, charges a capacitor that, when triggered, acts as a short-duration power supply for an on-board amplifier in the probe. The entire system has a noise level ≤0.03 kV, a DC-5 MHz bandwidth, and a measurement range from -6 to 2 kV; this range can be conveniently adjusted.
Special features of large-size resistors for high-voltage pulsed installations
NASA Astrophysics Data System (ADS)
Minakova, N. N.; Ushakov, V. Ya.
2017-12-01
Many structural materials in pulsed power engineering operate under extreme conditions. For example, in high-voltage electrophysical installations among which there are multistage high-voltage pulse generators (HVPG), rigid requirements are imposed on characteristics of solid-state resistors that are more promising in comparison with widely used liquid resistors. Materials of such resistors shall be able to withstand strong electric fields, operate at elevated temperatures, in transformer oil, etc. Effective charge of high-voltage capacitors distributed over the HVPG steps (levels) requires uniform voltage distribution along the steps of the installation that can be obtained using large-size resistors. For such applications, polymer composite materials are considered rather promising. They can work in transformer oil and have small mass in comparison with bulky resistors on inorganic basis. This allows technical solutions already developed and implemented in HVPG with liquid resistors to be employed. This paper is devoted to the solution of some tasks related to the application of filled polymers in high-voltage engineering.
Song, Chong-Lin; Bin, Feng; Tao, Ze-Min; Li, Fang-Cheng; Huang, Qi-Fei
2009-07-15
The main target of this work is to characterize the abatements of particulate matter (PM), hydrocarbons (HC) and nitrogen oxides (NO(x)) from an actual diesel exhaust using dielectric barrier discharge technology (DBD). The effects of several parameters, such as peak voltage, frequency and engine load, on the contaminant removals have been investigated intensively. The present study shows that for a given frequency, the removals of PM and HC are enhanced with the increase of peak voltage and level off at higher voltage, while in the range of higher voltages a decline of NO(x) removal efficiency is observed. For a given voltage, the maximums of specific energy density (SED) and removal efficiency are attained at resonance point. The increase of peak voltage will result in a significant decrease of energy utilization efficiency of DBD at most engine loads. Alkanes in soluble organic fraction (SOF) are more readily subjected to removals than polycyclic aromatic hydrocarbons (PAHs).
How do voltage-gated sodium channels enhance migration and invasiveness in cancer cells?
Besson, Pierre; Driffort, Virginie; Bon, Émeline; Gradek, Frédéric; Chevalier, Stéphan; Roger, Sébastien
2015-10-01
Voltage-gated sodium channels are abnormally expressed in tumors, often as neonatal isoforms, while they are not expressed, or only at a low level, in the matching normal tissue. The level of their expression and their activity is related to the aggressiveness of the disease and to the formation of metastases. A vast knowledge on the regulation of their expression and functioning has been accumulated in normal excitable cells. This helped understand their regulation in cancer cells. However, how voltage-gated sodium channels impose a pro-metastatic behavior to cancer cells is much less documented. This aspect will be addressed in the review. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erdman, W.; Behnke, M.
2005-11-01
Kilowatt ratings of modern wind turbines have progressed rapidly from 50 kW to 1,800 kW over the past 25 years, with 3.0- to 7.5-MW turbines expected in the next 5 years. The premise of this study is simple: The rapid growth of wind turbine power ratings and the corresponding growth in turbine electrical generation systems and associated controls are quickly making low-voltage (LV) electrical design approaches cost-ineffective. This report provides design detail and compares the cost of energy (COE) between commercial LV-class wind power machines and emerging medium-voltage (MV)-class multi-megawatt wind technology. The key finding is that a 2.5% reductionmore » in the COE can be achieved by moving from LV to MV systems. This is a conservative estimate, with a 3% to 3.5% reduction believed to be attainable once purchase orders to support a 250-turbine/year production level are placed. This evaluation considers capital costs as well as installation, maintenance, and training requirements for wind turbine maintenance personnel. Subsystems investigated include the generator, pendant cables, variable-speed converter, and padmount transformer with switchgear. Both current-source and voltage-source converter/inverter MV topologies are compared against their low-voltage, voltage-source counterparts at the 3.0-, 5.0-, and 7.5-MW levels.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoshii, Kazutomo; Llopis, Pablo; Zhang, Kaicheng
As CMOS scaling nears its end, parameter variations (process, temperature and voltage) are becoming a major concern. To overcome parameter variations and provide stability, modern processors are becoming dynamic, opportunistically adjusting voltage and frequency based on thermal and energy constraints, which negatively impacts traditional bulk-synchronous parallelism-minded hardware and software designs. As node-level architecture is growing in complexity, implementing variation control mechanisms only with hardware can be a challenging task. In this paper we investigate a software strategy to manage hardwareinduced variations, leveraging low-level monitoring/controlling mechanisms.
Ping-pong auto-zero amplifier with glitch reduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larson, Mark R
A ping-pong amplifier with reduced glitching is described. The ping-pong amplifier includes a nulling amplifier coupled to a switching network. The switching network is used to auto-zero a ping amplifier within a ping-pong amplifier. The nulling amplifier drives the output of a ping amplifier to a proper output voltage level during auto-zeroing of the ping amplifier. By being at a proper output voltage level, glitches associated with transitioning between a ping amplifier and a pong amplifier are reduced or eliminated.
Design and Implementation of nine level multilevel Inverter
NASA Astrophysics Data System (ADS)
Dhineshkumar, K.; Subramani, C.
2018-04-01
In this paper the solar based boost converter integrated Nine level multilevel inverter presented. It uses 7 switches to produce nine level output stepped waveform. The aim of the work to produce 9 level wave form using solar and boost converter. The conventional inverter has multiple sources and has 16 switches are required and also more number of voltage sources required. The proposed inverter required single solar panel and reduced number of switches and integrated boost converter which increase the input voltage of the inverter. The proposed inverter simulated and compared with R load using Mat lab and prototype model experimentally verified. The proposed inverter can be used in n number of solar applications.
A Study of 4-level DC-DC Boost Inverter with Passive Component Reduction Consideration
NASA Astrophysics Data System (ADS)
Kasiran, A. N.; Ponniran, A.; Harimon, M. A.; Hamzah, H. H.
2018-04-01
This study is to analyze design principles of boost inductor and capacitor used in the 4-level DC-DC boost converter to realize size reduction of passive component referring to their attributes. The important feature of this circuit is that most of the boost-up energy is transferred from the capacitor-clamped to the output side which the small inductance can be used at the input side. The inductance of the boost inductor is designed by referring the inductor current ripple. On the other hand, the capacitance of the capacitor-clamped is designed by considering voltage stress on semiconductor devices and also the used switching frequency. Besides that, according to the design specifications, the required inductance in 4-level DC-DC boost converter is decreased compared to a conventional conventional DC-DC boost converter. Meanwhile, voltage stress on semiconductor device is depending on the maximum voltage ripple of the capacitor-clamped. A 50 W 4-level DC-DC boost converter prototype has been constructed. The results show that the inductor current ripple was 1.15 A when the inductors, 1 mH and 0.11 mH were used in the conventional and 4-level DC-DC boost converters, respectively. Thus, based on the experimental results, it shows that the reduction of passive components by referring to their attributes in 4-level DC-DC boost converter is achieved. Moreover, the decreasing of voltage stress on the semiconductor devices is an advantage for the selection of low ON-resistance of the devices which will contribute to the reduction of the semiconductor conduction loss. The integration result of boost converter and H-bridge inverter is also shown.
NASA Astrophysics Data System (ADS)
Park, Jae-Hyoung; Lee, Hee-Chul; Park, Yong-Hee; Kim, Yong-Dae; Ji, Chang-Hyeon; Bu, Jonguk; Nam, Hyo-Jin
2006-11-01
In this paper, a fully wafer-level packaged RF MEMS switch has been demonstrated, which has low operation voltage, using a piezoelectric actuator. The piezoelectric actuator was designed to operate at low actuation voltage for application to advanced mobile handsets. The dc contact type RF switch was packaged using the wafer-level bonding process. The CPW transmission lines and piezoelectric actuators have been fabricated on separate wafers and assembled together by the wafer-level eutectic bonding process. A gold and tin composite was used for eutectic bonding at a low temperature of 300 °C. Via holes interconnecting the electrical contact pads through the wafer were filled completely with electroplated copper. The fully wafer-level packaged RF MEMS switch showed an insertion loss of 0.63 dB and an isolation of 26.4 dB at 5 GHz. The actuation voltage of the switch was 5 V. The resonant frequency of the piezoelectric actuator was 38.4 kHz and the spring constant of the actuator was calculated to be 9.6 N m-1. The size of the packaged SPST (single-pole single-through) switch was 1.2 mm × 1.2 mm including the packaging sealing rim. The effect of the proposed package structure on the RF performance was characterized with a device having CPW through lines and vertical feed lines excluding the RF switches. The measured packaging loss was 0.2 dB and the return loss was 33.6 dB at 5 GHz.
Liquid Nitrogen as Fast High Voltage Switching Medium
NASA Astrophysics Data System (ADS)
Dickens, J.; Neuber, A.; Haustein, M.; Krile, J.; Krompholz, H.
2002-12-01
Compact pulsed power systems require new switching technologies. For high voltages, liquid nitrogen seems to be a suitable switching medium, with high hold-off voltage, low dielectric constant, and no need for pressurized systems as in high pressure gas switches. The discharge behavior in liquid nitrogen, such as breakdown voltages, formative times, current rise as function of voltage, recovery, etc. are virtually unknown, however. The phenomenology of breakdown in liquid nitrogen is investigated with high speed (temporal resolution < 1 ns) electrical and optical diagnostics, in a coaxial system with 50-Ohm impedance. Discharge current and voltage are determined with transmission line type current sensors and capacitive voltage dividers. The discharge luminosity is measured with photomultiplier tubes. Preliminary results of self-breakdown investigations (gap 1 mm, breakdown voltage 44 kV, non-boiling supercooled nitrogen) show a fast (2 ns) transition from an unknown current level to several mA, a long-duration (100 ns) phase with constant current superimposed by ns-spikes, and a final fast transition to the impedance limited current during several nanoseconds. The optical measurements will be expanded toward spectroscopy and high speed photography with the aim of clarifying the overall breakdown mechanisms, including electronic initiation, bubble formation, bubble dynamics, and their role in breakdown, for different electrode geometries (different macroscopic field enhancements).
Macro Fiber Piezocomposite Actuator Poling Study
NASA Technical Reports Server (NTRS)
Werlink, Rudy J.; Bryant, Robert G.; Manos, Dennis
2002-01-01
The performance and advantages of Piezocomposite Actuators are to provide a low cost, in-situ actuator/sensor that is flexible, low profile and high strain per volt performance in the same plane of poled voltage. This paper extends reported data for the performance of these Macrofiber Composite (MFC) Actuators to include 4 progressively narrower Intedigitized electrode configurations with several line widths and spacing ratios. Data is reported for max free strain, average strain per applied volt, poling (alignment of the electric dipoles of the PZT ceramic) voltage vs. strain and capacitance, time to poling voltage 95% saturation. The output strain per volt progressively increases as electrode spacing decreases, with saturation occurring at lower poling voltages. The narrowest spacing ratio becomes prone to voltage breakdown or short circuits limiting the spacing width with current fabrication methods. The capacitance generally increases with increasing poling voltage level but has high sensitivity to factors such as temperature, moisture and time from poling which limit its usefulness as a simple indicator. The total time of applied poling voltage to saturate or fully line up the dipoles in the piezoceramic was generally on the order of 5-20 seconds. Less sensitivity to poling due to the applied rate of voltage increase over a 25 to 500 volt/second rate range was observed.
Hierarchical Control Scheme for Improving Transient Voltage Recovery of a DFIG-Based WPP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jinho; Muljadi, Eduard; Kang, Yong Cheol
Modern grid codes require that wind power plants (WPPs) inject reactive power according to the voltage dip at a point of interconnection (POI). This requirement helps to support a POI voltage during a fault. However, if a fault is cleared, the POI and wind turbine generator (WTG) voltages are likely to exceed acceptable levels unless the WPP reduces the injected reactive power quickly. This might deteriorate the stability of a grid by allowing the disconnection of WTGs to avoid any damage. This paper proposes a hierarchical control scheme of a doubly-fed induction generator (DFIG)-based WPP. The proposed scheme aims tomore » improve the reactive power injecting capability during the fault and suppress the overvoltage after the fault clearance. To achieve the former, an adaptive reactive power-to-voltage scheme is implemented in each DFIG controller so that a DFIG with a larger reactive power capability will inject more reactive power. To achieve the latter, a washout filter is used to capture a high frequency component contained in the WPP voltage, which is used to remove the accumulated values in the proportional-integral controllers. Test results indicate that the scheme successfully supports the grid voltage during the fault, and recovers WPP voltages without exceeding the limit after the fault clearance.« less
NASA Astrophysics Data System (ADS)
Li, Si-Yu; Liu, Haiwen; Qiao, Jia-Bin; Jiang, Hua; He, Lin
2018-03-01
Negative differential conductance (NDC), characterized by the decreasing current with increasing voltage, has attracted continuous attention for its various novel applications. The NDC typically exists in a certain range of bias voltages for a selected system and controlling the regions of NDC in curves of current versus voltage (I -V ) is experimentally challenging. Here, we demonstrate a magnetic-field-controlled NDC in scanning tunneling spectroscopy of graphene npn junction resonators. The magnetic field not only can switch on and off the NDC, but also can continuously tune the regions of the NDC in the I -V curves. In the graphene npn junction resonators, magnetic fields generate sharp and pronounced Landau-level peaks with the help of the Klein tunneling of massless Dirac fermions. A tip of scanning tunneling microscope induces a relatively shift of the Landau levels in graphene beneath the tip. Tunneling between the misaligned Landau levels results in the magnetic-field-controlled NDC.
Electron bunch structure in energy recovery linac with high-voltage dc photoelectron gun
NASA Astrophysics Data System (ADS)
Saveliev, Y. M.; Jackson, F.; Jones, J. K.; McKenzie, J. W.
2016-09-01
The internal structure of electron bunches generated in an injector line with a dc photoelectron gun is investigated. Experiments were conducted on the ALICE (accelerators and lasers in combined experiments) energy recovery linac at Daresbury Laboratory. At a relatively low dc gun voltage of 230 kV, the bunch normally consisted of two beamlets with different electron energies, as well as transverse and longitudinal characteristics. The beamlets are formed at the head and the tail of the bunch. At a higher gun voltage of 325 kV, the beam substructure is much less pronounced and could be observed only at nonoptimal injector settings. Experiments and computer simulations demonstrated that the bunch structure develops during the initial beam acceleration in the superconducting rf booster cavity and can be alleviated either by increasing the gun voltage to the highest possible level or by controlling the beam acceleration from the gun voltage in the first accelerating structure.
Effect of different methods of pulse width modulation on power losses in an induction motor
NASA Astrophysics Data System (ADS)
Gulyaev, Alexander; Fokin, Dmitrii; Shuharev, Sergey; Ten, Evgenii
2017-10-01
We consider the calculation of modulation power losses in a system “induction motor-inverter” for various pulse width modulation (PWM) methods of the supply voltage. Presented values of modulation power losses are the result of modeling a system “DC link - two-level three-phase voltage inverter - induction motor - load”. In this study the power losses in a system “induction motor - inverter” are computed, as well as losses caused by higher harmonics of PWM supply voltage, followed by definition of active power consumed by the DC link for a specified value mechanical power on the induction motor shaft. Mechanical power was determined by the rotation speed and the torque on the motor shaft in various quasi-sinusoidal supply voltage PWM modes. These calculations reveal the best coefficient of performance (COP) in a system of a variable frequency drive (VFD) with independent voltage inverter controlled by induction motor PWM.
Electrical model of dielectric barrier discharge homogenous and filamentary modes
NASA Astrophysics Data System (ADS)
López-Fernandez, J. A.; Peña-Eguiluz, R.; López-Callejas, R.; Mercado-Cabrera, A.; Valencia-Alvarado, R.; Muñoz-Castro, A.; Rodríguez-Méndez, B. G.
2017-01-01
This work proposes an electrical model that combines homogeneous and filamentary modes of an atmospheric pressure dielectric barrier discharge cell. A voltage controlled electric current source has been utilized to implement the power law equation that represents the homogeneous discharge mode, which starts when the gas breakdown voltage is reached. The filamentary mode implies the emergence of electric current conducting channels (microdischarges), to add this phenomenon an RC circuit commutated by an ideal switch has been proposed. The switch activation occurs at a higher voltage level than the gas breakdown voltage because it is necessary to impose a huge electric field that contributes to the appearance of streamers. The model allows the estimation of several electric parameters inside the reactor that cannot be measured. Also, it is possible to appreciate the modes of the DBD depending on the applied voltage magnitude. Finally, it has been recognized a good agreement between simulation outcomes and experimental results.
Power conditioning unit for photovoltaic power systems
NASA Astrophysics Data System (ADS)
Beghin, G.; Nguyen Phuoc, V. T.
Operational features and components of a power conditioning unit for interconnecting solar cell module powers with a utility grid are outlined. The two-stage unit first modifies the voltage to desired levels on an internal dc link, then inverts the current in 2 power transformers connected to a vector summation control to neutralize harmonic distortion up to the 11th harmonic. The system operates in parallel with the grid with extra inductors to absorb line-to-line voltage and phase differences, and permits peak power use from the PV array. Reactive power is gained internally, and a power system controller monitors voltages, frequencies, and currents. A booster preregulator adjusts the input voltage from the array to provide voltage regulation for the inverter, and can commutate 450 amps. A total harmonic distortion of less than 5 percent is claimed, with a rating of 5 kVA, 50/60 Hz, 3-phase, and 4-wire.
Deflection amplifier for image dissectors
NASA Technical Reports Server (NTRS)
Salomon, P. M.
1977-01-01
Balanced symmetrical y-axis amplifier uses zener-diode level shifting to interface operational amplifiers to high voltage bipolar output stages. Nominal voltage transfer characteristic is 40 differential output volts per input volt; bandwidth, between -3-dB points, is approximately 8 kHz; loop gain is nominally 89 dB with closed loop gain of 26 dB.
NASA Technical Reports Server (NTRS)
Ashpis, David E.; Laun, Matthew C.
2016-01-01
Results of characterization of Dielectric Barrier Discharge (DBD) plasma actuators without external flow are presented. The results include aerodynamic and electric performance of the actuators without external flow for different geometrical parameters, dielectric materials and applied voltage level and wave form.
Voltage-induced ferromagnetic resonance in magnetic tunnel junctions.
Zhu, Jian; Katine, J A; Rowlands, Graham E; Chen, Yu-Jin; Duan, Zheng; Alzate, Juan G; Upadhyaya, Pramey; Langer, Juergen; Amiri, Pedram Khalili; Wang, Kang L; Krivorotov, Ilya N
2012-05-11
We demonstrate excitation of ferromagnetic resonance in CoFeB/MgO/CoFeB magnetic tunnel junctions (MTJs) by the combined action of voltage-controlled magnetic anisotropy (VCMA) and spin transfer torque (ST). Our measurements reveal that GHz-frequency VCMA torque and ST in low-resistance MTJs have similar magnitudes, and thus that both torques are equally important for understanding high-frequency voltage-driven magnetization dynamics in MTJs. As an example, we show that VCMA can increase the sensitivity of an MTJ-based microwave signal detector to the sensitivity level of semiconductor Schottky diodes.
Delemotte, Lucie; Klein, Michael L.; Tarek, Mounir
2012-01-01
Since their discovery in the 1950s, the structure and function of voltage-gated cation channels (VGCC) has been largely understood thanks to results stemming from electrophysiology, pharmacology, spectroscopy, and structural biology. Over the past decade, computational methods such as molecular dynamics (MD) simulations have also contributed, providing molecular level information that can be tested against experimental results, thereby allowing the validation of the models and protocols. Importantly, MD can shed light on elements of VGCC function that cannot be easily accessed through “classical” experiments. Here, we review the results of recent MD simulations addressing key questions that pertain to the function and modulation of the VGCC’s voltage-sensor domain (VSD) highlighting: (1) the movement of the S4-helix basic residues during channel activation, articulating how the electrical driving force acts upon them; (2) the nature of the VSD intermediate states on transitioning between open and closed states of the VGCC; and (3) the molecular level effects on the VSD arising from mutations of specific S4 positively charged residues involved in certain genetic diseases. PMID:22654756
Characterization of Transducers and Resonators under High Drive Levels
NASA Technical Reports Server (NTRS)
Sherrit, Stewart; Bao, X.; Sigel, D. A.; Gradziel, M. J.; Askins, S. A.; Dolgin, B. P.; Bar-Cohen, Y.
2001-01-01
In many applications, piezoelectric transducers are driven at AC voltage levels well beyond the level for which the material was nominally characterized. In this paper we describe an experimental setup that allows for the determination of the main transducer or resonator properties under large AC drive. A sinusoidal voltage from a waveform generator is amplified and applied across the transducer/resonator in series with a known high power resistor. The amplitude of applied voltage and the amplitude and the relative phase of the current through the resistor are monitored on a digital scope. The frequency of the applied signal is swept through resonance and the voltage/current signals are recorded. After corrections for the series resistance and parasitic elements the technique allows for the determination of the complex impedance spectra of the sample as a function of frequency. In addition, access to the current signal allows for the direct investigation of non-linear effects through the application of Fourier transform techniques on the current signal. Our results indicate that care is required when interpreting impedance data at high drive level due to the frequency dependence of the dissipated power. Although the transducer/resonator at a single frequency and after many cycles may reach thermal equilibrium, the spectra as a whole cannot be considered an isothermal measurement due to the temperature change with frequency. Methods to correct for this effect will be discussed. Results determined from resonators of both soft and hard PZT and a ultrasonic horn transducer are presented.
Flash Memory Featuring Low-Voltage Operation by Crystalline ZrTiO4 Charge-Trapping Layer
NASA Astrophysics Data System (ADS)
Shen, Yung-Shao; Chen, Kuen-Yi; Chen, Po-Chun; Chen, Teng-Chuan; Wu, Yung-Hsien
2017-03-01
Crystalline ZrTiO4 (ZTO) in orthorhombic phase with different plasma treatments was explored as the charge-trapping layer for low-voltage operation flash memory. For ZTO without any plasma treatment, even with a high k value of 45.2, it almost cannot store charges due the oxygen vacancies-induced shallow-level traps that make charges easy to tunnel back to Si substrate. With CF4 plasma treatment, charge storage is still not improved even though incorporated F atoms could introduce additional traps since the F atoms disappear during the subsequent thermal annealing. On the contrary, nevertheless the k value degrades to 40.8, N2O plasma-treated ZTO shows promising performance in terms of 5-V hysteresis memory window by ±7-V sweeping voltage, 2.8-V flatband voltage shift by programming at +7 V for 100 μs, negligible memory window degradation with 105 program/erase cycles and 81.8% charge retention after 104 sec at 125 °C. These desirable characteristics are ascribed not only to passivation of oxygen vacancies-related shallow-level traps but to introduction of a large amount of deep-level bulk charge traps which have been proven by confirming thermally excited process as the charge loss mechanism and identifying traps located at energy level beneath ZTO conduction band by 0.84 eV~1.03 eV.
Flash Memory Featuring Low-Voltage Operation by Crystalline ZrTiO4 Charge-Trapping Layer.
Shen, Yung-Shao; Chen, Kuen-Yi; Chen, Po-Chun; Chen, Teng-Chuan; Wu, Yung-Hsien
2017-03-08
Crystalline ZrTiO 4 (ZTO) in orthorhombic phase with different plasma treatments was explored as the charge-trapping layer for low-voltage operation flash memory. For ZTO without any plasma treatment, even with a high k value of 45.2, it almost cannot store charges due the oxygen vacancies-induced shallow-level traps that make charges easy to tunnel back to Si substrate. With CF 4 plasma treatment, charge storage is still not improved even though incorporated F atoms could introduce additional traps since the F atoms disappear during the subsequent thermal annealing. On the contrary, nevertheless the k value degrades to 40.8, N 2 O plasma-treated ZTO shows promising performance in terms of 5-V hysteresis memory window by ±7-V sweeping voltage, 2.8-V flatband voltage shift by programming at +7 V for 100 μs, negligible memory window degradation with 10 5 program/erase cycles and 81.8% charge retention after 10 4 sec at 125 °C. These desirable characteristics are ascribed not only to passivation of oxygen vacancies-related shallow-level traps but to introduction of a large amount of deep-level bulk charge traps which have been proven by confirming thermally excited process as the charge loss mechanism and identifying traps located at energy level beneath ZTO conduction band by 0.84 eV~1.03 eV.
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, M. P.; Kaplar, R. J.; Dickerson, J. R.
Electrical performance and characterization of deep levels in vertical GaN P-i-N diodes grown on low threading dislocation density (~10 4 –10 6 cm –2) bulk GaN substrates are investigated. The lightly doped n drift region of these devices is observed to be highly compensated by several prominent deep levels detected using deep level optical spectroscopy at E c-2.13, 2.92, and 3.2 eV. A combination of steady-state photocapacitance and lighted capacitance-voltage profiling indicates the concentrations of these deep levels to be N t = 3 × 10 12, 2 × 10 15, and 5 × 10 14 cm –3, respectively. Themore » E c-2.92 eV level is observed to be the primary compensating defect in as-grown n-type metal-organic chemical vapor deposition GaN, indicating this level acts as a limiting factor for achieving controllably low doping. The device blocking voltage should increase if compensating defects reduce the free carrier concentration of the n drift region. Understanding the incorporation of as-grown and native defects in thick n-GaN is essential for enabling large V BD in the next-generation wide-bandgap power semiconductor devices. Furthermore, controlling the as-grown defects induced by epitaxial growth conditions is critical to achieve blocking voltage capability above 5 kV.« less
Mutoh, Hiroki; Mishina, Yukiko; Gallero-Salas, Yasir; Knöpfel, Thomas
2015-01-01
Traditional small molecule voltage sensitive dye indicators have been a powerful tool for monitoring large scale dynamics of neuronal activities but have several limitations including the lack of cell class specific targeting, invasiveness and difficulties in conducting longitudinal studies. Recent advances in the development of genetically-encoded voltage indicators have successfully overcome these limitations. Genetically-encoded voltage indicators (GEVIs) provide sufficient sensitivity to map cortical representations of sensory information and spontaneous network activities across cortical areas and different brain states. In this study, we directly compared the performance of a prototypic GEVI, VSFP2.3, with that of a widely used small molecule voltage sensitive dye (VSD), RH1691, in terms of their ability to resolve mesoscopic scale cortical population responses. We used three synchronized CCD cameras to simultaneously record the dual emission ratiometric fluorescence signal from VSFP2.3 and RH1691 fluorescence. The results show that VSFP2.3 offers more stable and less invasive recording conditions, while the signal-to-noise level and the response dynamics to sensory inputs are comparable to RH1691 recordings. PMID:25964738
NASA Astrophysics Data System (ADS)
Bokhari, Abdullah
Demarcations between traditional distribution power systems and distributed generation (DG) architectures are increasingly evolving as higher DG penetration is introduced in the system. The concerns in existing electric power systems (EPSs) to accommodate less restrictive interconnection policies while maintaining reliability and performance of power delivery have been the major challenge for DG growth. In this dissertation, the work is aimed to study power quality, energy saving and losses in a low voltage distributed network under various DG penetration cases. Simulation platform suite that includes electric power system, distributed generation and ZIP load models is implemented to determine the impact of DGs on power system steady state performance and the voltage profile of the customers/loads in the network under the voltage reduction events. The investigation designed to test the DG impact on power system starting with one type of DG, then moves on multiple DG types distributed in a random case and realistic/balanced case. The functionality of the proposed DG interconnection is designed to meet the basic requirements imposed by the various interconnection standards, most notably IEEE 1547, public service commission, and local utility regulation. It is found that implementation of DGs on the low voltage secondary network would improve customer's voltage profile, system losses and significantly provide energy savings and economics for utilities. In a network populated with DGs, utility would have a uniform voltage profile at the customers end as the voltage profile becomes more concentrated around targeted voltage level. The study further reinforced the concept that the behavior of DG in distributed network would improve voltage regulation as certain percentage reduction on utility side would ensure uniform percentage reduction seen by all customers and reduce number of voltage violations.
Microchip amplifier for in vitro, in vivo, and automated whole cell patch-clamp recording
Kolb, Ilya; Kodandaramaiah, Suhasa B.; Chubykin, Alexander A.; Yang, Aimei; Bear, Mark F.; Boyden, Edward S.; Forest, Craig R.
