Gómez-González, J F; Destexhe, A; Bal, T
2014-10-01
Electrophysiological recordings of single neurons in brain tissues are very common in neuroscience. Glass microelectrodes filled with an electrolyte are used to impale the cell membrane in order to record the membrane potential or to inject current. Their high resistance induces a high voltage drop when passing current and it is essential to correct the voltage measurements. In particular, for voltage clamping, the traditional alternatives are two-electrode voltage-clamp technique or discontinuous single electrode voltage-clamp (dSEVC). Nevertheless, it is generally difficult to impale two electrodes in a same neuron and the switching frequency is limited to low frequencies in the case of dSEVC. We present a novel fully computer-implemented alternative to perform continuous voltage-clamp recordings with a single sharp-electrode. To reach such voltage-clamp recordings, we combine an active electrode compensation algorithm (AEC) with a digital controller (AECVC). We applied two types of control-systems: a linear controller (proportional plus integrative controller) and a model-based controller (optimal control). We compared the performance of the two methods to dSEVC using a dynamic model cell and experiments in brain slices. The AECVC method provides an entirely digital method to perform continuous recording and smooth switching between voltage-clamp, current clamp or dynamic-clamp configurations without introducing artifacts.
Hernández-Ochoa, Erick O.; Schneider, Martin F.
2012-01-01
Skeletal muscle excitation-contraction (E-C)1 coupling is a process composed of multiple sequential stages, by which an action potential triggers sarcoplasmic reticulum (SR)2 Ca2+ release and subsequent contractile activation. The various steps in the E-C coupling process in skeletal muscle can be studied using different techniques. The simultaneous recordings of sarcolemmal electrical signals and the accompanying elevation in myoplasmic Ca2+, due to depolarization-initiated SR Ca2+ release in skeletal muscle fibres, have been useful to obtain a better understanding of muscle function. In studying the origin and mechanism of voltage dependency of E-C coupling a variety of different techniques have been used to control the voltage in adult skeletal fibres. Pioneering work in muscles isolated from amphibians or crustaceans used microelectrodes or ‘high resistance gap’ techniques to manipulate the voltage in the muscle fibres. The development of the patch clamp technique and its variant, the whole-cell clamp configuration that facilitates the manipulation of the intracellular environment, allowed the use of the voltage clamp techniques in different cell types, including skeletal muscle fibres. The aim of this article is to present an historical perspective of the voltage clamp methods used to study skeletal muscle E-C coupling as well as to describe the current status of using the whole-cell patch clamp technique in studies in which the electrical and Ca2+ signalling properties of mouse skeletal muscle membranes are being investigated. PMID:22306655
Microchip amplifier for in vitro, in vivo, and automated whole cell patch-clamp recording
Kolb, Ilya; Kodandaramaiah, Suhasa B.; Chubykin, Alexander A.; Yang, Aimei; Bear, Mark F.; Boyden, Edward S.; Forest, Craig R.
2014-01-01
Patch clamping is a gold-standard electrophysiology technique that has the temporal resolution and signal-to-noise ratio capable of reporting single ion channel currents, as well as electrical activity of excitable single cells. Despite its usefulness and decades of development, the amplifiers required for patch clamping are expensive and bulky. This has limited the scalability and throughput of patch clamping for single-ion channel and single-cell analyses. In this work, we have developed a custom patch-clamp amplifier microchip that can be fabricated using standard commercial silicon processes capable of performing both voltage- and current-clamp measurements. A key innovation is the use of nonlinear feedback elements in the voltage-clamp amplifier circuit to convert measured currents into logarithmically encoded voltages, thereby eliminating the need for large high-valued resistors, a factor that has limited previous attempts at integration. Benchtop characterization of the chip shows low levels of current noise [1.1 pA root mean square (rms) over 5 kHz] during voltage-clamp measurements and low levels of voltage noise (8.2 μV rms over 10 kHz) during current-clamp measurements. We demonstrate the ability of the chip to perform both current- and voltage-clamp measurement in vitro in HEK293FT cells and cultured neurons. We also demonstrate its ability to perform in vivo recordings as part of a robotic patch-clamping system. The performance of the patch-clamp amplifier microchip compares favorably with much larger commercial instrumentation, enabling benchtop commoditization, miniaturization, and scalable patch-clamp instrumentation. PMID:25429119
Force-controlled patch clamp of beating cardiac cells.
Ossola, Dario; Amarouch, Mohamed-Yassine; Behr, Pascal; Vörös, János; Abriel, Hugues; Zambelli, Tomaso
2015-03-11
From its invention in the 1970s, the patch clamp technique is the gold standard in electrophysiology research and drug screening because it is the only tool enabling accurate investigation of voltage-gated ion channels, which are responsible for action potentials. Because of its key role in drug screening, innovation efforts are being made to reduce its complexity toward more automated systems. While some of these new approaches are being adopted in pharmaceutical companies, conventional patch-clamp remains unmatched in fundamental research due to its versatility. Here, we merged the patch clamp and atomic force microscope (AFM) techniques, thus equipping the patch-clamp with the sensitive AFM force control. This was possible using the FluidFM, a force-controlled nanopipette based on microchanneled AFM cantilevers. First, the compatibility of the system with patch-clamp electronics and its ability to record the activity of voltage-gated ion channels in whole-cell configuration was demonstrated with sodium (NaV1.5) channels. Second, we showed the feasibility of simultaneous recording of membrane current and force development during contraction of isolated cardiomyocytes. Force feedback allowed for a gentle and stable contact between AFM tip and cell membrane enabling serial patch clamping and injection without apparent cell damage.
Dual patch voltage clamp study of low membrane resistance astrocytes in situ.
Ma, Baofeng; Xu, Guangjin; Wang, Wei; Enyeart, John J; Zhou, Min
2014-03-17
Whole-cell patch clamp recording has been successfully used in identifying the voltage-dependent gating and conductance properties of ion channels in a variety of cells. However, this powerful technique is of limited value in studying low membrane resistance cells, such as astrocytes in situ, because of the inability to control or accurately measure the real amplitude of command voltages. To facilitate the study of ionic conductances of astrocytes, we have developed a dual patch recording method which permits membrane current and membrane potential to be simultaneously recorded from astrocytes in spite of their extraordinarily low membrane resistance. The utility of this technique is demonstrated by measuring the voltage-dependent activation of the inwardly rectifying K+ current abundantly expressed in astrocytes and multiple ionic events associated with astrocytic GABAA receptor activation. This protocol can be performed routinely in the study of astrocytes. This method will be valuable for identifying and characterizing the individual ion channels that orchestrate the electrical activity of low membrane resistance cells.
Yamada-Hanff, Jason
2015-01-01
We used dynamic clamp and action potential clamp techniques to explore how currents carried by tetrodotoxin-sensitive sodium channels and HCN channels (Ih) regulate the behavior of CA1 pyramidal neurons at resting and subthreshold voltages. Recording from rat CA1 pyramidal neurons in hippocampal slices, we found that the apparent input resistance and membrane time constant were strongly affected by both conductances, with Ih acting to decrease apparent input resistance and time constant and sodium current acting to increase both. We found that both Ih and sodium current were active during subthreshold summation of artificial excitatory postsynaptic potentials (EPSPs) generated by dynamic clamp, with Ih dominating at less depolarized voltages and sodium current at more depolarized voltages. Subthreshold sodium current—which amplifies EPSPs—was most effectively recruited by rapid voltage changes, while Ih—which blunts EPSPs—was maximal for slow voltage changes. The combined effect is to selectively amplify rapid EPSPs. We did similar experiments in mouse CA1 pyramidal neurons, doing voltage-clamp experiments using experimental records of action potential firing of CA1 neurons previously recorded in awake, behaving animals as command voltages to quantify flow of Ih and sodium current at subthreshold voltages. Subthreshold sodium current was larger and subthreshold Ih was smaller in mouse neurons than in rat neurons. Overall, the results show opposing effects of subthreshold sodium current and Ih in regulating subthreshold behavior of CA1 neurons, with subthreshold sodium current prominent in both rat and mouse CA1 pyramidal neurons and additional regulation by Ih in rat neurons. PMID:26289465
Series resistance compensation for whole-cell patch-clamp studies using a membrane state estimator
Sherman, AJ; Shrier, A; Cooper, E
1999-01-01
Whole-cell patch-clamp techniques are widely used to measure membrane currents from isolated cells. While suitable for a broad range of ionic currents, the series resistance (R(s)) of the recording pipette limits the bandwidth of the whole-cell configuration, making it difficult to measure rapid ionic currents. To increase bandwidth, it is necessary to compensate for R(s). Most methods of R(s) compensation become unstable at high bandwidth, making them hard to use. We describe a novel method of R(s) compensation that overcomes the stability limitations of standard designs. This method uses a state estimator, implemented with analog computation, to compute the membrane potential, V(m), which is then used in a feedback loop to implement a voltage clamp; we refer to this as state estimator R(s) compensation. To demonstrate the utility of this approach, we built an amplifier incorporating state estimator R(s) compensation. In benchtop tests, our amplifier showed significantly higher bandwidths and improved stability when compared with a commercially available amplifier. We demonstrated that state estimator R(s) compensation works well in practice by recording voltage-gated Na(+) currents under voltage-clamp conditions from dissociated neonatal rat sympathetic neurons. We conclude that state estimator R(s) compensation should make it easier to measure large rapid ionic currents with whole-cell patch-clamp techniques. PMID:10545359
Lishko, Polina; Clapham, David E.; Navarro, Betsy; Kirichok, Yuriy
2014-01-01
Sperm intracellular pH and calcium concentration ([Ca2+]i) are two central factors that control sperm activity within the female reproductive tract. As such, the ion channels of the sperm plasma membrane that alter intracellular sperm [Ca2+] and pH play important roles in sperm physiology and the process of fertilization. Indeed, sperm ion channels regulate sperm motility, control sperm chemotaxis toward the egg in some species, and may trigger the acrosome reaction. Until recently, our understanding of these important molecules was rudimentary due to the inability to patch-clamp spermatozoa and directly record the activity of these ion channels under voltage clamp. Recently, we overcame this technical barrier and developed a method for reproducible application of the patch-clamp technique to mouse and human spermatozoa. This chapter covers important aspects of application of the patch-clamp technique to spermatozoa, such as selection of the electrophysiological equipment, isolation of spermatozoa for patch-clamp experiments, formation of the gigaohm seal with spermatozoa, and transition into the whole-cell mode of recording. We also discuss potential pitfalls in application of the patch-clamp technique to flagellar ion channels. PMID:23522465
Redox artifacts in electrophysiological recordings
Berman, Jonathan M.
2013-01-01
Electrophysiological techniques make use of Ag/AgCl electrodes that are in direct contact with cells or bath. In the bath, electrodes are exposed to numerous experimental conditions and chemical reagents that can modify electrode voltage. We examined voltage offsets created in Ag/AgCl electrodes by exposure to redox reagents used in electrophysiological studies. Voltage offsets were measured in reference to an electrode separated from the solution by an agar bridge. The reducing reagents Tris-2-carboxyethly-phosphine, dithiothreitol (DTT), and glutathione, as well as the oxidizing agent H2O2 used at experimentally relevant concentrations reacted with Ag in the electrodes to produce voltage offsets. Chloride ions and strong acids and bases produced offsets at millimolar concentrations. Electrolytic depletion of the AgCl layer, to replicate voltage clamp and sustained use, resulted in increased sensitivity to flow and DTT. Offsets were sensitive to electrode silver purity and to the amount and method of chloride deposition. For example, exposure to 10 μM DTT produced a voltage offset between 10 and 284 mV depending on the chloride deposition method. Currents generated by these offsets are significant and dependent on membrane conductance and by extension the expression of ion channels and may therefore appear to be biological in origin. These data demonstrate a new source of artifacts in electrophysiological recordings that can affect measurements obtained from a variety of experimental techniques from patch clamp to two-electrode voltage clamp. PMID:23344161
Planar patch clamp for neuronal networks--considerations and future perspectives.
Bosca, Alessandro; Martina, Marzia; Py, Christophe
2014-01-01
The patch-clamp technique is generally accepted as the gold standard for studying ion channel activity allowing investigators to either "clamp" membrane voltage and directly measure transmembrane currents through ion channels, or to passively monitor spontaneously occurring intracellular voltage oscillations. However, this resulting high information content comes at a price. The technique is labor-intensive and requires highly trained personnel and expensive equipment. This seriously limits its application as an interrogation tool for drug development. Patch-clamp chips have been developed in the last decade to overcome the tedious manipulations associated with the use of glass pipettes in conventional patch-clamp experiments. In this chapter, we describe some of the main materials and fabrication protocols that have been developed to date for the production of patch-clamp chips. We also present the concept of a patch-clamp chip array providing high resolution patch-clamp recordings from individual cells at multiple sites in a network of communicating neurons. On this chip, the neurons are aligned with the aperture-probes using chemical patterning. In the discussion we review the potential use of this technology for pharmaceutical assays, neuronal physiology and synaptic plasticity studies.
Preparation of Drosophila central neurons for in situ patch clamping.
Ryglewski, Stefanie; Duch, Carsten
2012-10-15
Short generation times and facile genetic techniques make the fruit fly Drosophila melanogaster an excellent genetic model in fundamental neuroscience research. Ion channels are the basis of all behavior since they mediate neuronal excitability. The first voltage gated ion channel cloned was the Drosophila voltage gated potassium channel Shaker(1,2). Toward understanding the role of ion channels and membrane excitability for nervous system function it is useful to combine powerful genetic tools available in Drosophila with in situ patch clamp recordings. For many years such recordings have been hampered by the small size of the Drosophila CNS. Furthermore, a robust sheath made of glia and collagen constituted obstacles for patch pipette access to central neurons. Removal of this sheath is a necessary precondition for patch clamp recordings from any neuron in the adult Drosophila CNS. In recent years scientists have been able to conduct in situ patch clamp recordings from neurons in the adult brain(3,4) and ventral nerve cord of embryonic(5,6), larval(7,8,9,10), and adult Drosophila(11,12,13,14). A stable giga-seal is the main precondition for a good patch and depends on clean contact of the patch pipette with the cell membrane to avoid leak currents. Therefore, for whole cell in situ patch clamp recordings from adult Drosophila neurons must be cleaned thoroughly. In the first step, the ganglionic sheath has to be treated enzymatically and mechanically removed to make the target cells accessible. In the second step, the cell membrane has to be polished so that no layer of glia, collagen or other material may disturb giga-seal formation. This article describes how to prepare an identified central neuron in the Drosophila ventral nerve cord, the flight motoneuron 5 (MN5(15)), for somatic whole cell patch clamp recordings. Identification and visibility of the neuron is achieved by targeted expression of GFP in MN5. We do not aim to explain the patch clamp technique itself.
Upadhye, Kalpesh V.; Candiello, Joseph E.; Davidson, Lance A.; Lin, Hai
2011-01-01
Patch clamp is a powerful tool for studying the properties of ion-channels and cellular membrane. In recent years, planar patch clamp chips have been fabricated from various materials including glass, quartz, silicon, silicon nitride, polydimethyl-siloxane (PDMS), and silicon dioxide. Planar patch clamps have made automation of patch clamp recordings possible. However, most planar patch clamp chips have limitations when used in combination with other techniques. Furthermore, the fabrication methods used are often expensive and require specialized equipments. An improved design as well as fabrication and characterization of a silicon-based planar patch clamp chip are described in this report. Fabrication involves true batch fabrication processes that can be performed in most common microfabrication facilities using well established MEMS techniques. Our planar patch clamp chips can form giga-ohm seals with the cell plasma membrane with success rate comparable to existing patch clamp techniques. The chip permits whole-cell voltage clamp recordings on variety of cell types including Chinese Hamster Ovary (CHO) cells and pheochromocytoma (PC12) cells, for times longer than most available patch clamp chips. When combined with a custom microfluidics chamber, we demonstrate that it is possible to perfuse the extra-cellular as well as intra-cellular buffers. The chamber design allows integration of planar patch clamp with atomic force microscope (AFM). Using our planar patch clamp chip and microfluidics chamber, we have recorded whole-cell mechanosensitive (MS) currents produced by directly stimulating human keratinocyte (HaCaT) cells using an AFM cantilever. Our results reveal the spatial distribution of MS ion channels and temporal details of the responses from MS channels. The results show that planar patch clamp chips have great potential for multi-parametric high throughput studies of ion channel proteins. PMID:22174731
High throughput ion-channel pharmacology: planar-array-based voltage clamp.
Kiss, Laszlo; Bennett, Paul B; Uebele, Victor N; Koblan, Kenneth S; Kane, Stefanie A; Neagle, Brad; Schroeder, Kirk
2003-02-01
Technological advances often drive major breakthroughs in biology. Examples include PCR, automated DNA sequencing, confocal/single photon microscopy, AFM, and voltage/patch-clamp methods. The patch-clamp method, first described nearly 30 years ago, was a major technical achievement that permitted voltage-clamp analysis (membrane potential control) of ion channels in most cells and revealed a role for channels in unimagined areas. Because of the high information content, voltage clamp is the best way to study ion-channel function; however, throughput is too low for drug screening. Here we describe a novel breakthrough planar-array-based HT patch-clamp technology developed by Essen Instruments capable of voltage-clamping thousands of cells per day. This technology provides greater than two orders of magnitude increase in throughput compared with the traditional voltage-clamp techniques. We have applied this method to study the hERG K(+) channel and to determine the pharmacological profile of QT prolonging drugs.
Population patch clamp electrophysiology: a breakthrough technology for ion channel screening.
Dale, Tim J; Townsend, Claire; Hollands, Emma C; Trezise, Derek J
2007-10-01
Population patch clamp (PPC) is a novel high throughput planar array electrophysiology technique that allows ionic currents to be recorded from populations of cells under voltage clamp. For the drug discovery pharmacologist, PPC promises greater speed and precision than existing methods for screening compounds at voltage-gated ion channel targets. Moreover, certain constitutively active or slow-ligand gated channels that have hitherto proved challenging to screen with planar array electrophysiology (e.g. SK/IK channels) are now more accessible. In this article we review early findings using PPC and provide a perspective on its likely impact on ion channel drug discovery. To support this, we include some new data on ion channel assay duplexing and on modulator assays, approaches that have thus far not been described.
Giga-seal formation alters properties of sodium channels of human myoballs.
Fahlke, C; Rüdel, R
1992-03-01
The influence of giga-seal formation on the properties of the Na+ channels within the covered membrane patch was investigated with a whole-cell pipette and a patch pipette applied to the same cell. Current kinetics, current/voltage relation and channel densities were determined in three combinations: (i) voltage-clamping and current recording with the whole-cell pipette, (ii) voltage-clamping with the whole-cell pipette and current recording with the patch pipette and, (iii) voltage-clamping and current recording with the patch pipette. The Hodgkin-Huxley (1952) parameters tau m and tau h were smaller for the patch currents than for the whole cell, and the h infinity curve was shifted in the negative direction. The channel density was of the order of 10 times smaller. All effects were independent of the extracellular Ca2+ concentration. The capacitive current generated in the patch by the whole-cell Na+ current and its effect on the transmembrane voltage of the patch were evaluated. The kinetic parameters of the Na+ channels in the patch did not depend on whether the voltage was clamped with the whole-cell pipette or the patch pipette. Thus, the results are not due to spurious voltage.
Solutions for transients in arbitrarily branching cables: III. Voltage clamp problems.
Major, G
1993-07-01
Branched cable voltage recording and voltage clamp analytical solutions derived in two previous papers are used to explore practical issues concerning voltage clamp. Single exponentials can be fitted reasonably well to the decay phase of clamped synaptic currents, although they contain many underlying components. The effective time constant depends on the fit interval. The smoothing effects on synaptic clamp currents of dendritic cables and series resistance are explored with a single cylinder + soma model, for inputs with different time courses. "Soma" and "cable" charging currents cannot be separated easily when the soma is much smaller than the dendrites. Subtractive soma capacitance compensation and series resistance compensation are discussed. In a hippocampal CA1 pyramidal neurone model, voltage control at most dendritic sites is extremely poor. Parameter dependencies are illustrated. The effects of series resistance compound those of dendritic cables and depend on the "effective capacitance" of the cell. Plausible combinations of parameters can cause order-of-magnitude distortions to clamp current waveform measures of simulated Schaeffer collateral inputs. These voltage clamp problems are unlikely to be solved by the use of switch clamp methods.
Hartveit, Espen; Veruki, Margaret Lin
2010-03-15
Accurate measurement of the junctional conductance (G(j)) between electrically coupled cells can provide important information about the functional properties of coupling. With the development of tight-seal, whole-cell recording, it became possible to use dual, single-electrode voltage-clamp recording from pairs of small cells to measure G(j). Experiments that require reduced perturbation of the intracellular environment can be performed with high-resistance pipettes or the perforated-patch technique, but an accompanying increase in series resistance (R(s)) compromises voltage-clamp control and reduces the accuracy of G(j) measurements. Here, we present a detailed analysis of methodologies available for accurate determination of steady-state G(j) and related parameters under conditions of high R(s), using continuous or discontinuous single-electrode voltage-clamp (CSEVC or DSEVC) amplifiers to quantify the parameters of different equivalent electrical circuit model cells. Both types of amplifiers can provide accurate measurements of G(j), with errors less than 5% for a wide range of R(s) and G(j) values. However, CSEVC amplifiers need to be combined with R(s)-compensation or mathematical correction for the effects of nonzero R(s) and finite membrane resistance (R(m)). R(s)-compensation is difficult for higher values of R(s) and leads to instability that can damage the recorded cells. Mathematical correction for R(s) and R(m) yields highly accurate results, but depends on accurate estimates of R(s) throughout an experiment. DSEVC amplifiers display very accurate measurements over a larger range of R(s) values than CSEVC amplifiers and have the advantage that knowledge of R(s) is unnecessary, suggesting that they are preferable for long-duration experiments and/or recordings with high R(s). Copyright (c) 2009 Elsevier B.V. All rights reserved.
Tetrodotoxin-sensitive, voltage-dependent sodium currents in hair cells from the alligator cochlea.
Evans, M G; Fuchs, P A
1987-10-01
We have used whole-cell patch clamp techniques to record from tall hair cells isolated from the apical half of the alligator cochlea. Some of these cells gave action potentials in response to depolarizing current injections. When the same cells were voltage clamped, large transient inward currents followed by smaller outward currents were seen in response to depolarizing steps. We studied the transient inward current after the outward current had been blocked by external tetraethylammonium (20 mM) or by replacing internal potassium with cesium. It was found to be a sodium current because it was abolished by either replacing external sodium with choline or by external application of tetrodotoxin (100 nM). The sodium current showed voltage-dependent activation and inactivation. Most of the spiking hair cells came from the apex of the cochlea, where they would be subject to low-frequency mechanical stimulation in vivo.
Cobbs, W H; Pugh, E N
1987-01-01
1. Membrane currents initiated by intense, 20 microseconds flashes (photocurrents) were recorded from isolated salamander rods by combined extracellular suction electrodes and intracellular tight-seal electrodes either in current or voltage clamp mode. The magnitudes (mean +/- 2 S.E.M.) of the maximal photoresponses recorded by the suction and by the intracellular electrode respectively were 40 +/- 5 pA (n = 18) and 35 +/- 7 mV (n = 8) for current clamp at zero current; 43 +/- 9 pA and 66 +/- 13 (n = 11) pA for voltage clamp at the zero-current holding potential, -24 +/- 3 mV. 2. Photocurrents initiated by flashes isomerizing 0.1% or more of the outer segment's rhodopsin achieved a saturated velocity and were 95% complete in less than 50 ms. The effect of incrementing flash intensity above 0.1% isomerization can be described as a translation of the photocurrent along the time axis towards the origin. Within the interval 0-50 ms the latter two-thirds of the velocity-saturated photocurrent is well described as a single-exponential decay. The decay was much faster in voltage clamp (2.8 +/- 1.2 ms, n = 11) than in current clamp mode (17 +/- 5 ms, n = 17). 3. The initial third of the velocity-saturated photocurrent, occurring over the interval from the flash to the onset of exponential decay, followed about the same time course in current and voltage clamp. The time interval occupied by this initial 'latent' phase decreased with increasing flash intensity and attained an apparent minimum of about 7 ms in response to flashes isomerizing 10% or more of the rhodopsin at ca. 22 degrees C. 4. The hypothesis that the decay of outer segment light-sensitive membrane current is the same in current and voltage clamp was supported by an analysis of the difference between outer segment currents measured successively in the two recording modes. First, the tail of the difference current decayed exponentially with a time constant approximately equal to R x C, where R and C are independently estimated slope resistance and capacitance of the rod. Secondly, the integral of the difference current, when divided by outer segment capacitance, closely approximated the hyperpolarizing light response measured under current clamp. Thus, displacement current accounted for the difference between photocurrents measured in current and voltage clamp.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:2832596
VOLTAGE CLAMP BEHAVIOR OF IRON-NITRIC ACID SYSTEM AS COMPARED WITH THAT OF NERVE MEMBRANE
Tasaki, I.; Bak, A. F.
1959-01-01
The current-voltage relation for the surface layer of an iron wire immersed in nitric acid was investigated by the voltage clamp technique. Comparing the phase of nitric acid to the axoplasm and the metallic phase to the external fluid medium for the nerve fiber, a striking analogy was found between the voltage clamp behavior of the iron-nitric acid system and that of the nerve membrane. The current voltage curve was found to consist of three parts: (a) a straight line representing the behavior of the resting (passive) membrane, (b) a straight line representing the fully excited (active) state, and (c) an intermediate zone connecting (a) and (b). It was shown that in the intermediate zone, the surface of iron consisted of a fully active patch (or patches) surrounded by a remaining resting area. The phenomenon corresponding to "repetitive firing of responses under voltage clamp" in the nerve membrane was demonstrated in the intermediate zone. The behavior of the cobalt electrode system was also investigated by the same technique. An attempt was made to interpret the phenomenon of initiation and abolition of an active potential on the basis of the thermodynamics of irreversible processes. PMID:13654740
Wang, Xi; Zhang, Xiao-Gang; Zhou, Ting-Ting; Li, Na; Jang, Chun-Yan; Xiao, Zhi-Cheng; Ma, Quan-Hong; Li, Shao
2016-01-01
Aberrant increases in neuronal network excitability may contribute to the cognitive deficits in Alzheimer's disease (AD). However, the mechanisms underlying hyperexcitability are not fully understood. Such overexcitation of neuronal networks has been detected in the brains of APP/PS1 mice. In the present study, using current-clamp recording techniques, we observed that 12 days in vitro (DIV) primary cultured pyramidal neurons from P0 APP/PS1 mice exhibited a more prominent action potential burst and a lower threshold than WT littermates. Moreover, after treatment with Aβ1−42 peptide, 12 DIV primary cultured neurons showed similar changes, to a greater degree than in controls. Voltage-clamp recordings revealed that the voltage-dependent sodium current density of neurons incubated with Aβ1−42 was significantly increased, without change in the voltage-dependent sodium channel kinetic characteristics. Immunohistochemistry and western blot results showed that, after treatment with Aβ1−42, expressions of Nav and Nav1.6 subtype increased in cultured neurons or APP/PS1 brains compared to control groups. The intrinsic neuronal hyperexcitability of APP/PS1 mice might thus be due to an increased expression of voltage-dependent sodium channels induced by Aβ1−42. These results may illuminate the mechanism of aberrant neuronal networks in AD. PMID:27013956
Schoen, Ingmar; Fromherz, Peter
2007-01-01
Extracellular excitation of neurons is applied in studies of cultured networks and brain tissue, as well as in neuroprosthetics. We elucidate its mechanism in an electrophysiological approach by comparing voltage-clamp and current-clamp recordings of individual neurons on an insulated planar electrode. Noninvasive stimulation of neurons from pedal ganglia of Lymnaea stagnalis is achieved by defined voltage ramps applied to an electrolyte/HfO2/silicon capacitor. Effects on the smaller attached cell membrane and the larger free membrane are distinguished in a two-domain-stimulation model. Under current-clamp, we study the polarization that is induced for closed ion channels. Under voltage-clamp, we determine the capacitive gating of ion channels in the attached membrane by falling voltage ramps and for comparison also the gating of all channels by conventional variation of the intracellular voltage. Neuronal excitation is elicited under current-clamp by two mechanisms: Rising voltage ramps depolarize the free membrane such that an action potential is triggered. Falling voltage ramps depolarize the attached membrane such that local ion currents are activated that depolarize the free membrane and trigger an action potential. The electrophysiological analysis of extracellular stimulation in the simple model system is a basis for its systematic optimization in neuronal networks and brain tissue. PMID:17098803
Voltage-Clamp Studies on Uterine Smooth Muscle
Anderson, Nels C.
1969-01-01
These studies have developed and tested an experimental approach to the study of membrane ionic conductance mechanisms in strips of uterine smooth muscle. The experimental and theoretical basis for applying the double sucrose-gap technique is described along with the limitations of this system. Nonpropagating membrane action potentials were produced in response to depolarizing current pulses under current-clamp conditions. The stepwise change of membrane potential under voltage-clamp conditions resulted in a family of ionic currents with voltage- and time-dependent characteristics. In sodium-free solution the peak transient current decreased and its equilibrium potential shifted along the voltage axis toward a more negative internal potential. These studies indicate a sodium-dependent, regenerative excitation mechanism. PMID:5796366
Real-Time Kinetic Modeling of Voltage-Gated Ion Channels Using Dynamic Clamp
Milescu, Lorin S.; Yamanishi, Tadashi; Ptak, Krzysztof; Mogri, Murtaza Z.; Smith, Jeffrey C.
2008-01-01
We propose what to our knowledge is a new technique for modeling the kinetics of voltage-gated ion channels in a functional context, in neurons or other excitable cells. The principle is to pharmacologically block the studied channel type, and to functionally replace it with dynamic clamp, on the basis of a computational model. Then, the parameters of the model are modified in real time (manually or automatically), with the objective of matching the dynamical behavior of the cell (e.g., action potential shape and spiking frequency), but also the transient and steady-state properties of the model (e.g., those derived from voltage-clamp recordings). Through this approach, one may find a model and parameter values that explain both the observed cellular dynamics and the biophysical properties of the channel. We extensively tested the method, focusing on Nav models. Complex Markov models (10–12 states or more) could be accurately integrated in real time at >50 kHz using the transition probability matrix, but not the explicit Euler method. The practicality of the technique was tested with experiments in raphe pacemaker neurons. Through automated real-time fitting, a Hodgkin-Huxley model could be found that reproduced well the action potential shape and the spiking frequency. Adding a virtual axonal compartment with a high density of Nav channels further improved the action potential shape. The computational procedure was implemented in the free QuB software, running under Microsoft Windows and featuring a friendly graphical user interface. PMID:18375511
Sinusoidal voltage protocols for rapid characterisation of ion channel kinetics.
Beattie, Kylie A; Hill, Adam P; Bardenet, Rémi; Cui, Yi; Vandenberg, Jamie I; Gavaghan, David J; de Boer, Teun P; Mirams, Gary R
2018-03-24
Ion current kinetics are commonly represented by current-voltage relationships, time constant-voltage relationships and subsequently mathematical models fitted to these. These experiments take substantial time, which means they are rarely performed in the same cell. Rather than traditional square-wave voltage clamps, we fitted a model to the current evoked by a novel sum-of-sinusoids voltage clamp that was only 8 s long. Short protocols that can be performed multiple times within a single cell will offer many new opportunities to measure how ion current kinetics are affected by changing conditions. The new model predicts the current under traditional square-wave protocols well, with better predictions of underlying currents than literature models. The current under a novel physiologically relevant series of action potential clamps is predicted extremely well. The short sinusoidal protocols allow a model to be fully fitted to individual cells, allowing us to examine cell-cell variability in current kinetics for the first time. Understanding the roles of ion currents is crucial to predict the action of pharmaceuticals and mutations in different scenarios, and thereby to guide clinical interventions in the heart, brain and other electrophysiological systems. Our ability to predict how ion currents contribute to cellular electrophysiology is in turn critically dependent on our characterisation of ion channel kinetics - the voltage-dependent rates of transition between open, closed and inactivated channel states. We present a new method for rapidly exploring and characterising ion channel kinetics, applying it to the hERG potassium channel as an example, with the aim of generating a quantitatively predictive representation of the ion current. We fitted a mathematical model to currents evoked by a novel 8 second sinusoidal voltage clamp in CHO cells overexpressing hERG1a. The model was then used to predict over 5 minutes of recordings in the same cell in response to further protocols: a series of traditional square step voltage clamps, and also a novel voltage clamp comprising a collection of physiologically relevant action potentials. We demonstrate that we can make predictive cell-specific models that outperform the use of averaged data from a number of different cells, and thereby examine which changes in gating are responsible for cell-cell variability in current kinetics. Our technique allows rapid collection of consistent and high quality data, from single cells, and produces more predictive mathematical ion channel models than traditional approaches. © 2018 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
Rivet, M; Cognard, C; Raymond, G
1989-01-01
The slow inward calcium current and the contractile response were simultaneously recorded in voltage clamped (whole cell patch clamp recording) rat myoballs in primary culture. The shape of the contraction(T)/potential(V) relationship and the application of the inorganic calcium channel blocker cadmium (1.5 mM), which suppresses a part of the contractile activity, demonstrate the existence of two components of contraction. One of them is related to the slow calcium current.
Erxleben, C; Hermann, A
2001-03-16
Invertebrate skeletal muscle contraction is regulated by calcium influx through voltage-dependent calcium channels in the sarcolemmal membrane. In present study we investigated the effects of nitric oxide (NO) donors on calcium currents of single skeletal muscle fibres from the marine isopod, Idotea baltica, using two-electrode voltage clamp recording techniques. The NO donors, S-nitrosocysteine, S-nitroso-N-acetyl-penicillamine or hydroxylamine reversibly increased calcium inward currents in a time dependent manner. The increase of the current was prevented by methylene blue. Our experiments suggest that NO increases calcium inward currents. NO, by acting on calcium ion channels in the sarcolemmal membrane, therefore, may directly be involved in the modulation of muscle contraction.
Robotic multi-well planar patch-clamp for native and primary mammalian cells
Milligan, Carol J; Li, Jing; Sukumar, Piruthivi; Majeed, Yasser; Dallas, Mark L; English, Anne; Emery, Paul; Porter, Karen E; Smith, Andrew M; McFadzean, Ian; Beccano-Kelly, Dayne; Bahnasi, Yahya; Cheong, Alex; Naylor, Jacqueline; Zeng, Fanning; Liu, Xing; Gamper, Nikita; Jiang, Lin-Hua; Pearson, Hugh A; Peers, Chris; Robertson, Brian; Beech, David J
2009-01-01
Multi-well robotic planar patch-clamp has become common in drug development and safety programmes because it enables efficient and systematic testing of compounds against ion channels during voltage-clamp. It has not, however, been adopted significantly in other important areas of ion channel research, where conventional patch-clamp remains the favoured method. Here we show the wider potential of the multi-well approach with the capability for efficient intracellular solution exchange, describing protocols and success rates for recording from a range of native and primary mammalian cells derived from blood vessels, arthritic joints, and the immune and central nervous systems. The protocol involves preparing a suspension of single cells to be dispensed robotically into 4-8 microfluidic chambers each containing a glass chip with a small aperture. Under automated control, giga-seals and whole-cell access are achieved followed by pre-programmed routines of voltage paradigms and fast extracellular or intracellular solution exchange. Recording from 48 chambers usually takes 1-6 hr depending on the experimental design and yields 16-33 cell recordings. PMID:19197268
Suga, S; Wu, J; Ogawa, Y; Takeo, T; Kanno, T; Wakui, M
2001-01-01
Phorbol 12-myristate 13-acetate (PMA) is often used as an activating phorbol ester of protein kinase C (PKC) to investigate the roles of the kinase in cellular functions. Accumulating lines of evidence indicate that in addition to activating PKC, PMA also produces some regulatory effects in a PKC-independent manner. In this study, we investigated the non-PKC effects of PMA on electrical excitability of rat pancreatic beta-cells by using patch-clamp techniques. In current-clamp recording, PMA (80 nM) reversibly inhibited 15 mM glucose-induced action potential spikes superimposed on a slow membrane depolarization and this inhibition can not be prevented by pre-treatment of the cell with a specific PKC inhibitor, bisindolylmaleimide (BIM, 1 microM). In the presence of a subthreshold concentration (5.5 mM) of glucose, PMA hyperpolarized beta-cells in a concentration-dependent manner (0.8-240 nM), even in the presence of BIM. Based on cell-attached single channel recordings, PMA increased ATP-sensitive K+ channel (KATP) activity. Based on inside-out patch-clamp recordings, PMA had little effect on KATP activity if no ATP was in the bath, while PMA restored KATP activity that was suppressed by 10 microM ATP in the bath. In voltage-clamp recording, PMA enhanced tolbutamide-sensitive membrane currents elicited by repetitive ramp pulses from -90 to -50 mV in a concentration-dependent manner, and this potentiation could not be prevented by pre-treatment of cell with BIM. 4alpha-phorbol 12,13-didecanoate (4alpha-PDD), a non-PKC-activating phorbol ester, mimicked the effect of PMA on both current-clamp and voltage-clamp recording configurations. With either 5.5 or 16.6 mM glucose in the extracellular solution, PMA (80 nM) increased insulin secretion from rat islets. However, in islets pretreated with BIM (1 microM), PMA did not increase, but rather reduced insulin secretion. In rat pancreatic beta-cells, PMA modulates insulin secretion through a mixed mechanism: increases insulin secretion by activation of PKC, and meanwhile decrease insulin secretion by impairing beta-cell excitability in a PKC-independent manner. The enhancement of KATP activity by reducing sensitivity of KATP to ATP seems to underlie the PMA-induced impairment of beta-cells electrical excitation in response to glucose stimulation.
Crebanine inhibits voltage-dependent Na+ current in guinea-pig ventricular myocytes.
Xiao-Shan, He; Qing, Lin; Yun-Shu, Ma; Ze-Pu, Yu
2014-01-01
To study the effects of crebanine on voltage-gated Na(+) channels in cardiac tissues. Single ventricular myocytes were enzymatically dissociated from adult guinea-pig heart. Voltage-dependent Na(+) current was recorded using the whole cell voltage-clamp technique. Crebanine reversibly inhibited Na(+) current with an IC50 value of 0.283 mmol·L(-1) (95% confidence range: 0.248-0.318 mmol·L(-1)). Crebanine at 0.262 mmol·L(-1) caused a negative shift (about 12 mV) in the voltage-dependence of steady-state inactivation of Na(+) current, and retarded its recovery from inactivation, but did not affect its activation curve. In addition to blocking other voltage-gated ion channels, crebanine blocked Na(+) channels in guinea-pig ventricular myocytes. Crebanine acted as an inactivation stabilizer of Na(+) channels in cardiac tissues. Copyright © 2014 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.
The Nano-Patch-Clamp Array: Microfabricated Glass Chips for High-Throughput Electrophysiology
NASA Astrophysics Data System (ADS)
Fertig, Niels
2003-03-01
Electrophysiology (i.e. patch clamping) remains the gold standard for pharmacological testing of putative ion channel active drugs (ICADs), but suffers from low throughput. A new ion channel screening technology based on microfabricated glass chip devices will be presented. The glass chips contain very fine apertures, which are used for whole-cell voltage clamp recordings as well as single channel recordings from mammalian cell lines. Chips containing multiple patch clamp wells will be used in a first bench-top device, which will allow perfusion and electrical readout of each well. This scalable technology will allow for automated, rapid and parallel screening on ion channel drug targets.
FPGA in-the-loop simulations of cardiac excitation model under voltage clamp conditions
NASA Astrophysics Data System (ADS)
Othman, Norliza; Adon, Nur Atiqah; Mahmud, Farhanahani
2017-01-01
Voltage clamp technique allows the detection of single channel currents in biological membranes in identifying variety of electrophysiological problems in the cellular level. In this paper, a simulation study of the voltage clamp technique has been presented to analyse current-voltage (I-V) characteristics of ion currents based on Luo-Rudy Phase-I (LR-I) cardiac model by using a Field Programmable Gate Array (FPGA). Nowadays, cardiac models are becoming increasingly complex which can cause a vast amount of time to run the simulation. Thus, a real-time hardware implementation using FPGA could be one of the best solutions for high-performance real-time systems as it provides high configurability and performance, and able to executes in parallel mode operation. For shorter time development while retaining high confidence results, FPGA-based rapid prototyping through HDL Coder from MATLAB software has been used to construct the algorithm for the simulation system. Basically, the HDL Coder is capable to convert the designed MATLAB Simulink blocks into hardware description language (HDL) for the FPGA implementation. As a result, the voltage-clamp fixed-point design of LR-I model has been successfully conducted in MATLAB Simulink and the simulation of the I-V characteristics of the ionic currents has been verified on Xilinx FPGA Virtex-6 XC6VLX240T development board through an FPGA-in-the-loop (FIL) simulation.
Hardy, M E L; Lawrence, C L; Standen, N B; Rodrigo, G C
2006-01-01
Potential-sensitive dyes have primarily been used to optically record action potentials (APs) in whole heart tissue. Using these dyes to record drug-induced changes in AP morphology of isolated cardiac myocytes could provide an opportunity to develop medium throughout assays for the pharmaceutical industry. Ideally, this requires that the dye has a consistent and rapid response to membrane potential, is insensitive to movement, and does not itself affect AP morphology. We recorded the AP from isolated adult guinea-pig ventricular myocytes optically using di-8-ANEPPS in a single-excitation dual-emission ratiometric system, either separately in electrically field stimulated myocytes, or simultaneously with an electrical AP recorded with a patch electrode in the whole-cell bridge mode. The ratio of di-8-ANEPPS fluorescence signal was calibrated against membrane potential using a switch-clamp to voltage clamp the myocyte. Our data show that the ratio of the optical signals emitted at 560/620 nm is linearly related to voltage over the voltage range of an AP, producing a change in ratio of 7.5% per 100 mV, is unaffected by cell movement and is identical to the AP recorded simultaneously with a patch electrode. However, the APD90 recorded optically in myocytes loaded with di-8-ANEPPS was significantly longer than in unloaded myocytes recorded with a patch electrode (355.6+/-13.5 vs. 296.2+/-16.2 ms; p<0.01). Despite this effect, the apparent IC50 for cisapride, which prolongs the AP by blocking IKr, was not significantly different whether determined optically or with a patch electrode (91+/-46 vs. 81+/-20 nM). These data show that the optical AP recorded ratiometrically using di-8-ANEPPS from a single ventricular myocyte accurately follows the action potential morphology. This technique can be used to estimate the AP prolonging effects of a compound, although di-8-ANEPPS itself prolongs APD90. Optical dyes require less technical skills and are less invasive than conventional electrophysiological techniques and, when coupled to ventricular myocytes, decreases animal usage and facilitates higher throughput assays.
Acosta-García, Ma Cristina; Morales-Reyes, Israel; Jiménez-Anguiano, Anabel; Batina, Nikola; Castellanos, N P; Godínez-Fernández, R
2018-02-01
This paper shows the simultaneous recording of electrical activity and the underlying ionic currents by using a gold substrate to culture NG108-15 cells. Cells grown on two different substrates (plastic Petri dishes and gold substrates) were characterized quantitatively through scanning electron microscopy (SEM) as well as qualitatively by optical and atomic force microscopy (AFM). No significant differences were observed between the surface area of cells cultured on gold substrates and Petri dishes, as indicated by measurements performed on SEM images. We also evaluated the electrophysiological compatibility of the cells through standard patch-clamp experiments by analyzing features such as the resting potential, membrane resistance, ionic currents, etc. Cells grown on both substrates showed no significant differences in their dependency on voltage, as well as in the magnitude of the Na+ and K+ current density; however, cells cultured on the gold substrate showed a lower membrane capacitance when compared to those grown on Petri dishes. By using two separate patch-clamp amplifiers, we were able to record the membrane current with the conventional patch-clamp technique and through the gold substrate simultaneously. Furthermore, the proposed technique allowed us to obtain simultaneous recordings of the electrical activity (such as action potentials firing) and the underlying membrane ionic currents. The excellent conductivity of gold makes it possible to overcome important difficulties found in conventional electrophysiological experiments such as those presented by the resistance of the electrolytic bath solution. We conclude that the technique here presented constitutes a solution to the problem of the simultaneous recording of electrical activity and the underlying ionic currents, which for decades, had been solved only partially.
Electrical coupling of single cardiac rat myocytes to field-effect and bipolar transistors.
Kind, Thomas; Issing, Matthias; Arnold, Rüdiger; Müller, Bernt
2002-12-01
A novel bipolar transistor for extracellular recording the electrical activity of biological cells is presented, and the electrical behavior compared with the field-effect transistor (FET). Electrical coupling is examined between single cells separated from the heart of adults rats (cardiac myocytes) and both types of transistors. To initiate a local extracellular voltage, the cells are periodically stimulated by a patch pipette in voltage clamp and current clamp mode. The local extracellular voltage is measured by the planar integrated electronic sensors: the bipolar and the FET. The small signal transistor currents correspond to the local extracellular voltage. The two types of sensor transistors used here were developed and manufactured in the laboratory of our institute. The manufacturing process and the interfaces between myocytes and transistors are described. The recordings are interpreted by way of simulation based on the point-contact model and the single cardiac myocyte model.
Membrane currents underlying activity in frog sinus venosus
Brown, Hilary F.; Giles, Wayne; Noble, Susan J.
1977-01-01
1. The spontaneous electrical activity of small strips of muscle from the sinus venosus region of the heart of Rana catesbeiana was investigated using the double sucrose gap technique. The voltage clamp was used to record the ionic currents underlying the pace-maker depolarization and the action potential. 2. The records of spontaneous electrical activity are very similar to those obtained from the sinus venosus using micro-electrodes. Moreover, the pace-maker activity is almost completely insensitive to tetrodotoxin (TTX) at 2·0 × 10-6 g/ml., which suggests that the pace-maker responses can be classified as primary, as opposed to follower pacing. 3. In response to short rectangular depolarizing voltage clamp pulses, only one inward current is activated. This current is almost completely insensitive to TTX but can be blocked by manganese ions. It appears, therefore, to be equivalent to the slow inward (Ca2+/Na+) current, Isi, of other cardiac tissues. The threshold for Isi is near to the maximum diastolic potential, indicating that it must be activated during the pace-maker depolarization. 4. Interruption of the normal pace-maker depolarization by rapid activation of the voltage clamp circuit reveals the time-dependent decay of outward current. This current reverses between -75 and -90 mV and, therefore, is probably carried mainly by potassium ions. 5. Outward current decay is not a simple exponential, and Hodgkin—Huxley analysis suggests that two distinct components of outward current may be present. One of these is activated in the potential range of the pace-maker depolarization and the other at more positive potentials. Both outward currents reach full, steady-state activation at about zero mV, i.e. within the `plateau' range of the sinus action potential. 6. These results are compared with other recently published voltage clamp data from the rabbit sino—atrial node. 7. A hypothesis for the generation of pace-maker activity is presented which involves (i) decay of outward current and (ii) activation of the slow inward current, Isi. PMID:303699
High Performance ZVT with Bus Clamping Modulation Technique for Single Phase Full Bridge Inverters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xia, Yinglai; Ayyanar, Raja
2016-03-20
This paper proposes a topology based on bus clamping modulation and zero-voltage-transition (ZVT) technique to realize zero-voltage-switching (ZVS) for all the main switches of the full bridge inverters, and inherent ZVS and/or ZCS for the auxiliary switches. The advantages of the strategy include significant reduction in the turn-on loss of the ZVT auxiliary switches which typically account for a major part of the total loss in other ZVT circuits, and reduction in the voltage ratings of auxiliary switches. The modulation scheme and the commutation stages are analyzed in detail. Finally, a 1kW, 500 kHz switching frequency inverter of the proposedmore » topology using SiC MOSFETs has been built to validate the theoretical analysis. The ZVT with bus clamping modulation technique of fixed timing and adaptive timing schemes are implemented in DSP TMS320F28335 resulting in full ZVS for the main switches in the full bridge inverter. The proposed scheme can save up to 33 % of the switching loss compared with no ZVT case.« less
NASA Astrophysics Data System (ADS)
Wang, Shilong; Yin, Changchun; Lin, Jun; Yang, Yu; Hu, Xueyan
2016-03-01
Cooperative work of multiple magnetic transmitting sources is a new trend in the development of transient electromagnetic system. The key is the bipolar current waves shutdown, concurrently in the inductive load. In the past, it was difficult to use the constant clamping voltage technique to realize the synchronized shutdown of currents with different peak values. Based on clamping voltage technique, we introduce a new controlling method with constant shutdown time. We use the rising time to control shutdown time and use low voltage power source to control peak current. From the viewpoint of the circuit energy loss, by taking the high-voltage capacitor bypass resistance and the capacitor of the passive snubber circuit into account, we establish the relationship between the rising time and the shutdown time. Since the switch is not ideal, we propose a new method to test the shutdown time by the low voltage, the high voltage and the peak current. Experimental results show that adjustment of the current rising time can precisely control the value of the clamp voltage. When the rising time is fixed, the shutdown time is unchanged. The error for shutdown time deduced from the energy consumption is less than 6%. The new controlling method on current shutdown proposed in this paper can be used in the cooperative work of borehole and ground transmitting system.
Wang, Shilong; Yin, Changchun; Lin, Jun; Yang, Yu; Hu, Xueyan
2016-03-01
Cooperative work of multiple magnetic transmitting sources is a new trend in the development of transient electromagnetic system. The key is the bipolar current waves shutdown, concurrently in the inductive load. In the past, it was difficult to use the constant clamping voltage technique to realize the synchronized shutdown of currents with different peak values. Based on clamping voltage technique, we introduce a new controlling method with constant shutdown time. We use the rising time to control shutdown time and use low voltage power source to control peak current. From the viewpoint of the circuit energy loss, by taking the high-voltage capacitor bypass resistance and the capacitor of the passive snubber circuit into account, we establish the relationship between the rising time and the shutdown time. Since the switch is not ideal, we propose a new method to test the shutdown time by the low voltage, the high voltage and the peak current. Experimental results show that adjustment of the current rising time can precisely control the value of the clamp voltage. When the rising time is fixed, the shutdown time is unchanged. The error for shutdown time deduced from the energy consumption is less than 6%. The new controlling method on current shutdown proposed in this paper can be used in the cooperative work of borehole and ground transmitting system.
Effect of electrical coupling on ionic current and synaptic potential measurements.
Rabbah, Pascale; Golowasch, Jorge; Nadim, Farzan
2005-07-01
Recent studies have found electrical coupling to be more ubiquitous than previously thought, and coupling through gap junctions is known to play a crucial role in neuronal function and network output. In particular, current spread through gap junctions may affect the activation of voltage-dependent conductances as well as chemical synaptic release. Using voltage-clamp recordings of two strongly electrically coupled neurons of the lobster stomatogastric ganglion and conductance-based models of these neurons, we identified effects of electrical coupling on the measurement of leak and voltage-gated outward currents, as well as synaptic potentials. Experimental measurements showed that both leak and voltage-gated outward currents are recruited by gap junctions from neurons coupled to the clamped cell. Nevertheless, in spite of the strong coupling between these neurons, the errors made in estimating voltage-gated conductance parameters were relatively minor (<10%). Thus in many cases isolation of coupled neurons may not be required if a small degree of measurement error of the voltage-gated currents or the synaptic potentials is acceptable. Modeling results show, however, that such errors may be as high as 20% if the gap-junction position is near the recording site or as high as 90% when measuring smaller voltage-gated ionic currents. Paradoxically, improved space clamp increases the errors arising from electrical coupling because voltage control across gap junctions is poor for even the highest realistic coupling conductances. Furthermore, the common procedure of leak subtraction can add an extra error to the conductance measurement, the sign of which depends on the maximal conductance.
2013-05-14
enzymes . At sufficiently high doses of glutamate, this process culminates in excitogenic cell death [1]. Treatments to mitigate neuronal damage during...To evaluate the potential for therapeutic screening, we assessed the effect of several small molecule antagonists on excitotoxicity in a moderate...C. Current clamp recordings showing repeated overshooting action potentials are evoked by injection of a 75 pA current. D. Voltage-clamp recordings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenberg, R.L.
1985-01-01
The voltage-regulated NA channel is responsible for the depolarization of the excitable cell membrane during the normal action potential. This research has focused on the functional properties of the Na channel, purified from detergent extracts of electroplax membranes of the electric eel, and reconstituted into vesicles of defined phospholipid. These properties were assessed by measuring neurotoxin-modulated ion flux into the reconstituted membrane vesicles and by recording the single-channel currents of the purified channel by the patch-clamp method. The binding of tritiated tetrodotoxin (TTX) was employed as a marker for the purification of the channel. Two high-resolution fractionation steps, based onmore » molecular charge and protein size, were used to obtain a preparation that is 80% homogeneous for a large peptide of 270,000 daltons. Radiotracer /sup 22/Na/sup +/ influx into the vesicles was stimulated by veratridine and by batrachotoxin (BTX) at concentrations of 100 ..mu..M and 5 ..mu..M, respectively. The stimulation by BTX was greater than that by veratridine, and can be as much as 16-fold over control influx levels. The stimulated influx is blocked by TTX with a K/sub i/ of 35 nM, and by local anesthetics in the normal pharmacological range. Large multilamellar vesicles prepared with a freeze-thaw step are suitable for single-channel recording techniques. When excised patches of the reconstituted membranes were voltage-clamped in the absence of activating neurotoxins, voltage-dependent single-channel currents were recorded. These displayed properties similar to those from native membranes of nerve and muscle. These results indicate that the protein purified on the basis of TTX binding is a functional Na channel possessing these functional domains: the ion-selective channel, the voltage sensors controlling activation and inactivation, and the sites of action of TTX, alkaloid neurotoxins, and local anesthetics.« less
Calcium dependent current recordings in Xenopus laevis oocytes in microgravity
NASA Astrophysics Data System (ADS)
Wuest, Simon L.; Roesch, Christian; Ille, Fabian; Egli, Marcel
2017-12-01
Mechanical unloading by microgravity (or weightlessness) conditions triggers profound adaptation processes at the cellular and organ levels. Among other mechanisms, mechanosensitive ion channels are thought to play a key role in allowing cells to transduce mechanical forces. Previous experiments performed under microgravity have shown that gravity affects the gating properties of ion channels. Here, a method is described to record a calcium-dependent current in native Xenopus laevis oocytes under microgravity conditions during a parabolic flight. A 3-voltage-step protocol was applied to provoke a calcium-dependent current. This current increased with extracellular calcium concentration and could be reduced by applying extracellular gadolinium. The custom-made ;OoClamp; hardware was validated by comparing the results of the 3-voltage-step protocol to results obtained with a well-established two-electrode voltage clamp (TEVC). In the context of the 2nd Swiss Parabolic Flight Campaign, we tested the OoClamp and the method. The setup and experiment protocol worked well in parabolic flight. A tendency that the calcium-dependent current was smaller under microgravity than under 1 g condition could be observed. However, a conclusive statement was not possible due to the small size of the data base that could be gathered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Birinyi-Strachan, Liesl C.; Gunning, Simon J.; Lewis, Richard J.
2005-04-15
The present study investigated the actions of the polyether marine toxin Pacific ciguatoxin-1 (P-CTX-1) on neuronal excitability in rat dorsal root ganglion (DRG) neurons using patch-clamp recording techniques. Under current-clamp conditions, bath application of 2-20 nM P-CTX-1 caused a rapid, concentration-dependent depolarization of the resting membrane potential in neurons expressing tetrodotoxin (TTX)-sensitive voltage-gated sodium (Na{sub v}) channels. This action was completely suppressed by the addition of 200 nM TTX to the external solution, indicating that this effect was mediated through TTX-sensitive Na{sub v} channels. In addition, P-CTX-1 also prolonged action potential and afterhyperpolarization (AHP) duration. In a subpopulation of neurons,more » P-CTX-1 also produced tonic action potential firing, an effect that was not accompanied by significant oscillation of the resting membrane potential. Conversely, in neurons expressing TTX-resistant Na{sub v} currents, P-CTX-1 failed to alter any parameter of neuronal excitability examined in this study. Under voltage-clamp conditions in rat DRG neurons, P-CTX-1 inhibited both delayed-rectifier and 'A-type' potassium currents in a dose-dependent manner, actions that occurred in the absence of alterations to the voltage dependence of activation. These actions appear to underlie the prolongation of the action potential and AHP, and contribute to repetitive firing. These data indicate that a block of potassium channels contributes to the increase in neuronal excitability, associated with a modulation of Na{sub v} channel gating, observed clinically in response to ciguatera poisoning.« less
Li, Zhen-hua; Li, Hong-bin; Zhang, Zhi
2013-07-01
Electronic transformers are widely used in power systems because of their wide bandwidth and good transient performance. However, as an emerging technology, the failure rate of electronic transformers is higher than that of traditional transformers. As a result, the calibration period needs to be shortened. Traditional calibration methods require the power of transmission line be cut off, which results in complicated operation and power off loss. This paper proposes an online calibration system which can calibrate electronic current transformers without power off. In this work, the high accuracy standard current transformer and online operation method are the key techniques. Based on the clamp-shape iron-core coil and clamp-shape air-core coil, a combined clamp-shape coil is designed as the standard current transformer. By analyzing the output characteristics of the two coils, the combined clamp-shape coil can achieve verification of the accuracy. So the accuracy of the online calibration system can be guaranteed. Moreover, by employing the earth potential working method and using two insulating rods to connect the combined clamp-shape coil to the high voltage bus, the operation becomes simple and safe. Tests in China National Center for High Voltage Measurement and field experiments show that the proposed system has a high accuracy of up to 0.05 class.
1990-01-01
Voltage-sensing dyes were used to examine the electrical behavior of the T-system under passive recording conditions similar to those commonly used to detect charge movement. These conditions are designed to eliminate all ionic currents and render the T-system potential linear with respect to the command potential applied at the surface membrane. However, we found an unexpected nonlinearity in the relationship between the dye signal from the T-system and the applied clamp potential. An additional voltage- and time-dependent optical signal appears over the same depolarizing range of potentials where change movement and mechanical activation occur. This nonlinearity is not associated with unblocked ionic currents and cannot be attributed to lack of voltage clamp control of the T-system, which appears to be good under these conditions. We propose that a local electrostatic potential change occurs in the T-system upon depolarization. An electrostatic potential would not be expected to extend beyond molecular distances of the membrane and therefore would be sensed by a charged dye in the membrane but not by the voltage clamp, which responds solely to the potential of the bulk solution. Results obtained with different dyes suggest that the location of the phenomena giving rise to the extra absorbance change is either intramembrane or at the inner surface of the T-system membrane. PMID:2299329
Schramm, Adrien E; Marinazzo, Daniele; Gener, Thomas; Graham, Lyle J
2014-01-01
Whole-cell patch recording is an essential tool for quantitatively establishing the biophysics of brain function, particularly in vivo. This method is of particular interest for studying the functional roles of cortical glial cells in the intact brain, which cannot be assessed with extracellular recordings. Nevertheless, a reasonable success rate remains a challenge because of stability, recording duration and electrical quality constraints, particularly for voltage clamp, dynamic clamp or conductance measurements. To address this, we describe "Touch and Zap", an alternative method for whole-cell patch clamp recordings, with the goal of being simpler, quicker and more gentle to brain tissue than previous approaches. Under current clamp mode with a continuous train of hyperpolarizing current pulses, seal formation is initiated immediately upon cell contact, thus the "Touch". By maintaining the current injection, whole-cell access is spontaneously achieved within seconds from the cell-attached configuration by a self-limited membrane electroporation, or "Zap", as seal resistance increases. We present examples of intrinsic and visual responses of neurons and putative glial cells obtained with the revised method from cat and rat cortices in vivo. Recording parameters and biophysical properties obtained with the Touch and Zap method compare favourably with those obtained with the traditional blind patch approach, demonstrating that the revised approach does not compromise the recorded cell. We find that the method is particularly well-suited for whole-cell patch recordings of cortical glial cells in vivo, targeting a wider population of this cell type than the standard method, with better access resistance. Overall, the gentler Touch and Zap method is promising for studying quantitative functional properties in the intact brain with minimal perturbation of the cell's intrinsic properties and local network. Because the Touch and Zap method is performed semi-automatically, this approach is more reproducible and less dependent on experimenter technique.
Schramm, Adrien E.; Marinazzo, Daniele; Gener, Thomas; Graham, Lyle J.
2014-01-01
Whole-cell patch recording is an essential tool for quantitatively establishing the biophysics of brain function, particularly in vivo. This method is of particular interest for studying the functional roles of cortical glial cells in the intact brain, which cannot be assessed with extracellular recordings. Nevertheless, a reasonable success rate remains a challenge because of stability, recording duration and electrical quality constraints, particularly for voltage clamp, dynamic clamp or conductance measurements. To address this, we describe “Touch and Zap”, an alternative method for whole-cell patch clamp recordings, with the goal of being simpler, quicker and more gentle to brain tissue than previous approaches. Under current clamp mode with a continuous train of hyperpolarizing current pulses, seal formation is initiated immediately upon cell contact, thus the “Touch”. By maintaining the current injection, whole-cell access is spontaneously achieved within seconds from the cell-attached configuration by a self-limited membrane electroporation, or “Zap”, as seal resistance increases. We present examples of intrinsic and visual responses of neurons and putative glial cells obtained with the revised method from cat and rat cortices in vivo. Recording parameters and biophysical properties obtained with the Touch and Zap method compare favourably with those obtained with the traditional blind patch approach, demonstrating that the revised approach does not compromise the recorded cell. We find that the method is particularly well-suited for whole-cell patch recordings of cortical glial cells in vivo, targeting a wider population of this cell type than the standard method, with better access resistance. Overall, the gentler Touch and Zap method is promising for studying quantitative functional properties in the intact brain with minimal perturbation of the cell's intrinsic properties and local network. Because the Touch and Zap method is performed semi-automatically, this approach is more reproducible and less dependent on experimenter technique. PMID:24875855
Yang, Yang; Huang, Jianying; Mis, Malgorzata A; Estacion, Mark; Macala, Lawrence; Shah, Palak; Schulman, Betsy R; Horton, Daniel B; Dib-Hajj, Sulayman D; Waxman, Stephen G
2016-07-13
Voltage-gated sodium channel Nav1.7 is a central player in human pain. Mutations in Nav1.7 produce several pain syndromes, including inherited erythromelalgia (IEM), a disorder in which gain-of-function mutations render dorsal root ganglia (DRG) neurons hyperexcitable. Although patients with IEM suffer from episodes of intense burning pain triggered by warmth, the effects of increased temperature on DRG neurons expressing mutant Nav1.7 channels have not been well documented. Here, using structural modeling, voltage-clamp, current-clamp, and multielectrode array recordings, we have studied a newly identified Nav1.7 mutation, Ala1632Gly, from a multigeneration family with IEM. Structural modeling suggests that Ala1632 is a molecular hinge and that the Ala1632Gly mutation may affect channel gating. Voltage-clamp recordings revealed that the Nav1.7-A1632G mutation hyperpolarizes activation and depolarizes fast-inactivation, both gain-of-function attributes at the channel level. Whole-cell current-clamp recordings demonstrated increased spontaneous firing, lower current threshold, and enhanced evoked firing in rat DRG neurons expressing Nav1.7-A1632G mutant channels. Multielectrode array recordings further revealed that intact rat DRG neurons expressing Nav1.7-A1632G mutant channels are more active than those expressing Nav1.7 WT channels. We also showed that physiologically relevant thermal stimuli markedly increase the mean firing frequencies and the number of active rat DRG neurons expressing Nav1.7-A1632G mutant channels, whereas the same thermal stimuli only increase these parameters slightly in rat DRG neurons expressing Nav1.7 WT channels. The response of DRG neurons expressing Nav1.7-A1632G mutant channels upon increase in temperature suggests a cellular basis for warmth-triggered pain in IEM. Inherited erythromelalgia (IEM), a severe pain syndrome characterized by episodes of intense burning pain triggered by warmth, is caused by mutations in sodium channel Nav1.7, which are preferentially expressed in sensory and sympathetic neurons. More than 20 gain-of-function Nav1.7 mutations have been identified from IEM patients, but the question of how warmth triggers episodes of pain in IEM has not been well addressed. Combining multielectrode array, voltage-clamp, and current-clamp recordings, we assessed a newly identified IEM mutation (Nav1.7-A1632G) from a multigeneration family. Our data demonstrate gain-of-function attributes at the channel level and differential effects of physiologically relevant thermal stimuli on the excitability of DRG neurons expressing mutant and WT Nav1.7 channels, suggesting a cellular mechanism for warmth-triggered pain episodes in IEM patients. Copyright © 2016 the authors 0270-6474/16/367512-12$15.00/0.
Ion channel pharmacology under flow: automation via well-plate microfluidics.
Spencer, C Ian; Li, Nianzhen; Chen, Qin; Johnson, Juliette; Nevill, Tanner; Kammonen, Juha; Ionescu-Zanetti, Cristian
2012-08-01
Automated patch clamping addresses the need for high-throughput screening of chemical entities that alter ion channel function. As a result, there is considerable utility in the pharmaceutical screening arena for novel platforms that can produce relevant data both rapidly and consistently. Here we present results that were obtained with an innovative microfluidic automated patch clamp system utilizing a well-plate that eliminates the necessity of internal robotic liquid handling. Continuous recording from cell ensembles, rapid solution switching, and a bench-top footprint enable a number of assay formats previously inaccessible to automated systems. An electro-pneumatic interface was employed to drive the laminar flow of solutions in a microfluidic network that delivered cells in suspension to ensemble recording sites. Whole-cell voltage clamp was applied to linear arrays of 20 cells in parallel utilizing a 64-channel voltage clamp amplifier. A number of unique assays requiring sequential compound applications separated by a second or less, such as rapid determination of the agonist EC(50) for a ligand-gated ion channel or the kinetics of desensitization recovery, are enabled by the system. In addition, the system was validated via electrophysiological characterizations of both voltage-gated and ligand-gated ion channel targets: hK(V)2.1 and human Ether-à-go-go-related gene potassium channels, hNa(V)1.7 and 1.8 sodium channels, and (α1) hGABA(A) and (α1) human nicotinic acetylcholine receptor receptors. Our results show that the voltage dependence, kinetics, and interactions of these channels with pharmacological agents were matched to reference data. The results from these IonFlux™ experiments demonstrate that the system provides high-throughput automated electrophysiology with enhanced reliability and consistency, in a user-friendly format.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhen-hua; Li, Hong-bin; Zhang, Zhi
Electronic transformers are widely used in power systems because of their wide bandwidth and good transient performance. However, as an emerging technology, the failure rate of electronic transformers is higher than that of traditional transformers. As a result, the calibration period needs to be shortened. Traditional calibration methods require the power of transmission line be cut off, which results in complicated operation and power off loss. This paper proposes an online calibration system which can calibrate electronic current transformers without power off. In this work, the high accuracy standard current transformer and online operation method are the key techniques. Basedmore » on the clamp-shape iron-core coil and clamp-shape air-core coil, a combined clamp-shape coil is designed as the standard current transformer. By analyzing the output characteristics of the two coils, the combined clamp-shape coil can achieve verification of the accuracy. So the accuracy of the online calibration system can be guaranteed. Moreover, by employing the earth potential working method and using two insulating rods to connect the combined clamp-shape coil to the high voltage bus, the operation becomes simple and safe. Tests in China National Center for High Voltage Measurement and field experiments show that the proposed system has a high accuracy of up to 0.05 class.« less
Brookings, Ted; Goeritz, Marie L; Marder, Eve
2014-11-01
We describe a new technique to fit conductance-based neuron models to intracellular voltage traces from isolated biological neurons. The biological neurons are recorded in current-clamp with pink (1/f) noise injected to perturb the activity of the neuron. The new algorithm finds a set of parameters that allows a multicompartmental model neuron to match the recorded voltage trace. Attempting to match a recorded voltage trace directly has a well-known problem: mismatch in the timing of action potentials between biological and model neuron is inevitable and results in poor phenomenological match between the model and data. Our approach avoids this by applying a weak control adjustment to the model to promote alignment during the fitting procedure. This approach is closely related to the control theoretic concept of a Luenberger observer. We tested this approach on synthetic data and on data recorded from an anterior gastric receptor neuron from the stomatogastric ganglion of the crab Cancer borealis. To test the flexibility of this approach, the synthetic data were constructed with conductance models that were different from the ones used in the fitting model. For both synthetic and biological data, the resultant models had good spike-timing accuracy. Copyright © 2014 the American Physiological Society.
M-currents and other potassium currents in bullfrog sympathetic neurones
Adams, P. R.; Brown, D. A.; Constanti, A.
1982-01-01
1. Bullfrog lumbar sympathetic neurones were voltage-clamped in vitro through twin micro-electrodes. Four different outward (K+) currents could be identified: (i) a large sustained voltage-sensitive delayed rectifier current (IK) activated at membrane potentials more positive than -25 mV; (ii) a calcium-dependent sustained outward current (IC) activated at similar positive potentials and peaking at +20 to +60 mV; (iii) a transient current (IA) activated at membrane potentials more positive than -60 mV after a hyperpolarizing pre-pulse, but which was rapidly and totally inactivated at all potentials within its activation range; and (iv) a new K+ current, the M-current (IM). 2. IM was detected as a non-inactivating current with a threshold at -60 mV. The underlying conductance GM showed a sigmoidal activation curve between -60 and -10 mV, with half-activation at -35 mV and a maximal value (ḠM) of 84±14 (S.E.M.) nS per neurone. The voltage sensitivity of GM could be expressed in terms of a simple Boltzmann distribution for a single multivalent gating particle. 3. IM activated and de-activated along an exponential time course with a time constant uniquely dependent upon voltage, maximizing at ≃ 150 ms at -35 mV at 22 °C. 4. Instantaneous current—voltage (I/V) curves were approximately linear in the presence of IM, suggesting that the M-channels do not show appreciable rectification. However, the time- and voltage-dependent opening of the M-channels induced considerable rectification in the steady-state I/V curves recorded under both voltage-clamp and current-clamp modes between -60 and -25 mV. Both time- and voltage-dependent rectification in the voltage responses to current injection over this range could be predicted from the kinetic properties of IM. 5. It is suggested that IM exerts a strong potential-clamping effect on the behaviour of these neurones at membrane potentials subthreshold to excitation. PMID:6294290
MATLAB implementation of a dynamic clamp with bandwidth >125 KHz capable of generating INa at 37°C
Clausen, Chris; Valiunas, Virginijus; Brink, Peter R.; Cohen, Ira S.
2012-01-01
We describe the construction of a dynamic clamp with bandwidth >125 KHz that utilizes a high performance, yet low cost, standard home/office PC interfaced with a high-speed (16 bit) data acquisition module. High bandwidth is achieved by exploiting recently available software advances (code-generation technology, optimized real-time kernel). Dynamic-clamp programs are constructed using Simulink, a visual programming language. Blocks for computation of membrane currents are written in the high-level matlab language; no programming in C is required. The instrument can be used in single- or dual-cell configurations, with the capability to modify programs while experiments are in progress. We describe an algorithm for computing the fast transient Na+ current (INa) in real time, and test its accuracy and stability using rate constants appropriate for 37°C. We then construct a program capable of supplying three currents to a cell preparation: INa, the hyperpolarizing-activated inward pacemaker current (If), and an inward-rectifier K+ current (IK1). The program corrects for the IR drop due to electrode current flow, and also records all voltages and currents. We tested this program on dual patch-clamped HEK293 cells where the dynamic clamp controls a current-clamp amplifier and a voltage-clamp amplifier controls membrane potential, and current-clamped HEK293 cells where the dynamic clamp produces spontaneous pacing behavior exhibiting Na+ spikes in otherwise passive cells. PMID:23224681
Investigating ion channel conformational changes using voltage clamp fluorometry.
Talwar, Sahil; Lynch, Joseph W
2015-11-01
Ion channels are membrane proteins whose functions are governed by conformational changes. The widespread distribution of ion channels, coupled with their involvement in most physiological and pathological processes and their importance as therapeutic targets, renders the elucidation of these conformational mechanisms highly compelling from a drug discovery perspective. Thanks to recent advances in structural biology techniques, we now have high-resolution static molecular structures for members of the major ion channel families. However, major questions remain to be resolved about the conformational states that ion channels adopt during activation, drug modulation and desensitization. Patch-clamp electrophysiology has long been used to define ion channel conformational states based on functional criteria. It achieves this by monitoring conformational changes at the channel gate and cannot detect conformational changes occurring in regions distant from the gate. Voltage clamp fluorometry involves labelling cysteines introduced into domains of interest with environmentally sensitive fluorophores and inferring structural rearrangements from voltage or ligand-induced fluorescence changes. Ion channel currents are monitored simultaneously to verify the conformational status. By defining real time conformational changes in domains distant from the gate, this technique provides unexpected new insights into ion channel structure and function. This review aims to summarise the methodology and highlight recent innovative applications of this powerful technique. This article is part of the Special Issue entitled 'Fluorescent Tools in Neuropharmacology'. Copyright © 2015 Elsevier Ltd. All rights reserved.
Veenstra, Richard D
2016-01-01
The development of the patch clamp technique has enabled investigators to directly measure gap junction conductance between isolated pairs of small cells with resolution to the single channel level. The dual patch clamp recording technique requires specialized equipment and the acquired skill to reliably establish gigaohm seals and the whole cell recording configuration with high efficiency. This chapter describes the equipment needed and methods required to achieve accurate measurement of macroscopic and single gap junction channel conductances. Inherent limitations with the dual whole cell recording technique and methods to correct for series access resistance errors are defined as well as basic procedures to determine the essential electrical parameters necessary to evaluate the accuracy of gap junction conductance measurements using this approach.
Sammoura, Firas; Smyth, Katherine; Kim, Sang-Gook
2013-09-01
An electric circuit model for a clamped circular bimorph piezoelectric micromachined ultrasonic transducer (pMUT) was developed for the first time. The pMUT consisted of two piezoelectric layers sandwiched between three thin electrodes. The top and bottom electrodes were separated into central and annular electrodes by a small gap. While the middle electrode was grounded, the central and annular electrodes were biased with two independent voltage sources. The strain mismatch between the piezoelectric layers caused the plate to vibrate and transmit a pressure wave, whereas the received echo generated electric charges resulting from plate deformation. The clamped pMUT plate was separated into a circular and an annular plate, and the respective electromechanical transformation matrices were derived. The force and velocity vectors were properly selected using Hamilton's principle and the necessary boundary conditions were invoked. The electromechanical transformation matrix for the clamped circular pMUT was deduced using simple matrix manipulation techniques. The pMUT performance under three biasing schemes was elaborated: 1) central electrode only, 2) central and annular electrodes with voltages of the same magnitude and polarity, and 3) central and annular electrodes with voltages of the same magnitude and opposite polarity. The circuit parameters of the pMUT were extracted for each biasing scheme, including the transformer ratio, the clamped electric impedance, and the open-circuit mechanical impedance. Each pMUT scheme was characterized under different acoustic loadings using the theoretically developed model, which was verified with finite element modeling (FEM) simulation. The electrode size was optimized to maximize the electromechanical transformer ratio. As such, the developed model could provide more insight into the design, optimization, and characterization of pMUTs and allow for performance comparison with their cMUT counterparts.
Equilibrium potential for the postsynaptic response in the squid giant synapse.
Llinás, R; Joyner, R W; Nicholson, C
1974-11-01
The reversal potential for the EPSP in the squid giant synapse has been studied by means of an intracellular, double oil gap technique. This method allows the electrical isolation of a portion of the axon from the rest of the fiber and generates a quasi-isopotential segment. In order to make the input resistance of this nerve segment as constant as possible, the electroresponsive properties of the nerve membrane were blocked by intracellular injection of tetraethylammonium (TEA) and local extracellular application of tetrodotoxin (TTX). Thus, EPSP's could be evoked in the isolated segment with a minimal amount of electroresponsive properties. The reversal potential for the EPSP (EEPSP) was measured by recording the synaptic potential or the synaptic current during voltage clamping. The results indicate that EEPSP may vary from +15 to +25 mV, which is more positive than would be expected for a 1:1 conductance change for Na(+) and K(+) (approximately -15 mV) and too negative for a pure Na(+) conductance ((+)40 mV). This latter value (E(Na)) was directly determined in the voltage clamp experiments. The results suggest that the synaptic potential is probably produced by a permeability change to Na(+) to K(+) in a 4:1 ratio. No change in time-course was observed in the synaptic current at clamp levels of -100 and +90 mV. The implications of a variable ratio for Na(+)-K(+) permeability in subsynaptic-postsynaptic membranes are discussed.
Sodium influxes in internally perfused squid giant axon during voltage clamp.
Atwater, I; Bezanilla, F; Rojas, E
1969-05-01
1. An experimental method for measuring ionic influxes during voltage clamp in the giant axon of Dosidicus is described; the technique combines intracellular perfusion with a method for controlling membrane potential.2. Sodium influx determinations were carried out while applying rectangular pulses of membrane depolarization. The ratio ;measured sodium influx/computed ionic flux during the early current' is 0.92 +/- 0.12.3. Plots of measured sodium influx and computed ionic flux during the early current against membrane potential are very similar. There was evidence that the membrane potential at which the sodium influx vanishes is the potential at which the early current reverses.
High-throughput electrophysiological assays for voltage gated ion channels using SyncroPatch 768PE.
Li, Tianbo; Lu, Gang; Chiang, Eugene Y; Chernov-Rogan, Tania; Grogan, Jane L; Chen, Jun
2017-01-01
Ion channels regulate a variety of physiological processes and represent an important class of drug target. Among the many methods of studying ion channel function, patch clamp electrophysiology is considered the gold standard by providing the ultimate precision and flexibility. However, its utility in ion channel drug discovery is impeded by low throughput. Additionally, characterization of endogenous ion channels in primary cells remains technical challenging. In recent years, many automated patch clamp (APC) platforms have been developed to overcome these challenges, albeit with varying throughput, data quality and success rate. In this study, we utilized SyncroPatch 768PE, one of the latest generation APC platforms which conducts parallel recording from two-384 modules with giga-seal data quality, to push these 2 boundaries. By optimizing various cell patching parameters and a two-step voltage protocol, we developed a high throughput APC assay for the voltage-gated sodium channel Nav1.7. By testing a group of Nav1.7 reference compounds' IC50, this assay was proved to be highly consistent with manual patch clamp (R > 0.9). In a pilot screening of 10,000 compounds, the success rate, defined by > 500 MΩ seal resistance and >500 pA peak current, was 79%. The assay was robust with daily throughput ~ 6,000 data points and Z' factor 0.72. Using the same platform, we also successfully recorded endogenous voltage-gated potassium channel Kv1.3 in primary T cells. Together, our data suggest that SyncroPatch 768PE provides a powerful platform for ion channel research and drug discovery.
Hristov, Kiril L.; Smith, Amy C.; Parajuli, Shankar P.; Malysz, John
2013-01-01
Large-conductance voltage- and Ca2+-activated K+ (BK) channels are critical regulators of detrusor smooth muscle (DSM) excitability and contractility. PKC modulates the contraction of DSM and BK channel activity in non-DSM cells; however, the cellular mechanism regulating the PKC-BK channel interaction in DSM remains unknown. We provide a novel mechanistic insight into BK channel regulation by PKC in DSM. We used patch-clamp electrophysiology, live-cell Ca2+ imaging, and functional studies of DSM contractility to elucidate BK channel regulation by PKC at cellular and tissue levels. Voltage-clamp experiments showed that pharmacological activation of PKC with PMA inhibited the spontaneous transient BK currents in native freshly isolated guinea pig DSM cells. Current-clamp recordings revealed that PMA significantly depolarized DSM membrane potential and inhibited the spontaneous transient hyperpolarizations in DSM cells. The PMA inhibitory effects on DSM membrane potential were completely abolished by the selective BK channel inhibitor paxilline. Activation of PKC with PMA did not affect the amplitude of the voltage-step-induced whole cell steady-state BK current or the single BK channel open probability (recorded in cell-attached mode) upon inhibition of all major Ca2+ sources for BK channel activation with thapsigargin, ryanodine, and nifedipine. PKC activation with PMA elevated intracellular Ca2+ levels in DSM cells and increased spontaneous phasic and nerve-evoked contractions of DSM isolated strips. Our results support the concept that PKC activation leads to a reduction of BK channel activity in DSM via a Ca2+-dependent mechanism, thus increasing DSM contractility. PMID:24352333
Sodium influxes in internally perfused squid giant axon during voltage clamp
Atwater, I.; Bezanilla, F.; Rojas, E.
1969-01-01
1. An experimental method for measuring ionic influxes during voltage clamp in the giant axon of Dosidicus is described; the technique combines intracellular perfusion with a method for controlling membrane potential. 2. Sodium influx determinations were carried out while applying rectangular pulses of membrane depolarization. The ratio `measured sodium influx/computed ionic flux during the early current' is 0·92 ± 0·12. 3. Plots of measured sodium influx and computed ionic flux during the early current against membrane potential are very similar. There was evidence that the membrane potential at which the sodium influx vanishes is the potential at which the early current reverses. PMID:5767887
NASA Astrophysics Data System (ADS)
Zheng, Yu; Dong, Lei; Gao, Yang; Dou, Jun-Rong; Li, Ze-yan
2016-10-01
Combined with the use of patch-clamp techniques, repetitive transcranial magnetic stimulation (rTMS) has proven to be a noninvasive neuromodulation tool that can inhibit or facilitate excitability of neurons after extensive research. The studies generally focused on the method: the neurons are first stimulated in an external standard magnetic exposure device, and then moved to the patch-clamp to record electrophysiological characteristics (off-line magnetic exposure). Despite its universality, real-time observation of the effects of magnetic stimulation on the neurons is more effective (on-line magnetic stimulation). In this study, we selected a standard exposure device for magnetic fields acting on mouse prefrontal cortex pyramidal neurons, and described a new method that a patch-clamp setup was modified to allow on-line magnetic stimulation. By comparing the off-line exposure and on-line stimulation of the same magnetic field intensity and frequency affecting the voltage-gated sodium channel currents, we succeeded in proving the feasibility of the new on-line stimulation device. We also demonstrated that the sodium channel currents of prefrontal cortex pyramidal neurons increased significantly under the 15 Hz sine 1 mT, and 2 mT off-line magnetic field exposure and under the 1 mT and 2 mT on-line magnetic stimulation, and the rate of acceleration was most significant on 2 mT on-line magnetic stimulation. This study described the development of a new on-line magnetic stimulator and successfully demonstrated its practicability for scientific stimulation of neurons.
Hainsworth, Atticus H; Randall, Andrew D; Stefani, Alessandro
2005-01-01
Voltage-sensitive Ca(2+) channels (VSCC) play a central role in an extensive array of physiological processes. Their importance in cellular function arises from their ability both to sense membrane voltage and to conduct Ca(2+) ions, two facets that couple membrane excitability to a key intracellular second messenger. Through this relationship, activation of VSCCs is tightly coupled to the gamut of cellular functions dependent on intracellular Ca(2+), including muscle contraction, energy metabolism, gene expression, and exocytotic/endocytotic cycling.
Ye, Q; Heck, G L; DeSimone, J A
1993-07-01
1. Voltage-clamp and current-clamp data were obtained from a circumscribed region of the anterior rat lingual epithelium while simultaneously monitoring the afferent, stimulus-evoked, neural response from the same receptive field. 2. Chorda tympani (CT) responses at constant Na(+)-salt concentration were enhanced by submucosa negative voltage clamp and suppressed by positive voltage clamp. The complete CT response profile, including the time course of adaptation, was not uniquely determined by NaCl concentration alone. The response could be reproduced at different NaCl concentrations by applying a compensating voltage. 3. The form of the concentration and voltage dependence of the CT response indicates that the complete stimulus energy is the Na+ electrochemical potential difference across receptor cell apical membranes, and not Na+ concentration alone. This is the underlying principal behind the equivalence of chemical and electric taste for Na+ salts. 4. CT responses to sodium gluconate (25 and 200 mM) and 25 mM NaCl produced amiloride-insensitive components (AIC) of low magnitude. NaCl at 200 mM produced a significantly larger AIC. The AIC was voltage-clamp independent. The relative magnitude of the AIC was positively correlated with the transepithelial conductance of each salt. This suggests that the large AIC for 200 mM NaCl results from its relatively high permeability through the paracellular pathway. 5. Analysis of the CT response under voltage clamp revealed two anion effects on Na(+)-salt taste, both of which act through the paracellular shunt. 1) Anions modify the transepithelial potential (TP) across tight junctions and thereby modulate the cell receptor potential. This anion effect can be eliminated by voltage clamping the TP. 2) Sufficiently mobile anions facilitate electroneutral diffusion of Na+ salts through tight junctions. This effect is observed especially when Cl- is the anion and when the stimulus concentration favors NaCl influx, allowing Na+ to stimulate receptor cells from the submucosal side. Because the submucosal intercellular spaces are nearly isopotential regions, this effect is insensitive to voltage clamp of the TP. The large AIC associated with this anion effect is due to the low permeability of amiloride.
