Science.gov

Sample records for voltage measurement electrodes

  1. HIGH VOLTAGE ELECTRODES

    DOEpatents

    Murray, J.J.

    1963-04-23

    S>This patent relates to electrode structure for creating an intense direct current electric field which may have a field strength of the order of two to three times that heretofore obtained, with automatic suppression of arcing. The positive electrode is a conventional conductive material such as copper while the negative electrode is made from a special material having a resistivity greater than that of good conductors and less than that of good insulators. When an incipient arc occurs, the moderate resistivity of the negative electrode causes a momentary, localized decrease in the electric field intensity, thus suppressing the flow of electrons and avoiding arcing. Heated glass may be utilized for the negative electrode, since it provides the desired combination of resistivity, capacity, dielectric strength, mechani-cal strength, and thermal stability. (AEC)

  2. Electrode voltage fall and total voltage of a transient arc

    NASA Astrophysics Data System (ADS)

    Valensi, F.; Ratovoson, L.; Razafinimanana, M.; Masquère, M.; Freton, P.; Gleizes, A.

    2016-06-01

    This paper deals with an experimental study of the components of a transient arc total voltage with duration of a few tens of ms and a current peak close to 1000 A. The cathode tip is made of graphite whereas the flat anode is made either of copper or of graphite; the electrodes gap is a few mm. The analysis of the electrical parameters is supported and validated by fast imaging and by two models: the first one is a 2D physical model of the arc allowing to calculate both the plasma temperature field and the arc voltage; the second model is able to estimate the transient heating of the graphite electrode. The main aim of the study was to detect the possible change of the cathode voltage fall (CVF) during the first instants of the arc. Indeed it is expected that during the first ms the graphite cathode is rather cool and the main mechanism of the electron emission should be the field effect emission, whereas after several tens of ms the cathode is strongly heated and thermionic emission should be predominant. We have observed some change in the apparent CVF but we have shown that this apparent change can be attributed to the variation of the solid cathode resistance. On the other hand, the possible change of CVF corresponding to the transition between a ‘cold’ and a ‘hot’ cathode should be weak and could not be characterized considering our measurement uncertainty of about 2 V. The arc column voltage (ACV) was estimated by subtracting the electrode voltage fall from the total arc voltage. The experimental transient evolution of the ACV is in very good agreement with the theoretical variation predicted by the model, showing the good ability of the model to study this kind of transient arc.

  3. Current-voltage characteristics of single-molecule diarylethene junctions measured with adjustable gold electrodes in solution.

    PubMed

    Briechle, Bernd M; Kim, Youngsang; Ehrenreich, Philipp; Erbe, Artur; Sysoiev, Dmytro; Huhn, Thomas; Groth, Ulrich; Scheer, Elke

    2012-01-01

    We report on an experimental analysis of the charge transport through sulfur-free photochromic molecular junctions. The conductance of individual molecules contacted with gold electrodes and the current-voltage characteristics of these junctions are measured in a mechanically controlled break-junction system at room temperature and in liquid environment. We compare the transport properties of a series of molecules, labeled TSC, MN, and 4Py, with the same switching core but varying side-arms and end-groups designed for providing the mechanical and electrical contact to the gold electrodes. We perform a detailed analysis of the transport properties of TSC in its open and closed states. We find rather broad distributions of conductance values in both states. The analysis, based on the assumption that the current is carried by a single dominating molecular orbital, reveals distinct differences between both states. We discuss the appearance of diode-like behavior for the particular species 4Py that features end-groups, which preferentially couple to the metal electrode by physisorption. We show that the energetic position of the molecular orbital varies as a function of the transmission. Finally, we show for the species MN that the use of two cyano end-groups on each side considerably enhances the coupling strength compared to the typical behavior of a single cyano group.

  4. Determining resistivity of a formation adjacent to a borehole having casing by generating constant current flow in portion of casing and using at least two voltage measurement electrodes

    DOEpatents

    Vail, III, William Banning

    2000-01-01

    Methods of operation of different types of multiple electrode apparatus vertically disposed in a cased well to measure information related to the resistivity of adjacent geological formations from within the cased well are described. The multiple electrode apparatus has a minimum of two spaced apart voltage measurement electrodes that electrically engage a first portion of the interior of the cased well and that provide at least first voltage information. Current control means are used to control the magnitude of any selected current that flows along a second portion of the interior of the casing to be equal to a predetermined selected constant. The first portion of the interior of the cased well is spaced apart from the second portion of the interior of the cased well. The first voltage information and the predetermined selected constant value of any selected current flowing along the casing are used in part to determine a magnitude related to the formation resistivity adjacent to the first portion of the interior of the cased well. Methods and apparatus having a plurality of voltage measurement electrodes are disclosed that provide voltage related information in the presence of constant currents flowing along the casing which is used to provide formation resistivity.

  5. Direct Measurement of Cyclic Current-Voltage Responses of Integral Membrane Proteins at a Self-Assembled Lipid-Bilayer-Modified Electrode: Cytochrome f and Cytochrome c Oxidase

    NASA Astrophysics Data System (ADS)

    Salamon, Z.; Hazzard, J. T.; Tollin, G.

    1993-07-01

    Direct cyclic voltage-current responses, produced in the absence of redox mediators, for two detergent-solubilized integral membrane proteins, spinach cytochrome f and beef heart cytochrome c oxidase, have been obtained at an optically transparent indium oxide electrode modified with a self-assembled lipid-bilayer membrane. The results indicate that both proteins interact with the lipid membrane so as to support quasi-reversible electron transfer redox reactions at the semiconductor electrode. The redox potentials that were obtained from analysis of the cyclic "voltammograms," 365 mV for cytochrome f and 250 and 380 mV for cytochrome c oxidase (vs. normal hydrogen electrode), compare quite well with the values reported by using conventional titration methods. The ability to obtain direct electrochemical measurements opens up another approach to the investigation of the properties of integral membrane redox proteins.

  6. Direct measurement of cyclic current-voltage responses of integral membrane proteins at a self-assembled lipid-bilayer-modified electrode: Cytochrome f and cytochrome c oxidase

    SciTech Connect

    Salamon, Z.; Hazzard, J.T.; Tollin, G. )

    1993-07-15

    Direct cyclic voltage-current responses, produced in the absence of redox mediators, for two detergent-solubilized integral membrane proteins, spinach cytochrome f and beef heart cytochrome c oxidase, have been obtained at an optically transparent indium oxide electrode modified with a self-assembled lipid-bilayer membrane. The results indicate that both proteins interact with the lipid membrane so as to support quasi-reversible electron transfer redox reactions at the semiconductor electrode. The redox potentials that were obtained from analysis of the cyclic [open quotes]voltammograms,[close quotes] 365 mV for cytochrome f and 250 and 380 mV for cytochrome c oxidase (vs. normal hydrogen electrode), compare quite well with the values reported by using conventional titration methods. The ability to obtain direct electrochemical measurements opens up another approach to the investigation of the properties of integral membrane redox proteins. 63 refs., 2 figs., 1 tab.

  7. Calculation and measurement of a neutral air flow velocity impacting a high voltage capacitor with asymmetrical electrodes

    SciTech Connect

    Malík, M. Primas, J.; Kopecký, V.; Svoboda, M.

    2014-01-15

    This paper deals with the effects surrounding phenomenon of a mechanical force generated on a high voltage asymmetrical capacitor (the so called Biefeld-Brown effect). A method to measure this force is described and a formula to calculate its value is also given. Based on this the authors derive a formula characterising the neutral air flow velocity impacting an asymmetrical capacitor connected to high voltage. This air flow under normal circumstances lessens the generated force. In the following part this velocity is measured using Particle Image Velocimetry measuring technique and the results of the theoretically calculated velocity and the experimentally measured value are compared. The authors found a good agreement between the results of both approaches.

  8. Novel Approach to Evaluation of Charging on Semiconductor Surface by Noncontact, Electrode-Free Capacitance/Voltage Measurement

    NASA Astrophysics Data System (ADS)

    Hirae, Sadao; Kohno, Motohiro; Okada, Hiroshi; Matsubara, Hideaki; Nakatani, Ikuyoshi; Kusuda, Tatsufumi; Sakai, Takamasa

    1994-04-01

    This paper describes a novel approach to the quantitative characterization of semiconductor surface charging caused by plasma exposures and ion implantations. The problems in conventional evaluation of charging are also discussed. Following the discussions above, the necessity of unified criteria is suggested for efficient development of systems or processes without charging damage. Hence, the charging saturation voltage between a top oxide surface and substrate, V s, and the charging density per unit area per second, ρ0, should be taken as criteria of charging behavior, which effectively represent the charging characteristics of both processes. The unified criteria can be obtained from the exposure time dependence of a net charging density on the thick field oxide. In order to determine V s and ρ0, the analysis using the C-V curve measured in a noncontact method with the metal-air-insulator-semiconductor (MAIS) technique is employed. The total space-charge density in oxide and its centroid can be determined at the same time by analyzing the flat-band voltage (V fb) of the MAIS capacitor as a function of the air gap. The net charge density can be obtained by analyzing the difference between the total space-charge density in oxide before and after charging. Finally, it is shown that charge damage of the large area metal-oxide-semiconductor (MOS) capacitor can be estimated from both V s and ρ0 which are obtained from results for a thick field oxide implanted with As+ and exposed to oxygen plasma.

  9. Methods for testing high voltage connectors in vacuum, measurements of thermal stresses in encapsulated assemblies, and measurement of dielectric strength of electrodes in encapsulants versus radius of curvature

    NASA Technical Reports Server (NTRS)

    Bever, R. S.

    1976-01-01

    Internal embedment stress measurements were performed, using tiny ferrite core transformers, whose voltage output was calibrated versus pressure by the manufacturer. Comparative internal strain measurements were made by attaching conventional strain gages to the same type of resistors and encapsulating these in various potting compounds. Both types of determinations were carried out while temperature cycling from 77 C to -50 C.

  10. Effects of Electrode Material on the Voltage of a Tree-Based Energy Generator

    PubMed Central

    2015-01-01

    The voltage between a standing tree and its surrounding soil is regarded as an innovative renewable energy source. This source is expected to provide a new power generation system for the low-power electrical equipment used in forestry. However, the voltage is weak, which has caused great difficulty in application. Consequently, the development of a method to increase the voltage is a key issue that must be addressed in this area of applied research. As the front-end component for energy harvesting, a metal electrode has a material effect on the level and stability of the voltage obtained. This study aimed to preliminarily ascertain the rules and mechanisms that underlie the effects of electrode material on voltage. Electrodes of different materials were used to measure the tree-source voltage, and the data were employed in a comparative analysis. The results indicate that the conductivity of the metal electrode significantly affects the contact resistance of the electrode-soil and electrode-trunk contact surfaces, thereby influencing the voltage level. The metal reactivity of the electrode has no significant effect on the voltage. However, passivation of the electrode materials markedly reduces the voltage. Suitable electrode materials are demonstrated and recommended. PMID:26302491

  11. On Using Residual Voltage to Estimate Electrode Model Parameters for Damage Detection

    PubMed Central

    Krishnan, Ashwati; Kelly, Shawn K.

    2016-01-01

    Current technology has enabled a significant increase in the number of electrodes for electrical stimulation. For large arrays of electrodes, it becomes increasingly difficult to monitor and detect failures at the stimulation site. In this paper, we propose the idea that the residual voltage from a biphasic electrical stimulation pulse can serve to recognize damage at the electrode-tissue interface. We use a simple switch circuit approach to estimate the relaxation time constant of the electrode model, which essentially models the residual voltage in biphasic electrical stimulation, and compare it with standard electrode characterization techniques. Out of 15 electrodes in a polyimide-based SIROF array, our approach highlights 3 damaged electrodes, consistent with measurements made using cyclic voltammetry and electrode impedance spectroscopy. PMID:27231725

  12. Measuring electrode assembly

    DOEpatents

    Bordenick, John E.

    1989-01-01

    A pH measuring electrode assembly for immersion in a solution includes an enclosed cylindrical member having an aperture at a lower end thereof. An electrolyte is located in the cylindrical member above the level of the aperture and an electrode is disposed in this electrolyte. A ring formed of an ion porous material is mounted relative to the cylindrical member so that a portion of this ring is rotatable relative to and is covering the aperture in the cylindrical member. A suitable mechanism is also provided for indicating which one of a plurality of portions of the ring is covering the aperture and to keep track of which portions of the ring have already been used and become clogged. Preferably, the electrode assembly also includes a glass electrode member in the center thereof including a second electrolyte and electrode disposed therein. The cylindrical member is resiliently mounted relative to the glass electrode member to provide for easy rotation of the cylindrical member relative to the glass electrode member for changing of the portion of the ring covering the aperture.

  13. Measuring electrode assembly

    DOEpatents

    Bordenick, J.E.

    1988-04-26

    A pH measuring electrode assembly for immersion in a solution includes an enclosed cylindrical member having an aperture at a lower end thereof. An electrolyte is located in the cylindrical member above the level of the aperture and an electrode is disposed in this electrolyte. A ring formed of an ion porous material is mounted relative to the cylindrical member so that a portion of this ring is rotatable relative to and is covering the aperture in the cylindrical member. A suitable mechanism is also provided for indicating which one of a plurality of portions of the ring is covering the aperture and to keep track of which portions of the ring have already been used and become clogged. Preferably, the electrode assembly also includes a glass electrode member in the center thereof including a second electrolyte and electrode disposed therein. The cylindrical member is resiliently mounted relative to the glass electrode member to provide for easy rotation of the cylindrical member relative to the glass electrode member for changing of the portion of the ring covering the aperture. 2 figs.

  14. Arc voltage distribution skewness as an indicator of electrode gap during vacuum arc remelting

    DOEpatents

    Williamson, Rodney L.; Zanner, Frank J.; Grose, Stephen M.

    1998-01-01

    The electrode gap of a VAR is monitored by determining the skewness of a distribution of gap voltage measurements. A decrease in skewness indicates an increase in gap and may be used to control the gap.

  15. Evaluation of Niobium as Candidate Electrode Material for DC High Voltage Photoelectron Guns

    NASA Technical Reports Server (NTRS)

    BastaniNejad, M.; Mohamed, Abdullah; Elmustafa, A. A.; Adderley, P.; Clark, J.; Covert, S.; Hansknecht, J.; Hernandez-Garcia, C.; Poelker, M.; Mammei, R.; Surles-Law, K.; Williams, P.

    2012-01-01

    The field emission characteristics of niobium electrodes were compared to those of stainless steel electrodes using a DC high voltage field emission test apparatus. A total of eight electrodes were evaluated: two 304 stainless steel electrodes polished to mirror-like finish with diamond grit and six niobium electrodes (two single-crystal, two large-grain, and two fine-grain) that were chemically polished using a buffered-chemical acid solution. Upon the first application of high voltage, the best large-grain and single-crystal niobium electrodes performed better than the best stainless steel electrodes, exhibiting less field emission at comparable voltage and field strength. In all cases, field emission from electrodes (stainless steel and/or niobium) could be significantly reduced and sometimes completely eliminated, by introducing krypton gas into the vacuum chamber while the electrode was biased at high voltage. Of all the electrodes tested, a large-grain niobium electrode performed the best, exhibiting no measurable field emission (< 10 pA) at 225 kV with 20 mm cathode/anode gap, corresponding to a field strength of 18:7 MV/m.

  16. Application of active electrode compensation to perform continuous voltage-clamp recordings with sharp microelectrodes

    NASA Astrophysics Data System (ADS)

    Gómez-González, J. F.; Destexhe, A.; Bal, T.

    2014-10-01

    Objective. Electrophysiological recordings of single neurons in brain tissues are very common in neuroscience. Glass microelectrodes filled with an electrolyte are used to impale the cell membrane in order to record the membrane potential or to inject current. Their high resistance induces a high voltage drop when passing current and it is essential to correct the voltage measurements. In particular, for voltage clamping, the traditional alternatives are two-electrode voltage-clamp technique or discontinuous single electrode voltage-clamp (dSEVC). Nevertheless, it is generally difficult to impale two electrodes in a same neuron and the switching frequency is limited to low frequencies in the case of dSEVC. We present a novel fully computer-implemented alternative to perform continuous voltage-clamp recordings with a single sharp-electrode. Approach. To reach such voltage-clamp recordings, we combine an active electrode compensation algorithm (AEC) with a digital controller (AECVC). Main results. We applied two types of control-systems: a linear controller (proportional plus integrative controller) and a model-based controller (optimal control). We compared the performance of the two methods to dSEVC using a dynamic model cell and experiments in brain slices. Significance. The AECVC method provides an entirely digital method to perform continuous recording and smooth switching between voltage-clamp, current clamp or dynamic-clamp configurations without introducing artifacts.

  17. Measuring Breakdown Voltage.

    ERIC Educational Resources Information Center

    Auer, Herbert J.

    1978-01-01

    The article discusses an aspect of conductivity, one of the electrical properties subdivisions, and describes a tester that can be shop-built. Breakdown voltage of an insulation material is specifically examined. Test procedures, parts lists, diagrams, and test data form are included. (MF)

  18. Cell voltage versus electrode potential range in aqueous supercapacitors.

    PubMed

    Dai, Zengxin; Peng, Chuang; Chae, Jung Hoon; Ng, Kok Chiang; Chen, George Z

    2015-01-01

    Supercapacitors with aqueous electrolytes and nanostructured composite electrodes are attractive because of their high charging-discharging speed, long cycle life, low environmental impact and wide commercial affordability. However, the energy capacity of aqueous supercapacitors is limited by the electrochemical window of water. In this paper, a recently reported engineering strategy is further developed and demonstrated to correlate the maximum charging voltage of a supercapacitor with the capacitive potential ranges and the capacitance ratio of the two electrodes. Beyond the maximum charging voltage, a supercapacitor may still operate, but at the expense of a reduced cycle life. In addition, it is shown that the supercapacitor performance is strongly affected by the initial and zero charge potentials of the electrodes. Further, the differences are highlighted and elaborated between freshly prepared, aged under open circuit conditions, and cycled electrodes of composites of conducting polymers and carbon nanotubes. The first voltammetric charging-discharging cycle has an electrode conditioning effect to change the electrodes from their initial potentials to the potential of zero voltage, and reduce the irreversibility. PMID:25897670

  19. Cell voltage versus electrode potential range in aqueous supercapacitors

    NASA Astrophysics Data System (ADS)

    Dai, Zengxin; Peng, Chuang; Chae, Jung Hoon; Ng, Kok Chiang; Chen, George Z.

    2015-04-01

    Supercapacitors with aqueous electrolytes and nanostructured composite electrodes are attractive because of their high charging-discharging speed, long cycle life, low environmental impact and wide commercial affordability. However, the energy capacity of aqueous supercapacitors is limited by the electrochemical window of water. In this paper, a recently reported engineering strategy is further developed and demonstrated to correlate the maximum charging voltage of a supercapacitor with the capacitive potential ranges and the capacitance ratio of the two electrodes. Beyond the maximum charging voltage, a supercapacitor may still operate, but at the expense of a reduced cycle life. In addition, it is shown that the supercapacitor performance is strongly affected by the initial and zero charge potentials of the electrodes. Further, the differences are highlighted and elaborated between freshly prepared, aged under open circuit conditions, and cycled electrodes of composites of conducting polymers and carbon nanotubes. The first voltammetric charging-discharging cycle has an electrode conditioning effect to change the electrodes from their initial potentials to the potential of zero voltage, and reduce the irreversibility.

  20. Cell voltage versus electrode potential range in aqueous supercapacitors.

    PubMed

    Dai, Zengxin; Peng, Chuang; Chae, Jung Hoon; Ng, Kok Chiang; Chen, George Z

    2015-01-01

    Supercapacitors with aqueous electrolytes and nanostructured composite electrodes are attractive because of their high charging-discharging speed, long cycle life, low environmental impact and wide commercial affordability. However, the energy capacity of aqueous supercapacitors is limited by the electrochemical window of water. In this paper, a recently reported engineering strategy is further developed and demonstrated to correlate the maximum charging voltage of a supercapacitor with the capacitive potential ranges and the capacitance ratio of the two electrodes. Beyond the maximum charging voltage, a supercapacitor may still operate, but at the expense of a reduced cycle life. In addition, it is shown that the supercapacitor performance is strongly affected by the initial and zero charge potentials of the electrodes. Further, the differences are highlighted and elaborated between freshly prepared, aged under open circuit conditions, and cycled electrodes of composites of conducting polymers and carbon nanotubes. The first voltammetric charging-discharging cycle has an electrode conditioning effect to change the electrodes from their initial potentials to the potential of zero voltage, and reduce the irreversibility.

  1. Technique eliminates high voltage arcing at electrode-insulator contact area

    NASA Technical Reports Server (NTRS)

    Mealy, G.

    1967-01-01

    Coating the electrode-insulator contact area with silver epoxy conductive paint and forcing the electrode and insulator tightly together into a permanent connection, eliminates electrical arcing in high-voltage electrodes supplying electrical power to vacuum facilities.

  2. Field Emission Measurements from Niobium Electrodes

    SciTech Connect

    M. BastaniNejad, P.A. Adderley, J. Clark, S. Covert, J. Hansknecht, C. Hernandez-Garcia, R. Mammei, M. Poelker

    2011-03-01

    Increasing the operating voltage of a DC high voltage photogun serves to minimize space charge induced emittance growth and thereby preserve electron beam brightness, however, field emission from the photogun cathode electrode can pose significant problems: constant low level field emission degrades vacuum via electron stimulated desorption which in turn reduces photocathode yield through chemical poisoning and/or ion bombardment and high levels of field emission can damage the ceramic insulator. Niobium electrodes (single crystal, large grain and fine grain) were characterized using a DC high voltage field emission test stand at maximum voltage -225kV and electric field gradient > 10MV/m. Niobium electrodes appear to be superior to diamond-paste polished stainless steel electrodes.

  3. Arc voltage measurements of the hyperbaric MIG process

    SciTech Connect

    Huismann, G.; Hoffmeister, H.

    1996-12-01

    As a vital part of the MIG process, the arc controls the stability of the process, the melting of the filler wire and the base material. In order to control and describe the arc behavior, it is necessary to know the voltage- current- arc length relations, or the arc characteristics. Knowledge of arc characteristics is necessary for control of the MIG process and further automation of welding systems, in particular, at hyperbaric welding. In literature, information on arc characteristics for hyperbaric open arc pulsed process is not available so far. Therefore, in the present work, arc characteristics were measured for a pressure range of 1 to 16 bar. In measuring arc voltages and arc lengths of MIG arcs, specific problems are encountered as compared to TIG arcs where the distance between the electrode and work piece can be taken as the arc length and the ohmic voltage drop in the tungsten electrode is low. The movement of the electrode in the MIG process and the deformation of the molten wire end together with weld pool fluctuations are providing a complex system. For determining the arc characteristics certain simplifications are thus required which have been applied in this work. This paper presents a new concept on measuring arc lengths and voltages in the open MIG arc.

  4. Rapid and precise measurement of flatband voltage

    NASA Technical Reports Server (NTRS)

    Li, S. P.; Ryan, M.; Bates, E. T.

    1976-01-01

    The paper outlines the design, principles of operation, and calibration of a five-IC network intended to give a rapid, precise, and automatic determination of the flatband voltage of MOS capacitors. The basic principle of measurement is to compare the analog output voltage of a capacitance meter - which is directly proportional to the capacitance being measured - with a preset or dialed-in voltage proportional to the calculated flatband capacitance by means of a comparator circuit. The bias to the MOS capacitor supplied through the capacitance meter is provided by a ramp voltage going from a negative toward a positive voltage level and vice versa. The network employs two monostable multivibrators for reading and recording the flatband voltage and for resetting the initial conditions and restarting the ramp. The flatband voltage can be held and read on a digital voltmeter.

  5. Electrodic voltages accompanying stimulated bioremediation of a uranium-contaminated aquifer

    NASA Astrophysics Data System (ADS)

    Williams, Kenneth H.; N'guessan, A. Lucie; Druhan, Jennifer; Long, Philip E.; Hubbard, Susan S.; Lovley, Derek R.; Banfield, Jillian F.

    2010-06-01

    The inability to track the products of subsurface microbial activity during stimulated bioremediation has limited its implementation. We used spatiotemporal changes in electrodic potentials (EP) to track the onset and persistence of stimulated sulfate-reducing bacteria in a uranium-contaminated aquifer undergoing acetate amendment. Following acetate injection, anomalous voltages approaching -900 mV were measured between copper electrodes within the aquifer sediments and a single reference electrode at the ground surface. Onset of EP anomalies correlated in time with both the accumulation of dissolved sulfide and the removal of uranium from groundwater. The anomalies persisted for 45 days after halting acetate injection. Current-voltage and current-power relationships between measurement and reference electrodes exhibited a galvanic response, with a maximum power density of 10 mW/m2 during sulfate reduction. We infer that the EP anomalies resulted from electrochemical differences between geochemically reduced regions and areas having higher oxidation potential. Following the period of sulfate reduction, EP values ranged from -500 to -600 mV and were associated with elevated concentrations of ferrous iron. Within 10 days of the voltage decrease, uranium concentrations rebounded from 0.2 to 0.8 μM, a level still below the background value of 1.5 μM. These findings demonstrate that EP measurements provide an inexpensive and minimally invasive means for monitoring the products of stimulated microbial activity within aquifer sediments and are capable of verifying maintenance of redox conditions favorable for the stability of bioreduced contaminants, such as uranium.

  6. Electrodic voltages accompanying stimulated bioremediation of a uranium-contaminated aquifer

    SciTech Connect

    Williams, K.H.; N'Guessan, A.L.; Druhan, J.; Long, P.E.; Hubbard, S.S.; Lovley, D.R.; Banfield, J.F.

    2009-11-15

    The inability to track the products of subsurface microbial activity during stimulated bioremediation has limited its implementation. We used spatiotemporal changes in electrodic potentials (EP) to track the onset and persistence of stimulated sulfate-reducing bacteria in a uranium-contaminated aquifer undergoing acetate amendment. Following acetate injection, anomalous voltages approaching -900 mV were measured between copper electrodes within the aquifer sediments and a single reference electrode at the ground surface. Onset of EP anomalies correlated in time with both the accumulation of dissolved sulfide and the removal of uranium from groundwater. The anomalies persisted for 45 days after halting acetate injection. Current-voltage and current-power relationships between measurement and reference electrodes exhibited a galvanic response, with a maximum power density of 10 mW/m{sup 2} during sulfate reduction. We infer that the EP anomalies resulted from electrochemical differences between geochemically reduced regions and areas having higher oxidation potential. Following the period of sulfate reduction, EP values ranged from -500 to -600 mV and were associated with elevated concentrations of ferrous iron. Within 10 days of the voltage decrease, uranium concentrations rebounded from 0.2 to 0.8 {mu}M, a level still below the background value of 1.5 {mu}M. These findings demonstrate that EP measurements provide an inexpensive and minimally invasive means for monitoring the products of stimulated microbial activity within aquifer sediments and are capable of verifying maintenance of redox conditions favorable for the stability of bioreduced contaminants, such as uranium.

  7. Measuring breakdown voltage for objectively detecting ignition in fire research

    NASA Astrophysics Data System (ADS)

    Ochoterena, R.; Försth, M.; Elfsberg, Mattias; Larsson, Anders

    2013-10-01

    This paper presents a method intended for detecting the initiation of combustion and the presence of smoke in confined or open spaces by continuously applying an intermittent high-voltage pulse between the electrodes. The method is based on an electrical circuit which generates an electrical discharge measuring simultaneously the breakdown voltage between the electrodes. It has been successfully used for the detection of particle-laden aerosols and flames. However, measurements in this study showed that detecting pyrolysis products with this methodology is challenging and arduous. The method presented here is robust and exploits the necessity of having an ignition system which at the same time can automatically discern between clean air, flames or particle-laden aerosols and can be easily implemented in the existing cone calorimeter with very minor modifications.

  8. High voltage and high specific capacity dual intercalating electrode Li-ion batteries

    NASA Technical Reports Server (NTRS)

    West, William C. (Inventor); Blanco, Mario (Inventor)

    2010-01-01

    The present invention provides high capacity and high voltage Li-ion batteries that have a carbonaceous cathode and a nonaqueous electrolyte solution comprising LiF salt and an anion receptor that binds the fluoride ion. The batteries can comprise dual intercalating electrode Li ion batteries. Methods of the present invention use a cathode and electrode pair, wherein each of the electrodes reversibly intercalate ions provided by a LiF salt to make a high voltage and high specific capacity dual intercalating electrode Li-ion battery. The present methods and systems provide high-capacity batteries particularly useful in powering devices where minimizing battery mass is important.

  9. TiN coated aluminum electrodes for DC high voltage electron guns

    SciTech Connect

    Mamun, Md Abdullah A.; Elmustafa, Abdelmageed A.; Taus, Rhys; Forman, Eric; Poelker, Matthew

    2015-05-01

    Preparing electrodes made of metals like stainless steel, for use inside DC high voltage electron guns, is a labor-intensive and time-consuming process. In this paper, the authors report the exceptional high voltage performance of aluminum electrodes coated with hard titanium nitride (TiN). The aluminum electrodes were comparatively easy to manufacture and required only hours of mechanical polishing using silicon carbide paper, prior to coating with TiN by a commercial vendor. The high voltage performance of three TiN-coated aluminum electrodes, before and after gas conditioning with helium, was compared to that of bare aluminum electrodes, and electrodes manufactured from titanium alloy (Ti-6AI-4V). Following gas conditioning, each TiN-coated aluminum electrode reached -225 kV bias voltage while generating less than 100 pA of field emission (<10 pA) using a 40 mm cathode/anode gap, corresponding to field strength of 13.7 MV/m. Smaller gaps were studied to evaluate electrode performance at higher field strength with the best performing TiN-coated aluminum electrode reaching ~22.5 MV/m with field emission less than 100 pA. These results were comparable to those obtained from our best-performing electrodes manufactured from stainless steel, titanium alloy and niobium, as reported in references cited below. The TiN coating provided a very smooth surface and with mechanical properties of the coating (hardness and modulus) superior to those of stainless steel, titanium-alloy, and niobium electrodes. These features likely contributed to the improved high voltage performance of the TiN-coated aluminum electrodes.

  10. TiN coated aluminum electrodes for DC high voltage electron guns

    SciTech Connect

    Mamun, Md Abdullah A.; Elmustafa, Abdelmageed A.; Taus, Rhys; Forman, Eric; Poelker, Matthew

    2015-05-15

    Preparing electrodes made of metals like stainless steel, for use inside DC high voltage electron guns, is a labor-intensive and time-consuming process. In this paper, the authors report the exceptional high voltage performance of aluminum electrodes coated with hard titanium nitride (TiN). The aluminum electrodes were comparatively easy to manufacture and required only hours of mechanical polishing using silicon carbide paper, prior to coating with TiN by a commercial vendor. The high voltage performance of three TiN-coated aluminum electrodes, before and after gas conditioning with helium, was compared to that of bare aluminum electrodes, and electrodes manufactured from titanium alloy (Ti-6Al-4V). Following gas conditioning, each TiN-coated aluminum electrode reached −225 kV bias voltage while generating less than 100 pA of field emission (<10 pA) using a 40 mm cathode/anode gap, corresponding to field strength of 13.7 MV/m. Smaller gaps were studied to evaluate electrode performance at higher field strength with the best performing TiN-coated aluminum electrode reaching ∼22.5 MV/m with field emission less than 100 pA. These results were comparable to those obtained from our best-performing electrodes manufactured from stainless steel, titanium alloy and niobium, as reported in references cited below. The TiN coating provided a very smooth surface and with mechanical properties of the coating (hardness and modulus) superior to those of stainless steel, titanium-alloy, and niobium electrodes. These features likely contributed to the improved high voltage performance of the TiN-coated aluminum electrodes.

  11. TiN coated aluminum electrodes for DC high voltage electron guns

    DOE PAGES

    Mamun, Md Abdullah A.; Elmustafa, Abdelmageed A.; Taus, Rhys; Forman, Eric; Poelker, Matthew

    2015-05-01

    Preparing electrodes made of metals like stainless steel, for use inside DC high voltage electron guns, is a labor-intensive and time-consuming process. In this paper, the authors report the exceptional high voltage performance of aluminum electrodes coated with hard titanium nitride (TiN). The aluminum electrodes were comparatively easy to manufacture and required only hours of mechanical polishing using silicon carbide paper, prior to coating with TiN by a commercial vendor. The high voltage performance of three TiN-coated aluminum electrodes, before and after gas conditioning with helium, was compared to that of bare aluminum electrodes, and electrodes manufactured from titanium alloymore » (Ti-6AI-4V). Following gas conditioning, each TiN-coated aluminum electrode reached -225 kV bias voltage while generating less than 100 pA of field emission (<10 pA) using a 40 mm cathode/anode gap, corresponding to field strength of 13.7 MV/m. Smaller gaps were studied to evaluate electrode performance at higher field strength with the best performing TiN-coated aluminum electrode reaching ~22.5 MV/m with field emission less than 100 pA. These results were comparable to those obtained from our best-performing electrodes manufactured from stainless steel, titanium alloy and niobium, as reported in references cited below. The TiN coating provided a very smooth surface and with mechanical properties of the coating (hardness and modulus) superior to those of stainless steel, titanium-alloy, and niobium electrodes. These features likely contributed to the improved high voltage performance of the TiN-coated aluminum electrodes.« less

  12. PEDOT-CNT coated electrodes stimulate retinal neurons at low voltage amplitudes and low charge densities

    NASA Astrophysics Data System (ADS)

    Samba, R.; Herrmann, T.; Zeck, G.

    2015-02-01

    Objective. The aim of this study was to compare two different microelectrode materials—the conductive polymer composite poly-3,4-ethylenedioxythiophene (PEDOT)-carbon nanotube(CNT) and titanium nitride (TiN)—at activating spikes in retinal ganglion cells in whole mount rat retina through stimulation of the local retinal network. Stimulation efficacy of the microelectrodes was analyzed by comparing voltage, current and transferred charge at stimulation threshold. Approach. Retinal ganglion cell spikes were recorded by a central electrode (30 μm diameter) in the planar grid of an electrode array. Extracellular stimulation (monophasic, cathodic, 0.1-1.0 ms) of the retinal network was performed using constant voltage pulses applied to the eight surrounding electrodes. The stimulation electrodes were equally spaced on the four sides of a square (400 × 400 μm). Threshold voltage was determined as the pulse amplitude required to evoke network-mediated ganglion cell spiking in a defined post stimulus time window in 50% of identical stimulus repetitions. For the two electrode materials threshold voltage, transferred charge at threshold, maximum current and the residual current at the end of the pulse were compared. Main results. Stimulation of retinal interneurons using PEDOT-CNT electrodes is achieved with lower stimulation voltage and requires lower charge transfer as compared to TiN. The key parameter for effective stimulation is a constant current over at least 0.5 ms, which is obtained by PEDOT-CNT electrodes at lower stimulation voltage due to its faradaic charge transfer mechanism. Significance. In neuroprosthetic implants, PEDOT-CNT may allow for smaller electrodes, effective stimulation in a safe voltage regime and lower energy-consumption. Our study also indicates, that the charge transferred at threshold or the charge injection capacity per se does not determine stimulation efficacy.

  13. Electrical voltages and resistances measured to inspect metallic cased wells and pipelines

    DOEpatents

    Vail III, William Banning; Momii, Steven Thomas

    2003-06-10

    A cased well in the earth is electrically energized with A.C. current. Voltages are measured from three voltage measurement electrodes in electrical contact with the interior of the casing while the casing is electrically energized. In a measurement mode, A.C. current is conducted from a first current carrying electrode within the cased well to a remote second current carrying electrode located on the surface of the earth. In a calibration mode, current is passed from the first current carrying electrode to a third current carrying electrode located vertically at a different position within the cased well, where the three voltage measurement electrodes are located vertically in between the first and third current carrying electrodes. Voltages along the casing and resistances along the casing are measured to determine wall thickness and the location of any casing collars present so as to electrically inspect the casing. Similar methods are employed to energize a pipeline to measure the wall thickness of the pipeline and the location of pipe joints to electrically inspect the pipeline.

  14. Electrical voltages and resistances measured to inspect metallic cased wells and pipelines

    DOEpatents

    Vail, III, William Banning; Momii, Steven Thomas

    2000-01-01

    A cased well in the earth is electrically energized with A.C. current. Voltages are measured from three voltage measurement electrodes in electrical contact with the interior of the casing while the casing is electrically energized. In a measurement mode, A.C. current is conducted from a first current carrying electrode within the cased well to a remote second current carrying electrode located on the surface of the earth. In a calibration mode, current is passed from the first current carrying electrode to a third current carrying electrode located vertically at a different position within the cased well, where the three voltage measurement electrodes are located vertically in between the first and third current carrying electrodes. Voltages along the casing and resistances along the casing are measured to determine wall thickness and the location of any casing collars present so as to electrically inspect the casing. Similar methods are employed to energize a pipeline to measure the wall thickness of the pipeline and the location of pipe joints to electrically inspect the pipeline.

  15. Electrical voltages and resistances measured to inspect metallic cased wells and pipelines

    DOEpatents

    Vail, III, William Banning; Momii, Steven Thomas

    2001-01-01

    A cased well in the earth is electrically energized with A.C. current. Voltages are measured from three voltage measurement electrodes in electrical contact with the interior of the casing while the casing is electrically energized. In a measurement mode, A.C. current is conducted from a first current carrying electrode within the cased well to a remote second current carrying electrode located on the surface of the earth. In a calibration mode, current is passed from the first current carrying electrode to a third current carrying electrode located vertically at a different position within the cased well, where the three voltage measurement electrodes are located vertically in between the first and third current carrying electrodes. Voltages along the casing and resistances along the casing are measured to determine wall thickness and the location of any casing collars present so as to electrically inspect the casing. Similar methods are employed to energize a pipeline to measure the wall thickness of the pipeline and the location of pipe joints to electrically inspect the pipeline.

  16. Improving the performance of stainless-steel DC high voltage photoelectron gun cathode electrodes via gas conditioning with helium or krypton

    SciTech Connect

    BastaniNejad, M.; Elmustafa, A. A.; Forman, E.; Clark, J.; Covert, S.; Grames, J.; Hansknecht, J.; Hernandez-Garcia, C.; Poelker, M.; Suleiman, R.

    2014-10-01

    Gas conditioning was shown to eliminate field emission from cathode electrodes used inside DC high voltage photoelectron guns, thus providing a reliable means to operate photoguns at higher voltages and field strengths. Measurements and simulation results indicate that gas conditioning eliminates field emission from cathode electrodes via two mechanisms: sputtering and implantation, with the benefits of implantation reversed by heating the electrode. We have studied five stainless steel electrodes (304L and 316LN) that were polished to approximately 20 nm surface roughness using diamond grit, and evaluated inside a high voltage apparatus to determine the onset of field emission as a function of voltage and field strength. The field emission characteristics of each electrode varied significantly upon the initial application of voltage but improved to nearly the same level after gas conditioning using either helium or krypton, exhibiting less than 10 pA field emission at -225 kV bias voltage with a 50 mm cathode/anode gap, corresponding to a field strength of ~13 MV/m. Finally, field emission could be reduced with either gas, but there were conditions related to gas choice, voltage and field strength that were more favorable than others.

  17. Transition voltages of vacuum-spaced and molecular junctions with Ag and Pt electrodes

    SciTech Connect

    Wu, Kunlin; Bai, Meilin; Hou, Shimin; Sanvito, Stefano

    2014-07-07

    The transition voltage of vacuum-spaced and molecular junctions constructed with Ag and Pt electrodes is investigated by non-equilibrium Green's function formalism combined with density functional theory. Our calculations show that, similarly to the case of Au-vacuum-Au previously studied, the transition voltages of Ag and Pt metal-vacuum-metal junctions with atomic protrusions on the electrode surface are determined by the local density of states of the p-type atomic orbitals of the protrusion. Since the energy position of the Pt 6p atomic orbitals is higher than that of the 5p/6p of Ag and Au, the transition voltage of Pt-vacuum-Pt junctions is larger than that of both Ag-vacuum-Ag and Au-vacuum-Au junctions. When one moves to analyzing asymmetric molecular junctions constructed with biphenyl thiol as central molecule, then the transition voltage is found to depend on the specific bonding site for the sulfur atom in the thiol group. In particular agreement with experiments, where the largest transition voltage is found for Ag and the smallest for Pt, is obtained when one assumes S binding at the hollow-bridge site on the Ag/Au(111) surface and at the adatom site on the Pt(111) one. This demonstrates the critical role played by the linker-electrode binding geometry in determining the transition voltage of devices made of conjugated thiol molecules.

  18. Microphonics in biopotential measurements with capacitive electrodes.

    PubMed

    Luna-Lozano, Pablo S; Pallas-Areny, Ramon

    2010-01-01

    Biopotential measurements with capacitive electrodes do not need any direct contact between electrode and skin, which saves the time devoted to expose and prepare the contact area when measuring with conductive electrodes. However, mechanical vibrations resulting from physiological functions such as respiration and cardiac contraction can change the capacitance of the electrode and affect the recordings. This transformation of mechanical vibrations into undesired electric signals is termed microphonics. We have evaluated microphonics in capacitive ECG recordings obtained from a dressed subject seated on a common chair with electrodes placed on the front side of the backrest of the chair. Depending on the softness of the backrest, the recordings may be clearly affected by the displacement of the thorax back wall due to the respiration and to the heart's mechanical activity.

  19. Evaluation of electropolished stainless steel electrodes for use in DC high voltage photoelectron guns

    DOE PAGES

    BastaniNejad, Mahzad; Elmustafa, Abdelmageed A.; Forman, Eric; Covert, Steven; Hansknecht, John; Hernandez-Garcia, Carlos; Poelker, Matthew; Das, Lopa; Kelley, Michael; Williams, Phillip

    2015-07-01

    DC high voltage photoelectron guns are used to produce polarized electron beams for accelerator-based nuclear and high-energy physics research. Low-level field emission (~nA) from the cathode electrode degrades the vacuum within the photogun and reduces the photoelectron yield of the delicate GaAs-based photocathode used to produce the electron beams. High-level field emission (>μA) can cause significant damage the photogun. To minimize field emission, stainless steel electrodes are typically diamond-paste polished, a labor-intensive process often yielding field emission performance with a high degree of variability, sample to sample. As an alternative approach and as comparative study, the performance of electrodes electropolishedmore » by conventional commercially available methods is presented. Our observations indicate the electropolished electrodes exhibited less field emission upon the initial application of high voltage, but showed less improvement with gas conditioning compared to the diamond-paste polished electrodes. In contrast, the diamond-paste polished electrodes responded favorably to gas conditioning, and ultimately reached higher voltages and field strengths without field emission, compared to electrodes that were only electropolished. The best performing electrode was one that was both diamond-paste polished and electropolished, reaching a field strength of 18.7 MV/m while generating less than 100 pA of field emission. The speculate that the combined processes were the most effective at reducing both large and small scale topography. However, surface science evaluation indicates topography cannot be the only relevant parameter when it comes to predicting field emission performance.« less

  20. Evaluation of electropolished stainless steel electrodes for use in DC high voltage photoelectron guns

    SciTech Connect

    BastaniNejad, Mahzad Elmustafa, Abdelmageed A.; Forman, Eric; Covert, Steven; Hansknecht, John; Hernandez-Garcia, Carlos; Poelker, Matthew; Das, Lopa; Kelley, Michael; Williams, Phillip

    2015-07-15

    DC high voltage photoelectron guns are used to produce polarized electron beams for accelerator-based nuclear and high-energy physics research. Low-level field emission (∼nA) from the cathode electrode degrades the vacuum within the photogun and reduces the photoelectron yield of the delicate GaAs-based photocathode used to produce the electron beams. High-level field emission (>μA) can cause significant damage the photogun. To minimize field emission, stainless steel electrodes are typically diamond-paste polished, a labor-intensive process often yielding field emission performance with a high degree of variability, sample to sample. As an alternative approach and as comparative study, the performance of electrodes electropolished by conventional commercially available methods is presented. Our observations indicate the electropolished electrodes exhibited less field emission upon the initial application of high voltage, but showed less improvement with gas conditioning compared to the diamond-paste polished electrodes. In contrast, the diamond-paste polished electrodes responded favorably to gas conditioning, and ultimately reached higher voltages and field strengths without field emission, compared to electrodes that were only electropolished. The best performing electrode was one that was both diamond-paste polished and electropolished, reaching a field strength of 18.7 MV/m while generating less than 100 pA of field emission. The authors speculate that the combined processes were the most effective at reducing both large and small scale topography. However, surface science evaluation indicates topography cannot be the only relevant parameter when it comes to predicting field emission performance.

  1. Evaluation of electropolished stainless steel electrodes for use in DC high voltage photoelectron guns

    SciTech Connect

    BastaniNejad, Mahzad; Elmustafa, Abdelmageed A.; Forman, Eric; Covert, Steven; Hansknecht, John; Hernandez-Garcia, Carlos; Poelker, Matthew; Das, Lopa; Kelley, Michael; Williams, Phillip

    2015-07-01

    DC high voltage photoelectron guns are used to produce polarized electron beams for accelerator-based nuclear and high-energy physics research. Low-level field emission (~nA) from the cathode electrode degrades the vacuum within the photogun and reduces the photoelectron yield of the delicate GaAs-based photocathode used to produce the electron beams. High-level field emission (>μA) can cause significant damage the photogun. To minimize field emission, stainless steel electrodes are typically diamond-paste polished, a labor-intensive process often yielding field emission performance with a high degree of variability, sample to sample. As an alternative approach and as comparative study, the performance of electrodes electropolished by conventional commercially available methods is presented. Our observations indicate the electropolished electrodes exhibited less field emission upon the initial application of high voltage, but showed less improvement with gas conditioning compared to the diamond-paste polished electrodes. In contrast, the diamond-paste polished electrodes responded favorably to gas conditioning, and ultimately reached higher voltages and field strengths without field emission, compared to electrodes that were only electropolished. The best performing electrode was one that was both diamond-paste polished and electropolished, reaching a field strength of 18.7 MV/m while generating less than 100 pA of field emission. The speculate that the combined processes were the most effective at reducing both large and small scale topography. However, surface science evaluation indicates topography cannot be the only relevant parameter when it comes to predicting field emission performance.

  2. Energy harvesting in high voltage measuring techniques

    NASA Astrophysics Data System (ADS)

    Żyłka, Pawel; Doliński, Marcin

    2016-02-01

    The paper discusses selected problems related to application of energy harvesting (that is, generating electricity from surplus energy present in the environment) to supply autonomous ultra-low-power measurement systems applicable in high voltage engineering. As a practical example of such implementation a laboratory model of a remote temperature sensor is presented, which is self-powered by heat generated in a current-carrying busbar in HV- switchgear. Presented system exploits a thermoelectric harvester based on a passively cooled Peltier module supplying micro-power low-voltage dc-dc converter driving energy-efficient temperature sensor, microcontroller and a fibre-optic transmitter. Performance of the model in laboratory simulated conditions are presented and discussed.

  3. Calibrated single-plunge bipolar electrode array for mapping myocardial vector fields in three dimensions during high-voltage transthoracic defibrillation.

    PubMed

    Deale, O C; Ng, K T; Kim-Van Housen, E J; Lerman, B B

    2001-08-01

    Mapping of the myocardial scalar electric potential during defibrillation is normally performed with unipolar electrodes connected to voltage dividers and a global potential reference. Unfortunately, vector potential gradients that are calculated from these data tend to exhibit a high sensitivity to measurement errors. This paper presents a calibrated single-plunge bipolar electrode array (EA) that avoids the error sensitivity of unipolar electrodes. The EA is triaxial, uses a local potential reference, and simultaneously measures all three components of the myocardial electric field vector. An electrode spacing of approximately 500 microm allows the EA to be direct-coupled to high-input-impedance, isolated, differential amplifiers and eliminates the need for voltage dividers. Calibration is performed with an electrolytic tank in which an accurately measured, uniform electric field is produced. For each EA, unique calibration matrices are determined which transform potential difference readings from the EA to orthogonal components of the electric field vector. Elements of the matrices are evaluated by least squares multiple regression analysis of data recorded during rotation of the electric field. The design of the electrolytic tank and electrode holder allows the electric field vector to be rotated globally with respect to the electrode axes. The calibration technique corrects for both field perturbation by the plunge electrode body and deviations from orthogonality of the electrode axes. A unique feature of this technique is that it eliminates the need for mechanical measurement of the electrode spacing. During calibration, only angular settings and voltages are recorded. For this study, ten EAs were calibrated and their root-mean-square (rms) errors evaluated. The mean of the vector magnitude rms errors over the set of ten EAs was 0.40% and the standard deviation 0.07%. Calibrated EAs were also tested for multisite mapping in four dogs during high-voltage

  4. The Influence of Electrode Surface Mercury Film Deformation on the Breakdown Voltage of a Sub-Nanosecond Pulse Discharge Tube

    NASA Astrophysics Data System (ADS)

    Weng, Ming; Xu, Weijun; Wang, Rui

    2012-11-01

    A sub-nanosecond pulse discharge tube is a gas discharge tube which can generate a rapid high-voltage pulse of kilo-volts in amplitude and sub-nanoseconds in width. In this paper, the sub-nanosecond pulse discharge tube and its working principles are described. Because of the phenomenon that the deformation process of the mercury film on the electrode surface lags behind the charging process, the mercury film deformation process affects the dynamic breakdown voltage of the tube directly. The deformation of the mercury film is observed microscopically, and the dynamic breakdown voltage of the tube is measured using an oscillograph. The results show that all the parameters in the charging process, such as charging resistance, charging capacitance and DC power supply, affect the dynamic breakdown voltage of the tube. Based on these studies, the output pulse amplitude can be controlled continuously and individually by adjusting the power supply voltage. When the DC power supply is adjusted from 7 kV to 10 kV, the dynamic breakdown voltage ranges from 6.5 kV to 10 kV. According to our research, a kind of sub-nanosecond pulse generator is made, with a pulse width ranging from 0.5 ns to 2.5 ns, a rise time from 0.32 ns to 0.58 ns, and a pulse amplitude that is adjustable from 1.5 kV to 5 kV.

  5. Methods for Specific Electrode Resistance Measurement during Transcranial Direct Current Stimulation

    PubMed Central

    Khadka, Niranjan; Rahman, Asif; Sarantos, Chris; Truong, Dennis Q.; Bikson, Marom

    2014-01-01

    Background Transcranial Direct Current Stimulation (tDCS) is investigated to treat a wide range of neuropsychiatric disorders, for rehabilitation, and for enhancing cognitive performance. The monitoring of electrode resistance before and during tDCS is considered important for tolerability and safety, where an unusually high resistance is indicative of undesired electrode or poor skin contact conditions. Conventional resistance measurement methods do not isolate individual electrode resistance but rather measures overall voltage. Moreover, for HD-tDCS devices, cross talk across electrodes makes concurrent resistance monitoring unreliable. Objective We propose a novel method for monitoring of the individual electrode resistance during tDCS, using a super-position of direct current with a test-signal (low-intensity and low-frequency sinusoids with electrode– specific frequencies) and a single sentinel electrode (not used for DC). Methods To validate this methodology, we developed lumped-parameter models of two and multi-electrode tDCS. Approaches with and without a sentinel electrode were solved and underlying assumptions identified. Assumptions were tested and parameterized in healthy participants using forearm stimulation combining tDCS (2 mA) and sinusoidal test-signals (38 μA and 76 μA peak to peak at 1 Hz, 10 Hz, and 100 Hz) and an in vitro test (where varied electrode failure modes were created). DC and AC component voltages across the electrodes were compared and participants were asked to rate subjective pain. Results A sentinel electrode is required to isolate electrode resistance in a two-electrode tDCS system. For multi-electrode resistance tracking, cross talk was aggravated with electrode proximity and current/resistance mismatches, but could be corrected using proposed approaches. Average voltage and average pain scores were not significantly different across test current intensities and frequencies (two-way repeated measures ANOVA) indicating the

  6. Electronic circuit for measuring series connected electrochemical cell voltages

    DOEpatents

    Ashtiani, Cyrus N.; Stuart, Thomas A.

    2000-01-01

    An electronic circuit for measuring voltage signals in an energy storage device is disclosed. The electronic circuit includes a plurality of energy storage cells forming the energy storage device. A voltage divider circuit is connected to at least one of the energy storage cells. A current regulating circuit is provided for regulating the current through the voltage divider circuit. A voltage measurement node is associated with the voltage divider circuit for producing a voltage signal which is proportional to the voltage across the energy storage cell.

  7. Structure and charging kinetics of electrical double layers at large electrode voltage

    SciTech Connect

    Cagle, Clint; Feng, Guang; Qiao, Rui; Huang, Jingsong; Sumpter, Bobby G; Meunier, Vincent

    2009-01-01

    The structure and charging kinetics of electrical double layers (EDLs) at interfaces of NaCl solutions and planar electrodes are studied by molecular dynamics (MD) and Poisson Nernst Planck (PNP) simulations. Based on the MD results and prior experimental data, we show that counterion packing in planar EDLs does not reach the steric limit at electrode voltages below 1 V. In addition, we demonstrate that a PNP model, when complemented with a Stern model, can be effectively used to capture the overall charging kinetics. However, the PNP/Stern model can only give a qualitative description of the fine features of the EDL.

  8. Experimental validation of a high voltage pulse measurement method.

    SciTech Connect

    Cular, Stefan; Patel, Nishant Bhupendra; Branch, Darren W.

    2013-09-01

    This report describes X-cut lithium niobates (LiNbO3) utilization for voltage sensing by monitoring the acoustic wave propagation changes through LiNbO3 resulting from applied voltage. Direct current (DC), alternating current (AC) and pulsed voltage signals were applied to the crystal. Voltage induced shift in acoustic wave propagation time scaled quadratically for DC and AC voltages and linearly for pulsed voltages. The measured values ranged from 10 - 273 ps and 189 ps 2 ns for DC and non-DC voltages, respectively. Data suggests LiNbO3 has a frequency sensitive response to voltage. If voltage source error is eliminated through physical modeling from the uncertainty budget, the sensors U95 estimated combined uncertainty could decrease to ~0.025% for DC, AC, and pulsed voltage measurements.

  9. General method to predict voltage-dependent ionic conduction in a solid electrolyte coating on electrodes

    NASA Astrophysics Data System (ADS)

    Pan, Jie; Cheng, Yang-Tse; Qi, Yue

    2015-04-01

    Understanding the ionic conduction in solid electrolytes in contact with electrodes is vitally important to many applications, such as lithium ion batteries. The problem is complex because both the internal properties of the materials (e.g., electronic structure) and the characteristics of the externally contacting phases (e.g., voltage of the electrode) affect defect formation and transport. In this paper, we developed a method based on density functional theory to study the physics of defects in a solid electrolyte in equilibrium with an external environment. This method was then applied to predict the ionic conduction in lithium fluoride (LiF), in contact with different electrodes which serve as reservoirs with adjustable Li chemical potential (μLi) for defect formation. LiF was chosen because it is a major component in the solid electrolyte interphase (SEI) formed on lithium ion battery electrodes. Seventeen possible native defects with their relevant charge states in LiF were investigated to determine the dominant defect types on various electrodes. The diffusion barrier of dominant defects was calculated by the climbed nudged elastic band method. The ionic conductivity was then obtained from the concentration and mobility of defects using the Nernst-Einstein relationship. Three regions for defect formation were identified as a function of μLi: (1) intrinsic, (2) transitional, and (3) p -type region. In the intrinsic region (high μLi, typical for LiF on the negative electrode), the main defects are Schottky pairs and in the p -type region (low μLi, typical for LiF on the positive electrode) are Li ion vacancies. The ionic conductivity is calculated to be approximately 10-31Scm-1 when LiF is in contact with a negative electrode but it can increase to 10-12Scm-1 on a positive electrode. This insight suggests that divalent cation (e.g., Mg2+) doping is necessary to improve Li ion transport through the engineered LiF coating, especially for LiF on negative

  10. Submicrosecond laser-filament-assisted corona bursts near a high-voltage electrode

    NASA Astrophysics Data System (ADS)

    Sugiyama, Kiyohiro; Fujii, Takashi; Miki, Megumu; Zhidkov, Alexei; Yamaguchi, Masato; Hotta, Eiki; Nemoto, Koshichi

    2010-04-01

    Long, about a half of microsecond, nonuniform corona UV burst is observed after a femtosecond-laser-filament plasma appears nearby an electrode biased (positively or negatively) slightly higher than the corona discharge threshold and well-isolated from the natural streamer discharge. A bright UV emission area moving outwards, over a 20 cm distance, with the velocity of 0.6% of the speed of light and tearing from the filament plasma in the case of the negative voltage is observed. In the case of positive voltage, a bright, bouncing UV cone is formed at around 4 cm far from the filaments exposing the appearance of a leader. Both phenomena could be explained upon supposing the formation of runaway electrons in the vicinity of the filament plasma and electrode.

  11. Ultra-low voltage ferroelectric electron emission from lead zirconate titanate thin films with nanostructured top electrodes

    NASA Astrophysics Data System (ADS)

    Becherer, J.; Mieth, O.; Vidyarthi, V. S.; Gerlach, G.; Eng, L. M.

    2011-07-01

    Electron emission from thin ferroelectric Pb(Zr0.4 Ti0.6)O3 films is demonstrated reaching emission current densities of up to 3×10-8 A cm-2 for pulsed excitation voltages of 60 V. Nevertheless, the emission process sets in at voltages as low as 10 V. Thin lead zirconate titanate (PZT) films were prepared with a structured top electrode, which exhibits nanometer-sized regularly arranged apertures. The emission current was measured under UHV conditions by both a single electron detector for small emission currents and an amperemeter for larger currents. The voltage dependent polarization state within the emission apertures was imaged using piezoresponse force microscopy and revealed that an increased fraction of the free surface area is switched by an increased applied voltage. This shows that the emission process is strongly correlated to the switching of ferroelectric polarization. Moreover, with the help of a metal grid in front of the detector, the maximum kinetic energy of emitted electrons was investigated and found to be limited by the excitation voltage, only.

  12. dc step response of induced-charge electro-osmosis between parallel electrodes at large voltages

    NASA Astrophysics Data System (ADS)

    Sugioka, Hideyuki

    2014-07-01

    Induced-charge electro-osmosis (ICEO) is important since it can be used for realizing high performance microfluidic devices. Here, we analyze the simplest problem of ion relaxation around a circular polarizable cylinder between parallel blocking electrodes in a closed cell by using a multiphysics coupled simulation technique. This technique is based on a combination of the finite-element method and finite-volume method for the Poisson-Nernst-Planck (PNP) equations having a flow term and the Stokes equation having an electric stress term. Through this analysis, we successfully demonstrate that on application of dc voltages, quadorapolar ICEO vortex flows grow during the charging time of the cylinder for both unbounded and bounded problems and decay during the charging time of the parallel electrodes only for the bounded problem using blocking electrodes. Further, by proposing a simple model that considers the two-dimensional (2D) PNP equations analytically, we successfully explain the step response time of the ICEO flow for the both unbounded and bounded problems. Furthermore, at low applied voltages, we find analytical formulations on steady diffused-ion problems and steady ICEO-flow problems and examine that our numerical results agree well with the analytical results. Moreover, by considering an ion-conserving condition with 2D Poisson-Boltzmann equations, we explain significant decrease of the maximum slip velocity at large applied voltages fairly well. We believe that our analysis will contribute greatly to the realistic designs of prospective high-performance microfluidic devices.

  13. dc Step response of induced-charge electro-osmosis between parallel electrodes at large voltages.

    PubMed

    Sugioka, Hideyuki

    2014-07-01

    Induced-charge electro-osmosis (ICEO) is important since it can be used for realizing high performance microfluidic devices. Here, we analyze the simplest problem of ion relaxation around a circular polarizable cylinder between parallel blocking electrodes in a closed cell by using a multiphysics coupled simulation technique. This technique is based on a combination of the finite-element method and finite-volume method for the Poisson-Nernst-Planck (PNP) equations having a flow term and the Stokes equation having an electric stress term. Through this analysis, we successfully demonstrate that on application of dc voltages, quadorapolar ICEO vortex flows grow during the charging time of the cylinder for both unbounded and bounded problems and decay during the charging time of the parallel electrodes only for the bounded problem using blocking electrodes. Further, by proposing a simple model that considers the two-dimensional (2D) PNP equations analytically, we successfully explain the step response time of the ICEO flow for the both unbounded and bounded problems. Furthermore, at low applied voltages, we find analytical formulations on steady diffused-ion problems and steady ICEO-flow problems and examine that our numerical results agree well with the analytical results. Moreover, by considering an ion-conserving condition with 2D Poisson-Boltzmann equations, we explain significant decrease of the maximum slip velocity at large applied voltages fairly well. We believe that our analysis will contribute greatly to the realistic designs of prospective high-performance microfluidic devices. PMID:25122369

  14. Electrochemical dealloying using pulsed voltage waveforms and its application for supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Zhan, Yawen; Bian, Haidong; Li, Zhe; Tsang, Chun-Kwan; Lee, Chris; Cheng, Hua; Shu, Shiwei; Li, Yang Yang; Lu, Jian

    2014-07-01

    Dealloying is an important industrial technique for generating nanoporous metallic structures by selectively leaching out the more reactive metal component from an alloy material. A constant voltage is often applied to facilitate the dealloying process. Here we report the first study on dealloying with the application of a voltage waveform-specifically, pulsed voltage waveforms are applied for dealloying Ni-Cu alloys. It is found that pulsed dealloying voltage waveforms can exert a strong impact on the dealloying process by 1) significantly lowering the compositional threshold of the more reactive metal component for the dealloying reaction to take place, 2) more thoroughly removing the more reactive metal component and thus producing a porous metal of higher purity and higher porosity (volume fraction of voids), and 3) greatly affecting the morphology of the generated porous metal structure (e.g., leading to significantly thinner ligaments). The nanoporous metallic materials obtained by the pulsed voltage waveform enable supercapacitor electrodes of significantly better performance than the counterpart dealloyed with a constant voltage.

  15. A consistent approach to estimate the breakdown voltage of high voltage electrodes under positive switching impulses

    NASA Astrophysics Data System (ADS)

    Arevalo, L.; Wu, D.; Jacobson, B.

    2013-08-01

    The main propose of this paper is to present a physical model of long air gap electrical discharges under positive switching impulses. The development and progression of discharges in long air gaps are attributable to two intertwined physical phenomena, namely, the leader channel and the streamer zone. Experimental studies have been used to develop empirical and physical models capable to represent the streamer zone and the leader channel. The empirical ones have led to improvements in the electrical design of high voltage apparatus and insulation distances, but they cannot take into account factors associated with fundamental physics and/or the behavior of materials. The physical models have been used to describe and understand the discharge phenomena of laboratory and lightning discharges. However, because of the complex simulations necessary to reproduce real cases, they are not in widespread use in the engineering of practical applications. Hence, the aim of the work presented here is to develop a model based on physics of the discharge capable to validate and complement the existing engineering models. The model presented here proposes a new geometrical approximation for the representation of the streamer and the calculation of the accumulated electrical charge. The model considers a variable streamer region that changes with the temporal and spatial variations of the electric field. The leader channel is modeled using the non local thermo-equilibrium equations. Furthermore, statistical delays before the inception of the first corona, and random distributions to represent the tortuous nature of the path taken by the leader channel were included based on the behavior observed in experimental tests, with the intention of ensuring the discharge behaved in a realistic manner. For comparison purposes, two different gap configurations were simulated. A reasonable agreement was found between the physical model and the experimental test results.

  16. Measurement of noise and impedance of dry and wet textile electrodes, and textile electrodes with hydrogel.

    PubMed

    Puurtinen, Merja M; Komulainen, Satu M; Kauppinen, Pasi K; Malmivuo, Jaakko A V; Hyttinen, Jari A K

    2006-01-01

    Textile sensors, when embedded into clothing, can provide new ways of monitoring physiological signals, and improve the usability and comfort of such monitoring systems in the areas of medical, occupational health and sports. However, good electrical and mechanical contact between the electrode and the skin is very important, as it often determines the quality of the signal. This paper introduces a study where the properties of dry textile electrodes, textile electrodes moistened with water, and textile electrodes covered with hydrogel were studied with five different electrode sizes. The aim was to study how the electrode size and preparation of the electrode (dry electrode/wet electrode/electrode covered with hydrogel membrane) affect the measurement noise, and the skin-electrode impedance. The measurement noise and skin-electrode impedance were determined from surface biopotential measurements. These preliminary results indicate that noise level increases as the electrode size decreases. The noise level is high in dry textile electrodes, as expected. Yet, the noise level of wet textile electrodes is quite low and similar to that of textile electrodes covered with hydrogel. Hydrogel does not seem to improve noise properties, however it may have effects on movement artifacts. Thus, it is feasible to use textile embedded sensors in physiological monitoring applications when moistening or hydrogel is applied.

  17. Atomic layer deposition encapsulated activated carbon electrodes for high voltage stable supercapacitors.

    PubMed

    Hong, Kijoo; Cho, Moonkyu; Kim, Sang Ouk

    2015-01-28

    Operating voltage enhancement is an effective route for high energy density supercapacitors. Unfortunately, widely used activated carbon electrode generally suffers from poor electrochemical stability over 2.5 V. Here we present atomic layer deposition (ALD) encapsulation of activated carbons for high voltage stable supercapacitors. Two-nanometer-thick Al2O3 dielectric layers are conformally coated at activated carbon surface by ALD, well-maintaining microporous morphology. Resultant electrodes exhibit excellent stability at 3 V operation with 39% energy density enhancement from 2.5 V operation. Because of the protection of surface functional groups and reduction of electrolyte degradation, 74% of initial voltage was maintained 50 h after full charge, and 88% of capacitance was retained after 5000 cycles at 70 °C accelerated test, which correspond to 31 and 17% improvements from bare activated carbon, respectively. This ALD-based surface modification offers a general method to enhance electrochemical stability of carbon materials for diverse energy and environmental applications.

  18. Highly improved voltage efficiency of seawater battery by use of chloride ion capturing electrode

    NASA Astrophysics Data System (ADS)

    Kim, Kyoungho; Hwang, Soo Min; Park, Jeong-Sun; Han, Jinhyup; Kim, Junsoo; Kim, Youngsik

    2016-05-01

    Cost-effective and eco-friendly battery system with high energy density is highly desirable. Herein, we report a seawater battery with a high voltage efficiency, in which a chloride ion-capturing electrode (CICE) consisting of Ag foil is utilized as the cathode. The use of Ag as the cathode leads to a sharp decrease in the voltage gaps between charge and discharge curves, based on reversible redox reaction of Ag/AgCl (at ∼2.9 V vs. Na+/Na) in a seawater catholyte during cycling. The Ag/AgCl reaction proves to be highly reversible during battery cycling. The battery employing the Ag electrode shows excellent cycling performance with a high Coulombic efficiency (98.6-98.7%) and a highly improved voltage efficiency (90.3% compared to 73% for carbonaceous cathode) during 20 cycles (total 500 h). These findings demonstrate that seawater batteries using a CICE could be used as next-generation batteries for large-scale stationary energy storage plants.

  19. Analysis of NSTX TF Joint Voltage Measurements

    SciTech Connect

    R, Woolley

    2005-10-07

    This report presents findings of analyses of recorded current and voltage data associated with 72 electrical joints operating at high current and high mechanical stress. The analysis goal was to characterize the mechanical behavior of each joint and thus evaluate its mechanical supports. The joints are part of the toroidal field (TF) magnet system of the National Spherical Torus Experiment (NSTX) pulsed plasma device operating at the Princeton Plasma Physics Laboratory (PPPL). Since there is not sufficient space near the joints for much traditional mechanical instrumentation, small voltage probes were installed on each joint and their voltage monitoring waveforms have been recorded on sampling digitizers during each NSTX ''shot''.

  20. Electrodic voltages in the presence of dissolved sulfide: Implications for monitoring natural microbial activity

    SciTech Connect

    Slater, L.; Ntarlagiannis, D.; Yee, N.; O'Brien, M.; Zhang, C.; Williams, K. H.

    2008-10-01

    There is growing interest in the development of new monitoring strategies for obtaining spatially extensive data diagnostic of microbial processes occurring in the earth. Open-circuit potentials arising from variable redox conditions in the fluid local-to-electrode surfaces (electrodic potentials) were recorded for a pair of silver-silver chloride electrodes in a column experiment, whereby a natural wetland soil containing a known community of sulfate reducers was continuously fed with a sulfate-rich nutrient medium. Measurements were made between five electrodes equally spaced along the column and a reference electrode placed on the column inflow. The presence of a sulfate reducing microbial population, coupled with observations of decreasing sulfate levels, formation of black precipitate (likely iron sulfide),elevated solid phase sulfide, and a characteristic sulfurous smell, suggest microbial-driven sulfate reduction (sulfide generation) in our column. Based on the known sensitivity of a silver electrode to dissolved sulfide concentration, we interpret the electrodic potentials approaching 700 mV recorded in this experiment as an indicator of the bisulfide (HS-) concentration gradients in the column. The measurement of the spatial and temporal variation in these electrodic potentials provides a simple and rapid method for monitoring patterns of relative HS- concentration that are indicative of the activity of sulfate-reducing bacteria. Our measurements have implications both for the autonomous monitoring of anaerobic microbial processes in the subsurface and the performance of self-potential electrodes, where it is critical to isolate, and perhaps quantify, electrochemical interfaces contributing to observed potentials.

  1. Spark gap electrode erosion

    NASA Astrophysics Data System (ADS)

    Krompholz, H.; Kristiansen, M.

    1984-12-01

    The results of a one-year contract on electrode erosion phenomena are summarized. The arc voltage drop in a spark gap was measured for various electrode, gas, and pressure combinations. A previously developed model of self breakdown voltage distribution was extended. A jet model for electrode erosion was proposed and an experimental arrangement for testing the model was constructed. The effects of inhomogeneities and impurities in the electrodes were investigated. Some of the work described here is scheduled for completion in 1985 under a current grant (AFOSR 84-0032). The areas of investigation described here include: (1) Self breakdown voltage distributions; (2) Electrode erosion; (3) Spark gap voltage recovery.