2014-01-01
Patch clamping is a gold-standard electrophysiology technique that has the temporal resolution and signal-to-noise ratio capable of reporting single ion channel currents, as well as electrical activity of excitable single cells. Despite its usefulness and decades of development, the amplifiers required for patch clamping are expensive and bulky. This has limited the scalability and throughput of patch clamping for single-ion channel and single-cell analyses. In this work, we have developed a custom patch-clamp amplifier microchip that can be fabricated using standard commercial silicon processes capable of performing both voltage- and current-clamp measurements. A key innovation is the use of nonlinear feedback elements in the voltage-clamp amplifier circuit to convert measured currents into logarithmically encoded voltages, thereby eliminating the need for large high-valued resistors, a factor that has limited previous attempts at integration. Benchtop characterization of the chip shows low levels of current noise [1.1 pA root mean square (rms) over 5 kHz] during voltage-clamp measurements and low levels of voltage noise (8.2 μV rms over 10 kHz) during current-clamp measurements. We demonstrate the ability of the chip to perform both current- and voltage-clamp measurement in vitro in HEK293FT cells and cultured neurons. We also demonstrate its ability to perform in vivo recordings as part of a robotic patch-clamping system. The performance of the patch-clamp amplifier microchip compares favorably with much larger commercial instrumentation, enabling benchtop commoditization, miniaturization, and scalable patch-clamp instrumentation. PMID:25429119
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boudier, J.L.; Jover, E.; Cau, P.
1988-05-01
Alpha-scorpion toxins bind specifically to the voltage-sensitive sodium channel in excitable membranes, and binding is potential-dependent. The radioiodinated toxin II from the scorpion Androctonus australis Hector (alpha ScTx) was used to localize voltage-sensitive sodium channels on the presynaptic side of mouse neuromuscular junctions (NMJ) by autoradiography using both light and electron microscopy. Silver grain localization was analyzed by the cross-fire method. At the light-microscopic level, grain density over NMJ appeared 6-8x higher than over nonjunctional muscle membrane. The specificity of labeling was verified by competition/displacement with an excess of native alpha ScTx. Labeling was also inhibited by incubation in depolarizingmore » conditions, showing its potential-dependence. At the electron-microscopic level, analysis showed that voltage-sensitive sodium channels labeled with alpha ScTx were almost exclusively localized on membranes, as expected. Due to washout after incubation, appreciable numbers of binding sites were not found on the postsynaptic membranes. However, on the presynaptic side, alpha ScTx-labeled voltage-sensitive sodium channels were localized on the membrane of non-myelin-forming Schwann cells covering NMJ. The axonal presynaptic membrane was not labeled. These results show that voltage-sensitive sodium channels are present on glial cells in vivo, as already demonstrated in vitro. It is proposed that these glial channels could be indirectly involved in the ionic homeostasis of the axonal environment.« less
Wireless power charging using point of load controlled high frequency power converters
Miller, John M.; Campbell, Steven L.; Chambon, Paul H.; Seiber, Larry E.; White, Clifford P.
2015-10-13
An apparatus for wirelessly charging a battery of an electric vehicle is provided with a point of load control. The apparatus includes a base unit for generating a direct current (DC) voltage. The base unit is regulated by a power level controller. One or more point of load converters can be connected to the base unit by a conductor, with each point of load converter comprising a control signal generator that transmits a signal to the power level controller. The output power level of the DC voltage provided by the base unit is controlled by power level controller such that the power level is sufficient to power all active load converters when commanded to do so by any of the active controllers, without generating excessive power that may be otherwise wasted.
NASA Technical Reports Server (NTRS)
Raynard, A. E.; Forbes, F. E.
1980-01-01
The two electric vehicle propulsion systems that best met cost and performance goals were examined to assess the effect of battery pack voltage on system performance and cost. A voltage range of 54 to 540 V was considered for a typical battery pack capacity of 24 k W-hr. The highest battery specific energy (W-hr/kg) and the lowest cost ($/kW-hr) were obtained at the minimum voltage level. The flywheel system traction motor is a dc, mechanically commutated with shunt field control, and due to the flywheel the traction motor and the battery are not subject to extreme peaks of power demand. The basic system uses a permanent-magnet motor with electronic commutation supplied by an ac power control unit. In both systems battery cost were the major factor in system voltage selection, and a battery pack with the minimum voltage of 54 V produced the lowest life-cycle cost. The minimum life-cycle cost for the basic system with lead-acid batteries was $0.057/km and for the flywheel system was $0.037/km.
Reconfigurable, Bi-Directional Flexfet Level Shifter for Low-Power, Rad-Hard Integration
NASA Technical Reports Server (NTRS)
DeGregorio, Kelly; Wilson, Dale G.
2009-01-01
Two prototype Reconfigurable, Bi-directional Flexfet Level Shifters (ReBiLS) have been developed, where one version is a stand-alone component designed to interface between external low voltage and high voltage, and the other version is an embedded integrated circuit (IC) for interface between internal low-voltage logic and external high-voltage components. Targeting stand-alone and embedded circuits separately allows optimization for these distinct applications. Both ReBiLS designs use the commercially available 180-nm Flex fet Independently Double-Gated (IDG) SOI CMOS (silicon on insulator, complementary metal oxide semiconductor) technology. Embedded ReBiLS circuits were integrated with a Reed-Solomon (RS) encoder using CMOS Ultra-Low-Power Radiation Tolerant (CULPRiT) double-gated digital logic circuits. The scope of the project includes: creation of a new high-voltage process, development of ReBiLS circuit designs, and adjustment of the designs to maximize performance through simulation, layout, and manufacture of prototypes. The primary technical objectives were to develop a high-voltage, thick oxide option for the 180-nm Flexfet process, and to develop a stand-alone ReBiLS IC with two 8-channel I/O busses, 1.8 2.5 I/O on the low-voltage pins, 5.0-V-tolerant input and 3.3-V output I/O on the high-voltage pins, and 100-MHz minimum operation with 10-pF external loads. Another objective was to develop an embedded, rad-hard ReBiLS I/O cell with 0.5-V low-voltage operation for interface with core logic, 5.0-V-tolerant input and 3.3-V output I/O pins, and 100-MHz minimum operation with 10- pF external loads. A third objective was to develop a 0.5- V Reed-Solomon Encoder with embedded ReBilS I/O: Transfer the existing CULPRiT RS encoder from a 0.35-micron bulk-CMOS process to the ASI 180-nm Flexfet, rad-hard SOI Process. 0.5-V low-voltage core logic. 5.0-V-tolerant input and 3.3-V output I/O pins. 100-MHz minimum operation with 10- pF external loads. The stand-alone ReBiLS chip will allow system designers to provide efficient bi-directional communication between components operating at different voltages. Embedding the ReBiLS cells into the proven Reed-Solomon encoder will demonstrate the ability to support new product development in a commercially viable, rad-hard, scalable 180-nm SOI CMOS process.
Origin of the transition voltage in gold-vacuum-gold atomic junctions.
Wu, Kunlin; Bai, Meilin; Sanvito, Stefano; Hou, Shimin
2013-01-18
The origin and the distance dependence of the transition voltage of gold-vacuum-gold junctions are investigated by employing first-principles quantum transport simulations. Our calculations show that atomic protrusions always exist on the electrode surface of gold-vacuum-gold junctions fabricated using the mechanically controllable break junction (MCBJ) method. The transition voltage of these gold-vacuum-gold junctions with atomically sharp electrodes is determined by the local density of states (LDOS) of the apex gold atom on the electrode surface rather than by the vacuum barrier shape. More specifically, the absolute value of the transition voltage roughly equals the rising edge of the LDOS peak contributed by the 6p atomic orbitals of the gold atoms protruding from the electrode surface, whose local Fermi level is shifted downwards when a bias voltage is applied. Since the LDOS of the apex gold atom depends strongly on the exact shape of the electrode, the transition voltage is sensitive to the variation of the atomic configuration of the junction. For asymmetric junctions, the transition voltage may also change significantly depending on the bias polarity. Considering that the occurrence of the transition voltage requires the electrode distance to be larger than a critical value, the interaction between the two electrodes is actually rather weak. Consequently, the LDOS of the apex gold atom is mainly determined by its local atomic configuration and the transition voltage only depends weakly on the electrode distance as observed in the MCBJ experiments.
Voltage-gated calcium flux mediates Escherichia coli mechanosensation.
Bruni, Giancarlo N; Weekley, R Andrew; Dodd, Benjamin J T; Kralj, Joel M
2017-08-29
Electrically excitable cells harness voltage-coupled calcium influx to transmit intracellular signals, typically studied in neurons and cardiomyocytes. Despite intense study in higher organisms, investigations of voltage and calcium signaling in bacteria have lagged due to their small size and a lack of sensitive tools. Only recently were bacteria shown to modulate their membrane potential on the timescale of seconds, and little is known about the downstream effects from this modulation. In this paper, we report on the effects of electrophysiology in individual bacteria. A genetically encoded calcium sensor expressed in Escherichia coli revealed calcium transients in single cells. A fusion sensor that simultaneously reports voltage and calcium indicated that calcium influx is induced by voltage depolarizations, similar to metazoan action potentials. Cytoplasmic calcium levels and transients increased upon mechanical stimulation with a hydrogel, and single cells altered protein concentrations dependent on the mechanical environment. Blocking voltage and calcium flux altered mechanically induced changes in protein concentration, while inducing calcium flux reproduced these changes. Thus, voltage and calcium relay a bacterial sense of touch and alter cellular lifestyle. Although the calcium effectors remain unknown, these data open a host of new questions about E. coli , including the identity of the underlying molecular players, as well as other signals conveyed by voltage and calcium. These data also provide evidence that dynamic voltage and calcium exists as a signaling modality in the oldest domain of life, and therefore studying electrophysiology beyond canonical electrically excitable cells could yield exciting new findings.
Voltage-gated calcium flux mediates Escherichia coli mechanosensation
Weekley, R. Andrew; Dodd, Benjamin J. T.
2017-01-01
Electrically excitable cells harness voltage-coupled calcium influx to transmit intracellular signals, typically studied in neurons and cardiomyocytes. Despite intense study in higher organisms, investigations of voltage and calcium signaling in bacteria have lagged due to their small size and a lack of sensitive tools. Only recently were bacteria shown to modulate their membrane potential on the timescale of seconds, and little is known about the downstream effects from this modulation. In this paper, we report on the effects of electrophysiology in individual bacteria. A genetically encoded calcium sensor expressed in Escherichia coli revealed calcium transients in single cells. A fusion sensor that simultaneously reports voltage and calcium indicated that calcium influx is induced by voltage depolarizations, similar to metazoan action potentials. Cytoplasmic calcium levels and transients increased upon mechanical stimulation with a hydrogel, and single cells altered protein concentrations dependent on the mechanical environment. Blocking voltage and calcium flux altered mechanically induced changes in protein concentration, while inducing calcium flux reproduced these changes. Thus, voltage and calcium relay a bacterial sense of touch and alter cellular lifestyle. Although the calcium effectors remain unknown, these data open a host of new questions about E. coli, including the identity of the underlying molecular players, as well as other signals conveyed by voltage and calcium. These data also provide evidence that dynamic voltage and calcium exists as a signaling modality in the oldest domain of life, and therefore studying electrophysiology beyond canonical electrically excitable cells could yield exciting new findings. PMID:28808010
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, J E; Smith, J T; Mathis, M V
Based on the limited measurements and the attempts to activate the high voltage power supply, the Source Range Monitor which includes NI-AMP-2 is not operating. Since there appears to be an excessive load on the high voltage, it appears that either the detector or cable is defective. However, TDR measurements did not indicate a significant problem with the cable using low level test signals.
1983-12-01
Li/SOCL, cells in- dicate that up to PPM water can be added to the electrolyte without detrimental effects. At water levels ab 100 PPM voltage delay...48 2.3 THE EFFECT OF WATER AND HYDROLYSIS PRODUCTS ON PERFORMANCE ........ 51 2.4 THE...Li/SOCI, Cells with 0, 20 and 100 PPM Water added to the Electrolyte.* ..................................................... 52 51. Voltage Delay for
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-09
... subject vehicles contain parking lamps that exceed the maximum designated candlepower output level... for parking lamps). Due to a programming issue in the electronic control unit, the voltage in the parking lamp circuit is 12.8 volts which is higher than the design voltage specification of 7 volts in the...
59. View of high voltage (4160 volts alternating current) electric ...
59. View of high voltage (4160 volts alternating current) electric load center and motor control center at mezzanine level in transmitter building no. 102. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK
Breakdown Characteristic Analysis of Paper- Oil Insulation under AC and DC Voltage
NASA Astrophysics Data System (ADS)
Anuar, N. F.; Jamail, N. A. M.; Rahman, R. A.; Kamarudin, M. S.
2017-08-01
This paper presents the study of breakdown characteristic of Kraft paper insulated with two different types of insulating fluid, which are Palm oil and Coconut oil. Palm oil and Coconut oil are chosen as the alternative fluid to the transformer oil because it has high potential and environmentally-friendly. The Segezha Kraft papers with various thicknesses (65.5 gsm, 75 gsm, 85gsm, 90 gsm) have been used in this research. High Voltage Direct Current (HVDC), High Voltage Alternating Current (HVAC) and carbon track and severity analysis is conducted to observe the sample of aging Kraft paper. These samples have been immersed using Palm oil and Coconut oil up to 90 days to observe the absorption rate. All samples started to reach saturation level at 70 days of immersion. HVDC and HVAC breakdown experiments have been done after the samples had reached the saturation level based on normal condition, immersed in Palm oil and immersed in Coconut oil. All samples immersed in liquid show different breakdown voltage reading compared to normal condition. The analysis of carbon track and severity on surface has been done using Analytical Scanning Electron Microscope (SEM) Analysis. The results of the experiment show that the sample of Kraft paper immersed in Palm oil was better than Coconut oil immersed sample. Therefore the sample condition was the main factor that determines the value of breakdown voltage test. Introduction
Performance of Li-Ion Cells Under Battery Voltage Charge Control
NASA Technical Reports Server (NTRS)
Rao, Gopalakrishna M.; Vaidyanathan, Hari; Day, John H. (Technical Monitor)
2001-01-01
A study consisting of electrochemical characterization and Low-Earth-Orbit (LEO) cycling of Li-Ion cells from three vendors was initiated in 1999 to determine the cycling performance and to infuse the new technology in the future NASA missions. The 8-cell batteries included in this evaluation are prismatic cells manufactured by Mine Safety Appliances Company (MSA), cylindrical cells manufactured by SAFT and prismatic cells manufactured by Yardney Technical Products, Inc. (YTP). The three batteries were cycle tested in the LEO regime at 40% depth of discharge, and under a charge control technique that consists of battery voltage clamp with a current taper. The initial testing was conducted at 20 C; however, the batteries were cycled also intermittently at low temperatures. YTP 20 Ah cells consisted of mixed-oxide (Co and Ni) positive, graphitic carbon negative, LIPF6 salt mixed with organic carbonate solvents. The battery voltage clamp was 32 V. The low temperature cycling tests started after 4575 cycles at 20 C. The cells were not capable of cycling. at low temperature since the charge acceptance at battery level was poor. There was a cell in the battery that showed too high an end-of-charge (EOC) voltage thereby limiting the ability to charge the rest of the cells in the battery. The battery has completed 6714 cycles. SAFT 12 Ah cells consisted of mixed-oxide (Co and NO positive, graphitic carbon negative, LiPF6 salt mixed with organic carbonate solvents. The battery voltage clamp was for 30.8 V. The low temperature cycling tests started after 4594 cycles at 20 C. A cell that showed low end of discharge (EOD) and EOC voltages and three other cells that showed higher EOC voltages limited the charge acceptance at the selected voltage limit during charge. The cells were capable of cycling at 10 C and 0 C but the charge voltage limit had to be increased to 34.3 V (4.3 V per cell). The low temperature cycling may have induced poor chargeability since the voltage had to be increased to achieve the required charge input. The battery has completed 6226 cycles. MSA 10 Ah cells consisted of Co oxide positive, graphitic carbon negative, LiPF6 salt mixed with organic carbonate solvents. The battery voltage clamp was 30.8 V. The low temperature cycling tests were started after 2182 cycles at 20 C. The cells were capable of cycling at 10 C and 0 C. Like SAFT, the voltage limit on charge had to be increased to 36 V (4.5 V per cell). There was a cell (cell S/N 13) in the battery that showed poor performance features such as low EOD voltage and high EOC voltage. The battery has completed 3441 cycles. A reconditioning procedure that consisted of C15 charge to a taper current of C/100 and C/20 discharge improved the voltage behavior of SAFT and MSA cells with no significant effect on YTP cells. We have demonstrated that the charge operation with VT clamp at battery rather than at cell level is feasible for onboard Li-Ion battery operation.
The effect of segmented anodes on the performance and plume of a Hall thruster
NASA Astrophysics Data System (ADS)
Kieckhafer, Alexander W.
Development of alternative propellants for Hall thruster operation is an active area of research. Xenon is the current propellant of choice for Hall thrusters, but can be costly in large thrusters and for extended test periods. Condensible propellants may offer an alternative to xenon, as they will not require costly active pumping to remove from a test facility, and may be less expensive to purchase. A method has been developed which uses segmented electrodes in the discharge channel of a Hall thruster to divert discharge current to and from the main anode and thus control the anode temperature. By placing a propellant reservoir in the anode, the evaporation rate, and hence, mass flow of propellant can be controlled. Segmented electrodes for thermal control of a Hall thruster represent a unique strategy of thruster design, and thus the performance of the thruster must be measured to determine the effect the electrodes have on the thruster. Furthermore, the source of any changes in thruster performance due to the adjustment of discharge current between the shims and the main anode must be characterized. A Hall thruster was designed and constructed with segmented electrodes. It was then tested at anode voltages between 300 and 400 V and mass flows between 4 and 6 mg/s, as well as 100%, 75%, 50%, 25%, and <5% of the discharge current on the shim electrodes. The level of current on the shims was adjusted by changing the shim voltage. At each operating point, the thruster performance, plume divergence, ion energy, and multiply charged ion fraction were measured. Thruster performance exhibited a small change with the level of discharge current on the shim electrodes. Thrust and specific impulse increased by as much as 6% and 7.7%, respectively, as discharge current was shifted from the main anode to the shims at constant anode voltage. Thruster efficiency did not change. Plume divergence was reduced by approximately 4 degrees of half-angle at high levels of current on the shims and at all combinations of mass flow and anode voltage. The fraction of singly charged xenon in the thruster plume varied between approximately 80% and 95% as the anode voltage and mass flow were changed, but did not show a significant change with shim current. Doubly and triply charged xenon made up the remainder of the ions detected. Ion energy exhibited a mixed behavior. The highest voltage present in the thruster largely dictated the most probable energy; either shim or anode voltage, depending on which was higher. The overall change in most probable ion energy was 20-30 eV, the majority of which took place while the shim voltage was higher than the anode voltage. The thrust, specific impulse, plume divergence, and ion energy all indicate that the thruster is capable of a higher performance output at high levels of discharge current on the shims. The lack of a change in efficiency and fraction of multiply charged ions indicate that the thruster can be operated at any level of current on the shims without detrimental effect, and thus a condensible propellant thruster can control the anode temperature without a decrease in efficiency or a change in the multiply charged ion fraction.
3D CBCT anatomy of the pterygopalatine fossa.
Rusu, Mugurel Constantin; Didilescu, Andreea Cristiana; Jianu, Adelina Maria; Păduraru, Dumitru
2013-03-01
The anatomy of the pterygopalatine fossa keeps a traditional level and is viewed as constant, even though a series of structures neighboring the fossa are known to present individual variations. We aimed to evaluate on 3D volume renderizations the anatomical variables of the pterygopalatine fossa, as related to the variable pneumatization patterns of the bones surrounding the fossa. The study was performed retrospectively on cone beam computed tomography (CBCT) scans of 100 patients. The pterygopalatine fossa was divided into an upper (orbital) and a lower (pterygomaxillary) floor; the medial compartment of the orbital floor lodges the pterygopalatine ganglion. The pneumatization patterns of the pterygopalatine fossa orbital floor walls were variable: (a) the posterior wall pneumatization pattern was determined in 89.5 % by recesses of the sphenoidal sinus related to the maxillary nerve and pterygoid canals; (b) the upper continuation of the pterygopalatine fossa with the orbital apex was narrowed in 79.5 % by ethmoid air cells and/or a maxillary recess of the sphenoidal sinus; (c) according to its pneumatization pattern, the anterior wall of the pterygopalatine fossa was a maxillary (40.5 %), maxillo-ethmoidal (46.5 %), or maxillo-sphenoidal (13 %) wall. The logistic regression models showed that the maxillo-ethmoidal type of pterygopalatine fossa anterior wall was significantly associated with a sphenoidal sinus only expanded above the pterygoid canal and a spheno-ethmoidal upper wall. The pterygopalatine fossa viewed as an intersinus space is related to variable pneumatization patterns which can be accurately identified by CBCT and 3DVR studies, for anatomic and preoperatory purposes.
The Application of Voltage Transformer Simulator in Electrical Test Training
NASA Astrophysics Data System (ADS)
Li, Nan; Zhang, Jun; Chai, Ziqi; Wang, Jingpeng; Yang, Baowei
2018-02-01
The voltage transformer test is an important means to monitor its operating state. The accuracy and reliability of the test data is directly related to the test skill level of the operator. However, the risk of test instruments damage, equipment being tested damage and electric shock in operator is caused by improper operation when training the transformer test. In this paper, a simulation device of voltage transformer is set up, and a simulation model is built for the most common 500kV capacitor voltage transformer (CVT), the simulation model can realize several test items of CVT by combing with teaching guidance platform, simulation instrument, complete set of system software and auxiliary equipment in Changchun. Many successful applications show that the simulation device has good practical value and wide application prospect.
Switching of actin-myosin motors by voltage-induced pH bias in vitro.
Hatori, Kuniyuki; Iwase, Takahiro; Wada, Reito
2016-08-01
ATP-driven motor proteins, which function in cell motility and organelle transport, have potential applications as bio-inspired micro-devices; however, their control remains unsatisfactory. Here, we show rapid-velocity control of actin filaments interacting with myosin motors using voltage applied to Pt electrodes in an in vitro motility system, by which immediate increases and decreases in velocity were induced beside the cathode and anode, respectively. Indicator dye revealed pH changes after voltage application, and alternate voltage switching allowed actin filaments to cyclically alter their velocity in response to these changes. This principle provides a basis for on-demand control of not only motor proteins but also pH-sensitive events at a microscopic level. Copyright © 2016 Elsevier Inc. All rights reserved.
Deep Space One High-Voltage Bus Management
NASA Technical Reports Server (NTRS)
Rachocki, Ken; Nieraeth, Donald
1999-01-01
The design of the High Voltage Power Converter Unit on DS1 allows both the spacecraft avionics and ion propulsion to operate in a stable manner near the PPP of the solar array. This approach relies on a fairly well-defined solar array model to determine the projected PPP. The solar array voltage set-points have to be updated every week to maintain operation near PPP. Stable operation even to the LEFT of the Peak Power Point is achievable so long as you do not change the operating power level of the ion engine. The next step for this technology is to investigate the use of onboard autonomy to determine the optimum SA voltage regulation set-point (i.e. near the PPP); this is for future missions that have one or more ion propulsion subsystems.
NASA Technical Reports Server (NTRS)
Kapoor, V. J.; Valco, G. J.; Skebe, G. G.; Evans, J. C., Jr.
1985-01-01
Integrated circuit technology has been successfully applied to the design and fabrication of 0.5 x 0.5-cm planar multijunction solar-cell chips. Each of these solar cells consisted of six voltage-generating unit cells monolithically connected in series and fabricated on a 75-micron-thick, p-type, single crystal, silicon substrate. A contact photolithic process employing five photomask levels together with a standard microelectronics batch-processing technique were used to construct the solar-cell chip. The open-circuit voltage increased rapidly with increasing illumination up to 5 AM1 suns where it began to saturate at the sum of the individual unit-cell voltages at a maximum of 3.0 V. A short-circuit current density per unit cell of 240 mA/sq cm was observed at 10 AM1 suns.
High voltage pulse ignition of mercury discharge hollow cathodes
NASA Technical Reports Server (NTRS)
Wintucky, E. G.
1973-01-01
A high voltage pulse generated by a capacitor discharge into a step-up transformer has been demonstrated capable of consistently igniting hollow cathode mercury discharges at propellant flows and heater power levels much below those required by conventional cathode starting. Results are presented for 3.2-mm diameter enclosed and open keeper cathodes. Starting characteristics are shown to depend on keeper voltage, mercury flow rate, heater power, keeper orifice size, emissive materials, and electrode to which the pulse is applied. This starting technique has been used to start a cathode over 10,000 times without any degradation of starting capability. The starting reliability, propellant and power savings offered by the high voltage pulse start should favorably impact performance of electron bombardment thrusters in missions requiring many on-off duty cycles.
Hydroelectric voltage generation based on water-filled single-walled carbon nanotubes.
Yuan, Quanzi; Zhao, Ya-Pu
2009-05-13
A DFT/MD mutual iterative method was employed to give insights into the mechanism of voltage generation based on water-filled single-walled carbon nanotubes (SWCNTs). Our calculations showed that a constant voltage difference of several mV would generate between the two ends of a carbon nanotube, due to interactions between the water dipole chains and charge carriers in the tube. Our work validates this structure of a water-filled SWCNT as a promising candidate for a synthetic nanoscale power cell, as well as a practical nanopower harvesting device at the atomic level.
Wide-temperature integrated operational amplifier
NASA Technical Reports Server (NTRS)
Mojarradi, Mohammad (Inventor); Levanas, Greg (Inventor); Chen, Yuan (Inventor); Cozy, Raymond S. (Inventor); Greenwell, Robert (Inventor); Terry, Stephen (Inventor); Blalock, Benjamin J. (Inventor)
2009-01-01
The present invention relates to a reference current circuit. The reference circuit comprises a low-level current bias circuit, a voltage proportional-to-absolute temperature generator for creating a proportional-to-absolute temperature voltage (VPTAT), and a MOSFET-based constant-IC regulator circuit. The MOSFET-based constant-IC regulator circuit includes a constant-IC input and constant-IC output. The constant-IC input is electrically connected with the VPTAT generator such that the voltage proportional-to-absolute temperature is the input into the constant-IC regulator circuit. Thus the constant-IC output maintains the constant-IC ratio across any temperature range.
High voltage pulse ignition of mercury discharge hollow cathodes
NASA Technical Reports Server (NTRS)
Wintucky, E. G.
1973-01-01
A high voltage pulse generated by a capacitor discharge into a step-up transformer has been demonstrated capable of consistently igniting hollow cathode mercury discharges at propellant flows and heater power levels much below those required by conventional cathode starting. Results are presented for 3.2-mm diameter enclosed and open keeper cathodes. Starting characteristics are shown to depend on keeper voltage, mercury flow rate, heater power, keeper orifice size, emissive materials, and electrode to which the pulse is applied. This starting technique has been used to start a cathode over 10,000 times without any degradation of starting capability.
NASA Astrophysics Data System (ADS)
Wang, Hongyue; Lhuillier, Emmanuel; Yu, Qian; Mottaghizadeh, Alireza; Ulysse, Christian; Zimmers, Alexandre; Dubertret, Benoit; Aubin, Herve
2015-03-01
We present a tunnel spectroscopy study of the electronic spectrum of single PbS Quantum Dots (QDs) trapped between nanometer-spaced electrodes, measured at low temperature T=5 K. The carrier filling of the QD can be controlled either by the drain voltage in the shell filling regime or by a gate voltage. In the empty QD, the tunnel spectrum presents the expected signature of the 8x degenerated excited levels. In the drain controlled shell filling regime, the levels degeneracies are lifted by the global electrostatic Coulomb energy of the QD; in the gate controlled shell filling regime, the levels degeneracies are lifted by the intra-Coulomb interactions. In the charged quantum dot, electron-phonons interactions lead to the apparition of Franck-Condon side bands on the single excited levels and possibly Franck Condon blockade at low energy. The sharpening of excited levels at higher gate voltage suggests that the magnitude of electron-phonon interactions is decreased upon increasing the electron filling in the quantum dot. This work was supported by the French ANR Grants 10-BLAN-0409-01, 09-BLAN-0388-01, by the Region Ile-de-France in the framework of DIM Nano-K and by China Scholarship Council.
Field, M.E.; Sullivan, W.H.
A precision liquid level sensor utilizes a balanced bridge, each arm including an air dielectric line. Changes in liquid level along one air dielectric line imbalance the bridge and create a voltage which is directly measurable across the bridge.
Preprototype independent air revitalization subsystem
NASA Technical Reports Server (NTRS)
Schubert, F. H.; Hallick, T. M.; Woods, R. R.
1982-01-01
The performance and maturity of a preprototype, three-person capacity, automatically controlled and monitored, self-contained independent air revitalization subsystem were evaluated. The subsystem maintains the cabin partial pressure of oxygen at 22 kPa (3.2 psia) and that of carbon dioxide at 400 Pa (3 mm Hg) over a wide range of cabin air relative humidity conditions. Consumption of water vapor by the water vapor electrolysis module also provides partial humidity control of the cabin environment. During operation, the average carbon dioxide removal efficiency at baseline conditions remained constant throughout the test at 84%. The average electrochemical depolarized concentrator cell voltage at the end of the parametric/endurance test was 0.41 V, representing a very slowly decreasing average cell voltage. The average water vapor electrolysis cell voltage increased only at a rate of 20 mu/h from the initial level of 1.67 V to the final level of 1.69 V at conclusion of the testing.
Performance analysis of radiation cooled dc transmission lines for high power space systems
NASA Technical Reports Server (NTRS)
Schwarze, G. E.
