Renaud, Guillaume; Bosch, Johan G; Van Der Steen, Antonius F W; De Jong, Nico
2014-06-01
Contrast-enhanced ultrasound imaging is based on the detection of non-linear vibrational responses of a contrast agent after its intravenous administration. Improving contrast-enhanced images requires an accurate understanding of the vibrational response to ultrasound of the lipid-coated gas microbubbles that constitute most ultrasound contrast agents. Variations in the volume of microbubbles provide the most efficient radiation of ultrasound and, therefore, are the most important bubble vibrations for medical diagnostic ultrasound imaging. We developed an "acoustical camera" that measures the dynamic volume change of individual microbubbles when excited by a pressure wave. In the work described here, the technique was applied to the characterization of low-amplitude non-linear behaviors of BR14 microbubbles (Bracco Research, Geneva, Switzerland). The amplitude dependence of the resonance frequency and the damping, the prevalence of efficient subharmonic and ultraharmonic vibrations and the amplitude dependence of the response at the fundamental frequency and at the second harmonic frequency were investigated. Because of the large number of measurements, we provide a statistical characterization of the low-amplitude non-linear properties of the contrast agent. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Lattice vibrational contribution to equation of state for tetrahedral compounds
NASA Astrophysics Data System (ADS)
Kagaya, H.-Matsuo; Kotoku, H.; Soma, T.
1989-02-01
The lattice vibrational contributions to the Helmholtz free energy and the thermal pressure of tetrahedral compounds such as GaP, InP, ZnS, ZnSe, ZnTe and CdTe are investigated from the electronic theory of solids in the dynamical treatment based on our presented binding force. The temperature dependence of Helmholtz free energy and thermal pressure from lattice vibrational term are quantitatively obtained, and vibrational contributions to free energy are small compared with the static crystal energy. The influence of the thermal pressure is important to the equation of state in high temperatures, and the reformulation of the volume scale for the pressure-volume relation is given by considering the thermal pressure.
NASA Technical Reports Server (NTRS)
Dicarlo, J. A.; Maisel, J. E.
1978-01-01
A flexural vibration test and associated equipment were developed to accurately measure the low strain dynamic modulus and damping of composite materials from -200 C to over 500 C. The basic test method involves the forced vibration of composite bars at their resonant free-free flexural modes in a high vacuum cryostat furnace. The accuracy of these expressions and the flexural test was verified by dynamic moduli and damping capacity measurements on 50 fiber volume percent boron/aluminum (B/Al) composites vibrating near 2000 Hz. The phase results were summarized to permit predictions of the B/Al dynamic behavior as a function of frequency, temperature, and fiber volume fraction.
Ando, Hideo; Noguchi, Ryo
2003-06-01
This study was carried out to determine the effects of the frequency of whole-body vibration on palmar sweating response and the activity of the central sympathetic nervous system. Palmar sweating volume was measured on the right palm of six healthy men before and during 3 minutes of exposure to sinusoidal whole-body vibration at three different frequencies (16, 31.5, and 63 Hz). The whole-body vibration had a frequency-weighted, root mean square (rms) acceleration magnitude of 2.0 m/s2. As the index of the activated central sympathetic nervous system, saliva level of 3-methoxy-4-hydroxyphenylglycol (MHPG) was analyzed before and immediately after each vibration exposure. Each vibration frequency induced a palmar sweating response, that of 31.5 Hz being the largest. However, no significant difference was found between the three vibration conditions. Saliva MHPG increased in all the vibration exposures, and the largest change was observed at 31.5 Hz, the difference being significant. Acute exposure to whole-body vibration induced a palmar sweating response and activated the central sympathetic nervous system. The effects on the central nervous system were found to be dependent on the frequency of the vibration.
NASA Astrophysics Data System (ADS)
Kovalev, Yu. M.; Kuropatenko, V. F.
2018-05-01
An analysis of the existing approximations used for describing the dependence of heat capacity at a constant volume on the temperature of a molecular crystal has been carried out. It is shown that the considered Debye and Einstein approximations do not enable one to adequately describe the dependence of heat capacity at a constant volume on the temperature of the molecular crystals of nitro compounds. This inference requires the development of special approximations that would describe both low-frequency and high-frequency parts of the vibrational spectra of molecular crystals. This work presents a universal dependence allowing one to describe the dependence of heat capacity at a constant volume on temperature for a number of molecular crystals of nitro compounds.
Numerical Analysis of the Influence of Low Frequency Vibration on Bubble Growth
Han, D.; Kedzierski, Mark A.
2017-01-01
Numerical simulation of bubble growth during pool boiling under the influence of low frequency vibration was performed to understand the influence of common vibrations such as those induced by wind, highway transportation, and nearby mechanical devices on the performance of thermal systems that rely on boiling. The simulations were done for saturated R123 boiling at 277.6 K with a 15 K wall superheat. The numerical volume-of-fluid method (fixed grid) was used to define the liquid-vapor interface. The basic bubble growth characteristics including the bubble departure diameter and the bubble departure time were determined as a function of the bubble contact angle (20°–80°), the vibration displacement (10 µm–50 µm), the vibration frequency (5 Hz–25 Hz), and the initial vibration direction (positive or negative). The bubble parameters were shown to be strongly dependent on the bubble contact angle at the surface. For example, both the bubble departure diameter and the bubble departure time increased with the contact angle. At the same vibration frequency and the initial vibration direction, the bubble departure diameter and the bubble departure time both decreased with increasing vibration displacement. In addition, the vibration frequency had a greater effect on the bubble growth characteristics than did the vibration displacement. The vibration frequency effect was strongly influenced by the initial vibration direction. The pressure contour, the volume fraction of vapor phase, the temperature profile, and the velocity vector were investigated to understand these dynamic bubble behaviors. The limitation of the computational fluid dynamics approach was also described. PMID:28747812
NASA Astrophysics Data System (ADS)
Perger, Warren F.; Zhao, Jijun; Winey, J. M.; Gupta, Y. M.
2006-07-01
The vibrational frequencies of the PETN molecular crystal were calculated using the first-principles CRYSTAL03 program which employs an all-electron LCAO approach and calculates analytic first derivatives of the total energy with respect to atomic displacements. Numerical second derivatives were used to enable calculation of the vibrational frequencies at ambient pressure and under various states of compression. Three different density functionals, B3LYP, PW91, and X3LYP were used to examine the effect of the exchange-correlation functional on the vibrational frequencies. The average deviation with experimental results is shown to be on the order of 2-3%, depending on the functional used. The pressure-induced shift of the vibrational frequencies is presented.
Lee, Dae-Yeon
2017-02-01
[Purpose] The purpose of this study was to investigate the effects of a whole-body vibration exercise, as well as to discuss the scientific basis to establish optimal intensity by analyzing differences between muscle activations in each body part, according to the stimulation intensity of the whole-body vibration. [Subjects and Methods ] The study subjects included 10 healthy men in their 20s without orthopedic disease. Representative muscles from the subjects' primary body segments were selected while the subjects were in upright positions on exercise machines; electromyography electrodes were attached to the selected muscles. Following that, the muscle activities of each part were measured at different intensities. No vibration, 50/80 in volume, and 10/25/40 Hz were mixed and applied when the subjects were on the whole-vibration exercise machines in upright positions. After that, electromyographic signals were collected and analyzed with the root mean square of muscular activation. [Results] As a result of the analysis, it was found that the muscle activation effects had statistically meaningful differences according to changes in exercise intensity in all 8 muscles. When the no-vibration status was standardized and analyzed as 1, the muscle effect became lower at higher frequencies, but became higher at larger volumes. [Conclusion] In conclusion, it was shown that the whole-body vibration stimulation promoted muscle activation across the entire body part, and the exercise effects in each muscle varied depending on the exercise intensities.
Çakar, Halil Ibrahim; Doğan, Serfiraz; Kara, Sadık; Rittweger, Jörn; Rawer, Rainer; Zange, Jochen
2017-06-01
In this study, we investigated the effects of vibration of the whole lower leg on the content and the oxygenation of hemoglobin in the unloaded relaxed lateral gastrocnemius muscle. Vibration was applied orthogonal to and in parallel with leg axis to examine whether the extrusion of blood depends on an alignment of main vessel direction, axis of vibration and gravity. The blood volume in the muscles was altered by horizontal and 30° upright body posture. Fifteen male subjects were exposed to 4 sets of experiments with both vibration directions and both tilt angles applied in permutated order. The absence of voluntary muscular activity and the potential occurrence of compound action potentials by stretch reflexes were monitored using electromyography. Total hemoglobin and tissue saturation index were measured with near infrared spectroscopy. Changes of lower leg circumference were measured with strain gauge system placed around the calf. Vibration caused decrease in tHb and increase in TSI indicating extrusion of predominantly venous blood from the muscle. In 30° tilted position, muscles contained more blood at baseline and vibration ejected more blood from the muscle compared with horizontal posture (p < 0.01). At 30° tilting deeper drop in tHb and steeper increase in TSI (p < 0.01) were observed when vibration was applied in parallel with the length axis of muscle. It is concluded that the vibration extrudes more blood in 30° head up posture and the vibration applied in parallel with the length axis of the muscle is more effective than orthogonal vibration.
Two-dimensional model of vocal fold vibration for sound synthesis of voice and soprano singing
NASA Astrophysics Data System (ADS)
Adachi, Seiji; Yu, Jason
2005-05-01
Voiced sounds were simulated with a computer model of the vocal fold composed of a single mass vibrating both parallel and perpendicular to the airflow. Similarities with the two-mass model are found in the amplitudes of the glottal area and the glottal volume flow velocity, the variation in the volume flow waveform with the vocal tract shape, and the dependence of the oscillation amplitude upon the average opening area of the glottis, among other similar features. A few dissimilarities are also found in the more symmetric glottal and volume flow waveforms in the rising and falling phases. The major improvement of the present model over the two-mass model is that it yields a smooth transition between oscillations with an inductive load and a capacitive load of the vocal tract with no sudden jumps in the vibration frequency. Self-excitation is possible both below and above the first formant frequency of the vocal tract. By taking advantage of the wider continuous frequency range, the two-dimensional model can successfully be applied to the sound synthesis of a high-pitched soprano singing, where the fundamental frequency sometimes exceeds the first formant frequency. .
[Low magnitude whole-body vibration and postmenopausal osteoporosis].
Li, Huiming; Li, Liang
2018-04-01
Postmenopausal osteoporosis is a type of osteoporosis with high bone transformation rate, caused by a decrease of estrogen in the body, which is a systemic bone disease characterized by decreased bone mass and increased risk of fracture. In recent years, as a kind of non-pharmacologic treatment of osteoporosis, defined by whole-body vibration less than 1 g ( g = 9.81 m/s 2 ), low magnitude whole-body vibration is widely concerned, mainly because of its small side effects, simple operation and relative safety. Studies have shown that low magnitude whole-body vibration can improve bone strength, bone volume and bone density. But a lot of research found that, the therapeutic effects of low magnitude whole-body vibration are different depending on ages and hormone levels of subjects for animal models or human patients. There has been no definite vibration therapy can be applied to each subject so far. Studies of whole-body and cellular level suggest that low magnitude whole-body vibration stimulation is likely to be associated with changes of hormone levels and directed differentiation of stem cells. Based on the analysis of related literature in recent years, this paper made a review from vibration parameters, vibration effects and the mechanisms, to provide scientific basis and clinical guidance for the treatment of postmenopausal osteoporosis with low magnitude whole-body vibration.
NASA Astrophysics Data System (ADS)
Landerville, Aaron C.; Oleynik, Ivan I.
2017-01-01
Dispersion Corrected Density Functional Theory (DFT+vdW) calculations are performed to predict vibrational and thermal properties of the bulk energetic materials (EMs) β-octahydrocyclotetramethylene-tetranitramine (β-HMX) and triaminotrinitrobenzene (TATB). DFT+vdW calculations of pressure-dependent crystal structure and the hydrostatic equation of state are followed by frozen-phonon calculations of their respective vibration spectra at each pressure. These are then used under the quasi-harmonic approximation to obtain zero-point and thermal free energy contributions to the pressure, resulting in pressure-volume-temperature (PVT) EOS for each material that are in excellent agreement with experiment. Heat capacities, and coefficients of thermal expansion as functions of temperature are also calculated and compared with experiment.
Peculiarities of FeSi phonon spectrum induced by a change of atomic volume
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parshin, P. P., E-mail: Parshin-PP@nrcki.ru, E-mail: neupar45@yandex.ru; Chumakov, A. I.; Alekseev, P. A.
2016-12-15
We analyze in detail the results of experimental investigations of the evolution of the thermal vibration spectra for iron atoms in iron monosilicide FeSi depending on two external parameters, viz., temperature T (in the range 46–297 K at pressure P = 0.1 MPa) and pressure P (in the range 0.1 MPa–43 GPa at temperature T = 297 K), obtained by nuclear inelastic scattering of synchrotron radiation. The decrease of the atomic volume is accompanied by a rearrangement of the phonon spectrum, which is manifested, in particular, in the splitting of the low-energy peak in the spectrum and in an increasemore » of the energy for all phonons. The changes of the average energy of the iron atom vibrational spectrum and of the Debye energy with decreasing atomic volume are analyzed. Different versions of FeSi electron spectrum variation, which can be used to explain the observed phonon anomalies, are considered.« less
Phonon thermodynamics of iron and cementite
NASA Astrophysics Data System (ADS)
Mauger, Lisa Mary
The vibrational properties of materials are essential to understanding material stability and thermodynamics. In this thesis I outline vibrational thermodynamic models and the experimental tools that provide evidence on phonon behavior. The introductory section discusses the history of metallurgy and thermodynamic theory, with an emphasis on the role of iron and cementite, two important components of steels. The thermodynamic framework for understanding vibrational material behavior is provided alongside the growing body of experimental and computational tools that provide physical insight on vibrational properties. The high temperature vibrational behavior of iron and cementite are explored within this context in the final chapters. Body-centered-cubic iron exhibits decreasing phonon energies at elevated temperatures. The observed energy change in not uniform across phonon modes in iron, and specific phonon modes show significant decreases in energy that are not explained by simple vibrational models. This anomalously energy decrease is linked to the second-nearest-neighbor interactions in the bcc structure, through examination of fitted interatomic force constants. The large changes in phonon energy result in a significant increase in the vibrational entropy, called the nonharmonic vibrational entropy, which emulates the temperature behavior of the magnetic entropy across the Curie temperature. The nonharmonic vibrational entropy is attributed to interactions between the vibrations and state of magnetic disorder in the material, which persists above the magnetic transitions and extends the stability region of the bcc phase. Orthorombic cementite, Fe3C, exhibits anisotropic magneto-volume behavior in the ferromagnetic phase including regions very low thermal expansion. The phonon modes of cementite show anomalous temperature dependence, with low energy phonon modes increasing their energy at elevated temperatures in the ferromagnetic phase. This behavior is reversed after the magnetic transition and these same phonon modes lower their energies with temperature, consistent with observed thermal expansion. This atypical phonon behavior lowers the vibrational entropy of cementite up to the Curie temperature. The experimentally observed increase in low energy acoustic phonons affects the elastic behavior of Fe3C, increasing the isotropy of elastic response. First principles calculations link the observed phonon energy increases to specific vibrational modes that are polarized along the b-axis, which aligns with the closest Fe-Fe bonding direction. The nonharmonic behavior of the vibrational modes are discussed in the context of other observations of anomalous anisotropic magneto-volume behavior in Fe3C.
NASA Astrophysics Data System (ADS)
Barati, Mohammad Reza
2017-11-01
Up to now, nonlocal strain gradient theory (NSGT) is broadly applied to examine free vibration, static bending and buckling of nanobeams. This theory captures nonlocal stress field effects together with the microstructure-dependent strain gradient effects. In this study, forced vibrations of NSGT nanobeams on elastic substrate subjected to moving loads are examined. The nanobeam is made of functionally graded material (FGM) with even and uneven porosity distributions inside the material structure. The graded material properties with porosities are described by a modified power-law model. Dynamic deflection of the nanobeam is obtained via Galerkin and inverse Laplace transform methods. The importance of nonlocal parameter, strain gradient parameter, moving load velocity, porosity volume fraction, type of porosity distribution and elastic foundation on forced vibration behavior of nanobeams are discussed.
NASA Astrophysics Data System (ADS)
Ghorbanpour Arani, A.; Shajari, A. R.; Amir, S.; Loghman, A.
2012-08-01
Nonlinear vibration and stability of a smart composite micro-tube made of Poly-vinylidene fluoride (PVDF) reinforced by Boron-Nitride nanotubes (BNNTs) embedded in an elastic medium under electro-thermal loadings is investigated. The BNNTs are considered to be long straight fibers and the composite used in this study is in the category of piezoelectric fiber reinforced composites (PEFRC). The micro-tube is conveying a fully developed isentropic, incompressible and irrotational fluid flow. The smart micro-tube is modeled as a thin shell based on the nonlinear Donnell's shell theory. Effects of mean flow velocity, fluid viscosity, elastic medium modulus, temperature change, imposed electric potential, small scale, aspect ratio, volume percent and orientation angle of the BNNTs on the vibration behavior of the micro-tube are taken into account. The results indicate that increasing mean flow velocity considerably increases the nonlinearity effects so that small scale and temperature change effects become negligible. It has also been found that stability of the system is strongly dependent on the imposed electric potential and the volume percent of BNNTs reinforcement. The system studied in this article can be used as sensor and actuator in the sensitive applications.
Size-dependent characterization of embedded Ge nanocrystals: Structural and thermal properties
NASA Astrophysics Data System (ADS)
Araujo, L. L.; Giulian, R.; Sprouster, D. J.; Schnohr, C. S.; Llewellyn, D. J.; Kluth, P.; Cookson, D. J.; Foran, G. J.; Ridgway, M. C.
2008-09-01
A combination of conventional and synchrotron-based techniques has been used to characterize the size-dependent structural and thermal properties of Ge nanocrystals (NCs) embedded in a silica (a-SiO2) matrix. Ge NC size distributions with four different diameters ranging from 4.0 to 9.0 nm were produced by ion implantation and thermal annealing as characterized with small-angle x-ray scattering and transmission electron microscopy. The NCs were well represented by the superposition of bulklike crystalline and amorphous environments, suggesting the formation of an amorphous layer separating the crystalline NC core and the a-SiO2 matrix. The amorphous fraction was quantified with x-ray-absorption near-edge spectroscopy and increased as the NC diameter decreased, consistent with the increase in surface-to-volume ratio. The structural parameters of the first three nearest-neighbor shells were determined with extended x-ray-absorption fine-structure (EXAFS) spectroscopy and evolved linearly with inverse NC diameter. Specifically, increases in total disorder, interatomic distance, and the asymmetry in the distribution of distances were observed as the NC size decreased, demonstrating that finite-size effects govern the structural properties of embedded Ge NCs. Temperature-dependent EXAFS measurements in the range of 15-300 K were employed to probe the mean vibrational frequency and the variation of the interatomic distance distribution (mean value, variance, and asymmetry) with temperature for all NC distributions. A clear trend of increased stiffness (higher vibrational frequency) and decreased thermal expansion with decreasing NC size was evident, confirming the close relationship between the variation of structural and thermal/vibrational properties with size for embedded Ge NCs. The increase in surface-to-volume ratio and the presence of an amorphous Ge layer separating the matrix and crystalline NC core are identified as the main factors responsible for the observed behavior, with the surrounding a-SiO2 matrix also contributing to a lesser extent. Such results are compared to previous reports and discussed in terms of the influence of the surface-to-volume ratio in objects of nanometer dimensions.
Free vibration of fully functionally graded carbon nanotube reinforced graphite/epoxy laminates
NASA Astrophysics Data System (ADS)
Kuo, Shih-Yao
2018-03-01
This study provides the first-known vibration analysis of fully functionally graded carbon nanotube reinforced hybrid composite (FFG-CNTRHC) laminates. CNTs are non-uniformly distributed to reinforce the graphite/epoxy laminates. Some CNT distribution functions in the plane and thickness directions are proposed to more efficiently increase the stiffening effect. The rule of mixtures is modified by considering the non-homogeneous material properties of FFG-CNTRHC laminates. The formulation of the location dependent stiffness matrix and mass matrix is derived. The effects of CNT volume fraction and distribution on the natural frequencies of FFG-CNTRHC laminates are discussed. The results reveal that the FFG layout may significantly increase the natural frequencies of FFG-CNTRHC laminate.
Dissipative gravitational bouncer on a vibrating surface
NASA Astrophysics Data System (ADS)
Espinoza Ortiz, J. S.; Lagos, R. E.
2017-12-01
We study the dynamical behavior of a particle flying under the influence of a gravitational field, with dissipation constant λ (Stokes-like), colliding successive times against a rigid surface vibrating harmonically with restitution coefficient α. We define re-scaled dimensionless dynamical variables, such as the relative particle velocity Ω with respect to the surface’s velocity; and the real parameter τ accounting for the temporal evolution of the system. At the particle-surface contact point and for the k‧th collision, we construct the mapping described by (τk ; Ω k ) in order to analyze the system’s nonlinear dynamical behavior. From the dynamical mapping, the fixed point trajectory is computed and its stability is analyzed. We find the dynamical behavior of the fixed point trajectory to be stable or unstable, depending on the values of the re-scaled vibrating surface amplitude Γ, the restitution coefficient α and the damping constant λ. Other important dynamical aspects such as the phase space volume and the one cycle vibrating surface (decomposed into absorbing and transmitting regions) are also discussed. Furthermore, the model rescues well known results in the limit λ = 0.
The Shock and Vibration Digest. Volume 18, Number 1
1986-01-01
polyurethanes reduced the loss factor and emphasized the correlation between molecular storage modulus by increasing the length of the structure and...one tempera- static deformations. He gave storage and loss ture/frequency range is difficult with copoly- moduli for a carbon black filled and an...has been described (18). The shear loss author states that the frequency dependence of and storage moduli of a void-filled polyurethane the elastomers
NASA Astrophysics Data System (ADS)
Marini, C.; Perucchi, A.; Chermisi, D.; Dore, P.; Valentini, M.; Topwal, D.; Sarma, D. D.; Lupi, S.; Postorino, P.
2011-12-01
Ambient-condition Raman spectra were collected in the strongly correlated NiS1-xSex pyrite (0≤x≤1.2). Two samples (x=0 and x=0.55) were studied as a function of pressure up to 10 GPa, and for the x=0.55 sample the pressure dependence of the infrared reflectivity was also measured (0-10 GPa). This gave a complete picture of the optical response of that system on approaching the metallic state both by application of pres-sure and/or by Se alloying, which corresponds to a volume expansion. A peculiar nonmonotonic (V-shaped) volume dependence was found for the quasiparticle spectral weight of both pure and Se-doped compounds. In the x=0.55 sample the vibrational frequencies of the chalcogen dimer show an anomalous volume dependence on entering the metallic phase. The abrupt softening observed, particularly significant for the Se-Se pair, indicates the relevant role of the softness of the Se-Se bond as previously suggested by theoretical calculations.
Elastic Moduli and Damping of Vibrational Modes of Aluminum/Silicon Carbide Composite Beams
NASA Technical Reports Server (NTRS)
Leidecker, Henning
1996-01-01
Elastic and shear moduli were determined for two aluminum matrix composites containing 20 and 40 volume percent discontinuous silicon carbide, respectively, using transverse, longitudinal, and torsional vibrational modes of specimens prepared as thin beams. These moduli are consistent with those determined from stress-strain measurements. The damping factors for these modes were also determined. Thermal properties are used to show that part of the damping of transverse modes is caused by the transverse thermal currents discussed by C. Zener (thermo-elastic damping); this damping is frequency-dependent with a maximum damping factor of approximately 0.002. The remaining damping is frequency-independent, and has roughly similar values in transverse, longitudinal, and torsional modes: approximately 0.0001.
NASA Astrophysics Data System (ADS)
Michelon, M. F.; Antonelli, A.
2010-03-01
We have developed a methodology to study the thermodynamics of order-disorder transformations in n -component substitutional alloys that combines nonequilibrium methods, which can efficiently compute free energies, with Monte Carlo simulations, in which configurational and vibrational degrees of freedom are simultaneously considered on an equal footing basis. Furthermore, with this methodology one can easily perform simulations in the canonical and in the isobaric-isothermal ensembles, which allow the investigation of the bulk volume effect. We have applied this methodology to calculate configurational and vibrational contributions to the entropy of the Ni3Al alloy as functions of temperature. The simulations show that when the volume of the system is kept constant, the vibrational entropy does not change upon transition while constant-pressure calculations indicate that the volume increase at the order-disorder transition causes a vibrational entropy increase of 0.08kB/atom . This is significant when compared to the configurational entropy increase of 0.27kB/atom . Our calculations also indicate that the inclusion of vibrations reduces in about 30% the order-disorder transition temperature determined solely considering the configurational degrees of freedom.
The Shock and Vibration Digest. Volume 14, Number 5
1982-05-01
Engrg., Santiago de Chile ,_[_, paper B3, pp 117- 129(1969). 13. Crandall, S.H., Lee, S.S., and Williams, J.H., Jr., "Accumulated Slip of a...Temperature, en - vironment, cumulative damage, and shock loading factors can also contribute to Cf depending on the operating conditions of the...Cycle Fatigue," ASME Proc. Intl. Conf. Reliability, Stress Analy- sis Failure Prevention Methods Mech. Des ., pp 237-245 (1980). 18. Shure, J.R. and
The Shock and Vibration Digest. Volume 12, Number 11,
1980-11-01
AD-A092 384 NAVAL RESEARCH LAB WASHINGTON DC SHOCK AND VIBRATION--ETC F/S 20/11 THE SHOCK AND VIBRATIO DIG 1 EST . VOLUME 12 . NUMBER I1.IU) NOV B0 J1...sections. he compared his results with ones obtained previously [ 12 , 14]. A significant number of studies 110, 15, 21-41] have involved the vibrations of...frequencies and mode shapes of the first 12 modes numerical results [4, 12 , 16] and beam results. Ro- of a cantilevered cylindrical shell having a/b
Molecular Solid EOS based on Quasi-Harmonic Oscillator approximation for phonons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menikoff, Ralph
2014-09-02
A complete equation of state (EOS) for a molecular solid is derived utilizing a Helmholtz free energy. Assuming that the solid is nonconducting, phonon excitations dominate the specific heat. Phonons are approximated as independent quasi-harmonic oscillators with vibrational frequencies depending on the specific volume. The model is suitable for calibrating an EOS based on isothermal compression data and infrared/Raman spectroscopy data from high pressure measurements utilizing a diamond anvil cell. In contrast to a Mie-Gruneisen EOS developed for an atomic solid, the specific heat and Gruneisen coefficient depend on both density and temperature.
The 58th Shock and Vibration Symposium, volume 1
NASA Technical Reports Server (NTRS)
Pilkey, Walter D. (Compiler); Pilkey, Barbara F. (Compiler)
1987-01-01
The proceedings of the 58th Shock and Vibration Symposium, held in Huntsville, Alabama, October 13 to 15, 1987 are given. Mechanical shock, dynamic analysis, space shuttle main engine vibration, isolation and damping, and analytical methods are discussed.
NASA Astrophysics Data System (ADS)
LaPlante, Arthur J.; Stidham, Howard D.
2009-10-01
The mid and far infrared and the Raman spectrum of 1,2-dibromopropane is reported in solid, liquid and gas. Several bands reported by earlier workers are not present in the spectrum of the purified material. Ab initio calculations of optimized geometry, energy, dipole moment, molar volume, vibrational spectrum and normal coordinate calculation were performed using the density functional B3LYP/6-311++g(3df,2pd), and the results used to assist a complete assignment of the 81 fundamental modes of vibrations of the three conformers of 1,2-dibromopropane. Relative energies found conformer A the lowest with G and G' at 815.6 and 871.4 cm -1 higher. The temperature dependence of the Raman spectrum of the liquid was investigated in the CCC bending region and the relative energies determined. It was found that the G' and G conformers lie 236 ± 11 and 327 ±11 cm -1, respectively above the A conformer, leading to the room temperature composition of the liquid as A, 65 ± 1; G', 21 ± 1; G, 14 ± 1%. It is apparent that the calculated highest energy conformer G' is stabilized more than the G conformer in the liquid. The G' conformer has the lowest molar volume effectively changing the interaction distance between conformers in the liquid, and enhancing the effect of its dipole moment.
LaPlante, Arthur J; Stidham, Howard D
2009-10-15
The mid and far infrared and the Raman spectrum of 1,2-dibromopropane is reported in solid, liquid and gas. Several bands reported by earlier workers are not present in the spectrum of the purified material. Ab initio calculations of optimized geometry, energy, dipole moment, molar volume, vibrational spectrum and normal coordinate calculation were performed using the density functional B3LYP/6-311++g(3df,2pd), and the results used to assist a complete assignment of the 81 fundamental modes of vibrations of the three conformers of 1,2-dibromopropane. Relative energies found conformer A the lowest with G and G' at 815.6 and 871.4 cm(-1) higher. The temperature dependence of the Raman spectrum of the liquid was investigated in the CCC bending region and the relative energies determined. It was found that the G' and G conformers lie 236+/-11 and 327+/-11 cm(-1), respectively above the A conformer, leading to the room temperature composition of the liquid as A, 65+/-1; G', 21+/-1; G, 14+/-1%. It is apparent that the calculated highest energy conformer G' is stabilized more than the G conformer in the liquid. The G' conformer has the lowest molar volume effectively changing the interaction distance between conformers in the liquid, and enhancing the effect of its dipole moment.
Thermal vibrations and polymorphic β → γ transition in cerium
NASA Astrophysics Data System (ADS)
Agafonov, S. S.; Blanter, M. S.; Glazkov, V. P.; Somenkov, V. A.; Shushunov, M. N.
2010-10-01
Method of neutron diffraction was used to determine the temperature dependence of the Debye-Waller factor and the related thermal atomic displacements for two polymorphic modifications of cerium, namely, for β-Ce with a double hexagonal closed-packed (dhcp) structure and for γ-Ce with a face-centered cubic (fcc) structure. It has been shown that the phase transition does not lead to substantial changes in the root-mean-square thermal atomic displacements and that the Debye temperatures of the two modifications are close: 131 K for β-Ce and 127 K for γ-Ce. However, the relative (with respect to the lattice parameters) displacements along the axes change considerably. The transition from the anisotropic hexagonal to the isotropic cubic modification leads, because of a redistribution of thermal atomic displacements along the crystallographic axes, to a decrease in the maximum values of these quantities and to a weakening of their temperature dependence. It has also been shown that a change in the thermal atomic vibrations and in the vibrational contribution to the entropy of the polymorphic transformations is connected with the sign of the volume effect of the transformation (stronger upon a positive effect and weaker, upon a negative one). The reasons for this behavior are discussed.
NASA Astrophysics Data System (ADS)
Shtyn, S. U.; Lebedev, V. A.; Gorlenko, A. O.
2017-02-01
On the basis of thermodynamic concepts of the process, we proposed an energy model that reflects the mechanochemical essence of coating forming in terms of vibration technology systems, which takes into account the contribution to the formation of the coating, the increase of unavailable energy due to the growth of entropy, the increase in the energy of elastic-plastic crystal lattice distortion as a result of the mechanical influence of working environment indenters, surface layer internal energy change which occurs as a result of chemical interaction of the contacting media. We proposed adhesion strength of the local volume modified through processing as a criterion of the energy condition of the formed coating. We established analytical dependence which helps to obtain the coating strength of the material required by operating conditions.
Computational analysis of blood clot dissolution using a vibrating catheter tip.
Lee, Jeong Hyun; Oh, Jin Sun; Yoon, Bye Ri; Choi, Seung Hong; Rhee, Kyehan; Jho, Jae Young; Han, Moon Hee
2012-04-01
We developed a novel concept of endovascular thrombolysis that employs a vibrating electroactive polymer actuator. In order to predict the efficacy of thrombolysis using the developed vibrating actuator, enzyme (plasminogen activator) perfusion into a clot was analyzed by solving flow fields and species transport equations considering the fluid structure interaction. In vitro thrombolysis experiments were also performed. Computational results showed that plasminogen activator perfusion into a clot was enhanced by actuator vibration at frequencies of 1 and 5 Hz. Plasminogen activator perfusion was affected by the actuator oscillation frequencies and amplitudes that were determined by electromechanical characteristics of a polymer actuator. Computed plasminogen activator perfused volumes were compared with experimentally measured dissolved clot volumes. The computed plasminogen activator perfusion volumes with threshold concentrations of 16% of the initial plasminogen activator concentration agreed well with the in vitro experimental data. This study showed the effectiveness of actuator oscillation on thrombolysis and the validity of the computational plasminogen activator perfusion model for predicting thrombolysis in complex flow fields induced by an oscillating actuator.
Romero, Louis A.; Torczynski, John R.; Clausen, Jonathan R.; ...
2015-11-16
Herein, we show how introducing a small amount of gas can completely change the motion of a solid object in a viscous liquid during vibration. We analyze an idealized system exhibiting this behavior: a piston moving in a liquid-filled housing, where the gaps between the piston and the housing are narrow and depend on the piston position. Recent experiments have shown that vibration causes some gas to move below the piston and the piston to subsequently move downward and compress its supporting spring. Herein, we analyze the analogous but simpler situation in which the gas regions are replaced by bellowsmore » with similar pressure-volume relationships. We show that these bellows form a spring (analogous to the pneumatic spring formed by the gas regions) which enables the piston and the liquid to oscillate in a mode that does not exist without this spring. This mode is referred to here as the Couette mode because the liquid in the gaps moves essentially in Couette flow (i.e., with almost no component of Poiseuille flow). Since Couette flow by itself produces extremely low damping, the Couette mode has a strong resonance. We show that, near this resonance, the dependence of the gap geometry on the piston position produces a large rectified (net) force on the piston during vibration. As a result, this force can be much larger than the piston weight and the strength of its supporting spring and is in the direction that decreases the flow resistance of the gap geometry.« less
Vertical vibration and shape oscillation of acoustically levitated water drops
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geng, D. L.; Xie, W. J.; Yan, N.
2014-09-08
We present the vertical harmonic vibration of levitated water drops within ultrasound field. The restoring force to maintain such a vibration mode is provided by the resultant force of acoustic radiation force and drop gravity. Experiments reveal that the vibration frequency increases with the aspect ratio for drops with the same volume, which agrees with the theoretical prediction for those cases of nearly equiaxed drops. During the vertical vibration, the floating drops undergo the second order shape oscillation. The shape oscillation frequency is determined to be twice the vibration frequency.