  2. Thermodynamics of nano- and macrocrystalline anatase using cell voltage measurements.

    PubMed

    Balaya, Palani; Maier, Joachim

    2010-01-01

    In view of increasing scientific and technological interest in nanomaterials, it is important to examine whether or, more exactly, to what extent the thermodynamic parameters change with size. Electrochemical e.m.f. measurements which provide a direct and elegant access to these thermodynamic data have been used in this study to investigate the excess contributions of anatase due to nano-size. The e.m.f. measurements are carried out (250-450 degrees C) on different particle sizes (1.2 microm-5 nm) using the cell: Au, O(2), Na(2)Ti(6)O(13), TiO(2) (anatase) |Na-beta'' alumina |TiO(2) (rutile), Na(2)Ti(6)O(13), O(2), Au. The e.m.f. observed is closely related to the difference of the Gibbs energies of formation (Delta(f)G degrees) of the titania crystals on both sides. Such cell voltage measurements with various sizes of anatase (1200, 100, 15, and 5 nm) as working electrodes enable us to calculate the excess enthalpy and entropy due to surface contributions and to provide refined data for the macroscopic anatase. No electrochemical Ostwald ripening or chemical Ostwald ripening was observed in the case of anatase nanoparticles up to 500 degrees C.

  3. Communication: Evidence of hydrated electrons injected by a metallic electrode in a high voltage system

    NASA Astrophysics Data System (ADS)

    Perles, Carlos Eduardo; Volpe, Pedro Luiz Onófrio

    2010-12-01

    In this work it a strong evidence of the hydrated electrons production was shown in a film of condensed water, by directing the injection of electrons in localized and/or delocalized water electronic states using a system of high voltage made in laboratory. The results show that the water layers on the silica particles are electrically charged by injection of electrons from a metal electrode when silica is placed in high electric field. This charging process also appears to depend on the thickness of these water layers and of the spatial arrangement required by the silica surface.

  4. Study of a guarded electrode system in the dc conductivity measurement of insulating liquid

    NASA Astrophysics Data System (ADS)

    Zhou, Yuan; Hao, Miao; Chen, George; Wilson, Gordon; Jarman, Paul

    2014-07-01

    The design and choice of an electrode system is important in dc conductivity measurement of insulating liquid. In this paper, the electric field distribution of an electrode system which consists of two parallel circular metallic electrodes and a guard electrode has been studied using Comsol Multiphysics software. A new parameter, which is not yet involved in current standards, the edge radius, has been mentioned in the literature formerly and is currently discussed in a CIGRE working group. In this paper, the influence of this parameter has been investigated by means of field calculation. As seen from the simulating result, there are regions in the vicinity of the edges of the guard and measuring electrode that are under high electric field. If the edges of these two electrodes are sharp, the maximum electric field in the test cell will be much higher than the average field between the measuring electrode and the high voltage electrode. An empirical equation has been proposed to calculate this maximum field. The classic correction expression for an effective radius has been re-evaluated with the edge radius being taken into account. Experimental work has been performed to confirm this conclusion. Three kinds of mineral oils with different ageing times have been tested under the dc field using a guarded electrode system and the electric strengths of these oils have been estimated. A recommendation has been made to current standards in insulating liquid measurement.

  5. Nanowire-Modified Three-Dimensional Electrode Enabling Low-Voltage Electroporation for Water Disinfection.

    PubMed

    Huo, Zheng-Yang; Xie, Xing; Yu, Tong; Lu, Yun; Feng, Chao; Hu, Hong-Ying

    2016-07-19

    More than 10% of the people in the world still suffer from inadequate access to clean water. Traditional water disinfection methods (e.g., chlorination and ultraviolet radiation) include concerns about the formation of carcinogenic disinfection byproducts (DBPs), pathogen reactivation, and/or excessive energy consumption. Recently, a nanowire-assisted electroporation-disinfection method was introduced as an alternative. Here, we develop a new copper oxide nanowire (CuONW)-modified three-dimensional copper foam electrode using a facile thermal oxidation approach. An electroporation-disinfection cell (EDC) equipped with two such electrodes has achieved superior disinfection performance (>7 log removal and no detectable bacteria in the effluent). The disinfection mechanism of electroporation guarantees an exceedingly low operation voltage (1 V) and level of energy consumption (25 J L(-1)) with a short contact time (7 s). The low operation voltage avoids chlorine generation and thus reduces the potential of DBP formation. Because of irreversible electroporation damage on cell membranes, no regrowth and/or reactivation of bacteria occurs during storage after EDC treatment. Water disinfection using EDCs has great potential for practical applications.

  6. Electron beam induced current on carbon nanotubes measured through substrate electrodes

    NASA Astrophysics Data System (ADS)

    Park, J. K.; Ahn, Y. H.

    2015-11-01

    We demonstrate substrate electron-beam-induced current (s-EBIC) measurements of individual single-walled carbon nanotubes (SWNTs) by measuring the current collected by the substrate electrode, which penetrates through the insulating oxide layer. We found that s-EBIC provided better image contrast than ordinary secondary electron imaging methods for locating SWNTs that are in contact with metal electrodes. The s-EBIC has been measured for different acceleration voltages and probe currents. We found that s-EBIC did not depend critically on the acceleration voltage when the e-beam irradiated an insulating layer as compared to the case when it irradiated metal electrodes. Importantly, s-EBIC signals were increased by more than 10%, when the SWNT part was irradiated, and this makes s-EBIC imaging a very useful tool for locating individual SWNTs efficiently.

  7. Origins of Large Voltage Hysteresis in High-Energy-Density Metal Fluoride Lithium-Ion Battery Conversion Electrodes.

    PubMed

    Li, Linsen; Jacobs, Ryan; Gao, Peng; Gan, Liyang; Wang, Feng; Morgan, Dane; Jin, Song

    2016-03-01

    Metal fluorides and oxides can store multiple lithium ions through conversion chemistry to enable high-energy-density lithium-ion batteries. However, their practical applications have been hindered by an unusually large voltage hysteresis between charge and discharge voltage profiles and the consequent low-energy efficiency (<80%). The physical origins of such hysteresis are rarely studied and poorly understood. Here we employ in situ X-ray absorption spectroscopy, transmission electron microscopy, density functional theory calculations, and galvanostatic intermittent titration technique to first correlate the voltage profile of iron fluoride (FeF3), a representative conversion electrode material, with evolution and spatial distribution of intermediate phases in the electrode. The results reveal that, contrary to conventional belief, the phase evolution in the electrode is symmetrical during discharge and charge. However, the spatial evolution of the electrochemically active phases, which is controlled by reaction kinetics, is different. We further propose that the voltage hysteresis in the FeF3 electrode is kinetic in nature. It is the result of ohmic voltage drop, reaction overpotential, and different spatial distributions of electrochemically active phases (i.e., compositional inhomogeneity). Therefore, the large hysteresis can be expected to be mitigated by rational design and optimization of material microstructure and electrode architecture to improve the energy efficiency of lithium-ion batteries based on conversion chemistry.

  8. Studies of calcium channels in rat clonal pituitary cells with patch electrode voltage clamp

    PubMed Central

    Hagiwara, Susumu; Ohmori, Harunori

    1982-01-01

    1. The properties of the Ca channel in tissue cultured clonal cells (GH3) isolated from a rat anterior pituitary tumour were studied with the patch electrode voltage-clamp technique. 2. To isolate the current through the Ca channel, the currents through the Na channel, the delayed K channel and the Ca2+ induced K channel were minimized by replacing the external Na+ with TEA+ and adding EGTA to the K-free solution inside the patch electrode. 3. The selectivity ratios through the Ca channel with different cations were 2·7 (Ba2+):1·6 (Sr2+):1·0 (Ca2+) and the m2 form of the activation kinetics and the relationships between the time constant and the membrane potential were common to the three divalent cations. 4. The amplitude of the Ba2+ current increased linearly with [Ba2+]o up to 25 mM and thereafter tended to show saturation. 5. The current—voltage relation showed a positive shift along the voltage axis as [Ba2+]o increased, probably due to the screening effect of Ba2+ on the negative surface charges. 6. The time constant of activation as a function of the membrane potential showed a parallel shift as [Ba2+]o was increased, suggesting that the activation kinetics were independent of the permeant ion concentration. 7. The time constant of the tail current was consistent with m2 kinetics for opening and closing of the Ca channel. 8. The extrapolated `instantaneous' tail current rapidly increased as the activating membrane potential became more positive and reached an apparent saturation at membrane potentials substantially more positive than the potential that gave the maximum peak inward current, and suggested that the single channel has a sigmoidal current—voltage relationship. 9. The power density spectrum obtained during the steady-state inward Ba2+ current had a cut-off frequency which was nearly voltage independent; this is expected if the fluctuation of the current originates from m2 activation kinetics. 10. The results of noise analysis suggest that

  9. Measuring Helical FCG Voltage with an Electric Field Antenna

    SciTech Connect

    White, A D; Anderson, R A; Javedani, J B; Reisman, D B; Goerz, D A; Ferriera, A J; Speer, R D

    2011-08-01

    A method of measuring the voltage produced by a helical explosive flux compression generator using a remote electric field antenna is described in detail. The diagnostic has been successfully implemented on several experiments. Measured data from the diagnostic compare favorably with voltages predicted using the code CAGEN, validating our predictive modeling tools. The measured data is important to understanding generator performance, and is measured with a low-risk, minimally intrusive approach.

  10. Time of Flight Electrochemistry: Diffusion Coefficient Measurements Using Interdigitated Array (IDA) Electrodes

    SciTech Connect

    Liu, Fei; Kolesov, Grigory; Parkinson, Bruce A.

    2014-09-26

    A simple and straightforward method for measuring diffusion coefficients using interdigitated array (IDA) electrodes is reported. The method does not require that the exact electrode area be known but depends only the size of the gap between the IDA electrode pairs. Electroactive molecules produced at the generator electrode of the IDA by a voltage step or scan can diffuse to the collector electrode and the time delay before the current for the reverse electrochemical reaction is detected at the collector is used to calculate the diffusion coefficient. The measurement of the diffusion rate of Ru(NH3)6+2 in aqueous solution has been used as an example measuring diffusion coefficients using this method. Additionally, a digital simulation of the electrochemical response of the IDA electrodes was used to simulate the entire current/voltage/time behavior of the system and verify the experimentally measured diffusion coefficients. This work was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the Department of Energy, Office of Science, Office of Basic Energy Sciences.

  11. Gelatin coated electrodes allow prolonged bioelectronic measurements

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Silver electrodes treated with an anodizing electrolyte containing gelatin are used for long term monitoring of bioelectronic potentials in humans. The electrodes do not interact with perspiration, cause skin irritation, or promote the growth of bacteria.

  12. Factors affecting the open-circuit voltage and electrode kinetics of some iron/titanium redox flow cells

    NASA Technical Reports Server (NTRS)

    Reid, M. A.; Gahn, R. F.

    1977-01-01

    Performance of the iron-titanium redox flow cell was studied as a function of acid concentration. Anion permeable membranes separated the compartments. Electrodes were graphite cloth. Current densities ranged up to 25 mA/square centimeter. Open-circuit and load voltages decreased as the acidity was increased on the iron side as predicted. On the titanium side, open-circuit voltages decreased as the acidity was increased in agreement with theory, but load voltages increased due to decreased polarization with increasing acidity. High acidity on the titanium side coupled with low acidity on the iron side gives the best load voltage, but such cells show voltage losses as they are repeatedly cycled. Analyses show that the bulk of the voltage losses are due to diffusion of acid through the membrane.

  13. Measuring Electrolyte Impedance and Noise Simultaneously by Triangular Waveform Voltage and Principal Component Analysis.

    PubMed

    Xu, Shanzhi; Wang, Peng; Dong, Yonggui

    2016-01-01

    In order to measure the impedance variation process in electrolyte solutions, a method of triangular waveform voltage excitation is investigated together with principal component analysis (PCA). Using triangular waveform voltage as the excitation signal, the response current during one duty cycle is sampled to construct a measurement vector. The measurement matrix is then constructed by the measurement vectors obtained from different measurements. After being processed by PCA, the changing information of solution impedance is contained in the loading vectors while the response current and noise information is contained in the score vectors. The measurement results of impedance variation by the proposed signal processing method are independent of the equivalent impedance model. The noise-induced problems encountered during equivalent impedance calculation are therefore avoided, and the real-time variation information of noise in the electrode-electrolyte interface can be extracted at the same time. Planar-interdigitated electrodes are experimentally tested for monitoring the KCl concentration variation process. Experimental results indicate that the measured impedance variation curve reflects the changing process of solution conductivity, and the amplitude distribution of the noise during one duty cycle can be utilized to analyze the contact conditions of the electrode and electrolyte interface. PMID:27110787

  14. Measuring Electrolyte Impedance and Noise Simultaneously by Triangular Waveform Voltage and Principal Component Analysis

    PubMed Central

    Xu, Shanzhi; Wang, Peng; Dong, Yonggui

    2016-01-01

    In order to measure the impedance variation process in electrolyte solutions, a method of triangular waveform voltage excitation is investigated together with principal component analysis (PCA). Using triangular waveform voltage as the excitation signal, the response current during one duty cycle is sampled to construct a measurement vector. The measurement matrix is then constructed by the measurement vectors obtained from different measurements. After being processed by PCA, the changing information of solution impedance is contained in the loading vectors while the response current and noise information is contained in the score vectors. The measurement results of impedance variation by the proposed signal processing method are independent of the equivalent impedance model. The noise-induced problems encountered during equivalent impedance calculation are therefore avoided, and the real-time variation information of noise in the electrode-electrolyte interface can be extracted at the same time. Planar-interdigitated electrodes are experimentally tested for monitoring the KCl concentration variation process. Experimental results indicate that the measured impedance variation curve reflects the changing process of solution conductivity, and the amplitude distribution of the noise during one duty cycle can be utilized to analyze the contact conditions of the electrode and electrolyte interface. PMID:27110787

  15. Energy from CO2 using capacitive electrodes--theoretical outline and calculation of open circuit voltage.

    PubMed

    Paz-Garcia, J M; Schaetzle, O; Biesheuvel, P M; Hamelers, H V M

    2014-03-15

    Recently, a new technology has been proposed for the utilization of energy from CO2 emissions (Hamelers et al., 2014). The principle consists of controlling the dilution process of CO2-concentrated gas (e.g., exhaust gas) into CO2-dilute gas (e.g., air) thereby extracting a fraction of the released mixing energy. In this paper, we describe the theoretical fundamentals of this technology when using a pair of charge-selective capacitive electrodes. We focus on the behavior of the chemical system consisting of CO2 gas dissolved in water or monoethanolamine solution. The maximum voltage given for the capacitive cell is theoretically calculated, based on the membrane potential. The different aspects that affect this theoretical maximum value are discussed.

  16. Insulator and electrode mass erosion and surface voltage holdoff recovery for transient, high current surface discharges

    NASA Astrophysics Data System (ADS)

    Engel, T. G.; Dickens, J. C.; Kristiansen, M.

    1993-01-01

    Several polymeric insulator materials commonly used as sidewall insulators in EM accelerators are subjected to repetitive, high current transient surface discharges. The insulator materials tested include the thermosetting polymers G-9, G-10, and G-11 (i.e., fiberglass reinforced melamine and epoxy) and the thermoplastic polymers Lexan (i.e, polycarbonate) and Delrin (i.e., polyacetyl). Empirical scaling relationships are given that relate the total amount of insulator and electrode (i.e., molybdenum) mass erosion versus the total amount of arc energy transferred. Scaling relationships are also given that relate the 'lifetime' of the given polymer as a function of the initial discharge current. The 'lifetime' of an insulator material is defined as the number of discharges required to reduce the initial surface holdoff voltage to its half-power level for three consecutive discharges, and is a useful parameter when specifying insulator materials to be used in high power switching devices.

  17. 2-Scale topography dry electrode for biopotential measurements.

    PubMed

    Vanlerberghe, F; De Volder, M; de Beeck, M Op; Penders, J; Reynaerts, D; Puers, R; Van Hoof, C

    2011-01-01

    The design and fabrication of a novel 2-scale topography dry electrode using macro and micro needles is presented. The macro needles enable biopotential measurements on hairy skin, the function of the micro needles is to decrease the electrode impedance even further by penetrating the outer skin layer. Also, a fast and reliable impedance characterization protocol is described. Based on this impedance measurement protocol, a comparison study is made between our dry electrode, 3 other commercial dry electrodes and a standard wet gel electrode. Promising results are already obtained with our electrodes which do not have skin piercing micro needles. For the proposed electrodes, three different conductive coatings (Ag/AgCl/Au) are compared. AgCl is found to be slightly better than Ag as coating material, while our Au coated electrodes have the highest impedance.

  18. Pulsed voltage deposited lead selenide thin film as efficient counter electrode for quantum-dot-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Jin, Bin Bin; Wang, Ye Feng; Wang, Xue Qing; Zeng, Jing Hui

    2016-04-01

    Lead selenide (PbSe) thin films were deposited on fluorine doped tin oxide (FTO) glass by a facile one-step pulse voltage electrodeposition method, and used as counter electrode (CE) in CdS/CdSe quantum dot-sensitized solar cells (QDSSCs). A power conversion efficiency of 4.67% is received for the CdS/CdSe co-sensitized solar cells, which is much better than that of 2.39% received using Pt CEs. The enhanced performance is attributed to the extended absorption in the near infrared region, superior electrocatalytic activity and p-type conductivity with a reflection of the incident light at the back electrode in addition. The physical and chemical properties were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS), reflectance spectra, electrochemical impedance spectroscopy (EIS) and Tafel polarization measurements. The present work provides a facile pathway to an efficient CE in the QDSSCs.

  19. Arc voltage distribution properties as a function of melting current, electrode gap, and CO pressure during vacuum arc remelting

    SciTech Connect

    Williamson, R.L.; Zanner, F.J.; Grose, S.M.

    1997-10-01

    An industrial vacuum arc remelting experiment was carried out at Cytemp Specialty Steel Corp. (Titusville, PA) during which a 0.432-m-diameter Alloy 718 electrode was remelted into a 0.508-m-diameter ingot. The purpose of the experiment was to investigate the response of the arc voltage distribution properties (mean, standard deviation, and skewness) and the drip-short frequency to melting current, electrode gap, and CO pressure. The responses were characterized by recording and analyzing changes in the temporally averaged properties. Each independent variable was systematically varied in accordance with a modified Yates order factor space experimental design within the following ranges: melting current, 5,000 to 11,200 A; electrode gap, 0.004 to 0.056 m; and CO pressure, 0.40 to 14.7 Pa. Statistical models were developed describing the correlation between the averaged arc voltage distribution properties and the independent variables. The models demonstrate that all of the voltage distribution properties, as well as the drip-short frequency, are directly related to electrode gap. An arc column model is presented to account for the mean arc voltage properties and the model is used to estimate the arc column pressure. The potential usefulness of the distribution properties as process diagnostics and control responses is evaluated.

  20. Membrane voltage, resistance, and channel switching in isolated mouse fibroblasts (L cells): a patch-electrode analysis.

    PubMed Central

    Hosoi, S; Slayman, C L

    1985-01-01

    The whole-cell patch-electrode technique of Fenwick, Marty & Neher (1982) has been applied to single suspension-cultured mouse fibroblasts. Seals in the range of 10-50 G omega were obtained without special cleaning of the cell membranes. Rupture of the membrane patch inside the electrode was accompanied by a shift of measured potential into the range -10 to -25 mV, but in most cases with little change in the recorded resistance. The latter fact implied that the absolute resistance of the cell membrane must be in the same range as the seal resistance and the recorded potential is a poor measure of actual cell membrane potential. Steady-state current-voltage curves (range -160 mV to +80 mV) were generated before and after rupture of the membrane patch, and the difference between these gave (zero-current) membrane potentials of -50 to -75 mV, which represents a leak-corrected estimate of the true cell-membrane potential. The associated slope conductivity of the cell membrane was 5-15 microS/cm2 (assumed smooth-sphere geometry, cells 13-15 microns in diameter) and was K+-dominated. With 0.1 mM (or more) free Ca2+ filling the patch electrode, membrane potentials in the range -60 to -85 mV were observed following patch rupture, with associated slope conductivities of 200-400 microS/cm2, also K+-dominated. Similar voltages and conductivities were observed at the peak of pulse-induced 'hyperpolarizing activation' (Nelson, Peacock, & Minna, 1972), and the two phenomena probably reflect the behaviour of Ca2+-activated K+ channels. Both the pulse-induced conductance and the Ca2+-activated conductance spontaneously decayed, the latter over periods of 5-15 min following patch rupture. Sr2+, Ba2+, and Co2+ could also activate the putative K+ channels, but only Sr2+ really mimicked Ca2+. Co2+ and Ba2+ activated with a delay of several minutes following patch rupture, and deactivated quickly with a small decrease of conductance and a large decrease of membrane potential. Evidently

  1. A new low-voltage-driven GRIN liquid crystal lens with multiple ring electrodes in unequal widths.

    PubMed

    Kao, Yung-Yuan; Chao, Paul C-P; Hsueh, Chieh-Wen

    2010-08-30

    This work is dedicated to design a novel liquid crystal (LC) lens device with multiple ring electrodes in unequal widths, in order to offer tunability on focusing quality and to lower the level of applied voltage. The number and widths of the multiple ring electrodes are pre-designed and optimized to offer the on-line tunability on individual electrode voltages to render a better refraction index distribution for focusing, as compared to the past hole-type LC lenses. The resulted refractive index distribution is expected to offer similar focusing effects based on the theory of the gradient refraction index (GRIN) lens. The transparent electrodes of this new LC lens are placed at the inner surface of the LC cell to minimize the driving voltages, in results, less than 10 V, for the same level of focusing power and an easy practical operation. A new fabrication process in the wafer level to bury bus lines is developed for generating smooth electrical fields over the lens aperture. In addition, a dielectric layer is coated between electrodes and the LC layer.

  2. How voltage drops are manifested by lithium ion configurations at interfaces and in thin films on battery electrodes

    DOE PAGES

    Leung, Kevin; Leenheer, Andrew Jay

    2015-04-09

    Battery electrode surfaces are generally coated with electronically insulating solid films of thickness 1-50 nm. Both electrons and Li+ can move at the electrode–surface film interface in response to the voltage, which adds complexity to the “electric double layer” (EDL). We also apply Density Functional Theory (DFT) to investigate how the applied voltage is manifested as changes in the EDL at atomic length scales, including charge separation and interfacial dipole moments. Illustrating examples include Li3PO4, Li2CO3, and LixMn2O4 thin films on Au(111) surfaces under ultrahigh vacuum conditions. Adsorbed organic solvent molecules can strongly reduce voltages predicted in vacuum. We proposemore » that manipulating surface dipoles, seldom discussed in battery studies, may be a viable strategy to improve electrode passivation. We also distinguish the computed potential governing electrons, which is the actual or instantaneous voltage, and the “lithium cohesive energy”-based voltage governing Li content widely reported in DFT calculations, which is a slower-responding self-consistency criterion at interfaces. Furthermore, this distinction is critical for a comprehensive description of electrochemical activities on electrode surfaces, including Li+ insertion dynamics, parasitic electrolyte decomposition, and electrodeposition at overpotentials.« less

  3. How voltage drops are manifested by lithium ion configurations at interfaces and in thin films on battery electrodes

    SciTech Connect

    Leung, Kevin; Leenheer, Andrew Jay

    2015-04-09

    Battery electrode surfaces are generally coated with electronically insulating solid films of thickness 1-50 nm. Both electrons and Li+ can move at the electrode–surface film interface in response to the voltage, which adds complexity to the “electric double layer” (EDL). We also apply Density Functional Theory (DFT) to investigate how the applied voltage is manifested as changes in the EDL at atomic length scales, including charge separation and interfacial dipole moments. Illustrating examples include Li3PO4, Li2CO3, and LixMn2O4 thin films on Au(111) surfaces under ultrahigh vacuum conditions. Adsorbed organic solvent molecules can strongly reduce voltages predicted in vacuum. We propose that manipulating surface dipoles, seldom discussed in battery studies, may be a viable strategy to improve electrode passivation. We also distinguish the computed potential governing electrons, which is the actual or instantaneous voltage, and the “lithium cohesive energy”-based voltage governing Li content widely reported in DFT calculations, which is a slower-responding self-consistency criterion at interfaces. Furthermore, this distinction is critical for a comprehensive description of electrochemical activities on electrode surfaces, including Li+ insertion dynamics, parasitic electrolyte decomposition, and electrodeposition at overpotentials.

  4. Frequency response measurements in battery electrodes

    NASA Technical Reports Server (NTRS)

    Thomas, Daniel L.

    1992-01-01

    Electrical impedance spectroscopy was used to investigate the behavior of porous zinc, silver, cadmium, and nickel electrodes. State of charge could be correlated with impedance data for all but the nickel electrodes. State of health was correlated with impedance data for two AgZn cells, one apparently good and the other bad. The impedance data was fit to equivalent circuit models.

  5. Design of an integrated thermoelectric generator power converter for ultra-low power and low voltage body energy harvesters aimed at ExG active electrodes

    NASA Astrophysics Data System (ADS)

    Ataei, Milad; Robert, Christian; Boegli, Alexis; Farine, Pierre-André

    2015-10-01

    This paper describes a detailed design procedure for an efficient thermal body energy harvesting integrated power converter. The procedure is based on the examination of power loss and power transfer in a converter for a self-powered medical device. The efficiency limit for the system is derived and the converter is optimized for the worst case scenario. All optimum system parameters are calculated respecting the transducer constraints and the application form factor. Circuit blocks including pulse generators are implemented based on the system specifications and optimized converter working frequency. At this working condition, it has been demonstrated that the wide area capacitor of the voltage doubler, which provides high voltage switch gating, can be eliminated at the expense of wider switches. With this method, measurements show that 54% efficiency is achieved for just a 20 mV transducer output voltage and 30% of the chip area is saved. The entire electronic board can fit in one EEG or ECG electrode, and the electronic system can convert the electrode to an active electrode.

  6. Method for linearizing deflection of a MEMS device using binary electrodes and voltage modulation

    DOEpatents

    Horenstein, Mark N [West Roxbury, MA

    2008-06-10

    A micromechanical device comprising one or more electronically movable structure sets comprising for each set a first electrode supported on a substrate and a second electrode supported substantially parallel from said first electrode. Said second electrode is movable with respect to said first electrode whereby an electric potential applied between said first and second electrodes causing said second electrode to move relative to said first electrode a distance X, (X), where X is a nonlinear function of said potential, (V). Means are provided for linearizing the relationship between V and X.

  7. Microtrap electrode devices for single cell trapping and impedance measurement.

    PubMed

    Mondal, D; Roychaudhuri, C; Das, L; Chatterjee, J

    2012-10-01

    This paper reports the design and fabrication of electrode microtraps for single cell trapping and impedance measurement. In this work, the microtrap electrodes of parallel and elliptical geometry have been fabricated by electroplating of gold electrodes of optimum thickness. This has enabled the formation of electrode traps without requiring any precision alignment between separate insulating traps like PDMS and the bottom gold electrodes. Further the improved uniformity of the electric field between the trapping electrodes as observed from COVENTORWARE simulation significantly reduces the effect of cell position inside the microwell on the electrical measurement unlike previous reports. This makes it possible to directly extract the equivalent cell parameters from the electrical measurement without introducing any correction factor corresponding to cell position. We have performed impedance spectroscopy with both the microwell electrode structures with single HeLa cell at two different positions of trapping. It has been observed that there is almost no change in the extracted values of cell resistance and capacitance for different positions within parallel electrodes and there is only 0.7 % and 0.85 % change in cell resistance and capacitance for the two positions within elliptical electrodes. Thus these microwell electrode structures can be used as an improved and a more convenient platform for single cell electrical characterization. PMID:22767244

  8. Low circumferential voltage gradient self supporting electrode for solid oxide fuel cells

    SciTech Connect

    Reichner, Philip

    1989-01-01

    The porous, self-supporting, elongated electrode is made, having at least two chambers through its axial length, the chambers separated by an electronically conductive member. This electrode can be an air electrode of a fuel cell, having a superimposed solid electrolyte and fuel electrode.

  9. Traveling electric field probed by a fine particle above voltage-modulated strips in a striped electrode device

    SciTech Connect

    Li Yangfang; Jiang Ke; Thomas, H. M.; Morfill, G. E.; Zhang Wengui; Ma, J. X.

    2010-03-15

    It is described that the distribution of the horizontal electric field above a striped electrode can be inferred from the trajectory of a single fine particle with known mass and diameter. The striped electrode consists of 100 segmented stainless steel strips, each electrically insulated. A traveling periodic potential profile is produced above the striped electrode by modulating the voltage signals on the strips. When the voltage modulation is on, the fine particle, which is originally levitated in the sheath region above the striped electrode, experiences a periodic oscillation along both the vertical and the horizontal directions because of the periodic electric force arising from the modulation voltages. Tracking the motion of the fine particles, the electric force is obtained from the momentum equation including the gravity and the neutral gas friction. With the particle charge estimated by the vertical oscillation method, the electric field can be derived. The horizontal electric field obtained by this method is in agreement with the result predicted by a collisional particle-in-cell simulation.

  10. ITAIPU HVDC ground electrodes; Interference considerations and potential curve measurements during Bipole 2 commissioning

    SciTech Connect

    Caroli, C.E.; Santos, N. ); Kovarsky, D.; Pinto, L.J. )

    1990-07-01

    During the commissioning of Bipole II electrodes, important performance aspects were brought to light, in addition to those reported previously, after the measurements made during Bipole I commissioning. The following aspects are treated in the paper: the mutual influence between two neighboring electrodes was examined, leading to a simple methodology for the measurement of the grounding resistance of one of them, provided the other's resistance is known; Electrode I curves were remeasured after 2 1/2 years, and the changes in these curves quantified; measurements in more favorable conditions in an irrigation system were analyzed, leading to a change in the touch potential calculation method previously adopted; and the allowable voltage limits for immersed body situations were reviewed leading to appropriate mitigation criteria for a floating dredge installation.

  11. Evaluation of Charge Passed through Gate-Oxide Films Using a Charging Damage Measurement Electrode

    NASA Astrophysics Data System (ADS)

    Watanabe, Seiichi; Sumiya, Masahiro; Tamura, Hitoshi; Yoshioka, Ken; Tokunaga, Takafumi; Mizutani, Tatsumi

    2000-02-01

    A charging damage measurement electrode was used to model device structures. The charge passed through gate-oxide films (Qp) was measured in a cavity-resonator-type electron cyclotron resonance (ECR) plasma etcher for 12-inch wafers and the reduction of charging damage was investigated. Parallel circuits composed of resistors and condensers were modeled after the current-voltage (I-V) characteristics of the gate-oxide film. The electron shading effect was introduced by mounting a Si chip with line and space (L&S)-patterned photoresist on the probe, which corresponded to the gate electrode. The reduction of charging damage using the time modulation (TM) bias was determined by evaluating Qp and the damaged test element group (TEG) wafer. This charging damage measurement electrode is effective for investigating the reduction of charging damage in particular, of the etcher used for 12-inch wafers.

  12. Capacitance-voltage measurement in memory devices using ferroelectric polymer

    NASA Astrophysics Data System (ADS)

    Nguyen, Chien A.; Lee, Pooi See

    2006-01-01

    Application of thin polymer film as storing mean for non-volatile memory devices is investigated. Capacitance-voltage (C-V) measurement of metal-ferroelectric-metal device using ferroelectric copolymer P(VDF-TrFE) as dielectric layer shows stable 'butter-fly' curve. The two peaks in C-V measurement corresponding to the largest capacitance are coincidental at the coercive voltages that give rise to zero polarization in the polarization hysteresis measurement. By comparing data of C-V and P-E measurement, a correlation between two types of hysteresis is established in which it reveals simultaneous electrical processes occurring inside the device. These processes are caused by the response of irreversible and reversible polarization to the applied electric field that can be used to present a memory window. The memory effect of ferroelectric copolymer is further demonstrated for fabricating polymeric non-volatile memory devices using metal-ferroelectric-insulator-semiconductor structure (MFIS). By applying different sweeping voltages at the gate, bidirectional flat-band voltage shift is observed in the ferroelectric capacitor. The asymmetrical shift after negative sweeping is resulted from charge accumulation at the surface of Si substrate caused by the dipole direction in the polymer layer. The effect is reversed for positive voltage sweeping.

  13. Dielectrophoretic capture voltage spectrum for measurement of dielectric properties and separation of cancer cells.

    PubMed

    Wu, Liqun; Lanry Yung, Lin-Yue; Lim, Kian-Meng

    2012-03-01

    In this paper, a new dielectrophoresis (DEP) method based on capture voltage spectrum is proposed for measuring dielectric properties of biological cells. The capture voltage spectrum can be obtained from the balance of dielectrophoretic force and Stokes drag force acting on the cell in a microfluidic device with fluid flow and strip electrodes. The method was demonstrated with the measurement of dielectric properties of human colon cancer cells (HT-29 cells). From the capture voltage spectrum, the real part of Clausius-Mossotti factor of HT-29 cells for different frequencies of applied electric field was obtained. The dielectric properties of cell interior and plasma membrane were then estimated by using single-shell dielectric model. The cell interior permittivity and conductivity were found to be insensitive to changes in the conductivity of the medium in which the cells are suspended, but the measured permittivity and conductivity of cell membrane were found to increase with the increase of medium conductivity. In addition, the measurement of capture voltage spectrum was found to be useful in providing the optimum operating conditions for separating HT-29 cells from other cells (such as red blood cells) using dielectrophoresis.

  14. Control and measurement of ion bombardment energies at substrates biased with tailored voltage waveforms

    NASA Astrophysics Data System (ADS)

    Patterson, Marlann Marinho

    Substrate bombardment by energetic ions is a central element of plasma etching used in fabrication of integrated circuits (IC), as well as plasma processes for thin film deposition and surface modification. A primary advantage of plasma etching is etch directionality resulting from positive ions bombarding the substrate at normal incidence. For plasma etching, high etch rates, etch anisotropy, high selectivity and low damage must be achieved simultaneously, and all are sensitive to ion bombardment energy. Reduction of device dimensions and the use of new materials associated with continuing advancement in IC performance further constrain etch processes. While average bombarding ion energy is typically controlled through application of RF sinusoidal voltage to the substrate electrode, this results in a broad distribution of ion energies (IED). Based on evidence that a narrow IED may improve etch selectivity for some processes, the focus of this study is control of the bombarding IED through manipulation of the shape of the voltage wave form applied to the substrate. Previous studies show dramatic improvements in etch selectivity in fluorocarbon-based plasmas using a specially tailored periodic bias voltage wave form developed by Wang, consisting of a short spike in combination with a longer period of constant voltage. In this study, the IED at the substrate is measured in an argon inductively coupled plasma (ICP) with a gridded energy analyzer, and it is shown that, as expected, the IED produced by Wang's tailored waveform exhibits a significantly narrower width than that produced by a sinusoidal waveform. Instrumentation for the gridded energy analyzer includes an innovation to minimize resolution loss associated with its location on an rf-biased electrode. In addition, a feedback algorithm for automating the process of setting an arbitrary voltage wave form at the electrode was developed, in which frequency components of the wave form are treated individually

  15. Correcting electrode impedance effects in broadband SIP measurements

    NASA Astrophysics Data System (ADS)

    Huisman, Johan Alexander; Zimmermann, Egon; Esser, Odilia; Haegel, Franz-Hubert; Vereecken, Harry

    2016-04-01

    Broadband spectral induced polarization (SIP) measurements of the complex electrical resistivity can be affected by the contact impedance of the potential electrodes above 100 Hz. In this study, we present a correction procedure to remove electrode impedance effects from SIP measurements. The first step in this correction procedure is to estimate the electrode impedance using a measurement with reversed current and potential electrodes. In a second step, this estimated electrode impedance is used to correct SIP measurements based on a simplified electrical model of the SIP measurement system. We evaluated this new correction procedure using SIP measurements on water because of the well-defined dielectric properties. It was found that the difference between the corrected and expected phase of the complex electrical resistivity of water was below 0.1 mrad at 1 kHz for a wide range of electrode impedances. In addition, SIP measurements on a saturated unconsolidated sediment sample with two types of potential electrodes showed that the measured phase of the electrical resistivity was very similar (difference <0.2 mrad) up to a frequency of 10 kHz after the effect of the different electrode impedances was removed. Finally, SIP measurements on variably saturated unconsolidated sand were made. Here, the plausibility of the phase of the electrical resistivity was improved for frequencies up to 1 kHz, but errors remained for higher frequencies due to the approximate nature of the electrode impedance estimates and some remaining unknown parasitic capacitances that led to current leakage. It was concluded that the proposed correction procedure for SIP measurements improved the accuracy of the phase measurements by an order of magnitude in the kHz frequency range. Further improvement of this accuracy requires a method to accurately estimate parasitic capacitances in situ.

  16. Improved open-circuit voltage in Cu(In,Ga)Se2 solar cells with high work function transparent electrodes

    NASA Astrophysics Data System (ADS)

    Jäger, Timo; Romanyuk, Yaroslav E.; Bissig, Benjamin; Pianezzi, Fabian; Nishiwaki, Shiro; Reinhard, Patrick; Steinhauser, Jérôme; Schwenk, Johannes; Tiwari, Ayodhya N.

    2015-06-01

    Hydrogenated indium oxide (IOH) is implemented as transparent front contact in Cu(In,Ga)Se2 (CIGS) solar cells, leading to an open circuit voltage VOC enhanced by ˜20 mV as compared to reference devices with ZnO:Al (AZO) electrodes. This effect is reproducible in a wide range of contact sheet resistances corresponding to various IOH thicknesses. We present the detailed electrical characterization of glass/Mo/CIGS/CdS/intrinsic ZnO (i-ZnO)/transparent conductive oxide (TCO) with different IOH/AZO ratios in the front TCO contact in order to identify possible reasons for the enhanced VOC. Temperature and illumination intensity-dependent current-voltage measurements indicate that the dominant recombination path does not change when AZO is replaced by IOH, and it is mainly limited to recombination in the space charge region and at the junction interface of the solar cell. The main finding is that the introduction of even a 5 nm-thin IOH layer at the i-ZnO/TCO interface already results in a step-like increase in VOC. Two possible explanations are proposed and verified by one-dimensional simulations using the SCAPS software. First, a higher work function of IOH as compared to AZO is simulated to yield an VOC increase by 21 mV. Second, a lower defect density in the i-ZnO layer as a result of the reduced sputter damage during milder sputter-deposition of IOH can also add to a maximum enhanced VOC of 25 mV. Our results demonstrate that the proper choice of the front TCO contact can reduce the parasitic recombination and boost the efficiency of CIGS cells with improved corrosion stability.

  17. Understanding capacity fade in silicon based electrodes for lithium-ion batteries using three electrode cells and upper cut-off voltage studies

    NASA Astrophysics Data System (ADS)

    Beattie, Shane D.; Loveridge, M. J.; Lain, Michael J.; Ferrari, Stefania; Polzin, Bryant J.; Bhagat, Rohit; Dashwood, Richard

    2016-01-01

    Commercial Li-ion batteries are typically cycled between 3.0 and 4.2 V. These voltages limits are chosen based on the characteristics of the cathode (e.g. lithium cobalt oxide) and anode (e.g. graphite). When alternative anode/cathode chemistries are studied the same cut-off voltages are often, mistakenly, used. Silicon (Si) based anodes are widely studied as a high capacity alternative to graphite for Lithium-ion batteries. When silicon-based anodes are paired with high capacity cathodes (e.g. Lithium Nickel Cobalt Aluminium Oxide; NCA) the cell typically suffers from rapid capacity fade. The purpose of this communication is to understand how the choice of upper cut-off voltage affects cell performance in Si/NCA cells. A careful study of three-electrode cell data will show that capacity fade in Si/NCA cells is due to an ever-evolving silicon voltage profile that pushes the upper voltage at the cathode to >4.4 V (vs. Li/Li+). This behaviour initially improves cycle efficiency, due to liberation of new lithium, but ultimately reduces cycling efficiency, resulting in rapid capacity fade.

  18. Characterization of interdigitated electrode structures for water contaminant detection using a hybrid voltage divider and a vector network analyzer.

    PubMed

    Rodríguez-Delgado, José Manuel; Rodríguez-Delgado, Melissa Marlene; Mendoza-Buenrostro, Christian; Dieck-Assad, Graciano; Omar Martínez-Chapa, Sergio

    2012-01-01

    Interdigitated capacitive electrode structures have been used to monitor or actuate over organic and electrochemical media in efforts to characterize biochemical properties. This article describes a method to perform a pre-characterization of interdigitated electrode structures using two methods: a hybrid voltage divider (HVD) and a vector network analyzer (VNA). Both methodologies develop some tests under two different conditions: free air and bi-distilled water media. Also, the HVD methodology is used for other two conditions: phosphate buffer with laccase (polyphenoloxidase; EC 1.10.3.2) and contaminated media composed by a mix of phosphate buffer and 3-ethylbenzothiazoline-6-sulfonic acid (ABTS). The purpose of this study is to develop and validate a characterization methodology using both, a hybrid voltage divider and VNA T-# network impedance models of the interdigitated capacitive electrode structure that will provide a shunt RC network of particular interest in detecting the amount of contamination existing in the water solution for the media conditions. This methodology should provide us with the best possible sensitivity in monitoring water contaminant media characteristics. The results show that both methods, the hybrid voltage divider and the VNA methodology, are feasible in determining impedance modeling parameters. These parameters can be used to develop electric interrogation procedures and devices such as dielectric characteristics to identify contaminant substances in water solutions.

  19. Three-Dimensionally Mesostructured Fe2O3 Electrodes with Good Rate Performance and Reduced Voltage Hysteresi

    DOE PAGES

    Wang, Junjie; Braun, Paul V.; Zhou, Hui; Nanda, Jagjit

    2015-03-26

    Ni scaffolded mesostructured 3D Fe2O3 electrodes were fabricated by colloidal templating and pulsed elec-trodeposition. The scaffold provided short pathways for both lithium ions and electrons in the active phase, enabling fast kinetics and thus a high power density. The scaffold also resulted in a reduced voltage hysteresis. The electrode showed a reversible capacity of ~1000 mA h g-1 at 0.2 A g-1 (~0.2 C) for about 20 cycles, and at a current density of 20 A g-1 (~20 C) the deliverable capacity was about 450 mA h g-1. The room temperature voltage hysteresis at 0.1 A g-1 (~0.1 C) wasmore » 0.62 V, which is significantly smaller than that normally reported in the literature. And it could be further reduced to 0.42 V when cycling at 45 ºC. Potentiostatic electrochemical impedance spectroscopy (PEIS) studies indicated the small voltage hysteresis may be due to a reduction in the Li2O/Fe interfacial area in the electrode during cycling relative to convention-al conversion systems.« less

  20. Electroencephalogram measurement using polymer-based dry microneedle electrode

    NASA Astrophysics Data System (ADS)

    Arai, Miyako; Nishinaka, Yuya; Miki, Norihisa

    2015-06-01

    In this paper, we report a successful electroencephalogram (EEG) measurement using polymer-based dry microneedle electrodes. The electrodes consist of needle-shaped substrates of SU-8, a silver film, and a nanoporous parylene protective film. Differently from conventional wet electrodes, microneedle electrodes do not require skin preparation and a conductive gel. SU-8 is superior as a structural material to poly(dimethylsiloxane) (PDMS; Dow Corning Toray Sylgard 184) in terms of hardness, which was used in our previous work, and facilitates the penetration of needles through the stratum corneum. SU-8 microneedles can be successfully inserted into the skin without breaking and could maintain a sufficiently low skin-electrode contact impedance for EEG measurement. The electrodes successfully measured EEG from the frontal pole, and the quality of acquired signals was verified to be as high as those obtained using commercially available wet electrodes without any skin preparation or a conductive gel. The electrodes are readily applicable to record brain activities for a long period with little stress involved in skin preparation to the users.

  1. Voltage clamp limitations of dual whole-cell gap junction current and voltage recordings. I. Conductance measurements.

    PubMed

    Veenstra, R D

    2001-05-01

    Previous correction methods for series access resistance errors in the dual whole-cell configuration did not take into account the effect of nonzero resting potentials (E(rest)) and junctional reversal potentials (E(rev)). Dual whole-cell currents were modeled according to resistor-circuit analysis and two correction formulas for the measurement of junctional currents (I(j)) were assessed. The equations for I(j), derived from Kirchoff's law before and after baseline subtraction of the nonjunctional current, were assessed for accuracy under a variety of whole-cell patch-clamp recording conditions. Both equations accurately correct for dual whole-cell voltage-clamp errors provided that the cellular parameters are included in the nonbaseline subtracted I(j) derivations. Junctional conductance (g(j)) estimates are most reliable at high junctional resistance (R(j)) values and minimize the need for corrective methods based on electrode series and cellular input resistances (R(el) and R(in)). In the "open-cell" configuration, low R(j) values relative to R(in) are required for accurate g(j) estimates. These methods provide the basis for accurate quantitative measurements of junctional resistance (or conductance) of gap junction channels or connexin hemichannels in the dual whole-cell or open-cell configurations. Revaluation of V(j)-dependent gating of rat connexin40 g(j) produced nearly identical Boltzmann fits to previously published data. Continuous g(j)-V(j) curves generated by variable slope V(j) ramps provide for more accurate fits and assessment of the time-dependence of the half-inactivation voltage and net gating charge movement. PMID:11325726

  2. A simple arc column model that accounts for the relationship between voltage, current and electrode gap during VAR

    SciTech Connect

    Williamson, R.L.

    1997-02-01

    Mean arc voltage is a process parameter commonly used in vacuum arc remelting (VAR) control schemes. The response of this parameter to changes in melting current (I) and electrode gap (g{sub e}) at constant pressure may be accurately described by an equation of the form V = V{sub 0} + c{sub 1}g{sub e}I + c{sub 2}g{sub e}{sup 2} + c{sub 3}I{sup 2}, where c{sub 1}, c{sub 2} and c{sub 3} are constants, and where the non-linear terms generally constitute a relatively small correction. If the non-linear terms are ignored, the equation has the form of Ohm`s law with a constant offset (V{sub 0}), c{sub 1}g{sub e} playing the role of resistance. This implies that the arc column may be treated approximately as a simple resistor during constant current VAR, the resistance changing linearly with g{sub e}. The VAR furnace arc is known to originate from multiple cathode spot clusters situated randomly on the electrode tip surface. Each cluster marks a point of exist for conduction electrons leaving the cathode surface and entering the electrode gap. Because the spot clusters re highly localized on the cathode surface, each gives rise to an arc column that may be considered to operate independently of other local arc columns. This approximation is used to develop a model that accounts for the observed arc voltage dependence on electrode gap at constant current. Local arc column resistivity is estimated from elementary plasma physics and used to test the model for consistency by using it to predict local column heavy particle density. Furthermore, it is shown that the local arc column resistance increases as particle density increases. This is used to account for the common observation that the arc stiffens with increasing current, i.e. the arc voltage becomes more sensitive to changes in electrode gap as the melting current is increased. This explains why arc voltage is an accurate electrode gap indicator for high current VAR processes but not low current VAR processes.

  3. Improved electrode paste provides reliable measurement of galvanic skin response

    NASA Technical Reports Server (NTRS)

    Day, J. L.

    1966-01-01

    High-conductivity electrode paste is used in obtaining accurate skin resistance or skin potential measurements. The paste is isotonic to perspiration, is nonirritating and nonsensitizing, and has an extended shelf life.

  4. Effect on plasma and etch-rate uniformity of controlled phase shift between rf voltages applied to powered electrodes in a triode capacitively coupled plasma reactor

    SciTech Connect

    Sung, Dougyong; Jeong, Sangmin; Park, Youngmin; Volynets, Vladimir N.; Ushakov, Andrey G.; Kim, Gon-Ho

    2009-01-15

    The influence of the phase shift between rf voltages applied to the powered electrodes on plasma parameters and etch characteristics was studied in a very high-frequency (VHF) capacitively coupled plasma (CCP) triode reactor. rf voltages at 100 MHz were simultaneously applied to the top and bottom electrodes having a controlled phase shift between them, which could be varied between 0 deg. and 360 deg. Several plasma and process characteristics were measured as a function of the phase shift: (i) radial profiles of plasma-emission intensity, (ii) line-of-sight averaged plasma-emission intensity, and (iii) radial profiles of blanket SiO{sub 2} etching rate over a 300 mm wafer. Radial profiles of plasma emission were obtained using the scanning optical probe. It has been shown that all the measured characteristics strongly depend on the phase shift: (i) plasma-emission intensity is minimal at phase shift equal to 0 deg. and maximal at 180 deg. for all radial positions, while the emission radial profile changes from bell-shaped distribution with considerable nonuniformity at 0 deg. to a much more flattened distribution at 180 deg.; (ii) line-of-sight averaged plasma-emission intensity shows a similar dependence on the phase shift with minimum and maximum at 0 deg. and 180 deg., respectively; and (iii) the etch-rate radial profile at 180 deg. shows a much better uniformity as compared to that at 0 deg. Some of these results can be qualitatively explained by the redistribution of plasma currents that flow between the electrodes and also from the electrodes to the grounded wall with the phase shift. We suggest that the phase-shift effect can be used to improve the plasma and etch-rate spatial uniformity in VHF-CCP triode reactors.

  5. A high voltage method for measuring low capacitance for tomography.

    PubMed

    Lu, Decai; Shao, Fuqun; Guo, Zhiheng

    2009-05-01

    Low capacitance measurement is involved in many industrial applications, especially in the applications of electrical capacitance tomography (ECT). Most of the low capacitance measurement circuits employ an ac-based method or a charge/discharge method because of high sensitivity, high resolution, and immunity to stray capacitance; and its excitation or charge voltage are not more than 20 V. When ECT techniques for large industrial equipment such as blast furnaces or grain barns are explored, the existing methods for measuring low capacitance have some limitations. This paper proposes a high excitation voltage ac-based method for measuring low capacitance to improve the resolution of measurement. The method uses a high excitation voltage of several hundred volts and a transformer ratio arms as the C/V transducer. Experimental results indicate that the new method has a resolution of 0.005 fF, a good stability (about 0.003 fF over 4 h) and linearity (0.9992). PMID:19485513

  6. A high voltage method for measuring low capacitance for tomography.

    PubMed

    Lu, Decai; Shao, Fuqun; Guo, Zhiheng

    2009-05-01

    Low capacitance measurement is involved in many industrial applications, especially in the applications of electrical capacitance tomography (ECT). Most of the low capacitance measurement circuits employ an ac-based method or a charge/discharge method because of high sensitivity, high resolution, and immunity to stray capacitance; and its excitation or charge voltage are not more than 20 V. When ECT techniques for large industrial equipment such as blast furnaces or grain barns are explored, the existing methods for measuring low capacitance have some limitations. This paper proposes a high excitation voltage ac-based method for measuring low capacitance to improve the resolution of measurement. The method uses a high excitation voltage of several hundred volts and a transformer ratio arms as the C/V transducer. Experimental results indicate that the new method has a resolution of 0.005 fF, a good stability (about 0.003 fF over 4 h) and linearity (0.9992).

  7. Developing barbed microtip-based electrode arrays for biopotential measurement.

    PubMed

    Hsu, Li-Sheng; Tung, Shu-Wei; Kuo, Che-Hsi; Yang, Yao-Joe

    2014-07-10

    This study involved fabricating barbed microtip-based electrode arrays by using silicon wet etching. KOH anisotropic wet etching was employed to form a standard pyramidal microtip array and HF/HNO3 isotropic etching was used to fabricate barbs on these microtips. To improve the electrical conductance between the tip array on the front side of the wafer and the electrical contact on the back side, a through-silicon via was created during the wet etching process. The experimental results show that the forces required to detach the barbed microtip arrays from human skin, a polydimethylsiloxane (PDMS) polymer, and a polyvinylchloride (PVC) film were larger compared with those required to detach microtip arrays that lacked barbs. The impedances of the skin-electrode interface were measured and the performance levels of the proposed dry electrode were characterized. Electrode prototypes that employed the proposed tip arrays were implemented. Electroencephalogram (EEG) and electrocardiography (ECG) recordings using these electrode prototypes were also demonstrated.

  8. Application of infrared spectroscopy to monitoring gas insulated high-voltage equipment: electrode material-dependent SF(6) decomposition.

    PubMed

    Kurte, R; Beyer, C; Heise, H M; Klockow, D

    2002-08-01

    Sulfur hexafluoride is a chemically inert gas which is used in gas insulated substations (GIS) and other high-voltage equipment, leading to a significant enhancement of apparatus lifetime and reductions in installation size and maintenance requirements compared to conventional air insulated substations. However, component failures due to aging of the gas through electrical discharges may occur, and on-site monitoring for risk assessment is needed. Infrared spectroscopy was used for the analysis of gaseous by-products generated from electrical discharges in sulfur hexafluoride gas. An infrared monitoring system was developed using a micro-cell coupled to an FTIR spectrometer by silver halide fibers. Partial least-squares calibration was applied by using a limited number of optimally selected spectral variables. Emphasis was placed on the determination of main decomposition products, such as SOF(2), SOF(4), and SO(2)F(2). Besides the different electrical conditions, the material of the plane counter electrode of the discharge chamber was also varied between silver, aluminum, copper, tungsten, or tungsten/copper alloy. For the spark experiments the point electrode was the same material as chosen for the plane electrode, whereas for partial discharges a stainless steel needle was employed. Complementary investigations on the chemical composition within the solid counter electrode material by secondary neutral mass spectrometry (SNMS) were also carried out. Under sparking conditions, the electrode material plays an important role in the decomposition rates of the gas-phase, but no relevant material dependence could be observed under partial discharge conditions. PMID:12185577

  9. Accuracy of plantar electrodes compared with hand and foot electrodes in fat-free-mass measurement.

    PubMed

    Jaffrin, Michel Y; Bousbiat, Sana

    2014-01-01

    This paper investigates the measurement of fat-free mass (FFM) by bioimpedance using foot-to-foot impedancemeters (FFI) with plantar electrodes measuring the foot-to-foot resistance R34 and hand-to-foot medical impedancemeters. FFM measurements were compared with corresponding data using Dual X-ray absorptiometry (DXA). Equations giving FFM were established using linear multiple regression on DXA data in a first group of 170 subjects. For validation, these equations were used on a second group of 86 subjects, and FFM were compared with DXA data; no significant difference was observed. The same protocol was repeated, but using electrodes on the right hand and foot in standing position to measure the hand to-foot resistance R13. Mean differences with DXA were higher for R13 than for R34. Effect of electrode size and feet position on resistance was also investigated. R34 decreased when electrode area increased or if feet were moved forward. It decreased if feet were moved backward. A proper configuration of contact electrodes can improve measurement accuracy and reproducibility of FFI.

  10. Spark gap with low breakdown voltage jitter

    DOEpatents

    Rohwein, G.J.; Roose, L.D.

    1996-04-23

    Novel spark gap devices and electrodes are disclosed. The novel spark gap devices and electrodes are suitable for use in a variety of spark gap device applications. The shape of the electrodes gives rise to local field enhancements and reduces breakdown voltage jitter. Breakdown voltage jitter of approximately 5% has been measured in spark gaps according the invention. Novel electrode geometries and materials are disclosed. 13 figs.

  11. Spark gap with low breakdown voltage jitter

    DOEpatents

    Rohwein, Gerald J.; Roose, Lars D.

    1996-01-01

    Novel spark gap devices and electrodes are disclosed. The novel spark gap devices and electrodes are suitable for use in a variety of spark gap device applications. The shape of the electrodes gives rise to local field enhancements and reduces breakdown voltage jitter. Breakdown voltage jitter of approximately 5% has been measured in spark gaps according the invention. Novel electrode geometries and materials are disclosed.

  12. Crayfish stretch receptor: an investigation with voltage-clamp and ion-sensitive electrodes.

    PubMed Central

    Brown, H M; Ottoson, D; Rydqvist, B

    1978-01-01

    1. The membrane characteristics of the slowly adapting stretch receptor from the crayfish, Astacus fluviatilis, were examined with electrophysiological techniques consisting of membrane potential recording, voltage clamp and ion-sensitive microelectrodes. 2. The passive membrane current (Ip) following step changes of the membrane potential to levels above 0 mV required more than a minute to decay to a steady-state level. 3. The stretch-induced current (SIC, where SIC = Itotal--Ipassive) was not fully developed until the Ip had decayed to a steady state. 4. With Ip at the steady state and the stretch-induced current at the O-current potential, a slow stretch-induced inward current was isolated. The latter reaches a maximum after 1 sec of stretch and declines even more slowly after stretch. The I-V relation of the slow current had a negative slope and reversed sign near the resting potential. It is suggested that this current is due to a Cl- conductance change. 5. The stretch-induced current, consisting of a rapid transient phase and a steady component can be isolated from the slow stretch-induced current at a holding potential corresponding to the resting potential. 6. The SIC-Em relation is non-linear and reverses sign at about +15 mV. 7. In a given cell, the reversal potential of the stretch-induced potential change obtained with current clamp coincided with the 0-current potential of the stretch-induced current obtained by voltage clamp. The average value from twenty-six cells was +13 +/- 6.5 mV; cell to cell variability seemed to be correlated with dendrite length. 8. Tris (mol. wt. 121) or arginine (mol. wt. 174) susbstituted for Na+ reduces but does not abolish the stretch-induced current. 9. The permeability ratios of Tris:Na and arginine:Na were estimated from changes in the 0-current potential as these cations replaced Na+ in the external medium. The PTris:PNa was somewhat higher (0.31) than the Parginine:PNa ratio (0.25). 10. Changes in the external Ca2

  13. Traceability of Voltage Measurements for Non-Sinusoidal Waveforms

    NASA Astrophysics Data System (ADS)

    Espel, P.; Poletaeff, A.; Ndilimabaka, H.

    2010-01-01

    This paper describes the result of work performed at the Laboratoire National de Métrologie et d'Essais (LNE) aiming at developing a standard system to measure RMS value and harmonic contents of distorted voltage waveforms by means of a sampling voltmeter. Thermal converters are used to trace the RMS value to the SI units. The error of the DVM has been generally found less than 10 μV/V up to 2 kHz but can reach about 50 μV/V at 2.5 kHz for RMS voltage measurements for sine waves. For distorted waveforms, deviations within 15 μV/V have been obtained whatever the total harmonic distortion of the waveforms.

  14. Volume-surface barrier discharge in dried air in three-electrode system fed by impulse high voltage with nanosecond rise time

    NASA Astrophysics Data System (ADS)

    Malashin, Maxim; Rebrov, Igor; Nebogatkin, Sergey; Sokolova, Marina; Nikitin, Alexey; Voevodin, Vadim; Krivov, Sergey

    2016-08-01

    Results of experimental investigation of a volume-surface barrier discharge in a three-electrode system under periodic impulse voltage applied to the surface discharge (SD) electrodes and a d.c. potential applied to an additional third electrode are presented. It is shown that there is a strong influence of polarity and amplitude of the d.c. potential on the direct current "extracted" out of the surface discharge plasma layer by electric field of the third electrode. The amount of charged positive species that constitute the "extracted" current prevails under positive impulse voltage for low values of the negative d.c. potential of the third electrode. The amount of negative species prevails with higher values of the positive d.c. positive of the third electrode. Contribution to the topical issue "6th Central European Symposium on Plasma Chemistry (CESPC-6)", edited by Nicolas Gherardi, Ester Marotta and Cristina Paradisi

  15. Simultaneous measurement of changes in current and tracer flux in voltage-clamped squid giant axon.

    PubMed Central

    Rakowski, R F

    1989-01-01

    A method is described for the simultaneous measurement of changes in membrane current and unidirectional radiotracer flux in internally dialyzed voltage-clamped squid giant axons. The small currents that are produced by electrogenic transport processes or steady-state ionic currents can be resolved using this method. Because the use of grounded guard electrodes in the end pools is not, by itself, an adequate means of eliminating end-effects, two ancillary end pool clamp circuits are described to eliminate extraneous current flow from the ends of the axon. The end pool voltage-clamp circuits serve to minimize net current flow between the end pools and center pool, and employ stable, low-impedance calomel electrodes to monitor the potentials of the end and center pools. The adequacy of the method is demonstrated by experiments in which unidirectional 22Na efflux and current, flowing through tetrodotoxin (TTX)-sensitive Na channels into Na-free seawater, under K-free conditions, are shown to be equal. The equality of unidirectional TTX-sensitive flux and current is maintained over the entire range of membrane potentials examined (-60 to +20 mV). The method has been applied to a series of experiments in which the voltage dependence and stoichiometry of the Na/K pump have been measured (Rakowski et al., 1989), and can be applied in general to the simultaneous measurement of changes in current and flux of other electrogenic transport processes, and of currents through ionic channels that open under steady-state conditions. PMID:2720065

  16. Research of position measuring system for high voltage switchgear

    NASA Astrophysics Data System (ADS)

    Ji, Yilin; Qian, Zheng; Pan, Kaikai

    2016-01-01

    The contact position's accurate measurement is the key part of the realization of high voltage switchgear's on-line monitoring. Based on the position measurement, the speed and trip of the switchgear could also be obtained. Thus, the health level and the operation status can be evaluated. The insulation condition and the fault symptom can also be identified. In this paper, the on-line measuring principle for the contact position is presented at first. The indirect measuring method is adopted, and the incremental photoelectric encoder is utilized to realize the measurement of angular displacement. The position could be calculated by establishing the relationship between the angular displacement and the contact's linear displacement. After that, the technical difficulties of the on-line measuring system are demonstrated. The selection of encoder, the difficult parts of hardware design and software design are all discussed deeply. The lab test of the whole measuring system is processed at last, and the measuring results are satisfactory. It will provide powerful support for the realization of on-line monitoring equipment of the high voltage switchgear.

  17. Linearisation of λDNA molecules by instantaneous variation of the trapping electrode voltage inside a micro-channel

    NASA Astrophysics Data System (ADS)

    Hanasaki, Itsuo; Yukimoto, Naoya; Uehara, Satoshi; Shintaku, Hirofumi; Kawano, Satoyuki

    2015-04-01

    Because long DNA molecules usually exist in random coil states due to the entropic effect, linearisation is required for devices equipped with nanopores where electrical sequencing is necessary during single-file translocation. We present a novel technique for linearising DNA molecules in a micro-channel. In our device, electrodes are embedded in the bottom surface of the channel. The application of a voltage induces the trapping of λDNA molecules on the positive electrode. An instantaneous voltage drop is used to put the λDNA molecules in a partly released state and the hydrodynamic force of the solution induces linearisation. Phenomena were directly observed using an optical microscopy system equipped with a high-speed camera and the linearisation principle was explored in detail. Furthermore, we estimate the tensile characteristics produced by the flow of the solution through a numerical model of a tethered polymer subject to a Poiseuille flow. The mean tensile force is in the range of 0.1-1 pN. This is sufficiently smaller than the structural transition point of λDNA but counterbalances the entropic elasticity that causes the random coil shape of λDNA molecules in solution. We show the important role of thermal fluctuation in the manipulation of molecules in solution and clarify the tensile conditions required for DNA linearisation using a combination of solution flow and voltage variation in a microchannel.

  18. Electronic transport in oligo-para-phenylene junctions attached to carbon nanotube electrodes: Transition-voltage spectroscopy and chirality

    SciTech Connect

    Brito Silva, C. A. Jr.; Silva, S. J. S. da; Leal, J. F. P.; Pinheiro, F. A.; Del Nero, J.

    2011-06-15

    We have investigated, by means of a nonequilibrium Green's function method coupled to density functional theory, the electronic transport properties of molecular junctions composed of oligo-para-phenylene (with two, three, four, and five phenyl rings) covalently bridging the gap between metallic carbon nanotubes electrodes. We have found that the current is strongly correlated to a purely geometrical chiral parameter, both on-resonance and off-resonance. The Fowler-Nordheim plot exhibits minima, V{sub min}, that occur whenever the tail of a resonant transmission peak enters in the bias window. This result corroborates the scenario in which the coherent transport model gives the correct interpretation to transition voltage spectroscopy (TVS). We have shown that V{sub min} corresponds to voltages where a negative differential resistance (NDR) occurs. The finding that V{sub min} corresponds to voltages that exhibit NDR, which can be explained only in single-molecule junctions within the coherent transport model, further confirms the applicability of such models to adequately interpret TVS. The fact that the electrodes are organic is at the origin of differences in the behavior of V{sub min} if compared to the case of molecular junctions with nonorganic contacts treated so far.

  19. A HIGH CURRENT, HIGH VOLTAGE SOLID-STATE PULSE GENERATOR FOR THE NIF PLASMA ELECTRODE POCKELS CELL

    SciTech Connect

    Arnold, P A; Barbosa, F; Cook, E G; Hickman, B C; Akana, G L; Brooksby, C A

    2007-07-27

    A high current, high voltage, all solid-state pulse modulator has been developed for use in the Plasma Electrode Pockels Cell (PEPC) subsystem in the National Ignition Facility. The MOSFET-switched pulse generator, designed to be a more capable plug-in replacement for the thyratron-switched units currently deployed in NIF, offers unprecedented capabilities including burst-mode operation, pulse width agility and a steady-state pulse repetition frequency exceeding 1 Hz. Capable of delivering requisite fast risetime, 17 kV flattop pulses into a 6 {Omega} load, the pulser employs a modular architecture characteristic of the inductive adder technology, pioneered at LLNL for use in acceleration applications, which keeps primary voltages low (and well within the capabilities of existing FET technology), reduces fabrication costs and is amenable to rapid assembly and quick field repairs.

  20. Voltage-controlled liquid-crystal terahertz phase shifter with indium-tin-oxide nanowhiskers as transparent electrodes.

    PubMed

    Yang, Chan-Shan; Tang, Tsung-Ta; Chen, Po-Han; Pan, Ru-Pin; Yu, Peichen; Pan, Ci-Ling

    2014-04-15

    Indium-tin-oxide nanowhiskers were employed as transparent electrodes in a liquid-crystal terahertz phase shifter. Transmittance of the device was as high as ∼75%. Phase shift exceeding π/2 at 1.0 THz is achieved in a ∼500  μm-thick cell. The driving voltage required for the device operating as a quarter-wave plate was as low as 17.68 V (rms), an improvement of nearly an order of magnitude over previous work.

  1. Apparatus for focused electrode induced polarization logging

    SciTech Connect

    Vinegar, H.J.; Waxman, M.H.

    1986-04-15

    An induced polarization logging tool is described for measuring parameters of a formation surrounding a borehole. The logging tool consists of: a non-conductive logging sonde; a plurality of electrodes disposed on the sonde, the electrodes including at least a survey current electrode and guard electrodes disposed on opposite sides of the survey current electrode, a non-polarizing voltage measuring electrode, a non-polarizing voltage reference electrode and a current return electrode, both the voltage reference and current return electrodes being located a greater distance from the survey current electrode than the guard electrodes; means connected to the survey current electrode and the guard electrodes for generating a signal representative of the potential difference in the formation between the survey current electrode and the guard electrodes; first control means directly coupled to the survey current electrode, the first control means controlling the current flow to the survey current electrode in response to the potential difference signal; a second control means directly coupled to the guard electrodes to control the current flow to the guard electrodes in response to the potential difference signal; a source of alternating current located at the surface, one end of the source being coupled to the two control means and the other to the current return electrode, the source supplying alternating current at various discrete frequencies between substantially 0.01 and 100 Hz; measurement means directly coupled to the voltage measurement and survey current electrodes to measure the amplitude and phase of the voltage induced in the formation and the amplitude and phase of the current flow to the survey electrode; and transmission means for transmitting the measurements to the surface.

  2. Means to remove electrode contamination effect of Langmuir probe measurement in space.

    PubMed

    Oyama, K-I; Lee, C H; Fang, H K; Cheng, C Z

    2012-05-01

    Precaution to remove the serious effect of electrode contamination in Langmuir probe experiments has not been taken in many space measurements because the effect is either not understood or ignored. We stress here that one should pay extra attention to the electrode contamination effect to get accurate and reliable plasma measurements so that the long time effort for sounding rocket/satellite missions does not end in vain or becomes less fruitful. In this paper, we describe two main features of voltage-current characteristic curves associated with the contaminated Langmuir probe, which are predicted from the equivalent circuit model, which we proposed in 1970's. We then show that fast sweeping dc Langmuir probes can give reliable results in the steady state regime. The fast sweeping probe can also give reliable results in transient situations such as satellite moves through plasma bubble in the ionosphere where the electron density drastically changes. This fact was first confirmed in our laboratory experiment.

  3. Means to remove electrode contamination effect of Langmuir probe measurement in space.

    PubMed

    Oyama, K-I; Lee, C H; Fang, H K; Cheng, C Z

    2012-05-01

    Precaution to remove the serious effect of electrode contamination in Langmuir probe experiments has not been taken in many space measurements because the effect is either not understood or ignored. We stress here that one should pay extra attention to the electrode contamination effect to get accurate and reliable plasma measurements so that the long time effort for sounding rocket/satellite missions does not end in vain or becomes less fruitful. In this paper, we describe two main features of voltage-current characteristic curves associated with the contaminated Langmuir probe, which are predicted from the equivalent circuit model, which we proposed in 1970's. We then show that fast sweeping dc Langmuir probes can give reliable results in the steady state regime. The fast sweeping probe can also give reliable results in transient situations such as satellite moves through plasma bubble in the ionosphere where the electron density drastically changes. This fact was first confirmed in our laboratory experiment. PMID:22667663

  4. Means to remove electrode contamination effect of Langmuir probe measurement in space

    SciTech Connect

    Oyama, K.-I.; Lee, C. H.; Fang, H. K.; Cheng, C. Z.

    2012-05-15

    Precaution to remove the serious effect of electrode contamination in Langmuir probe experiments has not been taken in many space measurements because the effect is either not understood or ignored. We stress here that one should pay extra attention to the electrode contamination effect to get accurate and reliable plasma measurements so that the long time effort for sounding rocket/satellite missions does not end in vain or becomes less fruitful. In this paper, we describe two main features of voltage-current characteristic curves associated with the contaminated Langmuir probe, which are predicted from the equivalent circuit model, which we proposed in 1970's. We then show that fast sweeping dc Langmuir probes can give reliable results in the steady state regime. The fast sweeping probe can also give reliable results in transient situations such as satellite moves through plasma bubble in the ionosphere where the electron density drastically changes. This fact was first confirmed in our laboratory experiment.