Zhou, Lushan; Zeng, Yuhan; Baker, Lane A; Hou, Jianghui
2015-01-01
Direct recording of tight junction permeability is of pivotal importance to many biologic fields. Previous approaches bear an intrinsic disadvantage due to the difficulty of separating tight junction conductance from nearby membrane conductance. Here, we propose the design of Double whole-cell Voltage Clamp - Ion Conductance Microscopy (DVC-ICM) based on previously demonstrated potentiometric scanning of local conductive pathways. As proposed, DVC-ICM utilizes two coordinated whole-cell patch-clamps to neutralize the apical membrane current during potentiometric scanning, which in models described here will profoundly enhance the specificity of tight junction recording. Several potential pitfalls are considered, evaluated and addressed with alternative countermeasures. PMID:26716077
Separate Cl^- Conductances Activated by cAMP and Ca2+ in Cl^--Secreting Epithelial Cells
NASA Astrophysics Data System (ADS)
Cliff, William H.; Frizzell, Raymond A.
1990-07-01
We studied the cAMP- and Ca2+-activated secretory Cl^- conductances in the Cl^--secreting colonic epithelial cell line T84 using the whole-cell patch-clamp technique. Cl^- and K^+ currents were measured under voltage clamp. Forskolin or cAMP increased Cl^- current 2-15 times with no change in K^+ current. The current-voltage relation for cAMP-activated Cl^- current was linear from -100 to +100 mV and showed no time-dependent changes in current during voltage pulses. Ca2+ ionophores or increased pipette Ca2+ increased both Cl^- and K^+ currents 2-30 times. The Ca2+-activated Cl^- current was outwardly rectified, activated during depolarizing voltage pulses, and inactivated during hyperpolarizing voltage pulses. Addition of ionophore after forskolin further increased Cl^- conductance 1.5-5 times, and the current took on the time-dependent characteristics of that stimulated by Ca2+. Thus, cAMP and Ca2+ activate Cl^- conductances with different properties, implying that these second messengers activate different Cl^- channels or that they induce different conductive and kinetic states in the same Cl^- channel.
NASA Astrophysics Data System (ADS)
Morales-Reyes, I.; Seseña-Rubfiaro, A.; Acosta-García, M. C.; Batina, N.; Godínez-Fernández, R.
2016-08-01
It is well known that, in excitable cells, the dynamics of the ion currents (I i) is extremely important to determine both the magnitude and time course of an action potential (A p). To observe these two processes simultaneously, we cultured NG108-15 cells over a multi-walled carbon nanotubes electrode (MWCNTe) surface and arranged a two independent Patch Clamp system configuration (Bi-Patch Clamp). The first system was used in the voltage or current clamp mode, using a glass micropipette as an electrode. The second system was modified to connect the MWCNTe to virtual ground. While the A p was recorded through the micropipette electrode, the MWCNTe was used to measure the underlying whole-cell current. This configuration allowed us to record both the membrane voltage (V m) and the current changes simultaneously. Images acquired by atomic force microscopy (AFM) and scanning electron microscopy (SEM) indicate that cultured cells developed a complex network of neurites, which served to establish the necessary close contact and strong adhesion to the MWCNTe surface. These features were a key factor to obtain the recording of the whole-cell I i with a high signal to noise ratio (SNR). The experimental results were satisfactorily reproduced by a theoretical model developed to simulate the proposed system. Besides the contribution to a better understanding of the fundamental mechanisms involved in cell communication, the developed method could be useful in cell physiology studies, pharmacology and diseases diagnosis.
Comparison of sarcolemmal calcium channel current in rabbit and rat ventricular myocytes.
Yuan, W; Ginsburg, K S; Bers, D M
1996-01-01
1. Fundamental properties of Ca2+ channel currents in rat and rabbit ventricular myocytes were measured using whole cell voltage clamp. 2. In rat, as compared with rabbit myocytes, Ca2+ channel current (ICa) was half-activated at about 10 mV more negative potential, decayed slower, was half-inactivated (in steady state) at about 5 mV more positive potential, and recovered faster from inactivation. 3. These features result in a larger steady-state window current in rat, and also suggest that under comparable voltage clamp conditions, including action potential (AP) clamp, more Ca2+ influx would be expected in rat myocytes. 4. Ca2+ channel current carried by Na+ and Cs+ in the absence of divalent ions (Ins) also activated at more negative potential and decayed more slowly in rat. 5. The reversal potential for Ins was 6 mV more positive in rabbit, consistent with a larger permeability ratio (PNa/PCs) in rabbit than in rat. ICa also reversed at slightly more positive potentials in rabbit (such that PCa/PCs might also be higher). 6. Ca2+ influx was calculated by integration of ICa evoked by voltage clamp pulses (either square pulses or pulses based on recorded rabbit or rat APs). For a given clamp waveform, the Ca2+ influx was up to 25% greater in rat, as predicted from the fundamental properties of ICa and Ins. 7. However, the longer duration of the AP in rabbit myocytes compensated for the difference in influx, such that the integrated Ca2+ influx via ICa in response to the species-appropriate waveform was about twice as large as that seen in rat. PMID:8799895
The properties of single cones isolated from the tiger salamander retina
Attwell, David; Werblin, Frank S.; Wilson, Martin
1982-01-01
1. The properties of isolated single cones were studied using the voltage-clamp technique, with two micro-electrodes inserted under visual control. 2. Single cones had input resistances, when impaled with two electrodes, of up to 270 MΩ. This is probably lower than the true membrane resistance, because of damage by the impaling electrodes. The cone capacitance was about 85 pF. 3. The cone membrane contains a time-dependent current, IB, controlled by voltage, and a separate photosensitive current. 4. The gated current, IB, is an inward current with a reversal potential around -25 mV. It is activated by hyperpolarization over the range -30 to -80 mV, and at constant voltage obeys first order (exponential) kinetics. The gating time constant is typically 50 ms at the resting potential of -45 mV, rises to 170 ms at -70 mV, and decreases for further hyperpolarization. 5. The spectral sensitivity curve of the cone light response peaks at 620 nm wave-length, and is narrower than the nomogram for vitamin A2-based pigments. The light responses of isolated cones are spectrally univariant. 6. Voltage-clamped photocurrents were recorded at various membrane potentials, for light steps of various intensities. The photocurrent reversed at around -8 mV. The time course of the photocurrent, for a given intensity, was approximately independent of voltage (although its magnitude was voltage-dependent). The shape of the peak current—voltage relation of the light-sensitive current was independent of light intensity (although its magnitude was intensity-dependent). 7. These results can be explained if: (a) light simply changes the number of photosensitive channels open, without altering the properties of an open channel; (b) the reactions controlling the production of internal transmitter, the binding of internal transmitter to the photosensitive channels, and the closing and opening of the channels are unaffected by the electric field in the cone membrane, even though at least some of these reactions take place in the membrane. 8. IB plays only a small role in shaping the cone voltage response to light. ImagesPlate 1 PMID:7131315
Banciu, Adela; Banciu, Daniel Dumitru; Mustaciosu, Cosmin Catalin; Radu, Mihai; Cretoiu, Dragos; Xiao, Junjie; Cretoiu, Sanda Maria; Suciu, Nicolae; Radu, Beatrice Mihaela
2018-05-09
Voltage-gated calcium channels and estrogen receptors are essential players in uterine physiology, and their association with different calcium signaling pathways contributes to healthy and pathological conditions of the uterine myometrium. Among the properties of the various cell subtypes present in human uterine myometrium, there is increasing evidence that calcium oscillations in telocytes (TCs) contribute to contractile activity and pregnancy. Our study aimed to evaluate the effects of beta-estradiol on voltage-gated calcium channels and estrogen receptors in TCs from human uterine myometrium and to understand their role in pregnancy. For this purpose, we employed patch-clamp recordings, ratiometric Fura-2-based calcium imaging analysis, and qRT-PCR techniques for the analysis of cultured human myometrial TCs derived from pregnant and non-pregnant uterine samples. In human myometrial TCs from both non-pregnant and pregnant uterus, we evidenced by qRT-PCR the presence of genes encoding for voltage-gated calcium channels (Cav3.1, Ca3.2, Cav3.3, Cav2.1), estrogen receptors (ESR1, ESR2, GPR30), and nuclear receptor coactivator 3 (NCOA3). Pregnancy significantly upregulated Cav3.1 and downregulated Cav3.2, Cav3.3, ESR1, ESR2, and NCOA3, compared to the non-pregnant condition. Beta-estradiol treatment (24 h, 10, 100, 1000 nM) downregulated Cav3.2, Cav3.3, Cav1.2, ESR1, ESR2, GRP30, and NCOA3 in TCs from human pregnant uterine myometrium. We also confirmed the functional expression of voltage-gated calcium channels by patch-clamp recordings and calcium imaging analysis of TCs from pregnant human myometrium by perfusing with BAY K8644, which induced calcium influx through these channels. Additionally, we demonstrated that beta-estradiol (1000 nM) antagonized the effect of BAY K8644 (2.5 or 5 µM) in the same preparations. In conclusion, we evidenced the presence of voltage-gated calcium channels and estrogen receptors in TCs from non-pregnant and pregnant human uterine myometrium and their gene expression regulation by beta-estradiol in pregnant conditions. Further exploration of the calcium signaling in TCs and its modulation by estrogen hormones will contribute to the understanding of labor and pregnancy mechanisms and to the development of effective strategies to reduce the risk of premature birth.
Flip the tip: an automated, high quality, cost-effective patch clamp screen.
Lepple-Wienhues, Albrecht; Ferlinz, Klaus; Seeger, Achim; Schäfer, Arvid
2003-01-01
The race for creating an automated patch clamp has begun. Here, we present a novel technology to produce true gigaseals and whole cell preparations at a high rate. Suspended cells are flushed toward the tip of glass micropipettes. Seal, whole-cell break-in, and pipette/liquid handling are fully automated. Extremely stable seals and access resistance guarantee high recording quality. Data obtained from different cell types sealed inside pipettes show long-term stability, voltage clamp and seal quality, as well as block by compounds in the pM range. A flexible array of independent electrode positions minimizes consumables consumption at maximal throughput. Pulled micropipettes guarantee a proven gigaseal substrate with ultra clean and smooth surface at low cost.
An equivalent circuit for small atrial trabeculae of frog.
Jakobsson, E; Barr, L; Connor, J A
1975-01-01
An equivalent electrical circuit has been constructed for small atrial trabecula of frog in a double sucrose gap voltage clamp apparatus. The basic strategy in constructing the circuit was to derive the distribution of membrane capacitance and extracellular resistance from the preparation's response to small voltage displacements near the resting condition, when the membrane conductance is presumably quite low. Then standard Hodgkin-Huxley channels were placed in parallel with the capacitance and the results of voltage clamp experiments were simulated. The results suggest that the membranes of the preparation cannot in fact be clamped near the control voltage nor can the ionic currents be measured directly with reasonable accuracy by axon standards. It may or may not be a realizable goal in the future to define the preparation's electrical behavior well enough to permit the ultimate quantitative description of the membrane's specific ion conductances. The result of this paper suggest that if this goal is achieved using the double sucrose gap voltage clamp, it will be by a detailed quantitative accounting for substantial irreducible errors in voltage control, rather than by experimental achievement of good voltage control. PMID:1203441
A patch clamp study on reconstituted calcium permeable channels of human sperm plasma membranes.
Ma, X H; Shi, Y L
1999-10-01
Ionic flux is thought to be important in the initiating process of gamete interaction such as acrosome reaction. However, modern electrophysiological methods, intracellular recording and patch-clamping, are difficult to approach the ion channels in mammal sperm membrane of an intact sperm due to its small size. In this work, by reconstituting the channel protein into lipid bilayer, Ca2+ channels in human spermatozoa were investigated with voltage clamp technique. Membrane proteins isolated from human sperm of 12 healthy donors were incorporated into lipid bilayer via fusion. In a cis 50//trans 10 mmol/L CaCl2 solution system, two types of channel events with similar reversal potential near the value of a perfect Ca2+ electrode, and sensitive to nifedipine and verapamil, were observed. Their unit conductance was 40 and 25 pS respectively. Percentage of channel open time was not dependent to holding potential for the former. However, for the channels of 25 pS, the percentage increased when the holding potential was changed from -20 to 100 mV. Ca(2+)-permeable channels were also detected from the spermatozoon samples of two infertile donors. Abnormal open time of these channels indicates that there are some defects in the conformation of the channel protein of infertile sperm membrane.
Yue, Jin-feng; Qiao, Guan-hua; Liu, Ni; Nan, Fa-jun; Gao, Zhao-bing
2016-01-01
Aim: To establish an improved, high-throughput screening techniques for identifying novel KCNQ2 channel activators. Methods: KCNQ2 channels were stably expressed in CHO cells (KCNQ2 cells). Thallium flux assay was used for primary screening, and 384-well automated patch-clamp IonWorks Barracuda was used for hit validation. Two validated activators were characterized using a conventional patch-clamp recording technique. Results: From a collection of 80 000 compounds, the primary screening revealed a total of 565 compounds that potentiated the fluorescence signals in thallium flux assay by more than 150%. When the 565 hits were examined in IonWorks Barracuda, 38 compounds significantly enhanced the outward currents recorded in KCNQ2 cells, and were confirmed as KCNQ2 activators. In the conventional patch-clamp recordings, two validated activators ZG1732 and ZG2083 enhanced KCNQ2 currents with EC50 values of 1.04±0.18 μmol/L and 1.37±0.06 μmol/L, respectively. Conclusion: The combination of thallium flux assay and IonWorks Barracuda assay is an efficient high-throughput screening (HTS) route for discovering KCNQ2 activators. PMID:26725738
Preferential inhibition of Ih in rat trigeminal ganglion neurons by an organic blocker.
Janigro, D; Martenson, M E; Baumann, T K
1997-11-15
The potency and specificity of a novel organic Ih current blocker DK-AH 268 (DK, Boehringer) was studied in cultured rat trigeminal ganglion neurons using whole-cell patch-clamp recording techniques. In neurons current-clamped at the resting potential, the application of 10 microM DK caused a slight hyperpolarization of the membrane potential and a small increase in the threshold for action potential discharge without any major change in the shape of the action potential. In voltage-clamped neurons, DK caused a reduction of a hyperpolarization-activated current. Current subtraction protocols revealed that the time-dependent, hyperpolarization-activated currents blocked by 10 microM DK or external Cs+ (3 mM) had virtually identical activation properties, suggesting that DK and Cs+ caused blockade of the same current, namely Ih. The block of Ih by DK was dose-dependent. At the intermediate and higher concentrations of DK (10 and 100 microM) a decrease in specificity was observed so that time-independent, inwardly rectifying and noninactivating, voltage-gated outward potassium currents were also reduced by DK but to a much lesser extent than the time-dependent, hyperpolarization-activated currents. Blockade of the time-dependent, hyperpolarization-activated currents by DK appeared to be use-dependent since it required hyperpolarization for the effect to take place. Relief of DK block was also aided by membrane hyperpolarization. Since both the time-dependent current blocked by DK and the Cs+-sensitive time-dependent current behaved as Ih, we conclude that 10 microM DK can preferentially reduce Ih without a major effect on other potassium currents. Thus, DK may be a useful agent in the investigation of the function of Ih in neurons.
LabPatch, an acquisition and analysis program for patch-clamp electrophysiology.
Robinson, T; Thomsen, L; Huizinga, J D
2000-05-01
An acquisition and analysis program, "LabPatch," has been developed for use in patch-clamp research. LabPatch controls any patch-clamp amplifier, acquires and records data, runs voltage protocols, plots and analyzes data, and connects to spreadsheet and database programs. Controls within LabPatch are grouped by function on one screen, much like an oscilloscope front panel. The software is mouse driven, so that the user need only point and click. Finally, the ability to copy data to other programs running in Windows 95/98, and the ability to keep track of experiments using a database, make LabPatch extremely versatile. The system requirements include Windows 95/98, at least a 100-MHz processor and 16 MB RAM, a data acquisition card, digital-to-analog converter, and a patch-clamp amplifier. LabPatch is available free of charge at http://www.fhs.mcmaster.ca/huizinga/.
Robotic Automation of In Vivo Two-Photon Targeted Whole-Cell Patch-Clamp Electrophysiology.
Annecchino, Luca A; Morris, Alexander R; Copeland, Caroline S; Agabi, Oshiorenoya E; Chadderton, Paul; Schultz, Simon R
2017-08-30
Whole-cell patch-clamp electrophysiological recording is a powerful technique for studying cellular function. While in vivo patch-clamp recording has recently benefited from automation, it is normally performed "blind," meaning that throughput for sampling some genetically or morphologically defined cell types is unacceptably low. One solution to this problem is to use two-photon microscopy to target fluorescently labeled neurons. Combining this with robotic automation is difficult, however, as micropipette penetration induces tissue deformation, moving target cells from their initial location. Here we describe a platform for automated two-photon targeted patch-clamp recording, which solves this problem by making use of a closed loop visual servo algorithm. Our system keeps the target cell in focus while iteratively adjusting the pipette approach trajectory to compensate for tissue motion. We demonstrate platform validation with patch-clamp recordings from a variety of cells in the mouse neocortex and cerebellum. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Szabó, László; Szentandrássy, Norbert; Kistamás, Kornél; Hegyi, Bence; Ruzsnavszky, Ferenc; Váczi, Krisztina; Horváth, Balázs; Magyar, János; Bányász, Tamás; Pál, Balázs; Nánási, Péter P
2013-03-01
Tacrolimus is a commonly used immunosuppressive agent which causes cardiovascular complications, e.g., hypertension and hypertrophic cardiomyopathy. In spite of it, there is little information on the cellular cardiac effects of the immunosuppressive agent tacrolimus in larger mammals. In the present study, therefore, the concentration-dependent effects of tacrolimus on action potential morphology and the underlying ion currents were studied in canine ventricular cardiomyocytes. Standard microelectrode, conventional whole cell patch clamp, and action potential voltage clamp techniques were applied in myocytes enzymatically dispersed from canine ventricular myocardium. Tacrolimus (3-30 μM) caused a concentration-dependent reduction of maximum velocity of depolarization and repolarization, action potential amplitude, phase-1 repolarization, action potential duration, and plateau potential, while no significant change in the resting membrane potential was observed. Conventional voltage clamp experiments revealed that tacrolimus concentrations ≥3 μM blocked a variety of ion currents, including I(Ca), I(to), I(K1), I(Kr), and I(Ks). Similar results were obtained under action potential voltage clamp conditions. These effects of tacrolimus developed rapidly and were fully reversible upon washout. The blockade of inward currents with the concomitant shortening of action potential duration in canine myocytes is the opposite of those observed previously with tacrolimus in small rodents. It is concluded that although tacrolimus blocks several ion channels at higher concentrations, there is no risk of direct interaction with cardiac ion channels when applying tacrolimus in therapeutic concentrations.
Correlation of open cell-attached and excised patch clamp techniques.
Filipovic, D; Hayslett, J P
1995-11-01
The excised patch clamp configuration provides a unique technique for some types of single channel analyses, but maintenance of stable, long-lasting preparations may be confounded by rundown and/or rapid loss of seal. Studies were performed on the amiloride-sensitive Na+ channel, located on the apical surface of A6 cells, to determine whether the nystatin-induced open cell-attached patch could serve as an alternative configuration. Compared to excised inside-out patches, stable preparations were achieved more readily with the open cell-attached patch (9% vs. 56% of attempts). In both preparations, the current voltage (I-V) relation was linear, current amplitudes were equal at opposite equivalent clamped voltages, and Erev was zero in symmetrical Na+ solutions, indicating similar Na+ activities on the cytosolic and external surfaces of the patch. Moreover, there was no evidence that nystatin altered channel activity in the patch because slope conductance (3-4pS) and Erev (75 mV), when the bath was perfused with a high K:low Na solution (ENa = 80 mV), were nearly equal in both patch configurations. Our results therefore indicate that the nystatin-induced open cell-attached patch can serve as an alternative approach to the excised inside-out patch when experiments require modulation of univalent ions in the cytosol.
Feng, Guo-Hua; Huang, Wei-Lun
2014-12-01
This paper presents a smart tuning-fork-shaped ionic polymer metal composite (IPMC) clamping actuator for biomedical applications. The two fingers of the actuator, which perform the clamping motion, can be electrically controlled through a unique electrode design on the IPMC material. The generated displacement or strain of the fingers can be sensed using an integrated soft strain-gage sensor. The IPMC actuator and associated soft strain gage were fabricated using a micromachining technique. A 13.5×4×2 mm(3) actuator was shaped from Nafion solution and a selectively grown metal electrode formed the active region. The strain gage consisted of patterned copper foil and polyethylene as a substrate. The relationship between the strain gage voltage output and the displacement at the front end of the actuator's fingers was characterized. The equivalent Young's modulus, 13.65 MPa, of the soft-strain-gage-integrated IPMC finger was analyzed. The produced clamping force exhibited a linear increasing rate of 1.07 mN/s, based on a dc driving voltage of 7 V. Using the developed actuator to clamp soft matter and simultaneously acquire its Young's modulus was achieved. This demonstrated the feasibility of the palpation function and the potential use of the actuator in minimally invasive surgery. Copyright © 2014 Elsevier B.V. All rights reserved.
Performance of Li-Ion Cells Under Battery Voltage Charge Control
NASA Technical Reports Server (NTRS)
Rao, Gopalakrishna M.; Vaidyanathan, Hari; Day, John H. (Technical Monitor)
2001-01-01
A study consisting of electrochemical characterization and Low-Earth-Orbit (LEO) cycling of Li-Ion cells from three vendors was initiated in 1999 to determine the cycling performance and to infuse the new technology in the future NASA missions. The 8-cell batteries included in this evaluation are prismatic cells manufactured by Mine Safety Appliances Company (MSA), cylindrical cells manufactured by SAFT and prismatic cells manufactured by Yardney Technical Products, Inc. (YTP). The three batteries were cycle tested in the LEO regime at 40% depth of discharge, and under a charge control technique that consists of battery voltage clamp with a current taper. The initial testing was conducted at 20 C; however, the batteries were cycled also intermittently at low temperatures. YTP 20 Ah cells consisted of mixed-oxide (Co and Ni) positive, graphitic carbon negative, LIPF6 salt mixed with organic carbonate solvents. The battery voltage clamp was 32 V. The low temperature cycling tests started after 4575 cycles at 20 C. The cells were not capable of cycling. at low temperature since the charge acceptance at battery level was poor. There was a cell in the battery that showed too high an end-of-charge (EOC) voltage thereby limiting the ability to charge the rest of the cells in the battery. The battery has completed 6714 cycles. SAFT 12 Ah cells consisted of mixed-oxide (Co and NO positive, graphitic carbon negative, LiPF6 salt mixed with organic carbonate solvents. The battery voltage clamp was for 30.8 V. The low temperature cycling tests started after 4594 cycles at 20 C. A cell that showed low end of discharge (EOD) and EOC voltages and three other cells that showed higher EOC voltages limited the charge acceptance at the selected voltage limit during charge. The cells were capable of cycling at 10 C and 0 C but the charge voltage limit had to be increased to 34.3 V (4.3 V per cell). The low temperature cycling may have induced poor chargeability since the voltage had to be increased to achieve the required charge input. The battery has completed 6226 cycles. MSA 10 Ah cells consisted of Co oxide positive, graphitic carbon negative, LiPF6 salt mixed with organic carbonate solvents. The battery voltage clamp was 30.8 V. The low temperature cycling tests were started after 2182 cycles at 20 C. The cells were capable of cycling at 10 C and 0 C. Like SAFT, the voltage limit on charge had to be increased to 36 V (4.5 V per cell). There was a cell (cell S/N 13) in the battery that showed poor performance features such as low EOD voltage and high EOC voltage. The battery has completed 3441 cycles. A reconditioning procedure that consisted of C15 charge to a taper current of C/100 and C/20 discharge improved the voltage behavior of SAFT and MSA cells with no significant effect on YTP cells. We have demonstrated that the charge operation with VT clamp at battery rather than at cell level is feasible for onboard Li-Ion battery operation.
Newman, Jonathan P.; Zeller-Townson, Riley; Fong, Ming-Fai; Arcot Desai, Sharanya; Gross, Robert E.; Potter, Steve M.
2013-01-01
Single neuron feedback control techniques, such as voltage clamp and dynamic clamp, have enabled numerous advances in our understanding of ion channels, electrochemical signaling, and neural dynamics. Although commercially available multichannel recording and stimulation systems are commonly used for studying neural processing at the network level, they provide little native support for real-time feedback. We developed the open-source NeuroRighter multichannel electrophysiology hardware and software platform for closed-loop multichannel control with a focus on accessibility and low cost. NeuroRighter allows 64 channels of stimulation and recording for around US $10,000, along with the ability to integrate with other software and hardware. Here, we present substantial enhancements to the NeuroRighter platform, including a redesigned desktop application, a new stimulation subsystem allowing arbitrary stimulation patterns, low-latency data servers for accessing data streams, and a new application programming interface (API) for creating closed-loop protocols that can be inserted into NeuroRighter as plugin programs. This greatly simplifies the design of sophisticated real-time experiments without sacrificing the power and speed of a compiled programming language. Here we present a detailed description of NeuroRighter as a stand-alone application, its plugin API, and an extensive set of case studies that highlight the system’s abilities for conducting closed-loop, multichannel interfacing experiments. PMID:23346047
Mitoh, Yoshihiro; Ueda, Hirotaka; Ichikawa, Hiroyuki; Fujita, Masako; Kobashi, Motoi; Matsuo, Ryuji
2017-09-01
The superior salivatory nucleus (SSN) contains parasympathetic preganglionic neurons innervating the submandibular and sublingual salivary glands. Cevimeline, a muscarinic acetylcholine receptor (mAChR) agonist, is a sialogogue that possibly stimulates SSN neurons in addition to the salivary glands themselves because it can cross the blood-brain barrier (BBB). In the present study, we examined immunoreactivities for mAChR subtypes in SSN neurons retrogradely labeled with a fluorescent tracer in neonatal rats. Additionally, we examined the effects of cevimeline in labeled SSN neurons of brainstem slices using a whole-cell patch-clamp technique. Mainly M1 and M3 receptors were detected by immunohistochemical staining, with low-level detection of M4 and M5 receptors and absence of M2 receptors. Most (110 of 129) SSN neurons exhibited excitatory responses to application of cevimeline. In responding neurons, voltage-clamp recordings showed that 84% (101/120) of the neurons exhibited inward currents. In the neurons displaying inward currents, the effects of the mAChR antagonists were examined. A mixture of M1 and M3 receptor antagonists most effectively reduced the peak amplitude of inward currents, suggesting that the excitatory effects of cevimeline on SSN neurons were mainly mediated by M1 and M3 receptors. Current-clamp recordings showed that application of cevimeline induced membrane depolarization (9/9 neurons). These results suggest that most SSN neurons are excited by cevimeline via M1 and M3 muscarinic receptors. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Radivojevic, Milos; Jäckel, David; Altermatt, Michael; Müller, Jan; Viswam, Vijay; Hierlemann, Andreas; Bakkum, Douglas J.
2016-08-01
A detailed, high-spatiotemporal-resolution characterization of neuronal responses to local electrical fields and the capability of precise extracellular microstimulation of selected neurons are pivotal for studying and manipulating neuronal activity and circuits in networks and for developing neural prosthetics. Here, we studied cultured neocortical neurons by using high-density microelectrode arrays and optical imaging, complemented by the patch-clamp technique, and with the aim to correlate morphological and electrical features of neuronal compartments with their responsiveness to extracellular stimulation. We developed strategies to electrically identify any neuron in the network, while subcellular spatial resolution recording of extracellular action potential (AP) traces enabled their assignment to the axon initial segment (AIS), axonal arbor and proximal somatodendritic compartments. Stimulation at the AIS required low voltages and provided immediate, selective and reliable neuronal activation, whereas stimulation at the soma required high voltages and produced delayed and unreliable responses. Subthreshold stimulation at the soma depolarized the somatic membrane potential without eliciting APs.
Lin, J H; Rydqvist, B
1999-06-05
Inward Na+ currents were studied, using a two-microelectrode intracellular voltage-clamp technique, in the slowly adapting (SA) and rapidly adapting (RA) stretch receptor neurons of the crayfish after the axons were cut at different distances from the soma. In the SA neuron, inward Na+ currents were recorded in the soma even when the axon was cut as close as 100 microm from the center of the soma, indicating the presence of Na+ channels in these parts. Also, two populations of Na+ channels seem to exist in the SA neuron. In the RA neuron, only minute Na+ currents were observed if the axon was shorter than 250 microm. The results strongly indicate that the voltage-gated Na+ channels in the SA and RA neurons have different distributions and that the difference in the spatial distribution of Na+ channel types may be important for the difference in firing properties in the two types of neurons. Copyright 1999 Elsevier Science B.V.
Yajuan, Xiao; Xin, Liang; Zhiyuan, Li
2012-01-01
The patch clamp technique is commonly used in electrophysiological experiments and offers direct insight into ion channel properties through the characterization of ion channel activity. This technique can be used to elucidate the interaction between a drug and a specific ion channel at different conformational states to understand the ion channel modulators’ mechanisms. The patch clamp technique is regarded as a gold standard for ion channel research; however, it suffers from low throughput and high personnel costs. In the last decade, the development of several automated electrophysiology platforms has greatly increased the screen throughput of whole cell electrophysiological recordings. New advancements in the automated patch clamp systems have aimed to provide high data quality, high content, and high throughput. However, due to the limitations noted above, automated patch clamp systems are not capable of replacing manual patch clamp systems in ion channel research. While automated patch clamp systems are useful for screening large amounts of compounds in cell lines that stably express high levels of ion channels, the manual patch clamp technique is still necessary for studying ion channel properties in some research areas and for specific cell types, including primary cells that have mixed cell types and differentiated cells that derive from induced pluripotent stem cells (iPSCs) or embryonic stem cells (ESCs). Therefore, further improvements in flexibility with regard to cell types and data quality will broaden the applications of the automated patch clamp systems in both academia and industry. PMID:23346269
Nicergoline inhibits T-type Ca2+ channels in rat isolated hippocampal CA1 pyramidal neurones.
Takahashi, K.; Akaike, N.
1990-01-01
1. The effects of nicergoline on the T- and L-type Ca2+ currents in pyramidal cells freshly isolated from rat hippocampal CA1 region were investigated by use of a 'concentration-clamp' technique. The technique combines a suction-pipette technique, which allows intracellular perfusion under a single-electrode voltage-clamp, and rapid exchange of extracellular solution within 2 ms. 2. T-type Ca2+ currents were evoked by step depolarizations from a holding potential of -100 mV to potentials more positive than -70 to -60 mV, and reached a peak at about -30 mV in the current-voltage relationship. Activation and inactivation of T-type Ca2+ currents were highly potential-dependent. 3. Nicergoline and other Ca2+ antagonists dose-dependently blocked the T-type Ca2+ channel with an order of potency nicardipine greater than nicergoline greater than diltiazem. 4. The L-type Ca2+ channel was also blocked in the order nicardipine greater than nicergoline greater than diltiazem, although the T-type Ca2+ channel was more sensitive to nicergoline. 5. The inhibitory effects of nicergoline and nicardipine on the T-type Ca2+ current were voltage-, time-, and use-dependent, and the inhibition increased with a decrease in the external Ca2+ concentration. Diltiazem showed only a use-dependent block. PMID:2169937
Nicergoline inhibits T-type Ca2+ channels in rat isolated hippocampal CA1 pyramidal neurones.
Takahashi, K; Akaike, N
1990-08-01
1. The effects of nicergoline on the T- and L-type Ca2+ currents in pyramidal cells freshly isolated from rat hippocampal CA1 region were investigated by use of a 'concentration-clamp' technique. The technique combines a suction-pipette technique, which allows intracellular perfusion under a single-electrode voltage-clamp, and rapid exchange of extracellular solution within 2 ms. 2. T-type Ca2+ currents were evoked by step depolarizations from a holding potential of -100 mV to potentials more positive than -70 to -60 mV, and reached a peak at about -30 mV in the current-voltage relationship. Activation and inactivation of T-type Ca2+ currents were highly potential-dependent. 3. Nicergoline and other Ca2+ antagonists dose-dependently blocked the T-type Ca2+ channel with an order of potency nicardipine greater than nicergoline greater than diltiazem. 4. The L-type Ca2+ channel was also blocked in the order nicardipine greater than nicergoline greater than diltiazem, although the T-type Ca2+ channel was more sensitive to nicergoline. 5. The inhibitory effects of nicergoline and nicardipine on the T-type Ca2+ current were voltage-, time-, and use-dependent, and the inhibition increased with a decrease in the external Ca2+ concentration. Diltiazem showed only a use-dependent block.
Sodium and potassium conductance changes during a membrane action potential.
Bezanilla, F; Rojas, E; Taylor, R E
1970-12-01
1. A method for turning a membrane potential control system on and off in less than 10 musec is described. This method was used to record membrane currents in perfused giant axons from Dosidicus gigas and Loligo forbesi after turning on the voltage clamp system at various times during the course of a membrane action potential.2. The membrane current measured just after the capacity charging transient was found to have an almost linear relation to the controlled membrane potential.3. The total membrane conductance taken from these current-voltage curves was found to have a time course during the action potential similar to that found by Cole & Curtis (1939).4. The instantaneous current voltage curves were linear enough to make it possible to obtain a good estimate of the individual sodium and potassium channel conductances, either algebraically or by clamping to the sodium, or potassium, reversal potentials. Good general agreement was obtained with the predictions of the Hodgkin-Huxley equations.5. We consider these results to constitute the first direct experimental demonstration of the conductance changes to sodium and potassium during the course of an action potential.
The ionic bases of the action potential in isolated mouse cardiac Purkinje cell.
Vaidyanathan, Ravi; O'Connell, Ryan P; Deo, Makarand; Milstein, Michelle L; Furspan, Philip; Herron, Todd J; Pandit, Sandeep V; Musa, Hassan; Berenfeld, Omer; Jalife, José; Anumonwo, Justus M B
2013-01-01
Collecting electrophysiological and molecular data from the murine conduction system presents technical challenges. Thus, only little advantage has been taken of numerous genetically engineered murine models to study excitation through the cardiac conduction system of the mouse. To develop an approach for isolating murine cardiac Purkinje cells (PCs), to characterize major ionic currents and to use the data to simulate action potentials (APs) recorded from PCs. Light microscopy was used to isolate and identify PCs from apical and septal cells. Current and voltage clamp techniques were used to record APs and whole cell currents. We then simulated a PC AP on the basis of our experimental data. APs recorded from PCs were significantly longer than those recorded from ventricular cells. The prominent plateau phase of the PC AP was very negative (≈-40 mV). Spontaneous activity was observed only in PCs. The inward rectifier current demonstrated no significant differences compared to ventricular myocytes (VMs). However, sodium current density was larger, and the voltage-gated potassium current density was significantly less in PCs compared with myocytes. T-type Ca(2+) currents (I(Ca,T)) were present in PCs but not VMs. Computer simulations suggest that I(Ca,T) and cytosolic calcium diffusion significantly modulate AP profile recorded in PCs, as compared to VMs. Our study provides the first comprehensive ionic profile of murine PCs. The data show unique features of PC ionic mechanisms that govern its excitation process. Experimental data and numerical modeling results suggest that a smaller voltage-gated potassium current and the presence of I(Ca,T) are important determinants of the longer and relatively negative plateau phase of the APs. Copyright © 2013 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Isokawa, M
1996-05-01
1. Inhibitory postsynaptic currents (IPSCs) were studied in hippocampal dentate granule cells (DGCs) in the pilocarpine model and human temporal lobe epilepsy, with the use of the whole cell patch-clamp recording technique in slice preparations. 2. In the pilocarpine model, hippocampal slices were prepared from rats that were allowed to experience spontaneous seizures for 2 mo. Human hippocampal specimens were obtained from epileptic patients who underwent surgical treatment for medically intractable seizures. 3. IPSCs were generated by single perforant path stimulation and recorded at a membrane potential (Vm) of 0 mV near the reversal potential of glutamate excitatory postsynaptic currents in the voltage-clamp recording. IPSCs were pharmacologically identified as gamma-aminobutyric acid-A (GABAA) IPSCs by 10 microM bicuculline methiodide. 4. During low-frequency stimulation, IPSCs were not different in amplitude among non-seizure-experienced rat hippocampi, human nonsclerotic hippocampi, seizure-experienced rat hippocampi, and human sclerotic hippocampi. In the last two groups of DGCs, current-clamp recordings indicated the presence of prolonged excitatory postsynaptic potentials (EPSPs) mediated by the N-methyl-D-aspartate (NMDA) receptor. 5. High-frequency stimulation, administered at Vm = -30 mV to activate NMDA currents, reduced GABAA IPSC amplitude specifically in seizure-experienced rat hippocampi (t = 2.5, P < 0.03) and human sclerotic hippocampi (t = 7.7, P < 0.01). This reduction was blocked by an NMDA receptor antagonist, 2-amino-5-phosphonovaleric acid (APV) (50 microM). The time for GABAA IPSCs to recover to their original amplitude was also shortened by the application of APV. 6. I conclude that, when intensively activated, NMDA receptor-mediated excitatory transmission may interact with GABAergic synaptic inhibition in DGCs in seizure-experienced hippocampus to transiently reduce GABA(A) receptor-channel function. Such interactions may contribute to give rise to epileptic excitation in chronically seizure-prone hippocampus.
Thomas, Dierk; Hammerling, Bettina C; Wimmer, Anna-Britt; Wu, Kezhong; Ficker, Eckhard; Kuryshev, Yuri A; Scherer, Daniel; Kiehn, Johann; Katus, Hugo A; Schoels, Wolfgang; Karle, Christoph A
2004-12-01
The human ether-a-go-go-related gene (hERG) encodes the rapid component of the cardiac repolarizing delayed rectifier potassium current, I(Kr). The direct interaction of the commonly used protein kinase C (PKC) inhibitor bisindolylmaleimide I (BIM I) with hERG, KvLQT1/minK, and I(Kr) currents was investigated in this study. hERG and KvLQT1/minK channels were heterologously expressed in Xenopus laevis oocytes, and currents were measured using the two-microelectrode voltage clamp technique. In addition, hERG currents in stably transfected human embryonic kidney (HEK 293) cells, native I(Kr) currents and action potentials in isolated guinea pig ventricular cardiomyocytes were recorded using whole-cell patch clamp electrophysiology. Bisindolylmaleimide I blocked hERG currents in HEK 293 cells and Xenopus oocytes in a concentration-dependent manner with IC(50) values of 1.0 and 13.2 muM, respectively. hERG channels were primarily blocked in the open state in a frequency-independent manner. Analysis of the voltage-dependence of block revealed a reduction of inhibition at positive membrane potentials. BIM I caused a shift of -20.3 mV in the voltage-dependence of inactivation. The point mutations tyrosine 652 alanine (Y652A) and phenylalanine 656 alanine (F656A) attenuated hERG current blockade, indicating that BIM I binds to a common drug receptor within the pore region. KvLQT1/minK currents were not significantly altered by BIM I. Finally, 1 muM BIM I reduced native I(Kr) currents by 69.2% and lead to action potential prolongation. In summary, PKC-independent effects have to be carefully considered when using BIM I as PKC inhibitor in experimental models involving hERG channels and I(Kr) currents.
Cognard, C; Rivet, M; Raymond, G
1990-04-01
The effects of the dihydropyridine derivative, nifedipine, well known as a blocker of calcium channels, were tested on cultured rat myoballs. Membrane currents and contractions were simultaneously recorded by means of the patch-clamp technique and a photoelectric transducing method. High concentrations of nifedipine (5 microM) inhibited the contractile responses and inward calcium current (ICa) elicited by long depolarizations. In the absence of ICa (1.5 mM cadmium in the bath), nifedipine inhibited both the ICa-independent contractile component and the outward current, supposed to depend on the intracellular calcium released during contraction. At low concentrations (0.5 microM) the blocking effects of nifedipine could be strongly enhanced by shifting the membrane potential towards less negative values (-60 mV) for 50 s prior to the test pulse. A blocking effect of nifedipine, at a usually ineffective concentration (0.1 microM), could also be observed when long-lasting (3 min) prepulses to 0 mV were applied from a reference membrane potential of -60 mV. This effect could be relieved by long-lasting cell hyperpolarizations (-90 mV). The blocking effects of nifedipine unrelated to ICa could be interpreted as an action on a molecule (voltage sensor) in the T-tubule membrane involved in the excitation/contraction coupling process and as a preferential binding of the dihydropyridine derivative on the inactivated form of this molecule, favored by the weak negative potentials or long-lasting depolarizations. The results provide data in favor of the existence of strong similarities between the calcium channels and voltage sensors since their operation was inhibited in a voltage-dependent manner by nifedipine.
Cheng, Lan; Sanguinetti, Michael C
2009-05-01
Niflumic acid, 2-[[3-(trifluoromethyl)phenyl]amino]pyridine-3-carboxylic acid (NFA), is a nonsteroidal anti-inflammatory drug that also blocks or modifies the gating of many ion channels. Here, we investigated the effects of NFA on hyperpolarization-activated cyclic nucleotide-gated cation (HCN) pacemaker channels expressed in X. laevis oocytes using site-directed mutagenesis and the two-electrode voltage-clamp technique. Extracellular NFA acted rapidly and caused a slowing of activation and deactivation and a hyperpolarizing shift in the voltage dependence of HCN2 channel activation (-24.5 +/- 1.2 mV at 1 mM). Slowed channel gating and reduction of current magnitude was marked in oocytes treated with NFA, while clamped at 0 mV but minimal in oocytes clamped at -100 mV, indicating the drug preferentially interacts with channels in the closed state. NFA at 0.1 to 3 mM shifted the half-point for channel activation in a concentration-dependent manner, with an EC(50) of 0.54 +/- 0.068 mM and a predicted maximum shift of -38 mV. NFA at 1 mM also reduced maximum HCN2 conductance by approximately 20%, presumably by direct block of the pore. The rapid onset and state-dependence of NFA-induced changes in channel gating suggests an interaction with the extracellular region of the S4 transmembrane helix, the primary voltage-sensing domain of HCN2. Neutralization (by mutation to Gln) of any three of the outer four basic charged residues in S4, but not single mutations, abrogated the NFA-induced shift in channel activation. We conclude that NFA alters HCN2 gating by interacting with the extracellular end of the S4 voltage sensor domains.
Fabrication and characterization of a piezoelectric energy harvester with clamped-clamped beams
NASA Astrophysics Data System (ADS)
Cui, Yan; Yu, Menglin; Gao, Shiqiao; Kong, Xiangxin; Gu, Wang; Zhang, Ran; Liu, Bowen
2018-05-01
This work presents a piezoelectric energy harvester with clamped-clamped beams, and it is fabricated with MEMS process. When excited by sinusoidal vibration, the energy harvester has a sharp jumping down phenomenon and the measured frequency responses of the clamped-clamped beams structure show a larger bandwidth which is about 56Hz, more efficient than that with cantilever beams. When the exciting acceleration ac is 12m/s2, the energy harvester achieves to a maximum open-circuit voltage of 94mV on one beam. The load voltage is proportional to the load resistance, and it increased with the increase of load resistance. Connected four beams in series, the output power reaches the maximum value of 730 nW and the optimal load is 15KΩ to one beam.
So, Edmund Cheung; Wu, Sheng-Nan; Wu, Ping-Ching; Chen, Hui-Zhen; Yang, Chia-Jung
2017-01-01
Artemisinin (ART) is an anti-malarial agent reported to influence endocrine function. Effects of ART on ionic currents and action potentials (APs) in pituitary tumor (GH3) cells were evaluated by patch clamp techniques. ART inhibited the amplitude of delayed-rectifier K+ current (IK(DR)) in response to membrane depolarization and accelerated the process of current inactivation. It exerted an inhibitory effect on IK(DR) with an IC50 value of 11.2 µM and enhanced IK(DR) inactivation with a KD value of 14.7 µM. The steady-state inactivation curve of IK(DR) was shifted to hyperpolarization by 10 mV. Pretreatment of chlorotoxin (1 µM) or iloprost (100 nM) did not alter the magnitude of ART-induced inhibition of IK(DR) in GH3 cells. ART also decreased the peak amplitude of voltage-gated Na+ current (INa) with a concentration-dependent slowing in inactivation rate. Application of KMUP-1, an inhibitor of late INa, was effective at reversing ART-induced prolongation in inactivation time constant of INa. Under current-clamp recordings, ART alone reduced the amplitude of APs and prolonged the duration of APs. Under ART exposure, the inhibitory actions on both IK(DR) and INa could be a potential mechanisms through which this drug influences membrane excitability of endocrine or neuroendocrine cells appearing in vivo. © 2017 The Author(s). Published by S. Karger AG, Basel.
Active signal conduction through the sensory dendrite of a spider mechanoreceptor neuron.
Gingl, Ewald; French, Andrew S
2003-07-09
Rapid responses to sensory stimulation are crucial for survival. This must be especially true for mechanical stimuli containing temporal information, such as vibration. Sensory transduction occurs at the tips of relatively long sensory dendrites in many mechanoreceptors of both vertebrates and invertebrates, but little is known about the electrical properties of these crucial links between transduction and action potential generation. The VS-3 slit-sense organ of the spider Cupiennius salei contains bipolar mechanosensory neurons that allow voltage-clamp recording from the somata, whereas mechanotransduction occurs at the tips of 100- to 200-microm-long sensory dendrites. We studied the properties of VS-3 sensory dendrites using three approaches. Voltage-jump experiments measured the spread of voltage outward from the soma by observing total mechanically transduced charge recovered at the soma as a function of time after a voltage jump. Frequency-response measurements between pseudorandom mechanical stimulation and somatic membrane potential estimated the passive cable properties of the dendrite for voltage spread in the opposite direction. Both of these sets of data indicated that the dendritic cable would significantly attenuate and retard a passively propagated receptor potential. Finally, current-clamp observations of receptor potentials and action potentials indicated that action potentials normally start at the distal dendrites and propagate regeneratively to the soma, reducing the temporal delay of passive conduction.
Auxiliary quasi-resonant dc tank electrical power converter
Peng, Fang Z.
2006-10-24
An auxiliary quasi-resonant dc tank (AQRDCT) power converter with fast current charging, voltage balancing (or charging), and voltage clamping circuits is provided for achieving soft-switched power conversion. The present invention is an improvement of the invention taught in U.S. Pat. No. 6,111,770, herein incorporated by reference. The present invention provides faster current charging to the resonant inductor, thus minimizing delay time of the pulse width modulation (PWM) due to the soft-switching process. The new AQRDCT converter includes three tank capacitors or power supplies to achieve the faster current charging and minimize the soft-switching time delay. The new AQRDCT converter further includes a voltage balancing circuit to charge and discharge the three tank capacitors so that additional isolated power supplies from the utility line are not needed. A voltage clamping circuit is also included for clamping voltage surge due to the reverse recovery of diodes.
Shapiro, E; Castellucci, V F; Kandel, E R
1980-01-01
We have examined the relationships between the modulation of transmitter release and of specific ionic currents by membrane potential in the cholinergic interneuron L10 of the abdominal ganglion of Aplysia californica. The presynaptic cell body was voltage-clamped under various pharmacological conditions and transmitter release from the terminals was assayed simultaneously by recording the synaptic potentials in the postsynaptic cell. When cell L10 was voltage-clamped from a holding potential of -60 mV in the presence of tetrodotoxin, graded transmitter release was evoked by depolarizing command pulses in the membrane voltage range (-35 mV to + 10 mV) in which the Ca(2+) current was also increasing. Depolarizing the holding potential of L10 results in increased transmitter output. Two ionic mechanisms contribute to this form of plasticity. First, depolarization inactivates some K(+) channels so that depolarizing command pulses recruit a smaller K(+) current. In unclamped cells the decreased K(+) conductance causes spike-broadening and increased influx of Ca(2+) during each spike. Second, small depolarizations around resting potential (-55 mV to -35 mV) activate a steady-state Ca(2+) current that also contributes to the modulation of transmitter release, because, even with most presynaptic K(+) currents blocked pharmacologically, depolarizing the holding potential still increases transmitter release. In contrast to the steady-state Ca(2+) current, the transient inward Ca(2+) current evoked by depolarizing clamp steps is relatively unchanged from various holding potentials.
A Voltage Dependent Non-Inactivating Na+ Channel Activated during Apoptosis in Xenopus Oocytes
Englund, Ulrika H.; Gertow, Jens; Kågedal, Katarina; Elinder, Fredrik
2014-01-01
Ion channels in the plasma membrane are important for the apoptotic process. Different types of voltage-gated ion channels are up-regulated early in the apoptotic process and block of these channels prevents or delays apoptosis. In the present investigation we examined whether ion channels are up-regulated in oocytes from the frog Xenopus laevis during apoptosis. The two-electrode voltage-clamp technique was used to record endogenous ion currents in the oocytes. During staurosporine-induced apoptosis a voltage-dependent Na+ current increased three-fold. This current was activated at voltages more positive than 0 mV (midpoint of the open-probability curve was +55 mV) and showed almost no sign of inactivation during a 1-s pulse. The current was resistant to the Na+-channel blockers tetrodotoxin (1 µM) and amiloride (10 µM), while the Ca2+-channel blocker verapamil (50 µM) in the bath solution completely blocked the current. The intracellular Na+ concentration increased in staurosporine-treated oocytes, but could be prevented by replacing extracellular Na+ whith either K+ or Choline+. Prevention of this influx of Na+ also prevented the STS-induced up-regulation of the caspase-3 activity, suggesting that the intracellular Na+ increase is required to induce apoptosis. Taken together, we have found that a voltage dependent Na+ channel is up-regulated during apoptosis and that influx of Na+ is a crucial step in the apoptotic process in Xenopus oocytes. PMID:24586320
Can robots patch-clamp as well as humans? Characterization of a novel sodium channel mutation
Estacion, M; Choi, J S; Eastman, E M; Lin, Z; Li, Y; Tyrrell, L; Yang, Y; Dib-Hajj, S D; Waxman, S G
2010-01-01
Ion channel missense mutations cause disorders of excitability by changing channel biophysical properties. As an increasing number of new naturally occurring mutations have been identified, and the number of other mutations produced by molecular approaches such as in situ mutagenesis has increased, the need for functional analysis by patch-clamp has become rate limiting. Here we compare a patch-clamp robot using planar-chip technology with human patch-clamp in a functional assessment of a previously undescribed Nav1.7 sodium channel mutation, S211P, which causes erythromelalgia. This robotic patch-clamp device can increase throughput (the number of cells analysed per day) by 3- to 10-fold. Both modes of analysis show that the mutation hyperpolarizes activation voltage dependence (−8 mV by manual profiling, −11 mV by robotic profiling), alters steady-state fast inactivation so that it requires an additional Boltzmann function for a second fraction of total current (∼20% manual, ∼40% robotic), and enhances slow inactivation (hyperpolarizing shift −15 mV by human, −13 mV robotic). Manual patch-clamping demonstrated slower deactivation and enhanced (∼2-fold) ramp response for the mutant channel while robotic recording did not, possibly due to increased temperature and reduced signal-to-noise ratio on the robotic platform. If robotic profiling is used to screen ion channel mutations, we recommend that each measurement or protocol be validated by initial comparison to manual recording. With this caveat, we suggest that, if results are interpreted cautiously, robotic patch-clamp can be used with supervision and subsequent confirmation from human physiologists to facilitate the initial profiling of a variety of electrophysiological parameters of ion channel mutations. PMID:20123784
Pore forming properties of cecropin-melittin hybrid peptide in a natural membrane.
Milani, Alberto; Benedusi, Mascia; Aquila, Marco; Rispoli, Giorgio
2009-12-11
The pore forming properties of synthetic cecropin-melittin hybrid peptide (Acetyl-KWKLFKKIGAVLKVL-CONH(2); CM15) were investigated by using photoreceptor rod outer segments (OS) isolated from frog retinae obtained by using the whole-cell configuration of the patch-clamp technique. CM15 was applied (and removed) to (from) the OS in approximately 50 ms with a computer-controlled microperfusion system. Once the main OS endogenous conductance was blocked with light, the OS membrane resistance was >or=1 G Omega, allowing high resolution, low-noise recordings. Different to alamethicines, CM15 produced voltage-independent membrane permeabilisation, repetitive peptide application caused a progressive permeabilisation increase, and no single-channel events were detected at low peptide concentrations. Collectively, these results indicate a toroidal mechanism of pore formation by CM15.
A novel NaV1.5 voltage sensor mutation associated with severe atrial and ventricular arrhythmias.
Wang, Hong-Gang; Zhu, Wandi; Kanter, Ronald J; Silva, Jonathan R; Honeywell, Christina; Gow, Robert M; Pitt, Geoffrey S
2016-03-01
Inherited autosomal dominant mutations in cardiac sodium channels (NaV1.5) cause various arrhythmias, such as long QT syndrome and Brugada syndrome. Although dozens of mutations throughout the protein have been reported, there are few reported mutations within a voltage sensor S4 transmembrane segment and few that are homozygous. Here we report analysis of a novel lidocaine-sensitive recessive mutation, p.R1309H, in the NaV1.5 DIII/S4 voltage sensor in a patient with a complex arrhythmia syndrome. We expressed the wild type or mutant NaV1.5 heterologously for analysis with the patch-clamp and voltage clamp fluorometry (VCF) techniques. p.R1309H depolarized the voltage-dependence of activation, hyperpolarized the voltage-dependence of inactivation, and slowed recovery from inactivation, thereby reducing the channel availability at physiologic membrane potentials. Additionally, p.R1309H increased the "late" Na(+) current. The location of the mutation in DIIIS4 prompted testing for a gating pore current. We observed an inward current at hyperpolarizing voltages that likely exacerbates the loss-of-function defects at resting membrane potentials. Lidocaine reduced the gating pore current. The p.R1309H homozygous NaV1.5 mutation conferred both gain-of-function and loss-of-function effects on NaV1.5 channel activity. Reduction of a mutation-induced gating pore current by lidocaine suggested a therapeutic mechanism. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hydrogen ion block of the sodium pore in squid giant axons
1983-01-01
The block of squid axon sodium channels by H ions was studied using voltage-clamp and internal perfusion techniques. An increase in the concentration of internal permeant ions decreased the block produced by external H ions. The voltage dependence of the block was found to be nonmonotonic: it was reduced by both large positive and large negative potentials. The ability of internal ions to modify the block by external H+ is explained by a competition among these ions for a binding site within the pore. The nonmonotonic voltage dependence is consistent with this picture if the hydrogen ions are allowed to be permeant. PMID:6315859
Kistamás, Kornél; Szentandrássy, Norbert; Hegyi, Bence; Ruzsnavszky, Ferenc; Váczi, Krisztina; Bárándi, László; Horváth, Balázs; Szebeni, Andrea; Magyar, János; Bányász, Tamás; Kecskeméti, Valéria; Nánási, Péter P
2013-06-15
Despite its widespread therapeutical use there is little information on the cellular cardiac effects of the antidiabetic drug pioglitazone in larger mammals. In the present study, therefore, the concentration-dependent effects of pioglitazone on ion currents and action potential configuration were studied in isolated canine ventricular myocytes using standard microelectrode, conventional whole cell patch clamp, and action potential voltage clamp techniques. Pioglitazone decreased the maximum velocity of depolarization and the amplitude of phase-1 repolarization at concentrations ≥3 μM. Action potentials were shortened by pioglitazone at concentrations ≥10 μM, which effect was accompanied with significant reduction of beat-to-beat variability of action potential duration. Several transmembrane ion currents, including the transient outward K(+) current (Ito), the L-type Ca(2+) current (ICa), the rapid and slow components of the delayed rectifier K(+) current (IKr and IKs, respectively), and the inward rectifier K(+) current (IK1) were inhibited by pioglitazone under conventional voltage clamp conditions. Ito was blocked significantly at concentrations ≥3 μM, ICa, IKr, IKs at concentrations ≥10 μM, while IK1 at concentrations ≥30 μM. Suppression of Ito, ICa, IKr, and IK1 has been confirmed also under action potential voltage clamp conditions. ATP-sensitive K(+) current, when activated by lemakalim, was effectively blocked by pioglitazone. Accordingly, action potentials were prolonged by 10 μM pioglitazone when the drug was applied in the presence of lemakalim. All these effects developed rapidly and were readily reversible upon washout. In conclusion, pioglitazone seems to be a harmless agent at usual therapeutic concentrations. Copyright © 2013 Elsevier B.V. All rights reserved.
Danker, Timm; Braun, Franziska; Silbernagl, Nikole; Guenther, Elke
2016-03-01
Manual patch clamp, the gold standard of electrophysiology, represents a powerful and versatile toolbox to stimulate, modulate, and record ion channel activity from membrane fragments and whole cells. The electrophysiological readout can be combined with fluorescent or optogenetic methods and allows for ultrafast solution exchanges using specialized microfluidic tools. A hallmark of manual patch clamp is the intentional selection of individual cells for recording, often an essential prerequisite to generate meaningful data. So far, available automation solutions rely on random cell usage in the closed environment of a chip and thus sacrifice much of this versatility by design. To parallelize and automate the traditional patch clamp technique while perpetuating the full versatility of the method, we developed an approach to automation, which is based on active cell handling and targeted electrode placement rather than on random processes. This is achieved through an automated pipette positioning system, which guides the tips of recording pipettes with micrometer precision to a microfluidic cell handling device. Using a patch pipette array mounted on a conventional micromanipulator, our automated patch clamp process mimics the original manual patch clamp as closely as possible, yet achieving a configuration where recordings are obtained from many patch electrodes in parallel. In addition, our implementation is extensible by design to allow the easy integration of specialized equipment such as ultrafast compound application tools. The resulting system offers fully automated patch clamp on purposely selected cells and combines high-quality gigaseal recordings with solution switching in the millisecond timescale.
Blackmer, Trillium; Kuo, Sidney P; Bender, Kevin J; Apostolides, Pierre F; Trussell, Laurence O
2009-08-01
The avian nucleus laminaris (NL) encodes the azimuthal location of low-frequency sound sources by detecting the coincidence of binaural signals. Accurate coincidence detection requires precise developmental regulation of the lengths of the fine, bitufted dendrites that characterize neurons in NL. Such regulation has been suggested to be driven by local, synaptically mediated, dendritic signals such as Ca(2+). We examined Ca(2+) signaling through patch clamp and ion imaging experiments in slices containing nucleus laminaris from embryonic chicks. Voltage-clamp recordings of neurons located in the NL showed the presence of large Ca(2+) currents of two types, a low voltage-activated, fast inactivating Ni(2+) sensitive channel resembling mammalian T-type channels, and a high voltage-activated, slowly inactivating Cd(2+) sensitive channel. Two-photon Ca(2+) imaging showed that both channel types were concentrated on dendrites, even at their distal tips. Single action potentials triggered synaptically or by somatic current injection immediately elevated Ca(2+) throughout the entire cell. Ca(2+) signals triggered by subthreshold synaptic activity were highly localized. Thus when electrical activity is suprathreshold, Ca(2+) channels ensure that Ca(2+) rises in all dendrites, even those that are synaptically inactive.
Sodium and potassium conductance changes during a membrane action potential
Bezanilla, Francisco; Rojas, Eduardo; Taylor, Robert E.
1970-01-01
1. A method for turning a membrane potential control system on and off in less than 10 μsec is described. This method was used to record membrane currents in perfused giant axons from Dosidicus gigas and Loligo forbesi after turning on the voltage clamp system at various times during the course of a membrane action potential. 2. The membrane current measured just after the capacity charging transient was found to have an almost linear relation to the controlled membrane potential. 3. The total membrane conductance taken from these current—voltage curves was found to have a time course during the action potential similar to that found by Cole & Curtis (1939). 4. The instantaneous current voltage curves were linear enough to make it possible to obtain a good estimate of the individual sodium and potassium channel conductances, either algebraically or by clamping to the sodium, or potassium, reversal potentials. Good general agreement was obtained with the predictions of the Hodgkin—Huxley equations. 5. We consider these results to constitute the first direct experimental demonstration of the conductance changes to sodium and potassium during the course of an action potential. PMID:5505231
Ion channel recordings on an injection-molded polymer chip.
Tanzi, Simone; Matteucci, Marco; Christiansen, Thomas Lehrmann; Friis, Søren; Christensen, Mette Thylstrup; Garnaes, Joergen; Wilson, Sandra; Kutchinsky, Jonatan; Taboryski, Rafael
2013-12-21
In this paper, we demonstrate recordings of the ion channel activity across the cell membrane in a biological cell by employing the so-called patch clamping technique on an injection-molded polymer microfluidic device. The findings will allow direct recordings of ion channel activity to be made using the cheapest materials and production platform to date and with the potential for very high throughput. The employment of cornered apertures for cell capture allowed the fabrication of devices without through holes and via a scheme comprising master origination by dry etching in a silicon substrate, electroplating in nickel and injection molding of the final part. The most critical device parameters were identified as the length of the patching capillary and the very low surface roughness on the inside of the capillary. The cross-sectional shape of the orifice was found to be less critical, as both rectangular and semicircular profiles seemed to have almost the same ability to form tight seals with cells with negligible leak currents. The devices were functionally tested using human embryonic kidney cells expressing voltage-gated sodium channels (Nav1.7) and benchmarked against a commercial state-of-the-art system for automated ion channel recordings. These experiments considered current-voltage (IV) relationships for activation and inactivation of the Nav1.7 channels and their sensitivity to a local anesthetic, lidocaine. Both IVs and lidocaine dose-response curves obtained from the injection-molded polymer device were in good agreement with data obtained from the commercial system.
Borde, M; Bonansco, C; Fernández de Sevilla, D; Le Ray, D; Buño, W
2000-01-01
Exploring the principles that govern activity-dependent changes in excitability is an essential step to understand the function of the nervous system, because they act as a general postsynaptic control mechanism that modulates the flow of synaptic signals. We show an activity-dependent potentiation of the slow Ca2+-activated K+ current (sl(AHP)) which induces sustained decreases in the excitability in CA1 pyramidal neurons. We analyzed the sl(AHP) using the slice technique and voltage-clamp recordings with sharp or patch-electrodes. Using sharp electrodes-repeated activation with depolarizing pulses evoked a prolonged (8-min) potentiation of the amplitude (171%) and duration (208%) of the sl(AHP). Using patch electrodes, early after entering the whole-cell configuration (<20 min), responses were as those reported above. However, although the sl(AHP) remained unchanged, its potentiation was markedly reduced in later recordings, suggesting that the underlying mechanisms were rapidly eliminated by intracellular dialysis. Inhibition of L-type Ca2+ current by nifedipine (20 microM) markedly reduced the sl(AHP) (79%) and its potentiation (55%). Ryanodine (20 microM) that blocks the release of intracellular Ca2+ also reduced sl(AHP) (29%) and its potentiation (25%). The potentiation of the sl(AHP) induced a marked and prolonged (>50%; approximately equals 8 min) decrease in excitability. The results suggest that sl(AHP) is potentiated as a result of an increased intracellular Ca2+ concentration ([Ca2+]i) following activation of voltage-gated L-type Ca2+ channels, aided by the subsequent release of Ca2+ from intracellular stores. Another possibility is that repeated activation increases the Ca2+-binding capacity of the channels mediating the sl(AHP). This potentiation of the sl(AHP) could be relevant in hippocampal physiology, because the changes in excitability it causes may regulate the induction threshold of the long-term potentiation of synaptic efficacy. Moreover, the potentiation would act as a protective mechanism by reducing excitability and preventing the accumulation of intracellular Ca2+ to toxic levels when intense synaptic activation occurs.
Optimizing Nanoelectrode Arrays for Scalable Intracellular Electrophysiology.
Abbott, Jeffrey; Ye, Tianyang; Ham, Donhee; Park, Hongkun
2018-03-20
Electrode technology for electrophysiology has a long history of innovation, with some decisive steps including the development of the voltage-clamp measurement technique by Hodgkin and Huxley in the 1940s and the invention of the patch clamp electrode by Neher and Sakmann in the 1970s. The high-precision intracellular recording enabled by the patch clamp electrode has since been a gold standard in studying the fundamental cellular processes underlying the electrical activities of neurons and other excitable cells. One logical next step would then be to parallelize these intracellular electrodes, since simultaneous intracellular recording from a large number of cells will benefit the study of complex neuronal networks and will increase the throughput of electrophysiological screening from basic neurobiology laboratories to the pharmaceutical industry. Patch clamp electrodes, however, are not built for parallelization; as for now, only ∼10 patch measurements in parallel are possible. It has long been envisioned that nanoscale electrodes may help meet this challenge. First, nanoscale electrodes were shown to enable intracellular access. Second, because their size scale is within the normal reach of the standard top-down fabrication, the nanoelectrodes can be scaled into a large array for parallelization. Third, such a nanoelectrode array can be monolithically integrated with complementary metal-oxide semiconductor (CMOS) electronics to facilitate the large array operation and the recording of the signals from a massive number of cells. These are some of the central ideas that have motivated the research activity into nanoelectrode electrophysiology, and these past years have seen fruitful developments. This Account aims to synthesize these findings so as to provide a useful reference. Summing up from the recent studies, we will first elucidate the morphology and associated electrical properties of the interface between a nanoelectrode and a cellular membrane, clarifying how the nanoelectrode attains intracellular access. This understanding will be translated into a circuit model for the nanobio interface, which we will then use to lay out the strategies for improving the interface. The intracellular interface of the nanoelectrode is currently inferior to that of the patch clamp electrode; reaching this benchmark will be an exciting challenge that involves optimization of electrode geometries, materials, chemical modifications, electroporation protocols, and recording/stimulation electronics, as we describe in the Account. Another important theme of this Account, beyond the optimization of the individual nanoelectrode-cell interface, is the scalability of the nanoscale electrodes. We will discuss this theme using a recent development from our groups as an example, where an array of ca. 1000 nanoelectrode pixels fabricated on a CMOS integrated circuit chip performs parallel intracellular recording from a few hundreds of cardiomyocytes, which marks a new milestone in electrophysiology.
QPatch: the missing link between HTS and ion channel drug discovery.
Mathes, Chris; Friis, Søren; Finley, Michael; Liu, Yi
2009-01-01
The conventional patch clamp has long been considered the best approach for studying ion channel function and pharmacology. However, its low throughput has been a major hurdle to overcome for ion channel drug discovery. The recent emergence of higher throughput, automated patch clamp technology begins to break this bottleneck by providing medicinal chemists with high-quality, information-rich data in a more timely fashion. As such, these technologies have the potential to bridge a critical missing link between high-throughput primary screening and meaningful ion channel drug discovery programs. One of these technologies, the QPatch automated patch clamp system developed by Sophion Bioscience, records whole-cell ion channel currents from 16 or 48 individual cells in a parallel fashion. Here, we review the general applicability of the QPatch to studying a wide variety of ion channel types (voltage-/ligand-gated cationic/anionic channels) in various expression systems. The success rate of gigaseals, formation of the whole-cell configuration and usable cells ranged from 40-80%, depending on a number of factors including the cell line used, ion channel expressed, assay development or optimization time and expression level in these studies. We present detailed analyses of the QPatch features and results in case studies in which secondary screening assays were successfully developed for a voltage-gated calcium channel and a ligand-gated TRP channel. The increase in throughput compared to conventional patch clamp with the same cells was approximately 10-fold. We conclude that the QPatch, combining high data quality and speed with user friendliness and suitability for a wide array of ion channels, resides on the cutting edge of automated patch clamp technology and plays a pivotal role in expediting ion channel drug discovery.
Clarke, Jessica D.; Caldwell, Jessica L.; Horn, Margaux A.; Bode, Elizabeth F.; Richards, Mark A.; Hall, Mark C.S.; Graham, Helen K.; Briston, Sarah J.; Greensmith, David J.; Eisner, David A.; Dibb, Katharine M.; Trafford, Andrew W.
2015-01-01
Heart failure (HF) is commonly associated with reduced cardiac output and an increased risk of atrial arrhythmias particularly during β-adrenergic stimulation. The aim of the present study was to determine how HF alters systolic Ca2 + and the response to β-adrenergic (β-AR) stimulation in atrial myocytes. HF was induced in sheep by ventricular tachypacing and changes in intracellular Ca2 + concentration studied in single left atrial myocytes under voltage and current clamp conditions. The following were all reduced in HF atrial myocytes; Ca2 + transient amplitude (by 46% in current clamped and 28% in voltage clamped cells), SR dependent rate of Ca2 + removal (kSR, by 32%), L-type Ca2 + current density (by 36%) and action potential duration (APD90 by 22%). However, in HF SR Ca2 + content was increased (by 19%) when measured under voltage-clamp stimulation. Inhibiting the L-type Ca2 + current (ICa-L) in control cells reproduced both the decrease in Ca2 + transient amplitude and increase of SR Ca2 + content observed in voltage-clamped HF cells. During β-AR stimulation Ca2 + transient amplitude was the same in control and HF cells. However, ICa-L remained less in HF than control cells whilst SR Ca2 + content was highest in HF cells during β-AR stimulation. The decrease in ICa-L that occurs in HF atrial myocytes appears to underpin the decreased Ca2 + transient amplitude and increased SR Ca2 + content observed in voltage-clamped cells. PMID:25463272
Spontaneous activity of isolated dopaminergic periglomerular cells of the main olfactory bulb.
Puopolo, Michelino; Bean, Bruce P; Raviola, Elio
2005-11-01
We examined the electrophysiological properties of a population of identified dopaminergic periglomerular cells of the main olfactory bulb using transgenic mice in which catecholaminergic neurons expressed human placental alkaline phosphatase (PLAP) on the outer surface of the plasma membrane. After acute dissociation, living dopaminergic periglomerular cells were identified by a fluorescently labeled monoclonal antibody to PLAP. In current-clamp mode, dopaminergic periglomerular cells spontaneously generated action potentials in a rhythmic fashion with an average frequency of 8 Hz. The hyperpolarization-activated cation current (Ih) did not seem important for pacemaking because blocking the current with ZD 7288 or Cs+ had little effect on spontaneous firing. To investigate what ionic currents do drive pacemaking, we performed action-potential-clamp experiments using records of pacemaking as voltage command in voltage-clamp experiments. We found that substantial TTX-sensitive Na+ current flows during the interspike depolarization. In addition, substantial Ca2+ current flowed during the interspike interval, and blocking Ca2+ current hyperpolarized the neurons and stopped spontaneous firing. These results show that dopaminergic periglomerular cells have intrinsic pacemaking activity, supporting the possibility that they can maintain a tonic release of dopamine to modulate the sensitivity of the olfactory system during odor detection. Calcium entry into these neurons provides electrical drive for pacemaking as well as triggering transmitter release.
A monolithic patch-clamping amplifier with capacitive feedback.
Prakash, J; Paulos, J J; Jensen, D N
1989-03-01
Patch-clamping is an established method for directly measuring ionic transport through cellular membranes with sufficient resolution to observe open/close transitions of individual channel molecules. This paper describes an alternative technique for patch-clamping which uses a capacitor as the transimpedance element. This approach eliminates bandwidth and saturation limitations experienced with resistive patch-clamping amplifiers. A complete monolithic design featuring an on-chip operational amplifier, a capacitor array with gain-ranging from 30 pF down to 0.03 pF, and reset and gain ranging switches has been fabricated using 5 microns CMOS technology. It is shown that the voltage noise of the CMOS operational amplifier limits the overall noise performance, but that performance competitive with conventional instruments can be achieved over a 10 kHz bandwidth, at least for small input capacitances (less than or equal to 5 pF). Results are presented along with an analysis and comparison of noise performance using both resistive and capacitive elements.
Zhang, Man; Zang, Kai-Hong; Luo, Jia-Lie; Leung, Fung-Ping; Huang, Yu; Lin, Cheng-Yuan; Yang, Zhi-Jun; Lu, Ai-Ping; Tang, Xu-Dong; Xu, Hong-Xi; Sung, Joseph Jao-yiu; Bian, Zhao-Xiang
2013-11-15
This study aimed to investigate the effect of magnolol (5,5'-diallyl-2,2'-biphenyldiol) on contraction in distal colonic segments of rats and the underlying mechanisms. Colonic segments were mounted in organ baths for isometric force measurement. Whole-cell voltage-sensitive L-type Ca(2+) currents were recorded on isolated single colonic smooth muscle cells using patch-clamp technique. The spontaneous contractions and acetylcholine (ACh)- and Bay K 8644-induced contractions were inhibited by magnolol (3-100 μM). In the presence of Bay K8644 (100 nM), magnolol (10-100 μM) inhibited the contraction induced by 10 μM ACh. By contrast, tetrodotoxin (100 nM) and Nώ-nitro-L-arginine methyl ester (L-NAME 100 μM) did not change the inhibitory effect of magnolol (10 μM). In addition, magnolol (3-100 μM) inhibited the L-type Ca(2+) currents. The present results suggest that magnolol inhibits colonic smooth muscle contraction through downregulating L-type Ca(2+) channel activity. Copyright © 2013 Elsevier GmbH. All rights reserved.
Steinhäuser, C; Kressin, K; Kuprijanova, E; Weber, M; Seifert, G
1994-10-01
In the present study, we were interested in a quantitative analysis of voltage-activated channels in a subpopulation of hippocampal glial cells, termed "complex" cells. The patch-clamp technique in the whole-cell mode was applied to identified cells in situ and to glial cells acutely isolated from tissue slices. The outward current was composed of two components: a sustained and a transient current. The transient K+ channel had electrophysiological and pharmacological properties resembling those of the channel through which the A-currents pass. In addition, this glial A-type current possessed a significant Ca2+ dependence. The current parameters determined in situ or in isolated cells corresponded well. Due to space clamp problems in situ, properties of voltage-dependent Na+ currents were only analysed in suspended glial cells. The tetrodotoxin (TTX) sensitivity and the stationary and kinetic characteristics of this current were similar to corresponding properties of hippocampal neurons. These quantitative data demonstrate that at an early postnatal stage of central nervous system maturation, glial cells in situ express a complex pattern of voltage-gated ion channels. The results are compared to findings in other preparations and the possible consequences of transmitter-mediated channel modulation in glial cells are discussed.
Holtkamp, Dominik; Opitz, Thoralf; Niespodziany, Isabelle; Wolff, Christian; Beck, Heinz
2017-01-01
In human epilepsy, pharmacoresistance to antiepileptic drug therapy is a major problem affecting ~30% of patients with epilepsy. Many classical antiepileptic drugs target voltage-gated sodium channels, and their potent activity in inhibiting high-frequency firing has been attributed to their strong use-dependent blocking action. In chronic epilepsy, a loss of use-dependent block has emerged as a potential cellular mechanism of pharmacoresistance for anticonvulsants acting on voltage-gated sodium channels. The anticonvulsant drug lacosamide (LCM) also targets sodium channels, but has been shown to preferentially affect sodium channel slow inactivation processes, in contrast to most other anticonvulsants. We used whole-cell voltage clamp recordings in acutely isolated cells to investigate the effects of LCM on transient Na + currents. Furthermore, we used whole-cell current clamp recordings to assess effects on repetitive action potential firing in hippocampal slices. We show here that LCM exerts its effects primarily via shifting the slow inactivation voltage dependence to more hyperpolarized potentials in hippocampal dentate granule cells from control and epileptic rats, and from patients with epilepsy. It is important to note that this activity of LCM was maintained in chronic experimental and human epilepsy. Furthermore, we demonstrate that the efficacy of LCM in inhibiting high-frequency firing is undiminished in chronic experimental and human epilepsy. Taken together, these results show that LCM exhibits maintained efficacy in chronic epilepsy, in contrast to conventional use-dependent sodium channel blockers such as carbamazepine. They also establish that targeting slow inactivation may be a promising strategy for overcoming target mechanisms of pharmacoresistance. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.
Sutton, K G; Stapleton, S R; Scott, R H
1998-07-24
The whole cell variant of the patch clamp technique was used to investigate the actions of polyamine spider toxins and their analogues on high voltage-activated Ca2+ currents and Ca2+-activated Cl- currents (I(Cl(Ca))). The actions of synthesised FTX (putative natural toxin from the American funnel web spider), sFTX-3.3, Orn-FTX-3.3, Lys-FTX-3.3, and argiotoxin-636 on cultured dorsal root ganglion neurones from neonatal rats were investigated. Synthesised FTX (1 microM) inhibited I(Cl(Ca)) but did not inhibit high voltage-activated Ca2+ currents. In contrast, sFTX-3.3 (10 microM) inhibited both high voltage-activated Ca2+ currents and the associated I(Cl(Ca)) in near equal proportions. Argiotoxin-636 (1-10 microM) inhibited I(Cl(Ca)) evoked by Ca2+ entry through voltage-activated channels and by intracellular photorelease of Ca2+ from a caged precursor DM-nitrophen. This data indicates that synthesised FTX and argiotoxin-636 directly inhibit Ca2+-activated Cl- channels. In conclusion, the potency of polyamines as non-selective inhibitors of Ca2+ channels and Ca2+-activated Cl- channels is in part determined by the presence of a terminal arginine and this may involve an interaction between terminal guanidino groups and Ca2+ binding sites.
Hardy, Matthew E L; Pervolaraki, Eleftheria; Bernus, Olivier; White, Ed
2018-01-01
We investigated the steepened dynamic action potential duration (APD) restitution of rats with pulmonary artery hypertension (PAH) and right ventricular (RV) failure and tested whether the observed APD restitution properties were responsible for negative mechanical restitution in these myocytes. PAH and RV failure were provoked in male Wistar rats by a single injection of monocrotaline (MCT) and compared with saline-injected animals (CON). Action potentials were recorded from isolated RV myocytes at stimulation frequencies between 1 and 9 Hz. Action potential waveforms recorded at 1 Hz were used as voltage clamp profiles (action potential clamp) at stimulation frequencies between 1 and 7 Hz to evoke rate-dependent currents. Voltage clamp profiles mimicking typical CON and MCT APD restitution were applied and cell shortening simultaneously monitored. Compared with CON myocytes, MCT myocytes were hypertrophied; had less polarized diastolic membrane potentials; had action potentials that were triggered by decreased positive current density and shortened by decreased negative current density; APD was longer and APD restitution steeper. APD90 restitution was unchanged by exposure to the late Na + -channel blocker (5 μM) ranolazine or the intracellular Ca 2+ buffer BAPTA. Under AP clamp, stimulation frequency-dependent inward currents were smaller in MCT myocytes and were abolished by BAPTA. In MCT myocytes, increasing stimulation frequency decreased contraction amplitude when depolarization duration was shortened, to mimic APD restitution, but not when depolarization duration was maintained. We present new evidence that the membrane potential of PAH myocytes is less stable than normal myocytes, being more easily perturbed by external currents. These observations can explain increased susceptibility to arrhythmias. We also present novel evidence that negative APD restitution is at least in part responsible for the negative mechanical restitution in PAH myocytes. Thus, our study links electrical restitution remodeling to a defining mechanical characteristic of heart failure, the reduced ability to respond to an increase in demand.
A new pH-sensitive rectifying potassium channel in mitochondria from the embryonic rat hippocampus.
Kajma, Anna; Szewczyk, Adam
2012-10-01
Patch-clamp single-channel studies on mitochondria isolated from embryonic rat hippocampus revealed the presence of two different potassium ion channels: a large-conductance (288±4pS) calcium-activated potassium channel and second potassium channel with outwardly rectifying activity under symmetric conditions (150/150mM KCl). At positive voltages, this channel displayed a conductance of 67.84pS and a strong voltage dependence at holding potentials from -80mV to +80mV. The open probability was higher at positive than at negative voltages. Patch-clamp studies at the mitoplast-attached mode showed that the channel was not sensitive to activators and inhibitors of mitochondrial potassium channels but was regulated by pH. Moreover, we demonstrated that the channel activity was not affected by the application of lidocaine, an inhibitor of two-pore domain potassium channels, or by tertiapin, an inhibitor of inwardly rectifying potassium channels. In summary, based on the single-channel recordings, we characterised for the first time mitochondrial pH-sensitive ion channel that is selective for cations, permeable to potassium ions, displays voltage sensitivity and does not correspond to any previously described potassium ion channels in the inner mitochondrial membrane. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012). Copyright © 2012 Elsevier B.V. All rights reserved.
Tveito, Aslak; Lines, Glenn T; Edwards, Andrew G; McCulloch, Andrew
2016-07-01
Markov models are ubiquitously used to represent the function of single ion channels. However, solving the inverse problem to construct a Markov model of single channel dynamics from bilayer or patch-clamp recordings remains challenging, particularly for channels involving complex gating processes. Methods for solving the inverse problem are generally based on data from voltage clamp measurements. Here, we describe an alternative approach to this problem based on measurements of voltage traces. The voltage traces define probability density functions of the functional states of an ion channel. These probability density functions can also be computed by solving a deterministic system of partial differential equations. The inversion is based on tuning the rates of the Markov models used in the deterministic system of partial differential equations such that the solution mimics the properties of the probability density function gathered from (pseudo) experimental data as well as possible. The optimization is done by defining a cost function to measure the difference between the deterministic solution and the solution based on experimental data. By evoking the properties of this function, it is possible to infer whether the rates of the Markov model are identifiable by our method. We present applications to Markov model well-known from the literature. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Altered Ca2+ signaling in skeletal muscle fibers of the R6/2 mouse, a model of Huntington’s disease
Braubach, Peter; Orynbayev, Murat; Andronache, Zoita; Hering, Tanja; Landwehrmeyer, Georg Bernhard; Lindenberg, Katrin S.
2014-01-01
Huntington’s disease (HD) is caused by an expanded CAG trinucleotide repeat within the gene encoding the protein huntingtin. The resulting elongated glutamine (poly-Q) sequence of mutant huntingtin (mhtt) affects both central neurons and skeletal muscle. Recent reports suggest that ryanodine receptor–based Ca2+ signaling, which is crucial for skeletal muscle excitation–contraction coupling (ECC), is changed by mhtt in HD neurons. Consequently, we searched for alterations of ECC in muscle fibers of the R6/2 mouse, a mouse model of HD. We performed fluorometric recordings of action potentials (APs) and cellular Ca2+ transients on intact isolated toe muscle fibers (musculi interossei), and measured L-type Ca2+ inward currents on internally dialyzed fibers under voltage-clamp conditions. Both APs and AP-triggered Ca2+ transients showed slower kinetics in R6/2 fibers than in fibers from wild-type mice. Ca2+ removal from the myoplasm and Ca2+ release flux from the sarcoplasmic reticulum were characterized using a Ca2+ binding and transport model, which indicated a significant reduction in slow Ca2+ removal activity and Ca2+ release flux both after APs and under voltage-clamp conditions. In addition, the voltage-clamp experiments showed a highly significant decrease in L-type Ca2+ channel conductance. These results indicate profound changes of Ca2+ turnover in skeletal muscle of R6/2 mice and suggest that these changes may be associated with muscle pathology in HD. PMID:25348412
Herrera-Valdez, Marco A.; Lopez-Huerta, Violeta Gisselle; Galarraga, Elvira
2015-01-01
Most neurons in the striatum are projection neurons (SPNs) which make synapses with each other within distances of approximately 100 µm. About 5% of striatal neurons are GABAergic interneurons whose axons expand hundreds of microns. Short-term synaptic plasticity (STSP) between fast-spiking (FS) interneurons and SPNs and between SPNs has been described with electrophysiological and optogenetic techniques. It is difficult to obtain pair recordings from some classes of interneurons and due to limitations of actual techniques, no other types of STSP have been described on SPNs. Diverse STSPs may reflect differences in presynaptic release machineries. Therefore, we focused the present work on answering two questions: Are there different identifiable classes of STSP between GABAergic synapses on SPNs? And, if so, are synapses exhibiting different classes of STSP differentially affected by dopamine depletion? Whole-cell voltage-clamp recordings on SPNs revealed three classes of STSPs: depressing, facilitating, and biphasic (facilitating-depressing), in response to stimulation trains at 20 Hz, in a constant ionic environment. We then used the 6-hydroxydopamine (6-OHDA) rodent model of Parkinson's disease to show that synapses with different STSPs are differentially affected by dopamine depletion. We propose a general model of STSP that fits all the dynamics found in our recordings. PMID:26167304
Goldschen-Ohm, Marcel P.; Capes, Deborah L.; Oelstrom, Kevin M.; Chanda, Baron
2013-01-01
Voltage-dependent Na+ channels are crucial for electrical signalling in excitable cells. Membrane depolarization initiates asynchronous movements in four non-identical voltage-sensing domains of the Na+ channel. It remains unclear to what extent this structural asymmetry influences pore gating as compared with outwardly rectifying K+ channels, where channel opening results from a final concerted transition of symmetric pore gates. Here we combine single channel recordings, cysteine accessibility and voltage clamp fluorimetry to probe the relationships between voltage sensors and pore conformations in an inactivation deficient Nav1.4 channel. We observe three distinct conductance levels such that DI-III voltage sensor activation is kinetically correlated with formation of a fully open pore, whereas DIV voltage sensor movement underlies formation of a distinct subconducting pore conformation preceding inactivation in wild-type channels. Our experiments reveal that pore gating in sodium channels involves multiple transitions driven by asynchronous movements of voltage sensors. These findings shed new light on the mechanism of coupling between activation and fast inactivation in voltage-gated sodium channels. PMID:23322038
Current-Induced Transistor Sensorics with Electrogenic Cells
Fromherz, Peter
2016-01-01
The concepts of transistor recording of electroactive cells are considered, when the response is determined by a current-induced voltage in the electrolyte due to cellular activity. The relationship to traditional transistor recording, with an interface-induced response due to interactions with the open gate oxide, is addressed. For the geometry of a cell-substrate junction, the theory of a planar core-coat conductor is described with a one-compartment approximation. The fast electrical relaxation of the junction and the slow change of ion concentrations are pointed out. On that basis, various recording situations are considered and documented by experiments. For voltage-gated ion channels under voltage clamp, the effects of a changing extracellular ion concentration and the enhancement/depletion of ion conductances in the adherent membrane are addressed. Inhomogeneous ion conductances are crucial for transistor recording of neuronal action potentials. For a propagating action potential, the effects of an axon-substrate junction and the surrounding volume conductor are distinguished. Finally, a receptor-transistor-sensor is described, where the inhomogeneity of a ligand–activated ion conductance is achieved by diffusion of the agonist and inactivation of the conductance. Problems with regard to a development of reliable biosensors are mentioned. PMID:27120627
Poloxamer 188 decreases susceptibility of artificial lipid membranes to electroporation.