Mort, Brendan C; Autschbach, Jochen
2006-08-09
Vibrational corrections (zero-point and temperature dependent) of the H-D spin-spin coupling constant J(HD) for six transition metal hydride and dihydrogen complexes have been computed from a vibrational average of J(HD) as a function of temperature. Effective (vibrationally averaged) H-D distances have also been determined. The very strong temperature dependence of J(HD) for one of the complexes, [Ir(dmpm)Cp*H2]2 + (dmpm = bis(dimethylphosphino)methane) can be modeled simply by the Boltzmann average of the zero-point vibrationally averaged JHD of two isomers. For this complex and four others, the vibrational corrections to JHD are shown to be highly significant and lead to improved agreement between theory and experiment in most cases. The zero-point vibrational correction is important for all complexes. Depending on the shape of the potential energy and J-coupling surfaces, for some of the complexes higher vibrationally excited states can also contribute to the vibrational corrections at temperatures above 0 K and lead to a temperature dependence. We identify different classes of complexes where a significant temperature dependence of J(HD) may or may not occur for different reasons. A method is outlined by which the temperature dependence of the HD spin-spin coupling constant can be determined with standard quantum chemistry software. Comparisons are made with experimental data and previously calculated values where applicable. We also discuss an example where a low-order expansion around the minimum of a complicated potential energy surface appears not to be sufficient for reproducing the experimentally observed temperature dependence.
NASA Astrophysics Data System (ADS)
Ghoraishi, Maryam; Hawk, John; Thundat, Thomas
Aqueous mixture of alcohol is a typical prototype for biomolecules, micelle formation, and structural stability of proteins. Therefore, Short chain alcohols such as EtOH have been used as a simple model for understanding of more complex aqueous biomolecules. Here we study vibrational energy peaks of EtOH water binary mixtures using micromechanical calorimetric spectroscopy using bimaterial microfluidic cantilevers (BMC). The IR spectra of EtOH-water are experimentally collected employing a BMC as concentration of EtOH changes from 20-100 wt%. As concentration of EtOH varies in the mixture, considerable shifts in the wavenumber at IR absorption peak maxima are reported. The experimentally measured shifts in the wavenumber at IR absorption peak maxima are related to changes in dipole moment (μ) of EtOH at different concentration. The relationship between IR absorption wavenumber for both anti and gauche conformers of EtOH, and inverse dipole moment, 1/ μ, of EtOH at different concentrations follows a power law dependence. Our technique offers a platform to investigate dipole effect on molecular vibrations of mixtures in confined picoliter volumes, previously unexplored with other analytical techniques due to limitations of volume under study.
Shock and Vibration Symposium (59th) Held in Albuquerque, New Mexico on 18-20 October 1988. Volume 1
1988-10-01
Partial contents: The Quest for Omega = sq root(K/M) -- Notes on the development of vibration analysis; An overview of Statistical Energy analysis ; Its...and inplane vibration transmission in statistical energy analysis ; Vibroacoustic response using the finite element method and statistical energy analysis ; Helium
NASA Astrophysics Data System (ADS)
Cervellati, R.; Degli Esposti, A.; Lister, D. G.; Lopez, J. C.; Alonso, J. L.
1986-10-01
The microwave spectrum of 2,3-dihydrofuran has been reinvestigated and measurements for the ground and first five excited states of the ring puckering vibration have been extended to higher frequencies and rotational quantum numbers in order to study the vibrational dependence of the rotational and centrifugal distortion constants. The ring puckering potential function derived by Green from the far infrared spectrum does not reproduce the vibrational dependence of the rotational constants well. A slightly different potential function is derived which gives a reasonable fit both to the far infrared spectrum and the rotational constants. This changes the barrier to ring inversion from 1.00 kJ mol -1 to 1.12 kJ mol -1. The vibrational dependence of the centrifugal distortion constants is accounted for satisfactorily by the theory developed by Creswell and Mills. An attempt to reproduce the vibrational dependence of the rotational and centrifugal distortion constants using the ring puckering potential function and a simple model for this vibration has very limited success.
Transmission of vibration through gloves: effects of material thickness.
Md Rezali, Khairil Anas; Griffin, Michael J
2016-08-01
It might be assumed that increasing the thickness of a glove would reduce the vibration transmitted to the hand. Three material samples from an anti-vibration glove were stacked to produce three thicknesses: 6.4, 12.8 and 19.2 mm. The dynamic stiffnesses of all three thicknesses, the apparent mass at the palm and the finger and the transmission of vibration to the palm and finger were measured. At frequencies from 20 to 350 Hz, the material reduced vibration at the palm but increased vibration at the finger. Increased thickness reduced vibration at the palm but increased vibration at the finger. The measured transmissibilities could be predicted from the material dynamic stiffness and the apparent mass of the palm and finger. Reducing the dynamic stiffness of glove material may increase or decrease the transmission of vibration, depending on the material, the frequency of vibration and the location of measurement (palm or finger). Practitioner Summary: Transmission of vibration through gloves depends on the dynamic response of the hand and the dynamic stiffness of glove material, which depends on material thickness. Measuring the transmission of vibration through gloves to the palm of the hand gives a misleading indication of the transmission of vibration to the fingers.
Effects of a power and photon energy of incident light on near-field etching properties
NASA Astrophysics Data System (ADS)
Yatsui, T.; Saito, H.; Nishioka, K.; Leuschel, B.; Soppera, O.; Nobusada, K.
2017-12-01
We developed a near-field etching technique for realizing an ultra-flat surfaces of various materials and structures. To elucidate the near-field etching properties, we have investigated the effects of power and the photon energy of the incident light. First, we established theoretically that an optical near-field with photon energy lower than the absorption edge of the molecules can induce molecular vibrations. We used nanodiamonds to study the power dependence of the near-field etching properties. From the topological changes of the nanodiamonds, we confirmed the linear-dependence of the etching volume with the incident power. Furthermore, we studied the photon energy dependence using TiO2 nanostriped structures, which revealed that a lower photon energy results in a lower etching rate.
NASA Astrophysics Data System (ADS)
Peters, William K.; Tiwari, Vivek; Jonas, David M.
2017-11-01
The nonadiabatic states and dynamics are investigated for a linear vibronic coupling Hamiltonian with a static electronic splitting and weak off-diagonal Jahn-Teller coupling through a single vibration with a vibrational-electronic resonance. With a transformation of the electronic basis, this Hamiltonian is also applicable to the anti-correlated vibration in a symmetric homodimer with marginally strong constant off-diagonal coupling, where the non-adiabatic states and dynamics model electronic excitation energy transfer or self-exchange electron transfer. For parameters modeling a free-base naphthalocyanine, the nonadiabatic couplings are deeply quantum mechanical and depend on wavepacket width; scalar couplings are as important as the derivative couplings that are usually interpreted to depend on vibrational velocity in semiclassical curve crossing or surface hopping theories. A colored visualization scheme that fully characterizes the non-adiabatic states using the exact factorization is developed. The nonadiabatic states in this nested funnel have nodeless vibrational factors with strongly avoided zeroes in their vibrational probability densities. Vibronic dynamics are visualized through the vibrational coordinate dependent density of the time-dependent dipole moment in free induction decay. Vibrational motion is amplified by the nonadiabatic couplings, with asymmetric and anisotropic motions that depend upon the excitation polarization in the molecular frame and can be reversed by a change in polarization. This generates a vibrational quantum beat anisotropy in excess of 2/5. The amplitude of vibrational motion can be larger than that on the uncoupled potentials, and the electronic population transfer is maximized within one vibrational period. Most of these dynamics are missed by the adiabatic approximation, and some electronic and vibrational motions are completely suppressed by the Condon approximation of a coordinate-independent transition dipole between adiabatic states. For all initial conditions investigated, the initial nonadiabatic electronic motion is driven towards the lower adiabatic state, and criteria for this directed motion are discussed.
Peters, William K; Tiwari, Vivek; Jonas, David M
2017-11-21
The nonadiabatic states and dynamics are investigated for a linear vibronic coupling Hamiltonian with a static electronic splitting and weak off-diagonal Jahn-Teller coupling through a single vibration with a vibrational-electronic resonance. With a transformation of the electronic basis, this Hamiltonian is also applicable to the anti-correlated vibration in a symmetric homodimer with marginally strong constant off-diagonal coupling, where the non-adiabatic states and dynamics model electronic excitation energy transfer or self-exchange electron transfer. For parameters modeling a free-base naphthalocyanine, the nonadiabatic couplings are deeply quantum mechanical and depend on wavepacket width; scalar couplings are as important as the derivative couplings that are usually interpreted to depend on vibrational velocity in semiclassical curve crossing or surface hopping theories. A colored visualization scheme that fully characterizes the non-adiabatic states using the exact factorization is developed. The nonadiabatic states in this nested funnel have nodeless vibrational factors with strongly avoided zeroes in their vibrational probability densities. Vibronic dynamics are visualized through the vibrational coordinate dependent density of the time-dependent dipole moment in free induction decay. Vibrational motion is amplified by the nonadiabatic couplings, with asymmetric and anisotropic motions that depend upon the excitation polarization in the molecular frame and can be reversed by a change in polarization. This generates a vibrational quantum beat anisotropy in excess of 2/5. The amplitude of vibrational motion can be larger than that on the uncoupled potentials, and the electronic population transfer is maximized within one vibrational period. Most of these dynamics are missed by the adiabatic approximation, and some electronic and vibrational motions are completely suppressed by the Condon approximation of a coordinate-independent transition dipole between adiabatic states. For all initial conditions investigated, the initial nonadiabatic electronic motion is driven towards the lower adiabatic state, and criteria for this directed motion are discussed.
Dynamic characteristics of a hydrostatic gas bearing driven by oscillating exhaust pressure
NASA Technical Reports Server (NTRS)
Watkins, C. B.; Eronini, I. E.; Branch, H. D.
1984-01-01
Vibration of a statically loaded, inherently compensated hydrostatic journal bearing due to oscillating exhaust pressure is investigated. Both angular and radial vibration modes are analyzed. The time-dependent Reynolds equation governing the pressure distribution between the oscillating journal and sleeve is solved together with the journal equation of motion to obtain the response characteristics of the bearing. The Reynolds equation and the equation of motion are simplified by applying regular perturbation theory for small displacements. The numerical solutions of the perturbation equations are obtained by discretizing the pressure field using finite-difference aproximations with a discrete, nonuniform line-source model which excludes effects due to feeding hole volume. An iterative scheme is used to simultaneously satisfy the equations of motion for the journal. The results presented include Bode plots of bearing-oscillation gain and phase for a particular bearing configuration for various combinations of parameters over a range of frequencies, including the resonant frequency.
A budget of energy transfer in a sustained vocal folds vibration in glottis
NASA Astrophysics Data System (ADS)
Zhang, Lucy; Yang, Jubiao; Krane, Michael
2016-11-01
A set of force and energy balance equations using the control volume approach is derived based on the first principles of physics for a sustained vocal folds vibration in glottis. The control volume analysis is done for compressible airflow in a moving and deforming control volume in the vicinity of the vocal folds. The interaction between laryngeal airflow and vocal folds are successfully simulated using the modified Immersed Finite Element Method (mIFEM), a fully coupled approach to simulate fluid-structure interactions. Detailed mathematical terms are separated out for deeper physical understanding and utilization of mechanical energy is quantified with the derived equation. The results show that majority of energy input is consumed for driving laryngeal airflow, while a smaller portion is for compensating viscous losses in and sustaining the vibration of the vocal folds. We acknowledge the funding support of NIH 2R01DC005642-10A1.
Vibration Method for Tracking the Resonant Mode and Impedance of a Microwave Cavity
NASA Technical Reports Server (NTRS)
Barmatz, M.; Iny, O.; Yiin, T.; Khan, I.
1995-01-01
A vibration technique his been developed to continuously maintain mode resonance and impedance much between a constant frequency magnetron source and resonant cavity. This method uses a vibrating metal rod to modulate the volume of the cavity in a manner equivalent to modulating an adjustable plunger. A similar vibrating metal rod attached to a stub tuner modulates the waveguide volume between the source and cavity. A phase sensitive detection scheme determines the optimum position of the adjustable plunger and stub turner during processing. The improved power transfer during the heating of a 99.8% pure alumina rod was demonstrated using this new technique. Temperature-time and reflected power-time heating curves are presented for the cases of no tracking, impedance tracker only, mode tracker only and simultaneous impedance and mode tracking. Controlled internal melting of an alumina rod near 2000 C using both tracking units was also demonstrated.
Rajapakse, Chamith S; Leonard, Mary B; Kobe, Elizabeth A; Slinger, Michelle A; Borges, Kelly A; Billig, Erica; Rubin, Clinton T; Wehrli, Felix W
2017-11-01
Low intensity vibration (LIV) may represent a nondrug strategy to mitigate bone deficits in patients with end-stage renal disease. Thirty end-stage renal patients on maintenance hemodialysis were randomized to stand for 20 minutes each day on either an active or placebo LIV device. Analysis at baseline and completion of 6-month intervention included magnetic resonance imaging (tibia and fibula stiffness; trabecular thickness, number, separation, bone volume fraction, plate-to-rod ratio; and cortical bone porosity), dual-energy X-ray absorptiometry (hip and spine bone mineral density [BMD]), and peripheral quantitative computed tomography (tibia trabecular and cortical BMD; calf muscle cross-sectional area). Intention-to-treat analysis did not show any significant changes in outcomes associated with LIV. Subjects using the active device and with greater than the median adherence (70%) demonstrated an increase in distal tibia stiffness (5.3%), trabecular number (1.7%), BMD (2.3%), and plate-to-rod ratio (6.5%), and a decrease in trabecular separation (-1.8%). Changes in calf muscle cross-sectional area were associated with changes in distal tibia stiffness (R = 0.85), trabecular bone volume/total volume (R = 0.91), number (R = 0.92), and separation (R = -0.94) in the active group but not in the placebo group. Baseline parathyroid hormone levels were positively associated with increased cortical bone porosity over the 6-month study period in the placebo group (R = 0.55) but not in the active group (R = 0.01). No changes were observed in the nondistal tibia locations for either group except a decrease in hip BMD in the placebo group (-1.7%). Outcomes and adherence thresholds identified from this pilot study could guide future longitudinal studies involving vibration therapy. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
The Shock and Vibration Digest. Volume 13, Number 5
1981-05-01
Ducts................ 82 Numerical Methods..107 VEHICLE SYSTEMS ........ 51 Building Components..85 Parameter Identification. . 107 Groud Veicls ...in Hybrid Systems Beam Vibrations W. Wed ig 68 Inst. for Technical Mechanics, Univ. of Karlsruhe, CYLINDERS Recent Advances in Structural Dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Appalakondaiah, S.; Vaitheeswaran, G., E-mail: gvaithee@gmail.com; Lebègue, S.
The effects of pressure on the structural and vibrational properties of the layered molecular crystal 1,1-diamino-2,2-dinitroethelene (FOX-7) are explored by first principles calculations. We observe significant changes in the calculated structural properties with different corrections for treating van der Waals interactions to Density Functional Theory (DFT), as compared with standard DFT functionals. In particular, the calculated ground state lattice parameters, volume and bulk modulus obtained with Grimme's scheme, are found to agree well with experiments. The calculated vibrational frequencies demonstrate the dependence of the intra and inter-molecular interactions on FOX-7 under pressure. In addition, we also found a significant incrementmore » in the N–H...O hydrogen bond strength under compression. This is explained by the change in bond lengths between nitrogen, hydrogen, and oxygen atoms, as well as calculated IR spectra under pressure. Finally, the computed band gap is about 2.3 eV with generalized gradient approximation, and is enhanced to 5.1 eV with the GW approximation, which reveals the importance of performing quasiparticle calculations in high energy density materials.« less
Prediction of the acoustic and bubble fields in insonified freeze-drying vials.
Louisnard, O; Cogné, C; Labouret, S; Montes-Quiroz, W; Peczalski, R; Baillon, F; Espitalier, F
2015-09-01
The acoustic field and the location of cavitation bubble are computed in vials used for freeze-drying, insonified from the bottom by a vibrating plate. The calculations rely on a nonlinear model of sound propagation in a cavitating liquid [Louisnard, Ultrason. Sonochem., 19, (2012) 56-65]. Both the vibration amplitude and the liquid level in the vial are parametrically varied. For low liquid levels, a threshold amplitude is required to form a cavitation zone at the bottom of the vial. For increasing vibration amplitudes, the bubble field slightly thickens but remains at the vial bottom, and the acoustic field saturates, which cannot be captured by linear acoustics. On the other hand, increasing the liquid level may promote the formation of a secondary bubble structure near the glass wall, a few centimeters below the free liquid surface. These predictions suggest that rather complex acoustic fields and bubble structures can arise even in such small volumes. As the acoustic and bubble fields govern ice nucleation during the freezing step, the final crystal's size distribution in the frozen product may crucially depend on the liquid level in the vial. Copyright © 2015 Elsevier B.V. All rights reserved.
Free vibration of functionally graded carbon-nanotube-reinforced composite plates with cutout
Mirzaei, Mostafa
2016-01-01
Summary During the past five years, it has been shown that carbon nanotubes act as an exceptional reinforcement for composites. For this reason, a large number of investigations have been devoted to analysis of fundamental, structural behavior of solid structures made of carbon-nanotube-reinforced composites (CNTRC). The present research, as an extension of the available works on the vibration analysis of CNTRC structures, examines the free vibration characteristics of plates containing a cutout that are reinforced with uniform or nonuniform distribution of carbon nanotubes. The first-order shear deformation plate theory is used to estimate the kinematics of the plate. The solution method is based on the Ritz method with Chebyshev basis polynomials. Such a solution method is suitable for arbitrary in-plane and out-of-plane boundary conditions of the plate. It is shown that through a functionally graded distribution of carbon nanotubes across the thickness of the plate, the fundamental frequency of a rectangular plate with or without a cutout may be enhanced. Furthermore, the frequencies are highly dependent on the volume fraction of carbon nanotubes and may be increased upon using more carbon nanotubes as reinforcement. PMID:27335742
On the seismic response of instable rock slopes based on ambient vibration recordings
NASA Astrophysics Data System (ADS)
Kleinbrod, Ulrike; Burjánek, Jan; Fäh, Donat
2017-09-01
Rock slope failures can lead to huge human and economic loss depending on their size and exact location. Reasonable hazard mitigation requires thorough understanding of the underlying slope driving mechanisms and its rock mass properties. Measurements of seismic ambient vibrations could improve the characterization and detection of rock instabilities since there is a link between seismic response and internal structure of the unstable rock mass. An unstable slope near the village Gondo has been investigated. The unstable part shows strongly amplified ground motion with respect to the stable part of the rock slope. The amplification values reach maximum factors of 70. The seismic response on the instable part is highly directional and polarized. Re-measurements have been taken 1 year later showing exactly the same results as the original measurements. Neither the amplified frequencies nor the amplification values have changed. Therefore, ambient vibration measurements are repeatable and stay the same, if the rock mass has not undergone any significant change in structure or volume, respectively. Additionally, four new points have been measured during the re-measuring campaign in order to better map the border of the instability.[Figure not available: see fulltext.
NASA Technical Reports Server (NTRS)
Mei, Chuh; Shen, Mo-How
1987-01-01
Multiple-mode nonlinear forced vibration of a beam was analyzed by the finite element method. Inplane (longitudinal) displacement and inertia (IDI) are considered in the formulation. By combining the finite element method and nonlinear theory, more realistic models of structural response are obtained more easily and faster.
The effect of mechanical vibration on orthodontically induced root resorption.
Yadav, Sumit; Dobie, Thomas; Assefnia, Amir; Kalajzic, Zana; Nanda, Ravindra
2016-09-01
To investigate the effect of low-frequency mechanical vibration (LFMV) on orthodontically induced root resorption. Forty male CD1, 12-week-old mice were used for the study. The mice were randomly divided into five groups: group 1 (baseline)-no spring and no mechanical vibration, group 2-orthodontic spring but no vibration, group 3-orthodontic spring and 5 Hz of vibration applied to the maxillary first molar, group 4-orthodontic spring and 10 Hz of vibration applied to maxillary first molar, and group 5-orthodontic spring and 20 Hz of vibration applied to maxillary first molar. In the different experimental groups, the first molar was moved mesially for 2 weeks using a nickel-titanium coil spring delivering 10 g of force. LFMVs were applied at 5 Hz, 10 Hz, and 20 Hz. Microfocus X-ray computed tomography imaging was used to analyze root resorption. Additionally, to understand the mechanism, we applied LFMV to MC3T3 cells, and gene expression analyses were done for receptor activator of nuclear factor kappa-B ligand (RANKL) and osteoprotegerin (OPG). Orthodontic tooth movement leads to decreased root volume (increased root resorption craters). Our in vivo experiments showed a trend toward increase in root volume with different frequencies of mechanical vibration. In vitro gene expression analyses showed that with 20 Hz of mechanical vibration, there was a significant decrease in RANKL and a significant increase in OPG expression. There was a trend toward decreased root resorption with different LFMVs (5 Hz, 10 Hz, and 20 Hz); however, it was not more statistically significant than the orthodontic-spring-only group.
Schulze, M; Bortfeldt, R; Schäfer, J; Jung, M; Fuchs-Kittowski, F
2018-05-01
The shipping of semen doses to sow farms can impair boar semen quality. Unfortunately, there is currently no practice-oriented information available regarding general shipping conditions of boar semen. For this reason, a special mobile sensing app (TransportLog 1.0), utilizing the built-in sensors of smartphones, has been programmed to capture vibration emissions during shipping of semen doses (QuickTip Flexitubes®, Minitüb). Data were analyzed, transformed and used as standards for simulating vibration emissions from an orbital shaker IKA MTS 4 (Laborgeräte München) in a spermatological reference laboratory. Twenty ejaculates were collected randomly and diluted using a one-step isothermal process in a split-sample procedure in Beltsville Thawing Solution (BTS, Minitüb). The sperm concentration was adjusted to 24 × 10 6 sperm/mL. The dose filling volume was 85 ± 1 mL. Samples were stored for seven days at 17 °C. The results showed that circular horizontal vibration emissions with frequencies of 300 rpm for a duration of 6 h led to a significant alkalization of the BTS-extended semen. Semen motility, mitochondrial activity, acrosome and plasma membrane integrity as well as thermo-resistance all demonstrated a frequency-dependent negative response to vibration emissions during long-term storage. This study leads to new insights and recommendations for the shipping of boar semen in the artificial insemination industry. Furthermore, a new monitoring tool for boar semen shipping was established using mobile sensing. Copyright © 2018 Elsevier B.V. All rights reserved.
The Shock and Vibration Digest. Volume 7, Number 7, July 1975.
Contents: News briefs; Feature article: The application of skeleton curves and limit envelopes to analysis of nonlinear vibration; Abstracts from the current literature--analysis and design, computer programs, environments, phenomenology, experimentation, components, systems; Author index ; Literature review; Book reviews.
The Shock and Vibration Digest, Volume 14, Number 4
1982-04-01
temperature, humidity, shock, and vibration -- can influence this capability; as a result an almost continuous program of research and development has...pro- ducing reliability tests. For some time there has been interest in the Army Test Methodology program for developing a vibration system capable...geology of the Livermore Valley is obtained. 82-768 Transient Stress Wave Propagation in HTGR Fuel Element Impacts I.T. Almajan and P.D. Smith
The Shock and Vibration Digest. Volume 14, Number 7
1982-07-01
Yang, ed., pp 93-107, 13 figs, 4 refs Key Words: Tube arrays. Heat exchangers . Wind tunnel testing . Critical speeds. Fluid-induced excitation...the Eighties," Proc. Const. Indus. Res. Inform. Assoc. Conf., Lon- don, UK (Nov 1980). 38 BOOK REVIEWS FLOW-INDUCED HEAT EXCHANGER TUBE...1980 Heat exchanger problems caused by flow-induced vibration are of concern to designers and operators of heat exchangers . Flow-induced vibration
Study of inducer load and stress, volume 2
NASA Technical Reports Server (NTRS)
1972-01-01
A program of analysis, design, fabrication and testing has been conducted to develop computer programs for predicting rocket engine turbopump inducer hydrodynamic loading, stress magnitude and distribution, and vibration characteristics. Methods of predicting blade loading, stress, and vibration characteristics were selected from a literature search and used as a basis for the computer programs. An inducer, representative of typical rocket engine inducers, was designed, fabricated, and tested with special instrumentation selected to provide measurements of blade surface pressures and stresses. Data from the tests were compared with predicted values and the computer programs were revised as required to improve correlation. For Volume 1 see N71-20403. For Volume 2 see N71-20404.
NASA Astrophysics Data System (ADS)
Hosseinian, A.; Meghdadi Isfahani, A. H.
2018-04-01
In this study, the heat transfer enhancement due to the surface vibration for a double pipe heat exchanger, made of PVDF, is investigated. In order to create forced vibrations (3-9 m/s2, 100 Hz) on the outer surface of the heat exchanger electro-dynamic vibrators are used. Experiments were performed at inner Reynolds numbers ranging from 2533 to 9960. The effects of volume flow rate and temperature on heat transfer performance are evaluated. Results demonstrated that heat transfer coefficient increases by increasing vibration level and mass flow rate. The most increase in heat transfer coefficient is 97% which is obtained for the highest vibration level (9 m/s2) in the experiment range.
Liu, Hong; Zhao, Jijun; Wei, Dongqing; Gong, Zizheng
2006-03-28
The structural, vibrational, and electronic properties of solid nitromethane under hydrostatic pressure of up to 20 GPa have been studied using density functional theory. The changes of cell volume, the lattice constants, and the molecular geometry of solid nitromethane under hydrostatic loading are examined, and the bulk modulus B0 and its pressure derivative B0' are fitted from the volume-pressure relation. Our theoretical results are compared with available experiments. The change of electron band gap of nitromethane under high pressure is also discussed. Based on the optimized crystal structures, the vibrational frequencies for the internal and lattice modes of the nitromethane crystal at ambient and high pressures are computed, and the pressure-induced frequency shifts of these modes are discussed.
Finite element solution of low bond number sloshing
NASA Technical Reports Server (NTRS)
Wohlen, R. L.; Park, A. C.; Warner, D. M.
1975-01-01
The dynamics of liquid propellant in a low Bond number environment which are critical to the design of spacecraft systems with respect to orbital propellant transfer and attitude control system were investigated. Digital computer programs were developed for the determination of liquid free surface equilibrium shape, lateral slosh natural vibration mode shapes, and frequencies for a liquid in a container of arbitrary axisymmetric shape with surface tension forces the same order of magnitude as acceleration forces. A finite volume element representation of the liquid was used for the vibration analysis. The liquid free surface equilibrium shapes were computed for several tanks at various contact angles and ullage volumes. A configuration was selected for vibration analysis and lateral slosh mode shapes and natural frequencies were obtained. Results are documented.
White, Charles R; Haidekker, Mark A; Stevens, Hazel Y; Frangos, John A
2004-01-01
Hand–arm vibration syndrome is a vascular disease of occupational origin and a form of secondary Raynaud's phenomenon. Chronic exposure to hand-held vibrating tools may cause endothelial injury. This study investigates the biomechanical forces involved in the transduction of fluid vibration in the endothelium. Human endothelial cells were exposed to direct vibration and rapid low-volume fluid oscillation. Rapid low-volume fluid oscillation was used to simulate the effects of vibration by generating defined temporal gradients in fluid shear stress across an endothelial monolayer. Extracellular signal-regulated kinase (ERK1/2) phosphorylation and endothelin-1 (ET-1) release were monitored as specific biochemical markers for temporal gradients and endothelial response, respectively. Both vibrational methods were found to phosphorylate ERK1/2 in a similar pattern. At a fixed frequency of fluid oscillation where the duration of each pulse cycle remained constant, ERK1/2 phosphorylation increased with the increasing magnitude of the applied temporal gradient. However, when the frequency of flow oscillation was increased (thus decreasing the duration of each pulse cycle), ERK1/2 phosphorylation was attenuated across all temporal gradient flow profiles. Fluid oscillation significantly stimulated ET-1 release compared to steady flow, and endothelin-1 was also attenuated with the increase in oscillation frequency. Taken together, these results show that both the absolute magnitude of the temporal gradient and the frequency/duration of each pulse cycle play a role in the biomechanical transduction of fluid vibrational forces in endothelial cells. Furthermore, this study reports for the first time a link between the ERK1/2 signal transduction pathway and transmission of vibrational forces in the endothelium. PMID:14724194
Behavior of a Light Solid in a Rotating Horizontal Cylinder with Liquid Under Vibration
NASA Astrophysics Data System (ADS)
Karpunin, I. E.; Kozlova, A. N.; Kozlov, N. V.
2018-06-01
Dynamics of a cylindrical body in a rotating cavity is experimentally studied under transversal translational vibrations of the cavity rotation axis. Experiments are run at high rotation rate, when under the action of centrifugal force the body shifts to the rotation axis (the centrifuged state). In the absence of vibrations, the lagging rotation of the body is observed, due to the body radial shift from the axis of rotation caused by gravity. The body average rotation regime depends on the cavity rotation rate. The vibrations lead to the excitation of different regimes of body differential rotation (leading or lagging) associated with the excitation of its inertial oscillations. The dependence of the differential speed of the body rotation on the vibration frequency is investigated. The body dynamics has a complex character depending on the dimensionless vibration frequency. The analysis of body oscillation trajectory revealed that the body oscillatory motion consists of several modes, which contribute to the averaged dynamics of the body and the flows in the cavity.
Reliability of Vibrating Mesh Technology.
Gowda, Ashwin A; Cuccia, Ann D; Smaldone, Gerald C
2017-01-01
For delivery of inhaled aerosols, vibrating mesh systems are more efficient than jet nebulizers are and do not require added gas flow. We assessed the reliability of a vibrating mesh nebulizer (Aerogen Solo, Aerogen Ltd, Galway Ireland) suitable for use in mechanical ventilation. An initial observational study was performed with 6 nebulizers to determine run time and efficiency using normal saline and distilled water. Nebulizers were run until cessation of aerosol production was noted, with residual volume and run time recorded. Three controllers were used to assess the impact of the controller on nebulizer function. Following the observational study, a more detailed experimental protocol was performed using 20 nebulizers. For this analysis, 2 controllers were used, and time to cessation of aerosol production was noted. Gravimetric techniques were used to measure residual volume. Total nebulization time and residual volume were recorded. Failure was defined as premature cessation of aerosol production represented by residual volume of > 10% of the nebulizer charge. In the initial observational protocol, an unexpected sporadic failure rate was noted of 25% in 55 experimental runs. In the experimental protocol, a failure rate was noted of 30% in 40 experimental runs. Failed runs in the experimental protocol exhibited a wide range of retained volume averaging ± SD 36 ± 21.3% compared with 3.2 ± 1.5% (P = .001) in successful runs. Small but significant differences existed in nebulization time between controllers. Aerogen Solo nebulization was often randomly interrupted with a wide range of retained volumes. Copyright © 2017 by Daedalus Enterprises.
Molecular vibrational states during a collision
NASA Technical Reports Server (NTRS)
Recamier, Jose A.; Jauregui, Rocio
1995-01-01
Alternative algebraic techniques to approximate a given Hamiltonian by a harmonic oscillator are described both for time-independent and time-dependent systems. We apply them to the description of a one dimensional atom-diatom collision. From the resulting evolution operator, we evaluate vibrational transition probabilities as well as other time-dependent properties. As expected, the ground vibrational state becomes a squeezed state during the collision.
On the damping capacity of cast irons
NASA Astrophysics Data System (ADS)
Golovin, S. A.
2012-07-01
The treatment of experimental data on the amplitude-dependent internal friction (ADIF) in terms of various theoretical models has revealed a staged character and the main mechanisms of the processes of energy dissipation in graphite with increasing amplitude of vibrations upon cyclic loading. It is shown that the level of the damping capacity of lamellar cast iron depends on the relationship between the elastic and strength characteristics of graphite and the matrix phase. In cast irons with a rigid matrix structure (pearlite, martensite), the energy dissipation is determined by the volume fraction and morphology of the initial graphite phase. In cast irons with a softer metallic phase (ferrite), the contact interaction of graphite inclusions with the matrix and the properties of the matrix introduce additional sources of high damping.
Krajnak, Kristine; Miller, G R; Waugh, Stacey
2018-01-01
Repetitive exposure to hand-transmitted vibration is associated with development of peripheral vascular and sensorineural dysfunctions. These disorders and symptoms associated with it are referred to as hand-arm vibration syndrome (HAVS). Although the symptoms of the disorder have been well characterized, the etiology and contribution of various exposure factors to development of the dysfunctions are not well understood. Previous studies performed using a rat-tail model of vibration demonstrated that vascular and peripheral nervous system adverse effects of vibration are frequency-dependent, with vibration frequencies at or near the resonant frequency producing the most severe injury. However, in these investigations, the amplitude of the exposed tissue was greater than amplitude typically noted in human fingers. To determine how contact with vibrating source and amplitude of the biodynamic response of the tissue affects the risk of injury occurring, this study compared the influence of frequency using different levels of restraint to assess how maintaining contact of the tail with vibrating source affects the transmission of vibration. Data demonstrated that for the most part, increasing the contact of the tail with the platform by restraining it with additional straps resulted in an enhancement in transmission of vibration signal and elevation in factors associated with vascular and peripheral nerve injury. In addition, there were also frequency-dependent effects, with exposure at 250 Hz generating greater effects than vibration at 62.5 Hz. These observations are consistent with studies in humans demonstrating that greater contact and exposure to frequencies near the resonant frequency pose the highest risk for generating peripheral vascular and sensorineural dysfunction.