  5. Means to remove electrode contamination effect of Langmuir probe measurement in space

    NASA Astrophysics Data System (ADS)

    Oyama, K.-I.; Lee, C. H.; Fang, H. K.; Cheng, C. Z.

    2012-05-01

    Precaution to remove the serious effect of electrode contamination in Langmuir probe experiments has not been taken in many space measurements because the effect is either not understood or ignored. We stress here that one should pay extra attention to the electrode contamination effect to get accurate and reliable plasma measurements so that the long time effort for sounding rocket/satellite missions does not end in vain or becomes less fruitful. In this paper, we describe two main features of voltage-current characteristic curves associated with the contaminated Langmuir probe, which are predicted from the equivalent circuit model, which we proposed in 1970's. We then show that fast sweeping dc Langmuir probes can give reliable results in the steady state regime. The fast sweeping probe can also give reliable results in transient situations such as satellite moves through plasma bubble in the ionosphere where the electron density drastically changes. This fact was first confirmed in our laboratory experiment.

  6. Motional induction voltage measurements in estuarine environments: the Ria de Aveiro Lagoon (Portugal)

    NASA Astrophysics Data System (ADS)

    Nolasco, Rita; Soares, António; Dias, João M.; Monteiro Santos, Fernando A.; Palshin, N. A.; Represas, Patricia; Vaz, Nuno

    2006-07-01

    Electromagnetic fluctuations in the ocean have external sources like ionospheric-magnetospheric current systems, and purely internal oceanic sources associated with interaction between water velocity fields and the geomagnetic field, that is, the motionally induced voltage (MIV). During the last decade techniques based on MIV have proven to provide reliable information when applied to the flow monitoring at large oceanic channels. In this paper analysis of data resulting from the implementation of these techniques in a small-scale system, that is, the Ria de Aveiro lagoon (Portugal), is presented. A submarine cable crossing the channel at the entrance of the lagoon (Barra channel) allows the measurement of the potential difference between two electrodes located on both sides of the channel. Spectral analysis of these data reveals that measured voltages are dominated by semidiurnal M2, S2/K2 frequencies. Comparison between the sum of the four main constituents determined by harmonic analysis and the sea surface elevation measured at a tide gauge located at the lagoon mouth reveal that the measured potential difference is proportional to the water flow. To estimate the water flow in this location from the MIV measurements the data collected using this methodology were compared with numerical results obtained from a previously calibrated hydrodynamic model. A value of 720 m3 s-1 mV-1 was estimated for the coefficient relating voltage and water transport at Barra. Taking this value into account a sediment layer of about 20 m is estimated, at Barra. The results show that it is possible to indirectly measure the water transport (by tidal and residual flows) through the channel by measuring the differences of electrical potential. This demonstrates the applicability of the MIV method to a small-scale system.

  7. Effect of applied voltage, initial concentration and natural organic matter on sequential reduction/oxidation of nitrobenzene by graphite electrodes

    PubMed Central

    Sun, Mei; Reible, Danny D.; Lowry, Gregory V.; Gregory, Kelvin B.

    2012-01-01

    Carbon electrodes are proposed in reactive sediment caps for in situ treatment of contaminants. The electrodes produce reducing conditions and H2 at the cathode and oxidizing conditions and O2 at the anode. Emplaced perpendicular to seepage flow, the electrodes provide the opportunity for sequential reduction and oxidation of contaminants. The objectives of this study are to demonstrate degradation of nitrobenzene (NB) as a probe compound for sequential electrochemical reduction and oxidation, and to determine the effect of applied voltage, initial concentration and natural organic matter on the degradation rate. In H-cell reactors with graphite electrodes and buffer solution, NB was reduced stoichiometrically to aniline (AN) at the cathode with nitrosobenzene (NSB) as the intermediate. AN was then removed at the anode, faster than the reduction step. No common AN oxidation intermediate was detected in the system. Both the first order reduction rate constants of NB (kNB) and NSB (kNSB) increased with applied voltage between 2V and 3.5 V (when the initial NB concentration was 100 µM, kNB=0.3 d−1 and kNSB=0.04 d−1at 2V; kNB=1.6 d−1 and kNSB=0.64 d−1at 3.5 V) but stopped increasing beyond the threshold of 3.5V. When initial NB concentration decreased from 100 to 5 µM, kNB and kNSB became 9 and 5 times faster, respectively, suggesting that competition for active sites on the electrode surface is an important factor in NB degradation. Presence of natural organic matter (in forms of either humic acid or Anacostia River sediment porewater) decreased kNB while slightly increased kNSB, but only to a limited extent (~factor of 3) for dissolved organic carbon content up to 100 mg/l. These findings suggest that electrode-based reactive sediment capping via sequential reduction/oxidation is a potentially robust and tunable technology for in situ contaminants degradation. PMID:22571797

  8. Measurement of microchannel fluidic resistance with a standard voltage meter.

    PubMed

    Godwin, Leah A; Deal, Kennon S; Hoepfner, Lauren D; Jackson, Louis A; Easley, Christopher J

    2013-01-01

    A simplified method for measuring the fluidic resistance (R(fluidic)) of microfluidic channels is presented, in which the electrical resistance (R(elec)) of a channel filled with a conductivity standard solution can be measured and directly correlated to R(fluidic) using a simple equation. Although a slight correction factor could be applied in this system to improve accuracy, results showed that a standard voltage meter could be used without calibration to determine R(fluidic) to within 12% error. Results accurate to within 2% were obtained when a geometric correction factor was applied using these particular channels. When compared to standard flow rate measurements, such as meniscus tracking in outlet tubing, this approach provided a more straightforward alternative and resulted in lower measurement error. The method was validated using 9 different fluidic resistance values (from ∼40 to 600kPa smm(-3)) and over 30 separately fabricated microfluidic devices. Furthermore, since the method is analogous to resistance measurements with a voltage meter in electrical circuits, dynamic R(fluidic) measurements were possible in more complex microfluidic designs. Microchannel R(elec) was shown to dynamically mimic pressure waveforms applied to a membrane in a variable microfluidic resistor. The variable resistor was then used to dynamically control aqueous-in-oil droplet sizes and spacing, providing a unique and convenient control system for droplet-generating devices. This conductivity-based method for fluidic resistance measurement is thus a useful tool for static or real-time characterization of microfluidic systems. PMID:23245901

  9. Thermo-voltage measurements of atomic contacts at low temperature.

    PubMed

    Ofarim, Ayelet; Kopp, Bastian; Möller, Thomas; Martin, León; Boneberg, Johannes; Leiderer, Paul; Scheer, Elke

    2016-01-01

    We report the development of a novel method to determine the thermopower of atomic-sized gold contacts at low temperature. For these measurements a mechanically controllable break junction (MCBJ) system is used and a laser source generates a temperature difference of a few kelvins across the junction to create a thermo-voltage. Since the temperature difference enters directly into the Seebeck coefficient S = -ΔV/ΔT, the determination of the temperature plays an important role. We present a method for the determination of the temperature difference using a combination of a finite element simulation, which reveals the temperature distribution of the sample, and the measurement of the resistance change due to laser heating of sensor leads on both sides next to the junction. Our results for the measured thermopower are in agreement with recent reports in the literature.

  10. Electric and magnetic field measurements in a high voltage center.

    PubMed

    Safigianni, Anastasia S; Spyridopoulos, Anastasios I; Kanas, Vasilis L

    2012-01-01

    This paper investigates the electric and magnetic fields inside a large high voltage center constituted both of 400/150 and 150/20 kV substation areas. Results of previous field measurements and calculations in substations, made by the authors of this paper or other researchers, are presented first. The basic data distinguishing the examined center from previously examined substations follow. The main results of the field measurements in the areas of the above-mentioned center are presented in relevant diagrams. General conclusions arising from the comparison of the measured field values with relevant reference levels in force for safe public and occupational exposure as well as with the results of previous research are finally given. PMID:21917821

  11. Thermo-voltage measurements of atomic contacts at low temperature

    PubMed Central

    Ofarim, Ayelet; Kopp, Bastian; Möller, Thomas; Martin, León; Boneberg, Johannes; Leiderer, Paul

    2016-01-01

    Summary We report the development of a novel method to determine the thermopower of atomic-sized gold contacts at low temperature. For these measurements a mechanically controllable break junction (MCBJ) system is used and a laser source generates a temperature difference of a few kelvins across the junction to create a thermo-voltage. Since the temperature difference enters directly into the Seebeck coefficient S = −ΔV/ΔT, the determination of the temperature plays an important role. We present a method for the determination of the temperature difference using a combination of a finite element simulation, which reveals the temperature distribution of the sample, and the measurement of the resistance change due to laser heating of sensor leads on both sides next to the junction. Our results for the measured thermopower are in agreement with recent reports in the literature. PMID:27335765

  12. Numerical simulation of particle dynamics in an orifice-electrode system. Application to counting and sizing by impedance measurement.

    PubMed

    Isèbe, Damien; Nérin, Philippe

    2013-04-01

    This paper describes how to numerically tackle the problem of counting and sizing particles by impedance measurement in an orifice-electrode system. The model allows to simulate the particle dynamics submitted to strong hydrodynamic stresses through a microorifice and to compute the voltage pulses generated by the modification of the inner dielectric medium. This approach gives important information about particles size distribution and allows to quantify the role of trajectory and orientation of particles on the size measurement.

  13. On the use of liquid-metal electrodes for liquid impedance spectroscopy measurements

    NASA Astrophysics Data System (ADS)

    Kellis, Nathan; Mazzeo, Brian

    2010-10-01

    Electrode polarization is an obstacle to the accurate measurement of liquids containing ions. An atomically smooth surface electrode would potentially reduce uncertainties due to electrode polarization. Galinstan was used as a liquid-metal electrode for impedance spectroscopy measurements. Electrodes were formed by adhering Galinstan onto a PMMA plate. Two plates were placed in a parallel plate capacitor arrangement with a liquid reservoir. For comparison, an equivalent arrangement of stainless steel electrodes was constructed. Liquid was pipetted into the reservoirs, and impedance was measured from 40 Hz to 110 MHz. Galinstan electrodes showed increased electrode polarization for ionic liquids and chemical instability.

  14. Optically-initiated silicon carbide high voltage switch with contoured-profile electrode interfaces

    DOEpatents

    Sullivan, James S.; Hawkins, Steven A.

    2012-09-04

    An improved photoconductive switch having a SiC or other wide band gap substrate material with opposing contoured profile cavities which have a contoured profile selected from one of Rogowski, Bruce, Chang, Harrison, and Ernst profiles, and two electrodes with matching contoured-profile convex interface surfaces.

  15. Robust signatures in the current-voltage characteristics of DNA molecules oriented between two graphene nanoribbon electrodes

    NASA Astrophysics Data System (ADS)

    Paez, Carlos; Schulz, Peter; Roemer, Rudolf; Wilson, Neil

    2013-03-01

    In this work we numerically calculate the electric current through three kinds of DNA sequences (telomeric, λ-DNA, and p53-DNA) described by different heuristic models. A bias voltage is applied between two zig-zag edged graphene contacts attached to the DNA segments, while a gate terminal modulates the conductance of the molecule. The calculation of current is performed by integrating the transmission function (calculated using the lattice Green's function) over the range of energies allowed by the chemical potentials. We show that a telomeric DNA sequence, when treated as a quantum wire in the fully coherent low-temperature regime, works as an excellent semiconductor. Clear steps are apparent in the current-voltage curves of telomeric sequences and are present independent of lengths and sequence initialisation at the contacts. The current-voltage curves suggest the existence of stepped structures independent of length and sequencing initialisation at the contacts. We also find that the molecule-electrode coupling can drastically influence the magnitude of the current. The difference between telomeric DNA and other DNA, such as λ-DNA and DNA for the tumour suppressor p53, is particularly visible in the length dependence of the current.

  16. Pockels cell voltage probe for noninvasive electron-beam measurements

    SciTech Connect

    Brubaker, Michael A.; Yakymyshyn, Christopher P.

    2000-03-01

    Accurate measurements of beam position and current are critical for the operation of the high-energy electron accelerators used for radiographic applications. Traditional short-pulse (e.g., 70 ns) machines utilize B-dot loops to monitor these parameters with great success. For long-pulse (e.g, 2 {mu}s) accelerators, beam position and current measurements become more challenging and may require new technology. A novel electro-optic voltage probe has been developed for this application and provides the advantages of complete galvanic isolation, excellent low-frequency performance, and no time integration requirement. The design of a prototype sensor is presented along with preliminary accelerator test data. (c) 2000 Optical Society of America.

  17. Motion artifacts in capacitive ECG measurements: reducing the combined effect of DC voltages and capacitance changes using an injection signal.

    PubMed

    Serteyn, A; Vullings, R; Meftah, M; Bergmans, J W M

    2015-01-01

    Capacitive electrodes are a promising alternative to the conventional adhesive electrodes for ECG measurements. They provide more comfort to the patient when integrated in everyday objects (e.g., beds or seats) for long-term monitoring. However, the application of capacitive sensors is limited by their high sensitivity to motion artifacts. For example, motion at the body-electrode interface causes variations of the coupling capacitance which, in the presence of a dc voltage across the coupling capacitor, create strong artifacts in the measurements. The origin, relevance, and reduction of this specific and important type of artifacts are studied here. An injection signal is exploited to track the variations of the coupling capacitance in real time. This information is then used by an identification scheme to estimate the artifacts and subtract them from the measurements. The method was evaluated in simulations, lab environments, and in a real-life recording on an adult's chest. For the type of artifact under study, a strong artifact reduction ranging from 40 dB for simulated data to 9 dB for a given real-life recording was achieved. The proposed method is automated, does not require any knowledge about the measurement system parameters, and provides an online estimate for the dc voltage across the coupling capacitor.

  18. Lifetime of Ionic Vacancy Created in Redox Electrode Reaction Measured by Cyclotron MHD Electrode

    PubMed Central

    Sugiyama, Atsushi; Morimoto, Ryoichi; Osaka, Tetsuya; Mogi, Iwao; Asanuma, Miki; Miura, Makoto; Oshikiri, Yoshinobu; Yamauchi, Yusuke; Aogaki, Ryoichi

    2016-01-01

    The lifetimes of ionic vacancies created in ferricyanide-ferrocyanide redox reaction have been first measured by means of cyclotron magnetohydrodynamic electrode, which is composed of coaxial cylinders partly exposed as electrodes and placed vertically in an electrolytic solution under a vertical magnetic field, so that induced Lorentz force makes ionic vacancies circulate together with the solution along the circumferences. At low magnetic fields, due to low velocities, ionic vacancies once created become extinct on the way of returning, whereas at high magnetic fields, in enhanced velocities, they can come back to their initial birthplaces. Detecting the difference between these two states, we can measure the lifetime of ionic vacancy. As a result, the lifetimes of ionic vacancies created in the oxidation and reduction are the same, and the intrinsic lifetime is 1.25 s, and the formation time of nanobubble from the collision of ionic vacancies is 6.5 ms. PMID:26791269

  19. Developing Barbed Microtip-Based Electrode Arrays for Biopotential Measurement

    PubMed Central

    Hsu, Li-Sheng; Tung, Shu-Wei; Kuo, Che-Hsi; Yang, Yao-Joe

    2014-01-01

    This study involved fabricating barbed microtip-based electrode arrays by using silicon wet etching. KOH anisotropic wet etching was employed to form a standard pyramidal microtip array and HF/HNO3 isotropic etching was used to fabricate barbs on these microtips. To improve the electrical conductance between the tip array on the front side of the wafer and the electrical contact on the back side, a through-silicon via was created during the wet etching process. The experimental results show that the forces required to detach the barbed microtip arrays from human skin, a polydimethylsiloxane (PDMS) polymer, and a polyvinylchloride (PVC) film were larger compared with those required to detach microtip arrays that lacked barbs. The impedances of the skin-electrode interface were measured and the performance levels of the proposed dry electrode were characterized. Electrode prototypes that employed the proposed tip arrays were implemented. Electroencephalogram (EEG) and electrocardiography (ECG) recordings using these electrode prototypes were also demonstrated. PMID:25014098

  20. Optimum electrode configuration selection for electrical resistance change based damage detection in composites using an effective independence measure

    NASA Astrophysics Data System (ADS)

    Escalona, Luis; Díaz-Montiel, Paulina; Venkataraman, Satchi

    2016-04-01

    Laminated carbon fiber reinforced polymer (CFRP) composite materials are increasingly used in aerospace structures due to their superior mechanical properties and reduced weight. Assessing the health and integrity of these structures requires non-destructive evaluation (NDE) techniques to detect and measure interlaminar delamination and intralaminar matrix cracking damage. The electrical resistance change (ERC) based NDE technique uses the inherent changes in conductive properties of the composite to characterize internal damage. Several works that have explored the ERC technique have been limited to thin cross-ply laminates with simple linear or circular electrode arrangements. This paper investigates a method of optimum selection of electrode configurations for delamination detection in thick cross-ply laminates using ERC. Inverse identification of damage requires numerical optimization of the measured response with a model predicted response. Here, the electrical voltage field in the CFRP composite laminate is calculated using finite element analysis (FEA) models for different specified delamination size and locations, and location of ground and current electrodes. Reducing the number of sensor locations and measurements is needed to reduce hardware requirements, and computational effort needed for inverse identification. This paper explores the use of effective independence (EI) measure originally proposed for sensor location optimization in experimental vibration modal analysis. The EI measure is used for selecting the minimum set of resistance measurements among all possible combinations of selecting a pair of electrodes among the n electrodes. To enable use of EI to ERC required, it is proposed in this research a singular value decomposition SVD to obtain a spectral representation of the resistance measurements in the laminate. The effectiveness of EI measure in eliminating redundant electrode pairs is demonstrated by performing inverse identification of

  1. Measurement and Analysis of Gas Bubbles Near a Reference Electrode in Aqueous Solutions

    SciTech Connect

    Supathorn Phongikaroon; Steve Herrmann; Shelly Li; Michael Simpson

    2005-10-01

    Bubble size distributions (BSDs) near a reference electrode (RE) in aqueous glycerol solutions of an electrolyte NaCl have been investigated under various gas superficial velocities (U{sub S}). BSD and voltage reading of the solution were measured by using a high-speed digital camera and a pH/voltage meter, respectively. The results show that bubble size (b) increases with liquid viscosity ({mu}{sub c}) and U{sub S}. Self-similarity is seen and can be described by the log-normal form of the continuous number frequency distribution. The result shows that b controls the voltage reading in each solution. As b increases, the voltage increases because of gas bubbles interrupting their electrolyte paths in the solutions. An analysis of bubble rising velocity reveals that Stokes Law should be used cautiously to describe the system. The fundamental equation for bubble formation was developed via Newton's second law of motion and shown to be the function of three dimensionless groups--Weber number, Bond number, and Capillary number. After linking an electrochemical principle in the practical application, the result indicates that the critical bubble size is {approx}177 {micro}m. Further analysis suggests that there may be 3000 to 70,000 bubbles generated on the anode surface depending on the size of initial bubbles and provides the potential cause of the efficiency drop observed in the practical application.

  2. Electrochemical capacitance voltage measurements in highly doped silicon and silicon-germanium alloys

    NASA Astrophysics Data System (ADS)

    Sermage, B.; Essa, Z.; Taleb, N.; Quillec, M.; Aubin, J.; Hartmann, J. M.; Veillerot, M.

    2016-04-01

    The electrochemical capacitance voltage technique has been used on highly boron doped SiGe and Si layers. Although the boron concentration is constant over the space charge depth, the 1/C2 versus voltage curves are not linear. They indeed present a negative curvature. This can be explained by the existence of deep acceptors which ionise under a high electric field (large inverse voltage) and not at a low inverse voltage. The measured doping concentration in the electrochemical capacitance voltage increases strongly as the inverse voltage increases. Thanks to a comparison with the boron concentration measured by secondary ions mass spectrometry, we show that the relevant doping concentrations in device layers are obtained for small inverse voltage in agreement with the existence of deep acceptors. At the large inverse voltage, the measured doping can be more than twice larger than the boron concentration measured with a secondary ion mass spectroscopy.

  3. On the Thrust of a Single Electrode Electrohydrodynamic Thruster

    NASA Astrophysics Data System (ADS)

    Ilit', Tomáš; Váry, Michal; Valko, Pavol

    2015-03-01

    Linear thrust generation by a single pin emitter electrode under AC excitation has been studied. Presented are thrust measurements of a single electrode thruster, in comparison with classical, two electrode electrohydrodynamic thruster. The experiments show comparable thrust for both configurations at low voltage levels, suggesting higher thrust-to-weight ratio of single electrode thrusters at low applied voltages. Further, a hypothesis of single electrode thrust creation is proposed.

  4. Nanoscopic electrode molecular probes

    DOEpatents

    Krstic, Predrag S.; Meunier, Vincent

    2012-05-22

    The present invention relates to a method and apparatus for enhancing the electron transport property measurements of a molecule when the molecule is placed between chemically functionalized carbon-based nanoscopic electrodes to which a suitable voltage bias is applied. The invention includes selecting a dopant atom for the nanoscopic electrodes, the dopant atoms being chemically similar to atoms present in the molecule, and functionalizing the outer surface and terminations of the electrodes with the dopant atoms.

  5. A flexible microneedle array as low-voltage electroporation electrodes for in vivo DNA and siRNA delivery.

    PubMed

    Wei, Zewen; Zheng, Shuquan; Wang, Renxin; Bu, Xiangli; Ma, Huailei; Wu, Yidi; Zhu, Ling; Hu, Zhiyuan; Liang, Zicai; Li, Zhihong

    2014-10-21

    In vivo electroporation is an appealing method to deliver nucleic acid into living tissues, but the clinical application of such a method was limited due to severe tissue damage and poor coverage of the tissue surface. Here we present the validation of a novel flexible microneedle array electrode (MNAE) chip, in which the microneedle array and the flexible substrate are integrated together to simultaneously facilitate low-voltage electroporation and accomplish good coverage of the tissue surface. The efficient delivery of both DNA and siRNA was demonstrated on mice. Upon penetrating the high-resistance stratum corneum, the electroporation voltage was reduced to about 35 V, which was generally recognized safe for humans. Also, a pathological analysis of the microneedle-electroporated tissues was carried out to thoroughly assess the skin damage, which is an important consideration in pre-clinical studies of electroporation devices. This MNAE constitutes a novel way of in vivo delivery of siRNA and DNA to certain tissues or organs with satisfactory efficiency and good adaptation to the tissue surface profile as well as minimum tissue damage, thus avoiding the disadvantages of existing electroporation methods. PMID:25182174

  6. A flexible microneedle array as low-voltage electroporation electrodes for in vivo DNA and siRNA delivery.

    PubMed

    Wei, Zewen; Zheng, Shuquan; Wang, Renxin; Bu, Xiangli; Ma, Huailei; Wu, Yidi; Zhu, Ling; Hu, Zhiyuan; Liang, Zicai; Li, Zhihong

    2014-10-21

    In vivo electroporation is an appealing method to deliver nucleic acid into living tissues, but the clinical application of such a method was limited due to severe tissue damage and poor coverage of the tissue surface. Here we present the validation of a novel flexible microneedle array electrode (MNAE) chip, in which the microneedle array and the flexible substrate are integrated together to simultaneously facilitate low-voltage electroporation and accomplish good coverage of the tissue surface. The efficient delivery of both DNA and siRNA was demonstrated on mice. Upon penetrating the high-resistance stratum corneum, the electroporation voltage was reduced to about 35 V, which was generally recognized safe for humans. Also, a pathological analysis of the microneedle-electroporated tissues was carried out to thoroughly assess the skin damage, which is an important consideration in pre-clinical studies of electroporation devices. This MNAE constitutes a novel way of in vivo delivery of siRNA and DNA to certain tissues or organs with satisfactory efficiency and good adaptation to the tissue surface profile as well as minimum tissue damage, thus avoiding the disadvantages of existing electroporation methods.

  7. Robust signatures in the current-voltage characteristics of DNA molecules oriented between two graphene nanoribbon electrodes

    NASA Astrophysics Data System (ADS)

    Páez, Carlos J.; Schulz, Peter A.; Wilson, Neil R.; Römer, Rudolf A.

    2012-09-01

    In this work, we numerically calculate the electric current through three kinds of DNA sequences (telomeric, λ-DNA and p53-DNA) described by different heuristic models. A bias voltage is applied between two zigzag edged graphene contacts attached to the DNA segments, while a gate terminal modulates the conductance of the molecule. Calculation of the current is performed by integrating the transmission function (calculated using the lattice Green's function) over the range of energies allowed by the chemical potentials. We show that a telomeric DNA sequence, when treated as a quantum wire in the fully coherent low-temperature regime, works as an excellent semiconductor. Clear steps are apparent in the current-voltage curves of telomeric sequences and are present independent of length and sequence initialization at the contacts. We also find that the molecule-electrode coupling can drastically influence the magnitude of the current. The difference between telomeric DNA and other DNAs, such as λ-DNA and DNA for the tumour suppressor p53, is particularly visible in the length dependence of the current.

  8. Pressure-independent point in current-voltage characteristics of coplanar electrode microplasma devices operated in neon

    SciTech Connect

    Meng Lingguo; Lin Zhaojun; Xing Jianping; Liang Zhihu; Liu Chunliang

    2010-05-10

    We introduce the idea of a pressure-independent point (PIP) in a group of current-voltage curves for the coplanar electrode microplasma device (CEMPD) at neon pressures ranging from 15 to 95 kPa. We studied four samples of CEMPDs with different sizes of the microcavity and observed the PIP phenomenon for each sample. The PIP voltage depends on the area of the microcavity and is independent of the height of the microcavity. The PIP discharge current, I{sub PIP}, is proportional to the volume (Vol) of the microcavity and can be expressed by the formula I{sub PIP}=I{sub PIP0}+DxVol. For our samples, I{sub PIP0} (the discharge current when Vol is zero) is about zero and D (discharge current density) is about 3.95 mA mm{sup -3}. The error in D is 0.411 mA mm{sup -3} (less than 11% of D). When the CEMPD operates at V{sub PIP}, the discharge current is quite stable under different neon pressures.

  9. Frequency response measurements of integrated-optic electrodes

    SciTech Connect

    Hugenberg, K.F; Sargis, P.D.; McConaghy, C.F.

    1994-07-01

    The frequency response of electro-optic waveguides can be determined using a variety of testing methods. In this paper, we compare and contrast three measurement techniques used to test our LiNbO{sub 3} devices for improving packages and electrode designs. Each method is described and accompanied by typical results and the experimental setup. Finally, we summarize the advantages and disadvantages of each method.

  10. System for improving measurement accuracy of transducer by measuring transducer temperature and resistance change using thermoelectric voltages

    NASA Technical Reports Server (NTRS)

    Anderson, Karl F. (Inventor); Parker, Allen R., Jr. (Inventor)

    1993-01-01

    A constant current loop measuring system measures a property including the temperature of a sensor responsive to an external condition being measured. The measuring system includes thermocouple conductors connected to the sensor, sensing first and second induced voltages responsive to the external condition. In addition, the measuring system includes a current generator and reverser generating a constant current, and supplying the constant current to the thermocouple conductors in forward and reverse directions generating first and second measured voltages, and a determining unit receiving the first and second measured voltages from the current generator and reverser, and determining the temperature of the sensor responsive to the first and second measured voltages.

  11. A microbial fuel cell with the three-dimensional electrode applied an external voltage for synthesis of hydrogen peroxide from organic matter

    NASA Astrophysics Data System (ADS)

    Chen, Jia-yi; Zhao, Lin; Li, Nan; Liu, Hang

    2015-08-01

    The study experimentally investigates the changing performance of three-dimensional electrode H2O2-producting MFCs coupled with simultaneous wastewater treatment at various external cell voltages from 0.1 V to 0.8 V, in order to explore the optimal applied voltage and its reasons. The graphite particle electrodes made of graphite powders with polytetrafluoroethene (PTFE) as the binder are used as three-dimensional cathode. The results indicate that applied voltage is demonstrated to increase the productive rate and output of H2O2 and the efficiency of acetate degradation. Besides, a relatively high current density caused by a high applied voltage has a positive impact on anode performance in terms of organic degradation and coulombic efficiency. In addition, a relatively high voltage leads to the reduction of H2O2 and the evolution of H2. Considering H2O2 concentration, anodic COD removal and current efficiencies of MFCs at various voltages, the optimal voltage is chosen to be 0.4 V, achieving the H2O2 generation of 705.6 mg L-1 at a rate of 2.12 kg m-3 day-1 and 76% COD removal in 8 h, with energy input of 0.659 kWh per kg H2O2. Coulombic efficiency, faradic efficiency and COD conversion efficiency are 92%, 96%, and 88% respectively.

  12. Monitoring and intelligent control of electrode wear based on a measured electrode displacement curve in resistance spot welding

    NASA Astrophysics Data System (ADS)

    Zhang, Y. S.; Wang, H.; Chen, G. L.; Zhang, X. Q.

    2007-03-01

    Advanced high strength steels are being increasingly used in the automotive industry to reduce weight and improve fuel economy. However, due to increased physical properties and chemistry of high strength steels, it is difficult to directly substitute these materials into production processes currently designed for mild steels. New process parameters and process-related issues must be developed and understood for high strength steels. Among all issues, endurance of the electrode cap is the most important. In this paper, electrode wear characteristics of hot-dipped galvanized dual-phase (DP600) steels and the effect on weld quality are firstly analysed. An electrode displacement curve which can monitor electrode wear was measured by a developing experimental system using a servo gun. A neuro-fuzzy inference system based on the electrode displacement curve is developed for minimizing the effect of a worn electrode on weld quality by adaptively adjusting input variables based on the measured electrode displacement curve when electrode wear occurs. A modified current curve is implemented to reduce the effects of electrode wear on weld quality using a developed neuro-fuzzy system.

  13. Ultrasound Velocity Measurement in a Liquid Metal Electrode.

    PubMed

    Perez, Adalberto; Kelley, Douglas H

    2015-01-01

    A growing number of electrochemical technologies depend on fluid flow, and often that fluid is opaque. Measuring the flow of an opaque fluid is inherently more difficult than measuring the flow of a transparent fluid, since optical methods are not applicable. Ultrasound can be used to measure the velocity of an opaque fluid, not only at isolated points, but at hundreds or thousands of points arrayed along lines, with good temporal resolution. When applied to a liquid metal electrode, ultrasound velocimetry involves additional challenges: high temperature, chemical activity, and electrical conductivity. Here we describe the experimental apparatus and methods that overcome these challenges and allow the measurement of flow in a liquid metal electrode, as it conducts current, at operating temperature. Temperature is regulated within ±2 °C using a Proportional-Integral-Derivative (PID) controller that powers a custom-built furnace. Chemical activity is managed by choosing vessel materials carefully and enclosing the experimental setup in an argon-filled glovebox. Finally, unintended electrical paths are carefully prevented. An automated system logs control settings and experimental measurements, using hardware trigger signals to synchronize devices. This apparatus and these methods can produce measurements that are impossible with other techniques, and allow optimization and control of electrochemical technologies like liquid metal batteries.

  14. Electrode-nanoparticle collisions: The measurement of the sticking coefficient of silver nanoparticles on a glassy carbon electrode

    NASA Astrophysics Data System (ADS)

    Zhou, Yi-Ge; Rees, Neil V.; Compton, Richard G.

    2011-10-01

    In this communication, we combine anodic particle coulometry (APC) with anodic stripping voltammetry, to find the proportion of NP impacts that result in adsorbed NPs, using AgNPs in collision with glassy carbon electrode. Sticking coefficients are reported for AgNP radii of 14, 29, and 45 nm, measured at electrode biases ranging from OCV to -0.2 to -1.2 V (vs. Ag/AgCl). No significant systematic trends were found in either case. We suggest that this methodology may be widely applicable to measuring the sticking coefficient of any oxidisable metal nanoparticle on an electrode surface in solution.

  15. Electrode measurements of the net charge on muscle proteins

    NASA Astrophysics Data System (ADS)

    Bryson, Elzbieta Anna

    1997-12-01

    Electrode techniques for measuring Donnan potentials in protein solutions were studied and applied to elucidate the effect of methylation on the net charge of heavy meromyosin (HMM) and the effect of Ca2+ on the net charge of the thin filament proteins. Drifts in potentials, observed for macroelectrodes, were examined and their cause established to be KCl leakage out of electrodes. The microelectrode technique was applied to protein solutions and microelectrodes with resistance less than 1 MΩ were used: the conditions for manufacturing and maintaining electrodes functional were established. HMM was isolated (from rabbit muscle) and methylated; the modification was verified by amino acid analysis. ATPase activity of methylated HMM was found to be significantly elevated in the presence of Ca2+ and decreased in the presence of EDTA with respect to the activity of the native protein. Values of the net charge of both proteins were determined at pH 6.7 and no significant difference was found between them. Calculations of the theoretical charge of lysine and Nɛ-dimethyllysine were performed which indicated only 0.5% difference at pH 6.7. F-actin, tropomyosin-troponin (Tm-tn) and reconstituted thin filaments (RTFs) were isolated from rabbit muscle. Conditions for preserving the binding between F-actin and Tm-tn were established. Net charges of F-actin, Tm-tn, RTFs and BSA (control) were measured in solutions of pCa 3.2-8.7 at ionic strength 0.02 M and pH 7.0. Significant decrease in the negative charge of the RTFs, Tm-tn and F- actin was observed with increasing concentrations of free Ca2+, between pCa 6.5 and 3 approximately. Values of the molecular and specific charge at pH 7.0 and the isoelectric point were calculated from the amino acid sequences of the main muscle proteins.

  16. Role of additives in formation of solid-electrolyte interfaces on carbon electrodes and their effect on high-voltage stability.

    PubMed

    Qu, Weiguo; Dorjpalam, Enkhtuvshin; Rajagopalan, Ramakrishnan; Randall, Clive A

    2014-04-01

    The in situ modification of a lithium hexafluorophosphate-based electrolyte using a molybdenum oxide catalyst and small amount of water (1 vol %) yields hydrolysis products such as mono-, di-, and alkylfluorophosphates. The electrochemical stability of ultrahigh-purity, high-surface-area carbon electrodes derived from polyfurfuryl alcohol was tested using the modified electrolyte. Favorable modification of the solid electrolyte interface (SEI) layer on the activated carbon electrode increased the cyclable electrochemical voltage window (4.8-1.2 V vs. Li/Li(+)). The chemical modification of the SEI layer induced by electrolyte additives was characterized by using X-ray photoelectron spectroscopy.

  17. Voltage-dependent membrane displacements measured by atomic force microscopy.

    PubMed

    Mosbacher, J; Langer, M; Hörber, J K; Sachs, F

    1998-01-01

    Cells use polar molecules in the membrane to sense changes in the transmembrane potential. The opening of voltage-gated ion channels and membrane bending due to the inverse flexoelectric effect are two examples of such electromechanical coupling. We have looked for membrane motions in an electric field using atomic (or scanning) force microscopy (AFM) with the intent of studying voltage-dependent conformational changes of ion channels. Voltage-clamped HEK293 cells were either untransfected controls or transfected with Shaker K+ channels. Using a +/- 10-mV peak-peak AC carrier stimulus, untransfected cells moved 0.5-15 nm normal to the plane of the membrane. These movements tracked the voltage at frequencies >1 kHz with a phase lead of 60-120 degrees, as expected of a displacement current. The movement was outward with depolarization, but the holding potential only weakly influenced the amplitude of the movement. In contrast, cells transfected with a noninactivating mutant of Shaker K+channels showed similar movements, but these were sensitive to the holding potential; decreasing with depolarization between -80 and 0 mV. Searching for artifactual origins of these movements, we used open or sealed pipettes and AFM cantilever placements just above the cells. These results were negative, suggesting that the observed movements were produced by the cell membrane rather than by movement of the patch pipette, or by acoustic or electrical interactions of the membrane with the AFM tip. In control cells, the electrical motor may arise from the flexoelectric effect, where changes in potential induce changes in curvature. In transfected cells, it appears that channel-specific movements also occurred. These experiments demonstrate that the AFM may be able to exploit voltage-dependent movements as a source of contrast for imaging membrane components. The electrically induced motility will cause twitching during action potentials, and may have physiological consequences. PMID

  18. Development of a novel voltage divider for measurement of sub-nanosecond rise time high voltage pulses

    NASA Astrophysics Data System (ADS)

    Mitra, S.; Senthil, K.; Singh, S. K.; Kumar, Ranjeet; Sharma, Archana

    2016-02-01

    This paper is about the development of a copper sulphate based aqueous-electrolytic voltage divider for the measurement of high voltage pulses, 100 kV, with pulse widths of 1-2 ns and rise time <1 ns. Novel features are incorporated in the design of the divider, to meet the performance requirements for the application. Analytical calculations to justify design are described. Structural simulation of the divider is carried out using field wave simulation software to verify the effectiveness. A calibration procedure has been developed to calibrate the divider. Results obtained during calibration are subjected to statistical analysis to determine the confidence of measurement. Details of design, analysis, and simulation are described in this paper.

  19. Measurement of rf voltages on the plasma-touching surfaces of ICRF antennas

    SciTech Connect

    Hoffman, D.J.; Baity, F.W.; Bell, G.L.; Bigelow, T.S.; Caughman, J.B.O.; Goulding, R.H.; Haste, G.R.; Ryan, P.M.; Zhang, H.

    1995-09-01

    Measurements of the rf voltages on Faraday shields and protection bumpers have been made for several loop antennas, including the mock-up antenna and Al for JET, the original antenna for Tore Supra, the present ASDEX-U antenna, and the folded waveguide. The loop antennas show voltages that scale to {approx}12 kV for a maximum input voltage of 30 kV with 0/0 phasing. The voltages are dramatically reduced for 0/{pi} phasing. These voltages are significant in that they can substantially increase the rf sheath potential beyond the levels associated with the simple electromagnetic field linkage from the current straps that results in plasma heating. In this paper, we investigate and measure the source of these voltages, their scaling with antenna impedance, and the differences between the loop arrays.

  20. Optimization of the bare platinum electrode as an oxygen measurement system in photosynthesis.

    PubMed

    Meunier, P C; Popovic, R

    1988-03-01

    This paper is concerned with the definition of the standard conditions required for optimum operation of the bare platinum electrode with photosynthetic samples. Experimental evidence shows the following: 1) Polarization circuits should have zero resistance; 2) The electrolyte layer between the electrodes should have a conductance higher than 54×10(-6) Ω(-1) per mm(2) of platinum electrode area; 3) The electrodes should be polarized just before taking the measurements. All these facts can be interpreted in terms of phenomena occurring on the electrode: The adsorption of hydrogen on the electrode imposes the need for low resistances in the system, and oxygen consumption by the electrode is minimized by polarizing the electrodes as late as possible. This investigation increases the reliability of the bare platinum electrode and gives a basis for a comparison of the results from different experiments. Demonstrations of the pertinence of these conditions are made in our lab with the algae Dunaliella Tertiolecta.

  1. Laser interferometric measurement of ion electrode shape and charge exchange erosion

    NASA Technical Reports Server (NTRS)

    Macrae, Gregory S.; Mercer, Carolyn R.

    1991-01-01

    A projected fringe profilometry system was applied to surface contour measurements of an accelerator electrode from an ion thrustor. The system permitted noncontact, nondestructive evaluation of the fine and gross structure of the electrode. A 3-D surface map of a dished electrode was generated without altering the electrode surface. The same system was used to examine charge exchange erosion pits near the periphery of the electrode to determine the depth, location, and volume of material lost. This electro-optical measurement system allowed rapid, nondestructive, digital data acquisition coupled with automated computer data processing. In addition, variable sensitivity allowed both coarse and fine measurements of objects having various surface finishes.

  2. Laser interferometric measurement of ion electrode shape and charge exchange erosion

    NASA Technical Reports Server (NTRS)

    Macrae, Gregory S.; Mercer, Carolyn R.

    1991-01-01

    A novel projected fringe profilometry system was applied to surface contour measurements of an accelerator electrode from an ion thruster. The system permitted noncontact, nondestructive evaluation of the fine and gross structure of the electrode. A 3D surface map of a dished electrode was generated without altering the electrode surface. The same system was used to examine charge exchange erosion pits near the periphery of the electrode to determine the depth, location, and volume of material lost. This electro-optical measurement system allowed rapid nondestructive digital data acquisition coupled with automated computer data-processing. In addition, variable sensitivity allowed both coarse and fine measurements of objects having various surface finishes.

  3. Improved open-circuit voltage in Cu(In,Ga)Se{sub 2} solar cells with high work function transparent electrodes

    SciTech Connect

    Jäger, Timo Romanyuk, Yaroslav E.; Bissig, Benjamin; Pianezzi, Fabian; Nishiwaki, Shiro; Reinhard, Patrick; Steinhauser, Jérôme; Tiwari, Ayodhya N.; Schwenk, Johannes

    2015-06-14

    Hydrogenated indium oxide (IOH) is implemented as transparent front contact in Cu(In,Ga)Se{sub 2} (CIGS) solar cells, leading to an open circuit voltage V{sub OC} enhanced by ∼20 mV as compared to reference devices with ZnO:Al (AZO) electrodes. This effect is reproducible in a wide range of contact sheet resistances corresponding to various IOH thicknesses. We present the detailed electrical characterization of glass/Mo/CIGS/CdS/intrinsic ZnO (i-ZnO)/transparent conductive oxide (TCO) with different IOH/AZO ratios in the front TCO contact in order to identify possible reasons for the enhanced V{sub OC}. Temperature and illumination intensity-dependent current-voltage measurements indicate that the dominant recombination path does not change when AZO is replaced by IOH, and it is mainly limited to recombination in the space charge region and at the junction interface of the solar cell. The main finding is that the introduction of even a 5 nm-thin IOH layer at the i-ZnO/TCO interface already results in a step-like increase in V{sub OC}. Two possible explanations are proposed and verified by one-dimensional simulations using the SCAPS software. First, a higher work function of IOH as compared to AZO is simulated to yield an V{sub OC} increase by 21 mV. Second, a lower defect density in the i-ZnO layer as a result of the reduced sputter damage during milder sputter-deposition of IOH can also add to a maximum enhanced V{sub OC} of 25 mV. Our results demonstrate that the proper choice of the front TCO contact can reduce the parasitic recombination and boost the efficiency of CIGS cells with improved corrosion stability.

  4. Measuring Vitamin C Content of Commercial Orange Juice Using a Pencil Lead Electrode

    ERIC Educational Resources Information Center

    King, David; Friend, Jeffrey; Kariuki, James

    2010-01-01

    A pencil lead successfully served as an electrode for the determination of ascorbic acid in commercial orange juice. Cyclic voltammetry was used as an electrochemical probe to measure the current produced from the oxidation of ascorbic acid with a variety of electrodes. The data demonstrate that the less expensive pencil lead electrode gives…

  5. Three-Dimensionally Mesostructured Fe2O3 Electrodes with Good Rate Performance and Reduced Voltage Hysteresi

    SciTech Connect

    Wang, Junjie; Braun, Paul V.; Zhou, Hui; Nanda, Jagjit

    2015-03-26

    Ni scaffolded mesostructured 3D Fe2O3 electrodes were fabricated by colloidal templating and pulsed elec-trodeposition. The scaffold provided short pathways for both lithium ions and electrons in the active phase, enabling fast kinetics and thus a high power density. The scaffold also resulted in a reduced voltage hysteresis. The electrode showed a reversible capacity of ~1000 mA h g-1 at 0.2 A g-1 (~0.2 C) for about 20 cycles, and at a current density of 20 A g-1 (~20 C) the deliverable capacity was about 450 mA h g-1. The room temperature voltage hysteresis at 0.1 A g-1 (~0.1 C) was 0.62 V, which is significantly smaller than that normally reported in the literature. And it could be further reduced to 0.42 V when cycling at 45 ºC. Potentiostatic electrochemical impedance spectroscopy (PEIS) studies indicated the small voltage hysteresis may be due to a reduction in the Li2O/Fe interfacial area in the electrode during cycling relative to convention-al conversion systems.

  6. Effect of Voltage Measurement on the Quantitative Identification of Transverse Cracks by Electrical Measurements

    PubMed Central

    Selvakumaran, Lakshmi; Lubineau, Gilles

    2016-01-01

    Electrical tomography can be used as a structural health monitoring technique to identify different damage mechanisms in composite laminates. Previous work has established the link between transverse cracking density and mesoscale conductivity of the ply. Through the mesoscale relationship, the conductivity obtained from electrical tomography can be used as a measure of the transverse cracking density. Interpretation of this measure will be accurate provided the assumptions made during homogenization are valid. One main assumption of mesoscale homogenization is that the electric field is in the plane. Here, we test the validity of this assumption for laminates with varying anisotropy ratios and for different distances between the cracked ply and surface that is instrumented with electrodes. We also show the equivalence in electrical response between measurements from cracked laminates and their equivalent mesoscale counterparts. Finally, we propose some general guidelines on the measurement strategy for maximizing the accuracy of transverse cracks identification. PMID:27023542

  7. Measurements of the volt-ampere characteristics and the breakdown voltages of direct-current helium and hydrogen discharges in microgaps

    SciTech Connect

    Klas, M.; Matejčik, Š.; Radjenović, B.; Radmilović-Radjenović, M.

    2014-10-15

    The discharge phenomena for micro meter gap sizes include many interesting problems from engineering and physical perspectives. In this paper, the authors deal with the experimental and theoretical results of the breakdown voltage and current-voltage characteristics of the direct-current helium and hydrogen discharges. The measurements were performed at a constant pressure of around one atmosphere, while varying the gap size between two parallel plane tungsten electrodes between 1 μm and 100 μm. From the measured breakdown voltage curves, the effective yields and the ionization coefficients were derived for both gases. Present data for the ionization coefficients correlate with the data obtained for the breakdown voltage curves measured for fixed 100 μm interelectrode separation. The current-voltage characteristics were plotted for the various gap sizes illustrating the role of the field emission effects in the microgaps. Based on the Fowler-Nordheim theory, the enhancement factors were determined. The gap spacing dependence of the field emission current can be explained by the introduction of two ideas, the first being a space charge effect by emitted electrons, and the second a change in the breakdown mechanism. Experimental results, presented here, demonstrate that Townsend phenomenology breaks down when field emission becomes the key mechanism affecting the breakdown and deforming the left hand side of the breakdown voltage curves.

  8. Measurements of the volt-ampere characteristics and the breakdown voltages of direct-current helium and hydrogen discharges in microgaps

    NASA Astrophysics Data System (ADS)

    Klas, M.; Matejčik, Š.; Radjenović, B.; Radmilović-Radjenović, M.

    2014-10-01

    The discharge phenomena for micro meter gap sizes include many interesting problems from engineering and physical perspectives. In this paper, the authors deal with the experimental and theoretical results of the breakdown voltage and current-voltage characteristics of the direct-current helium and hydrogen discharges. The measurements were performed at a constant pressure of around one atmosphere, while varying the gap size between two parallel plane tungsten electrodes between 1 μm and 100 μm. From the measured breakdown voltage curves, the effective yields and the ionization coefficients were derived for both gases. Present data for the ionization coefficients correlate with the data obtained for the breakdown voltage curves measured for fixed 100 μm interelectrode separation. The current-voltage characteristics were plotted for the various gap sizes illustrating the role of the field emission effects in the microgaps. Based on the Fowler-Nordheim theory, the enhancement factors were determined. The gap spacing dependence of the field emission current can be explained by the introduction of two ideas, the first being a space charge effect by emitted electrons, and the second a change in the breakdown mechanism. Experimental results, presented here, demonstrate that Townsend phenomenology breaks down when field emission becomes the key mechanism affecting the breakdown and deforming the left hand side of the breakdown voltage curves.

  9. [Effect of increase and decrease of measurement voltage on skin impedance].

    PubMed

    Wu, B; Hu, X; Xu, J

    1993-01-01

    The skin impedance has been used as an index to plot out the meridian courses. In most of this kind of methods during measurement voltage was necessary to deliver to the subject's skin. It is unknown whether increasing the measuring voltage can change non-low skin impedance points (non-LSIP) into low skin impedance points (LSIP). In order to clarify the problem, we made an investigation on the effect of increasing and decreasing the measuring voltage on skin impedance. Subjects under observation were 12 healthy volunteers. On the medial side of forearm two levels were selected for measurement. Four or twenty non-LISP were observed on each level. The measuring system worked on the basis of bioelectrode method. The measurement and data processing were controlled by microcomputer. During measurement impedance of LSIP decreased correspondingly with the increase of voltage and vice versa, but the value of impedance was not exceeded 100k omega in spite of increasing or decreasing the voltage. That is, low impedance is the inherent characteristics of LSIP. On the contrary, the impedance of non-LSIP remained in higher than 600k omega in most of cases during increasing voltage from 10 to 50v. As the voltage increased to 65v, the impedance in a part of non-LSIP decreased to such a low level as LSIP. However, their impedance increased rapidly to high level again once the measuring voltage decreased. The above results reveal that the response of non-LSIPs and LSIPs were different from each other in nature. Increasing the voltage could not change a non-LSIP into LSIP.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8070036

  10. Time based measurement of the impedance of the skin-electrode interface for dry electrode ECG recording.

    PubMed

    Dozio, Roberta; Baba, Adeshina; Assambo, Cedric; Burke, Martin J

    2007-01-01

    This paper reports the measurement of the properties of dry or pasteless conductive electrodes to be used for long-term recording of the human electrocardiogram (ECG). Knowledge of these properties is essential for the correct design of the input stage of associated recording amplifiers. Measurements were made on three commercially available conductive carbon based electrodes at pressures of 5 mmHg and 20 mmHg, located on the lower abdomen of the body on three subjects having different skin types. Parameter values were fitted to a two-time-constant based model of the electrode using data measured over a period of 10s. Values of resistance, ranging from 40kOmega to 1590kOmega and of capacitance ranging from 0.05 microF to 38 microF were obtained for the components, while the values of the time-constants varied from 0.07 s to 3.9s.

  11. A fault-tolerant voltage measurement method for series connected battery packs

    NASA Astrophysics Data System (ADS)

    Xia, Bing; Mi, Chris

    2016-03-01

    This paper proposes a fault-tolerant voltage measurement method for battery management systems. Instead of measuring the voltage of individual cells, the proposed method measures the voltage sum of multiple battery cells without additional voltage sensors. A matrix interpretation is developed to demonstrate the viability of the proposed sensor topology to distinguish between sensor faults and cell faults. A methodology is introduced to isolate sensor and cell faults by locating abnormal signals. A measurement electronic circuit is proposed to implement the design concept. Simulation and experiment results support the mathematical analysis and validate the feasibility and robustness of the proposed method. In addition, the measurement problem is generalized and the condition for valid sensor topology is discovered. The tuning of design parameters are analyzed based on fault detection reliability and noise levels.

  12. Membrane reference electrode

    DOEpatents

    Redey, L.; Bloom, I.D.

    1988-01-21

    A reference electrode utilizes a small thin, flat membrane of a highly conductive glass placed on a small diameter insulator tube having a reference material inside in contact with an internal voltage lead. When the sensor is placed in a non-aqueous ionic electrolytic solution, the concentration difference across the glass membrane generates a low voltage signal in precise relationship to the concentration of the species to be measured, with high spatial resolution. 2 figs.

  13. Ionization detector, electrode configuration and single polarity charge detection method

    DOEpatents

    He, Z.

    1998-07-07

    An ionization detector, an electrode configuration and a single polarity charge detection method each utilize a boundary electrode which symmetrically surrounds first and second central interlaced and symmetrical electrodes. All of the electrodes are held at a voltage potential of a first polarity type. The first central electrode is held at a higher potential than the second central or boundary electrodes. By forming the first and second central electrodes in a substantially interlaced and symmetrical pattern and forming the boundary electrode symmetrically about the first and second central electrodes, signals generated by charge carriers are substantially of equal strength with respect to both of the central electrodes. The only significant difference in measured signal strength occurs when the charge carriers move to within close proximity of the first central electrode and are received at the first central electrode. The measured signals are then subtracted and compared to quantitatively measure the magnitude of the charge. 10 figs.

  14. Ionization detector, electrode configuration and single polarity charge detection method

    DOEpatents

    He, Zhong

    1998-01-01

    An ionization detector, an electrode configuration and a single polarity charge detection method each utilize a boundary electrode which symmetrically surrounds first and second central interlaced and symmetrical electrodes. All of the electrodes are held at a voltage potential of a first polarity type. The first central electrode is held at a higher potential than the second central or boundary electrodes. By forming the first and second central electrodes in a substantially interlaced and symmetrical pattern and forming the boundary electrode symmetrically about the first and second central electrodes, signals generated by charge carriers are substantially of equal strength with respect to both of the central electrodes. The only significant difference in measured signal strength occurs when the charge carriers move to within close proximity of the first central electrode and are received at the first central electrode. The measured signals are then subtracted and compared to quantitatively measure the magnitude of the charge.

  15. Measuring surfactant concentration in plating solutions

    DOEpatents

    Bonivert, William D.; Farmer, Joseph C.; Hachman, John T.

    1989-01-01

    An arrangement for measuring the concentration of surfactants in a electrolyte containing metal ions includes applying a DC bias voltage and a modulated voltage to a counter electrode. The phase angle between the modulated voltage and the current response to the modulated voltage at a working electrode is correlated to the surfactant concentration.

  16. Novel dry polymer foam electrodes for long-term EEG measurement.

    PubMed

    Lin, Chin-Teng; Liao, Lun-De; Liu, Yu-Hang; Wang, I-Jan; Lin, Bor-Shyh; Chang, Jyh-Yeong

    2011-05-01

    A novel dry foam-based electrode for long-term EEG measurement was proposed in this study. In general, the conventional wet electrodes are most frequently used for EEG measurement. However, they require skin preparation and conduction gels to reduce the skin-electrode contact impedance. The aforementioned procedures when wet electrodes were used usually make trouble to users easily. In order to overcome the aforesaid issues, a novel dry foam electrode, fabricated by electrically conductive polymer foam covered by a conductive fabric, was proposed. By using conductive fabric, which provides partly polarizable electric characteristic, our dry foam electrode exhibits both polarization and conductivity, and can be used to measure biopotentials without skin preparation and conduction gel. In addition, the foam substrate of our dry electrode allows a high geometric conformity between the electrode and irregular scalp surface to maintain low skin-electrode interface impedance, even under motion. The experimental results presented that the dry foam electrode performs better for long-term EEG measurement, and is practicable for daily life applications.

  17. Microdroplet-Based Potentiometric Redox Measurements on Gold Nanoporous Electrodes.

    PubMed

    Freeman, Christopher J; Farghaly, Ahmed A; Choudhary, Hajira; Chavis, Amy E; Brady, Kyle T; Reiner, Joseph E; Collinson, Maryanne M

    2016-04-01

    Potentiometric redox measurements were made in subnanoliter droplets of solutions using an optically transparent nanoporous gold electrode strategically mounted on the stage of an inverted microscope. Nanoporous gold was prepared via dealloying gold leaf with concentrated nitric acid and was chemisorbed to a standard microscope coverslip with (3-mercaptopropyl)trimethoxysilane. The gold surface was further modified with 1-hexanethiol to optimize hydrophobicity of the surface to allow for redox measurements to be made in nanoscopic volumes. Time traces of the open-circuit potential (OCP) were used to construct Nernst plots to evaluate the applicability of the droplet-based potentiometric redox measurement system. Two poised one-electron transfer systems (potassium ferricyanide/ferrocyanide and ferrous/ferric ammonium sulfate) yielded Nernstian slopes of -58.5 and -60.3 mV, respectively, with regression coefficients greater than 0.99. The y-intercepts of the two agreed well to the formal potential of the two standard oxidation-reduction potential (ORP) calibrants, ZoBell's and Light's solution. The benzoquinone and hydroquinone redox couple was examined as a representative two-electron redox system; a Nernst slope of -30.8 mV was obtained. Additionally, two unpoised systems (potassium ferricyanide and ascorbic acid) were studied to evaluate the system under conditions where only one form of the redox couple is present in appreciable concentrations. Again, slopes near the Nernstian values of -59 and -29 mV, respectively, were obtained. All experiments were carried out using solution volumes between 280 and 1400 pL with injection volumes between 8 and 100 pL. The miniscule volumes allowed for extremely rapid mixing (<305 ms) as well. The small volumes and rapid mixing along with the high accuracy and sensitivity of these measurements lend support to the use of this approach in applications where time is a factor and only small volumes are available for testing. PMID

  18. Interpenetrating polyaniline-gold electrodes for SERS and electrochemical measurements

    NASA Astrophysics Data System (ADS)

    West, R. M.; Semancik, S.

    2016-11-01

    Facile fabrication of nanostructured electrode arrays is critical for development of bimodal SERS and electrochemical biosensors. In this paper, the variation of applied potential at a polyaniline-coated Pt electrode is used to selectivity deposit Au on the polyaniline amine sites or on the underlying Pt electrode. By alternating the applied potential, the Au is grown simultaneously from the top and the bottom of the polyaniline film, leading to an interpenetrated, nanostructured polymer-metal composite extending from the Pt electrode to the electrolyte solution. The resulting films have unique pH-dependent electrochemical properties, e.g. they retain electrochemical activity in both acidic and neutral solutions, and they also include SERS-active nanostructures. By varying the concentration of chloroaurate used during deposition, Au nanoparticles, nanodendrites, or nanosheets can be selectively grown. For the films deposited under optimal conditions, using 5 mmol/L chloroaurate, the SERS enhancement factor for Rhodamine 6G was found to be as high as 1.1 × 106 with spot-to-spot and electrode-to-electrode relative standard deviations as low as 8% and 12%, respectively. The advantages of the reported PANI-Au composite electrodes lie in their facile fabrication, enabling the targeted deposition of tunable nanostructures on sensing arrays, and their ability to produce orthogonal optical and electrochemical analytical results.

  19. Performances evaluation of textile electrodes for EMG remote measurements.

    PubMed

    Sumner, B; Mancuso, C; Paradiso, R

    2013-01-01

    This work focus on the evaluation of textile electrodes for EMG signals acquisition. Signals have been acquired simultaneously from textile electrode and from gold standard electrodes, by using the same acquisition system; tests were done across subjects and with multiple trials to enable a more complete analysis. This research activity was done in the frame of the European Project Interaction, aiming at the development of a system for a continuous daily-life monitoring of the functional performance of stroke survivors in their physical interaction with the environment.

  20. Measurement of effective piezoelectric coefficients of PZT thin films for energy harvesting application with interdigitated electrodes.

    PubMed

    Chidambaram, Nachiappan; Mazzalai, Andrea; Muralt, Paul

    2012-08-01

    Interdigitated electrode (IDE) systems with lead zirconate titanate (PZT) thin films play an increasingly important role for two reasons: first, such a configuration generates higher voltages than parallel plate capacitor-type electrode (PPE) structures, and second, the application of an electric field leads to a compressive stress component in addition to the overall stress state, unlike a PPE structure, which results in tensile stress component. Because ceramics tend to crack at relatively moderate tensile stresses, this means that IDEs have a lower risk of cracking than PPEs. For these reasons, IDE systems are ideal for energy harvesting of vibration energy, and for actuators. Systematic investigations of PZT films with IDE systems have not yet been undertaken. In this work, we present results on the evaluation of the in-plane piezoelectric coefficients with IDE systems. Additionally, we also propose a simple and measurable figure of merit (FOM) to analyze and evaluate the relevant piezoelectric parameter for harvesting efficiency without the need to fabricate the energy harvesting device. Idealized effective coefficients e(IDE) and h(IDE) are derived, showing its composite nature with about one-third contribution of the transverse effect, and about two-thirds contribution of the longitudinal effect in the case of a PZT film deposited on a (100)-oriented silicon wafer with the in-plane electric field along one of the <011> Si directions. Randomly oriented 1-μm-thick PZT 53/47 film deposited by a sol-gel technique, was evaluated and yielded an effective coefficient e(IDE) of 15 C·m(-2). Our FOM is the product between effective e and h coefficient representing twice the electrical energy density stored in the piezoelectric film per unit strain deformation (both for IDE and PPE systems). Assuming homogeneous fields between the fingers, and neglecting the contribution from below the electrode fingers, the FOM for IDE structures with larger electrode gap is derived

  1. Crystallographic origin of cycle decay of the high-voltage LiNi0.5Mn1.5O4 spinel lithium-ion battery electrode.

    PubMed

    Pang, Wei Kong; Lu, Cheng-Zhang; Liu, Chia-Erh; Peterson, Vanessa K; Lin, Hsiu-Fen; Liao, Shih-Chieh; Chen, Jin-Ming

    2016-06-29

    High-voltage spinel LiNi0.5Mn1.5O4 (LNMO) is considered a potential high-power-density positive electrode for lithium-ion batteries, however, it suffers from capacity decay after extended charge-discharge cycling, severely hindering commercial application. Capacity fade is thought to occur through the significant volume change of the LNMO electrode occurring on cycling, and in this work we use operando neutron powder diffraction to compare the structural evolution of the LNMO electrode in an as-assembled 18650-type battery containing a Li4Ti5O12 negative electrode with that in an identical battery following 1000 cycles at high-current. We reveal that the capacity reduction in the battery post cycling is directly proportional to the reduction in the maximum change of the LNMO lattice parameter during its evolution. This is correlated to a corresponding reduction in the MnO6 octahedral distortion in the spinel structure in the cycled battery. Further, we find that the rate of lattice evolution, which reflects the rate of lithium insertion and removal, is ∼9 and ∼10% slower in the cycled than in the as-assembled battery during the Ni(2+)/Ni(3+) and Ni(3+)/Ni(4+) transitions, respectively.

  2. Crystallographic origin of cycle decay of the high-voltage LiNi0.5Mn1.5O4 spinel lithium-ion battery electrode.

    PubMed

    Pang, Wei Kong; Lu, Cheng-Zhang; Liu, Chia-Erh; Peterson, Vanessa K; Lin, Hsiu-Fen; Liao, Shih-Chieh; Chen, Jin-Ming

    2016-06-29

    High-voltage spinel LiNi0.5Mn1.5O4 (LNMO) is considered a potential high-power-density positive electrode for lithium-ion batteries, however, it suffers from capacity decay after extended charge-discharge cycling, severely hindering commercial application. Capacity fade is thought to occur through the significant volume change of the LNMO electrode occurring on cycling, and in this work we use operando neutron powder diffraction to compare the structural evolution of the LNMO electrode in an as-assembled 18650-type battery containing a Li4Ti5O12 negative electrode with that in an identical battery following 1000 cycles at high-current. We reveal that the capacity reduction in the battery post cycling is directly proportional to the reduction in the maximum change of the LNMO lattice parameter during its evolution. This is correlated to a corresponding reduction in the MnO6 octahedral distortion in the spinel structure in the cycled battery. Further, we find that the rate of lattice evolution, which reflects the rate of lithium insertion and removal, is ∼9 and ∼10% slower in the cycled than in the as-assembled battery during the Ni(2+)/Ni(3+) and Ni(3+)/Ni(4+) transitions, respectively. PMID:26961230

  3. Spatially resolved, in situ potential measurements through porous electrodes as applied to fuel cells.

    PubMed

    Hess, Katherine C; Epting, William K; Litster, Shawn

    2011-12-15

    We report the development and use of a microstructured electrode scaffold (MES) to make spatially resolved, in situ, electrolyte potential measurements through the thickness of a polymer electrolyte fuel cell (PEFC) electrode. This new approach uses a microfabricated apparatus to analyze the coupled transport and electrochemical phenomena in porous electrodes at the microscale. In this study, the MES allows the fuel cell to run under near-standard operating conditions, while providing electrolyte potential measurements at discrete distances through the electrode's thickness. Here we use spatial distributions of electrolyte potential to evaluate the effects of Ohmic and mass transport resistances on the through-plane reaction distribution for various operating conditions. Additionally, we use the potential distributions to estimate the ionic conductivity of the electrode. Our results indicate the in situ conductivity is higher than typically estimated for PEFC electrodes based on bulk polymer electrolyte membrane (PEM) conductivity.

  4. Generation of large-scale, barrier-free diffuse plasmas in air at atmospheric pressure using array wire electrodes and nanosecond high-voltage pulses

    NASA Astrophysics Data System (ADS)

    Teng, Yun; Li, Lee; Liu, Yun-Long; Liu, Lun; Liu, Minghai

    2014-10-01

    This paper introduces a method to generate large-scale diffuse plasmas by using a repetition nanosecond pulse generator and a parallel array wire-electrode configuration. We investigated barrier-free diffuse plasmas produced in the open air in parallel and cross-parallel array line-line electrode configurations. We found that, when the distance between the wire-electrode pair is small, the discharges were almost extinguished. Also, glow-like diffuse plasmas with little discharge weakening were obtained in an appropriate range of line-line distances and with a cathode-grounding cross-electrode configuration. As an example, we produced a large-scale, stable diffuse plasma with volumes as large as 18 × 15 × 15 cm3, and this discharge region can be further expanded. Additionally, using optical and electrical measurements, we showed that the electron temperature was higher than the gas temperature, which was almost the same as room temperature. Also, an array of electrode configuration with more wire electrodes had helped to prevent the transition from diffuse discharge to arc discharge. Comparing the current waveforms of configurations with 1 cell and 9 cells, we found that adding cells significantly increased the conduction current and the electrical energy delivered in the electrode gaps.

  5. Generation of large-scale, barrier-free diffuse plasmas in air at atmospheric pressure using array wire electrodes and nanosecond high-voltage pulses

    SciTech Connect

    Teng, Yun; Li, Lee Liu, Yun-Long; Liu, Lun; Liu, Minghai

    2014-10-15

    This paper introduces a method to generate large-scale diffuse plasmas by using a repetition nanosecond pulse generator and a parallel array wire-electrode configuration. We investigated barrier-free diffuse plasmas produced in the open air in parallel and cross-parallel array line-line electrode configurations. We found that, when the distance between the wire-electrode pair is small, the discharges were almost extinguished. Also, glow-like diffuse plasmas with little discharge weakening were obtained in an appropriate range of line-line distances and with a cathode-grounding cross-electrode configuration. As an example, we produced a large-scale, stable diffuse plasma with volumes as large as 18 × 15 × 15 cm{sup 3}, and this discharge region can be further expanded. Additionally, using optical and electrical measurements, we showed that the electron temperature was higher than the gas temperature, which was almost the same as room temperature. Also, an array of electrode configuration with more wire electrodes had helped to prevent the transition from diffuse discharge to arc discharge. Comparing the current waveforms of configurations with 1 cell and 9 cells, we found that adding cells significantly increased the conduction current and the electrical energy delivered in the electrode gaps.

  6. Titanium Dioxide Nanoparticle-Based Interdigitated Electrodes: A Novel Current to Voltage DNA Biosensor Recognizes E. coli O157:H7

    PubMed Central

    Nadzirah, Sh.; Azizah, N.; Hashim, Uda; Gopinath, Subash C. B.; Kashif, Mohd

    2015-01-01

    Nanoparticle-mediated bio-sensing promoted the development of novel sensors in the front of medical diagnosis. In the present study, we have generated and examined the potential of titanium dioxide (TiO2) crystalline nanoparticles with aluminium interdigitated electrode biosensor to specifically detect single-stranded E.coli O157:H7 DNA. The performance of this novel DNA biosensor was measured the electrical current response using a picoammeter. The sensor surface was chemically functionalized with (3-aminopropyl) triethoxysilane (APTES) to provide contact between the organic and inorganic surfaces of a single-stranded DNA probe and TiO2 nanoparticles while maintaining the sensing system’s physical characteristics. The complement of the target DNA of E. coli O157:H7 to the carboxylate-probe DNA could be translated into electrical signals and confirmed by the increased conductivity in the current-to-voltage curves. The specificity experiments indicate that the biosensor can discriminate between the complementary sequences from the base-mismatched and the non-complementary sequences. After duplex formation, the complementary target sequence can be quantified over a wide range with a detection limit of 1.0 x 10-13M. With target DNA from the lysed E. coli O157:H7, we could attain similar sensitivity. Stability of DNA immobilized surface was calculated with the relative standard deviation (4.6%), displayed the retaining with 99% of its original response current until 6 months. This high-performance interdigitated DNA biosensor with high sensitivity, stability and non-fouling on a novel sensing platform is suitable for a wide range of biomolecular interactive analyses. PMID:26445455

  7. Titanium Dioxide Nanoparticle-Based Interdigitated Electrodes: A Novel Current to Voltage DNA Biosensor Recognizes E. coli O157:H7.

    PubMed

    Nadzirah, Sh; Azizah, N; Hashim, Uda; Gopinath, Subash C B; Kashif, Mohd

    2015-01-01

    Nanoparticle-mediated bio-sensing promoted the development of novel sensors in the front of medical diagnosis. In the present study, we have generated and examined the potential of titanium dioxide (TiO2) crystalline nanoparticles with aluminium interdigitated electrode biosensor to specifically detect single-stranded E.coli O157:H7 DNA. The performance of this novel DNA biosensor was measured the electrical current response using a picoammeter. The sensor surface was chemically functionalized with (3-aminopropyl) triethoxysilane (APTES) to provide contact between the organic and inorganic surfaces of a single-stranded DNA probe and TiO2 nanoparticles while maintaining the sensing system's physical characteristics. The complement of the target DNA of E. coli O157:H7 to the carboxylate-probe DNA could be translated into electrical signals and confirmed by the increased conductivity in the current-to-voltage curves. The specificity experiments indicate that the biosensor can discriminate between the complementary sequences from the base-mismatched and the non-complementary sequences. After duplex formation, the complementary target sequence can be quantified over a wide range with a detection limit of 1.0 x 10(-13)M. With target DNA from the lysed E. coli O157:H7, we could attain similar sensitivity. Stability of DNA immobilized surface was calculated with the relative standard deviation (4.6%), displayed the retaining with 99% of its original response current until 6 months. This high-performance interdigitated DNA biosensor with high sensitivity, stability and non-fouling on a novel sensing platform is suitable for a wide range of biomolecular interactive analyses. PMID:26445455

  8. Development of Low-Frequency AC Voltage Measurement System Using Single-Junction Thermal Converter

    NASA Astrophysics Data System (ADS)

    Amagai, Yasutaka; Nakamura, Yasuhiro

    Accurate measurement of low-frequency AC voltage using a digital multimeter at frequencies of 4-200Hz is a challenge in the mechanical engineering industry. At the National Metrology Institute of Japan, we developed a low-frequency AC voltage measurement system for calibrating digital multimeters operating at frequencies down to 1 Hz. The system uses a single-junction thermal converter and employs a theoretical model and a three-parameter sine wave fitting algorithm based on the least-square (LS) method. We calibrated the AC voltage down to 1Hz using our measurement system and reduced the measurement time compared with that using thin-film thermal converters. Our measurement results are verified by comparison with those of a digital sampling method using a high-resolution analog-to-digital converter; our data are in agreement to within a few parts in 105. Our proposed method enables us to measure AC voltage with an uncertainty of 25 μV/V (k = 1) at frequencies down to 4 Hz and a voltage of 10 V.