1985-01-01
As space power levels increase to meet mission objectives and also as the transmission distance between power source and load increases, the mass, volume, power loss, and operating voltage and temperature become important system design considerations. This analysis develops the dependence of the specific mass and percent power loss on hte power and voltage levels, transmission distance, operating temperature and conductor material properties. Only radiation cooling is considered since the transmission line is assumed to operate in a space environment. The results show that the limiting conditions for achieving low specific mass, percent power loss, and volume for a space-type dc transmission line are the permissible transmission voltage and operating temperature. Other means to achieve low specific mass include the judicious choice of conductor materials. The results of this analysis should be immediately applicable to power system trade-off studies including comparisons with ac transmission systems.
Control method for peak power delivery with limited DC-bus voltage
Edwards, John; Xu, Longya; Bhargava, Brij B.
2006-09-05
A method for driving a neutral point-clamped multi-level voltage source inverter supplying a synchronous motor is provided. A DC current is received at a neutral point-clamped multi-level voltage source inverter. The inverter has first, second, and third output nodes. The inverter also has a plurality of switches. A desired speed of a synchronous motor connected to the inverter by the first second and third nodes is received by the inverter. The synchronous motor has a rotor and the speed of the motor is defined by the rotational rate of the rotor. A position of the rotor is sensed, current flowing to the motor out of at least two of the first, second, and third output nodes is sensed, and predetermined switches are automatically activated by the inverter responsive to the sensed rotor position, the sensed current, and the desired speed.
NASA Astrophysics Data System (ADS)
Jung, Yong Chan; Seong, Sejong; Lee, Taehoon; Kim, Seon Yong; Park, In-Sung; Ahn, Jinho
2018-03-01
The anode interface effects on the resistive switching characteristics of Pt/HfO2/Pt resistors are investigated by changing the forming and switching polarity. Resistive switching properties are evaluated and compared with the polarity operation procedures, such as the reset voltage (Vr), set voltage (Vs), and current levels at low and high resistance states. When the same forming and switching voltage polarity are applied to the resistor, their switching parameters are widely distributed. However, the opposite forming and switching voltage polarity procedures enhance the uniformity of the switching parameters. In particular, the Vs distribution is strongly affected by the voltage polarity variation. A model is proposed based on cone-shaped filament formation through the insulator and the cone diameter at the anode interface to explain the improved resistive switching characteristics under opposite polarity operation. The filament cone is thinner near the anode interface during the forming process; hence, the anode is altered by the application of a switching voltage with opposite polarity to the forming voltage polarity and the converted anode interface becomes the thicker part of the cone. The more uniform and stable switching behavior is attributed to control over the formation and rupture of the cone-shaped filaments at their thicker parts.
A Compound Algorithm for Maximum Power Point Tracking Used in Laser Power Beaming
NASA Astrophysics Data System (ADS)
Chen, Cheng; Liu, Qiang; Gao, Shan; Teng, Yun; Cheng, Lin; Yu, Chengtao; Peng, Kai
2018-03-01
With the high voltage intelligent substation developing in a pretty high speed, more and more artificial intelligent techniques have been incorporated into the power devices to meet the automation needs. For the sake of the line maintenance staff’s safety, the high voltage isolating switch draws great attention among the most important power devices because of its capability of connecting and disconnecting the high voltage circuit. However, due to the very high level voltage of the high voltage isolating switch’s working environment, the power supply system of the surveillance devices could suffer from great electromagnetic interference. Laser power beaming exhibits its merits in such situation because it can provide steady power from a distance despite the day or the night. Then the energy conversion efficiency arises as a new concern. To make as much use of the laser power as possible, our work mainly focuses on extracting maximum power from the photovoltaic (PV) panel. In this paper, we proposed a neural network based algorithm which relates both the intrinsic and the extrinsic features of the PV panel to the proportion of the voltage at the maximum power point (MPP) to the open circuit voltage of the PV panel. Simulations and experiments were carried out to verify the validness of our algorithm.
Effect of a longitudinally applied voltage upon the growth of Zea mays seedlings
NASA Technical Reports Server (NTRS)
Desrosiers, M. F.; Bandurski, R. S.
1988-01-01
The electrical parameters that affect young seedling growth were investigated. Voltages ranging from 5 to 40 volts were applied longitudinally along the mesocotyl region of 4-day old Zea mays L. (cv Silver Queen) seedlings for periods of 3 or 4 hours. It was determined that: (a) making the tips of the seedlings electrically positive relative to the base strongly inhibited shoot growth at 5 volts, whereas the reverse polarity had no effect; (b) at higher voltages, making the tip of the seedlings negative caused less growth inhibition than the reverse polarity at each voltage level; (c) the higher the applied voltage the greater the degree of inhibition; and, (d) the more growth inhibition experienced by the plants the poorer, and slower, their recovery. Previous observations of a relationship between the amount of free indole-3-acetic acid in the mesocotyl cortex and the growth rate of the mesocotyl and of gravitropism-induced movement of labeled indole-3-acetic acid from the seed to the shoot lead to the prediction of a voltage-dependent gating of the movement of indole-3-acetic acid from the stele to the cortex. This provided the basis for attempting to alter the growth rate of seedlings by means of an applied voltage.
Effect of a longitudinally applied voltage upon the growth of Zea mays seedlings.
Desrosiers, M F; Bandurski, R S
1988-01-01
The electrical parameters that affect young seedling growth were investigated. Voltages ranging from 5 to 40 volts were applied longitudinally along the mesocotyl region of 4-day old Zea mays L. (cv Silver Queen) seedlings for periods of 3 or 4 hours. It was determined that: (a) making the tips of the seedlings electrically positive relative to the base strongly inhibited shoot growth at 5 volts, whereas the reverse polarity had no effect; (b) at higher voltages, making the tip of the seedlings negative caused less growth inhibition than the reverse polarity at each voltage level; (c) the higher the applied voltage the greater the degree of inhibition; and, (d) the more growth inhibition experienced by the plants the poorer, and slower, their recovery. Previous observations of a relationship between the amount of free indole-3-acetic acid in the mesocotyl cortex and the growth rate of the mesocotyl and of gravitropism-induced movement of labeled indole-3-acetic acid from the seed to the shoot lead to the prediction of a voltage-dependent gating of the movement of indole-3-acetic acid from the stele to the cortex. This provided the basis for attempting to alter the growth rate of seedlings by means of an applied voltage.
Effect of a Longitudinally Applied Voltage Upon the Growth of Zea mays Seedlings 1
Desrosiers, Mark F.; Bandurski, Robert S.
1988-01-01
The electrical parameters that affect young seedling growth were investigated. Voltages ranging from 5 to 40 volts were applied longitudinally along the mesocotyl region of 4-day old Zea mays L. (cv Silver Queen) seedlings for periods of 3 or 4 hours. It was determined that: (a) making the tips of the seedlings electrically positive relative to the base strongly inhibited shoot growth at 5 volts, whereas the reverse polarity had no effect; (b) at higher voltages, making the tip of the seedlings negative caused less growth inhibition than the reverse polarity at each voltage level; (c) the higher the applied voltage the greater the degree of inhibition; and, (d) the more growth inhibition experienced by the plants the poorer, and slower, their recovery. Previous observations of a relationship between the amount of free indole-3-acetic acid in the mesocotyl cortex and the growth rate of the mesocotyl and of gravitropism-induced movement of labeled indole-3-acetic acid from the seed to the shoot lead to the prediction of a voltage-dependent gating of the movement of indole-3-acetic acid from the stele to the cortex. This provided the basis for attempting to alter the growth rate of seedlings by means of an applied voltage. Images Fig. 1 PMID:11537877
Fault tree analysis: NiH2 aerospace cells for LEO mission
NASA Technical Reports Server (NTRS)
Klein, Glenn C.; Rash, Donald E., Jr.
1992-01-01
The Fault Tree Analysis (FTA) is one of several reliability analyses or assessments applied to battery cells to be utilized in typical Electric Power Subsystems for spacecraft in low Earth orbit missions. FTA is generally the process of reviewing and analytically examining a system or equipment in such a way as to emphasize the lower level fault occurrences which directly or indirectly contribute to the major fault or top level event. This qualitative FTA addresses the potential of occurrence for five specific top level events: hydrogen leakage through either discrete leakage paths or through pressure vessel rupture; and four distinct modes of performance degradation - high charge voltage, suppressed discharge voltage, loss of capacity, and high pressure.
Avionics electromagnetic interference immunity and environment
NASA Technical Reports Server (NTRS)
Clarke, C. A.
1986-01-01
Aircraft electromagnetic spectrum and radio frequency (RF) field strengths are charted, profiling the higher levels of electromagnetic voltages encountered by the commercial aircraft wiring. Selected military, urban, and rural electromagnetic field levels are plotted and provide a comparison of radiation amplitudes. Low frequency magnetic fields and electric fields from 400 H(Z) power systems are charted versus frequency and wire separation to indicate induced voltages on adjacent or neighboring circuits. Induced EMI levels and attenuation characteristics of electric, magnetic, RF fields, and transients are plotted and graphed for common types of wire circuits. The significance of wire circuit returns and shielding is emphasized to highlight the techniques that help block the paths of electromagnetic interference and maintain avionic interface signal quality.
High voltage pulse generator. [Patent application
Fasching, G.E.
1975-06-12
An improved high-voltage pulse generator is described which is especially useful in ultrasonic testing of rock core samples. An N number of capacitors are charged in parallel to V volts and at the proper instance are coupled in series to produce a high-voltage pulse of N times V volts. Rapid switching of the capacitors from the paralleled charging configuration to the series discharging configuration is accomplished by using silicon-controlled rectifiers which are chain self-triggered following the initial triggering of the first rectifier connected between the first and second capacitors. A timing and triggering circuit is provided to properly synchronize triggering pulses to the first SCR at a time when the charging voltage is not being applied to the parallel-connected charging capacitors. The output voltage can be readily increased by adding additional charging networks. The circuit allows the peak level of the output to be easily varied over a wide range by using a variable autotransformer in the charging circuit.
Dynamic and Tunable Threshold Voltage in Organic Electrochemical Transistors.
Doris, Sean E; Pierre, Adrien; Street, Robert A
2018-04-01
In recent years, organic electrochemical transistors (OECTs) have found applications in chemical and biological sensing and interfacing, neuromorphic computing, digital logic, and printed electronics. However, the incorporation of OECTs in practical electronic circuits is limited by the relative lack of control over their threshold voltage, which is important for controlling the power consumption and noise margin in complementary and unipolar circuits. Here, the threshold voltage of OECTs is precisely tuned over a range of more than 1 V by chemically controlling the electrochemical potential at the gate electrode. This threshold voltage tunability is exploited to prepare inverters and amplifiers with improved noise margin and gain, respectively. By coupling the gate electrode with an electrochemical oscillator, single-transistor oscillators based on OECTs with dynamic time-varying threshold voltages are prepared. This work highlights the importance of electrochemistry at the gate electrode in determining the electrical properties of OECTs, and opens a path toward the system-level design of low-power OECT-based electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Infant breathing rate counter based on variable resistor for pneumonia
NASA Astrophysics Data System (ADS)
Sakti, Novi Angga; Hardiyanto, Ardy Dwi; La Febry Andira R., C.; Camelya, Kesa; Widiyanti, Prihartini
2016-03-01
Pneumonia is one of the leading causes of death in new born baby in Indonesia. According to WHO in 2002, breathing rate is very important index to be the symptom of pneumonia. In the Community Health Center, the nurses count with a stopwatch for exactly one minute. Miscalculation in Community Health Center occurs because of long time concentration and focus on two object at once. This calculation errors can cause the baby who should be admitted to the hospital only be attended at home. Therefore, an accurate breathing rate counter at Community Health Center level is necessary. In this work, resistance change of variable resistor is made to be breathing rate counter. Resistance change in voltage divider can produce voltage change. If the variable resistance moves periodically, the voltage will change periodically too. The voltage change counted by software in the microcontroller. For the every mm shift at the variable resistor produce average 0.96 voltage change. The software can count the number of wave generated by shifting resistor.
Ultra-compact Marx-type high-voltage generator
Goerz, David A.; Wilson, Michael J.
2000-01-01
An ultra-compact Marx-type high-voltage generator includes individual high-performance components that are closely coupled and integrated into an extremely compact assembly. In one embodiment, a repetitively-switched, ultra-compact Marx generator includes low-profile, annular-shaped, high-voltage, ceramic capacitors with contoured edges and coplanar extended electrodes used for primary energy storage; low-profile, low-inductance, high-voltage, pressurized gas switches with compact gas envelopes suitably designed to be integrated with the annular capacitors; feed-forward, high-voltage, ceramic capacitors attached across successive switch-capacitor-switch stages to couple the necessary energy forward to sufficiently overvoltage the spark gap of the next in-line switch; optimally shaped electrodes and insulator surfaces to reduce electric field stresses in the weakest regions where dissimilar materials meet, and to spread the fields more evenly throughout the dielectric materials, allowing them to operate closer to their intrinsic breakdown levels; and uses manufacturing and assembly methods to integrate the capacitors and switches into stages that can be arranged into a low-profile Marx generator.
Single-molecule fluorimetry and gating currents inspire an improved optical voltage indicator
Treger, Jeremy S; Priest, Michael F; Bezanilla, Francisco
2015-01-01
Voltage-sensing domains (VSDs) underlie the movement of voltage-gated ion channels, as well as the voltage-sensitive fluorescent responses observed from a common class of genetically encoded voltage indicators (GEVIs). Despite the widespread use and potential utility of these GEVIs, the biophysical underpinnings of the relationship between VSD movement and fluorophore response remain unclear. We investigated the recently developed GEVI ArcLight, and its close variant Arclight', at both the single-molecule and macroscopic levels to better understand their characteristics and mechanisms of activity. These studies revealed a number of previously unobserved features of ArcLight's behavior, including millisecond-scale fluorescence fluctuations in single molecules as well as a previously unreported delay prior to macroscopic fluorescence onset. Finally, these mechanistic insights allowed us to improve the optical response of ArcLight to fast or repetitive pulses with the development of ArcLightning, a novel GEVI with improved kinetics. DOI: http://dx.doi.org/10.7554/eLife.10482.001 PMID:26599732
NASA Astrophysics Data System (ADS)
Arenz, M.; Baek, W.-J.; Beck, M.; Beglarian, A.; Behrens, J.; Bergmann, T.; Berlev, A.; Besserer, U.; Blaum, K.; Bode, T.; Bornschein, B.; Bornschein, L.; Brunst, T.; Buzinsky, N.; Chilingaryan, S.; Choi, W. Q.; Deffert, M.; Doe, P. J.; Dragoun, O.; Drexlin, G.; Dyba, S.; Edzards, F.; Eitel, K.; Ellinger, E.; Engel, R.; Enomoto, S.; Erhard, M.; Eversheim, D.; Fedkevych, M.; Fischer, S.; Formaggio, J. A.; Fränkle, F. M.; Franklin, G. B.; Friedel, F.; Fulst, A.; Gil, W.; Glück, F.; Ureña, A. Gonzalez; Grohmann, S.; Grössle, R.; Gumbsheimer, R.; Hackenjos, M.; Hannen, V.; Harms, F.; Haußmann, N.; Heizmann, F.; Helbing, K.; Herz, W.; Hickford, S.; Hilk, D.; Hillesheimer, D.; Howe, M. A.; Huber, A.; Jansen, A.; Kellerer, J.; Kernert, N.; Kippenbrock, L.; Kleesiek, M.; Klein, M.; Kopmann, A.; Korzeczek, M.; Kovalík, A.; Krasch, B.; Kraus, M.; Kuckert, L.; Lasserre, T.; Lebeda, O.; Letnev, J.; Lokhov, A.; Machatschek, M.; Marsteller, A.; Martin, E. L.; Mertens, S.; Mirz, S.; Monreal, B.; Neumann, H.; Niemes, S.; Off, A.; Osipowicz, A.; Otten, E.; Parno, D. S.; Pollithy, A.; Poon, A. W. P.; Priester, F.; Ranitzsch, P. C.-O.; Rest, O.; Robertson, R. G. H.; Roccati, F.; Rodenbeck, C.; Röllig, M.; Röttele, C.; Ryšavý, M.; Sack, R.; Saenz, A.; Schimpf, L.; Schlösser, K.; Schlösser, M.; Schönung, K.; Schrank, M.; Seitz-Moskaliuk, H.; Sentkerestiová, J.; Sibille, V.; Slezák, M.; Steidl, M.; Steinbrink, N.; Sturm, M.; Suchopar, M.; Suesser, M.; Telle, H. H.; Thorne, L. A.; Thümmler, T.; Titov, N.; Tkachev, I.; Trost, N.; Valerius, K.; Vénos, D.; Vianden, R.; Hernández, A. P. Vizcaya; Weber, M.; Weinheimer, C.; Weiss, C.; Welte, S.; Wendel, J.; Wilkerson, J. F.; Wolf, J.; Wüstling, S.; Zadoroghny, S.
2018-05-01
The neutrino mass experiment KATRIN requires a stability of 3 ppm for the retarding potential at - 18.6 kV of the main spectrometer. To monitor the stability, two custom-made ultra-precise high-voltage dividers were developed and built in cooperation with the German national metrology institute Physikalisch-Technische Bundesanstalt (PTB). Until now, regular absolute calibration of the voltage dividers required bringing the equipment to the specialised metrology laboratory. Here we present a new method based on measuring the energy difference of two ^{83{m}}Kr conversion electron lines with the KATRIN setup, which was demonstrated during KATRIN's commissioning measurements in July 2017. The measured scale factor M=1972.449(10) of the high-voltage divider K35 is in agreement with the last PTB calibration 4 years ago. This result demonstrates the utility of the calibration method, as well as the long-term stability of the voltage divider.
Yang, Qu; Zhou, Ziyao; Wang, Liqian; Zhang, Hongjia; Cheng, Yuxin; Hu, Zhongqiang; Peng, Bin; Liu, Ming
2018-05-01
To meet the demand of developing compatible and energy-efficient flexible spintronics, voltage manipulation of magnetism on soft substrates is in demand. Here, a voltage tunable flexible field-effect transistor structure by ionic gel (IG) gating in perpendicular synthetic anti-ferromagnetic nanostructure is demonstrated. As a result, the interlayer Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction can be tuned electrically at room temperature. With a circuit gating voltage, anti-ferromagnetic (AFM) ordering is enhanced or converted into an AFM-ferromagnetic (FM) intermediate state, accompanying with the dynamic domain switching. This IG gating process can be repeated stably at different curvatures, confirming an excellent mechanical property. The IG-induced modification of interlayer exchange coupling is related to the change of Fermi level aroused by the disturbance of itinerant electrons. The voltage modulation of RKKY interaction with excellent flexibility proposes an application potential for wearable spintronic devices with energy efficiency and ultralow operation voltage. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sliding-mode control of single input multiple output DC-DC converter
NASA Astrophysics Data System (ADS)
Zhang, Libo; Sun, Yihan; Luo, Tiejian; Wan, Qiyang
2016-10-01
Various voltage levels are required in the vehicle mounted power system. A conventional solution is to utilize an independent multiple output DC-DC converter whose cost is high and control scheme is complicated. In this paper, we design a novel SIMO DC-DC converter with sliding mode controller. The proposed converter can boost the voltage of a low-voltage input power source to a controllable high-voltage DC bus and middle-voltage output terminals, which endow the converter with characteristics of simple structure, low cost, and convenient control. In addition, the sliding mode control (SMC) technique applied in our converter can enhance the performances of a certain SIMO DC-DC converter topology. The high-voltage DC bus can be regarded as the main power source to the high-voltage facility of the vehicle mounted power system, and the middle-voltage output terminals can supply power to the low-voltage equipment on an automobile. In the respect of control algorithm, it is the first time to propose the SMC-PID (Proportion Integration Differentiation) control algorithm, in which the SMC algorithm is utilized and the PID control is attended to the conventional SMC algorithm. The PID control increases the dynamic ability of the SMC algorithm by establishing the corresponding SMC surface and introducing the attached integral of voltage error, which endow the sliding-control system with excellent dynamic performance. At last, we established the MATLAB/SIMULINK simulation model, tested performance of the system, and built the hardware prototype based on Digital Signal Processor (DSP). Results show that the sliding mode control is able to track a required trajectory, which has robustness against the uncertainties and disturbances.
Sliding-mode control of single input multiple output DC-DC converter.
Zhang, Libo; Sun, Yihan; Luo, Tiejian; Wan, Qiyang
2016-10-01
Various voltage levels are required in the vehicle mounted power system. A conventional solution is to utilize an independent multiple output DC-DC converter whose cost is high and control scheme is complicated. In this paper, we design a novel SIMO DC-DC converter with sliding mode controller. The proposed converter can boost the voltage of a low-voltage input power source to a controllable high-voltage DC bus and middle-voltage output terminals, which endow the converter with characteristics of simple structure, low cost, and convenient control. In addition, the sliding mode control (SMC) technique applied in our converter can enhance the performances of a certain SIMO DC-DC converter topology. The high-voltage DC bus can be regarded as the main power source to the high-voltage facility of the vehicle mounted power system, and the middle-voltage output terminals can supply power to the low-voltage equipment on an automobile. In the respect of control algorithm, it is the first time to propose the SMC-PID (Proportion Integration Differentiation) control algorithm, in which the SMC algorithm is utilized and the PID control is attended to the conventional SMC algorithm. The PID control increases the dynamic ability of the SMC algorithm by establishing the corresponding SMC surface and introducing the attached integral of voltage error, which endow the sliding-control system with excellent dynamic performance. At last, we established the MATLAB/SIMULINK simulation model, tested performance of the system, and built the hardware prototype based on Digital Signal Processor (DSP). Results show that the sliding mode control is able to track a required trajectory, which has robustness against the uncertainties and disturbances.
On the use of an Arduino-based controller to control the charging process of a wind turbine
NASA Astrophysics Data System (ADS)
Mahmuddin, Faisal; Yusran, Ahmad Muhtam; Klara, Syerly
2017-02-01
In order to avoid an excessive charging voltage which can damage power storage when converting wind energy using a turbine, it is necessary to control the charging voltage of the turbine generator. In the present study, a charging controller which uses an Arduino microcontroller, is designed. 3 (three) indicator lights are installed to indicate the battery charging process, power diversion to dummy load and battery power level. The performance of the designed controller is evaluated by simulating 3 cases. In this simulation, a battery with maximum voltage of 12.4 V is used. Case 1 is performed with input voltage equals the one set in Arduino which is 10 V. In this case, the battery is charged up to 10.8 V. In case 2, the input voltage is 13 V while the maximum voltage set in Arduino is also 13 V. In this case, the battery is charged up to maximum voltage of the battery. Moreover, the dummy load indicator is ON and charging indicator is OFF after the maximum charging voltage is reached because the electricity is flowed to the dummy load. In the final case, the input voltage is set to be 16 V while the maximum voltage set in Arduino is 13 V. In this case, the charging indicator is OFF and dummy load indicator is ON which means that the Arduino has successfully switched the power to be flowed to dummy load. From the 3 (three) cases, it can be concluded that the designed controller works perfectly to control the charging process of the wind turbine. Moreover, the charging time needed in each case can also be determined.
High Cycle Life Cathode for High Voltage (5V) Lithium Ion Batteries
2010-12-16
lithium cobalt phosphate (LiCoPO4) that provides higher energy density (15% > LiFePO4 demonstrated, up to 40% greater with further R&D). •The invention...standard LiFePO4 • Higher voltage at cell level may reduce number of cells required for application • Easy and inexpensive method to prepare • Offers safety
High sensitivity field asymmetric ion mobility spectrometer
NASA Astrophysics Data System (ADS)
Chavarria, Mario A.; Matheoud, Alessandro V.; Marmillod, Philippe; Liu, Youjiang; Kong, Deyi; Brugger, Jürgen; Boero, Giovanni
2017-03-01
A high sensitivity field asymmetric ion mobility spectrometer (FAIMS) was designed, fabricated, and tested. The main components of the system are a 10.6 eV UV photoionization source, an ion filter driven by a high voltage/high frequency n-MOS inverter circuit, and a low noise ion detector. The ion filter electronics are capable to generate square waveforms with peak-to-peak voltages up to 1000 V at frequencies up to 1 MHz with adjustable duty cycles. The ion detector current amplifier has a gain up to 1012 V/A with an effective equivalent input noise level down to about 1 fA/Hz1/2 during operation with the ion filter at the maximum voltage and frequency. The FAIMS system was characterized by detecting different standard chemical compounds. Additionally, we investigated the use of a synchronous modulation/demodulation technique to improve the signal-to-noise ratio in FAIMS measurements. In particular, we implemented the modulation of the compensation voltage with the synchronous demodulation of the ion current. The analysis of the measurements at low concentration levels led to an extrapolated limit of detection for acetone of 10 ppt with an averaging time of 1 s.
Non-linear effects and thermoelectric efficiency of quantum dot-based single-electron transistors.
Talbo, Vincent; Saint-Martin, Jérôme; Retailleau, Sylvie; Dollfus, Philippe
2017-11-01
By means of advanced numerical simulation, the thermoelectric properties of a Si-quantum dot-based single-electron transistor operating in sequential tunneling regime are investigated in terms of figure of merit, efficiency and power. By taking into account the phonon-induced collisional broadening of energy levels in the quantum dot, both heat and electrical currents are computed in a voltage range beyond the linear response. Using our homemade code consisting in a 3D Poisson-Schrödinger solver and the resolution of the Master equation, the Seebeck coefficient at low bias voltage appears to be material independent and nearly independent on the level broadening, which makes this device promising for metrology applications as a nanoscale standard of Seebeck coefficient. Besides, at higher voltage bias, the non-linear characteristics of the heat current are shown to be related to the multi-level effects. Finally, when considering only the electronic contribution to the thermal conductance, the single-electron transistor operating in generator regime is shown to exhibit very good efficiency at maximum power.
Study of Lead as a Source X-ray Radiation Protection with an Analysis Grey Level Image
NASA Astrophysics Data System (ADS)
Susilo; Rahma, I. N.; Mosik; Masturi
2017-04-01
X-ray utilization in the medical field still has a potential danger for the human. This occurs when exposure to x-ray radiation received exceeds the dose limit value. It required a radiation shielding to prevent the hazard, and lead is one of the metals usually used as x-ray radiation shield. This work aims to determine the metallic lead properties to find out of the step wedge lead radiograph image. The instruments used are the plane x-ray, digital radiography system and personal computer installed by MATLAB, while the material is step wedge lead. The image of radiograph was analysed using GUI applications on MATLAB software to determine the values of grey level from the image and the optical density of the radiograph image. The results showed the greater optical density, the higher the image contrast, and the value of optical density in the image is inversely proportional to the voltage x-ray since the value of grey level at high voltage is smaller than that of at low voltage.
Tunneling effects in the current-voltage characteristics of high-efficiency GaAs solar cells
NASA Technical Reports Server (NTRS)
Kachare, R.; Anspaugh, B. E.; Garlick, G. F. J.
1988-01-01
Evidence is that tunneling via states in the forbidden gap is the dominant source of excess current in the dark current-voltage (I-V) characteristics of high-efficiency DMCVD grown Al(x)Ga(1-x)As/GaAs(x is equal to or greater than 0.85) solar cells. The dark forward and reverse I-V measurements were made on several solar cells, for the first time, at temperatures between 193 and 301 K. Low-voltage reverse-bias I-V data of a number of cells give a thermal activation energy for excess current of 0.026 + or - 0.005 eV, which corresponds to the carbon impurity in GaAs. However, other energy levels between 0.02 eV and 0.04 eV were observed in some cells which may correspond to impurity levels introduced by Cu, Si, Ge, or Cd. The forward-bias excess current is mainly due to carrier tunneling between localized levels created in the space-charge layer by impurities such as carbon, which are incorporated during the solar cell growth process. A model is suggested to explain the results.
NASA Astrophysics Data System (ADS)
Noori, Keian; Konios, Dimitrios; Stylianakis, Minas M.; Kymakis, Emmanuel; Giustino, Feliciano
2016-03-01
Functionalized graphene promises to become a key component of novel solar cell architectures, owing to its versatile ability to act either as transparent conductor, electron acceptor, or buffer layer. In spite of this promise, the solar energy conversion efficiency of graphene-based devices falls short of the performance of competing solution-processable photovoltaic technologies. Here we address the question of the maximum achievable open-circuit voltage of all-organic graphene: polymer solar cells using a combined theoretical/experimental approach, going from the atomic scale level to the device level. Our calculations on very large atomistic models of the graphene/polymer interface indicate that the ideal open-circuit voltage approaches one volt, and that epoxide functional groups can have a dramatic effect on the photovoltage. Our predictions are confirmed by direct measurements on complete devices where we control the concentration of functional groups via chemical reduction. Our findings indicate that the selective removal of epoxide groups and the use of ultradisperse polymers are key to achieving graphene solar cells with improved energy conversion efficiency.