An adjoint method of sensitivity analysis for residual vibrations of structures subject to impacts
NASA Astrophysics Data System (ADS)
Yan, Kun; Cheng, Gengdong
2018-03-01
For structures subject to impact loads, the residual vibration reduction is more and more important as the machines become faster and lighter. An efficient sensitivity analysis of residual vibration with respect to structural or operational parameters is indispensable for using a gradient based optimization algorithm, which reduces the residual vibration in either active or passive way. In this paper, an integrated quadratic performance index is used as the measure of the residual vibration, since it globally measures the residual vibration response and its calculation can be simplified greatly with Lyapunov equation. Several sensitivity analysis approaches for performance index were developed based on the assumption that the initial excitations of residual vibration were given and independent of structural design. Since the resulting excitations by the impact load often depend on structural design, this paper aims to propose a new efficient sensitivity analysis method for residual vibration of structures subject to impacts to consider the dependence. The new method is developed by combining two existing methods and using adjoint variable approach. Three numerical examples are carried out and demonstrate the accuracy of the proposed method. The numerical results show that the dependence of initial excitations on structural design variables may strongly affects the accuracy of sensitivities.
Interfacial instabilities in vibrated fluids
NASA Astrophysics Data System (ADS)
Porter, Jeff; Laverón-Simavilla, Ana; Tinao Perez-Miravete, Ignacio; Fernandez Fraile, Jose Javier
2016-07-01
Vibrations induce a range of different interfacial phenomena in fluid systems depending on the frequency and orientation of the forcing. With gravity, (large) interfaces are approximately flat and there is a qualitative difference between vertical and horizontal forcing. Sufficient vertical forcing produces subharmonic standing waves (Faraday waves) that extend over the whole interface. Horizontal forcing can excite both localized and extended interfacial phenomena. The vibrating solid boundaries act as wavemakers to excite traveling waves (or sloshing modes at low frequencies) but they also drive evanescent bulk modes whose oscillatory pressure gradient can parametrically excite subharmonic surface waves like cross-waves. Depending on the magnitude of the damping and the aspect ratio of the container, these locally generated surfaces waves may interact in the interior resulting in temporal modulation and other complex dynamics. In the case where the interface separates two fluids of different density in, for example, a rectangular container, the mass transfer due to vertical motion near the endwalls requires a counterflow in the interior region that can lead to a Kelvin-Helmholtz type instability and a ``frozen wave" pattern. In microgravity, the dominance of surface forces favors non-flat equilibrium configurations and the distinction between vertical and horizontal applied forcing can be lost. Hysteresis and multiplicity of solutions are more common, especially in non-wetting systems where disconnected (partial) volumes of fluid can be established. Furthermore, the vibrational field contributes a dynamic pressure term that competes with surface tension to select the (time averaged) shape of the surface. These new (quasi-static) surface configurations, known as vibroequilibria, can differ substantially from the hydrostatic state. There is a tendency for the interface to orient perpendicular to the vibrational axis and, in some cases, a bulge or cavity is induced that leads to splitting (fluid separation). We investigate the interaction of these prominent interfacial instabilities in the absence of gravity, concentrating on harmonically vibrated rectangular containers of fluid. We compare vibroequilibria theory with direct numerical simulations and consider the effect of surfaces waves, which can excite sloshing motion of the vibroequilibria. We systematically investigate the saddle-node bifurcation experienced by a symmetric singly connected vibroequilibria solution, for sufficiently deep containers, as forcing is increased. Beyond this instability, the fluid rapidly separates into (at least) two distinct masses. Pronounced hysteresis is associated with this transition, even in the presence of gravity. The interaction of vibroequilibria and frozen waves is investigated in two-fluid systems. Preparations for a parabolic flight experiment on fluids vibrated at high frequencies are discussed.
NASA Astrophysics Data System (ADS)
Yang, Yanqiang; Zhu, Gangbei; Yan, Lin; Liu, Xiaosong; Yang's Ultrafast Spectroscopy Group Team
2017-06-01
Intramolecular vibrational energy redistribution (IVR) is important process in thermal decomposition, shock chemistry and photochemistry. Anti-Stokes Raman scattering is sensitive to the vibrational population in excited states because only vibrational excited states are responsible to the anti-Stokes Raman scattering, does not vibrational ground states. In this report, steady-state anti-Stokes Raman spectroscopy and broad band ultrafast coherent anti-Stokes Raman scattering (CARS) are performed. The steady-state anti-Stokes Raman spectroscopy shows temperature dependent of vibrational energy redistribution in vibrational excited-state molecule, and reveal that, in liquid nitrobenzene, with temperature increasing, vibrational energy is mainly redistributed in NO2 symmetric stretching mode, and phenyl ring stretching mode of νCC. For liquid nitromethane, it is found that, with temperature increasing, vibrational energy concentrate in CN stretching mode and methyl umbrella vibrational mode. In the broad band ultrafast CARS experiment, multiple vibrational modes are coherently excited to vibrational excited states, and the time-frequency resolved CARS spectra show the coincident IVR processes. This work is supported by the National Natural Science Foundation of China (Grant Numbers 21673211 and 11372053), and the Science Challenging Program (Grant Number JCKY2016212A501).
Screening Efficiency Analysis of Vibrosieves with the Circular Vibrations
NASA Astrophysics Data System (ADS)
Djoković, Jelena M.; Tanikić, Dejan I.; Nikolić, Ružica R.; Kalinović, Saša M.
2017-06-01
The analysis of influence of factors that depend on construction characteristics of the vibrosieves with circular vibrations on screening efficiency is presented in this paper. The dependence of the screening efficiency on the aperture size, length and inclination of the screen, as well as on vibration amplitude, is considered. Based on obtained results, one can see that the screening efficiency increases with vibration amplitude and the screen length increase. Further, increases of the screen inclination and aperture size are causing an initial increase of the screening efficiency, which is later decreasing.
Rotational-vibrational coupling in the theory of electron-molecule scattering
NASA Technical Reports Server (NTRS)
Temkin, A.; Sullivan, E. C.
1974-01-01
The adiabatic-nuclei approximation of vibrational-rotational excitation of homonuclear diatomic molecules can be simply augmented to describe the vibrational-rotational coupling by including the dependence of the vibrational wave function on j. Appropriate formulas are given, and the theory, is applied to e-H2 excitation, whereby it is shown that deviations from the simple Born-Oppenheimer approximation measured by Wong and Schultz can be explained. More important, it can be seen that the inclusion of the j-dependent centrifugal term is essential for transitions involving high-rotational quantum numbers.
Identification of the optically active vibrational modes in the photoluminescence of MEH-PPV films
NASA Astrophysics Data System (ADS)
da Silva, M. A. T.; Dias, I. F. L.; Duarte, J. L.; Laureto, E.; Silvestre, I.; Cury, L. A.; Guimara~Es, P. S. S.
2008-03-01
The temperature dependence of the photoluminescence properties of a thin film of poly[2-methoxy-5-(2'-ethylhexyloxy)-p-phenylene-vinylene], MEH-PPV, fabricated by spin coating, is analyzed. The evolution with temperature of the peak energy of the purely electronic transition, of the first vibronic band, of the effective conjugation length, and of the Huang-Rhys factors are discussed. The asymmetric character of the pure electronic transition peak and the contribution of the individual vibrational modes to the first vibronic band line shape are considered by a model developed by Cury et al. [J. Chem. Phys. 121, 3836 (2004)]. The temperature dependence of the Huang-Rhys factors of the main vibrational modes pertaining to the first vibronic band allows us to identify two competing vibrational modes. These results show that the electron coupling to different vibrational modes depends on temperature via reduction of thermal disorder.
The Shock and Vibration Digest. Volume 15, Number 9
1983-09-01
of Exciting Energy Supply E. Marui , S. Ema, and S. Kato Gifu Univ., 1-1 Yanagido, Gifu-shi, 501-11, Japan, J. Engrg. Indus., Trans. ASME, 105 (2), pp...Vibration of Lathe Tools. Part 1: General Modal Methods in Continuous Bridge Deck Statics * Characteristics of Chatter Vibration A.G. Zechini E. Marui , S...1758 Pombo, J.L ............. 1901 Kato, S........... 1711, 1712 Mark, W.D.............. 1702 Popov, M.M.. 1859 * Kaufman, A ............. 1769 Marui , E
The Shock and Vibration Digest. Volume 14, Number 1, January 1982
1982-01-01
vibration, ity of the examples in those days. Morris and Head non4inear vibration, acoustics , and modeling and [45] discusses the ’escalator’ method which...with modeling and acoustic emission view on the testing techniques, philosophies, and monitoring. This session also contained several relationship of... Modelling R.K. Jeyapalan and NA. Halliwell Inst. Sound Vib. Res., Univ. of Southampton, South- ampton, UK, Appl. Acoust .. 1A (5), pp 361-376 (Sept
Shock and Vibration Symposium (59th) Held in Albuquerque, New Mexico on 18-20 October 1988. Volume 3
1988-10-01
N. F. Rieger Statistical Energy Analysis : An Overview of Its Development and Engineering Applications J. E. Manning DATA BASES DOE/DOD Environmental...Vibroacoustic Response Using the Finite Element Method and Statistical Energy Analysis F. L. Gloyna Study of Helium Effect on Spacecraft Random Vibration...Analysis S. A. Wilkerson vi DYNAMIC ANALYSIS Modeling of Vibration Transmission in a Damped Beam Structure Using Statistical Energy Analysis S. S
Transcriptional Pathways Altered in Response to Vibration in a Model of Hand-Arm Vibration Syndrome.
Waugh, Stacey; Kashon, Michael L; Li, Shengqiao; Miller, Gerome R; Johnson, Claud; Krajnak, Kristine
2016-04-01
The aim of this study was to use an established model of vibration-induced injury to assess frequency-dependent changes in transcript expression in skin, artery, and nerve tissues. Transcript expression in tissues from control and vibration-exposed rats (4 h/day for 10 days at 62.5, 125, or 250 Hz; 49 m/s, rms) was measured. Transcripts affected by vibration were used in bioinformatics analyses to identify molecular- and disease-related pathways associated with exposure to vibration. Analyses revealed that cancer-related pathways showed frequency-dependent changes in activation or inhibition. Most notably, the breast-related cancer-1 pathway was affected. Other pathways associated with breast cancer type 1 susceptibility protein related signaling, or associated with cancer and cell cycle/cell survivability were also affected. Occupational exposure to vibration may result in DNA damage and alterations in cell signaling pathways that have significant effects on cellular division.
Nonlinear dynamic model for magnetically-tunable Galfenol vibration absorbers
NASA Astrophysics Data System (ADS)
Scheidler, Justin J.; Dapino, Marcelo J.
2013-03-01
This paper presents a single degree of freedom model for the nonlinear vibration of a metal-matrix composite manufactured by ultrasonic additive manufacturing that contains seamlessly embedded magnetostrictive Galfenol alloys (FeGa). The model is valid under arbitrary stress and magnetic field. Changes in the composite's natural frequency are quantified to assess its performance as a semi-active vibration absorber. The effects of Galfenol volume fraction and location within the composite on natural frequency are quantified. The bandwidth over which the composite's natural frequency can be tuned with a bias magnetic field is studied for varying displacement excitation amplitudes. The natural frequency is tunable for all excitation amplitudes considered, but the maximum tunability occurs below an excitation amplitude threshold of 1 × 10-6 m for the composite geometry considered. Natural frequency shifts between 6% and 50% are found as the Galfenol volume fraction varies from 25% to 100% when Galfenol is located at the composite neutral axis. At a modest 25% Galfenol by volume, the model shows that up to 15% shifts in composite resonance are possible through magnetic bias field modulation if Galfenol is embedded away from the composite midplane. As the Galfenol volume fraction and distance between Galfenol and composite midplane are increased, linear and quadratic increases in tunability result, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kearney, Steven; Shu, Deming
A vibration survey of the APS experiment hall floor was conducted. It was found that beamlines 10-20 have particularly low levels of vibration when compared to the rest of the facility. The vibration spectrum for each beamline floor can be found in the appendix. Throughout the majority of the 5-100 Hz vibration spectrum beamlines at the APS fall below the most stringent NEST vibration criteria. Lastly, it was concluded that the magnitude of vibrations at a particular beamline is largely dependent upon the magnitude of vibrations present at the nearby mezzanine support column.
Dias, Thaisa; Polito, Marcos
2015-01-01
This study aimed to compare the acute cardiovascular responses during and after resistance exercise with and without whole-body vibration. Nineteen sedentary adults randomly performed one session of isometric squats without vibration and the same exercise with vibration. Systolic (SBP) and diastolic blood pressure (DBP), heart rate (HR), stroke volume (SV), cardiac output (CO) and systemic vascular resistance (SVR) were measured. SBP, DBP and HR were also measured for 20 min after the sessions. The exercise with vibration demonstrated significant values (P < 0.05) for SBP (second to sixth sets), DBP (third to sixth sets) and SVR (second to sixth sets) compared with the exercise without vibration. After the sessions, the values of SBP for both exercises were significantly lower than the respective resting values; with no difference between the sessions. In conclusion, exercise with vibration caused increases in SBP, DBP and SVR compared with exercise with no vibration in sedentary adults.
Piezoelectric pushers for active vibration control of rotating machinery
NASA Technical Reports Server (NTRS)
Palazzolo, Alan B.; Kascak, Albert F.
1988-01-01
The active control of rotordynamic vibrations and stability by magnetic bearings and electromagnetic shakers have been discussed extensively in the literature. These devices, though effective, are usually large in volume and add significant weight to the stator. The use of piezoelectric pushers may provide similar degrees of effectiveness in light, compact packages. Tests are currently being conducted with piezoelectric pusher-based active vibration control. Results from tests performed on NASA test rigs as preliminary verification of the related theory are presented.
Piezoelectric pushers for active vibration control of rotating machinery
NASA Technical Reports Server (NTRS)
Palazzolo, A. B.; Lin, R. R.; Alexander, R. M.; Kascak, A. F.; Montague, J.
1989-01-01
The active control of rotordynamic vibrations and stability by magnetic bearings and electromagnetic shakers have been discussed extensively in the literature. These devices, though effective, are usually large in volume and add significant weight to the stator. The use of piezoelectric pushers may provide similar degrees of effectiveness in light, compact packages. Tests are currently being conducted with piezoelectric pusher-based active vibration control. Results from tests performed on NASA test rigs as preliminary verification of the related theory are presented.
Vibration Control in Rotating Machinery Using Variable Dynamic Stiffness Squeeze-Films. Volume 1.
1986-03-01
in Gunter’s work (13). The dynamics of a simple single mass rotor rigid shaft with squeeze film supported rolling element bearings was analysed using... Dynamics of a Rigid Rotor Supprted on Squeeze Film Bearings. Inst Mech Engrs Conf on Vibrations of Rotating Systems 1972, pp 213- 229. 23. Mohan, S., Hahn, E...Continue on reverse if necessary and identify by block number) FIELD GROUP SUB-GROUP Bearing, Squeeze Film, Vibration, Rotors 19. ABSTRACT (Continue on
1982-05-01
ALED FIELD 1| 12 1i 21 24 27 VEHICLE SPEED - MPH IE PROBABILITY DITRleUTiO OF VEICLE / i I l~~ILAGE AND TOMI / SUMMARY: S K1k HAND-SURFACID ROADS...Seals: Analysis for Rotordynamic Coefficients." Symposium volume, 6. H. F. Black and 0. N. Jenssen, "Dynamic Fluid/Structure Interactions in Hybrid
The Shock and Vibration Digest. Volume 12, Number 3.
1980-03-01
this problem by Mallik to design the fuselage so that it acts as a band pass and M-d [211. Two :.ipes of support were con- filter, filtering out the...370-373 (1975). 237-245 (1975). 11. Harari, A., "Wave Propagation in Cylindrical 21. Mallik , A.K. and Mead, D.J., "Free Vibration Shells with Finite...1183 (1973). 29 _ _ 23. Singh, K. and Mallik , A.K., "Wave Propagation sure Fields," J. Sound Vib., 28 (2), pp 247- and Vibration Response of a
Shock and Vibration Symposium (59th) Held in Albuquerque, New Mexico on 18-20 October 1988. Volume 2
1988-10-01
030 in. Thick V-45 Rubber Shear Ply Aluminum Coated Steel Snap- FM-73 Film NAS 6703 Bolts ring 7 Polar Layers - M7885/4 Rivets 76 Required 11.5 Deg...Feedback Q. Zhang, S. Shelley 1. N. Lou and R. J. Allemang Relating Material Properties and Wave Effects in Vibration Isolators M. C. Reid, S. 0...Load-Deflection Characteristics of Rubber Element for Vibration Control Devices E. I. Rivin and B. S. Lee Vi ______ _____________ AIRBLAST Envelope
Integrated aeroelastic vibrator for fluid mixing in open microwells
NASA Astrophysics Data System (ADS)
Xia, H. M.; Jin, X.; Zhang, Y. Y.; Wu, J. W.; Zhang, J.; Wang, Z. P.
2018-01-01
Fluid mixing in micro-wells/chambers is required in a variety of biological and biochemical processes. However, mixing fluids of small volumes is usually difficult due to increased viscous effects. In this study, we propose a new method for mixing enhancement in microliter-scale open wells. A thin elastic diaphragm is used to seal the bottom of the mixing microwell, underneath which an air chamber connects an aeroelastic vibrator. Driven by an air flow, the vibrator produces self-excited vibrations and causes pressure oscillations in the air chamber. Then the elastic diaphragm is actuated to mix the fluids in the microwell. Two designs that respectively have one single well and 2 × 2 wells were prototyped. Testing results show that for liquids with a volume ranging from 10-60 µl and viscosity ranging from 1-5 cP, complete mixing can be obtained within 5-20 s. Furthermore, the device is operable with an air micropump, and hence facilitating the miniaturization and integration of lab-on-a-chip and microbioreactor systems.
Vibration-based monitoring and diagnostics using compressive sensing
NASA Astrophysics Data System (ADS)
Ganesan, Vaahini; Das, Tuhin; Rahnavard, Nazanin; Kauffman, Jeffrey L.
2017-04-01
Vibration data from mechanical systems carry important information that is useful for characterization and diagnosis. Standard approaches rely on continually streaming data at a fixed sampling frequency. For applications involving continuous monitoring, such as Structural Health Monitoring (SHM), such approaches result in high volume data and rely on sensors being powered for prolonged durations. Furthermore, for spatial resolution, structures are instrumented with a large array of sensors. This paper shows that both volume of data and number of sensors can be reduced significantly by applying Compressive Sensing (CS) in vibration monitoring applications. The reduction is achieved by using random sampling and capitalizing on the sparsity of vibration signals in the frequency domain. Preliminary experimental results validating CS-based frequency recovery are also provided. By exploiting the sparsity of mode shapes, CS can also enable efficient spatial reconstruction using fewer spatially distributed sensors. CS can thereby reduce the cost and power requirement of sensing as well as streamline data storage and processing in monitoring applications. In well-instrumented structures, CS can enable continued monitoring in case of sensor or computational failures.
Optimal Sensor Allocation for Fault Detection and Isolation
NASA Technical Reports Server (NTRS)
Azam, Mohammad; Pattipati, Krishna; Patterson-Hine, Ann
2004-01-01
Automatic fault diagnostic schemes rely on various types of sensors (e.g., temperature, pressure, vibration, etc) to measure the system parameters. Efficacy of a diagnostic scheme is largely dependent on the amount and quality of information available from these sensors. The reliability of sensors, as well as the weight, volume, power, and cost constraints, often makes it impractical to monitor a large number of system parameters. An optimized sensor allocation that maximizes the fault diagnosibility, subject to specified weight, volume, power, and cost constraints is required. Use of optimal sensor allocation strategies during the design phase can ensure better diagnostics at a reduced cost for a system incorporating a high degree of built-in testing. In this paper, we propose an approach that employs multiple fault diagnosis (MFD) and optimization techniques for optimal sensor placement for fault detection and isolation (FDI) in complex systems. Keywords: sensor allocation, multiple fault diagnosis, Lagrangian relaxation, approximate belief revision, multidimensional knapsack problem.
Powering a leadless pacemaker using a PiezoMEMS energy harvester
NASA Astrophysics Data System (ADS)
Jackson, Nathan; Olszewski, Oskar; O'Murchu, Cian; Mathewson, Alan
2017-06-01
MEMS based vibrational energy harvesting devices have been a highly researched topic over the past decade. The application targeted in this paper focuses on a leadless pacemaker that will be implanted in the right ventricle of the heart. A leadless pacemaker requires the same functionality as a normal pacemaker, but with significantly reduced volume. The reduced volume limits the space for a battery; therefore an energy harvesting device is required. This paper compares varying the dimensions of a linear MEMS based piezoelectric energy harvester that can harvest energy from the mechanical vibrations of the heart due to shock induced vibration. Typical MEMS linear energy harvesting devices operate at high frequency (<50 Hz) with low acceleration (< 1g). The force generated from the heart acts as a series of impulses as opposed to traditional sinusoidal vibration force with high acceleration (1-4 g). Therefore the design of a MEMS harvester that is based on shock-induced vibration is necessary. PiezoMEMS energy harvesting devices consisting of a silicon substrate and mass with aluminium nitride piezoelectric material were developed and characterized using acceleration forces that mimic the heartbeat. Peak powers of up to 25μW were obtained at 1 g acceleration with a powder density of approximately 1.5 mW cm-3.
NASA Astrophysics Data System (ADS)
Xie, Fei; Tang, Jinyuan; Wang, Ailun; Shuai, Cijun; Wang, Qingshan
2018-05-01
In this paper, a unified solution for vibration analysis of the functionally graded carbon nanotube reinforced composite (FG-CNTRC) cylindrical panels with general elastic supports is carried out via using the Ritz method. The excellent accuracy and reliability of the present method are compared with the results of the classical boundary cases found in the literature. New results are given for vibration characteristics of FG-CNTRC cylindrical panels with various boundary conditions. The effects of the elastic restraint parameters, thickness, subtended angle and volume fraction of carbon nanotubes on the free vibration characteristic of the cylindrical panels are also reported.
Pasqualini, Marion; Lavet, Cédric; Elbadaoui, Mohamed; Vanden-Bossche, Arnaud; Laroche, Norbert; Gnyubkin, Vasily; Vico, Laurence
2013-07-01
Whole body vibration (WBV) is receiving increasing interest as an anti-osteoporotic prevention strategy. In this context, selective effects of different frequency and acceleration magnitude modalities on musculoskeletal responses need to be better defined. Our aim was to investigate the bone effects of different vibration frequencies at constant g level. Vertical WBV was delivered at 0.7 g (peak acceleration) and 8, 52 or 90 Hz sinusoidal vibration to mature male rats 10 min daily for 5 days/week for 4 weeks. Peak accelerations measured by skin or bone-mounted accelerometers at L2 vertebral and tibia crest levels revealed similar values between adjacent skin and bone sites. Local accelerations were greater at 8 Hz compared with 52 and 90 Hz and were greater in vertebra than tibia for all the frequencies tested. At 52 Hz, bone responses were mainly seen in L2 vertebral body and were characterized by trabecular reorganization and stimulated mineral apposition rate (MAR) without any bone volume alteration. At 90 Hz, axial and appendicular skeletons were affected as were the cortical and trabecular compartments. Cortical thickness increased in femur diaphysis (17%) along with decreased porosity; trabecular bone volume increased at distal femur metaphysis (23%) and even more at L2 vertebral body (32%), along with decreased SMI and increased trabecular connectivity. Trabecular thickness increased at the tibia proximal metaphysis. Bone cellular activities indicated a greater bone formation rate, which was more pronounced at vertebra (300%) than at long bone (33%). Active bone resorption surfaces were unaffected. At 8 Hz, however, hyperosteoidosis with reduced MAR along with increased resorption surfaces occurred in the tibia; hyperosteoidosis and trend towards decreased MAR was also seen in L2 vertebra. Trabecular bone mineral density was decreased at femur and tibia. Thus the most favorable regimen is 90 Hz, while deleterious effects were seen at 8 Hz. We concluded that the skeleton is frequency-scalable, thus highlighting the importance of WBV regimen conditions and suggesting that cautions are required for frequencies less than 10 Hz, at least in rats. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Dekterev, D.; Maslennikova, A.; Abramov, A.
2017-09-01
The operation modes of the hydraulic power plant water turbine with the formation of a precessing vortex core were studied on the hydrodynamic set-up with the model of hydraulic unit. The dependence of low-frequency vibrations on flow pressure pulsations in the hydraulic unit was established. The results of the air injection effect on the vibrational parameters of the hydrodynamic set-up were presented.
understanding the structure-dependent vibrational properties and reorientational behavior of different alkali Sad, Serbia Featured Publications M. Dimitrievska et al., "Structure-dependent vibrational : Structure and luminescence," J. Phys. Chem. C 120(33), 18887-18894 (2016). DOI: http://dx.doi.org
Transcriptional Pathways Altered in Response to Vibration in a Model of Hand-Arm Vibration Syndrome
Waugh, Stacey; Kashon, Michael L.; Li, Shengqiao; Miller, Gerome R.; Johnson, Claud; Krajnak, Kristine
2016-01-01
Objective The aim of this study was to use an established model of vibration-induced injury to assess frequency-dependent changes in transcript expression in skin, artery, and nerve tissues. Methods Transcript expression in tissues from control and vibration-exposed rats (4 h/day for 10 days at 62.5, 125, or 250 Hz; 49 m/s2, rms) was measured. Transcripts affected by vibration were used in bioinformatics analyses to identify molecular- and disease-related pathways associated with exposure to vibration. Results Analyses revealed that cancer-related pathways showed frequency-dependent changes in activation or inhibition. Most notably, the breast-related cancer-1 pathway was affected. Other pathways associated with breast cancer type 1 susceptibility protein related signaling, or associated with cancer and cell cycle/cell survivability were also affected. Conclusion Occupational exposure to vibration may result in DNA damage and alterations in cell signaling pathways that have significant effects on cellular division. PMID:27058473
Simulation of vibrational dephasing of I(2) in solid Kr using the semiclassical Liouville method.
Riga, Jeanne M; Fredj, Erick; Martens, Craig C
2006-02-14
In this paper, we present simulations of the decay of quantum coherence between vibrational states of I(2) in its ground (X) electronic state embedded in a cryogenic Kr matrix. We employ a numerical method based on the semiclassical limit of the quantum Liouville equation, which allows the simulation of the evolution and decay of quantum vibrational coherence using classical trajectories and ensemble averaging. The vibrational level-dependent interaction of the I(2)(X) oscillator with the rare-gas environment is modeled using a recently developed method for constructing state-dependent many-body potentials for quantum vibrations in a many-body classical environment [J. M. Riga, E. Fredj, and C. C. Martens, J. Chem. Phys. 122, 174107 (2005)]. The vibrational dephasing rates gamma(0n) for coherences prepared between the ground vibrational state mid R:0 and excited vibrational state mid R:n are calculated as a function of n and lattice temperature T. Excellent agreement with recent experiments performed by Karavitis et al. [Phys. Chem. Chem. Phys. 7, 791 (2005)] is obtained.
Characterization of Frequency-Dependent Responses of the Vascular System to Repetitive Vibration
Krajnak, Kristine; Miller, G. Roger; Waugh, Stacey; Johnson, Claud; Kashon, Michael L.
2015-01-01
Objective Occupational exposure to hand-transmitted vibration can result in damage to nerves and sensory loss. The goal of this study was to assess the frequency-dependent effects of repeated bouts of vibration on sensory nerve function and associated changes in nerves. Methods The tails of rats were exposed to vibration at 62.5, 125, or 250 Hz (constant acceleration of 49m/s2) for 10 days. The effects on sensory nerve function, nerve morphology, and transcript expression in ventral tail nerves were measured. Results Vibration at all frequencies had effects on nerve function and physiology. However, the effects tended to be more prominent with exposure at 250 Hz. Conclusion Exposure to vibration has detrimental effects on sensory nerve function and physiology. However, many of these changes are more prominent at 250-Hz exposure than at lower frequencies. PMID:22785326
Non-contact defect diagnostics in Cz-Si wafers using resonance ultrasonic vibrations
NASA Astrophysics Data System (ADS)
Belyaev, A.; Kochelap, V. A.; Tarasov, I.; Ostapenko, S.
2001-01-01
A new resonance effect of generation of sub-harmonic acoustic vibrations was applied to characterize defects in as-grown and processed Cz-Si wafers. Ultrasonic vibrations were generated into standard 8″ wafers using an external ultrasonic transducer and their amplitude recorded in a non-contact mode using a scanning acoustic probe. By tuning the frequency, f, of the transducer we observed generation of intense sub-harmonic acoustic mode ("whistle" or w-mode) with f/2 frequency. The characteristics of the w-mode-amplitude dependence, frequency scans, spatial distribution allow a clear distinction versus harmonic vibrations of the same wafer. The origin of sub-harmonic vibrations observed on 8″ Cz-Si wafers is attributed to a parametric resonance of flexural vibrations in thin silicon circular plates. We present evidence that "whistle" effect shows a strong dependence on the wafer's growth and processing history and can be used for quality assurance purposes.
EFFECTOF ISOLATION WALL USING SCRAP TIRE ON GROUND VIBRATION REDUCTION
NASA Astrophysics Data System (ADS)
Kashimoto, Takahiko; Kashimoto, Yusuke; Hayakawa, Kiyoshi; Matsui, Tamotsu; Fujimoto, Hiroaki
Some countermeasure methods against the environmental ground vibration caused by some traffic vibrations have been proposed so far. The authors have developed a new type ground vibration isolation wall using scrap tire, and evaluated its effectiveness on the ground vibration reduction by full scale field tests. In this paper, the authors discussed and examined the effectiveness of the developed countermeasure method by two field tests. The one concerns on the effect of scrap tire as soft material of vibration isolation wall, and the other on the effect of the developed countermeasure method practically applied in a residential area close to monorail traffic. As the results, it was elucidated that the ground vibration of 2-3 dB was reduced in case of two times volume of the soft material, the conversion ratio of the vibration energy of the soft material to the kinetic energy was higher than that of the core material of PHC pile, the vibration acceleration of 0.19 - 1.26 gal was reduced by the developed countermeasure method in case of the monorail traffic, and the vibration reduction measured behind the isolation wall agreed well with the proposed theoretical value, together with confirming the effectiveness of the ground vibration isolation wall using scrap tire as the countermeasure method against the environmental ground vibration.
Near-field infrared vibrational dynamics and tip-enhanced decoherence.
Xu, Xiaoji G; Raschke, Markus B
2013-04-10
Ultrafast infrared spectroscopy can reveal the dynamics of vibrational excitations in matter. In its conventional far-field implementation, however, it provides only limited insight into nanoscale sample volumes due to insufficient spatial resolution and sensitivity. Here, we combine scattering-scanning near-field optical microscopy (s-SNOM) with femtosecond infrared vibrational spectroscopy to characterize the coherent vibrational dynamics of a nanoscopic ensemble of C-F vibrational oscillators of polytetrafluoroethylene (PTFE). The near-field mode transfer between the induced vibrational molecular coherence and the metallic scanning probe tip gives rise to a tip-mediated radiative IR emission of the vibrational free-induction decay (FID). By increasing the tip–sample coupling, we can enhance the vibrational dephasing of the induced coherent vibrational polarization and associated IR emission, with dephasing times up to T2(NF) is approximately equal to 370 fs in competition against the intrinsic far-field lifetime of T2(FF) is approximately equal to 680 fs as dominated by nonradiative damping. Near-field antenna-coupling thus provides for a new way to modify vibrational decoherence. This approach of ultrafast s-SNOM enables the investigation of spatiotemporal dynamics and correlations with nanometer spatial and femtosecond temporal resolution.
Adsorbate hopping via vibrational-mode coupling induced by femtosecond laser pulses
NASA Astrophysics Data System (ADS)
Ueba, H.; Hayashi, M.; Paulsson, M.; Persson, B. N. J.
2008-09-01
We study the heat transfer from femtosecond laser-heated hot electrons in a metal to adsorbates in the presence of vibrational-mode coupling. The theory is successfully applied to the experimental result of atomic oxygen hopping on a vicinal Pt(111) surface. The effective friction coupling between hot electrons and the vibrational mode relevant to the hopping motion depends on the transient temperature of the partner mode excited by hot electrons. The calculated two-pulse correlation and fluence dependence of the hopping probability reproduce the experimental results, which were previously analyzed using the hot-electron temperature (Te) -dependent friction ηa(Te) in a conventional heat transfer equation. A possible elementary process behind such a hypothetic modeling using ηa(Te) is discussed in terms of an indirect heating of the vibrational mode for hopping at the surface.
Floyd, Lisa M.; Holmes, Taylor C.; Dean, Jesse C.
2013-01-01
Tendon vibration can alter proprioceptive feedback, one source of sensory information which humans can use to produce accurate movements. However, the effects of tendon vibration during functional movement vary depending on the task. For example, ankle tendon vibration has considerably smaller effects during walking than standing posture. The purpose of this study was to test whether the effects of ankle tendon vibration are predictably influenced by the mechanical demands of a task, as quantified by peak velocity. Twelve participants performed symmetric, cyclical ankle plantarflexion/dorsiflexion movements while lying prone with their ankle motion unconstrained. The prescribed movement period (1s, 3s) and peak-to-peak amplitude (10°, 15°, 20°) were varied across trials; shorter movement periods or larger amplitudes increased the peak velocity. In some trials, vibration was continuously and simultaneously applied to the right ankle plantarflexor and dorsiflexor tendons, while the left ankle tendons were never vibrated. The vibration frequency (40, 80, 120, 160 Hz) was varied across trials. During trials without vibration, participants accurately matched the movement of their ankles. The application of 80 Hz vibration to the right ankle tendons significantly reduced the amplitude of right ankle movement. However, the effect of vibration was smaller during more mechanically demanding (i.e. higher peak velocity) movements. Higher vibration frequencies had larger effects on movement accuracy, possibly due to parallel increases in vibration amplitude. These results demonstrate that the effects of ankle tendon vibration are dependent on the mechanical demand of the task being performed, but cannot definitively identify the underlying physiological mechanism. PMID:24136344
NASA Astrophysics Data System (ADS)
Wei, Kai; Wang, Feng; Wang, Ping; Liu, Zi-xuan; Zhang, Pan
2017-03-01
The soft under baseplate pad of WJ-8 rail fastener frequently used in China's high-speed railways was taken as the study subject, and a laboratory test was performed to measure its temperature and frequency-dependent dynamic performance at 0.3 Hz and at -60°C to 20°C with intervals of 2.5°C. Its higher frequency-dependent results at different temperatures were then further predicted based on the time-temperature superposition (TTS) and Williams-Landel-Ferry (WLF) formula. The fractional derivative Kelvin-Voigt (FDKV) model was used to represent the temperature- and frequency-dependent dynamic properties of the tested rail pad. By means of the FDKV model for rail pads and vehicle-track coupled dynamic theory, high-speed vehicle-track coupled vibrations due to temperature- and frequency-dependent dynamic properties of rail pads was investigated. Finally, further combining with the measured frequency-dependent dynamic performance of vehicle's rubber primary suspension, the high-speed vehicle-track coupled vibration responses were discussed. It is found that the storage stiffness and loss factor of the tested rail pad are sensitive to low temperatures or high frequencies. The proposed FDKV model for the frequency-dependent storage stiffness and loss factors of the tested rail pad can basically meet the fitting precision, especially at ordinary temperatures. The numerical simulation results indicate that the vertical vibration levels of high-speed vehicle-track coupled systems calculated with the FDKV model for rail pads in time domain are higher than those calculated with the ordinary Kelvin-Voigt (KV) model for rail pads. Additionally, the temperature- and frequency-dependent dynamic properties of the tested rail pads would alter the vertical vibration acceleration levels (VALs) of the car body and bogie in 1/3 octave frequencies above 31.5 Hz, especially enlarge the vertical VALs of the wheel set and rail in 1/3 octave frequencies of 31.5-100 Hz and above 315 Hz, which are the dominant frequencies of ground vibration acceleration and rolling noise (or bridge noise) caused by high-speed railways respectively. Since the fractional derivative value of the adopted rubber primary suspension, unlike the tested rail pad, is very close to 1, its frequency-dependent dynamic performance has little effect on high-speed vehicle-track coupled vibration responses.