  9. Effects of stray capacitance to ground in three electrode monopolar needle bioimpedance measurements.

    PubMed

    Kalvoy, H; Aliau-Bonet, C; Pallas-Areny, R; Martinsen, O G

    2015-01-01

    Positive phase angle is documented and analyzed in a three electrode monopolar needle measurement. Inductance equivalent behavior of the stray capacitance to ground is described as error source in a non-inductive sample measurement.

  10. The Coefficient of the Voltage Induced Frequency Shift Measurement on a Quartz Tuning Fork

    PubMed Central

    Hou, Yubin; Lu, Qingyou

    2014-01-01

    We have measured the coefficient of the voltage induced frequency shift (VIFS) of a 32.768 KHz quartz tuning fork. Three vibration modes were studied: one prong oscillating, two prongs oscillating in the same direction, and two prongs oscillating in opposite directions. They all showed a parabolic dependence of the eigen-frequency shift on the bias voltage applied across the fork, due to the voltage-induced internal stress, which varies as the fork oscillates. The average coefficient of the VIFS effect is as low as several hundred nano-Hz per millivolt, implying that fast-response voltage-controlled oscillators and phase-locked loops with nano-Hz resolution can be built. PMID:25414971

  11. Flexible electrode belt for EIT using nanofiber web dry electrodes.

    PubMed

    Oh, Tong In; Kim, Tae Eui; Yoon, Sun; Kim, Kap Jin; Woo, Eung Je; Sadleir, Rosalind J

    2012-10-01

    Efficient connection of multiple electrodes to the body for impedance measurement and voltage monitoring applications is of critical importance to measurement quality and practicality. Electrical impedance tomography (EIT) experiments have generally required a cumbersome procedure to attach the multiple electrodes needed in EIT. Once placed, these electrodes must then maintain good contact with the skin during measurements that may last several hours. There is usually also the need to manage the wires that run between the electrodes and the EIT system. These problems become more severe as the number of electrodes increases, and may limit the practicality and portability of this imaging method. There have been several trials describing human-electrode interfaces using configurations such as electrode belts, helmets or rings. In this paper, we describe an electrode belt we developed for long-term EIT monitoring of human lung ventilation. The belt included 16 embossed electrodes that were designed to make good contact with the skin. The electrodes were fabricated using an Ag-plated PVDF nanofiber web and metallic threads. A large contact area and padding were used behind each electrode to improve subject comfort and reduce contact impedances. The electrodes were incorporated, equally spaced, into an elasticated fabric belt. We tested the electrode belt in conjunction with the KHU Mark1 multi-frequency EIT system, and demonstrate time-difference images of phantoms and human subjects during normal breathing and running. We found that the Ag-plated PVDF nanofiber web electrodes were suitable for long-term measurement because of their flexibility and durability. Moreover, the contact impedance and stability of the Ag-plated PVDF nanofiber web electrodes were found to be comparable to similarly tested Ag/AgCl electrodes.

  12. Flexible electrode belt for EIT using nanofiber web dry electrodes.

    PubMed

    Oh, Tong In; Kim, Tae Eui; Yoon, Sun; Kim, Kap Jin; Woo, Eung Je; Sadleir, Rosalind J

    2012-10-01

    Efficient connection of multiple electrodes to the body for impedance measurement and voltage monitoring applications is of critical importance to measurement quality and practicality. Electrical impedance tomography (EIT) experiments have generally required a cumbersome procedure to attach the multiple electrodes needed in EIT. Once placed, these electrodes must then maintain good contact with the skin during measurements that may last several hours. There is usually also the need to manage the wires that run between the electrodes and the EIT system. These problems become more severe as the number of electrodes increases, and may limit the practicality and portability of this imaging method. There have been several trials describing human-electrode interfaces using configurations such as electrode belts, helmets or rings. In this paper, we describe an electrode belt we developed for long-term EIT monitoring of human lung ventilation. The belt included 16 embossed electrodes that were designed to make good contact with the skin. The electrodes were fabricated using an Ag-plated PVDF nanofiber web and metallic threads. A large contact area and padding were used behind each electrode to improve subject comfort and reduce contact impedances. The electrodes were incorporated, equally spaced, into an elasticated fabric belt. We tested the electrode belt in conjunction with the KHU Mark1 multi-frequency EIT system, and demonstrate time-difference images of phantoms and human subjects during normal breathing and running. We found that the Ag-plated PVDF nanofiber web electrodes were suitable for long-term measurement because of their flexibility and durability. Moreover, the contact impedance and stability of the Ag-plated PVDF nanofiber web electrodes were found to be comparable to similarly tested Ag/AgCl electrodes. PMID:22945587

  13. Measuring bi-directional current through a field-effect transistor by virtue of drain-to-source voltage measurement

    DOEpatents

    Turner, Steven Richard

    2006-12-26

    A method and apparatus for measuring current, and particularly bi-directional current, in a field-effect transistor (FET) using drain-to-source voltage measurements. The drain-to-source voltage of the FET is measured and amplified. This signal is then compensated for variations in the temperature of the FET, which affects the impedance of the FET when it is switched on. The output is a signal representative of the direction of the flow of current through the field-effect transistor and the level of the current through the field-effect transistor. Preferably, the measurement only occurs when the FET is switched on.

  14. Novel active comb-shaped dry electrode for EEG measurement in hairy site.

    PubMed

    Huang, Yan-Jun; Wu, Chung-Yu; Wong, Alice May-Kuen; Lin, Bor-Shyh

    2015-01-01

    Electroencephalography (EEG) is an important biopotential, and has been widely applied in clinical applications. The conventional EEG electrode with conductive gels is usually used for measuring EEG. However, the use of conductive gel also encounters with the issue of drying and hardening. Recently, many dry EEG electrodes based on different conductive materials and techniques were proposed to solve the previous issue. However, measuring EEG in the hairy site is still a difficult challenge. In this study, a novel active comb-shaped dry electrode was proposed to measure EEG in hairy site. Different form other comb-shaped or spike-shaped dry electrodes, it can provide more excellent performance of avoiding the signal attenuation, phase distortion, and the reduction of common mode rejection ratio. Even under walking motion, it can effectively acquire EEG in hairy site. Finally, the experiments for alpha rhythm and steady-state visually evoked potential were also tested to validate the proposed electrode.

  15. Measurement system for determination of current-voltage characteristics of PV modules

    NASA Astrophysics Data System (ADS)

    Idzkowski, Adam; Walendziuk, Wojciech; Borawski, Mateusz; Sawicki, Aleksander

    2015-09-01

    The realization of a laboratory stand for testing photovoltaic panels is presented here. The project of the laboratory stand was designed in SolidWorks software. The aim of the project was to control the electrical parameters of a PV panel. For this purpose a meter that measures electrical parameters i.e. voltage, current and power, was realized. The meter was created with the use of LabJack DAQ device and LabVIEW software. The presented results of measurements were obtained in different conditions (variable distance from the source of light, variable tilt angle of the panel). Current voltage characteristics of photovoltaic panel were created and all parameters could be detected in different conditions. The standard uncertainties of sample voltage, current, power measurements were calculated. The paper also gives basic information about power characteristics and efficiency of a solar cell.

  16. Comparison of dry-textile electrodes for electrical bioimpedance spectroscopy measurements

    NASA Astrophysics Data System (ADS)

    Márquez, J. C.; Seoane, F.; Välimäki, E.; Lindecrantz, K.

    2010-04-01

    Textile Electrodes have been widely studied for biopotentials recordings, specially for monitoring the cardiac activity. Commercially available applications, such as Adistar T-shirt and Textronics Cardioshirt, have proved a good performance for heart rate monitoring and are available worldwide. Textile technology can also be used for Electrical Bioimpedance Spectroscopy measurements enabling home and personalized health monitoring applications however solid ground research about the measurement performance of the electrodes must be done prior to the development of any textile-enabled EBI application. In this work a comparison of the measurement performance of two different types of dry-textile electrodes and manufacturers has been performed against standardized RedDot 3M Ag/AgCl electrolytic electrodes. 4-Electrode, whole body, Ankle-to-Wrist EBI measurements have been taken with the Impedimed spectrometer SFB7 from healthy subjects in the frequency range of 3kHz to 500kHz. Measurements have been taken with dry electrodes at different times to study the influence of the interaction skin-electrode interface on the EBI measurements. The analysis of the obtained complex EBI spectra shows that the measurements performed with textile electrodes produce constant and reliable EBI spectra. Certain deviation can be observed at higher frequencies and the measurements obtained with Textronics and Ag/AgCl electrodes present a better resemblance. Textile technology, if successfully integrated it, may enable the performance of EBI measurements in new scenarios allowing the rising of novel wearable monitoring applications for home and personal care as well as car safety.

  17. Skin-electrode impedance measurement during ECG acquisition: method’s validation

    NASA Astrophysics Data System (ADS)

    Casal, Leonardo; La Mura, Guillermo

    2016-04-01

    Skm-electrode impedance measurement can provide valuable information prior. dunng and post electrocardiographic (ECG) or electroencephalographs (EEG) acquisitions. In this work we validate a method for skm-electrode impedance measurement using test circuits with known resistance and capacitor values, at different frequencies for injected excitation current. Finally the method is successfully used for impedance measurement during ECG acquisition on a subject usmg 125 Hz and 6 nA square wave excitation signal at instrumentation amplifier mput. The method can be used for many electrodes configuration.

  18. A test technique for measuring lightning-induced voltages on aircraft electrical circuits

    NASA Technical Reports Server (NTRS)

    Walko, L. C.

    1974-01-01

    The development of a test technique used for the measurement of lightning-induced voltages in the electrical circuits of a complete aircraft is described. The resultant technique utilizes a portable device known as a transient analyzer capable of generating unidirectional current impulses similar to lightning current surges, but at a lower current level. A linear relationship between the magnitude of lightning current and the magnitude of induced voltage permitted the scaling up of measured induced values to full threat levels. The test technique was found to be practical when used on a complete aircraft.

  19. Method and apparatus for remote tube crevice detection by current and voltage probe resistance measurement

    DOEpatents

    Kikta, T.J.; Mitchell, R.D.

    1992-11-24

    A method and apparatus for determining the extent of contact between an electrically conducting tube and an electrically conductive tubesheet surrounding the tube, based upon the electrical resistance of the tube and tubesheet. A constant current source is applied to the interior of the electrically conducting tube by probes and a voltmeter is connected between other probes to measure the voltage at the point of current injection, which is inversely proportional to the amount of contact between the tube and tubesheet. Namely, the higher the voltage measured by the voltmeter, the less contact between the tube and tubesheet. 4 figs.

  20. Method and apparatus for remote tube crevice detection by current and voltage probe resistance measurement

    DOEpatents

    Kikta, Thomas J.; Mitchell, Ronald D.

    1992-01-01

    A method and apparatus for determining the extent of contact between an electrically conducting tube and an electrically conductive tubesheet surrounding the tube, based upon the electrical resistance of the tube and tubesheet. A constant current source is applied to the interior of the electrically conducting tube by probes and a voltmeter is connected between other probes to measure the voltage at the point of current injection, which is inversely proportional to the amount of contact between the tube and tubesheet. Namely, the higher the voltage measured by the voltmeter, the less contact between the tube and tubesheet.

  1. Surface potential distribution and airflow performance of different air-exposed electrode plasma actuators at different alternating current/direct current voltages

    SciTech Connect

    Yang, Liang; Yan, Hui-Jie; Qi, Xiao-Hua; Hua, Yue; Ren, Chun-Sheng

    2015-04-15

    Asymmetric surface dielectric barrier discharge (SDBD) plasma actuators have been intensely studied for a number of years due to their potential applications for aerodynamic control. In this paper, four types of actuators with different configurations of exposed electrode are proposed. The SDBD actuators investigated are driven by dual-power supply, referred to as a fixed AC high voltage and an adjustable DC bias. The effects of the electrode structures on the dielectric surface potential distribution, the electric wind velocity, and the mean thrust production are studied, and the dominative factors of airflow acceleration behavior are revealed. The results have shown that the actions of the SDBD actuator are mainly dependent on the geometry of the exposed electrode. Besides, the surface potential distribution can effectively affect the airflow acceleration behavior. With the application of an appropriate additional DC bias, the surface potential will be modified. As a result, the performance of the electric wind produced by a single SDBD can be significantly improved. In addition, the work also illustrates that the actuators with more negative surface potential present better mechanical performance.

  2. A high-impedance attenuator for measurement of high-voltage nanosecond-range pulses.

    PubMed

    Yu, Binxiong; Liu, Jinliang; Zhang, Tianyang; Hong, Zhiqiang

    2013-05-01

    A novel kind of high-impedance cable attenuator for measurement of high-voltage ns-range pulses is investigated in this paper. The input and output ports of the proposed attenuator were both high-impedance ports, and good pulse response characteristics of the proposed attenuator were obtained with pulse response time less than 1 ns. According to the requirement of measurement, two attenuators with lengths at 14 m and 0.7 m were developed with response time of 1 ns and 20 ns, and the attenuation coefficient of 96 and 33.5, respectively. The attenuator with the length of 14 m was used as a secondary-stage attenuator of a capacitive divider to measure the high-voltage pulses at several hundred ns range. The waveform was improved by the proposed attenuator in contrast to the result only measured by the same capacitive divider and a long cable line directly. The 0.7 m attenuator was also used as a secondary-stage attenuator of a standard resistant divider for an accurate measurement of high-voltage pulses at 100 ns range. The proposed cable attenuator can be used to substitute the traditional secondary-stage attenuators for the measurement of high-voltage pulses.

  3. In Situ Measurement of Voltage-Induced Stress in Conducting Polymers with Redox-Active Dopants.

    PubMed

    Sen, Sujat; Kim, Sung Yeol; Palmore, Lia R; Jin, Shenghua; Jadhav, Nitin; Chason, Eric; Palmore, G Tayhas R

    2016-09-14

    Minimization of stress-induced mechanical rupture and delamination of conducting polymer (CP) films is desirable to prevent failure of devices based on these materials. Thus, precise in situ measurement of voltage-induced stress within these films should provide insight into the cause of these failure mechanisms. The evolution of stress in films of polypyrrole (pPy), doped with indigo carmine (IC), was measured in different electrochemical environments using the multibeam optical stress sensor (MOSS) technique. The stress in these films gradually increases to a constant value during voltage cycling, revealing an initial break-in period for CP films. The nature of the ions involved in charge compensation of pPy[IC] during voltage cycling was determined from electrochemical quartz crystal microbalance (EQCM) data. The magnitude of the voltage-induced stress within pPy[IC] at neutral pH correlated with the radius of the hydrated mobile ion in the order Li(+) > Na(+) > K(+). At acidic pH, the IC dopant in pPy[IC] undergoes reversible oxidation and reduction within the range of potentials investigated, providing a secondary contribution to the observed voltage-induced stress. We report on the novel stress response of these polymers due to the presence of pH-dependent redox-active dopants and how it can affect material performance.

  4. In Situ Measurement of Voltage-Induced Stress in Conducting Polymers with Redox-Active Dopants.

    PubMed

    Sen, Sujat; Kim, Sung Yeol; Palmore, Lia R; Jin, Shenghua; Jadhav, Nitin; Chason, Eric; Palmore, G Tayhas R

    2016-09-14

    Minimization of stress-induced mechanical rupture and delamination of conducting polymer (CP) films is desirable to prevent failure of devices based on these materials. Thus, precise in situ measurement of voltage-induced stress within these films should provide insight into the cause of these failure mechanisms. The evolution of stress in films of polypyrrole (pPy), doped with indigo carmine (IC), was measured in different electrochemical environments using the multibeam optical stress sensor (MOSS) technique. The stress in these films gradually increases to a constant value during voltage cycling, revealing an initial break-in period for CP films. The nature of the ions involved in charge compensation of pPy[IC] during voltage cycling was determined from electrochemical quartz crystal microbalance (EQCM) data. The magnitude of the voltage-induced stress within pPy[IC] at neutral pH correlated with the radius of the hydrated mobile ion in the order Li(+) > Na(+) > K(+). At acidic pH, the IC dopant in pPy[IC] undergoes reversible oxidation and reduction within the range of potentials investigated, providing a secondary contribution to the observed voltage-induced stress. We report on the novel stress response of these polymers due to the presence of pH-dependent redox-active dopants and how it can affect material performance. PMID:27579593

  5. Electrode-Skin contact impedance: In vivo measurements on an ovine model

    NASA Astrophysics Data System (ADS)

    Nguyen, D. T.; Kosobrodov, R.; Barry, M. A.; Chik, W.; Jin, C.; Oh, T. I.; Thiagalingam, A.; McEwan, A.

    2013-04-01

    The problem of electrical impedance between the skin and the electrode is an on-going challenge in bio-electronics. This is particularly true in the case of Electrical Impedance Tomography (EIT), which uses a large number of skin-contact electrodes and is very sensitive to noise. In the present article, contact impedance is measured and compared for a range of electrodes placed on the thorax of an ovine model. The study has been approved by the Westmead Hospital Animal Ethics Committee. The electrode models that were employed in the research are Ag/AgCl electrodes (E1), commonly used for ECG and EIT measurements in both humans and animal models, stainless steel crocodile clips (E2), typically used on animal models, and novel multi-point dry electrodes in two modifications: bronze plated (E3) and nickel plated (E4). Further, since the contact impedance is mostly attributed to the acellular outer layer of the skin, in our experiment, we attempted to study the effect of this layer by comparing the results when the skin is intact and when electrodes are introduced underneath the skin through small cuts. This boundary effect was assessed by comparison of measurements obtained during E2 skin surface contact, and sub-cutaneous contact (E5). Twelve gauge intradermal needles were also tested as an electrode (E6). The full impedance spectrum, from 500 Hz to 300 kHz, was recorded, analysed and compared. As expected, the contact impedance in the more invasive cases, i.e the electrodes under the skin, is significantly lower than in the non-invasive cases. At the frequency of 50 kHz which is commonly used in lung EIT acquisition, electrodes E3, E4 and E6 demonstrated contact impedance of less than 200 Ω, compared to more than 400 Ω measured for electrodes E1, E2 and E5. In conclusion, the novel multipoint electrodes proved to be best suited for EIT purposes, because they are non-invasive and have lower contact impedance than Ag/AgCl and crocodile clips, in both invasive and

  6. Stark broadening measurement of the electron density in an atmospheric pressure argon plasma jet with double-power electrodes

    SciTech Connect

    Qian Muyang; Ren Chunsheng; Wang Dezhen; Zhang Jialiang; Wei Guodong

    2010-03-15

    Characteristics of a double-power electrode dielectric barrier discharge of an argon plasma jet generated at the atmospheric pressure are investigated in this paper. Time-averaged optical emission spectroscopy is used to measure the plasma parameters, of which the excitation electron temperature is determined by the Boltzmann's plot method whereas the gas temperature is estimated using a fiber thermometer. Furthermore, the Stark broadening of the hydrogen Balmer H{sub {beta}} line is applied to measure the electron density, and the simultaneous presence of comparable Doppler, van der Waals, and instrumental broadenings is discussed. Besides, properties of the jet discharge are also studied by electrical diagnosis. It has been found that the electron densities in this argon plasma jet are on the order of 10{sup 14} cm{sup -3}, and the excitation temperature, gas temperature, and electron density increase with the applied voltage. On the other hand, these parameters are inversely proportional to the argon gas flow rate.

  7. Electrode placement in bioimpedance spectroscopy: evaluation of alternative positioning of electrodes when measuring relative dehydration in athletes.

    PubMed

    Birkemose, M; Møller, A J; Madsen, M L; Brantlov, S; Sørensen, H; Overgaard, K; Johansen, P

    2013-01-01

    In order to maintain a homeostatic environment in human cells, the balance between absorption and separation of water must be retained. Imbalance will have consequences on both the cellular and organ levels. Studies performed on athletes have shown coherence between their hydration status and ability to perform. A dehydration of 2-7% of total body weight resulted in a marked decrease in performance. Measurement and monitoring of hydration status may be used to optimize athlete performance. Therefore, in this current study bioimpedance spectroscopy is used to determine the hydration status of athletes. Trials were made to investigate alternative ways of electrode placement when performing bioimpedance spectroscopy in order to measure relative dehydration. A total of 14 test subjects underwent measurements before, during, and after a cycle test of 3×25min. Electrodes where placed to measure body impedance in three different ways: wrist-ankle (recommended method), wrist-wrist, and transthoracic. Furthermore, the relative loss in weight of the subjects during the trial was registered. The study showed no relation between relative weight loss and the wrist-wrist and transthoracic placement method, using bioimpedance spectroscopy to measure relative dehydration. The inability of the method to detect such relative changes in hydration may be due to the bioimpedance spectroscopy technology being extremely sensitive to changes in skin temperature, movement artifacts, thoroughness in placing the electrodes, and the physiological impact on the human body when performing exercise. Therefore, further research into the area of bioimpedance spectroscopy is needed before this methodology can be applied in monitoring active athletes. Hence, a simple weight measurement still seems a more useful way of determining a relative change of hydration in an active setting.

  8. Role of measurement voltage on hysteresis loop shape in Piezoresponse Force Microscopy

    SciTech Connect

    Kim, Yunseok; Yang, J.-C.; Chu, Ying Hao; Yu, Pu; Lu, X.; Jesse, Stephen; Kalinin, Sergei V

    2012-01-01

    The dependence of on-field and off-field hysteresis loop shape in Piezoresponse Force Microscopy (PFM) on driving voltage, Vac, is explored. A nontrivial dependence of hysteresis loop parameters on measurement conditions is observed. The strategies to distinguish between paraelectric and ferroelectric states with small coercive bias and separate reversible hysteretic and non-hysteretic behaviors are suggested. Generally, measurement of loop evolution with Vac is a necessary step to establish the veracity of PFM hysteresis measurements.

  9. Dielectric-wall linear accelerator with a high voltage fast rise time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators

    DOEpatents

    Caporaso, G.J.; Sampayan, S.E.; Kirbie, H.C.

    1998-10-13

    A dielectric-wall linear accelerator is improved by a high-voltage, fast rise-time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators. A high voltage is placed between the electrodes sufficient to stress the voltage breakdown of the insulator on command. A light trigger, such as a laser, is focused along at least one line along the edge surface of the laminated alternating layers of isolated conductors and insulators extending between the electrodes. The laser is energized to initiate a surface breakdown by a fluence of photons, thus causing the electrical switch to close very promptly. Such insulators and lasers are incorporated in a dielectric wall linear accelerator with Blumlein modules, and phasing is controlled by adjusting the length of fiber optic cables that carry the laser light to the insulator surface. 12 figs.

  10. Dielectric-wall linear accelerator with a high voltage fast rise time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators

    DOEpatents

    Caporaso, George J.; Sampayan, Stephen E.; Kirbie, Hugh C.

    1998-01-01

    A dielectric-wall linear accelerator is improved by a high-voltage, fast rise-time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators. A high voltage is placed between the electrodes sufficient to stress the voltage breakdown of the insulator on command. A light trigger, such as a laser, is focused along at least one line along the edge surface of the laminated alternating layers of isolated conductors and insulators extending between the electrodes. The laser is energized to initiate a surface breakdown by a fluence of photons, thus causing the electrical switch to close very promptly. Such insulators and lasers are incorporated in a dielectric wall linear accelerator with Blumlein modules, and phasing is controlled by adjusting the length of fiber optic cables that carry the laser light to the insulator surface.

  11. A new measurement method for electrode gain in an orthogonally symmetric beam position monitor

    NASA Astrophysics Data System (ADS)

    Zou, Jun-Ying; Wu, Fang-Fang; Yang, Yong-Liang; Sun, Bao-Gen; Zhou, Ze-Ran; Luo, Qing; Lu, Ping; Xu, Hong-Liang

    2014-12-01

    The new beam position monitor (BPM) system of the injector at the upgrade project of the Hefei Light Source (HLS II) has 19 stripline beam position monitors. Most consist of four orthogonally symmetric stripline electrodes. Differences in electronic gain and mismachining tolerance can cause changes in the beam response of the BPM electrodes. This variation will couple the two measured horizontal positions, resulting in measuring error. To alleviate this effect, a new technique to measure the relative response of the four electrodes has been developed. It is independent of the beam charge, and the related coefficient can be calculated theoretically. The effect of electrode coupling on this technique is analyzed. The calibration data is used to fit the gain for all 19 injector beam position monitors. The results show the standard deviation of the distribution of measured gains is about 5%.

  12. Electrode size and boundary condition independent measurement of the effective piezoelectric coefficient of thin films

    SciTech Connect

    Stewart, M.; Lepadatu, S.; McCartney, L. N.; Cain, M. G.; Wright, L.; Crain, J.; Newns, D. M.; Martyna, G. J.

    2015-02-01

    The determination of the piezoelectric coefficient of thin films using interferometry is hindered by bending contributions. Using finite element analysis (FEA) simulations, we show that the Lefki and Dormans approximations using either single or double-beam measurements cannot be used with finite top electrode sizes. We introduce a novel method for characterising piezoelectric thin films which uses a differential measurement over the discontinuity at the electrode edge as an internal reference, thereby eliminating bending contributions. This step height is shown to be electrode size and boundary condition independent. An analytical expression is derived which gives good agreement with FEA predictions of the step height.

  13. Silver/silver chloride electrodes for measurement of potential difference in human bronchi

    PubMed Central

    Fajac, I.; Lacronique, J.; Lockhart, A.; Dall'Ava-Santucci, J.; Dusser, D.

    1998-01-01

    BACKGROUND—An easy and reliable method to measure potential difference (PD) in the lower airways would be of interest in the field of cystic fibrosis. We have developed silver/silver chloride (Ag/AgCl) electrodes to measure PD in the lower airways.
METHODS—To validate this technique the nasal PD measured with Ag/AgCl electrodes and with conventional perfused electrodes was compared in 16 patients. The range of PD measured with Ag/AgCl electrodes in the lower airways during fibreoptic bronchoscopy was determined in 14 adult patients and in nine the reproducibility of this technique was examined.
RESULTS—Nasal PD values measured with Ag/AgCl and perfused electrodes were highly correlated (r = 0.985, p<0.0001) and the limits of agreement (mean ±2SD of the difference) between the two methods were -1.91 mV and 1.53 mV. In the lower airways a progressive and slight decrease in PD values with decreasing airway diameter was observed in most patients. The mean (2SD) of the differences between the two tracheal measurements was 0.21 (1.73) mV.
CONCLUSIONS—The use of Ag/AgCl electrodes gives a reliable and reproducible measurement of PD in the lower airways in humans.

 PMID:10193377

  14. Tracking MOV operability under degraded voltage condition by periodic test measurements

    SciTech Connect

    Hussain, B.; Behera, A.K.; Alsammarae, A.J.

    1996-12-31

    The purpose of this paper is to develop a methodology for evaluating the operability of Alternating Current (AC) Motor Operated Valve (MOV) under degraded voltage condition, based on the seating parameter measured during surveillance/testing. This approach will help resolve Nuclear Regulatory Commission`s (NRC`s) concern on verifying the AC MOV`s design basis capability through periodic testing.

  15. Potentiometric measurement of glucose concentration with an immobilized glucose oxidase/catalase electrode.

    PubMed

    Wingard, L B; Liu, C C; Wolfson, S K; Yao, S J; Drash, A L

    1982-01-01

    A series of enzyme electrodes for measurement of glucose have been constructed. The electrodes contain glucose oxidase immobilized on platinum, either with or without co-immobilization of catalase. When placed in buffered glucose, the enzyme electrodes show a potentiometric response to glucose with respect to a Ag/AgCl reference electrode. This response is reproducible in the physiologic range of glucose concentrations. The immobilization technique, some of the environmental variables such as oxygen concentration and pH, and several compounds that might interfere with the selectivity of the enzyme electrodes for glucose have received preliminary study. This direct potentiometric approach is undergoing further evaluation to determine the basic electrochemical mechanism responsible for the potentiometric signal and whether it can be adapted for continuous in vivo monitoring of the glucose concentration in body fluids. PMID:7172983

  16. Voltage measurements at the vacuum post-hole convolute of the Z pulsed-power accelerator

    DOE PAGES

    Waisman, E. M.; McBride, R. D.; Cuneo, M. E.; Wenger, D. F.; Fowler, W. E.; Johnson, W. A.; Basilio, L. I.; Coats, R. S.; Jennings, C. A.; Sinars, D. B.; et al

    2014-12-08

    Presented are voltage measurements taken near the load region on the Z pulsed-power accelerator using an inductive voltage monitor (IVM). Specifically, the IVM was connected to, and thus monitored the voltage at, the bottom level of the accelerator’s vacuum double post-hole convolute. Additional voltage and current measurements were taken at the accelerator’s vacuum-insulator stack (at a radius of 1.6 m) by using standard D-dot and B-dot probes, respectively. During postprocessing, the measurements taken at the stack were translated to the location of the IVM measurements by using a lossless propagation model of the Z accelerator’s magnetically insulated transmission lines (MITLs)more » and a lumped inductor model of the vacuum post-hole convolute. Across a wide variety of experiments conducted on the Z accelerator, the voltage histories obtained from the IVM and the lossless propagation technique agree well in overall shape and magnitude. However, large-amplitude, high-frequency oscillations are more pronounced in the IVM records. It is unclear whether these larger oscillations represent true voltage oscillations at the convolute or if they are due to noise pickup and/or transit-time effects and other resonant modes in the IVM. Results using a transit-time-correction technique and Fourier analysis support the latter. Regardless of which interpretation is correct, both true voltage oscillations and the excitement of resonant modes could be the result of transient electrical breakdowns in the post-hole convolute, though more information is required to determine definitively if such breakdowns occurred. Despite the larger oscillations in the IVM records, the general agreement found between the lossless propagation results and the results of the IVM shows that large voltages are transmitted efficiently through the MITLs on Z. These results are complementary to previous studies [R. D. McBride et al., Phys. Rev. ST Accel. Beams 13, 120401 (2010)] that showed

  17. Voltage measurements at the vacuum post-hole convolute of the Z pulsed-power accelerator

    NASA Astrophysics Data System (ADS)

    Waisman, E. M.; McBride, R. D.; Cuneo, M. E.; Wenger, D. F.; Fowler, W. E.; Johnson, W. A.; Basilio, L. I.; Coats, R. S.; Jennings, C. A.; Sinars, D. B.; Vesey, R. A.; Jones, B.; Ampleford, D. J.; Lemke, R. W.; Martin, M. R.; Schrafel, P. C.; Lewis, S. A.; Moore, J. K.; Savage, M. E.; Stygar, W. A.

    2014-12-01

    Presented are voltage measurements taken near the load region on the Z pulsed-power accelerator using an inductive voltage monitor (IVM). Specifically, the IVM was connected to, and thus monitored the voltage at, the bottom level of the accelerator's vacuum double post-hole convolute. Additional voltage and current measurements were taken at the accelerator's vacuum-insulator stack (at a radius of 1.6 m) by using standard D -dot and B -dot probes, respectively. During postprocessing, the measurements taken at the stack were translated to the location of the IVM measurements by using a lossless propagation model of the Z accelerator's magnetically insulated transmission lines (MITLs) and a lumped inductor model of the vacuum post-hole convolute. Across a wide variety of experiments conducted on the Z accelerator, the voltage histories obtained from the IVM and the lossless propagation technique agree well in overall shape and magnitude. However, large-amplitude, high-frequency oscillations are more pronounced in the IVM records. It is unclear whether these larger oscillations represent true voltage oscillations at the convolute or if they are due to noise pickup and/or transit-time effects and other resonant modes in the IVM. Results using a transit-time-correction technique and Fourier analysis support the latter. Regardless of which interpretation is correct, both true voltage oscillations and the excitement of resonant modes could be the result of transient electrical breakdowns in the post-hole convolute, though more information is required to determine definitively if such breakdowns occurred. Despite the larger oscillations in the IVM records, the general agreement found between the lossless propagation results and the results of the IVM shows that large voltages are transmitted efficiently through the MITLs on Z . These results are complementary to previous studies [R. D. McBride et al., Phys. Rev. ST Accel. Beams 13, 120401 (2010)] that showed efficient

  18. Voltage measurements at the vacuum post-hole convolute of the Z pulsed-power accelerator

    SciTech Connect

    Waisman, E. M.; McBride, R. D.; Cuneo, M. E.; Wenger, D. F.; Fowler, W. E.; Johnson, W. A.; Basilio, L. I.; Coats, R. S.; Jennings, C. A.; Sinars, D. B.; Vesey, R. A.; Jones, B.; Ampleford, D. J.; Lemke, R. W.; Martin, M. R.; Schrafel, P. C.; Lewis, S. A.; Moore, J. K.; Savage, M. E.; Stygar, W. A.

    2014-12-08

    Presented are voltage measurements taken near the load region on the Z pulsed-power accelerator using an inductive voltage monitor (IVM). Specifically, the IVM was connected to, and thus monitored the voltage at, the bottom level of the accelerator’s vacuum double post-hole convolute. Additional voltage and current measurements were taken at the accelerator’s vacuum-insulator stack (at a radius of 1.6 m) by using standard D-dot and B-dot probes, respectively. During postprocessing, the measurements taken at the stack were translated to the location of the IVM measurements by using a lossless propagation model of the Z accelerator’s magnetically insulated transmission lines (MITLs) and a lumped inductor model of the vacuum post-hole convolute. Across a wide variety of experiments conducted on the Z accelerator, the voltage histories obtained from the IVM and the lossless propagation technique agree well in overall shape and magnitude. However, large-amplitude, high-frequency oscillations are more pronounced in the IVM records. It is unclear whether these larger oscillations represent true voltage oscillations at the convolute or if they are due to noise pickup and/or transit-time effects and other resonant modes in the IVM. Results using a transit-time-correction technique and Fourier analysis support the latter. Regardless of which interpretation is correct, both true voltage oscillations and the excitement of resonant modes could be the result of transient electrical breakdowns in the post-hole convolute, though more information is required to determine definitively if such breakdowns occurred. Despite the larger oscillations in the IVM records, the general agreement found between the lossless propagation results and the results of the IVM shows that large voltages are transmitted efficiently through the MITLs on Z. These results are complementary to previous studies [R. D. McBride et al., Phys. Rev. ST Accel. Beams 13, 120401 (2010)] that

  19. Direct voltage measurements using bulk acoustic wave sensing in LiNbO3

    NASA Astrophysics Data System (ADS)

    Patel, Nishant Bhupendra

    Accurate (< 1%) direct measurement of high voltage pulse amplitudes above 10 kilovolts becomes challenging due to voltage breakdown limitations in materials, parasitic impedance effects that can distort the pulse shape, and pickup of extraneous signals resulting from electromagnetic interference effects. A piezoelectric crystal-based bulk acoustic wave sensor using lithium niobate (LiNbO3) that has applications to metrology, research, and power metering was developed to overcome these measurement issues with the factors of scalability, ease of use, and compactness in mind. A Y+36° cut LiNbO3crystal was coupled to two acoustic transducers, where direct current (DC) voltages ranging from 128--1100 V were applied transversely to the crystal. An acoustic wave was used to interrogate the crystal before, during, and after voltage application. Both single and multiple pass measurements were performed and compared to linear piezoelectric theory. A comparison study between Y+36° and 0° X-cut LiNbO3 was performed to evaluate the influence of crystal cut on acoustic propagation. The study was extended to applying alternating current (AC), and pulsed voltages. The measured DC data was compared to a 1-D impedance matrix model that was based on a three port circuit with voltage-induced strain effects inputted as a model parameter. An uncertainty budget was carried out for both crystal cuts and compared. Environmental effects such as pressure and temperature were also measured to determine their influence on the sensor under ambient conditions. Published literature regarding material constants, such as elastic constants and piezoelectric constants, for LiNbO3 do not account for the influence of an electric field. In light of this, measurements of the acoustic velocities and material constants under the presence of a DC electric field were performed up to 896 V. This information was used to develop an uncertainty analysis for the determination of stress-charge form

  20. A new method for measuring the Faradic resistance of a single electrode-electrolyte interface.

    PubMed

    Mayer, S; Geddes, L A; Bourland, J D; Ogborn, L

    1992-03-01

    A new method is described for measuring the Faradic resistance of a single electrode-electrolyte interface. The method employs a test (monopolar) electrode, a potential-sensing electrode and a large reference (indifferent) electrode, along with a constant-current source capable of providing a step function of current. The method was used to measure the Faradic resistance of a 0.1 cm2 platinum electrode in contact with saline (p = 150 ohm-cm) at room temperature. It was found that for both a positive and negative current pulse, the Faradic resistance decreased almost hyperbolically with increasing current density. When the reciprocal of the Faradic resistance (Gf) was plotted versus current density and the data were fit to a polynomial curve, the results showed that for the positive pulse Gf = 0.009 + 0.05J - 0.0001J2; (SEE = 0.117); for the negative pulse, Gf = 0.007 + 0.067J - 0.0001J2; (SEE = 0.028); where Gf is in millisiemens and J is in mA/cm2 for this 0.1 cm2 electrode. These relationships permit estimating the Faradic resistance (Rf) for zero current density. For the positive pulse, Rf = 111 kilohms and for the negative pulse Rf = 143 kilohms. The method is applicable to the measurement of the Faradic resistance of a wide variety of metal electrodes.

  1. Potentiometric measurement of polymer-membrane electrodes based on lanthanum

    NASA Astrophysics Data System (ADS)

    Saefurohman, Asep; Buchari, Noviandri, Indra; Syoni

    2014-03-01

    Quantitative analysis of rare earth elements which are considered as the standard method that has a high accuracy, and detection limits achieved by the order of ppm is inductively coupled plasma atomic emission spectroscopy (ICPAES). But these tools are expensive and valuable analysis of the high cost of implementation. In this study be made and characterized selective electrode for the determination of rare earth ions is potentiometric. Membrane manufacturing techniques studied is based on immersion (liquid impregnated membrane) in PTFE 0.5 pore size. As ionophores to be used tri butyl phosphate (TBP) and bis(2-etylhexyl) hydrogen phosphate. There is no report previously that TBP used as ionophore in polymeric membrane based lanthanum. Some parameters that affect the performance of membrane electrode such as membrane composition, membrane thickness, and types of membrane materials studied in this research. Manufacturing of Ion Selective Electrodes (ISE) Lanthanum (La) by means of impregnation La membrane in TBP in kerosene solution has been done and showed performance for ISE-La. FTIR spectrum results for PTFE 0.5 pore size which impregnated in TBP and PTFE blank showed difference of spectra in the top 1257 cm-1, 1031 cm-1 and 794.7 cm-1 for P=O stretching and stretching POC from group -OP =O. The result showed shift wave number for P =O stretching of the cluster (-OP=O) in PTFE-TBP mixture that is at the peak of 1230 cm-1 indicated that no interaction bond between hydroxyl group of molecules with molecular clusters fosforil of TBP or R3P = O. The membrane had stable responses in pH range between 1 and 9. Good responses were obtained using 10-3 M La(III) internal solution, which produced relatively high potential. ISE-La showed relatively good performances. The electrode had a response time of 29±4.5 second and could be use for 50 days. The linear range was between 10-5 and 10-1 M.

  2. Potentiometric measurement of polymer-membrane electrodes based on lanthanum

    SciTech Connect

    Saefurohman, Asep Buchari, Noviandri, Indra; Syoni

    2014-03-24

    Quantitative analysis of rare earth elements which are considered as the standard method that has a high accuracy, and detection limits achieved by the order of ppm is inductively coupled plasma atomic emission spectroscopy (ICPAES). But these tools are expensive and valuable analysis of the high cost of implementation. In this study be made and characterized selective electrode for the determination of rare earth ions is potentiometric. Membrane manufacturing techniques studied is based on immersion (liquid impregnated membrane) in PTFE 0.5 pore size. As ionophores to be used tri butyl phosphate (TBP) and bis(2-etylhexyl) hydrogen phosphate. There is no report previously that TBP used as ionophore in polymeric membrane based lanthanum. Some parameters that affect the performance of membrane electrode such as membrane composition, membrane thickness, and types of membrane materials studied in this research. Manufacturing of Ion Selective Electrodes (ISE) Lanthanum (La) by means of impregnation La membrane in TBP in kerosene solution has been done and showed performance for ISE-La. FTIR spectrum results for PTFE 0.5 pore size which impregnated in TBP and PTFE blank showed difference of spectra in the top 1257 cm{sup −1}, 1031 cm{sup −1} and 794.7 cm{sup −1} for P=O stretching and stretching POC from group −OP =O. The result showed shift wave number for P =O stretching of the cluster (−OP=O) in PTFE-TBP mixture that is at the peak of 1230 cm{sup −1} indicated that no interaction bond between hydroxyl group of molecules with molecular clusters fosforil of TBP or R{sub 3}P = O. The membrane had stable responses in pH range between 1 and 9. Good responses were obtained using 10{sup −3} M La(III) internal solution, which produced relatively high potential. ISE-La showed relatively good performances. The electrode had a response time of 29±4.5 second and could be use for 50 days. The linear range was between 10{sup −5} and 10{sup −1} M.

  3. Electrochemistry of cytochromes p450: analysis of current-voltage characteristics of electrodes with immobilized cytochromes p450 for the screening of substrates and inhibitors.

    PubMed

    Shumyantseva, V V; Bulko, T V; Kuznetsova, G P; Samenkova, N F; Archakov, A I

    2009-04-01

    In the current study, an approach to elucidating the substrate specificity of cytochromes P450 based on the analysis of current-voltage characteristics of voltammograms and amperograms is proposed. Data on the electrochemical behavior of bioelectrodes with immobilized cytochromes P450 2B4, 1A2, 3A4, 11A1 (P450scc), and 51b1 (Mycobacterium tuberculosis sterol 14alpha-demethylase or CYP51 MT) in the presence of typical substrates and inhibitors for these hemoprotein forms are reported. Immobilization of the enzymes was accomplished by using graphite screen-printed electrodes modified with gold nanoparticles and with the synthetic membrane-like compound didodecyldimethylammonium bromide. The method of electro-analysis can be applied to the search of potential substrates and inhibitors of cytochromes P450 and to creation of multichannel electrochemical plates (chips, panels) with immobilized cytochromes P450.

  4. Low-voltage pulsed plasma discharges inside water using a bubble self-generating parallel plate electrode with a porous ceramic

    NASA Astrophysics Data System (ADS)

    Muradia, Sonia; Nagatsu, Masaaki

    2013-04-01

    Characteristics of pulsed bubbles discharges in water were investigated using parallel punched plate electrodes with a porous thin ceramic plate inserted between two metal plates. The micro-bubbles were generated just beneath the porous ceramic plate by flowing gas through it. The transition from spiky dielectric barrier discharges to pulsed glow discharges enables efficient bubble discharges at a relatively low voltage of 1.8 ˜ 4.0 kV of the 5 kHz square-waves with a pulse-width of about 750 ns. With 80% Ar and 20% O2 mixture gas at 4.0 kV, the 50 mg/l Indigo Carmine aqueous solution was efficiently decolorized within about 3 min.

  5. Improvement of Electrical Stimulation Protocol for Simultaneous Measurement of Extracellular Potential with On-Chip Multi-Electrode Array System

    NASA Astrophysics Data System (ADS)

    Kaneko, Tomoyuki; Nomura, Fumimasa; Hattori, Akihiro; Yasuda, Kenji

    2012-06-01

    Cardiotoxicity testing with a multi-electrode array (MEA) system requires the stable beating of cardiomyocytes for the measurement of the field potential duration (FPD), because different spontaneous beating rates cause different responses of FPD prolongation induced by drugs, and the beating rate change effected by drugs complicates the FPD prolongation assessment. We have developed an on-chip MEA system with electrical stimulation for the measurement of the FPD during the stable beating of human embryonic stem (ES) cell-derived cardiomyocyte clusters. Using a conventional bipolar stimulation protocol, we observed such large artifacts in electrical stimulation that we could not estimate the FPD quantitatively. Therefore, we improved the stimulation protocol by using sequential rectangular pulses in which the positive and negative stimulation voltages and number of pulses could be changed flexibly. The balanced voltages and number of pulses for sequential rectangular pulses enabled the recording of small negative artifacts only, which hardly affected the FPD measurement of human-ES-cell-derived cardiomyocyte clusters. These conditions of electrical stimulation are expected to find applications for the control of constant beating for cardiotoxicity testing.

  6. Verification of a novel method for tube voltage constancy measurement of orthovoltage x-ray irradiators

    PubMed Central

    Wang, Chu; Belley, Matthew D.; Chao, Nelson J.; Dewhirst, Mark W.; Yoshizumi, Terry

    2014-01-01

    Purpose: For orthovoltage x-ray irradiators, the tube voltage is one of the most fundamental system parameters as this directly relates to the dosimetry in radiation biology studies; however, to the best of our knowledge, there is no commercial portable quality assurance (QA) tool to directly test the constancy of the tube voltage greater than 160 kV. The purpose of this study is to establish the Beam Quality Index (BQI), a quantity strongly correlated to the tube voltage, as an alternative parameter for the verification of the tube voltage as part of the QA program of orthovoltage x-ray irradiators. Methods: A multipurpose QA meter and its associated data acquisition software were used to customize the measurement parameters to measure the BQI and collect its time-plot. BQI measurements were performed at 320 kV with four filtration levels on three orthovoltage x-ray irradiators of the same model, one of which had been recently energy-calibrated at the factory. Results: For each of the four filtration levels, the measured BQI values were in good agreement (<5%) between the three irradiators. BQI showed filtration-specificity, possibly due to the difference in beam quality. Conclusions: The BQI has been verified as a feasible alternative for monitoring the constancy of the tube voltage for orthovoltage irradiators. The time-plot of BQI offers information on the behavior of beam energy at different phases of the irradiation time line. In addition, this would provide power supply performance characteristics from initial ramp-up to plateau, and finally, the sharp drop-off at the end of the exposure. PMID:25086562

  7. Verification of a novel method for tube voltage constancy measurement of orthovoltage x-ray irradiators

    SciTech Connect

    Wang, Chu; Belley, Matthew D.; Chao, Nelson J.; Dewhirst, Mark W.; Yoshizumi, Terry

    2014-08-15

    Purpose: For orthovoltage x-ray irradiators, the tube voltage is one of the most fundamental system parameters as this directly relates to the dosimetry in radiation biology studies; however, to the best of our knowledge, there is no commercial portable quality assurance (QA) tool to directly test the constancy of the tube voltage greater than 160 kV. The purpose of this study is to establish the Beam Quality Index (BQI), a quantity strongly correlated to the tube voltage, as an alternative parameter for the verification of the tube voltage as part of the QA program of orthovoltage x-ray irradiators. Methods: A multipurpose QA meter and its associated data acquisition software were used to customize the measurement parameters to measure the BQI and collect its time-plot. BQI measurements were performed at 320 kV with four filtration levels on three orthovoltage x-ray irradiators of the same model, one of which had been recently energy-calibrated at the factory. Results: For each of the four filtration levels, the measured BQI values were in good agreement (<5%) between the three irradiators. BQI showed filtration-specificity, possibly due to the difference in beam quality. Conclusions: The BQI has been verified as a feasible alternative for monitoring the constancy of the tube voltage for orthovoltage irradiators. The time-plot of BQI offers information on the behavior of beam energy at different phases of the irradiation time line. In addition, this would provide power supply performance characteristics from initial ramp-up to plateau, and finally, the sharp drop-off at the end of the exposure.

  8. Forward voltage short-pulse technique for measuring high power laser array junction temperature

    NASA Technical Reports Server (NTRS)

    Meadows, Byron L. (Inventor); Amzajerdian, Frazin (Inventor); Barnes, Bruce W. (Inventor); Baker, Nathaniel R. (Inventor)

    2012-01-01

    The present invention relates to a method of measuring the temperature of the P-N junction within the light-emitting region of a quasi-continuous-wave or pulsed semiconductor laser diode device. A series of relatively short and low current monitor pulses are applied to the laser diode in the period between the main drive current pulses necessary to cause the semiconductor to lase. At the sufficiently low current level of the monitor pulses, the laser diode device does not lase and behaves similar to an electronic diode. The voltage across the laser diode resulting from each of these low current monitor pulses is measured with a high degree of precision. The junction temperature is then determined from the measured junction voltage using their known linear relationship.

  9. High altitude current-voltage measurement of GaAs/Ge solar cells

    NASA Technical Reports Server (NTRS)

    Hart, Russell E., Jr.; Brinker, David J.; Emery, Keith A.

    1988-01-01

    Measurements of high-voltage (Voc of 1.2 V) gallium arsenide on germanium tandem junction solar cells at air mass 0.22 showed that the insolation in the red portion of the solar spectrum is insufficient to obtain high fill factor. On the basis of measurements in the LeRC X-25L solar simulator, these cells were believed to be as efficient as 21.68 percent AM0. Solar simulator spectrum errors in the red end allowed the fill factor to be as high as 78.7 percent. When a similar cell's current-voltage characteristic was measured at high altitude in the NASA Lear Jet Facility, a loss of 15 percentage points in fill factor was observed. This decrease was caused by insufficient current in the germanium bottom cell of the tandem stack.

  10. Sensitive immunodetection through impedance measurements onto gold functionalized electrodes.

    PubMed

    Ameur, S; Martelet, C; Jaffrezic-Renault, N; Chovelon, J M

    2000-01-01

    This article deals with a direct electrochemical method of detecting antigens using new methods of functionalization of gold electrodes. Based on the reacting ability of gold with sulfhydryl groups, three protocols for the fixation of antibodies have been explored. They are based on either the self-assembling properties of functional thiols bearing long alkyl chains or the possibility of a direct coupling of antibody moieties. Coverage rates as high as 97% can be reached. The analysis of the electrochemical impedance behavior of such layers can lead to a sensitive method for the direct detection of the antibody/antigen interaction. The addition of a redox couple in the tested solution, acting as an amplifier, allowed detection limits for the antigens as low as a few picograms/milliliter to be reached. PMID:11209460

  11. The influence of voltage applied between the electrodes on optical and morphological properties of the InGaN thin films grown by thermionic vacuum arc.

    PubMed

    Özen, Soner; Şenay, Volkan; Pat, Suat; Korkmaz, Şadan

    2016-01-01

    The aim of this research is to investigate the optical and morphological properties of the InGaN thin films deposited onto amorphous glass substrates in two separate experiments with two different voltages applied between the electrodes, i.e. 500 and 600 V by means of the thermionic vacuum arc technique. This technique is original for thin film deposition and it enables thin film production in a very short period of time. The optical and morphological properties of the films were investigated by using field emission scanning electron microscope, atomic force microscope, spectroscopic ellipsometer, reflectometer, spectrophotometer, and optical tensiometer. Optical properties were also supported by empirical relations. The deposition rates were calculated as 3 and 3.3 nm/sec for 500 and 600 V, respectively. The increase in the voltage also increased the refractive index, grain size, root mean square roughness and surface free energy. According to the results of the wetting experiments, InGaN samples were low-wettable, also known as hydrophobic.

  12. Assessment of Carbon/Salt/Adhesive Electrodes for Surface Electromyography Measurements

    PubMed Central

    Posada-Quintero, Hugo; Rood, Ryan; Burnham, Ken; Pennace, John

    2016-01-01

    This paper presents the evaluation of novel electrodes for surface electromyography (sEMG) measurements. The electrodes are based on the mixture of carbon powder, quaternary salt, and viscoelastic polymeric adhesive (carbon/salt/adhesive or simply CSA), which when combined, provide the unique advantages of having longer (theoretically infinite) shelf life and potentially lower cost than Ag/AgCl hydrogel electrodes, consistent with FLEXcon’s Patent #8 673 184. The 20 subjects were recruited to collect simultaneous recordings of sEMG signals using Ag/AgCl and CSA electrodes, side-by-side on triceps brachii, tibial anterior muscles, biceps brachii, and quadriceps femoris. Although CSA sEMG electrodes showed higher electrode-skin contact impedance for the frequency range of 4 Hz–2 kHz, no significant differences were found in the signals’ amplitude between the two electrodes either during relaxation or contraction stages. Furthermore, correlations of the computed linear envelopes (>0.91), rms value envelopes (>0.91), and power spectral densities (>0.95) of the signals were found to be high between the two media. Detected ON- and OFF-times of contraction were also highly correlated (>0.9) and interchangeable (ON-time: bias = −0.02, variance = 0.11; OFF-time: bias = −0.04, variance = 0.23) between the two media. However, CSA sEMG electrodes exhibited a significantly better response to noise (38.3 ± 10.6 dB versus 32.7 ± 15.6 dB) and motion artifacts (24.1 ± 12.1 dB versus 16.6 ± 8.52 dB), and a significantly lower spectral deformation (1.32 ± 0.2 versus 1.46 ± 0.4). Ag/AgCl electrodes showed a significantly more peaked and sensitive response to EMG amplitude (67.9 ± 13.9 dB versus 65.4 ± 14.6 dB). Given no significant differences in many of the measures described earlier and the fact that CSA electrodes have an infinite shelf-life are potentially lower cost, and are more resistant to motion artifacts, the new electrodes provide an attractive alternative

  13. Assessment of Carbon/Salt/Adhesive Electrodes for Surface Electromyography Measurements.

    PubMed

    Posada-Quintero, Hugo; Rood, Ryan; Burnham, Ken; Pennace, John; Chon, Ki

    2016-01-01

    This paper presents the evaluation of novel electrodes for surface electromyography (sEMG) measurements. The electrodes are based on the mixture of carbon powder, quaternary salt, and viscoelastic polymeric adhesive (carbon/salt/adhesive or simply CSA), which when combined, provide the unique advantages of having longer (theoretically infinite) shelf life and potentially lower cost than Ag/AgCl hydrogel electrodes, consistent with FLEXcon's Patent #8 673 184. The 20 subjects were recruited to collect simultaneous recordings of sEMG signals using Ag/AgCl and CSA electrodes, side-by-side on triceps brachii, tibial anterior muscles, biceps brachii, and quadriceps femoris. Although CSA sEMG electrodes showed higher electrode-skin contact impedance for the frequency range of 4 Hz-2 kHz, no significant differences were found in the signals' amplitude between the two electrodes either during relaxation or contraction stages. Furthermore, correlations of the computed linear envelopes (>0.91), rms value envelopes (>0.91), and power spectral densities (>0.95) of the signals were found to be high between the two media. Detected ON- and OFF-times of contraction were also highly correlated (>0.9) and interchangeable (ON-time: bias = -0.02, variance = 0.11; OFF-time: bias = -0.04, variance = 0.23) between the two media. However, CSA sEMG electrodes exhibited a significantly better response to noise (38.3 ± 10.6 dB versus 32.7 ± 15.6 dB) and motion artifacts (24.1 ± 12.1 dB versus 16.6 ± 8.52 dB), and a significantly lower spectral deformation (1.32 ± 0.2 versus 1.46 ± 0.4). Ag/AgCl electrodes showed a significantly more peaked and sensitive response to EMG amplitude (67.9 ± 13.9 dB versus 65.4 ± 14.6 dB). Given no significant differences in many of the measures described earlier and the fact that CSA electrodes have an infinite shelf-life are potentially lower cost, and are more resistant to motion artifacts, the new electrodes provide an attractive alternative to Ag

  14. Assessment of Carbon/Salt/Adhesive Electrodes for Surface Electromyography Measurements.

    PubMed

    Posada-Quintero, Hugo; Rood, Ryan; Burnham, Ken; Pennace, John; Chon, Ki

    2016-01-01

    This paper presents the evaluation of novel electrodes for surface electromyography (sEMG) measurements. The electrodes are based on the mixture of carbon powder, quaternary salt, and viscoelastic polymeric adhesive (carbon/salt/adhesive or simply CSA), which when combined, provide the unique advantages of having longer (theoretically infinite) shelf life and potentially lower cost than Ag/AgCl hydrogel electrodes, consistent with FLEXcon's Patent #8 673 184. The 20 subjects were recruited to collect simultaneous recordings of sEMG signals using Ag/AgCl and CSA electrodes, side-by-side on triceps brachii, tibial anterior muscles, biceps brachii, and quadriceps femoris. Although CSA sEMG electrodes showed higher electrode-skin contact impedance for the frequency range of 4 Hz-2 kHz, no significant differences were found in the signals' amplitude between the two electrodes either during relaxation or contraction stages. Furthermore, correlations of the computed linear envelopes (>0.91), rms value envelopes (>0.91), and power spectral densities (>0.95) of the signals were found to be high between the two media. Detected ON- and OFF-times of contraction were also highly correlated (>0.9) and interchangeable (ON-time: bias = -0.02, variance = 0.11; OFF-time: bias = -0.04, variance = 0.23) between the two media. However, CSA sEMG electrodes exhibited a significantly better response to noise (38.3 ± 10.6 dB versus 32.7 ± 15.6 dB) and motion artifacts (24.1 ± 12.1 dB versus 16.6 ± 8.52 dB), and a significantly lower spectral deformation (1.32 ± 0.2 versus 1.46 ± 0.4). Ag/AgCl electrodes showed a significantly more peaked and sensitive response to EMG amplitude (67.9 ± 13.9 dB versus 65.4 ± 14.6 dB). Given no significant differences in many of the measures described earlier and the fact that CSA electrodes have an infinite shelf-life are potentially lower cost, and are more resistant to motion artifacts, the new electrodes provide an attractive alternative to Ag

  15. [An impulse device for measuring electric conductivity with thermostatic skin electrodes for determining ovulation time].

    PubMed

    Stupnitskiĭ, I F

    1989-01-01

    A device for realization of a new method of ovulation definition in women by conductance measurement in breast nipples is suggested. Thermostatic epicutaneous electrodes for reducing the vascular reaction in nipples and measured electric charge are used in the device. That permits to reduce the routine fest-induced stress on the object of measurement.

  16. Spatial concentration distribution analysis of cells in electrode-multilayered microchannel by dielectric property measurement

    PubMed Central

    Yao, Jiafeng; Kodera, Tatsuya; Obara, Hiromichi; Sugawara, Michiko; Takei, Masahiro

    2015-01-01

    The spatial concentration distribution of cells in a microchannel is measured by combining the dielectric properties of cells with the specific structure of the electrode-multilayered microchannel. The dielectric properties of cells obtained with the impedance spectroscopy method includes the cell permittivity and dielectric relaxation, which corresponds to the cell concentration and structure. The electrode-multilayered microchannel is constructed by 5 cross-sections, and each cross-section contains 5 electrode-layers embedded with 16 micro electrodes. In the experiment, the dielectric properties of cell suspensions with different volume concentrations are measured with different electrode-combinations corresponding to different electric field distributions. The dielectric relaxations of different cell concentrations are compared and discussed with the Maxwell-Wagner dispersion theory, and the relaxation frequencies are analysed by a cell polarization model established based on the Hanai cell model. Moreover, a significant linear relationship with AC frequency dependency between relative permittivity and cell concentration was found, which provides a promising way to on-line estimate cell concentration in microchannel. Finally, cell distribution in 1 cross-section of the microchannel (X and Y directions) was measured with different electrode-combinations using the dielectric properties of cell suspensions, and cell concentration distribution along the microchannel (Z direction) was visualized at flowing state. The present cell spatial sensing study provides a new approach for 3 dimensional non-invasive online cell sensing for biological industry. PMID:26392831

  17. Electrochemical impedance measurement of prostate cancer cells using carbon nanotube array electrodes in a microfluidic channel

    NASA Astrophysics Data System (ADS)

    Heung Yun, Yeo; Dong, Zhongyun; Shanov, Vesselin N.; Schulz, Mark J.

    2007-11-01

    Highly aligned multi-wall carbon nanotubes were synthesized in the shape of towers and embedded into fluidic channels as electrodes for impedance measurement of LNCaP human prostate cancer cells. Tower electrodes up to 8 mm high were grown and easily peeled off a silicon substrate. The nanotube electrodes were then successfully soldered onto patterned printed circuit boards and cast into epoxy under pressure. After polishing the top of the tower electrodes, RF plasma was used to enhance the electrocatalytic effect by removing excess epoxy and activating the open end of the nanotubes. Electrodeposition of Au particles on the plasma-treated tower electrodes was done at a controlled density. Finally, the nanotube electrodes were embedded into a polydimethylsiloxane (PDMS) channel and electrochemical impedance spectroscopy was carried out with different conditions. Preliminary electrochemical impedance spectroscopy results using deionized water, buffer solution, and LNCaP prostate cancer cells showed that nanotube electrodes can distinguish the different solutions and could be used in future cell-based biosensor development.

  18. Practical nitric oxide measurement employing a nitric oxide-selective electrode

    NASA Astrophysics Data System (ADS)

    Ichimori, K.; Ishida, H.; Fukahori, M.; Nakazawa, H.; Murakami, E.

    1994-08-01

    An NO-selective electrode was developed as an easily applicable tool for a real-time nitric oxide (NO) measurement. The working electrode (0.2 mm diam) was made from Pt/Ir alloy coated with a three-layered membrane. The counterelectrode was made from a carbon fiber. When a stable NO donor, S-nitroso-N-acetyl-dl-penicillamine, was applied, the electrode current increased in a dose-dependent fashion. The current and calculated NO concentration showed a linear relationship in the range from 0.2 nM (S/N=1) to 1 μM of NO. The response of the electrode was 1.14±0.09 s. The effects of temperature, pH, and chemicals other than NO on the electrode current were also evaluated. Electrodes which were placed in the luminal side of rat aortic rings exhibited 30 pA of current due to NO generation induced by the addition of 10-6 M of acetylcholine. The current was eliminated in the presence of 50 μM NG-monomethyl-L-arginine, an inhibitor of NO synthase. Thus, this NO-selective electrode is applicable to real-time NO assay in biological systems.

  19. Voltage-dependent gating and gating charge measurements in the Kv1.2 potassium channel

    PubMed Central

    Ishida, Itzel G.; Rangel-Yescas, Gisela E.; Carrasco-Zanini, Julia

    2015-01-01

    Much has been learned about the voltage sensors of ion channels since the x-ray structure of the mammalian voltage-gated potassium channel Kv1.2 was published in 2005. High resolution structural data of a Kv channel enabled the structural interpretation of numerous electrophysiological findings collected in various ion channels, most notably Shaker, and permitted the development of meticulous computational simulations of the activation mechanism. The fundamental premise for the structural interpretation of functional measurements from Shaker is that this channel and Kv1.2 have the same characteristics, such that correlation of data from both channels would be a trivial task. We tested these assumptions by measuring Kv1.2 voltage-dependent gating and charge per channel. We found that the Kv1.2 gating charge is near 10 elementary charges (eo), ∼25% less than the well-established 13–14 eo in Shaker. Next, we neutralized positive residues in the Kv1.2 S4 transmembrane segment to investigate the cause of the reduction of the gating charge and found that, whereas replacing R1 with glutamine decreased voltage sensitivity to ∼50% of the wild-type channel value, mutation of the subsequent arginines had a much smaller effect. These data are in marked contrast to the effects of charge neutralization in Shaker, where removal of the first four basic residues reduces the gating charge by roughly the same amount. In light of these differences, we propose that the voltage-sensing domains (VSDs) of Kv1.2 and Shaker might undergo the same physical movement, but the septum that separates the aqueous crevices in the VSD of Kv1.2 might be thicker than Shaker’s, accounting for the smaller Kv1.2 gating charge. PMID:25779871

  20. Two-point concrete resistivity measurements: interfacial phenomena at the electrode-concrete contact zone

    NASA Astrophysics Data System (ADS)

    McCarter, W. J.; Taha, H. M.; Suryanto, B.; Starrs, G.

    2015-08-01

    Ac impedance spectroscopy measurements are used to critically examine the end-to-end (two-point) testing technique employed in evaluating the bulk electrical resistivity of concrete. In particular, this paper focusses on the interfacial contact region between the electrode and specimen and the influence of contacting medium and measurement frequency on the impedance response. Two-point and four-point electrode configurations were compared and modelling of the impedance response was undertaken to identify and quantify the contribution of the electrode-specimen contact region on the measured impedance. Measurements are presented in both Bode and Nyquist formats to aid interpretation. Concretes mixes conforming to BSEN206-1 and BS8500-1 were investigated which included concretes containing the supplementary cementitious materials fly ash and ground granulated blast-furnace slag. A measurement protocol is presented for the end-to-end technique in terms of test frequency and electrode-specimen contacting medium in order to minimize electrode-specimen interfacial effect and ensure correct measurement of bulk resistivity.

  1. A miniature all-solid-state calcium electrode applied to in situ seawater measurement

    NASA Astrophysics Data System (ADS)

    Xu, Hui; Wang, You; Luo, Zhiyuan; Pan, Yiwen

    2013-12-01

    An all-solid-state miniature calcium ion selective electrode (ISE) based on poly(3,4-ethylenedioxythiophene) doped with poly(styrene sulfonate) (PEDOT(PSS)) for continuous in situ measurement in seawater was studied. The electrode substrate was a platinum (Pt) wire of 0.5 mm diameter and PEDOT(PSS) was electropolymerized on one end of the Pt wire to act as the solid contact of this calcium ISE. The PEDOT(PSS) layer was covered with a calcium-selective poly(vinyl chloride) membrane, which contained ETH129 as calcium ionophore, potassium tetrakis-(p-chlorophenyl)borate as lipophilic anion and bis(2-ethylhexyl) sebacate as the plasticizer. Experiments using electrochemical impedance spectroscopy and reversed chronopotentiometry illustrated that electropolymerized PEDOT(PSS) decreased the resistance and improved the stability of the electrode. The sensors can work stably in the calcium ion concentration range of 10-6-10-1 mol L-1 with the slope of 27.7 mV/decade. Also Na+, K+ and Mg2+ can hardly interfere with the performance of the electrode. This electrode was applied to measure the calcium ion concentration of seawater samples. The experimental data showed that the electrode can resist the corrosion of seawater and its reproducibility was good (SD < 0.1 mM kg-1). The lifetime of such an electrode was at least six months. Because of the wire-shape and the small size of such a liquid junction free calcium electrode, it is pressure-resistant and easy to package and seal, therefore it is suitable for use in underwater equipment for in situ seawater measurement.

  2. Active medical implants and occupational safety--measurement and numerical calculation of interference voltage.

    PubMed

    Gustrau, F; Bahr, A; Goltz, S; Eggert, S

    2002-01-01

    Low frequency electric and magnetic fields may interfere with implanted cardiac pacemakers causing a life-threatening malfunction of the device. In order to assess the safety of workers in the vicinity of industrial electrical devices the interference voltage at the input port of a pacemaker is an important measure. In order to investigate the coupling of fields emanating from electrical devices a numerical method for the calculation of interference voltages is presented and applied to the investigation of homogeneous electric and magnetic fields in the frequency range from 50 Hz to 1 MHz. Implantation of the pacemaker in the right pectoral, left pectoral and abdominal area using a realistic model of the human body as well as different grounding conditions are considered. The numerical method is successfully validated by measurements and shows good agreement with results in the literature.

  3. Correlation between measured voltage and observed wavelength in commercial AlGaInP laser diode

    SciTech Connect

    Iskrenović, Predrag S.; Krstić, Ivan B.; Obradović, Bratislav M. Kuraica, Milorad M.

    2014-05-14

    Temperature of a commercial AlGaInP/GaInP quantum well laser diode (LD) is measured using two methods: peak wavelength shift and the diode voltage drop caused by working current. Time evolutions of temperature obtained by the two methods during the LD self-heating are measured and compared. No significant difference between the thus obtained temperature evolutions is obtained. Correlation between the LD voltage drop and the laser radiation frequency is established using a simple four-level semiconductor laser scheme and the LD gap energy is estimated. The LD gap energy decreases from 1.66 eV to 1.56 eV for temperature increase of 21 K, at close to room temperature. It is found that LD's frequency decrease is caused by the gap energy decrease.

  4. A new approach to high-speed flow measurements using constant voltage anemometry

    NASA Technical Reports Server (NTRS)

    Mangalam, S. M.; Sarma, G. R.; Kuppa, S.; Kubendran, L. R.

    1992-01-01

    The paper addresses the basic features of conventional instrumentation, such as the constant temperature (CTA) and the constant current (CCA) anemometers, their limitations, and describes a totally new approach to high-speed dynamic measurements using a constant voltage anemometer (CVA). The paper describes the design features of a newly developed CVA and compares preliminary results obtained with CVA and conventional anemometry in low- and high-speed flows.

  5. Iridium Oxide Nanotube Electrodes for Highly Sensitive and Prolonged Intracellular Measurement of Action Potentials

    PubMed Central

    Lin, Ziliang Carter; Xie, Chong; Osakada, Yasuko; Cui, Yi; Cui, Bianxiao

    2014-01-01

    Intracellular recording of action potentials is important to understand electrically-excitable cells. Recently, vertical nanoelectrodes have been developed to achieve highly sensitive, minimally invasive, and large scale intracellular recording. It has been demonstrated that the vertical geometry is crucial for the enhanced signal detection. Here we develop nanoelectrodes made up of nanotubes of iridium oxide. When cardiomyocytes are cultured upon those nanotubes, the cell membrane not only wraps around the vertical tubes but also protrudes deep into the hollow center. We show that this geometry enhances cell-electrode coupling and results in measuring much larger intracellular action potentials. The nanotube electrodes afford much longer intracellular access and are minimally invasive, making it possible to achieve stable recording up to an hour in a single session and more than 8 days of consecutive daily recording. This study suggests that the electrode performance can be significantly improved by optimizing the electrode geometry. PMID:24487777

  6. Sources of resonance-related errors in capacitance versus voltage measurement systems

    NASA Astrophysics Data System (ADS)

    Polishchuk, Igor; Brown, George; Huff, Howard

    2000-10-01

    A frequency dependence of the capacitance of metal-oxide-semiconductor devices is often observed in wafer-level probe station measurements for frequencies exceeding 100 kHz. It is well established, however, that the true capacitance value in the SiO2 devices biased into accumulation should remain frequency-independent well into the gigahertz range. Consequently, the apparent frequency dependence of the capacitance versus voltage characteristic may be the result of a resonance present in the measurement setup. We present a quantitative analysis, which can be used to identify the sources of error, characterize a measurement system, and improve the precision of the collected data.