Sharma, V; Stebe, K; Murphy, J C; Tung, L
1996-01-01
The effect of a nontoxic, nonionic block co-polymeric surface active agent, poloxamer 188, on electroporation of artificial lipid membranes made of azolectin, was investigated. Two different experimental protocols were used in our study: charge pulse and voltage clamp. For the charge pulse protocol, membranes were pulsed with a 10-micronsecond rectangular voltage waveform, after which membrane voltage decay was observed through an external 1-M omega resistance. For the voltage clamp protocol the membranes were pulsed with a waveform that consisted of an initial 10-microsecond rectangular phase, followed by a negative sloped ramp that decayed to zero in the subsequent 500 microseconds. Several parameters characterizing the electroporation process were measured and compared for the control membranes and membranes treated with 1.0 mM poloxamer 188. For both the charge pulse and voltage clamp experiments, the threshold voltage (amplitude of initial rectangular phase) and latency time (time elapsed between the end of rectangular phase and the onset of membrane electroporation) were measured. Membrane conductance (measured 200 microseconds after the initial rectangular phase) and rise time (tr; the time required for the porated membrane to reach a certain conductance value) were also determined for the voltage clamp experiments, and postelectroporation time constant (PE tau; the time constant for transmembrane voltage decay after onset of electroporation) for the charge pulse experiments. The charge pulse experiments were performed on 23 membranes with 10 control and 13 poloxamer-treated membranes, and voltage pulse experiments on 49 membranes with 26 control and 23 poloxamer-treated membranes. For both charge pulse and voltage clamp experiments, poloxamer 188-treated membranes exhibited a statistically higher threshold voltage (p = 0.1 and p = 0.06, respectively), and longer latency time (p = 0.04 and p = 0.05, respectively). Also, poloxamer 188-treated membranes were found to have a relatively lower conductance (p = 0.001), longer time required for the porated membrane to reach a certain conductance value (p = 0.05), and longer postelectroporation time constant (p = 0.005). Furthermore, addition of poloxamer 188 was found to reduce the membrane capacitance by approximately 4-8% in 5 min. These findings suggest that poloxamer 188 adsorbs into the lipid bilayers, thereby decreasing their susceptibility to electroporation. Images FIGURE 1 PMID:8968593
The Anion Paradox in Sodium Taste Reception: Resolution by Voltage-Clamp Studies
NASA Astrophysics Data System (ADS)
Ye, Qing; Heck, Gerard L.; Desimone, John A.
1991-11-01
Sodium salts are potent taste stimuli, but their effectiveness is markedly dependent on the anion, with chloride yielding the greatest response. The cellular mechanisms that mediate this phenomenon are not known. This "anion paradox" has been resolved by considering the field potential that is generated by restricted electrodiffusion of the anion through paracellular shunts between taste-bud cells. Neural responses to sodium chloride, sodium acetate, and sodium gluconate were studied while the field potential was voltage-clamped. Clamping at electronegative values eliminated the anion effect, whereas clamping at electropositive potentials exaggerated it. Thus, field potentials across the lingual epithelium modulate taste reception, indicating that the functional unit of taste reception includes the taste cell and its paracellular microenvironment.
NASA Astrophysics Data System (ADS)
Nuriya, Mutsuo; Yasui, Masato
2010-03-01
The electrical properties of axons critically influence the nature of communication between neurons. However, due to their small size, direct measurement of membrane potential dynamics in intact and complex mammalian axons has been a challenge. Furthermore, quantitative optical measurements of axonal membrane potential dynamics have not been available. To characterize the basic principles of somatic voltage signal propagation in intact axonal arbors, second-harmonic-generation (SHG) imaging is applied to cultured mouse hippocampal neurons. When FM4-64 is applied extracellularly to dissociated neurons, whole axonal arbors are visualized by SHG imaging. Upon action potential generation by somatic current injection, nonattenuating action potentials are recorded in intact axonal arbors. Interestingly, however, both current- and voltage-clamp recordings suggest that nonregenerative subthreshold somatic voltage changes at the soma are poorly conveyed to these axonal sites. These results reveal the nature of membrane potential dynamics of cultured hippocampal neurons, and further show the possibility of SHG imaging in physiological investigations of axons.
Voltage-gated currents in identified rat olfactory receptor neurons.
Trombley, P Q; Westbrook, G L
1991-02-01
Whole-cell recording techniques were used to characterize voltage-gated membrane currents in neonatal rat olfactory receptor neurons (ORNs) in cell culture. Mature ORNs were identified in culture by their characteristic bipolar morphology, by retrograde labeling techniques, and by olfactory marker protein (OMP) immunoreactivity. ORNs did not have spontaneous activity, but fired action potentials to depolarizing current pulses. Action potentials were blocked by tetrodotoxin (TTX), which contrasts with the TTX-resistant action potentials in salamander olfactory receptor cells (e.g., Firestein and Werblin, 1987). Prolonged, suprathreshold current pulses evoked only a single action potential; however, repetitive firing up to 35 Hz could be elicited by a series of brief depolarizing pulses. Under voltage clamp, the TTX-sensitive sodium current had activation and inactivation properties similar to other excitable cells. In TTX and 20 mM barium, sustained inward current were evoked by voltage steps positive to -30 mV. This current was blocked by Cd (100 microM) and by nifedipine (IC50 = 368 nM) consistent with L-type calcium channels in other neurons. No T-type calcium current was observed. Voltage steps positive to -20 mV also evoked an outward current that did not inactivate during 100-msec depolarizations. Tail current analysis of this current was consistent with a selective potassium conductance. The outward current was blocked by external tetraethylammonium but was unaffected by Cd or 4-aminopyridine (4-AP) or by removal of external calcium. A transient outward current was not observed. The 3 voltage-dependent conductances in cultured rat ORNs appear to be sufficient for 2 essential functions: action potential generation and transmitter release. As a single odorant-activated channel can trigger an action potential (e.g., Lynch and Barry, 1989), the repetitive firing seen with brief depolarizing pulses suggests that ORNs do not integrate sensory input, but rather act as high-fidelity relays such that each opening of an odorant-activated channel reaches the olfactory bulb glomeruli as an action potential.
Characterization of Two-Pore Channel 2 by Nuclear Membrane Electrophysiology
Lee, Claire Shuk-Kwan; Tong, Benjamin Chun-Kit; Cheng, Cecily Wing-Hei; Hung, Harry Chun-Hin; Cheung, King-Ho
2016-01-01
Lysosomal calcium (Ca2+) release mediated by NAADP triggers signalling cascades that regulate many cellular processes. The identification of two-pore channel 2 (TPC2) as the NAADP receptor advances our understanding of lysosomal Ca2+ signalling, yet the lysosome is not amenable to traditional patch-clamp electrophysiology. Previous attempts to record TPC2 single-channel activity put TPC2 outside its native environment, which not reflect TPC2’s true physiological properties. To test the feasibility of using nuclear membrane electrophysiology for TPC2 channel characterization, we constructed a stable human TPC2-expressing DT40TKO cell line that lacks endogenous InsP3R and RyR (DT40TKO-hTPC2). Immunostaining revealed hTPC2 expression on the ER and nuclear envelope. Intracellular dialysis of NAADP into Fura-2-loaded DT40TKO-hTPC2 cells elicited cytosolic Ca2+ transients, suggesting that hTPC2 was functionally active. Using nuclear membrane electrophysiology, we detected a ~220 pS single-channel current activated by NAADP with K+ as the permeant ion. The detected single-channel recordings displayed a linear current-voltage relationship, were sensitive to Ned-19 inhibition, were biphasically regulated by NAADP concentration, and regulated by PKA phosphorylation. In summary, we developed a cell model for the characterization of the TPC2 channel and the nuclear membrane patch-clamp technique provided an alternative approach to rigorously investigate the electrophysiological properties of TPC2 with minimal manipulation. PMID:26838264
Cocaine acute "binge" administration results in altered thalamocortical interactions in mice.
Urbano, Francisco J; Bisagno, Verónica; Wikinski, Silvia I; Uchitel, Osvaldo D; Llinás, Rodolfo R
2009-10-15
Abnormalities in both thalamic and cortical areas have been reported in human cocaine addicts with noninvasive functional magnetic resonance imaging. Given the substantial involvement of the thalamocortical system in sensory processing and perception, we defined electrophysiology-based protocols to attempt a characterization of cocaine effects on thalamocortical circuits. Thalamocortical function was studied in vivo and in vitro in mice after cocaine "binge" administration. In vivo awake electroencephalography (EEG) was implemented in mice injected with saline, 1 hour or 24 hours after the last cocaine "binge" injection. In vitro current- and voltage-clamp whole-cell patch-clamp recordings were performed from slices including thalamic relay ventrobasal (VB) neurons. In vivo EEG recordings after cocaine "binge" administration showed a significant increment, compared with saline, in low frequencies while observing no changes in high-frequency gamma activity. In vitro patch recordings from VB neurons after cocaine "binge" administration showed low threshold spikes activation at more negative membrane potentials and increments in both I(h) and low voltage activated T-type calcium currents. Also, a 10-mV negative shift on threshold activation level of T-type current and a remarkable increment in both frequency and amplitudes of gamma-aminobutyric acid-A-mediated minis were observed. Our data indicate that thalamocortical dysfunctions observed in cocaine abusers might be due to two distinct but additive events: 1) increased low frequency oscillatory thalamocortical activity, and 2) overinhibition of VB neurons that can abnormally "lock" the whole thalamocortical system at low frequencies.
Purali, Nuhan
2017-09-01
In the present study, cytosolic calcium concentration changes were recorded in response to various forms of excitations, using the fluorescent calcium indicator dye OG-BAPTA1 together with the current or voltage clamp methods in stretch receptor neurons of crayfish. A single action potential evoked a rise in the resting calcium level in the axon and axonal hillock, whereas an impulse train or a large saturating current injection would be required to evoke an equivalent response in the dendrite region. Under voltage clamp conditions, amplitude differences between axon and dendrite responses vanished completely. The fast activation time and the modulation of the response by extracellular calcium concentration changes indicated that the evoked calcium transients might be mediated by calcium entry into the cytosol through a voltage-gated calcium channel. The decay of the responses was slow and sensitive to extracellular sodium and calcium concentrations as well as exposure to 1-10 mM NiCl 2 and 10-500 µM lanthanum. Thus, a sodium calcium exchanger and a calcium ATPase might be responsible for calcium extrusion from the cytosol. Present results indicate that the calcium indicator OG-BAPTA1 might be an efficient but indirect way of monitoring regional membrane potential differences in a single neuron.
Novel 384-well population patch clamp electrophysiology assays for Ca2+-activated K+ channels.
John, Victoria H; Dale, Tim J; Hollands, Emma C; Chen, Mao Xiang; Partington, Leanne; Downie, David L; Meadows, Helen J; Trezise, Derek J
2007-02-01
Planar array electrophysiology techniques were applied to assays for modulators of recombinant hIK and hSK3 Ca2+-activated K+ channels. In CHO-hIK-expressing cells, under asymmetric K+ gradients, small-molecule channel activators evoked time- and voltage-independent currents characteristic of those previously described by classical patch clamp electrophysiology methods. In single-hole (cell) experiments, the large cell-to-cell heterogeneity in channel expression rendered it difficult to generate activator concentration-response curves. However, in population patch clamp mode, in which signals are averaged from up to 64 cells, well-to-well variation was substantially reduced such that concentration-response curves could be easily constructed. The absolute EC50 values and rank order of potency for a range of activators, including 1-EBIO and DC-EBIO, corresponded well with conventional patch clamp data. Activator responses of hIK and hSK3 channels could be fully and specifically blocked by the selective inhibitors TRAM-34 and apamin, with IC50 values of 0.31 microM and 3 nM, respectively. To demonstrate assay precision and robustness, a test set of 704 compounds was screened in a 384-well format of the hIK assay. All plates had Z' values greater than 0.6, and the statistical cutoff for activity was 8%. Eleven hits (1.6%) were identified from this set, in addition to the randomly spiked wells with known activators. Overall, our findings demonstrate that population patch clamp is a powerful and enabling method for screening Ca2+-activated K+ channels and provides significant advantages over single-cell electrophysiology (IonWorks(HT)) and other previously published approaches. Moreover, this work demonstrates for the 1st time the utility of population patch clamp for ion channel activator assays and for non-voltage-gated ion channels.
Action of certain tropine esters on voltage-clamped lobster axon.
Blaustein, M P
1968-03-01
Tropine p-tolylacetate (TPTA) and its quaternary analogue, tropine p-tolylacetate methiodide (TPTA MeI) decrease the early transient (Na) and late (K) currents in the voltage-clamped lobster giant axon. These agents, which block the nerve action potential, reduce the maximum Na and K conductance increases associated with membrane depolarization. They also slow the rate at which the sodium conductance is increased and shift the (normalized) membrane conductance vs. voltage curves in the direction of depolarization along the voltage axis. All these effects are qualitatively similar to those resulting from the action of procaine on the voltage-clamped axon. One unusual effect of the tropine esters, noticeable particularly at large depolarization steps, is that they cause the late, K current to reach a peak and then fall off with increasing pulse duration. This effect has not been reported to occur as a result of procaine action. Tropine p-chlorophenyl acetate (TPClphiA), which differs from TPTA only by the substitution of a p-Cl for a p-CH(3) group on the benzene ring, had a negligible effect on axonal excitability.
Action of Certain Tropine Esters on Voltage-Clamped Lobster Axon
Blaustein, M. P.
1968-01-01
Tropine p-tolylacetate (TPTA) and its quaternary analogue, tropine p-tolylacetate methiodide (TPTA MeI) decrease the early transient (Na) and late (K) currents in the voltage-clamped lobster giant axon. These agents, which block the nerve action potential, reduce the maximum Na and K conductance increases associated with membrane depolarization. They also slow the rate at which the sodium conductance is increased and shift the (normalized) membrane conductance vs. voltage curves in the direction of depolarization along the voltage axis. All these effects are qualitatively similar to those resulting from the action of procaine on the voltage-clamped axon. One unusual effect of the tropine esters, noticeable particularly at large depolarization steps, is that they cause the late, K current to reach a peak and then fall off with increasing pulse duration. This effect has not been reported to occur as a result of procaine action. Tropine p-chlorophenyl acetate (TPClφA), which differs from TPTA only by the substitution of a p-Cl for a p-CH3 group on the benzene ring, had a negligible effect on axonal excitability. PMID:5648830
QPatch: the past, present and future of automated patch clamp.
Mathes, Chris
2006-04-01
The QPatch 16 significantly increases throughput for gigaseal patch clamp experiments, making direct measurements in ion channel drug discovery and safety testing feasible. Released to the market in the Autumn of 2004 by Sophion Bioscience, the QPatch originated from work done at NeuroSearch (Denmark) in the early days of automated patch clamp. Today, the QPatch provides many unique features. For example, only the QPatch includes an automated cell preparation station making several hours of unattended operation possible. The 16-channel electrode array, called the QPlate, includes glass-coated microfluidic channels for less compound absorption and, hence, more accurate IC(50) values. The microfluidic pathways also allow for very small amounts of compound used for each experiment ( approximately 5 microl per addition). Only the QPatch has four independent pipetting heads for more efficient liquid handling (especially for ligand-gated ion channel experiments). Patch clamp recordings with the QPatch match the high quality of conventional patch clamp and in some cases the results are even better. For example, only the QPatch includes 100% series resistance compensation for the elimination of false positives due to voltage errors. Finally, the modular QPatch 16 was designed with more channels in mind. The upgrade pathway to 48-channels (the QPatch HT) will be discussed.
Khaliq, Zayd M; Bean, Bruce P
2008-10-22
We analyzed ionic currents that regulate pacemaking in dopaminergic neurons of the mouse ventral tegmental area by comparing voltage trajectories during spontaneous firing with ramp-evoked currents in voltage clamp. Most recordings were made in brain slice, with key experiments repeated using acutely dissociated neurons, which gave identical results. During spontaneous firing, net ionic current flowing between spikes was calculated from the time derivative of voltage multiplied by cell capacitance, signal-averaged over many firing cycles to enhance resolution. Net inward interspike current had a distinctive nonmonotonic shape, reaching a minimum (generally <1 pA) between -60 and -55 mV. Under voltage clamp, ramps over subthreshold voltages elicited a time- and voltage-dependent outward current that peaked near -55 mV. This current was undetectable with 5 mV/s ramps and increased steeply with depolarization rate over the range (10-50 mV/s) typical of natural pacemaking. Ramp-evoked subthreshold current was resistant to alpha-dendrotoxin, paxilline, apamin, and tetraethylammonium but sensitive to 4-aminopyridine and 0.5 mM Ba2+, consistent with A-type potassium current (I(A)). Same-cell comparison of currents elicited by various ramp speeds with natural spontaneous depolarization showed how the steep dependence of I(A) on depolarization rate results in small net inward currents during pacemaking. These results reveal a mechanism in which subthreshold I(A) is near zero at steady state, but is engaged at depolarization rates >10 mV/s to act as a powerful, supralinear feedback element. This feedback mechanism explains how net ionic current can be constrained to <1-2 pA but reliably inward, thus enabling slow, regular firing.
A low-voltage sense amplifier with two-stage operational amplifier clamping for flash memory
NASA Astrophysics Data System (ADS)
Guo, Jiarong
2017-04-01
A low-voltage sense amplifier with reference current generator utilizing two-stage operational amplifier clamp structure for flash memory is presented in this paper, capable of operating with minimum supply voltage at 1 V. A new reference current generation circuit composed of a reference cell and a two-stage operational amplifier clamping the drain pole of the reference cell is used to generate the reference current, which avoids the threshold limitation caused by current mirror transistor in the traditional sense amplifier. A novel reference voltage generation circuit using dummy bit-line structure without pull-down current is also adopted, which not only improves the sense window enhancing read precision but also saves power consumption. The sense amplifier was implemented in a flash realized in 90 nm flash technology. Experimental results show the access time is 14.7 ns with power supply of 1.2 V and slow corner at 125 °C. Project supported by the National Natural Science Fundation of China (No. 61376028).
Estacion, Mark
2017-01-01
The Nav1.7 sodium channel is preferentially expressed within dorsal root ganglion (DRG) and sympathetic ganglion neurons. Gain-of-function mutations that cause the painful disorder inherited erythromelalgia (IEM) shift channel activation in a hyperpolarizing direction. When expressed within DRG neurons, these mutations produce a depolarization of resting membrane potential (RMP). The biophysical basis for the depolarized RMP has to date not been established. To explore the effect on RMP of the shift in activation associated with a prototypical IEM mutation (L858H), we used dynamic-clamp models that represent graded shifts that fractionate the effect of the mutation on activation voltage dependence. Dynamic-clamp recording from DRG neurons using a before-and-after protocol for each cell made it possible, even in the presence of cell-to-cell variation in starting RMP, to assess the effects of these graded mutant models. Our results demonstrate a nonlinear, progressively larger effect on RMP as the shift in activation voltage dependence becomes more hyperpolarized. The observed differences in RMP were predicted by the “late” current of each mutant model. Since the depolarization of RMP imposed by IEM mutant channels is known, in itself, to produce hyperexcitability of DRG neurons, the development of pharmacological agents that normalize or partially normalize activation voltage dependence of IEM mutant channels merits further study. NEW & NOTEWORTHY Inherited erythromelalgia (IEM), the first human pain disorder linked to a sodium channel, is widely regarded as a genetic model of neuropathic pain. IEM is produced by Nav1.7 mutations that hyperpolarize activation. These mutations produce a depolarization of resting membrane potential (RMP) in dorsal root ganglion neurons. Using dynamic clamp to explore the effect on RMP of the shift in activation, we demonstrate a nonlinear effect on RMP as the shift in activation voltage dependence becomes more hyperpolarized. PMID:28148645
Rapid communication between neurons and astrocytes in primary cortical cultures.
Murphy, T H; Blatter, L A; Wier, W G; Baraban, J M
1993-06-01
The identification of neurotransmitter receptors and voltage-sensitive ion channels on astrocytes (reviewed by Barres, 1991) has renewed interest in how these cells respond to neuronal activity. To investigate the physiology of neuron astrocyte signaling, we have employed primary cortical cultures that contain both neuronal and glial cells. As the neurons in these cultures exhibit synchronous spontaneous synaptic activity, we have used both calcium imaging and whole-cell recording techniques to identify physiological activity in astrocytes related to neuronal activity. Whole-cell voltage-clamp records from astrocytes revealed rapid inward currents that coincide with bursts of electrical activity in neighboring neurons. Calcium imaging studies demonstrate that these currents in astrocytes are not always associated with slowly propagating calcium waves. Inclusion of the dye Lucifer yellow within patch pipettes confirmed that astrocytes are extensively coupled to each other but not to adjacent neurons, indicating that the currents observed are not due to gap junction connections between these cell types. These currents do not reflect widespread diffusion of glutamate or potassium released during neuronal activity since a population of small, round, multipolar presumed glial cells that are not dye coupled to adjacent cells did not display electrical currents coincident with neuronal firing, even though they respond to locally applied glutamate and potassium. These findings indicate that, in addition to the relatively slow signaling conveyed by calcium waves, astrocytes also display rapid electrical responses to neuronal activity.
Sensory Transduction and Electrical Signaling in Guard Cells
Serrano, Elba E.; Zeiger, Eduardo
1989-01-01
Guard cells are a valuable model system for the study of photoreception, ion transport, and osmoregulation in plant cells. Changes in stomatal apertures occur when sensing mechanisms within the guard cells transduce environmental stimull into the ion fluxes and biosynthesis of organic solutes that regulate turgor. The electrical events mediating sensory transduction in guard cells can be characterized with a variety of electrophysiological recording techniques. Recent experiments applying the patch clamp method to guard cell protoplasts have demonstrated activation of electrogenic pumps by blue and red light as well as the presence of potassium channels in guard cell plasmalemma. Light activation of electrogenic proton pumping and the ensuing gating of voltage-dependent ion channels appear to be components of sensory transduction of the stomatal response to light. Mechanisms underlying stomatal control by environmental signals can be understood by studying electrical events associated with ion transport. PMID:16667138
NASA Astrophysics Data System (ADS)
Zhang, Yonggao; Gao, Yanli; Long, Lizhong
2012-04-01
More and more researchers have great concern on the issue of Common-mode voltage (CMV) in high voltage large power converter. A novel common-mode voltage suppression scheme based on zero-vector PWM strategy (ZVPWM) is present in this paper. Taking a diode-clamped five-level converter as example, the principle of zero vector PWM common-mode voltage (ZCMVPWM) suppression method is studied in detail. ZCMVPWM suppression strategy is including four important parts, which are locating the sector of reference voltage vector, locating the small triangular sub-sector of reference voltage vector, reference vector synthesis, and calculating the operating time of vector. The principles of four important pars are illustrated in detail and the corresponding MATLAB models are established. System simulation and experimental results are provided. It gives some consultation value for the development and research of multi-level converters.
Liu, Wei; Zhang, Zhao-qin; Zhao, Xiao-min; Gao, Yun-sheng
2006-05-01
To investigate the effect of Uncaria rhynchophylla total alkaloids (RTA) pretreatment on the voltage-gated sodium currents of the rat hippocampal neurons after acute hypoxia. Primary cultured hippocampal neurons were divided into RTA pre-treated and non-pretreated groups. Patch clamp whole-cell recording was used to compare the voltage-gated sodium current amplitude and threshold with those before hypoxia. After acute hypoxia, sodium current amplitude was significantly decreased and its threshold was upside. RTA pretreatment could inhibit the reduction of sodium current amplitude. RTA pretreatment alleviates the acute hypoxia-induced change of sodium currents, which may be one of the mechanisms for protective effect of RTA on cells.
Relaxation of Isolated Ventricular Cardiomyocytes by a Voltage-Dependent Process
NASA Astrophysics Data System (ADS)
Bridge, John H. B.; Spitzer, Kenneth W.; Ershler, Philip R.
1988-08-01
Cell contraction and relaxation were measured in single voltage-clamped guinea pig cardiomyocytes to investigate the contribution of sarcolemmal Na+-Ca2+ exchange to mechanical relaxation. Cells clamped from -80 to 0 millivolts displayed initial phasic and subsequent tonic contractions; caffeine reduced or abolished the phasic and enlarged the tonic contraction. The rate of relaxation from tonic contractions was steeply voltage-dependent and was significantly slowed in the absence of a sarcolemmal Na+ gradient. Tonic contractions elicited in the absence of a Na+ gradient promptly relaxed when external Na+ was applied, reflecting activation of Na+-Ca2+ exchange. It appears that a voltage-dependent Na+-Ca2+ exchange can rapidly mechanically relax mammalian heart muscle.
Antagonism of Lidocaine Inhibition by Open-Channel Blockers That Generate Resurgent Na Current
Bant, Jason S.; Aman, Teresa K.; Raman, Indira M.
2013-01-01
Na channels that generate resurgent current express an intracellular endogenous open-channel blocking protein, whose rapid binding upon depolarization and unbinding upon repolarization minimizes fast and slow inactivation. Na channels also bind exogenous compounds, such as lidocaine, which functionally stabilize inactivation. Like the endogenous blocking protein, these use-dependent inhibitors bind most effectively at depolarized potentials, raising the question of how lidocaine-like compounds affect neurons with resurgent Na current. We therefore recorded lidocaine inhibition of voltage-clamped, tetrodotoxin-sensitive Na currents in mouse Purkinje neurons, which express a native blocking protein, and in mouse hippocampal CA3 pyramidal neurons with and without a peptide from the cytoplasmic tail of NaVβ4 (the β4 peptide), which mimics endogenous open-channel block. To control channel states during drug exposure, lidocaine was applied with rapid-solution exchange techniques during steps to specific voltages. Inhibition of Na currents by lidocaine was diminished by either the β4 peptide or the native blocking protein. In peptide-free CA3 cells, prolonging channel opening with a site-3 toxin, anemone toxin II, reduced lidocaine inhibition; this effect was largely occluded by open-channel blockers, suggesting that lidocaine binding is favored by inactivation but prevented by open-channel block. In constant 100 μM lidocaine, current-clamped Purkinje cells continued to fire spontaneously. Similarly, the β4 peptide reduced lidocaine-dependent suppression of spiking in CA3 neurons in slices. Thus, the open-channel blocking protein responsible for resurgent current acts as a natural antagonist of lidocaine. Neurons with resurgent current may therefore be less susceptible to use-dependent Na channel inhibitors used as local anesthetic, antiarrhythmic, and anticonvulsant drugs. PMID:23486968
Szentandrássy, N; Farkas, V; Bárándi, L; Hegyi, B; Ruzsnavszky, F; Horváth, B; Bányász, T; Magyar, J; Márton, I; Nánási, PP
2012-01-01
BACKGROUND AND PURPOSE Although isoprenaline (ISO) is known to activate several ion currents in mammalian myocardium, little is known about the role of action potential morphology in the ISO-induced changes in ion currents. Therefore, the effects of ISO on action potential configuration, L-type Ca2+ current (ICa), slow delayed rectifier K+ current (IKs) and fast delayed rectifier K+ current (IKr) were studied and compared in a frequency-dependent manner using canine isolated ventricular myocytes from various transmural locations. EXPERIMENTAL APPROACH Action potentials were recorded with conventional sharp microelectrodes; ion currents were measured using conventional and action potential voltage clamp techniques. KEY RESULTS In myocytes displaying a spike-and-dome action potential configuration (epicardial and midmyocardial cells), ISO caused reversible shortening of action potentials accompanied by elevation of the plateau. ISO-induced action potential shortening was absent in endocardial cells and in myocytes pretreated with 4-aminopyridine. Application of the IKr blocker E-4031 failed to modify the ISO effect, while action potentials were lengthened by ISO in the presence of the IKs blocker HMR-1556. Both action potential shortening and elevation of the plateau were prevented by pretreatment with the ICa blocker nisoldipine. Action potential voltage clamp experiments revealed a prominent slowly inactivating ICa followed by a rise in IKs, both currents increased with increasing the cycle length. CONCLUSIONS AND IMPLICATIONS The effect of ISO in canine ventricular cells depends critically on action potential configuration, and the ISO-induced activation of IKs– but not IKr– may be responsible for the observed shortening of action potentials. PMID:22563726
Szentandrássy, N; Farkas, V; Bárándi, L; Hegyi, B; Ruzsnavszky, F; Horváth, B; Bányász, T; Magyar, J; Márton, I; Nánási, P P
2012-10-01
Although isoprenaline (ISO) is known to activate several ion currents in mammalian myocardium, little is known about the role of action potential morphology in the ISO-induced changes in ion currents. Therefore, the effects of ISO on action potential configuration, L-type Ca²⁺ current (I(Ca)), slow delayed rectifier K⁺ current (I(Ks)) and fast delayed rectifier K⁺ current (I(Kr)) were studied and compared in a frequency-dependent manner using canine isolated ventricular myocytes from various transmural locations. Action potentials were recorded with conventional sharp microelectrodes; ion currents were measured using conventional and action potential voltage clamp techniques. In myocytes displaying a spike-and-dome action potential configuration (epicardial and midmyocardial cells), ISO caused reversible shortening of action potentials accompanied by elevation of the plateau. ISO-induced action potential shortening was absent in endocardial cells and in myocytes pretreated with 4-aminopyridine. Application of the I(Kr) blocker E-4031 failed to modify the ISO effect, while action potentials were lengthened by ISO in the presence of the I(Ks) blocker HMR-1556. Both action potential shortening and elevation of the plateau were prevented by pretreatment with the I(Ca) blocker nisoldipine. Action potential voltage clamp experiments revealed a prominent slowly inactivating I(Ca) followed by a rise in I(Ks) , both currents increased with increasing the cycle length. The effect of ISO in canine ventricular cells depends critically on action potential configuration, and the ISO-induced activation of I(Ks) - but not I(Kr) - may be responsible for the observed shortening of action potentials. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.
NASA Astrophysics Data System (ADS)
Snow, Michael G.; Bajaj, Anil K.
2015-08-01
This work presents an uncertainty quantification (UQ) analysis of a comprehensive model for an electrostatically actuated microelectromechanical system (MEMS) switch. The goal is to elucidate the effects of parameter variations on certain key performance characteristics of the switch. A sufficiently detailed model of the electrostatically actuated switch in the basic configuration of a clamped-clamped beam is developed. This multi-physics model accounts for various physical effects, including the electrostatic fringing field, finite length of electrodes, squeeze film damping, and contact between the beam and the dielectric layer. The performance characteristics of immediate interest are the static and dynamic pull-in voltages for the switch. Numerical approaches for evaluating these characteristics are developed and described. Using Latin Hypercube Sampling and other sampling methods, the model is evaluated to find these performance characteristics when variability in the model's geometric and physical parameters is specified. Response surfaces of these results are constructed via a Multivariate Adaptive Regression Splines (MARS) technique. Using a Direct Simulation Monte Carlo (DSMC) technique on these response surfaces gives smooth probability density functions (PDFs) of the outputs characteristics when input probability characteristics are specified. The relative variation in the two pull-in voltages due to each of the input parameters is used to determine the critical parameters.
Bartos, Daniel C; Morotti, Stefano; Ginsburg, Kenneth S; Grandi, Eleonora; Bers, Donald M
2017-04-01
[Ca 2+ ] i enhanced rabbit ventricular slowly activating delayed rectifier K + current (I Ks ) by negatively shifting the voltage dependence of activation and slowing deactivation, similar to perfusion of isoproterenol. Rabbit ventricular rapidly activating delayed rectifier K + current (I Kr ) amplitude and voltage dependence were unaffected by high [Ca 2+ ] i . When measuring or simulating I Ks during an action potential, I Ks was not different during a physiological Ca 2+ transient or when [Ca 2+ ] i was buffered to 500 nm. The slowly activating delayed rectifier K + current (I Ks ) contributes to repolarization of the cardiac action potential (AP). Intracellular Ca 2+ ([Ca 2+ ] i ) and β-adrenergic receptor (β-AR) stimulation modulate I Ks amplitude and kinetics, but details of these important I Ks regulators and their interaction are limited. We assessed the [Ca 2+ ] i dependence of I Ks in steady-state conditions and with dynamically changing membrane potential and [Ca 2+ ] i during an AP. I Ks was recorded from freshly isolated rabbit ventricular myocytes using whole-cell patch clamp. With intracellular pipette solutions that controlled free [Ca 2+ ] i , we found that raising [Ca 2+ ] i from 100 to 600 nm produced similar increases in I Ks as did β-AR activation, and the effects appeared additive. Both β-AR activation and high [Ca 2+ ] i increased maximally activated tail I Ks , negatively shifted the voltage dependence of activation, and slowed deactivation kinetics. These data informed changes in our well-established mathematical model of the rabbit myocyte. In both AP-clamp experiments and simulations, I Ks recorded during a normal physiological Ca 2+ transient was similar to I Ks measured with [Ca 2+ ] i clamped at 500-600 nm. Thus, our study provides novel quantitative data as to how physiological [Ca 2+ ] i regulates I Ks amplitude and kinetics during the normal rabbit AP. Our results suggest that micromolar [Ca 2+ ] i , in the submembrane or junctional cleft space, is not required to maximize [Ca 2+ ] i -dependent I Ks activation during normal Ca 2+ transients. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Bartos, Daniel C.; Morotti, Stefano; Ginsburg, Kenneth S.; Grandi, Eleonora
2017-01-01
Key points [Ca2+]i enhanced rabbit ventricular slowly activating delayed rectifier K+ current (I Ks) by negatively shifting the voltage dependence of activation and slowing deactivation, similar to perfusion of isoproterenol.Rabbit ventricular rapidly activating delayed rectifier K+ current (I Kr) amplitude and voltage dependence were unaffected by high [Ca2+]i.When measuring or simulating I Ks during an action potential, I Ks was not different during a physiological Ca2+ transient or when [Ca2+]i was buffered to 500 nm. Abstract The slowly activating delayed rectifier K+ current (I Ks) contributes to repolarization of the cardiac action potential (AP). Intracellular Ca2+ ([Ca2+]i) and β‐adrenergic receptor (β‐AR) stimulation modulate I Ks amplitude and kinetics, but details of these important I Ks regulators and their interaction are limited. We assessed the [Ca2+]i dependence of I Ks in steady‐state conditions and with dynamically changing membrane potential and [Ca2+]i during an AP. I Ks was recorded from freshly isolated rabbit ventricular myocytes using whole‐cell patch clamp. With intracellular pipette solutions that controlled free [Ca2+]i, we found that raising [Ca2+]i from 100 to 600 nm produced similar increases in I Ks as did β‐AR activation, and the effects appeared additive. Both β‐AR activation and high [Ca2+]i increased maximally activated tail I Ks, negatively shifted the voltage dependence of activation, and slowed deactivation kinetics. These data informed changes in our well‐established mathematical model of the rabbit myocyte. In both AP‐clamp experiments and simulations, I Ks recorded during a normal physiological Ca2+ transient was similar to I Ks measured with [Ca2+]i clamped at 500–600 nm. Thus, our study provides novel quantitative data as to how physiological [Ca2+]i regulates I Ks amplitude and kinetics during the normal rabbit AP. Our results suggest that micromolar [Ca2+]i, in the submembrane or junctional cleft space, is not required to maximize [Ca2+]i‐dependent I Ks activation during normal Ca2+ transients. PMID:28008618
Cesca, Fabrizia; Satapathy, Annyesha; Ferrea, Enrico; Nieus, Thierry; Benfenati, Fabio; Scholz-Starke, Joachim
2015-07-17
Kidins220 (kinase D-interacting substrate of 220 kDa)/ankyrin repeat-rich membrane spanning (ARMS) acts as a signaling platform at the plasma membrane and is implicated in a multitude of neuronal functions, including the control of neuronal activity. Here, we used the Kidins220(-/-) mouse model to study the effects of Kidins220 ablation on neuronal excitability. Multielectrode array recordings showed reduced evoked spiking activity in Kidins220(-/-) hippocampal networks, which was compatible with the increased excitability of GABAergic neurons determined by current-clamp recordings. Spike waveform analysis further indicated an increased sodium conductance in this neuronal subpopulation. Kidins220 association with brain voltage-gated sodium channels was shown by co-immunoprecipitation experiments and Na(+) current recordings in transfected HEK293 cells, which revealed dramatic alterations of kinetics and voltage dependence. Finally, an in silico interneuronal model incorporating the Kidins220-induced Na(+) current alterations reproduced the firing phenotype observed in Kidins220(-/-) neurons. These results identify Kidins220 as a novel modulator of Nav channel activity, broadening our understanding of the molecular mechanisms regulating network excitability. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Protein kinase C enhances the swelling-induced chloride current in human atrial myocytes.
Li, Ye-Tao; Du, Xin-Ling
2016-06-01
Swelling-activated chloride currents (ICl.swell) are thought to play a role in several physiologic and pathophysiologic processes and thus represent a target for therapeutic approaches. However, the mechanism of ICl.swell regulation remains unclear. In this study, we used the whole-cell patch-clamp technique to examine the role of protein kinase C (PKC) in the regulation of ICl.swell in human atrial myocytes. Atrial myocytes were isolated from the right atrial appendages of patients undergoing coronary artery bypass and enzymatically dissociated. ICl.swell was evoked in hypotonic solution and recorded using the whole-cell patch-clamp technique. The PKC agonist phorbol dibutyrate (PDBu) enhanced ICl.swell in a concentration-dependent manner, which was reversed in isotonic solution and by a chloride current inhibitor, 9-anthracenecarboxylicacid. Furthermore, the PKC inhibitor bis-indolylmaleimide attenuated the effect and 4α-PDBu, an inactive PDBu analog, had no effect on ICl.swell. These results, obtained using the whole-cell patch-clamp technique, demonstrate the ability of PKC to activate ICl,swell in human atrial myocytes. This observation was consistent with a previous study using a single-channel patch-clamp technique, but differed from some findings in other species.
Zhang, H; Bolton, T B
1995-01-01
1. Single-channel recordings were made from cell-attached and isolated patches, and whole-cell currents were recorded under voltage clamp from single smooth muscle cells obtained by enzymic digestion of a small branch of the rat mesenteric artery. 2. In single voltage-clamped cells 1 mM uridine diphosphate (UDP) or guanidine diphosphate (GDP) added to the pipette solution, or pinacidil (100 microM) a K-channel opener (KCO) applied in the bathing solution, evoked an outward current of up to 100pA which was blocked by glibenclamide (10 microM). In single cells from which recordings were made by the 'perforated patch' (nystatin pipette) technique, metabolic inhibition by 1 mM NaCN and 10 mM 2-deoxy-glucose also evoked a similar glibenclamide-sensitive current. 3. Single K-channel activity was observed in cell-attached patches only infrequently unless the metabolism of the cell was inhibited, whereupon channel activity blocked by glibenclamide was seen; pinacidil applied to the cell evoked similar glibenclamide-sensitive channel activity. If the patch was pulled off the cell to form an isolated inside-out patch, similar glibenclamide-sensitive single-channel currents were observed in the presence of UDP and/or pinacidil to those seen in cell-attached mode; channel conductance was 20 pS (60:130 K-gradient) and openings showed no voltage-dependence and noisy inward currents, typical of the nucleoside diphosphate (NDP) activated K-channel (KNDP) seen previously in rabbit portal vein. 4. Formation of an isolated inside-out patch into an ATP-free solution did not increase the probability of channel opening which declined with time even when some single-channel activity had occurred in the cell-attached mode before detachment. However, application of 1 mM UDP or GDP, but not ATP, to inside-out patches evoked single-channel activity. Application of ATP-free solution to isolated patches, previously exposed to ATP and in which channel activity had been seen, did not evoke channel activity. 5. It is concluded that small conductance K-channels (KNDP) open in smooth muscle cells from this small artery in response to UDP or GDP acting from the inside, or pinacidil acting from the outside; the same channels open during inhibition of metabolism presumably mainly due to the rise in nucleoside diphosphates, but a fall in the ATP concentration on the inside of the channel did not by itself evoke channel activity.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:7735693
NASA Astrophysics Data System (ADS)
Vardi, Roni; Goldental, Amir; Sardi, Shira; Sheinin, Anton; Kanter, Ido
2016-11-01
The increasing number of recording electrodes enhances the capability of capturing the network’s cooperative activity, however, using too many monitors might alter the properties of the measured neural network and induce noise. Using a technique that merges simultaneous multi-patch-clamp and multi-electrode array recordings of neural networks in-vitro, we show that the membrane potential of a single neuron is a reliable and super-sensitive probe for monitoring such cooperative activities and their detailed rhythms. Specifically, the membrane potential and the spiking activity of a single neuron are either highly correlated or highly anti-correlated with the time-dependent macroscopic activity of the entire network. This surprising observation also sheds light on the cooperative origin of neuronal burst in cultured networks. Our findings present an alternative flexible approach to the technique based on a massive tiling of networks by large-scale arrays of electrodes to monitor their activity.
Vardi, Roni; Goldental, Amir; Sardi, Shira; Sheinin, Anton; Kanter, Ido
2016-11-08
The increasing number of recording electrodes enhances the capability of capturing the network's cooperative activity, however, using too many monitors might alter the properties of the measured neural network and induce noise. Using a technique that merges simultaneous multi-patch-clamp and multi-electrode array recordings of neural networks in-vitro, we show that the membrane potential of a single neuron is a reliable and super-sensitive probe for monitoring such cooperative activities and their detailed rhythms. Specifically, the membrane potential and the spiking activity of a single neuron are either highly correlated or highly anti-correlated with the time-dependent macroscopic activity of the entire network. This surprising observation also sheds light on the cooperative origin of neuronal burst in cultured networks. Our findings present an alternative flexible approach to the technique based on a massive tiling of networks by large-scale arrays of electrodes to monitor their activity.
Vardi, Roni; Goldental, Amir; Sardi, Shira; Sheinin, Anton; Kanter, Ido
2016-01-01
The increasing number of recording electrodes enhances the capability of capturing the network’s cooperative activity, however, using too many monitors might alter the properties of the measured neural network and induce noise. Using a technique that merges simultaneous multi-patch-clamp and multi-electrode array recordings of neural networks in-vitro, we show that the membrane potential of a single neuron is a reliable and super-sensitive probe for monitoring such cooperative activities and their detailed rhythms. Specifically, the membrane potential and the spiking activity of a single neuron are either highly correlated or highly anti-correlated with the time-dependent macroscopic activity of the entire network. This surprising observation also sheds light on the cooperative origin of neuronal burst in cultured networks. Our findings present an alternative flexible approach to the technique based on a massive tiling of networks by large-scale arrays of electrodes to monitor their activity. PMID:27824075
Kim, Jiwon; Song, Jin-Ho
2017-03-05
Microglial NADPH oxidase is a major source of toxic reactive oxygen species produced during chronic neuroinflammation. Voltage-gated proton channel (H V 1) functions to maintain the intense activity of NADPH oxidase, and channel inhibition alleviates the pathology of neurodegenerative diseases such as ischemic stroke and multiple sclerosis associated with oxidative neuroinflammation. Antagonists of histamine H 1 receptors have beneficial effects against microglia-mediated oxidative stress and neurotoxicity. We examined the effects of the H 1 antihistamines, diphenhydramine and chlorpheniramine, on proton currents in BV2 microglial cells recorded using the whole-cell patch clamp technique. Diphenhydramine and chlorpheniramine reduced the proton currents with almost the same potency, yielding IC 50 values of 42 and 43μM, respectively. Histamine did not affect proton currents, excluding the involvement of histamine receptors in their action. Neither drug shifted the voltage-dependence of activation or the reversal potential of the proton currents, even though diphenhydramine slowed the activation and deactivation kinetics. The inhibitory effects of the two antihistamines on proton currents could be utilized to develop therapeutic agents for neurodegenerative diseases and other diseases associated with H V 1 proton channel abnormalities. Copyright © 2017 Elsevier B.V. All rights reserved.
A novel way to go whole-cell in patch-clamp experiments.
Inayat, Samsoon; Zhao, Yan; Cantrell, Donal R; Dikin, Dmitryi; Pinto, Lawrence H; Troy, John B
2010-11-01
With a conventional patch-clamp electrode, an Ag/AgCl wire sits stationary inside the pipette. To move from the gigaseal cell-attached configuration to whole-cell recording, suction is applied inside the pipette. We have designed and developed a novel Pushpen patch-clamp electrode, in which a W wire insulated and wound with Ag/AgCl wire can move linearly inside the pipette. The W wire has a conical tip, which can protrude from the pipette tip like a push pen, a procedure we call the Pushpen Operation. We use the Pushpen operation to impale the cell membrane in cell-attached configuration to go whole-cell without disruption of the gigaseal. We successfully recorded whole-cell currents from chinese hamster ovarian cells expressing influenza A virus protein A/M2, after obtaining whole-cell configuration with the Pushpen operation. This novel method of achieving whole-cell configuration may have a higher success rate than is the case with the conventional patch clamp technique.
Auxiliary resonant DC tank converter
Peng, Fang Z.
2000-01-01
An auxiliary resonant dc tank (ARDCT) converter is provided for achieving soft-switching in a power converter. An ARDCT circuit is coupled directly across a dc bus to the inverter to generate a resonant dc bus voltage, including upper and lower resonant capacitors connected in series as a resonant leg, first and second dc tank capacitors connected in series as a tank leg, and an auxiliary resonant circuit comprising a series combination of a resonant inductor and a pair of auxiliary switching devices. The ARDCT circuit further includes first clamping means for holding the resonant dc bus voltage to the dc tank voltage of the tank leg, and second clamping means for clamping the resonant dc bus voltage to zero during a resonant period. The ARDCT circuit resonantly brings the dc bus voltage to zero in order to provide a zero-voltage switching opportunity for the inverter, then quickly rebounds the dc bus voltage back to the dc tank voltage after the inverter changes state. The auxiliary switching devices are turned on and off under zero-current conditions. The ARDCT circuit only absorbs ripples of the inverter dc bus current, thus having less current stress. In addition, since the ARDCT circuit is coupled in parallel with the dc power supply and the inverter for merely assisting soft-switching of the inverter without participating in real dc power transmission and power conversion, malfunction and failure of the tank circuit will not affect the functional operation of the inverter; thus a highly reliable converter system is expected.
Harnett, Mark T.; Magee, Jeffrey C.
2015-01-01
The apical tuft is the most remote area of the dendritic tree of neocortical pyramidal neurons. Despite its distal location, the apical dendritic tuft of layer 5 pyramidal neurons receives substantial excitatory synaptic drive and actively processes corticocortical input during behavior. The properties of the voltage-activated ion channels that regulate synaptic integration in tuft dendrites have, however, not been thoroughly investigated. Here, we use electrophysiological and optical approaches to examine the subcellular distribution and function of hyperpolarization-activated cyclic nucleotide-gated nonselective cation (HCN) channels in rat layer 5B pyramidal neurons. Outside-out patch recordings demonstrated that the amplitude and properties of ensemble HCN channel activity were uniform in patches excised from distal apical dendritic trunk and tuft sites. Simultaneous apical dendritic tuft and trunk whole-cell current-clamp recordings revealed that the pharmacological blockade of HCN channels decreased voltage compartmentalization and enhanced the generation and spread of apical dendritic tuft and trunk regenerative activity. Furthermore, multisite two-photon glutamate uncaging demonstrated that HCN channels control the amplitude and duration of synaptically evoked regenerative activity in the distal apical dendritic tuft. In contrast, at proximal apical dendritic trunk and somatic recording sites, the blockade of HCN channels decreased excitability. Dynamic-clamp experiments revealed that these compartment-specific actions of HCN channels were heavily influenced by the local and distributed impact of the high density of HCN channels in the distal apical dendritic arbor. The properties and subcellular distribution pattern of HCN channels are therefore tuned to regulate the interaction between integration compartments in layer 5B pyramidal neurons. PMID:25609619
Luo, Jia-Lie; Qin, Hong-Yan; Wong, Chun-Kit; Tsang, Suk-Ying; Huang, Yu; Bian, Zhao-Xiang
2011-05-01
Irritable bowel syndrome (IBS), characterized mainly by abdominal pain, is a functional bowel disorder. The present study aimed to examine changes in the excitability and the activity of the voltage-gated K(+) channel in dorsal root ganglia (DRG) neurons innervating the colon of rats subjected to neonatal maternal separation (NMS). Colonic DRG neurons from NMS rats as identified by FAST DiI™ labeling showed an increased cell size compared with those from nonhandled (NH) rats. Whole cell current-clamp recordings showed that colonic DRG neurons from NMS rats displayed: 1) depolarized resting membrane potential; 2) increased input resistance; 3) a dramatic reduction in rheobase; and 4) a significant increase in the number of action potentials evoked at twice rheobase. Whole cell voltage-clamp recordings revealed that neurons from both groups exhibited transient A-type (I(A)) and delayed rectifier (I(K)) K(+) currents. Compared with NH rat neurons, the averaged density of I(K) was significantly reduced in NMS rat neurons. Furthermore, the Kv1.2 expression was significantly decreased in NMS rat colonic DRG neurons. These results suggest that NMS increases the excitability of colonic DRG neurons mainly by suppressing the I(K) current, which is likely accounted for by the downregulation of the Kv1.2 expression and somal hypertrophy. This study demonstrates the alteration of delayed rectifier K current and Kv1.2 expression in DRG neurons from IBS model rats, representing a molecular mechanism underlying visceral pain and sensitization in IBS, suggesting the potential of Kv1.2 as a therapeutic target for the treatment of IBS. Copyright © 2011 American Pain Society. Published by Elsevier Inc. All rights reserved.
Acidic pH modulation of Na+ channels in trigeminal mesencephalic nucleus neurons.
Kang, In-Sik; Cho, Jin-Hwa; Choi, In-Sun; Kim, Do-Yeon; Jang, Il-Sung
2016-12-07
Cell bodies of trigeminal mesencephalic nucleus (Vmes) neurons are located within the central nervous system, and therefore, peripheral as well as central acidosis can modulate the excitability of Vmes neurons. Here, we report the effect of acidic pH on voltage-gated Na channels in acutely isolated rat Vmes neurons using a conventional whole-cell patch clamp technique. Acidic pH (pH 6.0) slightly but significantly shifted both the activation and steady-state fast inactivation relationships toward depolarized potentials. However, acidic pH (pH 6.0) had a minor effect on the inactivation kinetics of voltage-gated Na channels. Less sensitivity of voltage-gated Na channels to acidic pH may allow Vmes neurons to transduce the precise proprioceptive information even under acidic pH conditions.
Selective block of late Na+ current by local anaesthetics in rat large sensory neurones
Baker, Mark D
2000-01-01
The actions of lignocaine and benzocaine on transient and late Na+ current generated by large diameter (⩾50 μm) adult rat dorsal root ganglion neurones, were studied using patch-clamp techniques.Both drugs blocked whole-cell late Na+ current in a concentration-dependent manner. At 200 ms following the onset of a clamp step from −110 to −40 mV, the apparent K for block of late Na+ current by lignocaine was 57.8±15 μM (mean±s.e.mean, n=4). The value for benzocaine was 24.9±3.3 μM, (mean±s.e.mean, n=3).The effect of lignocaine on transient current, in randomly selected neurones, appeared variable (n=8, half-block from ∼50 to 400 μM). Half-block by benzocaine was not attained, but both whole-cell (n=11) and patch data suggested a high apparent K,>250 μM. Transient current always remained after late current was blocked.The voltage-dependence of residual late current steady-state inactivation was not shifted by 20 μM benzocaine (n=3), whereas 200 μM benzocaine shifted the voltage-dependence of transient current steady-state inactivation by −18.7±5.9 mV (mean±s.e.mean, n=4).In current-clamp, benzocaine (250 μM) could block subthreshold, voltage-dependent inward current, increasing the threshold for eliciting action potentials, without preventing their generation (n=2).Block of late Na+ current by systemic local anaesthetic may play a part in preventing ectopic impulse generation in sensory neurones. PMID:10780966
Measuring Feedforward Inhibition and Its Impact on Local Circuit Function.
Hull, Court
2017-05-01
This protocol describes a series of approaches to measure feedforward inhibition in acute brain slices from the cerebellar cortex. Using whole-cell voltage and current clamp recordings from Purkinje cells in conjunction with electrical stimulation of the parallel fibers, these methods demonstrate how to measure the relationship between excitation and inhibition in a feedforward circuit. This protocol also describes how to measure the impact of feedforward inhibition on Purkinje cell excitability, with an emphasis on spike timing. © 2017 Cold Spring Harbor Laboratory Press.
Implementation of a fast 16-Bit dynamic clamp using LabVIEW-RT.
Kullmann, Paul H M; Wheeler, Diek W; Beacom, Joshua; Horn, John P
2004-01-01
The dynamic-clamp method provides a powerful electrophysiological tool for creating virtual ionic conductances in living cells and studying their influence on membrane potential. Here we describe G-clamp, a new way to implement a dynamic clamp using the real-time version of the Lab-VIEW programming environment together with a Windows host, an embedded microprocessor that runs a real-time operating system and a multifunction data-acquisition board. The software includes descriptions of a fast voltage-dependent sodium conductance, delayed rectifier, M-type and A-type potassium conductances, and a leak conductance. The system can also read synaptic conductance waveforms from preassembled data files. These virtual conductances can be reliably implemented at speeds < or =43 kHz while simultaneously saving two channels of data with 16-bit precision. G-clamp also includes utilities for measuring current-voltage relations, synaptic strength, and synaptic gain. Taking an approach built on a commercially available software/hardware platform has resulted in a system that is easy to assemble and upgrade. In addition, the graphical programming structure of LabVIEW should make it relatively easy for others to adapt G-clamp for new experimental applications.
Role of the pH in state-dependent blockade of hERG currents
NASA Astrophysics Data System (ADS)
Wang, Yibo; Guo, Jiqing; Perissinotti, Laura L.; Lees-Miller, James; Teng, Guoqi; Durdagi, Serdar; Duff, Henry J.; Noskov, Sergei Yu.
2016-10-01
Mutations that reduce inactivation of the voltage-gated Kv11.1 potassium channel (hERG) reduce binding for a number of blockers. State specific block of the inactivated state of hERG block may increase risks of drug-induced Torsade de pointes. In this study, molecular simulations of dofetilide binding to the previously developed and experimentally validated models of the hERG channel in open and open-inactivated states were combined with voltage-clamp experiments to unravel the mechanism(s) of state-dependent blockade. The computations of the free energy profiles associated with the drug block to its binding pocket in the intra-cavitary site display startling differences in the open and open-inactivated states of the channel. It was also found that drug ionization may play a crucial role in preferential targeting to the open-inactivated state of the pore domain. pH-dependent hERG blockade by dofetilie was studied with patch-clamp recordings. The results show that low pH increases the extent and speed of drug-induced block. Both experimental and computational findings indicate that binding to the open-inactivated state is of key importance to our understanding of the dofetilide’s mode of action.
HTS techniques for patch clamp-based ion channel screening - advances and economy.
Farre, Cecilia; Fertig, Niels
2012-06-01
Ten years ago, the first publication appeared showing patch clamp recordings performed on a planar glass chip instead of using a conventional patch clamp pipette. "Going planar" proved to revolutionize ion channel drug screening as we know it, by allowing high quality measurements of ion channels and their effectors at a higher throughput and at the same time de-skilling the highly laborious technique. Over the years, platforms evolved in response to user requirements regarding experimental features, data handling plus storage, and suitable target diversity. This article gives a snapshot image of patch clamp-based ion channel screening with focus on platforms developed to meet requirements of high-throughput screening environments. The commercially available platforms are described, along with their benefits and drawbacks in ion channel drug screening. Automated patch clamp (APC) platforms allow faster investigation of a larger number of ion channel active compounds or cell clones than previously possible. Since patch clamp is the only method allowing direct, real-time measurements of ion channel activity, APC holds the promise of picking up high quality leads, where they otherwise would have been overseen using indirect methods. In addition, drug candidate safety profiling can be performed earlier in the drug discovery process, avoiding late-phase compound withdrawal due to safety liability issues, which is highly costly and inefficient.
Sodium efflux from voltage clamped squid giant axons.
Landowne, D
1977-01-01
1. The efflux of radioactive sodium was measured from squid axons during simultaneous voltage clamp experiments such that it was possible to determine the efflux of sodium associated with a measured voltage clamp current. 2. The extra efflux of sodium associated with voltage clamp pulses increased linearly with the magnitude of the depolarization above 40 mV. A 100 mV pulse of sufficient duration to produce all of the sodium current increased the rate constant of efflux by about 10(-6). 3. Application of 100 nM tetrodotoxin eliminated the sodium current and the extra efflux of radioactive sodium. 4. Cooling the axon increased the extra efflux/voltage clamp pulse slightly with a Q10 of 1/1-1. On the same axons cooling increased the integral of the sodium current with a Q10 of 1/1-4. 5. Replacing external sodium with Tris, dextrose or Mg-mannitol reduced the extra efflux of sodium by about 50%. The inward sodium current was replaced with an outward current as expected. 6. Replacing external sodium with lithium also reduced the extra efflux by about 50% but the currents seen in lithium were slightly larger than those in sodium. 7. The effect of replacing external sodium was not voltage dependent. Cooling reduced the effect so that there was less reduction of efflux on switching to Tris ASW in the cold than in the warm. 8. The extra efflux of sodium into sodium-free ASW is approximately the same as the integral of the sodium current. Adding external sodium produces a deviation from the independence principle such that there is more exchange of sodium than predicted. Such a deviation from prediction was noted by Hodgkin & Huxley (1952c). 9. Using the equations of Hodgkin & Huxley (1952c) modified to include the deviation from independence reported in this paper and its temperature dependence, one can predict the temperature dependence of the sodium efflux associated with action potentials and obtain much better agreement than is possibly without these phenomena. 10. This deviation from independence in the sodium fluxes is the type expected from some kind of mixing and binding of sodium within the membrane phase. PMID:856999
Involvement of mitochondrial Na+–Ca2+ exchange in intestinal pacemaking activity
Kim, Byung Joo; Jun, Jae Yeoul; So, Insuk; Kim, Ki Whan
2006-01-01
AIM: Interstitial cells of Cajal (ICCs) are the pacemaker cells that generate slow waves in the gastrointestinal (GI) tract. We have aimed to investigate the involvement of mitochondrial Na+-Ca2+ exchange in intestinal pacemaking activity in cultured interstitial cells of Cajal. METHODS: Enzymatic digestions were used to dissociate ICCs from the small intestine of a mouse. The whole-cell patch-clamp configuration was used to record membrane currents (voltage clamp) and potentials (current clamp) from cultured ICCs. RESULTS: Clonazepam and CGP37157 inhibited the pacemaking activity of ICCs in a dose-dependent manner. Clonazepam from 20 to 60 µmol/L and CGP37157 from 10 to 30 µmol/L effectively inhibited Ca2+ efflux from mitochondria in pacemaking activity of ICCs. The IC50s of clonazepam and CGP37157 were 37.1 and 18.2 µmol/L, respectively. The addition of 20 µmol/L NiCl2 to the internal solution caused a “wax and wane” phenomenon of pacemaking activity of ICCs. CONCLUSION: These results suggest that mitochondrial Na+-Ca2+ exchange has an important role in intestinal pacemaking activity. PMID:16521198
NASA Astrophysics Data System (ADS)
He, Liangguo; Chu, Yuheng; Hao, Sai; Zhao, Xiaoyong; Dong, Yuge; Wang, Yong
2018-05-01
A novel, single-phase, harmonic-driven, inertial piezoelectric linear motor using an automatic clamping mechanism was designed, fabricated, and tested to reduce the sliding friction and simplify the drive mechanism and power supply control of the inertial motor. A piezoelectric bimorph and a flexible hinge were connected in series to form the automatic clamping mechanism. The automatic clamping mechanism was used as the driving and clamping elements. A dynamic simulation by Simulink was performed to prove the feasibility of the motor. The finite element method software COMSOL was used to design the structure of the motor. An experimental setup was built to validate the working principle and evaluate the performance of the motor. The prototype motor outputted a no-load velocity of 3.178 mm/s at a voltage of 220 Vp-p and a maximum traction force of 4.25 N under a preload force of 8 N. The minimum resolution of 1.14 μm was achieved at a driving frequency of 74 Hz, a driving voltage of 50 Vp-p, and a preload force of 0 N.
NASA Astrophysics Data System (ADS)
Şchiopu, IonuÅ£ Romeo; ǎgulinescu, Andrei, Dr; Iordǎnescu, Raluca; Marinescu, Andrei
2015-02-01
The current paper describes an optoelectronic method for direct monitoring of the axial clamping forces both in static and in dynamic duty. As advantages of this method we can state that it can be applied both to new and refurbished transformers without performing constructive changes or affecting in any way the transformer safety in operation. For monitoring the axial clamping forces for high-voltage (HV) power transformers, we use an optical fiber that we integrate into the laser cavity of a passively mode-locked fiber laser (PMFL). To each axial clamp corresponds a solitonic optical spectrum that is changed at the periodical passing of the fundamental soliton pulse through the sensitive fiber inside the transformer. Moreover, as a specific characteristic, the laser stability is unique for each set of axial clamping forces. Other important advantages of using an optical fiber as compared to the classical approach in which electronic sensors are used consist in the good reliability and insulator properties of the optical fiber, avoiding any risk of fire or damage of the transformer.
Grier, Andrew; Dean, Paul; Valavanis, Alexander; Keeley, James; Kundu, Iman; Cooper, Jonathan D; Agnew, Gary; Taimre, Thomas; Lim, Yah Leng; Bertling, Karl; Rakić, Aleksandar D; Li, Lianhe H; Harrison, Paul; Linfield, Edmund H; Ikonić, Zoran; Davies, A Giles; Indjin, Dragan
2016-09-19
We explain the origin of voltage variations due to self-mixing in a terahertz (THz) frequency quantum cascade laser (QCL) using an extended density matrix (DM) approach. Our DM model allows calculation of both the current-voltage (I-V) and optical power characteristics of the QCL under optical feedback by changing the cavity loss, to which the gain of the active region is clamped. The variation of intra-cavity field strength necessary to achieve gain clamping, and the corresponding change in bias required to maintain a constant current density through the heterostructure is then calculated. Strong enhancement of the self-mixing voltage signal due to non-linearity of the (I-V) characteristics is predicted and confirmed experimentally in an exemplar 2.6 THz bound-to-continuum QCL.
Meshik, Xenia; Choi, Min; Baker, Adam; Malchow, R Paul; Covnot, Leigha; Doan, Samuel; Mukherjee, Souvik; Farid, Sidra; Dutta, Mitra; Stroscio, Michael A
2017-04-01
This study examines the ability of optically-excited titanium dioxide nanoparticles to influence voltage-gated ion channels in retinal horizontal cells. Voltage clamp recordings were obtained in the presence and absence of TiO 2 and ultraviolet laser excitation. Significant current changes were observed in response to UV light, particularly in the -40 mV to +40 mV region where voltage-gated Na + and K + channels have the highest conductance. Cells in proximity to UV-excited TiO 2 exhibited a left-shift in the current-voltage relation of around 10 mV in the activation of Na + currents. These trends were not observed in control experiments where cells were excited with UV light without being exposed to TiO 2 . Electrostatic force microscopy confirmed that electric fields can be induced in TiO 2 with UV light. Simulations using the Hodgkin-Huxley model yielded results which agreed with the experimental data and showed the I-V characteristics of individual ion channels in the presence of UV-excited TiO 2 . Copyright © 2016 Elsevier Inc. All rights reserved.
The effects of some inhalation anaesthetics on the sodium current of the squid giant axon.
Haydon, D A; Urban, B W
1983-01-01
The effects of diethyl ether, methoxyflurane, halothane, dichloromethane and chloroform on the ionic currents and electrical capacity of the squid giant axon have been examined. The peak inward current in voltage-clamped axons was reduced reversibly by each substance. Sodium currents under voltage clamp were recorded in intracellularly perfused axons before, during, and sometimes after exposure to the test substances, and the records were fitted with equations similar to those proposed by Hodgkin & Huxley (1952). Shifts in the dependence of the steady-state activation and inactivation parameters (m infinity and h infinity) on membrane potential, reductions in the peak heights of the activation and inactivation time constants (tau m and tau h) and decreases in the maximum Na conductance (gNa) have been tabulated. For each of the anaesthetics the steady-state inactivation curve was shifted in the hyperpolarizing direction though less markedly than for the hydrocarbons. The steady-state activation curve was in each instance shifted in the depolarizing direction, as for the alcohols and other surface active substances. In common with both the hydrocarbons and the surface active substances the peak time constants were invariably reduced. The membrane capacity at 100 kHz was affected significantly only by methoxyflurane, where decreases of ca. 9% were observed for 3 mM solutions. The extent to which the results can be accounted for in terms of the perturbation of membrane lipid has been discussed. PMID:6312031
Liu, Gong Xin; Daut, Jürgen
2002-01-01
K+ channels of isolated guinea-pig cardiomyocytes were studied using the patch-clamp technique. At transmembrane potentials between −120 and −220 mV we observed inward currents through an apparently novel channel. The novel channel was strongly rectifying, no outward currents could be recorded. Between −200 and −160 mV it had a slope conductance of 42.8 ± 3.0 pS (s.d.; n = 96). The open probability (Po) showed a sigmoid voltage dependence and reached a maximum of 0.93 at −200 mV, half-maximal activation was approximately −150 mV. The voltage dependence of Po was not affected by application of 50 μm isoproterenol. The open-time distribution could be described by a single exponential function, the mean open time ranged between 73.5 ms at −220 mV and 1.4 ms at −160 mV. At least two exponential components were required to fit the closed time distribution. Experiments with different external Na+, K+ and Cl− concentrations suggested that the novel channel is K+ selective. Extracellular Ba2+ ions gave rise to a voltage-dependent reduction in Po by inducing long closed states; Cs+ markedly reduced mean open time at −200 mV. In cell-attached recordings the novel channel frequently converted to a classical inward rectifier channel, and vice versa. This conversion was not voltage dependent. After excision of the patch, the novel channel always converted to a classical inward rectifier channel within 0–3 min. This conversion was not affected by intracellular Mg2+, phosphatidylinositol (4,5)-bisphosphate or spermine. Taken together, our findings suggest that the novel K+ channel represents a different ‘mode’ of the classical inward rectifier channel in which opening occurs only at very negative potentials. PMID:11897847
Localized Patch Clamping of Plasma Membrane of a Polarized Plant Cell 1
Taylor, Alison R.; Brownlee, Colin
1992-01-01
We used an ultraviolet laser to rupture a small region of cell wall of a polarized Fucus spiralis rhizoid cell and gained localized access to the plasma membrane at the growing apex. Careful control of cell turgor enabled a small portion of plasma membrane-bound cytoplasm to be exposed. Gigaohm seals allowing single-channel recordings were obtained with a high success rate using this method with conventional patch clamp techniques. ImagesFigure 1 PMID:16669092
DiFranco, Marino; Quinonez, Marbella
2012-01-01
A two-microelectrode voltage clamp and optical measurements of membrane potential changes at the transverse tubular system (TTS) were used to characterize delayed rectifier K currents (IKV) in murine muscle fibers stained with the potentiometric dye di-8-ANEPPS. In intact fibers, IKV displays the canonical hallmarks of KV channels: voltage-dependent delayed activation and decay in time. The voltage dependence of the peak conductance (gKV) was only accounted for by double Boltzmann fits, suggesting at least two channel contributions to IKV. Osmotically treated fibers showed significant disconnection of the TTS and displayed smaller IKV, but with similar voltage dependence and time decays to intact fibers. This suggests that inactivation may be responsible for most of the decay in IKV records. A two-channel model that faithfully simulates IKV records in osmotically treated fibers comprises a low threshold and steeply voltage-dependent channel (channel A), which contributes ∼31% of gKV, and a more abundant high threshold channel (channel B), with shallower voltage dependence. Significant expression of the IKV1.4 and IKV3.4 channels was demonstrated by immunoblotting. Rectangular depolarizing pulses elicited step-like di-8-ANEPPS transients in intact fibers rendered electrically passive. In contrast, activation of IKV resulted in time- and voltage-dependent attenuations in optical transients that coincided in time with the peaks of IKV records. Normalized peak attenuations showed the same voltage dependence as peak IKV plots. A radial cable model including channels A and B and K diffusion in the TTS was used to simulate IKV and average TTS voltage changes. Model predictions and experimental data were compared to determine what fraction of gKV in the TTS accounted simultaneously for the electrical and optical data. Best predictions suggest that KV channels are approximately equally distributed in the sarcolemma and TTS membranes; under these conditions, >70% of IKV arises from the TTS. PMID:22851675
Voltage and Current Clamp Transients with Membrane Dielectric Loss
Fitzhugh, R.; Cole, K. S.
1973-01-01
Transient responses of a space-clamped squid axon membrane to step changes of voltage or current are often approximated by exponential functions of time, corresponding to a series resistance and a membrane capacity of 1.0 μF/cm2. Curtis and Cole (1938, J. Gen. Physiol. 21:757) found, however, that the membrane had a constant phase angle impedance z = z1(jωτ)-α, with a mean α = 0.85. (α = 1.0 for an ideal capacitor; α < 1.0 may represent dielectric loss.) This result is supported by more recently published experimental data. For comparison with experiments, we have computed functions expressing voltage and current transients with constant phase angle capacitance, a parallel leakage conductance, and a series resistance, at nine values of α from 0.5 to 1.0. A series in powers of tα provided a good approximation for short times; one in powers of t-α, for long times; for intermediate times, a rational approximation matching both series for a finite number of terms was used. These computations may help in determining experimental series resistances and parallel leakage conductances from membrane voltage or current clamp data. PMID:4754194
Pape, H C; Budde, T; Mager, R; Kisvárday, Z F
1994-01-01
1. Neurones enzymatically dissociated from the rat dorsal lateral geniculate nucleus (LGN) were identified as GABAergic local circuit interneurones and geniculocortical relay cells, based upon quantitative analysis of soma profiles, immunohistochemical detection of GABA or glutamic acid decarboxylase, and basic electrogenic behaviour. 2. During whole-cell current-clamp recording, isolated LGN neurones generated firing patterns resembling those in intact tissue, with the most striking difference relating to the presence in relay cells of a Ca2+ action potential with a low threshold of activation, capable of triggering fast spikes, and the absence of a regenerative Ca2+ response with a low threshold of activation in local circuit cells. 3. Whole-cell voltage-clamp experiments demonstrated that both classes of LGN neurones possess at least two voltage-dependent membrane currents which operate in a range of membrane potentials negative to the threshold for generation of Na(+)-K(+)-mediated spikes: the T-type Ca2+ current (IT) and an A-type K+ current (IA). Taking into account the differences in membrane surface area, the average size of IT was similar in the two types of neurones, and interneurones possessed a slightly larger A-conductance. 4. In local circuit neurones, the ranges of steady-state inactivation and activation of IT and IA were largely overlapping (VH = 81.1 vs. -82.8 mV), both currents activated at around -70 mV, and they rapidly increased in amplitude with further depolarization. In relay cells, the inactivation curve of IT was negatively shifted along the voltage axis by about 20 mV compared with that of IA (Vh = -86.1 vs. -69.2 mV), and the activation threshold for IT (at -80 mV) was 20 mV more negative than that for IA. In interneurones, the activation range of IT was shifted to values more positive than that in relay cells (Vh = -54.9 vs. -64.5 mV), whereas the activation range of IA was more negative (Vh = -25.2 vs. -14.5 mV). 5. Under whole-cell voltage-clamp conditions that allowed the combined activation of Ca2+ and K+ currents, depolarizing voltage steps from -110 mV evoked inward currents resembling IT in relay cells and small outward currents indicative of IA in local circuit neurones. After blockade of IA with 4-aminopyridine (4-AP), the same pulse protocol produced IT in both types of neurones. Under current clamp, 4-AP unmasked a regenerative membrane depolarization with a low threshold of activation capable of triggering fast spikes in local circuit neurones.(ABSTRACT TRUNCATED AT 400 WORDS) Images Figure 1 PMID:7965855
Harnett, Mark T; Magee, Jeffrey C; Williams, Stephen R
2015-01-21
The apical tuft is the most remote area of the dendritic tree of neocortical pyramidal neurons. Despite its distal location, the apical dendritic tuft of layer 5 pyramidal neurons receives substantial excitatory synaptic drive and actively processes corticocortical input during behavior. The properties of the voltage-activated ion channels that regulate synaptic integration in tuft dendrites have, however, not been thoroughly investigated. Here, we use electrophysiological and optical approaches to examine the subcellular distribution and function of hyperpolarization-activated cyclic nucleotide-gated nonselective cation (HCN) channels in rat layer 5B pyramidal neurons. Outside-out patch recordings demonstrated that the amplitude and properties of ensemble HCN channel activity were uniform in patches excised from distal apical dendritic trunk and tuft sites. Simultaneous apical dendritic tuft and trunk whole-cell current-clamp recordings revealed that the pharmacological blockade of HCN channels decreased voltage compartmentalization and enhanced the generation and spread of apical dendritic tuft and trunk regenerative activity. Furthermore, multisite two-photon glutamate uncaging demonstrated that HCN channels control the amplitude and duration of synaptically evoked regenerative activity in the distal apical dendritic tuft. In contrast, at proximal apical dendritic trunk and somatic recording sites, the blockade of HCN channels decreased excitability. Dynamic-clamp experiments revealed that these compartment-specific actions of HCN channels were heavily influenced by the local and distributed impact of the high density of HCN channels in the distal apical dendritic arbor. The properties and subcellular distribution pattern of HCN channels are therefore tuned to regulate the interaction between integration compartments in layer 5B pyramidal neurons. Copyright © 2015 the authors 0270-6474/15/351024-14$15.00/0.
Voltage equaliser for Li-Fe battery
NASA Astrophysics Data System (ADS)
Wu, Jinn-Chang; Jou, Hurng-Liahng; Chuang, Ping-Hao
2013-10-01
In this article, a voltage equaliser is proposed for a battery string with four Li-Fe batteries. The proposed voltage equaliser is developed from a flyback converter, which comprises a transformer, a power electronic switch and a resonant clamped circuit. The transformer contains a primary winding and four secondary windings with the same number of turns connected to each battery. The resonant clamped circuit is for recycling the energy of leakage inductance of the transformer and for performing zero-voltage switching (ZVS) of the power electronic switch. When the power electronic switch is switched on, the energy is stored in the transformer; and when the power electronic switch is switched off, the energy stored in the transformer will automatically charge the battery whose voltage is the lowest. In this way, the voltage of individual batteries in the battery string is balanced. The salient features of the proposed voltage equaliser are that only one switch is used, the energy stored in the leakage inductance of the transformer can be recycled and ZVS is obtained. A prototype is developed and tested to verify the performance of the proposed voltage equaliser. The experimental results show that the proposed voltage equaliser achieves the expected performance.
Development of a Piezoelectric Vacuum Sensing Component for a Wide Pressure Range
Wang, Bing-Yu; Hsieh, Fan-Chun; Lin, Che-Yu; Chen, Shao-En; Chen, Fong-Zhi; Wu, Chia-Che
2014-01-01
In this study, we develop a clamped–clamped beam-type piezoelectric vacuum pressure sensing element. The clamped–clamped piezoelectric beam is composed of a PZT layer and a copper substrate. A pair of electrodes is set near each end. An input voltage is applied to a pair of electrodes to vibrate the piezoelectric beam, and the output voltage is measured at the other pair. Because the viscous forces on the piezoelectric beam vary at different air pressures, the vibration of the beam depends on the vacuum pressure. The developed pressure sensor can sense a wide range of pressure, from 6.5 × 10−6 to 760 Torr. The experimental results showed that the output voltage is inversely proportional to the gas damping ratio, and thus, the vacuum pressure was estimated from the output voltage. PMID:25421736
The amiodarone derivative KB130015 activates hERG1 potassium channels via a novel mechanism
Gessner, Guido; Macianskiene, Regina; Starkus, John G.; Schönherr, Roland; Heinemann, Stefan H.
2010-01-01
Human ether à go-go related gene (hERG1) potassium channels underlie the repolarizing IKr current in the heart. Since they are targets of various drugs with cardiac side effects we tested whether the amiodarone derivative 2-methyl-3-(3,5-diiodo-4-carboxymethoxybenzyl)benzofuran (KB130015) blocks hERG1 channels like its parent compound. Using patch-clamp and two-electrode voltage-clamp techniques we found that KB130015 blocks native and recombinant hERG1 channels at high voltages, but it activates them at low voltages. The activating effect has an apparent EC50 value of 12 μM and is brought about by an about 4-fold acceleration of activation kinetics and a shift in voltage-dependent activation by −16 mV. Channel activation was not use-dependent and was independent of inactivation gating. KB130015 presumably binds to the hERG1 pore from the cytosolic side and functionally competes with hERG1 block by amiodarone, E4031 (N-[4-[[1-[2-(6-methyl-2-pyridinyl)ethyl] -4-piperidinyl] carbonyl] phenyl] methanesulfonamide dihydrochloride), and sertindole. Vice versa, amiodarone attenuates hERG1 activation by KB130015. Based on synergic channel activation by mallotoxin and KB130015 we conclude that the hERG1 pore contains at least two sites for activators that are functionally coupled among each other and to the cavity-blocker site. KB130015 and amiodarone may serve as lead structures for the identification of hERG1 pore-interacting drugs favoring channel activation vs. block. PMID:20097192
NASA Technical Reports Server (NTRS)
Ricci, A. J.; Rennie, K. J.; Correia, M. J.
1996-01-01
Hair cells were dissociated from the semicircular canal, utricle, lagena and saccule of white king pigeons. Type I hair cells were identified morphologically based on the ratios of neck width to cuticular plate width (NPR < 0.72) as well as neck width to cell body width (NBR < 0.64). The perforated patch variant of the whole-cell recording technique was used to measure electrical properties from type I hair cells. In voltage-clamp, the membrane properties of all identified type I cells were dominated by a predominantly outward potassium current, previously characterized in semicircular canal as IKI. Zero-current potential, activation, deactivation, slope conductance, pharmacologic and steady-state properties of the complex currents were not statistically different between type I hair cells of different vestibular end organs. The voltage dependence causes a significant proportion of this conductance to be active about the cell's zero-current potential. The first report of the whole-cell activation kinetics of the conductance is presented, showing a voltage dependence that could be best fit by an equation for a single exponential. Results presented here are the first data from pigeon dissociated type I hair cells from utricle, saccule and lagena suggesting that the basolateral conductances of a morphologically identified population of type I hair cells are conserved between functionally different vestibular end organs; the major conductance being a delayed rectifier characterized previously in semicircular canal hair cells as IKI.
IEEE Conference Record of 1973 Eleventh Modulator Symposium, New York City, 18-19 September 1973.
1973-01-01
characteristics of High-Voltage, observed on am NPNP structure of 550 uN base thickness High- Power , Fast-Switching, Reverse- operating at 1.3 Kv I IA I KA/ us 30...of this which supplies four CFA’s. The odd-numered compact modulator are a shunt clamp regulator power supplies have an additional output going to a...three driver of HVPS filter banks. cabinets. Thus four of the power supplies have a 50% greater load than the other four. However, in AEGIS SPY-1
The Semicircular Canal Microphonic
NASA Technical Reports Server (NTRS)
Rabbitt, R. D.; Boyle, R.; Highstein, S. M.; Dalton, Bonnie P. (Technical Monitor)
2002-01-01
Present experiments were designed to quantify the alternating current (AC) component of the semicircular canal microphonic for angular motion stimulation as a function of stimulus frequency and amplitude. The oyster toadfish, Opsanus tau, was used as the experimental model. Calibrated mechanical indentation of the horizontal canal duct was used as a stimulus to generate hair-cell and afferent responses reproducing those present during head rotation. Sensitivity to polarization of the endolymph DC voltage re: perilymph was also investigated. Modulation of endolymph voltage was recorded using conventional glass electrodes and lock-in amplification over the frequency range 0.2-80 Hz. Access to the endolymph for inserting voltage recording and current passing electrodes was obtained by sectioning the anterior canal at its apex and isolating the cut ends in air. For sinusoidal stimulation below approx.10 Hz, the horizontal semicircular canal AC microphonic was nearly independent of stimulus frequency and equal to approximately 4 microV per micron indent (equivalent to approx. 1 microV per deg/s). A saturating nonlinearity decreasing the microphonic gain was present for stimuli exceeding approx.3 micron indent (approx. 12 deg/s angular velocity). The phase was not sensitive to the saturating nonlinearity. The microphonic exhibited a resonance near 30Hz consistent with basolateral current hair cell resonance observed previously in voltage-clamp records from semicircular canal hair cells. The magnitude and phase of the microphonic exhibited sensitivity to endolymphatic polarization consistent with electro-chemical reversal of hair cell transduction currents.
Analysis of real-time numerical integration methods applied to dynamic clamp experiments.
Butera, Robert J; McCarthy, Maeve L
2004-12-01
Real-time systems are frequently used as an experimental tool, whereby simulated models interact in real time with neurophysiological experiments. The most demanding of these techniques is known as the dynamic clamp, where simulated ion channel conductances are artificially injected into a neuron via intracellular electrodes for measurement and stimulation. Methodologies for implementing the numerical integration of the gating variables in real time typically employ first-order numerical methods, either Euler or exponential Euler (EE). EE is often used for rapidly integrating ion channel gating variables. We find via simulation studies that for small time steps, both methods are comparable, but at larger time steps, EE performs worse than Euler. We derive error bounds for both methods, and find that the error can be characterized in terms of two ratios: time step over time constant, and voltage measurement error over the slope factor of the steady-state activation curve of the voltage-dependent gating variable. These ratios reliably bound the simulation error and yield results consistent with the simulation analysis. Our bounds quantitatively illustrate how measurement error restricts the accuracy that can be obtained by using smaller step sizes. Finally, we demonstrate that Euler can be computed with identical computational efficiency as EE.
Ding, Yanning; Brackenbury, William J.; Onganer, Pinar U.; Montano, Ximena; Porter, Louise M.; Bates, Lucy F.; Djamgoz, Mustafa B. A.
2014-01-01
The main aim of this investigation was to determine whether a functional relationship existed between epidermal growth factor (EGF) and voltage-gated sodium channel (VGSC) upregulation, both associated with strongly metastatic prostate cancer cells. Incubation with EGF for 24 h more than doubled VGSC current density. Similar treatment with EGF significantly and dose-dependently enhanced the cells’ migration through Transwell filters. Both the patch clamp recordings and the migration assay suggested that endogenous EGF played a similar role. Importantly, co-application of EGF and tetrodotoxin, a highly selective VGSC blocker, abolished 65% of the potentiating effect of EGF. It is suggested that a significant portion of the EGF-induced enhancement of migration occurred via VGSC activity. PMID:17960590
Mak, D O; Webb, W W
1997-03-01
A Green's function approach is developed from first principles to evaluate the power spectral density of conductance fluctuations caused by ion concentration fluctuations via diffusion in an electrolyte system. This is applied to simple geometric models of transmembrane ion channels to obtain an estimate of the magnitude of ion concentration fluctuation noise in the channel current. Pure polypeptide alamethicin forms stable ion channels with multiple conductance states in artificial phospholipid bilayers isolated onto tips of micropipettes with gigaohm seals. In the single-channel current recorded by voltage-clamp techniques, excess noise was found after the background instrumental noise and the intrinsic Johnson and shot noises were removed. The noise que to ion concentration fluctuations via diffusion was isolated by the dependence of the excess current noise on buffer ion concentration. The magnitude of the concentration fluctuation noise derived from experimental data lies within limits estimated using our simple geometric channel models. Variation of the noise magnitude for alamethicin channels in various conductance states agrees with theoretical prediction.
On the Nonlinear Dynamics of a Tunable Shock Micro-switch
NASA Astrophysics Data System (ADS)
Azizi, Saber; Javaheri, Hamid; Ghanati, Parisa
2016-12-01
A tunable shock micro-switch based on piezoelectric excitation is proposed in this study. This model includes a clamped-clamped micro-beam sandwiched with two piezoelectric layers throughout the entire length. Actuation of the piezoelectric layers via a DC voltage leads to an initial axial force in the micro-beam and directly affects on its overall bending stiffness; accordingly enables two-side tuning of both the trigger time and threshold shock. The governing motion equation, in the presence of an electrostatic actuation and a shock wave, is derived using Hamilton's principle. We employ the finite element method based on the Galerkin technique to obtain the temporal and phase responses subjected to three different shock waves including half sine, triangular and rectangular forms. Subsequently, we investigate the effect of the piezoelectric excitations on the threshold shock amplitude and trigger time.
Timing and efficacy of Ca2+ channel activation in hippocampal mossy fiber boutons.