NASA Astrophysics Data System (ADS)
Apollonov, V. V.; Baĭtsur, G. G.; Ermachenko, A. V.; Raspopov, N. A.; Sviridenkov, É. A.; Semenov, S. K.; Firsov, K. N.
1989-02-01
Intracavity laser spectroscopy was used to study the dynamics of population of the ν = 2-8 vibrational levels of the A3∑u+ state in order to establish the possible influence of multistage ionization on the evolution of instability in a self-sustained volume discharge in CO2 laser active mixtures. The populations of the nitrogen vibrational levels Nν were calculated taking into account the real output pulse profile of a dye laser. It was found that multistage ionization can only influence the duration of stable operation of a self-sustained volume discharge by increasing the rate of growth of the spark channel in the discharge gap. This is why the addition of readily ionized substances to the gas that reduce the electron energy and therefore lower Nν can substantially improve the stability of the volume discharge and increase the active volume and output energy of a CO2 laser.
The Shock and Vibration Digest. Volume 16, Number 5
1984-05-01
Lu, Y.P. and Everstine, G.C., "More on Finite Element Modelling of Damped Composite 45. Narayanan, S., Verma, J.P., and Mallik , A.K., Systems," J...78-78-FBA, p 461 (1978). 46. Narayanan, S. and Mallik , A.K., "Free Vibrations of Thin Walled Open Section Beams with Con- 34. Lunden, R., "Damping of
Proceedings of Damping 1993, volume 3
NASA Astrophysics Data System (ADS)
Portis, Bonnie L.
1993-06-01
Presented are individual papers of Damping '93, held 24-26 February 1993 in San Francisco. The subjects included: passive damping concepts; passive damping analysis and design techniques; optimization; damped control/structure interaction; viscoelastic material testing and characterization; highly damped materials; vibration suppression techniques; damping identification and dynamic testing; applications to aircraft; space structures; Marine structures; and commercial products; defense applications; and payoffs of vibration suppression.
Proceedings of Damping 1993, volume 1
NASA Astrophysics Data System (ADS)
Portis, Bonnie L.
1993-06-01
Presented are individual papers of Damping '93 held 24-26 February, 1993, in San Francisco. The subjects included: passive damping concepts; passive damping analysis and design techniques; optimization; damped control/structure interaction; viscoelastic material testing and characterization; highly damped materials; vibration suppression techniques; damping identification and dynamic testing; application to aircraft; space structures; marine structures; commercial products; defense applications; and payoffs of vibration suppression.
NASA Astrophysics Data System (ADS)
Vorozhtsov, S.; Kudryashova, O.; Promakhov, V.; Dammer, V.; Vorozhtsov, A.
2016-12-01
It is known that the use of external effects, such as acoustic fields (from ultrasonic to low-frequency range), help in breaking down agglomerates, improving particle wettability, providing uniform particle distribution in the melt volume, and reducing the grain size. The fragmentation of growing crystals, de-agglomeration of particles and their mixing in liquid metal under the influence of vibration (with frequencies of 10-100 Hz) are considered in this paper. The major advantage of such a technique in comparison with high-frequency methods (sonic, ultrasonic) is the capability of processing large melt volumes proportional to the wavelength. The mechanisms of the breaking down of particle agglomerates and the mixing of particles under conditions of cavitation and turbulence during the vibration treatment of the melt are considered. Expressions linking the threshold intensity and frequency with the amplitude necessary to activate mechanisms of turbulence and cavitation were obtained. The results of vibration treatment experiments for an aluminum alloy containing diamond nanoparticles are given. This treatment makes it possible to significantly reduce the grain size and to improve the casting homogeneity and thus improve the mechanical properties of the alloy.
On the nature of the excess heat capacity of mixing
NASA Astrophysics Data System (ADS)
Benisek, Artur; Dachs, Edgar
2011-03-01
The excess vibrational entropy (Δ S {vib/ex}) of several silicate solid solutions are found to be linearly correlated with the differences in end-member volumes (Δ V i ) and end-member bulk moduli (Δκ i ). If a substitution produces both, larger and elastically stiffer polyhedra, then the substituted ion will find itself in a strong enlarged structure. The frequency of its vibration is decreased because of the increase in bond lengths. Lowering of frequencies produces larger heat capacities, which give rise to positive excess vibrational entropies. If a substitution produces larger but elastically softer polyhedra, then increase and decrease of mean bond lengths may be similar in magnitude and their effect on the vibrational entropy tends to be compensated. The empirical relationship between Δ S {vib/ex}, Δ V i and Δκ i , as described by Δ S {vib/ex} = (Δ V i + mΔκ i ) f, was calibrated on six silicate solid solutions (analbite-sanidine, pyrope-grossular, forsterite-fayalite, analbite-anorthite, anorthite-sanidine, CaTs-diopside) yielding m = 0.0246 and f = 2.926. It allows the prediction of Δ S {vib/ex} behaviour of a solid solution based on its volume and bulk moduli end-member data.
Vibrational energy transfer between carbon nanotubes and liquid water: a molecular dynamics study.
Nelson, Tammie R; Chaban, Vitaly V; Kalugin, Oleg N; Prezhdo, Oleg V
2010-04-08
The rates and magnitudes of vibrational energy transfer between single-wall carbon nanotubes (CNTs) and water are investigated by classical molecular dynamics. The interactions between the CNT and solvent confined inside of the tube, the CNT and solvent surrounding the tube, as well as the solvent inside and outside of the tube are considered for the (11,11), (15,15), and (19,19) armchair CNTs. The vibrational energy transfer exhibits two time scales, subpicosecond and picosecond, of roughly equal importance. Solvent molecules confined within CNTs are more strongly coupled to the tubes than the outside molecules. The energy exchange is facilitated by slow collective motions, including CNT radial breathing modes (RBM). The transfer rate between CNTs and the inside solvent shows strong dependence on the CNT diameter. In smaller tubes, the transfer is faster and the solvent coupling to RBMs is stronger. The magnitude of the CNT-outside solvent interaction scales with the CNT surface area, while that of the CNT-inside solvent exhibits scaling that is intermediate between the CNT volume and surface. The Coulomb interaction between the solvent molecules inside and outside of the CNTs is much weaker than the CNT-solvent interactions. The results indicate that the excitation energy supplied to CNTs in chemical and biological applications is rapidly deposited to the active molecular agents and should remain localized sufficiently long in order to perform the desired function.
Effects of Vibrations on Metal Forming Process: Analytical Approach and Finite Element Simulations
NASA Astrophysics Data System (ADS)
Armaghan, Khan; Christophe, Giraud-Audine; Gabriel, Abba; Régis, Bigot
2011-01-01
Vibration assisted forming is one of the most recent and beneficial technique used to improve forming process. Effects of vibration on metal forming processes can be attributed to two causes. First, the volume effect links lowering of yield stress with the influence of vibration on the dislocation movement. Second, the surface effect explains lowering of the effective coefficient of friction by periodic reduction contact area. This work is related to vibration assisted forming process in viscoplastic domain. Impact of change in vibration waveform has been analyzed. For this purpose, two analytical models have been developed for two different types of vibration waveforms (sinusoidal and triangular). These models were developed on the basis of Slice method that is used to find out the required forming force for the process. Final relationships show that application of triangular waveform in forming process is more beneficial as compare to sinusoidal vibrations in terms of reduced forming force. Finite Element Method (FEM) based simulations were performed using Forge2008®and these confirmed the results of analytical models. The ratio of vibration speed to upper die speed is a critical factor in the reduction of the forming force.
Vibrations in a moving flexible robot arm
NASA Technical Reports Server (NTRS)
Wang, P. K. C.; Wei, Jin-Duo
1987-01-01
The vibration in a flexible robot arm modeled by a moving slender prismatic beam is considered. It is found that the extending and contracting motions have destabilizing and stabilizing effects on the vibratory motions, respectively. The vibration analysis is based on a Galerkin approximation with time-dependent basis functions. Typical numerical results are presented to illustrate the qualitative features of vibrations.
Photomechanical vibration of thin crystals of polar semiconductors
NASA Technical Reports Server (NTRS)
Lagowski, J.; Gatos, H. C.
1974-01-01
It was found that thin crystals of polar (non-centrosymmetric) semiconductors constitute a new type of photosensitive system in which incident illumination is converted into mechanical energy: thus, illumination-induced elastic deformation (bending) was observed on thin (00.1) CdS and (111) GaAs crystals; furthermore, by employing chopped light the crystals were excited to their resonant vibration (photomechanical vibration); the dependence of the amplitude of this vibration on the energy of the incident radiation was found to be similar to the dependence of the surface photovoltage on the energy of the incident radiation (surface photovoltage spectrum). The present findings are consistent with a model based on light-induced modulation of the piezoelectric surface stresses.
Pettorossi, Vito Enrico; Panichi, Roberto; Botti, Fabio Massimo; Biscarini, Andrea; Filippi, Guido Maria; Schieppati, Marco
2015-10-01
To show that neck proprioceptive input can induce long-term effects on vestibular-dependent self-motion perception. Motion perception was assessed by measuring the subject's error in tracking in the dark the remembered position of a fixed target during whole-body yaw asymmetric rotation of a supporting platform, consisting in a fast rightward half-cycle and a slow leftward half-cycle returning the subject to the initial position. Neck muscles were relaxed or voluntarily contracted, and/or vibrated. Whole-body rotation was administered during or at various intervals after the vibration train. The tracking position error (TPE) at the end of the platform rotation was measured during and after the muscle conditioning maneuvers. Neck input produced immediate and sustained changes in the vestibular perceptual response to whole-body rotation. Vibration of the left sterno-cleido-mastoideus (SCM) or right splenius capitis (SC) or isometric neck muscle effort to rotate the head to the right enhanced the TPE by decreasing the perception of the slow rotation. The reverse effect was observed by activating the contralateral muscle. The effects persisted after the end of SCM conditioning, and slowly vanished within several hours, as tested by late asymmetric rotations. The aftereffect increased in amplitude and persistence by extending the duration of the vibration train (from 1 to 10min), augmenting the vibration frequency (from 5 to 100Hz) or contracting the vibrated muscle. Symmetric yaw rotation elicited a negligible TPE, upon which neck muscle vibrations were ineffective. Neck proprioceptive input induces enduring changes in vestibular-dependent self-motion perception, conditional on the vestibular stimulus feature, and on the side and the characteristics of vibration and status of vibrated muscles. This shows that our perception of whole-body yaw-rotation is not only dependent on accurate vestibular information, but is modulated by proprioceptive information related to previously experienced position of head with respect to trunk. Tonic proprioceptive inflow, as might occur as a consequence of enduring or permanent head postures, can induce adaptive plastic changes in vestibular-dependent motion sensitiveness. These changes might be counteracted by vibration of selected neck muscles. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Awrejcewicz, J.; Krysko, V. A.; Yakovleva, T. V.; Pavlov, S. P.; Krysko, V. A.
2018-05-01
A mathematical model of complex vibrations exhibited by contact dynamics of size-dependent beam-plate constructions was derived by taking the account of constraints between these structural members. The governing equations were yielded by variational principles based on the moment theory of elasticity. The centre of the investigated plate was supported by a beam. The plate and the beam satisfied the Kirchhoff/Euler-Bernoulli hypotheses. The derived partial differential equations (PDEs) were reduced to the Cauchy problems by the Faedo-Galerkin method in higher approximations, whereas the Cauchy problem was solved using a few Runge-Kutta methods. Reliability of results was validated by comparing the solutions obtained by qualitatively different methods. Complex vibrations were investigated with the help of methods of nonlinear dynamics such as vibration signals, phase portraits, Fourier power spectra, wavelet analysis, and estimation of the largest Lyapunov exponents based on the Rosenstein, Kantz, and Wolf methods. The effect of size-dependent parameters of the beam and plate on their contact interaction was investigated. It was detected and illustrated that the first contact between the size-dependent structural members implies chaotic vibrations. In addition, problems of chaotic synchronization between a nanoplate and a nanobeam were addressed.
Coherent coupling of molecular resonators with a microcavity mode
NASA Astrophysics Data System (ADS)
Shalabney, A.; George, J.; Hutchison, J.; Pupillo, G.; Genet, C.; Ebbesen, T. W.
2015-01-01
The optical hybridization of the electronic states in strongly coupled molecule-cavity systems have revealed unique properties, such as lasing, room temperature polariton condensation and the modification of excited electronic landscapes involved in molecular isomerization. Here we show that molecular vibrational modes of the electronic ground state can also be coherently coupled with a microcavity mode at room temperature, given the low vibrational thermal occupation factors associated with molecular vibrations, and the collective coupling of a large ensemble of molecules immersed within the cavity-mode volume. This enables the enhancement of the collective Rabi-exchange rate with respect to the single-oscillator coupling strength. The possibility of inducing large shifts in the vibrational frequency of selected molecular bonds should have immediate consequences for chemistry.
The Shock and Vibration Digest. Volume 13. Number 2
1981-02-01
accuracy, running time, 56(4), pp 1084-1091 (Oct 1974). core storage, complexity of program execution, ease of implementation, ease of effecting slight...consist of sessions on such topics as optimality criteria meth- specialized and elaborate developments but also of ods, mathematical programming ...Steininger - MBB, Ottobrunn, Ger- Gunfire Blast Pressure Predictions many R. Munt - RAE Aero., UK Aircraft Fuel Tank Slosh and Vibration Test Development of
The Shock and Vibration Digest. Volume 10, Number 12
1978-12-01
method with algebraic polynomials Rubin [9] used the Frobenius method to study was used to derive formulas for the first four fre- annular sector...the Frobenius method, then a variational approach, which is Vibration of Circular Double-Plate Systems more suitable for numerical calculations, is...Pacejka, H.B .............. 130 Perrin, R............... 1555 Packer, M.B ............. 1169 Perrone , N .............. 1324 Packman, P.F .......... 13, 1588
The Shock and Vibration Digest. Volume 12, Number 4.
1980-04-01
self -excited oscillations. a great deal of experience has been gained in applying these techniques to practical situations. This Con- INVITED...Outlet Flow Field of Axial Flow Fans Key Words: Pumps, Compressors, Self -excited vibrations, Surges H. Fujita Mechanical Engrg. Res. Lab., Hitachi, Ltd...Tsu- Investigations concerned with the stability of stationary chiura, 300 Japan, NOISE-CON 79, Machinery Noise states and the possibility of self
The Shock and Vibration Digest. Volume 18, Number 8
1986-08-01
the swash plate . This is an active that vibration can be reduced by separation of control system...element program model . ture-borne sound intensity has been tried earlier The agreement is shown to be very good. A on thin- plate constructions in ...predicting the response of two displacement controlled laboratory tests that were used for the determination of the model parameters. 86-1532
Proceedings of Damping 1993, volume 2
NASA Astrophysics Data System (ADS)
Portis, Bonnie L.
1993-06-01
Presented are individual papers of Damping '93, held 24-26 Feb. 1993 in San Francisco. The subjects included the following: passive damping concepts; passive damping analysis and design techniques; optimization; damped control/structure interaction; viscoelastic material testing and characterization; highly damped materials; vibration suppression techniques; damping identification and dynamic testing; applications to aircraft; space structures; marine structures; and commercial products; defense applications; and payoffs of vibration suppression.
The Shock and Vibration Digest. Volume 16, Number 12
1984-12-01
speed, spring constant of meshing gear teeth, and mass of the Dept. of Applied Mathematical Studies , Univ of rotating years. All of these factors are...interest that stress concentration factors in civil, mechanical, naval, and aeronautical Most graduate engineers have learned that conformal structural...branes. Conformal mapping has also been used Applcaton f th coforal appig tchnque recently to study the vibration characteristics of is straightforward
Abral, Hairul; Putra, Genda J; Asrofi, Mohammad; Park, Ji-Won; Kim, Hyun-Joong
2018-01-01
This article reports effect of vibration duration of high ultrasound applied to bio-composite while gelatinized on its properties. The bio-composite consists of mixing of both the tapioca starch based bioplastic and oil palm empty fruit bunch (OPEFB) fibers with high volume fraction. Gelatinization of the bio-composite sample was poured into a rectangular glass mold placed then in an ultrasonic bath with 40kHz, and 250watt in different duration for 0, 15, 30, 60min respectively. The results show that vibration during gelatinization has changed the characterisation of the bio-composite. SEM photograph displayed different fracture surface of tensile sample. For vibration duration of 60min, tensile strength (TM), and tensile modulus (TM) was improved to 64.4, 277.4%, respectively, meanwhile strain was decreased to 35.1% in comparison without vibration. Fourier Transform Infrared Spectroscopy (FTIR), and XRD diffraction of the bio-composite has changed due to various vibration duration. Moisture absorption of the vibrated bio-composite was lower than that of the untreated one. Copyright © 2017 Elsevier B.V. All rights reserved.
A vibration powered wireless mote on the Forth Road Bridge
NASA Astrophysics Data System (ADS)
Jia, Yu; Yan, Jize; Feng, Tao; Du, Sijun; Fidler, Paul; Soga, Kenichi; Middleton, Campbell; Seshia, Ashwin A.
2015-12-01
The conventional resonant-approaches to scavenge kinetic energy are typically confined to narrow and single-band frequencies. The vibration energy harvester device reported here combines both direct resonance and parametric resonance in order to enhance the power responsiveness towards more efficient harnessing of real-world ambient vibration. A packaged electromagnetic harvester designed to operate in both of these resonant regimes was tested in situ on the Forth Road Bridge. In the field-site, the harvester, with an operational volume of ∼126 cm3, was capable of recovering in excess of 1 mW average raw AC power from the traffic-induced vibrations in the lateral bracing structures underneath the bridge deck. The harvester was integrated off-board with a power conditioning circuit and a wireless mote. Duty- cycled wireless transmissions from the vibration-powered mote was successfully sustained by the recovered ambient energy. This limited duration field test provides the initial validation for realising vibration-powered wireless structural health monitoring systems in real world infrastructure, where the vibration profile is both broadband and intermittent.
Stacking fault energies of face-centered cubic concentrated solid solution alloys
Zhao, Shijun; Stocks, G. Malcolm; Zhang, Yanwen
2017-06-22
We report the stacking fault energy (SFE) for a series of face-centered cubic (fcc) equiatomic concentrated solid solution alloys (CSAs) derived as subsystems from the NiCoFeCrMn and NiCoFeCrPd high entropy alloys based on ab initio calculations. At low temperatures, these CSAs display very low even negative SFEs, indicating that hexagonal close-pack ( hcp) is more energy favorable than fcc structure. The temperature dependence of SFE for some CSAs is studied. With increasing temperature, a hcp-to- fcc transition is revealed for those CSAs with negative SFEs, which can be attributed to the role of intrinsic vibrational entropy. The analysis of themore » vibrational modes suggests that the vibrational entropy arises from the high frequency states in the hcp structure that originate from local vibrational mode. Furthermore, our results underscore the importance of vibrational entropy in determining the temperature dependence of SFE for CSAs.« less
Stacking fault energies of face-centered cubic concentrated solid solution alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Shijun; Stocks, G. Malcolm; Zhang, Yanwen
We report the stacking fault energy (SFE) for a series of face-centered cubic (fcc) equiatomic concentrated solid solution alloys (CSAs) derived as subsystems from the NiCoFeCrMn and NiCoFeCrPd high entropy alloys based on ab initio calculations. At low temperatures, these CSAs display very low even negative SFEs, indicating that hexagonal close-pack ( hcp) is more energy favorable than fcc structure. The temperature dependence of SFE for some CSAs is studied. With increasing temperature, a hcp-to- fcc transition is revealed for those CSAs with negative SFEs, which can be attributed to the role of intrinsic vibrational entropy. The analysis of themore » vibrational modes suggests that the vibrational entropy arises from the high frequency states in the hcp structure that originate from local vibrational mode. Furthermore, our results underscore the importance of vibrational entropy in determining the temperature dependence of SFE for CSAs.« less
Vibration safety limits for magnetic resonance elastography.
Ehman, E C; Rossman, P J; Kruse, S A; Sahakian, A V; Glaser, K J
2008-02-21
Magnetic resonance elastography (MRE) has been demonstrated to have potential as a clinical tool for assessing the stiffness of tissue in vivo. An essential step in MRE is the generation of acoustic mechanical waves within a tissue via a coupled mechanical driver. Motivated by an increasing volume of human imaging trials using MRE, the objectives of this study were to audit the vibration amplitude of exposure for our IRB-approved human MRE studies, to compare these values to a conservative regulatory standard for vibrational exposure and to evaluate the applicability and implications of this standard for MRE. MRE displacement data were examined from 29 MRE exams, including the liver, brain, kidney, breast and skeletal muscle. Vibrational acceleration limits from a European Union directive limiting occupational exposure to whole-body and extremity vibrations (EU 2002/44/EC) were adjusted for time and frequency of exposure, converted to maximum displacement values and compared to the measured in vivo displacements. The results indicate that the vibrational amplitudes used in MRE studies are below the EU whole-body vibration limit, and the EU guidelines represent a useful standard that could be readily accepted by Institutional Review Boards to define standards for vibrational exposures for MRE studies in humans.
Vibration safety limits for magnetic resonance elastography
Ehman, E C; Rossman, P J; Kruse, S A; Sahakian, A V; Glaser, K J
2010-01-01
Magnetic resonance elastography (MRE) has been demonstrated to have potential as a clinical tool for assessing the stiffness of tissue in vivo. An essential step in MRE is the generation of acoustic mechanical waves within tissue via a coupled mechanical driver. Motivated by an increasing volume of human imaging trials using MRE, the objectives of this study were to audit the vibration amplitude of exposure for our IRB-approved human MRE studies, to compare these values to a conservative regulatory standard for vibrational exposure, and to evaluate the applicability and implications of this standard for MRE. MRE displacement data were examined from 29 MRE exams, including the liver, brain, kidney, breast, and skeletal muscle. Vibrational acceleration limits from a European Union directive limiting occupational exposure to whole-body and extremity vibrations (EU 2002/44/EC) were adjusted for time and frequency of exposure, converted to maximum displacement values, and compared to the measured in vivo displacements. The results indicate that the vibrational amplitudes used in MRE studies are below the EU whole-body vibration limit and the EU guidelines represent a useful standard that could be readily accepted by Institutional Review Boards to define standards for vibrational exposures for MRE studies in humans. PMID:18263949
Gregson, Rachael K; Shannon, Harriet; Stocks, Janet; Cole, Tim J; Peters, Mark J; Main, Eleanor
2012-03-01
This study aimed to quantify the specific effects of manual lung inflations with chest compression-vibrations, commonly used to assist airway clearance in ventilated patients. The hypothesis was that force applied during the compressions made a significant additional contribution to increases in peak expiratory flow and expiratory to inspiratory flow ratio over and above that resulting from accompanying increases in inflation volume. Prospective observational study. Cardiac and general pediatric intensive care. Sedated, fully ventilated children. Customized force-sensing mats and a commercial respiratory monitor recorded force and respiration during physiotherapy. Percentage changes in peak expiratory flow, peak expiratory to inspiratory flow ratios, inflation volume, and peak inflation pressure between baseline and manual inflations with and without compression-vibrations were calculated. Analysis of covariance determined the relative contribution of changes in pressure, volume, and force to influence changes in peak expiratory flow and peak expiratory to inspiratory flow ratio. Data from 105 children were analyzed (median age, 1.3 yrs; range, 1 wk to 15.9 yrs). Force during compressions ranged from 15 to 179 N (median, 46 N). Peak expiratory flow increased on average by 76% during compressions compared with baseline ventilation. Increases in peak expiratory flow were significantly related to increases in inflation volume, peak inflation pressure, and force with peak expiratory flow increasing by, on average, 4% for every 10% increase in inflation volume (p < .001), 5% for every 10% increase in peak inflation pressure (p = .005), and 3% for each 10 N of applied force (p < .001). By contrast, increase in peak expiratory to inspiratory flow ratio was only related to applied force with a 4% increase for each 10 N of force (p < .001). These results provide evidence of the unique contribution of compression forces in increasing peak expiratory flow and peak expiratory to inspiratory flow ratio bias over and above that related to accompanying changes from manual hyperinflations. Force generated during compression-vibrations was the single significant factor in multivariable analysis to explain the increases in expiratory flow bias. Such increases in the expiratory bias provide theoretically optimal physiological conditions for cephalad mucus movement in fully ventilated children.
Construction of Two-Axis Acceleration Sensor Using a Cross-Coupled Vibrator
NASA Astrophysics Data System (ADS)
Terada, Jiro; Uetsuji, Yasutomo; Sugawara, Sumio
2012-10-01
We describe an acceleration sensor composed of four vibration bars, with a detection mechanism in which the resonant frequencies of the four bars are brought close together. The bars are connected mechanically at the center, and a cross-shaped layout is used such that for any load direction, the sizes of the loads on the vibration bars mutually oppose each other. Using this structure, acceleration can be easily calculated by differential detection of the oscillation amplitude signals of each of the four vibration bars. The body of the sensor is made of stainless steel (SUS304). The volume of the experimental sample is about 76 ×76 ×8 mm3, and the resonance frequency and quality factor are about 1041 Hz and 87, respectively. The sensor characteristics are measured using the gravitational field, and the acceleration is changed by rotating the sensor around the axis along the length of the vibrator.
Effect of low-frequency mechanical vibration on orthodontic tooth movement.
Yadav, Sumit; Dobie, Thomas; Assefnia, Amir; Gupta, Himank; Kalajzic, Zana; Nanda, Ravindra
2015-09-01
Our objective was to investigate the effect of low-frequency mechanical vibration (LFMV) on the rate of tooth movement, bone volume fraction, tissue density, and the integrity of the periodontal ligament. Our null hypothesis was that there would be no difference in the amount of tooth movement between different values of LFMV. Sixty-four male CD1 mice, 12 weeks old, were used for orthodontic tooth movement. The mice were randomly divided into 2 groups: control groups (baseline; no spring + 5 Hz; no spring + 10 Hz; and no spring + 20 Hz) and experimental groups (spring + no vibration; spring + 5 Hz; spring + 10 Hz; and spring + 20 Hz). In the experimental groups, the first molars were moved mesially for 2 weeks using nickel-titanium coil springs delivering 10 g of force. In the control and experimental groups, LFMV was applied at 5, 10, or 20 Hz. Microfocus x-ray computed tomography analysis was used for tooth movement measurements, bone volume fraction, and tissue density. Additionally, immunostaining for sclerostin, tartrate-resistant acid phosphatase (TRAP) staining, and picrosirius red staining were used on the histologic sections. Simple descriptive statistics were used to summarize the data. Kruskal-Wallis tests were used to compare the outcomes across treatment groups. LFMV did not increase the rate of orthodontic tooth movement. Microfocus x-ray computed tomography analysis showed increases in bone volume fractions and tissue densities with applications of LFMV. Sclerostin expression was decreased with 10 and 20 Hz vibrations in both the control and experimental groups. Additionally, the picrosirius staining showed that LFMV helped in maintaining the thickness and integrity of collagen fibers in the periodontal ligament. There was no significant increase in tooth movement by applying LFMV when compared with the control groups (spring + no vibration). Copyright © 2015 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
Effects of seated posture on erector spinae EMG activity during whole body vibration.
Zimmermann, C L; Cook, T M; Goel, V K
1993-06-01
The purpose of this study was to evaluate the electromyographic (EMG) response of the erector spinae to whole body vibration in three different unsupported seated postures: neutral upright, forward lean, and posterior lean. Subjects were 11 healthy college-age men. EMG was collected using bipolar surface electrodes placed bilaterally over the erector spinae at the L4 level. A modified chair with attached accelerometer was affixed to an induction type vibrator. Subjects were vibrated vertically at 4.5 Hz and 6.21 m.s-2 RMS. Data were collected in each of the three postures for 30 s pre- and post-vibration and for 2 min during vibration. Mean EMG values were determined for each sampling period and compared using ANOVA. The mean value for anterior lean was significantly larger (p < 0.05) than that for posterior lean and neutral. EMG data analysed by triggered averaging showed a phase-dependent response to the vibratory cycle for the forward leaning and neutral upright postures. The results of this study indicate that the magnitude of the vibration synchronous response of the erector spinae musculature is dependent upon body posture. This response may be an important factor in the onset of muscular fatigue and the increased incidence of back disorders among individuals exposed to whole body vibration.
Temperature dependence of phonons in photosynthesis proteins
NASA Astrophysics Data System (ADS)
Xu, Mengyang; Myles, Dean; Blankenship, Robert; Markelz, Andrea
Protein long range vibrations are essential to biological function. For many proteins, these vibrations steer functional conformational changes. For photoharvesting proteins, the structural vibrations play an additional critical role in energy transfer to the reaction center by both phonon assisted energy transfer and energy dissipation. The characterization of these vibrations to understand how they are optimized to balance photoharvesting and photoprotection is challenging. To date this characterization has mainly relied on fluorescence line narrowing measurements at cryogenic temperatures. However, protein dynamics has a strong temperature dependence, with an apparent turn on in anharmonicity between 180-220 K. If this transition affects intramolecular vibrations, the low temperature measurements will not represent the phonon spectrum at biological temperatures. Here we use the new technique of anisotropic terahertz microscopy (ATM) to measure the intramolecular vibrations of FMO complex. ATM is uniquely capable of isolating protein vibrations from isotropic background. We find resonances both red and blue shift with temperature above the dynamical transition. The results indicate that the characterization of vibrations must be performed at biologically relevant temperatures to properly understand the energy overlap with the excitation energy transfer. This work was supported by NSF:DBI 1556359, BioXFEL seed Grant funding from NSF:DBI 1231306, DOE: DE-SC0016317, and the Bruce Holm University at Buffalo Research Foundation Grant.
Micro-machined resonator oscillator
Koehler, Dale R.; Sniegowski, Jeffry J.; Bivens, Hugh M.; Wessendorf, Kurt O.
1994-01-01
A micro-miniature resonator-oscillator is disclosed. Due to the miniaturization of the resonator-oscillator, oscillation frequencies of one MHz and higher are utilized. A thickness-mode quartz resonator housed in a micro-machined silicon package and operated as a "telemetered sensor beacon" that is, a digital, self-powered, remote, parameter measuring-transmitter in the FM-band. The resonator design uses trapped energy principles and temperature dependence methodology through crystal orientation control, with operation in the 20-100 MHz range. High volume batch-processing manufacturing is utilized, with package and resonator assembly at the wafer level. Unique design features include squeeze-film damping for robust vibration and shock performance, capacitive coupling through micro-machined diaphragms allowing resonator excitation at the package exterior, circuit integration and extremely small (0.1 in. square) dimensioning. A family of micro-miniature sensor beacons is also disclosed with widespread applications as bio-medical sensors, vehicle status monitors and high-volume animal identification and health sensors. The sensor family allows measurement of temperatures, chemicals, acceleration and pressure. A microphone and clock realization is also available.
Ruppert, David S; Harrysson, Ola L A; Marcellin-Little, Denis J; Dahners, Laurence E; Weinhold, Paul S
2018-06-11
Transcutaneous osseointegrated prostheses provide stable connections to the skeleton while eliminating skin lesions experienced with socket prosthetics. Additive manufacturing can create custom textured implants capable of interfacing with amputees' residual bones. Our objective was to compare osseointegration of textured surface implants made by electron beam melting (EBM), an additive manufacturing process, to machine threaded implants. Whole body vibration was investigated to accelerate osseointegration. Two cohorts of Sprague-Dawley rats received bilateral, titanium implants (EBM vs. threaded) in their tibiae. One cohort comprising five groups vibrated at 45 Hz: 0.0 (control), 0.15, 0.3, 0.6 or 1.2 g was followed for six weeks. Osseointegration was evaluated through torsional testing and bone volume fraction (BV/TV). A second cohort, divided into two groups (control and 0.6 g), was followed for 24 days and evaluated for resonant frequency, bone-implant contact (BIC) and fluorochrome labeling. The EBM textured implants exhibited significantly improved mechanical stability independent of vibration, highlighting the benefits of using EBM to produce custom textured surfaces. Bone formation on and around the EBM textured implants increased compared to machined implants, as seen by BIC and fluorescence. No difference in torque, BIC or fluorescence among vibration levels was detected. BV/TV significantly increased at 0.6 g compared to control for both implant types. Copyright © 2018 IPEM. Published by Elsevier Ltd. All rights reserved.