Braun, Kai; Wang, Xiao; Kern, Andreas M; Adler, Hilmar; Peisert, Heiko; Chassé, Thomas; Zhang, Dai
2015-01-01
Summary Here, we demonstrate a bias-driven superluminescent point light-source based on an optically pumped molecular junction (gold substrate/self-assembled molecular monolayer/gold tip) of a scanning tunneling microscope, operating at ambient conditions and providing almost three orders of magnitude higher electron-to-photon conversion efficiency than electroluminescence induced by inelastic tunneling without optical pumping. A positive, steadily increasing bias voltage induces a step-like rise of the Stokes shifted optical signal emitted from the junction. This emission is strongly attenuated by reversing the applied bias voltage. At high bias voltage, the emission intensity depends non-linearly on the optical pump power. The enhanced emission can be modelled by rate equations taking into account hole injection from the tip (anode) into the highest occupied orbital of the closest substrate-bound molecule (lower level) and radiative recombination with an electron from above the Fermi level (upper level), hence feeding photons back by stimulated emission resonant with the gap mode. The system reflects many essential features of a superluminescent light emitting diode. PMID:26171286
Electric Vehicle Interaction at the Electrical Circuit Level
DOT National Transportation Integrated Search
2018-01-01
The objective of the Electric Vehicle Interaction at the Electrical Circuit Level project was to investigate electric vehicle (EV) charging as a means of mitigating transient over-voltages (TOVs) on the circuit level electric utility distribution gri...
Field, Michael E.; Sullivan, William H.
1985-01-01
A precision liquid level sensor utilizes a balanced R. F. bridge, each arm including an air dielectric line. Changes in liquid level along one air dielectric line imbalance the bridge and create a voltage which is directly measurable across the bridge.
Voltage Preconditioning Allows Modulated Gene Expression in Neurons Using PEI-complexed siRNA
Sridharan, Arati; Patel, Chetan; Muthuswamy, Jit
2013-01-01
We present here a high efficiency, high viability siRNA-delivery method using a voltage-controlled chemical transfection strategy to achieve modulated delivery of polyethylenimine (PEI) complexed with siRNA in an in vitro culture of neuro2A cells and neurons. Low voltage pulses were applied to adherent cells before the administration of PEI-siRNA complexes. Live assays of neuro2a cells transfected with fluorescently tagged siRNA showed an increase in transfection efficiency from 62 ± 14% to 98 ± 3.8% (after −1 V). In primary hippocampal neurons, transfection efficiencies were increased from 30 ± 18% to 76 ± 18% (after −1 V). Negligible or low-level transfection was observed after preconditioning at higher voltages, suggesting an inverse relationship with applied voltage. Experiments with propidium iodide ruled out the role of electroporation in the transfection of siRNAs suggesting an alternate electro-endocytotic mechanism. In addition, image analysis of preconditioned and transfected cells demonstrates siRNA uptake and loading that is tuned to preconditioning voltage levels. There is approximately a fourfold increase in siRNA loading after preconditioning at −1 V compared with the same at ±2–3 V. Modulated gene expression is demonstrated in a functional knockdown of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) in neuro2A cells using siRNA. Cell density and dendritic morphological changes are also demonstrated in modulated knockdown of brain derived neurotrophic factor (BDNF) in primary hippocampal neurons. The method reported here has potential applications in the development of high-throughput screening systems for large libraries of siRNA molecules involving difficult-to-transfect cells like neurons. PMID:23531602
Voltage Preconditioning Allows Modulated Gene Expression in Neurons Using PEI-complexed siRNA.
Sridharan, Arati; Patel, Chetan; Muthuswamy, Jit
2013-03-26
We present here a high efficiency, high viability siRNA-delivery method using a voltage-controlled chemical transfection strategy to achieve modulated delivery of polyethylenimine (PEI) complexed with siRNA in an in vitro culture of neuro2A cells and neurons. Low voltage pulses were applied to adherent cells before the administration of PEI-siRNA complexes. Live assays of neuro2a cells transfected with fluorescently tagged siRNA showed an increase in transfection efficiency from 62 ± 14% to 98 ± 3.8% (after -1 V). In primary hippocampal neurons, transfection efficiencies were increased from 30 ± 18% to 76 ± 18% (after -1 V). Negligible or low-level transfection was observed after preconditioning at higher voltages, suggesting an inverse relationship with applied voltage. Experiments with propidium iodide ruled out the role of electroporation in the transfection of siRNAs suggesting an alternate electro-endocytotic mechanism. In addition, image analysis of preconditioned and transfected cells demonstrates siRNA uptake and loading that is tuned to preconditioning voltage levels. There is approximately a fourfold increase in siRNA loading after preconditioning at -1 V compared with the same at ±2-3 V. Modulated gene expression is demonstrated in a functional knockdown of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) in neuro2A cells using siRNA. Cell density and dendritic morphological changes are also demonstrated in modulated knockdown of brain derived neurotrophic factor (BDNF) in primary hippocampal neurons. The method reported here has potential applications in the development of high-throughput screening systems for large libraries of siRNA molecules involving difficult-to-transfect cells like neurons.Molecular Therapy-Nucleic Acids (2013) 2, e82; doi:10.1038/mtna.2013.10; published online 26 March 2013.
Raddatz, Natalia; Castillo, Juan P.; Gonzalez, Carlos; Alvarez, Osvaldo; Latorre, Ramon
2014-01-01
Expressed in somatosensory neurons of the dorsal root and trigeminal ganglion, the transient receptor potential melastatin 8 (TRPM8) channel is a Ca2+-permeable cation channel activated by cold, voltage, phosphatidylinositol 4,5-bisphosphate, and menthol. Although TRPM8 channel gating has been characterized at the single channel and macroscopic current levels, there is currently no consensus regarding the extent to which temperature and voltage sensors couple to the conduction gate. In this study, we extended the range of voltages where TRPM8-induced ionic currents were measured and made careful measurements of the maximum open probability the channel can attain at different temperatures by means of fluctuation analysis. The first direct measurements of TRPM8 channel temperature-driven conformational rearrangements provided here suggest that temperature alone is able to open the channel and that the opening reaction is voltage-independent. Voltage is a partial activator of TRPM8 channels, because absolute open probability values measured with fully activated voltage sensors are less than 1, and they decrease as temperature rises. By unveiling the fast temperature-dependent deactivation process, we show that TRPM8 channel deactivation is well described by a double exponential time course. The fast and slow deactivation processes are temperature-dependent with enthalpy changes of 27.2 and 30.8 kcal mol−1. The overall Q10 for the closing reaction is about 33. A three-tiered allosteric model containing four voltage sensors and four temperature sensors can account for the complex deactivation kinetics and coupling between voltage and temperature sensor activation and channel opening. PMID:25352597
Customized binary and multi-level HfO2-x-based memristors tuned by oxidation conditions.
He, Weifan; Sun, Huajun; Zhou, Yaxiong; Lu, Ke; Xue, Kanhao; Miao, Xiangshui
2017-08-30
The memristor is a promising candidate for the next generation non-volatile memory, especially based on HfO 2-x , given its compatibility with advanced CMOS technologies. Although various resistive transitions were reported independently, customized binary and multi-level memristors in unified HfO 2-x material have not been studied. Here we report Pt/HfO 2-x /Ti memristors with double memristive modes, forming-free and low operation voltage, which were tuned by oxidation conditions of HfO 2-x films. As O/Hf ratios of HfO 2-x films increase, the forming voltages, SET voltages, and R off /R on windows increase regularly while their resistive transitions undergo from gradually to sharply in I/V sweep. Two memristors with typical resistive transitions were studied to customize binary and multi-level memristive modes, respectively. For binary mode, high-speed switching with 10 3 pulses (10 ns) and retention test at 85 °C (>10 4 s) were achieved. For multi-level mode, the 12-levels stable resistance states were confirmed by ongoing multi-window switching (ranging from 10 ns to 1 μs and completing 10 cycles of each pulse). Our customized binary and multi-level HfO 2-x -based memristors show high-speed switching, multi-level storage and excellent stability, which can be separately applied to logic computing and neuromorphic computing, further suitable for in-memory computing chip when deposition atmosphere may be fine-tuned.
Photocurrent Suppression of Transparent Organic Thin Film Transistors
NASA Astrophysics Data System (ADS)
Chuang, Chiao-Shun; Tsai, Shu-Ting; Lin, Yung-Sheng; Chen, Fang-Chung; Shieh, Hang-Ping D.
2007-12-01
Organic thin-film transistors (OTFTs) with high transmittance and low photosensitivity have been demonstrated. By using titanium dioxide nanoparticles as the additives in the polymer gate insulators, the level of device photoresponse has been reduced. The device shows simultaneously a high transparence and a minimal threshold voltage shift under white light illumination. It is inferred that the localized energy levels deep in the energy gap of pentacene behave as the recombination centers, enhancing substantially the recombination process in the conducting channel of the OTFTs. Therefore, the electron trapping is relieved and the shift of threshold voltage is reduced upon illumination.
NASA Astrophysics Data System (ADS)
Cai, Yuanji; Guan, Yonggang; Liu, Weidong
2017-06-01
Transient enclosure voltage (TEV), which is a phenomenon induced by the inner dielectric breakdown of SF6 during disconnector operations in a gas-insulated switchgear (GIS), may cause issues relating to shock hazard and electromagnetic interference to secondary equipment. This is a critical factor regarding the electromagnetic compatibility of ultra-high-voltage (UHV) substations. In this paper, the statistical characteristics of TEV at UHV level are collected from field experiments, and are analyzed and compared to those from a repeated strike process. The TEV waveforms during disconnector operations are recorded by a self-developed measurement system first. Then, statistical characteristics, such as the pulse number, duration of pulses, frequency components, magnitude and single pulse duration, are extracted. The transmission line theory is introduced to analyze the TEV and is validated by the experimental results. Finally, the relationship between the TEV and the repeated strike process is analyzed. This proves that the pulse voltage of the TEV is proportional to the corresponding breakdown voltage. The results contribute to the definition of the standard testing waveform of the TEV, and can aid the protection of electronic devices in substations by minimizing the threat of this phenomenon.
Song, Shuang; Rooijakkers, Michael; Harpe, Pieter; Rabotti, Chiara; Mischi, Massimo; van Roermund, Arthur H M; Cantatore, Eugenio
2015-04-01
This paper presents a low-voltage current-reuse chopper-stabilized frontend amplifier for fetal ECG monitoring. The proposed amplifier allows for individual tuning of the noise in each measurement channel, minimizing the total power consumption while satisfying all application requirements. The low-voltage current reuse topology exploits power optimization in both the current and the voltage domain, exploiting multiple supply voltages (0.3, 0.6 and 1.2 V). The power management circuitry providing the different supplies is optimized for high efficiency (peak charge-pump efficiency = 90%).The low-voltage amplifier together with its power management circuitry is implemented in a standard 0.18 μm CMOS process and characterized experimentally. The amplifier core achieves both good noise efficiency factor (NEF=1.74) and power efficiency factor (PEF=1.05). Experiments show that the amplifier core can provide a noise level of 0.34 μVrms in a 0.7 to 182 Hz band, consuming 1.17 μW power. The amplifier together with its power management circuitry consumes 1.56 μW, achieving a PEF of 1.41. The amplifier is also validated with adult ECG and pre-recorded fetal ECG measurements.
Wang, Huiliang; Wei, Peng; Li, Yaoxuan; Han, Jeff; Lee, Hye Ryoung; Naab, Benjamin D.; Liu, Nan; Wang, Chenggong; Adijanto, Eric; Tee, Benjamin C.-K.; Morishita, Satoshi; Li, Qiaochu; Gao, Yongli; Cui, Yi; Bao, Zhenan
2014-01-01
Tuning the threshold voltage of a transistor is crucial for realizing robust digital circuits. For silicon transistors, the threshold voltage can be accurately controlled by doping. However, it remains challenging to tune the threshold voltage of single-wall nanotube (SWNT) thin-film transistors. Here, we report a facile method to controllably n-dope SWNTs using 1H-benzoimidazole derivatives processed via either solution coating or vacuum deposition. The threshold voltages of our polythiophene-sorted SWNT thin-film transistors can be tuned accurately and continuously over a wide range. Photoelectron spectroscopy measurements confirmed that the SWNT Fermi level shifted to the conduction band edge with increasing doping concentration. Using this doping approach, we proceeded to fabricate SWNT complementary inverters by inkjet printing of the dopants. We observed an unprecedented noise margin of 28 V at VDD = 80 V (70% of 1/2VDD) and a gain of 85. Additionally, robust SWNT complementary metal−oxide−semiconductor inverter (noise margin 72% of 1/2VDD) and logic gates with rail-to-rail output voltage swing and subnanowatt power consumption were fabricated onto a highly flexible substrate. PMID:24639537
Digital automatic gain amplifier
NASA Technical Reports Server (NTRS)
Holley, L. D.; Ward, J. O. (Inventor)
1978-01-01
A circuit is described for adjusting the amplitude of a reference signal to a predetermined level so as to permit subsequent data signals to be interpreted correctly. The circuit includes an operational amplifier having a feedback circuit connected between an output terminal and an input terminal; a bank of relays operably connected to a plurality of resistors; and a comparator comparing an output voltage of the amplifier with a reference voltage and generating a compared signal responsive thereto. Means is provided for selectively energizing the relays according to the compared signal from the comparator until the output signal from the amplifier equals to the reference signal. A second comparator is provided for comparing the output of the amplifier with a second voltage source so as to illuminate a lamp when the output signal from the amplifier exceeds the second voltage.
NASA Astrophysics Data System (ADS)
Taissariyeva, K.; Issembergenov, N.; Dzhobalaeva, G.; Usembaeva, S.
2016-09-01
The given paper considers the multilevel 6 kW-power transistor inverter at supply by 12 accumulators for transformation of solar battery energy to the electric power. At the output of the multilevel transistor inverter, it is possible to receive voltage close to a sinusoidal form. The main objective of this inverter is transformation of solar energy to the electric power of industrial frequency. The analysis of the received output curves of voltage on harmonicity has been carried out. In this paper it is set forth the developed scheme of the multilevel transistor inverter (DC-to-ac converter) which allows receiving at the output the voltage close to sinusoidal form, as well as to regulation of the output voltage level. In the paper, the results of computer modeling and experimental studies are presented.
Quasi-multi-pulse voltage source converter design with two control degrees of freedom
NASA Astrophysics Data System (ADS)
Vural, A. M.; Bayindir, K. C.
2015-05-01
In this article, the design details of a quasi-multi-pulse voltage source converter (VSC) switched at line frequency of 50 Hz are given in a step-by-step process. The proposed converter is comprised of four 12-pulse converter units, which is suitable for the simulation of single-/multi-converter flexible alternating current transmission system devices as well as high voltage direct current systems operating at the transmission level. The magnetic interface of the converter is originally designed with given all parameters for 100 MVA operation. The so-called two-angle control method is adopted to control the voltage magnitude and the phase angle of the converter independently. PSCAD simulation results verify both four-quadrant converter operation and closed-loop control of the converter operated as static synchronous compensator (STATCOM).
Two-stage single-phase grid-connected photovoltaic system with reduced complexity
NASA Astrophysics Data System (ADS)
da Silva, Cintia S.; Motta, Filipe R.; Tofoli, Fernando L.
2011-06-01
This article presents a grid-connected photovoltaic (PV) system using the classical DC-DC buck converter, which is responsible for stepping down the resulting voltage from several series-connected panels. Besides, the structure provides high power factor operation by injecting a quasi-sinusoidal current into the grid, with near no displacement in relation to the line voltage at the point of common coupling among the PV system and the loads. A CSI employing thyristors is cascaded with the DC-DC stage so that AC voltage results. The inverter output voltage level is adjusted by using a low-frequency transformer, which also provides galvanic isolation. The proposed system is described as mathematical approach and design guidelines are presented, providing an overview of the topology. An experimental prototype is also implemented, and relevant results to validate the proposal are discussed.
SABRE modification to a higher voltage high impedance inductive voltage adder (IVA)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazarakis, M.G.; Smith, D.L.; Poukey, J.W.
The SABRE accelerator was originally designed to operate as low impedance voltage adder with 40-ohm maximum output impedance in negative polarity operation and approximately 20 ohm in positive polarity. Because of the low impedance and higher than expected energy losses in the pulse forming network, the operating input cavity voltage is of the order of 800 kV which limits the total output voltage to {approximately} 8 MV for negative polarity and 5 to 6 MV for positive polarity. The modifications presented here aim to increase the output voltage in both polarities. A new high impedance central electrode was designed capablemore » of operating both in negative and positive polarities, and the number of pulse forming lines feeding the inductively isolated cavities was reduced to half. These modifications were recently tested in positive polarity. An increase in the total accelerating voltage from 5.5 MV to 9 MV was observed while stressing all components to the level required to achieve 12 MV in negative polarity. In these experiments only 65% of the usual operating intermediate store capacitor voltage was necessary (1.7 MV instead of 2.6 MV). Currently, the device is reconfigured for negative polarity tests. The cavities are rotated by 180{degree} and a 17-inch spool is added at the base of the cantilevered center electrode (cathode electrode). Positive and negative polarity results are presented and compared with simulations.« less
Field, M.E.; Sullivan, W.H.
1985-01-29
A precision liquid level sensor utilizes a balanced R. F. bridge, each arm including an air dielectric line. Changes in liquid level along one air dielectric line imbalance the bridge and create a voltage which is directly measurable across the bridge. 2 figs.
NASA Astrophysics Data System (ADS)
Lan, Ma; Xiao, Wen; Chen, Zonghui; Hao, Hongliang; Pan, Feng
2018-01-01
Real-time micro-vibration measurement is widely used in engineering applications. It is very difficult for traditional optical detection methods to achieve real-time need in a relatively high frequency and multi-spot synchronous measurement of a region at the same time,especially at the nanoscale. Based on the method of heterodyne interference, an experimental system of real-time measurement of micro - vibration is constructed to satisfy the demand in engineering applications. The vibration response signal is measured by combing optical heterodyne interferometry and a high-speed CMOS-DVR image acquisition system. Then, by extracting and processing multiple pixels at the same time, four digital demodulation technique are implemented to simultaneously acquire the vibrating velocity of the target from the recorded sequences of images. Different kinds of demodulation algorithms are analyzed and the results show that these four demodulation algorithms are suitable for different interference signals. Both autocorrelation algorithm and cross-correlation algorithm meet the needs of real-time measurements. The autocorrelation algorithm demodulates the frequency more accurately, while the cross-correlation algorithm is more accurate in solving the amplitude.
Maternal Gdf3 is an obligatory cofactor in Nodal signaling for embryonic axis formation in zebrafish
Bisgrove, Brent W; Su, Yi-Chu
2017-01-01
Zebrafish Gdf3 (Dvr1) is a member of the TGFβ superfamily of cell signaling ligands that includes Xenopus Vg1 and mammalian Gdf1/3. Surprisingly, engineered homozygous mutants in zebrafish have no apparent phenotype. Elimination of Gdf3 in oocytes of maternal-zygotic mutants results in embryonic lethality that can be fully rescued with gdf3 RNA, demonstrating that Gdf3 is required only early in development, beyond which mutants are viable and fertile. Gdf3 mutants are refractory to Nodal ligands and Nodal repressor Lefty1. Signaling driven by TGFβ ligand Activin and constitutively active receptors Alk4 and Alk2 remain intact in gdf3 mutants, indicating that Gdf3 functions at the same pathway step as Nodal. Targeting gdf3 and ndr2 RNA to specific lineages indicates that exogenous gdf3 is able to fully rescue mutants only when co-expressed with endogenous Nodal. Together, these findings demonstrate that Gdf3 is an essential cofactor of Nodal signaling during establishment of the embryonic axis. PMID:29140249
NASA Astrophysics Data System (ADS)
Zellmann, Stefan; Percan, Yvonne; Lang, Ulrich
2015-01-01
Reconstruction of 2-d image primitives or of 3-d volumetric primitives is one of the most common operations performed by the rendering components of modern visualization systems. Because this operation is often aided by GPUs, reconstruction is typically restricted to first-order interpolation. With the advent of in situ visualization, the assumption that rendering algorithms are in general executed on GPUs is however no longer adequate. We thus propose a framework that provides versatile texture filtering capabilities: up to third-order reconstruction using various types of cubic filtering and interpolation primitives; cache-optimized algorithms that integrate seamlessly with GPGPU rendering or with software rendering that was optimized for cache-friendly "Structure of Array" (SoA) access patterns; a memory management layer (MML) that gracefully hides the complexities of extra data copies necessary for memory access optimizations such as swizzling, for rendering on GPGPUs, or for reconstruction schemes that rely on pre-filtered data arrays. We prove the effectiveness of our software architecture by integrating it into and validating it using the open source direct volume rendering (DVR) software DeskVOX.
Kahn, Johannes; Kaul, David; Böning, Georg; Rotzinger, Roman; Freyhardt, Patrick; Schwabe, Philipp; Maurer, Martin H; Renz, Diane Miriam; Streitparth, Florian
2017-09-01
Purpose As a supra-regional level-I trauma center, we evaluated computed tomography (CT) acquisitions of polytraumatized patients for quality and dose optimization purposes. Adapted statistical iterative reconstruction [(AS)IR] levels, tube voltage reduction as well as a split-bolus contrast agent (CA) protocol were applied. Materials and Methods 61 patients were split into 3 different groups that differed with respect to tube voltage (120 - 140 kVp) and level of applied ASIR reconstruction (ASIR 20 - 50 %). The CT protocol included a native acquisition of the head followed by a single contrast-enhanced acquisition of the whole body (64-MSCT). CA (350 mg/ml iodine) was administered as a split bolus injection of 100 ml (2 ml/s), 20 ml NaCl (1 ml/s), 60 ml (4 ml/s), 40 ml NaCl (4 ml/s) with a scan delay of 85 s to detect injuries of both the arterial system and parenchymal organs in a single acquisition. Both the quantitative (SNR/CNR) and qualitative (5-point Likert scale) image quality was evaluated in parenchymal organs that are often injured in trauma patients. Radiation exposure was assessed. Results The use of IR combined with a reduction of tube voltage resulted in good qualitative and quantitative image quality and a significant reduction in radiation exposure of more than 40 % (DLP 1087 vs. 647 mGyxcm). Image quality could be improved due to a dedicated protocol that included different levels of IR adapted to different slice thicknesses, kernels and the examined area for the evaluation of head, lung, body and bone injury patterns. In synopsis of our results, we recommend the implementation of a polytrauma protocol with a tube voltage of 120 kVp and the following IR levels: cCT 5mm: ASIR 20; cCT 0.625 mm: ASIR 40; lung 2.5 mm: ASIR 30, body 5 mm: ASIR 40; body 1.25 mm: ASIR 50; body 0.625 mm: ASIR 0. Conclusion A dedicated adaptation of the CT trauma protocol (level of reduction of tube voltage and of IR) according to the examined body region (head, lung, body, bone) combined with a split bolus CA injection protocol allows for a high-quality CT examination and a relevant reduction of radiation exposure in the examination of polytraumatized patients Key Points · Dedicated adaption of the CT trauma protocol allows for an optimized examination.. · Different levels of iterative reconstruction, tube voltage and the CA injection protocol are crucial.. · A reduction of radiation exposure of more than 40 % with good image quality is possible.. Citation Format · Kahn J, Kaul D, Böning G et al. Quality and Dose Optimized CT Trauma Protocol - Recommendation from a University Level-I Trauma Center. Fortschr Röntgenstr 2017; 189: 844 - 854. © Georg Thieme Verlag KG Stuttgart · New York.
NASA Astrophysics Data System (ADS)
Winands, G. J. J.; Liu, Z.; Pemen, A. J. M.; van Heesch, E. J. M.; Yan, K.; van Veldhuizen, E. M.
2006-07-01
In this paper a large-scale pulsed corona system is described in which pulse parameters such as pulse rise-time, peak voltage, pulse width and energy per pulse can be varied. The chemical efficiency of the system is determined by measuring ozone production. The temporal and spatial development of the discharge streamers is recorded using an ICCD camera with a shortest exposure time of 5 ns. The camera can be triggered at any moment starting from the time the voltage pulse arrives on the reactor, with an accuracy of less than 1 ns. Measurements were performed on an industrial size wire-plate reactor. The influence of pulse parameters like pulse voltage, DC bias voltage, rise-time and pulse repetition rate on plasma generation was monitored. It was observed that for higher peak voltages, an increase could be seen in the primary streamer velocity, the growth of the primary streamer diameter, the light intensity and the number of streamers per unit length of corona wire. No significant separate influence of DC bias voltage level was observed as long as the total reactor voltage (pulse + DC bias) remained constant and the DC bias voltage remained below the DC corona onset. For those situations in which the plasma appearance changed (e.g. different streamer velocity, diameter, intensity), a change in ozone production was also observed. The best chemical yields were obtained for low voltage (55 kV), low energetic pulses (0.4 J/pulse): 60 g (kWh)-1. For high voltage (86 kV), high energetic pulses (2.3 J/pulse) the yield decreased to approximately 45 g (kWh)-1, still a high value for ozone production in ambient air (RH 42%). The pulse repetition rate has no influence on plasma generation and on chemical efficiency up to 400 pulses per second.
Yang, Chun; Wang, Limin; Xing, Xiangyang; Gao, Yanyan; Guo, Li
2017-05-01
In adult mammals, neurogenesis is limited to specific niches in the brain, but considerable adult neurogenesis occurs in many brain regions in non-mammalian vertebrates. Non-mammalian vertebrates provide invaluable comparative material for understanding the core mechanisms of adult neural stem cell maintenance and fate, but phylogenetic differences in adult neurogenesis remain poorly understood. Here we examine cell proliferation seasonality in the telencephalon of adult female tsinling dwarf skinks (Scincella tsinlingensis) by injecting wild animals caught in summer, autumn and spring, and animals caught in autumn and raised under winter conditions, with 5-Bromo-2'-deoxyuridine (BrdU). Then, 24h, 7d and 28d after BrdU administration we examined brain tissue and quantified BrdU-labeled cells as a marker of neuronal proliferation. The highest number of labeled cells in the telencephalon was found in the 7d group. BrdU-positive cells were widely distributed in the anterior olfactory nucleus (AON), medial cortex (MC), dorsal cortex (DC), lateral cortex (LC), dorsal ventricular ridge (DVR), septum (SP), striatum (STR) and nucleus sphericus (NS). No BrdU-positive cells were detected in olfactory bulbs or elsewhere in the telencephalon. The highest proliferative levels were found in the AON in autumn. The NS exhibited relatively high levels of cell proliferation. The proliferative rate in the AON fluctuated seasonally as autumn>summer>spring>winter. Glial fibrillary acidic protein-positive cells were widely distributed in the telencephalon and their fibrous processes extended into brain parenchyma and anchored in the meninges. Doublecortin-positive newborn neurons of the subventricular zone appeared to migrate into the cerebral cortex via the radial migratory stream. Cell proliferation in the telencephalon of adult female S. tsinlingensis fluctuates seasonally, especially in regions related to olfactory memory. This is the first demonstration of proliferative activity in the telencephalon of a skink. Copyright © 2017 Elsevier B.V. All rights reserved.
The ac power line protection for an IEEE 587 Class B environment
NASA Technical Reports Server (NTRS)
Roehr, W. D.; Clark, O. M.
1984-01-01
The 587B series of protectors are unique, low clamping voltage transient suppressors to protect ac-powered equipment from the 6000V peak open-circuit voltage and 3000A short circuit current as defined in IEEE standard 587 for Category B transients. The devices, which incorporate multiple-stage solid-state protector components, were specifically designed to operate under multiple exposures to maximum threat levels in this severe environment. The output voltage peaks are limited to 350V under maximum threat conditions for a 120V ac power line, thus providing adequate protection to vulnerable electronic equipment. The principle of operation and test performance data is discussed.
Transformer current sensor for superconducting magnetic coils
Shen, S.S.; Wilson, C.T.
1985-04-16
The present invention is a current transformer for operating currents larger than 2kA (two kiloamps) that is capable of detecting a millivolt level resistive voltage in the presence of a large inductive voltage. Specifically, the present invention includes substantially cylindrical primary turns arranged to carry a primary current and substantially cylindrical secondary turns arranged coaxially with and only partially within the primary turns, the secondary turns including an active winding and a dummy winding, the active and dummy windings being coaxial, longitudinally separated and arranged to mutually cancel voltages excited by commonly experienced magnetic fields, the active winding but not the dummy winding being arranged within the primary turns.
Turner, Steven Richard
2006-12-26
A method and apparatus for measuring current, and particularly bi-directional current, in a field-effect transistor (FET) using drain-to-source voltage measurements. The drain-to-source voltage of the FET is measured and amplified. This signal is then compensated for variations in the temperature of the FET, which affects the impedance of the FET when it is switched on. The output is a signal representative of the direction of the flow of current through the field-effect transistor and the level of the current through the field-effect transistor. Preferably, the measurement only occurs when the FET is switched on.
Application of the superposition principle to solar-cell analysis
NASA Technical Reports Server (NTRS)
Lindholm, F. A.; Fossum, J. G.; Burgess, E. L.
1979-01-01
The superposition principle of differential-equation theory - which applies if and only if the relevant boundary-value problems are linear - is used to derive the widely used shifting approximation that the current-voltage characteristic of an illuminated solar cell is the dark current-voltage characteristic shifted by the short-circuit photocurrent. Analytical methods are presented to treat cases where shifting is not strictly valid. Well-defined conditions necessary for superposition to apply are established. For high injection in the base region, the method of analysis accurately yields the dependence of the open-circuit voltage on the short-circuit current (or the illumination level).
50 KW Class Krypton Hall Thruster Performance
NASA Technical Reports Server (NTRS)
Jacobson, David T.; Manzella, David H.