  7. Advanced Ring-Shaped Microelectrode Assay Combined with Small Rectangular Electrode for Quasi-In vivo Measurement of Cell-to-Cell Conductance in Cardiomyocyte Network

    NASA Astrophysics Data System (ADS)

    Nomura, Fumimasa; Kaneko, Tomoyuki; Hamada, Tomoyo; Hattori, Akihiro; Yasuda, Kenji

    2013-06-01

    To predict the risk of fatal arrhythmia induced by cardiotoxicity in the highly complex human heart system, we have developed a novel quasi-in vivo electrophysiological measurement assay, which combines a ring-shaped human cardiomyocyte network and a set of two electrodes that form a large single ring-shaped electrode for the direct measurement of irregular cell-to-cell conductance occurrence in a cardiomyocyte network, and a small rectangular microelectrode for forced pacing of cardiomyocyte beating and for acquiring the field potential waveforms of cardiomyocytes. The advantages of this assay are as follows. The electrophysiological signals of cardiomyocytes in the ring-shaped network are superimposed directly on a single loop-shaped electrode, in which the information of asynchronous behavior of cell-to-cell conductance are included, without requiring a set of huge numbers of microelectrode arrays, a set of fast data conversion circuits, or a complex analysis in a computer. Another advantage is that the small rectangular electrode can control the position and timing of forced beating in a ring-shaped human induced pluripotent stem cell (hiPS)-derived cardiomyocyte network and can also acquire the field potentials of cardiomyocytes. First, we constructed the human iPS-derived cardiomyocyte ring-shaped network on the set of two electrodes, and acquired the field potential signals of particular cardiomyocytes in the ring-shaped cardiomyocyte network during simultaneous acquisition of the superimposed signals of whole-cardiomyocyte networks representing cell-to-cell conduction. Using the small rectangular electrode, we have also evaluated the response of the cell network to electrical stimulation. The mean and SD of the minimum stimulation voltage required for pacing (VMin) at the small rectangular electrode was 166+/-74 mV, which is the same as the magnitude of amplitude for the pacing using the ring-shaped electrode (179+/-33 mV). The results showed that the

  8. SPEAR-1: An experiment to measure current collection in the ionosphere by high voltage biased conductors

    NASA Technical Reports Server (NTRS)

    Raitt, W. John; Myers, Neil B.; Roberts, Jon A.; Thompson, D. C.

    1990-01-01

    An experiment is described in which a high electrical potential difference, up to 45 kV, was applied between deployed conducting spheres and a sounding rocket in the ionosphere. Measurements were made of the applied voltage and the resulting currents for each of 24 applications of different high potentials. In addition, diagnostic measurements of optical emissions in the vicinity of the spheres, energetic particle flow to the sounding rocket, dc electric field and wave data were made. The ambient plasma and neutral environments were measured by a Langmuir probe and a cold cathode neutral ionization gauge, respectively. The payload is described and examples of the measured current and voltage characteristics are presented. The characteristics of the measured currents are discussed in terms of the diagnostic measurements and the in-situ measurements of the vehicle environment. In general, it was found that the currents observed were at a level typical of magnetically limited currents from the ionospheric plasma for potentials less than 12 kV, and slightly higher for larger potentials. However, due to the failure to expose the plasma contactor, the vehicle sheath modified the sphere sheaths and made comparisons with the analytic models of Langmuir-Blodgett and Parker-Murphy less meaningful. Examples of localized enhancements of ambient gas density resulting from the operation of the attitude control system thrusters (cold nitrogen) were obtained. Current measurements and optical data indicated localized discharges due to enhanced gas density that reduced the vehicle-ionosphere impedance.

  9. Measuring the Photopic Negative Response: Viability of Skin Electrodes and Variability Across Disease Severities in Glaucoma

    PubMed Central

    Wu, Zhichao; Hadoux, Xavier; Fan Gaskin, Jennifer C.; Sarossy, Marc G.; Crowston, Jonathan G.

    2016-01-01

    Purpose The purpose of this study was to determine the feasibility of measuring the photopic negative response (PhNR) of the full-field electroretinogram (ERG) using skin electrodes compared to conjunctival electrodes and its test–retest variability over a range of disease severities in open-angle glaucoma. Methods Recordings were performed twice (100 sweeps each) within the same session in 43 eyes of 23 participants with glaucoma to determine its intrinsic variability. The ratio between the PhNR and B-wave amplitude (PhNR/B ratio) was determined for each trace and computed across 5 to 100 sweeps of each recording. Spectral-domain optical coherence tomography was used to measure the average peripapillary retinal nerve fiber layer (RNFL) thickness. Results The PhNR/B ratio and its magnitude of variability were not significantly different between skin and conjunctival electrodes (P ≤ 0.197), and the degree of variability decreased substantially with increasing number of sweeps. For skin electrodes, the intraclass correlation coefficient was 0.89 and 0.91 for right and left eyes, respectively. The variability of the PhNR/B ratio decreased with lower RNFL thickness values and larger B-wave amplitudes (P ≤ 0.002). Conclusions Skin electrodes are a viable alternative to conjunctival electrodes when measuring the PhNR in open angle glaucoma, and increasing the number of sweeps substantially reduced its intrinsic variability; the extent of variability was also lower with worsening disease severity. Translational Relevance The feasibility of performing ERG recordings widely across a range of disease severities in glaucoma can be achieved through using skin electrodes and increasing the number of sweeps performed to improve measurement repeatability. PMID:26998406

  10. AN EVALUATION OF ELECTRODE INSERTION TECHNIQUES FOR MEASUREMENT OF REDOX POTENTIAL IN ESTUARINE SEDIMENTS

    EPA Science Inventory

    Eh measurements by electrodes are commonly used to characterize redox status of sediments in freshwater, marine and estuarine studies, due to the relative ease and rapidity of data collection. In our studies of fine-grained estuarine seabeds, we observed that Eh values measured i...

  11. OXYGEN TENSION MEASUREMENT BY A METHOD OF TIME SELECTION USING THE STATIC PLATINUM ELECTRODE WITH ALTERNATING POTENTIAL

    PubMed Central

    Olson, Rodney A.; Brackett, Frederick S.; Crickard, Robert G.

    1949-01-01

    1. The possibility of obtaining sustained and reproducible results in the analysis of dissolved oxygen with simple platinum electrodes by means of the application of a periodic potential pattern was explored over a wide range of frequencies and with a variety of wave forms. 2. Satisfactory results were obtained by the application in the frequency range of 5 to 10 C.P.M. of a square wave consisting of a positive and a negative pulse with interposed shorting periods and observing the current flowing at the end of each successive negative pulse. This was found to be linearly proportional to O2 concentration for a pulse duration of the order of 1 second when the RC constant of the circuit was sufficiently small. 3. An instrument was developed to provide the required wave form and record the terminal currents of the negative pulses. The instrument provides either for recording of current voltage curves (polarograms) or for continuous recording at a fixed voltage of diffusion limited current values. 4. Typical measurements of oxygen uptake with yeast suspensions illustrate the application of the technique to problems requiring frequent determinations during short intervals. 5. Applications of this technique to biological and other problems are indicated with its limitations. PMID:18131871

  12. Design and modeling of magnetically driven electric-field sensor for non-contact DC voltage measurement in electric power systems

    NASA Astrophysics Data System (ADS)

    Wang, Decai; Li, Ping; Wen, Yumei

    2016-10-01

    In this paper, the design and modeling of a magnetically driven electric-field sensor for non-contact DC voltage measurement are presented. The magnetic drive structure of the sensor is composed of a small solenoid and a cantilever beam with a cylindrical magnet mounted on it. The interaction of the magnet and the solenoid provides the magnetic driving force for the sensor. Employing magnetic drive structure brings the benefits of low driving voltage and large vibrating displacement, which consequently results in less interference from the drive signal. In the theoretical analyses, the capacitance calculation model between the wire and the sensing electrode is built. The expression of the magnetic driving force is derived by the method of linear fitting. The dynamical model of the magnetic-driven cantilever beam actuator is built by using Euler-Bernoulli theory and distributed parameter method. Taking advantage of the theoretical model, the output voltage of proposed sensor can be predicted. The experimental results are in good agreement with the theoretical results. The proposed sensor shows a favorable linear response characteristic. The proposed sensor has a measuring sensitivity of 9.87 μV/(V/m) at an excitation current of 37.5 mA. The electric field intensity resolution can reach 10.13 V/m.

  13. In situ current voltage measurements for optimization of a novel fullerene acceptor in bulk heterojunction photovoltaics

    SciTech Connect

    Shuttle, Christopher G.; Treat, Neil D.; Fan, Jian; Varotto, Alessandro; Hawker, Craig J.; Wudl, Fred; Chabinyc, Michael L.

    2011-10-31

    The evaluation of the power conversion efficiency (PCE) of new materials for organic bulk heterojunction (BHJ) photovoltaics is difficult due to the large number of processing parameters possible. An efficient procedure to determine the optimum conditions for thermal treatment of polymer-based bulk heterojunction photovoltaic devices using in situ current-voltage measurements is presented. The performance of a new fullerene derivative, 1,9-dihydro-64,65-dihexyloxy-1,9-(methano[1,2] benzomethano)fullerene[60], in BHJ photovolatics with poly(3-hexylthiophene) (P3HT) was evaluated using this methodology. The device characteristics of BHJs obtained from the in situ method were found to be in good agreement with those from BHJs annealed using a conventional process. This fullerene has similar performance to 1-(3-methoxycarbonyl)propyl-1-phenyl-[6,6]-methano fullerene in BHJs with P3HT after thermal annealing. For devices with thickness of 70 nm, the short circuit current was 6.24 mA/cm² with a fill factor of 0.53 and open circuit voltage of 0.65 V. The changes in the current-voltage measurements during thermal annealing suggest that the ordering process in P3HT dominates the improvement in power conversion efficiency.

  14. Investigations of a voltage-biased microwave cavity for quantum measurements of nanomechanical resonators

    NASA Astrophysics Data System (ADS)

    Rouxinol, Francisco; Hao, Hugo; Lahaye, Matt

    2015-03-01

    Quantum electromechanical systems incorporating superconducting qubits have received extensive interest in recent years due to their promising prospects for studying fundamental topics of quantum mechanics such as quantum measurement, entanglement and decoherence in new macroscopic limits, also for their potential as elements in technological applications in quantum information network and weak force detector, to name a few. In this presentation we will discuss ours efforts toward to devise an electromechanical circuit to strongly couple a nanomechanical resonator to a superconductor qubit, where a high voltage dc-bias is required, to study quantum behavior of a mechanical resonator. Preliminary results of our latest generation of devices integrating a superconductor qubit into a high-Q voltage biased microwave cavities are presented. Developments in the circuit design to couple a mechanical resonator to a qubit in the high-Q voltage bias CPW cavity is discussed as well prospects of achieving single-phonon measurement resolution. National Science Foundation under Grant No. DMR-1056423 and Grant No. DMR-1312421.

  15. Combined atomic force microscopy and voltage pulse technique to accurately measure electrostatic force

    NASA Astrophysics Data System (ADS)

    Inami, Eiichi; Sugimoto, Yoshiaki

    2016-08-01

    We propose a new method of extracting electrostatic force. The technique is based on frequency modulation atomic force microscopy (FM-AFM) combined with a voltage pulse. In this method, the work that the electrostatic field does on the oscillating tip is measured through the cantilever energy dissipation. This allows us to directly extract capacitive forces including the longer range part, to which the conventional FM-AFM is insensitive. The distance-dependent contact potential difference, which is modulated by local charges distributed on the surfaces of the tip and/or sample, could also be correctly obtained. In the absence of local charges, our method can perfectly reproduce the electrostatic force as a function of the distance and the bias voltage. Furthermore, we demonstrate that the system serves as a sensitive sensor enabling us to check the existence of the local charges such as trapped charges and patch charges.

  16. A Remote Monitoring System for Voltage, Current, Power and Temperature Measurements

    NASA Astrophysics Data System (ADS)

    Barakat, E.; Sinno, N.; Keyrouz, C.

    This paper presents a study and design of a monitoring system for the continuous measurement of electrical energy parameters such as voltage, current, power and temperature. This system is designed to monitor the data remotely over internet. The electronic power meter is based on a microcontroller from Microchip Technology Inc. PIC family. The design takes into consideration the correct operation in the event of an outage or brown out by recording the electrical values and the temperatures in EEPROM internally available in the microcontroller. Also a digital display is used to show the acquired measurements. A computer will remotely monitor the data over internet.

  17. On Power Measurements of Single-Electrode Low-Power Ar Plasma Jets

    NASA Astrophysics Data System (ADS)

    Prysiazhnyi, Vadym; Ricci, Alonso H. C.; Kostov, Konstantin G.

    2016-06-01

    A study of electrical properties, methodology, and precision of power measurement was made on two types of Ar plasma jets, a single-strip-electrode plasma jet and a single-rod-electrode plasma jet. The dynamics of current peaks, methods for determining discharge power, and power measurement precision (especially important for applications in plasma medicine) are discussed for each type of plasma jet. Lower error in power calculation was obtained when the plasma jet did not touch the substrate, as well as more repetitive dynamics of the current peaks. Averaging high number of periods (over 500) when calculating the power by the Lissajous figure technique led to decrease of the experimental error.

  18. Note: Novel diamond anvil cell for electrical measurements using boron-doped metallic diamond electrodes

    NASA Astrophysics Data System (ADS)

    Matsumoto, R.; Sasama, Y.; Fujioka, M.; Irifune, T.; Tanaka, M.; Yamaguchi, T.; Takeya, H.; Takano, Y.

    2016-07-01

    A novel diamond anvil cell suitable for electrical transport measurements under high pressure has been developed. A boron-doped metallic diamond film was deposited as an electrode on a nano-polycrystalline diamond anvil using a microwave plasma-assisted chemical vapor deposition technique combined with electron beam lithography. The maximum pressure that can be achieved by this assembly is above 30 GPa. We report electrical transport measurements of Pb up to 8 GPa. The boron-doped metallic diamond electrodes showed no signs of degradation after repeated compression.

  19. Note: Novel diamond anvil cell for electrical measurements using boron-doped metallic diamond electrodes.

    PubMed

    Matsumoto, R; Sasama, Y; Fujioka, M; Irifune, T; Tanaka, M; Yamaguchi, T; Takeya, H; Takano, Y

    2016-07-01

    A novel diamond anvil cell suitable for electrical transport measurements under high pressure has been developed. A boron-doped metallic diamond film was deposited as an electrode on a nano-polycrystalline diamond anvil using a microwave plasma-assisted chemical vapor deposition technique combined with electron beam lithography. The maximum pressure that can be achieved by this assembly is above 30 GPa. We report electrical transport measurements of Pb up to 8 GPa. The boron-doped metallic diamond electrodes showed no signs of degradation after repeated compression. PMID:27475610

  20. On Power Measurements of Single-Electrode Low-Power Ar Plasma Jets

    NASA Astrophysics Data System (ADS)

    Prysiazhnyi, Vadym; Ricci, Alonso H. C.; Kostov, Konstantin G.

    2016-10-01

    A study of electrical properties, methodology, and precision of power measurement was made on two types of Ar plasma jets, a single-strip-electrode plasma jet and a single-rod-electrode plasma jet. The dynamics of current peaks, methods for determining discharge power, and power measurement precision (especially important for applications in plasma medicine) are discussed for each type of plasma jet. Lower error in power calculation was obtained when the plasma jet did not touch the substrate, as well as more repetitive dynamics of the current peaks. Averaging high number of periods (over 500) when calculating the power by the Lissajous figure technique led to decrease of the experimental error.

  1. A very low noise, high accuracy, programmable voltage source for low frequency noise measurements

    NASA Astrophysics Data System (ADS)

    Scandurra, Graziella; Giusi, Gino; Ciofi, Carmine

    2014-04-01

    In this paper an approach for designing a programmable, very low noise, high accuracy voltage source for biasing devices under test in low frequency noise measurements is proposed. The core of the system is a supercapacitor based two pole low pass filter used for filtering out the noise produced by a standard DA converter down to 100 mHz with an attenuation in excess of 40 dB. The high leakage current of the supercapacitors, however, introduces large DC errors that need to be compensated in order to obtain high accuracy as well as very low output noise. To this end, a proper circuit topology has been developed that allows to considerably reduce the effect of the supercapacitor leakage current on the DC response of the system while maintaining a very low level of output noise. With a proper design an output noise as low as the equivalent input voltage noise of the OP27 operational amplifier, used as the output buffer of the system, can be obtained with DC accuracies better that 0.05% up to the maximum output of 8 V. The expected performances of the proposed voltage source have been confirmed both by means of SPICE simulations and by means of measurements on actual prototypes. Turn on and stabilization times for the system are of the order of a few hundred seconds. These times are fully compatible with noise measurements down to 100 mHz, since measurement times of the order of several tens of minutes are required in any case in order to reduce the statistical error in the measured spectra down to an acceptable level.

  2. A very low noise, high accuracy, programmable voltage source for low frequency noise measurements.

    PubMed

    Scandurra, Graziella; Giusi, Gino; Ciofi, Carmine

    2014-04-01

    In this paper an approach for designing a programmable, very low noise, high accuracy voltage source for biasing devices under test in low frequency noise measurements is proposed. The core of the system is a supercapacitor based two pole low pass filter used for filtering out the noise produced by a standard DA converter down to 100 mHz with an attenuation in excess of 40 dB. The high leakage current of the supercapacitors, however, introduces large DC errors that need to be compensated in order to obtain high accuracy as well as very low output noise. To this end, a proper circuit topology has been developed that allows to considerably reduce the effect of the supercapacitor leakage current on the DC response of the system while maintaining a very low level of output noise. With a proper design an output noise as low as the equivalent input voltage noise of the OP27 operational amplifier, used as the output buffer of the system, can be obtained with DC accuracies better that 0.05% up to the maximum output of 8 V. The expected performances of the proposed voltage source have been confirmed both by means of SPICE simulations and by means of measurements on actual prototypes. Turn on and stabilization times for the system are of the order of a few hundred seconds. These times are fully compatible with noise measurements down to 100 mHz, since measurement times of the order of several tens of minutes are required in any case in order to reduce the statistical error in the measured spectra down to an acceptable level. PMID:24784633

  3. Preventive measures reduce exposure to polycyclic aromatic hydrocarbons at a graphite electrode plant

    PubMed Central

    dell'Omo, M.; Muzi, G.; Marchionna, G.; Latini, L.; Carrieri, P.; Paolemili, P.; Abbritti, G.

    1998-01-01

    OBJECTIVE: This study assessed the efficacy of preventive measures in a graphite electrode plant aimed at reducing occupational exposure to polycyclic aromatic hydrocarbons (PAHs). METHODS: Electrode workers (n = 146) answered a questionnaire and provided an end of shift urine sample. Urinary 1-hydroxypyrene (1-hpur), a biological marker of exposure to PAHs, was measured by high performance liquid chromatography coupled with: (a) fluorescence detection. 1- Hydroxypyrene concentrations were compared with the concentrations measured before implementing the preventive measures; and (b) those of a control group of 54 men not occupationally exposed to PAHs. RESULTS: After implementation of preventive measures, median concentrations 1- hpur were significantly reduced in some groups of workers: by -24%, - 37% and -30% in workers at the green electrode unit, one baking impregnation unit, and the laboratory, respectively. In workers at a second baking impregnation unit, in end product finishing and in the power station 1-hpur concentrations were unchanged. Urinary 1-hp concentrations were still significantly higher in each group of workers than in the control group (p < 0.001 for any comparison). Concentrations in the workers varied with the type of job, the highest values being found in workers engaged in the power station, in the two baking impregnation units and in the green electrode unit. CONCLUSIONS: Implementing preventive measures significantly reduced exposure to PAHs at a graphite electrode plant. The reduction in median and peak concentrations of 1-hpur, which reflects total exposure to, and internal dose of PAHs, was most evident in workers employed in the units where preventive measures had been taken. Despite an overall reduction, further preventive measures are needed to minimise exposure to PAHs and consequently the risk of adverse health effects.   PMID:9764100

  4. Analysis of SOFCs Using Reference Electrodes

    SciTech Connect

    Finklea, H.; Chen, X.; Gerdes, K.; Pakalapati, S.; Celik, I.

    2013-01-01

    Reference electrodes are frequently applied to isolate the performance of one electrode in a solid oxide fuel cell. However, reference electrode simulations raise doubt to veracity of data collected using reference electrodes. The simulations predict that the reported performance for the one electrode will frequently contain performance of both electrodes. Nonetheless, recent reports persistently treat data so collected as ideally isolated. This work confirms the predictions of the reference electrode simulations on two SOFC designs, and to provides a method of validating the data measured in the 3-electrode configuration. Validation is based on the assumption that a change in gas composition to one electrode does not affect the impedance of the other electrode at open circuit voltage. This assumption is supported by a full physics simulation of the SOFC. Three configurations of reference electrode and cell design are experimentally examined using various gas flows and two temperatures. Impedance data are subjected to deconvolution analysis and equivalent circuit fitting and approximate polarization resistances of the cathode and anode are determined. The results demonstrate that the utility of reference electrodes is limited and often wholly inappropriate. Reported impedances and single electrode polarization values must be scrutinized on this basis.

  5. Voltage Biasing, Cyclic Voltammetry, & Electrical Impedance Spectroscopy for Neural Interfaces

    PubMed Central

    Wilks, Seth J.; Richner, Tom J.; Brodnick, Sarah K.; Kipke, Daryl R.; Williams, Justin C.; Otto, Kevin J.

    2012-01-01

    Electrical impedance spectroscopy (EIS) and cyclic voltammetry (CV) measure properties of the electrode-tissue interface without additional invasive procedures, and can be used to monitor electrode performance over the long term. EIS measures electrical impedance at multiple frequencies, and increases in impedance indicate increased glial scar formation around the device, while cyclic voltammetry measures the charge carrying capacity of the electrode, and indicates how charge is transferred at different voltage levels. As implanted electrodes age, EIS and CV data change, and electrode sites that previously recorded spiking neurons often exhibit significantly lower efficacy for neural recording. The application of a brief voltage pulse to implanted electrode arrays, known as rejuvenation, can bring back spiking activity on otherwise silent electrode sites for a period of time. Rejuvenation alters EIS and CV, and can be monitored by these complementary methods. Typically, EIS is measured daily as an indication of the tissue response at the electrode site. If spikes are absent in a channel that previously had spikes, then CV is used to determine the charge carrying capacity of the electrode site, and rejuvenation can be applied to improve the interface efficacy. CV and EIS are then repeated to check the changes at the electrode-tissue interface, and neural recordings are collected. The overall goal of rejuvenation is to extend the functional lifetime of implanted arrays. PMID:22395095

  6. Single-Molecule Electronic Measurements with Metal Electrodes

    ERIC Educational Resources Information Center

    Lindsay, Stuart

    2005-01-01

    A review of concepts like tunneling through a metal-molecule-metal-junction, contrast with electrochemical and optical-charge injection, strong-coupling limit, calculations of tunnel transport, electron transfer through Redox-active molecules is presented. This is followed by a discussion of experimental approaches for single-molecule measurements.

  7. An unattended device for high-voltage sampling and passive measurement of thoron decay products

    SciTech Connect

    Gierl, Stefanie; Meisenberg, Oliver Wielunski, Marek; Tschiersch, Jochen; Haninger, Thomas

    2014-02-15

    An integrating measurement device for the concentration of airborne thoron decay products was designed and calibrated. It is suitable for unattended use over up to several months also in inhabited dwellings. The device consists of a hemispheric capacitor with a wire mesh as the outer electrode on ground potential and the sampling substrates as the inner electrode on +7.0 kV. Negatively charged and neutral thoron decay products are accelerated to and deposited on the sampling substrates. As sampling substrates, CR39 solid-state nuclear track detectors are used in order to record the alpha decay of the sampled decay products. Nuclide discrimination is achieved by covering the detectors with aluminum foil of different thickness, which are penetrated only by alpha particles with sufficient energy. Devices of this type were calibrated against working level monitors in a thoron experimental house. The sensitivity was measured as 9.2 tracks per Bq/m{sup 3} × d of thoron decay products. The devices were used over 8 weeks in several houses built of earthen material in southern Germany, where equilibrium equivalent concentrations of 1.4–9.9 Bq/m{sup 3} of thoron decay products were measured.

  8. An unattended device for high-voltage sampling and passive measurement of thoron decay products.

    PubMed

    Gierl, Stefanie; Meisenberg, Oliver; Haninger, Thomas; Wielunski, Marek; Tschiersch, Jochen

    2014-02-01

    An integrating measurement device for the concentration of airborne thoron decay products was designed and calibrated. It is suitable for unattended use over up to several months also in inhabited dwellings. The device consists of a hemispheric capacitor with a wire mesh as the outer electrode on ground potential and the sampling substrates as the inner electrode on +7.0 kV. Negatively charged and neutral thoron decay products are accelerated to and deposited on the sampling substrates. As sampling substrates, CR39 solid-state nuclear track detectors are used in order to record the alpha decay of the sampled decay products. Nuclide discrimination is achieved by covering the detectors with aluminum foil of different thickness, which are penetrated only by alpha particles with sufficient energy. Devices of this type were calibrated against working level monitors in a thoron experimental house. The sensitivity was measured as 9.2 tracks per Bq/m(3) × d of thoron decay products. The devices were used over 8 weeks in several houses built of earthen material in southern Germany, where equilibrium equivalent concentrations of 1.4-9.9 Bq/m(3) of thoron decay products were measured.

  9. High-voltage space-plasma interactions measured on the PASP Plus test arrays

    NASA Technical Reports Server (NTRS)

    Guidice, Donald A.

    1995-01-01

    The Photovoltaic Array Space Power Plus Diagnostics (PASP Plus) experiment was developed by the Air Force's Phillips Laboratory with support from NASA's Lewis Research Center. It was launched on the Advanced Photovoltaic and Electronics EXperiments (APEX) satellite on August 3, 1994 into a 70 degree inclination, 363 km by 2550 km elliptical orbit. This orbit allows the investigation of space plasma effects on high-voltage operation (leakage current at positive voltages and arcing at negative voltages) in the perigee region. PASP Plus is testing twelve solar arrays. There are four planar Si arrays: an old standard type (used as a reference), the large-cell Space Station Freedom (SSF) array, a thin 'APSA' array, and an amorphous Si array. Next are three GaAs on Ge planar arrays and three new material planar arrays, including InP and two multijunction types. Finally, there are two concentrator arrays: a reflective-focusing Mini-Cassegrainian and a Fresnel-lens focusing Mini-Dome. PASP Plus's diagnostic sensors include: Langmuir probe to measure plasma density, an electrostatic analyzer (ESA) to measure the 30 eV to 30 KeV electron/ion spectra and determine vehicle negative potential during positive biasing, and a transient pulse monitor (TPM) to characterize the arcs that occur during the negative biasing. Through positive biasing of its test arrays, PASP Plus investigated the snapover phenomenon, which took place over the range of +100 to +300 V. It was found that array configurations where the interconnects are shielded from the space plasma (i.e., the concentrators or arrays with 'wrap-through' connectors) have lower leakage current. The concentrators exhibited negligible leakage current over the whole range up to +500 V. In the case of two similar GaAs on Ge arrays, the one with 'wrap-through' connectors had lower leakage current than the one with conventional interconnects. Through negative biasing, PASP Plus investigated the arcing rates of its test arrays. The

  10. Enhancement of AMTEC electrodes and current collectors

    NASA Astrophysics Data System (ADS)

    Svedberg, Robert C.; Pantolin, Jan E.; Sievers, Robert K.; Hunt, Thomas K.

    1995-01-01

    An improved electrode deposition technique has been developed for a Alkali Metal Thermal to Electric Converter (AMTEC). The innovative Sodium Modulated Electrode (SME) deposition technique has been developed which selectively deposits the electrode on inactive Na sites and adjacent to active Na sites on the electrolyte surface. This program has demonstrated SME processing feasibility and achieved electrode performance enhancement. Power density was improved by 51 to 56% at 973 K and 19 to 26% at 1073 K at the start of electrode testing. Na+ has been conducted through the beta''-alumina solid electrolyte (BASE) during the deposition process. Electrode deposition has been a random process, covering both active and inactive sites on the BASE. This random process did not optimize electrode placement or provide pore openings at the Na active sites to permit Na+ easy access to electrons and a low resistance path for Na atoms to move to the condenser. Both Mo and TiN electrodes were evaluated. It has been demonstrated that sputter deposition, with significant Na+ current being transported through the BASE at a controlled rate, is possible for both Mo and TiN. Two sputtering systems, for Mo and TiN, were modified with heater and voltage feedthroughs. The BASE temperture and the Na+ flow through the BASE was controlled. Patch electrodes were deposited using various Na+ currents and substrate temperatures. Four Mo and two TiN electrode sets were deposited and evaluated. Electrical testing was done in a Demountable Test Cell (DTC) where the current-voltage (IV) relationship was measured as a function of temperature. Electrodes were visually examined by scanning electron microscopy (SEM). The initial electrode performance has been improved by these processes. The IV data was used to evaluate electrode parameters by fitting an electrode/cell model output to the IV curves. Electrode enhancement can improve cell maximum power density performance by 87% and efficiency at optimum

  11. Spontaneous emission measurements from a low voltage pre-bunched electron beam

    SciTech Connect

    Dearden, G.; Mayhew, S.E.; Lucas, J.

    1995-12-31

    Recently we have carried out measurements on the spontaneous microwave (8.2 GHz) emission which results when a low-voltage (55kV) pre-punched electron beam is passed through a waveguide in a wiggler magnetic field. The variation of the spontaneous emission output power level with the average electron beam current and energy are reported and compared with the theory presented by Doria et al. The effect of the degree of bunching of the electron beam has also been observed and compared with theory.

  12. Activity coefficients of aqueous potassium chloride measured with a potassium-sensitive glass electrode

    USGS Publications Warehouse

    Hostetler, P.B.; Truesdell, A.H.; Christ, C.L.

    1967-01-01

    Values of ????KCI temperature and molality ranges of 10?? to 50??C and 0.01 to 1.0 molal were determined with an electromotive-force cell: potasslum-sensitive glass electrode, KCl (molality), Ag-AgCl. A more satisfactory method than is commonly employed was devised for treating the experimental measurements of potential.

  13. An Inexpensive Electrode and Cell for Measurement of Oxygen Uptake in Chemical and Biochemical Systems.

    ERIC Educational Resources Information Center

    Brunet, Juan E.; And Others

    1983-01-01

    The continuous measurement of oxygen consumption in an enzymatic reaction is a frequent experimental fact and extremely important in the enzymatic activity of oxygenase. An electrochemical system, based on a polarographic method, has been developed to monitor the oxygen uptake. The system developed and electrode used are described. (JN)

  14. Determining resistivity of a formation adjacent to a borehole having casing using multiple electrodes and with resistances being defined between the electrodes

    DOEpatents

    Vail, W.B. III

    1996-10-29

    Methods of operation are disclosed for different types of multiple electrode apparatus vertically disposed in a cased well to measure information related to the resistivity of adjacent geological formations from inside the cased well. The multiple electrode apparatus have a minimum of three spaced-apart voltage measurement electrodes that electrically engage the interior of the cased well. Measurement information is obtained related to current which is caused to flow from the cased well into the adjacent geological formation. First compensation information is obtained related to a first casing resistance between a first pair of the spaced-apart voltage measurement electrodes. Second compensation information is obtained related to a second casing resistance between a second pair of the spaced-apart voltage measurement electrodes. The measurement information, and first and second compensation information are used to determine a magnitude related to the adjacent formation resistivity. 13 figs.

  15. Determining resistivity of a formation adjacent to a borehole having casing using multiple electrodes and with resistances being defined between the electrodes

    DOEpatents

    Vail, III, William B.

    1996-01-01

    Methods of operation of different types of multiple electrode apparatus vertically disposed in a cased well to measure information related to the resistivity of adjacent geological formations from inside the cased well. The multiple electrode apparatus have a minimum of three spaced apart voltage measurement electrodes that electrically engage the interior of the cased well. Measurement information is obtained related to current which is caused to flow from the cased well into the adjacent geological formation. First compensation information is obtained related to a first casing resistance between a first pair of the spaced apart voltage measurement electrodes. Second compensation information is obtained related to a second casing resistance between a second pair of the spaced apart voltage measurement electrodes. The measurement information, and first and second compensation information are used to determine a magnitude related to the adjacent formation resistivity.

  16. Prototype for Automatable, Dielectrophoretically-Accessed Intracellular Membrane–Potential Measurements by Metal Electrodes

    PubMed Central

    Sukhorukov, Vladimir L.; Zimmermann, Dirk

    2013-01-01

    Abstract Functional access to membrane proteins, for example, ion channels, of individual cells is an important prerequisite in drug discovery studies. The highly sophisticated patch-clamp method is widely used for electrogenic membrane proteins, but is demanding for the operator, and its automation remains challenging. The dielectrophoretically-accessed, intracellular membrane–potential measurement (DAIMM) method is a new technique showing high potential for automation of electrophysiological data recording in the whole-cell configuration. A cell suspension is brought between a mm-scaled planar electrode and a μm-scaled tip electrode, placed opposite to each other. Due to the asymmetric electrode configuration, the application of alternating electric fields (1–5 MHz) provokes a dielectrophoretic force acting on the target cell. As a consequence, the cell is accelerated and pierced by the tip electrode, hence functioning as the internal (working) electrode. We used the light-gated cation channel Channelrhodopsin-2 as a reporter protein expressed in HEK293 cells to characterize the DAIMM method in comparison with the patch-clamp technique. PMID:22994967

  17. Radio frequency current-voltage probe for impedance and power measurements in multi-frequency unmatched loads

    NASA Astrophysics Data System (ADS)

    Lafleur, T.; Delattre, P. A.; Booth, J. P.; Johnson, E. V.; Dine, S.

    2013-01-01

    A broad-band, inline current-voltage probe, with a characteristic impedance of 50 Ω, is presented for the measurement of voltage and current waveforms, impedance, and power in rf systems. The probe, which uses capacitive and inductive sensors to determine the voltage and current, respectively, can be used for the measurement of single or multi-frequency signals into both matched and unmatched loads, over a frequency range of about 1-100 MHz. The probe calibration and impedance/power measurement technique are described in detail, and the calibrated probe results are compared with those obtained from a vector network analyzer and other commercial power meters. Use of the probe is demonstrated with the measurement of power into an unmatched capacitively coupled plasma excited by multi-frequency tailored voltage waveforms.

  18. Radio frequency current-voltage probe for impedance and power measurements in multi-frequency unmatched loads.

    PubMed

    Lafleur, T; Delattre, P A; Booth, J P; Johnson, E V; Dine, S

    2013-01-01

    A broad-band, inline current-voltage probe, with a characteristic impedance of 50 Ω, is presented for the measurement of voltage and current waveforms, impedance, and power in rf systems. The probe, which uses capacitive and inductive sensors to determine the voltage and current, respectively, can be used for the measurement of single or multi-frequency signals into both matched and unmatched loads, over a frequency range of about 1-100 MHz. The probe calibration and impedance/power measurement technique are described in detail, and the calibrated probe results are compared with those obtained from a vector network analyzer and other commercial power meters. Use of the probe is demonstrated with the measurement of power into an unmatched capacitively coupled plasma excited by multi-frequency tailored voltage waveforms. PMID:23387681

  19. [Flow of high-voltage current in coal electrodes of arc furnaces as a source of noise of special nature].

    PubMed

    Polanowska, R

    1984-01-01

    The noise level for working arc furnace has been measured. Arc furnaces were found to be the source of infrasounds and acoustic field. The sound pressure levels for infrasounds range from 55 to 77 dB. It has been showed that particular noise level includes the onethird-octave band with middle frequency 100 Hz. The sound pressure levels in this band range from 105 to 110 dB.

  20. Performance of lightweight nickel electrodes

    NASA Technical Reports Server (NTRS)

    Britton, Doris L.

    1988-01-01

    The NASA Lewis Research Center is currently developing nickel electrodes for nickel-hydrogen (Ni-H2) batteries. These electrodes are lighter in weight and have higher energy densities than the heavier state-of-the-art (SOA) sintered nickel electrodes. In the present approach, lightweight materials or plaques are used as conductive supports for the nickel hydroxide active material. These plaques (fiber and felt, nickel plated plastic and graphite) are commercial products that are fabricated into nickel electrodes by electrochemically impregnating them with active material. Evaluation is performed in half cells structured in the bipolar configuration. Initial performance tests include capacity measurements at five discharge levels, C/2, 1.0C, 1.37C, 2.0C and 2.74C. The electrodes that pass the initial tests are life cycle tested in a low earth orbit regime at 80 percent depth of discharge. Different formulations of nickel fiber materials obtained from several manufacturers are currently being tested as possible candidates for nickel electrodes. One particular lightweight fiber mat electrode has accumulated over 3000 cycles to date, with stable capacity and voltage. Life and performance data of this electrode were investigated and presented. Good dimensional stability and active material adherence have been demonstrated in electrodes made from this lightweight plaque.

  1. Performance of lightweight nickel electrodes

    NASA Technical Reports Server (NTRS)

    Britton, Doris L.

    1988-01-01

    The NASA Lewis Research Center is currently developing nickel electrodes for nickel-hydrogen (Ni-H2) batteries. These electrodes are lighter in weight and have higher energy densities than the heavier state-of-the-art (SOA) sintered nickel electrodes. In the present approach, lightweight materials or plaques are used as conductive supports for the nickel hydroxide active material. These plaques (fiber and felt, nickel plated plastic and graphite) are commercial products that are fabricated into nickel electrodes by electrochemically impregnating them with active material. Evaluation is performed in half cells structured in the bipolar configuration. Initial performance tests include capacity measurements at five discharge levels, C/2, 1.0C 1.37C, 2.0C and 2.74C. The electrodes that pass the initial tests are life cycle tested in a low Earth orbit regime at 80 percent depth of discharge. Different formulations of nickel fiber materials obtained from several manufacturers are currently being tested as possible candidates for nickel electrodes. One particular lightweight fiber mat electrode has accumulated over 3000 cycles to date, with stable capacity and voltage. Life and performance data of this electrode were investigated and presented. Good dimensional stability and active material adherence have been demonstrated in electrodes made from this lightweight plaque.

  2. Curved Microneedle Array-Based sEMG Electrode for Robust Long-Term Measurements and High Selectivity.

    PubMed

    Kim, Minjae; Kim, Taewan; Kim, Dong Sung; Chung, Wan Kyun

    2015-01-01

    Surface electromyography is widely used in many fields to infer human intention. However, conventional electrodes are not appropriate for long-term measurements and are easily influenced by the environment, so the range of applications of sEMG is limited. In this paper, we propose a flexible band-integrated, curved microneedle array electrode for robust long-term measurements, high selectivity, and easy applicability. Signal quality, in terms of long-term usability and sensitivity to perspiration, was investigated. Its motion-discriminating performance was also evaluated. The results show that the proposed electrode is robust to perspiration and can maintain a high-quality measuring ability for over 8 h. The proposed electrode also has high selectivity for motion compared with a commercial wet electrode and dry electrode. PMID:26153773

  3. Curved Microneedle Array-Based sEMG Electrode for Robust Long-Term Measurements and High Selectivity

    PubMed Central

    Kim, Minjae; Kim, Taewan; Kim, Dong Sung; Chung, Wan Kyun

    2015-01-01

    Surface electromyography is widely used in many fields to infer human intention. However, conventional electrodes are not appropriate for long-term measurements and are easily influenced by the environment, so the range of applications of sEMG is limited. In this paper, we propose a flexible band-integrated, curved microneedle array electrode for robust long-term measurements, high selectivity, and easy applicability. Signal quality, in terms of long-term usability and sensitivity to perspiration, was investigated. Its motion-discriminating performance was also evaluated. The results show that the proposed electrode is robust to perspiration and can maintain a high-quality measuring ability for over 8 h. The proposed electrode also has high selectivity for motion compared with a commercial wet electrode and dry electrode. PMID:26153773

  4. Curved Microneedle Array-Based sEMG Electrode for Robust Long-Term Measurements and High Selectivity.

    PubMed

    Kim, Minjae; Kim, Taewan; Kim, Dong Sung; Chung, Wan Kyun

    2015-07-06

    Surface electromyography is widely used in many fields to infer human intention. However, conventional electrodes are not appropriate for long-term measurements and are easily influenced by the environment, so the range of applications of sEMG is limited. In this paper, we propose a flexible band-integrated, curved microneedle array electrode for robust long-term measurements, high selectivity, and easy applicability. Signal quality, in terms of long-term usability and sensitivity to perspiration, was investigated. Its motion-discriminating performance was also evaluated. The results show that the proposed electrode is robust to perspiration and can maintain a high-quality measuring ability for over 8 h. The proposed electrode also has high selectivity for motion compared with a commercial wet electrode and dry electrode.

  5. Secondary Ionization Coefficient of Dielectric Electrode

    NASA Astrophysics Data System (ADS)

    Kashiwagi, Yasuhide; Suzuki, Susumu; Itoh, Haruo

    Experiments for observations and stabilization of discharge paths in several electrode systems are carried out aiming at precise measurement of the secondary ionization coefficient γ of MgO film electrode. The discharge chamber is filled with Ar gas. The waveforms of the applied voltage between the electrodes and the discharge current are measured with visual observation of the discharge light. Two MgO coated electrodes are placed so that they are facing each other. For these MgO electrodes, the discharge paths take a detour, not the shortest distance. Smaller prebreakdown current pulses are observed before the breakdown. After breakdown, discontinuous discharge current is observed. Therefore, it is prepared a glass tube surrounding the discharge area. As the result, the discharge paths take a straight perpendicular for the electrode surface, and the discharge is stabilized.

  6. Electrolyte measurement device and measurement procedure

    DOEpatents

    Cooper, Kevin R.; Scribner, Louie L.

    2010-01-26

    A method and apparatus for measuring the through-thickness resistance or conductance of a thin electrolyte is provided. The method and apparatus includes positioning a first source electrode on a first side of an electrolyte to be tested, positioning a second source electrode on a second side of the electrolyte, positioning a first sense electrode on the second side of the electrolyte, and positioning a second sense electrode on the first side of the electrolyte. current is then passed between the first and second source electrodes and the voltage between the first and second sense electrodes is measured.

  7. Understanding Voltage Decay in Lithium-Rich Manganese-Based Layered Cathode Materials by Limiting Cutoff Voltage.

    PubMed

    Yang, Jingsong; Xiao, Lifen; He, Wei; Fan, Jiangwei; Chen, Zhongxue; Ai, Xinping; Yang, Hanxi; Cao, Yuliang

    2016-07-27

    The effect of the cutoff voltages on the working voltage decay and cyclability of the lithium-rich manganese-based layered cathode (LRMO) was investigated by electrochemical measurements, electrochemical impedance spectroscopy, ex situ X-ray diffraction, transmission electron microscopy, and energy dispersive spectroscopy line scan technologies. It was found that both lower (2.0 V) and upper (4.8 V) cutoff voltages cause severe voltage decay with cycling due to formation of the spinel phase and migration of the transition metals inside the particles. Appropriate cutoff voltage between 2.8 and 4.4 V can effectively inhibit structural variation as the electrode demonstrates 92% capacity retention and indiscernible working voltage decay over 430 cycles. The results also show that phase transformation not only on high charge voltage but also on low discharge voltage should be addressed to obtain highly stable LRMO materials. PMID:27383918

  8. A coated-wire ion-selective electrode for ionic calcium measurements

    NASA Technical Reports Server (NTRS)

    Hines, John W.; Arnaud, Sara; Madou, Marc; Joseph, Jose; Jina, Arvind

    1991-01-01

    A coated-wire ion-selective electrode for measuring ionic calcium was developed, in collaboration with Teknektron Sensor Development Corporation (TSDC). This coated wire electrode sensor makes use of advanced, ion-responsive polyvinyl chloride (PVC) membrane technology, whereby the electroactive agent is incorporated into a polymeric film. The technology greatly simplifies conventional ion-selective electrode measurement technology, and is envisioned to be used for real-time measurement of physiological and environment ionic constituents, initially calcium. A primary target biomedical application is the real-time measurement of urinary and blood calcium changes during extended exposure to microgravity, during prolonged hospital or fracture immobilization, and for osteoporosis research. Potential advanced life support applications include monitoring of calcium and other ions, heavy metals, and related parameters in closed-loop water processing and management systems. This technology provides a much simplified ionic calcium measurement capability, suitable for both automated in-vitro, in-vivo, and in-situ measurement applications, which should be of great interest to the medical, scientific, chemical, and space life sciences communities.

  9. Continuous and selective measurement of oxytocin and vasopressin using boron-doped diamond electrodes.

    PubMed

    Asai, Kai; Ivandini, Tribidasari A; Einaga, Yasuaki

    2016-01-01

    The electrochemical detection of oxytocin using boron-doped diamond (BDD) electrodes was studied. Cyclic voltammetry of oxytocin in a phosphate buffer solution exhibits an oxidation peak at +0.7 V (vs. Ag/AgCl), which is attributable to oxidation of the phenolic group in the tyrosyl moiety. Furthermore, the linearity of the current peaks obtained in flow injection analysis (FIA) using BDD microelectrodes over the oxytocin concentration range from 0.1 to 10.0 μM with a detection limit of 50 nM (S/N = 3) was high (R(2) = 0.995). Although the voltammograms of oxytocin and vasopressin observed with an as-deposited BDD electrode, as well as with a cathodically-reduced BDD electrode, were similar, a clear distinction was observed with anodically-oxidized BDD electrodes due to the attractive interaction between vasopressin and the oxidized BDD surface. By means of this distinction, selective measurements using chronoamperometry combined with flow injection analysis at an optimized potential were demonstrated, indicating the possibility of making selective in situ or in vivo measurements of oxytocin. PMID:27599852

  10. Microengineered Conductive Elastomeric Electrodes for Long-Term Electrophysiological Measurements with Consistent Impedance under Stretch.

    PubMed

    Hu, Dinglong; Cheng, Tin Kei; Xie, Kai; Lam, Raymond H W

    2015-01-01

    In this research, we develop a micro-engineered conductive elastomeric electrode for measurements of human bio-potentials with the absence of conductive pastes. Mixing the biocompatible polydimethylsiloxane (PDMS) silicone with other biocompatible conductive nano-particles further provides the material with an electrical conductivity. We apply micro-replica mold casting for the micro-structures, which are arrays of micro-pillars embedded between two bulk conductive-PDMS layers. These micro-structures can reduce the micro-structural deformations along the direction of signal transmission; therefore the corresponding electrical impedance under the physical stretch by the movement of the human body can be maintained. Additionally, we conduct experiments to compare the electrical properties between the bulk conductive-PDMS material and the microengineered electrodes under stretch. We also demonstrate the working performance of these micro-engineered electrodes in the acquisition of the 12-lead electrocardiographs (ECG) of a healthy subject. Together, the presented gel-less microengineered electrodes can provide a more convenient and stable bio-potential measurement platform, making tele-medical care more achievable with reduced technical barriers for instrument installation performed by patients/users themselves. PMID:26512662

  11. Continuous and selective measurement of oxytocin and vasopressin using boron-doped diamond electrodes

    NASA Astrophysics Data System (ADS)

    Asai, Kai; Ivandini, Tribidasari A.; Einaga, Yasuaki

    2016-09-01

    The electrochemical detection of oxytocin using boron-doped diamond (BDD) electrodes was studied. Cyclic voltammetry of oxytocin in a phosphate buffer solution exhibits an oxidation peak at +0.7 V (vs. Ag/AgCl), which is attributable to oxidation of the phenolic group in the tyrosyl moiety. Furthermore, the linearity of the current peaks obtained in flow injection analysis (FIA) using BDD microelectrodes over the oxytocin concentration range from 0.1 to 10.0 μM with a detection limit of 50 nM (S/N = 3) was high (R2 = 0.995). Although the voltammograms of oxytocin and vasopressin observed with an as-deposited BDD electrode, as well as with a cathodically-reduced BDD electrode, were similar, a clear distinction was observed with anodically-oxidized BDD electrodes due to the attractive interaction between vasopressin and the oxidized BDD surface. By means of this distinction, selective measurements using chronoamperometry combined with flow injection analysis at an optimized potential were demonstrated, indicating the possibility of making selective in situ or in vivo measurements of oxytocin.

  12. Continuous and selective measurement of oxytocin and vasopressin using boron-doped diamond electrodes

    PubMed Central

    Asai, Kai; Ivandini, Tribidasari A.; Einaga, Yasuaki

    2016-01-01

    The electrochemical detection of oxytocin using boron-doped diamond (BDD) electrodes was studied. Cyclic voltammetry of oxytocin in a phosphate buffer solution exhibits an oxidation peak at +0.7 V (vs. Ag/AgCl), which is attributable to oxidation of the phenolic group in the tyrosyl moiety. Furthermore, the linearity of the current peaks obtained in flow injection analysis (FIA) using BDD microelectrodes over the oxytocin concentration range from 0.1 to 10.0 μM with a detection limit of 50 nM (S/N = 3) was high (R2 = 0.995). Although the voltammograms of oxytocin and vasopressin observed with an as-deposited BDD electrode, as well as with a cathodically-reduced BDD electrode, were similar, a clear distinction was observed with anodically-oxidized BDD electrodes due to the attractive interaction between vasopressin and the oxidized BDD surface. By means of this distinction, selective measurements using chronoamperometry combined with flow injection analysis at an optimized potential were demonstrated, indicating the possibility of making selective in situ or in vivo measurements of oxytocin. PMID:27599852

  13. Microengineered Conductive Elastomeric Electrodes for Long-Term Electrophysiological Measurements with Consistent Impedance under Stretch

    PubMed Central

    Hu, Dinglong; Cheng, Tin Kei; Xie, Kai; Lam, Raymond H. W.

    2015-01-01

    In this research, we develop a micro-engineered conductive elastomeric electrode for measurements of human bio-potentials with the absence of conductive pastes. Mixing the biocompatible polydimethylsiloxane (PDMS) silicone with other biocompatible conductive nano-particles further provides the material with an electrical conductivity. We apply micro-replica mold casting for the micro-structures, which are arrays of micro-pillars embedded between two bulk conductive-PDMS layers. These micro-structures can reduce the micro-structural deformations along the direction of signal transmission; therefore the corresponding electrical impedance under the physical stretch by the movement of the human body can be maintained. Additionally, we conduct experiments to compare the electrical properties between the bulk conductive-PDMS material and the microengineered electrodes under stretch. We also demonstrate the working performance of these micro-engineered electrodes in the acquisition of the 12-lead electrocardiographs (ECG) of a healthy subject. Together, the presented gel-less microengineered electrodes can provide a more convenient and stable bio-potential measurement platform, making tele-medical care more achievable with reduced technical barriers for instrument installation performed by patients/users themselves. PMID:26512662

  14. Impedance studies of Ni/Cd and Ni/H2 cells using the cell case as a reference electrode

    NASA Technical Reports Server (NTRS)

    Reid, Margaret A.

    1989-01-01

    Impedance measurements have been made on several Ni/Cd and Ni/H2 flightweight cells using the case as a reference electrode. For these measurements the voltage of the case with respect to the anode or cathode is unimportant provided that it remains stable during the measurement of the impedance. In the cells measured so far, the voltages of the cell cases with respect to the individual electrodes differ from cell to cell even at the same overall cell voltage, but they remains stable with time. The measurements can thus be used to separate the cell impedance into the contributions of each electrode, allowing improved diagnosis of cell problems.

  15. Impedance studies of nickel/cadmium and nickel/hydrogen cells using the cell case as a reference electrode

    NASA Technical Reports Server (NTRS)

    Reid, Margaret A.

    1990-01-01

    Impedance measurements have been made on several Ni/Cd and Ni/H2 flight-weight cells using the case as a reference electrode. For these measurements, the voltage of the case with respect to the anode or cathode is unimportant provided that it remains stable during the measurement of the impedance. In the cells measured so far, the voltage of the cell cases with respect to the individual electrodes differ from cell to cell, even at the same overall cell voltage, but they remain stable with time. The measurements can thus be used to separate the cell impedance into the contributions of each electrode, allowing improved diagnosis of cell problems.

  16. Development of standard test methods for evaluating defibrillation recovery characteristics of disposable ECG electrodes.

    PubMed

    Schoenberg, A A; Booth, H E; Lyon, P C

    1979-01-01

    A clinically relevant test for the measurement of defibrillation overload recovery of prefilled disposable ECG electrodes was developed and is proposed for use in an ECG electrode standard under development by AAMI. Defibrillation overload voltages and currents, as well as electrode polarization recovery voltages, were first measured in animal tests on 12 types of electrodes to allow correlation with various bench tests using a capacitor discharge at 10, 200, or 1000 V. Current overloads absorbed by the electrodes under worst conditions in animal tests were in the range of 2 percent of the defibrillation current flowing through the chest. These overloads were absorbed by most Ag-AgCl electrodes without excessive polarization. However, stainless steel, brass, and tin electrodes tended to polarize to levels that would saturate many ECG monitors. A standard bench test using a 200-V 10-muF capacitor was recommended for inclusion in the AAMI standard to determine whether electrodes are acceptable for use during defibrillation.

  17. A miniature glass-membrane reference electrode/sensor for Na-activity measurements in molten salts

    SciTech Connect

    Bloom, I.; Heiberger, J.J.; Redey, L.; Internoscia, M.A.; Rea, K.

    1988-12-01

    The construction and performance of miniature reference electrode/sensor systems are described. The reference electrode/sensor is made from small-diameter alumina tubing and a sodium-ion-conductive glass membrane. The reference electrode/sensor has been used to measure thermodynamically defined sodium activity for the temperature range of 100/sup 0/-600/sup 0/C in many different electrochemical systems.

  18. Local impedance measurement of an electrode/single-pentacene-grain interface by frequency-modulation scanning impedance microscopy

    NASA Astrophysics Data System (ADS)

    Kimura, Tomoharu; Kobayashi, Kei; Yamada, Hirofumi

    2015-08-01

    The device performances of organic thin film transistors are often limited by the metal-organic interface because of the disordered molecular layers at the interface and the energy barriers against the carrier injection. It is important to study the local impedance at the interface without being affected by the interface morphology. We combined frequency modulation atomic force microscopy with scanning impedance microscopy (SIM) to sensitively measure the ac responses of the interface to an ac voltage applied across the interface and the dc potential drop at the interface. By using the frequency-modulation SIM (FM-SIM) technique, we characterized the interface impedance of a Pt electrode and a single pentacene grain as a parallel circuit of a contact resistance and a capacitance. We found that the reduction of the contact resistance was caused by the reduction of the energy level mismatch at the interface by the FM-SIM measurements, demonstrating the usefulness of the FM-SIM technique for investigation of the local interface impedance without being affected by its morphology.

  19. Local impedance measurement of an electrode/single-pentacene-grain interface by frequency-modulation scanning impedance microscopy

    SciTech Connect

    Kimura, Tomoharu; Yamada, Hirofumi; Kobayashi, Kei

    2015-08-07

    The device performances of organic thin film transistors are often limited by the metal–organic interface because of the disordered molecular layers at the interface and the energy barriers against the carrier injection. It is important to study the local impedance at the interface without being affected by the interface morphology. We combined frequency modulation atomic force microscopy with scanning impedance microscopy (SIM) to sensitively measure the ac responses of the interface to an ac voltage applied across the interface and the dc potential drop at the interface. By using the frequency-modulation SIM (FM-SIM) technique, we characterized the interface impedance of a Pt electrode and a single pentacene grain as a parallel circuit of a contact resistance and a capacitance. We found that the reduction of the contact resistance was caused by the reduction of the energy level mismatch at the interface by the FM-SIM measurements, demonstrating the usefulness of the FM-SIM technique for investigation of the local interface impedance without being affected by its morphology.

  20. a Study of Deep Levels in COPPER-INDIUM-SELENIUM(2) by Current-Voltage Capacitance-Voltage and Capacitance Transient Measurements on Cadmium-Sulfide -SELENIUM(2)

    NASA Astrophysics Data System (ADS)

    Christoforou, Nicholas

    A study was made of the deep levels in CuInSe _ 2 thin films by Current-Voltage, Capacitance-Voltage, Capacitance-Temperature, and Capacitance Transient measurements on CdS/CuInSe_ 2 solar cells. To accomplish this study, a semi -automated system for Current-Voltage (I-V), Capacitance -Voltage (C-V), and Deep Level Transient Spectroscopy (DLTS) has been developed for the study of semiconductor devices. I -V, C-V, and DLTS measurements can be taken over a wide temperature range, from 100 K up to 450 K. Software for processing the data obtained has also been developed. This thesis presents the first reported successful measurements of deep levels in CuInSe_ 2 by DLTS measurements. The results indicate the presence in the p-type CuInSe_ 2 films of a majority-carrier (hole) trap located 0.70 eV above the valence band edge and a minority-carrier (electron) trap located 0.35 eV below the conduction band edge. Simulation studies show that the width and shape of the DLTS spectra for the hole trap can be explained only by assuming that the traps are distributed in energy around 0.70 eV. Our results are consistent with traps distributed from 0.65 to 0.75 eV, but it is not possible to determine uniquely the exact distribution. The electron trap at 0.35 eV does is not distributed in energy. There is strong evidence from the C-V, C-T, and I-V measurements, and indirectly from the DLTS measurements, that there is a large hole trap concentration in the CuInSe _ 2 layer close to the interface with the CdS. These interface states have a concentration of approximately 5 times 10 ^{15} cm^{ -3}, compared to a doping density in the CuInSe _ 2 layer of 1 times 10^{15} cm ^{-3}, a hole trap concentration of 5 times 10^{14 } cm^{-3}, and an electron trap concentration of 0.5 times 10^{14} cm ^{-3}. The I-V measurements are consistent with charge transport via an interface recombination/tunneling mechanism, where the tunneling is assisted by the interface states.

  1. Variable Temperature Current-Voltage Measurements of CdTe Solar Cells

    NASA Astrophysics Data System (ADS)

    Smith, A. D.

    2000-03-01

    We have used a 2" x 2" Peltier heat pump chip powered with 24 V from a computer power supply to build a variable temperature stage for current voltage measurements of solar cells. A voltage divider was used to achieve several different set point temperatures from 25 oC to -24 oC. This system was used with a halogen lamp to study the electrical performance of polycrystalline thin-film solar cells fabricated in our group. These cells have the superstrate structure glass/SnO2:F/CdS/CdTe/metal.(1) The I-V characteristic shows evidence of a blocking back-diode which sets in below room temperature. This behavior will be related to the diffusion into the CdTe of the metals used for our back contact.(2) 1. M. Shao, A. Fischer, D. Grecu, U. Jayamaha, E. Bykov, G. Contreras-Puente, R.G. Bohn, and A.D. Compaan, Appl. Phys. Lett. 69, 3045-3047 (1996). 2. D. Grecu and A.D. Compaan, Appl. Phys. Lett. 75, 361-363 (1999).

  2. [Measuring device for rapid determination of tube peak voltage and the switch-on time of roentgen equipment].

    PubMed

    Bronder, T; Eickelkamp, U; Jakschik, J

    1982-11-01

    A prototype of a measuring device is described, which reads the tube peak voltage and the switch-on time of x-ray units by means of two radiation detectors with different energy dependences due to detector materials (Caesium Iodine and Silicon). With a storage oscilloscope the curves of the tube voltage and the relative absorbed dose rate of intensifying screens can be displayed. The measuring range of the tube peak voltage is 60 kV to 150 kV. It is possible to measure exposure times of radiography equipment above 2 ms wit sufficiently low uncertainty. The tube peak voltage has been read with a relative uncertainty below 5% for almost all dose rates, which arise in practical application of medical x-ray units, and its calibration is made by means of x-ray apparatus with tube voltage reading, which has been compared to a Ge(Li) spectrometer. The stability of tube voltage reading of the measuring device is only effected by radiation damage of the detectors after a long time of utilization. The small diameter of the probe permits the accommodation of other probes, ionization chambers, phantoms, etc. in the radiation field at the same time. PMID:6217132

  3. Improved chemically amplified photoresist characterization using interdigitated electrode sensors: photoacid diffusivity measurements

    NASA Astrophysics Data System (ADS)

    Berger, Cody M.; Henderson, Clifford L.

    2004-05-01

    The ability of interdigitated electrodes to serve as novel chemically amplified resist characterization tools has recently been demonstrated through their ability to measure the Dill C kinetic rate constant for photoacid generation. The work presented in this paper attempts to further extend the capabilities of the interdigitated electrode (IDE) sensors by investigating their potential use as a measurement tool for photoacid diffusion coefficients. Impedance spectroscopy of chemically amplified photoresist coated interdigitated electrodes is used to calculate the bulk ionic conductivity of the resist film. The ionic conductivity is subsequently utilized in the Nernst-Einstein equation to calculate the diffusion coefficient of the photoacid, assuming that it is the major charge carrying species in the film. A detailed description of the measurement and data analysis processes required to calculate the diffusion coefficient of triphenylsulfonium triflate in poly(p-hydroxystyrene) is provided. In addition, the effect of varying the relative humidity of the measurement environment upon the impedance data collected has been examined. It has been observed that the presence of water within the resist film, typically as a result of absorption of water from the humid ambient environment, dramatically changes the conductivity of the resist coated IDE. This change is apparently the result of changes in the proton conduction mechanism within the resist as a function of film water content. A discussion of several possible causes of this phenomena and its impact on the interpretation of the electrical data and the calculation and meaning of an acid diffusion coefficient are presented.

  4. Simple PVC-PPy electrode for pH measurement and titrations.

    PubMed

    Masalles, C; Borrós, S; Viñas, C; Teixidor, F

    2002-02-01

    Cobaltabis(dicarbollide) [3,3'-Co(1,2-C2B9H11)](-)-doped polypyrrole (PPy) films have been prepared galvanostatically on glassy carbon electrodes in acetonitrile solution. The potential response behavior of the film of this new material has been investigated in some common pH buffers and in acid-base titrations. The potentiometric characteristics of the resulting films are indicative of a quasi-Nernstian response (approximately 50 mV/pH unit), a linearity range from pH 12 to 3 and correlation coefficients (r2) of approximately 0.98. The electrode is suitable for pH measurements and for monoprotic titrations of strong alkalis with strong acids, and weak bases with strong acids, but the long response time hinders the use of this electrode for multiprotic titrations. The time response has been dramatically improved by reducing the film thickness by using the template effect of a non-conducting polymer (PVC) cast over the graphite surface before PPy deposition. PPy polymerization occurs in the free channels of PVC leading to the formation of PPy wires. The morphological change of PPy does not affect the slope or linearity range. The response of the PVC-PPy electrochemical sensor is rapid and the sensor is easy to prepare, at low cost, and its performance is comparable with that of commercial glass electrodes. PMID:11939624

  5. Simple PVC-PPy electrode for pH measurement and titrations.

    PubMed

    Masalles, C; Borrós, S; Viñas, C; Teixidor, F

    2002-02-01

    Cobaltabis(dicarbollide) [3,3'-Co(1,2-C2B9H11)](-)-doped polypyrrole (PPy) films have been prepared galvanostatically on glassy carbon electrodes in acetonitrile solution. The potential response behavior of the film of this new material has been investigated in some common pH buffers and in acid-base titrations. The potentiometric characteristics of the resulting films are indicative of a quasi-Nernstian response (approximately 50 mV/pH unit), a linearity range from pH 12 to 3 and correlation coefficients (r2) of approximately 0.98. The electrode is suitable for pH measurements and for monoprotic titrations of strong alkalis with strong acids, and weak bases with strong acids, but the long response time hinders the use of this electrode for multiprotic titrations. The time response has been dramatically improved by reducing the film thickness by using the template effect of a non-conducting polymer (PVC) cast over the graphite surface before PPy deposition. PPy polymerization occurs in the free channels of PVC leading to the formation of PPy wires. The morphological change of PPy does not affect the slope or linearity range. The response of the PVC-PPy electrochemical sensor is rapid and the sensor is easy to prepare, at low cost, and its performance is comparable with that of commercial glass electrodes.

  6. Stable voltage source for Penning trap experiments.

    PubMed

    Pinegar, David B; Blaum, Klaus; Biesiadzinski, Tomasz P; Zafonte, Steven L; Van Dyck, Robert S

    2009-06-01

    A voltage reference has been developed to bias ring electrodes of two Penning traps between -90 and 0 V. For output voltages near -90 V, the Allan deviation of the system's voltage instability is less than 1 part in 10(8) over all time scales shorter than 10(4) s. For averaging times longer than several seconds, the system's stability is determined almost completely by the noise, drift, and aging of the zener diodes in the array of voltage reference integrated circuits. For shorter averaging times, active filters built into the new system significantly reduce the intrinsic noise of the zener diodes. The system makes it possible to continuously adjust the ring voltages for frequency locking the axial motion in the two Penning traps. By keeping electrical noise highly correlated between the two traps, measurement uncertainty should be reduced for precision experiments such as Penning trap mass spectrometry.

  7. Effects of coupling between sample and electrode on the electrical resistivity measurements of conductive samples

    NASA Astrophysics Data System (ADS)

    Lee, T. J.; Lee, S. K.

    2015-12-01

    A resistivity measurement system for conductive core samples has been setup using a high resolution nano-voltmeter. Using the system, in this study, various coupling effects between electrodes and the samples are discussed including contact resistance, lead resistance, temperature dependence, and heat produced within the samples by applied current. The lead resistance was over 10 times higher than the resistance of the conductive samples such as graphite or nichrome, even though the electrodes and lead lines were made of silver. Furthermore, lead resistance itself showed very strong temperature dependence, so that it is essential to subtract the lead resistance from the measured values at corresponding temperature. Minimization of contact resistance is very important, so that the axial loads are needed as big as possible unless the deformation of sample occurs.

  8. End loss analyzer system for measurements of plasma flux at the C-2U divertor electrode

    NASA Astrophysics Data System (ADS)

    Griswold, M. E.; Korepanov, S.; Thompson, M. C.

    2016-11-01

    An end loss analyzer system consisting of electrostatic, gridded retarding-potential analyzers and pyroelectric crystal bolometers was developed to characterize the plasma loss along open field lines to the divertors of C-2U. The system measures the current and energy distribution of escaping ions as well as the total power flux to enable calculation of the energy lost per escaping electron/ion pair. Special care was taken in the construction of the analyzer elements so that they can be directly mounted to the divertor electrode. An attenuation plate at the entrance to the gridded retarding-potential analyzer reduces plasma density by a factor of 60 to prevent space charge limitations inside the device, without sacrificing its angular acceptance of ions. In addition, all of the electronics for the measurement are isolated from ground so that they can float to the bias potential of the electrode, 2 kV below ground.

  9. Attofarad resolution capacitance-voltage measurement of nanometer scale field effect transistors utilizing ambient noise.

    PubMed

    Gokirmak, Ali; Inaltekin, Hazer; Tiwari, Sandip

    2009-08-19

    A high resolution capacitance-voltage (C-V) characterization technique, enabling direct measurement of electronic properties at the nanoscale in devices such as nanowire field effect transistors (FETs) through the use of random fluctuations, is described. The minimum noise level required for achieving sub-aF (10(-18) F) resolution, the leveraging of stochastic resonance, and the effect of higher levels of noise are illustrated through simulations. The non-linear DeltaC(gate-source/drain)-V(gate) response of FETs is utilized to determine the inversion layer capacitance (C(inv)) and carrier mobility. The technique is demonstrated by extracting the carrier concentration and effective electron mobility in a nanoscale Si FET with C(inv) = 60 aF. PMID:19636094

  10. Measurement of Thermopower and Current-Voltage Characteristics of Molecular Junctions to Identify Orbital Alignment

    SciTech Connect

    Tan, Aaron; Sadat, Seid; Reddy, Pramod

    2010-01-08

    We report an experimental technique that concurrently measures the Seebeck coefficient and the current-voltage (I-V) characteristics of a molecular junction to determine the identity and the effective energetic separation of the molecular orbital closest to the electrodes’ Fermi level. Junctions created by contacting a gold-coated atomic force microscope tip with a monolayer of molecules assembled on a gold substrate were found to have a Seebeck coefficient of (+16.9±1.4) μV/K. This positive value unambiguously shows that the highest occupied molecular orbital (HOMO) dominates charge transport. Further, by analyzing the (I-V) characteristics, the HOMO level is estimated to be ~ 0.69 eV with respect to the Fermi level.

  11. Measurements of induced voltages and currents in a distribution power line and associated atmospheric parameters

    NASA Technical Reports Server (NTRS)

    Santiago-Perez, Julio

    1988-01-01

    The frequency and intensity of thunderstorms around the Kennedy Space Center (KSC) has affected scheduled launch, landing, and other ground operations for many years. In order to protect against and provide safe working facilities, KSC has performed and hosted several studies on lightning phenomena. For the reasons mentioned above, KSC has established the Atmospheric Science Field Laboratory (ASFL). At these facilities KSC launches wire-towing rockets into thunderstorms to trigger natural lightning to the launch site. A program named Rocket Triggered Lightning Program (RTLP) is being conducted at the ASFL. This report calls for two of the experiments conducted in the summer 1988 Rocket Triggered Lightning Program. One experiment suspended an electric field mill over the launching areas from a balloon about 500 meters high to measure the space charges over the launching area. The other was to connect a waveform recorder to a nearby distribution power line to record currents and voltages wave forms induced by natural and triggered lightning.