Hsu, Hung-Yao
2016-01-01
Bone cells are deformed according to mechanical stimulation they receive and their mechanical characteristics. However, how osteoblasts are affected by mechanical vibration frequency and acceleration amplitude remains unclear. By developing 3D osteoblast finite element (FE) models, this study investigated the effect of cell shapes on vibration characteristics and effect of acceleration (vibration intensity) on vibrational responses of cultured osteoblasts. Firstly, the developed FE models predicted natural frequencies of osteoblasts within 6.85–48.69 Hz. Then, three different levels of acceleration of base excitation were selected (0.5, 1, and 2 g) to simulate vibrational responses, and acceleration of base excitation was found to have no influence on natural frequencies of osteoblasts. However, vibration response values of displacement, stress, and strain increased with the increase of acceleration. Finally, stress and stress distributions of osteoblast models under 0.5 g acceleration in Z-direction were investigated further. It was revealed that resonance frequencies can be a monotonic function of cell height or bottom area when cell volumes and material properties were assumed as constants. These findings will be useful in understanding how forces are transferred and influence osteoblast mechanical responses during vibrations and in providing guidance for cell culture and external vibration loading in experimental and clinical osteogenesis studies. PMID:28074178
Wong, W O; Fan, R P; Cheng, F
2018-02-01
A viscoelastic dynamic vibration absorber (VDVA) is proposed for suppressing infrasonic vibrations of heavy structures because the traditional dynamic vibration absorber equipped with a viscous damper is not effective in suppressing low frequency vibrations. The proposed VDVA has an elastic spring and a viscoelastic damper with frequency dependent modulus and damping properties. The standard fixed-points theory cannot be applied to derive the optimum design parameters of the VDVA because both its stiffness and damping are frequency dependent. A modified fixed-points theory is therefore proposed to solve this problem. H ∞ design optimization of the proposed VDVA have been derived for the minimization of resonant vibration amplitude of a single degree-of-freedom system excited by harmonic forces or due to ground motions. The stiffness and damping of the proposed VDVA can be decoupled such that both of these two properties of the absorber can be tuned independently to their optimal values by following a specified procedure. The proposed VDVA with optimized design is tested numerically using two real commercial viscoelastic damping materials. It is found that the proposed viscoelastic absorber can provide much stronger vibration reduction effect than the conventional VDVA without the elastic spring.
Spinal cord normalization in multiple sclerosis.
Oh, Jiwon; Seigo, Michaela; Saidha, Shiv; Sotirchos, Elias; Zackowski, Kathy; Chen, Min; Prince, Jerry; Diener-West, Marie; Calabresi, Peter A; Reich, Daniel S
2014-01-01
Spinal cord (SC) pathology is common in multiple sclerosis (MS), and measures of SC-atrophy are increasingly utilized. Normalization reduces biological variation of structural measurements unrelated to disease, but optimal parameters for SC volume (SCV)-normalization remain unclear. Using a variety of normalization factors and clinical measures, we assessed the effect of SCV normalization on detecting group differences and clarifying clinical-radiological correlations in MS. 3T cervical SC-MRI was performed in 133 MS cases and 11 healthy controls (HC). Clinical assessment included expanded disability status scale (EDSS), MS functional composite (MSFC), quantitative hip-flexion strength ("strength"), and vibration sensation threshold ("vibration"). SCV between C3 and C4 was measured and normalized individually by subject height, SC-length, and intracranial volume (ICV). There were group differences in raw-SCV and after normalization by height and length (MS vs. HC; progressive vs. relapsing MS-subtypes, P < .05). There were correlations between clinical measures and raw-SCV (EDSS:r = -.20; MSFC:r = .16; strength:r = .35; vibration:r = -.19). Correlations consistently strengthened with normalization by length (EDSS:r = -.43; MSFC:r = .33; strength:r = .38; vibration:r = -.40), and height (EDSS:r = -.26; MSFC:r = .28; strength:r = .22; vibration:r = -.29), but diminished with normalization by ICV (EDSS:r = -.23; MSFC:r = -.10; strength:r = .23; vibration:r = -.35). In relapsing MS, normalization by length allowed statistical detection of correlations that were not apparent with raw-SCV. SCV-normalization by length improves the ability to detect group differences, strengthens clinical-radiological correlations, and is particularly relevant in settings of subtle disease-related SC-atrophy in MS. SCV-normalization by length may enhance the clinical utility of measures of SC-atrophy. Copyright © 2014 by the American Society of Neuroimaging.
The Shock and Vibration Digest. Volume 15, Number 3
1983-03-01
High Temperature Gas-Cooled Reactor Core with Block-type Fuel (2nd Report: An Analytical Method of Two-dmentmnal Vibration of Interacting CohunM) T...Computer-aided techniquei, Detign techniquei A wite of computer programs hat been developed which allow« advanced fatigue analyiit procedures to be...valuei with those developed by bearing analysis computer programs were used to formulate an understanding of the mechanisms that induce ball skidding
The Shock and Vibration Digest. Volume 17, Number 4
1985-04-01
software packages for engineering signed to be easy to use from the outset, computations which were specifically writ- and this design philosophy is largely...re- ten for use on microcomputers. Software sponsible for their increasing popularity; packages related to shock and vibration are this same design...philosophy appears to have available for both experimental and for been carried over to the design of today’s analytical applications. Typical software
The Shock and Vibration Digest. Volume 15. Number 2
1983-02-01
plates - other analyses. Asymptotic solu- tions of the general three-dimensional elasticity equations for an anisotropic beam have been used by Sayir...34Operatorsand Fractional Deriva- tives for Viscoelastic Constitutive Equations " (Submitted to J. Rheology, Apr 1982). 53. Bagley, R.L and Torvik, P.J... equations governing free, undamped vibration modes, the hull is specified by sectional quaruties. They are: hull stiffness, as represented by bending
Synchronous meteorological satellite system description document, volume 3
NASA Technical Reports Server (NTRS)
Pipkin, F. B.
1971-01-01
The structural design, analysis, and mechanical integration of the synchronous meteorological satellite system are presented. The subjects discussed are: (1) spacecraft configuration, (2) structural design, (3) static load tests, (4) fixed base sinusoidal vibration survey, (5) flight configuration sinusoidal vibration tests, (6) spacecraft acoustic test, and (7) separation and shock test. Descriptions of the auxiliary propulsion subsystem, the apogee boost motor, communications system, and thermal control subsystem are included.
The Shock and Vibration Digest. Volume 15. Number 1
1983-01-01
acoustics The books are arranged to engineer is statistical energy analysis (SEA). This show the wealth of information that exists and the concept is...is also used for vibrating systems in pie nonlinear elements. However, for systems with a which statistical energy analysis and power flow continuous... statistical energy analysis to analyze the random nonlinear algebraic equations can be difficult. response of two identical subsystems coupled at an end
NASA Astrophysics Data System (ADS)
Baldi, G.; Giordano, V. M.; Ruta, B.; Dal Maschio, R.; Fontana, A.; Monaco, G.
2014-03-01
We report the observation, by means of high-resolution inelastic x-ray scattering, of an unusually large temperature dependence of the sound attenuation of a network glass at terahertz frequency, an unprecedentedly observed phenomenon. The anharmonicity can be ascribed to the interaction between the propagating acoustic wave and the bath of thermal vibrations. At low temperatures the sound attenuation follows a Rayleigh-Gans scattering law. As the temperature is increased the anharmonic process sets in, resulting in an almost quadratic frequency dependence of the damping in the entire frequency range. We show that the temperature variation of the sound damping accounts quantitatively for the temperature dependence of the density of vibrational states.
NASA Astrophysics Data System (ADS)
Takayanagi, Toshiyuki; Suzuki, Kento; Yoshida, Takahiko; Kita, Yukiumi; Tachikawa, Masanori
2017-05-01
We present computational results of vibrationally enhanced positron annihilation in the e+ + HCN/DCN collisions within a local complex potential model. Vibrationally elastic and inelastic cross sections and effective annihilation rates were calculated by solving a time-dependent complex-potential Schrödinger equation under the ab initio potential energy surface for the positron attached HCN molecule, [HCN; e+], with multi-component configuration interaction level (Kita and Tachikawa, 2014). We discuss the effect of vibrational excitation on the positron affinities from the obtained vibrational resonance features.
NASA Technical Reports Server (NTRS)
Meredith, R. W.; Becher, J.
1981-01-01
Parts were fabricated for the acoustic ground impedance meter and the instrument was tested. A rubber hose was used to connect the resonator neck to the chamber in order to suppress vibration from the volume velocity source which caused chatter. An analog to digital converter was successfully hardwired to the computer detection system. The cooling system for the resonant tube was modified to use liquid nitrogen cooling. This produced the required temperature for the tube, but the temperature gradients within each of the four tube sections reached unacceptable levels. Final measurements of the deexcitation of nitrogen by water vapor indicate that the responsible physical process is not the direct vibration-translation energy transfer, but is a vibration-vibration energy transfer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, Matthew Frederick; Owen, Kyle G.; Davidson, David F.
The purpose of this article is to explore the dependence of calculated postshock thermodynamic properties in shock tube experiments upon the vibrational state of the test gas and upon the uncertainties inherent to calculation inputs. This paper first offers a comparison between state variables calculated according to a Rankine–Hugoniot–equation-based algorithm, known as FROSH, and those derived from shock tube experiments on vibrationally nonequilibrated gases. It is shown that incorrect vibrational relaxation assumptions could lead to errors in temperature as large as 8% for 25% oxygen/argon mixtures at 3500 K. Following this demonstration, this article employs the algorithm to show themore » importance of correct vibrational equilibration assumptions, noting, for instance, that errors in temperature of up to about 2% at 3500 K may be generated for 10% nitrogen/argon mixtures if vibrational relaxation is not treated properly. Lastly, this article presents an extensive uncertainty analysis, showing that postshock temperatures can be calculated with root-of-sum-of-square errors of better than ±1% given sufficiently accurate experimentally measured input parameters.« less
Campbell, Matthew Frederick; Owen, Kyle G.; Davidson, David F.; ...
2017-01-30
The purpose of this article is to explore the dependence of calculated postshock thermodynamic properties in shock tube experiments upon the vibrational state of the test gas and upon the uncertainties inherent to calculation inputs. This paper first offers a comparison between state variables calculated according to a Rankine–Hugoniot–equation-based algorithm, known as FROSH, and those derived from shock tube experiments on vibrationally nonequilibrated gases. It is shown that incorrect vibrational relaxation assumptions could lead to errors in temperature as large as 8% for 25% oxygen/argon mixtures at 3500 K. Following this demonstration, this article employs the algorithm to show themore » importance of correct vibrational equilibration assumptions, noting, for instance, that errors in temperature of up to about 2% at 3500 K may be generated for 10% nitrogen/argon mixtures if vibrational relaxation is not treated properly. Lastly, this article presents an extensive uncertainty analysis, showing that postshock temperatures can be calculated with root-of-sum-of-square errors of better than ±1% given sufficiently accurate experimentally measured input parameters.« less
Clauvelin, Nicolas; Olson, Wilma K.; Tobias, Irwin
2013-01-01
We present the small-amplitude vibrations of a circular elastic ring with periodic and clamped boundary conditions. We model the rod as an inextensible, isotropic, naturally straight Kirchhoff elastic rod and obtain the vibrational modes of the ring analytically for periodic boundary conditions and numerically for clamped boundary conditions. Of particular interest are the dependence of the vibrational modes on the torsional stress in the ring and the influence of the rotational inertia of the rod on the mode frequencies and amplitudes. In rescaling the Kirchhoff equations, we introduce a parameter inversely proportional to the aspect ratio of the rod. This parameter makes it possible to capture the influence of the rotational inertia of the rod. We find that the rotational inertia has a minor influence on the vibrational modes with the exception of a specific category of modes corresponding to high-frequency twisting deformations in the ring. Moreover, some of the vibrational modes over or undertwist the elastic rod depending on the imposed torsional stress in the ring. PMID:24795495
Active Vibration Isolation Devices with Inertial Servo Actuators
NASA Astrophysics Data System (ADS)
Melik-Shakhnazarov, V. A.; Strelov, V. I.; Sofiyanchuk, D. V.; Tregubenko, A. A.
2018-03-01
The use of active vibration isolation devices (AVIDs) in aerospace engineering is subject to the following restrictions. First, the volume for installing additional devices is always limited in instrument racks and compartments. Secondly, in many cases, it is impossible to add supports for servo actuators for fundamental or design considerations. In the paper, it has been shown that this problem can be solved if the inertial servo actuators are used in AVIDs instead of reference actuators. A transfer function has been theoretically calculated for an AVID controlled by inertial actuators. It has been shown that the volume of a six-mode single-housing AVID with inertial actuators can be 2-2.5 times smaller than that of devices with support actuators.
Bovenzi, M; Griffin, M J
1997-01-01
OBJECTIVES: To investigate changes in digital circulation during and after exposure to hand transmitted vibration. By studying two frequencies and two magnitudes of vibration, to investigate the extent to which haemodynamic changes depend on the vibration frequency, the vibration acceleration, and the vibration velocity. METHODS: Finger skin temperature (FST), finger blood flow (FBF), and finger systolic pressure were measured in the fingers of both hands in eight healthy men. Indices of digital vasomotor tone-such as critical closing pressure and vascular resistance-were estimated by pressure-flow curves obtained with different hand heights. With a static load of 10 N, the right hand was exposed for 30 minutes to each of the following root mean squared (rms) acceleration magnitudes and frequencies of vertical vibration: 22 m.s-2 at 31.5 Hz, 22 m.s-2 at 125 Hz, and 87 m.s-2 at 125 Hz. A control condition consisted of exposure to the static load only. The measures of digital circulation and vasomotor tone were taken before exposure to the vibration and the static load, and at 0, 20, 40, and 60 minutes after the end of each exposure. RESULTS: Exposure to static load caused no significant changes in FST, FBF, or indices of vasomotor tone in either the vibrated right middle finger or the non-vibrated left middle finger. In both fingers, exposure to vibration of 125 Hz and 22 m.s-2 produced a greater reduction in FBF and a greater increase in vasomotor tone than did vibration of 31.5 Hz and 22 m.s-2. In the vibrated right finger, exposure to vibration of 125 Hz and 87 m.s-2 provoked an immediate vasodilation which was followed by vasoconstriction during recovery. The non-vibrated left finger showed a significant increase in vasomotor tone throughout the 60 minute period after the end of vibration exposure. CONCLUSIONS: The digital circulatory response to acute vibration depends upon the magnitude and frequency of the vibration stimulus. Vasomotor mechanisms, mediated both centrally and locally, are involved in the reaction of digital vessels to acute vibration. The pattern of the haemodynamic changes in the fingers exposed to the vibration frequencies used in this study do not seem to support the frequency weighting assumed in the current international standard ISO 5349. PMID:9326160
Zhang, Xiaoli; Wang, Baojian; Chen, Xuefeng
2015-04-16
With the rapid development of sensor technology, various professional sensors are installed on modern machinery to monitor operational processes and assure operational safety, which play an important role in industry and society. In this work a new operational safety assessment approach with wavelet Rényi entropy utilizing sensor-dependent vibration signals is proposed. On the basis of a professional sensor and the corresponding system, sensor-dependent vibration signals are acquired and analyzed by a second generation wavelet package, which reflects time-varying operational characteristic of individual machinery. Derived from the sensor-dependent signals' wavelet energy distribution over the observed signal frequency range, wavelet Rényi entropy is defined to compute the operational uncertainty of a turbo generator, which is then associated with its operational safety degree. The proposed method is applied in a 50 MW turbo generator, whereupon it is proved to be reasonable and effective for operation and maintenance.
Tremblay, Nicolas; Larose, Eric; Rossetto, Vincent
2010-03-01
The stiffness of a consolidated granular medium experiences a drop immediately after a moderate mechanical solicitation. Then the stiffness rises back toward its initial value, following a logarithmic time evolution called slow dynamics. In the literature, slow dynamics has been probed by macroscopic quantities averaged over the sample volume, for instance, by the resonant frequency of vibrational eigenmodes. This article presents a different approach based on diffuse acoustic wave spectroscopy, a technique that is directly sensitive to the details of the sample structure. The parameters of the dynamics are found to depend on the damage of the medium. Results confirm that slow dynamics is, at least in part, due to tiny structural rearrangements at the microscopic scale, such as inter-grain contacts.
Temperature and pressure dependent thermodynamic behavior of 2H-CuInO2
NASA Astrophysics Data System (ADS)
Bhamu, K. C.
2018-05-01
Density functional theory and quasi-harmonic Debye model has been used to study the thermodynamic properties of 2H-CuInO2. At the optimized structural parameters, pressure (0 to 80 GPa) dependent variation in the various thermodynamic properties, i.e. unit cell volume (V), bulk modulus (B), specific heat (Cv), Debye temperature (θD), Grüneisen parameter (γ) and thermal expansion coefficient (α) are calculated for various temperature values. The results predict that the pressure has significant effect on unit cell volume and bulk modulus while the temperature shows negligible effect on both parameters. With increasing temperature thermal expansion coefficient increase while with increasing pressure it decreases. The specific heat remains close to zero for ambient pressure and temperature values and it increases with increasing temperature. It is observed that the pressure has high impact on Debye temperature and Grüneisen parameter instead of temperature. Debye temperature and Grüneisen parameter both remains almost constant for the temperature range (0-300K) while Grüneisen parameter decrease with increasing pressure at constant temperature and Debye temperature increases rapidly with increasing pressure. An increase in Debye temperature with respect to pressure shows that the thermal vibration frequency changes rapidly.
Surface tension confined liquid cryogen cooler
NASA Technical Reports Server (NTRS)
Castles, Stephen H. (Inventor); Schein, Michael E. (Inventor)
1989-01-01
A cryogenic cooler is provided for use in craft such as launch, orbital, and space vehicles subject to substantial vibration, changes in orientation, and weightlessness. The cooler contains a small pore, large free volume, low density material to restrain a cryogen through surface tension effects during launch and zero-g operations and maintains instrumentation within the temperature range of 10 to 140 K. The cooler operation is completely passive, with no inherent vibration or power requirements.
United States Air Force Research Initiation Program for 1987. Volume 2
1989-04-01
is partly in darkness and partly sunlit with a low angle sun. Solar absorption was added as an additional excitation mechanism in the calculation of...34-7 Also, the sun was assumed to be above the horizon ( solar zenith angle = 880) in the calculation of sunlit vibrational temperature profiles, when...time conditions. This will involve modifying the kinetic equations to include solar pumping at higher sun angles, determining vibrational temperature
The Shock and Vibration Digest, Volume 17, Number 10
1985-10-01
Venkayya, V.B. and Tischler, V.A., 49. Calico , R.A., Jr. and Tnyfault, D.V., "Frequency Control and the Effect on the "Decoupled Large Space Structure...Hurwitz presented. The threshold concept is de- Numerical Structural Mechanics scribed, as are receiver operating charac- Branch (Code 1844 ) teristic...Part Vibration and Dynamics of Off Road Vehi- 2 - Realistic Complex Elements des M. Apetaur I.A. Craighead, P.R. Brown Prague Univ. of Tech
NASA Technical Reports Server (NTRS)
1974-01-01
The results of the LAGEOS thermal/optical/vibrational analysis and test program are reported. Through analyses and tests it is verified that the MSFC LAGEOS design provides a retroreflector thermal environment which maintains acceptable retroflector internal thermal gradients. The technical results of the study, organized by the major task areas are presented. The interrelationships of the major tasks are described and the major decisions are identified.
NASA Technical Reports Server (NTRS)
Svalbonas, V.
1973-01-01
The theoretical analysis background for the STARS-2 (shell theory automated for rotational structures) program is presented. The theory involved in the axisymmetric nonlinear and unsymmetric linear static analyses, and the stability and vibrations (including critical rotation speed) analyses involving axisymmetric prestress are discussed. The theory for nonlinear static, stability, and vibrations analyses, involving shells with unsymmetric loadings are included.
The influence of traffic vibrations on the radon potential.
Schmid, S; Wiegand, J
1998-02-01
The influence of traffic vibrations on the radon potential is analyzed in this study. Generally, the radon concentration in soil-gas increases through traffic vibrations. The influence of the vibrations is determined near railway tracks and heavy-traffic roads. Soils above natural, in-place, bedrock (solid and unconsolidated rocks) and backfills were studied. The type of vibrations, as well the soil material, have a pronounced influence on the amount of increase of the radon concentration. The spatial radius of influence is wider with railway traffic (>30 m) than with motor vehicle traffic (<25 m). Close to the traffic lanes the increase of the radon concentration by motor vehicle traffic is significantly higher (37%) than that by railway traffic (11.5%). There are no differences between locations, which lay above unconsolidated rock (11.1%), and locations above solid rock (11.8%). In addition to the increased radon concentrations, the averaged radon concentration decreases with increasing distance to the vibration source, but only at locations that lay above solid rock. Both phenomena can be explained by a "pump effect": the mechanical vibration of soil and mineral particles leads to an upward motion of the whole volume of soil-gas. During the vibrations the topmost soil layers lose radon to the atmosphere and as a result the upward transport is increased.
Zhang, Chunxiang; Li, Ji; Zhang, Linkun; Zhou, Yi; Hou, Weiwei; Quan, Huixin; Li, Xiaoyu; Chen, Yangxi; Yu, Haiyang
2012-10-01
Paradental tissues (alveolar bone, periodontal ligament (PDL), and gingiva) have the capacity to adapt to their functional environment. The principal cellular elements of the PDL play an important role in normal function, regeneration of periodontal tissue and in orthodontic treatment. Recently, several studies have shown that low-magnitude, high-frequency (LMHF) mechanical vibration can positively influence bone homeostasis; however, the mechanism and optimal conditions for LMHF mechanical vibration have not been elucidated. It has been speculated that LMHF mechanical vibration stimulations have a favourable influence on osteocytes, osteoblasts and their precursors, thereby enhancing the expression of osteoblastic genes involved in bone formation and remodelling. The objective of this study was to test the effect of LMHF mechanical vibration on proliferation and osteogenic differentiation of human PDL stem cells (PDLSCs). Human PDLSCs were isolated from premolar teeth and randomized into vibration (magnitude: 0.3g; frequency: 10-180 Hz; 30 min/24h) and static cultures. The effect of vibration on PDLSC proliferation, differentiation and osteogenic potential was assessed at the genetic and protein level. After LMHF mechanical vibration, PDLSC proliferation was decreased; however, this was accompanied by increased markers of osteogenesis in a frequency-dependent manner. Specifically, alkaline phosphatase activity gradually increased with the frequency of vibration, to a peak at 50 Hz, and the level of osteocalcin was significantly higher than control following vibration at 40 Hz, 50 Hz, 60 Hz, 90 Hz and 120 Hz. Levels of Col-I, Runx2 and Osterix were significantly increased by LMHF mechanical vibration at frequencies of 40 Hz and 50 Hz. Our data demonstrates that LMHF mechanical vibration promotes PDLSC osteogenic differentiation and implies the existence of a frequency-dependent effect of vibration on determining PDLSC commitment to the osteoblast lineage. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
McMillan, Norman D.; O'Mongain, Eon; Walsh, James E.; Breen, Liam; McMillan, Duncan G.; Power, Michael J.; O'Dea, John P.; Kinsella, Seamus M.; Kelly, Mairead P.; Hammil, Conor; Orr, Dermot
1994-12-01
A preliminary investigation into the use of multiwavelength fiber drop analyzer (FDA) for the measurement of viscosity, spectral absorbance and refractive index is made with a view to obtaining conservative estimates of the instrumental capability of the FDA for these measurands. Some important new insights into drop vibrations are made from studies on the fiber drop traces (FDTs) of mechanically excited damped vibrations in drops with a set volume. A brief description of the feasibility measurements on the first application of the FDA in the diagnosis of disease in synovial fluid is given. Strong experimental evidence is reported for the existence of the surface-guided wave peak of the fiber drop trace and some new insights into the nature of the FDT are suggested based on a comparative study of the FDTs from a multiple-wavelength and a single-wavelength FDA. The earlier reported drop period dependence on applied electric field is critically reexamined, a new interpretation of this effect, is suggested, and an experimental study of clarification is given. Finally, a brief review of the projected capabilities of the FDA based on the work reported here is provided.
Transverse Resonant Vibration of Non-Bearing Structures Caused by Wind
NASA Astrophysics Data System (ADS)
Jendzelovsky, Norbert; Antal, Roland
2017-10-01
Nowadays, there are increasing use of very thin, subtle and light structures in the field of building constructions. We can find such a structures as part of roofs or design facades. By using these lamellas like, non-bearing structures as a part of architectural design of buildings, it is necessary to consider wind effects on these structures. Subtle structures of this type are prone to vibration in the transverse direction of the wind flow. The fact that the vibration occurs depends on wind parameters (wind velocity, direction of an air flow) and it also depends on the properties of lamella (shape, length, mass, natural frequency, support type). The principal idea of this article is to show susceptibility of lamellae-like structures to transverse resonant vibration caused by the phenomenon called Von Karman effect. Comparison of susceptibility to transverse resonance vibration was analysed on the different shapes of lamellas loaded by different wind speed. Analysis was based on usage of empirically derived equations. Von Karman effect arise from wind flow past an object. Turbulence in the form of vortices are formed at the object and shed into the flowing stream intermittently. The potential problem is that this turbulence can induce vibrations into the lamella itself. In terms of this vibration problem, two frequencies are interesting. Von Karman shedding frequency is the frequency at which the vortices are formed and shed at the object. The vortex-shedding frequency increases with the velocity of the wind flow and decreases with the size of the object. Natural frequency of the object depends on the construction of the lamella itself. Parameters of lamella as a shape, mass, length, elasticity modulus of material and support types are directly involved in the calculation of natural frequency. Worst case scenario in the term of transverse resonant vibration occurs when the natural frequency of lamella is equal to the vortex-shedding frequency. In this case vibration rises and structure can be snapped or deformed permanently. In the long term vibration, fatigue stress can be significant. At the conclusion hazardous wind speed and recommendations for different shapes and parameters of lamellas are shown.
Free Vibration of Fiber Composite Thin Shells in a Hot Environment
NASA Technical Reports Server (NTRS)
Gotsis, Pascal K.; Guptill, James D.
1995-01-01
Results are presented of parametric studies to assess the effects of various parameters on the free vibration behavior (natural frequencies) of (plus or minus theta)2, angle-ply fiber composite thin shells in a hot environment. These results were obtained by using a three-dimensional finite element structural analysis computer code. The fiber composite shell is assumed to be cylindrical and made from T-300 graphite fibers embedded in an intermediate-modulus high-strength matrix (IMHS). The residual stresses induced into the laminated structure during curing are taken into account. The following parameters are investigated: the length and the thickness of the shell, the fiber orientations, the fiber volume fraction, the temperature profile through the thickness of the laminate and the different ply thicknesses. Results obtained indicate that: the fiber orientations and the length of the laminated shell had significant effect on the natural frequencies. The fiber volume fraction, the laminate thickness and the temperature profile through the shell thickness had a weak effect on the natural frequencies. Finally, the laminates with different ply thicknesses had insignificant influence on the behavior of the vibrated laminated shell.
Transmission of vibration through glove materials: effects of contact force.
Md Rezali, Khairil Anas; Griffin, Michael J
2018-04-26
This study investigated effects of applied force on the apparent mass of the hand, the dynamic stiffness of glove materials and the transmission of vibration through gloves to the hand. For 10 subjects, 3 glove materials and 3 contact forces, apparent masses and glove transmissibilities were measured at the palm and at a finger at frequencies in the range 5-300 Hz. The dynamic stiffnesses of the materials were also measured. With increasing force, the dynamic stiffnesses of the materials increased, the apparent mass at the palm increased at frequencies greater than the resonance and the apparent mass at the finger increased at low frequencies. The effects of force on transmissibilities therefore differed between materials and depended on vibration frequency, but changes in apparent mass and dynamic stiffness had predictable effects on material transmissibility. Depending on the glove material, the transmission of vibration through a glove can be increased or decreased when increasing the applied force. Practitioner summary: Increasing the contact force (i.e. push force or grip force) can increase or decrease the transmission of vibration through a glove. The vibration transmissibilities of gloves should be assessed with a range of contact forces to understand their likely influence on the exposure of the hand and fingers to vibration.
Amplitude control of the track-induced self-excited vibration for a maglev system.
Zhou, Danfeng; Li, Jie; Zhang, Kun
2014-09-01
The Electromagnet Suspension (EMS) maglev train uses controlled electromagnetic forces to achieve suspension, and self-excited vibration may occur due to the flexibility of the track. In this article, the harmonic balance method is applied to investigate the amplitude of the self-excited vibration, and it is found that the amplitude of the vibration depends on the voltage of the power supplier. Based on this observation, a vibration amplitude control method, which controls the amplitude of the vibration by adjusting the voltage of the power supplier, is proposed to attenuate the vibration. A PI controller is designed to control the amplitude of the vibration at a given level. The effectiveness of this method shows a good prospect for its application to commercial maglev systems. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
Production, Delivery and Application of Vibration Energy in Healthcare
NASA Astrophysics Data System (ADS)
Abundo, Paolo; Trombetta, Chiara; Foti, Calogero; Rosato, Nicola
2011-02-01
In Rehabilitation Medicine therapeutic application of vibration energy in specific clinical treatments and in sport rehabilitation is being affirmed more and more.Vibration exposure can have positive or negative effects on the human body depending on the features and time of the characterizing wave. The human body is constantly subjected to different kinds of vibrations, inducing bones and muscles to actively modify their structure and metabolism in order to fulfill the required functions. Like every other machine, the body supports only certain vibration energy levels over which long term impairments can be recognized. As shown in literature anyway, short periods of vibration exposure and specific frequency values can determine positive adjustments.
NASA Astrophysics Data System (ADS)
Kondratjev, V.; Gostilo, V.; Owens, anb A.
2017-08-01
We present the results of an investigation into the detrimental effects that electromechanical coolers can have on the spectral performance of compact, large volume HPGe spectrometers for space applications. Both mechanical vibration and electromagnetic pickup effects were considered, as well as a comparative assessment between three miniature Stirling cycle coolers—two Ricor model K508 coolers and one Thales model RM3 cooler. In spite of the limited number of coolers tested, the following conclusions can be made. There are significant differences in the vibration characteristics not only between the various types of cooler but also between coolers of the same type. It was also found that compared to the noise induced by mechanical vibrations, electromagnetic interference emanating from the embedded controllers does not significantly impact the energy resolution of detectors.
Influence of Packing on Low Energy Vibrations of Densified Glasses
NASA Astrophysics Data System (ADS)
Carini, Giovanni, Jr.; Carini, Giuseppe; D'Angelo, Giovanna; Tripodo, Gaspare; Di Marco, Gaetano; Vasi, Cirino; Gilioli, Edmondo
2013-12-01
A comparative study of Raman scattering and low temperature specific heat capacity has been performed on samples of B2O3, which have been high-pressure quenched to go through different glassy phases having growing density to the crystalline state. It has revealed that the excess volume characterizing the glassy networks favors the formation of specific glassy structural units, the boroxol rings, which produce the boson peak, a broad band of low energy vibrational states. The decrease of boroxol rings with increasing pressure of synthesis is associated with the progressive depression of the excess low energy vibrations until their full disappearance in the crystalline phase, where the rings are missing. These observations prove that the additional soft vibrations in glasses arise from specific units whose formation is made possible by the poor atomic packing of the network.
Vibrational and thermodynamic properties of β-HMX: a first-principles investigation.
Wu, Zhongqing; Kalia, Rajiv K; Nakano, Aiichiro; Vashishta, Priya
2011-05-28
Thermodynamic properties of β-HMX crystal are investigated using the quasi-harmonic approximation and density functional theory within the local density approximation (LDA), generalized gradient approximation (GGA), and GGA + empirical van der Waals (vdW) correction. It is found that GGA well describes the thermal expansion coefficient and heat capacity but fails to produce correct bulk modulus and equilibrium volume. The vdW correction improves the bulk modulus and volume, but worsens the thermal expansion coefficient and heat capacity. In contrast, LDA describes all thermodynamic properties with reasonable accuracy, and overall is a good exchange-correlation functional for β-HMX molecular crystal. The results also demonstrate significant contributions of phonons to the equation of state. The static calculation of equilibrium volume for β-HMX differs from the room-temperature value incorporating lattice vibrations by over 5%. Therefore, for molecular crystals, it is essential to include phonon contributions when calculated equation of state is compared with experimental data at ambient condition. © 2011 American Institute of Physics
The impact of symmetric modes on intramolecular electron transfer: A semi-classical approach
NASA Astrophysics Data System (ADS)
Coropceanu, Veaceslav; Boldyrev, Sergei I.; Risko, Chad; Brédas, Jean-Luc
2006-07-01
We have generalized the Hush equations developed for the analysis of intervalence charge-transfer bands by including into the model the interaction with symmetric vibrations. Our results indicate that in symmetric class-II systems the maximum of the intervalence charge-transfer band is equal to the reorganization energy λ related to the antisymmetric vibrations as is the case in the conventional Hush model. In contrast, the corresponding transition dipole moment and the activation barrier for thermal electron transfer, in addition to their dependence on λ, also depend on the reorganization energy L related to symmetric vibrational modes. We show that the interaction with symmetric vibrational modes reduces the activation barrier and that the thermal electron-transfer rates derived on the basis of a Hush-type analysis of the optical data are generally underestimated.
Selfconsistent vibrational and free electron kinetics for CO2 dissociation in cold plasmas
NASA Astrophysics Data System (ADS)
Capitelli, Mario
2016-09-01
The activation of CO2 by cold plasmas is receiving new theoretical interest thanks to two European groups. The Bogaerts group developed a global model for the activation of CO2 trying to reproduce the experimental values for DBD and microwave discharges. The approach of Pietanza et al was devoted to understand the dependence of electron energy distribution function (eedf) of pure CO2 on the presence of concentrations of electronically and vibrationally excited states taken as parameter. To understand the importance of the vibrational excitation in the dissociation process Pietanza et al compared an upper limit to the dissociation process from a pure vibrational mechanism (PVM) with the corresponding electron impact dissociation rate, the prevalence of the two models depending on the reduced electric field and on the choice of the electron molecule cross section database. Improvement of the Pietanza et al model is being considered by coupling the time dependent Boltzmann solver with the non equilibrium vibrational kinetics of asymmetric mode and with simplified plasma chemistry kinetics describing the ionization/recombination process and the excitation-deexcitation of a metastable level at 10.5eV. A new PVM mechanism is also considered. Preliminary results, for both discharge and post discharge conditions, emphasize the action of superelastic collisions involving both vibrationally and electronically excited states in affecting the eedf. The new results can be used to plan a road map for future developments of numerical codes for rationalizing existing experimental values, as well as, for indicating new experimental situations.
Ground vibrations from heavy freight trains
NASA Astrophysics Data System (ADS)
Dawn, T. M.