Bischofberger, Josef; Geiger, Jörg R P; Jonas, Peter
2002-12-15
The presynaptic Ca2+ signal is a key determinant of transmitter release at chemical synapses. In cortical synaptic terminals, however, little is known about the kinetic properties of the presynaptic Ca2+ channels. To investigate the timing and magnitude of the presynaptic Ca2+ inflow, we performed whole-cell patch-clamp recordings from mossy fiber boutons (MFBs) in rat hippocampus. MFBs showed large high-voltage-activated Ca(2+) currents, with a maximal amplitude of approximately 100 pA at a membrane potential of 0 mV. Both activation and deactivation were fast, with time constants in the submillisecond range at a temperature of approximately 23 degrees C. An MFB action potential (AP) applied as a voltage-clamp command evoked a transient Ca2+ current with an average amplitude of approximately 170 pA and a half-duration of 580 microsec. A prepulse to +40 mV had only minimal effects on the AP-evoked Ca2+ current, indicating that presynaptic APs open the voltage-gated Ca2+ channels very effectively. On the basis of the experimental data, we developed a kinetic model with four closed states and one open state, linked by voltage-dependent rate constants. Simulations of the Ca2+ current could reproduce the experimental data, including the large amplitude and rapid time course of the current evoked by MFB APs. Furthermore, the simulations indicate that the shape of the presynaptic AP and the gating kinetics of the Ca2+ channels are tuned to produce a maximal Ca2+ influx during a minimal period of time. The precise timing and high efficacy of Ca2+ channel activation at this cortical glutamatergic synapse may be important for synchronous transmitter release and temporal information processing.
Han, Chongyang; Estacion, Mark; Huang, Jianying; Vasylyev, Dymtro; Zhao, Peng; Dib-Hajj, Sulayman D.
2015-01-01
Although species-specific differences in ion channel properties are well-documented, little has been known about the properties of the human Nav1.8 channel, an important contributor to pain signaling. Here we show, using techniques that include voltage clamp, current clamp, and dynamic clamp in dorsal root ganglion (DRG) neurons, that human Nav1.8 channels display slower inactivation kinetics and produce larger persistent current and ramp current than previously reported in other species. DRG neurons expressing human Nav1.8 channels unexpectedly produce significantly longer-lasting action potentials, including action potentials with half-widths in some cells >10 ms, and increased firing frequency compared with the narrower and usually single action potentials generated by DRG neurons expressing rat Nav1.8 channels. We also show that native human DRG neurons recapitulate these properties of Nav1.8 current and the long-lasting action potentials. Together, our results demonstrate strikingly distinct properties of human Nav1.8, which contribute to the firing properties of human DRG neurons. PMID:25787950
Han, Chongyang; Estacion, Mark; Huang, Jianying; Vasylyev, Dymtro; Zhao, Peng; Dib-Hajj, Sulayman D; Waxman, Stephen G
2015-05-01
Although species-specific differences in ion channel properties are well-documented, little has been known about the properties of the human Nav1.8 channel, an important contributor to pain signaling. Here we show, using techniques that include voltage clamp, current clamp, and dynamic clamp in dorsal root ganglion (DRG) neurons, that human Na(v)1.8 channels display slower inactivation kinetics and produce larger persistent current and ramp current than previously reported in other species. DRG neurons expressing human Na(v)1.8 channels unexpectedly produce significantly longer-lasting action potentials, including action potentials with half-widths in some cells >10 ms, and increased firing frequency compared with the narrower and usually single action potentials generated by DRG neurons expressing rat Na(v)1.8 channels. We also show that native human DRG neurons recapitulate these properties of Na(v)1.8 current and the long-lasting action potentials. Together, our results demonstrate strikingly distinct properties of human Na(v)1.8, which contribute to the firing properties of human DRG neurons.
Chen, Qin; Yim, Peter D.; Yuan, Nina; Johnson, Juliette; Cook, James M.; Smith, Steve; Ionescu-Zanetti, Cristian; Wang, Zhi-Jian; Arnold, Leggy A.
2012-01-01
Abstract Ensemble recording and microfluidic perfusion are recently introduced techniques aimed at removing the laborious nature and low recording success rates of manual patch clamp. Here, we present assay characteristics for these features integrated into one automated electrophysiology platform as applied to the study of GABAA channels. A variety of cell types and methods of GABAA channel expression were successfully studied (defined as IGABA>500 pA), including stably transfected human embryonic kidney (HEK) cells expressing α1β3γ2 GABAA channels, frozen ready-to-assay (RTA) HEK cells expressing α1β3γ2 or α3β3γ2 GABAA channels, transiently transfected HEK293T cells expressing α1β3γ2 GABAA channels, and immortalized cultures of human airway smooth muscle cells endogenously expressing GABAA channels. Current measurements were successfully studied in multiple cell types with multiple modes of channel expression in response to several classic GABAA channel agonists, antagonists, and allosteric modulators. We obtained success rates above 95% for transiently or stably transfected HEK cells and frozen RTA HEK cells expressing GABAA channels. Tissue-derived immortalized cultures of airway smooth muscle cells exhibited a slightly lower recording success rate of 75% using automated patch, which was much higher than the 5% success rate using manual patch clamp technique by the same research group. Responses to agonists, antagonists, and allosteric modulators compared well to previously reported manual patch results. The data demonstrate that both the biophysics and pharmacologic characterization of GABAA channels in a wide variety of cell formats can be performed using this automated patch clamp system. PMID:22574655
An operational amplifier B1404UD1A-1 in the patch-clamp current-to-voltage converter.
Korzun, A M; Rozinov, S V; Abashin, G I
1997-01-01
The applicability of the home-made operational amplifier B1404UD1A-1 in a patch-clamp current-to-voltage converter was analyzed. Its parameters (background noise, input bias current, and gain-bandwidth product) were estimated. Schematic solutions and practical recommendations for the use of this amplifier in a current-to-voltage converter were given. Based on the background noise and frequency parameters of the converter, we found that this device can be used for measuring ion channel currents with a high sensitivity and within a broad frequency range (0.055 pA, to 1 kHz; 0.4 pA, to 10 kHz). An example of the converter application in experiments is given.
Polonchuk, Liudmila
2014-01-01
Patch-clamping is a powerful technique for investigating the ion channel function and regulation. However, its low throughput hampered profiling of large compound series in early drug development. Fortunately, automation has revolutionized the area of experimental electrophysiology over the past decade. Whereas the first automated patch-clamp instruments using the planar patch-clamp technology demonstrated rather a moderate throughput, few second-generation automated platforms recently launched by various companies have significantly increased ability to form a high number of high-resistance seals. Among them is SyncroPatch(®) 96 (Nanion Technologies GmbH, Munich, Germany), a fully automated giga-seal patch-clamp system with the highest throughput on the market. By recording from up to 96 cells simultaneously, the SyncroPatch(®) 96 allows to substantially increase throughput without compromising data quality. This chapter describes features of the innovative automated electrophysiology system and protocols used for a successful transfer of the established hERG assay to this high-throughput automated platform.
Frolova, Sheyda R.; Gaiko, Olga; Tsvelaya, Valeriya A.; Pimenov, Oleg Y.; Agladze, Konstantin I.
2016-01-01
The ability of azobenzene trimethylammonium bromide (azoTAB) to sensitize cardiac tissue excitability to light was recently reported. The dark, thermally relaxed trans- isomer of azoTAB suppressed spontaneous activity and excitation propagation speed, whereas the cis- isomer had no detectable effect on the electrical properties of cardiomyocyte monolayers. As the membrane potential of cardiac cells is mainly controlled by activity of voltage-gated ion channels, this study examined whether the sensitization effect of azoTAB was exerted primarily via the modulation of voltage-gated ion channel activity. The effects of trans- and cis- isomers of azoTAB on voltage-dependent sodium (INav), calcium (ICav), and potassium (IKv) currents in isolated neonatal rat cardiomyocytes were investigated using the whole-cell patch-clamp technique. The experiments showed that azoTAB modulated ion currents, causing suppression of sodium (Na+) and calcium (Ca2+) currents and potentiation of net potassium (K+) currents. This finding confirms that azoTAB-effect on cardiac tissue excitability do indeed result from modulation of voltage-gated ion channels responsible for action potential. PMID:27015602
Mapping Inhibitory Neuronal Circuits by Laser Scanning Photostimulation
Ikrar, Taruna; Olivas, Nicholas D.; Shi, Yulin; Xu, Xiangmin
2011-01-01
Inhibitory neurons are crucial to cortical function. They comprise about 20% of the entire cortical neuronal population and can be further subdivided into diverse subtypes based on their immunochemical, morphological, and physiological properties1-4. Although previous research has revealed much about intrinsic properties of individual types of inhibitory neurons, knowledge about their local circuit connections is still relatively limited3,5,6. Given that each individual neuron's function is shaped by its excitatory and inhibitory synaptic input within cortical circuits, we have been using laser scanning photostimulation (LSPS) to map local circuit connections to specific inhibitory cell types. Compared to conventional electrical stimulation or glutamate puff stimulation, LSPS has unique advantages allowing for extensive mapping and quantitative analysis of local functional inputs to individually recorded neurons3,7-9. Laser photostimulation via glutamate uncaging selectively activates neurons perisomatically, without activating axons of passage or distal dendrites, which ensures a sub-laminar mapping resolution. The sensitivity and efficiency of LSPS for mapping inputs from many stimulation sites over a large region are well suited for cortical circuit analysis. Here we introduce the technique of LSPS combined with whole-cell patch clamping for local inhibitory circuit mapping. Targeted recordings of specific inhibitory cell types are facilitated by use of transgenic mice expressing green fluorescent proteins (GFP) in limited inhibitory neuron populations in the cortex3,10, which enables consistent sampling of the targeted cell types and unambiguous identification of the cell types recorded. As for LSPS mapping, we outline the system instrumentation, describe the experimental procedure and data acquisition, and present examples of circuit mapping in mouse primary somatosensory cortex. As illustrated in our experiments, caged glutamate is activated in a spatially restricted region of the brain slice by UV laser photolysis; simultaneous voltage-clamp recordings allow detection of photostimulation-evoked synaptic responses. Maps of either excitatory or inhibitory synaptic input to the targeted neuron are generated by scanning the laser beam to stimulate hundreds of potential presynaptic sites. Thus, LSPS enables the construction of detailed maps of synaptic inputs impinging onto specific types of inhibitory neurons through repeated experiments. Taken together, the photostimulation-based technique offers neuroscientists a powerful tool for determining the functional organization of local cortical circuits. PMID:22006064
Development of Ca2+ hotspots between Lymnaea neurons during synaptogenesis
Feng, Zhong-Ping; Grigoriev, Nikita; Munno, David; Lukowiak, Ken; MacVicar, Brian A; Goldberg, Jeffrey I; Syed, Naweed I
2002-01-01
Calcium (Ca2+) channel clustering at specific presynaptic sites is a hallmark of mature synapses. However, the spatial distribution patterns of Ca2+ channels at newly formed synapses have not yet been demonstrated. Similarly, it is unclear whether Ca2+ ‘hotspots’ often observed at the presynaptic sites are indeed target cell contact specific and represent a specialized mechanism by which Ca2+ channels are targeted to select synaptic sites. Utilizing both soma–soma paired (synapsed) and single neurons from the mollusk Lymnaea, we have tested the hypothesis that differential gradients of voltage-dependent Ca2+ signals develop in presynaptic neuron at its contact point with the postsynaptic neuron; and that these Ca2+ hotspots are target cell contact specific. Fura-2 imaging, or two-photon laser scanning microscopy of Calcium Green, was coupled with electrophysiological techniques to demonstrate that voltage-induced Ca2+ gradients (hotspots) develop in the presynaptic cell at its contact point with the postsynaptic neuron, but not in unpaired single cells. The incidence of Ca2+ hotspots coincided with the appearance of synaptic transmission between the paired cells, and these gradients were target cell contact specific. In contrast, the voltage-induced Ca2+ signal in unpaired neurons was uniformly distributed throughout the somata; a similar pattern of Ca2+ gradient was observed in the presynaptic neuron when it was soma–soma paired with a non-synaptic partner cell. Moreover, voltage clamp recording techniques, in conjunction with a fast, optical differential perfusion system, were used to demonstrate that the total whole-cell Ca2+ (or Ba2+) current density in single and paired cells was not significantly different. However, the amplitude of Ba2+ current was significantly higher in the presynaptic cell at its contact side with the postsynaptic neurons, compared with non-contacted regions. In summary, this study demonstrates that voltage-induced Ca2+ hotspots develop in the presynaptic cell, concomitant with the appearance of synaptic transmission between the soma–soma paired cells. The appearance of Ca2+ gradients in presynaptic neurons is target cell contact specific and is probably due to a spatial redistribution of existing channels during synaptogenesis. PMID:11850501
OmpF, a nucleotide-sensing nanoprobe, computational evaluation of single channel activities
NASA Astrophysics Data System (ADS)
Abdolvahab, R. H.; Mobasheri, H.; Nikouee, A.; Ejtehadi, M. R.
2016-09-01
The results of highthroughput practical single channel experiments should be formulated and validated by signal analysis approaches to increase the recognition precision of translocating molecules. For this purpose, the activities of the single nano-pore forming protein, OmpF, in the presence of nucleotides were recorded in real time by the voltage clamp technique and used as a means for nucleotide recognition. The results were analyzed based on the permutation entropy of current Time Series (TS), fractality, autocorrelation, structure function, spectral density, and peak fraction to recognize each nucleotide, based on its signature effect on the conductance, gating frequency and voltage sensitivity of channel at different concentrations and membrane potentials. The amplitude and frequency of ion current fluctuation increased in the presence of Adenine more than Cytosine and Thymine in milli-molar (0.5 mM) concentrations. The variance of the current TS at various applied voltages showed a non-monotonic trend whose initial increasing slope in the presence of Thymine changed to a decreasing one in the second phase and was different from that of Adenine and Cytosine; e.g., by increasing the voltage from 40 to 140 mV in the 0.5 mM concentration of Adenine or Cytosine, the variance decreased by one third while for the case of Thymine it was doubled. Moreover, according to the structure function of TS, the fractality of current TS differed as a function of varying membrane potentials (pd) and nucleotide concentrations. Accordingly, the calculated permutation entropy of the TS, validated the biophysical approach defined for the recognition of different nucleotides at various concentrations, pd's and polarities. Thus, the promising outcomes of the combined experimental and theoretical methodologies presented here can be implemented as a complementary means in pore-based nucleotide recognition approaches.
Haydon, D A; Urban, B W
1983-01-01
The effects of several n-alkanols and n-alkyl oxyethylene alcohols, methyl octanoate, glycerol 1-monooctanoate and dioctanoyl phosphatidylcholine on the ionic currents and electrical capacity of the squid giant axon membrane have been examined. The peak inward current in voltage-clamped axons was reduced reversibly by each substance. For n-pentanol to n-decanol the concentrations required to suppress the peak inward current by 50% were determined. From these data, it was estimated that the standard free energy per CH2 for adsorption to the site of action was -3.04 kJ mole-1, as compared with -3.11 kJ mole-1 for adsorption into phospholipid bilayers or an n-alkane/aqueous solution interface. The membrane capacity at 100 kHz was not greatly by any of the test substances at concentrations which reduced the inward current by 50%. Na currents under voltage clamp were recorded in intracellularly perfused axons before, during and sometimes after exposure to the test substances and the records were fitted with equations similar to those proposed by Hodgkin & Huxley (1952). Shifts in the curves of the steady-state activation and inactivation parameters (m infinity and h infinity) against membrane potential, changes in the peak heights of the activation and inactivation time constants (tau m and tau h) and reductions in the maximum Na conductance (gNa) have been tabulated. All of the test substances shifted the voltage dependence of the steady-state activation in the depolarizing direction and lowered the peak time constants for both activation and inactivation. The origins of these effects, and of the differences in the present results from those of the hydrocarbons (Haydon & Urban, 1983), have been discussed in terms of the physico-chemical properties of the two groups of substances and with reference to their effects on artificial membranes. PMID:6312030
Effect of an N-terminus deletion on voltage-dependent gating of the ClC-2 chloride channel
Varela, Diego; Niemeyer, María Isabel; Cid, L Pablo; Sepúlveda, Francisco V
2002-01-01
ClC-2, a chloride channel widely expressed in mammalian tissues, is activated by hyperpolarisation and extracellular acidification. Deletion of amino acids 16–61 in rat ClC-2 abolishes voltage and pH dependence in two-electrode voltage-clamp experiments in amphibian oocytes. These results have been interpreted in terms of a ball-and-chain type of mechanism in which the N-terminus would behave as a ball that is removed from an inactivating site upon hyperpolarisation. We now report whole-cell patch-clamp measurements in mammalian cells showing hyperpolarization-activation of rClC-2Δ16–61 differing only in presenting faster opening and closing kinetics than rClC-2. The lack of time and voltage dependence observed previously was reproduced, however, in nystatin-perforated patch experiments. The behaviour of wild-type rClC-2 did not differ between conventional and nystatin-perforated patches. Similar results were obtained with ClC-2 from guinea-pig. One possible explanation of the results is that some diffusible component is able to lock the channel in an open state but does so only to the mutated channel. Alternative explanations involving the osmotic state of the cell and cytoskeleton structure are also considered. Low extracellular pH activates the wild-type channel but not rClC-2Δ16–61 when expressed in oocytes, a result that had been interpreted to suggest that protons affect the ball-and-chain mechanism. In our experiments no difference was seen in the effect of extracellular pH upon rClC-2 and rClC-2Δ16–61 in either recording configuration, suggesting that protons act independently from possible effects of the N-terminus on gating. Our observations of voltage-dependent gating of the N-terminal deleted ClC-2 are an argument against a ball-and-chain mechanism for this channel. PMID:12381811
Command-line cellular electrophysiology for conventional and real-time closed-loop experiments.
Linaro, Daniele; Couto, João; Giugliano, Michele
2014-06-15
Current software tools for electrophysiological experiments are limited in flexibility and rarely offer adequate support for advanced techniques such as dynamic clamp and hybrid experiments, which are therefore limited to laboratories with a significant expertise in neuroinformatics. We have developed lcg, a software suite based on a command-line interface (CLI) that allows performing both standard and advanced electrophysiological experiments. Stimulation protocols for classical voltage and current clamp experiments are defined by a concise and flexible meta description that allows representing complex waveforms as a piece-wise parametric decomposition of elementary sub-waveforms, abstracting the stimulation hardware. To perform complex experiments lcg provides a set of elementary building blocks that can be interconnected to yield a large variety of experimental paradigms. We present various cellular electrophysiological experiments in which lcg has been employed, ranging from the automated application of current clamp protocols for characterizing basic electrophysiological properties of neurons, to dynamic clamp, response clamp, and hybrid experiments. We finally show how the scripting capabilities behind a CLI are suited for integrating experimental trials into complex workflows, where actual experiment, online data analysis and computational modeling seamlessly integrate. We compare lcg with two open source toolboxes, RTXI and RELACS. We believe that lcg will greatly contribute to the standardization and reproducibility of both simple and complex experiments. Additionally, on the long run the increased efficiency due to a CLI will prove a great benefit for the experimental community. Copyright © 2014 Elsevier B.V. All rights reserved.
A novel crystallization method for visualizing the membrane localization of potassium channels.
Lopatin, A N; Makhina, E N; Nichols, C G
1998-01-01
The high permeability of K+ channels to monovalent thallium (Tl+) ions and the low solubility of thallium bromide salt were used to develop a simple yet very sensitive approach to the study of membrane localization of potassium channels. K+ channels (Kir1.1, Kir2.1, Kir2.3, Kv2.1), were expressed in Xenopus oocytes and loaded with Br ions by microinjection. Oocytes were then exposed to extracellular thallium. Under conditions favoring influx of Tl+ ions (negative membrane potential under voltage clamp, or high concentration of extracellular Tl+), crystals of TlBr, visible under low-power microscopy, formed under the membrane in places of high density of K+ channels. Crystals were not formed in uninjected oocytes, but were formed in oocytes expressing as little as 5 microS K+ conductance. The number of observed crystals was much lower than the estimated number of functional channels. Based on the pattern of crystal formation, K+ channels appear to be expressed mostly around the point of cRNA injection when injected either into the animal or vegetal hemisphere. In addition to this pseudopolarized distribution of K+ channels due to localized microinjection of cRNA, a naturally polarized (animal/vegetal side) distribution of K+ channels was also frequently observed when K+ channel cRNA was injected at the equator. A second novel "agarose-hemiclamp" technique was developed to permit direct measurements of K+ currents from different hemispheres of oocytes under two-microelectrode voltage clamp. This technique, together with direct patch-clamping of patches of membrane in regions of high crystal density, confirmed that the localization of TlBr crystals corresponded to the localization of functional K+ channels and suggested a clustered organization of functional channels. With appropriate permeant ion/counterion pairs, this approach may be applicable to the visualization of the membrane distribution of any functional ion channel. PMID:9591643
A novel crystallization method for visualizing the membrane localization of potassium channels.
Lopatin, A N; Makhina, E N; Nichols, C G
1998-05-01
The high permeability of K+ channels to monovalent thallium (Tl+) ions and the low solubility of thallium bromide salt were used to develop a simple yet very sensitive approach to the study of membrane localization of potassium channels. K+ channels (Kir1.1, Kir2.1, Kir2.3, Kv2.1), were expressed in Xenopus oocytes and loaded with Br ions by microinjection. Oocytes were then exposed to extracellular thallium. Under conditions favoring influx of Tl+ ions (negative membrane potential under voltage clamp, or high concentration of extracellular Tl+), crystals of TlBr, visible under low-power microscopy, formed under the membrane in places of high density of K+ channels. Crystals were not formed in uninjected oocytes, but were formed in oocytes expressing as little as 5 microS K+ conductance. The number of observed crystals was much lower than the estimated number of functional channels. Based on the pattern of crystal formation, K+ channels appear to be expressed mostly around the point of cRNA injection when injected either into the animal or vegetal hemisphere. In addition to this pseudopolarized distribution of K+ channels due to localized microinjection of cRNA, a naturally polarized (animal/vegetal side) distribution of K+ channels was also frequently observed when K+ channel cRNA was injected at the equator. A second novel "agarose-hemiclamp" technique was developed to permit direct measurements of K+ currents from different hemispheres of oocytes under two-microelectrode voltage clamp. This technique, together with direct patch-clamping of patches of membrane in regions of high crystal density, confirmed that the localization of TlBr crystals corresponded to the localization of functional K+ channels and suggested a clustered organization of functional channels. With appropriate permeant ion/counterion pairs, this approach may be applicable to the visualization of the membrane distribution of any functional ion channel.
Collier, D.M.; Meeks, L.A.; Palmer, J.P.
1961-01-31
S>An electronic multiplier is described for use in analog computers. Two electrical input signals are received; one controls the slope of a saw-tooth voltage wave while the other controls the time duration of the wave. A condenser and diode clamps are provided to sustain the crest voltage reached by the wave, and for storing that voltage to provide an output signal which is a steady d-c voltage.
NASA Astrophysics Data System (ADS)
Banerjee, J.; Verma, M. K.; Manna, S.; Ghosh, S.
2006-02-01
Noise profile of Voltage Dependent Anion Channel (VDAC) is investigated in open channel state. Single-channel currents through VDAC from mitochondria of rat brain reconstituted into a planar lipid bilayer are recorded under different voltage clamped conditions across the membrane. Power spectrum analysis of current indicates power law noise of 1/f nature. Moreover, this 1/f nature of the open channel noise is seen throughout the range of applied membrane potential from -30 to +30 mV. It is being proposed that 1/f noise in open ion channel arises out of obstruction in the passage of ions across the membrane. The process is recognised as a phenomenon of self-organized criticality (SOC) like sandpile avalanche and other physical systems. Based on SOC it has been theoretically established that the system of ion channel follows power law noise as observed in our experiments. We also show that the first-time return probability of current fluctuations obeys a power law distribution.
Non-equilibrium voltage noise generated by ion transport through pores.
Frehland, E; Solleder, P
1985-01-01
In this paper, we describe a systematic approach to the theoretical analysis of non-equilibrium voltage noise that arises from ions moving through pores in membranes. We assume that an ion must cross one or two barriers in the pore in order to move from one side of the membrane to the other. In our analysis, we consider the following factors: a) surface charge as a variable in the kinetic equations, b) linearization of the kinetic equations, c) master equation approach to fluctuations. To analyze the voltage noise arising from ion movement through a two barrier (i.e., one binding site) pore, we included the effects of ions in the channel's interior on the voltage noise. The current clamp is considered as a white noise generating additional noise in the system. In contrast to what is found for current noise, at low frequencies the voltage noise intensity is reduced by increasing voltage across the membrane. With this approach, we demonstrate explicitly for the examples treated that, apart from additional noise generated by the current clamp, the non-equilibrium voltage fluctuations can be related to the current fluctuations by the complex admittance.
Intracellular recording of action potentials by nanopillar electroporation.
Xie, Chong; Lin, Ziliang; Hanson, Lindsey; Cui, Yi; Cui, Bianxiao
2012-02-12
Action potentials have a central role in the nervous system and in many cellular processes, notably those involving ion channels. The accurate measurement of action potentials requires efficient coupling between the cell membrane and the measuring electrodes. Intracellular recording methods such as patch clamping involve measuring the voltage or current across the cell membrane by accessing the cell interior with an electrode, allowing both the amplitude and shape of the action potentials to be recorded faithfully with high signal-to-noise ratios. However, the invasive nature of intracellular methods usually limits the recording time to a few hours, and their complexity makes it difficult to simultaneously record more than a few cells. Extracellular recording methods, such as multielectrode arrays and multitransistor arrays, are non-invasive and allow long-term and multiplexed measurements. However, extracellular recording sacrifices the one-to-one correspondence between the cells and electrodes, and also suffers from significantly reduced signal strength and quality. Extracellular techniques are not, therefore, able to record action potentials with the accuracy needed to explore the properties of ion channels. As a result, the pharmacological screening of ion-channel drugs is usually performed by low-throughput intracellular recording methods. The use of nanowire transistors, nanotube-coupled transistors and micro gold-spine and related electrodes can significantly improve the signal strength of recorded action potentials. Here, we show that vertical nanopillar electrodes can record both the extracellular and intracellular action potentials of cultured cardiomyocytes over a long period of time with excellent signal strength and quality. Moreover, it is possible to repeatedly switch between extracellular and intracellular recording by nanoscale electroporation and resealing processes. Furthermore, vertical nanopillar electrodes can detect subtle changes in action potentials induced by drugs that target ion channels.
Intracellular recording of action potentials by nanopillar electroporation
NASA Astrophysics Data System (ADS)
Xie, Chong; Lin, Ziliang; Hanson, Lindsey; Cui, Yi; Cui, Bianxiao
2012-03-01
Action potentials have a central role in the nervous system and in many cellular processes, notably those involving ion channels. The accurate measurement of action potentials requires efficient coupling between the cell membrane and the measuring electrodes. Intracellular recording methods such as patch clamping involve measuring the voltage or current across the cell membrane by accessing the cell interior with an electrode, allowing both the amplitude and shape of the action potentials to be recorded faithfully with high signal-to-noise ratios. However, the invasive nature of intracellular methods usually limits the recording time to a few hours, and their complexity makes it difficult to simultaneously record more than a few cells. Extracellular recording methods, such as multielectrode arrays and multitransistor arrays, are non-invasive and allow long-term and multiplexed measurements. However, extracellular recording sacrifices the one-to-one correspondence between the cells and electrodes, and also suffers from significantly reduced signal strength and quality. Extracellular techniques are not, therefore, able to record action potentials with the accuracy needed to explore the properties of ion channels. As a result, the pharmacological screening of ion-channel drugs is usually performed by low-throughput intracellular recording methods. The use of nanowire transistors, nanotube-coupled transistors and micro gold-spine and related electrodes can significantly improve the signal strength of recorded action potentials. Here, we show that vertical nanopillar electrodes can record both the extracellular and intracellular action potentials of cultured cardiomyocytes over a long period of time with excellent signal strength and quality. Moreover, it is possible to repeatedly switch between extracellular and intracellular recording by nanoscale electroporation and resealing processes. Furthermore, vertical nanopillar electrodes can detect subtle changes in action potentials induced by drugs that target ion channels.
Ion pathways in the taste bud and their significance for transduction.
DeSimone, J A; Ye, Q; Heck, G L
1993-01-01
Taste buds share a topology with ion-transporting epithelial and evidence now indicates that neural responses in rats to Na+ salts of differing anion are mediated by both transcellular and paracellular ion transport. Na+ exerts its effects mainly on the transcellular pathway. Neural responses to Na+ salts are enhanced by negative voltage clamp and suppressed by positive clamp in a manner indicating modulation of the apical membrane potential of receptor cells. Anion effects are mainly paracellular. Under zero current clamp increasing anion size reduces the neural response at constant Na+ concentration. Below about 50 mM this difference is entirely eliminated under voltage clamp. This suggests that paracellular transepithelial potentials normally create an anion difference. At higher concentrations the relatively high permeability of the paracellular shunt to Cl- permits sufficient electroneutral diffusion of NaCl below the tight junctions to stimulate cells that do not make direct contact with the oral cavity. In general, the sensitivity of a response to perturbations in the apical membrane potential indicates that some phase of Na+ salt taste transduction is accompanied by changes in an apical membrane channel conductance.
Cheng, Hongwei; Smith, Godfrey L.; Hancox, Jules C.; Orchard, Clive H.
2011-01-01
The atrioventricular node (AVN) can act as a subsidiary cardiac pacemaker if the sinoatrial node fails. In this study, we investigated the effects of the Na–Ca exchange (NCX) inhibitor KB-R7943, and inhibition of the sarcoplasmic reticulum calcium ATPase (SERCA), using thapsigargin or cyclopiazonic acid (CPA), on spontaneous action potentials (APs) and [Ca2+]i transients from cells isolated from the rabbit AVN. Spontaneous [Ca2+]i transients were monitored from undialysed AVN cells at 37 °C using Fluo-4. In separate experiments, spontaneous APs and ionic currents were recorded using the whole-cell patch clamp technique. Rapid application of 5 μM KB-R7943 slowed or stopped spontaneous APs and [Ca2+]i transients. However, in voltage clamp experiments in addition to blocking NCX current (INCX) KB-R7943 partially inhibited L-type calcium current (ICa,L). Rapid reduction of external [Na+] also abolished spontaneous activity. Inhibition of SERCA (using 2.5 μM thapsigargin or 30 μM CPA) also slowed or stopped spontaneous APs and [Ca2+]i transients. Our findings are consistent with the hypothesis that sarcoplasmic reticulum (SR) Ca2+ release influences spontaneous activity in AVN cells, and that this occurs via [Ca2+]i-activated INCX; however, the inhibitory action of KB-R7943 on ICa,L means that care is required in the interpretation of data obtained using this compound. PMID:21163524
Polonchuk, Liudmila
2012-01-01
The Patchliner® temperature-controlled automated patch clamp system was evaluated for testing drug effects on potassium currents through human ether-à-go-go related gene (hERG) channels expressed in Chinese hamster ovary cells at 35–37°C. IC50 values for a set of reference drugs were compared with those obtained using the conventional voltage clamp technique. The results showed good correlation between the data obtained using automated and conventional electrophysiology. Based on these results, the Patchliner® represents an innovative automated electrophysiology platform for conducting the hERG assay that substantially increases throughput and has the advantage of operating at physiological temperature. It allows fast, accurate, and direct assessment of channel function to identify potential proarrhythmic side effects and sets a new standard in ion channel research for drug safety testing. PMID:22303293
Isoflurane modulates neuronal excitability of the nucleus reticularis thalami in vitro.
Joksovic, Pavle M; Todorovic, Slobodan M
2010-06-01
The thalamus has a key function in processing sensory information, sleep, and cognition. We examined the effects of a common volatile anesthetic, isoflurane, on modulation of neuronal excitability in reticular thalamic nucleus (nRT) in intact brain slices from immature rats. In current-clamp recordings, isoflurane (300-600 micromol/L) consistently depolarized membrane potential, decreased input resistance, and inhibited both rebound burst firing and tonic spike firing modes of nRT neurons. The isoflurane-induced depolarization persisted not only in the presence of tetrodotoxin, but after replacement of Ca(2+) with Ba(2+) ions in external solution; it was abolished by partial replacement of extracellular Na(+) ions with N-methyl-D-glucamine. In voltage-clamp recordings, we found that isoflurane slowed recovery from inactivation of T-type Ca(2+) current. Thus, at clinically relevant concentrations, isoflurane inhibits neuronal excitability of nRT neurons in developing brain via multiple ion channels. Inhibition of the neuronal excitability of thalamic cells may contribute to impairment of sensory information transfer in the thalamocortical network by general anesthetics. The findings may be important for understanding cellular mechanisms of anesthesia, such as loss of consciousness and potentially damaging consequences of general anesthetics on developing mammalian brains.
Huang, Jianying; Yang, Yang; Dib-Hajj, Sulayman D; van Es, Michael; Zhao, Peng; Salomon, Jody; Drenth, Joost P H; Waxman, Stephen G
2014-09-10
Sodium channel Nav1.7, encoded by SCN9A, is expressed in DRG neurons and regulates their excitability. Genetic and functional studies have established a critical contribution of Nav1.7 to human pain disorders. We have now characterized a novel Nav1.7 mutation (R1279P) from a female human subject with distal limb pain, in which depolarized fast inactivation overrides impaired activation to produce hyperexcitability and spontaneous firing in DRG neurons. Whole-cell voltage-clamp recordings in human embryonic kidney (HEK) 293 cells demonstrated that R1279P significantly depolarizes steady-state fast-, slow-, and closed-state inactivation. It accelerates deactivation, decelerates inactivation, and facilitates repriming. The mutation increases ramp currents in response to slow depolarizations. Our voltage-clamp analysis showed that R1279P depolarizes channel activation, a change that was supported by our multistate structural modeling. Because this mutation confers both gain-of-function and loss-of-function attributes on the Nav1.7 channel, we tested the impact of R1279P expression on DRG neuron excitability. Current-clamp studies reveal that R1279P depolarizes resting membrane potential, decreases current threshold, and increases firing frequency of evoked action potentials within small DRG neurons. The populations of spontaneously firing and repetitively firing neurons were increased by expressing R1279P. These observations indicate that the dominant proexcitatory gating changes associated with this mutation, including depolarized steady-state fast-, slow-, and closed-state inactivation, faster repriming, and larger ramp currents, override the depolarizing shift of activation, to produce hyperexcitability and spontaneous firing of nociceptive neurons that underlie pain. Copyright © 2014 the authors 0270-6474/14/3412328-13$15.00/0.
Jonas, E A; Knox, R J; Kaczmarek, L K
1997-07-01
A method is outlined for obtaining giga-ohm seals on intracellular membranes in intact cells. The technique employs a variant of the patch-clamp technique: a concentric electrode arrangement protects an inner patch pipette during penetration of the plasma membrane, after which a seal can be formed on an internal organelle membrane. Using this technique, successful recordings can be obtained with the same frequency as with conventional patch clamping. To localize the position of the pipette within cells, lipophilic fluorescent dyes are included in the pipette solution. These dyes stain the membrane of internal organelles during seal formation and can then be visualized by video-enhanced or confocal imaging. The method can detect channels activated by inositol trisphosphate, as well as other types of intracellular membrane ion channel activity, and should facilitate studies of internal membranes in intact neurons and other cell types.
Surface mapping of spike potential fields: experienced EEGers vs. computerized analysis.
Koszer, S; Moshé, S L; Legatt, A D; Shinnar, S; Goldensohn, E S
1996-03-01
An EEG epileptiform spike focus recorded with scalp electrodes is clinically localized by visual estimation of the point of maximal voltage and the distribution of its surrounding voltages. We compared such estimated voltage maps, drawn by experienced electroencephalographers (EEGers), with a computerized spline interpolation technique employed in the commercially available software package FOCUS. Twenty-two spikes were recorded from 15 patients during long-term continuous EEG monitoring. Maps of voltage distribution from the 28 electrodes surrounding the points of maximum change in slope (the spike maximum) were constructed by the EEGer. The same points of maximum spike and voltage distributions at the 29 electrodes were mapped by computerized spline interpolation and a comparison between the two methods was made. The findings indicate that the computerized spline mapping techniques employed in FOCUS construct voltage maps with similar maxima and distributions as the maps created by experienced EEGers. The dynamics of spike activity, including correlations, are better visualized using the computerized technique than by manual interpretation alone. Its use as a technique for spike localization is accurate and adds information of potential clinical value.
Rannou, F; Droguet, M; Giroux-Metges, M A; Pennec, Y; Gioux, M; Pennec, J P
2009-11-01
The myosin heavy chain (MHC) isoform determines the characteristics and shortening velocity of muscle fibres. The functional properties of the muscle fibre are also conditioned by its membrane excitability through the electrophysiological properties of sodium voltage-gated channels. Macropatch-clamp is used to study sodium channels in fibres from peroneus longus (PL) and soleus (Sol) muscles (Wistar rats, n = 8). After patch-clamp recordings, single fibres are identified by SDS-PAGE electrophoresis according to their myosin heavy chain isoform (slow type I and the three fast types IIa, IIx, IIb). Characteristics of sodium currents are compared (Student's t test) between fibres exhibiting only one MHC isoform. Four MHC isoforms are identified in PL and only type I in Sol single fibres. In PL, maximal sodium current (I(max)), maximal sodium conductance (g(Na,max)) and time constants of activation and inactivation ((m) and (h)) increase according to the scheme I-->IIa-->IIx-->IIb (P < 0.05). (m) values related to sodium channel type and/or function, are similar in Sol I and PL IIb fibres (P = 0.97) despite different contractile properties. The voltage dependence of activation (V(a,1/2)) shows a shift towards positive potentials from Sol type I to IIa, IIx and finally IIb fibres from PL (P < 0.05). These data are consistent with the earlier recruitment of slow fibres in a fast-mixed muscle like PL, while slow fibres of postural muscle such as soleus could be recruited in the same ways as IIb fibres in a fast muscle.
Pizarro, G; Csernoch, L; Uribe, I; Ríos, E
1992-01-01
1. Intramembrane charge movements and changes in intracellular calcium concentration were recorded simultaneously in voltage clamped cut skeletal muscle fibres of the frog in the presence and absence of tetracaine. 2. Extracellular application of 20 microM tetracaine reduced the increase in myoplasmic [Ca2+]. The effect on the underlying calcium release flux from the sarcoplasmic reticulum was to suppress the peak of the release while sparing the steady level attained at the end of 100 ms clamp depolarizations. 3. While the peak of the release flux at corresponding voltages was reduced by 62% after the addition of tetracaine, the rate of inactivation was the same when the pulses elicited release fluxes of similar amplitude. 4. Higher concentrations of tetracaine, 0.2 mM, abolished the calcium signal in stretched fibres whereas in slack fibres this concentration left a non-inactivating calcium release flux. 5. Lowering the extracellular pH antagonized the effect of the drug both on charge movements and on calcium signals. The permanently charged analogue tetracaine methobromide lacked effects on excitation-contraction coupling. 6. These results imply that the two kinetic components of calcium release flux have very different tetracaine sensitivities. They are also consistent with an intracellular site of action of the drug at low concentration. Taken together they strongly suggest that the inactivating and non-inactivating components of calcium release correspond to different pathways: one that inactivates, is sensitive to tetracaine and is controlled by calcium, and another that does not inactivate, is much less sensitive to tetracaine and is directly controlled by voltage. PMID:1297844
Ionic requirements for membrane-glass adhesion and giga seal formation in patch-clamp recording.
Priel, Avi; Gil, Ziv; Moy, Vincent T; Magleby, Karl L; Silberberg, Shai D
2007-06-01
Patch-clamp recording has revolutionized the study of ion channels, transporters, and the electrical activity of small cells. Vital to this method is formation of a tight seal between glass recording pipette and cell membrane. To better understand seal formation and improve practical application of this technique, we examine the effects of divalent ions, protons, ionic strength, and membrane proteins on adhesion of membrane to glass and on seal resistance using both patch-clamp recording and atomic force microscopy. We find that H(+), Ca(2+), and Mg(2+) increase adhesion force between glass and membrane (lipid and cellular), decrease the time required to form a tight seal, and increase seal resistance. In the absence of H(+) (10(-10) M) and divalent cations (<10(-8) M), adhesion forces are greatly reduced and tight seals are not formed. H(+) (10(-7) M) promotes seal formation in the absence of divalent cations. A positive correlation between adhesion force and seal formation indicates that high resistance seals are associated with increased adhesion between membrane and glass. A similar ionic dependence of the adhesion of lipid membranes and cell membranes to glass indicates that lipid membranes without proteins are sufficient for the action of ions on adhesion.
NASA Astrophysics Data System (ADS)
Worley, Jennings F.; Deitmer, Joachim W.; Nelson, Mark T.
1986-08-01
Single smooth muscle cells were enzymatically isolated from the rabbit mesenteric artery. At physiological levels of external Ca, these cells were relaxed and contracted on exposure to norepinephrine, caffeine, or high levels of potassium. The patch-clamp technique was used to measure unitary currents through single channels in the isolated cells. Single channels were selective for divalent cations and exhibited two conductance levels, 8 pS and 15 pS. Both types of channels were voltage-dependent, and channel activity occurred at potentials positive to -40 mV. The activity of both channel types was almost completely inhibited by 50 nM nisoldipine. These channels appear to be the pathways for voltage-dependent Ca influx in vascular smooth muscle and may be the targets of the clinically used dihydropyridines.
Fleischmann, B K; Washabau, R J; Kotlikoff, M I
1993-01-01
1. In order to determine the physiological role of specific potassium currents in airway smooth muscle, potassium currents were measured in freshly dissociated ferret trachealis cells using the nystatin-permeabilized, whole-cell method, at 35 degrees C. 2. The magnitude of the outward currents was markedly increased as bath temperature was increased from 22 to 35 degrees C. This increase was primarily due to the increase in maximum potassium conductance (gK,max), although there was also a small leftward shift in the relationship between gK and voltage at higher temperatures. The maximum conductance and the kinetics of current activation and inactivation were also temperature dependent. At 35 degrees C, gating of the current was steeply voltage dependent between -40 and 0 mV. Current activation was well fitted by fourth-order kinetics; the mean time constants of activation (30 mV clamp step) were 1.09 +/- 0.17 and 1.96 +/- 0.27 ms at 35 and 22 degrees C, respectively. 3. Outward currents using the nystatin method were qualitatively similar to delayed rectifier currents recorded in dialysed cells with high calcium buffering capacity solutions. 4-Aminopyridine (4-AP; 2 mM), a specific blocker of delayed rectifier potassium channels in this tissue, inhibited over 80% of the outward current evoked by voltage-clamp steps to between -10 and +20 mV (n = 6). Less than 5% of the outward current was blocked over the same voltage range by charybdotoxin (100 nM; n = 15), a specific antagonist of large-conductance, calcium-activated potassium channels in this tissue. 4. The degree to which delayed rectifier and calcium-activated potassium conductances control resting membrane potential was examined in current-clamp experiments. The resting membrane potential of current clamped cells was -33.6 +/- 1.0 mV (n = 62). Application of 4-AP (2 mM) resulted in a 14.4 +/- 1.0 mV depolarization (n = 8) and an increase in input resistance. Charybdotoxin (100 nM) had no effect on resting membrane potential (n = 6). 5. Force measurements were made in isolated strips of trachealis muscle to determine the effect of pharmacological blockade of individual potassium conductances on resting tone. In the presence of tetrodotoxin (1 microM) and atropine (1 microM), 4-AP increased baseline tension in a dose-dependent manner, with an EC50 of 1.8 mM (n = 13); application of 5 mM 4-AP increased tone to 86.8 +/- 8.1% of that produced by 1 microM methacholine, and this tone was almost completely inhibited by nifedipine (1 microM).(ABSTRACT TRUNCATED AT 400 WORDS) PMID:8271220
Mezghani-Abdelmoula, Sana; Chevalier, Sylvie; Lesouhaitier, Olivier; Orange, Nicole; Feuilloley, Marc G J; Cazin, Lionel
2003-09-05
Pseudomonas fluorescens is a Gram-negative bacillus closely related to the pathogen P. aeruginosa known to provoke infectious disorders in the central nervous system (CNS). The endotoxin lipopolysaccharide (LPS) expressed by the bacteria is the first infectious factor that can interact with the plasma membrane of host cells. In the present study, LPS extracted from P. fluorescens MF37 was examined for its actions on delayed rectifier and A-type K(+) channels, two of the main types of voltage-activated K(+) channels involved in the action potential firing. Current recordings were performed in cultured rat cerebellar granule neurons at days 7 or 8, using the whole-cell patch-clamp technique. A 3-h incubation with LPS (200 ng/ml) markedly depressed both the delayed rectifier (I(KV)) and transient A-type (I(A)) K(+) currents evoked by depolarizations above 0 and -40 mV, respectively. The percent decrease of I(KV) and I(A) ( approximately 30%) did not vary with membrane potential, suggesting that inhibition of both types of K(+) channels by LPS was voltage-insensitive. The endotoxin did neither modify the steady-state voltage-dependent activation properties of I(KV) and I(A) nor the steady-state inactivation of I(A). The present results suggest that, by inhibiting I(KV) and I(A), LPS applied extracellulary increases the action potential firing in cerebellar granule neurons. It is concluded that P. fluorescens MF37 may provoke in the CNS disorders associated with sever alterations of membrane ionic channel functions.
Electrical Oscillations in Two-Dimensional Microtubular Structures
Cantero, María del Rocío; Perez, Paula L.; Smoler, Mariano; Villa Etchegoyen, Cecilia; Cantiello, Horacio F.
2016-01-01
Microtubules (MTs) are unique components of the cytoskeleton formed by hollow cylindrical structures of αβ tubulin dimeric units. The structural wall of the MT is interspersed by nanopores formed by the lateral arrangement of its subunits. MTs are also highly charged polar polyelectrolytes, capable of amplifying electrical signals. The actual nature of these electrodynamic capabilities remains largely unknown. Herein we applied the patch clamp technique to two-dimensional MT sheets, to characterize their electrical properties. Voltage-clamped MT sheets generated cation-selective oscillatory electrical currents whose magnitude depended on both the holding potential, and ionic strength and composition. The oscillations progressed through various modes including single and double periodic regimes and more complex behaviours, being prominent a fundamental frequency at 29 Hz. In physiological K+ (140 mM), oscillations represented in average a 640% change in conductance that was also affected by the prevalent anion. Current injection induced voltage oscillations, thus showing excitability akin with action potentials. The electrical oscillations were entirely blocked by taxol, with pseudo Michaelis-Menten kinetics and a KD of ~1.29 μM. The findings suggest a functional role of the nanopores in the MT wall on the genesis of electrical oscillations that offer new insights into the nonlinear behaviour of the cytoskeleton. PMID:27256791
Weiss, T; Erxleben, C; Rathmayer, W
2001-01-01
A single fibre preparation from the extensor muscle of a marine isopod crustacean is described which allows the analysis of membrane currents and simultaneously recorded contractions under two-electrode voltage-clamp conditions. We show that there are three main depolarisation-gated currents, two are outward and carried by K+, the third is an inward Ca2+ current, I(Ca). Normally, the K+ currents which can be isolated by using K+ channel blockers, mask I(Ca). I(Ca) activates at potentials more positive than -40 mV, is maximal around 0 mV, and shows strong inactivation at higher depolarisation. Inactivation depends on current rather than voltage. Ba2+, Sr2+ and Mg2+ can substitute for Ca2+. Ba2+ currents are about 80% larger than Ca2+ currents and inactivate little. The properties of I(Ca) characterise it as a high threshold L-type current. The outward current consists primarily of a fast, transient A current, I(K(A)) and a maintained, delayed rectifier current, I(K(V)). In some fibres, a small Ca2+-dependent K+ current is also present. I(K(A)) activates fast at depolarisation above -45 mV, shows pronounced inactivation and is almost completely inactivated at holding potentials more positive than -40 mV. I(K(A)) is half-maximally blocked by 70 microM 4-aminopyridine (4-AP), and 70 mM tetraethylammonium (TEA). I(K(V)) activates more slowly, at about -30 mV, and shows no inactivation. It is half-maximally blocked by 2 mM TEA but rather insensitive to 4-AP. Physiologically, the two K+ currents prevent all-or-nothing action potentials and determine the graded amplitude of active electrical responses and associated contractions. Tension development depends on and is correlated with depolarisation-induced Ca2+ influx mediated by I(Ca). The voltage dependence of peak tension corresponds directly to the voltage dependence of the integrated I(Ca). The threshold potential for contraction is at about -38 mV. Peak tension increases with increasing voltage steps, reaches maximum at around 0 mV, and declines with further depolarisation.
Rojas, Eduardo; Taylor, Robert E.; Atwater, Illani; Bezanilla, Francisco
1969-01-01
Isolated axons from the squid, Dosidicus gigas, were internally perfused with potassium fluoride solutions. Membrane currents were measured following step changes of membrane potential in a voltage-clamp arrangement with external isosmotic solution changes in the order: potassium-free artificial seawater; potassium chloride; potassium chloride containing 10, 25, 40 or 50, mM calcium or magnesium; and potassium-free artificial seawater. The following results suggest that the currents measured under voltage clamp with potassium outside and inside can be separated into two components and that one of them, the predominant one, is carried through the potassium system. (a) Outward currents in isosmotic potassium were strongly and reversibly reduced by tetraethylammonium chloride. (b) Without calcium or magnesium a progressive increase in the nontime-dependent component of the currents (leakage) occurred. (c) The restoration of calcium or magnesium within 15–30 min decreases this leakage. (d) With 50 mM divalent ions the steady-state current-voltage curve was nonlinear with negative resistance as observed in intact axons in isosmotic potassium. (e) The time-dependent components of the membrane currents were not clearly affected by calcium or magnesium. These results show a strong dependence of the leakage currents on external calcium or magnesium concentration but provide no support for the involvement of calcium or magnesium in the kinetics of the potassium system. PMID:5823216
Rojas, E; Taylor, R E; Atwater, I; Bezanilla, F
1969-10-01
Isolated axons from the squid, Dosidicus gigas, were internally perfused with potassium fluoride solutions. Membrane currents were measured following step changes of membrane potential in a voltage-clamp arrangement with external isosmotic solution changes in the order: potassium-free artificial seawater; potassium chloride; potassium chloride containing 10, 25, 40 or 50, mM calcium or magnesium; and potassium-free artificial seawater. The following results suggest that the currents measured under voltage clamp with potassium outside and inside can be separated into two components and that one of them, the predominant one, is carried through the potassium system. (a) Outward currents in isosmotic potassium were strongly and reversibly reduced by tetraethylammonium chloride. (b) Without calcium or magnesium a progressive increase in the nontime-dependent component of the currents (leakage) occurred. (c) The restoration of calcium or magnesium within 15-30 min decreases this leakage. (d) With 50 mM divalent ions the steady-state current-voltage curve was nonlinear with negative resistance as observed in intact axons in isosmotic potassium. (e) The time-dependent components of the membrane currents were not clearly affected by calcium or magnesium. These results show a strong dependence of the leakage currents on external calcium or magnesium concentration but provide no support for the involvement of calcium or magnesium in the kinetics of the potassium system.
Connor, E. A.; Parsons, R. L.
1984-01-01
Barium-induced alterations in fast excitatory postsynaptic currents (e.p.s.cs) have been studied in voltage-clamped bullfrog sympathetic ganglion B cells. In the presence of 2-8 mM barium, e.p.s.c. decay was prolonged and in many cells the e.p.s.c. decay phase deviated from a single exponential function. The decay phase in these cases was more accurately described as the sum of two exponential functions. The frequency of occurrence of a complex decay increased both with increasing barium concentration and with hyperpolarization. Miniature e.p.s.c. decay also was prolonged in barium-treated cells. E.p.s.c. amplitude was not markedly affected by barium (2-8 mM) in cells voltage-clamped to -50 mV whereas at -90 mV there was a progressive increase in peak size with increasing barium concentration. In control cells the e.p.s.c.-voltage relationship was linear between -20 and -100 mV; however, this relationship became progressively non-linear with membrane hyperpolarization in barium-treated cells. The e.p.s.c. reversal potential was shifted to a more negative value in the presence of barium. There was a voltage-dependent increase in charge movement during the e.p.s.c. in barium-treated cells which was not present in control cells. We conclude that the voltage-dependent alteration in e.p.s.c. decay time course, peak amplitude and charge movement in barium-treated cells is due to a direct postsynaptic action of barium on the kinetics of receptor-channel gating in postganglionic sympathetic neurones. PMID:6333261
A new type of single-phase five-level inverter
NASA Astrophysics Data System (ADS)
Xu, Zhi; Li, Shengnan; Qin, Risheng; Zhao, Yanhang
2017-11-01
At present, Neutral Point Clamped (NPC) multilevel inverter is widely applied in new energy field. However, it has some disadvantages including low utilization rate of direct current (DC) voltage source and the unbalance of neutral potential. Therefore, a new single-phase five level inverter is proposed in this paper. It has two stage structure, the former stage is equivalent to three level DC/DC converter, and the back stage uses H bridge to realize inverter. Compared with the original central clamp type inverter, the new five level inverter can improve the utilization of DC voltage, and realize the neutral point potential balance with hysteresis comparator.
Barbiturates Block Sodium and Potassium Conductance Increases in Voltage-Clamped Lobster Axons
Blaustein, M. P.
1968-01-01
Sodium pentobarbital and sodium thiopental decrease both the peak initial (Na) and late steady-state (K) currents and reduce the maximum sodium and potassium conductance increases in voltage-clamped lobster giant axons. These barbiturates also slow the rate at which the sodium conductance turns on, and shift the normalized sodium conductance vs. voltage curves in the direction of depolarization along the voltage axis. Since pentobarbital (pKa = 8.0) blocks the action potential more effectively at pH 8.5 than at pH 6.7, the anionic form of the drug appears to be active. The data suggest that these drugs affect the axon membrane directly, rather than secondarily through effects on intermediary metabolism. It is suggested that penetration of the lipid layer of the membrane by the nonpolar portion of the barbiturate molecules may cause the decrease in membrane conductances, while electrostatic interactions involving the anionic group on the barbiturate, divalent cations, and "fixed charges" in the membrane could account for the slowing of the rate of sodium conductance turn-on and the shift of the normalized conductance curves along the voltage axis. PMID:5648829
Fernandez, Fernando R.; Malerba, Paola; White, John A.
2015-01-01
The presence of voltage fluctuations arising from synaptic activity is a critical component in models of gain control, neuronal output gating, and spike rate coding. The degree to which individual neuronal input-output functions are modulated by voltage fluctuations, however, is not well established across different cortical areas. Additionally, the extent and mechanisms of input-output modulation through fluctuations have been explored largely in simplified models of spike generation, and with limited consideration for the role of non-linear and voltage-dependent membrane properties. To address these issues, we studied fluctuation-based modulation of input-output responses in medial entorhinal cortical (MEC) stellate cells of rats, which express strong sub-threshold non-linear membrane properties. Using in vitro recordings, dynamic clamp and modeling, we show that the modulation of input-output responses by random voltage fluctuations in stellate cells is significantly limited. In stellate cells, a voltage-dependent increase in membrane resistance at sub-threshold voltages mediated by Na+ conductance activation limits the ability of fluctuations to elicit spikes. Similarly, in exponential leaky integrate-and-fire models using a shallow voltage-dependence for the exponential term that matches stellate cell membrane properties, a low degree of fluctuation-based modulation of input-output responses can be attained. These results demonstrate that fluctuation-based modulation of input-output responses is not a universal feature of neurons and can be significantly limited by subthreshold voltage-gated conductances. PMID:25909971
Fernandez, Fernando R; Malerba, Paola; White, John A
2015-04-01
The presence of voltage fluctuations arising from synaptic activity is a critical component in models of gain control, neuronal output gating, and spike rate coding. The degree to which individual neuronal input-output functions are modulated by voltage fluctuations, however, is not well established across different cortical areas. Additionally, the extent and mechanisms of input-output modulation through fluctuations have been explored largely in simplified models of spike generation, and with limited consideration for the role of non-linear and voltage-dependent membrane properties. To address these issues, we studied fluctuation-based modulation of input-output responses in medial entorhinal cortical (MEC) stellate cells of rats, which express strong sub-threshold non-linear membrane properties. Using in vitro recordings, dynamic clamp and modeling, we show that the modulation of input-output responses by random voltage fluctuations in stellate cells is significantly limited. In stellate cells, a voltage-dependent increase in membrane resistance at sub-threshold voltages mediated by Na+ conductance activation limits the ability of fluctuations to elicit spikes. Similarly, in exponential leaky integrate-and-fire models using a shallow voltage-dependence for the exponential term that matches stellate cell membrane properties, a low degree of fluctuation-based modulation of input-output responses can be attained. These results demonstrate that fluctuation-based modulation of input-output responses is not a universal feature of neurons and can be significantly limited by subthreshold voltage-gated conductances.
Methods for stable recording of short-circuit current in a Na+-transporting epithelium.
Gondzik, Veronika; Awayda, Mouhamed S
2011-07-01
Epithelial Na(+) transport as measured by a variety of techniques, including the short-circuit current technique, has been described to exhibit a "rundown" phenomenon. This phenomenon manifests as time-dependent decrease of current and resistance and precludes the ability to carry out prolonged experiments aimed at examining the regulation of this transport. We developed methods for prolonged stable recordings of epithelial Na(+) transport using modifications of the short-circuit current technique and commercial Ussing-type chambers. We utilize the polarized MDCK cell line expressing the epithelial Na(+) channel (ENaC) to describe these methods. Briefly, existing commercial chambers were modified to allow continuous flow of Ringer solution and precise control of such flow. Chamber manifolds and associated plumbing were modified to allow precise temperature clamp preventing temperature oscillations. Recording electrodes were modified to eliminate the use of KCl and prevent membrane depolarization from KCl leakage. Solutions utilized standard bicarbonate-based buffers, but all gasses were prehydrated to clamp buffer osmolarity. We demonstrate that these modifications result in measurements of current and resistance that are stable for at least 2 h. We further demonstrate that drifts in osmolarity similar to those obtained before prior to our modifications can lead to a decrease of current and resistance similar to those attributed to rundown.
A novel high performance ESD power clamp circuit with a small area
NASA Astrophysics Data System (ADS)
Zhaonian, Yang; Hongxia, Liu; Li, Li; Qingqing, Zhuo
2012-09-01
A MOSFET-based electrostatic discharge (ESD) power clamp circuit with only a 10 ns RC time constant for a 0.18-μm process is proposed. A diode-connected NMOSFET is used to maintain a long delay time and save area. The special structure overcomes other shortcomings in this clamp circuit. Under fast power-up events, the gate voltage of the clamp MOSFET does not rise as quickly as under ESD events, the special structure can keep the clamp MOSFET thoroughly off. Under a falsely triggered event, the special structure can turn off the clamp MOSFET in a short time. The clamp circuit can also reject the power supply noise effectively. Simulation results show that the clamp circuit avoids fast false triggering events such as a 30 ns/1.8 V power-up, maintains a 1.2 μs delay time and a 2.14 μs turn-off time, and reduces to about 70% of the RC time constant. It is believed that the proposed clamp circuit can be widely used in high-speed integrated circuits.
NASA Astrophysics Data System (ADS)
Bhojawala, V. M.; Vakharia, D. P.
2017-12-01
This investigation provides an accurate prediction of static pull-in voltage for clamped-clamped micro/nano beams based on distributed model. The Euler-Bernoulli beam theory is used adapting geometric non-linearity of beam, internal (residual) stress, van der Waals force, distributed electrostatic force and fringing field effects for deriving governing differential equation. The Galerkin discretisation method is used to make reduced-order model of the governing differential equation. A regime plot is presented in the current work for determining the number of modes required in reduced-order model to obtain completely converged pull-in voltage for micro/nano beams. A closed-form relation is developed based on the relationship obtained from curve fitting of pull-in instability plots and subsequent non-linear regression for the proposed relation. The output of regression analysis provides Chi-square (χ 2) tolerance value equals to 1 × 10-9, adjusted R-square value equals to 0.999 29 and P-value equals to zero, these statistical parameters indicate the convergence of non-linear fit, accuracy of fitted data and significance of the proposed model respectively. The closed-form equation is validated using available data of experimental and numerical results. The relative maximum error of 4.08% in comparison to several available experimental and numerical data proves the reliability of the proposed closed-form equation.
Voltage Gating of Shaker K+ Channels
Rodríguez, Beatriz M.; Sigg, Daniel; Bezanilla, Francisco
1998-01-01
Ionic (Ii) and gating currents (Ig) from noninactivating Shaker H4 K+ channels were recorded with the cut-open oocyte voltage clamp and macropatch techniques. Steady state and kinetic properties were studied in the temperature range 2–22°C. The time course of Ii elicited by large depolarizations consists of an initial delay followed by an exponential rise with two kinetic components. The main Ii component is highly temperature dependent (Q10 > 4) and mildly voltage dependent, having a valence times the fraction of electric field (z) of 0.2–0.3 eo. The Ig On response obtained between −60 and 20 mV consists of a rising phase followed by a decay with fast and slow kinetic components. The main Ig component of decay is highly temperature dependent (Q10 > 4) and has a z between 1.6 and 2.8 eo in the voltage range from −60 to −10 mV, and ∼0.45 eo at more depolarized potentials. After a pulse to 0 mV, a variable recovery period at −50 mV reactivates the gating charge with a high temperature dependence (Q10 > 4). In contrast, the reactivation occurring between −90 and −50 mV has a Q10 = 1.2. Fluctuation analysis of ionic currents reveals that the open probability decreases 20% between 18 and 8°C and the unitary conductance has a low temperature dependence with a Q10 of 1.44. Plots of conductance and gating charge displacement are displaced to the left along the voltage axis when the temperature is decreased. The temperature data suggests that activation consists of a series of early steps with low enthalpic and negative entropic changes, followed by at least one step with high enthalpic and positive entropic changes, leading to final transition to the open state, which has a negative entropic change. PMID:9689029
Wu, K W; Yang, P; Li, S S; Liu, C W; Sun, F Y
2015-07-09
We recently indicated that the vascular endothelial growth factor (VEGF) protects neurons against hypoxic death via enhancement of tyrosine phosphorylation of Kv1.2, an isoform of the delayed-rectifier potassium channels through activation of the phosphatidylinositol 3-kinase (PI3-K) signaling pathway. The present study investigated whether VEGF could attenuate ischemia-induced increase of the potassium currents in the hippocampal pyramidal neurons of rats after ischemic injury. Adult male Sprague-Dawley rats were subjected to transient middle cerebral artery occlusion (MCAO) to induce brain ischemia. The whole-cell patch-clamp technique was used to record the potassium currents of hippocampal neurons in brain slices from the ischemically injured brains of the rats 24h after MCAO. We detected that transient MCAO caused a significant increase of voltage-gated potassium currents (Kv) and outward delayed-rectifier potassium currents (IK), but not outward transient potassium currents (IA), in the ipsilateral hippocampus compared with the sham. Moreover, we found that VEGF could acutely, reversibly and voltage-dependently inhibit the ischemia-induced IK increase. This inhibitory effect of VEGF could be completely abolished by wortmannin, an inhibitor of PI3-K. Our data indicate that VEGF attenuates the ischemia-induced increase of IK via activation of the PI3-K signaling pathway. Published by Elsevier Ltd.
Dynamics of internal pore opening in KV channels probed by a fluorescent unnatural amino acid
Kalstrup, Tanja; Blunck, Rikard
2013-01-01
Atomic-scale models on the gating mechanism of voltage-gated potassium channels (Kv) are based on linear interpolations between static structures of their initial and final state derived from crystallography and molecular dynamics simulations, and, thus, lack dynamic structural information. The lack of information on dynamics and intermediate states makes it difficult to associate the structural with the dynamic functional data obtained with electrophysiology. Although voltage-clamp fluorometry fills this gap, it is limited to sites extracellularly accessible, when the key region for gating is located at the cytosolic side of the channels. Here, we solved this problem by performing voltage-clamp fluorometry with a fluorescent unnatural amino acid. By using an orthogonal tRNA-synthetase pair, the fluorescent unnatural amino acid was incorporated in the Shaker voltage-gated potassium channel at key regions that were previously inaccessible. Thus, we defined which parts act independently and which parts act cooperatively and found pore opening to occur in two sequential transitions. PMID:23630265
A novel frequency analysis method for assessing K(ir)2.1 and Na (v)1.5 currents.
Rigby, J R; Poelzing, S
2012-04-01
Voltage clamping is an important tool for measuring individual currents from an electrically active cell. However, it is difficult to isolate individual currents without pharmacological or voltage inhibition. Herein, we present a technique that involves inserting a noise function into a standard voltage step protocol, which allows one to characterize the unique frequency response of an ion channel at different step potentials. Specifically, we compute the fast Fourier transform for a family of current traces at different step potentials for the inward rectifying potassium channel, K(ir)2.1, and the channel encoding the cardiac fast sodium current, Na(v)1.5. Each individual frequency magnitude, as a function of voltage step, is correlated to the peak current produced by each channel. The correlation coefficient vs. frequency relationship reveals that these two channels are associated with some unique frequencies with high absolute correlation. The individual IV relationship can then be recreated using only the unique frequencies with magnitudes of high absolute correlation. Thus, this study demonstrates that ion channels may exhibit unique frequency responses.
Lu, Yong; Dang, Shaokang; Wang, Xu; Zhang, Junli; Zhang, Lin; Su, Qian; Zhang, Huiping; Lin, Tianwei; Zhang, Xiaoxiao; Zhang, Yurong; Sun, Hongli; Zhu, Zhongliang; Li, Hui
2018-01-01
Ghrelin is a peptide hormone that plays an important role in promoting appetite, regulating distribution and rate of use of energy, cognition, and mood disorders, but the relevant neural mechanisms of these function are still not clear. In this study, we examined the effect of ghrelin on voltage-dependent potassium (K + ) currents in hippocampal cells of 1-3 days SD rats by whole-cell patch-clamp technique, and discussed whether NO was involved in this process. The results showed that ghrelin significantly inhibited the voltage-dependent K + currents in hippocampal cells, and the inhibitory effect was more significant when l-arginine was co-administered. In contrast, N-nitro- l-arginine methyl ester increased the ghrelin inhibited K + currents and attenuated the inhibitory effect of ghrelin. While d-arginine (D-AA) showed no significant impact on the ghrelin-induced decrease in K + current. These results show that ghrelin may play a physiological role by inhibiting hippocampal voltage dependent K + currents, and the NO pathway may be involved in this process. Copyright © 2017 Elsevier B.V. All rights reserved.
Cacciamani, Giovanni E; Medina, Luis G; Gill, Tania S; Mendelsohn, Alec; Husain, Fatima; Bhardwaj, Lokesh; Artibani, Walter; Sotelo, Renè; Gill, Inderbir S
2018-02-05
During robotic partial nephrectomy (RPN), various techniques of hilar control have been described, including on-clamp, early unclamping, selective/super-selective clamping, and completely-unclamped RPN. To evaluate the impact of various hilar control techniques on perioperative, functional, and oncological outcomes of RPN for tumors. We conducted a systematic literature review and meta-analysis of all comparative studies on various hilar control techniques during RPN using PubMed, Scopus, and Web of Science according to the Preferred Reporting Items for Systematic Review and Meta-analysis statement, and Methods and Guide for Effectiveness and Comparative Effectiveness Review of the Agency for Healthcare Research and Quality. Cumulative meta-analysis of comparative studies was conducted using Review Manager 5.3. Of 987 RPN publications in the literature, 19 qualified for this analysis. Comparison of off-clamp versus on-clamp RPN (n=9), selective clamping versus on-clamp RPN (n=3), super selective clamping versus on-clamp RPN (n=5), and early unclamped versus on-clamp (n=3) were reported. Patients undergoing RPN using off-clamp, selective/super selective, or early unclamp techniques had higher estimated blood loss compared with on-clamp RPN (weight mean difference [WMD]: 47.83, p=0.000, WMD: 41.06, p=0.02, and WMD: 37.50, p=0.47); however, this did not seem clinically relevant, since transfusion rates were similar (odds ratio [OR]: 0.98, p=0.95, OR: 0.72, p=0.7, and OR: 1.36, p=0.33, respectively). All groups appeared similar with regards to hospital stay, transfusions, overall and major complications, and positive cancer margin rates. Short- and long-term renal functional outcomes appeared superior in the off-clamp and super selective clamp groups compared with the on-clamp RPN cohort. Off-clamp, selective/super selective clamp, and early unclamp hilar control techniques are safe and feasible approaches for RPN surgery, with similar perioperative and oncological outcomes compared with on-clamp RPN. Minimizing global renal ischemia may provide superior renal function preservation. However, higher quality data are necessary for definitive conclusions in this regard. The objective of partial nephrectomy is to treat the cancer while maximizing renal function preservation. Clamping the main vessels is done primarily to reduce the blood loss during partial nephrectomy; however, vascular clamping can compromise kidney function. In order to avoid clamping, various techniques have been described. Our analysis showed that techniques that avoid main renal artery clamping during RPN are associated with better renal function preservation, yet deliver non-inferior perioperative and oncological outcomes as compared with robotic partial nephrectomy procedures that clamp the main vessels. Copyright © 2018 European Association of Urology. Published by Elsevier B.V. All rights reserved.
Rateau, Y; Ropert, N
2006-05-01
The GABAergic neurons of the nucleus reticularis thalami (nRT) express the type 2 hyperpolarization-activated cAMP-sensitive (HCN2) subunit mRNA, but surprisingly, they were reported to lack the hyperpolarization-activated (Ih) current carried by this subunit. Using the voltage-clamp recordings in the thalamocortical slice preparation of the newborn and juvenile mice (P6-P23), we demonstrate that, in the presence of 1 mM barium (Ba2+), the nRT neurons express a slow hyperpolarization-activated inward current, suggesting that the Ih is present but masked in control conditions by K+ leak currents. We investigate the identity of the hyperpolarization-activated current in the nRT by studying its physiological and pharmacological profile in presence of Ba2+. We show that it has voltage- and time-dependent properties typical of the Ih, that it is blocked by cesium and ZD7288, two blockers of the Ih, and that it is carried both by the K+ and Na+ ions. We could also alter the gating characteristics of the hyperpolarization-activated current in the nRT by adding a nonhydrolysable analogue of cAMP to the pipette solution. Finally, using the current-clamp recording, we showed that blocking the hyperpolarization-activated current induced an hyperpolarization correlated with an increase of the R(in) of the nRT neurons. In conclusion, our results demonstrate that the nRT neurons express the Ih with slow kinetics similar to those described for the homomeric HCN2 channels, and we show that the Ih of the nRT contributes to the excitability of the nRT neurons in normal conditions.
Vehovszky, Agnes; Szabó, Henriette; Elliott, Christopher J H
2005-12-06
Although octopamine has long been known to have major roles as both transmitter and modulator in arthropods, it has only recently been shown to be functionally important in molluscs, playing a role as a neurotransmitter in the feeding network of the snail Lymnaea stagnalis. The synaptic potentials cannot explain all the effects of octopamine-containing neurons on the feeding network, and here we test the hypothesis that octopamine is also a neuromodulator. The excitability of the B1 and B4 motoneurons in the buccal ganglia to depolarising current clamp pulses is significantly (P < < 0.05) increased by (10 microM) octopamine, whereas the B2 motoneuron becomes significantly less excitable. The ionic currents evoked by voltage steps were recorded using 2-electrode voltage clamp. The outward current of B1, B2 and B4 motoneurons had two components, a transient IA current and a sustained IK delayed-rectifier current, but neither was modulated by octopamine in any of these three buccal neurons. The fast inward current was eliminated in sodium-free saline and so is likely to be carried by sodium ions. 10 microM octopamine enhanced this current by 33 and 45% in the B1 and B4 motoneurons respectively (P < < 0.05), but a small reduction was seen in the B2 neuron. A Hodgkin-Huxley style simulation of the B1 motoneuron confirms that a 33% increase in the fast inward current by octopamine increases the excitability markedly. We conclude that octopamine is also a neuromodulator in snails, changing the excitability of the buccal neurons. This is supported by the close relationship from the voltage clamp data, through the quantitative simulation, to the action potential threshold, changing the properties of neurons in a rhythmic network. The increase in inward sodium current provides an explanation for the polycyclic modulation of the feeding system by the octopamine-containing interneurons, making feeding easier to initiate and making the feeding bursts more intense.
Novel nootropic dipeptide Noopept increases inhibitory synaptic transmission in CA1 pyramidal cells.
Kondratenko, Rodion V; Derevyagin, Vladimir I; Skrebitsky, Vladimir G
2010-05-31
Effects of newly synthesized nootropic and anxiolytic dipeptide Noopept on inhibitory synaptic transmission in hippocampal CA1 pyramidal cells were investigated using patch-clamp technique in whole-cell configuration. Bath application of Noopept (1 microM) significantly increased the frequency of spike-dependant spontaneous IPSCs whereas spike-independent mIPSCs remained unchanged. It was suggested that Noopept mediates its effect due to the activation of inhibitory interneurons terminating on CA1 pyramidal cells. Results of current clamp recording of inhibitory interneurons residing in stratum radiatum confirmed this suggestion. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.
[Peptidergic modulation of the hippocampus synaptic activity].
Skrebitskiĭ, V G; Kondratenko, R V; Povarov, I S; Dereviagin, V I
2011-11-01
Effects of two newly synthesized nootropic and anxiolytic dipeptides: Noopept and Selank on inhibitory synaptic transmission in hippocampal CA1 pyramidal cells were investigated using patch-clamp technique in whole-cell configuration. Bath application of Noopept (1 microM) or Selank (2 microM) significantly increased the frequency of spike-dependent spontaneous m1PSCs, whereas spike-independent mlPSCs remained unchanged. It was suggested that both peptides mediated their effect sue to activation of inhibitory interneurons terminating on CA1 pyramidal cells. Results of current clamp recording of inhibitory interneurons residing in stratum radiatum confirmed this suggestion, at least for Noonent.
Lin, J H; Rydqvist, B
2000-05-26
The effects of CGS 9343B (zaldaride maleate), a calmodulin antagonist, on mechanosensitive channels were examined in crayfish slowly adapting sensory neurons using the two-electrode voltage clamp technique. In addition to its inhibition of voltage-gated Na(+) and K(+) currents, CGS 9343B (<30 microM) blocked reversibly the receptor current in a dose-dependent and voltage-dependent manner with a dissociation constant (K(d)) of 26.8 microM. The time course of the block was 265 s. Within the extension range of 3-30%, the reduction in receptor current was stimulus-independent and the gating mechanisms were not affected. Extracellular Ca(2+) was not necessary for its blocking effects. No changes in passive muscle tension were observed in the presence of 20 microM CGS 9343B. These results suggest that CGS 9343B, as a calmodulin antagonist, can also block mechanosensitive channels, possibly by being incorporated into the lipid membrane and/or interacting with the channel protein.
Colcombet, Jean; Lelièvre, Françoise; Thomine, Sébastien; Barbier-Brygoo, Hélène; Frachisse, Jean-Marie
2005-07-01
Variations in both intracellular and extracellular pH are known to be involved in a wealth of physiological responses. Using the patch-clamp technique on Arabidopsis hypocotyl cells, it is shown that rapid-type and slow-type anion channels at the plasma membrane are both regulated by pH via distinct mechanisms. Modifications of pH modulate the voltage-dependent gating of the rapid channel. While intracellular alkalinization facilitates channel activation by shifting the voltage gate towards negative potentials, extracellular alkalinization shifts the activation threshold to more positive potentials, away from physiological resting membrane potentials. By contrast, pH modulates slow anion channel activity in a voltage-independent manner. Intracellular acidification and extracellular alkalinization increase slow anion channel currents. The possible role of these distinct modulations in physiological processes involving anion efflux and modulation of extracellular and/or intracellular pH, such as elicitor and ABA signalling, are discussed.
Mapping the function of neuronal ion channels in model and experiment
Podlaski, William F; Seeholzer, Alexander; Groschner, Lukas N; Miesenböck, Gero; Ranjan, Rajnish; Vogels, Tim P
2017-01-01
Ion channel models are the building blocks of computational neuron models. Their biological fidelity is therefore crucial for the interpretation of simulations. However, the number of published models, and the lack of standardization, make the comparison of ion channel models with one another and with experimental data difficult. Here, we present a framework for the automated large-scale classification of ion channel models. Using annotated metadata and responses to a set of voltage-clamp protocols, we assigned 2378 models of voltage- and calcium-gated ion channels coded in NEURON to 211 clusters. The IonChannelGenealogy (ICGenealogy) web interface provides an interactive resource for the categorization of new and existing models and experimental recordings. It enables quantitative comparisons of simulated and/or measured ion channel kinetics, and facilitates field-wide standardization of experimentally-constrained modeling. DOI: http://dx.doi.org/10.7554/eLife.22152.001 PMID:28267430
Cell-Detection Technique for Automated Patch Clamping
NASA Technical Reports Server (NTRS)
McDowell, Mark; Gray, Elizabeth
2008-01-01
A unique and customizable machinevision and image-data-processing technique has been developed for use in automated identification of cells that are optimal for patch clamping. [Patch clamping (in which patch electrodes are pressed against cell membranes) is an electrophysiological technique widely applied for the study of ion channels, and of membrane proteins that regulate the flow of ions across the membranes. Patch clamping is used in many biological research fields such as neurobiology, pharmacology, and molecular biology.] While there exist several hardware techniques for automated patch clamping of cells, very few of those techniques incorporate machine vision for locating cells that are ideal subjects for patch clamping. In contrast, the present technique is embodied in a machine-vision algorithm that, in practical application, enables the user to identify good and bad cells for patch clamping in an image captured by a charge-coupled-device (CCD) camera attached to a microscope, within a processing time of one second. Hence, the present technique can save time, thereby increasing efficiency and reducing cost. The present technique involves the utilization of cell-feature metrics to accurately make decisions on the degree to which individual cells are "good" or "bad" candidates for patch clamping. These metrics include position coordinates (x,y) in the image plane, major-axis length, minor-axis length, area, elongation, roundness, smoothness, angle of orientation, and degree of inclusion in the field of view. The present technique does not require any special hardware beyond commercially available, off-the-shelf patch-clamping hardware: A standard patchclamping microscope system with an attached CCD camera, a personal computer with an imagedata- processing board, and some experience in utilizing imagedata- processing software are all that are needed. A cell image is first captured by the microscope CCD camera and image-data-processing board, then the image data are analyzed by software that implements the present machine-vision technique. This analysis results in the identification of cells that are "good" candidates for patch clamping (see figure). Once a "good" cell is identified, a patch clamp can be effected by an automated patchclamping apparatus or by a human operator. This technique has been shown to enable reliable identification of "good" and "bad" candidate cells for patch clamping. The ultimate goal in further development of this technique is to combine artificial-intelligence processing with instrumentation and controls in order to produce a complete "turnkey" automated patch-clamping system capable of accurately and reliably patch clamping cells with a minimum intervention by a human operator. Moreover, this technique can be adapted to virtually any cellular-analysis procedure that includes repetitive operation of microscope hardware by a human.
Sustained and transient calcium currents in horizontal cells of the white bass retina.
Sullivan, J M; Lasater, E M
1992-01-01
Calcium currents were recorded from cultured horizontal cells (HCs) isolated from adult white bass retinas, using the whole-cell patch-clamp technique. Ca2+ currents were enhanced using 10 mM extracellular Ca2+, while Na+ and K+ currents were pharmacologically suppressed. Two components of the Ca2+ current, one transient, the other sustained, were found. The large transient component of the Ca2+ current, which has not been seen before in HCs, is similar, but not identical, to the T-type Ca2+ current described previously in a variety of preparations. The sustained component of the Ca2+ current is similar, but not identical, to the L-type current described in other preparations. FTX, a factor isolated from the venom of the funnel-web spider, Agelenopsis aperta, preferentially and irreversibly blocks the sustained component of the Ca2+ current at very dilute concentrations. The sustained component of the Ca2+ current inactivates slowly, over the course of 15-60 s, in some HCs. This inactivation of the sustained Ca2+ current, when present, is primarily voltage dependent rather than Ca2+ dependent.
Sustained and transient calcium currents in horizontal cells of the white bass retina
1992-01-01
Calcium currents were recorded from cultured horizontal cells (HCs) isolated from adult white bass retinas, using the whole-cell patch- clamp technique. Ca2+ currents were enhanced using 10 mM extracellular Ca2+, while Na+ and K+ currents were pharmacologically suppressed. Two components of the Ca2+ current, one transient, the other sustained, were found. The large transient component of the Ca2+ current, which has not been seen before in HCs, is similar, but not identical, to the T-type Ca2+ current described previously in a variety of preparations. The sustained component of the Ca2+ current is similar, but not identical, to the L-type current described in other preparations. FTX, a factor isolated from the venom of the funnel-web spider, Agelenopsis aperta, preferentially and irreversibly blocks the sustained component of the Ca2+ current at very dilute concentrations. The sustained component of the Ca2+ current inactivates slowly, over the course of 15- 60 s, in some HCs. This inactivation of the sustained Ca2+ current, when present, is primarily voltage dependent rather than Ca2+ dependent. PMID:1371309
Ting, Jonathan T; Lee, Brian R; Chong, Peter; Soler-Llavina, Gilberto; Cobbs, Charles; Koch, Christof; Zeng, Hongkui; Lein, Ed
2018-02-26
This protocol is a practical guide to the N-methyl-D-glucamine (NMDG) protective recovery method of brain slice preparation. Numerous recent studies have validated the utility of this method for enhancing neuronal preservation and overall brain slice viability. The implementation of this technique by early adopters has facilitated detailed investigations into brain function using diverse experimental applications and spanning a wide range of animal ages, brain regions, and cell types. Steps are outlined for carrying out the protective recovery brain slice technique using an optimized NMDG artificial cerebrospinal fluid (aCSF) media formulation and enhanced procedure to reliably obtain healthy brain slices for patch clamp electrophysiology. With this updated approach, a substantial improvement is observed in the speed and reliability of gigaohm seal formation during targeted patch clamp recording experiments while maintaining excellent neuronal preservation, thereby facilitating challenging experimental applications. Representative results are provided from multi-neuron patch clamp recording experiments to assay synaptic connectivity in neocortical brain slices prepared from young adult transgenic mice and mature adult human neurosurgical specimens. Furthermore, the optimized NMDG protective recovery method of brain slicing is compatible with both juvenile and adult animals, thus resolving a limitation of the original methodology. In summary, a single media formulation and brain slicing procedure can be implemented across various species and ages to achieve excellent viability and tissue preservation.
Preparation of Acute Brain Slices Using an Optimized N-Methyl-D-glucamine Protective Recovery Method
Chong, Peter; Soler-Llavina, Gilberto; Cobbs, Charles; Koch, Christof; Zeng, Hongkui; Lein, Ed
2018-01-01
This protocol is a practical guide to the N-methyl-D-glucamine (NMDG) protective recovery method of brain slice preparation. Numerous recent studies have validated the utility of this method for enhancing neuronal preservation and overall brain slice viability. The implementation of this technique by early adopters has facilitated detailed investigations into brain function using diverse experimental applications and spanning a wide range of animal ages, brain regions, and cell types. Steps are outlined for carrying out the protective recovery brain slice technique using an optimized NMDG artificial cerebrospinal fluid (aCSF) media formulation and enhanced procedure to reliably obtain healthy brain slices for patch clamp electrophysiology. With this updated approach, a substantial improvement is observed in the speed and reliability of gigaohm seal formation during targeted patch clamp recording experiments while maintaining excellent neuronal preservation, thereby facilitating challenging experimental applications. Representative results are provided from multi-neuron patch clamp recording experiments to assay synaptic connectivity in neocortical brain slices prepared from young adult transgenic mice and mature adult human neurosurgical specimens. Furthermore, the optimized NMDG protective recovery method of brain slicing is compatible with both juvenile and adult animals, thus resolving a limitation of the original methodology. In summary, a single media formulation and brain slicing procedure can be implemented across various species and ages to achieve excellent viability and tissue preservation. PMID:29553547
Control method for peak power delivery with limited DC-bus voltage
Edwards, John; Xu, Longya; Bhargava, Brij B.
2006-09-05
A method for driving a neutral point-clamped multi-level voltage source inverter supplying a synchronous motor is provided. A DC current is received at a neutral point-clamped multi-level voltage source inverter. The inverter has first, second, and third output nodes. The inverter also has a plurality of switches. A desired speed of a synchronous motor connected to the inverter by the first second and third nodes is received by the inverter. The synchronous motor has a rotor and the speed of the motor is defined by the rotational rate of the rotor. A position of the rotor is sensed, current flowing to the motor out of at least two of the first, second, and third output nodes is sensed, and predetermined switches are automatically activated by the inverter responsive to the sensed rotor position, the sensed current, and the desired speed.
Wells, Gregory D.; Tang, Qiong-Yao; Heler, Robert; Tompkins-MacDonald, Gabrielle J.; Pritchard, Erica N.; Leys, Sally P.; Logothetis, Diomedes E.; Boland, Linda M.