  12. Mechanical measurements on lithium phosphorous oxynitride coated silicon thin film electrodes for lithium-ion batteries during lithiation and delithiation

    NASA Astrophysics Data System (ADS)

    Al-Obeidi, Ahmed; Kramer, Dominik; Boles, Steven T.; Mönig, Reiner; Thompson, Carl V.

    2016-08-01

    The development of large stresses during lithiation and delithiation drives mechanical and chemical degradation processes (cracking and electrolyte decomposition) in thin film silicon anodes that complicate the study of normal electrochemical and mechanical processes. To reduce these effects, lithium phosphorous oxynitride (LiPON) coatings were applied to silicon thin film electrodes. Applying a LiPON coating has two purposes. First, the coating acts as a stable artificial solid electrolyte interphase. Second, it limits mechanical degradation by retaining the electrode's planar morphology during cycling. The development of stress in LiPON-coated electrodes was monitored using substrate curvature measurements. LiPON-coated electrodes displayed highly reproducible cycle-to-cycle behavior, unlike uncoated electrodes which had poorer coulombic efficiency and exhibited a continual loss in stress magnitude with continued cycling due to film fracture. The improved mechanical stability of the coated silicon electrodes allowed for a better investigation of rate effects and variations of mechanical properties during electrochemical cycling.

  13. HIGH VOLTAGE, HIGH CURRENT SPARK GAP SWITCH

    DOEpatents

    Dike, R.S.; Lier, D.W.; Schofield, A.E.; Tuck, J.L.

    1962-04-17

    A high voltage and current spark gap switch comprising two main electrodes insulatingly supported in opposed spaced relationship and a middle electrode supported medially between the main electrodes and symmetrically about the median line of the main electrodes is described. The middle electrode has a perforation aligned with the median line and an irradiation electrode insulatingly supported in the body of the middle electrode normal to the median line and protruding into the perforation. (AEC)

  14. Correlating spin transport and electrode magnetization in a graphene spin valve: Simultaneous magnetic microscopy and non-local measurements

    SciTech Connect

    Berger, Andrew J. Page, Michael R.; Bhallamudi, Vidya P.; Chris Hammel, P.; Wen, Hua; Kawakami, Roland K.; McCreary, Kathleen M.

    2015-10-05

    Using simultaneous magnetic force microscopy and transport measurements of a graphene spin valve, we correlate the non-local spin signal with the magnetization of the device electrodes. The imaged magnetization states corroborate the influence of each electrode within a one-dimensional spin transport model and provide evidence linking domain wall pinning to additional features in the transport signal.

  15. Gold Electrodes Modified with Self-Assembled Monolayers for Measuring L-Ascorbic Acid: An Undergraduate Analytical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Ito, Takashi; Perera, D. M. Neluni T.; Nagasaka, Shinobu

    2008-01-01

    This article describes an undergraduate electrochemistry laboratory experiment in which the students measure the L-ascorbic acid content of a real sample. Gold electrodes modified with self-assembled monolayers (SAMs) of thioctic acid and cysteamine are prepared to study the effects of surface modification on the electrode reaction of L-ascorbic…

  16. Characterization and basic research investigations at PEFC electrodes and MEA

    SciTech Connect

    Schulze, M.; Wagner, N.; Steinhilber, G.

    1996-12-31

    For the study of electrochemical and transport mechanisms in polymere electrolyte fuel cells (PEFC) electrodes and for a further development of PEFC electrodes it is important to characterize these electrodes. The characterization of the electrodes was performed by electrochemical analytical as well as physical methods on both single electrodes and electrode-membrane assemblies (NEA). In addition to voltage-current characteristics the electrodes were electrochemically measured by cyclic voltammetry, electrochemical impedance spectroscopy and chronopotentiometry. To determine the pore systems nitrogen adsorption and mercury porosimetry were used. Chemical composition and microstructure of the electrodes were studied by surface science methods like scanning electron microscopy or X-ray induced photoelectron spectroscopy. The results of characterization are the base for theoretical simulation of fuel cells and fuel cell stacks.

  17. Teaching pH Measurements with a Student-Assembled Combination Quinhydrone Electrode

    ERIC Educational Resources Information Center

    Scholz, Fritz; Steinhardt, Tim; Kahlert, Heike; Porksen, Jens R.; Behnert, Jurgen

    2005-01-01

    A simple combination pH electrode consisting of a solid-state quinhydrone sensor and a solid-state quinhydrone reference electrode is described. Both electrodes are essentially rubber stoppers that are inserted into a special doublewalled holder.

  18. Small-Scale and Low Cost Electrodes for "Standard" Reduction Potential Measurements

    ERIC Educational Resources Information Center

    Eggen, Per-Odd; Kvittingen, Lise

    2007-01-01

    The construction of three simple and inexpensive electrodes, hydrogen, and chlorine and copper electrode is described. This simple method will encourage students to construct their own electrode and better help in understanding precipitation and other electrochemistry concepts.

  19. Polysulfide transport through separators measured by a linear voltage sweep method

    NASA Astrophysics Data System (ADS)

    Cui, Yi; Fu, Yongzhu

    2015-07-01

    Shuttle of polysulfide from the sulfur cathode to lithium metal anode in rechargeable lithium-sulfur batteries is a critical issue hindering cycling efficiency and life. Several approaches have been developed to minimize it including polysulfide-blocking separators; there is a need for measuring polysulfide transport through separators. We here show a linear voltage sweep method to measure anodic (oxidization) current of polysulfide crossed separators, which can be used as a quantitative measurement of the polysulfide transport. The electrochemical oxidation of polysulfide is diffusion controlled. The electrical charge in Coulombs produced by the oxidation of polysulfide is linearly related to the concentration of polysulfide within a certain range (≤0.5 M). Separators with a high porosity (large pore size) show high anodic currents, resulting in fast capacity degradation and low Coulombic efficiencies in Li-S cells. These results demonstrate this method can be used to correlate the polysulfide transport through separators with the separator structure and battery performance, therefore provide guidance for developing new separators for lithium-sulfur batteries.

  20. Measuring of the nonlocal EDF of penning electrons by the wall electrode in the plasma afterglow

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, Anatoly; Kapustin, Kirill; Sayfutdinov, Almaz

    2014-10-01

    In was patented ionization detector for gas analysis, based on the method of collisional electron spectroscopy (CES), which allows working at a high gas pressure. The CES method provides an opportunity to analyze energy of nonlocal electrons released during Penning ionization of atomic or molecular impurities by metastable helium atoms. In this case, the EDF of fast electrons will be narrow peaks that correspond to the energies of their appearance in Penning ionization. To realize the CES method at high (atmospheric) pressure the plasma gap must be small L < 0.1 mm. In this condition the traditional Langmuir probe is impossible to use for measuring the EDF. To overcome this difficulty in was proposed to use afterglow plasma and one of the electrodes as a measuring probe for the registration of EDF of fast penning electrons. In this paper we simulate the afterglow of argon discharge between parallel electrodes and show that EDF and electron sources of Penning ionization are determined by the first derivative of the current to the wall electrode with respect to potential. This work was supported by RSCF and SPbSU.

  1. Parallel measurements of drug actions on Erythrocytes by dielectrophoresis, using a three-dimensional electrode design.

    PubMed

    Hübner, Y; Hoettges, K F; Kass, G E N; Ogin, S L; Hughes, M P

    2005-08-01

    A type of well-based assay that uses a laminated three-dimensional electrode design to characterise the effects of different drugs on red blood cells using dielectrophoresis is presented. The capability of the system to determine the effects of chemical agents on the electrophysiology of red blood cells is demonstrated using saponin and valinomycin as two examples of drugs that can penetrate the cell membrane and therefore change the dielectric properties of the cell. Light intensity changes are measured in the well over a period of time at various frequencies and the dielectric properties of the cells determined using an ellipsoidal multi-shell model. It is shown that the laminated electrode permits a high degree of automation and thus a high number of parallel experiments, which reduces both the time and effort needed to examine differences between populations of red blood cells. The technique is directly compatible with the industry-standard 1536 well-plate analysis technique.

  2. Impact of starting measurement voltage relative to flat-band voltage position on the capacitance-voltage hysteresis and on the defect characterization of InGaAs/high-k metal-oxide-semiconductor stacks

    NASA Astrophysics Data System (ADS)

    Vais, Abhitosh; Franco, Jacopo; Lin, Han-Chung; Collaert, Nadine; Mocuta, Anda; De Meyer, Kristin; Thean, Aaron

    2015-11-01

    In this work, we discuss how the position of the flat band voltage with respect to the starting voltage of the C-V measurement sweep can influence the estimation of the hysteresis in high-k/InGaAs MOS devices. We show that, with the support of experimental data and conceptual oxide defect band calculations, the interpretation and subsequent parameter extraction from flat-band voltage shifts observed in III-V MOS devices is more complex as compared to Si gate stacks. It is demonstrated that such complication arises due to the wider distribution of defect levels in the dielectric band gap in the case of InGaAs/high-k stack as compared to standard Si/SiO2/HfO2 MOS. In particular, for Al2O3 deposited on InGaAs, two wide, partially overlapping oxide defect bands are identified, centered ˜1.5 eV and ˜0.5 eV above and below the channel conduction band, respectively. Such defect levels are expected to affect the device operation and reliability.

  3. High-speed, random-access fluorescence microscopy: II. Fast quantitative measurements with voltage-sensitive dyes.

    PubMed Central

    Bullen, A; Saggau, P

    1999-01-01

    An improved method for making fast quantitative determinations of membrane potential with voltage-sensitive dyes is presented. This method incorporates a high-speed, random-access, laser-scanning scheme (Bullen et al., 1997. Biophys. J. 73:477-491) with simultaneous detection at two emission wavelengths. The basis of this ratiometric approach is the voltage-dependent shift in the emission spectrum of the voltage-sensitive dye di-8-butyl-amino-naphthyl-ethylene-pyridinium-propyl-sulfonate (di-8-ANEPPS). Optical measurements are made at two emission wavelengths, using secondary dichroic beamsplitting and dual photodetectors (<570 nm and >570 nm). Calibration of the ratiometric measurements between signals at these wavelengths was achieved using simultaneous optical and patch-clamp measurements from adjacent points. Data demonstrating the linearity, precision, and accuracy of this technique are presented. Records obtained with this method exhibited a voltage resolution of approximately 5 mV, without any need for temporal or spatial averaging. Ratiometric recordings of action potentials from isolated hippocampal neurons are used to illustrate the usefulness of this approach. This method is unique in that it is the first to allow quantitative determination of dynamic membrane potential changes in a manner optimized for both high spatiotemporal resolution (2 micrometers and <0.5 ms) and voltage discrimination. PMID:10096922

  4. High performance cermet electrodes

    DOEpatents

    Isenberg, Arnold O.; Zymboly, Gregory E.

    1986-01-01

    Disclosed is a method of increasing the operating cell voltage of a solid oxide electrochemical cell having metal electrode particles in contact with an oxygen-transporting ceramic electrolyte. The metal electrode is heated with the cell, and oxygen is passed through the oxygen-transporting ceramic electrolyte to the surface of the metal electrode particles so that the metal electrode particles are oxidized to form a metal oxide layer between the metal electrode particles and the electrolyte. The metal oxide layer is then reduced to form porous metal between the metal electrode particles and the ceramic electrolyte.

  5. Effect of current compliance and voltage sweep rate on the resistive switching of HfO{sub 2}/ITO/Invar structure as measured by conductive atomic force microscopy

    SciTech Connect

    Wu, You-Lin Liao, Chun-Wei; Ling, Jing-Jenn

    2014-06-16

    The electrical characterization of HfO{sub 2}/ITO/Invar resistive switching memory structure was studied using conductive atomic force microscopy (AFM) with a semiconductor parameter analyzer, Agilent 4156C. The metal alloy Invar was used as the metal substrate to ensure good ohmic contact with the substrate holder of the AFM. A conductive Pt/Ir AFM tip was placed in direct contact with the HfO{sub 2} surface, such that it acted as the top electrode. Nanoscale current-voltage (I-V) characteristics of the HfO{sub 2}/ITO/Invar structure were measured by applying a ramp voltage through the conductive AFM tip at various current compliances and ramp voltage sweep rates. It was found that the resistance of the low resistance state (RLRS) decreased with increasing current compliance value, but resistance of high resistance state (RHRS) barely changed. However, both the RHRS and RLRS decreased as the voltage sweep rate increased. The reasons for this dependency on current compliance and voltage sweep rate are discussed.

  6. Static Electrode DC Resistivity Measurement at Surface Water for Pond Subsurface Layer Imaging

    NASA Astrophysics Data System (ADS)

    Sumintadireja, P.; Irawan, D.

    2016-01-01

    Resistivity methods in marine applications show slightly different processing techniques from land based resistivity surveys. Special DC resistivity instruments need to overcome difficulties in arranging the electrode with straight array lines and position. Some geoelectrical instrument manufacturers developed equipment which is able to measure resistivity values and positions in real time. In this paper we demonstrate an application of ordinary geoelectrical instruments for resistivity acquisition in water environment. This study is motivated by the inability to apply conventional DC resistivity instruments in water environment. Land resistivity survey array is arranged on the surface of water using static electrode mode. The method has been tested in various environments, such as ponds/lakes with quiet until rough waves and also measurements at coastal environments. Measurement at the ponds/lakes water environment resulted in data that are almost identic to the measurements obtained using standard land DC resistivity method. On the other hand the measurement in coastal environment does not work properly, possibly due to the lack of power source.

  7. Liquid electrode

    DOEpatents

    Ekechukwu, Amy A.

    1994-01-01

    A dropping electrolyte electrode for use in electrochemical analysis of non-polar sample solutions, such as benzene or cyclohexane. The liquid electrode, preferably an aqueous salt solution immiscible in the sample solution, is introduced into the solution in dropwise fashion from a capillary. The electrolyte is introduced at a known rate, thus, the droplets each have the same volume and surface area. The electrode is used in making standard electrochemical measurements in order to determine properties of non-polar sample solutions.

  8. Effects of erbium doping of indium tin oxide electrode in resistive random access memory

    NASA Astrophysics Data System (ADS)

    Chen, Po-Hsun; Chang, Kuan-Chang; Chang, Ting-Chang; Tsai, Tsung-Ming; Pan, Chih-Hung; Lin, Chih-Yang; Jin, Fu-Yuan; Chen, Min-Chen; Huang, Hui-Chun; Lo, Ikai; Zheng, Jin-Cheng; Sze, Simon M.

    2016-03-01

    Identical insulators and bottom electrodes were fabricated and capped by an indium tin oxide (ITO) film, either undoped or doped with erbium (Er), as a top electrode. This distinctive top electrode dramatically altered the resistive random access memory (RRAM) characteristics, for example, lowering the operation current and enlarging the memory window. In addition, the RESET voltage increased, whereas the SET voltage remained almost the same. A conduction model of Er-doped ITO is proposed through current-voltage (I-V) measurement and current fitting to explain the resistance switching mechanism of Er-doped ITO RRAM and is confirmed by material analysis and reliability tests.

  9. Sauer's non-linear voltage division.

    PubMed

    Schwan, H P; McAdams, E T; Jossinet, J

    2002-09-01

    The non-linearity of the electrode-tissue interface impedance gives rise to harmonics and thus degrades the accuracy of impedance measurements. Also, electrodes are often driven into the non-linear range of their polarisation impedance. This is particularly true in clinical applications. Techniques to correct for electrode effects are usually based on linear electrode impedance data. However, these data can be very different from the non-linear values needed. Non-linear electrode data suggested a model based on simple assumptions. It is useful in predicting the frequency dependence of non-linear effects from linear properties. Sauer's treatment is a first attempt to provide a more general and rigorous basis for modelling the non-linear state. The paper reports Sauer's treatment of the non-linear case and points out its limitations. The paper considers Sauer's treatment of a series arrangement of two impedances. The tissue impedance is represented by a linear voltage-current characteristic. The interface impedance is represented by a Volterra expansion. The response of this network to periodic signals is calculated up to the second-order term of the series expansion. The resultant, time-dependent current is found to contain a DC term (rectification), as well as frequency-dependent terms. Sauer's treatment assumes a voltage clamp across the impedances and neglects higher-order terms in the series expansion. As a consequence, it fails adequately to represent some experimentally observed phenomena. It is therefore suggested that Sauer's expressions for the voltage divider should be combined with the non-linear treatments previously published by the co-authors. Although Sauer's work on the non-linear voltage divider was originally applied to the study of the non-linear behaviour of the electrode-electrolyte interface and biological tissues, it is stressed, however, that the work is applicable to a wide range of research areas.

  10. Printing low-voltage dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Poulin, Alexandre; Rosset, Samuel; Shea, Herbert R.

    2015-12-01

    We demonstrate the fabrication of fully printed thin dielectric elastomer actuators (DEAs), reducing the operation voltage below 300 V while keeping good actuation strain. DEAs are soft actuators capable of strains greater than 100% and response times below 1 ms, but they require driving voltage in the kV range, limiting the possible applications. One way to reduce the driving voltage of DEAs is to decrease the dielectric membrane thickness, which is typically in the 20-100 μm range, as reliable fabrication becomes challenging below this thickness. We report here the use of pad-printing to produce μm thick silicone membranes, on which we pad-print μm thick compliant electrodes to create DEAs. We achieve a lateral actuation strain of 7.5% at only 245 V on a 3 μm thick pad-printed membrane. This corresponds to a ratio of 125%/kV2, by far the highest reported value for DEAs. To quantify the increasing stiffening impact of the electrodes on DEA performance as the membrane thickness decreases, we compare two circular actuators, one with 3 μm- and one with 30 μm-thick membranes. Our experimental measurements show that the strain uniformity of the 3 μm-DEA is indeed affected by the mechanical impact of the electrodes. We developed a simple DEA model that includes realistic electrodes of finite stiffness, rather than assuming zero stiffness electrodes as is commonly done. The simulation results confirm that the stiffening impact of the electrodes is an important parameter that should not be neglected in the design of thin-DEAs. This work presents a practical approach towards low-voltage DEAs, a critical step for the development of real world applications.

  11. Evaluation of the electrode performance for PAFC by using acid absorption, acceleration and ac-impedance measurement

    SciTech Connect

    Kim, Chang-Soo; Song, Rak-Hyun; Choi, Byung-Woo

    1996-12-31

    In PAFC, the degradation on cathode electrode caused by carbon corrosion, platinum dissolution and growth is especially severe. An acceleration test is a good technique for evaluating the degradation of electrode performance, because it does not need long time. Coleman et al used thermal cycling and on-off cycling as an acceleration test. Song et al showed that hydrogen shortage decreased the electrode performance more rapidly than that of air shortage in gas shortage test. Honji et al reported that the rate of coarsening of Pt particle is rapid in open circuit potential and this is one of major causes on the performance degradation of electrode. The cathode performance has been studied by using acid absorption, acceleration and ac-impedance measurements as functions of the polytetrafluoroethylene (PTFE) contents and sintering temperatures of the electrode.

  12. Spectral response measurement of double-junction thin-film photovoltaic devices: the impact of shunt resistance and bias voltage

    NASA Astrophysics Data System (ADS)

    Pravettoni, Mauro; Galleano, Roberto; Virtuani, Alessandro; Müllejans, Harald; Dunlop, Ewan D.

    2011-04-01

    Multijunction photovoltaic (PV) thin-film modules are becoming more and more important on the market, due to their low cost and improved module efficiency now well above 10%. The spectral response (SR) measurement of multijunction thin-film cells presents additional challenges with respect to the SR measurement procedure for single-junction devices. Several works have appeared in the last 15 years in the PV literature, describing certain measurement artefacts that typically appear when measuring the SR of multijunction cells without applying an appropriate voltage bias to the entire cell. In this paper, the authors revise the theoretical description of SR measurements on multijunction devices, show how to detect the possible origin of measurement artefacts from the dark SR and show why bias voltage sometimes is not enough to avoid such artefacts or why it is not even necessary. An experimental confirmation of the theoretical approach is finally given.

  13. X-ray spectroscopy in mammography with a silicon PIN photodiode with application to the measurement of tube voltage

    SciTech Connect

    Kuenzel, Roseli; Herdade, Silvio Bruni; Terini, Ricardo Andrade; Costa, Paulo Roberto

    2004-11-01

    In this work a silicon PIN photodiode was employed in mammographic x-ray spectroscopy under clinical and nonclinical conditions. Measurements have been performed at a constant potential tungsten anode tube, adapted in this work with molybdenum filters to produce a beam like that used in mammography, and at a clinical equipment with a molybdenum anode tube by using an additional aluminum filtration. The corrected x-ray spectra were in full agreement with those generated by theoretical models published in the literature and agree well with those measured with a CdZnTe detector for tube voltages less than 30 kV. The half value layer and the relative exposure values calculated from the corrected silicon PIN photodiode spectra were in agreement with those measured with an ionization chamber. These results indicate that a silicon PIN photodiode are very suitable for mammographic x-ray spectroscopy. As an application, the voltage (kV) applied to mammographic x-ray equipment has been measured through the evaluation of the spectra high energy cut off. Uncertainties evaluated for the voltage values calculated from the measured spectra are less than 0.13% for voltages in the range 20-35 kV. The low uncertainties associated with the obtained results in this work point out that the method employed can be accurately used for calibration of noninvasive mammographic kVp meters.

  14. Focused ion beam processing to fabricate ohmic contact electrodes on a bismuth nanowire for Hall measurements

    PubMed Central

    2013-01-01

    Ohmic contact electrodes for four-wire resistance and Hall measurements were fabricated on an individual single-crystal bismuth nanowire encapsulated in a cylindrical quartz template. Focused ion beam processing was utilized to expose the side surfaces of the bismuth nanowire in the template, and carbon and tungsten electrodes were deposited on the bismuth nanowire in situ to achieve electrical contacts. The temperature dependence of the four-wire resistance was successfully measured for the bismuth nanowire, and a difference between the resistivities of the two-wire and four-wire methods was observed. It was concluded that the two-wire method was unsuitable for estimation of the resistivity due to the influence of contact resistance, even if the magnitude of the bismuth nanowire resistance was greater than the kilo-ohm order. Furthermore, Hall measurement of a 4-μm-diameter bismuth microwire was also performed as a trial, and the evaluated temperature dependence of the carrier mobility was in agreement with that for bulk bismuth, which indicates that the carrier mobility was successfully measured using this technique. PACS 81.07.Gf PMID:24070421

  15. Improved high-voltage and high-temperature electrochemical performances of LiCoO2 cathode by electrode sputter-coating with Li3PO4

    NASA Astrophysics Data System (ADS)

    Zhou, Aijun; Xu, Jin; Dai, Xinyi; Yang, Bin; Lu, Yanting; Wang, Liping; Fan, Cong; Li, Jingze

    2016-08-01

    Surface coating has long been an important strategy to improve the electrochemical performances of electrode materials for Li-ion batteries. In this work, an amorphous Li3PO4 (LPO) layer, which is a poor electronic conductor but good ionic conductor, is coated directly on LiCoO2 composite electrodes by magnetron sputtering. The battery performances of the electrodes are studied at both room temperature (RT) and 50 °C. The LPO sputter-coating allows significant improvement of the electrode's cycling stability at both temperatures. With an optimum coating thickness of ∼60 nm, the electrode's capacity after 100 cycles at 1 C can reach 146 mAh g-1 (79.3% retention) and 140 mAh g-1 (78.2% retention) at RT and 50 °C, which are improved by 30% and 200%, respectively, compared to those of the bare LCO electrode. More impressively, the rate capability is also greatly enhanced by LPO-coating, and the observed high-temperature rate capability is even superior to the room-temperature one. The remarkable improvement of the LPO-coated electrodes is mainly attributed to the high chemical stability and temperature-enhanced electrochemical activity of the LPO coating layer, which synergistically serves as a physiochemical protection layer and an efficient pathway for Li+ transport.

  16. Tunnelling current-voltage characteristics of Angstrom gaps measured with terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Kim, Joon-Yeon; Kang, Bong Joo; Bahk, Young-Mi; Kim, Yong Seung; Park, Joohyun; Kim, Won Tae; Rhie, Jiyeah; Han, Sanghoon; Jeon, Hyeongtag; Park, Cheol-Hwan; Rotermund, Fabian; Kim, Dai-Sik

    2016-06-01

    Quantum tunnelling becomes inevitable as gap dimensions in metal structures approach the atomic length scale, and light passing through these gaps can be used to examine the quantum processes at optical frequencies. Here, we report on the measurement of the tunnelling current through a 3-Å-wide metal-graphene-metal gap using terahertz time-domain spectroscopy. By analysing the waveforms of the incident and transmitted terahertz pulses, we obtain the tunnelling resistivity and the time evolution of the induced current and electric fields in the gap and show that the ratio of the applied voltage to the tunnelling current is constant, i.e., the gap shows ohmic behaviour for the strength of the incident electric field up to 30 kV/cm. We further show that our method can be extended and applied to different types of nanogap tunnel junctions using suitable equivalent RLC circuits for the corresponding structures by taking an array of ring-shaped nanoslots as an example.

  17. Tunnelling current-voltage characteristics of Angstrom gaps measured with terahertz time-domain spectroscopy.

    PubMed

    Kim, Joon-Yeon; Kang, Bong Joo; Bahk, Young-Mi; Kim, Yong Seung; Park, Joohyun; Kim, Won Tae; Rhie, Jiyeah; Han, Sanghoon; Jeon, Hyeongtag; Park, Cheol-Hwan; Rotermund, Fabian; Kim, Dai-Sik

    2016-01-01

    Quantum tunnelling becomes inevitable as gap dimensions in metal structures approach the atomic length scale, and light passing through these gaps can be used to examine the quantum processes at optical frequencies. Here, we report on the measurement of the tunnelling current through a 3-Å-wide metal-graphene-metal gap using terahertz time-domain spectroscopy. By analysing the waveforms of the incident and transmitted terahertz pulses, we obtain the tunnelling resistivity and the time evolution of the induced current and electric fields in the gap and show that the ratio of the applied voltage to the tunnelling current is constant, i.e., the gap shows ohmic behaviour for the strength of the incident electric field up to 30 kV/cm. We further show that our method can be extended and applied to different types of nanogap tunnel junctions using suitable equivalent RLC circuits for the corresponding structures by taking an array of ring-shaped nanoslots as an example. PMID:27357346

  18. Tunnelling current-voltage characteristics of Angstrom gaps measured with terahertz time-domain spectroscopy

    PubMed Central

    Kim, Joon-Yeon; Kang, Bong Joo; Bahk, Young-Mi; Kim, Yong Seung; Park, Joohyun; Kim, Won Tae; Rhie, Jiyeah; Han, Sanghoon; Jeon, Hyeongtag; Park, Cheol-Hwan; Rotermund, Fabian; Kim, Dai-Sik

    2016-01-01

    Quantum tunnelling becomes inevitable as gap dimensions in metal structures approach the atomic length scale, and light passing through these gaps can be used to examine the quantum processes at optical frequencies. Here, we report on the measurement of the tunnelling current through a 3-Å-wide metal-graphene-metal gap using terahertz time-domain spectroscopy. By analysing the waveforms of the incident and transmitted terahertz pulses, we obtain the tunnelling resistivity and the time evolution of the induced current and electric fields in the gap and show that the ratio of the applied voltage to the tunnelling current is constant, i.e., the gap shows ohmic behaviour for the strength of the incident electric field up to 30 kV/cm. We further show that our method can be extended and applied to different types of nanogap tunnel junctions using suitable equivalent RLC circuits for the corresponding structures by taking an array of ring-shaped nanoslots as an example. PMID:27357346

  19. Comparison of clinical and physical measures of image quality in chest and pelvis computed radiography at different tube voltages

    SciTech Connect

    Sandborg, Michael; Tingberg, Anders; Ullman, Gustaf; Dance, David R.; Alm Carlsson, Gudrun

    2006-11-15

    The aim of this work was to study the dependence of image quality in digital chest and pelvis radiography on tube voltage, and to explore correlations between clinical and physical measures of image quality. The effect on image quality of tube voltage in these two examinations was assessed using two methods. The first method relies on radiologists' observations of images of an anthropomorphic phantom, and the second method was based on computer modeling of the imaging system using an anthropomorphic voxel phantom. The tube voltage was varied within a broad range (50-150 kV), including those values typically used with screen-film radiography. The tube charge was altered so that the same effective dose was achieved for each projection. Two x-ray units were employed using a computed radiography (CR) image detector with standard tube filtration and antiscatter device. Clinical image quality was assessed by a group of radiologists using a visual grading analysis (VGA) technique based on the revised CEC image criteria. Physical image quality was derived from a Monte Carlo computer model in terms of the signal-to-noise ratio, SNR, of anatomical structures corresponding to the image criteria. Both the VGAS (visual grading analysis score) and SNR decrease with increasing tube voltage in both chest PA and pelvis AP examinations, indicating superior performance if lower tube voltages are employed. Hence, a positive correlation between clinical and physical measures of image quality was found. The pros and cons of using lower tube voltages with CR digital radiography than typically used in analog screen-film radiography are discussed, as well as the relevance of using VGAS and quantum-noise SNR as measures of image quality in pelvis and chest radiography.

  20. Electrode assembly for a fluidized bed apparatus

    DOEpatents

    Schora, Jr., Frank C.; Matthews, Charles W.; Knowlton, Ted M.

    1976-11-23

    An electrode assembly comprising a high voltage electrode having a generally cylindrical shape and being electrically connected to a high voltage source, where the cylinder walls may be open to flow of fluids and solids; an electrically grounded support electrode supporting said high voltage electrode by an electrically insulating support where both of the electrically grounded and electrically insulating support may be hollow; and an electrically grounded liner electrode arranged concentrically around both the high voltage and support electrodes. This assembly is specifically adapted for use in a fluidized bed chemical reactor as an improved heating means therefor.

  1. Use of vacuum tubes in test instrumentation for measuring characteristics of fast high-voltage semiconductor devices

    NASA Technical Reports Server (NTRS)

    Berning, D.

    1981-01-01

    Circuits are described that permit measurement of fast events occurring in power semiconductors. These circuits were developed for the dynamic characterization of transistors used in inductive-load switching applications. Fast voltage clamping using vacuum diodes is discussed, and reference is made to a unique circuit that was built for performing nondestructive, reverse-bias, second-breakdown tests on transistors.

  2. Two-Point Stretchable Electrode Array for Endoluminal Electrochemical Impedance Spectroscopy Measurements of Lipid-Laden Atherosclerotic Plaques.

    PubMed

    Packard, René R Sevag; Zhang, XiaoXiao; Luo, Yuan; Ma, Teng; Jen, Nelson; Ma, Jianguo; Demer, Linda L; Zhou, Qifa; Sayre, James W; Li, Rongsong; Tai, Yu-Chong; Hsiai, Tzung K

    2016-09-01

    Four-point electrode systems are commonly used for electric impedance measurements of biomaterials and tissues. We introduce a 2-point system to reduce electrode polarization for heterogeneous measurements of vascular wall. Presence of endoluminal oxidized low density lipoprotein (oxLDL) and lipids alters the electrochemical impedance that can be measured by electrochemical impedance spectroscopy (EIS). We developed a catheter-based 2-point micro-electrode configuration for intravascular deployment in New Zealand White rabbits. An array of 2 flexible round electrodes, 240 µm in diameter and separated by 400 µm was microfabricated and mounted on an inflatable balloon catheter for EIS measurement of the oxLDL-rich lesions developed as a result of high-fat diet-induced hyperlipidemia. Upon balloon inflation, the 2-point electrode array conformed to the arterial wall to allow deep intraplaque penetration via alternating current (AC). The frequency sweep from 10 to 300 kHz generated an increase in capacitance, providing distinct changes in both impedance (Ω) and phase (ϕ) in relation to varying degrees of intraplaque lipid burden in the aorta. Aortic endoluminal EIS measurements were compared with epicardial fat tissue and validated by intravascular ultrasound and immunohistochemistry for plaque lipids and foam cells. Thus, we demonstrate a new approach to quantify endoluminal EIS via a 2-point stretchable electrode strategy.

  3. Two-Point Stretchable Electrode Array for Endoluminal Electrochemical Impedance Spectroscopy Measurements of Lipid-Laden Atherosclerotic Plaques.

    PubMed

    Packard, René R Sevag; Zhang, XiaoXiao; Luo, Yuan; Ma, Teng; Jen, Nelson; Ma, Jianguo; Demer, Linda L; Zhou, Qifa; Sayre, James W; Li, Rongsong; Tai, Yu-Chong; Hsiai, Tzung K

    2016-09-01

    Four-point electrode systems are commonly used for electric impedance measurements of biomaterials and tissues. We introduce a 2-point system to reduce electrode polarization for heterogeneous measurements of vascular wall. Presence of endoluminal oxidized low density lipoprotein (oxLDL) and lipids alters the electrochemical impedance that can be measured by electrochemical impedance spectroscopy (EIS). We developed a catheter-based 2-point micro-electrode configuration for intravascular deployment in New Zealand White rabbits. An array of 2 flexible round electrodes, 240 µm in diameter and separated by 400 µm was microfabricated and mounted on an inflatable balloon catheter for EIS measurement of the oxLDL-rich lesions developed as a result of high-fat diet-induced hyperlipidemia. Upon balloon inflation, the 2-point electrode array conformed to the arterial wall to allow deep intraplaque penetration via alternating current (AC). The frequency sweep from 10 to 300 kHz generated an increase in capacitance, providing distinct changes in both impedance (Ω) and phase (ϕ) in relation to varying degrees of intraplaque lipid burden in the aorta. Aortic endoluminal EIS measurements were compared with epicardial fat tissue and validated by intravascular ultrasound and immunohistochemistry for plaque lipids and foam cells. Thus, we demonstrate a new approach to quantify endoluminal EIS via a 2-point stretchable electrode strategy. PMID:26857007

  4. High frequency reference electrode

    DOEpatents

    Kronberg, James W.

    1994-01-01

    A high frequency reference electrode for electrochemical experiments comprises a mercury-calomel or silver-silver chloride reference electrode with a layer of platinum around it and a layer of a chemically and electrically resistant material such as TEFLON around the platinum covering all but a small ring or "halo" at the tip of the reference electrode, adjacent to the active portion of the reference electrode. The voltage output of the platinum layer, which serves as a redox electrode, and that of the reference electrode are coupled by a capacitor or a set of capacitors and the coupled output transmitted to a standard laboratory potentiostat. The platinum may be applied by thermal decomposition to the surface of the reference electrode. The electrode provides superior high-frequency response over conventional electrodes.

  5. High frequency reference electrode

    DOEpatents

    Kronberg, J.W.

    1994-05-31

    A high frequency reference electrode for electrochemical experiments comprises a mercury-calomel or silver-silver chloride reference electrode with a layer of platinum around it and a layer of a chemically and electrically resistant material such as TEFLON around the platinum covering all but a small ring or halo' at the tip of the reference electrode, adjacent to the active portion of the reference electrode. The voltage output of the platinum layer, which serves as a redox electrode, and that of the reference electrode are coupled by a capacitor or a set of capacitors and the coupled output transmitted to a standard laboratory potentiostat. The platinum may be applied by thermal decomposition to the surface of the reference electrode. The electrode provides superior high-frequency response over conventional electrodes. 4 figs.

  6. Analysis of Fe Nanoparticles Using XPS Measurements Under D.C. or Pulsed-Voltage Bias

    SciTech Connect

    Suzer, Sefik; Baer, Donald R.; Engelhard, Mark H.

    2010-06-16

    The impact of solution exposure on the charging properties of oxide coatings on Fe metal-core oxide-shells has been examined by sample biasing during XPS measurements. The Fe nanoparticles were suspended in relatively unreactive acetone and were analyzed after particle containing solutions were deposited on SiO2/Si substrates, and/or Au substrates. The particle and substrate combinations were subjected to ± 10V d.c. biasing in the form of square waves (SQW) pulses with 5V amplitude. The samples experienced variable degrees of charging for which low energy electrons at ~1 eV, 20μA and low energy Ar+ ions were used to minimize. Application of d.c. bias and/or square wave pulses drastically influences the extent of charging, which is utilized to gather additional analytical information about the sample under investigation. This approach allows separation of otherwise overlapping peaks. Accordingly, the O1s peaks of the silicon oxide substrate, the iron oxide nanoparticles, and that of the casting solvent can be separated from each other. Similarly the C1s peak belonging to the solvent can be separated from that of the adventitious carbon. The charging shifts of the iron nanoparticles are strongly influenced by the surrounding solvent. Hence, acetone exhibits the largest shift, water the smallest, and methanol in between. Dynamical measurements performed by application of the voltage stress in the form of SQW pulses gives information about the time constants of the processes involved, which led us postulate that these charging properties we probe in these systems, stem mainly from ionic movement(s).

  7. Long-term measurement of impedance in chronically implanted depth and subdural electrodes during responsive neurostimulation in humans.

    PubMed

    Sillay, Karl A; Rutecki, Paul; Cicora, Kathy; Worrell, Greg; Drazkowski, Joseph; Shih, Jerry J; Sharan, Ashwini D; Morrell, Martha J; Williams, Justin; Wingeier, Brett

    2013-09-01

    Long-term stability of the electrode-tissue interface may be required to maintain optimal neural recording with subdural and deep brain implants and to permit appropriate delivery of neuromodulation therapy. Although short-term changes in impedance at the electrode-tissue interface are known to occur, long-term changes in impedance have not previously been examined in detail in humans. To provide further information about short- and long-term impedance changes in chronically implanted electrodes, a dataset from 191 persons with medically intractable epilepsy participating in a trial of an investigational responsive neurostimulation device (the RNS(®) System, NeuroPace, Inc.) was reviewed. Monopolar impedance measurements were available for 391 depth and subdural leads containing a total of 1564 electrodes; measurements were available for median 802 days post-implant (range 28-1634). Although there were statistically significant short-term impedance changes, long-term impedance was stable after one year. Impedances for depth electrodes transiently increased during the third week after lead implantation and impedances for subdural electrodes increased over 12 weeks post-implant, then were stable over the subsequent long-term follow-up. Both depth and subdural electrode impedances demonstrated long-term stability, suggesting that the quality of long-term electrographic recordings (the data used to control responsive brain stimulation) can be maintained over time. PMID:23538208

  8. Emulsion stability measurements by single electrode capacitance probe (SeCaP) technology

    NASA Astrophysics Data System (ADS)

    Schüller, R. B.; Løkra, S.; Salas-Bringas, C.; Egelandsdal, B.; Engebretsen, B.

    2008-08-01

    This paper describes a new and novel method for the determination of the stability of emulsions. The method is based on the single electrode capacitance technology (SeCaP). A measuring system consisting of eight individual measuring cells, each with a volume of approximately 10 ml, is described in detail. The system has been tested on an emulsion system based on whey proteins (WPC80), oil and water. Xanthan was added to modify the emulsion stability. The results show that the new measuring system is able to quantify the stability of the emulsion in terms of a differential variable. The whole separation process is observed much faster in the SeCaP system than in a conventional separation column. The complete separation process observed visually over 30 h is seen in less than 1.4 h in the SeCaP system.

  9. Multiple Input Electrode Gap Control During Vacuum Arc Remelting

    SciTech Connect

    Beaman, J.J.; Hysinger, C.L.; Melgaard, D.K.; Williamson, R.L.

    1999-01-14

    Accurate control of the electrode gap in a vacuum arc remelting (VAR) furnace has been a goal of melters for many years. The size of the electrode gap has a direct influence on ingot solidification structure. At the high melting currents (30 to 40 kA) typically used for VAR of segregation insensitive Ti and Zr alloys, process voltage is used as an indicator of electrode gap, whereas drip-short frequency (or period) is usually used at the lower currents (5 to 8 kA) employed during VAR of superalloys. Modem controllers adjust electrode position or drive velocity to maintain a voltage or drip-short frequency (or period) set-point. Because these responses are non-linear functions of electrode gap and melting current, these controllers have a limited range for which the feedback gains are valid. Models are available that relate process voltage and drip-short frequency to electrode gap. These relationships may be used to linearize the controller feedback signal. An estimate of electrode gap may then be obtained by forming a weighted sum of the independent gap estimates obtained from the voltage and drip-short signals. By using multiple independent measures to estimate the gap, a controller that is less susceptible to process disturbances can be developed. Such a controller was designed, built and tested. The tests were carried out at Allvac Corporation during VAR of 12Cr steel at intermediate current levels.

  10. In vivo impedance spectroscopy of deep brain stimulation electrodes

    NASA Astrophysics Data System (ADS)

    Lempka, Scott F.; Miocinovic, Svjetlana; Johnson, Matthew D.; Vitek, Jerrold L.; McIntyre, Cameron C.

    2009-08-01

    Deep brain stimulation (DBS) represents a powerful clinical technology, but a systematic characterization of the electrical interactions between the electrode and the brain is lacking. The goal of this study was to examine the in vivo changes in the DBS electrode impedance that occur after implantation and during clinically relevant stimulation. Clinical DBS devices typically apply high-frequency voltage-controlled stimulation, and as a result, the injected current is directly regulated by the impedance of the electrode-tissue interface. We monitored the impedance of scaled-down clinical DBS electrodes implanted in the thalamus and subthalamic nucleus of a rhesus macaque using electrode impedance spectroscopy (EIS) measurements ranging from 0.5 Hz to 10 kHz. To further characterize our measurements, equivalent circuit models of the electrode-tissue interface were used to quantify the role of various interface components in producing the observed electrode impedance. Following implantation, the DBS electrode impedance increased and a semicircular arc was observed in the high-frequency range of the EIS measurements, commonly referred to as the tissue component of the impedance. Clinically relevant stimulation produced a rapid decrease in electrode impedance with extensive changes in the tissue component. These post-operative and stimulation-induced changes in impedance could play an important role in the observed functional effects of voltage-controlled DBS and should be considered during clinical stimulation parameter selection and chronic animal research studies.

  11. Charge-pump voltage converter

    DOEpatents

    Brainard, John P.; Christenson, Todd R.

    2009-11-03

    A charge-pump voltage converter for converting a low voltage provided by a low-voltage source to a higher voltage. Charge is inductively generated on a transfer rotor electrode during its transit past an inductor stator electrode and subsequently transferred by the rotating rotor to a collector stator electrode for storage or use. Repetition of the charge transfer process leads to a build-up of voltage on a charge-receiving device. Connection of multiple charge-pump voltage converters in series can generate higher voltages, and connection of multiple charge-pump voltage converters in parallel can generate higher currents. Microelectromechanical (MEMS) embodiments of this invention provide a small and compact high-voltage (several hundred V) voltage source starting with a few-V initial voltage source. The microscale size of many embodiments of this invention make it ideally suited for MEMS- and other micro-applications where integration of the voltage or charge source in a small package is highly desirable.

  12. In situ spatially and temporally resolved measurements of salt concentration between charging porous electrodes for desalination by capacitive deionization.

    PubMed

    Suss, Matthew E; Biesheuvel, P M; Baumann, Theodore F; Stadermann, Michael; Santiago, Juan G

    2014-01-01

    Capacitive deionization (CDI) is an emerging water desalination technique. In CDI, pairs of porous electrode capacitors are electrically charged to remove salt from brackish water present between the electrodes. We here present a novel experimental technique allowing measurement of spatially and temporally resolved salt concentration between the CDI electrodes. Our technique measures the local fluorescence intensity of a neutrally charged fluorescent probe which is collisionally quenched by chloride ions. To our knowledge, our system is the first to measure in situ and spatially resolved chloride concentration in a laboratory CDI cell. We here demonstrate good agreement between our dynamic measurements of salt concentration in a charging, millimeter-scale CDI system to the results of a modified Donnan porous electrode transport model. Further, we utilize our dynamic measurements to demonstrate that salt removal between our charging CDI electrodes occurs on a longer time scale than the capacitive charging time scales of our CDI cell. Compared to typical measurements of CDI system performance (namely, measurements of outflow ionic conductivity), our technique can enable more advanced and better-controlled studies of ion transport in CDI systems, which can potentially catalyze future performance improvements.

  13. Carrier-interleaved orthogonal multi-electrode multi-carrier resistivity-measurement tool

    NASA Astrophysics Data System (ADS)

    Cai, Yu; Sha, Shuang

    2016-09-01

    This paper proposes a new carrier-interleaved orthogonal multi-electrode multi-carrier resistivity-measurement tool used in a cylindrical borehole environment during oil-based mud drilling processes. The new tool is an orthogonal frequency division multiplexing access-based contactless multi-measurand detection tool. The tool can measure formation resistivity in different azimuthal angles and elevational depths. It can measure many more measurands simultaneously in a specified bandwidth than the legacy frequency division multiplexing multi-measurand tool without a channel-select filter while avoiding inter-carrier interference. The paper also shows that formation resistivity is not sensitive to frequency in certain frequency bands. The average resistivity collected from N subcarriers can increase the measurement of the signal-to-noise ratio (SNR) by N times given no amplitude clipping in the current-injection electrode. If the clipping limit is taken into account, with the phase rotation of each single carrier, the amplitude peak-to-average ratio can be reduced by 3 times, and the SNR can achieve a 9/N times gain over the single-carrier system. The carrier-interleaving technique is also introduced to counter the carrier frequency offset (CFO) effect, where the CFO will cause inter-pad interference. A qualitative analysis and simulations demonstrate that block-interleaving performs better than tone-interleaving when coping with a large CFO. The theoretical analysis also suggests that increasing the subcarrier number can increase the measurement speed or enhance elevational resolution without sacrificing receiver performance. The complex orthogonal multi-pad multi-carrier resistivity logging tool, in which all subcarriers are complex signals, can provide a larger available subcarrier pool than other types of transceivers.

  14. A combined electrochemical and optical trapping platform for measuring single cell respiration rates at electrode interfaces

    NASA Astrophysics Data System (ADS)

    Gross, Benjamin J.; El-Naggar, Mohamed Y.

    2015-06-01

    Metal-reducing bacteria gain energy by extracellular electron transfer to external solids, such as naturally abundant minerals, which substitute for oxygen or the other common soluble electron acceptors of respiration. This process is one of the earliest forms of respiration on earth and has significant environmental and technological implications. By performing electron transfer to electrodes instead of minerals, these microbes can be used as biocatalysts for conversion of diverse chemical fuels to electricity. Understanding such a complex biotic-abiotic interaction necessitates the development of tools capable of probing extracellular electron transfer down to the level of single cells. Here, we describe an experimental platform for single cell respiration measurements. The design integrates an infrared optical trap, perfusion chamber, and lithographically fabricated electrochemical chips containing potentiostatically controlled transparent indium tin oxide microelectrodes. Individual bacteria are manipulated using the optical trap and placed on the microelectrodes, which are biased at a suitable oxidizing potential in the absence of any chemical electron acceptor. The potentiostat is used to detect the respiration current correlated with cell-electrode contact. We demonstrate the system with single cell measurements of the dissimilatory-metal reducing bacterium Shewanella oneidensis MR-1, which resulted in respiration currents ranging from 15 fA to 100 fA per cell under our measurement conditions. Mutants lacking the outer-membrane cytochromes necessary for extracellular respiration did not result in any measurable current output upon contact. In addition to the application for extracellular electron transfer studies, the ability to electronically measure cell-specific respiration rates may provide answers for a variety of fundamental microbial physiology questions.

  15. A combined electrochemical and optical trapping platform for measuring single cell respiration rates at electrode interfaces

    SciTech Connect

    Gross, Benjamin J.; El-Naggar, Mohamed Y.

    2015-06-15

    Metal-reducing bacteria gain energy by extracellular electron transfer to external solids, such as naturally abundant minerals, which substitute for oxygen or the other common soluble electron acceptors of respiration. This process is one of the earliest forms of respiration on earth and has significant environmental and technological implications. By performing electron transfer to electrodes instead of minerals, these microbes can be used as biocatalysts for conversion of diverse chemical fuels to electricity. Understanding such a complex biotic-abiotic interaction necessitates the development of tools capable of probing extracellular electron transfer down to the level of single cells. Here, we describe an experimental platform for single cell respiration measurements. The design integrates an infrared optical trap, perfusion chamber, and lithographically fabricated electrochemical chips containing potentiostatically controlled transparent indium tin oxide microelectrodes. Individual bacteria are manipulated using the optical trap and placed on the microelectrodes, which are biased at a suitable oxidizing potential in the absence of any chemical electron acceptor. The potentiostat is used to detect the respiration current correlated with cell-electrode contact. We demonstrate the system with single cell measurements of the dissimilatory-metal reducing bacterium Shewanella oneidensis MR-1, which resulted in respiration currents ranging from 15 fA to 100 fA per cell under our measurement conditions. Mutants lacking the outer-membrane cytochromes necessary for extracellular respiration did not result in any measurable current output upon contact. In addition to the application for extracellular electron transfer studies, the ability to electronically measure cell-specific respiration rates may provide answers for a variety of fundamental microbial physiology questions.

  16. A combined electrochemical and optical trapping platform for measuring single cell respiration rates at electrode interfaces.

    PubMed

    Gross, Benjamin J; El-Naggar, Mohamed Y

    2015-06-01

    Metal-reducing bacteria gain energy by extracellular electron transfer to external solids, such as naturally abundant minerals, which substitute for oxygen or the other common soluble electron acceptors of respiration. This process is one of the earliest forms of respiration on earth and has significant environmental and technological implications. By performing electron transfer to electrodes instead of minerals, these microbes can be used as biocatalysts for conversion of diverse chemical fuels to electricity. Understanding such a complex biotic-abiotic interaction necessitates the development of tools capable of probing extracellular electron transfer down to the level of single cells. Here, we describe an experimental platform for single cell respiration measurements. The design integrates an infrared optical trap, perfusion chamber, and lithographically fabricated electrochemical chips containing potentiostatically controlled transparent indium tin oxide microelectrodes. Individual bacteria are manipulated using the optical trap and placed on the microelectrodes, which are biased at a suitable oxidizing potential in the absence of any chemical electron acceptor. The potentiostat is used to detect the respiration current correlated with cell-electrode contact. We demonstrate the system with single cell measurements of the dissimilatory-metal reducing bacterium Shewanella oneidensis MR-1, which resulted in respiration currents ranging from 15 fA to 100 fA per cell under our measurement conditions. Mutants lacking the outer-membrane cytochromes necessary for extracellular respiration did not result in any measurable current output upon contact. In addition to the application for extracellular electron transfer studies, the ability to electronically measure cell-specific respiration rates may provide answers for a variety of fundamental microbial physiology questions.

  17. Time varying voltage combustion control and diagnostics sensor

    DOEpatents

    Chorpening, Benjamin T.; Thornton, Jimmy D.; Huckaby, E. David; Fincham, William

    2011-04-19

    A time-varying voltage is applied to an electrode, or a pair of electrodes, of a sensor installed in a fuel nozzle disposed adjacent the combustion zone of a continuous combustion system, such as of the gas turbine engine type. The time-varying voltage induces a time-varying current in the flame which is measured and used to determine flame capacitance using AC electrical circuit analysis. Flame capacitance is used to accurately determine the position of the flame from the sensor and the fuel/air ratio. The fuel and/or air flow rate (s) is/are then adjusted to provide reduced flame instability problems such as flashback, combustion dynamics and lean blowout, as well as reduced emissions. The time-varying voltage may be an alternating voltage and the time-varying current may be an alternating current.

  18. Microfabricated Collector-Generator Electrode Sensor for Measuring Absolute pH and Oxygen Concentrations.

    PubMed

    Dengler, Adam K; Wightman, R Mark; McCarty, Gregory S

    2015-10-20

    Fast-scan cyclic voltammetry (FSCV) has attracted attention for studying in vivo neurotransmission due to its subsecond temporal resolution, selectivity, and sensitivity. Traditional FSCV measurements use background subtraction to isolate changes in the local electrochemical environment, providing detailed information on fluctuations in the concentration of electroactive species. This background subtraction removes information about constant or slowly changing concentrations. However, determination of background concentrations is still important for understanding functioning brain tissue. For example, neural activity is known to consume oxygen and produce carbon dioxide which affects local levels of oxygen and pH. Here, we present a microfabricated microelectrode array which uses FSCV to detect the absolute levels of oxygen and pH in vitro. The sensor is a collector-generator electrode array with carbon microelectrodes spaced 5 μm apart. In this work, a periodic potential step is applied at the generator producing transient local changes in the electrochemical environment. The collector electrode continuously performs FSCV enabling these induced changes in concentration to be recorded with the sensitivity and selectivity of FSCV. A negative potential step applied at the generator produces a transient local pH shift at the collector. The generator-induced pH signal is detected using FSCV at the collector and correlated to absolute solution pH by postcalibration of the anodic peak position. In addition, in oxygenated solutions a negative potential step at the generator produces hydrogen peroxide by reducing oxygen. Hydrogen peroxide is detected with FSCV at the collector electrode, and the magnitude of the oxidative peak is proportional to absolute oxygen concentrations. Oxygen interference on the pH signal is minimal and can be accounted for with a postcalibration.

  19. Spatiotemporal electrochemical measurements across an electric double layer capacitor electrode with application to aqueous sodium hybrid batteries

    NASA Astrophysics Data System (ADS)

    Tully, Katherine C.; Whitacre, Jay F.; Litster, Shawn

    2014-02-01

    This paper presents in-situ spatiotemporal measurements of the electrolyte phase potential within an electric double layer capacitor (EDLC) negative electrode as envisaged for use in an aqueous hybrid battery for grid-scale energy storage. The ultra-thick electrodes used in these batteries to reduce non-functional material costs require sufficiently fast through-plane mass and charge transport to attain suitable charging and discharging rates. To better evaluate the through-plane transport, we have developed an electrode scaffold (ES) for making in situ electrolyte potential distribution measurements at discrete known distances across the thickness of an uninterrupted EDLC negative electrode. Using finite difference methods, we calculate local current, volumetric charging current and charge storage distributions from the spatiotemporal electrolyte potential measurements. These potential distributions provide insight into complex phenomena that cannot be directly observed using other existing methods. Herein, we use the distributions to identify areas of the electrode that are underutilized, assess the effects of various parameters on the cumulative charge storage distribution, and evaluate an effectiveness factor for charge storage in EDLC electrodes.

  20. Experimental and theoretical characterization of the voltage distribution generated by deep brain stimulation

    PubMed Central

    Miocinovic, Svjetlana; Lempka, Scott F.; Russo, Gary S.; Maks, Christopher B.; Butson, Christopher R.; Sakaie, Ken E.; Vitek, Jerrold L.; McIntyre, Cameron C.

    2008-01-01

    Deep brain stimulation (DBS) is an established therapy for the treatment of Parkinson’s disease and shows great promise for numerous other disorders. While the fundamental purpose of DBS is to modulate neural activity with electric fields, little is known about the actual voltage distribution generated in the brain by DBS electrodes and as a result it is difficult to accurately predict which brain areas are directly affected by the stimulation. The goal of this study was to characterize the spatial and temporal characteristics of the voltage distribution generated by DBS electrodes. We experimentally recorded voltages around active DBS electrodes in either a saline bath or implanted in the brain of a non-human primate. Recordings were made during voltage-controlled and current-controlled stimulation. The experimental findings were compared to volume conductor electric field models of DBS parameterized to match the different experiments. Three factors directly affected the experimental and theoretical voltage measurements: 1) DBS electrode impedance, primarily dictated by a voltage drop at the electrode-electrolyte interface and the conductivity of the tissue medium, 2) capacitive modulation of the stimulus waveform, and 3) inhomogeneity and anisotropy of the tissue medium. While the voltage distribution does not directly predict the neural response to DBS, the results of this study do provide foundational building blocks for understanding the electrical parameters of DBS and characterizing its effects on the nervous system. PMID:19118551

  1. An improved device for bioimpedance deviation measurements based on 4-electrode half bridge

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Qiao, Xiaoyan; Li, Gang; Lin, Ling

    2016-10-01

    Researches on monitoring the body fluid changes have attracted much attention during recent years. Real-time bioimpedance deviation detection has good potential for evaluating body fluid changes. In this paper, an improved device based on the self-balancing half bridge and the 4-electrode technique is proposed, which is able to detect minor bioimpedance deviations. The 4-electrode technique is used to remove the interference from contact impedance. Furthermore, the automatic balancing half bridge is utilized to deduct the high-level static impedance baseline, and thus, the dynamic range is enlarged. Moreover, a digital lock-in algorithm based on oversampling improved the effective resolution of the system. Validation experiments show that the minimum bioimpedance deviation measured in the experiment can reach 1 Ω even when the bioimpedance baseline is 10 kΩ and the noise level is low. The system has advantages of high resolution, high magnification, large dynamic range, and good self-adaptability for bioimpedance deviation detection.

  2. Simultaneous measurements of wire electrode surface contamination and corona discharge characteristics in an air-cleaning electrostatic precipitator

    SciTech Connect

    Kanazawa, Seiji; Ohkubo, Toshikazu; Nomoto, Yukiharu; Adachi, Takayoshi; Chang, J.S.

    1997-01-01

    Contamination of the corona wire in a wire-to-plate type air-cleaning electrostatic precipitator is studied experimentally. In order to enhance the contamination of wire, air containing dusts is directly supplied to a part of the wire electrode. Spores of Lycopodium and cigarette smoke particles are used as test dusts. Simultaneous measurements of wire electrode optical images and corona discharge modes are carried out during contamination processes. Results show that corona discharge modes and optical emission from the wire electrode change with time due to the surface contamination. In the case of cigarette smoke, after a time elapsed, streamer coronas appear due to the buildup of smoke particles on the wire surface. After the first streamer generation, the corona current fluctuates with time because the formation and diminution of the projections occur alternately at the different parts on the wire electrode surface.

  3. Electrochemical quartz crystal microbalance measurement of a Li4Ti5O12 composite electrode in a carbonate electrolyte

    NASA Astrophysics Data System (ADS)

    Serizawa, Nobuyuki; Shono, Kumi; Kobayashi, Yo; Miyashiro, Hajime; Katayama, Yasushi; Miura, Takashi

    2015-11-01

    Electrochemical quartz crystal microbalance (EQCM) measurement is conducted with a Li4Ti5O12 (lithium titanium oxide, LTO)-coated quartz crystal electrode in a carbonate electrolyte (ethylene carbonate + dimethyl carbonate; 50: 50 vol%) containing 1 M LiPF6. In-situ monitoring of the mass change during the charge and discharge of the LTO electrode can be achieved quantitatively because of the "zero-strain" property of LTO with Li+ insertion and the probably low reactivity between LTO and the electrolyte. The local changes of viscosity and density of the electrolyte contacting the LTO electrode are detected via the resonance resistance of the quartz crystal electrode, suggesting the local concentrations of Li+ and counter anion changed significantly during insertion and extraction of Li+ in the organic electrolyte.

  4. Sources and effects of electrode impedance during deep brain stimulation

    PubMed Central

    Butson, Christopher R.; Maks, Christopher B.; McIntyre, Cameron C.

    2013-01-01

    Objective Clinical impedance measurements for deep brain stimulation (DBS) electrodes in human patients are normally in the range 500–1500 Ω. DBS devices utilize voltage-controlled stimulation; therefore, the current delivered to the tissue is inversely proportional to the impedance. The goals of this study were to evaluate the effects of various electrical properties of the tissue medium and electrode-tissue interface on the impedance and to determine the impact of clinically relevant impedance variability on the volume of tissue activated (VTA) during DBS. Methods Axisymmetric finite-element models (FEM) of the DBS system were constructed with explicit representation of encapsulation layers around the electrode and implanted pulse generator. Impedance was calculated by dividing the stimulation voltage by the integrated current density along the active electrode contact. The models utilized a Fourier FEM solver that accounted for the capacitive components of the electrode-tissue interface during voltage-controlled stimulation. The resulting time- and space-dependent voltage waveforms generated in the tissue medium were superimposed onto cable model axons to calculate the VTA. Results The primary determinants of electrode impedance were the thickness and conductivity of the encapsulation layer around the electrode contact and the conductivity of the bulk tissue medium. The difference in the VTA between our low (790 Ω) and high (1244 Ω) impedance models with typical DBS settings (−3 V, 90 μs, 130 Hz pulse train) was 121 mm3, representing a 52% volume reduction. Conclusions Electrode impedance has a substantial effect on the VTA and accurate representation of electrode impedance should be an explicit component of computational models of voltage-controlled DBS. Significance Impedance is often used to identify broken leads (for values >2000 Ω) or short circuits in the hardware (for values <50 Ω); however, clinical impedance values also represent an important

  5. A differential line protection scheme for power systems based on composite voltage and current measurements

    SciTech Connect

    Aggarwal, R.K.; Johns, A.T.

    1989-07-01

    A differential feeder protection scheme that utilizes voltage and current signals is described. This approach obviates the need for relay bias to compensate for capacitance spill current, thus improving the relay sensitivity. From a practical point of view, the scheme has been designed to simplify the digital hardware requirements and reduce the bandwidth requirements for signal transmission over a fibre optic link.

  6. Measurement of high-voltage and radiation-damage limitations to advanced solar array performance

    NASA Technical Reports Server (NTRS)

    Guidice, D. A.; Severance, P. S.; Keinhardt, K. C.

    1991-01-01

    A description is given of the reconfigured Photovoltaic Array Space Power (PASP) Plus experiment: its objectives, solar-array complement, and diagnostic sensors. Results from a successful spaceflight will lead to a better understanding of high-voltage and radiation-damage limitations in the operation of new-technology solar arrays.

  7. Amplifier spurious input current components in electrode-electrolyte interface impedance measurements

    PubMed Central

    Felice, Carmelo J; Madrid, Rossana E; Valentinuzzi, Max E

    2005-01-01

    Background In Impedance Microbiology, the time during which the measuring equipment is connected to the bipolar cells is rather long, usually between 6 to 24 hrs for microorganisms with duplication times in the order of less than one hour and concentrations ranging from 101 to 107 [CFU/ml]. Under these conditions, the electrode-electrolyte interface impedance may show a slow drift of about 2%/hr. By and large, growth curves superimposed on such drift do not stabilize, are less reproducible, and keep on distorting all over the measurement of the temporal reactive or resistive records due to interface changes, in turn originated in bacterial activity. This problem has been found when growth curves were obtained by means of impedance analyzers or with impedance bridges using different types of operational amplifiers. Methods Suspecting that the input circuitry was the culprit of the deleterious effect, we used for that matter (a) ultra-low bias current amplifiers, (b) isolating relays for the selection of cells, and (c) a shorter connection time, so that the relays were maintained opened after the readings, to bring down such spurious drift to a negligible value. Bacterial growth curves were obtained in order to test their quality. Results It was demonstrated that the drift decreases ten fold when the circuit remained connected to the cell for a short time between measurements, so that the distortion became truly negligible. Improvement due to better-input amplifiers was not as good as by reducing the connection time. Moreover, temperature effects were insignificant with a regulation of ± 0.2 [°C]. Frequency did not influence either. Conclusion The drift originated either at the dc input bias offset current (Ios) of the integrated circuits, or in discrete transistors connected directly to the electrodes immersed in the cells, depending on the particular circuit arrangement. Reduction of the connection time was the best countermeasure. PMID:15796776

  8. An area-efficient 55 nm 10-bit 1-MS/s SAR ADC for battery voltage measurement

    NASA Astrophysics Data System (ADS)

    Hongming, Chen; Yueguo, Hao; Long, Zhao; Yuhua, Cheng

    2013-09-01

    An area-efficient CMOS 1-MS/s 10-bit charge-redistribution SAR ADC for battery voltage measurement in a SoC chip is proposed. A new DAC architecture presents the benefits of a low power approach without applying the common mode voltage. The threshold inverter quantizer (TIQ)-based CMOS Inverter is used as a comparator in the ADC to avoid static power consumption which is attractive in battery-supply application. Sixteen level-up shifters aim at converting the ultra low core voltage control signals to the higher voltage level analog circuit in a 55 nm CMOS process. The whole ADC power consumption is 2.5 mW with a maximum input capacitance of 12 pF in the sampling mode. The active area of the proposed ADC is 0.0462 mm2 and it achieves the SFDR and ENOB of 65.6917 dB and 9.8726 bits respectively with an input frequency of 200 kHz at 1 MS/s sampling rate.

  9. Design of an Integrated Thermoelectric Generator Power Converter for Ultra-Low Power and Low Voltage Body Energy Harvesters aimed at EEG/ECG Active Electrodes

    NASA Astrophysics Data System (ADS)

    Ataei, Milad; Robert, Christian; Boegli, Alexis; Farine, Pierre-André

    2014-11-01

    This paper describes a design procedure for an efficient body thermal energy harvesting integrated power converter. This procedure is based on loss examination for a selfpowered medical device. All optimum system parameters are calculated respecting the transducer constraints and the application form factor. It is found that it is possible to optimize converter's working frequency with proper design of its pulse generator circuit. At selected frequency, it has been demonstrated that wide area voltage doubler can be eliminated at the expense of wider switches. With this method, more than 60% efficiency is achieved in simulation for just 20mV transducer output voltage and 30% of entire chip area is saved.

  10. Measurement of material parameters that limit the open-circuit voltage in P-N-junction silicon solar cells

    NASA Technical Reports Server (NTRS)

    Lindholm, F. A.; Neugroschel, A.; Sah, C. T.

    1977-01-01

    The greatest gains in solar energy conversion efficiency of p-n-junction silicon solar cells come from increasing the open-circuit voltage V sub OC; it is important to understand and characterize the material parameters that limit the V sub OC. Strong experimental evidence exists to support the assertion that either an anomalously large minority carrier charge storage or an anomalously small minority carrier lifetime in the quasi-neutral emitter region limits the open circuit voltage. A method is presented for measuring charge storage and effective lifetime. Static and transient measurements are analyzed using physical models of the solar cell characteristics. This analysis yields the emitter charge storage and life-time, which then can be related to the various physical mechanisms, such as energy band gap shrinkage, that have been proposed earlier as responsible for limiting V sub OC.

  11. Design of a platinum resistance thermometer temperature measuring transducer and improved accuracy of linearizing the output voltage

    SciTech Connect

    Malygin, V.M.

    1995-06-01

    An improved method is presented for designing a temperature measuring transducer, the electrical circuit of which comprises an unbalanced bridge, in one arm of which is a platinum resistance thermometer, and containing a differential amplifier with feedback. Values are given for the coefficients, the minimum linearization error is determined, and an example is also given of the practical design of the transducer, using the given coefficients. A determination is made of the limiting achievable accuracy in linearizing the output voltage of the measuring transducer, as a function of the range of measured temperature.

  12. Ultra-low power sensor for autonomous non-invasive voltage measurement in IoT solutions for energy efficiency

    NASA Astrophysics Data System (ADS)

    Villani, Clemente; Balsamo, Domenico; Brunelli, Davide; Benini, Luca

    2015-05-01

    Monitoring current and voltage waveforms is fundamental to assess the power consumption of a system and to improve its energy efficiency. In this paper we present a smart meter for power consumption which does not need any electrical contact with the load or its conductors, and which can measure both current and voltage. Power metering becomes easier and safer and it is also self-sustainable because an energy harvesting module based on inductive coupling powers the entire device from the output of the current sensor. A low cost 32-bit wireless CPU architecture is used for data filtering and processing, while a wireless transceiver sends data via the IEEE 802.15.4 standard. We describe in detail the innovative contact-less voltage measurement system, which is based on capacitive coupling and on an algorithm that exploits two pre-processing channels. The system self-calibrates to perform precise measurements regardless the cable type. Experimental results demonstrate accuracy in comparison with commercial high-cost instruments, showing negligible deviations.

  13. Using a sensitivity study to facilitate the design of a multi-electrode array to measure six cardiac conductivity values.

    PubMed

    Johnston, Barbara M

    2013-07-01

    When using the bidomain model to model the electrical activity of the heart, there are potentially six cardiac conductivity values involved: conductivity values in directions along and normal to the cardiac fibres with a sheet, as well as a conductivity value in the normal direction between the sheets, and these occur for both the extracellular and intracellular domains in the model. To date it has been common to assume that the two normal direction conductivity values are the same. However, recent work has demonstrated that six cardiac conductivity values, rather than four, are necessary for accurate modelling, which can then facilitate understanding of cardiovascular disease. To design a method to determine these conductivities, it is also necessary to design a suitable multi-electrode array, which can be used, in conjunction with an inversion technique, to retrieve conductivity values from measurements of potential made on the array. This work uses the results of a study, into the sensitivity of the measuring potentials to variability in the input conductivities, to facilitate the design of an array that could be used to retrieve six cardiac conductivity values, as well as fibre rotation angle. It is found that if an electrode in the array has a much lower value of potential than the other electrodes, then it tends to be much more sensitive to the input conductivities than the other electrodes. It also appears that inclusion of this type of electrode in the set of measuring electrodes is essential for accurately retrieving conductivity values. This technique is used to identify electrodes to be included in the array and using the final design it is demonstrated, using synthetic values of potential, that the six cardiac conductivity values, and the fibre rotation angle, can be retrieved very accurately.

  14. Eddy currents: A misleading contribution when measuring magnetoelectric voltage coefficients of thin film devices

    NASA Astrophysics Data System (ADS)

    More-Chevalier, J.; Cibert, C.; Bouregba, R.; Poullain, G.

    2015-04-01

    Tb0.3Dy0.7Fe2/Pt/PbZr0.56Ti0.44O3 (Terfenol-D/Pt/PZT) magnetoelectric (ME) thin films were deposited on Pt/TiO2/SiO2/Si substrate. The ME voltage coefficient αHME was determined at room temperature using a lock-in amplifier and by applying to the sample an alternating magnetic field of a few mT. Surprisingly, very similar responses were obtained from a simple commercial capacitor set in series with a small loop of wire. This allowed us first to accurately model and reproduce the frequency response of the ferroelectric PZT layer alone. We also observed that, at low frequency, the voltage across the ferroelectric capacitor and the current in the circuit did not decrease significantly when diminishing then removing, the area of the conductive loop. One major conclusion is that eddy currents in the lead wires, rather than the classical electromotive force across conductive loops, contribute significantly to the total voltage response, at least for thin film ME devices. A model taking into account eddy currents was then developed for the extraction of the true αHME. A large αHME of 4.6 V/cm.Oe was thus obtained for the Terfenol-D/Pt/PZT thin film device, without DC magnetic field.