1983-03-01
Ground vibration from heavy freight trains on good quality welded track are found to have only a weak dependence on train speed above 30 km/h. At the site on which these tests were carried out a critical speed was found at which the vibration reached a peak. The frequencies of vibration produced appear to be functions of track and vehicle dimensions and the critical speed occurs at the coincidence of sleeper passage frequency and the total vehicle on track resonance frequency.
Whole-body vibration exposure in sport: four relevant cases.
Tarabini, Marco; Saggin, Bortolino; Scaccabarozzi, Diego
2015-01-01
This study investigates the whole-body vibration exposure in kite surfing, alpine skiing, snowboarding and cycling. The vibration exposure was experimentally evaluated following the ISO 2631 guidelines. Results evidenced that the most critical axis is the vertical one. The weighted vibration levels are always larger than 2.5 m/s(2) and the vibration dose values are larger than 25 m/s(1.75). The exposure limit values of the EU directive are reached after 8-37 min depending on the sport. The vibration magnitude is influenced by the athletes' speed, by their skill level and sometimes by the equipment. The large vibration values suggest that the practice of sport activities may be a confounding factor in the aetiology of vibration-related diseases. The vibration exposure in some sports is expected to be large, but has never been quantified in the literature. Results of experiments performed in cycling, alpine and water sports outlined vibration levels exceeding the EU standard limit values.
Communication: Creation of molecular vibrational motions via the rotation-vibration coupling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shu, Chuan-Cun; School of Engineering and Information Technology, University of New South Wales at the Australian Defence Force Academy, Canberra, ACT 2600; Henriksen, Niels E., E-mail: neh@kemi.dtu.dk
2015-06-14
Building on recent advances in the rotational excitation of molecules, we show how the effect of rotation-vibration coupling can be switched on in a controlled manner and how this coupling unfolds in real time after a pure rotational excitation. We present the first examination of the vibrational motions which can be induced via the rotation-vibration coupling after a pulsed rotational excitation. A time-dependent quantum wave packet calculation for the HF molecule shows how a slow (compared to the vibrational period) rotational excitation leads to a smooth increase in the average bond length whereas a fast rotational excitation leads to amore » non-stationary vibrational motion. As a result, under field-free postpulse conditions, either a stretched stationary bond or a vibrating bond can be created due to the coupling between the rotational and vibrational degrees of freedom. The latter corresponds to a laser-induced breakdown of the adiabatic approximation for rotation-vibration coupling.« less
Advances in engineering science, volume 1
NASA Technical Reports Server (NTRS)
1976-01-01
Proceedings from a conference on engineering advances are presented, including materials science, fracture mechanics, and impact and vibration testing. The tensile strength and moisture transport of laminates are also discussed.
A DFT study of thermodynamic properties of C36 and C14 Fe2Zr Laves phases
NASA Astrophysics Data System (ADS)
Ali, Kawsar; Ghosh, P. S.; Arya, A. K.
2018-04-01
Fe-Zr alloys are promising materials for metallic waste immobilization in nuclear industry. C36 and C14 Fe2Zr Laves phases are frequently observed in Fe-Zr alloys that can host radionuclides. The phonon dispersions of C36 and C14 Fe2Zr Laves phases shows that both intermetallics are dynamically stable. The Helmholtz free energy, vibrational entropy, internal energy and specific heat at constant volume has been calculated. The zero point energies of C36 and C14 phases are 9.23 and 9.91 kJ/mole, respectively. The vibrational free energy becomes negative at 250 K and 270 K. The high temperature specific heat at constant volume of both intermetallics is 74 J/K/mole.
United States Air Force Summer Research Program 1991. Volume 1. Program Management Report
1992-01-09
rates to initial vibrational excitation. Rates for the relaxation of the nth-vibrational state were shown to be proportional to n.exp(on), where 0 is a...reduce speckle. This yields a signal proportional to the square root of the target intensity distribution. In theory this signal should yield the line of...eight velocity component. The averaged autocorrelation of the heterodyne signal yields a quantity proportional to the target intensity distribution
NASA Technical Reports Server (NTRS)
Boyd, D. E.; Rao, C. K. P.
1973-01-01
The derivation and application of a Rayleigh-Ritz modal vibration analysis are presented for ring and/or stringer stiffened noncircular cylindrical shells with arbitrary end conditions. Comparisons with previous results from experimental and analytical studies showed this method of analysis to be accurate for a variety of end conditions. Results indicate a greater effect of rings on natural frequencies than of stringers.
The Shock and Vibration Digest. Volume 12, Number 5.
1980-05-01
response 80-957 This paper presents a way of analyzing the vibration of a The Dynamics of Rotor- Bearing Systems with Axial t rotor shaft system coupled with...Research on the Flutter of Axial Turbomachine To use this stability criteria the loading must be conservative. The numerical results are compared...Stiffness on the Statically radial bearing forces and the load cal-icity are found approxi- Optimum Distance Between the Double Row Rolling mately valid for
The Shock and Vibration Digest. Volume 17. Number 7
1985-07-01
WORDS: Violins, Modal analysis Centro de Estudios c Investigaciones Tec- nicas de Guipu’coa, Barrio Ibaeta SIN, The vibrational behavior of a violin is...necessary in the transaction of business required by law of the De - partment of the Navy. Funds for printing of this publi- cation have been approved by...ground motion, amplified by the and much work has been done to improve dynamic response of a structure, that do elastomers. Other systems have been de
The Shock and Vibration Digest. Volume 15, Number 7
1983-07-01
systems noise -- for tant analytical tool, the statistical energy analysis example, from a specific metal, chain driven, con- method, has been the subject...34Experimental Determination of Vibration Parameters Re- ~~~quired in the Statistical Energy Analysis Meth- .,i. 31. Dubowsky, S. and Morris, T.L., "An...34Coupling Loss Factors for 55. Upton, R., "Sound Intensity -. A Powerful New Statistical Energy Analysis of Sound Trans- Measurement Tool," S/V, Sound
The Shock and Vibration Digest. Volume 18, Number 4
1986-04-01
determined by this procedure decreases though this equation includes several standard with the square toot of the numbers of records problems, for...earthquake design for nuclear 86-781 power plants in the FRG are recorded in the Vibratos of Nudear Fuel Assemblies: A Simpli- L German nuclear safety...Publications and Printing Pol- icy Committee. SVIC NOTES MANY THANKS"’-’ .e " ., On behalf of the Shock and Vibration Information Center, I wish to
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahart, Muhtar; Aihaiti, Dilare; Hemley, Russell J.
The pressure dependence of the Boson peak (BP) of glycerol, including its behavior across the liquid-glass transition, has been studied under pressure using Raman scattering. A significant increase of the BP frequency was observed with pressure up to 11 GPa at room temperature. The pressure dependence of BP frequency ν BP is proportional to (1+P/P 0) 1/3, where P and P 0 are the pressure and a constant, respectively, the spectra are consistent with a soft potential model. The characteristic length of medium range order is close in size to a cyclic trimer of glycerol molecules, which is predicted asmore » the medium range order of a BP vibration using molecular dynamics simulations. The pressure dependence of a characteristic length of medium range order is nearly constant. The pressure induced structural changes in glycerol can be understood in terms of the shrinkage of voids with cyclic trimers remaining up to at least 11 GPa. Lastly, the pressure dependence of intermolecular O-H stretching mode indicates that the intermolecular hydrogen bond distance gradually decreases below the glass transition pressure of ~5 GPa, while it becomes nearly constant in the glassy state indicating the disappearance of the free volume in the dense glass.« less
NASA Astrophysics Data System (ADS)
Ashoori, A. R.; Vanini, S. A. Sadough; Salari, E.
2017-04-01
In the present paper, vibration behavior of size-dependent functionally graded (FG) circular microplates subjected to thermal loading are carried out in pre/post-buckling of bifurcation/limit-load instability for the first time. Two kinds of frequently used thermal loading, i.e., uniform temperature rise and heat conduction across the thickness direction are considered. Thermo-mechanical material properties of FG plate are supposed to vary smoothly and continuously throughout the thickness based on power law model. Modified couple stress theory is exploited to describe the size dependency of microplate. The nonlinear governing equations of motion and associated boundary conditions are extracted through generalized form of Hamilton's principle and von-Karman geometric nonlinearity for the vibration analysis of circular FG plates including size effects. Ritz finite element method is then employed to construct the matrix representation of governing equations which are solved by two different strategies including Newton-Raphson scheme and cylindrical arc-length method. Moreover, in the following a parametric study is accompanied to examine the effects of the several parameters such as material length scale parameter, temperature distributions, type of buckling, thickness to radius ratio, boundary conditions and power law index on the dimensionless frequency of post-buckled/snapped size-dependent FG plates in detail. It is found that the material length scale parameter and thermal loading have a significant effect on vibration characteristics of size-dependent circular FG plates.
Piezoelectric pushers for active vibration control of rotating machinery
NASA Technical Reports Server (NTRS)
Palazzolo, A. B.; Kascak, A. F.; Lin, R. R.; Montague, J.; Alexander, R. M.
1989-01-01
The active control of rotordynamic vibrations and stability by magnetic bearings and electromagnetic shakers was discussed extensively in the literature. These devices, though effective, are usually large in volume and add significant weight to the stator. The use of piezoelectric pushers may provide similar degrees of effectiveness in light, compact packages. Analyses are contained which extend quadratic regulator, pole placement and derivative feedback control methods to the prescribed displacement character of piezoelectric pushers. The structural stiffness of the pusher is also included in the theory. Tests are currently being conducted at NASA Lewis Research Center with piezoelectric pusher-based active vibration control. Results performed on the NASA test rig as preliminary verification of the related theory are presented.
Studies on vibration characteristics of a pear using finite element method*
Song, Hui-zhi; Wang, Jun; Li, Yong-hui
2006-01-01
The variation of the vibration characteristics of a Huanghua pear was investigated using finite element simulations. A new image processing technique was used to obtain the unsymmetrical and un-spherical geometrical model of a pear. The vibration characteristics of this type of pear with the correlation of its behavior with geometrical configurations and material characteristics were investigated using numerical modal analysis. The results showed that the eigenfrequency increased with the increasing pear Young’s modulus, while decreased with increasing pear density, and decreased with increasing pear volume. The results of this study provided foundation for further investigations of the physical characteristics of fruits and vegetables by using finite element simulations. PMID:16691644
Ye, Ying; Griffin, Michael J
2016-04-01
This study investigated whether the reductions in finger blood flow induced by 125-Hz vibration applied to different locations on the hand depend on thresholds for perceiving vibration at these locations. Subjects attended three sessions during which vibration was applied to the right index finger, the right thenar eminence, or the left thenar eminence. Absolute thresholds for perceiving vibration at these locations were determined. Finger blood flow in the middle finger of both hands was then measured at 30-s intervals during five successive 5-min periods: (i) pre-exposure, (ii) pre-exposure with 2-N force, (iii) 2-N force with vibration, (iv) post-exposure with 2-N force, (v) recovery. During period (iii), vibration was applied at 15 dB above the absolute threshold for perceiving vibration at the right thenar eminence. Vibration at all three locations reduced finger blood flow on the exposed and unexposed hand, with greater reductions when vibrating the finger. Vibration-induced vasoconstriction was greatest for individuals with low thresholds and locations of excitation with low thresholds. Differences in vasoconstriction between subjects and between locations are consistent with the Pacinian channel mediating both absolute thresholds and vibration-induced vasoconstriction.
Chen, Jinglong; Sun, Hailiang; Wang, Shuai; He, Zhengjia
2016-01-01
Centrifugal booster fans are important equipment used to recover blast furnace gas (BFG) for generating electricity, but blade crack faults (BCFs) in centrifugal booster fans can lead to unscheduled breakdowns and potentially serious accidents, so in this work quantitative fault identification and an abnormal alarm strategy based on acquired historical sensor-dependent vibration data is proposed for implementing condition-based maintenance for this type of equipment. Firstly, three group dependent sensors are installed to acquire running condition data. Then a discrete spectrum interpolation method and short time Fourier transform (STFT) are applied to preliminarily identify the running data in the sensor-dependent vibration data. As a result a quantitative identification and abnormal alarm strategy based on compound indexes including the largest Lyapunov exponent and relative energy ratio at the second harmonic frequency component is proposed. Then for validation the proposed blade crack quantitative identification and abnormality alarm strategy is applied to analyze acquired experimental data for centrifugal booster fans and it has successfully identified incipient blade crack faults. In addition, the related mathematical modelling work is also introduced to investigate the effects of mistuning and cracks on the vibration features of centrifugal impellers and to explore effective techniques for crack detection. PMID:27171083
Vlahovicek, K; Munteanu, M G; Pongor, S
1999-01-01
Bending is a local conformational micropolymorphism of DNA in which the original B-DNA structure is only distorted but not extensively modified. Bending can be predicted by simple static geometry models as well as by a recently developed elastic model that incorporate sequence dependent anisotropic bendability (SDAB). The SDAB model qualitatively explains phenomena including affinity of protein binding, kinking, as well as sequence-dependent vibrational properties of DNA. The vibrational properties of DNA segments can be studied by finite element analysis of a model subjected to an initial bending moment. The frequency spectrum is obtained by applying Fourier analysis to the displacement values in the time domain. This analysis shows that the spectrum of the bending vibrations quite sensitively depends on the sequence, for example the spectrum of a curved sequence is characteristically different from the spectrum of straight sequence motifs of identical basepair composition. Curvature distributions are genome-specific, and pronounced differences are found between protein-coding and regulatory regions, respectively, that is, sites of extreme curvature and/or bendability are less frequent in protein-coding regions. A WWW server is set up for the prediction of curvature and generation of 3D models from DNA sequences (http:@www.icgeb.trieste.it/dna).
Subsynchronous vibrations in a high pressure centrifugal compressor: A case history
NASA Technical Reports Server (NTRS)
Evans, B. F.; Smalley, A. J.
1984-01-01
Two distinct aerodynamically excited vibrations in a high pressure low flow centrifugal compressor are documented. A measured vibration near 21% of running speed was identified as a nonresonant forced vibration which results from rotating stall in the diffuser; a measured vibration near 50% of running speed was identified as a self excited vibration sustained by cross coupling forces acting at the compressor wheels. The dependence of these characteristics on speed, discharge pressure, and changes in bearing design are shown. The exciting mechanisms of diffuser stall and aerodynamic cross coupling are evidenced. It is shown how the rotor characteristics are expected to change as a result of modifications. The operation of the compressor after the modifications is described.
Amide I vibrational circular dichroism of dipeptide: Conformation dependence and fragment analysis
NASA Astrophysics Data System (ADS)
Choi, Jun-Ho; Cho, Minhaeng
2004-03-01
The amide I vibrational circular dichroic response of alanine dipeptide analog (ADA) was theoretically investigated and the density functional theory calculation and fragment analysis results are presented. A variety of vibrational spectroscopic properties, local and normal mode frequencies, coupling constant, dipole, and rotational strengths, are calculated by varying two dihedral angles determining the three-dimensional ADA conformation. Considering two monopeptide fragments separately, we show that the amide I vibrational circular dichroism of the ADA can be quantitatively predicted. For several representative conformations of the model ADA, vibrational circular dichroism spectra are calculated by using both the density functional theory calculation and fragment analysis methods.
NASA Astrophysics Data System (ADS)
Nakayama, Tomohito; Yoshizawa, Shunsuke; Hirano, Atsushi; Tanaka, Takeshi; Shiraki, Kentaro; Hase, Muneaki
2017-12-01
Vibrational energy transfer from photoexcited single-wall carbon nanotubes (SWCNTs) to coupled proteins is a key to engineering thermally induced biological reactions, for example, in photothermal therapy. Here, we explored vibrational energy transfer from photoexcited SWCNTs to different adsorbed biological materials by means of a femtosecond pump-probe technique. We show that the vibrational relaxation time of the radial breathing modes in SWCNTs depends significantly on the structure of the coupled materials, that is, proteins or biopolymers, indicating that the vibrational energy transfer is governed by overlapping of the phonon densities of states of the SWCNTs and coupled materials.
The Shock and Vibration Digest. Volume 1, Number 12, December 1969.
Contents: Reviews of meetings; Short courses; Abstracts from the current literature (analysis and design methods, excitation, phenomenology, experimentation, components, systems); Book reviews; Calendar; Author index ; Subject index.
Evidence for a vibrational phase-dependent isotope effect on the photochemistry of vision.
Schnedermann, C; Yang, X; Liebel, M; Spillane, K M; Lugtenburg, J; Fernández, I; Valentini, A; Schapiro, I; Olivucci, M; Kukura, P; Mathies, R A
2018-04-01
Vibronic coupling is key to efficient energy flow in molecular systems and a critical component of most mechanisms invoking quantum effects in biological processes. Despite increasing evidence for coherent coupling of electronic states being mediated by vibrational motion, it is not clear how and to what degree properties associated with vibrational coherence such as phase and coupling of atomic motion can impact the efficiency of light-induced processes under natural, incoherent illumination. Here, we show that deuteration of the H 11 -C 11 =C 12 -H 12 double-bond of the 11-cis retinal chromophore in the visual pigment rhodopsin significantly and unexpectedly alters the photoisomerization yield while inducing smaller changes in the ultrafast isomerization dynamics assignable to known isotope effects. Combination of these results with non-adiabatic molecular dynamics simulations reveals a vibrational phase-dependent isotope effect that we suggest is an intrinsic attribute of vibronically coherent photochemical processes.
Reddy, Ch Sridhar; Prasad, M Durga
2016-04-28
An effective time dependent approach based on a method that is similar to the Gaussian wave packet propagation (GWP) technique of Heller is developed for the computation of vibrationally resolved electronic spectra at finite temperatures in the harmonic, Franck-Condon/Hertzberg-Teller approximations. Since the vibrational thermal density matrix of the ground electronic surface and the time evolution operator on that surface commute, it is possible to write the spectrum generating correlation function as a trace of the time evolved doorway state. In the stated approximations, the doorway state is a superposition of the harmonic oscillator zero and one quantum eigenfunctions and thus can be propagated by the GWP. The algorithm has an O(N(3)) dependence on the number of vibrational modes. An application to pyrene absorption spectrum at two temperatures is presented as a proof of the concept.
Zhang, Xiaoli; Wang, Baojian; Chen, Xuefeng
2015-01-01
With the rapid development of sensor technology, various professional sensors are installed on modern machinery to monitor operational processes and assure operational safety, which play an important role in industry and society. In this work a new operational safety assessment approach with wavelet Rényi entropy utilizing sensor-dependent vibration signals is proposed. On the basis of a professional sensor and the corresponding system, sensor-dependent vibration signals are acquired and analyzed by a second generation wavelet package, which reflects time-varying operational characteristic of individual machinery. Derived from the sensor-dependent signals’ wavelet energy distribution over the observed signal frequency range, wavelet Rényi entropy is defined to compute the operational uncertainty of a turbo generator, which is then associated with its operational safety degree. The proposed method is applied in a 50 MW turbo generator, whereupon it is proved to be reasonable and effective for operation and maintenance. PMID:25894934
Park, G. Barratt; Jiang, Jun; Saladrigas, Catherine A.; ...
2016-04-14
Here, the C 1B 2 state of SO 2 has a double-minimum potential in the antisymmetric stretch coordinate, such that the minimum energy geometry has nonequivalent SO bond lengths. However, low-lying levels with odd quanta of antisymmetric stretch (b 2 vibrational symmetry) have not previously been observed because transitions into these levels from the zero-point level of the X ~ state are vibronically forbidden. We use IR-UV double resonance to observe the b 2 vibrational levels of the C state below 1600 cm –1 of vibrational excitation. This enables a direct characterization of the vibrational level staggering that results frommore » the double-minimum potential. In addition, it allows us to deperturb the strong c-axis Coriolis interactions between levels of a 1 and b 2 vibrational symmetry, and to determine accurately the vibrational dependence of the rotational constants in the distorted C electronic state.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, G. Barratt; Jiang, Jun; Saladrigas, Catherine A.
Here, the C 1B 2 state of SO 2 has a double-minimum potential in the antisymmetric stretch coordinate, such that the minimum energy geometry has nonequivalent SO bond lengths. However, low-lying levels with odd quanta of antisymmetric stretch (b 2 vibrational symmetry) have not previously been observed because transitions into these levels from the zero-point level of the X ~ state are vibronically forbidden. We use IR-UV double resonance to observe the b 2 vibrational levels of the C state below 1600 cm –1 of vibrational excitation. This enables a direct characterization of the vibrational level staggering that results frommore » the double-minimum potential. In addition, it allows us to deperturb the strong c-axis Coriolis interactions between levels of a 1 and b 2 vibrational symmetry, and to determine accurately the vibrational dependence of the rotational constants in the distorted C electronic state.« less
NASA Technical Reports Server (NTRS)
Dompka, R. V.
1989-01-01
Under the NASA-sponsored Design Analysis Methods for VIBrationS (DAMVIBS) program, a series of ground vibration tests and NASTRAN finite element model (FEM) correlations were conducted on the Bell AH-1G helicopter gunship to investigate the effects of difficult components on the vibration response of the airframe. Previous correlations of the AH-1G showed good agreement between NASTRAN and tests through 15 to 20 Hz, but poor agreement in the higher frequency range of 20 to 30 Hz. Thus, this effort emphasized the higher frequency airframe vibration response correlations and identified areas that need further R and T work. To conduct the investigations, selected difficult components (main rotor pylon, secondary structure, nonstructural doors/panels, landing gear, engine, fuel, etc.) were systematically removed to quantify their effects on overall vibratory response of the airframe. The entire effort was planned and documented, and the results reviewed by NASA and industry experts in order to ensure scientific control of the testing, analysis, and correlation exercise. In particular, secondary structure and damping had significant effects on the frequency response of the airframe above 15 Hz. Also, the nonlinear effects of thrust stiffening and elastomer mounts were significant on the low frequency pylon modes below main rotor 1p (5.4 Hz). The results of the ground vibration testing are presented.
NASA Astrophysics Data System (ADS)
Zhang, Lulu; Gao, Shoubao; Song, Yuzhi; Meng, Qingtian
2018-03-01
The dependence of the cross section for the C + SH \\to H + CS, S + CH reactions on the vibrational excitation of SH(v = 0-20, j = 0) is analyzed in detail at the collision energies of 0.3 and 0.8 eV by using the quasi-classical trajectory method and the new potential energy surface (Song et al 2016 Sci. Rep. 6 37734) of the {{HCS}}({{X}}{}2{{A}}\\prime ). The efficiency of vibrational excitation to promote the reaction is investigated through the analysis of the cross section and its v dependence in terms of the reaction probability, maximum impact parameter, and the features of the potential energy surface. The differential cross sections obtained show that at higher vibrational levels, the products (CS, CH) are mainly forward scattered, and the sideward and backward scatterings are quite weak. In addition to the scalar properties, the stereodynamical attributes, such as angle distribution functions P(θ r ), P(ϕ r ) and P(θ r , ϕ r ) at different vibrational levels are explored in detail. Furthermore, through the investigation of the state-to-state dynamics for the titled reaction, it is clear that the vibrational excitation of the product for C + SH \\to H + CS reaction is quite strong, with the most probable population appearing at high vibration numbers.
Dimitrievska, Mirjana; White, James L.; Zhou, Wei; ...
2016-08-19
We investigated the structure-dependent vibrational properties of different Mg(BH 4) 2 polymorphs (α, β, γ, and δ phases) with a combination of neutron vibrational spectroscopy (NVS) measurements and density functional theory (DFT) calculations, with emphasis placed on the effects of the local structure and orientation of the BH 4 - anions. DFT simulations closely match the neutron vibrational spectra. The main bands in the low-energy region (20–80 meV) are associated with the BH4 - librational modes. The features in the intermediate energy region (80–120 meV) are attributed to overtones and combination bands arising from the lower-energy modes. The features inmore » the high-energy region (120–200 meV) correspond to the BH 4 - symmetric and asymmetric bending vibrations, of which four peaks located at 140, 142, 160, and 172 meV are especially intense. There are noticeable intensity distribution variations in the vibrational bands for different polymorphs. We can explain these differences using the spatial distribution of BH 4 - anions within various structures. An example of the possible identification of products after the hydrogenation of MgB 2, using NVS measurements, is presented. Our results provide fundamental insights of benefit to researchers currently studying these promising hydrogen-storage materials.« less
Kinetic theory for DNA melting with vibrational entropy
NASA Astrophysics Data System (ADS)
Sensale, Sebastian; Peng, Zhangli; Chang, Hsueh-Chia
2017-10-01
By treating DNA as a vibrating nonlinear lattice, an activated kinetic theory for DNA melting is developed to capture the breakage of the hydrogen bonds and subsequent softening of torsional and bending vibration modes. With a coarse-grained lattice model, we identify a key bending mode with GHz frequency that replaces the hydrogen vibration modes as the dominant out-of-phase phonon vibration at the transition state. By associating its bending modulus to a universal in-phase bending vibration modulus at equilibrium, we can hence estimate the entropic change in the out-of-phase vibration from near-equilibrium all-atom simulations. This and estimates of torsional and bending entropy changes lead to the first predictive and sequence-dependent theory with good quantitative agreement with experimental data for the activation energy of melting of short DNA molecules without intermediate hairpin structures.
Raytheon's next generation compact inline cryocooler architecture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaefer, B. R.; Bellis, L.; Ellis, M. J.
2014-01-29
Since the 1970s, Raytheon has developed, built, tested and integrated high performance cryocoolers. Our versatile designs for single and multi-stage cryocoolers provide reliable operation for temperatures from 10 to 200 Kelvin with power levels ranging from 50 W to nearly 600 W. These advanced cryocoolers incorporate clearance seals, flexure suspensions, hermetic housings and dynamic balancing to provide long service life and reliable operation in all relevant environments. Today, sensors face a multitude of cryocooler integration challenges such as exported disturbance, efficiency, scalability, maturity, and cost. As a result, cryocooler selection is application dependent, oftentimes requiring extensive trade studies to determinemore » the most suitable architecture. To optimally meet the needs of next generation passive IR sensors, the Compact Inline Raytheon Stirling 1-Stage (CI-RS1), Compact Inline Raytheon Single Stage Pulse Tube (CI-RP1) and Compact Inline Raytheon Hybrid Stirling/Pulse Tube 2-Stage (CI-RSP2) cryocoolers are being developed to satisfy this suite of requirements. This lightweight, compact, efficient, low vibration cryocooler combines proven 1-stage (RS1 or RP1) and 2-stage (RSP2) cold-head architectures with an inventive set of warm-end mechanisms into a single cooler module, allowing the moving mechanisms for the compressor and the Stirling displacer to be consolidated onto a common axis and in a common working volume. The CI cryocooler is a significant departure from the current Stirling cryocoolers in which the compressor mechanisms are remote from the Stirling displacer mechanism. Placing all of the mechanisms in a single volume and on a single axis provides benefits in terms of package size (30% reduction), mass (30% reduction), thermodynamic efficiency (>20% improvement) and exported vibration performance (≤25 mN peak in all three orthogonal axes at frequencies from 1 to 500 Hz). The main benefit of axial symmetry is that proven balancing techniques and hardware can be utilized to null all motion along the common axis. Low vibration translates to better sensor performance resulting in simpler, more direct mechanical mounting configurations, eliminating the need for convoluted, expensive, massive, long lead damping hardware.« less
Raytheon's next generation compact inline cryocooler architecture
NASA Astrophysics Data System (ADS)
Schaefer, B. R.; Bellis, L.; Ellis, M. J.; Conrad, T.
2014-01-01
Since the 1970s, Raytheon has developed, built, tested and integrated high performance cryocoolers. Our versatile designs for single and multi-stage cryocoolers provide reliable operation for temperatures from 10 to 200 Kelvin with power levels ranging from 50 W to nearly 600 W. These advanced cryocoolers incorporate clearance seals, flexure suspensions, hermetic housings and dynamic balancing to provide long service life and reliable operation in all relevant environments. Today, sensors face a multitude of cryocooler integration challenges such as exported disturbance, efficiency, scalability, maturity, and cost. As a result, cryocooler selection is application dependent, oftentimes requiring extensive trade studies to determine the most suitable architecture. To optimally meet the needs of next generation passive IR sensors, the Compact Inline Raytheon Stirling 1-Stage (CI-RS1), Compact Inline Raytheon Single Stage Pulse Tube (CI-RP1) and Compact Inline Raytheon Hybrid Stirling/Pulse Tube 2-Stage (CI-RSP2) cryocoolers are being developed to satisfy this suite of requirements. This lightweight, compact, efficient, low vibration cryocooler combines proven 1-stage (RS1 or RP1) and 2-stage (RSP2) cold-head architectures with an inventive set of warm-end mechanisms into a single cooler module, allowing the moving mechanisms for the compressor and the Stirling displacer to be consolidated onto a common axis and in a common working volume. The CI cryocooler is a significant departure from the current Stirling cryocoolers in which the compressor mechanisms are remote from the Stirling displacer mechanism. Placing all of the mechanisms in a single volume and on a single axis provides benefits in terms of package size (30% reduction), mass (30% reduction), thermodynamic efficiency (>20% improvement) and exported vibration performance (≤25 mN peak in all three orthogonal axes at frequencies from 1 to 500 Hz). The main benefit of axial symmetry is that proven balancing techniques and hardware can be utilized to null all motion along the common axis. Low vibration translates to better sensor performance resulting in simpler, more direct mechanical mounting configurations, eliminating the need for convoluted, expensive, massive, long lead damping hardware.
1983-08-01
because of Inadequate treatment of cir- cumferentially nonuniform flow. The Committee concludes that this topic would be important for some years to come. S...2. Propeller Induced Vibrations: Vibration due to propeller operation in a nonuniform wake field may arise from excitatirn transmitted both through...to allowable 0 267 _ levels of hull pressure values, surface forces, shaft bearing forces, and wake nonuniformity . These criteria are based on replies
The Shock and Vibration Digest. Volume 13. Number 8
1981-08-01
8), pp 1033-1040(1975). 15. Dupuis, H. and Härtung, E ., "Research on the Biomechanical Vibration Behavior of Man’s Bulbi," Graefes Archiv fur...AKTH AeE (1) In the equation Ae is the endurance strain range and E is Young’s modulus. To date the utility of this model has been demonstrated...held in Toronto, May 2- 4, 1977, STP 665 (1977). 66. Krempl, E ., "The Influence of State of Stress on Low-Cycle Fatigue of Structural Materials
NASA Technical Reports Server (NTRS)
Svalbonas, V.
1973-01-01
The User's manual for the shell theory automated for rotational structures (STARS) 2B and 2V (buckling, vibrations) is presented. Several features of the program are: (1) arbitrary branching of the shell meridians, (2) arbitrary boundary conditions, (3) minimum input requirements to describe a complex, practical shell of revolution structure, and (4) accurate analysis capability using a minimum number of degrees of freedom.
Fukuda, H; Kawaida, M; Oki, K; Kano, S; Kawasaki, Y; Tsuji, H; Kohno, N
1990-06-01
The phonatory examination was performed while monitoring vocal fold vibration by laryngostrobovideography. Vocal fold vibration was video-taped by a laryngostroboscope and flexible laryngofiberscope inserted through the nasal cavity. Simultaneously, the phonatory examination was conducted with a phonation analyzer. The data were entered into a personal microcomputer via an A/D converter and analyzed to obtain the parameters of sound pitch, sound intensity and mean expiratory air flow volume, which were superimposed on the color video monitor screen.
Factors Controlling Superelastic Damping Capacity of SMAs
NASA Astrophysics Data System (ADS)
Heller, L.; Šittner, P.; Pilch, J.; Landa, M.
2009-08-01
In this paper, questions linked to the practical use of superelastic damping exploiting stress-induced martensitic transformation for vibration damping are addressed. Four parameters, particularly vibration amplitude, prestrain, temperature of surroundings, and frequency, are identified as having the most pronounced influence on the superelastic damping. Their influence on superelastic damping of a commercially available superelastic NiTi wire was experimentally investigated using a self-developed dedicated vibrational equipment. Experimental results show how the vibration amplitude, frequency, prestrain, and temperature affect the capacity of a superelastic NiTi wire to dissipate energy of vibrations through the superelastic damping. A special attention is paid to the frequency dependence (i.e., rate dependence) of the superelastic damping. It is shown that this is nearly negligible in case the wire is in the thermal chamber controlling actively the environmental temperature. In case of wire exposed to free environmental temperature in actual damping applications, however, the superelastic damping capacity significantly decreases with increasing frequency. This was explained to be a combined effect of the heat effects affecting the mean wire temperature and material properties with the help of simulations using the heat equation coupled phenomenological SMA model.
Social context-dependent modification of courtship behaviour in Drosophila prolongata.
Setoguchi, Shiori; Kudo, Ayumi; Takanashi, Takuma; Ishikawa, Yukio; Matsuo, Takashi
2015-11-07
Induction of alternative mating tactics by surrounding conditions, such as the presence of conspecific males, is observed in many animal species. Satellite behaviour is a remarkable example in which parasitic males exploit the reproductive investment by other males. Despite the abundance of parasitic mating tactics, however, few examples are known in which males alter courtship behaviour as a counter tactic against parasitic rivals. The fruit fly Drosophila prolongata shows prominent sexual dimorphism in the forelegs. When courting females, males of D. prolongata perform 'leg vibration', in which a male vibrates the female's body with his enlarged forelegs. In this study, we found that leg vibration increased female receptivity, but it also raised a risk of interception of the female by rival males. Consequently, in the presence of rivals, males of D. prolongata shifted their courtship behaviour from leg vibration to 'rubbing', which was less vulnerable to interference by rival males. These results demonstrated that the males of D. prolongata adjust their courtship behaviour to circumvent the social context-dependent risk of leg vibration. © 2015 The Author(s).
Vibration-rotation interactions and ring-puckering in 3,3-dimethyl oxetane by microwave spectroscopy
NASA Astrophysics Data System (ADS)
López, Juan C.; Lesarri, Alberto G.; Villamañán, Rosa M.; Alonso, Josél.