2003-01-01
The performance of a 50-kilowatt-class Hall thruster designed for operation on xenon propellant was measured using kryton propellant. The thruster was operated at discharge power levels ranging from 6.4 to 72.5 kilowatts. The device produced thrust ranging from 0.3 to 2.5 newtons. The thruster was operated at discharge voltages between 250 and 1000 volts. At the highest anode mass flow rate and discharge voltage and assuming a 100 percent singly charged condition, the discharge specific impulse approached the theoretical value. Discharge specific impulse of 4500 seconds was demonstrated at a discharge voltage of 1000 volts. The peak discharge efficiency was 64 percent at 650 volts.
NASA Astrophysics Data System (ADS)
Zeng, Zhengzhong; Ma, Lianying
2004-01-01
A simple and effective bridge-type feeding network consisting only of ordinary resistors and conductive wires is designed and tested which launches a 0.8 ns risetime, 40 ns width, and kV-level rectangular pulse from a coaxial cable onto a rod-shaped resistive high-voltage divider with risetime <2 ns with no significant distortion.
High Voltage Testing. Volume 2. Specifications and Test Procedures
1982-08-01
the greatest impact on the initial assumption and criteria developed in the published criteria documents include: dielectric withstanding voltage...3382-75 Measurement of Energy and Integrated Charge Transfer Due to Partial Discharges (Corona) Using Bridge Techniques. ASTM-D 3426 - Dielectric... Energy (NEMA Publication No. WC 7-1971). NEMA Publication No. 109 - AIEE-EEI-NEMA Standard Basic Insulation Level. 092-57 - Method of Test for Flash and
Ionita, C; Loughran, B; Nagesh, S Setlur; Jain, A; Bednarek, D; Rudin, S
2012-06-01
The MAF is a new high-resolution detector which is being clinically evaluated in neuro-vascular procedures. The detector contains a large-dynamic-range, high-sensitivity light image intensifier with variable gain. Since the MAF is a research prototype only partially integrated with the clinical system, x-ray technique parameters must be set manually. To improve workflow we developed an automatic method to estimate and set the proper LII voltage (MAF gain) for DSA acquisition based on the fluoroscopic parameters. The detector entrance exposure (XD) can be written as the x-ray tube output exposure (Xo) times an object attenuation factor and an inverse-square correction. If the object attenuation, scatter and distances are unchanged and the effect of x-ray kVp changes are neglected, then the DSA XD can be expressed as the ratio of Xo(DSA)/Xo(Fluoroscopy) multiplied with XD(fluoroscopy). We measured Xo for fluoroscopy and DSA for mAs and kVp ranges appropriate to neuro- vascular interventions and fit the data with a 2D function. To estimate the XD(Fluoroscopy) we derived a curve of XD versus LII-voltage for a mid- dynamic-range average pixel gray-level. Since the MAF system during clinical fluoroscopy automatically adjusts the LII voltage until the desired gray-level value is achieved, by reading that voltage we can estimate the XD(Fluoroscopy). Using the 2D-fit function, Xo(DSA) is automatically calculated for the kVp and mA values set and XD(DSA) can be estimated using the relation above. Using the inverse LII calibration curve, the proper LII-voltage can be determined for the desired average gray-level. The algorithm was implemented and evaluated in thirty-two in-vivo DSA runs on rabbits. The proper LII voltage was selected in all cases with no failures. Using the fluoroscopic LII gain setting to determine the appropriate DSA setting can greatly improve the workflow in clinical evaluations of the MAF. NIH Grants R01-EB008425, R01-EB002873 and an equipment grant from Toshiba Medical Systems Corp. © 2012 American Association of Physicists in Medicine.
The Noise Level Optimization for Induction Magnetometer of SEP System
NASA Astrophysics Data System (ADS)
Zhu, W.; Fang, G.
2011-12-01
The Surface Electromagnetic Penetration (SEP) System, subsidized by the SinoProbe Plan in China, is designed for 3D conductivity imaging in geophysical mineral exploration, underground water distribution exploration, oil and gas reservoir exploration. Both the Controlled Source Audio Magnetotellurics (CSAMT) method and Magnetotellurics (MT) method can be surveyed by SEP system. In this article, an optimization design is introduced, which can minimize the noise level of the induction magnetometer for SEP system magnetic field's acquisition. The induction magnetometer transfers the rate of the magnetic field's change to voltage signal by induction coil, and amplified it by Low Noise Amplifier The noise parts contributed to the magnetometer are: the coil's thermal noise, the equivalent input voltage and current noise of the pre-amplifier. The coil's thermal noise is decided by coil's DC resistance. The equivalent input voltage and current noise of the pre-amplifier depend on the amplifier's type and DC operation condition. The design here optimized the DC operation point of pre-amplifier, adjusted the DC current source, and realized the minimum of total noise level of magnetometer. The calculation and test results show that: the total noise is about 1pT/√Hz, the thermal noise of coils is 1.7nV/√Hz, the preamplifier equivalent input voltage and current noise is 3nV/ √Hz and 0.1pA/√Hz, the weight of the magnetometer is 4.5kg and meet the requirement of SEP system.
Glahn, David; Nuccitelli, Richard
2003-04-01
Voltage-clamped mature, jelly-intact Xenopus eggs were used to carefully examine the ionic currents crossing the plasma membrane before, during, and after fertilization. The bulk of the fertilization current was transient, of large amplitude, and reversed at the predicted Cl- reversal potential. However, the large amplitude fertilization current was preceded by a small, step-like increase in holding current. This small increase in holding current is referred to in this paper as Ion to acknowledge its qualitative similarity to the Ion current previously described in the sea urchin. It was observed in both fertilized and artificially activated eggs, and was found to be unaffected by 10 mm tetra-ethyl ammonium (TEA), a concentration found to block K+ currents in Rana pipiens. Current-voltage relationships are presented for the large fertilization potential, and show that the fertilization currents have a marked outward rectification and are voltage sensitive. These properties are in contrast to the total lack of rectification and slight voltage sensitivity seen before or after the fertilization currents. The time required for sperm to fertilize the egg was found to be voltage dependent with a relatively more depolarized voltage requiring a longer time for fertilization to occur. The percentage of eggs blocked with varying potential levels was determined and this information was fitted to a modified Boltzmann equation having a midpoint of -9 mV.
NASA Astrophysics Data System (ADS)
Solve, S.; Chayramy, R.; Stock, M.; Pantelic-Babic, J.; Sofranac, Z.; Cincar Vujovic, T.
2016-01-01
A comparison of the Josephson array voltage standards of the Bureau International des Poids et Mesures (BIPM) and the Directorate of Measures and Precious Metals (DMDM), Belgrade, Serbia, was carried out in June 2015 at the level of 10 V. For this exercise, options A and B of the BIPM.EM-K10.b comparison protocol were applied. Option B required the BIPM to provide a reference voltage for measurement by the DMDM using its Josephson standard with its own measuring device. Option A required the DMDM to provide a reference voltage with its Josephson voltage standard for measurement by the BIPM using an analogue nanovoltmeter and associated measurement loop. Since no sufficiently stable voltage could be achieved in this configuration, a digital detector was used. In all cases the BIPM array was kept floating from ground. The final results were in good agreement within the combined relative standard uncertainty of 1.5 parts in 1010 for the nominal voltage of 10 V. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCEM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).
NASA Astrophysics Data System (ADS)
Bhowmik, R. N.; Vijayasri, G.
2015-06-01
We have studied current-voltage (I-V) characteristics of α-Fe1.64Ga0.36O3, a typical canted ferromagnetic semiconductor. The sample showed a transformation of the I-V curves from linear to non-linear character with the increase of bias voltage. The I-V curves showed irreversible features with hysteresis loop and bi-stable electronic states for up and down modes of voltage sweep. We report positive magnetoresistance and magnetic field induced negative differential resistance as the first time observed phenomena in metal doped hematite system. The magnitudes of critical voltage at which I-V curve showed peak and corresponding peak current are affected by magnetic field cycling. The shift of the peak voltage with magnetic field showed a step-wise jump between two discrete voltage levels with least gap (ΔVP) 0.345(± 0.001) V. The magnetic spin dependent electronic charge transport in this new class of magnetic semiconductor opens a wide scope for tuning large electroresistance (˜500-700%), magnetoresistance (70-135 %) and charge-spin dependent conductivity under suitable control of electric and magnetic fields. The electric and magnetic field controlled charge-spin transport is interesting for applications of the magnetic materials in spintronics, e.g., magnetic sensor, memory devices and digital switching.
NASA Technical Reports Server (NTRS)
Asenov, Asen
1998-01-01
A three-dimensional (3-D) "atomistic" simulation study of random dopant induced threshold voltage lowering and fluctuations in sub-0.1 microns MOSFET's is presented. For the first time a systematic analysis of random dopant effects down to an individual dopant level was carried out in 3-D on a scale sufficient to provide quantitative statistical predictions. Efficient algorithms based on a single multigrid solution of the Poisson equation followed by the solution of a simplified current continuity equation are used in the simulations. The effects of various MOSFET design parameters, including the channel length and width, oxide thickness and channel doping, on the threshold voltage lowering and fluctuations are studied using typical samples of 200 atomistically different MOSFET's. The atomistic results for the threshold voltage fluctuations were compared with two analytical models based on dopant number fluctuations. Although the analytical models predict the general trends in the threshold voltage fluctuations, they fail to describe quantitatively the magnitude of the fluctuations. The distribution of the atomistically calculated threshold voltage and its correlation with the number of dopants in the channel of the MOSFET's was analyzed based on a sample of 2500 microscopically different devices. The detailed analysis shows that the threshold voltage fluctuations are determined not only by the fluctuation in the dopant number, but also in the dopant position.
Optimization of power systems with voltage security constraints
NASA Astrophysics Data System (ADS)
Rosehart, William Daniel
As open access market principles are applied to power systems, significant changes in their operation and control are occurring. In the new marketplace, power systems are operating under higher loading conditions as market influences demand greater attention to operating cost versus stability margins. Since stability continues to be a basic requirement in the operation of any power system, new tools are being considered to analyze the effect of stability on the operating cost of the system, so that system stability can be incorporated into the costs of operating the system. In this thesis, new optimal power flow (OPF) formulations are proposed based on multi-objective methodologies to optimize active and reactive power dispatch while maximizing voltage security in power systems. The effects of minimizing operating costs, minimizing reactive power generation and/or maximizing voltage stability margins are analyzed. Results obtained using the proposed Voltage Stability Constrained OPF formulations are compared and analyzed to suggest possible ways of costing voltage security in power systems. When considering voltage stability margins the importance of system modeling becomes critical, since it has been demonstrated, based on bifurcation analysis, that modeling can have a significant effect of the behavior of power systems, especially at high loading levels. Therefore, this thesis also examines the effects of detailed generator models and several exponential load models. Furthermore, because of its influence on voltage stability, a Static Var Compensator model is also incorporated into the optimization problems.
Two new families of high-gain dc-dc power electronic converters for dc-microgrids
NASA Astrophysics Data System (ADS)
Prabhala, Venkata Anand Kishore
Distributing the electric power in dc form is an appealing solution in many applications such as telecommunications, data centers, commercial buildings, and microgrids. A high gain dc-dc power electronic converter can be used to individually link low-voltage elements such as solar panels, fuel cells, and batteries to the dc voltage bus which is usually 400 volts. This way, it is not required to put such elements in a series string to build up their voltages. Consequently, each element can function at it optimal operating point regardless of the other elements in the system. In this dissertation, first a comparative study of dc microgrid architectures and their advantages over their ac counterparts is presented. Voltage level selection of dc distribution systems is discussed from the cost, reliability, efficiency, and safety standpoints. Next, a new family of non-isolated high-voltage-gain dc-dc power electronic converters with unidirectional power flow is introduced. This family of converters benefits from a low voltage stress across its switches. The proposed topologies are versatile as they can be utilized as single-input or double-input power converters. In either case, they draw continuous currents from their sources. Lastly, a bidirectional high-voltage-gain dc-dc power electronic converter is proposed. This converter is comprised of a bidirectional boost converter which feeds a switched-capacitor architecture. The switched-capacitor stage suggested here has several advantages over the existing approaches. For example, it benefits from a higher voltage gain while it uses less number of capacitors. The proposed converters are highly efficient and modular. The operating modes, dc voltage gain, and design procedure for each converter are discussed in details. Hardware prototypes have been developed in the lab. The results obtained from the hardware agree with those of the simulation models.
Ion extraction capabilities of two-grid accelerator systems. [for spacecraft propulsion
NASA Technical Reports Server (NTRS)
Rovang, D. C.; Wilbur, P. J.
1984-01-01
An experimental investigation into the ion extraction capabilities of two-grid accelerator systems common to electrostatic ion thrusters is described. A large body of experimental data which facilitates the selection of the accelerator system geometries and operating parameters necessary to maximize the extracted ion current is presented. Results suggest that the impingement-limited perveance is not dramatically affected by reductions in screen hole diameter to 0.5 mm. Impingement-limited performance is shown to depend most strongly on grid separation distance, accelerator hole diameter ratio, the discharge-to-total accelerating voltage ratio, and the net-to-total accelerating voltage ratio. Results obtained at small grid separation ratios suggest a new grid operating condition where high beam current per hole levels are achieved at a specified net accelerating voltage. It is shown that this operating condition is realized at an optimum ratio of net-to-total accelerating voltage ratio which is typically quite high.
Würfel, Uli; Neher, Dieter; Spies, Annika; Albrecht, Steve
2015-01-01
This work elucidates the impact of charge transport on the photovoltaic properties of organic solar cells. Here we show that the analysis of current–voltage curves of organic solar cells under illumination with the Shockley equation results in values for ideality factor, photocurrent and parallel resistance, which lack physical meaning. Drift-diffusion simulations for a wide range of charge-carrier mobilities and illumination intensities reveal significant carrier accumulation caused by poor transport properties, which is not included in the Shockley equation. As a consequence, the separation of the quasi Fermi levels in the organic photoactive layer (internal voltage) differs substantially from the external voltage for almost all conditions. We present a new analytical model, which considers carrier transport explicitly. The model shows excellent agreement with full drift-diffusion simulations over a wide range of mobilities and illumination intensities, making it suitable for realistic efficiency predictions for organic solar cells. PMID:25907581
Lightning effects on the NASA F-8 digital-fly-by-wire airplane
NASA Technical Reports Server (NTRS)
Plumer, J. A.; Fisher, F. A.; Walko, L. C.
1975-01-01
The effects of lightning on a Digital Fly-By-Wire (DFBW)aircraft control system were investigated. The aircraft was a NASA operated F-8 fitted with a modified Apollo guidance computer. Current pulses similar in waveshape to natural lightning, but lower in amplitude, were injected into the aircraft. Measurements were made of the voltages induced on the DFBW circuits, the total current induced on the bundles of wires, the magnetic field intensity inside the aircraft, and the current density on the skin of the aircraft. Voltage measurements were made in both the line-to-ground and line-to-line modes. Voltages measured at the non-destructive test level were then scaled upward to determine how much would be produced by actual lightning. A 200,000 ampere severe lightning flash would produce between 40 and 2000 volts in DFBW circuits. Some system components are expected to be vulnerable to these voltages.
Large Magnetoresistance at High Bias Voltage in Double-layer Organic Spin Valves
NASA Astrophysics Data System (ADS)
Subedi, R. C.; Liang, S. H.; Geng, R.; Zhang, Q. T.; Lou, L.; Wang, J.; Han, X. F.; Nguyen, T. D.
We report studies of magnetoresistance (MR) in double-layer organic spin valves (DOSV) using tris (8-hydroxyquinolinato) aluminum (Alq3) spacers. The device exhibits three distinct resistance levels depending on the relative magnetizations of the ferromagnetic electrodes. We observed a much weaker bias voltage dependence of MR in the device compared to that in the conventional organic spin valve (OSV). The MR magnitude reduces by the factor of two at 0.7 V bias voltage in the DOSV compared to 0.02 V in the conventional OSV. Remarkably, the MR magnitude reaches 0.3% at 6 V bias in the DOSVs, the largest MR response ever reported in OSVs at this bias. Our finding may have a significant impact on achieving high efficient bipolar OSVs strictly performed at high voltages. University of Georgia start-up fund, Ministry of Education, Singapore, National Natural Science Foundation of China.
Instrumentation for measurement of aircraft noise and sonic boom
NASA Technical Reports Server (NTRS)
Zuckerwar, A. J. (Inventor)
1975-01-01
A jet aircraft noise and sonic boom measuring device which converts sound pressure into electric current is described. An electric current proportional to the sound pressure level at a condenser microphone is produced and transmitted over a cable, amplified by a zero drive amplifier and recorded on magnetic tape. The converter is comprised of a local oscillator, a dual-gate field-effect transistor (FET) mixer and a voltage regulator/impedance translator. A carrier voltage that is applied to one of the gates of the FET mixer is generated by the local oscillator. The microphone signal is mixed with the carrier to produce an electrical current at the frequency of vibration of the microphone diaphragm by the FET mixer. The voltage of the local oscillator and mixer stages is regulated, the carrier at the output is eliminated, and a low output impedance at the cable terminals is provided by the voltage regulator/impedance translator.
Sheng, Duo; Lai, Hsiu-Fan; Chan, Sheng-Min; Hong, Min-Rong
2015-02-13
An all-digital on-chip delay sensor (OCDS) circuit with high delay-measurement resolution and low supply-voltage sensitivity for efficient detection and diagnosis in high-performance electronic system applications is presented. Based on the proposed delay measurement scheme, the quantization resolution of the proposed OCDS can be reduced to several picoseconds. Additionally, the proposed cascade-stage delay measurement circuit can enhance immunity to supply-voltage variations of the delay measurement resolution without extra self-biasing or calibration circuits. Simulation results show that the delay measurement resolution can be improved to 1.2 ps; the average delay resolution variation is 0.55% with supply-voltage variations of ±10%. Moreover, the proposed delay sensor can be implemented in an all-digital manner, making it very suitable for high-performance electronic system applications as well as system-level integration.
Choi, Sungjin; Lee, Junhyuk; Kim, Donghyoun; Oh, Seulki; Song, Wangyu; Choi, Seonjun; Choi, Eunsuk; Lee, Seung-Beck
2011-12-01
We report on the fabrication and capacitance-voltage characteristics of double layer nickel-silicide nanocrystals with Si3N4 interlayer tunnel barrier for nano-floating gate memory applications. Compared with devices using SiO2 interlayer, the use of Si3N4 interlayer separation reduced the average size (4 nm) and distribution (+/- 2.5 nm) of NiSi2 nanocrystal (NC) charge traps by more than 50% and giving a two fold increase in NC density to 2.3 x 10(12) cm(-2). The increased density and reduced NC size distribution resulted in a significantly decrease in the distribution of the device C-V characteristics. For each program voltage, the distribution of the shift in the threshold voltage was reduced by more than 50% on average to less than 0.7 V demonstrating possible multi-level-cell operation.
Recombination in polymer-fullerene bulk heterojunction solar cells
NASA Astrophysics Data System (ADS)
Cowan, Sarah R.; Roy, Anshuman; Heeger, Alan J.
2010-12-01
Recombination of photogenerated charge carriers in polymer bulk heterojunction (BHJ) solar cells reduces the short circuit current (Jsc) and the fill factor (FF). Identifying the mechanism of recombination is, therefore, fundamentally important for increasing the power conversion efficiency. Light intensity and temperature-dependent current-voltage measurements on polymer BHJ cells made from a variety of different semiconducting polymers and fullerenes show that the recombination kinetics are voltage dependent and evolve from first-order recombination at short circuit to bimolecular recombination at open circuit as a result of increasing the voltage-dependent charge carrier density in the cell. The “missing 0.3 V” inferred from comparison of the band gaps of the bulk heterojunction materials and the measured open-circuit voltage at room-temperature results from the temperature dependence of the quasi-Fermi levels in the polymer and fullerene domains—a conclusion based on the fundamental statistics of fermions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jer-Chyi, E-mail: jcwang@mail.cgu.edu.tw; Chang, Wei-Cheng; Lai, Chao-Sung, E-mail: cslai@mail.cgu.edu.tw
Data retention characteristics of tungsten nanocrystal (W-NC) memory devices using an oxygen plasma immersion ion implantation (PIII) treatment are investigated. With an increase of oxygen PIII bias voltage and treatment time, the capacitance–voltage hysteresis memory window is increased but the data retention characteristics become degraded. High-resolution transmission electron microscopy images show that this poor data retention is a result of plasma damage on the tunneling oxide layer, which can be prevented by lowering the bias voltage to 7 kV. In addition, by using the elevated temperature retention measurement technique, the effective charge trapping level of the WO{sub 3} film surrounding themore » W-NCs can be extracted. This measurement reveals that a higher oxygen PIII bias voltage and treatment time induces more shallow traps within the WO{sub 3} film, degrading the retention behavior of the W-NC memory.« less
Negative differential conductance in doped-silicon nanoscale devices with superconducting electrodes
NASA Astrophysics Data System (ADS)
Shapovalov, A.; Shaternik, V.; Suvorov, O.; Zhitlukhina, E.; Belogolovskii, M.
2018-02-01
We present a proof-of-concept nanoelectronics device with a negative differential conductance, an attractive from the applied viewpoint functionality. The device, characterized by the decreasing current with increasing voltage in a certain voltage region above a threshold bias of about several hundred millivolts, consists of two superconducting electrodes with an amorphous 10-nm-thick silicon interlayer doped by tungsten nano-inclusions. We show that small changes in the W content radically modify the shape of the trilayer current-voltage dependence and identify sudden conductance switching at a threshold voltage as an effect of Andreev fluctuators. The latter entities are two-level systems at the superconductor-doped silicon interface where a Cooper pair tunnels from a superconductor and occupies a pair of localized electronic states. We argue that in contrast to previously proposed devices, our samples permit very large-scale integration and are practically feasible.
Achievement and improvement of the JT-60U negative ion source for JT-60 Super Advanced (invited)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kojima, A.; Hanada, M.; Tanaka, Y.
2010-02-15
Developments of the large negative ion source have been progressed in the high-energy, high-power, and long-pulse neutral beam injector for JT-60 Super Advanced. Countermeasures have been studied and tested for critical issues of grid heat load and voltage holding capability. As for the heat load of the acceleration grids, direct interception of D{sup -} ions was reduced by adjusting the beamlet steering. As a result, the heat load was reduced below an allowable level for long-pulse injections. As for the voltage holding capability, local electric field was mitigated by tuning gap lengths between large-area acceleration grids in the accelerator. Asmore » a result, the voltage holding capability was improved up to the rated value of 500 kV. To investigate the voltage holding capability during beam acceleration, the beam acceleration test is ongoing with new extended gap.« less
Research of Influence of Noise Pollution on the Value of the Threshold Current Tangible
NASA Astrophysics Data System (ADS)
Khanzhina, Olga; Sidorov, Alexander; Zykina, Ekaterina
2017-12-01
Stable safety while working on electrical installations can be achieved by following the rules of the electrical safety. Today maximum permissible levels of touch voltage and electric current flow through any part of a person’s body are established by Russian Federation GOST system 12.1.038-82. Unfortunately, recommended by International Electrotechnical Commission (IEC) maximum allowable amount of electric current and voltage level do not take into account interaction between said electric current and other physical factors; noise, in particular. The influence of sound frequency and its pressure level on body resistance has been proven earlier in thesis by V.V. Katz. Studies of the noise effects on the value of the threshold current tangible have been renewed in laboratories of Life Safety Department in South Ural State University. To obtain reliable results, testing facility that includes anechoic chamber, sources of simulated voltages and noise and a set of recording instruments was designed and built. As a rule, noise influence on electrotechnical personnel varies depending on noise level or/and the duration of its impact. According to modern theories, indirect noise influence on various organs and systems through central nervous system has to be considered. Differential evaluation of noise pollution and its correlation with emerged effects can be obtained with the usage of the dose approach. First of all, there were conducted studies, in which frequency of the applied voltage (f) was to 50 Hz. Voltages and currents that caused sensations before and during 97 dB noise affections were measured. Obtained dependence led to questioning previous researches results of the necessity of reducing the amperage of tripping protection devices. At the same time electrical resistance changes of human body were being studied. According to those researches, no functional dependence between fluctuations in the magnitude of the resistance of human body to electric current flow and constant noise affection were found. Taking into account that contradiction, additional studies of primary electrical safety criteria for cases when exposed to high frequency noise pollution were conducted.
Precision linear ramp function generator
Jatko, W.B.; McNeilly, D.R.; Thacker, L.H.
1984-08-01
A ramp function generator is provided which produces a precise linear ramp function which is repeatable and highly stable. A derivative feedback loop is used to stabilize the output of an integrator in the forward loop and control the ramp rate. The ramp may be started from a selected baseline voltage level and the desired ramp rate is selected by applying an appropriate constant voltage to the input of the integrator.
Precision linear ramp function generator
Jatko, W. Bruce; McNeilly, David R.; Thacker, Louis H.
1986-01-01
A ramp function generator is provided which produces a precise linear ramp unction which is repeatable and highly stable. A derivative feedback loop is used to stabilize the output of an integrator in the forward loop and control the ramp rate. The ramp may be started from a selected baseline voltage level and the desired ramp rate is selected by applying an appropriate constant voltage to the input of the integrator.
A Design Methodology for Optoelectronic VLSI
2007-01-01
current gets converted to a CMOS voltage level through a transimpedance amplifier circuit called a receiver. The output of the receiver is then...change the current flowing from the diode to a voltage that the logic inputs can use. That circuit is called a receiver. It is a transimpedance amplifier ...incorpo- rate random access memory circuits, SRAM or dynamic RAM (DRAM). These circuits use weak internal analog signals that are amplified by sense
2011-03-24
and radiation resistance of rare earth permanent magnets for applications such as ion thrusters and high efficiency Stirling Radioisotope Generators...from Electron Transitioning Discharge Current Discharge Power Discharge Voltage Θ Divergence Angle Earths Gravity at Sea Level...Hall effect thruster HIVAC High Voltage Hall Accelerator LEO Low Earth Orbit LDS Laser Displacement System LVDT Linear variable differential
Silicon Photomultiplier charaterization
NASA Astrophysics Data System (ADS)
Munoz, Leonel; Osornio, Leo; Para, Adam
2014-03-01
Silicon Photo Multiples (SiPM's) are relatively new photon detectors. They offer many advantages compared to photo multiplier tubes (PMT's) such as insensitivity to magnetic field, robustness at varying lighting levels, and low cost. The SiPM output wave forms are poorly understood. The experiment conducted collected waveforms of responses of Hamamatsu SiPM to incident laser pulse at varying temperatures and bias voltages. Ambient noise was characterized at all temperatures and bias voltages by averaging the waveforms. Pulse shape of the SiPM response was determined under different operating conditions: the pulse shape is nearly independent of the bias voltage but exhibits strong variation with temperature, consistent with the temperature variation of the quenching resistor. Amplitude of responses of the SiPM to low intensity laser light shows many peaks corresponding to the detection of 1,2,3 etc. photons. Amplitude of these pulses depends linearly on the bias voltage, enabling determination of the breakdown voltage at each temperature. Poisson statistics has been used to determine the average number of detected photons at each operating conditions. Department of Education Grant No. P0315090007 and the Department of Energy/ Fermi National Accelerator Laboratory.
Single-phase frequency converter
NASA Astrophysics Data System (ADS)
Baciu, I.; Cunţan, C. D.
2017-01-01
The paper presents a continuous voltage inverter - AC (12V / 230V) made with IGBT and two-stage voltage transformer. The sequence control transistors is achieved using a ring counter whose clock signal is obtained with a monostable circuit LM 555. The frequency of the clock signal can be adjustment with a potentiometer that modifies the charging current of the capacitor which causes constant monostable circuit time. Command sequence consists of 8 intervals of which 6 are assigned to command four transistors and two for the period break at the beginning and end of the sequence control. To obtain an alternation consisting of two different voltage level, two transistors will be comanded, connected to different windings of the transformer and the one connected to the winding providing lower voltage must be comanded twice. The output of the numerator goes through an inverter type MOS and a current amplifier with bipolar transistor.To achieve galvanic separation, an optocoupler will be used for each IGBT transistor, while protection is achieved with resistance and diode circuit. At the end there is connected an LC filter for smoothing voltage variations.
Effect of pulsed corona discharge voltage and feed gas flow rate on dissolved ozone concentration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prasetyaningrum, A., E-mail: ajiprasetyaningrum@gmail.com; Ratnawati,; Jos, B.
Ozonization is one of the methods extensively used for water purification and degradation of organic materials. Ozone (O{sub 3}) is recognized as a powerful oxidizing agent. Due to its strong oxidability and better environmental friendless, ozone increasing being used in domestic and industrial applications. Current technology in ozone production utilizes several techniques (corona discharge, ultra violet radiation and electrolysis). This experiment aimed to evaluating effect of voltage and gas flow rate on ozone production with corona discharge. The system consists of two net-type stainless steel electrode placed in a dielectric barrier. Three pulsed voltage (20, 30, 40 KV) and flowmore » rate (5, 10, 15 L/min) were prepare for operation variable at high frequency (3.7 kHz) with AC pulsed power supply. The dissolved ozone concentration depends on the applied high-voltage level, gas flow rate and the discharge exposure duration. The ozone concentration increases with decreasing gas flow rate. Dissolved ozone concentrations greater than 200 ppm can be obtained with a minimum voltage 40 kV.« less
Modelling and simulation of fuel cell dynamics for electrical energy usage of Hercules airplanes.