2012-01-01
SUMMARY A cDNA encoding a potassium channel of the two-pore domain family (K2P, KCNK) of leak channels was cloned from the marine sponge Amphimedon queenslandica. Phylogenetic analysis indicated that AquK2P cannot be placed into any of the established functional groups of mammalian K2P channels. We used the Xenopus oocyte expression system, a two-electrode voltage clamp and inside-out patch clamp electrophysiology to determine the physiological properties of AquK2P. In whole cells, non-inactivating, voltage-independent, outwardly rectifying K+ currents were generated by external application of micromolar concentrations of arachidonic acid (AA; EC50 ∼30 μmol l–1), when applied in an alkaline solution (≥pH 8.0). Prior activation of channels facilitated the pH-regulated, AA-dependent activation of AquK2P but external pH changes alone did not activate the channels. Unlike certain mammalian fatty-acid-activated K2P channels, the sponge K2P channel was not activated by temperature and was insensitive to osmotically induced membrane distortion. In inside-out patch recordings, alkalinization of the internal pH (pKa 8.18) activated the AquK2P channels independently of AA and also facilitated activation by internally applied AA. The gating of the sponge K2P channel suggests that voltage-independent outward rectification and sensitivity to pH and AA are ancient and fundamental properties of animal K2P channels. In addition, the membrane potential of some poriferan cells may be dynamically regulated by pH and AA. PMID:22723483
Wells, Gregory D; Tang, Qiong-Yao; Heler, Robert; Tompkins-MacDonald, Gabrielle J; Pritchard, Erica N; Leys, Sally P; Logothetis, Diomedes E; Boland, Linda M
2012-07-15
A cDNA encoding a potassium channel of the two-pore domain family (K(2P), KCNK) of leak channels was cloned from the marine sponge Amphimedon queenslandica. Phylogenetic analysis indicated that AquK(2P) cannot be placed into any of the established functional groups of mammalian K(2P) channels. We used the Xenopus oocyte expression system, a two-electrode voltage clamp and inside-out patch clamp electrophysiology to determine the physiological properties of AquK(2P). In whole cells, non-inactivating, voltage-independent, outwardly rectifying K(+) currents were generated by external application of micromolar concentrations of arachidonic acid (AA; EC(50) ∼30 μmol l(-1)), when applied in an alkaline solution (≥pH 8.0). Prior activation of channels facilitated the pH-regulated, AA-dependent activation of AquK(2P) but external pH changes alone did not activate the channels. Unlike certain mammalian fatty-acid-activated K(2P) channels, the sponge K(2P) channel was not activated by temperature and was insensitive to osmotically induced membrane distortion. In inside-out patch recordings, alkalinization of the internal pH (pK(a) 8.18) activated the AquK(2P) channels independently of AA and also facilitated activation by internally applied AA. The gating of the sponge K(2P) channel suggests that voltage-independent outward rectification and sensitivity to pH and AA are ancient and fundamental properties of animal K(2P) channels. In addition, the membrane potential of some poriferan cells may be dynamically regulated by pH and AA.
Meredith, Frances L; Benke, Tim A; Rennie, Katherine J
2012-12-01
Calyx afferent terminals engulf the basolateral region of type I vestibular hair cells, and synaptic transmission across the vestibular type I hair cell/calyx is not well understood. Calyces express several ionic conductances, which may shape postsynaptic potentials. These include previously described tetrodotoxin-sensitive inward Na(+) currents, voltage-dependent outward K(+) currents and a K(Ca) current. Here, we characterize an inwardly rectifying conductance in gerbil semicircular canal calyx terminals (postnatal days 3-45), sensitive to voltage and to cyclic nucleotides. Using whole-cell patch clamp, we recorded from isolated calyx terminals still attached to their type I hair cells. A slowly activating, noninactivating current (I(h)) was seen with hyperpolarizing voltage steps negative to the resting potential. External Cs(+) (1-5 mM) and ZD7288 (100 μM) blocked the inward current by 97 and 83 %, respectively, confirming that I(h) was carried by hyperpolarization-activated, cyclic nucleotide gated channels. Mean half-activation voltage of I(h) was -123 mV, which shifted to -114 mV in the presence of cAMP. Activation of I(h) was well described with a third order exponential fit to the current (mean time constant of activation, τ, was 190 ms at -139 mV). Activation speeded up significantly (τ=136 and 127 ms, respectively) when intracellular cAMP and cGMP were present, suggesting that in vivo I(h) could be subject to efferent modulation via cyclic nucleotide-dependent mechanisms. In current clamp, hyperpolarizing current steps produced a time-dependent depolarizing sag followed by either a rebound afterdepolarization or an action potential. Spontaneous excitatory postsynaptic potentials (EPSPs) became larger and wider when I(h) was blocked with ZD7288. In a three-dimensional mathematical model of the calyx terminal based on Hodgkin-Huxley type ionic conductances, removal of I(h) similarly increased the EPSP, whereas cAMP slightly decreased simulated EPSP size and width.
Rivastigmine blocks voltage-activated K+ currents in dissociated rat hippocampal neurons
Pan, Yaping; Xu, Xianghua; Wang, Xiaoliang
2003-01-01
Rivastigmine is an acetylcholinesterase inhibitor used in Alzheimer's disease therapy. In the present study, we investigated the effects of rivastigmine on the transient outward K+ current (IK(A)) and the delayed rectifier K+ current (IK(DR)) in acutely dissociated rat hippocampal pyramidal neurons using the whole-cell patch-clamp technique. Rivastigmine inhibited the amplitudes of IK(A) and IK(DR) in a reversible and concentration-dependent manner. At a concentration of 100 μM, rivastigmine inhibited IK(A) and IK(DR), recorded when the cells were depolarized from −50 to +40 mV, by 65.9 (P<0.01) and 67.3% (P<0.01), respectively. The IC50 values for IK(A) and IK(DR) were 3.8 and 1.7 μM, respectively. The decay time constant of IK(A), recorded following a test pulse to +40 mV, was prolonged reversibly by rivastigmine at concentrations of 10 and 100 μM (both P<0.05). Rivastigmine affected the voltage dependence of IK(A) and IK(DR). At a concentration of 10 μM, it shifted the steady-state inactivation curve of IK(A) towards more negative potentials by −11 mV (P<0.05), but had no effect on the steady-state activation curve or the recovery from inactivation. Regarding the kinetic properties of IK(DR), 10 μM rivastigmine shifted the steady-state activation and inactivation curves towards more negative potentials by −10 (P<0.05) and −27 mV (P<0.01), respectively. Our findings that rivastigmine inhibits IK(A) and IK(DR) in rat hippocampal pyramidal neurons suggest that this agent has other pharmacological actions besides its antiacetylcholinesterase activity. PMID:14504131
Direct electro-optic effect in langasites and α-quartz
NASA Astrophysics Data System (ADS)
Ivanov, Vadim
2018-05-01
Strain-constant (clamped) electro-optic coefficients r11S of langasite La3Ga5SiO14 (LGS), langatate La3Ga5.5Ta0.5O14 (LGT), catangasite Ca3TaGa3Si2O14 (CTGS) and α-quartz are measured at 1540 nm in the frequency range of 3-25 MHz. Experimental ratio of clamped and unclamped electro-optic coefficients r11S/r11T is 0.97 for LGS, 0.91 for LGT, 0.31 for CTGS, and 0.49 for quartz. Most of direct electro-optic effect in LGS and LGT is associated with lanthanum ions: clamped electro-optic coefficient r11S in lanthanum-free CTGS is 14 times less than in LGS. Low piezoelectric contribution to unclamped electro-optic coefficient r11T makes LGS and LGT promising materials for electro-optic devices, whose performance can be deteriorated by piezoelectric effect, especially, for high-voltage optical voltage sensors.
Pozdnyakov, Ilya; Matantseva, Olga; Negulyaev, Yuri; Skarlato, Sergei
2014-09-05
Ion channels are tightly involved in various aspects of cell physiology, including cell signaling, proliferation, motility, endo- and exo-cytosis. They may be involved in toxin production and release by marine dinoflagellates, as well as harmful algal bloom proliferation. So far, the patch-clamp technique, which is the most powerful method to study the activity of ion channels, has not been applied to dinoflagellate cells, due to their complex cellulose-containing cell coverings. In this paper, we describe a new approach to overcome this problem, based on the preparation of spheroplasts from armored bloom-forming dinoflagellate Prorocentrum minimum. We treated the cells of P. minimum with a cellulose synthesis inhibitor, 2,6-dichlorobenzonitrile (DCB), and found out that it could also induce ecdysis and arrest cell shape maintenance in these microalgae. Treatment with 100-250 µM DCB led to an acceptable 10% yield of P. minimum spheroplasts and was independent of the incubation time in the range of 1-5 days. We show that such spheroplasts are suitable for patch-clamping in the cell-attached mode and can form 1-10 GOhm patch contact with a glass micropipette, allowing recording of ion channel activity. The first single-channel recordings of dinoflagellate ion channels are presented.
Pozdnyakov, Ilya; Matantseva, Olga; Negulyaev, Yuri; Skarlato, Sergei
2014-01-01
Ion channels are tightly involved in various aspects of cell physiology, including cell signaling, proliferation, motility, endo- and exo-cytosis. They may be involved in toxin production and release by marine dinoflagellates, as well as harmful algal bloom proliferation. So far, the patch-clamp technique, which is the most powerful method to study the activity of ion channels, has not been applied to dinoflagellate cells, due to their complex cellulose-containing cell coverings. In this paper, we describe a new approach to overcome this problem, based on the preparation of spheroplasts from armored bloom-forming dinoflagellate Prorocentrum minimum. We treated the cells of P. minimum with a cellulose synthesis inhibitor, 2,6-dichlorobenzonitrile (DCB), and found out that it could also induce ecdysis and arrest cell shape maintenance in these microalgae. Treatment with 100–250 µM DCB led to an acceptable 10% yield of P. minimum spheroplasts and was independent of the incubation time in the range of 1–5 days. We show that such spheroplasts are suitable for patch-clamping in the cell-attached mode and can form 1–10 GOhm patch contact with a glass micropipette, allowing recording of ion channel activity. The first single-channel recordings of dinoflagellate ion channels are presented. PMID:25199048
Micromolded PDMS planar electrode allows patch clamp electrical recordings from cells.
Klemic, Kathryn G; Klemic, James F; Reed, Mark A; Sigworth, Fred J
2002-06-01
The patch clamp method measures membrane currents at very high resolution when a high-resistance 'gigaseal' is established between the glass microelectrode and the cell membrane (Pflugers Arch. 391 (1981) 85; Neuron 8 (1992) 605). Here we describe the first use of the silicone elastomer, poly(dimethylsiloxane) (PDMS), for patch clamp electrodes. PDMS is an attractive material for patch clamp recordings. It has low dielectric loss and can be micromolded (Annu. Rev. Mat. Sci. 28 (1998) 153) into a shape that mimics the tip of the glass micropipette. Also, the surface chemistry of PDMS may be altered to mimic the hydrophilic nature of glass (J. Appl. Polym. Sci. 14 (1970) 2499; Annu. Rev. Mat. Sci. 28 (1998) 153), thereby allowing a high-resistance seal to a cell membrane. We present a planar electrode geometry consisting of a PDMS partition with a small aperture sealed between electrode and bath chambers. We demonstrate that a planar PDMS patch electrode, after oxidation of the elastomeric surface, permits patch clamp recording on Xenopus oocytes. Our results indicate the potential for high-throughput patch clamp recording with a planar array of PDMS electrodes.
Lepora, Nathan F; Blomeley, Craig P; Hoyland, Darren; Bracci, Enrico; Overton, Paul G; Gurney, Kevin
2011-11-01
The study of active and passive neuronal dynamics usually relies on a sophisticated array of electrophysiological, staining and pharmacological techniques. We describe here a simple complementary method that recovers many findings of these more complex methods but relies only on a basic patch-clamp recording approach. Somatic short and long current pulses were applied in vitro to striatal medium spiny (MS) and fast spiking (FS) neurons from juvenile rats. The passive dynamics were quantified by fitting two-compartment models to the short current pulse data. Lumped conductances for the active dynamics were then found by compensating this fitted passive dynamics within the current-voltage relationship from the long current pulse data. These estimated passive and active properties were consistent with previous more complex estimations of the neuron properties, supporting the approach. Relationships within the MS and FS neuron types were also evident, including a graduation of MS neuron properties consistent with recent findings about D1 and D2 dopamine receptor expression. Application of the method to simulated neuron data supported the hypothesis that it gives reasonable estimates of membrane properties and gross morphology. Therefore detailed information about the biophysics can be gained from this simple approach, which is useful for both classification of neuron type and biophysical modelling. Furthermore, because these methods rely upon no manipulations to the cell other than patch clamping, they are ideally suited to in vivo electrophysiology. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Testing of Diode-Clamping in an Inductive Pulsed Plasma Thruster Circuit
NASA Technical Reports Server (NTRS)
Toftul, Alexandra; Polzin, Kurt A.; Martin, Adam K.; Hudgins, Jerry L.
2014-01-01
Testing of a 5.5 kV silicon (Si) diode and 5.8 kV prototype silicon carbide (SiC) diode in an inductive pulsed plasma thruster (IPPT) circuit was performed to obtain a comparison of the resulting circuit recapture efficiency,eta(sub r), defined as the percentage of the initial charge energy remaining on the capacitor bank after the diode interrupts the current. The diode was placed in a pulsed circuit in series with a silicon controlled rectifier (SCR) switch, and the voltages across different components and current waveforms were collected over a range of capacitor charge voltages. Reverse recovery parameters, including turn-off time and peak reverse recovery current, were measured and capacitor voltage waveforms were used to determine the recapture efficiency for each case. The Si fast recovery diode in the circuit was shown to yield a recapture efficiency of up to 20% for the conditions tested, while the SiC diode further increased recapture efficiency to nearly 30%. The data presented show that fast recovery diodes operate on a timescale that permits them to clamp the discharge quickly after the first half cycle, supporting the idea that diode-clamping in IPPT circuit reduces energy dissipation that occurs after the first half cycle
NASA Astrophysics Data System (ADS)
Wang, Xinjun; Chen, Yunpeng; Chen, Huaihao; Gao, Yuan; He, Yifan; Li, Menghui; Lin, Hwaider; Sun, Neville; Sun, Nian
2018-05-01
Recently, large magnetoelectric coupling of a spinel/piezoelectric heterostructure has been reported. However, the linewidth of the spinel is very large due to lattice mismatch when ferrite is directly deposited on piezoelectric substrates. This indicates a large magnetic loss, which impedes the spinel/piezoelectric heterostructure from useful device applications. Mica is a well-known 2D material, which can be split manually layer by layer without the substrate clamping effect. In this report, NiZn ferrite was deposited on a mica substrate by a spin-spray deposition technique. Spin-spray deposition is a wet chemical synthesis technique involving several chemical reactions for generating high-quality crystalline spinel ferrite films with various compositions directly from an aqueous solution. The thickness of ferrite is 2 μm, and the linewidth of the ferromagnetic resonance (FMR) is 115 Oe which is suitable for RF/microwave devices. The large FMR field tuning of 605 Oe was observed in NiZn ferrite/mica/PMN-PT heterostructures with minimal substrate clamping effect by reducing the thickness of the mica substrate. These multiferroic heterostructures exhibiting combined giant magnetoelectric coupling and narrow ferromagnetic resonance linewidth offer great opportunities for flexible RF magnetic devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asano, M.
1979-08-28
The invention discloses an emission control apparatus for internal combustion engine includes an exhaust composition sensor to sense the mixture ratio, a circuit for clamping the mixture ratio to a predetermined constant value to prevent the mixture from becoming too rich or too lean when a failure should occur in the control loop, for example, in the exhaust composition sensor failure and a circuit for interrupting the clamping circuit when the engine operating condition is such that the sensor is caused to produce low voltage signals although the sensor is functioning properly.
Glahn, David; Nuccitelli, Richard
2003-04-01
Voltage-clamped mature, jelly-intact Xenopus eggs were used to carefully examine the ionic currents crossing the plasma membrane before, during, and after fertilization. The bulk of the fertilization current was transient, of large amplitude, and reversed at the predicted Cl- reversal potential. However, the large amplitude fertilization current was preceded by a small, step-like increase in holding current. This small increase in holding current is referred to in this paper as Ion to acknowledge its qualitative similarity to the Ion current previously described in the sea urchin. It was observed in both fertilized and artificially activated eggs, and was found to be unaffected by 10 mm tetra-ethyl ammonium (TEA), a concentration found to block K+ currents in Rana pipiens. Current-voltage relationships are presented for the large fertilization potential, and show that the fertilization currents have a marked outward rectification and are voltage sensitive. These properties are in contrast to the total lack of rectification and slight voltage sensitivity seen before or after the fertilization currents. The time required for sperm to fertilize the egg was found to be voltage dependent with a relatively more depolarized voltage requiring a longer time for fertilization to occur. The percentage of eggs blocked with varying potential levels was determined and this information was fitted to a modified Boltzmann equation having a midpoint of -9 mV.
Leng, San-Hua; Lu, Fu-Er
2005-01-01
AIM: To induce the pancreatic duct cells into endocrine cells with a new natural protocol for electrophysiological study. METHODS: The pancreatic duct cells of neonatal rats were isolated, cultured and induced into endocrine cells with 15% fetal bovine serum for a period of 20 d. During this period, insulin secretion, MTT value, and morphological change of neonatal and adult pancreatic islet cells were comparatively investigated. Pancreatic β-cells were identified by morphological and electrophysiological characteristics, while ATP sensitive potassium channels (KATP), voltage-dependent potassium channels (KV), and voltage-dependent calcium channels (KCA) in β-cells were identified by patch clamp technique. RESULTS: After incubation with fetal bovine serum, the neonatal duct cells budded out, changed from duct-like cells into islet clusters. In the first 4 d, MTT value and insulin secretion increased slowly (MTT value from 0.024±0.003 to 0.028±0.003, insulin secretion from 2.6±0.6 to 3.1±0.8 mIU/L). Then MTT value and insulin secretion increased quickly from d 5 to d 10 (MTT value from 0.028±0.003 to 0.052±0.008, insulin secretion from 3.1±0.8 to 18.3±2.6 mIU/L), then reached high plateau (MTT value >0.052±0.008, insulin secretion >18.3±2.6 mIU/L). In contrast, for the isolated adult pancreatic islet cells, both insulin release and MTT value were stable in the first 4 d (MTT value from 0.029±0.01 to 0.031±0.011, insulin secretion from 13.9±3.1 to 14.3±3.3 mIU/L), but afterwards they reduced gradually (MTT value <0.031±0.011, insulin secretion <8.2±1.5 mIU/L), and the pancreatic islet cells became dispersed, broken or atrophied correspondingly. The differentiated neonatal cells were identified as pancreatic islet cells by dithizone staining method, and pancreatic β-cells were further identified by both morphological features and electrophysiological characteristics, i.e. the existence of recording currents from KATP, KV, and KCA. CONCLUSION: Islet cells differentiated from neonatal pancreatic duct cells with the new natural protocol are more advantageous in performing patch clamp study over the isolated adult pancreatic islet cells. PMID:16437601
Song, Yuanlong; Zhang, Miaomiao; Tao, Xiaoqing; Xu, Zifen; Zheng, Yunjie; Zhu, Minjie; Zhang, Liangpin; Qiao, Jinhan; Gao, Linlin
2018-01-19
The dissociated dorsal root ganglion (DRG) neurons with or without culture were widely used for investigation of their electrophysiological properties. The culture procedures, however, may alter the properties of these neurons and the effects are not clear. In the present study, we recorded the action potentials (AP) and the voltage-gated Na + , K + , and Ca 2+ currents with patch clamp technique and measured the mRNA of Nav1.6-1.9 and Cav2.1-2.2 with real-time PCR technique from acutely dissociated and 1-day (1-d) cultured DRG neurons. The effects of the nerve growth factor (NGF) on the expression of Nav1.6-1.9 and Cav2.1-2.2 were evaluated. The neurons were classified as small (DRG-S), medium (DRG-M), and large (DRG-L), according to their size frequency distribution pattern. We found 1-d culture increased the AP size but reduced the excitability, and reduced the voltage-gated Na + and Ca 2+ currents and their corresponding mRNA expression in all types of neurons. The lack of NGF in the culture medium may contribute to the reduced Na + and Ca 2+ current, as the application of NGF recovered some of the reduced transcripts (Nav1.9, Cav2.1, and Cav2.2). 1-d culture showed neuron-type specific effects on some of the AP properties: it increased the maximum AP depolarizing rate (MDR) and hyperpolarized the resting membrane potential (RP) in DRG-M and DRG-L neurons, but slowed the maximum AP repolarizing rate (MRR) in DRG-S neurons. In conclusion, the 1-d cultured neurons had different properties with those of the acutely dissociated neurons, and lack of NGF may contribute to some of these differences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marzoughi, Alinaghi; Burgos, Rolando; Boroyevich, Dushan
This paper presents the design procedure and comparison of converters currently used in medium-voltage high-power motor drive applications. For this purpose, the cascaded H-bridge (CHB), modular multilevel converter (MMC), and five-level active neutral point clamped (5-L ANPC) topologies are targeted. The design is performed using 1.7-kV insulated gate bipolar transistors (IGBTs) for CHB and MMC converters, and utilizing 3.3- and 4.5-kV IGBTs for 5-L ANPC topology as normally done in industry. The comparison is done between the designed converter topologies at three different voltage levels (4.16, 6.9, and 13.8 kV, with only the first two voltage levels in case ofmore » the 5-L ANPC) and two different power levels (3 and 5 MVA), in order to elucidate the dependence of different parameters on voltage and power rating. Finally, the comparison is done from several points of view such as efficiency, capacitive energy storage, semiconductor utilization, parts count (for measure of reliability), and power density.« less
High voltage bus and auxiliary heater control system for an electric or hybrid vehicle
Murty, Balarama Vempaty
2000-01-01
A control system for an electric or hybrid electric vehicle includes a vehicle system controller and a control circuit having an electric immersion heater. The heater is electrically connected to the vehicle's high voltage bus and is thermally coupled to a coolant loop containing a heater core for the vehicle's climate control system. The system controller responds to cabin heat requests from the climate control system by generating a pulse width modulated signal that is used by the control circuit to operate the heater at a duty cycle appropriate for the amount of cabin heating requested. The control system also uses the heater to dissipate excess energy produced by an auxiliary power unit and to provide electric braking when regenerative braking is not desirable and manual braking is not necessary. The control system further utilizes the heater to provide a safe discharge of a bank of energy storage capacitors following disconnection of the battery or one of the high voltage connectors used to transmit high voltage operating power to the various vehicle systems. The control circuit includes a high voltage clamping circuit that monitors the voltage on the bus and operates the heater to clamp down the bus voltage when it exceeds a pre-selected maximum voltage. The control system can also be used to phase in operation of the heater when the bus voltage exceeds a lower threshold voltage and can be used to phase out the auxiliary power unit charging and regenerative braking when the battery becomes fully charged.
Niemeyer, María Isabel; Hougaard, Charlotte; Hoffmann, Else K; Jørgensen, Finn; Stutzin, Andrés; Sepúlveda, Francisco V
2000-01-01
The K+ and Cl− currents activated by hypotonic cell swelling were studied in Ehrlich ascites tumour cells using the whole-cell recording mode of the patch-clamp technique. Currents were measured in the absence of added intracellular Ca2+ and with strong buffering of Ca2+. K+ current activated by cell swelling was measured as outward current at the Cl− equilibrium potential (ECl) under quasi-physiological gradients. It could be abolished by replacing extracellular Na+ with K+, thereby cancelling the driving force. Replacement with other cations suggested a selectivity sequence of K+ > Rb+ > NH4≈ Na+≈ Li+; Cs+ appeared to be inhibitory. The current-voltage relationship of the volume-sensitive K+ current was well fitted with the Goldman-Hodgkin-Katz current equation between -130 and +20 mV with a permeability coefficient of around 10−6 cm s−1 with both physiological and high-K+ extracellular solutions. The class III antiarrhythmic drug clofilium blocked the volume-sensitive K+ current in a voltage-independent manner with an IC50 of 32 μM. Clofilium was also found to be a strong inhibitor of the regulatory volume decrease response of Ehrlich cells. Cell swelling-activated K+ currents of Ehrlich cells are voltage and calcium insensitive and are resistant to a range of K+ channel inhibitors. These characteristics are similar to those of the so-called background K+ channels. Noise analysis of whole-cell current was consistent with a unitary conductance of 5.5 pS for the single channels underlying the K+ current evoked by cell swelling, measured at 0 mV under a quasi-physiological K+ gradient. PMID:10790156
Cummings, T A; Daniels, C; Kinnamon, S C
1996-03-01
1. The gigaseal voltage-clamp technique was used to record responses of hamster taste receptor cells to synthetic sweeteners and cyclic nucleotides. Voltage-dependent currents and steady-state currents were monitored during bath exchanges of saccharin, two high-potency sweeteners, 8-chlorophenylthio-adenosine 3',5'-cyclic monophosphate (8cpt-cAMP), and dibutyryl-guanosine 3',5'-cyclic monophosphate (db-cGMP). 2. Of the 237 fungiform taste cells studied, only one in eight was sweet responsive. Outward currents, both voltage-dependent and resting, were reduced by all of the sweeteners tested in sweet-responsive taste cells, whereas these currents were unaffected by sweeteners in sweet-unresponsive taste cells. 3. In every sweet-responsive cell tested, 8cpt-cAMP and db-cGMP mimicked the response to the sweeteners, but neither nucleotide elicited responses in sweet-unresponsive cells. Thus there was a one-to-one correlation between sweet responsivity and cyclic nucleotide responsivity. 4. Sweet responses showed cross adaptation with cyclic nucleotide responses. This indicates that the same ion channel is modulated by sweeteners and cyclic nucleotides. 5. The sweetener- and cyclic nucleotide-blocked current had an apparent reversal potential of -50 mV, which was close to the potassium reversal potential in these experiments. In addition, there was no effect of sweeteners and cyclic nucleotides in the presence of the K+ channel blocker tetraethylammonium bromide (TEA). These data suggest that block of a resting, TEA-sensitive K+ current is the final common step leading to taste cell depolarization during sweet transduction. 6. These data, together with data from a previous study (Cummings et al. 1993), suggest that both synthetic sweeteners and sucrose utilize second-messenger pathways that block a resting K+ conductance to depolarize the taste cell membrane.
Selective Arterial Clamping Versus Hilar Clamping for Minimally Invasive Partial Nephrectomy.
Yezdani, Mona; Yu, Sue-Jean; Lee, David I
2016-05-01
Partial nephrectomy has become an accepted treatment of cT1 renal masses as it provides improved long-term renal function compared to radical nephrectomy (Campbell et al. J Urol. 182:1271-9, 2009). Hilar clamping is utilized to help reduce bleeding and improve visibility during tumor resection. However, concern over risk of kidney injury with hilar clamping has led to new techniques to reduce length of warm ischemia time (WIT) during partial nephrectomy. These techniques have progressed over the years starting with early hilar unclamping, controlled hypotension during tumor resection, selective arterial clamping, minimal margin techniques, and off-clamp procedures. Selective arterial clamping has progressed significantly over the years. The main question is what are the exact short- and long-term renal effects from increasing clamp time. Moreover, does it make sense to perform these more time-consuming or more complex procedures if there is no long-term preservation of kidney function? More recent studies have shown no difference in renal function 6 months from surgery when selective arterial clamping or even hilar clamping is employed, although there is short-term improved decline in estimated glomerular filtration rate (eGFR) with selective clamping and off-clamp techniques (Komninos et al. BJU Int. 115:921-8, 2015; Shah et al. 117:293-9, 2015; Kallingal et al. BJU Int. doi: 10.1111/bju.13192, 2015). This paper reviews the progression of total hilar clamping to selective arterial clamping (SAC) and the possible difference its use makes on long-term renal function. SAC may be attempted based on surgeon's decision-making, but may be best used for more complex, larger, more central or hilar tumors and in patients who have renal insufficiency at baseline or a solitary kidney.
Effects of acidic pH on voltage-gated ion channels in rat trigeminal mesencephalic nucleus neurons.
Han, Jin-Eon; Cho, Jin-Hwa; Choi, In-Sun; Kim, Do-Yeon; Jang, Il-Sung
2017-03-01
The effects of acidic pH on several voltage-dependent ion channels, such as voltage-dependent K + and Ca 2+ channels, and hyperpolarization-gated and cyclic nucleotide-activated cation (HCN) channels, were examined using a whole-cell patch clamp technique on mechanically isolated rat mesencephalic trigeminal nucleus neurons. The application of a pH 6.5 solution had no effect on the peak amplitude of voltage-dependent K + currents. A pH 6.0 solution slightly, but significantly inhibited the peak amplitude of voltage-dependent K + currents. The pH 6.0 also shifted both the current-voltage and conductance-voltage relationships to the depolarization range. The application of a pH 6.5 solution scarcely affected the peak amplitude of membrane currents mediated by HCN channels, which were profoundly inhibited by the general HCN channel blocker Cs + (1 mM). However, the pH 6.0 solution slightly, but significantly inhibited the peak amplitude of HCN-mediated currents. Although the pH 6.0 solution showed complex modulation of the current-voltage and conductance-voltage relationships, the midpoint voltages for the activation of HCN channels were not changed by acidic pH. On the other hand, voltage-dependent Ca 2+ channels were significantly inhibited by an acidic pH. The application of an acidic pH solution significantly shifted the current-voltage and conductance-voltage relationships to the depolarization range. The modulation of several voltage-dependent ion channels by an acidic pH might affect the excitability of mesencephalic trigeminal nucleus neurons, and thus physiological functions mediated by the mesencephalic trigeminal nucleus could be affected in acidic pH conditions.
Electrodiffusion kinetics of ionic transport in a simple membrane channel.
Valent, Ivan; Petrovič, Pavol; Neogrády, Pavel; Schreiber, Igor; Marek, Miloš
2013-11-21
We employ numerical techniques for solving time-dependent full Poisson-Nernst-Planck (PNP) equations in 2D to analyze transient behavior of a simple ion channel subject to a sudden electric potential jump across the membrane (voltage clamp). Calculated spatiotemporal profiles of the ionic concentrations and electric potential show that two principal exponential processes can be distinguished in the electrodiffusion kinetics, in agreement with original Planck's predictions. The initial fast process corresponds to the dielectric relaxation, while the steady state is approached in a second slower exponential process attributed to the nonlinear ionic redistribution. Effects of the model parameters such as the channel length, height of the potential step, boundary concentrations, permittivity of the channel interior, and ionic mobilities on electrodiffusion kinetics are studied. Numerical solutions are used to determine spatiotemporal profiles of the electric field, ionic fluxes, and both the conductive and displacement currents. We demonstrate that the displacement current is a significant transient component of the total electric current through the channel. The presented results provide additional information about the classical voltage-clamp problem and offer further physical insights into the mechanism of electrodiffusion. The used numerical approach can be readily extended to multi-ionic models with a more structured domain geometry in 2D or 3D, and it is directly applicable to other systems, such as synthetic nanopores, nanofluidic channels, and nanopipettes.
Recording Gamma Band Oscillations in Pedunculopontine Nucleus Neurons.
Urbano, Francisco J; Luster, Brennon R; D'Onofrio, Stasia; Mahaffey, Susan; Garcia-Rill, Edgar
2016-09-14
Synaptic efferents from the PPN are known to modulate the neuronal activity of several intralaminar thalamic regions (e.g., the centrolateral/parafascicular; Cl/Pf nucleus). The activation of either the PPN or Cl/Pf nuclei in vivo has been described to induce the arousal of the animal and an increment in gamma band activity in the cortical electroencephalogram (EEG). The cellular mechanisms for the generation of gamma band oscillations in Reticular Activating System (RAS) neurons are the same as those found to generate gamma band oscillations in other brains nuclei. During current-clamp recordings of PPN neurons (from parasagittal slices from 9 - 25 day-old rats), the use of depolarizing square steps rapidly activated voltage-dependent potassium channels that prevented PPN neurons from being depolarized beyond -25 mV. Injecting 1 - 2 sec long depolarizing current ramps gradually depolarized PPN membrane potential resting values towards 0 mV. However, injecting depolarizing square pulses generated gamma-band oscillations of membrane potential that showed to be smaller in amplitude compared to the oscillations generated by ramps. All experiments were performed in the presence of voltage-gated sodium channels and fast synaptic receptors blockers. It has been shown that the activation of high-threshold voltage-dependent calcium channels underlie gamma-band oscillatory activity in PPN neurons. Specific methodological and pharmacological interventions are described here, providing the necessary tools to induce and sustain PPN subthreshold gamma band oscillation in vitro.
Elucidation of pyrethroid and DDT receptor sites in the voltage-gated sodium channel.
Zhorov, Boris S; Dong, Ke
2017-05-01
DDT and pyrethroid insecticides were among the earliest neurotoxins identified to act on voltage-gated sodium channels. In the 1960s, equipped with, at the time, new voltage-clamp techniques, Professor Narahashi and associates provided the initial evidence that DDT and allethrin (the first commercial pyrethroid insecticide) caused prolonged flow of sodium currents in lobster and squid giant axons. Over the next several decades, continued efforts by Prof. Narahashi's group as well as other laboratories led to a comprehensive understanding of the mechanism of action of DDT and pyrethroids on sodium channels. Fast forward to the 1990s, genetic, pharmacological and toxicological data all further confirmed voltage-gated sodium channels as the primary targets of DDT and pyrethroid insecticides. Modifications of the gating kinetics of sodium channels by these insecticides result in repetitive firing and/or membrane depolarization in the nervous system. This mini-review focuses on studies from Prof. Narahashi's pioneer work and more recent mutational and computational modeling analyses which collectively elucidated the elusive pyrethroid receptor sites as well as the molecular basis of differential sensitivities of insect and mammalian sodium channels to pyrethroids. Copyright © 2016 Elsevier B.V. All rights reserved.
Imaging of Brain Slices with a Genetically Encoded Voltage Indicator.
Quicke, Peter; Barnes, Samuel J; Knöpfel, Thomas
2017-01-01
Functional fluorescence microscopy of brain slices using voltage sensitive fluorescent proteins (VSFPs) allows large scale electrophysiological monitoring of neuronal excitation and inhibition. We describe the equipment and techniques needed to successfully record functional responses optical voltage signals from cells expressing a voltage indicator such as VSFP Butterfly 1.2. We also discuss the advantages of voltage imaging and the challenges it presents.
Electrophysiological responses of dissociated type I cells of the rabbit carotid body to cyanide.
Biscoe, T J; Duchen, M R
1989-01-01
1. The carotid body is the major peripheral sensor of arterial PO2 in the mammal and is excited by cyanide (CN-). Type I cells, the presumed sites for transduction, were freshly dissociated from the carotid body of the adult rabbit and studied with the whole-cell patch clamp technique. 2. Type I cells were hyperpolarized by CN-, the action potential was shortened, and there was an increased after-hyperpolarization. 3. Under voltage clamp control, CN- increased a voltage-dependent outward current, which showed pronounced outward rectification. Tail currents increased by CN- reversed close to the predicted EK, the reversal potential of the CN--induced current depended on extracellular [K+], and the current was blocked by intracellular TEA+ and Cs+. 4. The i-V relation of the CN--induced conductance strongly mirrored that of voltage-gated Ca2+ entry, and the response was abolished by removal of extracellular Ca2+. We conclude that the increased gK is Ca2+ -dependent (gK(Ca]. 5. The Ca2+ current was attenuated by CN-, and showed an increased rate of inactivation. Thus, the increased gK(Ca) must result from an alteration in Ca2+ homeostasis independent of the Ca2+ current, and not an increased Ca2+ entry through voltage-activated channels. 6. Carbachol also hyperpolarized cells and increased a K+ conductance. 7. At depolarized holding potentials a steady-state outward current was increased by CN-. The current reversed close to EK, and was associated with increased current fluctuations. Noise analysis showed that a channel conductance of 3 pS carries the current. 8. The response to CN- was not impaired by the inclusion of 5 mM-MgATP in the patch pipette. 9. If signals to the CNS are initiated by the calcium-dependent release of transmitters from type I cells, transduction would appear to be the direct consequence of the energy dependence of Ca2+ homeostasis. PMID:2557439
Kuzmenkov, Alexey I; Peigneur, Steve; Chugunov, Anton O; Tabakmakher, Valentin M; Efremov, Roman G; Tytgat, Jan; Grishin, Eugene V; Vassilevski, Alexander A
2017-05-01
We report isolation, sequencing, and electrophysiological characterization of OSK3 (α-KTx 8.8 in Kalium and Uniprot databases), a potassium channel blocker from the scorpion Orthochirus scrobiculosus venom. Using the voltage clamp technique, OSK3 was tested on a wide panel of 11 voltage-gated potassium channels expressed in Xenopus oocytes, and was found to potently inhibit Kv1.2 and Kv1.3 with IC 50 values of ~331nM and ~503nM, respectively. OdK1 produced by the scorpion Odontobuthus doriae differs by just two C-terminal residues from OSK3, but shows marked preference to Kv1.2. Based on the charybdotoxin-potassium channel complex crystal structure, a model was built to explain the role of the variable residues in OdK1 and OSK3 selectivity. Copyright © 2017 Elsevier B.V. All rights reserved.
Expression and function of K(V)2-containing channels in human urinary bladder smooth muscle.
Hristov, Kiril L; Chen, Muyan; Afeli, Serge A Y; Cheng, Qiuping; Rovner, Eric S; Petkov, Georgi V
2012-06-01
The functional role of the voltage-gated K(+) (K(V)) channels in human detrusor smooth muscle (DSM) is largely unexplored. Here, we provide molecular, electrophysiological, and functional evidence for the expression of K(V)2.1, K(V)2.2, and the electrically silent K(V)9.3 subunits in human DSM. Stromatoxin-1 (ScTx1), a selective inhibitor of K(V)2.1, K(V)2.2, and K(V)4.2 homotetrameric channels and of K(V)2.1/9.3 heterotetrameric channels, was used to examine the role of these channels in human DSM function. Human DSM tissues were obtained during open bladder surgeries from patients without a history of overactive bladder. Freshly isolated human DSM cells were studied using RT-PCR, immunocytochemistry, live-cell Ca(2+) imaging, and the perforated whole cell patch-clamp technique. Isometric DSM tension recordings of human DSM isolated strips were conducted using tissue baths. RT-PCR experiments showed mRNA expression of K(V)2.1, K(V)2.2, and K(V)9.3 (but not K(V)4.2) channel subunits in human isolated DSM cells. K(V)2.1 and K(V)2.2 protein expression was confirmed by Western blot analysis and immunocytochemistry. Perforated whole cell patch-clamp experiments revealed that ScTx1 (100 nM) inhibited the amplitude of the voltage step-induced K(V) current in freshly isolated human DSM cells. ScTx1 (100 nM) significantly increased the intracellular Ca(2+) level in DSM cells. In human DSM isolated strips, ScTx1 (100 nM) increased the spontaneous phasic contraction amplitude and muscle force, and enhanced the amplitude of the electrical field stimulation-induced contractions within the range of 3.5-30 Hz stimulation frequencies. These findings reveal that ScTx1-sensitive K(V)2-containing channels are key regulators of human DSM excitability and contractility and may represent new targets for pharmacological or genetic intervention for bladder dysfunction.
2D and 3D assessment of sustentaculum tali screw fixation with or without Screw Targeting Clamp.
De Boer, A Siebe; Van Lieshout, Esther M M; Vellekoop, Leonie; Knops, Simon P; Kleinrensink, Gert-Jan; Verhofstad, Michael H J
2017-12-01
Precise placement of sustentaculum tali screw(s) is essential for restoring anatomy and biomechanical stability of the calcaneus. This can be challenging due to the small target area and presence of neurovascular structures on the medial side. The aim was to evaluate the precision of positioning of the subchondral posterior facet screw and processus anterior calcanei screw with or without a Screw Targeting Clamp. The secondary aim was to evaluate the added value of peroperative 3D imaging over 2D radiographs alone. Twenty Anubifix™ embalmed, human anatomic lower limb specimens were used. A subchondral posterior facet screw and a processus anterior calcanei screw were placed using an extended lateral approach. A senior orthopedic trauma surgeon experienced in calcaneal fracture surgery and a senior resident with limited experience in calcaneal surgery performed screw fixation in five specimens with and in five specimens without the clamp. 2D lateral and axial radiographs and a 3D recording were obtained postoperatively. Anatomical dissection was performed postoperatively as a diagnostic golden standard in order to obtain the factual screw positions. Blinded assessment of quality of fixation was performed by two surgeons. In 2D, eight screws were considered malpositioned when placed with the targeting device versus nine placed freehand. In 3D recordings, two additional screws were malpositioned in each group as compared to the golden standard. As opposed to the senior surgeon, the senior resident seemed to get the best results using the Screw Targeting Clamp (number of malpositioned screws using freehand was eight, and using the targeting clamp five). In nine out of 20 specimens 3D images provided additional information concerning target area and intra-articular placement. Based on the 3D assessment, five additional screws would have required repositioning. Except for one, all screw positions were rated equally after dissection when compared with 3D examinations. This study does not show a substantial benefit between the Screw Targeting Clamp and the freehand technique as well between experienced and inexperienced surgeons. Data suggest that the clamp might help positioning sustentaculum tali screws, especially for inexperienced surgeons. Perioperative 3D recordings facilitate identification of malpositioned screws. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhu, Ming-jun; Wang, Guo-juan; Wang, Yong-xia; Pu, Jie-lin; Liu, Hong-jun; Yu, Hai-bin
2010-02-01
To study the effect of Xinjining extract (, XJN) on inward rectifier potassium current (I(K1)) in ventricular myocyte (VMC) of guinea pigs and its anti-arrhythmic mechanism on ion channel level. Single VMC was enzymatically isolated by zymolisis, and whole-cell patch clamp recording technique was used to record the I(k1) in VMC irrigated with XJN of different concentrations (1.25, 2.50, 5.00 g/L; six samples for each). The stable current and conductance of the inward component of I(K1) as well as the outward component of peak I(K1) and conductance of it accordingly was recorded when the test voltage was set on -110 mV. The suppressive rate of XJN on the inward component of I(K1) was 9.54% + or - 5.81%, 34.82% + or - 15.03%, and 59.52% + or - 25.58% with a concentration of 1.25, 2.50, and 5.00 g/L, respectively, and that for the outward component of peak I(K1) was 23.94% + or - 7.45%, 52.98% + or - 19.62%, and 71.42% + or - 23.01%, respectively (all P<0.05). Moreover, different concentrations of XJN also showed effects for reducing I(K1) conductance. XJN has inhibitory effect on I(K1) in guinea pig's VMC, and that of the same concentration shows stronger inhibition on outward component than on inward component, which may be one of the mechanisms of its anti-arrhythmic effect.
de Lorenzi, F G; Bridal, T R; Spinelli, W
1994-01-01
1. We investigated the effects of two 5-HT3 antagonists, ondansetron and granisetron, on the action potential duration (APD) and the delayed rectifier current (IK) of feline isolated ventricular myocytes. Whole-cell current and action potential recordings were performed at 37 degrees C with the patch clamp technique. 2. Ondansetron and granisetron blocked IK with a KD of 1.7 +/- 1.0 and 4.3 +/- 1.7 microM, respectively. At a higher concentration (30 microM), both drugs blocked the inward rectifier (IKl). 3. The block of IK was dependent on channel activation. Both drugs slowed the decay of IK tail currents and produced a crossover with the pre-drug current trace. These results are consistent with block and unblock from the open state of the channel. 4. Granisetron showed an intrinsic voltage-dependence as the block increased with depolarization. The equivalent voltage-dependency of block (delta) was 0.10 +/- 0.04, suggesting that granisetron blocks from the intracellular side at a binding site located 10% across the transmembrane electrical field. 5. Ondansetron (1 microM) and granisetron (3 microM) prolonged APD by about 30% at 0.5 Hz. The prolongation of APD by ondansetron was abolished at faster frequencies (3 Hz) showing reverse rate dependence. 6. In conclusion, the 5-HT3 antagonists, ondansetron and granisetron, are open state blockers of the ventricular delayed rectifier and show a clear class III action. PMID:7834204
18β-Glycyrrhetinic acid preferentially blocks late Na current generated by ΔKPQ Nav1.5 channels
Du, Yi-mei; Xia, Cheng-kun; Zhao, Ning; Dong, Qian; Lei, Ming; Xia, Jia-hong
2012-01-01
Aim: To compare the effects of two stereoisomeric forms of glycyrrhetinic acid on different components of Na+ current, HERG and Kv1.5 channel currents. Methods: Wild-type (WT) and long QT syndrome type 3 (LQT-3) mutant ΔKPQ Nav1.5 channels, as well as HERG and Kv1.5 channels were expressed in Xenopus oocytes. In addition, isolated human atrial myocytes were used. Two-microelectrode voltage-clamp technique was used to record the voltage-activated currents. Results: Superfusion of 18β-glycyrrhetinic acid (18β-GA, 1–100 μmol/L) blocked both the peak current (INa,P) and late current (INa,L) generated by WT and ΔKPQ Nav1.5 channels in a concentration-dependent manner, while 18α-glycyrrhetinic acid (18α-GA) at the same concentrations had no effects. 18β-GA preferentially blocked INa,L (IC50=37.2±14.4 μmol/L) to INa,P (IC50=100.4±11.2 μmol/L) generated by ΔKPQ Nav1.5 channels. In human atrial myocytes, 18β-GA (30 μmol/L) inhibited 47% of INa,P and 87% of INa,L induced by Anemonia sulcata toxin (ATX-II, 30 nmol/L). Superfusion of 18β-GA (100 μmol/L) had no effects on HERG and Kv1.5 channel currents. Conclusion: 18β-GA preferentially blocked the late Na current without affecting HERG and Kv1.5 channels. PMID:22609834
Mini-dystrophin restores L-type calcium currents in skeletal muscle of transgenic mdx mice
Friedrich, O; Both, M; Gillis, J M; Chamberlain, J S; Fink, RHA
2004-01-01
L-type calcium currents (iCa) were recorded using the two-microelectrode voltage-clamp technique in single short toe muscle fibres of three different mouse strains: (i) C57/SV129 wild-type mice (wt); (ii) mdx mice (an animal model for Duchenne muscular dystrophy; and (iii) transgenically engineered mini-dystrophin (MinD)-expressing mdx mice. The activation and inactivation properties of iCa were examined in 2- to 18-month-old animals. Ca2+ current densities at 0 mV in mdx fibres increased with age, but were always significantly smaller compared to age-matched wild-type fibres. Time-to-peak (TTP) of iCa was prolonged in mdx fibres compared to wt fibres. MinD fibres always showed similar TTP and current amplitudes compared to age-matched wt fibres. In all three genotypes, the voltage-dependent inactivation and deactivation of iCa were similar. Intracellular resting calcium concentration ([Ca2+]i) and the distribution of dihydropyridine binding sites were also not different in young animals of all three genotypes, whereas iCa was markedly reduced in mdx fibres. We conclude, that dystrophin influences L-type Ca2+ channels via a direct or indirect linkage which may be disrupted in mdx mice and may be crucial for proper excitation–contraction coupling initiating Ca2+ release from the sarcoplasmic reticulum. This linkage seems to be fully restored in the presence of mini-dystrophin. PMID:14594987
Nicotinic excitation of rat ventral tegmental neurones in vitro studied by intracellular recording.
Calabresi, P.; Lacey, M. G.; North, R. A.
1989-01-01
1. Intracellular recordings were made from presumed dopamine-containing neurones in the ventral tegmental area (VTA) in rat brain slices. 2. Nicotine (10-100 microM) and acetylcholine (ACh) depolarized the neurones. The depolarization caused by ACh was typically biphasic; both components were increased by neostigmine (0.1-10 microM), but only the slower component was blocked by scopolamine (1-10 microM). 3. The nicotinic action of ACh, studied in the presence of neostigmine and scopolamine, persisted in the presence of tetrodotoxin (1 microM) and cobalt (2-5 mM). 4. ACh or carbachol (30 microM) caused inward currents in neurones voltage-clamped near the resting potential. These currents reversed polarity at around -4 mV, were blocked by hexamethonium (1-100 microM) in a voltage-dependent manner, and showed desensitization with prolonged or repeated agonist applications. 5. Depolarizations caused by ACh and carbachol were reduced in slices pretreated with kappa-bungarotoxin, but were not changed by alpha-bungarotoxin. 6. These responses to ACh and nicotine resemble those previously described on autonomic ganglion cells. The direct action on VTA neurones may contribute to the positive reinforcement associated with nicotine consumption. PMID:2804543
Takeuchi, Kinya; Fukuda, Atsuo; Kanayama, Naohiro
2004-01-01
Amniotic fluid contains a significant level of urinary trypsin inhibitor (UTI). Previously, we reported that UTI inhibits calcium influx of myometrium and it is effective in preventing uterine contraction. This study examined the effects of UTI upon potassium channels, which is important for membrane excitability. Whole-cell patch-clamp recordings were performed in fibroblasts derived from human fetal skin. Potassium currents were recorded and the effects of exogenous UTI and/or cadmium determined. Tetraethylammonium sensitive potassium currents were elicited by step or ramp stimulations at depolarized membrane potentials (over +30 mV). Administration of 1 micro M UTI significantly increased these potassium currents by 16.9%. When calcium channels were blocked by the administration of cadmium, UTI increased the rest of the potassium currents by 4.8%. This indicates that UTI increased calcium-dependent potassium currents by 94.8% but only increased voltage-dependent potassium currents by 4.8%. Urinary trypsin inhibitor is a physiological substance of fetal origin that modulates calcium-dependent and voltage-dependent potassium channels. These data suggest that UTI is capable of regulating the membrane properties of the fetal and myometrial cells in contact with amniotic fluid.
Liu, Yi; Beck, Edward J; Flores, Christopher M
2011-12-01
Hyperactivity of voltage-gated sodium channels underlies, at least in part, a range of pathological states, including pain and epilepsy. Selective blockers of these channels may offer effective treatment of such disorders. Currently employed methods to screen for sodium channel blockers, however, are inadequate to rationally identify mechanistically diverse blockers, limiting the potential range of indications that may be treated by such agents. Here, we describe an improved patch clamp screening assay that increases the mechanistic diversity of sodium channel blockers being identified. Using QPatch HT, a medium-throughput, automated patch clamp system, we tested three common sodium channel blockers (phenytoin, lidocaine, and tetrodotoxin) with distinct mechanistic profiles at Nav1.2. The single-voltage protocol employed in this assay simultaneously measured the compound activity in multiple states, including the slow inactivated state, of the channel. A long compound incubation period (10 s) was introduced during channel inactivation to increase the probability of identifying "slow binders." As such, phenytoin, which preferentially binds with slow kinetics to the fast inactivated state, exhibited significantly higher potency than that obtained from a brief exposure (100 ms) used in typical assays. This assay also successfully detected the use-dependent block of tetrodotoxin, a well-documented property of this molecule yet unobserved in typical patch clamp protocols. These results indicate that the assay described here can increase the likelihood of identification and mechanistic diversity of sodium channel blockers from a primary screen. It can also be used to efficiently guide the in vitro optimization of leads that retain the desired mechanistic properties. © MARY ANN LIEBERT, INC.
Operational amplifier with adjustable frequency response.
Gulisek, D; Hencek, M
1978-01-01
The authors describe an operational amplifier with an adjustable frequency response and its use in membrane physiology, using the voltage clamp and current clamp method. The amplifier eliminates feedback poles causing oscillation. It consists of a follower with a high input resistance in the form of a tube and of an actual amplifier with an adjustable frequency response allowing the abolition of clicks by one pole and of oscillation by two poles in the 500 Hz divided by infinity range. Further properties of the amplifier: a long-term voltage drift of 1 mv, a temperature voltage drift of 0.5 mv/degrees K, input resistance greater than 1 GOhm, amplification greater than 80 dB, output +/- 12 v, 25 ma, noise, measured from the width of the oscilloscope track in the presence of a ray of normal brightness, not exceeding 50 muv in the 0-250 kHz band, f1 = 1 MHz. A short report on the amplifier was published a few years ago (Gulísek and Hencek 1973).
NASA Astrophysics Data System (ADS)
Preetham, B. S.; Lake, Melinda A.; Hoelzle, David J.
2017-09-01
There is a need for the development of large displacement (O (10-6) m) and force (O (10-6) N) electrostatic actuators with low actuation voltages (< ±8 V) for underwater bio-MEMS applications. In this paper, we present the design, fabrication, and characterization of a curved electrode electrostatic actuator in a clamped-clamped beam configuration meant to operate in an underwater environment. Our curved electrode actuator is unique in that it operates in a stable manner past the pull-in instability. Models based on the Rayleigh-Ritz method accurately predict the onset of static instability and the displacement versus voltage function, as validated by quasistatic experiments. We demonstrate that the actuator is capable of achieving a large peak-to-peak displacement of 19.5 µm and force of 43 µN for a low actuation voltage of less than ±8 V and is thus appropriate for underwater bio-MEMS applications.
Simurda, J; Simurdová, M; Bravený, P; Sumbera, J
1992-01-01
1. The slow inward current component related to contraction (Isic) was studied in voltage clamp experiments on canine ventricular trabeculae at 30 degrees C with the aims of (a) estimating its relation to electrogenic Na(+)-Ca2+ exchange and (b) comparing it with similar currents as reported in cardiac myocytes. 2. Isic may be recorded under conditions of augmented contractility in response to depolarizing pulses below the threshold of the classic slow inward current (presumably mediated by L-type Ca2+ channels). In responses to identical depolarizing clamp pulses the peak value of Isic is directly related to the amplitude of contraction (Fmax). Isic peaks about 60 ms after the onset of depolarization and declines with a half-time of about 110 ms. 3. The voltage threshold of Isic activation is the same as the threshold of contraction. The positive inotropic clamp preconditions shift both thresholds to more negative values of membrane voltage, i.e. below the threshold of the classic slow inward current. 4. Isic may also be recorded as a slowly decaying inwardly directed current 'tail' after depolarizing pulses. In this representation the peak value of Isic changes with duration of the depolarizing pulses, again in parallel with Fmax. In response to pulses shorter than 100 ms both variables increase with depolarization time. If initial conditions remain constant, further prolongation of the pulse does not significantly influence either one (tail currents follow a common envelope). 5. Isic differs from classic slow inward current by: (a) its direct relation to contraction, (b) the slower decay of the current tail on repolarization, (c) slower restitution corresponding to the mechanical restitution, (d) its relative insensitivity to Ca(2+)-blocking agents (the decrease of Isic is secondary to the negative inotropic of Ca(2+)-blocking agents (the decrease of Isic is secondary to the negative inotropic effect) and (e) its disappearance after Sr2+ substitution for Ca2+. 6. The manifestations of Isic in multicellular preparations do not differ significantly from those reported in isolated myocytes (in contrast to calcium current). 7. The analysis of the correlation between Isic and Fmax transients during trains of identical test depolarizing pulses at variable extra- and intracellular ionic concentrations (changes of [Ca2+]o, 50% Li+ substitution for Na+, strophanthidin) indicate that the observed effects conform to the predictions based on a quantitative model of Na(+)-Ca2+ exchange. 8. It is concluded that Isic is activated by a transient increase of [Ca2+]i, in consequence of the release from the reticular stores.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:1293284
Morton, Russell A; Valenzuela, C Fernando
2016-02-15
Developmental ethanol exposure damages the hippocampus, a brain region involved in learning and memory. Alterations in synaptic transmission and plasticity may play a role in this effect of ethanol. We previously reported that acute and repeated exposure to ethanol during the third trimester-equivalent inhibits long-term potentiation of GABAA receptor-dependent synaptic currents in CA3 pyramidal neurons through a mechanism that depends on retrograde release of brain-derived neurotrophic factor driven by activation of voltage-gated Ca(2+) channels (Zucca and Valenzuela, 2010). We found evidence indicating that voltage-gated Ca(2+) channels are inhibited in the presence of ethanol, an effect that may play a role in its mechanism of action. Here, we further investigated the acute effect of ethanol on the function of voltage-gated Ca(2+) channels in CA3 pyramidal neurons using Ca(2+) imaging techniques. These experiments revealed that acute ethanol exposure inhibits voltage-gated Ca(2+) channels both in somatic and proximal dendritic compartments. To investigate the long-term consequences of ethanol on voltage-gated Ca(2+) channels, we used patch-clamp electrophysiological techniques to assess the function of L-type voltage-gated Ca(2+) channels during and following ten days of vapor ethanol exposure. During ethanol withdrawal periods, the function of these channels was not significantly affected by vapor chamber exposure. Taken together with our previous findings, our results suggest that 3(rd) trimester-equivalent ethanol exposure transiently inhibits L-type voltage-gated Ca(2+) channel function in CA3 pyramidal neurons and that compensatory mechanisms restore their function during ethanol withdrawal. Transient inhibition of these channels by ethanol may be, in part, responsible for the hippocampal abnormalities associated with developmental exposure to this agent. Copyright © 2015 Elsevier B.V. All rights reserved.
Charge movement in a fast twitch skeletal muscle from rat.
Simon, B J; Beam, K G
1983-02-01
Voltage-dependent charge movement in the rat omohyoid muscle was investigated using the three microelectrode voltage clamp technique. The charge that moved during a depolarization from the holding potential (-90 mV) to the test potential, V, increased with increasing V, saturating around 0 mV. The charge vs. voltage relationship was well fitted by Q = Q(max)/{1 + exp[-(V - V)/k]}, with Q(max) = 28.5 nC/muF, V = -34.2 mV, and k = 8.7 mV. Repolarization of the fiber from the test potential back to the holding potential caused an equal but opposite amount of charge to move. The kinetics of ON charge movement could be well described by a model developed for frog muscle by Horowicz and Schneider (1981b), which suggests that rat and frog charge movements are similar. This model failed to describe the kinetics of OFF charge movement for steps in potential from 0 mV to test potentials of -10 to -90 mV. OFF-charge movement rose to a peak more slowly and decayed more slowly than predicted by the theory.
The relationship between Q gamma and Ca release from the sarcoplasmic reticulum in skeletal muscle
1991-01-01
Asymmetric membrane currents and fluxes of Ca2+ release were determined in skeletal muscle fibers voltage clamped in a Vaseline-gap chamber. The conditioning pulse protocol 1 for suppressing Ca2+ release and the "hump" component of charge movement current (I gamma), described in the first paper of this series, was applied at different test pulse voltages. The amplitude of the current suppressed during the ON transient reached a maximum at slightly suprathreshold test voltages (- 50 to -40 mV) and decayed at higher voltages. The component of charge movement current suppressed by 20 microM tetracaine also went through a maximum at low pulse voltages. This anomalous voltage dependence is thus a property of I gamma, defined by either the conditioning protocol or the tetracaine effect. A negative (inward-going) phase was often observed in the asymmetric current during the ON of depolarizing pulses. This inward phase was shown to be an intramembranous charge movement based on (a) its presence in the records of total membrane current, (b) its voltage dependence, with a maximum at slightly suprathreshold voltages, (c) its association with a "hump" in the asymmetric current, (d) its inhibition by interventions that reduce the "hump", (e) equality of ON and OFF areas in the records of asymmetric current presenting this inward phase, and (f) its kinetic relationship with the time derivative of Ca release flux. The nonmonotonic voltage dependence of the amplitude of the hump and the possibility of an inward phase of intramembranous charge movement are used as the main criteria in the quantitative testing of a specific model. According to this model, released Ca2+ binds to negatively charged sites on the myoplasmic face of the voltage sensor and increases the local transmembrane potential, thus driving additional charge movement (the hump). This model successfully predicts the anomalous voltage dependence and all the kinetic properties of I gamma described in the previous papers. It also accounts for the inward phase in total asymmetric current and in the current suppressed by protocol 1. According to this model, I gamma accompanies activating transitions at the same set of voltage sensors as I beta. Therefore it should open additional release channels, which in turn should cause more I gamma, providing a positive feedback mechanism in the regulation of calcium release. PMID:1650812
Hönigsperger, Christoph; Nigro, Maximiliano J.
2016-01-01
Key points Kv2 channels underlie delayed‐rectifier potassium currents in various neurons, although their physiological roles often remain elusive. Almost nothing is known about Kv2 channel functions in medial entorhinal cortex (mEC) neurons, which are involved in representing space, memory formation, epilepsy and dementia.Stellate cells in layer II of the mEC project to the hippocampus and are considered to be space‐representing grid cells. We used the new Kv2 blocker Guangxitoxin‐1E (GTx) to study Kv2 functions in these neurons.Voltage clamp recordings from mEC stellate cells in rat brain slices showed that GTx inhibited delayed‐rectifier K+ current but not transient A‐type current.In current clamp, GTx had multiple effects: (i) increasing excitability and bursting at moderate spike rates but reducing firing at high rates; (ii) enhancing after‐depolarizations; (iii) reducing the fast and medium after‐hyperpolarizations; (iv) broadening action potentials; and (v) reducing spike clustering.GTx is a useful tool for studying Kv2 channels and their functions in neurons. Abstract The medial entorhinal cortex (mEC) is strongly involved in spatial navigation, memory, dementia and epilepsy. Although potassium channels shape neuronal activity, their roles in mEC are largely unknown. We used the new Kv2 blocker Guangxitoxin‐1E (GTx; 10–100 nm) in rat brain slices to investigate Kv2 channel functions in mEC layer II stellate cells (SCs). These neurons project to the hippocampus and are considered to be grid cells representing space. Voltage clamp recordings from SCs nucleated patches showed that GTx inhibited a delayed rectifier K+ current activating beyond –30 mV but not transient A‐type current. In current clamp, GTx (i) had almost no effect on the first action potential but markedly slowed repolarization of late spikes during repetitive firing; (ii) enhanced the after‐depolarization (ADP); (iii) reduced fast and medium after‐hyperpolarizations (AHPs); (iv) strongly enhanced burst firing and increased excitability at moderate spike rates but reduced spiking at high rates; and (v) reduced spike clustering and rebound potentials. The changes in bursting and excitability were related to the altered ADPs and AHPs. Kv2 channels strongly shape the activity of mEC SCs by affecting spike repolarization, after‐potentials, excitability and spike patterns. GTx is a useful tool and may serve to further clarify Kv2 channel functions in neurons. We conclude that Kv2 channels in mEC SCs are important determinants of intrinsic properties that allow these neurons to produce spatial representation. The results of the present study may also be important for the accurate modelling of grid cells. PMID:27562026
2018-01-01
Abstract Synaptic activity in vivo can potentially alter the integration properties of neurons. Using recordings in awake mice, we targeted somatosensory layer 2/3 pyramidal neurons and compared neuronal properties with those from slices. Pyramidal cells in vivo had lower resistance and gain values, as well as broader spikes and increased spike frequency adaptation compared to the same cells in slices. Increasing conductance in neurons using dynamic clamp to levels observed in vivo, however, did not lessen the differences between in vivo and slice conditions. Further, local application of tetrodotoxin (TTX) in vivo blocked synaptic-mediated membrane voltage fluctuations but had little impact on pyramidal cell membrane input resistance and time constant values. Differences in electrophysiological properties of layer 2/3 neurons in mouse somatosensory cortex, therefore, stem from intrinsic sources separate from synaptic-mediated membrane voltage fluctuations. PMID:29662946
Timing discriminator using leading-edge extrapolation
Gottschalk, Bernard
1983-01-01
A discriminator circuit to recover timing information from slow-rising pulses by means of an output trailing edge, a fixed time after the starting corner of the input pulse, which is nearly independent of risetime and threshold setting. This apparatus comprises means for comparing pulses with a threshold voltage; a capacitor to be charged at a certain rate when the input signal is one-third threshold voltage, and at a lower rate when the input signal is two-thirds threshold voltage; current-generating means for charging the capacitor; means for comparing voltage capacitor with a bias voltage; a flip-flop to be set when the input pulse reaches threshold voltage and reset when capacitor voltage reaches the bias voltage; and a clamping means for discharging the capacitor when the input signal returns below one-third threshold voltage.
Retinovascular physiology and pathophysiology: new experimental approach/new insights
Puro, Donald G.
2012-01-01
An important challenge in visual neuroscience is understand the physiology and pathophysiology of the intra-retinal vasculature, whose function is required for ophthalmoception by humans and most other mammals. In the quest to learn more about this highly specialized portion of the circulatory system, a newly developed method for isolating vast microvascular complexes from the rodent retina has opened the way for using techniques such as patch-clamping, fluorescence imaging and time-lapse photography to elucidate the functional organization of a capillary network and its pre-capillary arteriole. For example, the ability to obtain dual perforated-patch recordings from well-defined sites within an isolated microvascular complex permitted the first characterization of the electrotonic architecture of a capillary/arteriole unit. This analysis revealed that this operational unit is not simply a homogenous synctium, but has a complex functional organization that is dynamically modulated by extracellular signals such as angiotensin II. Another recent discovery is that a capillary and its pre-capillary arteriole have distinct physiological differences; capillaries have an abundance of ATP-sensitive potassium (KATP) channels and a dearth of voltage-dependent calcium channels (VDCCs) while the converse is true for arterioles. In addition, voltage transmission between abluminal cells and the endothelium is more efficient in the capillaries. Thus, the capillary network is well-equipped to generate and transmit voltages, and the pre-capillary arteriole is well-adapted to transduce a capillary-generated voltage into a change in abluminal cell calcium and thereby, a vasomotor response. Use of microvessels isolated from the diabetic retina has led to new insights concerning retinal vascular pathophysiology. For example, soon after the onset of diabetes, the efficacy of voltage transmission through the endothelium is diminished; arteriolar VDCCs is inhibited, and there is increased vulnerability to purinergic vasotoxicity, which is a newly identified pathobiological mechanism. Other recent studies reveal that KATP channels not only have an essential physiological role in generating vasomotor responses, but their activation substantially boosts the lethality of hypoxia. Thus, the pathophysiology of the retinal microvasculature is closely linked with its physiology. PMID:22333041
Isolated and soft-switched power converter
Peng, Fang Zheng; Adams, Donald Joe
2002-01-01
An isolated and soft-switched power converter is used for DC/DC and DC/DC/AC power conversion. The power converter includes two resonant tank circuits coupled back-to-back through an isolation transformer. Each resonant tank circuit includes a pair of resonant capacitors connected in series as a resonant leg, a pair of tank capacitors connected in series as a tank leg, and a pair of switching devices with anti-parallel clamping diodes coupled in series as resonant switches and clamping devices for the resonant leg. The power converter is well suited for DC/DC and DC/DC/AC power conversion applications in which high-voltage isolation, DC to DC voltage boost, bidirectional power flow, and a minimal number of conventional switching components are important design objectives. For example, the power converter is especially well suited to electric vehicle applications and load-side electric generation and storage systems, and other applications in which these objectives are important. The power converter may be used for many different applications, including electric vehicles, hybrid combustion/electric vehicles, fuel-cell powered vehicles with low-voltage starting, remote power sources utilizing low-voltage DC power sources, such as photovoltaics and others, electric power backup systems, and load-side electric storage and generation systems.
Screening Fluorescent Voltage Indicators with Spontaneously Spiking HEK Cells
Venkatachalam, Veena; Kralj, Joel M.; Dib-Hajj, Sulayman D.; Waxman, Stephen G.; Cohen, Adam E.
2013-01-01
Development of improved fluorescent voltage indicators is a key challenge in neuroscience, but progress has been hampered by the low throughput of patch-clamp characterization. We introduce a line of non-fluorescent HEK cells that stably express NaV 1.3 and KIR 2.1 and generate spontaneous electrical action potentials. These cells enable rapid, electrode-free screening of speed and sensitivity of voltage sensitive dyes or fluorescent proteins on a standard fluorescence microscope. We screened a small library of mutants of archaerhodopsin 3 (Arch) in spiking HEK cells and identified two mutants with greater voltage-sensitivity than found in previously published Arch voltage indicators. PMID:24391999
Cuevas, Javier; Roth, Adelheid L; Berg, Darwin K
2000-01-01
Nicotinic acetylcholine receptors (nAChRs) that bind α-bungarotoxin (αBgt) were studied on isolated rat superior cervical ganglion (SCG) neurons using whole-cell patch clamp recording techniques.Rapid application of ACh onto the soma of voltage clamped neurons evoked a slowly desensitizing current that was reversibly blocked by αBgt (50 nm). The toxin-sensitive current constituted on average about half of the peak whole-cell response evoked by ACh.Nanomolar concentrations of methyllycaconitine blocked the αBgt-sensitive component of the ACh-evoked current as did intracellular dialysis with an anti-α7 monoclonal antibody. The results indicate that the slowly reversible toxin-sensitive response elicited by ACh arises from activation of an unusual class of α7-containing receptor (α7-nAChR) similar to that reported previously for rat intracardiac ganglion neurons.A second class of functional α7-nAChR was identified on some SCG neurons by using rapid application of choline to elicit responses. In these cases a biphasic response was obtained, which included a rapidly desensitizing component that was blocked by αBgt in a pseudo-irreversible manner. The pharmacology and kinetics of the responses resembled those previously attributed to α7-nAChRs in a number of other neuronal cell types.Experiments measuring the dissociation rate of 125I-labelled αBgt from SCG neurons revealed two classes of toxin-binding site. The times for toxin dissociation were consistent with those required to reverse blockade of the two kinds of αBgt-sensitive response.These results indicate that rat SCG neurons express two types of functional α7-nAChR, differing in pharmacology, desensitization and reversibility of αBgt blockade. PMID:10856125
ATP-induced current in isolated outer hair cells of guinea pig cochlea.
Nakagawa, T; Akaike, N; Kimitsuki, T; Komune, S; Arima, T
1990-05-01
1. Electrical and pharmacologic properties of ATP-induced current in outer hair cells isolated from guinea pig cochlea were investigated in the whole-cell recording mode by the use of a conventional patch-clamp technique. 2. Under current-clamp conditions, rapid application of ATP depolarized the outer hair cells resulting in an increase in conductance. The ATP-induced response did not show any desensitization during a continuous application. 3. At a holding potential of -70 mV, the ATP-induced inward current increased in a sigmoidal fashion over the concentration range between 3 microM and 1 mM. The half-maximum concentration (EC50) was 12 microM and the Hill coefficient was 0.93. 4. The ATP-induced current had a reversal potential near 6 mV, which was close to the theoretical value (1 mV) calculated from the Goldman-Hodgkin-Katz equation for permeable intra- and extracellular cations. 5. In the current-voltage (I-V) relationship for the ATP response, a slight inward-going rectification was observed at more positive potentials than the reversal potential. 6. The substitution of extracellular Na+ by equimolar choline+ shifted the reversal potential of the ATP-induced current to more negative values. The substitution of Cs+ in the internal solution by N-methyl-D-glucamine+ (NMG+) shifted it in the positive direction. The reversal potential of ATP-induced current was also shifted to positive values with increasing extracellular Ca2+ concentration. A decrease of intracellular Cl- by gluconate- did not affect the reversal potential, thereby indicating that the ATP-induced current is carried through a large cation channel.(ABSTRACT TRUNCATED AT 250 WORDS)
Pérez-Samartín, Alberto; Garay, Edith; Moctezuma, Juan Pablo H; Cisneros-Mejorado, Abraham; Sánchez-Gómez, María Victoria; Martel-Gallegos, Guadalupe; Robles-Martínez, Leticia; Canedo-Antelo, Manuel; Matute, Carlos; Arellano, Rogelio O
2017-09-01
Inwardly rectifying K + (Kir) channel expression signals at an advanced stage of maturation during oligodendroglial differentiation. Knocking down their expression halts the generation of myelin and produces severe abnormalities in the central nervous system. Kir4.1 is the main subunit involved in the tetrameric structure of Kir channels in glial cells; however, the precise composition of Kir channels expressed in oligodendrocytes (OLs) remains partially unknown, as participation of other subunits has been proposed. Kir channels are sensitive to H + ; thus, intracellular acidification produces Kir current inhibition. Since Kir subunits have differential sensitivity to H + , we studied the effect of intracellular acidification on Kir currents expressed in cultured OLs derived from optic nerves of 12-day-old rats. Unexpectedly, Kir currents in OLs (2-4 DIV) did not change within the pH range of 8.0-5.0, as observed when using standard whole-cell voltage-clamp recording or when preserving cytoplasmic components with the perforated patch-clamp technique. In contrast, low pH inhibited astrocyte Kir currents, which was consistent with the involvement of the Kir4.1 subunit. The H + -insensitivity expressed in OL Kir channels was not intrinsic because Kir cloning showed no difference in the sequence reported for the Kir4.1, Kir2.1, or Kir5.1 subunits. Moreover, when Kir channels were heterologously expressed in Xenopus oocytes they behaved as expected in their general properties and sensitivity to H + . It is therefore concluded that Kir channel H + -sensitivity in OLs is modulated through an extrinsic mechanism, probably by association with a modulatory component or by posttranslational modifications.
Dwyer, Laura; Rhee, Poong-Lyul; Lowe, Vanessa; Zheng, Haifeng; Peri, Lauren; Ro, Seungil; Sanders, Kenton M.
2011-01-01
Resting membrane potential (RMP) plays an important role in determining the basal excitability of gastrointestinal smooth muscle. The RMP in colonic muscles is significantly less negative than the equilibrium potential of K+, suggesting that it is regulated not only by K+ conductances but by inward conductances such as Na+ and/or Ca2+. We investigated the contribution of nonselective cation channels (NSCC) to the RMP in human and monkey colonic smooth muscle cells (SMC) using voltage- and current-clamp techniques. Qualitative reverse transcriptase-polymerase chain reaction was performed to examine potential molecular candidates for these channels among the transient receptor potential (TRP) channel superfamily. Spontaneous transient inward currents and holding currents were recorded in human and monkey SMC. Replacement of extracellular Na+ with equimolar tetraethylammonium or Ca2+ with Mn2+ inhibited basally activated nonselective cation currents. Trivalent cations inhibited these channels. Under current clamp, replacement of extracellular Na+ with N-methyl-d-glucamine or addition of trivalent cations caused hyperpolarization. Three unitary conductances of NSCC were observed in human and monkey colonic SMC. Molecular candidates for basally active NSCC were TRPC1, C3, C4, C7, M2, M4, M6, M7, V1, and V2 in human and monkey SMC. Comparison of the biophysical properties of these TRP channels with basally active NSCC (bINSCC) suggests that TRPM4 and specific TRPC heteromultimer combinations may underlie the three single-channel conductances of bINSCC. In conclusion, these findings suggest that basally activated NSCC contribute to the RMP in human and monkey colonic SMC and therefore may play an important role in determining basal excitability of colonic smooth muscle. PMID:21566016
Park, Silvia J H; Kim, In-Jung; Looger, Loren L; Demb, Jonathan B; Borghuis, Bart G
2014-03-12
Direction selectivity represents a fundamental visual computation. In mammalian retina, On-Off direction-selective ganglion cells (DSGCs) respond strongly to motion in a preferred direction and weakly to motion in the opposite, null direction. Electrical recordings suggested three direction-selective (DS) synaptic mechanisms: DS GABA release during null-direction motion from starburst amacrine cells (SACs) and DS acetylcholine and glutamate release during preferred direction motion from SACs and bipolar cells. However, evidence for DS acetylcholine and glutamate release has been inconsistent and at least one bipolar cell type that contacts another DSGC (On-type) lacks DS release. Here, whole-cell recordings in mouse retina showed that cholinergic input to On-Off DSGCs lacked DS, whereas the remaining (glutamatergic) input showed apparent DS. Fluorescence measurements with the glutamate biosensor intensity-based glutamate-sensing fluorescent reporter (iGluSnFR) conditionally expressed in On-Off DSGCs showed that glutamate release in both On- and Off-layer dendrites lacked DS, whereas simultaneously recorded excitatory currents showed apparent DS. With GABA-A receptors blocked, both iGluSnFR signals and excitatory currents lacked DS. Our measurements rule out DS release from bipolar cells onto On-Off DSGCs and support a theoretical model suggesting that apparent DS excitation in voltage-clamp recordings results from inadequate voltage control of DSGC dendrites during null-direction inhibition. SAC GABA release is the apparent sole source of DS input onto On-Off DSGCs.
A Study of 4-level DC-DC Boost Inverter with Passive Component Reduction Consideration
NASA Astrophysics Data System (ADS)
Kasiran, A. N.; Ponniran, A.; Harimon, M. A.; Hamzah, H. H.
2018-04-01
This study is to analyze design principles of boost inductor and capacitor used in the 4-level DC-DC boost converter to realize size reduction of passive component referring to their attributes. The important feature of this circuit is that most of the boost-up energy is transferred from the capacitor-clamped to the output side which the small inductance can be used at the input side. The inductance of the boost inductor is designed by referring the inductor current ripple. On the other hand, the capacitance of the capacitor-clamped is designed by considering voltage stress on semiconductor devices and also the used switching frequency. Besides that, according to the design specifications, the required inductance in 4-level DC-DC boost converter is decreased compared to a conventional conventional DC-DC boost converter. Meanwhile, voltage stress on semiconductor device is depending on the maximum voltage ripple of the capacitor-clamped. A 50 W 4-level DC-DC boost converter prototype has been constructed. The results show that the inductor current ripple was 1.15 A when the inductors, 1 mH and 0.11 mH were used in the conventional and 4-level DC-DC boost converters, respectively. Thus, based on the experimental results, it shows that the reduction of passive components by referring to their attributes in 4-level DC-DC boost converter is achieved. Moreover, the decreasing of voltage stress on the semiconductor devices is an advantage for the selection of low ON-resistance of the devices which will contribute to the reduction of the semiconductor conduction loss. The integration result of boost converter and H-bridge inverter is also shown.
Lima, Pedro A; Vicente, M Inês; Alves, Frederico M; Dionísio, José C; Costa, Pedro F
2008-04-01
A role in the control of excitability has been attributed to insulin via modulation of potassium (K(+)) currents. To investigate insulin modulatory effects on voltage-activated potassium currents in a neuronal cell line with origin in the sympathetic system, we performed whole-cell voltage-clamp recordings in differentiated N1E-115 neuroblastoma cells. Two main voltage-activated K(+) currents were identified: (a) a relatively fast inactivating current (I(fast) - time constant 50-300 ms); (b) a slow delayed rectifying K(+) current (I(slow) - time constant 1-4 s). The kinetics of inactivation of I(fast), rather than I(slow), showed clear voltage dependence. I(fast) and I(slow) exhibited different activation and inactivation dependence for voltage, and have different but nevertheless high sensitivities to tetraethylammonium, 4-aminopyridine and quinidine. In differentiated cells - rather than in non-differentiated cells - application of up to 300 nm insulin reduced I(slow) only (IC(50) = 6.7 nm), whereas at higher concentrations I(fast) was also affected (IC(50) = 7.7 microm). The insulin inhibitory effect is not due to a change in the activation or inactivation current-voltage profiles, and the time-dependent inactivation is also not altered; this is not likely to be a result of activation of the insulin-growth-factor-1 (IGF1) receptors, as application of IGF1 did not result in significant current alteration. Results suggest that the current sensitive to low concentrations of insulin is mediated by erg-like channels. Similar observations concerning the insulin inhibitory effect on slow voltage-activated K(+) currents were also made in isolated rat hippocampal pyramidal neurons, suggesting a widespread neuromodulator role of insulin on K(+) channels.
Benzonatate inhibition of voltage-gated sodium currents.
Evans, M Steven; Maglinger, G Benton; Fletcher, Anita M; Johnson, Stephen R
2016-02-01
Benzonatate was FDA-approved in 1958 as an antitussive. Its mechanism of action is thought to be anesthesia of vagal sensory nerve fibers that mediate cough. Vagal sensory neurons highly express the Nav1.7 subtype of voltage-gated sodium channels, and inhibition of this channel inhibits the cough reflex. Local anesthetics inhibit voltage-gated sodium channels, but there are no reports of whether benzonatate affects these channels. Our hypothesis is that benzonatate inhibits Nav1.7 voltage-gated sodium channels. We used whole cell voltage clamp recording to test the effects of benzonatate on voltage-gated sodium (Na(+)) currents in two murine cell lines, catecholamine A differentiated (CAD) cells, which express primarily Nav1.7, and N1E-115, which express primarily Nav1.3. We found that, like local anesthetics, benzonatate strongly and reversibly inhibits voltage-gated Na(+) channels. Benzonatate causes both tonic and phasic inhibition. It has greater effects on channel inactivation than on activation, and its potency is much greater at depolarized potentials, indicating inactivated-state-specific effects. Na(+) currents in CAD cells and N1E-115 cells are similarly affected, indicating that benzonatate is not Na(+) channel subtype-specific. Benzonatate is a mixture of polyethoxy esters of 4-(butylamino) benzoic acid having varying degrees of hydrophobicity. We found that Na(+) currents are inhibited most potently by a benzonatate fraction containing the 9-ethoxy component. Detectable effects of benzonatate occur at concentrations as low as 0.3 μM, which has been reported in humans. We conclude that benzonatate has local anesthetic-like effects on voltage-gated sodium channels, including Nav1.7, which is a possible mechanism for cough suppression by the drug. Copyright © 2015 Elsevier Ltd. All rights reserved.
Dallas, Mark L; Atkinson, Lucy; Milligan, Carol J; Morris, Neil P; Lewis, David I; Deuchars, Susan A; Deuchars, Jim
2005-01-01
The voltage-gated potassium channel subunit Kv3.1 confers fast firing characteristics to neurones. Kv3.1b subunit immunoreactivity (Kv3.1b-IR) was widespread throughout the medulla oblongata, with labelled neurones in the gracile, cuneate and spinal trigeminal nuclei. In the nucleus of the solitary tract (NTS), Kv3.1b-IR neurones were predominantly located close to the tractus solitarius (TS) and could be GABAergic or glutamatergic. Ultrastructurally, Kv3.1b-IR was detected in NTS terminals, some of which were vagal afferents. Whole-cell current-clamp recordings from neurones near the TS revealed electrophysiological characteristics consistent with the presence of Kv3.1b subunits: short duration action potentials (4.2 ± 1.4 ms) and high firing frequencies (68.9 ± 5.3 Hz), both sensitive to application of TEA (0.5 mm) and 4-aminopyridine (4-AP; 30 μm). Intracellular dialysis of an anti-Kv3.1b antibody mimicked and occluded the effects of TEA and 4-AP in NTS and dorsal column nuclei neurones, but not in dorsal vagal nucleus or cerebellar Purkinje cells (which express other Kv3 subunits, but not Kv3.1b). Voltage-clamp recordings from outside-out patches from NTS neurones revealed an outward K+ current with the basic characteristics of that carried by Kv3 channels. In NTS neurones, electrical stimulation of the TS evoked EPSPs and IPSPs, and TEA and 4-AP increased the average amplitude and decreased the paired pulse ratio, consistent with a presynaptic site of action. Synaptic inputs evoked by stimulation of a region lacking Kv3.1b-IR neurones were not affected, correlating the presence of Kv3.1b in the TS with the pharmacological effects. PMID:15528247
Acetylcholine-activated ionic currents in parasympathetic neurons of bullfrog heart.
Tateishi, N; Kim, D K; Akaike, N
1990-05-01
1. The electrical and pharmacologic properties of acetylcholine (ACh)-induced current (IACh) were studied in the parasympathetic neurons isolated from bullfrog heart with the use of the concentration-clamp technique, which allows intracellular perfusion and rapid change of external solution within 2 ms under the single-electrode voltage-clamp condition. 2. The IACh consisted of an initial transient peak component and a successive steady-state plateau component. Both currents increased in a sigmoidal fashion with increasing ACh concentration. The dissociation constant (Kd value) and the Hill coefficient for each component were 2.2 X 10(-5) M and 1.6, respectively. 3. In the K(+)-free solution, the reversal potential (EACh) of IACh was close to the Na+ equilibrium potential (ENa). The current-voltage (I-V) relation showed inward rectification at positive potentials. 4. Nicotine mimicked only the peak component of IACh. However both peak and steady-state components were blocked nonselectively by the nicotinic blockers d-tubocurarine and hexamethonium. 5. Carbamylcholine (CCh) mimicked the steady-state component of IACh. The steady-state component was selectively inhibited by atropine at concentrations 1,000 times lower than that required for inhibition of the peak component. The steady state was blocked equally by either pirenzepine (M1 blocker) or AF-DX-116 (M2 blocker). 6. It was concluded that the IACh consisted of a peak component having double exponential activation and inactivation, mediated through the nicotinic actions, and a steady-state component having no inactivation, mediated through the muscarinic action.
Sui, Hongshu; Yi, Yaling; Yao, Jianrong; Liang, Bo; Sun, Xingshen; Hu, Shanming; Uc, Aliye; Nelson, Deborah J.; Ode, Katie Larson; Philipson, Louis H.; Engelhardt, John F.; Norris, Andrew W.