  15. Liquid electrode

    DOEpatents

    Ekechukwu, A.A.

    1994-07-05

    A dropping electrolyte electrode is described for use in electrochemical analysis of non-polar sample solutions, such as benzene or cyclohexane. The liquid electrode, preferably an aqueous salt solution immiscible in the sample solution, is introduced into the solution in dropwise fashion from a capillary. The electrolyte is introduced at a known rate, thus, the droplets each have the same volume and surface area. The electrode is used in making standard electrochemical measurements in order to determine properties of non-polar sample solutions. 2 figures.

  16. Development of New Electrode System for High Field Dielectric Properties Measurement Using Evaporated Polypropylene Thin Guard Film

    NASA Astrophysics Data System (ADS)

    Fujii, Masayuki; Tohyama, Kazuyuki; Tokoro, Tetsuro; Mizuno, Yukio; Nagao, Masayuki; Kosaki, Masamitsu

    Non-polar polymers such as polyethylene (PE) and polypropylene (PP) are widely used as very important electrical insulating and dielectric materials. They are used in the increasingly high AC electric field strength region approaching to the limit of electrical breakdown strength of the materials. Therefore the study of high-field dielectric property is very important in terms of understanding the AC breakdown mechanism of materials. A three-terminals electrode system with a guard film (new type electrode system) was developed in our laboratory for the precise measurement of high-field tanδ, where the guard film was used to reduce the disturbance of electric field around the edge of a main electrode. However, minute air sometimes steals between a sample film and the guard film. The air sometimes generates partial discharge in the high electric field region. Therefore, when the sample had minute air, the new type electrode system was limited under 100kVrms/mm application that didn't reach to an intrinsic breakdown strength of the 30μm-thick sample. We tried to improve the new electrode system without minute air between a sample film and the guard film. We also tried to make very thin guard film to reduce the field disturbance at the edge of main electrode. In this paper a PP-guard film on a biaxially oriented polypropylene (BOPP) film was made by evaporation. This improvement of the electrode system using the evaporated PP-guard film was in success so that high-field dielectric properties of BOPP film could be measured up to near the intrinsic breakdown field of the sample.

  17. Analysis of the photo voltage decay /PVD/ method for measuring minority carrier lifetimes in P-N junction solar cells

    NASA Technical Reports Server (NTRS)

    Von Roos, O.

    1981-01-01

    The photo voltage decay (PVD) method for the measurement of minority carrier lifetimes in P-N junction solar cells with cell thickness comparable to or even less than the minority carrier diffusion length is examined. The method involves the generation of free carriers in the quasi-neutral bulk material by flashes of light and the monitoring of the subsequent decay of the induced open-circuit voltages as the carriers recombine, which is dependent on minority carrier recombination lifetime. It is shown that the voltage versus time curve for an ordinary solar cell (N(+)-P junction) is proportional to the inverse minority carrier lifetime plus a factor expressing the ratio of diffusion length to cell thickness. In the case of an ideal back-surface-field cell (N(+)-P-P(+) junction) however, the slope is directly proportional to the inverse minority carrier lifetime. It is noted that since most BSF cells are not ideal, possessing a sizable back surface recombination velocity, the PVD measurements must be treated with caution and supplemented with other nonstationary methods.

  18. Measurement of labile copper in wine by medium exchange stripping potentiometry utilising screen printed carbon electrodes.

    PubMed

    Clark, Andrew C; Kontoudakis, Nikolaos; Barril, Celia; Schmidtke, Leigh M; Scollary, Geoffrey R

    2016-07-01

    The presence of copper in wine is known to impact the reductive, oxidative and colloidal stability of wine, and techniques enabling measurement of different forms of copper in wine are of particular interest in understanding these spoilage processes. Electrochemical stripping techniques developed to date require significant pretreatment of wine, potentially disturbing the copper binding equilibria. A thin mercury film on a screen printed carbon electrode was utilised in a flow system for the direct analysis of labile copper in red and white wine by constant current stripping potentiometry with medium exchange. Under the optimised conditions, including an enrichment time of 500s and constant current of 1.0μA, the response range was linear from 0.015 to 0.200mg/L. The analysis of 52 red and white wines showed that this technique generally provided lower labile copper concentrations than reported for batch measurement by related techniques. Studies in a model system and in finished wines showed that the copper sulfide was not measured as labile copper, and that loss of hydrogen sulfide via volatilisation induced an increase in labile copper within the model wine system.

  19. Electrical limit of silver nanowire electrodes: Direct measurement of the nanowire junction resistance

    NASA Astrophysics Data System (ADS)

    Selzer, Franz; Floresca, Carlo; Kneppe, David; Bormann, Ludwig; Sachse, Christoph; Weiß, Nelli; Eychmüller, Alexander; Amassian, Aram; Müller-Meskamp, Lars; Leo, Karl

    2016-04-01

    We measure basic network parameters of silver nanowire (AgNW) networks commonly used as transparent conducting electrodes in organic optoelectronic devices. By means of four point probing with nanoprobes, the wire-to-wire junction resistance and the resistance of single nanowires are measured. The resistance RNW of a single nanowire shows a value of RNW=(4.96 ±0.18 ) Ω/μm . The junction resistance RJ differs for annealed and non-annealed NW networks, exhibiting values of RJ=(25.2 ±1.9 ) Ω (annealed) and RJ=(529 ±239 ) Ω (non-annealed), respectively. Our simulation achieves a good agreement between the measured network parameters and the sheet resistance RS of the entire network. Extrapolating RJ to zero, our study show that we are close to the electrical limit of the conductivity of our AgNW system: We obtain a possible RS reduction by only ≈20 % (common RS≈10 Ω/sq ). Therefore, we expect further performance improvements in AgNW systems mainly by increasing NW length or by utilizing novel network geometries.

  20. Enhanced low current, voltage, and power dissipation measurements via Arduino Uno microcontroller with modified commercially available sensors

    NASA Astrophysics Data System (ADS)

    Tanner, Meghan; Eckel, Ryan; Senevirathne, Indrajith

    The versatility, simplicity, and robustness of Arduino microcontroller architecture have won a huge following with increasingly serious engineering and physical science applications. Arduino microcontroller environment coupled with commercially available sensors have been used to systematically measure, record, and analyze low currents, low voltages and corresponding dissipated power for assessing secondary physical properties in a diverse array of engineering systems. Setup was assembled via breadboard, wire, and simple soldering with an Arduino Uno with ATmega328P microcontroller connected to a PC. The microcontroller was programmed with Arduino Software while the bootloader was used to upload the code. Commercial Hall effect current sensor modules ACS712 and INA169 current shunt monitor was used to measure corresponding low to ultra-low currents and voltages. Stable measurement data was obtained via sensors and compared with corresponding oscilloscope measurements to assess reliability and uncertainty. Sensor breakout boards were modified to enhance the sensitivity of the measurements and to expand the applicability. Discussion of these measurements will focus on capabilities, capacities and limitations of the systems with examples of possible applications. Lock Haven Nanotechnology Program.

  1. Measurement of low radioactivity background in a high voltage cable by high resolution inductively coupled plasma mass spectrometry

    SciTech Connect

    Vacri, M. L. di; Nisi, S.; Balata, M.

    2013-08-08

    The measurement of naturally occurring low level radioactivity background in a high voltage (HV) cable by high resolution inductively coupled plasma mass spectrometry (HR ICP MS) is presented in this work. The measurements were performed at the Chemistry Service of the Gran Sasso National Laboratory. The contributions to the radioactive background coming from the different components of the heterogeneous material were separated. Based on the mass fraction of the cable, the whole contamination was calculated. The HR ICP MS results were cross-checked by gamma ray spectroscopy analysis that was performed at the low background facility STELLA (Sub Terranean Low Level Assay) of the LNGS underground lab using HPGe detectors.

  2. Carrier transport and collection in fully depleted semiconductors by a combined action of the space charge field and the field due to electrode voltages

    DOEpatents

    Rehak, P.; Gatti, E.

    1987-08-18

    A semiconductor charge transport device and method for making same are disclosed, characterized by providing a thin semiconductor wafer having rectifying junctions on its opposing major surfaces and including a small capacitance ohmic contact, in combination with bias voltage means and associated circuit means for applying a predetermined voltage to effectively deplete the wafer in regions thereof between the rectifying junctions and the ohmic contact. A charge transport device of the invention is usable as a drift chamber, a low capacitance detector, or a charge coupled device each constructed according to the methods of the invention for making such devices. Detectors constructed according to the principles of the invention are characterized by having significantly higher particle position indicating resolution than is attainable with prior art detectors, while at the same time requiring substantially fewer readout channels to realize such high resolution. 16 figs.

  3. Carrier transport and collection in fully depleted semiconductors by a combined action of the space charge field and the field due to electrode voltages

    DOEpatents

    Rehak, P.; Gatti, E.

    1984-02-24

    A semiconductor charge transport device and method for making same, characterized by providing a thin semiconductor wafer having rectifying functions on its opposing major surfaces and including a small capacitance ohmic contact, in combination with bias voltage means and associated circuit means for applying a predetermined voltage to effectively deplete the wafer in regions thereof between the rectifying junctions and the ohmic contact. A charge transport device of the invention is usable as a drift chamber, a low capacitance detector, or a charge coupled device each constructed according to the methods of the invention for making such devices. Detectors constructed according to the principles of the invention are characterized by having significantly higher particle position indicating resolution than is attainable with prior art detectors, while at the same time requiring substantially fewer readout channels to realize such high resolution.

  4. Carrier transport and collection in fully depleted semiconductors by a combined action of the space charge field and the field due to electrode voltages

    DOEpatents

    Rehak, Pavel; Gatti, Emilio

    1987-01-01

    A semiconductor charge transport device and method for making same, characterized by providing a thin semiconductor wafer having rectifying junctions on its opposing major surfaces and including a small capacitance ohmic contact, in combination with bias voltage means and associated circuit means for applying a predetermined voltage to effectively deplete the wafer in regions thereof between the rectifying junctions and the ohmic contact. A charge transport device of the invention is usable as a drift chamber, a low capacitance detector, or a charge coupled device each constructed according to the methods of the invention for making such devices. Detectors constructed according to the principles of the invention are characterized by having significantly higher particle position indicating resolution than is attainable with prior art detectors, while at the same time requiring substantially fewer readout channels to realize such high resolution.

  5. Research and Experiments on a Unipolar Capacitive Voltage Sensor.

    PubMed

    Zhou, Qiang; He, Wei; Li, Songnong; Hou, Xingzhe

    2015-08-21

    Voltage sensors are an important part of the electric system. In service, traditional voltage sensors need to directly contact a high-voltage charged body. Sensors involve a large volume, complex insulation structures, and high design costs. Typically an iron core structure is adopted. As a result, ferromagnetic resonance can occur easily during practical application. Moreover, owing to the multilevel capacitor divider, the sensor cannot reflect the changes of measured voltage in time. Based on the electric field coupling principle, this paper designs a new voltage sensor; the unipolar structure design solves many problems of traditional voltage sensors like the great insulation design difficulty and high costs caused by grounding electrodes. A differential signal input structure is adopted for the detection circuit, which effectively restrains the influence of the common-mode interference signal. Through sensor modeling, simulation and calculations, the structural design of the sensor electrode was optimized, miniaturization of the sensor was realized, the voltage division ratio of the sensor was enhanced, and the phase difference of sensor measurement was weakened. The voltage sensor is applied to a single-phase voltage class line of 10 kV for testing. According to the test results, the designed sensor is able to meet the requirements of accurate and real-time measurement for voltage of the charged conductor as well as to provide a new method for electricity larceny prevention and on-line monitoring of the power grid in an electric system. Therefore, it can satisfy the development demands of the smart power grid.

  6. Research and Experiments on a Unipolar Capacitive Voltage Sensor

    PubMed Central

    Zhou, Qiang; He, Wei; Li, Songnong; Hou, Xingzhe

    2015-01-01

    Voltage sensors are an important part of the electric system. In service, traditional voltage sensors need to directly contact a high-voltage charged body. Sensors involve a large volume, complex insulation structures, and high design costs. Typically an iron core structure is adopted. As a result, ferromagnetic resonance can occur easily during practical application. Moreover, owing to the multilevel capacitor divider, the sensor cannot reflect the changes of measured voltage in time. Based on the electric field coupling principle, this paper designs a new voltage sensor; the unipolar structure design solves many problems of traditional voltage sensors like the great insulation design difficulty and high costs caused by grounding electrodes. A differential signal input structure is adopted for the detection circuit, which effectively restrains the influence of the common-mode interference signal. Through sensor modeling, simulation and calculations, the structural design of the sensor electrode was optimized, miniaturization of the sensor was realized, the voltage division ratio of the sensor was enhanced, and the phase difference of sensor measurement was weakened. The voltage sensor is applied to a single-phase voltage class line of 10 kV for testing. According to the test results, the designed sensor is able to meet the requirements of accurate and real-time measurement for voltage of the charged conductor as well as to provide a new method for electricity larceny prevention and on-line monitoring of the power grid in an electric system. Therefore, it can satisfy the development demands of the smart power grid. PMID:26307992

  7. Amplifier for measuring low-level signals in the presence of high common mode voltage

    NASA Technical Reports Server (NTRS)

    Lukens, F. E. (Inventor)

    1985-01-01

    A high common mode rejection differential amplifier wherein two serially arranged Darlington amplifier stages are employed and any common mode voltage is divided between them by a resistance network. The input to the first Darlington amplifier stage is coupled to a signal input resistor via an amplifier which isolates the input and presents a high impedance across this resistor. The output of the second Darlington stage is transposed in scale via an amplifier stage which has its input a biasing circuit which effects a finite biasing of the two Darlington amplifier stages.

  8. Determining the mobility of ions by transient current measurements at high voltages.

    PubMed

    Kohn, Peter; Schröter, Klaus; Thurn-Albrecht, Thomas

    2007-08-24

    We present polarization and transient current experiments that allow an independent determination of the charge carrier density and the mobility of ions in polymer electrolytes at low charge carrier density. The method relies on a complete depletion of ions in the bulk electrolyte achieved by applying high voltages. Based on a qualitative model for the charge dynamics in this nonlinear regime, the method is exemplarily applied to a system of polymethylmethacrylate doped with small amounts of a lithium salt. The independently obtained values for the ionic mobility, the charge carrier density, and the conductivity are consistent for all salt concentrations studied. Criteria for the applicability of the method are discussed.

  9. ELECTRODE MEASUREMENT OF REDOX POTENTIAL IN ANAEROBIC FERRIC/FERROUS CHLORIDE SYSTEMS

    EPA Science Inventory

    The behaviour of two inert redox electrodes (Pt and wax-impregnated graphite) was investigated in anaerobic ferrous and ferric chloride solutions in order to establish if these electrodes respond to the Fe3+/Fe2+ couple in a Nernstian manner. A new method fo...

  10. 12.5 pm/V hybrid silicon and lithium niobate optical microring resonator with integrated electrodes.

    PubMed

    Chen, Li; Wood, Michael G; Reano, Ronald M

    2013-11-01

    We present a silicon microring resonator with a lithium niobate top cladding and integrated tuning electrodes. Submicrometer thin films of z-cut lithium niobate are bonded to silicon microring resonators via benzocyclobutene. Integrated electrodes are incorporated to confine voltage controlled electric fields within the lithium niobate thin film. The electrode design utilizes thin film metal electrodes and an optically transparent electrode wherein the silicon waveguide core serves as both an optical waveguide medium and as a conductive electrode medium. The hybrid material system combines the electro-optic functionality of lithium niobate with the high index contrast of silicon waveguides, enabling compact low tuning voltage microring resonators. Optical characterization of fabricated devices results in a measured loaded quality factor of 11,500 and a free spectral range of 7.15 nm in the infrared. The demonstrated tunability is 12.5 pm/V, which is over an order of magnitude greater than electrode-free designs.

  11. Benchmarking of 3D space charge codes using direct phase space measurements from photoemission high voltage dc gun

    NASA Astrophysics Data System (ADS)

    Bazarov, Ivan V.; Dunham, Bruce M.; Gulliford, Colwyn; Li, Yulin; Liu, Xianghong; Sinclair, Charles K.; Soong, Ken; Hannon, Fay

    2008-10-01

    We present a comparison between space charge calculations and direct measurements of the transverse phase space of space charge dominated electron bunches from a high voltage dc photoemission gun followed by an emittance compensation solenoid magnet. The measurements were performed using a double-slit emittance measurement system over a range of bunch charge and solenoid current values. The data are compared with detailed simulations using the 3D space charge codes GPT and Parmela3D. The initial particle distributions were generated from measured transverse and temporal laser beam profiles at the photocathode. The beam brightness as a function of beam fraction is calculated for the measured phase space maps and found to approach within a factor of 2 the theoretical maximum set by the thermal energy and the accelerating field at the photocathode.

  12. Ammonia measurement with a pH electrode in the ammonia/urea-SCR process

    NASA Astrophysics Data System (ADS)

    Kröcher, Oliver; Elsener, Martin

    2007-03-01

    The selective catalytic reduction of nitrogen oxides with ammonia (ammonia SCR) and urea (urea SCR), respectively, is a widespread process to clean flue and diesel exhaust gases due to its simplicity and efficiency. The main challenge of the process is to minimize the ammonia emissions downstream of the SCR catalyst. We found that ammonia emissions of >10 ppm can reliably be detected with a simple pH electrode in the presence of CO2, SOx, NOx, and moderately weak organic acids. 10-20 ppm of ammonia in the exhaust gas are sufficient to neutralize the acids and to increase the pH value from 3 to 6. On this basis a continuous measuring method for ammonia was developed, which was used to control the dosage of urea in the SCR process. While keeping the ammonia emissions after the SCR catalyst at 5-30 ppm an average NOx removal efficiency (DeNOx) of >95% were achieved at a diesel test rig. The method can also be applied for exhaust gases with higher acid contents, if a basic pre-filter is added adsorbing the acidic exhaust components. Compared to water as absorption solution, more precise ammonia measurements are possible, if a 0.1 M NH4Cl absorption solution is applied, whose pH value is changing as a Nernst function of the ammonia concentration.

  13. A multi-electrode array and inversion technique for retrieving six conductivities from heart potential measurements.

    PubMed

    Johnston, Barbara M; Johnston, Peter R

    2013-12-01

    A method for accurately finding cardiac bidomain conductivity parameters is a crucial part of efforts to study and understand the electrical functioning of the heart. The bidomain model considers current flowing along (longitudinal) and across (transverse) sheets of cardiac fibres, as well as between these sheets (normal), in both the extracellular and intracellular domains, which leads to six conductivity values. To match experimental studies, such a method must be able to determine these six conductivity values, not just the four where it is assumed that the transverse and normal conductivities are equal. This study presents a mathematical model, solution technique, multi-electrode array and two-pass inversion method, which can be used to retrieve all six conductivities from measurements of electrical potential made on the array. Simulated measurements of potential, to which noise is added, are used to demonstrate the ability of the method to retrieve the conductivity values. It is found that not only is it possible to accurately retrieve all six conductivity values, as well as a value for fibre rotation angle, but that the accuracy of such retrievals is comparable to the accuracy found in a previous study when only four conductivities (and fibre rotation) were retrieved.

  14. Electrical Characteristics of an Ag/n-InP Schottky Diode Based on Temperature-Dependent Current-Voltage and Capacitance-Voltage Measurements

    NASA Astrophysics Data System (ADS)

    Gülnahar, Murat

    2015-09-01

    The rectifying junction properties of an Ag/n-InP Schottky diode are investigated in a wide temperature range from 10 K to 300 K (-263 °C to 27 °C). The electronic structure of the junction is analyzed by the techniques of current-voltage I- V and capacitance-voltage C- V measurement as a function of temperature. The electrical parameters are characterized with the standard thermionic emission theory. The main electrical characteristics including the values of apparent barrier height and ideality factor n are found to be 0.414 eV and 1.008 at 300 K (27 °C), respectively, even though the value of barrier height at 300 K (27 °C) from C- V data is 0.417 eV. The , n, and Richardson plot demonstrate strong temperature dependency; that is, the decreases, n increases, and the Richardson plot deviates with decreasing temperature. Such behaviors are attributed to Schottky barrier anomalies, which are explained by assuming the existence of a Gaussian distribution of nanometer-sized patches with low barrier height at the interface. The accurate theoretical models such as Tung's lateral inhomogeneity and multi-Gaussian distribution to comment the barrier inhomogeneity on the electron transport across the interface are applied, and the comparisons between these approaches for the present experimental results are carried out. According to the multi-Gaussian distribution approach, the double-Gaussian nature of Ag/n-InP/In is commented by the values of the weighting coefficients, standard deviations, and mean barrier height calculated for each distribution. The total effective area of the patches is calculated for high and low temperatures, and as a result, it is found that the low barrier regions influence significantly the electron transport at the interface of the junction. The discrepancy between I- V and C- V barrier heights is discussed based on a Gaussian approach. From the linear relationship between and n, the homogeneous barrier height is noted to be 0.418 eV. The

  15. Direct measurement of the chemical reactivity of silicon electrodes with LiPF6-based battery electrolytes

    SciTech Connect

    Veith, Gabriel M; Baggetto, Loic; Sacci, Robert L; Unocic, Raymond R; Tenhaeff, Wyatt E; Browning, Jim

    2014-01-01

    We report the first direct measurement of the chemistry and extent of reactivity between a lithium ion battery electrode surface (Si) and a liquid electrolyte (1.2M LiPF6-3:7 wt% ethylene carbonate:dimethyl carbonate). This layer is estimated to be 3.6 nm thick and partially originates from the consumption of the silicon surface.

  16. Activity coefficients of aqueous sodium chloride from 15° to 50°C measured with a glass electrode

    USGS Publications Warehouse

    Truesdell, A.H.

    1968-01-01

    Values of the mean activity coefficient of sodium chloride at 15°, 25°, 38° and 50°C were determined for aqueous NaCl solutions of 0.01 to 1.0 molal from electromotive force measurements on the cell: (sodium-sensitive glass electrode, aqueous sodium chloride, silver chloride-silver).

  17. Direct measurement of voltage-controlled reversal of the antiferromagnetic spin structure in magnetoelectric Cr2O3

    NASA Astrophysics Data System (ADS)

    Wang, Junlei; Binek, Christian

    The frequency dependence of the electric field induced magneto-optical Faraday effect is investigated in the magnetoelectric antiferromagnet chromia. Two electrically induced Faraday signals superimpose in proportion to the linear magnetoelectric susceptibility and the antiferromagnetic order parameter. The relative strength of these contributions is determined by the frequency of the probing light beam. It allows tuning the Faraday signal between extreme characteristics which follow the temperature dependence of the magnetoelectric susceptibility or solely that of the antiferromagnetic order parameter. The frequency dependence is analyzed in terms of electric dipole transitions of perturbed Cr3 + crystal-field states. The results lead to a table-top set-up allowing to measure voltage-controlled selection and temperature dependence of the antiferromagnetic order parameter. The Faraday rotation per applied voltage is independent of the sample thickness making the method scalable and versatile for thin film investigations. Scalability, compactness, and simplicity of the data analysis combined with low photon flux requirements make the Faraday approach advantageous for the investigation of the otherwise difficult to access voltage-controlled switching of antiferromagnetic domain states in magnetoelectric thin films. This project is supported by NRI via CNFD through tasks SRC 2398.001 and 2587.001, by C-SPIN, a SRC program, sponsored by MARCO and DARPA, and by NSF through Nebraska MRSEC DMR-1420645.

  18. Measurement of the kinetic isotope effect for the oxidation of NADH at a poly(aniline)-modified electrode.

    PubMed

    Bartlett, Philip N; Simon, Evelyne

    2003-04-01

    Kinetic isotope measurements using [4,4-2H2]NADH and [4-1H, 4-2H]NADH have been used to investigate the mechanism of the electrochemical oxidation of NADH at poly(aniline)-poly(vinyl sulfonate)-modified electrodes. The experiments show a primary kinetic isotope effect for the reaction of 4.2. This is consistent with literature values for the corresponding isotope effect for the oxidation of NADH by two-electron oxidants in homogeneous solution. The result demonstrates that transfer of H from NADH to the modified electrode occurs in the rate-limiting step within the reaction complex.

  19. New design of the pulsed electro-acoustic upper electrode for space charge measurements during electronic irradiation

    NASA Astrophysics Data System (ADS)

    Riffaud, J.; Griseri, V.; Berquez, L.

    2016-07-01

    The behaviour of space charges injected in irradiated dielectrics has been studied for many years for space industry applications. In our case, the pulsed electro-acoustic method is chosen in order to determine the spatial distribution of injected electrons. The feasibility of a ring-shaped electrode which will allow the measurements during irradiation is presented. In this paper, a computer simulation is made in order to determine the parameters to design the electrode and find its position above the sample. The obtained experimental results on polyethylene naphthalate samples realized during electronic irradiation and through relaxation under vacuum will be presented and discussed.

  20. New design of the pulsed electro-acoustic upper electrode for space charge measurements during electronic irradiation.

    PubMed

    Riffaud, J; Griseri, V; Berquez, L

    2016-07-01

    The behaviour of space charges injected in irradiated dielectrics has been studied for many years for space industry applications. In our case, the pulsed electro-acoustic method is chosen in order to determine the spatial distribution of injected electrons. The feasibility of a ring-shaped electrode which will allow the measurements during irradiation is presented. In this paper, a computer simulation is made in order to determine the parameters to design the electrode and find its position above the sample. The obtained experimental results on polyethylene naphthalate samples realized during electronic irradiation and through relaxation under vacuum will be presented and discussed.

  1. Three-electrode plasma reactor for the removal of toxic gases

    NASA Astrophysics Data System (ADS)

    Gallego, J. L.; Giuliani, L.; Grondona, D.; Minotti, F.

    2015-03-01

    Electrical and spectroscopic measurement for the characterization of a novel three- electrode plasma reactor for the treatment of toxic gases is presented. The three-electrode discharge consists in a dielectric barrier discharge (DBD) combined with a corona discharge (CD). The DBD is generated by applying an alternating high voltage signal between two circular aluminium plate electrodes attached to opposite sides of a disk made of dielectric material. The CD is generated applying a continuous negative high voltage to an external cylindrical mesh electrode, coaxial with the DBD electrode system. The gap between the edge of the DBD system and the mesh electrode is approximately 20 mm wide. Up to five DBD electrode systems can be connected in parallel inside the reactor, axially separated from each other by 30 mm. The electrical characterization consisted in the measurement of the current between the DBD system and the external mesh, and the voltages of the electrodes. In order to understand the dynamics of the streamers, a theoretical determination of the laplacian electric field generated by the biased electrodes was done. Optical emission spectroscopy was performed in the range of wavelengths 280-480 nm, containing the typical spectral bands 2nd positive and 1st negative systems of molecular nitrogen.

  2. Multiple electrode aggregometry: a new device to measure platelet aggregation in whole blood.

    PubMed

    Tóth, Orsolya; Calatzis, Andreas; Penz, Sandra; Losonczy, Hajna; Siess, Wolfgang

    2006-12-01

    Several methods are used to analyse platelet function in whole blood. A new device to measure whole blood platelet aggregation has been developed, called multiple electrode platelet aggregometry (MEA). Our aim was to evaluate MEA in comparison with the single platelet counting (SPC) method for the measurement of platelet aggregation and platelet inhibition by aspirin or apyrase in diluted whole blood. Platelet aggregation induced by different concentrations of ADP, collagen and TRAP-6 and platelet inhibition by apyrase or aspirin were determined in citrateor hirudin-anticoagulated blood by MEA and SPC. MEA indicated that spontaneous platelet aggregation was lower, and stimulated platelet aggregation was higher in hirudin- than citrate-anticoagulated blood. In hirudin-anticoagulated, but not citrate-anticoagulated blood, spontaneous platelet aggregation measured by MEA was inhibited by apyrase. For MEA compared with SPC the dose response-curves of agonist-induced platelet aggregation in citrate- and hirudin-blood showed similar EC50 values for TRAP, and higher EC50 values for ADP (non-significant) and collagen (p < 0.05). MEA and the SPC method gave similar results concerning platelet-inhibition by apyrase and aspirin. MEA was more sensitive than SPC to the inhibitory effect of aspirin in collagen-induced aggregation. In conclusion, MEA is an easy, reproducible and sensitive method for measuring spontaneous and stimulated platelet aggregation, and evaluating antiplatelet drugs in diluted whole blood. The use of hirudin as an anticoagulant is preferable to the use of citrate. MEA is a promising technique for experimental and clinical applications. PMID:17139373

  3. Space charge inhibition effect of nano-Fe{sub 3}O{sub 4} on improvement of impulse breakdown voltage of transformer oil based on improved Kerr optic measurements

    SciTech Connect

    Yang, Qing Yu, Fei; Sima, Wenxia; Zahn, Markus

    2015-09-15

    Transformer oil-based nanofluids (NFs) with 0.03 g/L Fe{sub 3}O{sub 4} nanoparticle content exhibit 11.2% higher positive impulse breakdown voltage levels than pure transformer oils. To study the effects of the Fe{sub 3}O{sub 4} nanoparticles on the space charge in transformer oil and to explain why the nano-modified transformer oil exhibits improved impulse breakdown voltage characteristics, the traditional Kerr electro-optic field mapping technique is improved by increasing the length of the parallel-plate electrodes and by using a photodetector array as a high light sensitivity device. The space charge distributions of pure transformer oil and of NFs containing Fe{sub 3}O{sub 4} nanoparticles can be measured using the improved Kerr electro-optic field mapping technique. Test results indicate a significant reduction in space charge density in the transformer oil-based NFs with the Fe{sub 3}O{sub 4} nanoparticles. The fast electrons are captured by the nanoparticles and are converted into slow-charged particles in the NFs, which then reduce the space charge density and result in a more uniform electric field distribution. Streamer propagation in the NFs is also obstructed, and the breakdown strengths of the NFs under impulse voltage conditions are also improved.

  4. Effect of precordial electrocardiographic electrode placement on ST-segment measurement during exercise.

    PubMed

    Bertolet, B D; Boyette, A F; Mardis, M; Hill, J A

    1995-04-01

    Research protocols often utilize serial exercise testing to examine the efficacy of anti-ischemic therapies. These tests, however, are prone to multiple sources of bias. This investigation sought to determine the influence of varying precordial electrocardiographic (ECG) electrode placement on the detection of exercise-induced ST-segment shifts. Fifteen coronary artery disease patients with abnormal exercise tests were studied. Based on the previous exercise test, the precordial electrode position exhibiting the greatest ST-segment shift was selected as the reference electrode. Four additional electrodes were placed around this reference electrode and exercise testing was performed. ECG strips were recorded every minute. The time-to-onset and -offset of ischemic-type ST-segment depression was recorded. ST-segment depression was recorded during exercise from the reference electrode in 12 of 15 patients. Ischemic-type ST-depression was also recorded in each of these 12 patients with the surrounding electrodes; however, the time-to-onset detected by all four surrounding electrodes concurred in only 5 of 12 (42%) patients. The time-to-offset of the ST-segment depression concurred in 9 of 12 (75%) patients. Serial ECGs recorded from similar but not exactly the same precordial ECG electrode position should yield similar results for the detection of ischemia, but time-to-onset or -offset of ischemia may differ by 60 s or more. Small changes in the time-to-onset and -offset of ischemia should not be considered reliable indicators of anti-ischemia efficacy.

  5. Process for measuring degradation of sulfur hexafluoride in high voltage systems

    DOEpatents

    Sauers, I.

    1985-04-23

    This invention is a method of detecting the presence of toxic and corrosive by-products in high voltage systems produced by electrically induced degradation of SF/sub 6/ insulating gas in the presence of certain impurities. It is an improvement over previous methods because it is extremely sensitive, detecting by-products present in parts per billion concentrations, and because the device employed is of a simple design and takes advantage of the by-products natural affinity for fluoride ions. The method employs an ion-molecule reaction cell in which negative ions of the by-products are produced by fluorine attachment. These ions are admitted to a negative ion mass spectrometer and identified by their spectra. This spectrometry technique is an improvement over conventional techniques because the negative ion peaks are strong and not obscured by a major ion spectra of the SF/sub 6/ component as is the case in positive ion mass spectrometry.

  6. Process for measuring degradation of sulfur hexafluoride in high voltage systems

    DOEpatents

    Sauers, Isidor

    1986-01-01

    This invention is a method of detecting the presence of toxic and corrosive by-products in high voltage systems produced by electrically induced degradation of SF.sub.6 insulating gas in the presence of certain impurities. It is an improvement over previous methods because it is extremely sensitive, detecting by-products present in parts per billion concentrations, and because the device employed is of a simple design and takes advantage of the by-products natural affinity for fluoride ions. The method employs an ion-molecule reaction cell in which negative ions of the by-products are produced by fluorine attachment. These ions are admitted to a negative ion mass spectrometer and identified by their spectra. This spectrometry technique is an improvement over conventional techniques because the negative ion peaks are strong and not obscured by a major ion spectra of the SF.sub.6 component as is the case in positive ion mass spectrometry.

  7. Measurement of small lesions near metallic implants with mega-voltage cone beam CT

    NASA Astrophysics Data System (ADS)

    Grigorescu, Violeta; Prevrhal, Sven; Pouliot, Jean

    2008-03-01

    Metallic objects severely limit diagnostic CT imaging because of their high X-ray attenuation in the diagnostic energy range. In contrast, radiation therapy linear accelerators now offer CT imaging with X-ray energies in the megavolt range, where the attenuation coefficients of metals are significantly lower. We hypothesized that Mega electron-Voltage Cone-Beam CT (MVCT) implemented on a radiation therapy linear accelerator can detect and quantify small features in the vicinity of metallic implants with accuracy comparable to clinical Kilo electron-Voltage CT (KVCT) for imaging. Our test application was detection of osteolytic lesions formed near the metallic stem of a hip prosthesis, a condition of severe concern in hip replacement surgery. Both MVCT and KVCT were used to image a phantom containing simulated osteolytic bone lesions centered around a Chrome-Cobalt hip prosthesis stem with hemispherical lesions with sizes and densities ranging from 0.5 to 4 mm radius and 0 to 500 mg•cm -3, respectively. Images for both modalities were visually graded to establish lower limits of lesion visibility as a function of their size. Lesion volumes and mean density were determined and compared to reference values. Volume determination errors were reduced from 34%, on KVCT, to 20% for all lesions on MVCT, and density determination errors were reduced from 71% on KVCT to 10% on MVCT. Localization and quantification of lesions was improved with MVCT imaging. MVCT offers a viable alternative to clinical CT in cases where accurate 3D imaging of small features near metallic hardware is critical. These results need to be extended to other metallic objects of different composition and geometry.

  8. Electrode immersion depth determination and control in electroslag remelting furnace

    DOEpatents

    Melgaard, David K.; Beaman, Joseph J.; Shelmidine, Gregory J.

    2007-02-20

    An apparatus and method for controlling an electroslag remelting furnace comprising adjusting electrode drive speed by an amount proportional to a difference between a metric of electrode immersion and a set point, monitoring impedance or voltage, and calculating the metric of electrode immersion depth based upon a predetermined characterization of electrode immersion depth as a function of impedance or voltage.

  9. Extraction of a strongly focusing He+ beam from three-stage concave electrodes for alpha particle measurement system in ITER.

    PubMed

    Kobuchi, T; Sasao, M; Kisaki, M; Tsumori, K; Tanaka, N; Okamoto, A; Kitajima, S; Kaneko, O; Shinto, K; Wada, M

    2012-02-01

    A strongly focusing He(+) ion beam source equipped with concave multi-aperture electrodes was developed for production of He(-) through a charge exchange cell. The beam was extracted at a voltage less than 20 kV from 301 apertures distributed in an area of 100 mm φ, and focused at 750 mm distance. The beam current and the beam size of 2 A and 20 mm in diameter, respectively, were achieved with an arc power less than 10 kW. The optimum perveance was obtained at 0.02 A∕kV(1.5) at the beam energy less than 20 keV which is suitable for the conversion to He(-) in an alkali vapor cell.

  10. Polydivinylferrocene surface modified electrode for measuring state-of-charge of lead-acid battery

    NASA Astrophysics Data System (ADS)

    Lee, Todd; Singh, Pritam; Baker, Murray V.; Issa, Touma B.

    This paper outlines an investigation of the electrochemical behaviour of polymeric divinylferrocene (PDVF) produced by direct polymerisation of divinylferrocene (DVF) monomer on a glassy carbon substrate. The findings indicate that PDVF undergoes reversible reduction/oxidation in neutral and acidic aqueous media containing perchlorate (ClO 4 -) and sulfhate (SO 4 2-). The anodic peak potential of the PDVF shifts linearly to less positive potentials as the sulfuric acid (H 2SO 4) concentration is increased from 1 to 5 M. The polymer film strongly adheres to the glassy carbon surface and is electrochemically stable when subjected to repeated voltammetric cycling in the potential range of -0.2 to +0.8 V vs. Ag|AgCl. The potential of the partially oxidized film of PVDF on a glassy carbon substrate against a Ag|AgCl/KCl reference electrode in sulfuric acid solution is stable, reproducible and varies linearly with the acid concentration in the range of 1-5 M. This observation may be suitable for potentiometrically measuring the state-of-charge of lead-acid batteries.

  11. Impedances of Nickel Electrodes Cycled in Various KOH Concentrations

    NASA Technical Reports Server (NTRS)

    Reid, Margaret A.; Loyselle, Patricia L.

    1991-01-01

    Impedances were measured of electrodes from boiler-plate cells cycled i n KOH concentrations from 21% to 36%. These cells under accelerated conditions at 80% DOD to failure, defined discharge voltage. Cell life ranged from about 1,000 t o 40 impedances were measured at five voltages corresponding to charge. The results were analyzed using a standard circuit model including a Warburg impedance term. The kinetic resistances and Warburg slopes were greater for those electrodes which had failed earliest. Other circuit models have also been examined. The results are considered indicative but not conclusive, since the cells had been stored after failure for varying lengths of time which is known to affect the impedance. In order to minimize the effects of storage, the electrodes were cycled 10 times before the impedance measurements were taken.

  12. Using Concha Electrodes to Measure Cochlear Microphonic Waveforms and Auditory Brainstem Responses

    PubMed Central

    Zhang, Ming

    2010-01-01

    During electrocochleography, that is, ECochG or ECoG, a recording electrode can be placed in the ear canal lateral to the tympanic membrane. We designed a concha electrode to record both sinusoidal waveforms of cochlear microphonics (CMs) and auditory brainstem responses (ABRs). The amplitudes of CM waveforms and Wave I or compound action potentials (CAPs) recorded at the concha were greater than those recorded at the mastoid but slightly lower than those recorded at the ear canal. Wave V amplitudes recorded at the concha were greater than those recorded at the ear canal but lower than those recorded at the mastoid. There was not a significant difference between the amplitudes recorded at the concha and at the ear canal. For CM and Wave I or CAP, the latency recorded at the concha was longer than at the canal but shorter than at the mastoid; for Wave V, the reverse was true. However, these differences were not statistically significant and may be due to the distance to response generators. Aside from the advantages that the regular ECoG has over otoacoustic emission (OAE) testing, the concha electrode was also easier and safer to place and may be suitable for children, newborn screening, participants with canal conditions, and remote clinics which could have concerns with the availability and cost of a canal electrode. Using concha electrodes, we also experienced fewer postauricular artifacts than when using a mastoid electrode. PMID:21131635

  13. High voltage DC power supply

    DOEpatents

    Droege, T.F.

    1989-12-19

    A high voltage DC power supply having a first series resistor at the output for limiting current in the event of a short-circuited output, a second series resistor for sensing the magnitude of output current, and a voltage divider circuit for providing a source of feedback voltage for use in voltage regulation is disclosed. The voltage divider circuit is coupled to the second series resistor so as to compensate the feedback voltage for a voltage drop across the first series resistor. The power supply also includes a pulse-width modulated control circuit, having dual clock signals, which is responsive to both the feedback voltage and a command voltage, and also includes voltage and current measuring circuits responsive to the feedback voltage and the voltage developed across the second series resistor respectively. 7 figs.

  14. High voltage DC power supply

    DOEpatents

    Droege, Thomas F.

    1989-01-01

    A high voltage DC power supply having a first series resistor at the output for limiting current in the event of a short-circuited output, a second series resistor for sensing the magnitude of output current, and a voltage divider circuit for providing a source of feedback voltage for use in voltage regulation is disclosed. The voltage divider circuit is coupled to the second series resistor so as to compensate the feedback voltage for a voltage drop across the first series resistor. The power supply also includes a pulse-width modulated control circuit, having dual clock signals, which is responsive to both the feedback voltage and a command voltage, and also includes voltage and current measuring circuits responsive to the feedback voltage and the voltage developed across the second series resistor respectively.

  15. In-situ and ex-situ resistance measurements of polypyrrole film using double-band electrode

    NASA Astrophysics Data System (ADS)

    Cysewska, K.; Jasiński, P.

    2016-01-01

    Many in-situ techniques are performed in order to determine the resistance of conducting polymer film. However, the resistance measured in solution can be the combination of polymer resistance and that of other components, such as resistance of supporting electrolyte. Therefore, in this work, the influence of the solution on the resistance of polypyrrole (PPy) film has been studied. PPy film was electrchemically synthesized onto the iron double-band electrode in a one step process from an aqueous solution of 0.1 M pyrrole and 0.1 M sodium salicylate. Resistance determination of PPy film was based on impedance spectroscopy measurements and was performed in-situ, ex-situ and in a function of electrode potential. Based on these measurements electrical equivalent circuit of PPy coated Fe electrode in contact with solution or with the air have been studied. It was noticed that the concentration of electrolyte in measuring solution did not influence on the polymer resistance measured by in-situ technique. It was also noticed that measurements of polymer resistance conducted in- situ differ from that obtained in ex-situ experiments. The differences were related with the diffusion reactions occurring between the polymer film and air/solution.

  16. A Simple Hydrogen Electrode

    ERIC Educational Resources Information Center

    Eggen, Per-Odd

    2009-01-01

    This article describes the construction of an inexpensive, robust, and simple hydrogen electrode, as well as the use of this electrode to measure "standard" potentials. In the experiment described here the students can measure the reduction potentials of metal-metal ion pairs directly, without using a secondary reference electrode. Measurements…

  17. Large area scanning probe microscope in ultra-high vacuum demonstrated for electrostatic force measurements on high-voltage devices

    PubMed Central

    Glatzel, Thilo; Schmölzer, Thomas; Schöner, Adolf; Reshanov, Sergey; Bartolf, Holger; Meyer, Ernst

    2015-01-01

    Summary Background: The resolution in electrostatic force microscopy (EFM), a descendant of atomic force microscopy (AFM), has reached nanometre dimensions, necessary to investigate integrated circuits in modern electronic devices. However, the characterization of conducting or semiconducting power devices with EFM methods requires an accurate and reliable technique from the nanometre up to the micrometre scale. For high force sensitivity it is indispensable to operate the microscope under high to ultra-high vacuum (UHV) conditions to suppress viscous damping of the sensor. Furthermore, UHV environment allows for the analysis of clean surfaces under controlled environmental conditions. Because of these requirements we built a large area scanning probe microscope operating under UHV conditions at room temperature allowing to perform various electrical measurements, such as Kelvin probe force microscopy, scanning capacitance force microscopy, scanning spreading resistance microscopy, and also electrostatic force microscopy at higher harmonics. The instrument incorporates beside a standard beam deflection detection system a closed loop scanner with a scan range of 100 μm in lateral and 25 μm in vertical direction as well as an additional fibre optics. This enables the illumination of the tip–sample interface for optically excited measurements such as local surface photo voltage detection. Results: We present Kelvin probe force microscopy (KPFM) measurements before and after sputtering of a copper alloy with chromium grains used as electrical contact surface in ultra-high power switches. In addition, we discuss KPFM measurements on cross sections of cleaved silicon carbide structures: a calibration layer sample and a power rectifier. To demonstrate the benefit of surface photo voltage measurements, we analysed the contact potential difference of a silicon carbide p/n-junction under illumination. PMID:26885461

  18. Transparent electrode for optical switch

    DOEpatents

    Goldhar, Julius; Henesian, Mark A.

    1986-01-01

    A low pressure gas electrode utilizing ionized gas in a glow discharge regime forms a transparent electrode for electro-optical switches. The transparent electrode comprises a low pressure gas region on both sides of the crystal. When the gas is ionized, e.g., by a glow discharge in the low pressure gas, the plasma formed is a good conductor. The gas electrode acts as a highly uniform conducting electrode. Since the plasma is transparent to a high energy laser beam passing through the crystal, the electrode is a transparent electrode. A crystal exposed from two sides to such a plasma can be charged up uniformly to any desired voltage. The plasma can be created either by the main high voltage pulser used to charge up the crystal or by auxiliary discharges or external sources of ionization. A typical configuration utilizes 10 torr argon in the discharge region adjacent to each crystal face.

  19. The Effect of Electrode Designs Based on the Anatomical Heart Location for the Non-Contact Heart Activity Measurement.

    PubMed

    Gi, Sun Ok; Lee, Young-Jae; Koo, Hye Ran; Lee, Seung Pyo; Lee, Kang-Hwi; Kim, Kyeng-Nam; Kang, Seung-Jin; Lee, Joo Hyeon; Lee, Jeong-Whan

    2015-12-01

    This research is an extension of a previous research [1] on the different effects of sensor location that is relatively suitable for heart rate sensing. This research aimed to elucidate the causes of wide variations in heart rate measurements from the same sensor position among subjects, as observed in previous research [1], and to enhance designs of the inductive textile electrode to overcome these variations. To achieve this, this study comprised two parts: In part 1, X-ray examinations were performed to determine the cause of the wide variations noted in the findings from previous research [1], and we found that at the same sensor position, the heart activity signal differed with slight differences in the positions of the heart of each subject owing to individual differences in the anatomical heart location. In part 2, three types of dual-loop-type textile electrodes were devised to overcome variations in heart location that were confirmed in part 1 of the study. The variations with three types of sensor designs were compared with that with a single-round type of electrode design, by using computer simulation and by performing a t-test on the data obtained from the experiments. We found that the oval-oval shaped, dual-loop-type textile electrode was more suitable than the single round type for determining morphological characteristics as well as for measuring appropriate heart activity signals. Based on these results, the oval-oval, dual-loop-type was a better inductive textile electrode that more effectively overcomes individual differences in heart location during heart activity sensing based on the magnetic-induced conductivity principle.

  20. Application of HFCT and UHF sensors in on-line partial discharge measurements for insulation diagnosis of high voltage equipment.

    PubMed

    Álvarez, Fernando; Garnacho, Fernando; Ortego, Javier; Sánchez-Urán, Miguel Ángel

    2015-01-01

    Partial discharge (PD) measurements provide valuable information for assessing the condition of high voltage (HV) insulation systems, contributing to their quality assurance. Different PD measuring techniques have been developed in the last years specially designed to perform on-line measurements. Non-conventional PD methods operating in high frequency bands are usually used when this type of tests are carried out. In PD measurements the signal acquisition, the subsequent signal processing and the capability to obtain an accurate diagnosis are conditioned by the selection of a suitable detection technique and by the implementation of effective signal processing tools. This paper proposes an optimized electromagnetic detection method based on the combined use of wideband PD sensors for measurements performed in the HF and UHF frequency ranges, together with the implementation of powerful processing tools. The effectiveness of the measuring techniques proposed is demonstrated through an example, where several PD sources are measured simultaneously in a HV installation consisting of a cable system connected by a plug-in terminal to a gas insulated substation (GIS) compartment. PMID:25815452

  1. Application of HFCT and UHF sensors in on-line partial discharge measurements for insulation diagnosis of high voltage equipment.

    PubMed

    Álvarez, Fernando; Garnacho, Fernando; Ortego, Javier; Sánchez-Urán, Miguel Ángel

    2015-03-25

    Partial discharge (PD) measurements provide valuable information for assessing the condition of high voltage (HV) insulation systems, contributing to their quality assurance. Different PD measuring techniques have been developed in the last years specially designed to perform on-line measurements. Non-conventional PD methods operating in high frequency bands are usually used when this type of tests are carried out. In PD measurements the signal acquisition, the subsequent signal processing and the capability to obtain an accurate diagnosis are conditioned by the selection of a suitable detection technique and by the implementation of effective signal processing tools. This paper proposes an optimized electromagnetic detection method based on the combined use of wideband PD sensors for measurements performed in the HF and UHF frequency ranges, together with the implementation of powerful processing tools. The effectiveness of the measuring techniques proposed is demonstrated through an example, where several PD sources are measured simultaneously in a HV installation consisting of a cable system connected by a plug-in terminal to a gas insulated substation (GIS) compartment.

  2. Application of HFCT and UHF Sensors in On-Line Partial Discharge Measurements for Insulation Diagnosis of High Voltage Equipment

    PubMed Central

    Álvarez, Fernando; Garnacho, Fernando; Ortego, Javier; Sánchez-Urán, Miguel Ángel

    2015-01-01

    Partial discharge (PD) measurements provide valuable information for assessing the condition of high voltage (HV) insulation systems, contributing to their quality assurance. Different PD measuring techniques have been developed in the last years specially designed to perform on-line measurements. Non-conventional PD methods operating in high frequency bands are usually used when this type of tests are carried out. In PD measurements the signal acquisition, the subsequent signal processing and the capability to obtain an accurate diagnosis are conditioned by the selection of a suitable detection technique and by the implementation of effective signal processing tools. This paper proposes an optimized electromagnetic detection method based on the combined use of wideband PD sensors for measurements performed in the HF and UHF frequency ranges, together with the implementation of powerful processing tools. The effectiveness of the measuring techniques proposed is demonstrated through an example, where several PD sources are measured simultaneously in a HV installation consisting of a cable system connected by a plug-in terminal to a gas insulated substation (GIS) compartment. PMID:25815452

  3. Hollow Electrode Discharge Triodes

    NASA Astrophysics Data System (ADS)

    Schoenbach, K. H.; Peterkin, F. E.; Tessnow, T.

    1996-10-01

    The current through a direct current micro-hollow electrode (electrode hole diameter: 0.7 mm) discharge in argon was shown to be controllable by means of a third, external electrode placed close to the cathode opening. By increasing the potential of the positively biased control electrode from zero to 30 V the discharge current could be linearly reduced from 5 μA to 0.75 μA, at a discharge voltage of 300 V. The current-voltage characteristic of the micro-hollow electrode discharge was found to have a positive slope, allowing parallel discharge operation without ballast. By drilling holes through a metal-plated, dielectric film, an array of hollow electrode discharges could be generated. It was shown that each discharge responds individually to variations in the potential of the corresponding external control electrode. The simplicity of the electrode configuration and the possibility of linear, electrical control of the individual discharge currents offers the possibility to use these triode arrays in addressable flat panel displays (patent pending).

  4. A simple technique for measuring the fracture energy of lithiated thin-film silicon electrodes at various lithium concentrations

    NASA Astrophysics Data System (ADS)

    Choi, Yong Seok; Pharr, Matt; Oh, Kyu Hwan; Vlassak, Joost J.

    2015-10-01

    We have measured the fracture energy of lithiated silicon thin-film electrodes as a function of lithium concentration using a bending test. First, silicon thin-films on copper substrates were lithiated to various states of charge. Then, bending tests were performed by deforming the substrate to a pre-defined shape, producing a variation of the curvature along the length of the electrode. The bending tests allow determination of the critical strains at which cracks initiate in the lithiated silicon. Using the substrate curvature technique, we also measured the elastic moduli and the stresses that develop in the electrodes during electrochemical lithiation. From these measurements, the fracture energy was calculated as a function of lithium concentration using a finite element simulation of fracture of an elastic film on an elastic-plastic substrate. The fracture energy was determined to be Γ = 12.0 ± 3.0 J m-2 for amorphous silicon and Γ = 10.0 ± 3.6 J m-2 for Li3.28Si, with little variation in the fracture energy for intermediate Li concentrations. These results provide a guideline for the practical design of high-capacity lithium ion batteries to avoid fracture. The experimental technique described in this paper also provides a simple means of measuring the fracture energy of brittle thin-films.

  5. A dual-energy medical instrument for measurement of x-ray source voltage and dose rate

    NASA Astrophysics Data System (ADS)

    Ryzhikov, V. D.; Naydenov, S. V.; Volkov, V. G.; Opolonin, O. D.; Makhota, S.; Pochet, T.; Smith, C. F.

    2016-03-01

    An original dual-energy detector and medical instrument have been developed to measure the output voltages and dose rates of X-ray sources. Theoretical and experimental studies were carried out to characterize the parameters of a new scintillator-photodiode sandwich-detector based on specially-prepared zinc selenide crystals in which the low-energy detector (LED) works both as the detector of the low-energy radiation and as an absorption filter allowing the highenergy fraction of the radiation to pass through to the high-energy detector (HED). The use of the LED as a low-energy filter in combination with a separate HED opens broad possibilities for such sandwich structures. In particular, it becomes possible to analyze and process the sum, difference and ratio of signals coming from these detectors, ensuring a broad (up to 106) measurement range of X-ray intensity from the source and a leveling of the energy dependence. We have chosen an optimum design of the detector and the geometry of the component LED and HED parts that allow energy-dependence leveling to within specified limits. The deviation in energy dependence of the detector does not exceed about 5% in the energy range from 30 to 120 keV. The developed detector and instrument allow contactless measurement of the anode voltage of an X-ray emitter from 40 to 140 kV with an error no greater than 3%. The dose rate measurement range is from 1 to 200 R/min. An original medical instrument has passed clinical testing and was recommended for use in medical institutions for X-ray diagnostics.

  6. Laser-based surface preparation of composite laminates leads to improved electrodes for electrical measurements

    NASA Astrophysics Data System (ADS)

    Almuhammadi, Khaled; Selvakumaran, Lakshmi; Alfano, Marco; Yang, Yang; Bera, Tushar Kanti; Lubineau, Gilles

    2015-12-01

    Electrical impedance tomography (EIT) is a low-cost, fast and effective structural health monitoring technique that can be used on carbon fiber reinforced polymers (CFRP). Electrodes are a key component of any EIT system and as such they should feature low resistivity as well as high robustness and reproducibility. Surface preparation is required prior to bonding of electrodes. Currently this task is mostly carried out by traditional sanding. However this is a time consuming procedure which can also induce damage to surface fibers and lead to spurious electrode properties. Here we propose an alternative processing technique based on the use of pulsed laser irradiation. The processing parameters that result in selective removal of the electrically insulating resin with minimum surface fiber damage are identified. A quantitative analysis of the electrical contact resistance is presented and the results are compared with those obtained using sanding.

  7. Nonwoven fabric active electrodes for biopotential measurement during normal daily activity.

    PubMed

    Kang, Tae-Ho; Merritt, Carey R; Grant, Edward; Pourdeyhimi, Behnam; Nagle, H Troy

    2008-01-01

    Body movement is responsible for most of the interference during physiological data acquisition during normal daily activities. In this paper, we introduce nonwoven fabric active electrodes that provide the comfort required for clothing while robustly recording physiological data in the presence of body movement. The nonwoven fabric active electrodes were designed and fabricated using both hand- and screen-printing thick-film techniques. Nonstretchable nonwoven (Evolon 100) was chosen as the flexible fabric substrate and a silver filled polymer ink (Creative Materials CMI 112-15) was used to form a transducer layer and conductive lines on the nonwoven fabrics. These nonwoven fabric active electrodes can be easily integrated into clothing for wearable health monitoring applications. Test results indicate that nonwoven textile-based sensors show considerable promise for physiological data acquisition in wearable healthcare monitoring applications.

  8. Tunneling spectroscopy of clean and adsorbate-covered gold surfaces in humid air, measured with fast bias voltage ramps

    NASA Astrophysics Data System (ADS)

    Rösch, Raphael; Schuster, Rolf

    2015-01-01

    The noise level of tunneling spectroscopic data can be significantly reduced by averaging the tunneling current over a large number of short bias voltage ramps, instead of recording over a single slow ramp. This effect is demonstrated for tunneling spectra of Au(111) by averaging over 200 consecutive bias voltage ramps, each 500 μs long. We attribute the improvement of the data quality to the frequency dependence of the current noise spectral density. Due to mechanical vibrations and tip instabilities the noise density is usually much higher for low frequencies ca. < 1 kHz than for the high frequencies relevant for measuring with fast bias ramps. The high data quality allowed for the routine detection of the Au(111) surface state and the investigation of the influence of steps in humid air, i.e., with a water-covered tunneling gap. For a CN covered Au surface in the presence of water we unexpectedly found additional electronic density of states at positive energies, around 0.6 eV, i.e., for unoccupied states. STS spectra of a (√{ 3} ×√{ 3}) R 30 ° Cu-UPD layer, formed by adsorbed sulfate and Cu species, indicate tunneling via the sulfate electronic density of states.

  9. Direct measurement of the chemical reactivity of silicon electrodes with LiPF6-based battery electrolytes.

    PubMed

    Veith, Gabriel M; Baggetto, Loïc; Sacci, Robert L; Unocic, Raymond R; Tenhaeff, Wyatt E; Browning, James F

    2014-03-21

    We report the first direct measurement of the extent of the spontaneous non-electrochemically driven reaction between a lithium ion battery electrode surface (Si) and a liquid electrolyte (1.2 M LiPF6-3 : 7 wt% ethylene carbonate : dimethyl carbonate). This layer is estimated to be 35 Å thick with a SLD of ∼ 4 × 10(-6) Å(-2) and likely originates from the consumption of the silicon surface. PMID:24513965

  10. A multi-electrode biomimetic electrolocation sensor

    NASA Astrophysics Data System (ADS)

    Mayekar, K.; Damalla, D.; Gottwald, M.; Bousack, H.; von der Emde, G.

    2012-04-01

    We present the concept of an active multi-electrode catheter inspired by the electroreceptive system of the weakly electric fish, Gnathonemus petersii. The skin of this fish exhibits numerous electroreceptor organs which are capable of sensing a self induced electrical field. Our sensor is composed of a sending electrode and sixteen receiving electrodes. The electrical field produced by the sending electrode was measured by the receiving electrodes and objects were detected by the perturbation of the electrical field they induce. The intended application of such a sensor is in coronary diagnostics, in particular in distinguishing various types of plaques, which are major causes of heart attack. For calibration of the sensor system, finite element modeling (FEM) was performed. To validate the model, experimental measurements were carried out with two different systems. The physical system was glass tubing with metal and plastic wall insertions as targets. For the control of the experiment and for data acquisition, the software LabView designed for 17 electrodes was used. Different parameters of the electric images were analyzed for the prediction of the electrical properties and size of the inserted targets in the tube. Comparisons of the voltage modulations predicted from the FEM model and the experiments showed a good correspondence. It can be concluded that this novel biomimetic method can be further developed for detailed investigations of atherosclerotic lesions. Finally, we discuss various design strategies to optimize the output of the sensor using different simulated models to enhance target recognition.

  11. Avoiding Errors in Electrochemical Measurements: Effect of Frit Material on the Performance of Reference Electrodes with Porous Frit Junctions.

    PubMed

    Mousavi, Maral P S; Saba, Stacey A; Anderson, Evan L; Hillmyer, Marc A; Bühlmann, Philippe

    2016-09-01

    In many commercially available and in-house-prepared reference electrodes, nanoporous glass frits (often of the brand named Vycor) contain the electrolyte solution that forms a salt bridge between the sample and the reference solution. Recently, we showed that in samples with low ionic strength, the half-cell potentials of reference electrodes comprising nanoporous Vycor frits are affected by the sample and can shift in response to the sample composition by more than 50 mV (which can cause up to 900% error in potentiometric measurements). It was confirmed that the large potential variations result from electrostatic screening of ion transfer through the frit due to the negatively charged surfaces of the glass nanopores. Since the commercial production of porous Vycor glass was recently discontinued, new materials have been used lately as porous frits in commercially available reference electrodes, namely frits made of Teflon, polyethylene, or one of two porous glasses sold under the brand names CoralPor and Electro-porous KT. In this work, we studied the effect of the frit characteristics on the performance of reference electrodes, and show that the unwanted changes in the reference potential are not unique to electrodes with Vycor frits. Increasing the pore size in the glass frits from the <10 nm into the 1 μm range or switching to polymeric frits with pores in the 1 to 10 μm range nearly eliminates the potential variations caused by electrostatic screening of ion transport through the frit pores. Unfortunately, bigger frit pores result in larger flow rates of the reference solution through the pores, which can result in the contamination of test solutions. PMID:27464837

  12. Avoiding Errors in Electrochemical Measurements: Effect of Frit Material on the Performance of Reference Electrodes with Porous Frit Junctions.

    PubMed

    Mousavi, Maral P S; Saba, Stacey A; Anderson, Evan L; Hillmyer, Marc A; Bühlmann, Philippe

    2016-09-01

    In many commercially available and in-house-prepared reference electrodes, nanoporous glass frits (often of the brand named Vycor) contain the electrolyte solution that forms a salt bridge between the sample and the reference solution. Recently, we showed that in samples with low ionic strength, the half-cell potentials of reference electrodes comprising nanoporous Vycor frits are affected by the sample and can shift in response to the sample composition by more than 50 mV (which can cause up to 900% error in potentiometric measurements). It was confirmed that the large potential variations result from electrostatic screening of ion transfer through the frit due to the negatively charged surfaces of the glass nanopores. Since the commercial production of porous Vycor glass was recently discontinued, new materials have been used lately as porous frits in commercially available reference electrodes, namely frits made of Teflon, polyethylene, or one of two porous glasses sold under the brand names CoralPor and Electro-porous KT. In this work, we studied the effect of the frit characteristics on the performance of reference electrodes, and show that the unwanted changes in the reference potential are not unique to electrodes with Vycor frits. Increasing the pore size in the glass frits from the <10 nm into the 1 μm range or switching to polymeric frits with pores in the 1 to 10 μm range nearly eliminates the potential variations caused by electrostatic screening of ion transport through the frit pores. Unfortunately, bigger frit pores result in larger flow rates of the reference solution through the pores, which can result in the contamination of test solutions.

  13. Eight electrode optical readout gap

    DOEpatents

    Boettcher, Gordon E.; Crain, Robert W.

    1985-01-01

    A protective device for a plurality of electrical circuits includes a pluity of isolated electrodes forming a gap with a common electrode. An output signal, electrically isolated from the circuits being monitored, is obtained by a photosensor viewing the discharge gap through an optical window. Radioactive stabilization of discharge characteristics is provided for slowly changing voltages and carbon tipped dynamic starters provide desirable discharge characteristics for rapidly varying voltages. A hydrogen permeation barrier is provided on external surfaces of the device.

  14. Uncertainty estimation of non-ideal analog switches using programmable Josephson voltage standards for mutual inductance measurement in the joule balance

    NASA Astrophysics Data System (ADS)

    Wang, Gang; Zhang, Zhonghua; Li, Zhengkun; Xu, Jinxin; You, Qiang

    2016-02-01

    Measurement of the mutual inductance is one of the key techniques in the joule balance to determine the Planck constant h, where a standard-square-wave compensation method was proposed to accurately measure the dc value of the mutual inductance. With this method, analog switches are used to compose an analog-switch signal generator to synthesize the excitation and compensation voltages. However, the accuracy of the compensation voltage is influenced by the non-ideal behaviors of analog-switches. In this paper, the effect from these non-ideal switches is analyzed in detail and evaluated with the equivalent circuits. A programmable Josephson voltage standard (PJVS) is used to generate a reference compensation voltage to measure the time integration of the voltage waveform generated by the analog-switch signal generator. Moreover, the effect is also evaluated experimentally by comparing the difference between the mutual inductance measured with the analog-switch signal generator and the value determined by the PJVS-analog-switch generator alternately in the same mutual inductance measurement system. The result shows that the impact of analog switches is 1.97  ×  10-7 with an uncertainty of 1.83  ×  10-7 (k  =  1) and confirms that the analog switch method can be used regularly instead of the PJVS in the mutual inductance measurement for the joule balance experiment.

  15. Filter-fluorescer measurement of low-voltage simulator x-ray energy spectra

    SciTech Connect

    Baldwin, G.T.; Craven, R.E.

    1986-01-01

    X-ray energy spectra of the Maxwell Laboratories MBS and Physics International Pulserad 737 were measured using an eight-channel filter-fluorescer array. The PHOSCAT computer code was used to calculate channel response functions, and the UFO code to unfold spectrum.

  16. Image processing for non-ratiometric measurement of membrane voltage using fluorescent reporters and pulsed laser illumination.

    PubMed

    Silve, Aude; Rocke, Sarah; Frey, Wolfgang

    2015-06-01

    The measurement of transmembrane voltages induced by pulsed electric field exposure can be achieved by using fluorescent dyes like ANNINE-6. Such approach requires a quantitative determination of the fluorescence intensity along the cell's membrane by image processing. When high temporal resolution is required, the illumination source is frequently a dye-laser which causes high fluctuations in the intensity of illumination which in turn affects the fluorescence intensity and thus the quality of the results. We propose an image processing technique that allows to overcome the fluctuations and to produce quantitative data. It uses the optical background noise as a correcting factor. Standard deviation in the fluctuations is thus efficiently reduced by at least a factor of 2.5. Additionally we draw attention to the fact that the parasitic component of the laser radiation (ASE) can also suppress fluctuations although it deteriorates wavelength precision.

  17. How well do cochlear implant intraoperative impedance measures predict postoperative electrode function?

    PubMed Central

    Goehring, Jenny L.; Hughes, Michelle L.; Baudhuin, Jacquelyn L.; Lusk, Rodney P.

    2012-01-01

    Objective Objectives were to: 1) evaluate the incidence of abnormal cochlear implant electrode impedance intraoperatively and at the initial activation, 2) identify the percentage of abnormalities that resolve by the initial activation, and 3) determine the incidence of normal intraoperative impedances that present as abnormal at the initial activation. Study Design Retrospective records review of intraoperative and postoperative cochlear implant electrode impedances. Setting Tertiary referral center. Patients Records were examined for 194 devices implanted in 165 pediatric and adult patients. Results Results indicate at least 1 open (OC) or short circuit (SC) in 12.4% (24/194) of devices intraoperatively, decreasing to 8.2% (16/194) postoperatively. OCs were more prevalent than SCs for intraoperative (92% vs. 8%) and postoperative (94% vs. 6%) intervals. Of the 3430 total electrodes, 78 had abnormal impedance intraoperatively. Sixty-four of those (82%) resolved by the postoperative interval (62 OC, 2 SC) while 14/78 (18%) remained abnormal postoperatively (12 OC, 2 SC). Six of 3430 (0.17%) electrodes had normal impedance intraoperatively but were abnormal postoperatively. Conclusions The incidence of SCs in the present study is likely underestimated due to poor sensitivity of monopolar coupling for detecting SCs. Intraoperative OCs have a high probability of resolving by the initial activation, particularly when contiguous electrodes are affected, and suggests limited need for the use of a backup device in these cases. Surgical technique and/or complications such as explant/reimplant or perilymphatic gushers may result in increased incidence of bubbles in the cochlea, and may play a role in abnormal intraoperative impedance results. PMID:23295726

  18. The differing behavior of electrosurgical devices made of various electrode materials operating under plasma conditions

    NASA Astrophysics Data System (ADS)

    Stalder, K. R.; Ryan, T. P.; Gaspredes, J.; Woloszko, J.

    2015-03-01

    Coblation® is an electrosurgical technology which employs electrically-excited electrodes in the presence of saline solution to produce a localized and ionized plasma that can cut, ablate, and otherwise treat tissues for many different surgical needs. To improve our understanding of how Coblation plasmas develop from devices made from different electrode materials we describe several experiments designed to elucidate material effects. Initial experiments studied simple, noncommercial cylindrical electrode test devices operating in buffered isotonic saline without applied suction. The applied RF voltage, approximately 300 V RMS, was sufficient to form glow discharges around the active electrodes. The devices exhibited significantly different operating characteristics, which we ascribe to the differing oxidation tendencies and other physical properties of the electrode materials. Parameters measured include RMS voltage and current, instantaneous voltage and current, temporally-resolved light emission and optical emission spectra, and electrode mass-loss measurements. We correlate these measured properties with some of the bulk characteristics of the electrode materials such as work functions, standard reduction potentials and sputter yields.

  19. Carbon nanotube multi-electrode array chips for noninvasive real-time measurement of dopamine, action potentials, and postsynaptic potentials.

    PubMed

    Suzuki, Ikuro; Fukuda, Mao; Shirakawa, Keiichi; Jiko, Hideyasu; Gotoh, Masao

    2013-11-15

    Multi-electrode arrays (MEAs) can be used for noninvasive, real-time, and long-term recording of electrophysiological activity and changes in the extracellular chemical microenvironment. Neural network organization, neuronal excitability, synaptic and phenotypic plasticity, and drug responses may be monitored by MEAs, but it is still difficult to measure presynaptic activity, such as neurotransmitter release, from the presynaptic bouton. In this study, we describe the development of planar carbon nanotube (CNT)-MEA chips that can measure both the release of the neurotransmitter dopamine as well as electrophysiological responses such as field postsynaptic potentials (fPSPs) and action potentials (APs). These CNT-MEA chips were fabricated by electroplating the indium-tin oxide (ITO) microelectrode surfaces. The CNT-plated ITO electrode exhibited electrochemical response, having much higher current density compared with the bare ITO electrode. Chronoamperometric measurements using these CNT-MEA chips detected dopamine at nanomolar concentrations. By placing mouse striatal brain slices on the CNT-MEA chip, we successfully measured synaptic dopamine release from spontaneous firings with a high S/N ratio of 62. Furthermore, APs and fPSPs were measured from cultured hippocampal neurons and slices with high temporal resolution and a 100-fold greater S/N ratio. Our CNT-MEA chips made it possible to measure neurotransmitter dopamine (presynaptic activities), postsynaptic potentials, and action potentials, which have a central role in information processing in the neuronal network. CNT-MEA chips could prove useful for in vitro studies of stem cell differentiation, drug screening and toxicity, synaptic plasticity, and pathogenic processes involved in epilepsy, stroke, and neurodegenerative diseases. PMID:23774164

  20. Electrochemical microstructuring with short voltage pulses.

    PubMed

    Schuster, Rolf

    2007-01-01

    The application of short (nanosecond) voltage pulses between a tool electrode and a work piece immersed in an electrolyte solution allows the three-dimensional machining of electrochemically active materials with submicrometer resolution. The method is based on the finite charging time constant of the double-layer capacitance, which varies approximately linearly with the local separation between the electrode surfaces. Hence, the polarization of the electrodes during short pulses and subsequent electrochemical reactions are confined to regions where the electrodes are in sufficiently close proximity. This Minireview describes the principles behind electrochemical micro-structuring with short voltage pulses, and its current achievements and limitations. PMID:17111455

  1. Electrodes for microfluidic applications

    DOEpatents

    Crocker, Robert W.; Harnett, Cindy K.; Rognlien, Judith L.