1990-06-01
Ring puckering in 3,3-dimethyl oxetane has been investigated using microwave spectroscopy. Microwave spectra of the ground state, the first six ring-puckering excited states, and nine excited states of the methyl groups' deformation vibrations have been observed. The μa electric dipole moment component has been determined as 2.03(3) D from Stark-effect measurements. The vibrational dependence of the rotational constants is consistent with the ring-puckering potential function derived by Duckett et al. ( J. Mol. Spectrosc.69, 159-165 (1978)). Coriolis coupling interactions have been observed and are satisfactorily accounted for with a quartic centrifugal distortion Hamiltonian. The vibrational dependence of the centrifugal distortion constants has been analyzed using the theory developed by Creswell and Mills. In order to reproduce the experimental value of the vibration-rotation interaction parameter, {δμ ab}/{δQ}, a dynamical model allowing the rocking of the CH 3CCH 3 group should be used. The equilibrium ring puckering angle calculated with this model and the ring-puckering potential function is 17.5°.
NASA Astrophysics Data System (ADS)
Li, Zhixiong; Yan, Xinping; Wang, Xuping; Peng, Zhongxiao
2016-06-01
In the complex gear transmission systems, in wind turbines a crack is one of the most common failure modes and can be fatal to the wind turbine power systems. A single sensor may suffer with issues relating to its installation position and direction, resulting in the collection of weak dynamic responses of the cracked gear. A multi-channel sensor system is hence applied in the signal acquisition and the blind source separation (BSS) technologies are employed to optimally process the information collected from multiple sensors. However, literature review finds that most of the BSS based fault detectors did not address the dependence/correlation between different moving components in the gear systems; particularly, the popular used independent component analysis (ICA) assumes mutual independence of different vibration sources. The fault detection performance may be significantly influenced by the dependence/correlation between vibration sources. In order to address this issue, this paper presents a new method based on the supervised order tracking bounded component analysis (SOTBCA) for gear crack detection in wind turbines. The bounded component analysis (BCA) is a state of art technology for dependent source separation and is applied limitedly to communication signals. To make it applicable for vibration analysis, in this work, the order tracking has been appropriately incorporated into the BCA framework to eliminate the noise and disturbance signal components. Then an autoregressive (AR) model built with prior knowledge about the crack fault is employed to supervise the reconstruction of the crack vibration source signature. The SOTBCA only outputs one source signal that has the closest distance with the AR model. Owing to the dependence tolerance ability of the BCA framework, interfering vibration sources that are dependent/correlated with the crack vibration source could be recognized by the SOTBCA, and hence, only useful fault information could be preserved in the reconstructed signal. The crack failure thus could be precisely identified by the cyclic spectral correlation analysis. A series of numerical simulations and experimental tests have been conducted to illustrate the advantages of the proposed SOTBCA method for fatigue crack detection. Comparisons to three representative techniques, i.e. Erdogan's BCA (E-BCA), joint approximate diagonalization of eigen-matrices (JADE), and FastICA, have demonstrated the effectiveness of the SOTBCA. Hence the proposed approach is suitable for accurate gear crack detection in practical applications.
Pressure Dependence of the Boson Peak of Glassy Glycerol
Ahart, Muhtar; Aihaiti, Dilare; Hemley, Russell J.; ...
2017-05-31
The pressure dependence of the Boson peak (BP) of glycerol, including its behavior across the liquid-glass transition, has been studied under pressure using Raman scattering. A significant increase of the BP frequency was observed with pressure up to 11 GPa at room temperature. The pressure dependence of BP frequency ν BP is proportional to (1+P/P 0) 1/3, where P and P 0 are the pressure and a constant, respectively, the spectra are consistent with a soft potential model. The characteristic length of medium range order is close in size to a cyclic trimer of glycerol molecules, which is predicted asmore » the medium range order of a BP vibration using molecular dynamics simulations. The pressure dependence of a characteristic length of medium range order is nearly constant. The pressure induced structural changes in glycerol can be understood in terms of the shrinkage of voids with cyclic trimers remaining up to at least 11 GPa. Lastly, the pressure dependence of intermolecular O-H stretching mode indicates that the intermolecular hydrogen bond distance gradually decreases below the glass transition pressure of ~5 GPa, while it becomes nearly constant in the glassy state indicating the disappearance of the free volume in the dense glass.« less
Kurnosov, A; Cacciatore, M; Pirani, F; Laganà, A; Martí, C; Garcia, E
2017-07-13
We report in this paper an investigation on energy transfer processes from vibration to vibration and/or translation in thermal and subthermal regimes for the O 2 + N 2 system performed using quantum-classical calculations on different empirical, semiempirical, and ab initio potential energy surfaces. In particular, the paper focuses on the rationalization of the non-Arrhenius behavior (inversion of the temperature dependence) of the quasi-resonant vibration-to-vibration energy transfer transition rate coefficients at threshold. To better understand the microscopic nature of the involved processes, we pushed the calculations to the detail of the related cross sections and analyzed the impact of the medium and long-range components of the interaction on them. Furthermore, the variation with temperature of the dependence of the quasi-resonant rate coefficient on the vibrational energy gap between initial and final vibrational states and the effectiveness of quantum-classical calculations to overcome the limitations of the purely classical treatments were also investigated. These treatments, handled in an open molecular science fashion by chaining data and competencies of the various laboratories using a grid empowered molecular simulator, have allowed a rationalization of the dependence of the computed rate coefficients in terms of the distortion of the O 2 -N 2 configuration during the diatom-diatom collisions. A way of relating such distortions to a smooth and continuous progress variable, allowing a proper evolution from both long to closer range formulation of the interaction and from its entrance to exit channel (through the strong interaction region) relaxed graphical representations, is also discussed in the paper.
Improvement of force factor of magnetostrictive vibration power generator for high efficiency
NASA Astrophysics Data System (ADS)
Kita, Shota; Ueno, Toshiyuki; Yamada, Sotoshi
2015-05-01
We develop high power magnetostrictive vibration power generator for battery-free wireless electronics. The generator is based on a cantilever of parallel beam structure consisting of coil-wound Galfenol and stainless plates with permanent magnet for bias. Oscillating force exerted on the tip bends the cantilever in vibration yields stress variation of Galfenol plate, which causes flux variation and generates voltage on coil due to the law of induction. This generator has advantages over conventional, such as piezoelectric or moving magnet types, in the point of high efficiency, highly robust, and low electrical impedance. Our concern is the improvement of energy conversion efficiency dependent on the dimension. Especially, force factor, the conversion ratio of the electromotive force (voltage) on the tip velocity in vibration, has an important role in energy conversion process. First, the theoretical value of the force factor is formulated and then the validity was verified by experiments, where we compare four types of prototype with parameters of the dimension using 7.0 × 1.5 × 50 mm beams of Galfenol with 1606-turn wound coil. In addition, the energy conversion efficiency of the prototypes depending on load resistance was measured. The most efficient prototype exhibits the maximum instantaneous power of 0.73 W and energy of 4.7 mJ at a free vibration of frequency of 202 Hz in the case of applied force is 25 N. Further, it was found that energy conversion efficiency depends not only on the force factor but also on the damping (mechanical loss) of the vibration.
Thermoregulatory responses to heat and vibration in men
NASA Technical Reports Server (NTRS)
Spaul, W. A.; Spear, R. C.; Greenleaf, J. E.
1986-01-01
The effect of vibration on thermoregulatory responses was studied in heat-acclimated men exposed suddenly to simultaneous heat and whole body vibrations (WBVs) at two intensity levels, each at graded frequencies between 5 and 80 Hz. The mean rectal temperature (Tre) became elevated more quickly in the WBV exposures than in the controls (heat exposure alone). Both intensity- and frequency-dependent WBV relationships were recorded in localized blood flows and in sweat rates. Thus, vibration appears to reduce the efficiency of the cooling mechanisms during a heat exposure.
Estimating Vibrational Powers Of Parts In Fluid Machinery
NASA Technical Reports Server (NTRS)
Harvey, S. A.; Kwok, L. C.
1995-01-01
In new method of estimating vibrational power associated with component of fluid-machinery system, physics of flow through (or in vicinity of) component regarded as governing vibrations. Devised to generate scaling estimates for design of new parts of rocket engines (e.g., pumps, combustors, nozzles) but applicable to terrestrial pumps, turbines, and other machinery in which turbulent flows and vibrations caused by such flows are significant. Validity of method depends on assumption that fluid flows quasi-steadily and that flow gives rise to uncorrelated acoustic powers in different parts of pump.
Kausel, Wilfried; Chatziioannou, Vasileios; Moore, Thomas R; Gorman, Britta R; Rokni, Michelle
2015-06-01
Previous work has demonstrated that structural vibrations of brass wind instruments can audibly affect the radiated sound. Furthermore, these broadband effects are not explainable by assuming perfect coincidence of the frequency of elliptical structural modes with air column resonances. In this work a mechanism is proposed that has the potential to explain the broadband influences of structural vibrations on acoustical characteristics such as input impedance, transfer function, and radiated sound. The proposed mechanism involves the coupling of axial bell vibrations to the internal air column. The acoustical effects of such axial bell vibrations have been studied by extending an existing transmission line model to include the effects of a parasitic flow into vibrating walls, as well as distributed sound pressure sources due to periodic volume fluctuations in a duct with oscillating boundaries. The magnitude of these influences in typical trumpet bells, as well as in a complete instrument with an unbraced loop, has been studied theoretically. The model results in predictions of input impedance and acoustical transfer function differences that are approximately 1 dB for straight instruments and significantly higher when coiled tubes are involved or when very thin brass is used.
Liao, Zhipeng; Elekdag-Turk, Selma; Turk, Tamer; Grove, Johnathan; Dalci, Oyku; Chen, Junning; Zheng, Keke; Ali Darendeliler, M; Swain, Michael; Li, Qing
2017-07-26
The aim of this study is to investigate the biomechanics for orthodontic tooth movement (OTM) subjected to concurrent single-tooth vibration (50Hz) with conventional orthodontic force application, via a clinical study and computational simulation. Thirteen patients were recruited in the clinical study, which involved distal retraction of maxillary canines with 1.5N (150g) force for 12weeks. In a split mouth study, vibration and non-vibration sides were randomly assigned to each subject. Vibration of 50Hz, of approximately 0.2N (20g) of magnitude, was applied on the buccal surface of maxillary canine for the vibration group. A mode-based steady-state dynamic finite element analysis (FEA) was conducted based on an anatomically detailed model, complying with the clinical protocol. Both the amounts of space closure and canine distalization of the vibration group were significantly higher than those of the control group, as measured intra-orally or on models (p<0.05). Therefore it is indicated that a 50Hz and 20g single-tooth vibration can accelerate maxillary canine retraction. The volume-average hydrostatic stress (VHS) in the periodontal ligament (PDL) was computationally calculated to be higher with vibration compared with the control group for maxillary teeth and for both linguo-buccal and mesial-distal directions. An increase in vibratory frequency further amplified the PDL response before reaching a local natural frequency. An amplification of PDL response was also shown to be induced by vibration based on computational simulation. The vibration-enhanced OTM can be described by mild, vigorous and diminishing zones among which the mild zone is considered to be clinically beneficial. Copyright © 2017 Elsevier Ltd. All rights reserved.
Method and apparatus for determining material structural integrity
Pechersky, M.J.
1994-01-01
Disclosed are a nondestructive method and apparatus for determining the structural integrity of materials by combining laser vibrometry with damping analysis to determine the damping loss factor. The method comprises the steps of vibrating the area being tested over a known frequency range and measuring vibrational force and velocity vs time over the known frequency range. Vibrational velocity is preferably measured by a laser vibrometer. Measurement of the vibrational force depends on the vibration method: if an electromagnetic coil is used to vibrate a magnet secured to the area being tested, then the vibrational force is determined by the coil current. If a reciprocating transducer is used, the vibrational force is determined by a force gauge in the transducer. Using vibrational analysis, a plot of the drive point mobility of the material over the preselected frequency range is generated from the vibrational force and velocity data. Damping loss factor is derived from a plot of the drive point mobility over the preselected frequency range using the resonance dwell method and compared with a reference damping loss factor for structural integrity evaluation.
A nanogenerator as a self-powered sensor for measuring the vibration spectrum of a drum membrane
NASA Astrophysics Data System (ADS)
Yu, Aifang; Zhao, Yong; Jiang, Peng; Wang, Zhong Lin
2013-02-01
A nanogenerator (NG) is a device that converts vibration energy into electricity. Here, a flexible, small size and lightweight NG is successfully demonstrated as an active sensor for detecting the vibration spectrum of a drum membrane without the use of an external power source. The output current/voltage signal of the NG is a direct measure of the strain of the local vibrating drum membrane that contains rich informational content, such as, notably, the vibration frequency, vibration speed and vibration amplitude. In comparison to the laser vibrometer, which is excessively complex and expensive, this kind of small and low cost sensor based on an NG is also capable of detecting the local vibration frequency of a drum membrane accurately. A spatial arrangement of the NGs on the membrane can provide position-dependent vibration information on the surface. The measured frequency spectrum can be understood on the basis of the theoretically calculated vibration modes. This work expands the application of NGs and reveals the potential for developing sound wave detection, environmental/infrastructure monitoring and many more applications.
Lynch, Michael S; Slenkamp, Karla M; Cheng, Mark; Khalil, Munira
2012-07-05
Obtaining a detailed description of photochemical reactions in solution requires measuring time-evolving structural dynamics of transient chemical species on ultrafast time scales. Time-resolved vibrational spectroscopies are sensitive probes of molecular structure and dynamics in solution. In this work, we develop doubly resonant fifth-order nonlinear visible-infrared spectroscopies to probe nonequilibrium vibrational dynamics among coupled high-frequency vibrations during an ultrafast charge transfer process using a heterodyne detection scheme. The method enables the simultaneous collection of third- and fifth-order signals, which respectively measure vibrational dynamics occurring on electronic ground and excited states on a femtosecond time scale. Our data collection and analysis strategy allows transient dispersed vibrational echo (t-DVE) and dispersed pump-probe (t-DPP) spectra to be extracted as a function of electronic and vibrational population periods with high signal-to-noise ratio (S/N > 25). We discuss how fifth-order experiments can measure (i) time-dependent anharmonic vibrational couplings, (ii) nonequilibrium frequency-frequency correlation functions, (iii) incoherent and coherent vibrational relaxation and transfer dynamics, and (iv) coherent vibrational and electronic (vibronic) coupling as a function of a photochemical reaction.
Micro-machined resonator oscillator
Koehler, D.R.; Sniegowski, J.J.; Bivens, H.M.; Wessendorf, K.O.
1994-08-16
A micro-miniature resonator-oscillator is disclosed. Due to the miniaturization of the resonator-oscillator, oscillation frequencies of one MHz and higher are utilized. A thickness-mode quartz resonator housed in a micro-machined silicon package and operated as a telemetered sensor beacon'' that is, a digital, self-powered, remote, parameter measuring-transmitter in the FM-band. The resonator design uses trapped energy principles and temperature dependence methodology through crystal orientation control, with operation in the 20--100 MHz range. High volume batch-processing manufacturing is utilized, with package and resonator assembly at the wafer level. Unique design features include squeeze-film damping for robust vibration and shock performance, capacitive coupling through micro-machined diaphragms allowing resonator excitation at the package exterior, circuit integration and extremely small (0.1 in. square) dimensioning. A family of micro-miniature sensor beacons is also disclosed with widespread applications as bio-medical sensors, vehicle status monitors and high-volume animal identification and health sensors. The sensor family allows measurement of temperatures, chemicals, acceleration and pressure. A microphone and clock realization is also available. 21 figs.
Dong, Sheng; Dapino, Marcelo
2015-01-01
Friction and wear are detrimental to engineered systems. Ultrasonic lubrication is achieved when the interface between two sliding surfaces is vibrated at a frequency above the acoustic range (20 kHz). As a solid-state technology, ultrasonic lubrication can be used where conventional lubricants are unfeasible or undesirable. Further, ultrasonic lubrication allows for electrical modulation of the effective friction coefficient between two sliding surfaces. This property enables adaptive systems that modify their frictional state and associated dynamic response as the operating conditions change. Surface wear can also be reduced through ultrasonic lubrication. We developed a protocol to investigate the dependence of friction force reduction and wear reduction on the linear sliding velocity between ultrasonically lubricated surfaces. A pin-on-disc tribometer was built which differs from commercial units in that a piezoelectric stack is used to vibrate the pin at 22 kHz normal to the rotating disc surface. Friction and wear metrics including effective friction force, volume loss, and surface roughness are measured without and with ultrasonic vibrations at a constant pressure of 1 to 4 MPa and three different sliding velocities: 20.3, 40.6, and 87 mm/sec. An optical profilometer is utilized to characterize the wear surfaces. The effective friction force is reduced by 62% at 20.3 mm/sec. Consistently with existing theories for ultrasonic lubrication, the percent reduction in friction force diminishes with increasing speed, down to 29% friction force reduction at 87 mm/sec. Wear reduction remains essentially constant (49%) at the three speeds considered. PMID:26436691
Effect of whole-body vibration on bone properties in aging mice.
Wenger, Karl H; Freeman, James D; Fulzele, Sadanand; Immel, David M; Powell, Brian D; Molitor, Patrick; Chao, Yuh J; Gao, Hong-Sheng; Elsalanty, Mohammed; Hamrick, Mark W; Isales, Carlos M; Yu, Jack C
2010-10-01
Recent studies suggest that whole-body vibration (WBV) can improve measures of bone health for certain clinical conditions and ages. In the elderly, there also is particular interest in assessing the ability of physical interventions such as WBV to improve coordination, strength, and movement speed, which help prevent falls and fractures and maintain ambulation for independent living. The current study evaluated the efficacy of WBV in an aging mouse model. Two levels of vibration--0.5 and 1.5g--were applied at 32Hz to CB57BL/6 male mice (n=9 each) beginning at age 18 months and continuing for 12 weeks, 30 min/day, in a novel pivoting vibration device. Previous reports indicate that bone parameters in these mice begin to decrease substantially at 18 months, equivalent to mid-fifties for humans. Micro-computed tomography (micro-CT) and biomechanical assessments were made in the femur, radius, and lumbar vertebra to determine the effect of these WBV magnitudes and durations in the aging model. Sera also were collected for analysis of bone formation and breakdown markers. Mineralizing surface and cell counts were determined histologically. Bone volume in four regions of the femur did not change significantly, but there was a consistent shift toward higher mean density in the bone density spectrum (BDS), with the two vibration levels producing similar results. This new parameter represents an integral of the conventional density histogram. The amount of high density bone statistically improved in the head, neck, and diaphysis. Biomechanically, there was a trend toward greater stiffness in the 1.5 g group (p=0.139 vs. controls in the radius), and no change in strength. In the lumbar spine, no differences were seen due to vibration. Both vibration groups significantly reduced pyridinoline crosslinks, a collagen breakdown marker. They also significantly increased dynamic mineralization, MS/BS. Furthermore, osteoclasts were most numerous in the 1.5 g group (p≤ 0.05). These findings suggest that some benefits of WBV found in previous studies of young and mature rodent models may extend to an aging population. Density parameters indicated 0.5 g was more effective than 1.5 g. Serological markers, by contrast, favored 1.5 g, while biomechanically and histologically the results were mixed. Although the purported anabolic effect of WBV on bone homeostasis may depend on location and the parameter of interest, this emerging therapy at a minimum does not appear to compromise bone health by the measures studied here. Copyright © 2010 Elsevier Inc. All rights reserved.
33 CFR 159.103 - Vibration test.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., with liquid retention components, if any, filled with water to one-half of their volume, must be... the resonant frequency of the device (or at 55 cycles per second if there is no resonant frequency...
33 CFR 159.103 - Vibration test.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., with liquid retention components, if any, filled with water to one-half of their volume, must be... the resonant frequency of the device (or at 55 cycles per second if there is no resonant frequency...
33 CFR 159.103 - Vibration test.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., with liquid retention components, if any, filled with water to one-half of their volume, must be... the resonant frequency of the device (or at 55 cycles per second if there is no resonant frequency...
33 CFR 159.103 - Vibration test.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., with liquid retention components, if any, filled with water to one-half of their volume, must be... the resonant frequency of the device (or at 55 cycles per second if there is no resonant frequency...
Investigation of the performances of PZT vs rare earth (BaLaTiO3) vibration based energy harvester
NASA Astrophysics Data System (ADS)
Pak, Nehemiah; Aris, Hasnizah; Nadia Taib, Bibi
2017-11-01
This study proposes the investigation of two piezoelectric material namely PZT and Lanthanum Doped Barium Titanate (BaLaTiO3) performance as a vibration based energy harvester. The piezoelectric material when applied mechanical stress or strain produces electricity through the piezoelectric effect. The vibration energy would exude mechanical energy and thus apply mechanical force on the energy harvester. The energy harvester would be designed and simulated using the piezoelectric material individually. The studied outputs are divided to frequency response, the load dependence, and the acceleration dependence whereby measurement are observed and taken at maximum power output. The simulation is done using the cantilevers design which employs d31 type of constants. Three different simulations to study the dependence of output power on the resonant frequency response, load and acceleration have found that material that exhibit highest power generation was the BaLaTiO3.
Perception of fore-and-aft whole-body vibration intensity measured by two methods.
Forta, Nazım Gizem; Schust, Marianne
2015-01-01
This experimental study investigated the perception of fore-and-aft whole-body vibration intensity using cross-modality matching (CM) and magnitude estimation (ME) methods. Thirteen subjects were seated on a rigid seat without a backrest and exposed to sinusoidal stimuli from 0.8 to 12.5 Hz and 0.4 to 1.6 ms(-2) r.m.s. The Stevens exponents did not significantly depend on vibration frequency or the measurement method. The ME frequency weightings depended significantly on vibration frequency, but the CM weightings did not. Using the CM and ME weightings would result in higher weighted exposures than those calculated using the ISO (2631-1, 1997) Wd. Compared with ISO Wk, the CM and ME-weighted exposures would be greater at 1.6 Hz and lesser above that frequency. The CM and ME frequency weightings based on the median ratings for the reference vibration condition did not differ significantly. The lack of a method effect for weightings and for Stevens exponents suggests that the findings from the two methods are comparable. Frequency weighting curves for seated subjects for x-axis whole-body vibration were derived from an experiment using two different measurement methods and were compared with the Wd and Wk weighting curves in ISO 2631-1 (1997).
Baseline-dependent effect of noise-enhanced insoles on gait variability in healthy elderly walkers.
Stephen, Damian G; Wilcox, Bethany J; Niemi, James B; Franz, Jason R; Franz, Jason; Kerrigan, Dr; Kerrigan, D Casey; D'Andrea, Susan E
2012-07-01
The purpose of this study was to determine whether providing subsensory stochastic-resonance mechanical vibration to the foot soles of elderly walkers could decrease gait variability. In a randomized double-blind controlled trial, 29 subjects engaged in treadmill walking while wearing sandals customized with three actuators capable of producing stochastic-resonance mechanical vibration embedded in each sole. For each subject, we determined a subsensory level of vibration stimulation. After a 5-min acclimation period of walking with the footwear, subjects were asked to walk on the treadmill for six trials, each 30s long. Trials were pair-wise random: in three trials, actuators provided subsensory vibration; in the other trials, they did not. Subjects wore reflective markers to track body motion. Stochastic-resonance mechanical stimulation exhibited baseline-dependent effects on spatial stride-to-stride variability in gait, slightly increasing variability in subjects with least baseline variability and providing greater reductions in variability for subjects with greater baseline variability (p<.001). Thus, applying stochastic-resonance mechanical vibrations on the plantar surface of the foot reduces gait variability for subjects with more variable gait. Stochastic-resonance mechanical vibrations may provide an effective intervention for preventing falls in healthy elderly walkers. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Kojima, Hirohisa; Ieda, Shoko; Kasai, Shinya
2014-08-01
Underactuated control problems, such as the control of a space robot without actuators on the main body, have been widely investigated. However, few studies have examined attitude control problems of underactuated space robots equipped with a flexible appendage, such as solar panels. In order to suppress vibration in flexible appendages, a zero-vibration input-shaping technique was applied to the link motion of an underactuated planar space robot. However, because the vibrational frequency depends on the link angles, simple input-shaping control methods cannot sufficiently suppress the vibration. In this paper, the dependency of the vibrational frequency on the link angles is measured experimentally, and the time-delay interval of the input shaper is then tuned based on the frequency estimated from the link angles. The proposed control method is referred to as frequency-tuning input-shaped manifold-based switching control (frequency-tuning IS-MBSC). The experimental results reveal that frequency-tuning IS-MBSC is capable of controlling the link angles and the main body attitude to maintain the target angles and that the vibration suppression performance of the proposed frequency-tuning IS-MBSC is better than that of a non-tuning IS-MBSC, which does not take the frequency variation into consideration.
Bio-inspired heterogeneous composites for broadband vibration mitigation.
Chen, Yanyu; Wang, Lifeng
2015-12-08
Structural biological materials have developed heterogeneous and hierarchical architectures that are responsible for the outstanding performance to provide protection against environmental threats including static and dynamic loading. Inspired by this observation, this research aims to develop new material and structural concepts for broadband vibration mitigation. The proposed composite materials possess a two-layered heterogeneous architecture where both layers consist of high-volume platelet-shape reinforcements and low-volume matrix, similar to the well-known "brick and mortar" microstructure of biological composites. Using finite element method, we numerically demonstrated that broadband wave attenuation zones can be achieved by tailoring the geometric features of the heterogeneous architecture. We reveal that the resulting broadband attenuation zones are gained by directly superimposing the attenuation zones in each constituent layer. This mechanism is further confirmed by the investigation into the phonon dispersion relation of each layer. Importantly, the broadband wave attenuation capability will be maintained when the mineral platelet orientation is locally manipulated, yet a contrast between the mineral platelet concentrations of the two constituent layers is essential. The findings of this work will provide new opportunities to design heterogeneous composites for broadband vibration mitigation and impact resistance under mechanically challenging environmental conditions.
Bio-inspired heterogeneous composites for broadband vibration mitigation
NASA Astrophysics Data System (ADS)
Chen, Yanyu; Wang, Lifeng
2015-12-01
Structural biological materials have developed heterogeneous and hierarchical architectures that are responsible for the outstanding performance to provide protection against environmental threats including static and dynamic loading. Inspired by this observation, this research aims to develop new material and structural concepts for broadband vibration mitigation. The proposed composite materials possess a two-layered heterogeneous architecture where both layers consist of high-volume platelet-shape reinforcements and low-volume matrix, similar to the well-known “brick and mortar” microstructure of biological composites. Using finite element method, we numerically demonstrated that broadband wave attenuation zones can be achieved by tailoring the geometric features of the heterogeneous architecture. We reveal that the resulting broadband attenuation zones are gained by directly superimposing the attenuation zones in each constituent layer. This mechanism is further confirmed by the investigation into the phonon dispersion relation of each layer. Importantly, the broadband wave attenuation capability will be maintained when the mineral platelet orientation is locally manipulated, yet a contrast between the mineral platelet concentrations of the two constituent layers is essential. The findings of this work will provide new opportunities to design heterogeneous composites for broadband vibration mitigation and impact resistance under mechanically challenging environmental conditions.
Examining the Usefulness of ISO 10819 Anti-Vibration Glove Certification.
Budd, Diandra; House, Ron
2017-03-01
Anti-vibration gloves are commonly worn to reduce hand-arm vibration exposure from work with hand-held vibrating tools when higher priority and more effective controls are unavailable. For gloves to be marketed as 'anti-vibration' they must meet the vibration transmissibility criteria described in the International Organization for Standardization (ISO) standard 10819 (2013). Several issues exist with respect to the methodology used for glove testing as well as the requirements for glove design and composition in ISO 10819 (2013). The true usefulness of anti-vibration gloves at preventing hand-arm vibration syndrome (HAVS) is controversial, given that their performance is dependent on tool vibration characteristics and the anthropometrics of workers in real working conditions. The major risk associated with the use of anti-vibration gloves is that it will give employees and employers a false sense of protection against the negative effects of hand-transmitted vibration. This commentary examines the limitations of the current international standards for anti-vibration glove testing and certification, thereby calling into question the degree of protection that anti-vibration gloves provide against HAVS, and cautioning users to consider both their benefits and potential drawbacks on a case-by-case basis. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Excess molar volumes of mixtures of hexane + natural oils from 298.15 to 313.15 K
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzalez, C.; Resa, J.M.; Ruiz, A.
1997-03-01
Excess molar volume data for mixtures containing hexane with three edible oils: olive, corn, and pip of grape have been determined from density measurements at various temperatures between 298.15 and 313.15 K using a vibrating tube densimeter. Results have been correlated by the Redlich-Kister equation. Systems showed negative deviations from ideality in the whole composition range.
Vibrational Properties of Anhydrous and Partially Hydrated Uranyl Fluoride
Anderson, Brian B.; Kirkegaard, Marie C.; Miskowiec, Andrew J.; ...
2017-01-01
Uranyl fluoride (UO 2F 2) is a hygroscopic powder with two main structural phases: an anhydrous crystal and a partially hydrated crystal of the same R¯3m symmetry. The formally closed-shell electron structure of anhydrous UO 2F 2 is amenable to density functional theory calculations. We use density functional perturbation theory (DFPT) to calculate the vibrational frequencies of the anhydrous crystal structure and employ complementary inelastic neutron scattering and temperature-dependent Raman scattering to validate those frequencies. As a model closed-shell actinide, we investigated the effect of LDA, GGA, and non-local vdW functionals as well as the spherically-averaged Hubbard +U correction onmore » vibrational frequencies, electronic structure, and geometry of anhydrous UO 2F 2. A particular choice of U eff = 5.5 eV yields the correct U Oyl bond distance and vibrational frequencies for the characteristic Eg and A1g modes that are within the resolution of experiment. Inelastic neutron scattering and Raman scattering suggest a degree of water coupling to the lattice vibrations in the more experimentally accessible partially hydrated UO 2F 2 system, with the symmetric O-U-O stretching vibration shifted approximately 47 cm -1 lower in energy compared to the anhydrous structure. Evidence of water interaction with the uranyl ion is present from a two-peak decomposition of the uranyl stretching vibration in the Raman spectra and anion hydrogen stretching vibrations in the inelastic neutron scattering spectra. A first-order dehydration phase transition temperature is definitively identified to be 125 °C using temperature-dependent Raman scattering.« less
Coupled rotor/airframe vibration analysis program manual. Volume 2: Sample input and output listings
NASA Technical Reports Server (NTRS)
Cassarino, S.; Sopher, R.
1982-01-01
Sample input and output listings obtained with the base program (SIMVIB) of the coupled rotor/airframe vibration analysis and the external programs, G400/F389 and E927 are presented. Results for five of the base program test cases are shown. They represent different applications of the SIMVIB program to study the vibration characteristics of various dynamic configurations. Input and output listings obtained for one cycle of the G400/F389 coupled program are presented. Results from the rotor aeroelastic analysis E927 also appear. A brief description of the check cases is provided. A summary of the check cases for all the external programs interacting with the SIMVIB program is illustrated.
Vibration-Induced Kinesthetic Illusions and Corticospinal Excitability Changes.
Mancheva, Kapka; Rollnik, Jens D; Wolf, Werner; Dengler, Reinhard; Kossev, Andon
2017-01-01
The authors' aim was to investigate the changes of corticospinal excitability during kinesthetic illusions induced by tendon vibration. Motor-evoked potentials in response to transcranial magnetic stimulation were recorded from the vibrated flexor carpi radialis and its antagonist, extensor carpi radialis. The illusions were evoked under vision conditions without feedback for the position of the wrist (open or closed eyes). In these two conditions motor-evoked potential changes during vibration in the antagonist were not identical. This discrepancy may be a result of 2 simultaneously acting, different and opposite influences and the balance between them depends on visual conditions. Thus, the illusion was accompanied by the facilitation of corticospinal excitability in both vibrated muscle and its antagonist.
Acoustic monitoring of a ball sinking in vibrated granular sediments
NASA Astrophysics Data System (ADS)
van den Wildenberg, Siet; Léopoldès, Julien; Tourin, Arnaud; Jia, Xiaoping
2017-06-01
We develop an ultrasound probing to investigate the dynamics of a high density ball sinking in 3D opaque dense granular suspensions under horizontal weak vibrations. We show that the motion of the ball in these horizontally vibrated glass bead packings saturated by water is consistent with the frictional rheology. The extracted stress-strain relation evidences an evolution of flow behaviour from frictional creep to inertial regimes. Our main finding is that weak external vibration primarily affects the yield stress and controls the depth of sinking via vibration-induced sliding at the grain contact. Also, we observe that the extracted rheological parameters depend on the size of the probing ball, suggesting thus a non-local rheology.
NASA Astrophysics Data System (ADS)
Iwakuni, Kana; Okubo, Sho; Inaba, Hajime; Onae, Atsushi; Hong, Feng-Lei; Sasada, Hiroyuki; Yamada, Koichi MT
2016-06-01
We observe that the pressure-broadening coefficients depend on the ortho-para levels. The spectrum is taken with a dual-comb spectrometer which has the resolution of 48 MHz and the frequency accuracy of 8 digit when the signal-to-noise ratio is more than 20. In this study, about 4.4-Tz wide spectra of the P(31) to R(31) transitions in the νb{1}+νb{3} vibration band of 12C_2H_2 are observed at the pressure of 25, 60, 396, 1047, 1962 and 2654 Pa. Each rotation-vibration absorption line is fitted to Voight function and we determined pressure-broadening coefficients for each rotation-vibration transition. The Figure shows pressure broadening coefficient as a function of m. Here m is J"+1 for R and -J" for P-branch. The graph shows obvious dependence on ortho and para. We fit it to Pade function considering the population ratio of three-to-one for the ortho and para levels. This would lead to detailed understanding of the pressure boarding mechanism. S. Okubo et al., Applied Physics Express 8, 082402 (2015)
A passive means for cancellation of structurally radiated tones.
Zapfe, Jeffrey A; Ungar, Eric E
2003-01-01
The concept of cancellation of constant-frequency sound radiated from a vibrating surface by means of an attached mechanical oscillator is discussed. It is observed that the mass of a mechanical oscillator whose spring is attached to the vibrating surface will vibrate at comparatively large amplitudes and out of phase with that surface, provided that the surface vibrates at a frequency that is slightly higher than the oscillator's natural frequency. From this observation it is concluded that an oscillator's mass with a relatively small surface area can produce a volume velocity that is equal and opposite to that of the vibrating surface, resulting in cancellation of the sound radiated from the surface. Practical considerations in the design of such an oscillator are discussed, and the canceling performance from oscillators consisting of edge-supported circular disks is analyzed. An experimental canceling oscillator consisting of an edge-supported disk is described, and measurements made with this disk attached to a piston are shown to be in good agreement with analytical predictions. A tonal noise reduction exceeding 20 dB was demonstrated experimentally.