2014-01-01
Ferrets are an important emerging model of cystic fibrosis related diabetes. However, there is little documented experience in the use of advanced techniques to quantify aspects of diabetes pathophysiology in the ferret. Glycemic clamps are the gold standard technique to assess both insulin sensitivity and insulin secretion in humans and animal models of diabetes. We therefore sought to develop techniques for glycemic clamps in ferrets. To assess insulin sensitivity, we performed euglycemic hyperinsulinemic clamps in 5–6 week old ferrets in the anesthetized and conscious states. To assess insulin secretion, we performed hyperglycemic clamps in conscious ferrets. To evaluate responsiveness of ferret islet and entero-insular hormones to low glucose, a portion of the hyperglycemic clamps were followed by a hypoglycemic clamp. The euglycemic hyperinsulinemic clamps demonstrated insulin responsiveness in ferrets similar to that previously observed in humans and rats. The anesthetic isoflurane induced marked insulin resistance, whereas lipid emulsion induced mild insulin resistance. In conscious ferrets, glucose appearance was largely suppressed at 4 mU/kg/min insulin infusion, whereas glucose disposal was progressively increased at 4 and 20 mU/kg/min insulin. Hyperglycemic clamp induced first phase insulin secretion. Hypoglycemia induced a rapid diminishment of insulin, as well as a rise in glucagon and pancreatic polypeptide levels. The incretins GLP-1 and GIP were affected minimally by hyperglycemic and hypoglycemic clamp. These techniques will prove useful in better defining the pathophysiology in ferrets with cystic fibrosis related diabetes. PMID:24594704
Sui, Hongshu; Yi, Yaling; Yao, Jianrong; Liang, Bo; Sun, Xingshen; Hu, Shanming; Uc, Aliye; Nelson, Deborah J; Ode, Katie Larson; Philipson, Louis H; Engelhardt, John F; Norris, Andrew W
2014-01-01
Ferrets are an important emerging model of cystic fibrosis related diabetes. However, there is little documented experience in the use of advanced techniques to quantify aspects of diabetes pathophysiology in the ferret. Glycemic clamps are the gold standard technique to assess both insulin sensitivity and insulin secretion in humans and animal models of diabetes. We therefore sought to develop techniques for glycemic clamps in ferrets. To assess insulin sensitivity, we performed euglycemic hyperinsulinemic clamps in 5-6 week old ferrets in the anesthetized and conscious states. To assess insulin secretion, we performed hyperglycemic clamps in conscious ferrets. To evaluate responsiveness of ferret islet and entero-insular hormones to low glucose, a portion of the hyperglycemic clamps were followed by a hypoglycemic clamp. The euglycemic hyperinsulinemic clamps demonstrated insulin responsiveness in ferrets similar to that previously observed in humans and rats. The anesthetic isoflurane induced marked insulin resistance, whereas lipid emulsion induced mild insulin resistance. In conscious ferrets, glucose appearance was largely suppressed at 4 mU/kg/min insulin infusion, whereas glucose disposal was progressively increased at 4 and 20 mU/kg/min insulin. Hyperglycemic clamp induced first phase insulin secretion. Hypoglycemia induced a rapid diminishment of insulin, as well as a rise in glucagon and pancreatic polypeptide levels. The incretins GLP-1 and GIP were affected minimally by hyperglycemic and hypoglycemic clamp. These techniques will prove useful in better defining the pathophysiology in ferrets with cystic fibrosis related diabetes.
Peng, Hui; Bian, Xi-Ling; Ma, Fu-Cui; Wang, Ke-Wei
2017-09-01
The prefrontal cortex (PFC) critical for higher cognition is implicated in neuropsychiatric diseases, such as Alzheimer's disease, depression and schizophrenia. The voltage-activated Kv7/KCNQ/M-channel or M-current modulates the neuronal excitability that defines the fundamental mechanism of brain function. However, whether M-current functions to regulate the excitability of PFC neurons remains elusive. In this study, we recorded the native M-current from PFC layer V pyramidal neurons in rat brain slices and showed that it modulated the intrinsic excitability and synaptic responses of PFC pyramidal neurons. Application of a specific M-channel blocker XE991 (40 μmol/L) or opener retigabine (10 μmol/L) resulted in inhibition or activation of M-current, respectively. In the current-clamp recordings, inhibition of M-current was evidenced by the increased average spike frequency and the reduced first inter-spike interval (ISI), spike onset latency and fast afterhyperpolarization (fAHP), whereas activation of M-current caused opposite responses. Furthermore, inhibition of M-current significantly increased the amplitude of excitatory postsynaptic potentials (EPSPs) and depolarized the resting membrane potential (RMP) without affecting the miniature EPSC (mEPSC) frequency. These data demonstrate that voltage-gated neuronal Kv7/KCNQ/M-current modulates the excitability and synaptic transmission of PFC neurons, suggesting that pharmacological modulation of M-current in the PFC may exert beneficial effects on cognitive deficits implicated in the pathophysiology of neuropsychiatric disorders.
Timing discriminator using leading-edge extrapolation
Gottschalk, B.
1981-07-30
A discriminator circuit to recover timing information from slow-rising pulses by means of an output trailing edge, a fixed time after the starting corner of the input pulse, which is nearly independent of risetime and threshold setting is described. This apparatus comprises means for comparing pulses with a threshold voltage; a capacitor to be charged at a certain rate when the input signal is one-third threshold voltage, and at a lower rate when the input signal is two-thirds threshold voltage; current-generating means for charging the capacitor; means for comparing voltage capacitor with a bias voltage; a flip-flop to be set when the input pulse reaches threshold voltage and reset when capacitor voltage reaches the bias voltage; and a clamping means for discharging the capacitor when the input signal returns below one-third threshold voltage.
NASA Technical Reports Server (NTRS)
Berning, D.
1981-01-01
Circuits are described that permit measurement of fast events occurring in power semiconductors. These circuits were developed for the dynamic characterization of transistors used in inductive-load switching applications. Fast voltage clamping using vacuum diodes is discussed, and reference is made to a unique circuit that was built for performing nondestructive, reverse-bias, second-breakdown tests on transistors.
A complete dc characterization of a constant-frequency, clamped-mode, series-resonant converter
NASA Technical Reports Server (NTRS)
Tsai, Fu-Sheng; Lee, Fred C.
1988-01-01
The dc behavior of a clamped-mode series-resonant converter is characterized systematically. Given a circuit operating condition, the converter's mode of operation is determined and various circuit parameters are calculated, such as average inductor current (load current), rms inductor current, peak capacitor voltage, rms switch currents, average diode currents, switch turn-on currents, and switch turn-off currents. Regions of operation are defined, and various circuit characteristics are derived to facilitate the converter design.
Enhanced functional expression of transient outward current in hypertrophied feline myocytes.
Ten Eick, R E; Zhang, K; Harvey, R D; Bassett, A L
1993-08-01
Cardiac hypertrophy can decrease myocardial contractility and alter the electrophysiological activity of the heart. It is well documented that action potentials recorded from hypertrophied feline ventricular cells can exhibit depressed plateau voltages and prolonged durations. Similar findings have been made by others in rabbit, rat, guinea pig, and human heart. Whole-cell patch voltage-clamp studies designed to explain these changes in the action potential suggest that the only component of the membrane current recorded from feline right ventricular (RV) myocytes found to be substantially different from normal is the 4-amino-pyridine-sensitive transient outward current (I(to)). However, it was not clear if the change in I(to) could explain the changes in the action potential of hypertrophied cardiocytes, nor was it clear if these changes reflect an alteration in the electrophysiological character of the channels underlying I(to). A kinetic comparison of I(to) elicited by hypertrophied RV myocytes with that elicited by comparable normal RV myocytes previously revealed no differences, suggesting that the increased magnitude of the peak I(to) recorded from hypertrophied myocytes arises because the current density increases and not because of any alteration in the kinetic parameters governing the current. This finding suggests that in hypertrophy additional normal channels are expressed rather than a kinetically different channel subtype emerging. Investigations designed to determine if enhancement of I(to) could explain the hypertrophy-induced changes in plateau voltage and action potential duration suggest that a change in I(to) density can indeed explain the entire effect of hypertrophy on RV action potentials. If this notion is correct, the likelihood of "sudden death" in patients with myocardial hypertrophy might be decreased by a blocker selective for cardiac I(to).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bosmans, Frank; Martin-Eauclaire, Marie-France; Tytgat, Jan
2007-01-01
In general, scorpion {beta}-toxins have been well examined. However, few in-depth studies have been devoted to species selectivity and affinity comparisons on the different voltage-activated Na{sup +} channels since they have become available as cloned channels that can be studied in heterologous expression systems. As a result, their classification is largely historical and dates from early in vivo experiments on mice and cockroach and fly larvae. In this study, we aimed to provide an updated overview of selectivity and affinity of scorpion {beta}-toxins towards voltage-activated Na{sup +} channels of vertebrates or invertebrates. As pharmacological tools, we used the classic {beta}-toxinsmore » AaHIT, Css II, Css IV, Css VI and Ts VII and tested them on the neuronal vertebrate voltage-activated Na{sup +} channel, rNa{sub v}1.2a. For comparison, its invertebrate counterpart, DmNav1, was also tested. Both these channels were expressed in Xenopus laevis oocytes and the currents measured with the two-electrode voltage-clamp technique. We supplemented this data with several binding displacement studies on rat brain synaptosomes. The results lead us to propose a general classification and a novel nomenclature of scorpion {beta}-toxins based on pharmacological activity.« less
Automated Patch-Clamp Methods for the hERG Cardiac Potassium Channel.
Houtmann, Sylvie; Schombert, Brigitte; Sanson, Camille; Partiseti, Michel; Bohme, G Andrees
2017-01-01
The human Ether-a-go-go Related Gene (hERG) product has been identified as a central ion channel underlying both familial forms of elongated QT interval on the electrocardiogram and drug-induced elongation of the same QT segment. Indeed, reduced function of this potassium channel involved in the repolarization of the cardiac action potential can produce a type of life-threatening cardiac ventricular arrhythmias called Torsades de Pointes (TdP). Therefore, hERG inhibitory activity of newly synthetized molecules is a relevant structure-activity metric for compound prioritization and optimization in medicinal chemistry phases of drug discovery. Electrophysiology remains the gold standard for the functional assessment of ion channel pharmacology. The recent years have witnessed automatization and parallelization of the manual patch-clamp technique, allowing higher throughput screening on recombinant hERG channels. However, the multi-well plate format of automatized patch-clamp does not allow visual detection of potential micro-precipitation of poorly soluble compounds. In this chapter we describe bench procedures for the culture and preparation of hERG-expressing CHO cells for recording on an automated patch-clamp workstation. We also show that the sensitivity of the assay can be improved by adding a surfactant to the extracellular medium.
Zhang, Joel Z.; Yarov-Yarovoy, Vladimir; Scheuer, Todd; Karbat, Izhar; Cohen, Lior; Gordon, Dalia; Gurevitz, Michael; Catterall, William A.
2012-01-01
Activation of voltage-gated sodium (Nav) channels initiates and propagates action potentials in electrically excitable cells. β-Scorpion toxins, including toxin IV from Centruroides suffusus suffusus (CssIV), enhance activation of NaV channels. CssIV stabilizes the voltage sensor in domain II in its activated state via a voltage-sensor trapping mechanism. Amino acid residues required for the action of CssIV have been identified in the S1-S2 and S3-S4 extracellular loops of domain II. The extracellular loops of domain III are also involved in toxin action, but individual amino acid residues have not been identified. We used site-directed mutagenesis and voltage clamp recording to investigate amino acid residues of domain III that are involved in CssIV action. In the IIISS2-S6 loop, five substitutions at four positions altered voltage-sensor trapping by CssIVE15A. Three substitutions (E1438A, D1445A, and D1445Y) markedly decreased voltage-sensor trapping, whereas the other two substitutions (N1436G and L1439A) increased voltage-sensor trapping. These bidirectional effects suggest that residues in IIISS2-S6 make both positive and negative interactions with CssIV. N1436G enhanced voltage-sensor trapping via increased binding affinity to the resting state, whereas L1439A increased voltage-sensor trapping efficacy. Based on these results, a three-dimensional model of the toxin-channel interaction was developed using the Rosetta modeling method. These data provide additional molecular insight into the voltage-sensor trapping mechanism of toxin action and define a three-point interaction site for β-scorpion toxins on NaV channels. Binding of α- and β-scorpion toxins to two distinct, pseudo-symmetrically organized receptor sites on NaV channels acts synergistically to modify channel gating and paralyze prey. PMID:22761417
Sun, Qian-Quan; Dale, Nicholas
1998-01-01
In whole-cell patch clamp recordings made from non-sensory neurons acutely isolated from the spinal cord of Xenopus (stage 40–42) larvae, two forms of inhibition of the high voltage-activated (HVA) Ca2+ currents were produced by 5-HT. One was voltage dependent and associated with both slowing of the activation kinetics and shifting of the voltage dependence of the HVA currents. This inhibition was relieved by strong depolarizing prepulses. A second form of inhibition was neither associated with slowing of the activation kinetics nor relieved by depolarizing prepulses and was thus voltage independent. In all neurons examined, 5-HT (1 μM) reversibly reduced 34 ± 1.6 % (n = 102) of the HVA Ca2+ currents. In about 40 % of neurons, the inhibition was totally voltage independent. In another 5 %, the inhibition was totally voltage dependent. In the remaining neurons, inhibition was only partially (by around 40 %) relieved by a large depolarizing prepulse, suggesting that in these, the inhibition consisted of both voltage-dependent and -independent components. By using selective channel blockers, we found that 5-HT acted on both N- and P/Q-type channels. However, whereas the inhibition of P/Q-type currents was only voltage independent, the inhibition of N-type currents had both voltage-dependent and -independent components. The effects of 5-HT on HVA Ca2+ currents were mediated by 5-HT1A and 5-HT1D receptors. The 5-HT1A receptors not only preferentially caused voltage-independent inhibition, but did so by acting mainly on the ω-agatoxin-IVA-sensitive Ca2+ channels. In contrast, the 5-HT1D receptor produced both voltage-dependent and -independent inhibition and was preferentially coupled to ω-conotoxin-GVIA sensitive channels. This complexity of modulation may allow fine tuning of transmitter release and calcium signalling in the spinal circuitry of Xenopus larvae. PMID:9625870
Three types of membrane excitations in the marine diatom Coscinodiscus wailesii.
Gradmann, D; Boyd, C M
2000-05-15
Three types of electrical excitation have been investigated in the marine diatom Coscinodiscus wailesii. I: Depolarization-triggered, transient Cl(-) conductance, G(Cl)(t), followed by a transient, voltage-gated K(+) conductance, G(K), with an active state a and two inactive states i(1) and i(2) in series (a-i(1)-i(2)). II: Similar G(Cl)(t) as in Type-I but triggered by hyperpolarization; a subsequent increase of G(K) in this type is indicated but not analyzed in detail. III: Hyperpolarization-induced transient of a voltage-gated activity of an electrogenic pump (i(2)-a-i(2)), followed by G(Cl)(t) as in Type-II excitations. Type-III with pump gating is novel as such. G(Cl)(t) in all types seems to reflect the mechanism of InsP(-)(3) and Ca(2+)-mediated G(Cl)(t) in the action potential in Chara (Biskup et al., 1999). The nonlinear current-voltage-time relationships of Type-I and Type-III excitations have been recorded under voltage-clamp using single saw-tooth command voltages (voltage range: -200 to +50 mV, typical slope: +/-1 Vs(-1)). Fits of the corresponding models to the experimental data provided numerical values of the model parameters. The statistical significance of these solutions is investigated. We suggest that the original function of electrical excitability of biological membranes is related to osmoregulation which has persisted through evolution in plants, whereas the familiar and osmotically neutral action potentials in animals have evolved later towards the novel function of rapid transmission of information over long distances.
Breneman, Kathryn D; Highstein, Stephen M; Boyle, Richard D; Rabbitt, Richard D
2009-01-01
Somatic measurements of whole-cell capacitance are routinely used to understand physiologic events occurring in remote portions of cells. These studies often assume the intracellular space is voltage-clamped. We questioned this assumption in auditory and vestibular hair cells with respect to their stereocilia based on earlier studies showing that neurons, with radial dimensions similar to stereocilia, are not always isopotential under voltage-clamp. To explore this, we modeled the stereocilia as passive cables with transduction channels located at their tips. We found that the input capacitance measured at the soma changes when the transduction channels at the tips of the stereocilia are open compared to when the channels are closed. The maximum capacitance is felt with the transducer closed but will decrease as the transducer opens due to a length-dependent voltage drop along the stereocilium length. This potential drop is proportional to the intracellular resistance and stereocilium tip conductance and can produce a maximum capacitance error on the order of fF for single stereocilia and pF for the bundle.
Properties of Single K+ and Cl− Channels in Asclepias tuberosa Protoplasts 1
Schauf, Charles L.; Wilson, Kathryn J.
1987-01-01
Potassium and chloride channels were characterized in Asclepias tuberosa suspension cell derived protoplasts by patch voltage-clamp. Whole-cell currents and single channels in excised patches had linear instantaneous current-voltage relations, reversing at the Nernst potentials for K+ and Cl−, respectively. Whole cell K+ currents activated exponentially during step depolarizations, while voltage-dependent Cl− channels were activated by hyperpolarizations. Single K+ channel conductance was 40 ± 5 pS with a mean open time of 4.5 milliseconds at 100 millivolts. Potassium channels were blocked by Cs+ and tetraethylammonium, but were insensitive to 4-aminopyridine. Chloride channels had a single-channel conductance of 100 ± 17 picosiemens, mean open time of 8.8 milliseconds, and were blocked by Zn2+ and ethacrynic acid. Whole-cell Cl− currents were inhibited by abscisic acid, and were unaffected by indole-3-acetic acid and 2,4-dichlorophenoxyacetic acid. Since internal and external composition can be controlled, patch-clamped protoplasts are ideal systems for studying the role of ion channels in plant physiology and development. Images Fig. 5 PMID:16665712
Analysis of whole-cell currents by patch clamp of guinea-pig myenteric neurones in intact ganglia
Rugiero, François; Gola, Maurice; Kunze, Wolf A A; Reynaud, Jean-Claude; Furness, John B; Clerc, Nadine
2002-01-01
Whole-cell patch-clamp recordings taken from guinea-pig duodenal myenteric neurones within intact ganglia were used to determine the properties of S and AH neurones. Major currents that determine the states of AH neurones were identified and quantified. S neurones had resting potentials of −47 ± 6 mV and input resistances (Rin) of 713 ± 49 MΩ at voltages ranging from −90 to −40 mV. At more negative levels, activation of a time-independent, caesium-sensitive, inward-rectifier current (IKir) decreased Rin to 103 ± 10 MΩ. AH neurones had resting potentials of −57 ± 4 mV and Rin was 502 ± 27 MΩ. Rin fell to 194 ± 16 MΩ upon hyperpolarization. This decrease was attributable mainly to the activation of a cationic h current, Ih, and to IKir. Resting potential and Rin exhibited a low sensitivity to changes in [K+]o in both AH and S neurones. This indicates that both cells have a low background K+ permeability. The cationic current, Ih, contributed about 20 % to the resting conductance of AH neurones. It had a half-activation voltage of −72 ± 2 mV, and a voltage sensitivity of 8.2 ± 0.7 mV per e-fold change. Ih has relatively fast, voltage-dependent kinetics, with on and off time constants in the range of 50–350 ms. AH neurones had a previously undescribed, low threshold, slowly inactivating, sodium-dependent current that was poorly sensitive to TTX. In AH neurones, the post-action-potential slow hyperpolarizing current, IAHP, displayed large variation from cell to cell. IAHP appeared to be highly Ca2+ sensitive, since its activation with either membrane depolarization or caffeine (1 mm) was not prevented by perfusing the cell with 10 mm BAPTA. We determined the identity of the Ca2+ channels linked to IAHP. Action potentials of AH neurones that were elongated by TEA (10 mm) were similarly shortened and IAHP was suppressed with each of the three Ω-conotoxins GVIA, MVIIA and MVIIC (0.3–0.5 μm), but not with Ω-agatoxin IVA (0.2 μm). There was no additivity between the effects of the three conotoxins, which indicates the presence of N- but not of P/Q-type Ca2+ channels. A residual Ca2+ current, resistant to all toxins, but blocked by 0.5 mm Cd2+, could not generate IAHP. This patch-clamp study, performed on intact ganglia, demonstrates that the AH neurones of the guinea-pig duodenum are under the control of four major currents, IAHP, Ih, an N-type Ca2+ current and a slowly inactivating Na+ current. PMID:11790812
Abdullah, Newaj; Rahbar, Haider; Barod, Ravi; Dalela, Deepansh; Larson, Jeff; Johnson, Michael; Mass, Alon; Zargar, Homayoun; Kaouk, Jihad; Allaf, Mohamad; Bhayani, Sam; Stifelman, Michael; Rogers, Craig
2017-03-01
A Satinsky clamp may be a backup option for hilar clamping during robotic partial nephrectomy (RPN) if there are challenges with application of bulldog clamps, but there are potential safety concerns. We evaluate outcomes of RPN using Satinsky vs. bulldog clamps, and provide tips for safe use of the Satinsky as a backup option. Using a multi-center database, we identified 1073 patients who underwent RPN between 2006 and 2013, and had information available about method of hilar clamping (bulldog clamp vs. Satinsky clamp). Patient baseline characteristics, tumor features, and perioperative outcomes were compared between the Satinsky and bulldog clamp groups. A Satinsky clamp was used for hilar clamping in 94 (8.8 %) RPN cases, and bulldog clamps were used in 979 (91.2 %) cases. The use of a Satinsky clamp was associated with greater operative time (198 vs. 175 min, p < 0.001), estimated blood loss (EBL, 200 vs. 100 ml, p < 0.001), warm ischemia time (WIT, 20 vs. 19 min, p = 0.036), transfusion rate (12.8 vs. 4.8 %, p = 0.001), and hospital stay (3 vs. 2 days, p < 0.001). Tumor characteristics and number of renal vessels were similar between groups. There were six intraoperative complications in the Satinsky clamp group, but none were directly related to the Satinsky clamp. On multivariable analysis, the use of the Satinsky clamp was not associated with increase in intraoperative or Clavien ≥3 postoperative complications, positive surgical margin rate or percentage change in estimated glomerular filtration rate. A Satinsky clamp can be a backup option for hilar clamping during challenging RPN cases, but requires careful technique, and was rarely necessary.
Nguyen, Hung; Badie, Nima; McSpadden, Luke; Pedrotty, Dawn; Bursac, Nenad
2014-01-01
Micropatterning is a powerful technique to control cell shape and position on a culture substrate. In this chapter, we describe the method to reproducibly create large numbers of micropatterned heterotypic cell pairs with defined size, shape, and length of cell–cell contact. These cell pairs can be utilized in patch clamp recordings to quantify electrical interactions between cardiomyocytes and non-cardiomyocytes. PMID:25070342
NASA Astrophysics Data System (ADS)
Helm, P. Johannes; Reppen, Trond; Heggelund, Paul
2009-02-01
Multi Photon Laser Scanning Microscopy (MPLSM) appears today as one of the most powerful experimental tools in cellular neurophysiology, notably in studies of the functional dynamics of signal processing in single neurons. Simultaneous recording of fluorescence signals at high spatial and temporal resolution and electric signals by means of multi electrode patch clamp techniques have provided new paths for the systematic investigation of neuronal mechanisms. In particular, this approach has opened for direct studies of dendritic signal processing in neurons. We report about a setup optimized for simultaneous electrophysiological multi electrode patch clamp and multi photon laser scanning fluorescence microscopic experiments on brain slices. The microscopic system is based on a modified commercially available confocal scanning laser microscope (CLSM). From a technical and operational point of view, two developments are important: Firstly, in order to reduce the workload for the experimentalist, who in general is forced to concentrate on controlling the electrophysiological parameters during the recordings, a system of shutters has been installed together with dedicated electronic modules protecting the photo detectors against destructive light levels caused by erroneous opening or closing of microscopic light paths by the experimentalist. Secondly, the standard detection unit has been improved by installing the photomultiplier tubes (PMT) in a Peltier cooled thermal box shielding the detector from both room temperature and distortions caused by external electromagnetic fields. The electrophysiological system is based on an industrial standard multi patch clamp unit ergonomically arranged around the microscope stage. The electrophysiological and scanning processes can be time coordinated by standard trigger electronics.
NASA Astrophysics Data System (ADS)
Xue, Peng; Fu, Guicui
2017-03-01
The dynamic avalanche has a huge impact on the switching robustness of carrier stored trench bipolar transistor (CSTBT). The purpose of this work is to investigate the CSTBT's dynamic avalanche mechanism during clamped inductive turn-off transient. At first, with a Mitsubishi 600 V/150 A CSTBT and a Infineon 600 V/200 A field stop insulated gate bipolar transistor (FS-IGBT) utilized, the clamped inductive turn-off characteristics are obtained by double pulse test. The unclamped inductive switching (UIS) test is also utilized to identify the CSTBT's clamping voltage under dynamic avalanche condition. After the test data analysis, it is found that the CSTBT's dynamic avalanche is abnormal and can be triggered under much looser condition than the conventional buffer layer IGBT. The comparison between the FS-IGBT and CSTBT's experimental results implies that the CSTBT's abnormal dynamic avalanche phenomenon may be induced by the carrier storage (CS) layer. Based on the semiconductor physics, the electric field distribution and dynamic avalanche generation in the depletion region are analyzed. The analysis confirms that the CS layer is the root cause of the CSTBT's abnormal dynamic avalanche mechanism. Moreover, the CSTBT's negative gate capacitance effect is also investigated to clarify the underlying mechanism of the gate voltage bump observed in the test. In the end, the mixed-mode numerical simulation is utilized to reproduce the CSTBT's dynamic avalanche behavior. The simulation results validate the proposed dynamic avalanche mechanisms.
Anatomic partial nephrectomy: technique evolution.
Azhar, Raed A; Metcalfe, Charles; Gill, Inderbir S
2015-03-01
Partial nephrectomy provides equivalent long-term oncologic and superior functional outcomes as radical nephrectomy for T1a renal masses. Herein, we review the various vascular clamping techniques employed during minimally invasive partial nephrectomy, describe the evolution of our partial nephrectomy technique and provide an update on contemporary thinking about the impact of ischemia on renal function. Recently, partial nephrectomy surgical technique has shifted away from main artery clamping and towards minimizing/eliminating global renal ischemia during partial nephrectomy. Supported by high-fidelity three-dimensional imaging, novel anatomic-based partial nephrectomy techniques have recently been developed, wherein partial nephrectomy can now be performed with segmental, minimal or zero global ischemia to the renal remnant. Sequential innovations have included early unclamping, segmental clamping, super-selective clamping and now culminating in anatomic zero-ischemia surgery. By eliminating 'under-the-gun' time pressure of ischemia for the surgeon, these techniques allow an unhurried, tightly contoured tumour excision with point-specific sutured haemostasis. Recent data indicate that zero-ischemia partial nephrectomy may provide better functional outcomes by minimizing/eliminating global ischemia and preserving greater vascularized kidney volume. Contemporary partial nephrectomy includes a spectrum of surgical techniques ranging from conventional-clamped to novel zero-ischemia approaches. Technique selection should be tailored to each individual case on the basis of tumour characteristics, surgical feasibility, surgeon experience, patient demographics and baseline renal function.
Voltage-gated Na+ currents in human dorsal root ganglion neurons
Zhang, Xiulin; Priest, Birgit T; Belfer, Inna; Gold, Michael S
2017-01-01
Available evidence indicates voltage-gated Na+ channels (VGSCs) in peripheral sensory neurons are essential for the pain and hypersensitivity associated with tissue injury. However, our understanding of the biophysical and pharmacological properties of the channels in sensory neurons is largely based on the study of heterologous systems or rodent tissue, despite evidence that both expression systems and species differences influence these properties. Therefore, we sought to determine the extent to which the biophysical and pharmacological properties of VGSCs were comparable in rat and human sensory neurons. Whole cell patch clamp techniques were used to study Na+ currents in acutely dissociated neurons from human and rat. Our results indicate that while the two major current types, generally referred to as tetrodotoxin (TTX)-sensitive and TTX-resistant were qualitatively similar in neurons from rats and humans, there were several differences that have important implications for drug development as well as our understanding of pain mechanisms. DOI: http://dx.doi.org/10.7554/eLife.23235.001 PMID:28508747
Amyotrophic lateral sclerosis immunoglobulins increase Ca2+ currents in a motoneuron cell line.
Mosier, D R; Baldelli, P; Delbono, O; Smith, R G; Alexianu, M E; Appel, S H; Stefani, E
1995-01-01
The sporadic form of amyotrophic lateral sclerosis (ALS) is an idiopathic and eventually lethal disorder causing progressive degeneration of cortical and spinal motoneurons. Recent studies have shown that the majority of patients with sporadic ALS have serum antibodies that bind to purified L-type voltage-gated calcium channels and that antibody titer correlates with the rate of disease progression. Furthermore, antibodies purified from ALS patient sera have been found to alter the physiologic function of voltage-gated calcium channels in nonmotoneuron cell types. Using whole-cell patch-clamp techniques, immunoglobulins purified from sera of 5 of 6 patients with sporadic ALS are now shown to increase calcium currents in a hybrid motoneuron cell line, VSC4.1. These calcium currents are blocked by the polyamine funnel-web spider toxin FTX, which has previously been shown to block Ca2+ currents and evoked transmitter release at mammalian motoneuron terminals. These data provide additional evidence linking ALS to an autoimmune process and suggest that antibody-induced increases in calcium entry through voltage-gated calcium channels may occur in motoneurons in this disease, with possible deleterious effects in susceptible neurons.
Electrostatic actuation and electromechanical switching behavior of one-dimensional nanostructures.
Subramanian, Arunkumar; Alt, Andreas R; Dong, Lixin; Kratochvil, Bradley E; Bolognesi, Colombo R; Nelson, Bradley J
2009-10-27
We report on the electromechanical actuation and switching performance of nanoconstructs involving doubly clamped, individual multiwalled carbon nanotubes. Batch-fabricated, three-state switches with low ON-state voltages (6.7 V average) are demonstrated. A nanoassembly architecture that permits individual probing of one device at a time without crosstalk from other nanotubes, which are originally assembled in parallel, is presented. Experimental investigations into device performance metrics such as hysteresis, repeatability and failure modes are presented. Furthermore, current-driven shell etching is demonstrated as a tool to tune the nanomechanical clamping configuration, stiffness, and actuation voltage of fabricated devices. Computational models, which take into account the nonlinearities induced by stress-stiffening of 1-D nanowires at large deformations, are presented. Apart from providing accurate estimates of device performance, these models provide new insights into the extension of stable travel range in electrostatically actuated nanowire-based constructs as compared to their microscale counterparts.
Mathematical modeling of electrical activity of uterine muscle cells.
Rihana, Sandy; Terrien, Jeremy; Germain, Guy; Marque, Catherine
2009-06-01
The uterine electrical activity is an efficient parameter to study the uterine contractility. In order to understand the ionic mechanisms responsible for its generation, we aimed at building a mathematical model of the uterine cell electrical activity based upon the physiological mechanisms. First, based on the voltage clamp experiments found in the literature, we focus on the principal ionic channels and their cognate currents involved in the generation of this electrical activity. Second, we provide the methodology of formulations of uterine ionic currents derived from a wide range of electrophysiological data. The model is validated step by step by comparing simulated voltage-clamp results with the experimental ones. The model reproduces successfully the generation of single spikes or trains of action potentials that fit with the experimental data. It allows analyzing ionic channels implications. Likewise, the calcium-dependent conductance influences significantly the cellular oscillatory behavior.
How the early voltage clamp studies of José del Castillo inform "modern" neuroscience.
Zottoli, Steven J
2012-10-01
The description of ionic currents that flow across the membrane of the squid giant axon during an action potential sparked an interest in determining whether there were similar currents in vertebrates. The preparation of choice was the node of Ranvier in single myelinated fibers in frog. José del Castillo spent 3 years on the United States mainland from 1956 to 1959. During that time, he collaborated with Jerome Y. Lettvin and John W. Moore. I discuss how these individuals met one another and some of their scientific discoveries using the voltage clamp to study squid giant axons and frog nodes. Much of this work was conducted at the Marine Biological Laboratory in Woods Hole, MA, and I attempt to convey a sense of the unique scientific "melting pot" that existed at the Marine Biological Laboratory and the broader effect that del Castillo had on "modern" neuroscience.
E-beam high voltage switching power supply
Shimer, D.W.; Lange, A.C.
1996-10-15
A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules. 5 figs.
E-beam high voltage switching power supply
Shimer, Daniel W.; Lange, Arnold C.
1996-01-01
A high-power power supply produces a controllable, constant high voltage put under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules.
Shimer, D.W.; Lange, A.C.
1995-05-23
A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules. 5 Figs.
Shimer, Daniel W.; Lange, Arnold C.
1995-01-01
A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules.
Microfabricated Patch Clamp Electrodes for Improved Ion Channel Protein Measurements
NASA Astrophysics Data System (ADS)
Klemic, James; Klemic, Kathryn; Reed, Mark; Sigworth, Frederick
2002-03-01
Ion channels are trans-membrane proteins that underlie many cell functions including hormone and neurotransmitter release, muscle contraction and cell signaling cascades. Ion channel proteins are commonly characterized via the patch clamp method in which an extruded glass tube containing ionic solution, manipulated by an expert technician, is brought into contact with a living cell to record ionic current through the cell membrane. Microfabricated planar patch electrodes, micromolded in the silicone elastomer poly-dimethylsiloxane (PDMS) from microlithographically patterned structures, have been developed that improve on this method. Microfabrication techniques allow arrays of patch electrodes to be fabricated, increasing the throughput of the measurement technique. Planar patch electrodes readily allow the automation of cell sealing, further increasing throughput. Microfabricated electrode arrays may be readily integrated with microfluidic structures to allow fast, in situ solution exchange. Miniaturization of the electrode geometry should increase both the signal to noise and the bandwidth of the measurement. Microfabricated patch electrode arrays have been fabricated and measurements have been taken.
Outside-out "sniffer-patch" clamp technique for in situ measures of neurotransmitter release.
Muller-Chrétien, Emilie
2014-01-01
The mechanism underlying neurotransmitter release is a critical research domain for the understanding of neuronal network function; however, few techniques are available for the direct detection and measurement of neurotransmitter release. To date, the sniffer-patch clamp technique is mainly used to investigate these mechanisms from individual cultured cells. In this study, we propose to adapt the sniffer-patch clamp technique to in situ detection of neurosecretion. Using outside-out patches from donor cells as specific biosensors plunged in acute cerebral slices, this technique allows for proper detection and quantification of neurotransmitter release at the level of the neuronal network.
hERG K+ channel-associated cardiac effects of the antidepressant drug desipramine.
Staudacher, Ingo; Wang, Lu; Wan, Xiaoping; Obers, Sabrina; Wenzel, Wolfgang; Tristram, Frank; Koschny, Ronald; Staudacher, Kathrin; Kisselbach, Jana; Koelsch, Patrick; Schweizer, Patrick A; Katus, Hugo A; Ficker, Eckhard; Thomas, Dierk
2011-02-01
Cardiac side effects of antidepressant drugs are well recognized. Adverse effects precipitated by the tricyclic drug desipramine include prolonged QT intervals, torsade de pointes tachycardia, heart failure, and sudden cardiac death. QT prolongation has been primarily attributed to acute blockade of hERG/I(Kr) currents. This study was designed to provide a more complete picture of cellular effects associated with desipramine. hERG channels were expressed in Xenopus laevis oocytes and human embryonic kidney (HEK 293) cells, and potassium currents were recorded using patch clamp and two-electrode voltage clamp electrophysiology. Ventricular action potentials were recorded from guinea pig cardiomyocytes. Protein trafficking and cell viability were evaluated in HEK 293 cells and in HL-1 mouse cardiomyocytes by immunocytochemistry, Western blot analysis, or colorimetric MTT assay, respectively. We found that desipramine reduced hERG currents by binding to a receptor site inside the channel pore. hERG protein surface expression was reduced after short-term treatment, revealing a previously unrecognized mechanism. When long-term effects were studied, forward trafficking was impaired and hERG currents were decreased. Action potential duration was prolonged upon acute and chronic desipramine exposure. Finally, desipramine triggered apoptosis in cells expressing hERG channels. Desipramine exerts at least four different cellular effects: (1) direct hERG channel block, (2) acute reduction of hERG surface expression, (3) chronic disruption of hERG trafficking, and (4) induction of apoptosis. These data highlight the complexity of hERG-associated drug effects.
Routh, Brandy N; Rathour, Rahul K; Baumgardner, Michael E; Kalmbach, Brian E; Johnston, Daniel; Brager, Darrin H
2017-07-01
Layer 2/3 neurons of the prefrontal cortex display higher gain of somatic excitability, responding with a higher number of action potentials for a given stimulus, in fmr1 -/y mice. In fmr1 -/y L2/3 neurons, action potentials are taller, faster and narrower. Outside-out patch clamp recordings revealed that the maximum Na + conductance density is higher in fmr1 -/y L2/3 neurons. Measurements of three biophysically distinct K + currents revealed a depolarizing shift in the activation of a rapidly inactivating (A-type) K + conductance. Realistic neuronal simulations of the biophysical observations recapitulated the elevated action potential and repetitive firing phenotype. Fragile X syndrome is the most common form of inherited mental impairment and autism. The prefrontal cortex is responsible for higher order cognitive processing, and prefrontal dysfunction is believed to underlie many of the cognitive and behavioural phenotypes associated with fragile X syndrome. We recently demonstrated that somatic and dendritic excitability of layer (L) 5 pyramidal neurons in the prefrontal cortex of the fmr1 -/y mouse is significantly altered due to changes in several voltage-gated ion channels. In addition to L5 pyramidal neurons, L2/3 pyramidal neurons play an important role in prefrontal circuitry, integrating inputs from both lower brain regions and the contralateral cortex. Using whole-cell current clamp recording, we found that L2/3 pyramidal neurons in prefrontal cortex of fmr1 -/y mouse fired more action potentials for a given stimulus compared with wild-type neurons. In addition, action potentials in fmr1 -/y neurons were significantly larger, faster and narrower. Voltage clamp of outside-out patches from L2/3 neurons revealed that the transient Na + current was significantly larger in fmr1 -/y neurons. Furthermore, the activation curve of somatic A-type K + current was depolarized. Realistic conductance-based simulations revealed that these biophysical changes in Na + and K + channel function could reliably reproduce the observed increase in action potential firing and altered action potential waveform. These results, in conjunction with our prior findings on L5 neurons, suggest that principal neurons in the circuitry of the medial prefrontal cortex are altered in distinct ways in the fmr1 -/y mouse and may contribute to dysfunctional prefrontal cortex processing in fragile X syndrome. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
Fadool, D. A.; Wachowiak, M.; Brann, J. H.
2011-01-01
Summary The electrophysiological basis of chemical communication in the specialized olfactory division of the vomeronasal (VN) organ is poorly understood. In total, 198 patch-clamp recordings were made from 42 animals (Sternotherus odoratus, the stinkpot/musk turtle) to study the electrically and chemically activated properties of VN neurons. The introduction of tetramethylrhodamine-conjugated dextran into the VN orifice permitted good visualization of the vomeronasal neural epithelium prior to dissociating it into single neurons. Basic electrical properties of the neurons were measured (resting potential, −54.5±2.7 mV, N=11; input resistance, 6.7±1.4GΩ, N=25; capacitance, 4.2±0.3 pF, N=22; means ± S.E.M.). The voltage-gated K+ current inactivation rate was significantly slower in VN neurons from males than in those from females, and K+ currents in males were less sensitive (greater Ki) to tetraethylammonium. Vomeronasal neurons were held at a holding potential of −60 mV and tested for their response to five natural chemicals, female urine, male urine, female musk, male musk and catfish extract. Of the 90 VN neurons tested, 33 (34 %) responded to at least one of the five compounds. The peak amplitude of chemically evoked currents ranged from 4 to 180 pA, with two-thirds of responses less than 25 pA. Urine-evoked currents were of either polarity, whereas musk and catfish extract always elicited only inward currents. Urine applied to neurons harvested from female animals evoked currents that were 2–3 times larger than those elicited from male neurons. Musk-evoked inward currents were three times the magnitude of urine-or catfish-extract-evoked inward currents. The calculated breadth of responsiveness for neurons presented with this array of five chemicals indicated that the mean response spectrum of the VN neurons is narrow (H metric 0.11). This patch-clamp study indicates that VN neurons exhibit sexual dimorphism in function and specificity in response to complex natural chemicals. PMID:11815645
Fadool, D A; Wachowiak, M; Brann, J H
2001-12-01
The electrophysiological basis of chemical communication in the specialized olfactory division of the vomeronasal (VN) organ is poorly understood. In total, 198 patch-clamp recordings were made from 42 animals (Sternotherus odoratus, the stinkpot/musk turtle) to study the electrically and chemically activated properties of VN neurons. The introduction of tetramethylrhodamine-conjugated dextran into the VN orifice permitted good visualization of the vomeronasal neural epithelium prior to dissociating it into single neurons. Basic electrical properties of the neurons were measured (resting potential, -54.5 +/- 2.7 mV, N=11; input resistance, 6.7 +/- 1.4 G Omega, N=25; capacitance, 4.2 +/- 0.3 pF, N=22; means +/- S.E.M.). The voltage-gated K(+) current inactivation rate was significantly slower in VN neurons from males than in those from females, and K(+) currents in males were less sensitive (greater K(i)) to tetraethylammonium. Vomeronasal neurons were held at a holding potential of -60 mV and tested for their response to five natural chemicals, female urine, male urine, female musk, male musk and catfish extract. Of the 90 VN neurons tested, 33 (34 %) responded to at least one of the five compounds. The peak amplitude of chemically evoked currents ranged from 4 to 180 pA, with two-thirds of responses less than 25 pA. Urine-evoked currents were of either polarity, whereas musk and catfish extract always elicited only inward currents. Urine applied to neurons harvested from female animals evoked currents that were 2-3 times larger than those elicited from male neurons. Musk-evoked inward currents were three times the magnitude of urine- or catfish-extract-evoked inward currents. The calculated breadth of responsiveness for neurons presented with this array of five chemicals indicated that the mean response spectrum of the VN neurons is narrow (H metric 0.11). This patch-clamp study indicates that VN neurons exhibit sexual dimorphism in function and specificity in response to complex natural chemicals.iol
Rod electrical coupling is controlled by a circadian clock and dopamine in mouse retina
Jin, Nan Ge; Chuang, Alice Z; Masson, Philippe J; Ribelayga, Christophe P
2015-01-01
Key points Rod photoreceptors play a key role in vision in dim light; in the mammalian retina, although rods are anatomically connected or coupled by gap junctions, a type of electrical synapse, the functional importance and regulation of rod coupling has remained elusive. We have developed a new technique in the mouse: perforated patch-clamp recording of rod inner segments in isolated intact retinae maintained by superfusion. We find that rod electrical coupling is controlled by a circadian clock and dopamine, and is weak during the day and stronger at night. The results also indicate that the signal-to-noise ratio for a dim light response is increased at night because of coupling. Our observations will provide a framework for understanding the daily variations in human vision as well as the basis of specific retinal malfunctions. Abstract Rod single-photon responses are critical for vision in dim light. Electrical coupling via gap junction channels shapes the light response properties of vertebrate photoreceptors, but the regulation of rod coupling and its impact on the single-photon response have remained unclear. To directly address these questions, we developed a perforated patch-clamp recording technique and recorded from single rod inner segments in isolated intact neural mouse retinae, maintained by superfusion. Experiments were conducted at different times of the day or under constant environmental conditions, at different times across the circadian cycle. We show that rod electrical coupling is regulated by a circadian clock and dopamine, so that coupling is weak during the day and strong at night. Altogether, patch-clamp recordings of single-photon responses in mouse rods, tracer coupling, receptive field measurements and pharmacological manipulations of gap junction and dopamine receptor activity provide compelling evidence that rod coupling is modulated in a circadian manner. These data are consistent with computer modelling. At night, single-photon responses are smaller due to coupling, but the signal-to-noise ratio for a dim (multiphoton) light response is increased at night because of signal averaging between coupled rods. PMID:25616058
Albarado-Ibañez, Alondra; Avelino-Cruz, José Everardo; Velasco, Myrian; Torres-Jácome, Julián; Hiriart, Marcia
2013-01-01
In the last ten years, the incidences of metabolic syndrome and supraventricular arrhythmias have greatly increased. The metabolic syndrome is a cluster of alterations, which include obesity, hypertension, hypertriglyceridemia, glucose intolerance and insulin resistance, that increase the risk of developing, among others, atrial and nodal arrhythmias. The aim of this study is to demonstrate that metabolic syndrome induces electrical remodeling of the sinus node and produces arrhythmias. We induced metabolic syndrome in 2-month-old male Wistar rats by administering 20% sucrose in the drinking water. Eight weeks later, the rats were anesthetized and the electrocardiogram was recorded, revealing the presence of arrhythmias only in treated rats. Using conventional microelectrode and voltage clamp techniques, we analyzed the electrical activity of the sinoatrial node. We observed that in the sinoatrial node of “metabolic syndrome rats”, compared to controls, the spontaneous firing of all cells decreased, while the slope of the diastolic depolarization increased only in latent pacemaker cells. Accordingly, the pacemaker currents If and Ist increased. Furthermore, histological analysis showed a large amount of fat surrounding nodal cardiomyocytes and a rise in the sympathetic innervation. Finally, Poincaré plot denoted irregularity in the R-R and P-P ECG intervals, in agreement with the variability of nodal firing potential recorded in metabolic syndrome rats. We conclude that metabolic syndrome produces a dysfunction SA node by disrupting normal architecture and the electrical activity, which could explain the onset of arrhythmias in rats. PMID:24250786
Allosteric modulation of alpha4beta2 nicotinic acetylcholine receptors by HEPES✩
Weltzin, Maegan M; Huang, Yanzhou; Schulte, Marvin K
2013-01-01
A number of new positive allosteric modulators (PAMs) have been reported that enhance responses of neuronal alpha7 and alpha4beta2 nicotinic acetylcholine receptor subtypes to orthosteric ligands. PAMs represent promising new leads for the development of therapeutic agents for disorders involving alterations in nicotinic neurotransmission including Autism, Alzheimer's and Parkinson's disease. During our recent studies of alpha4beta2 PAMs, we identified a novel effect of 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES). The effects of HEPES were evaluated in a phosphate buffered recording solution using two-electrode voltage clamp techniques and alpha4beta2 and alpha7 nicotinic acetylcholine receptor subtypes expressed in Xenopus laevis oocytes. Acetylcholine induced responses of high-sensitivity alpha4beta2 receptors were potentiated 190% by co-exposure to HEPES. Responses were inhibited at higher concentrations (bell-shaped concentration/response curve). Coincidentally, at concentrations of HEPES typically used in oocyte recording (5–10 mM), the potentiating effects of HEPES are matched by its inhibitory effects, thus producing no net effect. Mutagenesis results suggest HEPES potentiates the high-sensitivity stoichiometry of the alpha4beta2 receptors through action at the beta2+/beta2− interface and is dependent on residue beta2D218. HEPES did not potentiate low-sensitivity alpha4beta2 receptors and did not produce any observable effect on acetylcholine induced responses on alpha7 nicotinic acetylcholine receptors. PMID:22732654
Allosteric modulation of alpha4beta2 nicotinic acetylcholine receptors by HEPES.
Weltzin, Maegan M; Huang, Yanzhou; Schulte, Marvin K
2014-06-05
A number of new positive allosteric modulators (PAMs) have been reported that enhance responses of neuronal alpha7 and alpha4beta2 nicotinic acetylcholine receptor subtypes to orthosteric ligands. PAMs represent promising new leads for the development of therapeutic agents for disorders involving alterations in nicotinic neurotransmission including Autism, Alzheimer's and Parkinson's disease. During our recent studies of alpha4beta2 PAMs, we identified a novel effect of 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES). The effects of HEPES were evaluated in a phosphate buffered recording solution using two-electrode voltage clamp techniques and alpha4beta2 and alpha7 nicotinic acetylcholine receptor subtypes expressed in Xenopus laevis oocytes. Acetylcholine induced responses of high-sensitivity alpha4beta2 receptors were potentiated 190% by co-exposure to HEPES. Responses were inhibited at higher concentrations (bell-shaped concentration/response curve). Coincidentally, at concentrations of HEPES typically used in oocyte recording (5-10mM), the potentiating effects of HEPES are matched by its inhibitory effects, thus producing no net effect. Mutagenesis results suggest HEPES potentiates the high-sensitivity stoichiometry of the alpha4beta2 receptors through action at the beta2+/beta2- interface and is dependent on residue beta2D218. HEPES did not potentiate low-sensitivity alpha4beta2 receptors and did not produce any observable effect on acetylcholine induced responses on alpha7 nicotinic acetylcholine receptors. Copyright © 2012 Elsevier B.V. All rights reserved.
Albarado-Ibañez, Alondra; Avelino-Cruz, José Everardo; Velasco, Myrian; Torres-Jácome, Julián; Hiriart, Marcia
2013-01-01
In the last ten years, the incidences of metabolic syndrome and supraventricular arrhythmias have greatly increased. The metabolic syndrome is a cluster of alterations, which include obesity, hypertension, hypertriglyceridemia, glucose intolerance and insulin resistance, that increase the risk of developing, among others, atrial and nodal arrhythmias. The aim of this study is to demonstrate that metabolic syndrome induces electrical remodeling of the sinus node and produces arrhythmias. We induced metabolic syndrome in 2-month-old male Wistar rats by administering 20% sucrose in the drinking water. Eight weeks later, the rats were anesthetized and the electrocardiogram was recorded, revealing the presence of arrhythmias only in treated rats. Using conventional microelectrode and voltage clamp techniques, we analyzed the electrical activity of the sinoatrial node. We observed that in the sinoatrial node of "metabolic syndrome rats", compared to controls, the spontaneous firing of all cells decreased, while the slope of the diastolic depolarization increased only in latent pacemaker cells. Accordingly, the pacemaker currents If and Ist increased. Furthermore, histological analysis showed a large amount of fat surrounding nodal cardiomyocytes and a rise in the sympathetic innervation. Finally, Poincaré plot denoted irregularity in the R-R and P-P ECG intervals, in agreement with the variability of nodal firing potential recorded in metabolic syndrome rats. We conclude that metabolic syndrome produces a dysfunction SA node by disrupting normal architecture and the electrical activity, which could explain the onset of arrhythmias in rats.
The transport systems of Ventricaria ventricosa: hypotonic and hypertonic turgor regulation.
Bisson, M A; Beilby, M J
2002-11-01
The time course of hypertonic and hypotonic turgor regulation was studied in Ventricaria (Valonia) using pressure probe and I/V(current-voltage) analysis. Of 11 cells, 9 exhibited hypertonic turgor regulation, ranging from 100% regulation in 150 min to 14% regulation (14% recovery of the decrease in turgor) in 314 min. Some cells began regulating immediately, others took up to 90 min to begin. The resting PD (potential difference) became more positive in most cells. The I/V characteristics became more nonlinear with high resistance between -150 and -20 mV and negative conductance region near -70 mV. Prolonged (16 sec) voltage clamps to negative levels (-100 to -150 mV) showed progressively more rapid current turn-off, but subsequent I/V characteristics were not affected. Clamping to +150 mV, however, abolished the high conductance between -50 and +100 mV to yield a uniform high resistance I/V characteristic, similar to that in high [K+]o. Decreasing illumination from 2.02 micromol sec(-1) m(-2) to 0.5 micromol sec(-1)1 m(-2) had a similar effect. Two out of a total of three cells exhibited hypotonic turgor regulation. Both cells started regulating within minutes and achieved near 50% regulation within 50 min. The PD became more negative. The I/V curves exhibited high resistance between +50 and +150 mV. The characteristics were similar to those in cells exposed to low [K+]o. Prolonged voltage clamps to both negative and positive levels showed slow current increase. Decreased illumination increased the membrane resistance.
Zahanich, Ihor; Graf, Eva M; Heubach, Jürgen F; Hempel, Ute; Boxberger, Sabine; Ravens, Ursula
2005-09-01
We used the patch-clamp technique and RT-PCR to study the molecular and functional expression of VOCCs in undifferentiated hMSCs and in cells undergoing osteogenic differentiation. L-type Ca2+ channel blocker nifedipine did not influence alkaline phosphatase activity, calcium, and phosphate accumulation of hMSCs during osteogenic differentiation. This study suggests that osteogenic differentiation of hMSCs does not require L-type Ca2+ channel function. During osteogenic differentiation, mesenchymal stem cells from human bone marrow (hMSCs) must adopt the calcium handling of terminally differentiated osteoblasts. There is evidence that voltage-operated calcium channels (VOCCs), including L-type calcium channels, are involved in regulation of osteoblast function. We therefore studied whether VOCCs play a critical role during osteogenic differentiation of hMSCs. Osteogenic differentiation was induced in hMSCs cultured in maintenance medium (MM) by addition of ascorbate, beta-glycerophosphate, and dexamethasone (ODM) and was assessed by measuring alkaline phosphatase activity, expression of osteopontin, osteoprotegerin, RANKL, and mineralization. Expression of Ca2+ channel alpha1 subunits was shown by semiquantitative or single cell RT-PCR. Voltage-activated calcium currents of hMSCs were measured with the whole cell voltage-clamp technique. mRNA for the pore-forming alpha1C and alpha1G subunits of the L-type and T-type Ca2+ channels, respectively, was found in comparable amounts in cells cultured in MM or ODM. The limitation of L-type Ca2+ currents to a subpopulation of hMSCs was confirmed by single cell RT-PCR, where mRNA for the alpha1C subunits was detectable in only 50% of the cells cultured in MM. Dihydropyridine-sensitive L-type Ca2+ currents were found in 13% of cells cultured in MM and in 12% of the cells cultured in ODM. Under MM and ODM culture conditions, the cells positive for L-type Ca2+ currents were significantly larger than cells without Ca2+ currents as deduced from membrane capacitance; thus, current densities were comparable. Addition of the L-type Ca2+ channel blocker nifedipine to the culture media did not influence alkaline phosphatase activity and the extent of mineralization. These results suggest that, in the majority of hMSCs, Ca2+ entry through the plasma membrane is mediated by some channels other than VOCCs, and blockade of the L-type Ca2+ channels does not affect early osteogenic differentiation of hMSCs.
Valdés-Baizabal, Catalina; Soto, Enrique; Vega, Rosario
2015-01-01
The cochlear inner hair cells synapse onto type I afferent terminal dendrites, constituting the main afferent pathway for auditory information flow. This pathway receives central control input from the lateral olivocochlear efferent neurons that release various neurotransmitters, among which dopamine (DA) plays a salient role. DA receptors activation exert a protective role in the over activation of the afferent glutamatergic synapses, which occurs when an animal is exposed to intense sound stimuli or during hypoxic events. However, the mechanism of action of DA at the cellular level is still not completely understood. In this work, we studied the actions of DA and its receptor agonists and antagonists on the voltage-gated sodium current (INa) in isolated cochlear afferent neurons of the rat to define the mechanisms of dopaminergic control of the afferent input in the cochlear pathway. Experiments were performed using the voltage and current clamp techniques in the whole-cell configuration in primary cultures of cochlear spiral ganglion neurons (SGNs). Recordings of the INa showed that DA receptor activation induced a significant inhibition of the peak current amplitude, leading to a significant decrease in cell excitability. Inhibition of the INa was produced by a phosphorylation of the sodium channels as shown by the use of phosphatase inhibitor that produced an inhibition analogous to that caused by DA receptor activation. Use of specific agonists and antagonists showed that inhibitory action of DA was mediated both by activation of D1- and D2-like DA receptors. The action of the D1- and D2-like receptors was shown to be mediated by a Gαs/AC/cAMP/PKA and Gαq/PLC/PKC pathways respectively. These results showed that DA receptor activation constitutes a significant modulatory input to SGNs, effectively modulating their excitability and information flow in the auditory pathway.
Jiang, Shu-Xia; Li, Qian; Wang, Xiao-Han; Li, Fang; Wang, Zhong-Feng
2013-08-25
Activation of cannabinoid CB1 receptors (CB1Rs) regulates a variety of physiological functions in the vertebrate retina through modulating various types of ion channels. The aim of the present study was to investigate the effects of this receptor on cell excitability of rat retinal ganglion cells (RGCs) in retinal slices using whole-cell patch-clamp techniques. The results showed that under current-clamped condition perfusing WIN55212-2 (WIN, 5 μmol/L), a CB1R agonist, did not significantly change the spontaneous firing frequency and resting membrane potential of RGCs. In the presence of cocktail synaptic blockers, including excitatory postsynaptic receptor blockers CNQX and D-APV, and inhibitory receptor blockers bicuculline and strychnine, perfusion of WIN (5 μmol/L) hardly changed the frequencies of evoked action potentials by a series of positive current injection (from +10 to +100 pA). Phase-plane plot analysis showed that both average threshold voltage for triggering action potential and delay time to reach threshold voltage were not affected by WIN. However, WIN significantly decreased +dV/dtmax and -dV/dtmax of action potentials, suggestive of reduced rising and descending velocities of action potentials. The effects of WIN were reversed by co-application of SR141716, a CB1R selective antagonist. Moreover, WIN did not influence resting membrane potential of RGCs with synaptic inputs being blocked. These results suggest that activation of CB1Rs may regulate intrinsic excitability of rat RGCs through modulating evoked action potentials.
Sakata, Souhei; Jinno, Yuka; Kawanabe, Akira; Okamura, Yasushi
2016-01-01
The cytoplasmic region of voltage-sensing phosphatase (VSP) derives the voltage dependence of its catalytic activity from coupling to a voltage sensor homologous to that of voltage-gated ion channels. To assess the conformational changes in the cytoplasmic region upon activation of the voltage sensor, we genetically incorporated a fluorescent unnatural amino acid, 3-(6-acetylnaphthalen-2-ylamino)-2-aminopropanoic acid (Anap), into the catalytic region of Ciona intestinalis VSP (Ci-VSP). Measurements of Anap fluorescence under voltage clamp in Xenopus oocytes revealed that the catalytic region assumes distinct conformations dependent on the degree of voltage-sensor activation. FRET analysis showed that the catalytic region remains situated beneath the plasma membrane, irrespective of the voltage level. Moreover, Anap fluorescence from a membrane-facing loop in the C2 domain showed a pattern reflecting substrate turnover. These results indicate that the voltage sensor regulates Ci-VSP catalytic activity by causing conformational changes in the entire catalytic region, without changing their distance from the plasma membrane. PMID:27330112
Sakata, Souhei; Jinno, Yuka; Kawanabe, Akira; Okamura, Yasushi
2016-07-05
The cytoplasmic region of voltage-sensing phosphatase (VSP) derives the voltage dependence of its catalytic activity from coupling to a voltage sensor homologous to that of voltage-gated ion channels. To assess the conformational changes in the cytoplasmic region upon activation of the voltage sensor, we genetically incorporated a fluorescent unnatural amino acid, 3-(6-acetylnaphthalen-2-ylamino)-2-aminopropanoic acid (Anap), into the catalytic region of Ciona intestinalis VSP (Ci-VSP). Measurements of Anap fluorescence under voltage clamp in Xenopus oocytes revealed that the catalytic region assumes distinct conformations dependent on the degree of voltage-sensor activation. FRET analysis showed that the catalytic region remains situated beneath the plasma membrane, irrespective of the voltage level. Moreover, Anap fluorescence from a membrane-facing loop in the C2 domain showed a pattern reflecting substrate turnover. These results indicate that the voltage sensor regulates Ci-VSP catalytic activity by causing conformational changes in the entire catalytic region, without changing their distance from the plasma membrane.
Variable-speed wind power system with improved energy capture via multilevel conversion
Erickson, Robert W.; Al-Naseem, Osama A.; Fingersh, Lee Jay
2005-05-31
A system and method for efficiently capturing electrical energy from a variable-speed generator are disclosed. The system includes a matrix converter using full-bridge, multilevel switch cells, in which semiconductor devices are clamped to a known constant DC voltage of a capacitor. The multilevel matrix converter is capable of generating multilevel voltage wave waveform of arbitrary magnitude and frequencies. The matrix converter can be controlled by using space vector modulation.
Martin, Gilles; O’Connell, Robert J.; Pietrzykowski, Andrzej Z.; Treistman, Steven N.; Ethier, Michael F.; Madison, J. Mark
2014-01-01
Large-conductance, calcium-activated potassium (BKCa) channels are regulated by voltage and near-membrane calcium concentrations and are determinants of membrane potential and excitability in airway smooth muscle cells. Since the T helper–2 (Th2) cytokine, interleukin (IL)-4, is an important mediator of airway inflammation, we investigated whether IL-4 rapidly regulated BKCa activity in normal airway smooth muscle cells. On-cell voltage clamp recordings were made on subconfluent, cultured human bronchial smooth muscle cells (HBSMC). Interleukin-4 (50 ng ml−1), IL-13 (50 ng ml−1) or histamine (10 μm) was added to the bath during the recordings. Immunofluorescence studies with selective antibodies against the α and β1 subunits of BKCa were also performed. Both approaches demonstrated that HBSMC membranes contained large-conductance channels (>200 pS) with both calcium and voltage sensitivity, all of which is characteristic of the BKCa channel. Histamine caused a rapid increase in channel activity, as expected. A new finding was that perfusion with IL-4 stimulated rapid, large increases in BKCa channel activity (77.2 ± 63.3-fold increase, P < 0.05, n = 18). This large potentiation depended on the presence of external calcium. In contrast, IL-13 (50 ng ml−1) had little effect on BKCa channel activity, but inhibited the effect of IL-4. Thus, HBSMC contain functional BKCa channels whose activity is rapidly potentiated by the cytokine, IL-4, but not by IL-13.These findings are consistent with a model in which IL-4 rapidly increases near-membrane calcium concentrations to regulate BKCa activity. PMID:18403443
Membrane voltage changes in passive dendritic trees: a tapering equivalent cylinder model.
Poznański, R R
1988-01-01
An exponentially tapering equivalent cylinder model is employed in order to approximate the loss of the dendritic trunk parameter observed from anatomical data on apical and basilar dendrites of CA1 and CA3 hippocampal pyramidal neurons. This model allows dendritic trees with a relative paucity of branching to be treated. In particular, terminal branches are not required to end at the same electrotonic distance. The Laplace transform method is used to obtain analytic expressions for the Green's function corresponding to an instantaneous pulse of current injected at a single point along a tapering equivalent cylinder with sealed ends. The time course of the voltage in response to an arbitrary input is computed using the Green's function in a convolution integral. Examples of current input considered are (1) an infinitesimally brief (Dirac delta function) pulse and (2) a step pulse. It is demonstrated that inputs located on a tapering equivalent cylinder are more effective at the soma than identically placed inputs on a nontapering equivalent cylinder. Asymptotic solutions are derived to enable the voltage response behaviour over both relatively short and long time periods to be analysed. Semilogarithmic plots of these solutions provide a basis for estimating the membrane time constant tau m from experimental transients. Transient voltage decrement from a clamped soma reveals that tapering tends to reduce the error associated with inadequate voltage clamping of the dendritic membrane. A formula is derived which shows that tapering tends to increase the estimate of the electrotonic length parameter L.
1991-01-01
Depolarization-activated outward K+ currents in isolated adult rat ventricular myocytes were characterized using the whole-cell variation of the patch-clamp recording technique. During brief depolarizations to potentials positive to -40 mV, Ca(2+)-independent outward K+ currents in these cells rise to a transient peak, followed by a slower decay to an apparent plateau. The analyses completed here reveal that the observed outward current waveforms result from the activation of two kinetically distinct voltage-dependent K+ currents: one that activates and inactivates rapidly, and one that activates and inactivates slowly, on membrane depolarization. These currents are referred to here as Ito (transient outward) and IK (delayed rectifier), respectively, because their properties are similar (although not identical) to these K+ current types in other cells. Although the voltage dependences of Ito and IK activation are similar, Ito activates approximately 10-fold and inactivates approximately 30-fold more rapidly than IK at all test potentials. In the composite current waveforms measured during brief depolarizations, therefore, the peak current predominantly reflects Ito, whereas IK is the primary determinant of the plateau. There are also marked differences in the voltage dependences of steady-state inactivation of these two K+ currents: IK undergoes steady-state inactivation at all potentials positive to -120 mV, and is 50% inactivated at -69 mV; Ito, in contrast, is insensitive to steady-state inactivation at membrane potentials negative to -50 mV. In addition, Ito recovers from steady-state inactivation faster than IK: at -90 mV, for example, approximately 70% recovery from the inactivation produced at -20 mV is observed within 20 ms for Ito; IK recovers approximately 25-fold more slowly. The pharmacological properties of Ito and IK are also distinct: 4-aminopyridine preferentially attenuates Ito, and tetraethylammonium suppresses predominantly IK. The voltage- and time- dependent properties of these currents are interpreted here in terms of a model in which Ito underlies the initial, rapid repolarization phase of the action potential (AP), and IK is responsible for the slower phase of AP repolarization back to the resting membrane potential, in adult rat ventricular myocytes. PMID:1865177
Functional Na+ Channels in Cell Adhesion probed by Transistor Recording
Schmidtner, Markus; Fromherz, Peter
2006-01-01
Cell membranes in a tissue are in close contact to each other, embedded in the extracellular matrix. Standard electrophysiological methods are not able to characterize ion channels under these conditions. Here we consider the area of cell adhesion on a solid substrate as a model system. We used HEK 293 cells cultured on fibronectin and studied the activation of NaV1.4 sodium channels in the adherent membrane with field-effect transistors in a silicon substrate. Under voltage clamp, we compared the transistor response with the whole-cell current. We observed that the extracellular voltage in the cell-chip contact was proportional to the total membrane current. The relation was calibrated by alternating-current stimulation. We found that Na+ channels are present in the area of cell adhesion on fibronectin with a functionality and a density that is indistinguishable from the free membrane. The experiment provides a basis for studying selective accumulation and depletion of ion channels in cell adhesion and also for a development of cell-based biosensoric devices and neuroelectronic systems. PMID:16227504
Zeng, Zhigang; Yan, Ying; Wang, Bingfeng; Liu, Niu; Xu, Hanhong
2017-06-15
Organophosphorus (OP) insecticides play an important role in pest control. Many OP insecticides have been removed from the market because of their high toxicity to humans. We designed and synthesized a new OP insecticide with the goal of providing a low cost, and less toxic insecticide. The mode of action of O, O-diethyl O-(4-(5-phenyl-4, 5-dihydroisoxazol-3-yl) phenyl) phosphorothioate (XP-1408) was studied in Drosophila melanogaster. Bioassays showed that XP-1408 at a concentration of 50 mg/L delayed larval development. Molecular docking into Drosophila acetylcholinesterase (AChE) and voltage-gated sodium channels suggested that XP-1408 fitted into their active sites and could be inhibitory. Whole-cell patch clamp recordings indicated that XP-1408 exhibited synergistic effects involving the inhibition of cholinergic synaptic transmission and blockage of voltage-gated potassium (K v ) channels and sodium (Na v ) channels. In conclusion, the multiple actions of XP-1408 rendered it as a lead compound for formulating OP insecticides with a novel mode of action.
Sheng, Anqi; Hong, Jiangru; Zhang, Lulu; Zhang, Yan; Zhang, Guangqin
2018-03-29
Voltage-gated K + (K V ) currents play a crucial role in regulating pain by controlling neuronal excitability, and are divided into transient A-type currents (I A ) and delayed rectifier currents (I K ). The dorsal root ganglion (DRG) neurons are heterogeneous and the subtypes of K V currents display different levels in distinct cell sizes. To observe correlations of the subtypes of K V currents with DRG cell sizes, K V currents were recorded by whole-cell patch clamp in freshly isolated mouse DRG neurons. Results showed that I A occupied a high proportion in K V currents in medium- and large-diameter DRG neurons, whereas I K possessed a larger proportion of K V currents in small-diameter DRG neurons. A lower correlation was found between the proportion of I A or I K in K V currents and cell sizes. These data suggest that I A channels are mainly expressed in medium and large cells and I K channels are predominantly expressed in small cells.
Martín, Pedro; Enrique, Nicolás; Palomo, Ana R. Roldán; Rebolledo, Alejandro; Milesi, Veronica
2012-01-01
Bupivacaine is a local anesthetic compound belonging to the amino amide group. Its anesthetic effect is commonly related to its inhibitory effect on voltage-gated sodium channels. However, several studies have shown that this drug can also inhibit voltage-operated K+ channels by a different blocking mechanism. This could explain the observed contractile effects of bupivacaine on blood vessels. Up to now, there were no previous reports in the literature about bupivacaine effects on large conductance voltage- and Ca2+-activated K+ channels (BKCa). Using the patch-clamp technique, it is shown that bupivacaine inhibits single-channel and whole-cell K+ currents carried by BKCa channels in smooth muscle cells isolated from human umbilical artery (HUA). At the single-channel level bupivacaine produced, in a concentration- and voltage-dependent manner (IC50 324 µM at +80 mV), a reduction of single-channel current amplitude and induced a flickery mode of the open channel state. Bupivacaine (300 µM) can also block whole-cell K+ currents (~45% blockage) in which, under our working conditions, BKCa is the main component. This study presents a new inhibitory effect of bupivacaine on an ion channel involved in different cell functions. Hence, the inhibitory effect of bupivacaine on BKCa channel activity could affect different physiological functions where these channels are involved. Since bupivacaine is commonly used during labor and delivery, its effects on umbilical arteries, where this channel is highly expressed, should be taken into account. PMID:22688134
Choi, Soonwook; Yu, Eunah; Rabello, Guilherme; Merlo, Suelen; Zemmar, Ajmal; Walton, Kerry D.; Moreno, Herman; Moreira, Jorge E.; Sugimori, Mutsuyuki; Llinás, Rodolfo R.
2014-01-01
Superfusion of the squid giant synapse with artificial seawater (ASW) based on isotonic saline containing oxygen nanobubbles (RNS60 ASW) generates an enhancement of synaptic transmission. This was determined by examining the postsynaptic response to single and repetitive presynaptic spike activation, spontaneous transmitter release, and presynaptic voltage clamp studies. In the presence of RNS60 ASW single presynaptic stimulation elicited larger postsynaptic potentials (PSP) and more robust recovery from high frequency stimulation than in control ASW. Analysis of postsynaptic noise revealed an increase in spontaneous transmitter release with modified noise kinetics in RNS60 ASW. Presynaptic voltage clamp demonstrated an increased EPSP, without an increase in presynaptic ICa++ amplitude during RNS60 ASW superfusion. Synaptic release enhancement reached stable maxima within 5–10 min of RNS60 ASW superfusion and was maintained for the entire recording time, up to 1 h. Electronmicroscopic morphometry indicated a decrease in synaptic vesicle density and the number at active zones with an increase in the number of clathrin-coated vesicles (CCV) and large endosome-like vesicles near junctional sites. Block of mitochondrial ATP synthesis by presynaptic injection of oligomycin reduced spontaneous release and prevented the synaptic noise increase seen in RNS60 ASW. After ATP block the number of vesicles at the active zone and CCV was reduced, with an increase in large vesicles. The possibility that RNS60 ASW acts by increasing mitochondrial ATP synthesis was tested by direct determination of ATP levels in both presynaptic and postsynaptic structures. This was implemented using luciferin/luciferase photon emission, which demonstrated a marked increase in ATP synthesis following RNS60 administration. It is concluded that RNS60 positively modulates synaptic transmission by up-regulating ATP synthesis, thus leading to synaptic transmission enhancement. PMID:24575037
Iberiotoxin-sensitive and -insensitive BK currents in Purkinje neuron somata
Benton, Mark D.; Lewis, Amanda H.; Bant, Jason S.
2013-01-01
Purkinje cells have specialized intrinsic ionic conductances that generate high-frequency action potentials. Disruptions of their Ca or Ca-activated K (KCa) currents correlate with altered firing patterns in vitro and impaired motor behavior in vivo. To examine the properties of somatic KCa currents, we recorded voltage-clamped KCa currents in Purkinje cell bodies isolated from postnatal day 17–21 mouse cerebellum. Currents were evoked by endogenous Ca influx with approximately physiological Ca buffering. Purkinje somata expressed voltage-activated, Cd-sensitive KCa currents with iberiotoxin (IBTX)-sensitive (>100 nS) and IBTX-insensitive (>75 nS) components. IBTX-sensitive currents activated and partially inactivated within milliseconds. Rapid, incomplete macroscopic inactivation was also evident during 50- or 100-Hz trains of 1-ms depolarizations. In contrast, IBTX-insensitive currents activated more slowly and did not inactivate. These currents were insensitive to the small- and intermediate-conductance KCa channel blockers apamin, scyllatoxin, UCL1684, bicuculline methiodide, and TRAM-34, but were largely blocked by 1 mM tetraethylammonium. The underlying channels had single-channel conductances of ∼150 pS, suggesting that the currents are carried by IBTX-resistant (β4-containing) large-conductance KCa (BK) channels. IBTX-insensitive currents were nevertheless increased by small-conductance KCa channel agonists EBIO, chlorzoxazone, and CyPPA. During trains of brief depolarizations, IBTX-insensitive currents flowed during interstep intervals, and the accumulation of interstep outward current was enhanced by EBIO. In current clamp, EBIO slowed spiking, especially during depolarizing current injections. The two components of BK current in Purkinje somata likely contribute differently to spike repolarization and firing rate. Moreover, augmentation of BK current may partially underlie the action of EBIO and chlorzoxazone to alleviate disrupted Purkinje cell firing associated with genetic ataxias. PMID:23446695
Masurkar, Arjun V.; Chen, Wei R.
2011-01-01
The olfactory glomerulus is the locus of information transfer between olfactory sensory neurons and output neurons of the olfactory bulb. Juxtaglomerular cells (JGCs) may influence intraglomerular processing by firing plateau potentials that support multiple spikes. It is unclear what inward currents mediate this firing pattern. In previous work, we characterized potassium currents of JGCs. We focus here on the inward currents using whole cell current clamp and voltage recording in a rat in vitro slice preparation, as well as computer simulation. We first showed that sodium current was not required to mediate plateau potentials. Voltage clamp characterization of calcium current (ICa) determined that ICa consisted of a slow activating, rapidly inactivating (τ10%–90% rise 6–8ms, τinactivation 38–77ms) component Icat1, similar to T-type currents, and a sustained (τinactivation≫500ms) component Icat2, likely composed of L-type and P/Q-type currents. We used computer simulation to test their roles in plateau potential firing. We robustly modeled Icat1 and Icat2 to Hodgkin-Huxley schemes (m3h and m2, respectively) and simulated a JGC plateau potential with 6 conductances: calcium currents as above, potassium currents from our prior study (A-type Ikt1, D-type Ikt2, delayed rectifier Ikt3), and a fast sodium current (INa). We demonstrated that Icat1 was required for mediating the plateau potential, unlike INa and Icat2, and its τinactivation determined plateau duration. We also found that Ikt1 dictated plateau potential shape more than Ikt2 and Ikt3. The influence of these two transient and opposing conductances suggests a unique mechanism of plateau potential physiology. PMID:21704681
Action potential bursts in central snail neurons elicited by paeonol: roles of ionic currents
Chen, Yi-hung; Lin, Pei-lin; Hsu, Hui-yu; Wu, Ya-ting; Yang, Han-yin; Lu, Dah-yuu; Huang, Shiang-suo; Hsieh, Ching-liang; Lin, Jaung-geng
2010-01-01
Aim: To investigate the effects of 2′-hydroxy-4′-methoxyacetophenone (paeonol) on the electrophysiological behavior of a central neuron (right parietal 4; RP4) of the giant African snail (Achatina fulica Ferussac). Methods: Intracellular recordings and the two-electrode voltage clamp method were used to study the effects of paeonol on the RP4 neuron. Results: The RP4 neuron generated spontaneous action potentials. Bath application of paeonol at a concentration of ≥500 μmol/L reversibly elicited action potential bursts in a concentration-dependent manner. Immersing the neurons in Co2+-substituted Ca2+-free solution did not block paeonol-elicited bursting. Pretreatment with the protein kinase A (PKA) inhibitor KT-5720 or the protein kinase C (PKC) inhibitor Ro 31-8220 did not affect the action potential bursts. Voltage-clamp studies revealed that paeonol at a concentration of 500 μmol/L had no remarkable effects on the total inward currents, whereas paeonol decreased the delayed rectifying K+ current (IKD) and the fast-inactivating K+ current (IA). Application of 4-aminopyridine (4-AP 5 mmol/L), an inhibitor of IA, or charybdotoxin 250 nmol/L, an inhibitor of the Ca2+-activated K+ current (IK(Ca)), failed to elicit action potential bursts, whereas tetraethylammonium chloride (TEA 50 mmol/L), an IKD blocker, successfully elicited action potential bursts. At a lower concentration of 5 mmol/L, TEA facilitated the induction of action potential bursts elicited by paeonol. Conclusion: Paeonol elicited a bursting firing pattern of action potentials in the RP4 neuron and this activity relates closely to the inhibitory effects of paeonol on the IKD. PMID:21042287
Absence of γ-aminobutyric acid-a receptor potentiation in central hypersomnolence disorders.
Dauvilliers, Yves; Evangelista, Elisa; Lopez, Regis; Barateau, Lucie; Jaussent, Isabelle; Cens, Thierry; Rousset, Matthieu; Charnet, Pierre
2016-08-01
The pathophysiology of idiopathic hypersomnia (IH) remains unclear. Recently, cerebrospinal fluid (CSF)-induced enhancement of γ-aminobutyric acid (GABA)-A receptor activity was found in patients with IH compared to controls. Fifteen unrelated patients (2 males and 13 females) affected with typical IH, 12 patients (9 males and 3 females) with narcolepsy type 1, and 15 controls (9 males and 6 females) with unspecified hypersomnolence (n = 7) and miscellaneous neurological conditions (n = 8) were included. A lumbar puncture was performed in all participants to measure CSF hypocretin-1 and GABA-A response. We used a voltage-clamp assay on Xenopus oocytes injected with the RNAs that encode the α1 β2 γ2 or the α2 β2 γ2 subunits of the human GABA-A receptor. A sequence of 6 different applications (GABA, GABA/CSF, and CSF alone) with 2 to 4 oocytes per CSF sample was performed in a whole-cell voltage-clamp assay. Representative current traces from oocytes expressing human α1 β2 γ2 or α2 β2 γ2 GABA-A receptors were recorded in response to 6 successive puffs of GABA diluted in the survival medium (SM), showing stable and reliable response. GABA puffs diluted in SM/CSF solution or SM/CSF solution alone showed no significant differences in the CSF of IH, narcolepsy, or control groups. No associations were found between GABA responses, demographic features, disease duration, or disease severity in the whole population or within groups. Using the Xenopus oocyte assay, we found an absence of GABA-A receptor potentiation with CSF from patients with central hypersomnolence disorders, with no significant differences between hypocretin-deficient and non-hypocretin-deficient patients compared to controls. Ann Neurol 2016;80:259-268. © 2016 American Neurological Association.
Electrical properties associated with wide intercellular clefts in rabbit Purkinje fibres.
Colatsky, T J; Tsien, R W
1979-01-01
1. Rabbit Purkinje fibres were studied using micro-electrode recordings of electrical activity or a two-micro-electrode voltage clamp. Previous morphological work had suggested that these preparations offer structural advantages for the analysis of ionic permeability mechanisms. 2. Viable preparations could be obtained consistently by exposure to a K glutamate Tyrode solution during excision and recovery. In NaCl Tyrode solution, the action potential showed a large overshoot and fully developed plateau, but no pacemaker depolarization at negative potentials. 3. The passive electrical properties were consistent with morphological evidence for the accessibility of cleft membranes within the cell bundle. Electrotonic responses to intracellular current steps showed the behaviour expected for a simple leaky capacitative cable. Capacitative current transients under voltage clamp were changed very little by an eightfold reduction in the external solution conductivity. 4. Slow current changes attributable to K depletion were small compared to those found in other cardiac preparations. The amount of depletion was close to that predicted by a cleft model which assumed free K diffusion in 1 micron clefts. 5. Step depolarizations over the plateau range of potentials evoked a slow inward current which was resistant to tetrodotoxin but blocked by D600. 6. Strong depolarizations to potentials near 0 mV elicited a transient outward current and a slowly activating late outward current. Both components resembled currents found in sheep or calf Purkinje fibres. 7. These experiments support previous interpretations of slow plateau currents in terms of genuine permeability changes. The rabbit Purkinje fibre may allow various ionic channels to be studied with relatively little interference from radial non-uniformities in membrane potential or ion concentration. Images Fig. 7 PMID:469754
Bartoletti, Theodore M.; Huang, Wei; Akopian, Abram; Thoreson, Wallace B.; Krizaj, David
2009-01-01
Calcium is a messenger ion that controls all aspects of cone photoreceptor function, including synaptic release. The dynamic range of the cone output extends beyond the activation threshold for voltage-operated calcium entry, suggesting another calcium influx mechanism operates in cones hyperpolarized by light. We have used optical imaging and whole-cell voltage clamp to measure the contribution of store-operated Ca2+ entry (SOCE) to Ca2+ homeostasis and its role in regulation of neurotransmission at cone synapses. Mn2+ quenching of Fura-2 revealed sustained divalent cation entry in hyperpolarized cones. Ca2+ influx into cone inner segments was potentiated by hyperpolarization, facilitated by depletion of intracellular Ca2+ stores, unaffected by pharmacological manipulation of voltage-operated or cyclic nucleotide-gated Ca2+ channels and suppressed by lanthanides, 2-APB, MRS 1845 and SKF 96365. However, cation influx through store-operated channels crossed the threshold for activation of voltage-operated Ca2+ entry in a subset of cones, indicating that the operating range of inner segment signals is set by interactions between store- and voltage-operated Ca2+ channels. Exposure to MRS 1845 resulted in ∼40% reduction of light-evoked postsynaptic currents in photopic horizontal cells without affecting the light responses or voltage-operated Ca2+ currents in simultaneously recorded cones. The spatial pattern of store-operated calcium entry in cones matched immunolocalization of the store-operated sensor STIM1. These findings show that store-operated channels regulate spatial and temporal properties of Ca2+ homeostasis in vertebrate cones and demonstrate their role in generation of sustained excitatory signals across the first retinal synapse. PMID:19696927
Is the idea of a fast block to polyspermy based on artifact?
Dale, Brian
2014-08-01
This purpose of this review is to look at the experimental evidence, both kinetic and electrophysiological, that led to the hypothesis of a fast electrical block to polyspermy in sea urchin eggs. The idea of a fast partial block, forwarded in the 1950's, that would reduce the receptivity of the egg surface by 1/20th following its interaction with the fertilizing spermatozoon, was based on experiments that treated fertilization as a first order chemical reaction. Here, I outline the criticisms of the Rothschild theory and demonstrate that the hypothesis of a fast partial block to polyspermy is unfounded. Notwithstanding, it was suggested in the 1970's that the membrane depolarization, induced by the fertilizing spermatozoon, prevented the interaction of supernumerary spermatozoa, the fast electrical block to polyspermy. While trans-membrane voltage recording has permitted a better understanding of the sequence of events occurring at fertilization, there is no evidence that depolarization prevents the interaction of supernumerary spermatozoa. Sperm entry is prevented at positive and negative potentials, in the voltage clamp configuration, however this is an artifact caused by the currents injected into the egg employed to hold the voltage constant in a non-physiological range. At permissive voltages, around -20 mV, where the current required to hold the voltage is minimal, only one spermatozoon normally enters the egg. Thus, irrespective of the egg voltage, the fertilizing spermatozoon is, in any case, attached to a privileged interaction site that permits entry and distinguishes it from supernumerary spermatozoa. Competence for monospermy is acquired during oocyte maturation and data on cortical organization in echinoderm eggs points to the actin filament system for regulating sperm entry. Copyright © 2014 Elsevier Inc. All rights reserved.
Spontaneous voltage and current fluctuations in tissue cultured mouse dorsal root ganglion cells.
Mathers, D A; Barker, J L
1984-02-13
Fetal mouse dorsal root ganglion (DRG) neurons were maintained in primary dissociated cell culture for periods of 7 days to 3 months. Intracellular recordings from these cells revealed the presence of spontaneous subthreshold potentials in 101/177 neurons studied. When measured at the resting membrane potential, these spontaneous voltage events took two forms: (a) high frequency potential fluctuations several millivolts in peak-to-peak amplitude and (b) small, discrete hyperpolarizations. Neurons exhibiting either type of event were designated as 'active' DRG cells. No spontaneous potentials were seen in DRG cells hyperpolarized to membrane voltages more negative than -64 +/- 11.5 mV (n = 5 cells). Under voltage-clamp conditions, the subthreshold potentials of active DRG cells were replaced by fluctuations in outward current. The power spectral density, S(f) of these current fluctuations was approximated by an equation of the form S(f) = (S(o)/[1 + (f/fc) alpha] where 2 less than or equal to a less than or equal to 3 and the half-power frequency fc = 11.3 +/- 3.1 Hz at 23 degrees C (n = 17 cells). The spontaneous voltage fluctuations of active DRG cells were abolished in Ca2+-free saline, and of the divalent metal cations Sr2+, Mg2+, Ba2+, Co2+ and Mn2+, only Sr2+ could substitute for Ca2+ in the maintenance of this activity. Tetraethylammonium ions (1-10 mM) reversibly blocked the spontaneous potentials, while caffeine (10 mM) increased the frequency of these events. The spontaneous voltage fluctuations were not dependent on the presence of spinal cord neurons in the culture plate, and they were also observed in cultured DRG cells derived from adult mice.
Fernandez, Fernando R.; Malerba, Paola; Bressloff, Paul C.; White, John A.