Radmanesh, Hamid; Heidari Yazdi, Seyed Saeid; Gharehpetian, G B; Fathi, S H
2014-01-01
Dynamics of proton exchange membrane fuel cells (PEMFC) with hydrogen storage system for generating part of Hercules airplanes electrical energy is presented. Feasibility of using fuel cell (FC) for this airplane is evaluated by means of simulations. Temperature change and dual layer capacity effect are considered in all simulations. Using a three-level 3-phase inverter, FC's output voltage is connected to the essential bus of the airplane. Moreover, it is possible to connect FC's output voltage to airplane DC bus alternatively. PID controller is presented to control flow of hydrogen and oxygen to FC and improve transient and steady state responses of the output voltage to load disturbances. FC's output voltage is regulated via an ultracapacitor. Simulations are carried out via MATLAB/SIMULINK and results show that the load tracking and output voltage regulation are acceptable. The proposed system utilizes an electrolyser to generate hydrogen and a tank for storage. Therefore, there is no need for batteries. Moreover, the generated oxygen could be used in other applications in airplane.
Voltage control in Z-source inverter using low cost microcontroller for undergraduate approach
NASA Astrophysics Data System (ADS)
Zulkifli, Shamsul Aizam; Sewang, Mohd Rizal; Salimin, Suriana; Shah, Noor Mazliza Badrul
2017-09-01
This paper is focussing on controlling the output voltage of Z-Source Inverter (ZSI) using a low cost microcontroller with MATLAB-Simulink that has been used for interfacing the voltage control at the output of ZSI. The key advantage of this system is the ability of a low cost microcontroller to process the voltage control blocks based on the mathematical equations created in MATLAB-Simulink. The Proportional Integral (PI) control equations are been applied and then, been downloaded to the microcontroller for observing the changes on the voltage output regarding to the changes on the reference on the PI. The system has been simulated in MATLAB and been verified with the hardware setup. As the results, the Raspberry Pi and Arduino that have been used in this work are able to respond well when there is a change of ZSI output. It proofed that, by applying/introducing this method to student in undergraduate level, it will help the student to understand more on the process of the power converter combine with a control feedback function that can be applied at low cost microcontroller.
Modelling and Simulation of Fuel Cell Dynamics for Electrical Energy Usage of Hercules Airplanes
Radmanesh, Hamid; Heidari Yazdi, Seyed Saeid; Gharehpetian, G. B.; Fathi, S. H.
2014-01-01
Dynamics of proton exchange membrane fuel cells (PEMFC) with hydrogen storage system for generating part of Hercules airplanes electrical energy is presented. Feasibility of using fuel cell (FC) for this airplane is evaluated by means of simulations. Temperature change and dual layer capacity effect are considered in all simulations. Using a three-level 3-phase inverter, FC's output voltage is connected to the essential bus of the airplane. Moreover, it is possible to connect FC's output voltage to airplane DC bus alternatively. PID controller is presented to control flow of hydrogen and oxygen to FC and improve transient and steady state responses of the output voltage to load disturbances. FC's output voltage is regulated via an ultracapacitor. Simulations are carried out via MATLAB/SIMULINK and results show that the load tracking and output voltage regulation are acceptable. The proposed system utilizes an electrolyser to generate hydrogen and a tank for storage. Therefore, there is no need for batteries. Moreover, the generated oxygen could be used in other applications in airplane. PMID:24782664
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korolev, Yu. D.; Landl, N. V., E-mail: landl@lnp.hcei.tsc.ru; Geyman, V. G.
Results from studies of a low-current glow discharge with a hollow cathode are presented. A specific feature of the discharge conditions was that a highly emissive tablet containing cesium carbonate was placed in the cathode cavity. In the absence of a tablet, the discharge ignition voltage was typically ≥3.5 kV, while the burning voltage was in the range of 500–600 V. The use of the tablet made it possible to decrease the ignition voltage to 280 V and maintain the discharge burning voltage at a level of about 130 V. A model of the current sustainment in a hollow-cathode dischargemore » is proposed. Instead of the conventional secondary emission yield, the model uses a generalized emission yield that takes into account not only ion bombardment of the cathode, but also the emission current from an external source. The model is used to interpret the observed current−voltage characteristics. The results of calculations agree well with the experimental data. It is shown that, in some discharge modes, the external emission current from the cathode can reach 25% of the total discharge current.« less
Carbon nanotube vacuum gauges with wide-dynamic range and processes thereof
NASA Technical Reports Server (NTRS)
Manohara, Harish (Inventor); Kaul, Anupama B. (Inventor)
2013-01-01
A miniature thermal conductivity gauge employs a carbon single-walled-nanotube. The gauge operates on the principle of thermal exchange between the voltage-biased nanotube and the surrounding gas at low levels of power and low temperatures to measure vacuum across a wide dynamic range. The gauge includes two terminals, a source of constant voltage to the terminals, a single-walled carbon nanotube between the terminals, a calibration of measured conductance of the nanotube to magnitudes of surrounding vacuum and a current meter in electrical communication with the source of constant voltage. Employment of the nanotube for measuring vacuum includes calibrating the electrical conductance of the nanotube to magnitudes of vacuum, exposing the nanotube to a vacuum, applying a constant voltage across the nanotube, measuring the electrical conductance of the nanotube in the vacuum with the constant voltage applied and converting the measured electrical conductance to the corresponding calibrated magnitude of vacuum using the calibration. The nanotube may be suspended to minimize heat dissipation through the substrate, increasing sensitivity at even tower pressures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grishakov, K. S., E-mail: ksgrishakov@yahoo.com; Elesin, V. F.
A numerical solution to the problem of transient processes in a resonant tunneling diode featuring a current–voltage characteristic with hysteresis is found for the first time in the context of a coherent model (based on the coupled Schrödinger and Poisson equations) taking into account the Fermi distribution of electrons. The transitions from the high-current to the low-current state and vice versa, which result from the existence of hysteresis and are of great practical importance for ultrafast switches based on resonant tunneling diodes, are studied in detail. It is shown that the transition times for such processes initiated by the applicationmore » of a small voltage can significantly exceed the characteristic time ℏ/Γ (where G is the width of the resonance level). It is established for the first time that the transition time can be reduced and made as short as the characteristic time ℏ/Γ by applying a sufficiently high voltage. For the parameters of the resonant-tunnelingdiode structure considered in this study, the required voltage is about 0.01 V.« less
Effect of pulsed corona discharge voltage and feed gas flow rate on dissolved ozone concentration
NASA Astrophysics Data System (ADS)
Prasetyaningrum, A.; Ratnawati, Jos, B.
2015-12-01
Ozonization is one of the methods extensively used for water purification and degradation of organic materials. Ozone (O3) is recognized as a powerful oxidizing agent. Due to its strong oxidability and better environmental friendless, ozone increasing being used in domestic and industrial applications. Current technology in ozone production utilizes several techniques (corona discharge, ultra violet radiation and electrolysis). This experiment aimed to evaluating effect of voltage and gas flow rate on ozone production with corona discharge. The system consists of two net-type stainless steel electrode placed in a dielectric barrier. Three pulsed voltage (20, 30, 40 KV) and flow rate (5, 10, 15 L/min) were prepare for operation variable at high frequency (3.7 kHz) with AC pulsed power supply. The dissolved ozone concentration depends on the applied high-voltage level, gas flow rate and the discharge exposure duration. The ozone concentration increases with decreasing gas flow rate. Dissolved ozone concentrations greater than 200 ppm can be obtained with a minimum voltage 40 kV.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Qu; Wang, Lei; Zhou, Ziyao
To overcome the fundamental challenge of the weak natural response of antiferromagnetic materials under a magnetic field, voltage manipulation of antiferromagnetic interaction is developed to realize ultrafast, high-density, and power efficient antiferromagnetic spintronics. Here, we report a low voltage modulation of Ruderman–Kittel–Kasuya–Yosida (RKKY) interaction via ionic liquid gating in synthetic antiferromagnetic multilayers of FeCoB/Ru/FeCoB and (Pt/Co) 2/Ru/(Co/Pt) 2. At room temperature, the distinct voltage control of transition between antiferromagnetic and ferromagnetic ordering is realized and up to 80% of perpendicular magnetic moments manage to switch with a small-applied voltage bias of 2.5 V. We related this ionic liquid gating-induced RKKYmore » interaction modification to the disturbance of itinerant electrons inside synthetic antiferromagnetic heterostructure and the corresponding change of its Fermi level. Voltage tuning of RKKY interaction may enable the next generation of switchable spintronics between antiferromagnetic and ferromagnetic modes with both fundamental and practical perspectives.« less
NASA Astrophysics Data System (ADS)
Doi, Masafumi; Tokutomi, Tsukasa; Hachiya, Shogo; Kobayashi, Atsuro; Tanakamaru, Shuhei; Ning, Sheyang; Ogura Iwasaki, Tomoko; Takeuchi, Ken
2016-08-01
NAND flash memory’s reliability degrades with increasing endurance, retention-time and/or temperature. After a comprehensive evaluation of 1X nm triple-level cell (TLC) NAND flash, two highly reliable techniques are proposed. The first proposal, quick low-density parity check (Quick-LDPC), requires only one cell read in order to accurately estimate a bit-error rate (BER) that includes the effects of temperature, write and erase (W/E) cycles and retention-time. As a result, 83% read latency reduction is achieved compared to conventional AEP-LDPC. Also, W/E cycling is extended by 100% compared with conventional Bose-Chaudhuri-Hocquenghem (BCH) error-correcting code (ECC). The second proposal, dynamic threshold voltage optimization (DVO) has two parts, adaptive V Ref shift (AVS) and V TH space control (VSC). AVS reduces read error and latency by adaptively optimizing the reference voltage (V Ref) based on temperature, W/E cycles and retention-time. AVS stores the optimal V Ref’s in a table in order to enable one cell read. VSC further improves AVS by optimizing the voltage margins between V TH states. DVO reduces BER by 80%.
Neuroactive Steroids: Receptor Interactions and Responses
Tuem, Kald Beshir; Atey, Tesfay Mehari
2017-01-01
Neuroactive steroids (NASs) are naturally occurring steroids, which are synthesized centrally as de novo from cholesterol and are classified as pregnane, androstane, and sulfated neurosteroids (NSs). NASs modulate many processes via interacting with gamma-aminobutyric acid (GABA), N-methyl-d-aspartate, serotonin, voltage-gated calcium channels, voltage-dependent anion channels, α-adrenoreceptors, X-receptors of the liver, transient receptor potential channels, microtubule-associated protein 2, neurotrophin nerve growth factor, and σ1 receptors. Among these, NSs (especially allopregnanolone) have high potency and extensive GABA-A receptors and hence demonstrate anticonvulsant, anesthetic, central cytoprotectant, and baroreflex inhibitory effects. NSs are also involved in mood and learning via serotonin and anti-nociceptive activity via T-type voltage-gated Ca2+ channels. Moreover, they are modulators of mitochondrial function, synaptic plasticity, or regulators of apoptosis, which have a role in neuroprotective via voltage-dependent anion channels receptors. For proper functioning, NASs need to be in their normal level, whereas excess and deficiency may lead to abnormalities. When they are below the normal, NSs could have a part in development of depression, neuro-inflammation, multiple sclerosis, experimental autoimmune encephalitis, epilepsy, and schizophrenia. On the other hand, stress and attention deficit disorder could occur during excessive level. Overall, NASs are very important molecules with major neuropsychiatric activity. PMID:28894435
NASA Technical Reports Server (NTRS)
Wolf, M.; Noel, G. T.; Stirn, R. J.
1977-01-01
Difficulties in relating observed current-voltage characteristics of individual silicon solar cells to their physical and material parameters were underscored by the unexpected large changes in the current-voltage characteristics telemetered back from solar cells on the ATS-1 spacecraft during their first year in synchronous orbit. Depletion region recombination was studied in cells exhibiting a clear double-exponential dark characteristic by subjecting the cells to proton irradiation. A significant change in the saturation current, an effect included in the Sah, Noyce, Shockley formulation of diode current resulting from recombination in the depletion region, was caused by the introduction of shallow levels in the depletion region by the proton irradiation. This saturation current is not attributable only to diffusion current from outside the depletion region and only its temperature dependence can clarify its origin. The current associated with the introduction of deep-lying levels did not change significantly in these experiments.
Design of a fast computer-based partial discharge diagnostic system
NASA Technical Reports Server (NTRS)
Oliva, Jose R.; Karady, G. G.; Domitz, Stan
1991-01-01
Partial discharges cause progressive deterioration of insulating materials working in high voltage conditions and may lead ultimately to insulator failure. Experimental findings indicate that deterioration increases with the number of discharges and is consequently proportional to the magnitude and frequency of the applied voltage. In order to obtain a better understanding of the mechanisms of deterioration produced by partial discharges, instrumentation capable of individual pulse resolution is required. A new computer-based partial discharge detection system was designed and constructed to conduct long duration tests on sample capacitors. This system is capable of recording large number of pulses without dead time and producing valuable information related to amplitude, polarity, and charge content of the discharges. The operation of the system is automatic and no human supervision is required during the testing stage. Ceramic capacitors were tested at high voltage in long duration tests. The obtained results indicated that the charge content of partial discharges shift towards high levels of charge as the level of deterioration in the capacitor increases.
NASA Astrophysics Data System (ADS)
Sapteka, A. A. N. G.; Narottama, A. A. N. M.; Winarta, A.; Amerta Yasa, K.; Priambodo, P. S.; Putra, N.
2018-01-01
Solar energy utilized with solar panel is a renewable energy that needs to be studied further. The site nearest to the equator, it is not surprising, receives the highest solar energy. In this paper, a modelling of electrical characteristics of 150-Watt peak solar panels using Boltzmann sigmoid function under various temperature and irradiance is reported. Current, voltage, temperature and irradiance data in Denpasar, a city located at just south of equator, was collected. Solar power meter is used to measure irradiance level, meanwhile digital thermometer is used to measure temperature of front and back panels. Short circuit current and open circuit voltage data was also collected at different temperature and irradiance level. Statistically, the electrical characteristics of 150-Watt peak solar panel can be modelled using Boltzmann sigmoid function with good fit. Therefore, it can be concluded that Boltzmann sigmoid function might be used to determine current and voltage characteristics of 150-Watt peak solar panel under various temperature and irradiance.
NASA Astrophysics Data System (ADS)
Wan, Xiaodong; Wang, Yuanxun; Zhao, Dawei; Huang, YongAn
2017-09-01
Our study aims at developing an effective quality monitoring system in small scale resistance spot welding of titanium alloy. The measured electrical signals were interpreted in combination with the nugget development. Features were extracted from the dynamic resistance and electrode voltage curve. A higher welding current generally indicated a lower overall dynamic resistance level. A larger electrode voltage peak and higher change rate of electrode voltage could be detected under a smaller electrode force or higher welding current condition. Variation of the extracted features and weld quality was found more sensitive to the change of welding current than electrode force. Different neural network model were proposed for weld quality prediction. The back propagation neural network was more proper in failure load estimation. The probabilistic neural network model was more appropriate to be applied in quality level classification. A real-time and on-line weld quality monitoring system may be developed by taking advantages of both methods.
Apparatus and method for monitoring the presence of a conductive media
DuVall, Bruce W.; Valentine, James W.; Morey, Kenneth O.
1979-01-01
An inductive level sensor has inductively coupled primary and secondary windings. Circuitry drives the primary with an AC signal of constant current magnitude and selected frequency f to induce in the secondary, a voltage signal V of magnitude .vertline.V.vertline., frequency f and phase difference .phi. from the driving signal. Circuitry operates to generate a voltage output signal proportional to .vertline.V.vertline. cos (.phi.-.theta.), where .theta. is a selectively set phase shift factor. By properly and selectively adjusting the frequency f and phase shift factor .theta., an output signal .vertline.V.vertline. cos (.phi.-.theta.) can be provided which self-compensates for changes in mutual inductance caused by operating temperature variations so that an output signal is produced which is substantially linearly proportional to changes in the level of a pool of liquid metal being monitored. Disclosed also is calibration circuitry and circuitry for converting the voltage signal .vertline.V.vertline. cos (.phi.-.theta.) into a current signal.
High-voltage electrode optimization towards uniform surface treatment by a pulsed volume discharge
NASA Astrophysics Data System (ADS)
Ponomarev, A. V.; Pedos, M. S.; Scherbinin, S. V.; Mamontov, Y. I.; Ponomarev, S. V.
2015-11-01
In this study, the shape and material of the high-voltage electrode of an atmospheric pressure plasma generation system were optimised. The research was performed with the goal of achieving maximum uniformity of plasma treatment of the surface of the low-voltage electrode with a diameter of 100 mm. In order to generate low-temperature plasma with the volume of roughly 1 cubic decimetre, a pulsed volume discharge was used initiated with a corona discharge. The uniformity of the plasma in the region of the low-voltage electrode was assessed using a system for measuring the distribution of discharge current density. The system's low-voltage electrode - collector - was a disc of 100 mm in diameter, the conducting surface of which was divided into 64 radially located segments of equal surface area. The current at each segment was registered by a high-speed measuring system controlled by an ARM™-based 32-bit microcontroller. To facilitate the interpretation of results obtained, a computer program was developed to visualise the results. The program provides a 3D image of the current density distribution on the surface of the low-voltage electrode. Based on the results obtained an optimum shape for a high-voltage electrode was determined. Uniformity of the distribution of discharge current density in relation to distance between electrodes was studied. It was proven that the level of non-uniformity of current density distribution depends on the size of the gap between electrodes. Experiments indicated that it is advantageous to use graphite felt VGN-6 (Russian abbreviation) as the material of the high-voltage electrode's emitting surface.
NASA Astrophysics Data System (ADS)
Soreng, Bineeta; Behera, Pradyumna; Pradhan, Raseswari
2017-08-01
This paper presents model of a grid-integrated photovoltaic array with Maximum Power Point Tracker (MPPT) and voltage oriented controller. The MPPT of the PV array is usually an essential part of PV system as MPPT helps the operating point of the solar array to align its maximum power point. In this model, the MPPT along with a DC-DC converter lets a PV generator to produce continuous power, despite of the measurement conditions. The neutral-point-clamped converter (NPC) with a boost converter raises the voltage from the panels to the DC-link. An LCL-filter smoothens the current ripple caused by the PWM modulation of the grid-side inverter. In addition to the MPPT, the system has two more two controllers, such as voltage controller and a current controller. The voltage control has a PI controller to regulate the PV voltage to optimal level by controlling the amount of current injected into the boost stage. Here, the grid-side converter transfers the power from the DC-link into the grid and maintains the DC-link voltage. Three-phase PV inverters are used for off-grid or designed to create utility frequency AC. The PV system can be connected in series or parallel to get the desired output power. To justify the working of this model, the grid-integrated PV system has been designed in MATLAB/PLECS. The simulation shows the P-V curve of implemented PV Array consisting 4 X 20 modules, reactive, real power, grid voltage and current.
Expression, purification, and reconstitution of the voltage-sensing domain from Ci-VSP.
Li, Qufei; Jogini, Vishwanath; Wanderling, Sherry; Cortes, D Marien; Perozo, Eduardo
2012-10-16
The voltage-sensing domain (VSD) is the common scaffold responsible for the functional behavior of voltage-gated ion channels, voltage sensitive enzymes, and proton channels. Because of the position of the voltage dependence of the available VSD structures, at present, they all represent the activated state of the sensor. Yet in the absence of a consensus resting state structure, the mechanistic details of voltage sensing remain controversial. The voltage dependence of the VSD from Ci-VSP (Ci-VSD) is dramatically right shifted, so that at 0 mV it presumably populates the putative resting state. Appropriate biochemical methods are an essential prerequisite for generating sufficient amounts of Ci-VSD protein for high-resolution structural studies. Here, we present a simple and robust protocol for the expression of eukaryotic Ci-VSD in Escherichia coli at milligram levels. The protein is pure, homogeneous, monodisperse, and well-folded after solubilization in Anzergent 3-14 at the analyzed concentration (~0.3 mg/mL). Ci-VSD can be reconstituted into liposomes of various compositions, and initial site-directed spin labeling and electron paramagnetic resonance (EPR) spectroscopic measurements indicate its first transmembrane segment folds into an α-helix, in agreement with the homologous region of other VSDs. On the basis of our results and enhanced relaxation EPR spectroscopy measurement, Ci-VSD reconstitutes essentially randomly in proteoliposomes, precluding straightforward application of transmembrane voltages in combination with spectroscopic methods. Nevertheless, these results represent an initial step that makes the resting state of a VSD accessible to a variety of biophysical and structural approaches, including X-ray crystallography, spectroscopic methods, and electrophysiology in lipid bilayers.
Expression, Purification and Reconstitution of the Voltage Sensing Domain from Ci-VSP
Li, Qufei; Jogini, Vishwanath; Wanderling, Sherry; Cortes, D. Marien; Perozo, Eduardo
2013-01-01
The voltage-sensing domain (VSD) is the common scaffold responsible for the functional behavior of voltage gated ion channels, voltage sensitive enzymes and proton channels. Because of the position of the voltage dependence of the available VSD structures, at present, they all represent the activated state of the sensor. Yet, in the absence of a consensus resting state structure, the mechanistic details of voltage sensing remain controversial. The voltage dependence of the VSD from Ci-VSP (Ci-VSD) is dramatically right shifted, so that at 0 mV It presumably populates the putative resting state. Appropriate biochemical methods are an essential prerequisite to generate sufficient amounts of Ci-VSD protein for high-resolution structural studies. Here, we present a simple and robust protocol for the Escherichia coli expression of eukaryotic Ci-VSD at milligram levels. The protein is pure, homogeneous, mono-disperse and well folded after solubilization in Anzergent 3-14 at the analyzed concentration (~ 0.3 mg/mL). Ci-VSD can be reconstituted into liposomes of various compositions and initial site-directed spin labeling and EPR spectroscopic measurements indicate its first transmembrane segment folds into an α-helix, in agreement to the homologous region of other VSDs. Based on current results and enhanced relaxation EPR spectroscopy measurement, Ci-VSD reconstitutes essentially randomly in proteo-liposomes, precluding straightforward application of transmembrane voltages in combination with spectroscopic methods. Nevertheless, the present results represent an initial step that makes the resting state of a VSD accessible to a variety of biophysical and structural approaches, including X-ray crystallography, spectroscopic methods and electrophysiology in lipid bilayers. PMID:22989304
Guerrero, Antonio; Marchesi, Luís F; Boix, Pablo P; Ruiz-Raga, Sonia; Ripolles-Sanchis, Teresa; Garcia-Belmonte, Germà; Bisquert, Juan
2012-04-24
Electronic equilibration at the metal-organic interface, leading to equalization of the Fermi levels, is a key process in organic optoelectronic devices. How the energy levels are set across the interface determines carrier extraction at the contact and also limits the achievable open-circuit voltage under illumination. Here, we report an extensive investigation of the cathode energy equilibration of organic bulk-heterojunction solar cells. We show that the potential to balance the mismatch between the cathode metal and the organic layer Fermi levels is divided into two contributions: spatially extended band bending in the organic bulk and voltage drop at the interface dipole layer caused by a net charge transfer. We scan the operation of the cathode under a varied set of conditions, using metals of different work functions in the range of ∼2 eV, different fullerene acceptors, and several cathode interlayers. The measurements allow us to locate the charge-neutrality level within the interface density of sates and calculate the corresponding dipole layer strength. The dipole layer withstands a large part of the total Fermi level mismatch when the polymer:fullerene blend ratio approaches ∼1:1, producing the practical alignment between the metal Fermi level and the charge-neutrality level. Origin of the interface states is linked with fullerene reduced molecules covering the metal contact. The dipole contribution, and consequently the band bending, is highly sensitive to the nature and amount of fullerene molecules forming the interface density of states. Our analysis provides a detailed picture of the evolution of the potentials in the bulk and the interface of the solar cell when forward voltage is applied or when photogeneration takes place.
Electric power distribution and load transfer system
NASA Technical Reports Server (NTRS)
Bradford, Michael P. (Inventor); Parkinson, Gerald W. (Inventor); Grant, Ross M. (Inventor)
1987-01-01
A power distribution system includes a plurality of power sources and load transfer units including transistors and diodes connected in series and leading to a common power output, each of the transistors being controller switchable subject to voltage levels of the respective input and output sides of said transistors, and the voltage and current level of said common power output. The system is part of an interconnection scheme in which all but one of the power sources is connected to a single load transfer unit, enabling the survival of at least a single power source with the failure of one of the load transfer units.
Electric power distribution and load transfer system
NASA Technical Reports Server (NTRS)
Bradford, Michael P. (Inventor); Parkinson, Gerald W. (Inventor); Grant, Ross M. (Inventor)
1989-01-01
A power distribution system includes a plurality of power sources and load transfer units including transistors and diodes connected in series and leading to a common power output, each of the transistors being controller switchable subject to voltage levels of the respective input and output sides of said transistors, and the voltage and current level of said common power output. The system is part of an interconnection scheme in which all but one of the power sources is connected to a single load transfer unit, enabling the survival of at least a single power source with the failure of one of the load transfer units.
NASA Astrophysics Data System (ADS)
Fou, A. C.; Onitsuka, O.; Ferreira, M.; Rubner, M. F.; Hsieh, B. R.
1996-05-01
Light-emitting diodes have been fabricated from self-assembled multilayers of poly(p-phenylene vinylene) (PPV) and two different polyanions; polystyrene sulfonic acid (SPS) and polymethacrylic acid (PMA). The type of polyanion used to assemble the multilayer thin films was found to dramatically influence the behavior and performance of devices fabricated with indium tin oxide and aluminum electrodes. Light-emitting devices fabricated from PMA/PPV multilayers were found to exhibit luminance levels in the range of 20-60 cd/m2, a thickness dependent turn-on voltage and classical rectifying behavior with rectification ratios greater than 105. In sharp contrast, the devices based on SPS/PPV exhibited near symmetric current-voltage curves, thickness independent turn-on voltages and much lower luminance levels. The significant difference in device behavior observed between these two systems is primarily due to a doping effect induced either chemically or electrochemically by the sulfonic acid groups of SPS. It was also found that the performance of these devices depends on the type of layer that is in contact with the Al top electrode thereby making it possible to manipulate device efficiency at the molecular level.
NASA Astrophysics Data System (ADS)
Zhang, Zisheng; Sun, Bo; Yang, Jie; Wei, Yusheng; He, Shoujie
2017-04-01
Electrostatic separation technology has been proven to be an effective and environmentally friendly way of recycling electronic waste. In this study, this technology was applied to recycle waste solar panels. Mixed particles of silver and polyethylene terephthalate, silicon and polyethylene terephthalate, and silver and silicon were separated with a single-roll-type electrostatic separator. The influence of high voltage level, roll speed, radial position corona electrode and angular position of the corona electrode on the separation efficiency was studied. The experimental data showed that separation of silver/polyethylene terephthalate and silicon/polyethylene terephthalate needed a higher voltage level, while separation of silver and silicon needed a smaller angular position for the corona electrode and a higher roll speed. The change of the high voltage level, roll speed, radial position of the corona electrode, and angular position of the corona electrode has more influence on silicon separation efficiency than silver separation efficiency. An integrated process is proposed using a two-roll-type corona separator for multistage separation of a mixture of these three materials. The separation efficiency for silver and silicon were found to reach 96% and 98%, respectively.
Doering, Stefan; Wachowiak, Andre; Roetz, Hagen; Eckl, Stefan; Mikolajick, Thomas
2018-06-01
Scanning spreading resistance microscopy (SSRM) with its high spatial resolution and high dynamic signal range is a powerful tool for two-dimensional characterization of semiconductor dopant areas. However, the application of the method is limited to devices in equilibrium condition, as the investigation of actively operated devices would imply potential differences within the device, whereas SSRM relies on a constant voltage difference between sample surface and probe tip. Furthermore, the standard preparation includes short circuiting of all device components, limiting applications to devices in equilibrium condition. In this work scanning dynamic voltage spreading resistance microscopy (SDVSRM), a new SSRM based two pass atomic force microscopy (AFM) technique is introduced, overcoming these limitations. Instead of short circuiting the samples during preparation, wire bond devices are used allowing for active control of the individual device components. SDVSRM consists of two passes. In the first pass the local sample surface voltage dependent on the dc biases applied to the components of the actively driven device is measured as in scanning voltage microscopy (SVM). The local spreading resistance is measured within the second pass, in which the afore obtained local surface voltage is used to dynamically adjust the terminal voltages of the device under test. This is done in a way that the local potential difference across the nano-electrical contact matches the software set SSRM measurement voltage, and at the same time, the internal voltage differences within the device under test are maintained. In this work the proof of the concept could be demonstrated by obtaining spreading resistance data of an actively driven photodiode test device. SDVSRM adds a higher level of flexibility in general to SSRM, as occurring differences in cross section surface voltage are taken into account. These differences are immanent for actively driven devices, but can also be present at standard, short circuited samples. Therefore, SDVSRM could improve the characterization under equilibrium conditions as well. Copyright © 2018. Published by Elsevier B.V.