    2006-08-22

    An electrode device for high pressure applications. These electrodes, designed to withstand pressure of greater than 10,000 psi, are adapted for use in microfluidic devices that employ electrokinetic or electrophoretic flow. The electrode is composed, generally, of an outer electrically insulating tubular body having a porous ceramic frit material disposed in one end of the outer body. The pores of the porous ceramic material are filled with an ion conductive polymer resin. A conductive material situated on the upper surface of the porous ceramic frit material and, thus isolated from direct contact with the electrolyte, forms a gas diffusion electrode. A metal current collector, in contact with the gas diffusion electrode, provides connection to a voltage source.

  2. Characteristics of distributed-type inorganic electroluminescence panels with comb-shaped electrodes

    NASA Astrophysics Data System (ADS)

    Yamamoto, Shin-Ichi; Uraoka, Yukiharu; Taguchi, Nobuyoshi; Nonaka, Toshihiro

    2013-09-01

    We deposited comb electrodes with narrow gaps between the teeth on a glass substrate, thus realizing a high electric field intensity that cannot be achieved with conventional structures. Au electrodes are deposited to form a comb shape and then spin-coated with a phosphor layer obtained by mixing ZnS phosphor particles with resins in a certain ratio. An AC voltage was applied to the gaps between the teeth of the comb electrode to emit light, from which the luminance was measured for different electric field intensities. The luminance was not affected by the transmittance of the electrodes themselves when measured from the phosphor layer side. Therefore, it may be possible to produce a display that does not require transparent electrodes by using the phosphor layer side of a device with comb electrodes made of metals, such as Au, for the display.

  3. Potentiometric measurement of ascorbate by using a solvent polymeric membrane electrode.

    PubMed

    Guo, Huimin; Yin, Tanji; Su, Qingmei; Qin, Wei

    2008-05-15

    A novel potentiometric method for the determination of ascorbate is described in this communication. It is based on ascorbate oxidation with permanganate which is continuously released from the inner reference solution of a ligand-free tridodecylmethylammonium chloride (TDMAC)-based polymeric membrane ion selective electrode (ISE). The ISE potential determined by the activity of permanganate ions released at the sample-membrane phase boundary is increased with the consumption of permanganate. The proposed membrane electrode is useful for continuous and reversible detection of ascorbate at concentrations in 0.1M NaCl ranging from 1.0 x 10(-6) to 1.0 x 10(-3)M with a detection limit of 2.2 x 10(-7)M.

  4. A miniature high voltage plasma interaction flight experiment - Project MINX. [for measuring solar cell array parasitic current drain

    NASA Technical Reports Server (NTRS)

    Riley, T. J.; Triner, J. E.; Sater, B. L.; Cohen, D.; Somberg, H.

    1974-01-01

    A miniature high-voltage array was fabricated, incorporating the multi-junction edge illuminated (MJC) cell technique. The array consists of 32 2x2.2 cm MJCs, series connected, capable of 1600 V open circuit at 1 AMO and 1.2 mA short circuit. A solid state, high-voltage relay is connected across each 4-cell subgroup of the array. It was built to test plasma current drain on space systems using high voltage as might occur when a high-voltage solar array is operated from low to synchronous orbit.

  5. Measurement of Fast Voltage Transients in High-Performance Nb3Sn Magnets

    SciTech Connect

    Lietzke, A. F.; Sabbi., G. L.; Ferracin, P.; Caspi, S.; Zimmerman, S.; Joseph, J.; Doering, D.; Lizarazo, J.

    2008-06-01

    The Superconducting Magnet group at Lawrence Berkeley National Laboratory has been developing Nb{sub 3}Sn high-field accelerator magnet technology for the last fifteen years. In order to support the magnet R&D effort, we are developing a diagnostic system that can help identify the causes of performance limiting quenches by recording small flux-changes within the magnet prior to quench-onset. These analysis techniques were applied to the test results from recent Nb{sub 3}Sn magnets. This paper will examine various types of events and their distinguishing characteristics. The present measurement techniques are discussed along with the design of a new data acquisition system that will substantially improve the quality of the recorded signals.

  6. ESR Process Instabilities while Melting Pipe Electrodes

    SciTech Connect

    Melgaard, D.K.; Shelmidine, G.J.

    1999-01-06

    With the demonstration of the viability of using the electroslag remelting process for the decontamination of radionuclides, interest has increased in examining the unique aspects associated with melting steel pipe electrodes. These electrodes consist of several nested pipes, welded concentrically to atop plate. Since these electrodes can be half as dense as a solid electrode, they present unique challenges to the standard algorithms used in controlling the melting process. Naturally the electrode must be driven down at a dramatically increased speed. However, since the heat transfer is greatly influenced and enhanced with the increased area to volume ratio, considerable variation in the melting rate of the pipes has been found. Standard control methods can become unstable as a result of the variation at increased speeds, particularly at shallow immersion depths. The key to good control lies in the understanding of the melting process. Several experiments were conducted to observe the characteristics of the melting using two different control modes. By using a pressure transducer to monitor the pressure inside the pipes, the venting of the air trapped inside the electrode was observed. The measurements reveal that for a considerable amount of time. the pipes are not completely immersed in the slag, allowing the gas inside to escape without the formation of bubbles. This result has implications for the voltage swing as well as for the decontamination reactions.

  7. Measuring voltage in a Y Ba2 Cu3 O8 superconductor induced by a moving magnet

    NASA Astrophysics Data System (ADS)

    Chan, W. C.; Lin, C. B.; Chao, H.; Chiang, C. H.

    2005-11-01

    This study examined a pair of permanent magnets rotating above a tape-shaped single grain YBa2Cu3O8 (YBCO) superconducting sample (SS) with and without an applied bias current. The root-mean-square voltages (Vrms) induced by the forced movements of the vortices inside the SS were measured. At SS temperatures higher than the critical temperature (Tc) , the induced Vrms was a constant, as expected from Faraday’s law. However, at a temperature in the superconducting transition region, the induced Vrms is a sensitive function of both the motion of the magnet and the bias current applied to the SS. At temperatures below the transition region, the induced Vrms did not drop to zero immediately. Instead, it dropped only to a particular value and then decreased as the temperature decreased. The experimental results obtained at temperatures in the superconducting transition region can be understood by considering the superposition of the two induced voltages. One is induced according to Faraday’s law, and the other one is induced by the flux flow inside the SS, which is caused by the bias current. At temperatures below the transition region, an explanation of how the magnetic field of a moving magnet passes through the superconductor is provided, and is consistent qualitatively with the experimental results. In this explanation, some of the magnetic field is assumed first to fill in and then to be pulled out from all sides of the SS in accordance with Bean’s model as the moving magnet passes through the SS from above.

  8. Development of a versatile rotating ring-disc electrode for in situ pH measurements.

    PubMed

    Zimer, Alexsandro Mendes; Medina da Silva, Marina; Machado, Eduardo G; Varela, Hamilton; Mascaro, Lucia Helena; Pereira, Ernesto Chaves

    2015-10-15

    There are some electrocatalytic reactions in which the key parameter explaining their behavior is a local change in pH. Therefore, it is of utter importance to develop an electrode that could quantify this parameter in situ, but also be customizable to be used in different systems. The purpose of this work is to build a versatile rotating ring/disc electrode (RRDE) with IrOx deposited on a glass tube as a ring and any kind of material as disc. As the IrOx is sensitive to pH variation, the reactions promoted on the disc can trigger proportional pH shifts on the ring. In such assembly, the IrOx ring presents a fast response time even during the pH transients due to the small thickness of the ring (approximately 10 μm), which enables the detection of interfacial pH changes. The ring electrode was tested toward the interfacial pH shift observed during the electrolytic reduction of water on the disc and also characterized by acid-base titration to determine the response time. As the main conclusions, fast response and durable RRDE were obtained, and this assembly could be used to revisit many electrocatalytic reactions in order to test the importance of local pH on the process. PMID:26515001

  9. Flexible gold electrode array for multiplexed immunoelectrochemical measurement of three protein biomarkers for prostate cancer.

    PubMed

    Liu, Jing; Lu, Cai-Yu; Zhou, Hong; Xu, Jing-Juan; Chen, Hong-Yuan

    2014-11-26

    In this work, we report a simple and novel electrochemical multiplexed immunosensor on a flexible polydimethylsiloxane (PDMS) slice deposited with 8 × 8 nano-Au film electrodes for simultaneous detection of prostate specific antigen (PSA), prostate specific membrane antigen (PSMA), and interleukin-6 (IL-6). Primary antibodies linked with magnetic beads (Ab1-MBs) were modified on the nano-Au film electrodes via magnetic force. In the presence of corresponding antigen, horse radish peroxidase-secondary antibody-conjugated gold nanorods (HRP-Ab2-gold NRs) were brought into the surface of electrodes, generating obvious electrochemical signals of H2O2 reduction reactions. Based on this, the designed immunosensor provide good performance in sensitivity and specificity during the detection of above three biomarkers for prostate cancer. The electrochemical multiplexed immunosensor was verified for selective and accurate detection of complex samples in human serum. Data suggested that the reported multiplexed immunosensing strategy holds great promise for applications in clinical assay and diseases diagnosis. PMID:25333408

  10. Acute changes associated with electrode insertion measured with optical coherence microscopy

    NASA Astrophysics Data System (ADS)

    Hammer, Daniel X.; Lozzi, Andrea; Boretsky, Adam; Agrawal, Anant; Welle, Cristin G.

    2016-03-01

    Despite advances in functional neural imaging, penetrating microelectrodes provide the most direct interface for the extraction of neural signals from the nervous system and are a critical component of many high degree-of-freedom braincomputer interface devices. Electrode insertion is a traumatic event that elicits a complex neuroinflammatory response. In this investigation we applied optical coherence microscopy (OCM), particularly optical coherence angiography (OCA), to characterize the immediate tissue response during microelectrode insertion. Microelectrodes of varying dimension and footprint (one-, two-, and four-shank) were inserted into mouse motor cortex beneath a window after craniotomy surgery. The microelectrodes were inserted in 3-4 steps at 15-20°, with approximately 250 μm linear insertion distance for each step. Before insertion and between each step, OCM datasets were collected, including for quantitative capillary velocimetry. A cohort of control animals without microelectrode insertion was also imaged over a similar time period (2-3 hours). Mechanical tissue deformation was observed in all the experimental animals. The quantitative angiography results varied across animals, and were not correlated with device dimensions. In some cases, localized flow drop-out was observed in a small region surrounding the electrode, while in other instances a global disruption in flow occurred, perhaps as a result of large vessel compression caused by mechanical pressure. OCM is a tool that can be used in various neurophotonics applications, including quantification of the neuroinflammatory response to penetrating electrode insertion.

  11. Experimental evaluation of actual delivered dose using mega-voltage cone-beam CT and direct point dose measurement

    SciTech Connect

    Matsubara, Kana; Kohno, Ryosuke; Nishioka, Shie; Shibuya, Toshiyuki; Ariji, Takaki; Akimoto, Tetsuo; Saitoh, Hidetoshi

    2013-07-01

    Radiation therapy in patients is planned by using computed tomography (CT) images acquired before start of the treatment course. Here, tumor shrinkage or weight loss or both, which are common during the treatment course for patients with head-and-neck (H and N) cancer, causes unexpected differences from the plan, as well as dose uncertainty with the daily positional error of patients. For accurate clinical evaluation, it is essential to identify these anatomical changes and daily positional errors, as well as consequent dosimetric changes. To evaluate the actual delivered dose, the authors proposed direct dose measurement and dose calculation with mega-voltage cone-beam CT (MVCBCT). The purpose of the present study was to experimentally evaluate dose calculation by MVCBCT. Furthermore, actual delivered dose was evaluated directly with accurate phantom setup. Because MVCBCT has CT-number variation, even when the analyzed object has a uniform density, a specific and simple CT-number correction method was developed and applied for the H and N site of a RANDO phantom. Dose distributions were calculated with the corrected MVCBCT images of a cylindrical polymethyl methacrylate phantom. Treatment processes from planning to beam delivery were performed for the H and N site of the RANDO phantom. The image-guided radiation therapy procedure was utilized for the phantom setup to improve measurement reliability. The calculated dose in the RANDO phantom was compared to the measured dose obtained by metal-oxide-semiconductor field-effect transistor detectors. In the polymethyl methacrylate phantom, the calculated and measured doses agreed within about +3%. In the RANDO phantom, the dose difference was less than +5%. The calculated dose based on simulation-CT agreed with the measured dose within±3%, even in the region with a high dose gradient. The actual delivered dose was successfully determined by dose calculation with MVCBCT, and the point dose measurement with the image

  12. VOLTAGE REGULATOR

    DOEpatents

    Von Eschen, R.L.; Scheele, P.F.

    1962-04-24

    A transistorized voltage regulator which provides very close voitage regulation up to about 180 deg F is described. A diode in the positive line provides a constant voltage drop from the input to a regulating transistor emitter. An amplifier is coupled to the positive line through a resistor and is connected between a difference circuit and the regulating transistor base which is negative due to the difference in voltage drop across thc diode and the resistor so that a change in the regulator output causes the amplifier to increase or decrease the base voltage and current and incrcase or decrease the transistor impedance to return the regulator output to normal. (AEC)

  13. Dry electrodes for electrocardiography.

    PubMed

    Meziane, N; Webster, J G; Attari, M; Nimunkar, A J

    2013-09-01

    Patient biopotentials are usually measured with conventional disposable Ag/AgCl electrodes. These electrodes provide excellent signal quality but are irritating for long-term use. Skin preparation is usually required prior to the application of electrodes such as shaving and cleansing with alcohol. To overcome these difficulties, researchers and caregivers seek alternative electrodes that would be acceptable in clinical and research environments. Dry electrodes that operate without gel, adhesive or even skin preparation have been studied for many decades. They are used in research applications, but they have yet to achieve acceptance for medical use. So far, a complete comparison and evaluation of dry electrodes is not well described in the literature. This work compares dry electrodes for biomedical use and physiological research, and reviews some novel systems developed for cardiac monitoring. Lastly, the paper provides suggestions to develop a dry-electrode-based system for mobile and long-term cardiac monitoring applications.

  14. Aquifer and Vadose Zone Pollution Determined From Geoelectrical Measurements With Multi- Electrode Wells and Surface Multi-Profiling

    NASA Astrophysics Data System (ADS)

    de Lima, O. A.; Pereira, P. D.

    2007-05-01

    During the last three years we are developing hydrobiogeological researches to quantitatively describe the underground contamination of a 4.0 km2 area, including two landfill deposits and a tannery industry of Alagoinhas city, Bahia state, Brazil. We used electrical geophysics, geological, geochemical and biological analysis to gain a general understanding of the complex interactions between organic and inorganic pollutants and their environmental impacts. A geological reconnaissance work and a geoelectrical survey using vertical electrical soundings were made around the area to detect and to delineate the extent of the underground contamination plume. The results pointed out the presence of a strong conductive anomaly within the aquifer resulting from invasive fluids both from the landfills and from the surface disposal lagoons from the tannery. Water samples collected at available wells and along the Sauipe river, have shown drastic changes in the total dissolved solids, total chromium, inorganic macro-components, biochemical oxygen demand, chemical oxygen demand, nutrients and bacterial content. As a complimentary work, apparent resistivity and chargeability data were measured as a function of depth along three new multi-electrode wells, and as a function of electrode spacing along five double semi-Schlumberger subsurface profiles. A multi-electrode well is a special monitoring well where we externally install copper electrodes as thin metallic rings spaced by 0.50 m, along its entire filter and casing length. Such electrodes are connected through insulated cables to the ground surface and may be combined into different arrays. Two-side semi-Schlumberger soundings expanded up to 200 m AB/2 spacing and with centers spaced by 50 m along special transverse centered at the plume were inverted using 1D and 2D models. Both techniques were used to detail the groundwater contamination around the Alagoinhas landfills. The electrical measurements performed at the earth

  15. Biofouling resistance of boron-doped diamond neural stimulation electrodes is superior to titanium nitride electrodes in vivo

    NASA Astrophysics Data System (ADS)

    Meijs, S.; Alcaide, M.; Sørensen, C.; McDonald, M.; Sørensen, S.; Rechendorff, K.; Gerhardt, A.; Nesladek, M.; Rijkhoff, N. J. M.; Pennisi, C. P.

    2016-10-01

    Objective. The goal of this study was to assess the electrochemical properties of boron-doped diamond (BDD) electrodes in relation to conventional titanium nitride (TiN) electrodes through in vitro and in vivo measurements. Approach. Electrochemical impedance spectroscopy, cyclic voltammetry and voltage transient (VT) measurements were performed in vitro after immersion in a 5% albumin solution and in vivo after subcutaneous implantation in rats for 6 weeks. Main results. In contrast to the TiN electrodes, the capacitance of the BDD electrodes was not significantly reduced in albumin solution. Furthermore, BDD electrodes displayed a decrease in the VTs and an increase in the pulsing capacitances immediately upon implantation, which remained stable throughout the whole implantation period, whereas the opposite was the case for the TiN electrodes. Significance. These results reveal that BDD electrodes possess a superior biofouling resistance, which provides significantly stable electrochemical properties both in protein solution as well as in vivo compared to TiN electrodes.

  16. Note: Effective measurement of retained I(c) in evaluating electromechanical properties of high temperature superconductor tapes by the voltage tap clipping technique.

    PubMed

    Dedicatoria, Marlon J; Bautista, Zhierwinjay; Shin, Hyung-Seop; Sim, Kideok

    2015-08-01

    In this note, the effectiveness of voltage tap clipping technique was assessed in evaluating the electromechanical properties of high temperature superconductor (HTS) tapes in the aspect of practical device applications. In the four-probe transport I(c) measurement, instead of directly soldering the voltage lead wires onto the HTS samples, they were tapped to the sample by either just clipping or soldering them to the clips. This technique facilitated the simultaneous and repeated retained I(c) measurement test for multiple samples. Finally, the critical double bending diameter of HTS tapes and the electrical properties of jointed and striated coated conductor tapes could be easily determined.

  17. The Significance of Breakdown Voltages for Quality Assurance of Low-Voltage BME Ceramic Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander A.

    2014-01-01

    Application of thin dielectric, base metal electrode (BME) ceramic capacitors for high-reliability applications requires development of testing procedures that can assure high quality and reliability of the parts. In this work, distributions of breakdown voltages (VBR) in variety of low-voltage BME multilayer ceramic capacitors (MLCCs) have been measured and analyzed. It has been shown that analysis of the distributions can indicate the proportion of defective parts in the lot and significance of the defects. Variations of the distributions after solder dip testing allow for an assessment of the robustness of capacitors to soldering-related stresses. The drawbacks of the existing screening and qualification methods to reveal defects in high-value, low-voltage MLCCs and the importance of VBR measurements are discussed. Analysis has shown that due to a larger concentration of oxygen vacancies, defect-related degradation of the insulation resistance (IR) and failures are more likely in BME compared to the precious metal electrode (PME) capacitors.

  18. Note: electrode polarization of Galinstan electrodes for liquid impedance spectroscopy.

    PubMed

    Mellor, Brett L; Kellis, Nathan A; Mazzeo, Brian A

    2011-04-01

    Electrode polarization is a significant obstacle in the impedance measurements of ionic liquids. An atomically smooth electrode surface could potentially reduce unwanted impedance contributions from electrode polarization. Liquid metal electrodes were formed by adhering Galinstan to acrylic plates in a parallel-plate capacitor arrangement. Electrode polarization was compared to a similar cell with stainless steel electrodes. The impedance of salt and protein solutions (β-lactoglobulin) was measured from 40 Hz to 110 MHz. Because of oxide layer formation, the performance of the Galinstan electrode is significantly different than the theoretical ideal.

  19. Note: Electrode polarization of Galinstan electrodes for liquid impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Mellor, Brett L.; Kellis, Nathan A.; Mazzeo, Brian A.

    2011-04-01

    Electrode polarization is a significant obstacle in the impedance measurements of ionic liquids. An atomically smooth electrode surface could potentially reduce unwanted impedance contributions from electrode polarization. Liquid metal electrodes were formed by adhering Galinstan to acrylic plates in a parallel-plate capacitor arrangement. Electrode polarization was compared to a similar cell with stainless steel electrodes. The impedance of salt and protein solutions (β-lactoglobulin) was measured from 40 Hz to 110 MHz. Because of oxide layer formation, the performance of the Galinstan electrode is significantly different than the theoretical ideal.

  20. Constant voltage electro-slag remelting control

    DOEpatents

    Schlienger, M.E.

    1996-10-22

    A system for controlling electrode gap in an electro-slag remelt furnace has a constant regulated voltage and an electrode which is fed into the slag pool at a constant rate. The impedance of the circuit through the slag pool is directly proportional to the gap distance. Because of the constant voltage, the system current changes are inversely proportional to changes in gap. This negative feedback causes the gap to remain stable. 1 fig.

  1. Note: Electrical modeling and characterization of voltage gradient in liquid crystal microlenses

    NASA Astrophysics Data System (ADS)

    Urruchi, V.; Algorri, J. F.; Marcos, C.; Sánchez-Pena, J. M.

    2013-11-01

    In this work, a novel equivalent electric circuit for modeling liquid crystal microlenses is proposed. This model is focused on explaining a lens behavior at the micrometric scale, using its manufacturing parameters. It suggests an approach to predict the solution of the voltage gradient distribution across a microlens. An interesting feature of the model is that it provides an analytical solution for microlenses with modal and hole-patterned electrode schemes, by a simple software tool. The model flexibility allows lens designers to apply complex waveform signals with different harmonics. The voltage distribution has been tested. The simulated and measured voltage profiles are fairly in agreement.

  2. HIGH VOLTAGE ION SOURCE

    DOEpatents

    Luce, J.S.

    1960-04-19

    A device is described for providing a source of molecular ions having a large output current and with an accelerated energy of the order of 600 kv. Ions are produced in an ion source which is provided with a water-cooled source grid of metal to effect maximum recombination of atomic ions to molecular ions. A very high accelerating voltage is applied to withdraw and accelerate the molecular ions from the source, and means are provided for dumping the excess electrons at the lowest possible potentials. An accelerating grid is placed adjacent to the source grid and a slotted, grounded accelerating electrode is placed adjacent to the accelerating grid. A potential of about 35 kv is maintained between the source grid and accelerating grid, and a potential of about 600 kv is maintained between the accelerating grid and accelerating electrode. In order to keep at a minimum the large number of oscillating electrons which are created when such high voltages are employed in the vicinity of a strong magnetic field, a plurality of high voltage cascaded shields are employed with a conventional electron dumping system being employed between each shield so as to dump the electrons at the lowest possible potential rather than at 600 kv.

  3. Ion-selective electrode for transmembrane pH difference measurements.

    PubMed

    Katsu, T; Nakagawa, H; Kanamori, T; Kamo, N; Tsuchiya, T

    2001-04-15

    A triethylammonium-sensitive electrode was constructed using sodium tetrakis[3,5-bis(2-methoxyhexafluoro-2-propyl)phenyl]borate as an ion-exchanger and benzyl 2-nitrophenyl ether as a solvent mediator in a poly(vinylchloride) membrane matrix and was used to determine the pH difference across a cell membrane. The method is based on monitoring of the pH gradient-induced uptake of triethylammonium in situ. The triethylammonium electrode exhibited a near-Nernstian response to triethylammonium in the concentration range of 5 x 10(-6)-1 x 10(-2) M with a slope of 58.5 mV per concentration decade in a buffer solution composed of 150 mM NaCl and 10 mM NaH2PO4/Na2HPO4 (pH 7.5). The limit of detection was 1 microM. In experiments using liposomes, the uptake of triethylammonium into liposomes was quantitatively induced according to the pH difference across the liposomal membrane. The transmembrane pH differences in Escherichia coli cells and the light-induced pH differences across the envelope vesicles of Halobacterium halobium were successfully determined by the present method.

  4. Double Layer of a Gold Electrode Probed by AFM Force Measurements.

    PubMed

    Barten, D; Kleijn, J M; Duval, J; Leeuwen, H P V; Lyklema, J; Cohen Stuart, M A

    2003-02-18

    Colloidal probe atomic force microscopy was used to determine the electric double layer interactions between a gold electrode and a spherical silica probe. The double layer properties of the gold/solution interface were varied through the pH and salt concentration of the electrolyte, as well as by externally applying an electric potential. The double layer potentials ψ(d) of the gold surface were obtained by fitting the force-distance curves according to the DLVO (Derjaguin-Landau-Verwey-Overbeek) theory, using earlier obtained values for the double layer potential of the silica probe as input parameter. It was found that the gold electrode combines the features of reversible and polarizable interfaces; i.e., its charge and potential are determined by both the solution pH and the external potential. The pH dependence is attributed to proton adsorption and desorption from oxidic groups on the gold surface. In the potential range studied, ψ(d) varies linearly with the applied potential; the variation in ψ(d) is roughly 10% of that in the applied potential. The potential of zero force (the external potential at which ψ(d) = 0) varies with pH. The various features of the gold/electrolyte interface are described well by an amphifunctional double layer model. The results of this study form the basis of the interpretation of adsorption studies on gold as a function of pH and externally applied potential.

  5. Effect of the reference electrode size on the ionization instability in the plasma sheath of a small positively biased electrode

    SciTech Connect

    Bliokh, Y. P.; Brodsky, Yu. L.; Chashka, Kh. B.; Felsteiner, J.; Slutsker, Ya. Z.

    2011-06-01

    It is well known that additional ionization in the vicinity of a positively biased electrode immersed into a weakly ionized plasma is responsible for a hysteresis in the electrode current-voltage characteristics and the current self-oscillations rise. Here we show both experimentally and theoretically that under certain conditions these phenomena cannot be correctly interpreted once considered separately from the reference electrode current-voltage characteristics. It is shown that small electrodes can be separated into three groups according to the relation between the electrode and the reference electrode areas. Each group is characterized by its own dependence of the collected current on the bias voltage.

  6. Correcting electrode modelling errors in EIT on realistic 3D head models.

    PubMed

    Jehl, Markus; Avery, James; Malone, Emma; Holder, David; Betcke, Timo

    2015-12-01

    Electrical impedance tomography (EIT) is a promising medical imaging technique which could aid differentiation of haemorrhagic from ischaemic stroke in an ambulance. One challenge in EIT is the ill-posed nature of the image reconstruction, i.e., that small measurement or modelling errors can result in large image artefacts. It is therefore important that reconstruction algorithms are improved with regard to stability to modelling errors. We identify that wrongly modelled electrode positions constitute one of the biggest sources of image artefacts in head EIT. Therefore, the use of the Fréchet derivative on the electrode boundaries in a realistic three-dimensional head model is investigated, in order to reconstruct electrode movements simultaneously to conductivity changes. We show a fast implementation and analyse the performance of electrode position reconstructions in time-difference and absolute imaging for simulated and experimental voltages. Reconstructing the electrode positions and conductivities simultaneously increased the image quality significantly in the presence of electrode movement.

  7. Topographical and electrochemical nanoscale imaging of living cells using voltage-switching mode scanning electrochemical microscopy.

    PubMed

    Takahashi, Yasufumi; Shevchuk, Andrew I; Novak, Pavel; Babakinejad, Babak; Macpherson, Julie; Unwin, Patrick R; Shiku, Hitoshi; Gorelik, Julia; Klenerman, David; Korchev, Yuri E; Matsue, Tomokazu

    2012-07-17

    We describe voltage-switching mode scanning electrochemical microscopy (VSM-SECM), in which a single SECM tip electrode was used to acquire high-quality topographical and electrochemical images of living cells simultaneously. This was achieved by switching the applied voltage so as to change the faradaic current from a hindered diffusion feedback signal (for distance control and topographical imaging) to the electrochemical flux measurement of interest. This imaging method is robust, and a single nanoscale SECM electrode, which is simple to produce, is used for both topography and activity measurements. In order to minimize the delay at voltage switching, we used pyrolytic carbon nanoelectrodes with 6.5-100 nm radii that rapidly reached a steady-state current, typically in less than 20 ms for the largest electrodes and faster for smaller electrodes. In addition, these carbon nanoelectrodes are suitable for convoluted cell topography imaging because the RG value (ratio of overall probe diameter to active electrode diameter) is typically in the range of 1.5-3.0. We first evaluated the resolution of constant-current mode topography imaging using carbon nanoelectrodes. Next, we performed VSM-SECM measurements to visualize membrane proteins on A431 cells and to detect neurotransmitters from a PC12 cells. We also combined VSM-SECM with surface confocal microscopy to allow simultaneous fluorescence and topographical imaging. VSM-SECM opens up new opportunities in nanoscale chemical mapping at interfaces, and should find wide application in the physical and biological sciences.

  8. Measurement of Parasitic Inductances in the Bus-Bar Assembly of a High Power Voltage Source Converter

    NASA Astrophysics Data System (ADS)

    Datta, Aniket; Narayanan, G.

    2016-05-01

    Insulated gate bipolar transistor (IGBT) based voltage source converters use copper plates with insulating sheets in between them (sandwich bus-bar arrangement) for connecting the different device terminals in the power circuit. In such converters, the parasitic inductances in the power circuit are crucial as they cause overvoltage spikes across the device. Also, the parasitics affect the current sharing between IGBTs when they are connected in parallel in high power converters. The conduction path through plates and fasteners in the bus-bar assembly is three-dimensional and quite complex, making analytical evaluation of the stray inductance quite challenging. The first objective here is to present a simple experimental setup and experimental procedure, which are convenient for power electronic engineers, to measure the bus-bar inductance. The next objective is to carry out experimental studies on the inductances offered by different components and sub-assemblies in a bus-bar assembly. This includes evaluation of inductances of the different conduction paths in typical bus-bar plates. The third objective is to experimentally evaluate the parasitic inductances in the bus-bar assembly of a commercial 250 kVA high power converter. Each leg of this converter consists of two 300 A/1200 V IGBTs connected in parallel. The effective inductance seen by the individual device modules are determined experimentally.

  9. Study and Experiment on Non-Contact Voltage Sensor Suitable for Three-Phase Transmission Line.

    PubMed

    Zhou, Qiang; He, Wei; Xiao, Dongping; Li, Songnong; Zhou, Kongjun

    2015-12-30

    A voltage transformer, as voltage signal detection equipment, plays an important role in a power system. Presently, more and more electric power systems are adopting potential transformer and capacitance voltage transformers. Transformers are often large in volume and heavyweight, their insulation design is difficult, and an iron core or multi-grade capacitance voltage division structure is generally adopted. As a result, the detection accuracy of transformer is reduced, a huge phase difference exists between detection signal and voltage signal to be measured, and the detection signal cannot accurately and timely reflect the change of conductor voltage signal to be measured. By aiming at the current problems of electric transformation, based on electrostatic induction principle, this paper designed a non-contact voltage sensor and gained detection signal of the sensor through electrostatic coupling for the electric field generated by electric charges of the conductor to be measured. The insulation structure design of the sensor is simple and its volume is small; phase difference of sensor measurement is effectively reduced through optimization design of the electrode; and voltage division ratio and measurement accuracy are increased. The voltage sensor was tested on the experimental platform of simulating three-phase transmission line. According to the result, the designed non-contact voltage sensor can realize accurate and real-time measurement for the conductor voltage. It can be applied to online monitoring for the voltage of three-phase transmission line or three-phase distribution network line, which is in accordance with the development direction of the smart grid.

  10. Study and Experiment on Non-Contact Voltage Sensor Suitable for Three-Phase Transmission Line

    PubMed Central

    Zhou, Qiang; He, Wei; Xiao, Dongping; Li, Songnong; Zhou, Kongjun

    2015-01-01

    A voltage transformer, as voltage signal detection equipment, plays an important role in a power system. Presently, more and more electric power systems are adopting potential transformer and capacitance voltage transformers. Transformers are often large in volume and heavyweight, their insulation design is difficult, and an iron core or multi-grade capacitance voltage division structure is generally adopted. As a result, the detection accuracy of transformer is reduced, a huge phase difference exists between detection signal and voltage signal to be measured, and the detection signal cannot accurately and timely reflect the change of conductor voltage signal to be measured. By aiming at the current problems of electric transformation, based on electrostatic induction principle, this paper designed a non-contact voltage sensor and gained detection signal of the sensor through electrostatic coupling for the electric field generated by electric charges of the conductor to be measured. The insulation structure design of the sensor is simple and its volume is small; phase difference of sensor measurement is effectively reduced through optimization design of the electrode; and voltage division ratio and measurement accuracy are increased. The voltage sensor was tested on the experimental platform of simulating three-phase transmission line. According to the result, the designed non-contact voltage sensor can realize accurate and real-time measurement for the conductor voltage. It can be applied to online monitoring for the voltage of three-phase transmission line or three-phase distribution network line, which is in accordance with the development direction of the smart grid. PMID:26729119

  11. Electrochemical performance of platinum electrodes within the multi-electrode spiral nerve cuff.

    PubMed

    Rozman, Janez; Pečlin, Polona; Mehle, Andraž; Šala, Martin

    2014-09-01

    In this study, the electrochemical performance of platinum electrodes within a multi-electrode spiral cuff to be used for selective nerve stimulation was investigated. The original cuff, simplified into a half-cuff, contained a single row of nine electrodes (0.5 × 2 mm) at a distance of 2 mm from its inner surface. Cyclic voltammetry was used to investigate the electrochemical reactions at the electrode-electrolyte interface, to define a potential window within which the electrode could be safely used in selective nerve stimulation, to calculate the charge injection capacity and cathodal charge storage capacity. Voltage transients retrieved during excitation with quasitrapezoidal biphasic current pulses, tested by selective nerve stimulation of the isolated porcine left cervical vagus nerve segment, were used to determine the maximum polarization across the electrode-electrolyte interface and to calculate cathodic charge injection capacity of the electrode. The results show that the most negative and most positive potentials across the electrode-electrolyte interface reached -0.54 and 0.59 V; these did not exceed the safe potential limits for water electrolysis. Furthermore, the time integral of the cathodic current by cyclic voltammetry measured over the potential range of water electrolysis, actually representing the cathodal charge storage capacity, was approximately -4 mC cm(-2). The charge injection capacity, representing the maximum charge density injected in a current stimulation pulse, using only reversible processes, however, was around 75 µC cm(-2). In conclusion, both, the tested stimulation pulse and electrode are suitable for efficient and safe selective nerve stimulation.

  12. Determining resistivity of a formation adjacent to a borehole having casing with an apparatus having all current conducting electrodes within the cased well

    DOEpatents

    Vail, III, William Banning

    2001-01-01

    Methods of operation of different types of multiple electrode apparatus vertically disposed in a cased well to measure information useful to determine the resistivity of adjacent geological formations from within the cased well are described. The multiple electrode apparatus has a plurality of spaced apart voltage measurement electrodes that electrically engage a portion of the interior of the cased well. During measurements of information useful to determine formation resistivity, current is conducted between a first current conducting electrode in electrical contact with the interior of the cased well to a second current conducting electrode that is also in electrical contact with the interior of the cased well. The first and second current conducting electrodes are separated by a distance sufficient so that at least a portion of the current conducted between the first and second current conducting electrodes is conducted through the geological formation of interest.

  13. Measurements of stress and fracture in germanium electrodes of lithium-ion batteries during electrochemical lithiation and delithiation

    NASA Astrophysics Data System (ADS)

    Pharr, Matt; Choi, Yong Seok; Lee, Dongwoo; Oh, Kyu Hwan; Vlassak, Joost J.

    2016-02-01

    We measure stresses that develop in sputter-deposited amorphous Ge thin films during electrochemical lithiation and delithiation. Amorphous LixGe electrodes are found to flow plastically at stresses that are significantly smaller than those of their amorphous LixSi counterparts. The stress measurements allow for quantification of the elastic modulus of amorphous LixGe as a function of lithium concentration, indicating a much-reduced stiffness compared to pure Ge. Additionally, we observe that thinner films of Ge survive a cycle of lithiation and delithiation, whereas thicker films fracture. By monitoring the critical conditions for crack formation, the fracture energy is calculated using an analysis from fracture mechanics. The fracture energies are determined to be Γ = 8.0 J m-2 for a-Li0.3Ge and Γ = 5.6 J m-2 for a-Li1.6Ge. These values are similar to the fracture energy of pure Ge and are typical for brittle fracture. Despite being brittle, the ability of amorphous LixGe to flow at relatively small stresses during lithiation results in an enhanced ability of Ge electrodes to endure electrochemical cycling without fracture.

  14. Simplified calibration of single-plunge bipolar electrode array for field measurement during defibrillation.

    PubMed

    Deale, O Carlton; Ng, Kwong T; Kim-Van Housen, Ellen J; Lerman, Bruce B

    2002-10-01

    In an earlier study, the authors presented a calibration technique for a triaxial bipolar electrode array (EA) that used 72 data points collected during a global sweep of the electric field vector relative to the EA axes. Although necessary for the initial characterization of the EAs, this data requirement has to be significantly reduced for the technique to become a practical tool. Therefore, in the present study, an analysis is performed to determine the relation between the number of data points used in the calibration and the mean root-mean-square error. The analysis shows that 18 data points can produce results nearly identical to those obtained with the 72-point calibration, thus reducing the required amount of data fourfold. PMID:12374347

  15. Measurement of effective blast energy for direct initiation of spherical gaseous detonations from high-voltage spark discharge

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Ng, H. D.; Lee, J. H. S.

    2012-01-01

    In this study, effective energy from spark discharge for direct blast initiation of spherical gaseous detonations is investigated. In the experiment, direct initiation of detonation is achieved via a spark discharge from a high-voltage and low-inductance capacitor bank and the spark energy is estimated from the analysis of the current output. To determine the blast wave energy from the powerful spark, the time-of-arrival of the blast wave in air is measured at different radii using a piezoelectric pressure transducer. Good agreement is found in the scaled blast trajectories, i.e., scaled time c o· t/ R o where c o is the ambient sound speed, as a function of blast radius R s/ R o between the numerical simulation of a spherical blast wave from a point energy source and the experimental results where the explosion length scale R o is computed using the equivalent spark energy from the first 1/4 current discharge cycle. Alternatively, by fitting the experimental trajectories data, the blast energy estimated from the numerical simulation appears also in good agreement with that obtained experimentally using the 1/4 cycle criterion. Using the 1/4 cycle of spark discharge for the effective energy, direct initiation experiments of spherical gaseous detonations are carried out to determine the critical initiation energy in C2H2-2.5O2 mixtures with 70 and 0% argon dilution. The experimental results obtained from the 1/4 cycle of spark discharge agree well with the prediction from two initiation models, namely, the Lee's surface energy model and a simplified work done model. The main source of discrepancy in the comparison can be explained by the uncertainty of cell size measurement which is needed for both the semi-empirical models.

  16. Distance measurements reveal a common topology of prokaryotic voltage-gated ion channels in the lipid bilayer

    PubMed Central

    Richardson, Jessica; Blunck, Rikard; Ge, Pinghua; Selvin, Paul R.; Bezanilla, Francisco; Papazian, Diane M.; Correa, Ana M.

    2006-01-01

    Voltage-dependent ion channels are fundamental to the physiology of excitable cells because they underlie the generation and propagation of the action potential and excitation–contraction coupling. To understand how ion channels work, it is important to determine their structures in different conformations in a membrane environment. The validity of the crystal structure for the prokaryotic K+ channel, KVAP, has been questioned based on discrepancies with biophysical data from functional eukaryotic channels, underlining the need for independent structural data under native conditions. We investigated the structural organization of two prokaryotic voltage-gated channels, NaChBac and KVAP, in liposomes by using luminescence resonance energy transfer. We describe here a transmembrane packing representation of the voltage sensor and pore domains of the prokaryotic Na channel, NaChBac. We find that NaChBac and KVAP share a common arrangement in which the structures of the Na and K selective pores and voltage-sensor domains are conserved. The packing arrangement of the voltage-sensing region as determined by luminescence resonance energy transfer differs significantly from that of the KVAP crystal structure, but resembles that of the eukaryotic KV1.2 crystal structure. However, the voltage-sensor domain in prokaryotic channels is closer to the pore domain than in the KV1.2 structure. Our results indicate that prokaryotic and eukaryotic channels that share similar functional properties have similar helix arrangements, with differences arising likely from the later introduction of additional structural elements. PMID:17043236

  17. Performance of a nitrogen laser with a modified electrode configuration and gas flow arrangement

    NASA Astrophysics Data System (ADS)

    Itagi, V. V.; Pawar, B. H.; Itagi, S.

    1980-10-01

    A Blumlein discharge N2 laser with modified electrode structure and gas flow arrangement is described. The compact nitrogen laser has a brass anode and hacksaw blade cathode, with the nitrogen flow across the electrodes and the Blumlein line formed by copper and aluminum sheets, with polyester as the dielectric. Output power is measured as a function of pressure, voltage and flow rate, and the trend of the power output towards saturation could be due to a nonlinear dependence of the excitation cross section on the electron temperature, which depends on the charging voltage. The laser can pump some dyes to amplified spontaneous emission and can trigger spark gaps.

  18. Breakdown voltage determination of gaseous and near cryogenic fluids with application to rocket engine ignition

    NASA Astrophysics Data System (ADS)

    Nugent, Nicholas Jeremy

    Liquid rocket engines extensively use spark-initiated torch igniters for ignition. As the focus shifts to longer missions that require multiple starts of the main engines, there exists a need to solve the significant problems associated with using spark-initiated devices. Improving the fundamental understanding of predicting the required breakdown voltage in rocket environments along with reducing electrical noise is necessary to ensure that missions can be completed successfully. To better understand spark ignition systems and add to the fundamental research on spark development in rocket applications, several parameter categories of interest were hypothesized to affect breakdown voltage: (i) fluid, (ii) electrode, and (iii) electrical. The fluid properties varied were pressure, temperature, density and mass flow rate. Electrode materials, insert electrode angle and spark gap distance were the electrode properties varied. Polarity was the electrical property investigated. Testing how breakdown voltage is affected by each parameter was conducted using three different isolated insert electrodes fabricated from copper and nickel. A spark plug commonly used in torch igniters was the other electrode. A continuous output power source connected to a large impedance source and capacitance provided the pulsing potential. Temperature, pressure and high voltage measurements were recorded for the 418 tests that were successfully completed. Nitrogen, being inert and similar to oxygen, a propellant widely used in torch igniters, was used as the fluid for the majority of testing. There were 68 tests completed with oxygen and 45 with helium. A regression of the nitrogen data produced a correction coefficient to Paschen's Law that predicts the breakdown voltage to within 3000 volts, better than 20%, compared to an over prediction on the order of 100,000 volts using Paschen's Law. The correction coefficient is based on the parameters most influencing breakdown voltage: fluid

  19. Time-resolved photoluminescence measurements for determining voltage-dependent charge-separation efficiencies of subcells in triple-junction solar cells

    SciTech Connect

    Tex, David M.; Ihara, Toshiyuki; Kanemitsu, Yoshihiko; Akiyama, Hidefumi; Imaizumi, Mitsuru

    2015-01-05

    Conventional external quantum-efficiency measurement of solar cells provides charge-collection efficiency for approximate short-circuit conditions. Because this differs from actual operating voltages, the optimization of high-quality tandem solar cells is especially complicated. Here, we propose a contactless method, which allows for the determination of the voltage dependence of charge-collection efficiency for each subcell independently. By investigating the power dependence of photoluminescence decays, charge-separation and recombination-loss time constants are obtained. The upper limit of the charge-collection efficiencies at the operating points is then obtained by applying the uniform field model. This technique may complement electrical characterization of the voltage dependence of charge collection, since subcells are directly accessible.

  20. Low Impedance Carbon Adhesive Electrodes with Long Shelf Life.

    PubMed

    Posada-Quintero, Hugo F; Reyes, Bersaín A; Burnham, Ken; Pennace, John; Chon, Ki H

    2015-10-01

    A novel electrocardiogram (ECG) electrode film is developed by mixing carbon black powder and a quaternary salt with a visco-elastic polymeric adhesive. Unlike traditional wet gel-based electrodes, carbon/salt/adhesive (CSA) electrodes should theoretically have an infinite shelf life as they do not dehydrate even after a prolonged period of storage. The CSA electrodes are electrically activated for use through the process of electrophoresis. Specifically, the activation procedure involves sending a high voltage and current through the electrode, which results in significant reduction of impedance so that high fidelity ECG signals can be obtained. Using the activation procedure, the ideal concentration of carbon black powder in the mixture with the adhesive was examined. It was determined that the optimum concentration of carbon black which minimized post-activation impedance was 10%. Once the optimal carbon black powder concentration was determined, extensive signal analysis was performed to compare the performance of the CSA electrodes to the standard silver-silver chloride (Ag/AgCl) electrodes. As a part of data analysis, electrode-skin contact impedance of the CSA was measured and compared to the standard Ag/AgCl electrodes; we found consistently lower impedance for CSA electrodes. For quantitative data analysis, we simultaneously collected ECG data with CSA and Ag/AgCl electrodes from 17 healthy subjects. Heart rate variability (HRV) indices and ECG morphological waveforms were calculated to compare CSA and Ag/AgCl electrodes. Non-significant differences for most of the HRV indices between CSA and Ag/AgCl electrodes were found. Of the morphological waveform metrics consisting of R-wave peak amplitude, ST-segment elevation and QT interval, only the first index was found to be significantly different between the two media. The response of CSA electrodes to motion artifacts was also tested, and we found in general no difference in the quality of the ECG signal

  1. Electrochemical thermodynamic measurement system

    DOEpatents

    Reynier, Yvan; Yazami, Rachid; Fultz, Brent T.

    2009-09-29

    The present invention provides systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and electrochemical energy storage and conversion systems. Systems and methods of the present invention are configured for simultaneously collecting a suite of measurements characterizing a plurality of interconnected electrochemical and thermodynamic parameters relating to the electrode reaction state of advancement, voltage and temperature. Enhanced sensitivity provided by the present methods and systems combined with measurement conditions that reflect thermodynamically stabilized electrode conditions allow very accurate measurement of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and electrochemical systems, such as the energy, power density, current rate and the cycle life of an electrochemical cell.

  2. Comparing the magnetic resonant coupling radiofrequency stimulation to the traditional approaches: Ex-vivo tissue voltage measurement and electromagnetic simulation analysis

    SciTech Connect

    Yeung, Sai Ho; Pradhan, Raunaq; Feng, Xiaohua; Zheng, Yuanjin

    2015-09-15

    Recently, the design concept of magnetic resonant coupling has been adapted to electromagnetic therapy applications such as non-invasive radiofrequency (RF) stimulation. This technique can significantly increase the electric field radiated from the magnetic coil at the stimulation target, and hence enhancing the current flowing through the nerve, thus enabling stimulation. In this paper, the developed magnetic resonant coupling (MRC) stimulation, magnetic stimulation (MS) and transcutaneous electrical nerve stimulation (TENS) are compared. The differences between the MRC RF stimulation and other techniques are presented in terms of the operating mechanism, ex-vivo tissue voltage measurement and electromagnetic simulation analysis. The ev-vivo tissue voltage measurement experiment is performed on the compared devices based on measuring the voltage induced by electromagnetic induction at the tissue. The focusing effect, E field and voltage induced across the tissue, and the attenuation due to the increase of separation between the coil and the target are analyzed. The electromagnetic stimulation will also be performed to obtain the electric field and magnetic field distribution around the biological medium. The electric field intensity is proportional to the induced current and the magnetic field is corresponding to the electromagnetic induction across the biological medium. The comparison between the MRC RF stimulator and the MS and TENS devices revealed that the MRC RF stimulator has several advantages over the others for the applications of inducing current in the biological medium for stimulation purposes.

  3. Comparing the magnetic resonant coupling radiofrequency stimulation to the traditional approaches: Ex-vivo tissue voltage measurement and electromagnetic simulation analysis

    NASA Astrophysics Data System (ADS)

    Yeung, Sai Ho; Pradhan, Raunaq; Feng, Xiaohua; Zheng, Yuanjin

    2015-09-01

    Recently, the design concept of magnetic resonant coupling has been adapted to electromagnetic therapy applications such as non-invasive radiofrequency (RF) stimulation. This technique can significantly increase the electric field radiated from the magnetic coil at the stimulation target, and hence enhancing the current flowing through the nerve, thus enabling stimulation. In this paper, the developed magnetic resonant coupling (MRC) stimulation, magnetic stimulation (MS) and transcutaneous electrical nerve stimulation (TENS) are compared. The differences between the MRC RF stimulation and other techniques are presented in terms of the operating mechanism, ex-vivo tissue voltage measurement and electromagnetic simulation analysis. The ev-vivo tissue voltage measurement experiment is performed on the compared devices based on measuring the voltage induced by electromagnetic induction at the tissue. The focusing effect, E field and voltage induced across the tissue, and the attenuation due to the increase of separation between the coil and the target are analyzed. The electromagnetic stimulation will also be performed to obtain the electric field and magnetic field distribution around the biological medium. The electric field intensity is proportional to the induced current and the magnetic field is corresponding to the electromagnetic induction across the biological medium. The comparison between the MRC RF stimulator and the MS and TENS devices revealed that the MRC RF stimulator has several advantages over the others for the applications of inducing current in the biological medium for stimulation purposes.

  4. Changes in biphasic electrode impedance with protein adsorption and cell growth

    NASA Astrophysics Data System (ADS)

    Newbold, Carrie; Richardson, Rachael; Millard, Rodney; Huang, Christie; Milojevic, Dusan; Shepherd, Robert; Cowan, Robert

    2010-10-01

    This study was undertaken to assess the contribution of protein adsorption and cell growth to increases in electrode impedance that occur immediately following implantation of cochlear implant electrodes and other neural stimulation devices. An in vitro model of the electrode-tissue interface was used. Radiolabelled albumin in phosphate buffered saline was added to planar gold electrodes and electrode impedance measured using a charge-balanced biphasic current pulse. The polarization impedance component increased with protein adsorption, while no change to access resistance was observed. The maximum level of protein adsorbed was measured at 0.5 µg cm-2, indicating a tightly packed monolayer of albumin molecules on the gold electrode and resin substrate. Three cell types were grown over the electrodes, macrophage cell line J774, dissociated fibroblasts and epithelial cell line MDCK, all of which created a significant increase in electrode impedance. As cell cover over electrodes increased, there was a corresponding increase in the initial rise in voltage, suggesting that cell cover mainly contributes to the access resistance of the electrodes. Only a small increase in the polarization component of impedance was seen with cell cover.

  5. Dipstick Spot urine pH does not accurately represent 24 hour urine PH measured by an electrode

    PubMed Central

    Omar, Mohamed; Sarkissian, Carl; Jianbo, Li; Calle, Juan; Monga, Manoj

    2016-01-01

    ABSTRACT Objectives To determine whether spot urine pH measured by dipstick is an accurate representation of 24 hours urine pH measured by an electrode. Materials and Methods We retrospectively reviewed urine pH results of patients who presented to the urology stone clinic. For each patient we recorded the most recent pH result measured by dipstick from a spot urine sample that preceded the result of a 24-hour urine pH measured by the use of a pH electrode. Patients were excluded if there was a change in medications or dietary recommendations or if the two samples were more than 4 months apart. A difference of more than 0.5 pH was considered an inaccurate result. Results A total 600 patients were retrospectively reviewed for the pH results. The mean difference in pH between spot urine value and the 24 hours collection values was 0.52±0.45 pH. Higher pH was associated with lower accuracy (p<0.001). The accuracy of spot urine samples to predict 24-hour pH values of <5.5 was 68.9%, 68.2% for 5.5 to 6.5 and 35% for >6.5. Samples taken more than 75 days apart had only 49% the accuracy of more recent samples (p<0.002). The overall accuracy is lower than 80% (p<0.001). Influence of diurnal variation was not significant (p=0.588). Conclusions Spot urine pH by dipstick is not an accurate method for evaluation of the patients with urolithiasis. Patients with alkaline urine are more prone to error with reliance on spot urine pH. PMID:27286119

  6. Development of PDMS-based flexible dry type SEMG electrodes by micromachining technologies

    NASA Astrophysics Data System (ADS)

    Jung, Jung Mo; Cha, Doo Yeol; Kim, Deok Su; Yang, Hee Jun; Choi, Kyo Sang; Choi, Jong Myoung; Chang, Sung Pil

    2014-09-01

    The authors developed PDMS (polydimethylsiloxane)-based dry type surface electromyography (SEMG) electrodes for myoelectric prosthetic hands. The SEMG electrodes were strongly recommended to be fabricated on a flexible substrate to be compatible with the surface of skin. In this study, the authors designed a bar-shaped dry-type flexible SEMG electrodes comprised of two input electrodes and a reference electrode on a flexible PDMS substrate to measure EMG signals. The space distance between each electrode with a size of 10 mm × 2 mm was chosen to 18 mm to get optimal result according to the simulation result with taking into consideration the conduction velocity and the median frequency of EMG signals. Raw EMG signals were measured from Brachioradialis, Biceps brachii, deltoideus, and pectoralis major muscles, to drive the application of the myoelectric hand prosthesis. Measured raw EMG signals were transformed to root mean square (RMS) EMG signals using Acqknowledge4.2. The experimental peak voltage values of RMS EMG signals from Brachioradialis, Biceps brachii, deltoideus, and pectoralis major muscles were 2.96 V, 4.45 V, 1.74 V, and 2.62 V, respectively. Values from the dry type flexible SEMG electrodes showed higher peak values than a commercially available wet type Ag-AgCl electrode. The study shows that the PDMS-based flexible electrode devised for measuring myoelectric signals from the surface of skin is more useful for prosthetic hands because of its greater sensitivity and flexibility.

  7. Alkali metal ion battery with bimetallic electrode

    SciTech Connect

    Boysen, Dane A; Bradwell, David J; Jiang, Kai; Kim, Hojong; Ortiz, Luis A; Sadoway, Donald R; Tomaszowska, Alina A; Wei, Weifeng; Wang, Kangli

    2015-04-07

    Electrochemical cells having molten electrodes having an alkali metal provide receipt and delivery of power by transporting atoms of the alkali metal between electrode environments of disparate chemical potentials through an electrochemical pathway comprising a salt of the alkali metal. The chemical potential of the alkali metal is decreased when combined with one or more non-alkali metals, thus producing a voltage between an electrode comprising the molten the alkali metal and the electrode comprising the combined alkali/non-alkali metals.

  8. Screen-printed electrode modified with carbon black nanoparticles for phosphate detection by measuring the electroactive phosphomolybdate complex.

    PubMed

    Talarico, Daria; Arduini, Fabiana; Amine, Aziz; Moscone, Danila; Palleschi, Giuseppe

    2015-08-15

    We report a sensor for phosphate detection based on screen-printed electrodes modified with carbon black nanoparticles. The phosphate was measured in amperometric mode via electrochemical reduction of molybdophosphate complex. Carbon black nanoparticles demonstrated the ability to quantify the molybdophosphate complex at a low applied potential. Some analytical parameters such as the working solution (sulfuric acid 0.1M), applied potential (0.125V vs Ag/AgCl), and molybdate concentration (1mM) were optimized. Using these conditions, a linear range of 0.5-100µM was observed with a detection limit of 0.1µM, calculated as three times the standard deviation of the blank divided by the slope of calibration curve. The system was challenged in drinking, river, aquarium, and waste water samples yielding satisfactory recovery values in accordance with a spectrophotometric reference method which demonstrated the suitability of the screen-printed electrode modified with carbon black nanoparticles coupled with the use of molybdate to detect phosphate in water samples.

  9. Screen-printed electrode modified with carbon black nanoparticles for phosphate detection by measuring the electroactive phosphomolybdate complex.

    PubMed

    Talarico, Daria; Arduini, Fabiana; Amine, Aziz; Moscone, Danila; Palleschi, Giuseppe

    2015-08-15

    We report a sensor for phosphate detection based on screen-printed electrodes modified with carbon black nanoparticles. The phosphate was measured in amperometric mode via electrochemical reduction of molybdophosphate complex. Carbon black nanoparticles demonstrated the ability to quantify the molybdophosphate complex at a low applied potential. Some analytical parameters such as the working solution (sulfuric acid 0.1M), applied potential (0.125V vs Ag/AgCl), and molybdate concentration (1mM) were optimized. Using these conditions, a linear range of 0.5-100µM was observed with a detection limit of 0.1µM, calculated as three times the standard deviation of the blank divided by the slope of calibration curve. The system was challenged in drinking, river, aquarium, and waste water samples yielding satisfactory recovery values in accordance with a spectrophotometric reference method which demonstrated the suitability of the screen-printed electrode modified with carbon black nanoparticles coupled with the use of molybdate to detect phosphate in water samples. PMID:25966413

  10. Amperometric inhibition biosensors based on horseradish peroxidase and gold sononanoparticles immobilized onto different electrodes for cyanide measurements.

    PubMed

    Attar, Aisha; Cubillana-Aguilera, Laura; Naranjo-Rodríguez, Ignacio; de Cisneros, José Luis Hidalgo-Hidalgo; Palacios-Santander, José María; Amine, Aziz

    2015-02-01

    New biosensors based on inhibition for the detection of cyanide and the comparison of the analytical performances of nine enzyme biosensor designs by using three different electrodes: Sonogel-Carbon, glassy carbon and gold electrodes were discussed. Three different horseradish peroxidase immobilization procedures with and without gold sononanoparticles were studied. The amperometric measurements were performed at an applied potential of -0.15V vs. Ag/AgCl in 50mM sodium acetate buffer solution pH=5.0. The apparent kinetic parameters (Kmapp, Vmaxapp) of immobilized HRP were calculated in the absence of inhibitor (cyanide) by using caffeic acid, hydroquinone, and catechol as substrates. The presence of gold sononanoparticles enhanced the electron transfer reaction and improved the analytical performance of the biosensors. The HRP kinetic interactions reveal non-competitive binding of cyanide with an apparent inhibition constant (Ki) of 2.7μM and I50 of 1.3μM. The determination of cyanide can be achieved in a dynamic range of 0.1-58.6μM with a detection limit of 0.03μM which is lower than those reported by previous studies. Hence this biosensing methodology can be used as a new promising approach for detecting cyanide.

  11. Development of membrane-based biosensors: Measurement of current from photocycling bacteriorhodopsin on patch clamp electrodes

    SciTech Connect

    Yager, P.

    1988-01-01

    Our initial work toward developing membrane protein-based biosensors has involved use of bacteriorhodopsin (BR) as a model membrane protein. BR was incorporated into liposomes of a polymerizable lecithin, and was shown to pump protons in response to illumination both before and after polymerization of the lipids. In the work described in this paper, BR was first reincorporated in liposomes of asolectin by consonication with purple membrane. The liposomes, which sustained the function of the protein, were used to form a monolayer at the air-water interface. This monolayer was transferred as a bilayer onto patch electrode. When illuminated with a pulse of 514.5-nm light the lipid/protein patch produced a current spike into the pipette corresponding to events no later than the generation of the 412-nm intermediate, probably caused by pumping of protons across the patch membrane. The experiment demonstrates not only the extreme sensitivity of amperometric detection, but also a small tendency for membrane proteins to preferentially orient in this configuration.

  12. Flow injection catalase activity measurement based on gold nanoparticles/carbon nanotubes modified glassy carbon electrode.

    PubMed

    El Nashar, Rasha Mohamed

    2012-07-15

    Amperometric flow injection method of hydrogen peroxide analysis was developed based on catalase enzyme (CAT) immobilization on a glassy carbon electrode (GC) modified with electrochemically deposited gold nanoparticles on a multiwalled carbon nanotubes/chitosan film. The resulting biosensor was applied to detect hydrogen peroxide with a linear response range 1.0×10(-7)-2.5×10(-3)M with a correlation coefficient 0.998 and response time less than 10s. The optimum conditions of film deposition such as potential applied, deposition time and pH were tested and the flow injection conditions were optimized to be: flow rate of 3ml/min, sample volume 75μl and saline phosphate buffer of pH 6.89. Catalase enzyme activity was successfully determined in liver homogenate samples of rats, raised under controlled dietary plan, using a flow injection analysis system involving the developed biosensor simultaneously with spectrophotometric detection, which is the common method of enzymatic assay.

  13. Flow injection catalase activity measurement based on gold nanoparticles/carbon nanotubes modified glassy carbon electrode.

    PubMed

    El Nashar, Rasha Mohamed

    2012-07-15

    Amperometric flow injection method of hydrogen peroxide analysis was developed based on catalase enzyme (CAT) immobilization on a glassy carbon electrode (GC) modified with electrochemically deposited gold nanoparticles on a multiwalled carbon nanotubes/chitosan film. The resulting biosensor was applied to detect hydrogen peroxide with a linear response range 1.0×10(-7)-2.5×10(-3)M with a correlation coefficient 0.998 and response time less than 10s. The optimum conditions of film deposition such as potential applied, deposition time and pH were tested and the flow injection conditions were optimized to be: flow rate of 3ml/min, sample volume 75μl and saline phosphate buffer of pH 6.89. Catalase enzyme activity was successfully determined in liver homogenate samples of rats, raised under controlled dietary plan, using a flow injection analysis system involving the developed biosensor simultaneously with spectrophotometric detection, which is the common method of enzymatic assay. PMID:22817944

  14. Highly Sensitive Measurement of Bio-Electric Potentials by Boron-Doped Diamond (BDD) Electrodes for Plant Monitoring.

    PubMed

    Ochiai, Tsuyoshi; Tago, Shoko; Hayashi, Mio; Fujishima, Akira

    2015-10-23

    We describe a sensitive plant monitoring system by the detection of the bioelectric potentials in plants with boron-doped diamond (BDD) electrodes. For sensor electrodes, we used commercially available BDD, Ag, and Pt plate electrodes. We tested this approach on a hybrid species in the genus Opuntia (potted) and three different trees (ground-planted) at different places in Japan. For the Opuntia, we artificially induced bioelectric potential changes by the surface potential using the fingers. We detected substantial changes in bioelectric potentials through all electrodes during finger touches on the surface of potted Opuntia hybrid plants, although the BDD electrodes were several times more sensitive to bioelectric potential change compared to the other electrodes. Similarly for ground-planted trees, we found that both BDD and Pt electrodes detected bioelectric potential change induced by changing environmental factors (temperature and humidity) for months without replacing/removing/changing electrodes, BDD electrodes were 5-10 times more sensitive in this detection than Pt electrodes. Given these results, we conclude that BDD electrodes on live plant tissue were able to consistently detect bioelectrical potential changes in plants.

  15. Considerations on sample holder design and custom-made non-polarizable electrodes for Spectral Induced Polarization measurements on unsaturated soils

    NASA Astrophysics Data System (ADS)

    Kaouane, C.; Chouteau, M. C.; Fauchard, C.; Cote, P.

    2014-12-01

    Spectral Induced Polarization (SIP) is a geophysical method sensitive to water content, saturation and grain size distribution. It could be used as an alternative to nuclear probes to assess the compaction of soils in road works. To evaluate the potential of SIP as a practical tool, we designed an experiment for complex conductivity measurements on unsaturated soil samples.Literature presents a large variety of sample holders and designs, each depending on the context. Although we might find some precise description about the sample holder, exact replication is not always possible. Furthermore, the potential measurements are often done using custom-made Ag/AgCl electrodes and very few indications are given on their reliability with time and temperature. Our objective is to perform complex conductivity measurements on soil samples compacted in a PVC cylindrical mould (10 cm-long, 5 cm-diameter) according to geotechnical standards. To expect homogeneous current density, electrical current is transmitted through the sample via chambers filled with agar gel. Agar gel is a good non-polarizable conductor within the frequency range (1 mHz -20kHz). Its electrical properties are slightly known. We measured increasing of agar-agar electrical conductivity in time. We modelled the influence of this variation on the measurement. If the electrodes are located on the sample, it is minimized. Because of the dimensions at stake and the need for simple design, potential electrodes are located outside the sample, hence the gel contributes to the measurements. Since the gel is fairly conductive, we expect to overestimate the sample conductivity. Potential electrodes are non-polarizable Ag/AgCl electrodes. To avoid any leakage, the KCl solution in the electrodes is replaced by saturated KCl-agar gel. These electrodes are low cost and show a low, stable, self-potential (<1mV). In addition, the technique of making electrode can be easily reproduced and storage and maintenance are simple

  16. An approach to the diagnosis of metabolic syndrome by the multi-electrode impedance method

    NASA Astrophysics Data System (ADS)

    Furuya, N.; Sakamoto, K.; Kanai, H.

    2010-04-01

    It is well known that metabolic syndrome can induce myocardial infarction and cerebral infarction. So, it is very important to measure the visceral fat volume. In the electric impedance method, information in the vicinity of the electrodes is strongly reflected. Therefore, we propose a new multi-electrode arrangement method based on the impedance sensitivity theorem to measure the visceral fat volume. This electrode arrangement is designed to enable high impedance sensitivity in the visceral and subcutaneous fat regions. Currents are simultaneously applied to several current electrodes on the body surface, and one voltage electrode pair is arranged on the body surface near the organ of interest to obtain the visceral fat information and another voltage electrode pair is arranged on the body surface near the current electrodes to obtain the subcutaneous fat information. A simulation study indicates that by weighting the impedance sensitivity distribution, as in our method, a high-sensitivity region in the visceral and the subcutaneous fat regions can be formed. In addition, it was confirmed that the visceral fat volume can be estimated by the measured impedance data.

  17. Drop short control of electrode gap

    DOEpatents

    Fisher, Robert W.; Maroone, James P.; Tipping, Donald W.; Zanner, Frank J.

    1986-01-01

    During vacuum consumable arc remelting the electrode gap between a consumable electrode and a pool of molten metal is difficult to control. The present invention monitors drop shorts by detecting a decrease in the voltage between the consumable electrode and molten pool. The drop shorts and their associated voltage reductions occur as repetitive pulses which are closely correlated to the electrode gap. Thus, the method and apparatus of the present invention controls electrode gap based upon drop shorts detected from the monitored anode-cathode voltage. The number of drop shorts are accumulated, and each time the number of drop shorts reach a predetermined number, the average period between drop shorts is calculated from this predetermined number and the time in which this number is accumulated. This average drop short period is used in a drop short period electrode gap model which determines the actual electrode gap from the drop short. The actual electrode gap is then compared with a desired electrode gap which is selected to produce optimum operating conditions and the velocity of the consumable error is varied based upon the gap error. The consumable electrode is driven according to any prior art system at this velocity. In the preferred embodiment, a microprocessor system is utilized to perform the necessary calculations and further to monitor the duration of each drop short. If any drop short exceeds a preset duration period, the consumable electrode is rapidly retracted a predetermined distance to prevent bonding of the consumable electrode to the molten remelt.

  18. Active voltage contrast imaging of cross-sectional surface of multilayer ceramic capacitor using helium ion microscopy

    NASA Astrophysics Data System (ADS)

    Sakai, C.; Ishida, N.; Masuda, H.; Nagano, S.; Kitahara, M.; Ogata, Y.; Fujita, D.

    2016-08-01

    We studied active voltage contrast (AVC) imaging using helium ion microscopy (HIM). We observed secondary electron (SE) images of the cross-sectional surface of multilayer ceramic capacitors (MLCCs) with and without a voltage applied to the internal electrodes. When no voltage was applied, we obtained an image reflecting the material contrast between the Ni internal electrode region and the BaTiO3 dielectric region of the cross-sectional surface of the MLCC. When a voltage was applied, the electrical potential difference between the grounded and the positively biased internal electrodes affected the contrast (voltage contrast). Moreover, attenuation of the SE intensity from the grounded to the positively biased internal electrodes was observed in the dielectric region. Kelvin probe force microscopy (KPFM) measurements of the contact potential difference (CPD) were performed on the same sample. By using the AVC image from the HIM observation and the CPD image from the KPFM measurement, we could quantitatively evaluate the electrical potential. We think that the results of this study will lead to an expansion in the number of applications of HIM.

  19. Treatment of emulsified oils by electrocoagulation: pulsed voltage applications.

    PubMed

    Genc, Ayten; Bakirci, Busra

    2015-01-01

    The effect of pulsed voltage application on energy consumption during electrocoagulation was investigated. Three voltage profiles having the same arithmetic average with respect to time were applied to the electrodes. The specific energy consumption for these profiles were evaluated and analyzed together with oil removal efficiencies. The effects of applied voltages, electrode materials, electrode configurations, and pH on oil removal efficiency were determined. Electrocoagulation experiments were performed by using synthetic and real wastewater samples. The pulsed voltages saved energy during the electrocoagulation process. In continuous operation, energy saving was as high as 48%. Aluminum electrodes used for the treatment of emulsified oils resulted in higher oil removal efficiencies in comparison with stainless steel and iron electrodes. When the electrodes gap was less than 1 cm, higher oil removal efficiencies were obtained. The highest oil removal efficiencies were 95% and 35% for the batch and continuous operating modes, respectively.

  20. Current-voltage characteristics of dc corona discharges in air between coaxial cylinders

    SciTech Connect

    Zheng, Yuesheng; Zhang, Bo He, Jinliang

    2015-02-15

    This paper presents the experimental measurement and numerical analysis of the current-voltage characteristics of dc corona discharges in air between coaxial cylinders. The current-voltage characteristics for both positive and negative corona discharges were measured within a specially designed corona cage. Then the measured results were fitted by different empirical formulae and analyzed by the fluid model. The current-voltage characteristics between coaxial cylinders can be expressed as I = C(U − U{sub 0}){sup m}, where m is within the range 1.5–2.0, which is similar to the point-plane electrode system. The ionization region has no significant effect on the current-voltage characteristic under a low corona current, while it will affect the distribution for the negative corona under a high corona current. The surface onset fields and ion mobilities were emphatically discussed.