2013-01-01
In active networks, excitatory and inhibitory synaptic inputs generate membrane voltage fluctuations that drive spike activity in a probabilistic manner. Despite this, some cells in vivo show a strong propensity to precisely lock to the local field potential and maintain a specific spike-phase relationship relative to other cells. In recordings from rat medial entorhinal cortical stellate cells, we measured spike phase-locking in response to sinusoidal “test” inputs in the presence of different forms of background membrane voltage fluctuations, generated via dynamic clamp. We find that stellate cells show strong and robust spike phase-locking to theta (4–12 Hz) inputs. This response occurs under a wide variety of background membrane voltage fluctuation conditions that include a substantial increase in overall membrane conductance. Furthermore, the IH current present in stellate cells is critical to the enhanced spike phase-locking response at theta. Finally, we show that correlations between inhibitory and excitatory conductance fluctuations, which can arise through feed-back and feed-forward inhibition, can substantially enhance the spike phase-locking response. The enhancement in locking is a result of a selective reduction in the size of low frequency membrane voltage fluctuations due to cancelation of inhibitory and excitatory current fluctuations with correlations. Hence, our results demonstrate that stellate cells have a strong preference for spike phase-locking to theta band inputs and that the absolute magnitude of locking to theta can be modulated by the properties of background membrane voltage fluctuations. PMID:23554484
Integration of autopatching with automated pipette and cell detection in vitro
Wu (吴秋雨), Qiuyu; Kolb, Ilya; Callahan, Brendan M.; Su, Zhaolun; Stoy, William; Kodandaramaiah, Suhasa B.; Neve, Rachael; Zeng, Hongkui; Boyden, Edward S.; Forest, Craig R.
2016-01-01
Patch clamp is the main technique for measuring electrical properties of individual cells. Since its discovery in 1976 by Neher and Sakmann, patch clamp has been instrumental in broadening our understanding of the fundamental properties of ion channels and synapses in neurons. The conventional patch-clamp method requires manual, precise positioning of a glass micropipette against the cell membrane of a visually identified target neuron. Subsequently, a tight “gigaseal” connection between the pipette and the cell membrane is established, and suction is applied to establish the whole cell patch configuration to perform electrophysiological recordings. This procedure is repeated manually for each individual cell, making it labor intensive and time consuming. In this article we describe the development of a new automatic patch-clamp system for brain slices, which integrates all steps of the patch-clamp process: image acquisition through a microscope, computer vision-based identification of a patch pipette and fluorescently labeled neurons, micromanipulator control, and automated patching. We validated our system in brain slices from wild-type and transgenic mice expressing channelrhodopsin 2 under the Thy1 promoter (line 18) or injected with a herpes simplex virus-expressing archaerhodopsin, ArchT. Our computer vision-based algorithm makes the fluorescent cell detection and targeting user independent. Compared with manual patching, our system is superior in both success rate and average trial duration. It provides more reliable trial-to-trial control of the patching process and improves reproducibility of experiments. PMID:27385800
Gabel, L A; Nisenbaum, E S
1998-04-01
Neostriatal spiny projection neurons can display a pronounced delay in their transition to action potential discharge that is mediated by a slowly developing ramp depolarization. The possible contribution of a slowly inactivating A-type K+ current (IAs) to this delayed excitation was investigated by studying the biophysical and functional properties of IAs using whole cell voltage- and current-clamp recording from acutely isolated neostriatal neurons. Isolation of IAs from other voltage-gated, calcium-independent K+ currents was achieved through selective blockade of IAs with low concentrations (10 microM) of the benzazepine derivative, 6-chloro-7,8-dihydroxy-3-allyl- 1-phenyl-2,3,4,5-tetra-hydro-1H-3-benzazepine (APB; SKF82958) and subsequent current subtraction. Examination of the voltage dependence of activation showed that IAs began to flow at approximately -60 mV in response to depolarization. The voltage dependence of inactivation revealed that approximately 50% of IAs channels were available at the normal resting potential (-80 mV) of these cells, but that only 20% of the channels were available at membrane potentials corresponding to spike threshold (about -40 mV). At these depolarized membrane potentials, the rate of activation was moderately rapid (tau approximately 60 ms), whereas the rate of inactivation was slow (tau approximately 1.5 s). The time course of removal of inactivation of IAs at -80 mV also was relatively slow (tau approximately 1.0 s). The subthreshold availability of IAs combined with its rapid activation and slow inactivation rates suggested that this current should be capable of dampening the onset of prolonged depolarizing responses, but over time its efficacy should diminish, slowly permitting the membrane to depolarize toward spike threshold. Voltage recording experiments confirmed this hypothesis by demonstrating that application of APB at a concentration (10 microM) that selectively blocks IAs substantially decreased the latency to discharge and increased the frequency of firing of neostriatal neurons. The properties of IAs suggest that it should play a critical role in placing the voltage limits on the recurring episodes of subthreshold depolarization which are characteristic of spiny neurons recorded in vivo. However, the voltage dependence and recovery kinetics of inactivation of IAs predict that its effectiveness will vary exponentially with the level and duration of hyperpolarization which precedes depolarizing episodes. Thus long periods of hyperpolarization should increase the availability of IAs and dampen succeeding depolarizations; whereas brief epochs of hyperpolarization should not sufficiently remove inactivation of IAs, thereby reducing its ability to limit subsequent depolarizing responses.
Park, Won Sun; Son, Youn Kyoung; Ko, Eun A; Ko, Jae-Hong; Lee, Hyang Ae; Park, Kyoung Sun; Earm, Yung E
2005-06-17
We examined the effects of the protein kinase C (PKC) inhibitor, bisindolylmaleimide (BIM) (I), on voltage-dependent K+ (K(V)) channels in rabbit coronary arterial smooth muscle cells using whole-cell patch clamp technique. BIM (I) reversibly and dose-dependently inhibited the K(V) currents with an apparent Kd value of 0.27 microM. The inhibition of the K(V) current by BIM (I) was highly voltage-dependent between -30 and +10 mV (voltage range of channel activation), and the additive inhibition of the K(V) current by BIM (I) was voltage-dependence in the full activation voltage range. The rate constants of association and dissociation for BIM (I) were 18.4 microM(-1) s(-1) and 4.7 s(-1), respectively. BIM (I) had no effect on the steady-state activation and inactivation of K(V) channels. BIM (I) caused use-dependent inhibition of K(V) current, which was consistent with the slow recovery from inactivation in the presence of BIM (I) (recovery time constants were 856.95 +/- 282.6 ms for control, and 1806.38 +/- 110.0 ms for 300 nM BIM (I)). ATP-sensitive K+ (K(ATP)), inward rectifier K+ (K(IR)), Ca2+-activated K+ (BK(Ca)) channels, which regulate the membrane potential and arterial tone, were not affected by BIM (I). The PKC inhibitor, chelerythrine, and protein kinase A (PKA) inhibitor, PKA-IP, had little effect on the K(V) current and did not significantly alter the inhibitory effects of BIM (I) on the K(V) current. These results suggest that BIM (I) inhibits K(V) channels in a phosphorylation-independent, and voltage-, time- and use-dependent manner.
Sakata, Souhei; Okamura, Yasushi
2014-01-01
The voltage-sensing phosphatase (VSP) consists of a voltage sensor and a cytoplasmic phosphatase region, and the movement of the voltage sensor is coupled to the phosphatase activity. However, its coupling mechanisms still remain unclear. One possible scenario is that the phosphatase is activated only when the voltage sensor is in a fully activated state. Alternatively, the enzymatic activity of single VSP proteins could be graded in distinct activated states of the voltage sensor, and partial activation of the voltage sensor could lead to partial activation of the phosphatase. To distinguish between these two possibilities, we studied a voltage sensor mutant of zebrafish VSP, where the voltage sensor moves in two steps as evidenced by analyses of charge movements of the voltage sensor and voltage clamp fluorometry. Measurements of the phosphatase activity toward phosphatidylinositol 4,5-bisphosphate revealed that both steps of voltage sensor activation are coupled to the tuning of phosphatase activities, consistent with the idea that the phosphatase activity is graded by the magnitude of the movement of the voltage sensor. PMID:24277865
Sakata, Souhei; Okamura, Yasushi
2014-03-01
The voltage-sensing phosphatase (VSP) consists of a voltage sensor and a cytoplasmic phosphatase region, and the movement of the voltage sensor is coupled to the phosphatase activity. However, its coupling mechanisms still remain unclear. One possible scenario is that the phosphatase is activated only when the voltage sensor is in a fully activated state. Alternatively, the enzymatic activity of single VSP proteins could be graded in distinct activated states of the voltage sensor, and partial activation of the voltage sensor could lead to partial activation of the phosphatase. To distinguish between these two possibilities, we studied a voltage sensor mutant of zebrafish VSP, where the voltage sensor moves in two steps as evidenced by analyses of charge movements of the voltage sensor and voltage clamp fluorometry. Measurements of the phosphatase activity toward phosphatidylinositol 4,5-bisphosphate revealed that both steps of voltage sensor activation are coupled to the tuning of phosphatase activities, consistent with the idea that the phosphatase activity is graded by the magnitude of the movement of the voltage sensor.
Bramley, Helen; Turner, Neil C; Turner, David W; Tyerman, Stephen D
2007-07-01
Hydrostatic pressure relaxations with the root pressure probe are commonly used for measuring the hydraulic conductivity (Lp(r)) of roots. We compared the Lp(r) of roots from species with different root hydraulic properties (Lupinus angustifolius L. 'Merrit', Lupinus luteus L. 'Wodjil', Triticum aestivum L. 'Kulin' and Zea mays L. 'Pacific DK 477') using pressure relaxations, a pressure clamp and osmotic gradients to induce water flow across the root. Only the pressure clamp measures water flow under steady-state conditions. Lp(r) determined by pressure relaxations was two- to threefold greater than Lp(r) from pressure clamps and was independent of the direction of water flow. Lp(r) (pressure clamp) was two- to fourfold higher than for Lp(r) (osmotic) for all species except Triticum aestivum where Lp(r) (pressure clamp) and Lp(r) (osmotic) were not significantly different. A novel technique was developed to measure the propagation of pressure through roots to investigate the cause of the differences in Lp(r). Root segments were connected between two pressure probes so that when root pressure (P(r)) was manipulated by one probe, the other probe recorded changes in P(r). Pressure relaxations did not induce the expected kinetics in pressure in the probe at the other end of the root when axial hydraulic conductance, and probe and root capacitances were accounted for. An electric circuit model of the root was constructed that included an additional capacitance in the root loaded by a series of resistances. This accounted for the double exponential kinetics for intact roots in pressure relaxation experiments as well as the reduced response observed with the double probe experiments. Although there were potential errors with all the techniques, we considered that the measurement of Lp(r) using the pressure clamp was the most unambiguous for small pressure changes, and provided that sufficient time was allowed for pressure propagation through the root. The differences in Lp(r) from different methods of measurement have implications for the models describing water transport through roots and the potential role of aquaporins.
Pérez, C; Limón, A; Vega, R; Soto, E
2009-02-18
There is consensus that muscarinic and nicotinic receptors expressed in vestibular hair cells and afferent neurons are involved in the efferent modulation of the electrical activity of the afferent neurons. However the underlying mechanisms of postsynaptic control in neurons are not well understood. In our work we show that the activation of muscarinic receptors in the vestibular neurons modulates the potassium M-current modifying the activity of afferent neurons. Whole-cell patch-clamp recordings were made on vestibular-afferent neurons isolated from Wistar rats (postnatal days 7-10) and held in primary culture (18-24 h). The M-current was studied during its deactivation after depolarizing voltage-clamp pulses. In 68% of the cells studied, those of larger capacitance, the M-current antagonists linopirdine and XE-991 reduced the amplitude of the M-current by 54%+/-7% and 50%+/-3%. The muscarinic-receptor agonist oxotremorine-M also significantly reduced the M-current by 58%+/-12% in the cells. The action of oxotremorine-M was blocked by atropine, thus indicating its cholinergic nature. The erg-channel blocker E-4031 did not significantly modify the M-current amplitude. In current-clamp experiments, linopirdine, XE-991, and oxotremorine-M modified the discharge response to current pulses from single spike to multiple spiking, reducing the adaptation of the electrical discharge. Our results indicate that large soma-size cultured vestibular-afferent neurons (most probably calyx-bearing neurons) express the M-current and that the modulation of this current by activation of muscarinic-receptor reduces its spike-frequency adaptation.
Molecular motions that shape the cardiac action potential: Insights from voltage clamp fluorometry.
Zhu, Wandi; Varga, Zoltan; Silva, Jonathan R
2016-01-01
Very recently, voltage-clamp fluorometry (VCF) protocols have been developed to observe the membrane proteins responsible for carrying the ventricular ionic currents that form the action potential (AP), including those carried by the cardiac Na(+) channel, NaV1.5, the L-type Ca(2+) channel, CaV1.2, the Na(+)/K(+) ATPase, and the rapid and slow components of the delayed rectifier, KV11.1 and KV7.1. This development is significant, because VCF enables simultaneous observation of ionic current kinetics with conformational changes occurring within specific channel domains. The ability gained from VCF, to connect nanoscale molecular movement to ion channel function has revealed how the voltage-sensing domains (VSDs) control ion flux through channel pores, mechanisms of post-translational regulation and the molecular pathology of inherited mutations. In the future, we expect that this data will be of great use for the creation of multi-scale computational AP models that explicitly represent ion channel conformations, connecting molecular, cell and tissue electrophysiology. Here, we review the VCF protocol, recent results, and discuss potential future developments, including potential use of these experimental findings to create novel computational models. Copyright © 2015 Elsevier Ltd. All rights reserved.
Flutter and divergence instability of supported piezoelectric nanotubes conveying fluid
NASA Astrophysics Data System (ADS)
Bahaadini, Reza; Hosseini, Mohammad; Jamali, Behnam
2018-01-01
In this paper, divergence and flutter instabilities of supported piezoelectric nanotubes containing flowing fluid are investigated. To take the size effects into account, the nonlocal elasticity theory is implemented in conjunction with the Euler-Bernoulli beam theory incorporating surface stress effects. The Knudsen number is applied to investigate the slip boundary conditions between the flow and wall of nanotube. The nonlocal governing equations of nanotube are obtained using Newtonian method, including the influence of piezoelectric voltage, surface effects, Knudsen number and nonlocal parameter. Applying Galerkin approach to transform resulting equations into a set of eigenvalue equations under the simple-simple (S-S) and clamped-clamped (C-C) boundary conditions. The effects of the piezoelectric voltage, surface effects, Knudsen number, nonlocal parameter and boundary conditions on the divergence and flutter boundaries of nanotubes are discussed. It is observed that the fluid-conveying nanotubes with both ends supported lose their stability by divergence first and then by flutter with increase in fluid velocity. Results indicate the importance of using piezoelectric voltage, nonlocal parameter and Knudsen number in decrease of critical flow velocities of system. Moreover, the surface effects have a significant role on the eigenfrequencies and critical fluid velocity.
A Calmodulin C-Lobe Ca2+-Dependent Switch Governs Kv7 Channel Function.
Chang, Aram; Abderemane-Ali, Fayal; Hura, Greg L; Rossen, Nathan D; Gate, Rachel E; Minor, Daniel L
2018-02-21
Kv7 (KCNQ) voltage-gated potassium channels control excitability in the brain, heart, and ear. Calmodulin (CaM) is crucial for Kv7 function, but how this calcium sensor affects activity has remained unclear. Here, we present X-ray crystallographic analysis of CaM:Kv7.4 and CaM:Kv7.5 AB domain complexes that reveal an Apo/CaM clamp conformation and calcium binding preferences. These structures, combined with small-angle X-ray scattering, biochemical, and functional studies, establish a regulatory mechanism for Kv7 CaM modulation based on a common architecture in which a CaM C-lobe calcium-dependent switch releases a shared Apo/CaM clamp conformation. This C-lobe switch inhibits voltage-dependent activation of Kv7.4 and Kv7.5 but facilitates Kv7.1, demonstrating that mechanism is shared by Kv7 isoforms despite the different directions of CaM modulation. Our findings provide a unified framework for understanding how CaM controls different Kv7 isoforms and highlight the role of membrane proximal domains for controlling voltage-gated channel function. VIDEO ABSTRACT. Copyright © 2018 Elsevier Inc. All rights reserved.
The luminal K+ channel of the thick ascending limb of Henle's loop.
Bleich, M; Schlatter, E; Greger, R
1990-01-01
In vitro perfused rat thick ascending limbs of Henle's loop (TAL) were used (n = 260) to analyse the conductance properties of the luminal membrane applying the patch-clamp technique. Medullary (mTAL) and cortical (cTAL) tubule segments were dissected and perfused in vitro. The free end of the tubule was held and immobilized at one edge by a holding pipette kept under continuous suction. A micropositioner was used to insert a patch pipette into the lumen, and a gigaohm seal with the luminal membrane was achieved in 455 instances out of considerably more trials. In approximately 20% of all gigaohm seals recordings of single ionic channels were obtained. We have identified only one single type of K+ channel in these cell-attached and cell-excised recordings. In the cell-attached configuration with KCl or NaCl in the pipette, the channel had a conductance of 60 +/- 6 pS (n = 24) and 31 +/- 7 pS (n = 4) respectively. In cell-free patches with KCl either in the patch pipette or in the bath and with a Ringer-type solution (NaCl) on the opposite side the conductance was 72 +/- 4 pS (n = 37) at a clamp voltage of 0 mV. The permeability was 0.33 +/- 0.02 . 10(-12) cm3/s. The selectivity sequence of this channel was: K+ = Rb+ = NH4+ = Cs+ greater than Li+ much greater than Na+ = 0; the conductance sequence was K+ much greater than Li+ much greater than Rb+ = Cs+ = NH4+ = Na+ = 0. In excised patches Rb+, Cs+ and NH4+ when present in the bath at 145 mmol/l all inhibited K+ currents out of the pipette. The channel kinetics were described by one open (9.5 +/- 1.5 ms, n = 18) and by two closed (1.4 +/- 0.1 and 14 +/- 2 ms) time constants. The open probability of this channel was increased by depolarization. The channel open probability was reduced voltage dependently by Ba2+ (half maximal inhibition at 0 mV: 0.07 mmol/l) from the cytosolic side. Verapamil, diltiazem, quinine and quinidine inhibited at approximately 1 mumol/l -0.1 mmol/l from either side. Similarly, the amino cations lidocaine, tetraethylammonium and choline inhibited at 10-100 mmol/l. The channel was downregulated in its open probability by cytosolic Ca2+ activities greater than 10(-7) mol/l and by adenosine triphosphate greater than or equal to 10(-4) mol/l. The open probability was downregulated by decreasing cytosolic pH (2-fold by a decrease in pH by less than or equal to 0.2 units).(ABSTRACT TRUNCATED AT 400 WORDS)
Molecular dynamics of alamethicin transmembrane channels from open-channel current noise analysis.
Mak, D O; Webb, W W
1995-12-01
Conductance noise measurement of the open states of alamethicin transmembrane channels reveals excess noise attributable to cooperative low-frequency molecular dynamics that can generate fluctuations approximately 1 A rms in the effective channel pore radius. Single-channel currents through both persistent and nonpersistent channels with multiple conductance states formed by purified polypeptide alamethicin in artificial phospholipid bilayers isolated onto micropipettes with gigaohm seals were recorded using a voltage-clamp technique with low background noise (rms noise < 3 pA up to 20 kHz). Current noise power spectra between 100 Hz and 20 kHz of each open channel state showed little frequency dependence. Noise from undetected conductance state transitions was insignificant. Johnson and shot noises were evaluated. Current noise caused by electrolyte concentration fluctuation via diffusion was isolated by its dependence on buffer concentration. After removing these contributions, significant current noise remains in all persistent channel states and increases in higher conductance states. In nonpersistent channels, remaining noise occurs primarily in the lowest two states. These fluctuations of channel conductance are attributed to thermal oscillations of the channel molecular conformation and are modeled as a Langevin translational oscillation of alamethicin molecules moving radially from the channel pore, damped mostly by lipid bilayer viscosity.
Mayer, E A; Loo, D D; Snape, W J; Sachs, G
1990-01-01
1. The regulation of Ca2(+)-activated K+ channels by the agonist substance P in freshly dissociated smooth muscle cells from the rabbit longitudinal colonic muscle was characterized using the patch clamp technique. 2. In the cell-attached recording mode, when pipette and bath solutions contained equal [K+] (126 mM), the Ca2(+)-activated K+ channels showed a linear current-voltage relationship (between -50 mV and 50 mV) with a slope conductance of 210 +/- 35 pS (n = 12). Reversal potential measurements indicated that the channel was highly selective for K+ over Na+ (PK/PNa = 110). 3. Channels were activated by depolarizing membrane voltages and cytosolic Ca2+, and in inside-out patches channel activation depended sigmoidally on voltage and [Ca2+]. The potential for half-activation at a cytosolic [Ca2+] of 5 x 10(-6) M was 0 mV. A tenfold increase in cytosolic Ca2+ resulted in a 60 mV shift of the sigmoidal voltage activation curve to more negative potentials. 4. Threshold concentrations of substance P (10(-12) M), which did not result in cell contraction, caused a prolonged activation of K+ channels. The K+ channels were observed to open in clusters: simultaneous opening of multiple channels was interrupted by complete, prolonged channel closure. 5. Lowering bath [Ca2+] to submicromolar concentrations abolished the effect of substance P. The activation of K+ channels by substance P (10(-12) M) was also inhibited by the dihydropyridine nifedipine (10(-6) M), a blocker of L-type Ca2+ channels. 6. In the whole-cell recording mode, with the pipette solution containing 126 mM-KCl, 0.77 mM-EGTA and 1 mM-ATP, depolarization from a holding potential of -70 mV elicited outward currents which increased to steady-state values. These were K+ currents as they were blocked by TEA (tetraethylammonium, 30 mM) and Ba2+ (1 mM) and were abolished when pipette K+ was replaced by Cs+. 7. The depolarization-activated outward current was not affected by lowering extracellular [Ca2+] or by the Ca2+ channel antagonists Cd2+ (200 microM), nifedipine (10(-6)-10(-5) M) or verapamil (10(-6) M). The current was greatly reduced when the EGTA concentration in the pipette solution was increased from 0.77 to 10 mM. 8. When the pipette solution contained CsCl, membrane depolarization activated inward currents. The peak inward current was identified as current through L-type Ca2+ channels based on its voltage- and time-dependent kinetics, and its modulation by dihydropyridines.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:1691293
Laminar Instability and Transition on the X-51A
2009-08-01
AIM15 controller. Surface thermocouples are affixed to the contraction by hose clamps and are used by the controllers to determine when each heater...installed in the model. One 20- gauge, braided , high-voltage wire is soldered to the inner electrode. This wire then passes through the model, angle...and another 20-gauge, braided , high-voltage wire leading from the sting to the ground of the glow electronics. From the back of the sting to the glow
Onozuka, M; Watanabe, K
1996-04-15
Using the voltage-clamp technique combined with pressure injection, we have studied the action of pentylenetetrazole (PTZ) on identified Euhadra neurons by examining how the PTZ-induced changes in membrane properties are affected by an antibody against P70, a protein found in the experimentally-induced epileptogenic cortex of rats. Intracellular injection of anti-P70 antibody blocked the induction by PTZ; bursting activity with both of development of negative slope resistance region in the steady state 1-V curve and a reduction in the delayed outward potassium current. These results suggest a novel mechanism of action for PTZ, involving intracellular protein(s) which react with anti-P70 antibody.
Bukanova, Julia V; Solntseva, Elena I; Skrebitsky, Vladimir G
2002-09-01
The role of the voltage-gated K+ channels in the effect of some nootropics was investigated. Earlier, the multiple effect of high concentrations of two nootropics, piracetam and its peptide analogue GVS-111 [Seredenin et al. (1995), US Patent No. 5,439,930], on Ca2+ and K+ currents of molluscan neurons was shown [Solntseva et al. (1997), General Pharmacology 29, 85-89]. In the present work, we describe the selective effect of low concentrations of these nootropics as well as vinpocetine on certain types of K+ current. The experiments were performed on isolated neurons of the land snail Helix pomatia using a two-microelectrode voltage-clamp method. The inward voltage-gated Ca2+ current (ICa) and three subtypes of the outward voltage-gated K+ current were recorded: Ca2+-dependent K+ current (IK(Ca)), delayed rectifying current (IKD), and fast-inactivating K+ current (IA). It has been found that I Ca was not changed in the presence of 30 microM vinpocetine, 100 microM piracetam or 10 nM GVS-111, while slow-inactivating, TEA-sensitive IK(Ca) and IKD were inhibited (IK(Ca) more strongly than IKD). In contrast, the fast-inactivating, 4-AP-sensitive K+ current (IA) was not diminished by low concentrations of piracetam and GVS-111, while vinpocetine even augmented it. A possible role of slow-inactivating subtypes of the K+ channels in the development of different forms of dementia is discussed.
Nerve membrane ion channels as the target site of environmental toxicants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narahashi, T.
1987-04-01
There are many environmentally important chemicals which exhibit potent effects on the nervous system. Since nerve excitation takes place in a fraction of a second, electrophysiological methods provide the authors with the most straightforward approach to the study of the mechanisms of action of environmental toxicants on the nervous system. Aquatic animals such as crayfish, lobster, squid, and marine snails represent extremely useful materials for such electrophysiological studies, because much of the authors knowledge of nerve excitation is derived from those animals. Nerve excitation takes place as a result of opening and closing of ion channels of the membrane. Thesemore » functions are independent of metabolic energy, and can be measured most effectively by voltage clamp techniques as applied to the giant axons of the crayfish and the squid. Patch clamp techniques developed during the past 10 years have added a new dimension to the electrophysiological investigation. These techniques allow them to measure the activity of individual ion channels, thereby making it possible to analyze the interaction of toxic molecules directly with single ion channels. Examples are given summarizing electrophysiological studies of environmental neurotoxicants. The abdominal nerve cords and neuromuscular preparations isolated from the crayfish are convenient materials for bioassay of certain environmental toxicants such as pyrethroids, chlorinated hydrocarbons, and other insecticides. Only a small fraction of the flux through the sodium channel, less than 1%, must be modified by pyrethroids for the animal to develop symptoms of poisoning. Such a toxicological application from channel to animal is important is understanding the potent toxic effect.« less
Contamination of current-clamp measurement of neuron capacitance by voltage-dependent phenomena
White, William E.
2013-01-01
Measuring neuron capacitance is important for morphological description, conductance characterization, and neuron modeling. One method to estimate capacitance is to inject current pulses into a neuron and fit the resulting changes in membrane potential with multiple exponentials; if the neuron is purely passive, the amplitude and time constant of the slowest exponential give neuron capacitance (Major G, Evans JD, Jack JJ. Biophys J 65: 423–449, 1993). Golowasch et al. (Golowasch J, Thomas G, Taylor AL, Patel A, Pineda A, Khalil C, Nadim F. J Neurophysiol 102: 2161–2175, 2009) have shown that this is the best method for measuring the capacitance of nonisopotential (i.e., most) neurons. However, prior work has not tested for, or examined how much error would be introduced by, slow voltage-dependent phenomena possibly present at the membrane potentials typically used in such work. We investigated this issue in lobster (Panulirus interruptus) stomatogastric neurons by performing current clamp-based capacitance measurements at multiple membrane potentials. A slow, voltage-dependent phenomenon consistent with residual voltage-dependent conductances was present at all tested membrane potentials (−95 to −35 mV). This phenomenon was the slowest component of the neuron's voltage response, and failure to recognize and exclude it would lead to capacitance overestimates of several hundredfold. Most methods of estimating capacitance depend on the absence of voltage-dependent phenomena. Our demonstration that such phenomena make nonnegligible contributions to neuron responses even at well-hyperpolarized membrane potentials highlights the critical importance of checking for such phenomena in all work measuring neuron capacitance. We show here how to identify such phenomena and minimize their contaminating influence. PMID:23576698
Chebabhi, Ali; Fellah, Mohammed Karim; Kessal, Abdelhalim; Benkhoris, Mohamed F
2016-07-01
In this paper is proposed a new balancing three-level three dimensional space vector modulation (B3L-3DSVM) strategy which uses a redundant voltage vectors to realize precise control and high-performance for a three phase three-level four-leg neutral point clamped (NPC) inverter based Shunt Active Power Filter (SAPF) for eliminate the source currents harmonics, reduce the magnitude of neutral wire current (eliminate the zero-sequence current produced by single-phase nonlinear loads), and to compensate the reactive power in the three-phase four-wire electrical networks. This strategy is proposed in order to gate switching pulses generation, dc bus voltage capacitors balancing (conserve equal voltage of the two dc bus capacitors), and to switching frequency reduced and fixed of inverter switches in same times. A Nonlinear Back Stepping Controllers (NBSC) are used for regulated the dc bus voltage capacitors and the SAPF injected currents to robustness, stabilizing the system and to improve the response and to eliminate the overshoot and undershoot of traditional PI (Proportional-Integral). Conventional three-level three dimensional space vector modulation (C3L-3DSVM) and B3L-3DSVM are calculated and compared in terms of error between the two dc bus voltage capacitors, SAPF output voltages and THDv, THDi of source currents, magnitude of source neutral wire current, and the reactive power compensation under unbalanced single phase nonlinear loads. The success, robustness, and the effectiveness of the proposed control strategies are demonstrated through simulation using Sim Power Systems and S-Function of MATLAB/SIMULINK. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Structural basis of drugs that increase cardiac inward rectifier Kir2.1 currents.
Gómez, Ricardo; Caballero, Ricardo; Barana, Adriana; Amorós, Irene; De Palm, Sue-Haida; Matamoros, Marcos; Núñez, Mercedes; Pérez-Hernández, Marta; Iriepa, Isabel; Tamargo, Juan; Delpón, Eva
2014-11-01
We hypothesize that some drugs, besides flecainide, increase the inward rectifier current (IK1) generated by Kir2.1 homotetramers (IKir2.1) and thus, exhibit pro- and/or antiarrhythmic effects particularly at the ventricular level. To test this hypothesis, we analysed the effects of propafenone, atenolol, dronedarone, and timolol on Kir2.x channels. Currents were recorded with the patch-clamp technique using whole-cell, inside-out, and cell-attached configurations. Propafenone (0.1 nM-1 µM) did not modify either IK1 recorded in human right atrial myocytes or the current generated by homo- or heterotetramers of Kir2.2 and 2.3 channels recorded in transiently transfected Chinese hamster ovary cells. On the other hand, propafenone increased IKir2.1 (EC50 = 12.0 ± 3.0 nM) as a consequence of its interaction with Cys311, an effect which decreased inward rectification of the current. Propafenone significantly increased mean open time and opening frequency at all the voltages tested, resulting in a significant increase of the mean open probability of the channel. Timolol, which interacted with Cys311, was also able to increase IKir2.1. On the contrary, neither atenolol nor dronedarone modified IKir2.1. Molecular modelling of the Kir2.1-drugs interaction allowed identification of the pharmacophore of drugs that increase IKir2.1. Kir2.1 channels exhibit a binding site determined by Cys311 that is responsible for drug-induced IKir2.1 increase. Drug binding decreases channel affinity for polyamines and current rectification, and can be a mechanism of drug-induced pro- and antiarrhythmic effects not considered until now. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.
Wettwer, Erich; Himmel, Herbert M; Amos, Gregory J; Li, Qi; Metzger, Franz; Ravens, Ursula
1998-01-01
Tedisamil is a new antiarrhythmic drug with predominant class III action. The aim of the present study was to investigate the blocking pattern of the compound on the transient outward current (Ito) in human subepicardial myocytes isolated from explanted left ventricles. Using the single electrode whole cell voltage clamp technique, Ito was analysed after appropriate voltage inactivation of sodium current and block of calcium current.Tedisamil reduced the amplitude of peak Ito, but did not affect the amplitude of non-inactivating outward current. The drug accelerated the apparent rate of Ito inactivation. The reduction in time constant of Ito inactivation depended on drug concentration, the apparent IC50 value was 4.4 μM.Tedisamil affected Ito amplitude in a use-dependent manner. After 2 min at −80 mV, maximum block of Ito was reached after 4–5 clamp steps either at the frequency of 0.2 or 2 Hz, indicating that the block was not frequency-dependent in an experimentally relevant range. Recovery from block was very slow and proceeded with a time constant of 12.1±1.8 s. Also in the presence of drug, a fraction of channels recovered from inactivation with a similar time constant as in control myocytes (i.e. 81±40 ms and 51±8 ms, respectively, n.s.).From the onset of fractional block of Ito by tedisamil during the initial 60 ms of a clamp step, we calculated k1=9×106 mol−1 s−1 for the association rate constant, and k2=23 s−1 for the dissociation rate constant. The resulting apparent KD was 2.6 μM and is similar to the IC50 value.The effects of tedisamil on Ito could be simulated by assuming a four state channel model where the drug binds to the channel in an open (activated) conformation. It is concluded that in human subepicardial myocytes tedisamil is an open channel blocker of Ito and that this effect probably contributes to the antiarrhythmic potential of this drug. PMID:9831899
Patch-clamp amplifiers on a chip
Weerakoon, Pujitha; Culurciello, Eugenio; Yang, Youshan; Santos-Sacchi, Joseph; Kindlmann, Peter J.; Sigworth, Fred J.
2010-01-01
We present the first, fully-integrated, two-channel implementation of a patch-clamp measurement system. With this “PatchChip” two simultaneous whole-cell recordings can be obtained with rms noise of 8 pA in a 10 kHz bandwidth. The capacitance and series-resistance of the electrode can be compensated up to 10 pF and 100 MΩ respectively under computer control. Recordings of hERG and Nav 1.7 currents demonstrate the system's capabilities, which are on par with large, commercial patch-clamp instrumentation. By reducing patch-clamp amplifiers to a millimeter size micro-chip, this work paves the way to the realization of massively-parallel, high-throughput patch-clamp systems for drug screening and ion-channel research. The PatchChip is implemented in a 0.5 μm silicon-on-sapphire process; its size is 3 × 3 mm2 and the power consumption is 5 mW per channel with a 3.3 V power supply. PMID:20637803
Tao, Jin; Wang, Hongyi; Zhou, Hong; Li, Shengnan
2005-10-28
The saponin monomer 13 of dwarf lilyturf tuber (DT-13), one of the saponin monomers of dwarf lilyturf tuber, has been found to have potent cardioprotective effects. In order to investigate the effects of DT-13 on L-type calcium currents (I(Ca,L)), exploring the mechanisms of DT-13's cardioprotective effects in the condition of pathophysiology, we directly measured the I(Ca,L) during hypoxia in the adult rat cardiac myocytes exposed to DT-13 using standard whole-cell patch-clamp recording technique. Our previous results showed that DT-13 exerted decreasing effects on the I(Ca,L) of the single adult rat cardiac myocytes. In the condition of hypoxia, the current density was inhibited by about 29% after exposure of the cells to DT-13 (0.1 micromol L(-1)) for 10 min, from 6.96+/-1.05 pA/pF to 4.38+/-0.35 pA/pF (n=5, P<0.05). This I(Ca,L)-inhibiting action of DT-13 was concentration-dependent and showed no frequency-dependence. DT-13 up-shifted the current-voltage (I-V) curve. Steady-state activation of I(Ca,L) was not affected markedly, and the half activation potential (V(0.5)) in the presence of DT-13 (0.1 micromol L(-1)) was also not significantly different. DT-13 at 0.1 micromol L(-1) markedly accelerated the voltage-dependent steady-state inactivation of calcium current and shifted the steady-state inactivation curve of I(Ca,L) to the left. In combination with previous reports, these results suggest that there might be a close relationship between the cardioprotective effects of DT-13 and L-type calcium channels in the condition of hypoxia.
Wang, Zhong-Min; Laura Messi, María; Renganathan, Muthukrishnan; Delbono, Osvaldo
1999-01-01
We investigated whether insulin-like growth factor-1 (IGF-1), an endogenous potent activator of skeletal muscle proliferation and differentiation, enhances L-type Ca2+ channel gene expression resulting in increased functional voltage sensors in single skeletal muscle cells. Charge movement and inward Ca2+ current were recorded in primary cultured rat myoballs using the whole-cell configuration of the patch-clamp technique. Ca2+ current and maximum charge movement (Qmax) were potentiated in cells treated with IGF-1 without significant changes in their voltage dependence. Peak Ca2+ current in control and IGF-1-treated cells was -7·8 ± 0·44 and -10·5 ± 0·37 pA pF−1, respectively (P < 0·01), whilst Qmax was 12·9 ± 0·4 and 22·0 ± 0·3 nC μF−1, respectively (P < 0·01). The number of L-type Ca2+ channels was found to increase in the same preparation. The maximum binding capacity (Bmax) of the high-affinity radioligand [3H]PN200-110 in control and IGF-1-treated cells was 1·21 ± 0·25 and 3·15 ± 0·5 pmol (mg protein)−1, respectively (P < 0·01). No significant change in the dissociation constant for [3H]PN200-110 was found. Antisense RNA amplification showed a significant increase in the level of mRNA encoding the L-type Ca2+ channel α1-subunit in IGF-1-treated cells. This study demonstrates that IGF-1 regulates charge movement and the level of L-type Ca2+ channel α1-subunits through activation of gene expression in skeletal muscle cells. PMID:10087334
[Effect of substance P on the potassium and calcium currents of colonic smooth muscle cells].
Tang, Qincai; Luo, Hesheng; Quan, Xiaojing; Fan, Han; Yu, Guang
2015-08-11
To investigate the effect of substance P(SP) on the spontaneous contractile activity of smooth muscle cells,the large-conductance calcium-activated potassium channel currents (IBKCa) and the L-type calcium channel currents (ICaL) in rat smooth muscle cells of the proximal colon. A total of 24 healthy male Wista rats were used in this test. The change of smooth muscle strips spontaneous contraction of rat proximal colon after adding SP was recorded by a physiological signal stystem (RM6240). The IBKCa and ICaL were measured via the whole cell patch-clamp technique. The longitudinal muscle contraction was obviously increased concentration-dependently after adding different concentrations of SP (10(-7)-10(-6) mol/L), so as the circular muscle while adding SP(10(-8)-10(-6) mol/L) (all P<0.05). Compared with the control group, IBKCa was decreased after adding SP(10(-6) mol/L). Under the stimulating voltage of 60 mV, the IBKCa current density was (11.71±1.65) pA/pF, which was significantly lower compared with the control group (14.42±2.89) pA/pF (P<0.05). The ICaL) was apparently increased. Under the stimulating voltage of 0 mV, the ICaL) currents density was (-5.04±0.67) pA/pF, compared with the control group (-4.25±0.46) pA/pF, which was significantly increased (P<0.01). SP can promote the spontaneous contractile activity of colon smooth muscle of rats in vitro.And SP decrease IBKCa representatively while apparently increase ICaL). That is probably one of the mechanism SP regulate the gastrointestinal motility.
Kadala, Aklesso; Charreton, Mercedes; Jakob, Ingrid; Cens, Thierry; Rousset, Matthieu; Chahine, Mohamed; Le Conte, Yves; Charnet, Pierre; Collet, Claude
2014-01-01
The sensitivity of neurons from the honey bee olfactory system to pyrethroid insecticides was studied using the patch-clamp technique on central ‘antennal lobe neurons’ (ALNs) in cell culture. In these neurons, the voltage-dependent sodium currents are characterized by negative potential for activation, fast kinetics of activation and inactivation, and the presence of cumulative inactivation during train of depolarizations. Perfusion of pyrethroids on these ALN neurons submitted to repetitive stimulations induced (1) an acceleration of cumulative inactivation, and (2) a marked slowing of the tail current recorded upon repolarization. Cypermethrin and permethrin accelerated cumulative inactivation of the sodium current peak in a similar manner and tetramethrin was even more effective. The slow-down of channel deactivation was markedly dependent on the type of pyrethroid. With cypermethrin, a progressive increase of the tail current amplitude along with successive stimulations reveals a traditionally described use-dependent recruitment of modified sodium channels. However, an unexpected decrease in this tail current was revealed with tetramethrin. If one considers the calculated percentage of modified channels as an index of pyrethroids effects, ALNs are significantly more susceptible to tetramethrin than to permethrin or cypermethrin for a single depolarization, but this difference attenuates with repetitive activity. Further comparison with peripheral neurons from antennae suggest that these modifications are neuron type specific. Modeling the sodium channel as a multi-state channel with fast and slow inactivation allows to underline the effects of pyrethroids on a set of rate constants connecting open and inactivated conformations, and give some insights to their specificity. Altogether, our results revealed a differential sensitivity of central olfactory neurons to pyrethroids that emphasize the ability for these compounds to impair detection and processing of information at several levels of the bees olfactory pathway. PMID:25390654
Glutamate modulation of GABA transport in retinal horizontal cells of the skate
Kreitzer, Matthew A; Andersen, Kristen A; Malchow, Robert Paul
2003-01-01
Transport of the amino acid GABA into neurons and glia plays a key role in regulating the effects of GABA in the vertebrate retina. We have examined the modulation of GABA-elicited transport currents of retinal horizontal cells by glutamate, the likely neurotransmitter of vertebrate photoreceptors. Enzymatically isolated external horizontal cells of skate were examined using whole-cell voltage-clamp techniques. GABA (1 mm) elicited an inward current that was completely suppressed by the GABA transport inhibitors tiagabine (10 μm) and SKF89976-A (100 μm), but was unaffected by 100 μm picrotoxin. Prior application of 100 μm glutamate significantly reduced the GABA-elicited current. Glutamate depressed the GABA dose-response curve without shifting the curve laterally or altering the voltage dependence of the current. The ionotropic glutamate receptor agonists kainate and AMPA also reduced the GABA-elicited current, and the effects of glutamate and kainate were abolished by the ionotropic glutamate receptor antagonist 6-cyano-7-nitroquinoxaline. NMDA neither elicited a current nor modified the GABA-induced current, and metabotropic glutamate analogues were also without effect. Inhibition of the GABA-elicited current by glutamate and kainate was reduced when extracellular calcium was removed and when recording pipettes contained high concentrations of the calcium chelator BAPTA. Caffeine (5 mm) and thapsigargin (2 nm), agents known to alter intracellular calcium levels, also reduced the GABA-elicited current, but increases in calcium induced by depolarization alone did not. Our data suggest that glutamate regulates GABA transport in retinal horizontal cells through a calcium-dependent process, and imply a close physical relationship between calcium-permeable glutamate receptors and GABA transporters in these cells. PMID:12562999
Wang, Guangfu; Wyskiel, Daniel R; Yang, Weiguo; Wang, Yiqing; Milbern, Lana C; Lalanne, Txomin; Jiang, Xiaolong; Shen, Ying; Sun, Qian-Quan; Zhu, J Julius
2015-01-01
Deciphering neuronal circuitry is central to understanding brain function and dysfunction, yet it remains a daunting task. To facilitate the dissection of neuronal circuits, a process requiring functional analysis of synaptic connections and morphological identification of interconnected neurons, we present here a method for stable simultaneous octuple patch-clamp recordings. This method allows physiological analysis of synaptic interconnections among 4–8 simultaneously recorded neurons and/or 10–30 sequentially recorded neurons, and it allows anatomical identification of >85% of recorded interneurons and >99% of recorded principal neurons. We describe how to apply the method to rodent tissue slices; however, it can be used on other model organisms. We also describe the latest refinements and optimizations of mechanics, electronics, optics and software programs that are central to the realization of a combined single- and two-photon microscopy–based, optogenetics- and imaging-assisted, stable, simultaneous quadruple–viguple patch-clamp recording system. Setting up the system, from the beginning of instrument assembly and software installation to full operation, can be completed in 3–4 d. PMID:25654757
Pfeiffer, Keram; French, Andrew S.
2015-01-01
Naturalistic signals were created from vibrations made by locusts walking on a Sansevieria plant. Both naturalistic and Gaussian noise signals were used to mechanically stimulate VS-3 slit-sense mechanoreceptor neurons of the spider, Cupiennius salei, with stimulus amplitudes adjusted to give similar firing rates for either stimulus. Intracellular microelectrodes recorded action potentials, receptor potential, and receptor current, using current clamp and voltage clamp. Frequency response analysis showed that naturalistic stimulation contained relatively more power at low frequencies, and caused increased neuronal sensitivity to higher frequencies. In contrast, varying the amplitude of Gaussian stimulation did not change neuronal dynamics. Naturalistic stimulation contained less entropy than Gaussian, but signal entropy was higher than stimulus in the resultant receptor current, indicating addition of uncorrelated noise during transduction. The presence of added noise was supported by measuring linear information capacity in the receptor current. Total entropy and information capacity in action potentials produced by either stimulus were much lower than in earlier stages, and limited to the maximum entropy of binary signals. We conclude that the dynamics of action potential encoding in VS-3 neurons are sensitive to the form of stimulation, but entropy and information capacity of action potentials are limited by firing rate. PMID:26578975
Cellular defibrillation: interaction of micro-scale electric fields with voltage-gated ion channels.
Kargol, Armin; Malkinski, Leszek; Eskandari, Rahmatollah; Carter, Maya; Livingston, Daniel
2015-09-01
We study the effect of micro-scale electric fields on voltage-gated ion channels in mammalian cell membranes. Such micro- and nano-scale electric fields mimic the effects of multiferroic nanoparticles that were recently proposed [1] as a novel way of controlling the function of voltage-sensing biomolecules such as ion channels. This article describes experimental procedures and initial results that reveal the effect of the electric field, in close proximity of cells, on the ion transport through voltage-gated ion channels. We present two configurations of the whole-cell patch-clamping apparatus that were used to detect the effect of external stimulation on ionic currents and discuss preliminary results that indicate modulation of the ionic currents consistent with the applied stimulus.
Novel switching method for single-phase NPC three-level inverter with neutral-point voltage control
NASA Astrophysics Data System (ADS)
Lee, June-Seok; Lee, Seung-Joo; Lee, Kyo-Beum
2018-02-01
This paper proposes a novel switching method with the neutral-point voltage control in a single-phase neutral-point-clamped three-level inverter (SP-NPCI) used in photovoltaic systems. A proposed novel switching method for the SP-NPCI improves the efficiency. The main concept is to fix the switching state of one leg. As a result, the switching loss decreases and the total efficiency is improved. In addition, it enables the maximum power-point-tracking operation to be performed by applying the proposed neutral-point voltage control algorithm. This control is implemented by modifying the reference signal. Simulation and experimental results provide verification of the performance of a novel switching method with the neutral-point voltage control.
Batra, Romesh C.; Porfiri, Maurizio; Spinello, Davide
2008-01-01
We study the influence of von Kármán nonlinearity, van der Waals force, and thermal stresses on pull-in instability and small vibrations of electrostatically actuated microplates. We use the Galerkin method to develop a tractable reduced-order model for electrostatically actuated clamped rectangular microplates in the presence of van der Waals forces and thermal stresses. More specifically, we reduce the governing two-dimensional nonlinear transient boundary-value problem to a single nonlinear ordinary differential equation. For the static problem, the pull-in voltage and the pull-in displacement are determined by solving a pair of nonlinear algebraic equations. The fundamental vibration frequency corresponding to a deflected configuration of the microplate is determined by solving a linear algebraic equation. The proposed reduced-order model allows for accurately estimating the combined effects of van der Waals force and thermal stresses on the pull-in voltage and the pull-in deflection profile with an extremely limited computational effort. PMID:27879752
Batra, Romesh C; Porfiri, Maurizio; Spinello, Davide
2008-02-15
We study the influence of von Karman nonlinearity, van der Waals force, and a athermal stresses on pull-in instability and small vibrations of electrostatically actuated mi-croplates. We use the Galerkin method to develop a tractable reduced-order model for elec-trostatically actuated clamped rectangular microplates in the presence of van der Waals forcesand thermal stresses. More specifically, we reduce the governing two-dimensional nonlineartransient boundary-value problem to a single nonlinear ordinary differential equation. For thestatic problem, the pull-in voltage and the pull-in displacement are determined by solving apair of nonlinear algebraic equations. The fundamental vibration frequency corresponding toa deflected configuration of the microplate is determined by solving a linear algebraic equa-tion. The proposed reduced-order model allows for accurately estimating the combined effectsof van der Waals force and thermal stresses on the pull-in voltage and the pull-in deflectionprofile with an extremely limited computational effort.
The ac power line protection for an IEEE 587 Class B environment
NASA Technical Reports Server (NTRS)
Roehr, W. D.; Clark, O. M.
1984-01-01
The 587B series of protectors are unique, low clamping voltage transient suppressors to protect ac-powered equipment from the 6000V peak open-circuit voltage and 3000A short circuit current as defined in IEEE standard 587 for Category B transients. The devices, which incorporate multiple-stage solid-state protector components, were specifically designed to operate under multiple exposures to maximum threat levels in this severe environment. The output voltage peaks are limited to 350V under maximum threat conditions for a 120V ac power line, thus providing adequate protection to vulnerable electronic equipment. The principle of operation and test performance data is discussed.
Piezoresistive cantilever force-clamp system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Sung-Jin; Petzold, Bryan C.; Pruitt, Beth L.
2011-04-15
We present a microelectromechanical device-based tool, namely, a force-clamp system that sets or ''clamps'' the scaled force and can apply designed loading profiles (e.g., constant, sinusoidal) of a desired magnitude. The system implements a piezoresistive cantilever as a force sensor and the built-in capacitive sensor of a piezoelectric actuator as a displacement sensor, such that sample indentation depth can be directly calculated from the force and displacement signals. A programmable real-time controller operating at 100 kHz feedback calculates the driving voltage of the actuator. The system has two distinct modes: a force-clamp mode that controls the force applied to amore » sample and a displacement-clamp mode that controls the moving distance of the actuator. We demonstrate that the system has a large dynamic range (sub-nN up to tens of {mu}N force and nm up to tens of {mu}m displacement) in both air and water, and excellent dynamic response (fast response time, <2 ms and large bandwidth, 1 Hz up to 1 kHz). In addition, the system has been specifically designed to be integrated with other instruments such as a microscope with patch-clamp electronics. We demonstrate the capabilities of the system by using it to calibrate the stiffness and sensitivity of an electrostatic actuator and to measure the mechanics of a living, freely moving Caenorhabditis elegans nematode.« less
Bébarová, Markéta; Matejovič, Peter; Pásek, Michal; Hořáková, Zuzana; Hošek, Jan; Šimurdová, Milena; Šimurda, Jiří
2016-10-01
Alcohol intoxication tends to induce arrhythmias, most often the atrial fibrillation. To elucidate arrhythmogenic mechanisms related to alcohol consumption, the effect of ethanol on main components of the ionic membrane current is investigated step by step. Considering limited knowledge, we aimed to examine the effect of clinically relevant concentrations of ethanol (0.8-80 mM) on acetylcholine-sensitive inward rectifier potassium current I K(Ach). Experiments were performed by the whole-cell patch clamp technique at 23 ± 1 °C on isolated rat and guinea-pig atrial myocytes, and on expressed human Kir3.1/3.4 channels. Ethanol induced changes of I K(Ach) in the whole range of concentrations applied; the effect was not voltage dependent. The constitutively active component of I K(Ach) was significantly increased by ethanol with the maximum effect (an increase by ∼100 %) between 8 and 20 mM. The changes were comparable in rat and guinea-pig atrial myocytes and also in expressed human Kir3.1/3.4 channels (i.e., structural correlate of I K(Ach)). In the case of the acetylcholine-induced component of I K(Ach), a dual ethanol effect was apparent with a striking heterogeneity of changes in individual cells. The effect correlated with the current magnitude in control: the current was increased by eth-anol in the cells showing small current in control and vice versa. The average effect peaked at 20 mM ethanol (an increase of the current by ∼20 %). Observed changes of action potential duration agreed well with the voltage clamp data. Ethanol significantly affected both components of I K(Ach) even in concentrations corresponding to light alcohol consumption.
Svirskis, Gytis; Baranauskas, Gytis; Svirskiene, Natasa; Tkatch, Tatiana
2015-01-01
The superior colliculus in mammals or the optic tectum in amphibians is a major visual information processing center responsible for generation of orientating responses such as saccades in monkeys or prey catching avoidance behavior in frogs. The conserved structure function of the superior colliculus the optic tectum across distant species such as frogs, birds monkeys permits to draw rather general conclusions after studying a single species. We chose the frog optic tectum because we are able to perform whole-cell voltage-clamp recordings fluorescence imaging of tectal neurons while they respond to a visual stimulus. In the optic tectum of amphibians most visual information is processed by pear-shaped neurons possessing long dendritic branches, which receive the majority of synapses originating from the retinal ganglion cells. Since the first step of the retinal input integration is performed on these dendrites, it is important to know whether this integration is enhanced by active dendritic properties. We demonstrate that rapid calcium transients coinciding with the visual stimulus evoked action potentials in the somatic recordings can be readily detected up to the fine branches of these dendrites. These transients were blocked by calcium channel blockers nifedipine CdCl2 indicating that calcium entered dendrites via voltage-activated L-type calcium channels. The high speed of calcium transient propagation, >300 μm in <10 ms, is consistent with the notion that action potentials, actively propagating along dendrites, open voltage-gated L-type calcium channels causing rapid calcium concentration transients in the dendrites. We conclude that such activation by somatic action potentials of the dendritic voltage gated calcium channels in the close vicinity to the synapses formed by axons of the retinal ganglion cells may facilitate visual information processing in the principal neurons of the frog optic tectum.
Hu, Hua; Vervaeke, Koen; Storm, Johan F
2002-01-01
Coherent network oscillations in the brain are correlated with different behavioural states. Intrinsic resonance properties of neurons provide a basis for such oscillations. In the hippocampus, CA1 pyramidal neurons show resonance at theta (θ) frequencies (2-7 Hz). To study the mechanisms underlying θ-resonance, we performed whole-cell recordings from CA1 pyramidal cells (n = 73) in rat hippocampal slices. Oscillating current injections at different frequencies (ZAP protocol), revealed clear resonance with peak impedance at 2-5 Hz at ≈33 °C (increasing to ≈7 Hz at ≈38 °C). The θ-resonance showed a U-shaped voltage dependence, being strong at subthreshold, depolarized (≈-60 mV) and hyperpolarized (≈-80 mV) potentials, but weaker near the resting potential (-72 mV). Voltage clamp experiments revealed three non-inactivating currents operating in the subthresold voltage range: (1) M-current (IM), which activated positive to -65 mV and was blocked by the M/KCNQ channel blocker XE991 (10 μm); (2) h-current (Ih), which activated negative to -65 mV and was blocked by the h/HCN channel blocker ZD7288 (10 μm); and (3) a persistent Na+ current (INaP), which activated positive to -65 mV and was blocked by tetrodotoxin (TTX, 1 μm). In current clamp, XE991 or TTX suppressed the resonance at depolarized, but not hyperpolarized membrane potentials, whereas ZD7288 abolished the resonance only at hyperpolarized potentials. We conclude that these cells show two forms of θ-resonance: ‘M-resonance’ generated by the M-current and persistent Na+ current in depolarized cells, and ‘H-resonance’ generated by the h-current in hyperpolarized cells. Computer simulations supported this interpretation. These results suggest a novel function for M/KCNQ channels in the brain: to facilitate neuronal resonance and network oscillations in cortical neurons, thus providing a basis for an oscillation-based neural code. PMID:12482886
NASA Astrophysics Data System (ADS)
Brew, Helen; Attwell, David
1987-06-01
Glutamate is taken up avidly by glial cells in the central nervous system1. Glutamate uptake may terminate the transmitter action of glutamate released from neurons1, and keep extracellular glutamate at concentrations below those which are neurotoxic. We report here that glutamate evokes a large inward current in retinal glial cells which have their membrane potential and intracellular ion concentrations controlled by the whole-cell patch-clamp technique2. This current seems to be due to an electrogenic glutamate uptake carrier, which transports at least two sodium ions with every glutamate anion carried into the cell. Glutamate uptake is strongly voltage-dependent, decreasing at depolarized potentials: when fully activated, it contributes almost half of the conductance in the part of the glial cell membrane facing the retinal neurons. The spatial localization, glutamate affinity and magnitude of the uptake are appropriate for terminating the synaptic action of glutamate released from photoreceptors and bipolar cells. These data challenge present explanations of how the b-wave of the electroretinogram is generated, and suggest a mechanism for non-vesicular voltage-dependent release of glutamate from neurons.
Chloride channel blockers activate an endogenous cationic current in oocytes of Bufo arenarum.
Cavarra, M S; del Mónaco, S M; Kotsias, B A
2004-07-01
A two-electrode, voltage-clamp technique was used to measure the effect of the Cl(-) channel blockers, 9-anthracene carboxylic acid and niflumic acid, upon the ionic currents of oocytes of the South American toad Bufo arenarum. The main results were: (1) both blockers produced a reversible increase of the outward currents on a dose-dependent manner; (2) the activated outward current was voltage dependent; (3) the 9-anthracene carboxylic acid-sensitive current was blocked with barium; and (4) the effect of 9-anthracene carboxylic acid was more pronounced in a zero-K(+) solution than in standard (2 mmol l(-1)) or high (20 mmol l(-1)) K(+) solutions, indicating that a K(+) conductance is activated. The effect of the Cl(-) channel blockers could be due to a direct interaction with endogenous cationic channels. Another possible explanation is that Cl(-) that enter the cell during depolarizing steps in control solution inhibit this cationic conductance; thus, the blockade of Cl(-) channels by 9-anthracene carboxylic acid and niflumic acid would remove this inhibition, allowing the cationic current to flow freely.
Murali, Swetha S; Napier, Ian A; Mohammadi, Sarasa A; Alewood, Paul F; Lewis, Richard J; Christie, MacDonald J
2015-03-01
Changes in ion channel function and expression are characteristic of neuropathic pain. Voltage-gated calcium channels (VGCCs) are integral for neurotransmission and membrane excitability, but relatively little is known about changes in their expression after nerve injury. In this study, we investigate whether peripheral nerve ligation is followed by changes in the density and proportion of high-voltage-activated (HVA) VGCC current subtypes in dorsal root ganglion (DRG) neurons, the contribution of presynaptic N-type calcium channels in evoked excitatory postsynaptic currents (EPSCs) recorded from dorsal horn neurons in the spinal cord, and the changes in expression of mRNA encoding VGCC subunits in DRG neurons. Using C57BL/6 mice [8- to 11-wk-old males (n = 91)] for partial sciatic nerve ligation or sham surgery, we performed whole cell patch-clamp recordings on isolated DRG neurons and dorsal horn neurons and measured the expression of all VGCC subunits with RT-PCR in DRG neurons. After nerve injury, the density of P/Q-type current was reduced overall in DRG neurons. There was an increase in the percentage of N-type and a decrease in that of P/Q-type current in medium- to large-diameter neurons. No changes were found in the contribution of presynaptic N-type calcium channels in evoked EPSCs recorded from dorsal horn neurons. The α2δ-1 subunit was upregulated by 1.7-fold and γ-3, γ-2, and β-4 subunits were all downregulated 1.7-fold in injured neurons compared with sham-operated neurons. This comprehensive characterization of HVA VGCC subtypes in mouse DRG neurons after nerve injury revealed changes in N- and P/Q-type current proportions only in medium- to large-diameter neurons. Copyright © 2015 the American Physiological Society.
Park, Yul Young; Johnston, Daniel
2013-01-01
The properties of voltage-gated ion channels on the neuronal membrane shape electrical activity such as generation and backpropagation of action potentials, initiation of dendritic spikes, and integration of synaptic inputs. Subthreshold currents mediated by sodium channels are of interest because of their activation near rest, slow inactivation kinetics, and consequent effects on excitability. Modulation of these currents can also perturb physiological responses of a neuron that might underlie pathological states such as epilepsy. Using nucleated patches from the peri-somatic region of hippocampal CA1 neurons, we recorded a slowly inactivating component of the macroscopic Na+ current (which we have called INaS) that shared many biophysical properties with the persistent Na+ current, INaP, but showed distinctively faster inactivating kinetics. Ramp voltage commands with a velocity of 400 mV/s were found to elicit this component of Na+ current reliably. INaS also showed a more hyperpolarized I-V relationship and slower inactivation than those of the fast transient Na+ current (INaT) recorded in the same patches. The peak amplitude of INaS was proportional to the peak amplitude of INaT but was much smaller in amplitude. Hexanol, riluzole, and ranolazine, known Na+ channel blockers, were tested to compare their effects on both INaS and INaT. The peak conductance of INaS was preferentially blocked by hexanol and riluzole, but the shift of half-inactivation voltage (V1/2) was only observed in the presence of riluzole. Current-clamp measurements with hexanol suggested that INaS was involved in generation of an action potential and in upregulation of neuronal excitability. PMID:23236005
Sukhorukov, Vladimir L.; Zimmermann, Dirk
2013-01-01
Abstract Functional access to membrane proteins, for example, ion channels, of individual cells is an important prerequisite in drug discovery studies. The highly sophisticated patch-clamp method is widely used for electrogenic membrane proteins, but is demanding for the operator, and its automation remains challenging. The dielectrophoretically-accessed, intracellular membrane–potential measurement (DAIMM) method is a new technique showing high potential for automation of electrophysiological data recording in the whole-cell configuration. A cell suspension is brought between a mm-scaled planar electrode and a μm-scaled tip electrode, placed opposite to each other. Due to the asymmetric electrode configuration, the application of alternating electric fields (1–5 MHz) provokes a dielectrophoretic force acting on the target cell. As a consequence, the cell is accelerated and pierced by the tip electrode, hence functioning as the internal (working) electrode. We used the light-gated cation channel Channelrhodopsin-2 as a reporter protein expressed in HEK293 cells to characterize the DAIMM method in comparison with the patch-clamp technique. PMID:22994967
Randomized clinical trial of stapler versus clamp-crushing transection in elective liver resection.
Rahbari, N N; Elbers, H; Koch, M; Vogler, P; Striebel, F; Bruckner, T; Mehrabi, A; Schemmer, P; Büchler, M W; Weitz, J
2014-02-01
Various devices have been developed to facilitate liver transection and reduce blood loss in liver resections. None of these has proven superiority compared with the classical clamp-crushing technique. This randomized clinical trial compared the effectiveness and safety of stapler transection with that of clamp-crushing during open liver resection. Patients admitted for elective open liver resection between January 2010 and October 2011 were assigned randomly to stapler transection or the clamp-crushing technique. The primary endpoint was the total amount of intraoperative blood loss. Secondary endpoints included transection time, duration of operation, complication rates and resection margins. A total of 130 patients were enrolled, 65 to clamp-crushing and 65 to stapler transection. There was no difference between groups in total intraoperative blood loss: median (i.q.r.) 1050 (525-1650) versus 925 (450-1425) ml respectively (P = 0·279). The difference in total intraoperative blood loss normalized to the transection surface area was not statistically significant (P = 0·092). Blood loss during parenchymal transection was significantly lower in the stapler transection group (P = 0·002), as were the parenchymal transection time (mean(s.d.) 30(21) versus 9(7) min for clamp-crushing and stapler transection groups respectively; P < 0·001) and total duration of operation (mean(s.d.) 221(86) versus 190(85) min; P = 0·047). There were no significant differences in postoperative morbidity (P = 0·863) or mortality (P = 0·684) between groups. Stapler transection is a safe technique but does not reduce intraoperative blood loss in elective liver resection compared with the clamp-crushing technique. NCT01049607 (http://www.clinicaltrials.gov). © 2014 BJS Society Ltd. Published by John Wiley & Sons Ltd.
Miller, Evan W.; Slak Rupnik, Marjan
2013-01-01
Oscillatory electrical activity is regarded as a hallmark of the pancreatic beta cell glucose-dependent excitability pattern. Electrophysiologically recorded membrane potential oscillations in beta cells are associated with in-phase oscillatory cytosolic calcium activity ([Ca2+]i) measured with fluorescent probes. Recent high spatial and temporal resolution confocal imaging revealed that glucose stimulation of beta cells in intact islets within acute tissue slices produces a [Ca2+]i change with initial transient phase followed by a plateau phase with highly synchronized [Ca2+]i oscillations. Here, we aimed to correlate the plateau [Ca2+]i oscillations with the oscillations of membrane potential using patch-clamp and for the first time high resolution voltage-sensitive dye based confocal imaging. Our results demonstrated that the glucose-evoked membrane potential oscillations spread over the islet in a wave-like manner, their durations and wave velocities being comparable to the ones for [Ca2+]i oscillations and waves. High temporal resolution simultaneous records of membrane potential and [Ca2+]i confirmed tight but nevertheless limited coupling of the two processes, with membrane depolarization preceding the [Ca2+]i increase. The potassium channel blocker tetraethylammonium increased the velocity at which oscillations advanced over the islet by several-fold while, at the same time, emphasized differences in kinetics of the membrane potential and the [Ca2+]i. The combination of both imaging techniques provides a powerful tool that will help us attain deeper knowledge of the beta cell network. PMID:24324777
Fu, Yi-Cheng; Zhang, Yu; Tian, Liu-Yang; Li, Nan; Chen, Xi; Cai, Zhong-Qi; Zhu, Chao; Li, Yang
2016-05-01
Allocryptopine (ALL) is an effective alkaloid of Corydalis decumbens (Thunb.) Pers. Papaveraceae and has proved to be anti-arrhythmic. The purpose of our study is to investigate the effects of ALL on transmural repolarizing ionic ingredients of outward potassium current (I to) and slow delayed rectifier potassium current (I Ks). The monophasic action potential (MAP) technique was used to record the MAP duration of the epicardium (Epi), myocardium (M) and endocardium (Endo) of the rabbit heart and the whole cell patch clamp was used to record I to and I Ks in cardiomyocytes of Epi, M and Endo layers that were isolated from rabbit ventricles. The effects of ALL on MAP of Epi, M and Endo layers were disequilibrium. ALL could effectively reduce the transmural dispersion of repolarization (TDR) in rabbit transmural ventricular wall. ALL decreased the current densities of I to and I Ks in a voltage and concentration dependent way and narrowed the repolarizing differences among three layers. The analysis of gating kinetics showed ALL accelerated the channel activation of I to in M layers and partly inhibit the channel openings of I to in Epi, M and Endo cells. On the other hand, ALL mainly slowed channel deactivation of I Ks channel in Epi and Endo layers without affecting its activation. Our study gives partially explanation about the mechanisms of transmural inhibition of I to and I Ks channels by ALL in rabbit myocardium. These findings provide novel perspective regarding the anti-arrhythmogenesis application of ALL in clinical settings.
Dimerization of the voltage-sensing phosphatase controls its voltage-sensing and catalytic activity.
Rayaprolu, Vamseedhar; Royal, Perrine; Stengel, Karen; Sandoz, Guillaume; Kohout, Susy C
2018-05-07
Multimerization is a key characteristic of most voltage-sensing proteins. The main exception was thought to be the Ciona intestinalis voltage-sensing phosphatase (Ci-VSP). In this study, we show that multimerization is also critical for Ci-VSP function. Using coimmunoprecipitation and single-molecule pull-down, we find that Ci-VSP stoichiometry is flexible. It exists as both monomers and dimers, with dimers favored at higher concentrations. We show strong dimerization via the voltage-sensing domain (VSD) and weak dimerization via the phosphatase domain. Using voltage-clamp fluorometry, we also find that VSDs cooperate to lower the voltage dependence of activation, thus favoring the activation of Ci-VSP. Finally, using activity assays, we find that dimerization alters Ci-VSP substrate specificity such that only dimeric Ci-VSP is able to dephosphorylate the 3-phosphate from PI(3,4,5)P 3 or PI(3,4)P 2 Our results indicate that dimerization plays a significant role in Ci-VSP function. © 2018 Rayaprolu et al.
Melatonin mediates vasodilation through both direct and indirect activation of BKCa channels.
Zhao, T; Zhang, H; Jin, C; Qiu, F; Wu, Y; Shi, L
2017-10-01
Melatonin, synthesized primarily by the pineal gland, is a neuroendocrine hormone with high membrane permeability. The vascular effects of melatonin, including vasoconstriction and vasodilation, have been demonstrated in numerous studies. However, the mechanisms underlying these effects are not fully understood. Large-conductance Ca 2+ -activated K + (BK Ca ) channels are expressed broadly on smooth muscle cells and play an important role in vascular tone regulation. This study explored the mechanisms of myocyte BK Ca channels and endothelial factors underlying the action of melatonin on the mesenteric arteries (MAs). Vascular contractility and patch-clamp studies were performed on myocytes of MAs from Wistar rats. Melatonin induced significant vasodilation on MAs. In the presence of N ω -nitro-l-arginine methyl ester (l-NAME), a potent endothelial oxide synthase (eNOS) inhibitor, melatonin elicited concentration-dependent relaxation, with lowered pIC 50 The effect of melatonin was significantly attenuated in the presence of BK Ca channel blocker iberiotoxin or MT1/MT2 receptor antagonist luzindole in both (+) l-NAME and (-) l-NAME groups. In the (+) l-NAME group, iberiotoxin caused a parallel rightward shift of the melatonin concentration-relaxation curve, with pIC 50 lower than that of luzindole. Both inside-out and cell-attached patch-clamp recordings showed that melatonin significantly increased the open probability, mean open time and voltage sensitivity of BK Ca channels. In a cell-attached patch-clamp configuration, the melatonin-induced enhancement of BK Ca channel activity was significantly suppressed by luzindole. These findings indicate that in addition to the activation of eNOS, melatonin-induced vasorelaxation of MAs is partially attributable to its direct (passing through the cell membrane) and indirect (via MT1/MT2 receptors) activation of the BK Ca channels on mesenteric arterial myocytes. © 2017 Society for Endocrinology.
Li, Wenchao; Liu, Jingjian; Fan, Minghua; Li, Zhongtang; Chen, Yin; Zhang, Guisen; Huang, Zhuo; Zhang, Liangren
2018-04-24
GLYX-13, a NMDAR glycine-site partial agonist, was discovered as a promising antidepressant with rapidly acting effects but no ketamine-like side effects. However, the reported synthetic process route had deficiencies of low yield and the use of unfriendly reagents. Here, we report a scaled-up synthesis of GLYX-13 with an overall yield of 30% on the hectogram scale with a column chromatography-free strategy, where the coupling and deprotection reaction conditions were systematically optimized. Meanwhile, the absolute configuration of precursor compound of GLYX-13 was identified by X-ray single crystal diffraction. Finally, the activity of GLYX-13 was verified in the cortical neurons of mice through whole-cell voltage-clamp technique.
Shalygin, A V; Vigont, V A; Glushankova, L N; Zimina, O A; Kolesnikov, D O; Skopin, A Yu; Kaznacheeva, E V
2017-07-01
An important role in intracellular calcium signaling is played by store-operated channels activated by STIM proteins, calcium sensors of the endoplasmic reticulum. In stable STIM1 knockdown HEK S4 cells, single channels activated by depletion of intracellular calcium stores were detected by cell-attached patch-clamp technique and their electrophysiological parameters were described. Comparison of the properties of single channels in HEK293 and HEK S4 cells revealed no significant differences in their current-voltage curves, while regulation of store-operated calcium channels in these cell lines depended on the level of STIM1 expression. We can conclude that electrophysiological peculiarities of store-regulated calcium entry observed in different cells can be explained by differences in STIM1 expression.
Sigworth, F J
1985-05-01
The random passage of ions through an open channel is expected to result in shot noise fluctuations in the channel current. The patch-clamp technique now allows fluctuations of this size to be observed in single-channel currents. In the experiments reported here the acetylcholine-induced currents in cultured rat muscle cells were analyzed; fluctuations were found that were considerably larger than expected for shot noise. A low-frequency component, which was fitted with a Lorentzian, was examined in detail; it appears to arise from fluctuations in channel conductance of approximately 3% on a time scale of 1 ms. The characteristic relaxation time is voltage dependent and temperature dependent (Q10 approximately equal to 3) suggesting that the fluctuations arise from conformational fluctuations in the channel protein.
The discovery of the sub-threshold currents M and Q/H in central neurons.
Adams, Paul
2016-08-15
The history, content and consequences of the highly-cited 1982 Brain Research paper by Halliwell and Adams are summarized. The paper pioneered the use of the single-electrode voltage clamp in mammalian brain slices, described 2 novel sub-threshold voltage-dependent ionic currents, IM and IQ/H, and suggested that cholinergic inputs "enabled" pyramidal cell firing in response to conventional synaptic input, the first example of central neuromodulation. The paper, published in Brain Research to give the first author appropriate importance, heralded an ongoing tidal wave of quantitative electrophysiology in mammalian central neurons. Voltage-clamp analysis of muscarinic excitation in hippocampal neurons Pyramidal cells in the CA1 field of guinea pig hippocampal slices were voltage-clamped using a single microelectrode, at 23-30°C. Small inwardly relaxing currents triggered by step hyperpolarizations from holding potentials of -80 to -40mV were investigated. Inward relaxations occurring for negative steps between -40mV and -70mV resembled M-currents of sympathetic ganglion cells: they were abolished by addition of carbachol, muscarine or bethanechol, as well as by 1mM barium; the relaxations appeared to invert at around -80mV; they became faster at more negative potentials; and the inversion potential was shifted positively by raising external K(+) concentration. Inward relaxations triggered by steps negative to -80mV, in contrast, appeared to reflect passage of another current species, which has been labeled IQ.Thus IQ did not invert negative to -80mV, it was insensitive to muscarinic agonizts or to barium, and it was blocked by 0.5-3mM cesium (which does not block IM). Turn-on of IQ causes the well known droop in the hyperpolarizing electrotonic potential in these cells. The combined effects of IQ and IM make the steady-state current-voltage relation of CA1 cells slightly sigmoidal around rest potential. It is suggested that activation of cholinergic septal inputs to the hippocampus facilitates repetitive firing off pyramidal cells by turning off the M-conductance, without much change in the resting potential of the cell. © 1982. This article is part of a Special Issue entitled SI:50th Anniversary Issue. Copyright © 2016. Published by Elsevier B.V.
In vitro pharmacologic characterization of a cholinergic receptor on outer hair cells.
Erostegui, C; Norris, C H; Bobbin, R P
1994-04-01
Acetylcholine (ACh) is the major neurotransmitter released from the efferent fibers in the cochlea onto the outer hair cells (OHCs). The type of ACh receptor on OHCs and the events subsequent to receptor activation are unclear. Therefore we studied the effect of agonists and antagonists of the ACh receptor on isolated OHCs from the guinea pig. OHCs were recorded from in whole cell voltage and current clamp configuration. ACh induced an increase in outward K+ current (IACh) which hyperpolarized the OHCs. No desensitization to ACh application was observed. Cs+ replaced K+ in carrying the IACh. The IACh is Ca(2+)-dependent, time and voltage sensitive, and different from the IKCa induced by depolarization of the membrane potential. When tested at 100 microM, several agonists also induced outward current responses (acetylcholine > suberyldicholine > or = carbachol > DMPP) whereas nicotine, cytisine and muscarine did not. The IACh response to 10 microM ACh was blocked by low concentrations of traditional and non-traditional-nicotinic antagonists (strychnine > curare > bicuculline > alpha-bungarotoxin > thimethaphan) and by higher concentrations of muscarinic antagonists (atropine > 4-DAMP > AF-DX 116 > pirenzepine). Pharmacologically, the ACh receptor on OHCs is nicotinic.
Gymnopilins, a product of a hallucinogenic mushroom, inhibit the nicotinic acetylcholine receptor.
Kayano, Tomohiko; Kitamura, Naoki; Miyazaki, Shunsuke; Ichiyanagi, Tsuyoshi; Shimomura, Norihiro; Shibuya, Izumi; Aimi, Tadanori
2014-04-01
Gymnopilins are substances produced in fruiting bodies of the hallucinogenic mushroom, Gymnopilus junonius. Although, only a few biological effects of gymnopilins on animal tissues have been reported, it is believed that gymnopilins are a key factor of the G. junonius poisoning. In the present study, we found that gymnopilins inhibited ACh-evoked responses in neuronal cell line, PC12 cell, and determine the underlying mechanism. Gymnopilins were purified from wild fruiting bodies of G. junonius collected in Japan. Ca(2+)-imaging revealed that gymnopilins reduced the amplitude of ACh-evoked [Ca(2+)]i rises by about 50% and abolished the ACh responses remaining in the presence of atropine. Gymnopilins greatly reduced the amplitude of [Ca(2+)]i rises evoked by nicotinic ACh receptor agonists, 1,1-Dimethyl-4-phenylpiperazinium iodide (DMPP) and nicotine. In the whole-cell voltage clamp recording, gymnopilins inhibited the DMPP-evoked currents, but did not affect the voltage-gated Ca(2+) channel currents. These results indicate that gymnopilins directly act on nicotinic ACh receptors and inhibit their activity. This biological action of gymnopilins may be one of the causes of the G. junonius poisoning. Copyright © 2014 Elsevier Ltd. All rights reserved.
Oi, Hanako; Chiba, Chikafumi; Saito, Takehiko
2003-12-01
Changes in the gap junctional coupling and maturation of voltage-activated Na(+) currents during regeneration of newt retinas were examined by whole-cell patch-clamping in slice preparations. Progenitor cells in regenerating retinas did not exhibit Na(+) currents but showed prominent electrical and tracer couplings. Cells identified by LY-fills were typically slender. Na(+) currents were detected in premature ganglion cells with round somata in the 'intermediate-II' regenerating retina. No electrical and tracer couplings were observed between these cells. Mature ganglion cells did not exhibit electrical coupling, but showed tracer coupling. On average, the maximum Na(+) current amplitude recorded from premature ganglion cells was roughly 2.5-fold smaller than that of mature ganglion cells. In addition, the activation threshold of the Na(+) current was nearly 11 mV more positive than that of mature cells. We provide morphological and physiological evidence showing that loss of gap junctions between progenitor cells is associated with ganglion cell differentiation during retinal regeneration and that new gap junctions are recreated between mature ganglion cells. Also we provide evidence suggesting that the loss of gap junctions correlates with the appearance of voltage-activated Na(+) currents in ganglion cells.
Rediscovering sperm ion channels with the patch-clamp technique
Kirichok, Yuriy; Lishko, Polina V.
2011-01-01
Upon ejaculation, mammalian spermatozoa have to undergo a sequence of physiological transformations within the female reproductive tract that will allow them to reach and fertilize the egg. These include initiation of motility, hyperactivation of motility and perhaps chemotaxis toward the egg, and culminate in the acrosome reaction that permits sperm to penetrate the protective vestments of the egg. These physiological responses are triggered through the activation of sperm ion channels that cause elevations of sperm intracellular pH and Ca2+ in response to certain cues within the female reproductive tract. Despite their key role in sperm physiology and their absolute requirement for the process of fertilization, sperm ion channels remain poorly understood due to the extreme difficulty in application of the patch-clamp technique to spermatozoa. This review covers the topic of sperm ion channels in the following order: first, we discuss how the intracellular Ca2+ and pH signaling mediated by sperm ion channels controls sperm behavior during the process of fertilization. Then, we briefly cover the history of the methodology to study sperm ion channels, which culminated in the recent development of a reproducible whole-cell patch-clamp technique for mouse and human cells. We further discuss the main approaches used to patch-clamp mature mouse and human spermatozoa. Finally, we focus on the newly discovered sperm ion channels CatSper, KSper (Slo3) and HSper (Hv1), identified by the sperm patch-clamp technique. We conclude that the patch-clamp technique has markedly improved and shifted our understanding of the sperm ion channels, in addition to revealing significant species-specific differences in these channels. This method is critical for identification of the molecular mechanisms that control sperm behavior within the female reproductive tract and make fertilization possible. PMID:21642646
Zheng, Nan; Raman, Indira M.
2011-01-01
Neurons in the cerebellar nuclei fire at accelerated rates for prolonged periods after trains of synaptic inhibition that interrupt spontaneous firing. Both in vitro and in vivo, however, this prolonged rebound firing is favored by strong stimulation of afferents, suggesting that neurotransmitters other than GABA may contribute to the increased firing rates. Here, we tested whether metabotropic glutamate receptors modulate excitability of nuclear cells in cerebellar slices from mouse. In current clamp, the prolonged rebound firing rate after high-frequency synaptic stimulation was reduced by a variety of group I mGluR antagonists, including CPCCOEt (7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxylate ethyl ester), JNJ16259685 ((3,4-dihydro-2H-pyrano[2,3-b]quinolin-7-yl)-(cis-4-methoxycyclohexyl)-methanone)+MPEP, or 3-MATIDA (α-amino-5-carboxy-3-methyl-2-thiopheneacetic acid) +MPEP, as long as both mGluR1 and mGluR5 were blocked. This mGluR-dependent acceleration of firing was reduced but still evident when IPSPs were prevented by GABAA receptor antagonists. In voltage clamp, voltage ramps revealed a non-inactivating, low-voltage-activated, nimodipine-sensitive current that was enhanced by the selective group I mGluR agonist s-DHPG ((S)-3,5-dihydroxyphenylglycine). This putative L-type current also increased when mGluRs were activated by trains of evoked synaptic currents instead of direct application of agonist. In current clamp, blocking L-type Ca channels with the specific blocker nifedipine greatly reduced prolonged post-stimulus firing and occluded the effect of adding group I mGluR antagonists. Thus, potentiation of a low-voltage-activated L-type current by synaptically released glutamate accounted nearly fully for the mGluR-dependent acceleration of firing. Together, these data suggest that prolonged rebound firing in the cerebellar nuclei in vivo is most likely to occur when GABAA and mGluRs are simultaneously activated by concurrent excitation and inhibition. PMID:21753005
Kashiwayanagi, M; Shimano, K; Kurihara, K
1996-11-04
The responses of single bullfrog olfactory neurons to various odorants were measured with the whole-cell patch clamp which offers direct information on cellular events and with the ciliary recording technique to obtain stable quantitative data from many neurons. A large portion of single olfactory neurons (about 64% and 79% in the whole-cell recording and in the ciliary recording, respectively) responded to many odorants with quite diverse molecular structures, including both odorants previously indicated to be cAMP-dependent (increasing) and independent odorants. One odorant elicited a response in many cells; e.g. hedione and citralva elicited the response in 100% and 92% of total neurons examined with the ciliary recording technique. To confirm that a single neuron carries different receptors or transduction pathways, the cross-adaptation technique was applied to single neurons. Application of hedione to a single neuron after desensitization of the current in response to lyral or citralva induced an inward current with a similar magnitude to that applied alone. It was suggested that most single olfactory neurons carry multiple receptors and at least dual transduction pathways.
NASA Technical Reports Server (NTRS)
1982-01-01
Effective screening techniques are evaluated for detecting insulation resistance degradation and failure in hermetically sealed metallized film capacitors used in applications where low capacitor voltage and energy levels are common to the circuitry. A special test and monitoring system capable of rapidly scanning all test capacitors and recording faults and/or failures is examined. Tests include temperature cycling and storage as well as low, medium, and high voltage life tests. Polysulfone film capacitors are more heat stable and reliable than polycarbonate film units.
Zhang, J; Loew, L M; Davidson, R M
1996-01-01
Kinetics of voltage-gated ionic channels fundamentally reflect the response of the channels to local electric fields. In this report cell-attached patch-clamp studies reveal that the voltage-dependent activation rate of sodium channels residing in the growth cone membrane differs from that of soma sodium channels in differentiating N1E-115 neuroblastoma cells. Because other electrophysiological properties of these channels do not differ, this finding may be a reflection of the difference in intramembrane electric field in these two regions of the cell. This represents a new mechanism for channels to attain a range of activities both within and between cells. PMID:8913589
Zhang, J; Loew, L M; Davidson, R M
1996-11-01
Kinetics of voltage-gated ionic channels fundamentally reflect the response of the channels to local electric fields. In this report cell-attached patch-clamp studies reveal that the voltage-dependent activation rate of sodium channels residing in the growth cone membrane differs from that of soma sodium channels in differentiating N1E-115 neuroblastoma cells. Because other electrophysiological properties of these channels do not differ, this finding may be a reflection of the difference in intramembrane electric field in these two regions of the cell. This represents a new mechanism for channels to attain a range of activities both within and between cells.
Li, Li; Zhao, Lei; Wang, Yang; Ma, Ke-tao; Shi, Wen-yan; Wang, Ying-zi; Si, Jun-qiang
2015-02-01
The mechanism underlying the modulatory effect of substance P (SP) on GABA-activated response in rat dorsal root ganglion (DRG) neurons was investigated. In freshly dissociated rat DRG neurons, whole-cell patch-clamp technique was used to record GABA-activated current and sharp electrode intracellular recording technique was used to record GABA-induced membrane depolarization. Application of GABA (1-1000 μmol/L) induced an inward current in a concentration-dependent manner in 114 out of 127 DRG neurons (89.8 %) examined with whole-cell patch-clamp recordings. Bath application of GABA (1-1000 μmol/L) evoked a depolarizing response in 236 out of 257 (91.8%) DRG neurons examined with intracellular recordings. Application of SP (0.001-1 μmol/L) suppressed the GABA-activated inward current and membrane depolarization. The inhibitory effects were concentration-dependent and could be blocked by the selective neurokinin 1 (NK1) receptors antagonist spantide but not by L659187 and SR142801 (1 μmol/L, n=7), selective antagonists of NK2 and NK3. The inhibitory effect of SP was significantly reduced by the calcium chelator BAPTA-AM, phospholipase C (PLC) inhibitor U73122, and PKC inhibitor chelerythrine, respectively. The PKA inhibitor H-89 did not affect the SP effect. Remarkably, the inhibitory effect of SP on GABA-activated current was nearly completely removed by a selective PKCε inhibitor epilon-V1-2 but not by safingol and LY333531, selective inhibitors of PKCα and PKCβ. Our results suggest that NK1 receptor mediates SP-induced inhibition of GABA-activated current and membrane depolarization by activating intracellular PLC-Ca²⁺-PKCε cascade. SP might regulate the excitability of peripheral nociceptors through inhibition of the "pre-synaptic inhibition" evoked by GABA, which may explain its role in pain and neurogenic inflammation.