Measuring the upset of CMOS and TTL due to HPM-signals
NASA Astrophysics Data System (ADS)
Esser, N.; Smailus, B.
2004-05-01
To measure the performance of electronic components when stressed by High Power Microwave signals a setup was designed and tested which allows a well-defined voltage signal to enter the component during normal operation, and to discriminate its effect on the component. The microwave signal is fed to the outside conductor of a coaxial cable and couples into the inner signal line connected to the device under test (DUT). The disturbing HF-signal is transferred almost independent from frequency to maintain the pulse shape in the time domain. The configuration designed to perform a TEM-coupling within a 50 Ohm system prevents the secondary system from feeding back to the primary system and, due to the geometrical parameters chosen, the coupling efficiency is as high as 50-90%. Linear dimensions and terminations applied allow for pulses up to a width of 12ns and up to a voltage level of 4-5 kV on the outside conductor. These pulse parameters proved to be sufficient to upset the DUTs tested so far. In more than 400 measurements a rectangular pulse of increasing voltage level was applied to different types of CMOS and TTL until the individual DUT was damaged. As well the pulse width (3, 6 or 12 ns) and its polarity were varied in single-shot or repetitive-shot experiments (500 shots per voltage at a repetition rate of 3 Hz). The state of the DUT was continuously monitored by measuring both the current of the DUT circuit and that of the oscillator providing the operating signal for the DUT. The results show a very good reproducibility within a set of identical samples, remarkable differences between manufacturers and lower thresholds for repetitive testing, which indicates a memory effect of the DUT to exist for voltage levels significantly below the single-shot threshold.
NASA Astrophysics Data System (ADS)
Korkut, A.
It is well known that the semiconductor surface is easily oxidized by air-media in time. This work studieds the characterization of Schottky diodes and changes in depletion capacitance, which is caused by air exposure of a group of Cu/n-Si/Al Schottky diodes. First, data for current-voltage and capacitance-voltage were a Ren, and then ideality factor, barrier height, built-in potential (Vbi), donor concentration and Fermi level, interfacial oxide thickness, interface state density were calculated. It is seen that depletion capacitance was calculate; whereafter built-in potential played an important role in Schottky diodes characteristic. Built-in potential directly affects the characteristic of Schottky diodes and a turning point occurs. In case of forward and reverse bias, depletion capacitance versus voltage graphics are matched, but in an opposite direction. In case of forward bias, differential depletion capacitance begins from minus values, it is raised to first Vbi, then reduced to second Vbi under the minus condition. And it sharply gones up to positive apex, then sharply falls down to near zero, but it takes positive values depending on DC voltage. In case of reverse bias, differential depletion capacitance takes to small positive values. In other respects, we see that depletion characteristics change considerably under DC voltage.
NASA Astrophysics Data System (ADS)
Solve, S.; Chayramy, R.; Stock, M.; Pimsut, S.; Rujirat, N.
2016-01-01
A comparison of the Josephson array voltage standards of the Bureau International des Poids et Mesures (BIPM) and the National Institute of Metrology - (Thailand), NIMT, was carried out in November 2015 at the level of 10 V. For this exercise, options A and B of the BIPM.EM-K10.b comparison protocol were applied. Option B required the BIPM to provide a reference voltage for measurement by the NIMT using its Josephson standard with its own measuring device. Option A required the NIMT to provide a reference voltage with its Josephson voltage standard for measurement by the BIPM using an analogue nanovoltmeter and associated measurement loop. In all cases the BIPM array was kept floating from ground. The final results were in good agreement within the combined relative standard uncertainty of 2.6 parts in 1010 for the nominal voltage of 10 V. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCEM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).
NASA Astrophysics Data System (ADS)
Dong, Xiaofei; Xu, Jianping; Shi, Shaobo; Zhang, Xiaosong; Li, Lan; Yin, Shougen
2017-05-01
We report tunable electroluminescence (EL) from solution-processed ZnCuInS/ZnS (ZCIS/ZnS) quantum dots (QDs)/poly(9-vinlycarbazole) multilayer films. The EL spectra exhibit a red shift as the QD layer thickness increases. By analyzing the dependence of the applied voltage and the ZCIS/ZnS QD layer thickness on the EL spectra, the origin of the red shift is associated with the increased trap density of QDs that induces the injected electrons to be trapped in the deep donor level. The current conduction mechanism based on the current density-voltage curves at different voltage regions was discussed.
NASA Technical Reports Server (NTRS)
Aston, Graeme; Brophy, John R.
1987-01-01
Results from a series of experiments to determine the effect of accelerator grid mount geometry on the performance of the J-series ion optics assembly are described. Three mounting schemes, two flexible and one rigid, are compared for their relative ion extraction capability over a range of total accelerating voltages. The largest ion beam current, for the maximum total voltage investigated, is shown to occur using one of the flexible grid mounting geometries. However, at lower total voltages and reduced engine input power levels, the original rigid J-series ion optics accelerator grid mounts result in marginally better grid system performance at the same cold interelectrode gap.
Multi-KW dc distribution system technology research study
NASA Technical Reports Server (NTRS)
Dawson, S. G.
1978-01-01
The Multi-KW DC Distribution System Technology Research Study is the third phase of the NASA/MSFC study program. The purpose of this contract was to complete the design of the integrated technology test facility, provide test planning, support test operations and evaluate test results. The subjet of this study is a continuation of this contract. The purpose of this continuation is to study and analyze high voltage system safety, to determine optimum voltage levels versus power, to identify power distribution system components which require development for higher voltage systems and finally to determine what modifications must be made to the Power Distribution System Simulator (PDSS) to demonstrate 300 Vdc distribution capability.
Distribution-Connected PV's Response to Voltage Sags at Transmission-Scale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mather, Barry; Ding, Fei
The ever increasing amount of residential- and commercial-scale distribution-connected PV generation being installed and operated on the U.S.'s electric power system necessitates the use of increased fidelity representative distribution system models for transmission stability studies in order to ensure the continued safe and reliable operation of the grid. This paper describes a distribution model-based analysis that determines the amount of distribution-connected PV that trips off-line for a given voltage sag seen at the distribution circuit's substation. Such sags are what could potentially be experienced over a wide area of an interconnection during a transmission-level line fault. The results of thismore » analysis show that the voltage diversity of the distribution system does cause different amounts of PV generation to be lost for differing severity of voltage sags. The variation of the response is most directly a function of the loading of the distribution system. At low load levels the inversion of the circuit's voltage profile results in considerable differences in the aggregated response of distribution-connected PV Less variation is seen in the response to specific PV deployment scenarios, unless pushed to extremes, and in the total amount of PV penetration attained. A simplified version of the combined CMPLDW and PVD1 models is compared to the results from the model-based analysis. Furthermore, the parameters of the simplified model are tuned to better match the determined response. The resulting tuning parameters do not match the expected physical model of the distribution system and PV systems and thus may indicate that another modeling approach would be warranted.« less
Sanchez-Sandoval, Ana Laura; Herrera Carrillo, Zazil; Díaz Velásquez, Clara Estela; Delgadillo, Dulce María; Rivera, Heriberto Manuel; Gomora, Juan Carlos
2018-01-01
Voltage-gated calcium channels contain four highly conserved transmembrane helices known as S4 segments that exhibit a positively charged residue every third position, and play the role of voltage sensing. Nonetheless, the activation range between high-voltage (HVA) and low-voltage (LVA) activated calcium channels is around 30-40 mV apart, despite the high level of amino acid similarity within their S4 segments. To investigate the contribution of S4 voltage sensors for the low-voltage activation characteristics of CaV3.3 channels we constructed chimeras by swapping S4 segments between this LVA channel and the HVA CaV1.2 channel. The substitution of S4 segment of Domain II in CaV3.3 by that of CaV1.2 (chimera IIS4C) induced a ~35 mV shift in the voltage-dependence of activation towards positive potentials, showing an I-V curve that almost overlaps with that of CaV1.2 channel. This HVA behavior induced by IIS4C chimera was accompanied by a 2-fold decrease in the voltage-dependence of channel gating. The IVS4 segment had also a strong effect in the voltage sensing of activation, while substitution of segments IS4 and IIIS4 moved the activation curve of CaV3.3 to more negative potentials. Swapping of IIS4 voltage sensor influenced additional properties of this channel such as steady-state inactivation, current decay, and deactivation. Notably, Domain I voltage sensor played a major role in preventing CaV3.3 channels to inactivate from closed states at extreme hyperpolarized potentials. Finally, site-directed mutagenesis in the CaV3.3 channel revealed a partial contribution of the S4-S5 linker of Domain II to LVA behavior, with synergic effects observed in double and triple mutations. These findings indicate that IIS4 and, to a lesser degree IVS4, voltage sensors are crucial in determining the LVA properties of CaV3.3 channels, although the accomplishment of this function involves the participation of other structural elements like S4-S5 linkers.
Sanchez-Sandoval, Ana Laura; Herrera Carrillo, Zazil; Díaz Velásquez, Clara Estela; Delgadillo, Dulce María; Rivera, Heriberto Manuel
2018-01-01
Voltage-gated calcium channels contain four highly conserved transmembrane helices known as S4 segments that exhibit a positively charged residue every third position, and play the role of voltage sensing. Nonetheless, the activation range between high-voltage (HVA) and low-voltage (LVA) activated calcium channels is around 30–40 mV apart, despite the high level of amino acid similarity within their S4 segments. To investigate the contribution of S4 voltage sensors for the low-voltage activation characteristics of CaV3.3 channels we constructed chimeras by swapping S4 segments between this LVA channel and the HVA CaV1.2 channel. The substitution of S4 segment of Domain II in CaV3.3 by that of CaV1.2 (chimera IIS4C) induced a ~35 mV shift in the voltage-dependence of activation towards positive potentials, showing an I-V curve that almost overlaps with that of CaV1.2 channel. This HVA behavior induced by IIS4C chimera was accompanied by a 2-fold decrease in the voltage-dependence of channel gating. The IVS4 segment had also a strong effect in the voltage sensing of activation, while substitution of segments IS4 and IIIS4 moved the activation curve of CaV3.3 to more negative potentials. Swapping of IIS4 voltage sensor influenced additional properties of this channel such as steady-state inactivation, current decay, and deactivation. Notably, Domain I voltage sensor played a major role in preventing CaV3.3 channels to inactivate from closed states at extreme hyperpolarized potentials. Finally, site-directed mutagenesis in the CaV3.3 channel revealed a partial contribution of the S4-S5 linker of Domain II to LVA behavior, with synergic effects observed in double and triple mutations. These findings indicate that IIS4 and, to a lesser degree IVS4, voltage sensors are crucial in determining the LVA properties of CaV3.3 channels, although the accomplishment of this function involves the participation of other structural elements like S4-S5 linkers. PMID:29474447
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Y; De Man, B; Robinson, V
Purpose: To demonstrate the possibility and quantify the impact of operating a clinical CT scanner at exceptionally high x-ray tube voltage for better penetration through metal objects and facilitating metal artifact reduction. Methods: We categorize metal objects according to the data corruption severeness (level of distortion and complete photon starvation fraction). To demonstrate feasibility and investigate the impact of high voltage scanning we modified a commercial GE LightSpeed VCT scanner (generator and software) to enable CT scans with x-ray tube voltages as high as 175 kVp. A 20 cm diameter water phantom with two metal rods (10 mm stainless andmore » 25 mm titanium) and a water phantom with realistic metal object (spine cage) were used to evaluate the data corruption and image artifacts in the absence of any algorithm correction. We also performed simulations to confirm our understanding of the transmitted photon levels through metal objects with different size and composition. Results: The reconstructed images at 175 kVp still have significant dark shading artifacts, as expected since no special scatter correction or beam hardening was performed but show substantially lower noise and photon starvation than at lower kVp due to better beam penetration. Analysis of the raw data shows that the photon starved data is reduced from over 4% at 140 kVp to below 0.2% at 175 kVp. The simulations indicate that for clinically relevant titanium and stainless objects a 175 kVp tube voltage effectively avoids photon starvation. Conclusion: The use of exceptionally high tube voltage on a clinical CT system is a practical and effective solution to avoid photon starvation caused by certain metal implants. Sparse and hybrid high-voltage protocols are being considered to maintain low patient dose. This opens the door to algorithmic physics-based corrections rather than treating the data as missing and relying on missing data algorithms. Some of the authors are employees of General Electric.« less
NASA Astrophysics Data System (ADS)
Worley, Jennings F.; Deitmer, Joachim W.; Nelson, Mark T.
1986-08-01
Single smooth muscle cells were enzymatically isolated from the rabbit mesenteric artery. At physiological levels of external Ca, these cells were relaxed and contracted on exposure to norepinephrine, caffeine, or high levels of potassium. The patch-clamp technique was used to measure unitary currents through single channels in the isolated cells. Single channels were selective for divalent cations and exhibited two conductance levels, 8 pS and 15 pS. Both types of channels were voltage-dependent, and channel activity occurred at potentials positive to -40 mV. The activity of both channel types was almost completely inhibited by 50 nM nisoldipine. These channels appear to be the pathways for voltage-dependent Ca influx in vascular smooth muscle and may be the targets of the clinically used dihydropyridines.
Inverter Load Rejection Over-Voltage Testing: SolarCity CRADA Task 1a Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, A.; Hoke, A.; Chakraborty, S.
Various interconnection challenges exist when connecting distributed PV into the electrical distribution grid in terms of safety, reliability, and stability of electric power systems. One of the urgent areas for additional research - as identified by inverter manufacturers, installers, and utilities - is the potential for transient over-voltage from PV inverters. In one stage of a cooperative tests were repeated a total of seven times. The maximum over-voltage measured in any test did not exceed 200% of nominal, and typical over-voltage levels were significantly lower. The total voltage duration and the maximum continuous time above each threshold are presented here,more » as well as the time to disconnect for each test. Finally, we present a brief investigation into the effect of DC input voltage as well as a series of no-load tests. This report describes testing conducted at NREL to determine the duration and magnitude of transient over-voltages created by several commercial PV inverters during load-rejection conditions. For this work, a test plan that is currently under development by the Forum on Inverter Grid Integration Issues (FIGII) has been implemented in a custom test setup at NREL. Through a cooperative research and development agreement, NREL is working with SolarCity to address two specific types of transient overvoltage: load rejection overvoltage (LRO) and ground fault overvoltage (GFO). Additional partners in this effort include the Hawaiian Electric Companies, Northern Plains Power Technologies, and the Electric Power Research Institute.« less
NASA Technical Reports Server (NTRS)
Maisel, J. E.
1984-01-01
A historical overview of electrical power systems used in the U.S. manned spacecraft and some of the U.S. unmanned spacecraft is presented in this investigation. A time frame of approximately 25 years, the period for 1959 to 1984, is covered in this report. Results indicate that the nominal bus voltage was 28 volts dc in most spacecraft and all other voltage levels were derived from this voltage through such techniques as voltage inversion or rectification, or a combination. Most spacecraft used solar arrays for the main source of power except for those spacecraft that had a relatively short flight duration, or deep spaceprobes that were designed for very long flight duration. Fuel cells were used on Gemini, Apollo, and Space Shuttle (short duration flights) while radioisotope thermoelectric generators were employed on the Pioneer, Jupiter/Saturn, Viking Lander, and Voyager spacecraft (long duration flights). The main dc bus voltage was unregulated on the manned spacecraft with voltage regulation provided at the user loads. A combination of regulated, semiregulated, and unregulated buses were used on the unmanned spacecraft depending on the type of load. For example, scientific instruments were usually connected to regulated buses while fans, relays, etc. were energized from an unregulated bus. Different forms of voltage regulation, such as shunt, buck/boot, and pulse-width modulated regulators, were used. This report includes a comprehensive bibliography on spacecraft electrical power systems for the space programs investigated.
Roy, Sharani; Mujica, Vladimiro; Ratner, Mark A
2013-08-21
The scanning tunneling microscope (STM) is a fascinating tool used to perform chemical processes at the single-molecule level, including bond formation, bond breaking, and even chemical reactions. Hahn and Ho [J. Chem. Phys. 123, 214702 (2005)] performed controlled rotations and dissociations of single O2 molecules chemisorbed on the Ag(110) surface at precise bias voltages using STM. These threshold voltages were dependent on the direction of the bias voltage and the initial orientation of the chemisorbed molecule. They also observed an interesting voltage-direction-dependent and orientation-dependent pathway selectivity suggestive of mode-selective chemistry at molecular junctions, such that in one case the molecule underwent direct dissociation, whereas in the other case it underwent rotation-mediated dissociation. We present a detailed, first-principles-based theoretical study to investigate the mechanism of the tunneling-induced O2 dynamics, including the origin of the observed threshold voltages, the pathway dependence, and the rate of O2 dissociation. Results show a direct correspondence between the observed threshold voltage for a process and the activation energy for that process. The pathway selectivity arises from a competition between the voltage-modified barrier heights for rotation and dissociation, and the coupling strength of the tunneling electrons to the rotational and vibrational modes of the adsorbed molecule. Finally, we explore the "dipole" and "resonance" mechanisms of inelastic electron tunneling to elucidate the energy transfer between the tunneling electrons and chemisorbed O2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhowmik, R. N., E-mail: rnbhowmik.phy@pondiuni.edu.in; Vijayasri, G.
2015-06-15
We have studied current-voltage (I-V) characteristics of α-Fe{sub 1.64}Ga{sub 0.36}O{sub 3}, a typical canted ferromagnetic semiconductor. The sample showed a transformation of the I-V curves from linear to non-linear character with the increase of bias voltage. The I-V curves showed irreversible features with hysteresis loop and bi-stable electronic states for up and down modes of voltage sweep. We report positive magnetoresistance and magnetic field induced negative differential resistance as the first time observed phenomena in metal doped hematite system. The magnitudes of critical voltage at which I-V curve showed peak and corresponding peak current are affected by magnetic field cycling.more » The shift of the peak voltage with magnetic field showed a step-wise jump between two discrete voltage levels with least gap (ΔV{sub P}) 0.345(± 0.001) V. The magnetic spin dependent electronic charge transport in this new class of magnetic semiconductor opens a wide scope for tuning large electroresistance (∼500-700%), magnetoresistance (70-135 %) and charge-spin dependent conductivity under suitable control of electric and magnetic fields. The electric and magnetic field controlled charge-spin transport is interesting for applications of the magnetic materials in spintronics, e.g., magnetic sensor, memory devices and digital switching.« less
Closed-loop pulsed helium ionization detector
Ramsey, Roswitha S.; Todd, Richard A.
1987-01-01
A helium ionization detector for gas chromatography is operated in a constant current, pulse-modulated mode by configuring the detector, electrometer and a high voltage pulser in a closed-loop control system. The detector current is maintained at a fixed level by varying the frequency of fixed-width, high-voltage bias pulses applied to the detector. An output signal proportional to the pulse frequency is produced which is indicative of the charge collected for a detected species.
Integral Battery Power Limiting Circuit for Intrinsically Safe Applications
NASA Technical Reports Server (NTRS)
Burns, Bradley M.; Blalock, Norman N.
2010-01-01
A circuit topology has been designed to guarantee the output of intrinsically safe power for the operation of electrical devices in a hazardous environment. This design uses a MOSFET (metal oxide semiconductor field-effect transistor) as a switch to connect and disconnect power to a load. A test current is provided through a separate path to the load for monitoring by a comparator against a preset threshold level. The circuit is configured so that the test current will detect a fault in the load and open the switch before the main current can respond. The main current passes through the switch and then an inductor. When a fault occurs in the load, the current through the inductor cannot change immediately, but the voltage drops immediately to safe levels. The comparator detects this drop and opens the switch before the current in the inductor has a chance to respond. This circuit protects both the current and voltage from exceeding safe levels. Typically, this type of protection is accomplished by a fuse or a circuit breaker, but in order for a fuse or a circuit breaker to blow or trip, the current must exceed the safe levels momentarily, which may be just enough time to ignite anything in a hazardous environment. To prevent this from happening, a fuse is typically current-limited by the addition of the resistor to keep the current within safe levels while the fuse reacts. The use of a resistor is acceptable for non-battery applications where the wasted energy and voltage drop across the resistor can be tolerated. The use of the switch and inductor minimizes the wasted energy. For example, a circuit runs from a 3.6-V battery that must be current-limited to 200 mA. If the circuit normally draws 10 mA, then an 18-ohm resistor would drop 180 mV during normal operation, while a typical switch (0.02 ohm) and inductor (0.97 ohm) would only drop 9.9 mV. From a power standpoint, the current-limiting resistor protection circuit wastes about 18 times more power than the switch and the inductor configuration. In the fault condition, both the resistor and the inductor react immediately. The resistor reacts by allowing more current to flow and dropping the voltage. Initially, the inductor reacts by dropping the voltage, and then by not allowing the current to change. When the comparator detects the drop in voltage, it opens the switch, thus preventing any further current flow. The inductor alone is not sufficient protection, because after the voltage drop has settled, the inductor would then allow the current to change, in this example, the current would be 3.7 A. In the fault condition, the resistor is flowing 200 mA until the fuse blows (anywhere from 1 ms to 100 s), while the switch and inductor combination is flowing about 2 A test current while monitoring for the fault to be corrected. Finally, as an additional safety feature, the circuit can be configured to hold the switch opened until both the load and source are disconnected.
Quantum Dot Light-Emitting Devices: Beyond Alignment of Energy Levels
Zaiats, Gary; Ikeda, Shingo; Kinge, Sachin; ...
2017-08-25
Multinary semiconductor nanoparticles such as CuInS 2, AgInS 2, and the corresponding alloys with ZnS hold promise for designing future quantum dot light-emitting devices (QLED). The QLED architectures require matching of energy levels between the different electron and hole transport layers. In addition to energy level alignment, conductivity and charge transfer interactions within these layers determine the overall efficiency of QLED. By employing CuInS 2-ZnS QDs we succeeded in fabricating red-emitting QLED using two different hole-transporting materials, polyvinylcarbazole and poly(4- butylphenyldiphenylamine). Despite the similarity of the HOMO-LUMO energy levels of these two hole transport materials, the QLED devices exhibit distinctlymore » different voltage dependence. The difference in onset voltage and excited state interactions shows the complexity involved in selecting the hole transport materials for display devices.« less
Almasi, Omid Naghash; Fereshtehpoor, Vahid; Khooban, Mohammad Hassan; Blaabjerg, Frede
2017-03-01
In this paper, a new modified fuzzy Two-Level Control Scheme (TLCS) is proposed to control a non-inverting buck-boost converter. Each level of fuzzy TLCS consists of a tuned fuzzy PI controller. In addition, a Takagi-Sugeno-Kang (TSK) fuzzy switch proposed to transfer the fuzzy PI controllers to each other in the control system. The major difficulty in designing fuzzy TLCS which degrades its performance is emerging unwanted drastic oscillations in the converter output voltage during replacing the controllers. Thereby, the fuzzy PI controllers in each level of TLCS structure are modified to eliminate these oscillations and improve the system performance. Some simulations and digital signal processor based experiments are conducted on a non-inverting buck-boost converter to support the effectiveness of the proposed TLCS in controlling the converter output voltage. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Curran, Francis M.; Sarmiento, Charles J.
1990-01-01
An experimental investigation was performed to evaluate arc jet operation at low power. A standard, 1 kW, constricted arc jet was run using nozzles with three different constrictor diameters. Each nozzle was run over a range of current and mass flow rates to explore stability and performance in the low power engine. A standard pulse-width modulated power processor was modified to accommodate the high operating voltages required under certain conditions. Stable, reliable operation at power levels below 0.5 kW was obtained at efficiencies between 30 and 40 percent. The operating range was found to be somewhat dependent on constrictor geometry at low mass flow rates. Quasi-periodic voltage fluctuations were observed at the low power end of the operating envelope, The nozzle insert geometry was found to have little effect on the performance of the device. The observed performance levels show that specific impulse levels above 350 seconds can be obtained at the 0.5 kW power level.
NASA Technical Reports Server (NTRS)
Curran, Francis M.; Sarmiento, Charles J.
1990-01-01
An experimental investigation was performed to evaluate arcjet operation at low power. A standard, 1 kW, constricted arcjet was run using nozzles with three different constrictor diameters. Each nozzle was run over a range of current and mass flow rates to explore stability and performance in the low power regime. A standard pulse-width modulated power processor was modified to accommodate the high operating voltages required under certain conditions. Stable, reliable operation at power levels below 0.5 kW was obtained at efficiencies between 30 and 40 percent. The operating range was found to be somewhat dependent on constrictor geometry at low mass flow rates. Quasi-periodic voltage fluctuations were observed at the low power end of the operating envelope. The nozzle insert geometry was found to have little effect on the performance of the device. The observed performance levels show that specific impulse levels above 350 seconds can be obtained at the 0.5 kW power level.
Quantum Dot Light-Emitting Devices: Beyond Alignment of Energy Levels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaiats, Gary; Ikeda, Shingo; Kinge, Sachin
Multinary semiconductor nanoparticles such as CuInS 2, AgInS 2, and the corresponding alloys with ZnS hold promise for designing future quantum dot light-emitting devices (QLED). The QLED architectures require matching of energy levels between the different electron and hole transport layers. In addition to energy level alignment, conductivity and charge transfer interactions within these layers determine the overall efficiency of QLED. By employing CuInS 2-ZnS QDs we succeeded in fabricating red-emitting QLED using two different hole-transporting materials, polyvinylcarbazole and poly(4- butylphenyldiphenylamine). Despite the similarity of the HOMO-LUMO energy levels of these two hole transport materials, the QLED devices exhibit distinctlymore » different voltage dependence. The difference in onset voltage and excited state interactions shows the complexity involved in selecting the hole transport materials for display devices.« less
NASA Astrophysics Data System (ADS)
Tanoi, Satoru; Endoh, Tetsuo
2012-04-01
A wide-range tunable level-keeper using vertical metal-oxide-semiconductor field-effect transistors (MOSFETs) is proposed for current-reuse analog systems. The design keys for widening tunable range of the operation are a two-path feed-back and a vertical MOSFET with back-bias-effect free. The proposed circuit with the vertical MOSFETs shows the 1.23-V tunable-range of the input level with the 2.4-V internal-supply voltage (VDD) in the simulation. This tunable-range of the proposed circuit is 4.7 times wider than that of the conventional. The achieved current efficiency of the proposed level-keeper is 66% at the 1.2-V output with the 2.4-V VDD. This efficiency of the proposed circuit is twice higher than that of the traditional voltage down converter.
NASA Astrophysics Data System (ADS)
Padhee, Varsha
Common Mode Voltage (CMV) in any power converter has been the major contributor to premature motor failures, bearing deterioration, shaft voltage build up and electromagnetic interference. Intelligent control methods like Space Vector Pulse Width Modulation (SVPWM) techniques provide immense potential and flexibility to reduce CMV, thereby targeting all the afore mentioned problems. Other solutions like passive filters, shielded cables and EMI filters add to the volume and cost metrics of the entire system. Smart SVPWM techniques therefore, come with a very important advantage of being an economical solution. This thesis discusses a modified space vector technique applied to an Indirect Matrix Converter (IMC) which results in the reduction of common mode voltages and other advanced features. The conventional indirect space vector pulse-width modulation (SVPWM) method of controlling matrix converters involves the usage of two adjacent active vectors and one zero vector for both rectifying and inverting stages of the converter. By suitable selection of space vectors, the rectifying stage of the matrix converter can generate different levels of virtual DC-link voltage. This capability can be exploited for operation of the converter in different ranges of modulation indices for varying machine speeds. This results in lower common mode voltage and improves the harmonic spectrum of the output voltage, without increasing the number of switching transitions as compared to conventional modulation. To summarize it can be said that the responsibility of formulating output voltages with a particular magnitude and frequency has been transferred solely to the rectifying stage of the IMC. Estimation of degree of distortion in the three phase output voltage is another facet discussed in this thesis. An understanding of the SVPWM technique and the switching sequence of the space vectors in detail gives the potential to estimate the RMS value of the switched output voltage of any converter. This conceivably aids the sizing and design of output passive filters. An analytical estimation method has been presented to achieve this purpose for am IMC. Knowledge of the fundamental component in output voltage can be utilized to calculate its Total Harmonic Distortion (THD). The effectiveness of the proposed SVPWM algorithms and the analytical estimation technique is substantiated by simulations in MATLAB / Simulink and experiments on a laboratory prototype of the IMC. Proper comparison plots have been provided to contrast the performance of the proposed methods with the conventional SVPWM method. The behavior of output voltage distortion and CMV with variation in operating parameters like modulation index and output frequency has also been analyzed.
NASA Astrophysics Data System (ADS)
Dong, Lin; Grissom, Michael; Fisher, Frank T.
2016-05-01
Vibration-based energy harvesting has been widely investigated to as a means to generate low levels of electrical energy for applications such as wireless sensor networks. However, for optimal performance it is necessary to ensure that resonant frequencies of the device match the ambient vibration frequencies for maximum energy harvested. Here a novel resonant frequency tuning approach is proposed by applying a bias voltage to a pre-stretched electroactive polymer (EAP) membrane, such that the resulting changes in membrane tension can tune the device to match the environmental vibration source. First, a material model which accounts for the change in properties due to the pre-stretch of a VHB 4910 EAP membrane is presented. The effect of the bias voltage on the EAP membrane, which induces an electrostatic pressure and corresponding reduction in membrane thickness, are then determined. The FEM results from ANSYS agree well with an analytical hyperelastic model of the activation response of the EAP membrane. Lastly, through a mass-loaded circular membrane vibration model, the effective resonant frequency of the energy harvester can be determined as a function of changes in membrane tension due to the applied bias voltage. In the case of an EAP membrane, pre-stretch contributes to the pre-stretch stiffness of the system while the applied bias voltage contributes to a change in bias voltage stiffness of the membrane. Preliminary experiments verified the resonant frequencies corresponding to the bias voltages predicted from the appropriate models. The proposed bias voltage tuning approach for the EAP membrane may provide a novel tuning strategy to enable energy harvesting from various ambient vibration sources in various application environments.