2011-01-01
Background Hepatic resection is still associated with significant morbidity. Although the period of parenchymal transection presents a crucial step during the operation, uncertainty persists regarding the optimal technique of transection. It was the aim of the present randomized controlled trial to evaluate the efficacy and safety of hepatic resection using the technique of stapler hepatectomy compared to the simple clamp-crushing technique. Methods/Design The CRUNSH Trial is a prospective randomized controlled single-center trial with a two-group parallel design. Patients scheduled for elective hepatic resection without extrahepatic resection at the Department of General-, Visceral- and Transplantation Surgery, University of Heidelberg are enrolled into the trial and randomized intraoperatively to hepatic resection by the clamp-crushing technique and stapler hepatectomy, respectively. The primary endpoint is total intraoperative blood loss. A set of general and surgical variables are documented as secondary endpoints. Patients and outcome-assessors are blinded for the treatment intervention. Discussion The CRUNSH Trial is the first randomized controlled trial to evaluate efficacy and safety of stapler hepatectomy compared to the clamp-crushing technique for parenchymal transection during elective hepatic resection. Trial Registration ClinicalTrials.gov: NCT01049607 PMID:21888669
Clamp-crushing vs. radiofrequency-assisted liver resection:changes in liver function tests.
Palibrk, Ivan; Milicic, Biljana; Stojiljkovic, Ljuba; Manojlovic, Nebojsa; Dugalic, Vladimir; Bumbasirevic, Vesna; Kalezic, Nevena; Zuvela, Marinko; Milicevic, Miroslav
2012-05-01
Liver resection is the gold standard in managing patients with metastatic or primary liver cancer. The aim of our study was to compare the traditional clamp-crushing technique to the radiofrequency- assisted liver resection technique in terms of postoperative liver function. Liver function was evaluated preoperatively and on postoperative days 3 and 7. Liver synthetic function parameters (serum albumin level, prothrombin time and international normalized ratio), markers of hepatic injury and necrosis (serum alanine aminotransferase, aspartate aminotransferase and total bilirubin level) and microsomal activity (quantitative lidocaine test) were compared. Forty three patients completed the study (14 had clamp-crushing and 29 had radiofrequency assisted liver resection). The groups did not differ in demographic characteristics, pre-operative liver function, operative time and perioperative transfusion rate. In postoperative period, there were similar changes in monitored parameters in both groups except albumin levels, that were higher in radiofrequency-assisted liver resection group (p=0.047). Both, traditional clamp-crushing technique and radiofrequency assisted liver resection technique, result in similar postoperative changes of most monitored liver function parameters.
Excitation-calcium release uncoupling in aged single human skeletal muscle fibers.
Delbono, O; O'Rourke, K S; Ettinger, W H
1995-12-01
The biological mechanisms underlying decline in muscle power and fatigue with age are not completely understood. The contribution of alterations in the excitation-calcium release coupling in single muscle fibers was explored in this work. Single muscle fibers were voltage-clamped using the double Vaseline gap technique. The samples were obtained by needle biopsy of the vastus lateralis (quadriceps) from 9 young (25-35 years; 25.9 +/- 9.1; 5 female and 4 male) and 11 old subjects (65-75 years; 70.5 +/- 2.3; 6 f, 5 m). Data were obtained from 36 and 39 fibers from young and old subjects, respectively. Subjects included in this study had similar physical activity. Denervated and slow-twitch muscle fibers were excluded from this study. A significant reduction of maximum charge movement (Qmax) and DHP-sensitive Ca current were recorded in muscle fibers from the 65-75 group. Qmax values were 7.6 +/- 0.9 and 3.2 +/- 0.3 nC/muF for young and old muscle fibers, respectively (P < 0.01). No evidences of charge inactivation or interconversion (charge 1 to charge 2) were found. The peak Ca current was (-)4.7 +/- 0.08 and (-)2.15 +/- 0.11 muA/muF for young and old fibers, respectively (P < 0.01). The peak calcium transient studied with mag-fura-2 (400 microM) was 6.3 +/- 0.4 microM and 4.2 +/- 0.3 microM for young and old muscle fibers, respectively. Caffeine (0.5 mM) induced potentiation of the peak calcium transient in both groups. The decrease in the voltage-/Ca-dependent Ca release ratio in old fibers (0.18 +/- 0.02) compared to young fibers (0.47 +/- 0.03) (P < 0.01), was recorded in the absence of sarcoplasmic reticulum calcium depletion. These data support a significant reduction of the amount of Ca available for triggering mechanical responses in aged skeletal muscle and, the reduction of Ca release is due to DHPR-ryanodine receptor uncoupling in fast-twitch fibers. These alterations can account, at least partially for the skeletal muscle function impairment associated with aging.
Atia, Jolene; McCloskey, Conor; Shmygol, Anatoly S.; Rand, David A.; van den Berg, Hugo A.; Blanks, Andrew M.
2016-01-01
Uterine smooth muscle cells remain quiescent throughout most of gestation, only generating spontaneous action potentials immediately prior to, and during, labor. This study presents a method that combines transcriptomics with biophysical recordings to characterise the conductance repertoire of these cells, the ‘conductance repertoire’ being the total complement of ion channels and transporters expressed by an electrically active cell. Transcriptomic analysis provides a set of potential electrogenic entities, of which the conductance repertoire is a subset. Each entity within the conductance repertoire was modeled independently and its gating parameter values were fixed using the available biophysical data. The only remaining free parameters were the surface densities for each entity. We characterise the space of combinations of surface densities (density vectors) consistent with experimentally observed membrane potential and calcium waveforms. This yields insights on the functional redundancy of the system as well as its behavioral versatility. Our approach couples high-throughput transcriptomic data with physiological behaviors in health and disease, and provides a formal method to link genotype to phenotype in excitable systems. We accurately predict current densities and chart functional redundancy. For example, we find that to evoke the observed voltage waveform, the BK channel is functionally redundant whereas hERG is essential. Furthermore, our analysis suggests that activation of calcium-activated chloride conductances by intracellular calcium release is the key factor underlying spontaneous depolarisations. PMID:27105427
Electroporation of DC-3F cells is a dual process.
Wegner, Lars H; Frey, Wolfgang; Silve, Aude
2015-04-07
Treatment of biological material by pulsed electric fields is a versatile technique in biotechnology and biomedicine used, for example, in delivering DNA into cells (transfection), ablation of tumors, and food processing. Field exposure is associated with a membrane permeability increase usually ascribed to electroporation, i.e., formation of aqueous membrane pores. Knowledge of the underlying processes at the membrane level is predominantly built on theoretical considerations and molecular dynamics (MD) simulations. However, experimental data needed to monitor these processes with sufficient temporal resolution are scarce. The whole-cell patch-clamp technique was employed to investigate the effect of millisecond pulsed electric fields on DC-3F cells. Cellular membrane permeabilization was monitored by a conductance increase. For the first time, to our knowledge, it could be established experimentally that electroporation consists of two clearly separate processes: a rapid membrane poration (transient electroporation) that occurs while the membrane is depolarized or hyperpolarized to voltages beyond so-called threshold potentials (here, +201 mV and -231 mV, respectively) and is reversible within ∼100 ms after the pulse, and a long-term, or persistent, permeabilization covering the whole voltage range. The latter prevailed after the pulse for at least 40 min, the postpulse time span tested experimentally. With mildly depolarizing or hyperpolarizing pulses just above threshold potentials, the two processes could be separated, since persistent (but not transient) permeabilization required repetitive pulse exposure. Conductance increased stepwise and gradually with depolarizing and hyperpolarizing pulses, respectively. Persistent permeabilization could also be elicited by single depolarizing/hyperpolarizing pulses of very high field strength. Experimental measurements of propidium iodide uptake provided evidence of a real membrane phenomenon, rather than a mere patch-clamp artifact. In short, the response of DC-3F cells to strong pulsed electric fields was separated into a transient electroporation and a persistent permeabilization. The latter dominates postpulse membrane properties but to date has not been addressed by electroporation theory or MD simulations. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Beech, D. J.; Bolton, T. B.
1989-01-01
1. Single smooth muscle cells were isolated freshly from the rabbit portal vein and membrane currents were recorded by the whole-cell or excised patch configurations of the patch-clamp technique at room temperature. 2. Cromakalim (Ckm, 10 microM) induced a potassium current (ICkm) that showed no pronounced voltage-dependence and had low current noise. 3. This current, ICkm, was inhibited by (in order of potency): phencyclidine greater than quinidine greater than 4-aminopyridine greater than tetraethylammonium ions (TEA). These drugs inhibited the delayed rectifier current, IdK, which is activated by depolarization of the cell, with the same order of potency. 4. Large conductance calcium-activated potassium channels (LKCa) in isolated membrane patches were blocked by (in order of potency) quinidine greater than TEA approximately phencyclidine. 4-Aminopyridine was ineffective. A similar order of potency was found for block of spontaneous transient outward currents thought to represent bursts of openings of LKCa channels. 5. The low current noise of ICkm at positive potentials, and its susceptibility to inhibitors indicated that it was not carried by LKCa channels, and that it may be carried by channels which underlie IdK. It was observed that when ICkm was activated, IdK was reduced. However, in two experiments, ICkm was much more susceptible to glibenclamide than IdK; possible reasons for this are discussed. PMID:2590772
[Effects of allitridum on rapidly delayed rectifier potassium current in HEK293 cell line].
Zhang, Jiancheng; Lin, Kun; Wei, Zhixiong; Chen, Qian; Liu, Li; Zhao, Xiaojing; Zhao, Ying; Xu, Bin; Chen, Xi; Li, Yang
2015-08-01
To study the effect of allitridum on rapidly delayed rectifier potassium current (IKr) in HEK293 cell line. HEK293 cells were transiently transfected with HERG channel cDNA plasmid pcDNA3.1 via Lipofectamine. Allitridum was added to the extracellular solution by partial perfusion after giga seal at the final concentration of 30 µmol/L. Whole-cell patch clamp technique was used to record the HERG currents and gating kinetics before and after allitridum exposure at room temperature. The amplitude and density of IHERG were both suppressed by allitridum in a voltage-dependent manner. In the presence of allitridum, the peak current of IHERG was reduced from 73.5∓4.3 pA/pF to 42.1∓3.6 pA/pF at the test potential of +50 mV (P<0.01). Allitridum also concentration-dependently decreased the density of the IHERG. The IC50 of allitridum was 34.74 µmol/L with a Hill coefficient of 1.01. Allitridum at 30 µmol/L caused a significant positive shift of the steady-state activation curve of IHERG and a markedly negative shift of the steady-state inactivation of IHERG, and significantly shortened the slow time constants of IHERG deactivation. Allitridum can potently block IHERG in HEK293 cells, which might be the electrophysiological basis for its anti-arrhythmic action.
Allosteric substrate switching in a voltage-sensing lipid phosphatase.
Grimm, Sasha S; Isacoff, Ehud Y
2016-04-01
Allostery provides a critical control over enzyme activity, biasing the catalytic site between inactive and active states. We found that the Ciona intestinalis voltage-sensing phosphatase (Ci-VSP), which modifies phosphoinositide signaling lipids (PIPs), has not one but two sequential active states with distinct substrate specificities, whose occupancy is allosterically controlled by sequential conformations of the voltage-sensing domain (VSD). Using fast fluorescence resonance energy transfer (FRET) reporters of PIPs to monitor enzyme activity and voltage-clamp fluorometry to monitor conformational changes in the VSD, we found that Ci-VSP switches from inactive to a PIP3-preferring active state when the VSD undergoes an initial voltage-sensing motion and then into a second PIP2-preferring active state when the VSD activates fully. This two-step allosteric control over a dual-specificity enzyme enables voltage to shape PIP concentrations in time, and provides a mechanism for the complex modulation of PIP-regulated ion channels, transporters, cell motility, endocytosis and exocytosis.
Allosteric substrate switching in a voltage sensing lipid phosphatase
Grimm, Sasha S.; Isacoff, Ehud Y.
2016-01-01
Allostery provides a critical control over enzyme activity, biasing the catalytic site between inactive and active states. We find the Ciona intestinalis voltage-sensing phosphatase (Ci-VSP), which modifies phosphoinositide signaling lipids (PIPs), to have not one but two sequential active states with distinct substrate specificities, whose occupancy is allosterically controlled by sequential conformations of the voltage sensing domain (VSD). Using fast FRET reporters of PIPs to monitor enzyme activity and voltage clamp fluorometry to monitor conformational changes in the VSD, we find that Ci-VSP switches from inactive to a PIP3-preferring active state when the VSD undergoes an initial voltage sensing motion and then into a second PIP2-preferring active state when the VSD activates fully. This novel 2-step allosteric control over a dual specificity enzyme enables voltage to shape PIP concentrations in time, and provides a mechanism for the complex modulation of PIP-regulated ion channels, transporters, cell motility and endo/exocytosis. PMID:26878552
Imaging viscoelastic properties of live cells by AFM: power-law rheology on the nanoscale.
Hecht, Fabian M; Rheinlaender, Johannes; Schierbaum, Nicolas; Goldmann, Wolfgang H; Fabry, Ben; Schäffer, Tilman E
2015-06-21
We developed force clamp force mapping (FCFM), an atomic force microscopy (AFM) technique for measuring the viscoelastic creep behavior of live cells with sub-micrometer spatial resolution. FCFM combines force-distance curves with an added force clamp phase during tip-sample contact. From the creep behavior measured during the force clamp phase, quantitative viscoelastic sample properties are extracted. We validate FCFM on soft polyacrylamide gels. We find that the creep behavior of living cells conforms to a power-law material model. By recording short (50-60 ms) force clamp measurements in rapid succession, we generate, for the first time, two-dimensional maps of power-law exponent and modulus scaling parameter. Although these maps reveal large spatial variations of both parameters across the cell surface, we obtain robust mean values from the several hundreds of measurements performed on each cell. Measurements on mouse embryonic fibroblasts show that the mean power-law exponents and the mean modulus scaling parameters differ greatly among individual cells, but both parameters are highly correlated: stiffer cells consistently show a smaller power-law exponent. This correlation allows us to distinguish between wild-type cells and cells that lack vinculin, a dominant protein of the focal adhesion complex, even though the mean values of viscoelastic properties between wildtype and knockout cells did not differ significantly. Therefore, FCFM spatially resolves viscoelastic sample properties and can uncover subtle mechanical signatures of proteins in living cells.
Voltage-dependent calcium-permeable channels in the plasma membrane of a higher plant cell.
Thuleau, P; Ward, J M; Ranjeva, R; Schroeder, J I
1994-07-01
Numerous biological assays and pharmacological studies on various higher plant tissues have led to the suggestion that voltage-dependent plasma membrane Ca2+ channels play prominent roles in initiating signal transduction processes during plant growth and development. However, to date no direct evidence has been obtained for the existence of such depolarization-activated Ca2+ channels in the plasma membrane of higher plant cells. Carrot suspension cells (Daucus carota L.) provide a well-suited system to determine whether voltage-dependent Ca2+ channels are present in the plasma membrane of higher plants and to characterize the properties of putative Ca2+ channels. It is known that both depolarization, caused by raising extracellular K+, and exposure to fungal toxins or oligogalacturonides induce Ca2+ influx into carrot cells. By direct application of patch-clamp techniques to isolated carrot protoplasts, we show here that depolarization of the plasma membrane positive to -135 mV activates Ca(2+)-permeable channels. These voltage-dependent ion channels were more permeable to Ca2+ than K+, while displaying large permeabilities to Ba2+ and Mg2+ ions. Ca(2+)-permeable channels showed slow and reversible inactivation. The single-channel conductance was 13 pS in 40 mM CaCl2. These data provide direct evidence for the existence of voltage-dependent Ca2+ channels in the plasma membrane of a higher plant cell and point to physiological mechanisms for plant Ca2+ channel regulation. The depolarization-activated Ca(2+)-permeable channels identified here could constitute a regulated pathway for Ca2+ influx in response to physiologically occurring stimulus-induced depolarizations in higher plant cells.
von Stein, Richard T.
2012-01-01
Sodium channel inhibitor (SCI) insecticides selectively target voltage-gated sodium (Nav) channels in the slow-inactivated state by binding at or near the local anesthetic receptor within the sodium channel pore. Metaflumizone is a new insecticide for the treatment of fleas on domesticated pets and has recently been reported to block insect sodium channels in the slow-inactivated state, thereby implying that it is also a member of the SCI class. Using the two-electrode voltage-clamp technique, we examined metaflumizone inhibition of rat Nav1.4 sodium channels expressed in Xenopus laevis oocytes. Metaflumizone selectively inhibited Nav1.4 channels at potentials that promoted slow inactivation and shifted the voltage dependence of slow inactivation in the direction of hyperpolarization. Metaflumizone perfusion at a hyperpolarized holding potential also shifted the conductance-voltage curve for activation in the direction of depolarization and antagonized use-dependent lidocaine inhibition of fast-inactivated sodium channels, actions not previously observed with other SCI insecticides. We expressed mutated Nav1.4/F1579A and Nav1.4/Y1586A channels to investigate whether metaflumizone shares the domain IV segment S6 (DIV-S6) binding determinants identified for other SCI insecticides. Consistent with previous investigations of SCI insecticides on rat Nav1.4 channels, the F1579A mutation reduced sensitivity to block by metaflumizone, whereas the Y1586A mutation paradoxically increased the sensitivity to metaflumizone. We conclude that metaflumizone selectively inhibits slow-inactivated Nav1.4 channels and shares DIV-S6 binding determinants with other SCI insecticides and therapeutic drugs. However, our results suggest that metaflumizone interacts with resting and fast-inactivated channels in a manner that is distinct from other compounds in this insecticide class. PMID:22127519
Zeng, Ping; Sun, Shujie; Li, Li'an; Xu, Feng; Cheng, Guangming
2014-03-01
In this paper, an asymmetrical inertial impact driving principle is first proposed, and accordingly a novel piezoelectrically actuated linear micro-motor is developed. It is driven by the inertial impact force generated by piezoelectric smart cantilever (PSC) with asymmetrical clamping locations during a driving cycle. When the PSC is excited by typical harmonic voltage signals, different equivalent stiffness will be induced due to its asymmetrical clamping locations when it is vibrating back and forth, leading to a tiny displacement difference on the two opposite directions in a cycle, and then the accumulation of tiny displacement difference will allow directional movements. A prototype of the proposed motor has been developed and investigated by means of experimental tests. The motion and dynamics characteristics of the prototype are well studied. The experimental results demonstrate that the resolution of the micro-motor is 0.02 μm, the maximum velocity is 16.87 mm/s, and the maximum loading capacity can reach up to 1 kg with a voltage of 100 V and 35 Hz.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Y., E-mail: zhangya@iis.u-tokyo.ac.jp; Watanabe, Y.; Hosono, S.
We propose a room temperature, all electrical driving and detecting, very sensitive thermometer structure using a microelectromechanical (MEMS) resonator for bolometer applications. We have fabricated a GaAs doubly clamped MEMS beam resonator whose oscillation can be excited and detected by the piezoelectric effect. When a heating power is applied to a NiCr film deposited on the MEMS beam surface, internal thermal stress is generated in the beam, leading to a reduction in the resonance frequency. The present device detects the shift in the resonance frequency caused by heating and works as a very sensitive thermometer. When the resonator was drivenmore » by a voltage slightly below the threshold for the nonlinear, hysteretic oscillation, the thermometer showed a voltage responsivity of about 3300 V/W, while keeping a low noise spectral density of about 60 nV/Hz{sup 1/2}, demonstrating a noise equivalent power of <20 pW/Hz{sup 1/2} even at room temperature. The observed effect can be used for realizing high-sensitivity terahertz bolometers for room-temperature operation.« less
Calcium-sensitive and insensitive transient outward current in rabbit ventricular myocytes.
Hiraoka, M; Kawano, S
1989-01-01
1. A suction pipette whole-cell voltage-clamp technique was used to record membrane currents and potentials of isolated ventricular myocytes from rabbit hearts. 2. Transient outward current (Ito) was activated by voltage steps positive to -20 mV, increasing in amplitude with further depolarization to reach a maximum around +70 mV. The current attained its peak within 10 ms and then it inactivated for 100-200 ms. 3. A large portion of Ito still remained after the calcium current (ICa) was blocked when depolarizing pulses were applied at a frequency of 0.1 Hz or less. Therefore, this current component is referred to as calcium-insensitive Ito or It. 4. It showed voltage- and time-dependent inactivation similar to that observed in Purkinje fibres and other cardiac preparations. 5. The reversal potential of It depended on external K+ concentration, [K+]o, with a slope of 32 mV per 10-fold change in the presence of a normal [Na+]o (143 mM), while the slope was 48 mV per 10-fold change in low [Na+]o (1.0 mM). 6. It was completely inhibited by 2-4 mM-4-aminopyridine. Ito in the presence of ICa was also partially blocked by 4-aminopyridine and the remainder was abolished by 5 mM-caffeine. 7. The calcium-insensitive and caffeine-sensitive Ito differed in their decay rates as well as in their recovery time courses. The former was predominantly available at a slow pulsing rate, while the latter increased its amplitude with high-frequency depolarization. 8. The caffeine-sensitive Ito was inhibited by a blockade of ICa, by replacing Ca2+ with Sr2+, by external application of ryanodine and by internal application of EGTA. This indicates that the current is calcium-sensitive and is dependent on increased myoplasmic Ca2+ through Ca2+ influx via the sarcolemma and Ca2+ release from the sarcoplasmic reticulum. The current is therefore designated as IK, Ca. 9. The physiological functions of IK, Ca and It are indicated by their contribution to ventricular repolarization at fast and slow heart rates, respectively. PMID:2552080
Hedrich, Rainer
2012-10-01
Since the first recordings of single potassium channel activities in the plasma membrane of guard cells more than 25 years ago, patch-clamp studies discovered a variety of ion channels in all cell types and plant species under inspection. Their properties differed in a cell type- and cell membrane-dependent manner. Guard cells, for which the existence of plant potassium channels was initially documented, advanced to a versatile model system for studying plant ion channel structure, function, and physiology. Interestingly, one of the first identified potassium-channel genes encoding the Shaker-type channel KAT1 was shown to be highly expressed in guard cells. KAT1-type channels from Arabidopsis thaliana and its homologs from other species were found to encode the K(+)-selective inward rectifiers that had already been recorded in early patch-clamp studies with guard cells. Within the genome era, additional Arabidopsis Shaker-type channels appeared. All nine members of the Arabidopsis Shaker family are localized at the plasma membrane, where they either operate as inward rectifiers, outward rectifiers, weak voltage-dependent channels, or electrically silent, but modulatory subunits. The vacuole membrane, in contrast, harbors a set of two-pore K(+) channels. Just very recently, two plant anion channel families of the SLAC/SLAH and ALMT/QUAC type were identified. SLAC1/SLAH3 and QUAC1 are expressed in guard cells and mediate Slow- and Rapid-type anion currents, respectively, that are involved in volume and turgor regulation. Anion channels in guard cells and other plant cells are key targets within often complex signaling networks. Here, the present knowledge is reviewed for the plant ion channel biology. Special emphasis is drawn to the molecular mechanisms of channel regulation, in the context of model systems and in the light of evolution.
Yoon, Jihwan; Leblanc, Normand; Zaklit, Josette; Vernier, P Thomas; Chatterjee, Indira; Craviso, Gale L
2016-10-01
Patch clamp electrophysiology serves as a powerful method for studying changes in plasma membrane ion conductance induced by externally applied high-intensity nanosecond electric pulses (NEPs). This paper describes an enhanced monitoring technique that minimizes the length of time between pulse exposure and data recording in a patch-clamped excitable cell. Whole-cell membrane currents were continuously recorded up to 11 ms before and resumed 8 ms after delivery of a 5-ns, 6 MV/m pulse by a pair of tungsten rod electrodes to a patched adrenal chromaffin cell maintained at a holding potential of -70 mV. This timing was achieved by two sets of relay switches. One set was used to disconnect the patch pipette electrode from the pre-amplifier and connect it to a battery to maintain membrane potential at -70 mV, and also to disconnect the reference electrode from the amplifier. The other set was used to disconnect the electrodes from the pulse generator until the time of NEP/sham exposure. The sequence and timing of both sets of relays were computer-controlled. Using this procedure, we observed that a 5-ns pulse induced an instantaneous inward current that decayed exponentially over the course of several minutes, that a second pulse induced a similar response, and that the current was carried, at least in part, by Na + . This approach for characterizing ion conductance changes in an excitable cell in response to NEPs will yield information essential for assessing the potential use of NEP stimulation for therapeutic applications.
On the simple random-walk models of ion-channel gate dynamics reflecting long-term memory.
Wawrzkiewicz, Agata; Pawelek, Krzysztof; Borys, Przemyslaw; Dworakowska, Beata; Grzywna, Zbigniew J
2012-06-01
Several approaches to ion-channel gating modelling have been proposed. Although many models describe the dwell-time distributions correctly, they are incapable of predicting and explaining the long-term correlations between the lengths of adjacent openings and closings of a channel. In this paper we propose two simple random-walk models of the gating dynamics of voltage and Ca(2+)-activated potassium channels which qualitatively reproduce the dwell-time distributions, and describe the experimentally observed long-term memory quite well. Biological interpretation of both models is presented. In particular, the origin of the correlations is associated with fluctuations of channel mass density. The long-term memory effect, as measured by Hurst R/S analysis of experimental single-channel patch-clamp recordings, is close to the behaviour predicted by our models. The flexibility of the models enables their use as templates for other types of ion channel.
Martin-Eauclaire, Marie-France; Salvatierra, Juan; Bosmans, Frank; Bougis, Pierre E
2016-09-01
We report the detailed chemical, immunological and pharmacological characterization of the α-toxin Bot IX from the Moroccan scorpion Buthus occitanus tunetanus venom. Bot IX, which consists of 70 amino acids, is a highly atypical toxin. It carries a unique N-terminal sequence extension and is highly lethal in mice. Voltage clamp recordings on oocytes expressing rat Nav1.2 or insect BgNav1 reveal that, similar to other α-like toxins, Bot IX inhibits fast inactivation of both variants. Moreover, Bot IX belongs to the same structural/immunological group as the α-like toxin Bot I. Remarkably, radioiodinated Bot IX competes efficiently with the classical α-toxin AaH II from Androctonus australis, and displays one of the highest affinities for Nav channels. © 2016 Federation of European Biochemical Societies.
Evidence that protons act as neurotransmitters at vestibular hair cell-calyx afferent synapses.
Highstein, Stephen M; Holstein, Gay R; Mann, Mary Anne; Rabbitt, Richard D
2014-04-08
Present data support the conclusion that protons serve as an important neurotransmitter to convey excitatory stimuli from inner ear type I vestibular hair cells to postsynaptic calyx nerve terminals. Time-resolved pH imaging revealed stimulus-evoked extrusion of protons from hair cells and a subsequent buildup of [H(+)] within the confined chalice-shaped synaptic cleft (ΔpH ∼ -0.2). Whole-cell voltage-clamp recordings revealed a concomitant nonquantal excitatory postsynaptic current in the calyx terminal that was causally modulated by cleft acidification. The time course of [H(+)] buildup limits the speed of this intercellular signaling mechanism, but for tonic signals such as gravity, protonergic transmission offers a significant metabolic advantage over quantal excitatory postsynaptic currents--an advantage that may have driven the proliferation of postsynaptic calyx terminals in the inner ear vestibular organs of contemporary amniotes.
Ionic currents and charge movements in organ-cultured rat skeletal muscle.
Hollingworth, S; Marshall, M W; Robson, E
1984-12-01
The middle of the fibre voltage-clamp technique was used to measure ionic currents and non-linear charge movements in intact, organ-cultured (in vitro denervated) mammalian fast-twitch (rat extensor digitorum longus) muscle fibres. Muscle fibres organ cultured for 4 days can be used as electrophysiological and morphological models for muscles in vivo denervated for the same length of time. Sodium currents in organ-cultured muscle fibres are similar to innervated fibres except that in the temperature range 0-20 degrees C (a) in the steady state, the voltage distribution of inactivation in cultured fibres is shifted negatively some 20 mV; (b) at the same temperature and membrane potential, the time constant of inactivation in cultured fibres is about twice that of innervated fibres. Potassium currents in innervated and cultured fibres at 15 degrees C can be fitted with the Hodgkin-Huxley n variable raised to the second power. Despite the large range we would estimate that the maximum value of the steady-state potassium conductance of cultured fibres is about one-half that of innervated fibres. The estimated maximum amount of charge moved in cultured fibre is about one-third that in innervated fibres. Compared to innervated fibres, culturing doubles the kinetics of the decay phase of charge movement. The possibility of a negative shift of the voltage distribution of charge movements in cultured fibres is discussed.
Mechano-electrical transduction currents in isolated vestibular hair cells of the chick.
Ohmori, H
1985-02-01
Properties of a mechano-electrical transduction channel were studied in enzymatically dissociated chick vestibular hair cells by using a whole-cell recording variation of the patch voltage-clamp technique. The apical hair bundle was stimulated by a glass rod which moved along a one-dimensional axis when stimulated by either a triangular or a trapezoidal command voltage. The motion of the glass rod was monitored optically using a photodiode. In response to triangular stimuli, the hair cell generated a current of triangular wave form with occasional step-like spiky or zigzag-appearing events. Control experiments confirmed that the current was generated only when the hair bundle was displaced towards the tallest stereocilium. The mechano-sensitive current was blocked by streptomycin and by neomycin. The blockage by streptomycin was clearly voltage dependent: the reduction of the current became larger with hyperpolarization of the membrane. This suggests that the positively charged antibiotic molecules plug the mechanically gated channels. From the evidence presented in 3 and 4 above, the mechano-sensitive current recorded here was identified as the mechano-electrical transduction (m-e.t.) current. The permeability of the m-e.t. channel to various monovalent cations was determined from reversal potential measurements. Since a CsCl-EGTA intracellular medium was used, all the permeabilities were calculated relative to PCs. The sequence of permeabilities was Li greater than Na greater than or equal to K greater than or equal to Rb greater than Cs greater than choline greater than TMA greater than TEA. External Ca ions were indispensable for the recording of transduction current and Sr ions could replace Ca ions without loss of the transduction activity. The minimum [Ca]o for stable generation of the m-e.t. current was 20 microM in Cs saline. The addition of 50-200 microM-Ca to the isotonic Ba saline could maintain the m-e.t. current. The m-e.t. current was observed in isotonic Ca and in Sr salines. Isotonic Ba, Mg and Mn salines were enriched with 1-2 mM-Ca in order to generate the m-e.t. current. The permeabilities of the divalent cations relative to Cs were calculated from the reversal potentials, and the sequence of permeabilities among divalent cations was Ca greater than Sr greater than Ba greater than Mn greater than Mg. Step-like m-e.t. currents were observed in Cs saline. The smallest step amplitude with clear resolution had a conductance of 49.7 +/- 4.5 pS (mean +/- S.D., n = 7 cells). This is likely to be an elementary m-e.t. channel conductance.(ABSTRACT TRUNCATED AT 400 WORDS)
Elliott, A A; Elliott, J R
1993-04-01
1. The whole-cell patch-clamp technique was used to investigate the characteristics of two types of sodium current (INa) recorded at room temperature from small diameter (13-25 microns) dorsal root ganglion (DRG) cells, isolated from adult rats and maintained overnight in culture. 2. Sodium currents were isolated pharmacologically. Internal Cs+ and external tetraethylammonium (TEA) ions were used to suppress potassium currents. A combination of internal EGTA, internal F-, a low (10 microM) concentration of external Ca2+ and a relatively high (5 mM) concentration of internal and external Mg2+ was used to block calcium channels. The remaining voltage-dependent currents reversed direction at the calculated sodium equilibrium potential. Both the reversal potential and magnitude of the currents exhibited the expected dependence on the external sodium concentration. 3. INa subtypes were characterized initially in terms of their sensitivity to tetrodotoxin (TTX). TTX-sensitive (TTXs) currents were at least 97% suppressed by 0.1 microM TTX. TTX-resistant (TTXr) INa were recorded in the presence of 0.3 microM TTX and appeared to be reduced in amplitude by less than 50% in 75 microM TTX (n = 1). 4. As in earlier studies, the peak of the current-voltage relationship, the mid-point of the normalized conductance curve and the potential (Vh) at which the steady-state inactivation parameter (h infinity) was 0.5 were found to be significantly more depolarized for the TTXr INa (by ca 10, 14 and 37 mV respectively). There was little difference in the slope at the mid-point of the normalized conductance curves (the mean slope factors were 5.1 mV for the TTXs INa and 4.9 mV for the TTXr current) but the h infinity curves for TTXr currents were significantly steeper than those for TTXs currents (mean slope factors of 3.8 and 11.5 mV respectively). Both the time to peak and the decay time constant of the peak current recorded from a holding potential of -67 mV were more than a factor of three slower for the TTXr INa than for the TTXs current. 5. However, in direct contrast to the difference in activation and decay kinetics, 'slow' TTXr INa recovered from inactivation at -67mV, or reprimed, more than a factor of ten faster than 'fast' TTXs INa. 6. The differences apparent in both the repriming kinetics of TTXs and TTXr INa at -67 mV and the kinetics of the decay phase of the peak INa are shown to be explicable largely in terms of the voltage dependence of their respective inactivation systems.(ABSTRACT TRUNCATED AT 400 WORDS)
Ivonnet, Pedro I; Mohri, Tatsuma; McCulloh, David H
2017-10-01
Interaction of the sperm and egg depolarizes the egg membrane, allowing the sperm to enter; however, if the egg membrane is not allowed to depolarize from its resting potential (e.g., by voltage-clamp), the sperm will not enter. Previous studies demonstrated that sperm entry into sea urchin eggs that are voltage-clamped at negative membrane potentials is regulated both by the egg's membrane potential and a voltage-dependent influx of calcium into the egg. In these cases, electrical or cytoplasmic continuity (sperm-egg membrane fusion) occurs at negative membrane potentials, but subsequent loss of cytoplasmic continuity results in failure of sperm entry (unfusion). The work presented herein examined where, in relation to the sperm, and when, in relation to the sperm-induced electrophysiological events, the egg's calcium influx occurs, and how these events relate to successful or failed sperm entry. When sperm entered the egg, elevation of intracellular calcium concentration ([Ca 2+ ] i ) began near the fused sperm on average 5.9 s after sperm-egg membrane fusion. Conversely, when sperm failed to enter the egg, [Ca 2+ ] i elevated near the site of sperm-egg fusion on average 0.7 s after sperm-egg membrane fusion, which is significantly earlier than in eggs for which sperm entered. Therefore, the accumulation of calcium near the site of sperm-egg fusion is spatially and temporally consistent with the mechanism that may be responsible for loss of cytoplasmic continuity and failure of sperm entry. © 2017 Wiley Periodicals, Inc.
External protons destabilize the activated voltage sensor in hERG channels.
Shi, Yu Patrick; Cheng, Yen May; Van Slyke, Aaron C; Claydon, Tom W
2014-03-01
Extracellular acidosis shifts hERG channel activation to more depolarized potentials and accelerates channel deactivation; however, the mechanisms underlying these effects are unclear. External divalent cations, e.g., Ca(2+) and Cd(2+), mimic these effects and coordinate within a metal ion binding pocket composed of three acidic residues in hERG: D456 and D460 in S2 and D509 in S3. A common mechanism may underlie divalent cation and proton effects on hERG gating. Using two-electrode voltage clamp, we show proton sensitivity of hERG channel activation (pKa = 5.6), but not deactivation, was greatly reduced in the presence of Cd(2+) (0.1 mM), suggesting a common binding site for the Cd(2+) and proton effect on activation and separable effects of protons on activation and deactivation. Mutational analysis confirmed that D509 plays a critical role in the pH dependence of activation, as shown previously, and that cooperative actions involving D456 and D460 are also required. Importantly, neutralization of all three acidic residues abolished the proton-induced shift of activation, suggesting that the metal ion binding pocket alone accounts for the effects of protons on hERG channel activation. Voltage-clamp fluorimetry measurements demonstrated that protons shifted the voltage dependence of S4 movement to more depolarized potentials. The data indicate a site and mechanism of action for protons on hERG activation gating; protonation of D456, D460 and D509 disrupts interactions between these residues and S4 gating charges to destabilize the activated configuration of S4.
Fibrin Sealant Improves Hemostasis in Peripheral Vascular Surgery: A Randomized Prospective Trial
Schenk, Worthington G.; Burks, Sandra G.; Gagne, Paul J.; Kagan, Steven A.; Lawson, Jeffrey H.; Spotnitz, William D.
2003-01-01
Objective To evaluate the efficacy and safety of an investigational fibrin sealant (FS) in a randomized prospective, partially blinded, controlled, multicenter trial. Summary Background Data Upper extremity vascular access surgery using polytetrafluorethylene (PTFE) graft placement for dialysis was chosen as a reproducible, clinically relevant model for evaluating the usefulness of FS. The FS consisted of pooled human fibrinogen (60 mg/mL) and thrombin (500 NIH U/mL). Time to hemostasis was measured, and adverse events were monitored. Methods Consenting adult patients (n = 48) undergoing placement of a standard PTFE graft were randomized in a 2:1:1 ratio to the treatment group using FS (ZLB Bioplasma AG, Bern, Switzerland), oxidized regenerated cellulose (Surgicel, Johnson & Johnson, New Brunswick, NJ), or pressure. Patients received heparin (3,000 IU IVP) before placement of vascular clamps. If the treatment was FS, clamps were left in place for 120 seconds after the application of study material to permit polymerization. If treatment was Surgicel, clamps were left in place until the agent had been applied according to manufacturer’s instructions. If the treatment was pressure, clamps were released as soon as the investigator was ready to apply compression. Immediately after release of the last clamp, the arterial and venous suture lines were evaluated for bleeding. The time to hemostasis at both the venous and arterial sites was recorded. Results Significant (P ≤ .005) reduction in time to hemostasis was achieved in the FS group. Thirteen (54.2%) patients randomized to FS experienced immediate hemostasis at both suture lines following clamp removal compared to no patients using Surgicel or pressure. Only one patient (7.1%) in the Surgicel group and no patients in the pressure group experienced hemostasis at 120 seconds from clamp removal, compared to 13 (54.2%) patients for FS. Adverse events were comparable in all groups. There were no seroconversions. Conclusions FS achieved more rapid hemostasis than traditional techniques in this peripheral vascular procedure. FS use appeared to be safe for this procedure. PMID:12796584
High-resolution simultaneous voltage and Ca2+ imaging
Vogt, Kaspar E; Gerharz, Stephan; Graham, Jeremy; Canepari, Marco
2011-01-01
Combining voltage and Ca2+ imaging allows the correlation of electrical and chemical activity at sub-cellular level. Here we describe a novel apparatus designed to obtain simultaneous voltage and Ca2+ measurements with single-trial resolution from sites as small as a few microns. These measurements can be obtained with negligible optical cross-talk between the two signals and negligible photo-damage of the preparation. The capability of the technique was assessed recording either from individual neurons in brain slices or from networks of cultured neurons. The present achievements open the gate to many novel physiological investigations requiring simultaneous measurement of voltage and Ca2+ signals. PMID:21115640
USDA-ARS?s Scientific Manuscript database
Feeding behavior of piercing-sucking insects is most rigorously studied using eletropenetrography (EPG). This technique utilizes an electrical circuit to record waveforms caused by voltage fluctuations when a wired insect inserts its stylet into an electrified plant. Past researchers have asserted t...
Ion channel electrophysiology via integrated planar patch-clamp chip with on-demand drug exchange.
Chen, Chang-Yu; Tu, Ting-Yuan; Jong, De-Shien; Wo, Andrew M
2011-06-01
Planar patch clamp has revolutionized characterization of ion channel behavior in drug discovery primarily via advancement in high throughput. Lab use of planar technology, however, addresses different requirements and suffers from inflexibility to enable wide range of interrogation via a single cell. This work presents integration of planar patch clamp with microfluidics, achieving multiple solution exchanges for tailor-specific measurement and allowing rapid replacement of the cell-contacting aperture. Studies via endogenously expressed ion channels in HEK 293T cells were commenced to characterize the device. Results reveal the microfluidic concentration generator produces distinct solution/drug combination/concentrations on-demand. Volume-regulated chloride channel and voltage-gated potassium channels in HEK 293T cells immersed in generated solutions under various osmolarities or drug concentrations show unique channel signature under specific condition. Excitation and blockage of ion channels in a single cell was demonstrated via serial solution exchange. Robustness of the reversible bonding and ease of glass substrate replacement were proven via repeated usage of the integrated device. The present approach reveals the capability and flexibility of integrated microfluidic planar patch-clamp system for ion channel assays. Copyright © 2011 Wiley Periodicals, Inc.
Jehle, J; Ficker, E; Wan, X; Deschenes, I; Kisselbach, J; Wiedmann, F; Staudacher, I; Schmidt, C; Schweizer, PA; Becker, R; Katus, HA; Thomas, D
2013-01-01
Background and Purpose Zolpidem, a short-acting hypnotic drug prescribed to treat insomnia, has been clinically associated with acquired long QT syndrome (LQTS) and torsade de pointes (TdP) tachyarrhythmia. LQTS is primarily attributed to reduction of cardiac human ether-a-go-go-related gene (hERG)/IKr currents. We hypothesized that zolpidem prolongs the cardiac action potential through inhibition of hERG K+ channels. Experimental Approach Two-electrode voltage clamp and whole-cell patch clamp electrophysiology was used to record hERG currents from Xenopus oocytes and from HEK 293 cells. In addition, hERG protein trafficking was evaluated in HEK 293 cells by Western blot analysis, and action potential duration (APD) was assessed in human-induced pluripotent stem cell (hiPSC)-derived cardiomyocytes. Key Results Zolpidem caused acute hERG channel blockade in oocytes (IC50 = 61.5 μM) and in HEK 293 cells (IC50 = 65.5 μM). Mutation of residues Y652 and F656 attenuated hERG inhibition, suggesting drug binding to a receptor site inside the channel pore. Channels were blocked in open and inactivated states in a voltage- and frequency-independent manner. Zolpidem accelerated hERG channel inactivation but did not affect I–V relationships of steady-state activation and inactivation. In contrast to the majority of hERG inhibitors, hERG cell surface trafficking was not impaired by zolpidem. Finally, acute zolpidem exposure resulted in APD prolongation in hiPSC-derived cardiomyocytes. Conclusions and Implications Zolpidem inhibits cardiac hERG K+ channels. Despite a relatively low affinity of zolpidem to hERG channels, APD prolongation may lead to acquired LQTS and TdP in cases of reduced repolarization reserve or zolpidem overdose. PMID:23061993
Liu, Pin W.
2014-01-01
Kv2 family “delayed-rectifier” potassium channels are widely expressed in mammalian neurons. Kv2 channels activate relatively slowly and their contribution to action potential repolarization under physiological conditions has been unclear. We explored the function of Kv2 channels using a Kv2-selective blocker, Guangxitoxin-1E (GxTX-1E). Using acutely isolated neurons, mixed voltage-clamp and current-clamp experiments were done at 37°C to study the physiological kinetics of channel gating and action potentials. In both rat superior cervical ganglion (SCG) neurons and mouse hippocampal CA1 pyramidal neurons, 100 nm GxTX-1E produced near-saturating block of a component of current typically constituting ∼60–80% of the total delayed-rectifier current. GxTX-1E also reduced A-type potassium current (IA), but much more weakly. In SCG neurons, 100 nm GxTX-1E broadened spikes and voltage clamp experiments using action potential waveforms showed that Kv2 channels carry ∼55% of the total outward current during action potential repolarization despite activating relatively late in the spike. In CA1 neurons, 100 nm GxTX-1E broadened spikes evoked from −70 mV, but not −80 mV, likely reflecting a greater role of Kv2 when other potassium channels were partially inactivated at −70 mV. In both CA1 and SCG neurons, inhibition of Kv2 channels produced dramatic depolarization of interspike voltages during repetitive firing. In CA1 neurons and some SCG neurons, this was associated with increased initial firing frequency. In all neurons, inhibition of Kv2 channels depressed maintained firing because neurons entered depolarization block more readily. Therefore, Kv2 channels can either decrease or increase neuronal excitability depending on the time scale of excitation. PMID:24695716
Pohl, P; Saparov, S M; Borgnia, M J; Agre, P
2001-08-14
Aquaporins are membrane channels selectively permeated by water or water plus glycerol. Conflicting reports have described ion conductance associated with some water channels, raising the question of whether ion conductance is a general property of the aquaporin family. To clarify this question, a defined system was developed to simultaneously measure water permeability and ion conductance. The Escherichia coli water channel aquaporin-Z (AqpZ) was studied, because it is a highly stable tetramer. Planar lipid bilayers were formed from unilamellar vesicles containing purified AqpZ. The hydraulic conductivity of bilayers made from the total extract of E. coli lipids increased 3-fold if reconstituted with AqpZ, but electric conductance was unchanged. No channel activity was detected under voltage-clamp conditions, indicating that less than one in 10(9) transport events is electrogenic. Microelectrode measurements were simultaneously undertaken adjacent to the membrane. Changes in sodium concentration profiles accompanying transmembrane water flow permitted calculation of the activation energies: 14 kcal/mol for protein-free lipid bilayers and 4 kcal/mol for lipid bilayers containing AqpZ. Neither the water permeability nor the electric conductivity exhibited voltage dependence. This sensitive system demonstrated that AqpZ is permeated by water but not charged ions and should permit direct analyses of putative electrogenic properties of other aquaporins.
Pavenstädt, H.; Gloy, J.; Leipziger, J.; Klär, B.; Pfeilschifter, J.; Schollmeyer, P.; Greger, R.
1993-01-01
1. The effects of extracellular ATP on contraction, membrane voltage (Vm), ion currents and intracellular calcium activity [Ca2+]i were studied in rat mesangial cells (MC) in primary culture. 2. Addition of extracellular ATP (10(-5) and 10(-4) M) to MC led to a cell contraction which was independent of extracellular calcium. 3. Membrane voltage (Vm) and ion currents were measured with the nystatin patch clamp technique. ATP induced a concentration-dependent transient depolarization of Vm (ED50: 2 x 10(-6) M). During the transient depolarization ion currents were monitored simultaneously and showed an increase of the inward- and outward current. 4. In a buffer with a reduced extracellular chloride concentration (from 145 to 30 mM) ATP induced a depolarization augmented to -4 +/- 4 mV. 5. ATP-gamma-S and 2-methylthio-ATP depolarized Vm to the same extent as ATP, whereas alpha,beta-methylene-ATP (all 10(-5) M) had no effect on Vm. 6. The Ca2+ ionophore, A23187, depolarized Vm transiently from -51 +/- 2 to -28 +/- 4 mV and caused an increase of the inward current. 7. The intracellular calcium activity [Ca2+]i was measured with the fura-2 technique. ATP stimulated a concentration-dependent increase of [Ca2+]i (ED50: 5 x 10(-6) M). The increase of [Ca2+]i was biphasic with an initial peak followed by a sustained plateau. 8. The [Ca2+]i peak was still present in an extracellular Ca(2+)-free buffer, whereas the plateau was abolished. Verapamil (10(-4) M) did not inhibit the [Ca2+]i increase induced by ATP.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 1 PMID:7691366
Piezoresistive cantilever force-clamp system
Park, Sung-Jin; Petzold, Bryan C.; Goodman, Miriam B.; Pruitt, Beth L.
2011-01-01
We present a microelectromechanical device-based tool, namely, a force-clamp system that sets or “clamps” the scaled force and can apply designed loading profiles (e.g., constant, sinusoidal) of a desired magnitude. The system implements a piezoresistive cantilever as a force sensor and the built-in capacitive sensor of a piezoelectric actuator as a displacement sensor, such that sample indentation depth can be directly calculated from the force and displacement signals. A programmable real-time controller operating at 100 kHz feedback calculates the driving voltage of the actuator. The system has two distinct modes: a force-clamp mode that controls the force applied to a sample and a displacement-clamp mode that controls the moving distance of the actuator. We demonstrate that the system has a large dynamic range (sub-nN up to tens of μN force and nm up to tens of μm displacement) in both air and water, and excellent dynamic response (fast response time, <2 ms and large bandwidth, 1 Hz up to 1 kHz). In addition, the system has been specifically designed to be integrated with other instruments such as a microscope with patch-clamp electronics. We demonstrate the capabilities of the system by using it to calibrate the stiffness and sensitivity of an electrostatic actuator and to measure the mechanics of a living, freely moving Caenorhabditis elegans nematode. PMID:21529009
Measurement of intrinsic physiological membrane noise in cultured living cells.
Bukhari, Masroor H Shah; Miller, John H
2010-06-01
An experimental technique and some preliminary observations are reported here for the measurement of electric noise and potentials intrinsic to the physiological function of living cells, using an in vitro yeast cells (Saccharomyces cerevisiae) model. The design and working of technique is based on a micro-electrode-based sensor working in a modified patch-clamp configuration. We present recordings of intrinsic noise and cellular electric potentials in living and aerobically respiring cells (in an electromagnetically shielded environment). An important observation of the effect of aerobic respiration on the studied cells is discussed, whereby conspicuously higher magnitude potentials were seen with aerobically respiring active yeast cells, as compared to anaerobic or dead cells. Recorded noise potentials from aerobically respiring cells are found to have a magnitude on the order of a few microVolts/cm and fall within the range of 140- in the low-frequency (LF) band.
Benndorf, Klaus; Koopmann, Rolf; Eismann, Elisabeth; Kaupp, U. Benjamin
1999-01-01
Gating by cGMP and voltage of the α subunit of the cGMP-gated channel from rod photoreceptor was examined with a patch-clamp technique. The channels were expressed in Xenopus oocytes. At low [cGMP] (<20 μM), the current displayed strong outward rectification. At low and high (700 μM) [cGMP], the channel activity was dominated by only one conductance level. Therefore, the outward rectification at low [cGMP] results solely from an increase in the open probability, P o. Kinetic analysis of single-channel openings revealed two exponential distributions. At low [cGMP], the larger P o at positive voltages with respect to negative voltages is caused by an increased frequency of openings in both components of the open-time distribution. In macroscopic currents, depolarizing voltage steps, starting from −100 mV, generated a time-dependent current that increased with the step size (activation). At low [cGMP] (20 μM), the degree of activation was large and the time course was slow, whereas at saturating [cGMP] (7 mM) the respective changes were small and fast. The dose–response relation at −100 mV was shifted to the right and saturated at significantly lower P o values with respect to that at +100 mV (0.77 vs. 0.96). P o was determined as function of the [cGMP] (at +100 and −100 mV) and voltage (at 20, 70, and 700 μM, and 7 mM cGMP). Both relations could be fitted with an allosteric state model consisting of four independent cGMP-binding reactions and one voltage-dependent allosteric opening reaction. At saturating [cGMP] (7 mM), the activation time course was monoexponential, which allowed us to determine the individual rate constants for the allosteric reaction. For the rapid rate constants of cGMP binding and unbinding, lower limits are determined. It is concluded that an allosteric model consisting of four independent cGMP-binding reactions and one voltage-dependent allosteric reaction, describes the cGMP- and voltage-dependent gating of cGMP-gated channels adequately. PMID:10498668
Mafra, R A; Leão, R M; Beirão, P S L; Cruz, J S
2003-07-01
A glutamate-sensitive inward current (Iglu) is described in rat cerebellar granule neurons and related to a glutamate transport mechanism. We examined the features of Iglu using the patch-clamp technique. In steady-state conditions the Iglu measured 8.14 1.9 pA. Iglu was identified as a voltage-dependent inward current showing a strong rectification at positive potentials. L-Glutamate activated the inward current in a dose-dependent manner, with a half-maximal effect at about 18 M and a maximum increase of 51.2 4.4%. The inward current was blocked by the presence of dihydrokainate (0.5 mM), shown by others to readily block the GLT1 isoform. We thus speculate that Iglu could be attributed to the presence of a native glutamate transporter in cerebellar granule neurons.
Mapping of voltage sensor positions in resting and inactivated mammalian sodium channels by LRET
Kubota, Tomoya; Durek, Thomas; Dang, Bobo; Finol-Urdaneta, Rocio K.; Craik, David J.; Kent, Stephen B. H.; French, Robert J.; Bezanilla, Francisco; Correa, Ana M.
2017-01-01
Voltage-gated sodium channels (Navs) play crucial roles in excitable cells. Although vertebrate Nav function has been extensively studied, the detailed structural basis for voltage-dependent gating mechanisms remain obscure. We have assessed the structural changes of the Nav voltage sensor domain using lanthanide-based resonance energy transfer (LRET) between the rat skeletal muscle voltage-gated sodium channel (Nav1.4) and fluorescently labeled Nav1.4-targeting toxins. We generated donor constructs with genetically encoded lanthanide-binding tags (LBTs) inserted at the extracellular end of the S4 segment of each domain (with a single LBT per construct). Three different Bodipy-labeled, Nav1.4-targeting toxins were synthesized as acceptors: β-scorpion toxin (Ts1)-Bodipy, KIIIA-Bodipy, and GIIIA-Bodipy analogs. Functional Nav-LBT channels expressed in Xenopus oocytes were voltage-clamped, and distinct LRET signals were obtained in the resting and slow inactivated states. Intramolecular distances computed from the LRET signals define a geometrical map of Nav1.4 with the bound toxins, and reveal voltage-dependent structural changes related to channel gating. PMID:28202723
Mapping of voltage sensor positions in resting and inactivated mammalian sodium channels by LRET.
Kubota, Tomoya; Durek, Thomas; Dang, Bobo; Finol-Urdaneta, Rocio K; Craik, David J; Kent, Stephen B H; French, Robert J; Bezanilla, Francisco; Correa, Ana M
2017-03-07
Voltage-gated sodium channels (Navs) play crucial roles in excitable cells. Although vertebrate Nav function has been extensively studied, the detailed structural basis for voltage-dependent gating mechanisms remain obscure. We have assessed the structural changes of the Nav voltage sensor domain using lanthanide-based resonance energy transfer (LRET) between the rat skeletal muscle voltage-gated sodium channel (Nav1.4) and fluorescently labeled Nav1.4-targeting toxins. We generated donor constructs with genetically encoded lanthanide-binding tags (LBTs) inserted at the extracellular end of the S4 segment of each domain (with a single LBT per construct). Three different Bodipy-labeled, Nav1.4-targeting toxins were synthesized as acceptors: β-scorpion toxin (Ts1)-Bodipy, KIIIA-Bodipy, and GIIIA-Bodipy analogs. Functional Nav-LBT channels expressed in Xenopus oocytes were voltage-clamped, and distinct LRET signals were obtained in the resting and slow inactivated states. Intramolecular distances computed from the LRET signals define a geometrical map of Nav1.4 with the bound toxins, and reveal voltage-dependent structural changes related to channel gating.
Micromachined patch-clamp apparatus
Okandan, Murat
2012-12-04
A micromachined patch-clamp apparatus is disclosed for holding one or more cells and providing electrical, chemical, or mechanical stimulation to the cells during analysis with the patch-clamp technique for studying ion channels in cell membranes. The apparatus formed on a silicon substrate utilizes a lower chamber formed from silicon nitride using surface micromachining and an upper chamber formed from a molded polymer material. An opening in a common wall between the chambers is used to trap and hold a cell for analysis using the patch-clamp technique with sensing electrodes on each side of the cell. Some embodiments of the present invention utilize one or more electrostatic actuators formed on the substrate to provide mechanical stimulation to the cell being analyzed, or to provide information about mechanical movement of the cell in response to electrical or chemical stimulation.
Hagenacker, T; Schäfer, N; Büsselberg, D; Schäfers, M
2013-07-01
Lacosamide is a novel anti-epileptic drug that enhances the slow- and not fast-inactivating state of voltage-gated sodium channels. Lacosamide has demonstrated analgesic efficacy in several animal studies but preclinical studies on neuropathic pain models are rare, and recent clinical trials showed no superior analgesic effects. Here, we examine whether an acute or chronic administration of lacosamide (3-60 mg/kg, i.p.) attenuates pain behaviour induced by spinal nerve ligation (SNL). To validate the inhibitory efficacy of lacosamide on voltage-gated sodium channels, sodium currents in naïve and SNL-injured dorsal root ganglion (DRG) neurons were recorded using whole-cell patch clamping. Lacosamide only marginally attenuated thermal hyperalgesia, but not tactile allodynia when applied once 7 or 14 days after SNL and showed no analgesic effect when applied daily for 19 days. In naïve neurons, 100 μmol/L lacosamide inhibited sodium channel currents by 58% and enhanced the slow inactivation (87% for lacosamide vs. 47% for control). In contrast, lacosamide inhibited sodium currents in injured DRG neurons by only 15%, while the effects on slow inactivation were diminished. Isolated currents from the NaV 1.8 channel subtype were only marginally changed by lacosamide. The reduced effectiveness of lacosamide on voltage-gated sodium channel currents in injured DRG neurons may contribute to the reduced analgesic effect observed for the SNL model. © 2012 European Federation of International Association for the Study of Pain Chapters.
Song, Ming-Ke; Liu, Hong; Jiang, Hua-Liang; Yue, Jian-Min; Hu, Guo-Yuan
2006-02-15
14-Benzoyltalatisamine is a potent and selective blocker of the delayed rectifier K+ channel found in a computational virtual screening study. The compound was found to block the K+ channel from the extracellular side. However, it is unclear whether 14-benzoyltalatisamine shares the same block mechanism with tetraethylammonium (TEA). In order to elucidate how the hit compound found by the virtual screening interacts with the outer vestibule of the K+ channel, the effects of 14-benzoyltalatisamine and TEA on the delayed rectifier K+ current of rat dissociated hippocampal neurons were compared using whole-cell voltage-clamp recording. External application of 14-benzoyltalatisamine and TEA reversibly inhibited the current with IC50 values of 10.1+/-2.2 microM and 1.05+/-0.21 mM, respectively. 14-Benzoyltalatisamine exerted voltage-dependent inhibition, markedly accelerated the decay of the current, and caused a significant hyperpolarizing shift of the steady-state activation curve, whereas TEA caused voltage-independent inhibition, without affecting the kinetic parameters of the current. The blockade by 14-benzoyltalatisamine, but not by TEA, was significantly diminished in a high K+ (60 mM) external solution. The potency of 14-benzoyltalatisamine was markedly reduced in the presence of 15 mM TEA. The results suggest that 14-benzoyltalatisamine bind to the external pore entry of the delayed rectifier K+ channel with partial insertion into the selectivity filter, which is in conformity with that predicted by the molecular docking model in the virtual screening.
Clarke, Stephen G.; Scarnati, Matthew S.
2016-01-01
At chemical synapses, presynaptic action potentials (APs) activate voltage-gated calcium channels, allowing calcium to enter and trigger neurotransmitter release. The duration, peak amplitude, and shape of the AP falling phase alter calcium entry, which can affect neurotransmitter release significantly. In many neurons, APs do not immediately return to the resting potential, but instead exhibit a period of depolarization or hyperpolarization referred to as an afterpotential. We hypothesized that presynaptic afterpotentials should alter neurotransmitter release by affecting the electrical driving force for calcium entry and calcium channel gating. In support of this, presynaptic calcium entry is affected by afterpotentials after standard instant voltage jumps. Here, we used the mouse calyx of Held synapse, which allows simultaneous presynaptic and postsynaptic patch-clamp recording, to show that the postsynaptic response is affected significantly by presynaptic afterpotentials after voltage jumps. We therefore tested the effects of presynaptic afterpotentials using simultaneous presynaptic and postsynaptic recordings and AP waveforms or real APs. Surprisingly, presynaptic afterpotentials after AP stimuli did not alter calcium channel responses or neurotransmitter release appreciably. We show that the AP repolarization time course causes afterpotential-induced changes in calcium driving force and changes in calcium channel gating to effectively cancel each other out. This mechanism, in which electrical driving force is balanced by channel gating, prevents changes in calcium influx from occurring at the end of the AP and therefore acts to stabilize synaptic transmission. In addition, this mechanism can act to stabilize neurotransmitter release when the presynaptic resting potential changes. SIGNIFICANCE STATEMENT The shape of presynaptic action potentials (APs), particularly the falling phase, affects calcium entry and small changes in calcium influx can produce large changes in postsynaptic responses. We hypothesized that afterpotentials, which often follow APs, affect calcium entry and neurotransmitter release. We tested this in calyx of Held nerve terminals, which allow simultaneous recording of presynaptic calcium currents and postsynaptic responses. Surprisingly, presynaptic afterpotentials did not alter calcium current or neurotransmitter release. We show that the AP falling phase causes afterpotential-induced changes in electrical driving force and calcium channel gating to cancel each other out. This mechanism regulates calcium entry at the end of APs and therefore stabilizes synaptic transmission. This also stabilizes responses when the presynaptic resting potential changes. PMID:27911759
Clarke, Stephen G; Scarnati, Matthew S; Paradiso, Kenneth G
2016-11-09
At chemical synapses, presynaptic action potentials (APs) activate voltage-gated calcium channels, allowing calcium to enter and trigger neurotransmitter release. The duration, peak amplitude, and shape of the AP falling phase alter calcium entry, which can affect neurotransmitter release significantly. In many neurons, APs do not immediately return to the resting potential, but instead exhibit a period of depolarization or hyperpolarization referred to as an afterpotential. We hypothesized that presynaptic afterpotentials should alter neurotransmitter release by affecting the electrical driving force for calcium entry and calcium channel gating. In support of this, presynaptic calcium entry is affected by afterpotentials after standard instant voltage jumps. Here, we used the mouse calyx of Held synapse, which allows simultaneous presynaptic and postsynaptic patch-clamp recording, to show that the postsynaptic response is affected significantly by presynaptic afterpotentials after voltage jumps. We therefore tested the effects of presynaptic afterpotentials using simultaneous presynaptic and postsynaptic recordings and AP waveforms or real APs. Surprisingly, presynaptic afterpotentials after AP stimuli did not alter calcium channel responses or neurotransmitter release appreciably. We show that the AP repolarization time course causes afterpotential-induced changes in calcium driving force and changes in calcium channel gating to effectively cancel each other out. This mechanism, in which electrical driving force is balanced by channel gating, prevents changes in calcium influx from occurring at the end of the AP and therefore acts to stabilize synaptic transmission. In addition, this mechanism can act to stabilize neurotransmitter release when the presynaptic resting potential changes. The shape of presynaptic action potentials (APs), particularly the falling phase, affects calcium entry and small changes in calcium influx can produce large changes in postsynaptic responses. We hypothesized that afterpotentials, which often follow APs, affect calcium entry and neurotransmitter release. We tested this in calyx of Held nerve terminals, which allow simultaneous recording of presynaptic calcium currents and postsynaptic responses. Surprisingly, presynaptic afterpotentials did not alter calcium current or neurotransmitter release. We show that the AP falling phase causes afterpotential-induced changes in electrical driving force and calcium channel gating to cancel each other out. This mechanism regulates calcium entry at the end of APs and therefore stabilizes synaptic transmission. This also stabilizes responses when the presynaptic resting potential changes. Copyright © 2016 the authors 0270-6474/16/3611559-14$15.00/0.
A comparative study of charge movement in rat and frog skeletal muscle fibres.
Hollingworth, S; Marshall, M W
1981-12-01
1. The middle of the fibre voltage--clamp technique (Adrian & Marshall, 1977), modified where necessary for electrically short muscle fibres, has been used to measure non-linear charge movements in mammalian fast twitch (rat extensor digitorum longus), mammalian slow twitch (rat soleus) and frog (sartorius) muscles. 2. The maximum amount of charge moved in mammalian fast twitch muscle at 2 degrees C in hypertonic solution, was 3--5 times greater than in slow twitch muscle. The voltage distribution of fast twitch charge was 10--15 mV more positive when compared to slow twitch. 3. In both mammalian muscle types hypertonic Ringer solution negatively shifted the voltage distribution of charge some 6 mV. The steepness of charge moved around mechanical threshold was unaffected by hypertonicity. 4. The amount of charge in frog sartorius fibres at 2 degrees C in hypertonic solution was about half of that in rat fast twitch muscle; the voltage distribution of the frog charge was similar to rat soleus muscle. 5. Warming between 2 and 15 degrees C had no effect on either the amount of steady-state distribution of charge in mammalian or frog muscles. 6. At 2 degrees C, the kinetics of charge movement in fast and slow twitch mammalian muscles were similar and 2--3 times faster than frog muscle at the same temperature. In fast and slow mammalian fibres at 2 degrees C similar times were taken to shift the same fractions of the total amount of charge. The Q10 of charge movement kinetics was between 1.2 and 2.0 in the three muscles studied.
If and SR Ca2+ release both contribute to pacemaker activity in canine sinoatrial node cells
Gao, Zhan; Chen, Biyi; Joiner, Mei-ling A.; Wu, Yuejin; Guan, Xiaoqun; Koval, Olha M.; Chaudhary, Ashok K.; Cunha, Shane R.; Mohler, Peter J.; Martins, James B.; Song, Long-Sheng; Anderson, Mark E.
2010-01-01
Increasing evidence suggests that cardiac pacemaking is the result of two sinoatrial node (SAN) cell mechanisms: a ‘voltage clock’ and a Ca2+ dependent process, or ‘Ca2+ clock.’ The voltage clock initiates action potentials (APs) by SAN cell membrane potential depolarization from inward currents, of which the pacemaker current (If) is thought to be particularly important. A Ca2+ dependent process triggers APs when sarcoplasmic reticulum (SR) Ca2+ release activates inward current carried by the forward mode of the electrogenic Na+/Ca2+ exchanger (NCX). However, these mechanisms have mostly been defined in rodents or rabbits, but are unexplored in single SAN cells from larger animals. Here, we used patch-clamp and confocal microscope techniques to explore the roles of the voltage and Ca2+ clock mechanisms in canine SAN pacemaker cells. We found that ZD7288, a selective If antagonist, significantly reduced basal automaticity and induced irregular, arrhythmia-like activity in canine SAN cells. In addition, ZD7288 impaired but did not eliminate the SAN cell rate acceleration by isoproterenol. In contrast, ryanodine significantly reduced the SAN cell acceleration by isoproterenol, while ryanodine reduction of basal automaticity was modest (∼14%) and did not reach statistical significance. Importantly, pretreatment with ryanodine eliminated SR Ca2+ release, but did not affect basal or isoproterenol-enhanced If. Taken together, these results indicate that voltage and Ca2+ dependent automaticity mechanisms coexist in canine SAN cells, and suggest If and SR Ca2+ release cooperate to determine baseline and catecholamine-dependent automaticity in isolated dog SAN cells. PMID:20380837
Ketabi, N; Mobasheri, H; Faraji-Dana, R
2015-03-01
The effects of ultra high frequency (UHF) nonionizing electromagnetic fields (EMF) on the channel activities of nanopore forming protein, OmpF porin, were investigated. The voltage clamp technique was used to study the single channel activity of the pore in an artificial bilayer in the presence and absence of the electromagnetic fields at 910 to 990 MHz in real time. Channel activity patterns were used to address the effect of EMF on the dynamic, arrangement and dielectric properties of water molecules, as well as on the hydration state and arrangements of side chains lining the channel barrel. Based on the varied voltage sensitivity of the channel at different temperatures in the presence and absence of EMF, the amount of energy transferred to nano-environments of accessible groups was estimated to address the possible thermal effects of EMF. Our results show that the effects of EMF on channel activities are frequency dependent, with a maximum effect at 930 MHz. The frequency of channel gating and the voltage sensitivity is increased when the channel is exposed to EMF, while its conductance remains unchanged at all frequencies applied. We have not identified any changes in the capacitance and permeability of membrane in the presence of EMF. The effect of the EMF irradiated by cell phones is measured by Specific Absorption Rate (SAR) in artificial model of human head, Phantom. Thus, current approach applied to biological molecules and electrolytes might be considered as complement to evaluate safety of irradiating sources on biological matter at molecular level.
Propylparaben reduces the excitability of hippocampal neurons by blocking sodium channels.
Lara-Valderrábano, Leonardo; Rocha, Luisa; Galván, Emilio J
2016-12-01
Propylparaben (PPB) is an antimicrobial preservative widely used in food, cosmetics, and pharmaceutics. Virtual screening methodologies predicted anticonvulsant activity of PPB that was confirmed in vivo. Thus, we explored the effects of PPB on the excitability of hippocampal neurons by using standard patch clamp techniques. Bath perfusion of PPB reduced the fast-inactivating sodium current (I Na ) amplitude, causing a hyperpolarizing shift in the inactivation curve of the I Na, and markedly delayed the sodium channel recovery from the inactivation state. Also, PPB effectively suppressed the riluzole-sensitive, persistent sodium current (I NaP ). PPB perfusion also modified the action potential kinetics, and higher concentrations of PPB suppressed the spike activity. Nevertheless, the modulatory effects of PPB did not occur when PPB was internally applied by whole-cell dialysis. These results indicate that PPB reduces the excitability of CA1 pyramidal neurons by modulating voltage-dependent sodium channels. The mechanistic basis of this effect is a marked delay in the recovery from inactivation state of the voltage-sensitive sodium channels. Our results indicate that similar to local anesthetics and anticonvulsant drugs that act on sodium channels, PPB acts in a use-dependent manner. Copyright © 2016 Elsevier B.V. All rights reserved.
Almanza, Angélica; Vega, Rosario; Soto, Enrique
2003-12-24
The low voltage gain in type I hair cells implies that neurotransmitter release at their afferent synapse should be mediated by low voltage activated calcium channels, or that some peculiar mechanism should be operating in this synapse. With the patch clamp technique, we studied the characteristics of the Ca(2+) current in type I hair cells enzymatically dissociated from rat semicircular canal crista ampullaris. Calcium current in type I hair cells exhibited a slow inactivation (during 2-s depolarizing steps), was sensitive to nimodipine and was blocked by Cd(2+) and Ni(2+). This current was activated at potentials above -60 mV, had a mean half maximal activation of -36 mV, and exhibited no steady-state inactivation at holding potentials between -100 and -60 mV. This data led us to conclude that hair cell Ca(2+) current is most likely of the L type. Thus, other mechanisms participating in neurotransmitter release such as K(+) accumulation in the synaptic cleft, modulation of K(+) currents by nitric oxide, participation of a Na(+) current and possible metabotropic cascades activated by depolarization should be considered.
Furuta, Sadayoshi; Watanabe, Lisa; Doi, Seira; Horiuchi, Hiroshi; Matsumoto, Kenjiro; Kuzumaki, Naoko; Suzuki, Tsutomu; Narita, Minoru
2012-02-01
Subdiaphragmatic vagal dysfunction causes chronic pain. To verify whether this chronic pain is accompanied by enhanced peripheral nociceptive sensitivity, we evaluated primary afferent neuronal excitability in subdiaphragmatic vagotomized (SDV) rats. SDV rats showed a decrease in the electrical stimuli-induced hind limb-flexion threshold at 250 Hz, but showed no similar effect at 5 or 2000 Hz, which indicated that lumbar primary afferent Aδ sensitivity was enhanced in SDV rats. The whole-cell patch-clamp technique also revealed the hyper-excitability of acutely dissociated medium-sized lumbar dorsal root ganglion (DRG) neurons isolated from SDV rats. The contribution of changes in voltage-dependent potassium (Kv) channels was assessed, and transient A-type K(+) (I(A) ) current density was apparently decreased. Moreover, Kv4.3 immunoreactivity in medium-sized DRG neurons was significantly reduced in SDV rats compared to sham. These results indicate that SDV causes hyper-excitability of lumbar primary Aδ afferent neurons, which may be induced along with suppressing I(A) currents via the decreased expression of Kv4.3. Thus, peripheral Aδ neuroplasticity may contribute to the chronic lower limb pain caused by SDV. Copyright © 2011 Wiley Periodicals, Inc.
Sheng, Anqi; Zhang, Yan; Li, Guang; Zhang, Guangqin
2018-02-01
Voltage-gated potassium (K V ) currents, subdivided into rapidly inactivating A-type currents (I A ) and slowly inactivating delayed rectifier currents (I K ), play a fundamental role in modulating pain by controlling neuronal excitability. The effects of Honokiol (Hon), a natural biphenolic compound derived from Magnolia officinalis, on K V currents were investigated in freshly isolated mouse dorsal root ganglion neurons using the whole-cell patch clamp technique. Results showed that Hon inhibited I A and I K in concentration-dependent manner. The IC 50 values for block of I A and I K were 30.5 and 25.7 µM, respectively. Hon (30 µM) shifted the steady-state activation curves of I A and I K to positive potentials by 17.6 and 16.7 mV, whereas inactivation and recovery from the inactivated state of I A were unaffected. These results suggest that Hon preferentially interacts with the active states of the I A and I K channels, and has no effect on the resting state and inactivated state of the I A channel. Blockade on K + channels by Hon may contribute to its antinociceptive effect, especially anti-inflammatory pain.
Mingo-Robinet, Juan; Torres-Torres, Miguel; Moreno-Barrero, María; Alonso, Juan Antonio; García-González, Sara
2015-01-01
The treatment of subtrochanteric fractures in the elderly remains technically challenging, due to instability and osteoporosis, with high reoperation rates. Even if intramedullary nailing is the most reliable treatment, reduction is difficult and cerclage wiring remains controversial. The purpose of this study was to evaluate 26 consecutive subtrochanteric fractures in elderly patients treated with a minimally invasive clamp-assisted reduction and cephalomedullary nailing without cerclage wiring. A retrospective analysis was conducted between January 2010 and September 2013. Data obtained from the medical records included patient's age, sex, classification of the fracture, the quality of reduction after surgery, and the presence of postoperative complications, especially fracture displacement and delayed union or nonunion. Twenty-six patients had adequate radiographic and clinical follow-up. Mean age was 84.4 (range 75-96) years. The mean duration of follow-up was 7.6 months (6-14 months). Mean surgical time was 74.42 min (range 45-115 min). Twenty-four (92.3%) showed acceptable varus/valgus alignment, and no sagittal plane malunions were noted. The tip-apex distance was <25 mm in all cases. Distraction at the fracture was <10mm in 21 fractures. Three patients had limb length discrepancy of 1cm. All fractures healed uneventfully. Reducing the fracture before nailing is mandatory to achieve good results. Minimally invasive clamp reduction without cerclage wires, even if challenging, has proven to be a safe, reproducible, and effective surgical technique, with at least the same results as other series. Copyright © 2015 Elsevier Ltd. All rights reserved.
A nitric oxide concentration clamp.
Zhelyaskov, V R; Godwin, D W
1999-10-01
We report a new method of generating nitric oxide (NO) that possesses several advantages for experimental use. This method consists of a photolysis chamber where NO is released by illuminating photolabile NO donors with light from a xenon lamp, in conjunction with feedback control. Control of the photolysis light was achieved by selectively gating light projected through a shutter before the light was launched into a light guide that conveyed the light to the photolysis chamber. By gating the light in proportion to a sensor that reported nearly instantaneous concentration from the photolysis chamber, a criterion NO concentration could be achieved, which could be easily adjusted to higher or lower criterion levels. To denote the similarity of this process with the electrophysiological process of voltage clamp, we term this process a concentration "clamp." This development enhances the use of the fiber-optic-based system for NO delivery and should enable the execution of experiments where the in situ concentration of NO is particularly critical, such as in biological preparations. Copyright 1999 Academic Press.
Nishimura, Takuma; Hosaka, Hiroshi; Morita, Takeshi
2012-01-01
The Smooth Impact Drive Mechanism (SIDM) is a linear piezoelectric actuator that has seen practically applied to camera lens modules. Although previous SIDM actuators are easily miniaturized and enable accurate positioning, these actuators cannot actuate at high speed and cannot provide powerful driving because they are driven at an off-resonant frequency using a soft-type PZT. In the present study, we propose a resonant-type SIDM using a bolt-clamped Langevin transducer (BLT) with a hard-type PZT. The resonant-type SIDM overcomes the above-mentioned problems and high-power operation becomes possible with a very simple structure. As a result, we confirmed the operation of resonant-type SIDM by designing a bolt-clamped Langevin transducer. The properties of no-load maximum speed was 0.28m/s at driving voltages of 80V(p-p) for 44.9kHz and 48V(p-p) for 22.45kHz with a pre-load of 3.1N. Copyright © 2011 Elsevier B.V. All rights reserved.
Kojima, Akiko; Kitagawa, Hirotoshi; Omatsu-Kanbe, Mariko; Matsuura, Hiroshi; Nosaka, Shuichi
2012-01-01
BACKGROUND AND PURPOSE The volatile anaesthetic sevoflurane affects heart rate in clinical settings. The present study investigated the effect of sevoflurane on sinoatrial (SA) node automaticity and its underlying ionic mechanisms. EXPERIMENTAL APPROACH Spontaneous action potentials and four ionic currents fundamental for pacemaking, namely, the hyperpolarization-activated cation current (If), T-type and L-type Ca2+ currents (ICa,T and ICa,L, respectively), and slowly activating delayed rectifier K+ current (IKs), were recorded in isolated guinea-pig SA node cells using perforated and conventional whole-cell patch-clamp techniques. Heart rate in guinea-pigs was recorded ex vivo in Langendorff mode and in vivo during sevoflurane inhalation. KEY RESULTS In isolated SA node cells, sevoflurane (0.12–0.71 mM) reduced the firing rate of spontaneous action potentials and its electrical basis, diastolic depolarization rate, in a qualitatively similar concentration-dependent manner. Sevoflurane (0.44 mM) reduced spontaneous firing rate by approximately 25% and decreased If, ICa,T, ICa,L and IKs by 14.4, 31.3, 30.3 and 37.1%, respectively, without significantly affecting voltage dependence of current activation. The negative chronotropic effect of sevoflurane was partly reproduced by a computer simulation of SA node cell electrophysiology. Sevoflurane reduced heart rate in Langendorff-perfused hearts, but not in vivo during sevoflurane inhalation in guinea-pigs. CONCLUSIONS AND IMPLICATIONS Sevoflurane at clinically relevant concentrations slowed diastolic depolarization and thereby reduced pacemaking activity in SA node cells, at least partly due to its inhibitory effect on If, ICa,T and ICa,L. These findings provide an important electrophysiological basis of alterations in heart rate during sevoflurane anaesthesia in clinical settings. PMID:22356456
Dyavanapalli, Jhansi; Jameson, Heather; Dergacheva, Olga; Jain, Vivek; Alhusayyen, Mona; Mendelowitz, David
2014-07-01
Patients with obstructive sleep apnoea experience chronic intermittent hypoxia-hypercapnia (CIHH) during sleep that elicit sympathetic overactivity and diminished parasympathetic activity to the heart, leading to hypertension and depressed baroreflex sensitivity. The parasympathetic control of heart rate arises from pre-motor cardiac vagal neurons (CVNs) located in nucleus ambiguus (NA) and dorsal motor nucleus of the vagus (DMNX). The mechanisms underlying diminished vagal control of heart rate were investigated by studying the changes in blood pressure, heart rate, and neurotransmission to CVNs evoked by acute hypoxia-hypercapnia (H-H) and CIHH. In vivo telemetry recordings of blood pressure and heart rate were obtained in adult rats during 4 weeks of CIHH exposure. Retrogradely labelled CVNs were identified in an in vitro brainstem slice preparation obtained from adult rats exposed either to air or CIHH for 4 weeks. Postsynaptic inhibitory or excitatory currents were recorded using whole cell voltage clamp techniques. Rats exposed to CIHH had increases in blood pressure, leading to hypertension, and blunted heart rate responses to acute H-H. CIHH induced an increase in GABAergic and glycinergic neurotransmission to CVNs in NA and DMNX, respectively; and a reduction in glutamatergic neurotransmission to CVNs in both nuclei. CIHH blunted the bradycardia evoked by acute H-H and abolished the acute H-H evoked inhibition of GABAergic transmission while enhancing glycinergic neurotransmission to CVNs in NA. These changes with CIHH inhibit CVNs and vagal outflow to the heart, both in acute and chronic exposures to H-H, resulting in diminished levels of cardioprotective parasympathetic activity to the heart as seen in OSA patients. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.
Thomas, M P; Monaghan, D T; Morrisett, R A
1998-10-01
Synaptic mechanisms underlying hyperexcitability due to withdrawal from chronic ethanol exposure were investigated in a hippocampal explant model system using electrophysiological techniques. Whole-cell voltage clamp recordings from CA1 pyramidal cells demonstrated that acute ethanol exposure inhibited N-methyl-D-aspartate receptor (NMDAR)-mediated excitatory postsynaptic currents by over 40%. Chronic ethanol exposure for 6 to 11 days at 35 or 75 mM induced no differences from control explants in the fast component of the population synaptic response (non-NMDAR-mediated). Prolonged field potential recordings (to 10 hr) were used to monitor the withdrawal process in vitro. Ethanol-exposed explants from both 35 and 75 mM groups displayed an increase (60% and 89%, respectively) in the NMDAR-mediated component of synaptic transmission on withdrawal from chronic exposure. Prolonged tonic-clonic electrographic seizure activity was consistently observed after ethanol withdrawal only after the increase in NMDAR function. This hyperexcitability was inhibited by the NMDAR antagonist D-2-amino-5-phosphonovaleric acid and returned once the NMDAR component was reestablished after antagonist washout. In situ hybridization studies suggest that expression of NR2B subunit mRNA may be enhanced in explants after chronic ethanol exposure. No lasting differences were observed in the NMDAR component after acute in vitro ethanol exposure and withdrawal. These data suggest that the occurance of ethanol withdrawal hyperexcitability in this system may be directly dependent on alterations in NMDAR function after chronic exposure. Since this region and others that contain ethanol sensitive NMDARs may serve as epileptic foci, long term alterations in NMDAR function may be expected to generate paroxysmal depolarizing shifts underlying ictal events after withdrawal from ethanol exposure.
A novel fiber-free technique for brain activity imaging in multiple freely behaving mice
NASA Astrophysics Data System (ADS)
Inagaki, Shigenori; Agetsuma, Masakazu; Nagai, Takeharu
2018-02-01
Brain functions and related psychiatric disorders have been investigated by recording electrophysiological field potential. When recording it, a conventional method requires fiber-based apparatus connected to the brain, which however hampers the simultaneous measurement in multiple animals (e.g. by a tangle of fibers). Here, we propose a fiber-free recording technique in conjunction with a ratiometric bioluminescent voltage indicator. Our method allows investigation of electrophysiological filed potential dynamics in multiple freely behaving animals simultaneously over a long time period. Therefore, this fiber-free technique opens up the way to investigate a new mechanism of brain function that governs social behaviors and animal-to-animal interaction.
The contribution of cationic conductances to the potential of rod photoreceptors.
Moriondo, Andrea; Rispoli, Giorgio
2010-05-01
The contribution of cationic conductances in shaping the rod photovoltage was studied in light adapted cells recorded under whole-cell voltage- or current-clamp conditions. Depolarising current steps (of size comparable to the light-regulated current) produced monotonic responses when the prepulse holding potential (V (h)) was -40 mV (i.e. corresponding to the membrane potential in the dark). At V (h) = -60 mV (simulating the steady-state response to an intense background of light) current injections <35 pA (mimicking a light decrement) produced instead an initial depolarisation that declined to a plateau, and voltage transiently overshot V (h) at the stimulus offset. Current steps >40 pA produced a steady depolarisation to approximately -16 mV at both V (h). The difference between the responses at the two V (h) was primarily generated by the slow delayed-rectifier-like K(+) current (I (Kx)), which therefore strongly affects both the photoresponse rising and falling phase. The steady voltage observed at both V (h) in response to large current injections was instead generated by Ca-activated K(+) channels (I (KCa)), as previously found. Both I (Kx) and I (KCa) oppose the cation influx, occurring at the light stimulus offset through the cGMP-gated channels and the voltage-activated Ca(2+) channels (I (Ca)). This avoids that the cation influx could erratically depolarise the rod past its normal resting value, thus allowing a reliable dim stimuli detection, without slowing down the photovoltage recovery kinetics. The latter kinetics was instead accelerated by the hyperpolarisation-activated, non-selective current (I (h)) and I (Ca). Blockade of all K(+) currents with external TEA unmasked a I (Ca)-dependent regenerative behaviour.
Vicente, M Inês; Costa, Pedro F; Lima, Pedro A
2010-05-25
Galantamine, one of the major drugs used in Alzheimer's disease therapy, is a relatively weak acetylcholinesterase inhibitor and an allosteric potentiating ligand of nicotinic acetylcholine receptors. However, a role in the control of excitability has also been attributed to galantamine via modulation of K+ currents in central neurones. To further investigate the effect of galantamine on voltage-activated K+ currents, we performed whole-cell voltage-clamp recordings in differentiated neuroblastoma N1E-115 cells and in dissociated rat CA1 neurones. In both cell models, one can identify two main voltage-activated K+ current components: a relatively fast inactivating component (Ifast; time constant approximately hundred milliseconds) and a slowly inactivating one (Islow; time constant approximately 1 s). We show that galantamine (1 pM-300 microM) inhibits selectively Islow, exhibiting a dual dose-response relationship, in both differentiated N1E-115 cells and CA1 neurones. We also demonstrate that, in contrast with what was previously reported, galantamine-induced inhibition is not due to a shift on the steady-state inactivation and activation curves. Additionally, we characterized a methodological artefact that affects voltage-dependence as a function of time in whole-cell configuration, observed in both cell models. By resolving an inhibitory role on K+ currents in a non-central neuronal system and in hippocampal neurones, we are attributing a widespread role of galantamine on the modulation of cell excitability. The present results are relevant in the clinical context, since the effects at low dosages suggest that galantamine-induced K+ current inhibition may contribute to the efficiency of galantamine in the treatment of Alzheimer's disease. Copyright 2010 Elsevier B.V. All rights reserved.