Hiong, Kum C.; Boo, Mel V.; Wong, Wai P.; Chew, Shit F.
2016-01-01
This study aimed to obtain the coding cDNA sequences of voltage-gated Na+ channel (scn) α-subunit (scna) and β-subunit (scnb) isoforms from, and to quantify their transcript levels in, the main electric organ (EO), Hunter’s EO, Sach’s EO and the skeletal muscle (SM) of the electric eel, Electrophorus electricus, which can generate both high and low voltage electric organ discharges (EODs). The full coding sequences of two scna (scn4aa and scn4ab) and three scnb (scn1b, scn2b and scn4b) were identified for the first time (except scn4aa) in E. electricus. In adult fish, the scn4aa transcript level was the highest in the main EO and the lowest in the Sach’s EO, indicating that it might play an important role in generating high voltage EODs. For scn4ab/Scn4ab, the transcript and protein levels were unexpectedly high in the EOs, with expression levels in the main EO and the Hunter’s EO comparable to those of scn4aa. As the key domains affecting the properties of the channel were mostly conserved between Scn4aa and Scn4ab, Scn4ab might play a role in electrogenesis. Concerning scnb, the transcript level of scn4b was much higher than those of scn1b and scn2b in the EOs and the SM. While the transcript level of scn4b was the highest in the main EO, protein abundance of Scn4b was the highest in the SM. Taken together, it is unlikely that Scna could function independently to generate EODs in the EOs as previously suggested. It is probable that different combinations of Scn4aa/Scn4ab and various Scnb isoforms in the three EOs account for the differences in EODs produced in E. electricus. In general, the transcript levels of various scn isoforms in the EOs and the SM were much higher in adult than in juvenile, and the three EOs of the juvenile fish could be functionally indistinct. PMID:27907137
Cervantes, Felix A; Backus, Elaine A
2018-05-31
Blue-green sharpshooter, Graphocephala atropunctata, is a native California vector of Xylella fastidiosa (Xf), a foregut-borne bacterium that is the causal agent of Pierce's disease in grapevines. A 3rd-generation, AC-DC electropenetrograph (EPG monitor) was used to record stylet probing and ingestion behaviors of adult G. atropunctata on healthy grapevines. This study presents for the first time a complete, updated waveform library for this species, as well as effects of different electropenetrograph settings and adhesives on waveform appearances. Both AC and DC applied signals were used with input resistor (Ri) levels (amplifier sensitivities) of 10 6 , 10 7 , 10 8 and 10 9 Ohms, as well as two type of adhesives, conducting silver paint and handmade silver glue. Waveform description, characterization of electrical origins (R versus emf components), and proposed biological meanings of waveforms are reported, as well as qualitative differences in waveform appearances observed with different electropenetrograph settings and adhesives. In addition, a quantitative study with AC signal, using two applied voltage levels (50 and 200 mV) and two Ri levels (10 7 and 10 9 Ohms) was performed. Intermediate Ri levels 10 7 and 10 8 Ohms provided EPG waveforms with the greatest amount of information, because both levels captured similar proportions of R and emf components, as supported by appearance, clarity, and definition of waveforms. Similarly, use of a gold wire loop plus handmade silver glue provided more definition of waveforms than a gold wire loop plus commercial conducting silver paint. Qualitative/observational evidence suggested that AC applied signal caused fewer aberrant behaviors/waveforms than DC applied signal. In the quantitative study, behavioral components of the sharpshooter X wave were the most affected by changes in Ri and voltage level. Because the X wave probably represents X. fastidiosa inoculation behavior, future studies of X. fastidiosa inoculation via EPG will require carefully determined instrument settings. An intermediate Ri level such as 10 8 Ohms with low voltage, AC applied signal, and gold wire loop plus silver glue is recommended as the best electropenetrograph methods to conduct future EPG studies of sharpshooter inoculation behaviors on Xf-resistant and -susceptible grapevine. Copyright © 2018. Published by Elsevier Ltd.
Quadrupole mass spectrometer driver with higher signal levels
NASA Technical Reports Server (NTRS)
Chutjian, Ara (Inventor); Aalami, Dean (Inventor); Darrach, Murray (Inventor); Orient, Otto (Inventor)
2003-01-01
Driving a quadrapole mass spectrometer includes obtaining an air core transformer with a primary and a secondary, matching the secondary to the mass spectrometer, and driving the primary based on first and second voltage levels. Driving of the primary is via an isolating stage that minimizes low level drive signal coupling.
Piezoelectric energy harvester interface with real-time MPPT
NASA Astrophysics Data System (ADS)
Elliott, A. D. T.; Mitcheson, P. D.
2014-11-01
Power of resonant piezoelectric harvesters can be severely limited if the damping force cannot be dynamically altered as the mechanical excitation level changes. The singlesupply pre-biasing (SSPB) technique enables the Coulomb damping force to be set by a single voltage and so by varying that voltage, real-time adaptation to variations in the mechanical force can be implemented. Similarly the conduction angle of a diode bridge rectifier circuit can be altered by changing the biasing voltage applied. This paper presents a method of achieving this by altering the amount of energy transferred from the pre-biasing capacitor used in SSPB and the diode bridge rectifier to a storage battery via a buck converter. The control system was implemented on a FPGA and consumed 50 μW.
Fabrication of multijunction high voltage concentrator solar cells by integrated circuit technology
NASA Technical Reports Server (NTRS)
Valco, G. J.; Kapoor, V. J.; Evans, J. C., Jr.; Chai, A.-T.
1981-01-01
Standard integrated circuit technology has been developed for the design and fabrication of planar multijunction (PMJ) solar cell chips. Each 1 cm x 1 cm solar chip consisted of six n(+)/p, back contacted, internally series interconnected unit cells. These high open circuit voltage solar cells were fabricated on 2 ohm-cm, p-type 75 microns thick, silicon substrates. A five photomask level process employing contact photolithography was used to pattern for boron diffusions, phorphorus diffusions, and contact metallization. Fabricated devices demonstrated an open circuit voltage of 3.6 volts and a short circuit current of 90 mA at 80 AMl suns. An equivalent circuit model of the planar multi-junction solar cell was developed.
Cryogenic Evaluation of an Advanced DC/DC Converter Module for Deep Space Applications
NASA Technical Reports Server (NTRS)
Elbuluk, Malik E.; Hammoud, Ahmad; Gerber, Scott S.; Patterson, Richard
2003-01-01
DC/DC converters are widely used in power management, conditioning, and control of space power systems. Deep space applications require electronics that withstand cryogenic temperature and meet a stringent radiation tolerance. In this work, the performance of an advanced, radiation-hardened (rad-hard) commercial DC/DC converter module was investigated at cryogenic temperatures. The converter was investigated in terms of its steady state and dynamic operations. The output voltage regulation, efficiency, terminal current ripple characteristics, and output voltage response to load changes were determined in the temperature range of 20 to -140 C. These parameters were obtained at various load levels and at different input voltages. The experimental procedures along with the results obtained on the investigated converter are presented and discussed.
An inductor-based converter with EMI reduction for low-voltage thermoelectric energy harvesting
NASA Astrophysics Data System (ADS)
Wang, Chuang; Zhao, Kai; Li, Zunchao
2017-07-01
This paper presents a self-powered inductor-based converter which harvests thermoelectric energy and boosts extremely low voltage to a typical voltage level for supplying body sensor nodes. Electromagnetic interference (EMI) of the converter is reduced by spreading spectrum of fundamental frequency and harmonics via pseudo-random modulation, which is obtained via combining the linear feedback shift register and digitally controlled oscillator. Besides, the methods, namely extracting energy near MPP and reducing the power dissipation, are employed to improve the power efficiency. The presented inductor-based converter is designed and verified in CSMC CMOS 0.18-µm 1P6M process. The results reveal that it achieves the high efficiency and EMI reduction at the same time.
A voltage to frequency converter for astronomical photometry
NASA Technical Reports Server (NTRS)
Dunham, E.; Elliot, J. L.
1978-01-01
A voltage to frequency converter (VFC) for general use with photomultipliers is described. For high light levels, when the dead-time corrections for a photon counter would be excessive, the VFC maintains a linear response and allows the recording of data at high time resolution. Results of laboratory tests are given for the signal-to-noise characteristics, linearity, stability, and transient response of the VFC when used in conjunction with EMI 9658 and RCA C31034 photomultipliers.
Control of plasma process by use of harmonic frequency components of voltage and current
Miller, Paul A.; Kamon, Mattan
1994-01-01
The present invention provides for a technique for taking advantage of the intrinsic electrical non-linearity of processing plasmas to add additional control variables that affect process performance. The technique provides for the adjustment of the electrical coupling circuitry, as well as the electrical excitation level, in response to measurements of the reactor voltage and current and to use that capability to modify the plasma characteristics to obtain the desired performance.
Low Voltage, Low Power Organic Light Emitting Transistors for AMOLED Displays
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCarthy, M. A.; Liu, B.; Donoghue, E. P.
2011-01-01
Low voltage, low power dissipation, high aperture ratio organic light emitting transistors are demonstrated. The high level of performance is enabled by a carbon nanotube source electrode that permits integration of the drive transistor and the organic light emitting diode into an efficient single stacked device. Given the demonstrated performance, this technology could break the technical logjam holding back widespread deployment of active matrix organic light emitting displays at flat panel screen sizes.
Equilibrium charge fluctuations of a charge detector and its effect on a nearby quantum dot
NASA Astrophysics Data System (ADS)
Ruiz-Tijerina, David; Vernek, Edson; Ulloa, Sergio
2014-03-01
We study the Kondo state of a spin-1/2 quantum dot (QD), in close proximity to a quantum point contact (QPC) charge detector near the conductance regime of the 0.7 anomaly. The electrostatic coupling between the QD and QPC introduces a remote gate on the QD level, which varies with the QPC gate voltage. Furthermore, models for the 0.7 anomaly [Y. Meir et al., PRL 89,196802(2002)] suggest that the QPC lodges a Kondo-screened level with charge-correlated hybridization, which may be also affected by capacitive coupling to the QD, giving rise to a competition between the two Kondo ground states. We model the QD-QPC system as two capacitively-coupled Kondo impurities, and explore the zero-bias transport of both the QD and the QPC for different local gate voltages and coupling strengths, using the numerical renormalization group and variational methods. We find that the capacitive coupling produces a remote gating effect, non-monotonic in the gate voltages, which reduces the gate voltage window for Kondo screening in either impurity, and which can also drive a quantum phase transition out of the Kondo regime. Our study is carried out for intermediate coupling strengths, and as such is highly relevant to experiments; particularly, to recent studies of decoherence effects on QDs. Supported by MWN/CIAM and NSF PIRE.
NASA Astrophysics Data System (ADS)
Yu, Kyeong Min; Bae, Byung Seong; Jung, Myunghee; Yun, Eui-Jung
2016-06-01
We investigate the effects of high temperatures in the range of 292 - 393 K on the electrical properties of solution-processed amorphous zinc-tin-oxide (a-ZTO) thin-film transistors (TFTs) operated in the saturation region. The fabricated a-ZTO TFTs have a non-patterned bottom gate and top contact structure, and they use a heavily-doped Si wafer and SiO2 as a gate electrode and a gate insulator layer, respectively. In a-ZTO TFTs, the trap release energy ( E TR ) was deduced by using Maxwell-Boltzmann statistics. The decreasing E TR toward zero with increasing gate voltage (the density of trap states ( n s )) in the a-ZTO active layer can be attributed to a shift of the Fermi level toward the mobility edge with increasing gate voltage. The TFTs with low gate voltage (low n s ) exhibit multiple trap and release characteristics and show thermally-activated behavior. In TFTs with a high gate voltage (high n s ), however, we observe decreasing mobility and conductivity with increasing temperature at temperatures ranging from 303 to 363 K. This confirms that the E TR can drop to zero, indicating a shift of the Fermi level beyond the mobility edge. Hence, the mobility edge is detected at the cusp between thermally-activated transport and band transport.
PZT/PLZT - elastomer composites with improved piezoelectric voltage coefficient
NASA Astrophysics Data System (ADS)
Harikrishnan, K.; Bavbande, D. V.; Mohan, Dhirendra; Manoharan, B.; Prasad, M. R. S.; Kalyanakrishnan, G.
2018-02-01
Lead Zirconate Titanate (PZT) and Lanthanum-modified Lead Zirconate Titanate (PLZT) ceramic sensor materials are widely used because of their excellent piezoelectric coefficients. These materials are brittle, high density and have low achievable piezoelectric voltage coefficients. The density of the sintered ceramics shall be reduced by burnable polymeric sponge method. The achievable porosity level in this case is nearly 60 - 90%. However, the porous ceramic structure with 3-3 connectivity produced by this method is very fragile in nature. The strength of the porous structure is improved with Sylgard®-184 (silicone elastomer) by vacuum impregnation method maintaining the dynamic vacuum level in the range of -650 mm Hg. The elastomer Sylgard®-184 is having low density, low dielectric constant and high compliance (as a resultant stiffness of the composites is increased). To obtain a net dipole moment, the impregnated ceramic composites were subjected to poling treatment with varying conditions of D.C. field and temperature. The properties of the poled PZT/PLZT - elastomer composites were characterized with LCR meter for measuring the dielectric constant values (k), d33 meter used for measuring piezo-electric charge coefficient values (d33) and piezo-electric voltage coefficient (g33) values which were derived from d33 values. The voltage coefficient (g33) values of these composites are increased by 10 fold as compared to the conventional solid ceramics demonstrates that it is possible to fabricate a conformable detector.
Voltage imaging to understand connections and functions of neuronal circuits.
Antic, Srdjan D; Empson, Ruth M; Knöpfel, Thomas
2016-07-01
Understanding of the cellular mechanisms underlying brain functions such as cognition and emotions requires monitoring of membrane voltage at the cellular, circuit, and system levels. Seminal voltage-sensitive dye and calcium-sensitive dye imaging studies have demonstrated parallel detection of electrical activity across populations of interconnected neurons in a variety of preparations. A game-changing advance made in recent years has been the conceptualization and development of optogenetic tools, including genetically encoded indicators of voltage (GEVIs) or calcium (GECIs) and genetically encoded light-gated ion channels (actuators, e.g., channelrhodopsin2). Compared with low-molecular-weight calcium and voltage indicators (dyes), the optogenetic imaging approaches are 1) cell type specific, 2) less invasive, 3) able to relate activity and anatomy, and 4) facilitate long-term recordings of individual cells' activities over weeks, thereby allowing direct monitoring of the emergence of learned behaviors and underlying circuit mechanisms. We highlight the potential of novel approaches based on GEVIs and compare those to calcium imaging approaches. We also discuss how novel approaches based on GEVIs (and GECIs) coupled with genetically encoded actuators will promote progress in our knowledge of brain circuits and systems. Copyright © 2016 the American Physiological Society.
Voltage imaging to understand connections and functions of neuronal circuits
Antic, Srdjan D.; Empson, Ruth M.
2016-01-01
Understanding of the cellular mechanisms underlying brain functions such as cognition and emotions requires monitoring of membrane voltage at the cellular, circuit, and system levels. Seminal voltage-sensitive dye and calcium-sensitive dye imaging studies have demonstrated parallel detection of electrical activity across populations of interconnected neurons in a variety of preparations. A game-changing advance made in recent years has been the conceptualization and development of optogenetic tools, including genetically encoded indicators of voltage (GEVIs) or calcium (GECIs) and genetically encoded light-gated ion channels (actuators, e.g., channelrhodopsin2). Compared with low-molecular-weight calcium and voltage indicators (dyes), the optogenetic imaging approaches are 1) cell type specific, 2) less invasive, 3) able to relate activity and anatomy, and 4) facilitate long-term recordings of individual cells' activities over weeks, thereby allowing direct monitoring of the emergence of learned behaviors and underlying circuit mechanisms. We highlight the potential of novel approaches based on GEVIs and compare those to calcium imaging approaches. We also discuss how novel approaches based on GEVIs (and GECIs) coupled with genetically encoded actuators will promote progress in our knowledge of brain circuits and systems. PMID:27075539
Linear frequency tuning in an LC-resonant system using a C-V response controllable MEMS varactor
NASA Astrophysics Data System (ADS)
Han, Chang-Hoon; Yoon, Yong-Hoon; Ko, Seung-Deok; Seo, Min-Ho; Yoon, Jun-Bo
2017-12-01
This paper proposes a device level solution to achieve linear frequency tuning with respect to a tuning voltage ( V tune ) sweep in an inductor ( L)-capacitor ( C) resonant system. Since the linearity of the resonant frequency vs. tuning voltage ( f- V) relationship in an LC-resonant system is closely related to the C- V response characteristic of the varactor, we propose a C- V response tunable varactor to realize the linear frequency tuning. The proposed varactor was fabricated using microelectromechanical system (MEMS) surface micromachining. The fabricated MEMS varactor has the ability to dynamically change the C- V response characteristic according to a curve control voltage ( V curve- control ). When V curve- control was increased from zero to 9 V, the C- V response curve was changed from a linear to a concave form (i.e., the capacitance decreased quickly in the low tuning voltage region and slowly in the high tuning voltage region). This change in the C- V response characteristic resulted in a change in the f- V relationship, and we successfully demonstrated almost perfectly linear frequency tuning in the LC-resonant system, with a linearity factor of 99.95%.
A combined compensation method for the output voltage of an insulated core transformer power supply
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, L.; Yang, J., E-mail: jyang@mail.hust.edu.cn; Liu, K. F.
2014-06-15
An insulated core transformer (ICT) power supply is an ideal high-voltage generator for irradiation accelerators with energy lower than 3 MeV. However, there is a significant problem that the structure of the segmented cores leads to an increase in the leakage flux and voltage differences between rectifier disks. A high level of consistency in the output of the disks helps to achieve a compact structure by improving the utilization of both the rectifier components and the insulation distances, and consequently increase the output voltage of the power supply. The output voltages of the disks which are far away from themore » primary coils need to be improved to reduce their inhomogeneity. In this study, by investigating and comparing the existing compensation methods, a new combined compensation method is proposed, which increases the turns on the secondary coils and employs parallel capacitors to improve the consistency of the disks, while covering the entire operating range of the power supply. This method turns out to be both feasible and effective during the development of an ICT power supply. The non-uniformity of the output voltages of the disks is less than 3.5% from no-load to full-load, and the power supply reaches an output specification of 350 kV/60 mA.« less
Nagel, Wolfram; Katz, Uri
2003-02-01
The effect of xanthine derivatives on the voltage-activated Cl(-) conductance (G(Cl)) of amphibian skin was analyzed. 3-Isobutyl-1-methylxanthine (IBMX) and the recently synthesized xanthine derivatives 3,7-dimethyl-1-propyl xanthine (X-32) and 3,7-dimethyl-1-isobutyl xanthine (X-33), which lack inhibitory effects on phosphodiesterases in CHO and Calu-3 cells, increased voltage-activated G(Cl) without effect on baseline conductance at inactivating voltage. Half-maximal stimulation of G(Cl) occurred at 108 +/- 9 microM for X-32 and X-33 after apical or basolateral application. The stimulation of G(Cl), which occurs only in the presence of Cl(-) in the mucosal solution, is caused by a shift of the voltage sensitivity to lower clamp potentials and an increase of the maximally activated level. Furosemide reversed both the shift of sensitivity and the increase in magnitude. These patterns are fundamentally different from those seen after application of membrane-permeant, nonmetabolized analogs of cAMP, and they indicate that the xanthines stimulate G(Cl) directly. This notion is strengthened by the lack of influence on intracellular cAMP content, which is consistent with the observations in CHO and Calu-3 cells. We propose that the xanthine derivatives increase the voltage sensitivity of a regulative component in the conductive Cl(-) pathway across amphibian skin.
Functional characterization of Kv11.1 (hERG) potassium channels split in the voltage-sensing domain.
de la Peña, Pilar; Domínguez, Pedro; Barros, Francisco
2018-03-23
Voltage-dependent KCNH family potassium channel functionality can be reconstructed using non-covalently linked voltage-sensing domain (VSD) and pore modules (split channels). However, the necessity of a covalent continuity for channel function has not been evaluated at other points within the two functionally independent channel modules. We find here that by cutting Kv11.1 (hERG, KCNH2) channels at the different loops linking the transmembrane spans of the channel core, not only channels split at the S4-S5 linker level, but also those split at the intracellular S2-S3 and the extracellular S3-S4 loops, yield fully functional channel proteins. Our data indicate that albeit less markedly, channels split after residue 482 in the S2-S3 linker resemble the uncoupled gating phenotype of those split at the C-terminal end of the VSD S4 transmembrane segment. Channels split after residues 514 and 518 in the S3-S4 linker show gating characteristics similar to those of the continuous wild-type channel. However, breaking the covalent link at this level strongly accelerates the voltage-dependent accessibility of a membrane impermeable methanethiosulfonate reagent to an engineered cysteine at the N-terminal region of the S4 transmembrane helix. Thus, besides that of the S4-S5 linker, structural integrity of the intracellular S2-S3 linker seems to constitute an important factor for proper transduction of VSD rearrangements to opening and closing the cytoplasmic gate. Furthermore, our data suggest that the short and probably rigid characteristics of the extracellular S3-S4 linker are not an essential component of the Kv11.1 voltage sensing machinery.
Sensitivity Testing of the NSTAR Ion Thruster
NASA Technical Reports Server (NTRS)
Sengupta, Anita; Anderson, John; Brophy, John
2007-01-01
During the Extended Life Test of the DS1 flight spare ion thruster, the engine was subjected to sensitvity testing in order to characterize the macroscopic dependence of discharge chamber sensitivity to a +\\-3% vatiation in main flow, cathode flow and beam current, and to +\\5% variation in beam and accelerator voltage, was determined for the minimum- (THO), half- (TH8) and full power (TH15) throttle levels. For each power level investigared, 16 high/low operating conditions were chosen to vary the flows, beam current, and grid voltages in in a matrix that mapped out the entire parameter space. The matrix of data generated was used to determine the partial derivative or senitivity of the dependent parameters--discharge voltage, discharge current, discharge loss, double-to-single-ion current ratio, and neutralizer-keeper voltage--to the variation in the independent parameters--main flow, cathode flow, beam current, and beam voltage. The sensititivities of each dependent parameter with respect to each independent parameter were determined using a least-square fit routine. Variation in these sensitivities with thruster runtime was recorded over the duration of the ELT, to detemine if discharge performance changed with thruster wear. Several key findings have been ascertained from the sensitivity testing. Discharge operation is most sensitve to changes in cathode flow and to a lesser degree main flow. The data also confirms that for the NSTAR configuration plasma production is limited by primary electron input due to the fixed neutral population. Key sensitivities along with their change with thruster wear (operating time) will be presented. In addition double ion content measurements with an ExB probe will also be presented to illustrate beam ion production and content sensitivity to the discharge chamber operating parameteres.
A monostable piezoelectric energy harvester for broadband low-level excitations
NASA Astrophysics Data System (ADS)
Fan, Kangqi; Tan, Qinxue; Zhang, Yiwei; Liu, Shaohua; Cai, Meiling; Zhu, Yingmin
2018-03-01
This letter presents a monostable piezoelectric energy harvester (PEH) for achieving enhanced energy extraction from low-level excitations. The proposed PEH is realized by introducing symmetric magnetic attraction to a piezoelectric cantilever beam and a pair of stoppers to confine the maximum deflection of the beam. The lumped parameter model of such a system is presented and experimentally validated. Theoretical simulations and experimental measurements demonstrate that the proposed design can bring about a wider operating bandwidth and higher output voltage than the linear PEH. Under a sinusoidal vibration with an amplitude of 3 m/s2, a 54% increase in the operating bandwidth and a 253% increase in the magnitude of output power are achieved compared to its linear counterpart. Moreover, the proposed PEH exhibits rich dynamic features, including the tunable operating bandwidth, adjustable voltage and power levels, and softening hysteresis.
PbSnTe:In compound: Electron capture levels, galvanomagnetic properties, and THz sensitivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishchenko, D. V., E-mail: miracle4348@gmail.com; Klimov, A. E.; Shumsky, V. N.
A model of the Pb{sub 1–x}Sn{sub x}Te:In compound, based on concepts of the theory of disordered systems is considered. The temperature dependences of the Fermi-level position and carrier concentration are calculated depending on the indium doping level and are compared with experimental data. The transient current–voltage characteristics are calculated in the mode of injection from the contact and current limitation by space charge at various voltage-variation rates. The data obtained are compared with the experiments. It is demonstrated that the shape of the characteristics is controlled by the parameters of electron capture at localized states. Photocurrent relaxation in a magneticmore » field is studied, and the mechanism of such relaxation is discussed under the assumption of the magnetic freezing of carriers.« less
Evaluating the potential of using quantum dots for monitoring electrical signals in neurons
NASA Astrophysics Data System (ADS)
Efros, Alexander L.; Delehanty, James B.; Huston, Alan L.; Medintz, Igor L.; Barbic, Mladen; Harris, Timothy D.
2018-04-01
Success in the projects aimed at providing an advanced understanding of the brain is directly predicated on making critical advances in nanotechnology. This Perspective addresses the unique interface of neuroscience and nanomaterials by considering the foundational problem of sensing neuron membrane voltage and offers a potential solution that may be facilitated by a prototypical nanomaterial. Despite substantial improvements, the visualization of instantaneous voltage changes within individual neurons, whether in cell culture or in vivo, at both the single-cell and network level at high speed remains complex and problematic. The unique properties of semiconductor quantum dots (QDs) have made them powerful fluorophores for bioimaging. What is not widely appreciated, however, is that QD photoluminescence is exquisitely sensitive to proximal electric fields. This property should be suitable for sensing voltage changes that occur in the active neuronal membrane. Here, we examine the potential role of QDs in addressing the important challenge of real-time optical voltage imaging.
Experimental breakdown of selected anodized aluminum samples in dilute plasmas
NASA Technical Reports Server (NTRS)
Grier, Norman T.; Domitz, Stanley
1992-01-01
Anodized aluminum samples representative of Space Station Freedom structural material were tested for electrical breakdown under space plasma conditions. In space, this potential arises across the insulating anodized coating when the spacecraft structure is driven to a negative bias relative to the external plasma potential due to plasma-surface interaction phenomena. For anodized materials used in the tests, it was found that breakdown voltage varied from 100 to 2000 volts depending on the sample. The current in the arcs depended on the sample, the capacitor, and the voltage. The level of the arc currents varied from 60 to 1000 amperes. The plasma number density varied from 3 x 10 exp 6 to 10 exp 3 ions per cc. The time between arcs increased as the number density was lowered. Corona testing of anodized samples revealed that samples with higher corona inception voltage had higher arcing inception voltages. From this it is concluded that corona testing may provide a method of screening the samples.
Extended linear ion trap frequency standard apparatus
NASA Technical Reports Server (NTRS)
Prestage, John D. (Inventor)
1995-01-01
A linear ion trap for frequency standard applications is provided with a plurality of trapping rods equally spaced and applied quadruple rf voltages for radial confinement of atomic ions and biased level pins at each end for axial confinement of the ions. The trapping rods are divided into two linear ion trap regions by a gap in each rod in a common radial plane to provide dc discontinuity, thus dc isolating one region from the other. A first region for ion-loading and preparation fluorescence is biased with a dc voltage to transport ions into a second region for resonance frequency comparison with a local oscillator derived frequency while the second region is held at zero voltage. The dc bias voltage of the regions is reversed for transporting the ions back into the first region for fluorescence measurement. The dual mode cycle is repeated continuously for comparison and feedback control of the local oscillator derived frequency. Only the second region requires magnetic shielding for the resonance function which is sensitive to any ambient magnetic fields.
Carrier velocity effect on carbon nanotube Schottky contact
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fathi, Amir, E-mail: fathi.amir@hotmail.com; Ahmadi, M. T., E-mail: mt.ahmadi@urmia.ac.ir; Ismail, Razali, E-mail: Razali@fke.utm.my
One of the most important drawbacks which caused the silicon based technologies to their technical limitations is the instability of their products at nano-level. On the other side, carbon based materials such as carbon nanotube (CNT) as alternative materials have been involved in scientific efforts. Some of the important advantages of CNTs over silicon components are high mechanical strength, high sensing capability and large surface-to-volume ratio. In this article, the model of CNT Schottky transistor current which is under exterior applied voltage is employed. This model shows that its current has a weak dependence on thermal velocity corresponding to themore » small applied voltage. The conditions are quite different for high bias voltages which are independent of temperature. Our results indicate that the current is increased by Fermi velocity, but the I–V curves will not have considerable changes with the variations in number of carriers. It means that the current doesn’t increase sharply by voltage variations over different number of carriers.« less