A comparison between swallowing sounds and vibrations in patients with dysphagia
Movahedi, Faezeh; Kurosu, Atsuko; Coyle, James L.; Perera, Subashan
2017-01-01
The cervical auscultation refers to the observation and analysis of sounds or vibrations captured during swallowing using either a stethoscope or acoustic/vibratory detectors. Microphones and accelerometers have recently become two common sensors used in modern cervical auscultation methods. There are open questions about whether swallowing signals recorded by these two sensors provide unique or complementary information about swallowing function; or whether they present interchangeable information. The aim of this study is to present a broad comparison of swallowing signals recorded by a microphone and a tri-axial accelerometer from 72 patients (mean age 63.94 ± 12.58 years, 42 male, 30 female), who underwent videofluoroscopic examination. The participants swallowed one or more boluses of thickened liquids of different consistencies, including thin liquids, nectar-thick liquids, and pudding. A comfortable self-selected volume from a cup or a controlled volume by the examiner from a 5ml spoon was given to the participants. A comprehensive set of features was extracted in time, information-theoretic, and frequency domains from each of 881 swallows presented in this study. The swallowing sounds exhibited significantly higher frequency content and kurtosis values than the swallowing vibrations. In addition, the Lempel-Ziv complexity was lower for swallowing sounds than those for swallowing vibrations. To conclude, information provided by microphones and accelerometers about swallowing function are unique and these two transducers are not interchangeable. Consequently, the selection of transducer would be a vital step in future studies. PMID:28495001
Laminated Thin Shell Structures Subjected to Free Vibration in a Hygrothermal Environment
NASA Technical Reports Server (NTRS)
Gotsis, Pascal K.; Guptill, James D.
1994-01-01
Parametric studies were performed to assess the effects of various parameters on the free-vibration behavior (natural frequencies) of (+/- theta)(sub 2) angle-ply, fiber composite, thin shell structures in a hygrothermal environment. Knowledge of the natural frequencies of structures is important in considering their response to various kinds of excitation, especially when structures and force systems are complex and when excitations are not periodic. The three dimensional, finite element structural analysis computer code CSTEM was used in the Cray YMP computer environment. The fiber composite shell was assumed to be cylindrical and made from T300 graphite fibers embedded in an intermediate-modulus, high-strength matrix. The following parameters were investigated: the length and the laminate thickness of the shell, the fiber orientation, the fiber volume fraction, the temperature profile through the thickness of the laminate, and laminates with different ply thicknesses. The results indicate that the fiber orientation and the length of the laminated shell had significant effects on the natural frequencies. The fiber volume fraction, the laminate thickness, and the temperature profile through the shell thickness had weak effects on the natural frequencies. Finally, the laminates with different ply thicknesses had an insignificant influence on the behavior of the vibrated laminated shell. Also, a single through-the-thickness, eight-node, three dimensional composite finite element analysis appears to be sufficient for investigating the free-vibration behavior of thin, composite, angle-ply shell structures.
Takata, Youichi; Hyono, Atsushi; Ohshima, Hiroyuki
2016-11-01
In order to elucidate an electroacoustic phenomenon of mixed micelles in an aqueous solution, we measured the colloid vibration current (CVI) in aqueous solutions of binary surfactant mixtures. Based on the thermodynamic treatment of critical micelle concentration (cmc) values determined by conductivity measurements, it was expected that dodecyltrimethylammonium bromide (DTAB) and dodecyltrimethylammonium chloride (DTAC) molecules would mix ideally in the micelle. However, the micelle composition as evaluated from the CVI measurement, based on the linear dependence of the CVI value on the micelle composition, differed from the aforementioned ideality. Considering these observations, we concluded that the CVI measurement was more sensitive to the counterion distribution near the micelle surface, whereas the thermodynamically determined micelle composition included the counterions more loosely bound in the diffuse double layer due to the electroneutrality condition included in its assumption. On the other hand, the phase diagram illustrating micelle formation in the lithium dodecyl sulfate (LiDS) - lithium perfluorooctane sulfonate (LiFOS) mixture system showed a heteroazeotropic point arising from the stronger interactions between homologous surfactants than between heterologous ones. Although the concentration dependence of CVI values was expected to drastically change at a heteroazeotropic point due to the enormous variation in the density of the micelle core, the results showed a monotonous change, which suggests that the density of the micelle core varies continuously. By taking the partial molar volume of fluorocarbon compounds in the hydrocarbon compounds into account, the density of the micelle core was affected by the size of the micelle as well as its constituents.
The Shock and Vibration Digest. Volume 7, Number 5, May 1975.
Contents: Dynamic response of fluid-filled shells; News briefs; Short courses; Abstracts from the current literature -- (Analysis and design, computer programs, environments, phenomenology, experimentation, components, systems); Author index ; Literature review; Book reviews.
Wehrle, Esther; Wehner, Tim; Heilmann, Aline; Bindl, Ronny; Claes, Lutz; Jakob, Franz; Amling, Michael; Ignatius, Anita
2014-08-01
Low-magnitude high-frequency vibration (LMHFV) provokes anabolic effects in non-fractured bone; however, in fracture healing, inconsistent results were reported and optimum vibration conditions remain unidentified. Here, we investigated frequency dependent effects of LMHFV on fracture healing. Twelve-week-old, female C57BL/6 mice received a femur osteotomy stabilized using an external fixator. The mice received whole-body vibrations (20 min/day) with 0.3g peak-to-peak acceleration and a frequency of either 35 or 45 Hz. After 10 and 21 days, the osteotomized femurs and intact bones (contra-lateral femurs, lumbar spine) were evaluated using bending-testing, µ-computed tomography, and histomorphometry. In non-fractured trabecular bone, vibration with 35 Hz significantly increased the relative amount of bone (+28%) and the trabecular number (+29%), whereas cortical bone was not influenced. LMHFV with 45 Hz failed to provoke anabolic effects in trabecular or cortical bone. Fracture healing was not significantly influenced by whole-body vibration with 35 Hz, whereas 45 Hz significantly reduced bone formation (-64%) and flexural rigidity (-34%) of the callus. Although the exact mechanisms remain open, our results suggest that small vibration setting changes could considerably influence LMHFV effects on bone formation in remodeling and repair, and even disrupt fracture healing, implicating caution when treating patients with impaired fracture healing. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
The vibrational dependence of dissociative recombination: Rate constants for N{sub 2}{sup +}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guberman, Steven L., E-mail: slg@sci.org
Dissociative recombination rate constants are reported with electron temperature dependent uncertainties for the lowest 5 vibrational levels of the N{sub 2}{sup +} ground state. The rate constants are determined from ab initio calculations of potential curves, electronic widths, quantum defects, and cross sections. At 100 K electron temperature, the rate constants overlap with the exception of the third vibrational level. At and above 300 K, the rate constants for excited vibrational levels are significantly smaller than that for the ground level. It is shown that any experimentally determined total rate constant at 300 K electron temperature that is smaller thanmore » 2.0 × 10{sup −7} cm{sup 3}/s is likely to be for ions that have a substantially excited vibrational population. Using the vibrational level specific rate constants, the total rate constant is in very good agreement with that for an excited vibrational distribution found in a storage ring experiment. It is also shown that a prior analysis of a laser induced fluorescence experiment is quantitatively flawed due to the need to account for reactions with unknown rate constants. Two prior calculations of the dissociative recombination rate constant are shown to be inconsistent with the cross sections upon which they are based. The rate constants calculated here contribute to the resolution of a 30 year old disagreement between modeled and observed N{sub 2}{sup +} ionospheric densities.« less
Theoretical studies of dissociative recombination
NASA Technical Reports Server (NTRS)
Guberman, S. L.
1985-01-01
The calculation of dissociative recombination rates and cross sections over a wide temperature range by theoretical quantum chemical techniques is described. Model calculations on electron capture by diatomic ions are reported which illustrate the dependence of the rates and cross sections on electron energy, electron temperature, and vibrational temperature for three model crossings of neutral and ionic potential curves. It is shown that cross sections for recombination to the lowest vibrational level of the ion can vary by several orders of magnitude depending upon the position of the neutral and ionic potential curve crossing within the turning points of the v = 1 vibrational level. A new approach for calculating electron capture widths is reported. Ab initio calculations are described for recombination of O2(+) leading to excited O atoms.
Lateral hopping of CO molecules on Pt(111) surface by femtosecond laser pulses
NASA Astrophysics Data System (ADS)
Hayashi, M.; Ootsuka, Y.; Paulsson, M.; Persson, B. N. J.; Ueba, H.
2009-12-01
Theory of heat transfer between adsorbate vibrational degrees of freedom and ultrafast laser heated hot electrons including vibrational intermode coupling is applied to calculate two-pulse correlation, laser fluence dependence and time dependence of lateral hopping of CO molecules from a step to terrace site on a stepped Pt (111) surface. The intermode coupling is a key ingredient to describe vibrational heating of the frustrated translation mode responsible for the CO hopping. The calculated results are in good agreement with the experimental results, especially if we scale down the experimentally determined absorbed fluence. It is found that CO hopping is induced by indirect heating of the FT mode by the FR mode with a strong frictional coupling to hot electrons.
NASA Technical Reports Server (NTRS)
Mckenzie, R. L.
1976-01-01
A semiclassical collision model is applied to the study of energy transfer rates between a vibrationally excited diatomic molecule and a structureless atom. The molecule is modeled as an anharmonic oscillator with a multitude of dynamically coupled vibrational states. Three main aspects in the prediction of vibrational energy transfer rates are considered. The applicability of the semiclassical model to an anharmonic oscillator is first evaluated for collinear encounters. Second, the collinear semiclassical model is applied to obtain numerical predictions of the vibrational energy transfer rate dependence on the initial vibrational state quantum number. Thermally averaged vibration-translation rate coefficients are predicted and compared with CO-He experimental values for both ground and excited initial states. The numerical model is also used as a basis for evaluating several less complete but analytic models. Third, the role of rational motion in the dynamics of vibrational energy transfer is examined. A three-dimensional semiclassical collision model is constructed with coupled rotational motion included. Energy transfer within the molecule is shown to be dominated by vibration-rotation transitions with small changes in angular momentum. The rates of vibrational energy transfer in molecules with rational frequencies that are very small in comparison to their vibrational frequency are shown to be adequately treated by the preceding collinear models.
Method and apparatus for determining material structural integrity
Pechersky, Martin
1996-01-01
A non-destructive method and apparatus for determining the structural integrity of materials by combining laser vibrometry with damping analysis techniques to determine the damping loss factor of a material. The method comprises the steps of vibrating the area being tested over a known frequency range and measuring vibrational force and velocity as a function of time over the known frequency range. Vibrational velocity is preferably measured by a laser vibrometer. Measurement of the vibrational force depends on the vibration method. If an electromagnetic coil is used to vibrate a magnet secured to the area being tested, then the vibrational force is determined by the amount of coil current used in vibrating the magnet. If a reciprocating transducer is used to vibrate a magnet secured to the area being tested, then the vibrational force is determined by a force gauge in the reciprocating transducer. Using known vibrational analysis methods, a plot of the drive point mobility of the material over the preselected frequency range is generated from the vibrational force and velocity measurements. The damping loss factor is derived from a plot of the drive point mobility over the preselected frequency range using the resonance dwell method and compared with a reference damping loss factor for structural integrity evaluation.
Vaxenburg, Roman; Wyche, Isis; Svoboda, Karel; Efros, Alexander L.
2018-01-01
Vibrations are important cues for tactile perception across species. Whisker-based sensation in mice is a powerful model system for investigating mechanisms of tactile perception. However, the role vibration plays in whisker-based sensation remains unsettled, in part due to difficulties in modeling the vibration of whiskers. Here, we develop an analytical approach to calculate the vibrations of whiskers striking objects. We use this approach to quantify vibration forces during active whisker touch at a range of locations along the whisker. The frequency and amplitude of vibrations evoked by contact are strongly dependent on the position of contact along the whisker. The magnitude of vibrational shear force and bending moment is comparable to quasi-static forces. The fundamental vibration frequencies are in a detectable range for mechanoreceptor properties and below the maximum spike rates of primary sensory afferents. These results suggest two dynamic cues exist that rodents can use for object localization: vibration frequency and comparison of vibrational to quasi-static force magnitude. These complement the use of quasi-static force angle as a distance cue, particularly for touches close to the follicle, where whiskers are stiff and force angles hardly change during touch. Our approach also provides a general solution to calculation of whisker vibrations in other sensing tasks. PMID:29584719
Qualitative models of seat discomfort including static and dynamic factors.
Ebe, K; Griffin, M J
2000-06-01
Judgements of overall seating comfort in dynamic conditions sometimes correlate better with the static characteristics of a seat than with measures of the dynamic environment. This study developed qualitative models of overall seat discomfort to include both static and dynamic seat characteristics. A dynamic factor that reflected how vibration discomfort increased as vibration magnitude increased was combined with a static seat factor which reflected seating comfort without vibration. The ability of the model to predict the relative and overall importance of dynamic and static seat characteristics on comfort was tested in two experiments. A paired comparison experiment, using four polyurethane foam cushions (50, 70, 100, 120 mm thick), provided different static and dynamic comfort when 12 subjects were exposed to one-third octave band random vertical vibration with centre frequencies of 2.5 and 5.5 Hz, at magnitudes of 0.00, 0.25 and 0.50 m x s(-2) rms measured beneath the foam samples. Subject judgements of the relative discomfort of the different conditions depended on both static and dynamic characteristics in a manner consistent with the model. The effect of static and dynamic seat factors on overall seat discomfort was investigated by magnitude estimation using three foam cushions (of different hardness) and a rigid wooden seat at six vibration magnitudes with 20 subjects. Static seat factors (i.e. cushion stiffness) affected the manner in which vibration influenced the overall discomfort: cushions with lower stiffness were more comfortable and more sensitive to changes in vibration magnitude than those with higher stiffness. The experiments confirm that judgements of overall seat discomfort can be affected by both the static and dynamic characteristics of a seat, with the effect depending on vibration magnitude: when vibration magnitude was low, discomfort was dominated by static seat factors; as the vibration magnitude increased, discomfort became dominated by dynamic factors.
An etched fiber optic vibration sensor to monitor the simply supported beam
NASA Astrophysics Data System (ADS)
Putha, Kishore; Dinakar, Dantala; Rao, Pachava V.; Sengupta, Dipankar; Srimannarayana, K.; Sai Shankar, M.
2012-04-01
A single mode fiber optic vibration senor is designed and demonstrated to monitor the vibration of a simply supported beam. A rectangular beam (length 30.8 cm, width 2.5cm and thickness 0.5mm) made of spring-steel is arranged as simply supported beam and is made to vibrate periodically. To sense the vibrations a telecommunication fiber is chemically etched such that its diameter reaches 50μm and is glued using an epoxy at the centre of the beam. A broadband light (1550nm) is launched into Fiber Bragg Grating (FBG) through a circulator. The light reflected by the FBG (1540.32nm) is coupled into the centre etched fibre through the circulator and is detected by photodiode connected to a transimpedance amplifier. The electrical signal is logged into the computer through NI-6016 DAQ. The sensor works on transmission power loss due to the mode volume mismatch and flexural strain (field strength) of the fiber due to the bending in the fiber with respect to the bending of the spring-steel beam. The beam is made to vibrate and the corresponding intensity of light is recorded. Fast Fourier transform (FFT) technique is used to measure the frequencies of vibration. The results show that this sensor can sense vibration of low frequency accurately and repeatability is high. The sensor has high linear response to axial displacement of about 0.8 mm with sensitivity of 32mV/10μm strain. This lowcost sensor may find a place in industry to monitor the vibrations of the beam structures and bridges.
NASA Astrophysics Data System (ADS)
Zhang, Lixiang; Wang, Wenquan; Guo, Yakun
Large eddy simulation is used to explore flow features and energy exchange physics between turbulent flow and structure vibration in the near-wall region with fluid-structure interaction (FSI). The statistical turbulence characteristics in the near-wall region of a vibrating wall, such as the skin frictional coefficient, velocity, pressure, vortices, and the coherent structures have been studied for an aerofoil blade passage of a true three-dimensional hydroturbine. The results show that (i) FSI greatly strengthens the turbulence in the inner region of y+ < 25; and (ii) the energy exchange mechanism between the flow and the vibration depends strongly on the vibration-induced vorticity in the inner region. The structural vibration provokes a frequent action between the low- and high-speed streaks to balance the energy deficit caused by the vibration. The velocity profile in the inner layer near the vibrating wall has a significant distinctness, and the viscosity effect of the fluid in the inner region decreases due to the vibration. The flow features in the inner layer are altered by a suitable wall vibration.
Low-cost vibration sensor based on dual fiber Bragg gratings and light intensity measurement.
Gao, Xueqing; Wang, Yongjiao; Yuan, Bo; Yuan, Yinquan; Dai, Yawen; Xu, Gang
2013-09-20
A vibration monitoring system based on light intensity measurement has been constructed, and the designed accelerometer is based on steel cantilever frame and dual fiber Bragg gratings (FBGs). By using numerical simulations for the dual FBGs, the dependence relationship of the area of main lobes on the difference of initial central wavelengths is obtained and the most optimal choice for the initial value and the vibration amplitude of the difference of central wavelengths of two FBGs is suggested. The vibration monitoring experiments are finished, and the measured data are identical to the simulated results.
Bovino, S; Bodo, E; Yurtsever, E; Gianturco, F A
2008-06-14
The interaction between the triplet state of the lithium dimer, (7)Li(2), with (4)He is obtained from accurate ab initio calculations where the vibrational dependence of the potential is newly computed. Vibrational quenching dynamics within a coupled-channel quantum treatment is carried out at ultralow energies, and large differences in efficiency as a function of the initial vibrational state of the targets are found as one compares the triplet results with those of the singlet state of the same target.
Vibrational and Thermal Properties of Oxyanionic Crystals
NASA Astrophysics Data System (ADS)
Korabel'nikov, D. V.
2018-03-01
The vibrational and thermal properties of dolomite and alkali chlorates and perchlorates were studied in the gradient approximation of density functional theory using the method of a linear combination of atomic orbitals (LCAO). Long-wave vibration frequencies, IR and Raman spectra, and mode Gruneisen parameters were calculated. Equation-of-state parameters, thermodynamic potentials, entropy, heat capacity, and thermal expansion coefficient were also determined. The thermal expansion coefficient of dolomite was established to be much lower than for chlorates and perchlorates. The temperature dependence of the heat capacity at T > 200 K was shown to be generally governed by intramolecular vibrations.
NASA Astrophysics Data System (ADS)
Meng, Qingyong; Meyer, Hans-Dieter
2017-05-01
To study the scattering of CO off a movable Cu(100) surface, extensive multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) calculations are performed based on the SAP [R. Marquardt et al., J. Chem. Phys. 132, 074108 (2010)] potential energy surface in conjunction with a recently developed expansion model [Q. Meng and H.-D. Meyer, J. Chem. Phys. 143, 164310 (2015)] for including lattice motion. The surface vibration potential is constructed by a sum of Morse potentials where the parameters are determined by simulating the vibrational energies of a clean Cu(100) surface. Having constructed the total Hamiltonian, extensive dynamical calculations in both time-independent and time-dependent schemes are performed. Two-layer MCTDH (i.e., normal MCTDH) block-improved-relaxations (time-independent scheme) show that increasing the number of included surface vibrational dimensions lets the vibrational energies of CO/Cu(100) decrease for the frustrated translation (T mode), which is of low energy but increase those of the frustrated rotation (R mode) and the CO-Cu stretch (S mode), whose vibrational energies are larger than the energies of the in-plane surface vibrations (˜79 cm-1). This energy-shifting behavior was predicted and discussed by a simple model in our previous publication [Q. Meng and H.-D. Meyer, J. Chem. Phys. 143, 164310 (2015)]. By the flux analysis of the MCTDH/ML-MCTDH propagated wave packets, we calculated the sticking probabilities for the X + 0D, X + 1D, X + 3D, X + 5D, and X + 15D systems, where "X" stands for the used dimensionality of the CO/rigid-surface system and the second entry denotes the number of surface degrees of freedom included. From these sticking probabilities, the X + 5D/15D calculations predict a slower decrease of sticking with increasing energy as compared to the sticking of the X + 0D/1D/3D calculations. This is because the translational energy of CO is more easily transferred to surface vibrations, when the vibrational dimensionality of the surface is enlarged.
Farrow, Darcie A; Smith, Eric R; Qian, Wei; Jonas, David M
2008-11-07
By analogy to the Raman depolarization ratio, vibrational quantum beats in pump-probe experiments depend on the relative pump and probe laser beam polarizations in a way that reflects vibrational symmetry. The polarization signatures differ from those in spontaneous Raman scattering because the order of field-matter interactions is different. Since pump-probe experiments are sensitive to vibrations on excited electronic states, the polarization anisotropy of vibrational quantum beats can also reflect electronic relaxation processes. Diagrammatic treatments, which expand use of the symmetry of the two-photon tensor to treat signal pathways with vibrational and vibronic coherences, are applied to find the polarization anisotropy of vibrational and vibronic quantum beats in pump-probe experiments for different stages of electronic relaxation in square symmetric molecules. Asymmetric vibrational quantum beats can be distinguished from asymmetric vibronic quantum beats by a pi phase jump near the center of the electronic spectrum and their disappearance in the impulsive limit. Beyond identification of vibrational symmetry, the vibrational quantum beat anisotropy can be used to determine if components of a doubly degenerate electronic state are unrelaxed, dephased, population exchanged, or completely equilibrated.
Pulse-parameter dependence of nuclear ``attosecond time delays''
NASA Astrophysics Data System (ADS)
Armstrong, Greg; Ursrey, D.; Hernandez, J. V.; Anis, F.; Severt, T.; Zohrabi, M.; Berry, Ben; Feizollah, Peyman; Jochim, Bethany; Kanaka Raju, P.; McKenna, J.; Gaire, B.; Carnes, K. D.; Ben-Itzhak, I.; Esry, B. D.
2017-04-01
One of the main goals of strong-field photodissociation is the control of chemical reactions. Recent experiments have successfully controlled the spatial asymmetry in D2+using two-color interferometry. These experiments achieved vibrational resolution, and so were able to determine the spatial asymmetry of a number of vibrational states as a function of two-color delay. The relative phase in the delay-dependent spatial asymmetry obtained in these experiments may be used to define a time delay in dissociation from adjacent vibrational states - a technique used previously to produce relative time delays in atomic ionization from the photoelectron spectrum. Further two-color measurements in this direction are being planned. As a guide to these experiments, we aim to determine theoretically the dependence of such delays on laser intensity, pulse length, and pulse shape. We also identify the parameters that maximize the contrast in the delay-dependent spatial asymmetry. This work is supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U. S. Department of Energy under Contract No. DE-FG02-86ER13191.
Vibrationally resolved photoelectron spectra of lower diamondoids: A time-dependent approach
NASA Astrophysics Data System (ADS)
Xiong, Tao; Włodarczyk, Radosław; Gallandi, Lukas; Körzdörfer, Thomas; Saalfrank, Peter
2018-01-01
Vibrationally resolved lowest-energy bands of the photoelectron spectra (PES) of adamantane, diamantane, and urotropine were simulated by a time-dependent correlation function approach within the harmonic approximation. Geometries and normal modes for neutral and cationic molecules were obtained from B3LYP hybrid density functional theory (DFT). It is shown that the simulated spectra reproduce the experimentally observed vibrational finestructure (or its absence) quite well. Origins of the finestructure are discussed and related to recurrences of autocorrelation functions and dominant vibrations. Remaining quantitative and qualitative errors of the DFT-derived PES spectra refer to (i) an overall redshift by ˜0.5 eV and (ii) the absence of satellites in the high-energy region of the spectra. The former error is shown to be due to the neglect of many-body corrections to ordinary Kohn-Sham methods, while the latter has been argued to be due to electron-nuclear couplings beyond the Born-Oppenheimer approximation [Gali et al., Nat. Commun. 7, 11327 (2016)].
NASA Astrophysics Data System (ADS)
Morozov, A. A.
2007-08-01
Polyatomic gas cloud expansion under pulsed laser evaporation is studied on the basis of one-dimensional direct Monte Carlo simulation. The effect of rotational-translational (RT) and vibrational-translational (VT) energy transfer on dynamics of the cloud expansion is considered. Efficiency of VT energy transfer dependence on the amount of evaporated matter is discussed. To analyze VT energy transfer impact, the number of collisions per molecule during the expansion is calculated. The data are generally in good agreement with available analytical and numerical predictions. Dependencies of the effective number of vibrational degrees of freedom on the number of vibrationally inelastic collisions are obtained and generalized. The importance of the consideration of energy transfer from the internal degrees of freedom to the translational ones is illustrated by an example of pulsed laser evaporation of polytetrafluoroethylene (PTFE). Based on the obtained regularities, analysis of experimental data on pulsed laser evaporation of aniline is performed. The calculated aniline vibrational temperature correlates well with the experimentally measured one.
NASA Astrophysics Data System (ADS)
Du, Yong; Xue, Jiadan; Cai, Qiang; Zhang, Qi
2018-02-01
Vibrational spectroscopic methods, including terahertz absorption and Raman scattering spectroscopy, were utilized for the characterization and analysis of gamma-aminobutyric acid (GABA), benzoic acid (BA), and the corresponding GABA-BA cocrystal formation under various pH values of aqueous solution. Vibrational spectroscopic results demonstrated that the solvent GABA-BA cocrystal, similar as grinding counterpart, possessed unique characteristic features compared with that of starting parent compounds. The change of vibrational modes for GABA-BA cocrystal comparing with starting components indicates there is strong inter-molecular interaction between GABA and BA molecules during its cocrystallization process. Formation of GABA-BA cocrystal under slow solvent evaporation is impacted by the pH value of aqueous solution. Vibrational spectra indicate that the GABA-BA cocrystal could be stably formed with the solvent condition of 2.00 ≤ pH ≤ 7.00. In contrast, such cocrystallization did not occur and the cocrystal would dissociate into its parent components when the pH value of solvent is lower than 2.00. This study provides experimental benchmark to discriminate and identify the structure of cocrystal and also pH-dependent cocrystallization effect with vibrational spectroscopic techniques in solid-state pharmaceutical fields.
The Shock and Vibration Digest. Volume 17, Number 1
1985-01-01
Also provided are a variety of exhib- possible cosmetic damaje to the sur- its to document schedule and cost rounding environment. Plans for con...132 Fenton , R.G ............................... 66 Book, W.J ................................. 38 Fiala, C
1984-12-14
VIj/D. tv, Response parameter, (I + 2 /D) ( VSt )-i; see Eq. (10). Z Cross flow displacement (m or ft). Y Cross flow displacement amplitude (mor ft). Y...pressure fluctuation spectra were increased for all values of a. The angular variation of the power spectral density (PSD) for case 12 (see Table 2) is...shedding was found. Spectral and statistical analysis indicated that different physical mecha- nisms take place at various angular positions on the
Quasi-steady vortical structures in vertically vibrating soap films
NASA Astrophysics Data System (ADS)
Vega, José M.; Higuera, F. J.; Weidman, P. D.
1998-10-01
An analysis of the quasi-steady streaming of the liquid in a vertically vibrated horizontal soap film is reported. The air around the soap film is seen to play a variety of roles: it transmits normal and tangential oscillatory stresses to the film, damps out Marangoni waves, and forces non-oscillatory deflection of the film and tangential motion of the liquid. Non-oscillatory volume forcing originating inside the liquid is also analysed. This forcing dominates the quasi-steady streaming when the excitation frequency is close to the eigenfrequency of a Marangoni mode of the soap film, while both volume forcing in the liquid and surface forcing of the gas on the liquid are important when no Marangoni mode resonates. Different manners by which the combined forcings can induce quasi-steady streaming motion are discussed and some numerical simulations of the quasi-steady liquid flow are presented.
A 63 K phase change unit integrating with pulse tube cryocoolers
NASA Astrophysics Data System (ADS)
Chunhui, Kong; Liubiao, Chen; Sixue, Liu; Yuan, Zhou; Junjie, Wang
2017-02-01
This article presents the design and computer model results of an integrated cooler system which consists of a single stage pulse tube cryocooler integrated with a small amount of a phase change material. A cryogenic thermal switch was used to thermally connect the phase change unit to the cold end of the cryocooler. During heat load operation, the cryogenic thermal switch is turned off to avoid vibrations. The phase change unit absorbs heat loads by melting a substance in a constant pressure-temperature-volume process. Once the substance has been melted, the cryogenic thermal turned on, the cryocooler can then refreeze the material. Advantages of this type of cooler are no vibrations during sensor operations; the ability to absorb increased heat loads; potentially longer system lifetime; and a lower mass, volume and cost. A numerical model was constructed from derived thermodynamic relationships for the cooling/heating and freezing/melting processes.
First-principles studies of PETN molecular crystal vibrational frequencies under high pressure
NASA Astrophysics Data System (ADS)
Perger, Warren; Zhao, Jijun
2005-07-01
The vibrational frequencies of the PETN molecular crystal were calculated using the first-principles CRYSTAL03 program which employs an all-electron LCAO approach and calculates analytic first derivatives of the total energy with respect to atomic displacements. Numerical second derivatives were used to enable calculation of the vibrational frequencies at ambient pressure and under various states of compression. Three different density functionals, B3LYP, PW91, and X3LYP were used to examine the effect of the exchange-correlation functional on the vibrational frequencies. The pressure-induced shift of the vibrational frequencies will be presented and compared with experiment. The average deviation with experimental results is shown to be on the order of 2-3%, depending on the functional used.
Quartz tuning-fork oscillations in He II and drag coefficient
NASA Astrophysics Data System (ADS)
Gritsenko, I. A.; Zadorozhko, A. A.; Neoneta, A. S.; Chagovets, V. K.; Sheshin, G. A.
2011-07-01
The temperature dependencies of drag coefficient for quartz tuning forks of various geometric dimensions, immersed in the He II, were determined experimentally in the temperature range 0.1-3 K. It is identified, that these dependencies are similar, but the values of drag coefficient are different for tuning forks with different geometric dimensions. It is shown, that the obtained specific drag coefficient depends only on the temperature and frequency of vibrations, when the value of drag coefficient is normalized to the surface area of moving tuning-fork prong. The temperature dependencies of normalized drag coefficient for the tuning forks of various dimensions, wire, and microsphere, oscillating in the Не II, are compared. It is shown, that in the ballistic regime of scattering of quasiparticles, these dependencies are identical and have a slope proportional to T4, which is determined by the density of thermal excitations. In the hydrodynamic regime at T > 0.5 K, the behavior of the temperature dependence of specific drag coefficient is affected by the size and frequency of vibrating body. The empirical relation, which allows to describe the behavior of specific drag coefficient for vibrating tuning forks, microsphere, and wire everywhere over the temperature region and at various frequencies, is proposed.
Payam, A. F.; Trewby, W.
2017-01-01
Many industrial and technological applications require precise determination of the viscosity and density of liquids. Such measurements can be time consuming and often require sampling substantial amounts of the liquid. These problems can partly be overcome with the use of microcantilevers but most existing methods depend on the specific geometry and properties of the cantilever, which renders simple, accurate measurement difficult. Here we present a new approach able to simultaneously quantify both the density and the viscosity of microliters of liquids. The method, based solely on the measurement of two characteristic frequencies of an immersed microcantilever, is completely independent of the choice of a cantilever. We derive analytical expressions for the liquid's density and viscosity and validate our approach with several simple liquids and different cantilevers. Application of our model to non-Newtonian fluids shows that the calculated viscosities are remarkably robust when compared to measurements obtained from a standard rheometer. However, the results become increasingly dependent on the cantilever geometry as the frequency-dependent nature of the liquid's viscosity becomes more significant. PMID:28352874
Tensile strength and failure mechanisms of tantalum at extreme strain rates
NASA Astrophysics Data System (ADS)
Hahn, Eric; Fensin, Saryu; Germann, Timothy; Meyers, Marc
Non-equilibrium molecular dynamics simulations are used to probe the tensile response of monocrystalline, bicrystalline, and nanocrystalline tantalum over six orders of magnitude of strain rate. Our analysis of the strain rate dependence of strength is extended to over nine orders of magnitude by bridging the present simulations to recent laser-driven shock experiments. Tensile strength shows a power-law dependence with strain rate over this wide range, with different relationships depending on the initial microstructure and active deformation mechanism. At high strain rates, multiple spall events occur independently and continue to occur until communication occurs by means of relaxation waves. Temperature plays a significant role in the reduction of spall strength as the initial shock required to achieve such large strain rates also contributes to temperature rise, through pressure-volume work as well as visco-plastic heating, which leads to softening and sometimes melting upon release. At ultra-high strain rates, those approaching or exceeding the atomic vibrational frequency, spall strength saturates at the ultimate cohesive strength of the material. UC Research Laboratories Grant (09-LR-06-118456-MEYM); Department of Energy NNSA/SSAP (DE-NA0002080); DOE ASCR Exascale Co-design Center for Materials in Extreme Environments.
Generation of mechanical vibrations in metal samples by the use of the pinch effect
NASA Astrophysics Data System (ADS)
Troitskiy, O. A.; Skvortsov, O. B.; Stashenko, V. I.
2017-07-01
The article presents the recent research in electrodynamic processes for metal samples exposed to current pulses. The pinch effect and the skin effect cause the vibration of the metal rods. The results of these studies show how current and magnetic field interact with material samples of gold, silver and copper. The analysis allowed establishing the dependences of peak acceleration on current density and conductor diameter. The dependencies can be used in metal workings and for nondestructive testing.
Magnetic resonance elastography using an air ball-actuator.
Numano, Tomokazu; Kawabata, Yoshihiko; Mizuhara, Kazuyuki; Washio, Toshikatsu; Nitta, Naotaka; Homma, Kazuhiro
2013-07-01
The purpose of this study was to develop a new technique for a powerful compact MR elastography (MRE) actuator based on a pneumatic ball-vibrator. This is a compact actuator that generates powerful centrifugal force vibrations via high speed revolutions of an internal ball using compressed air. This equipment is easy to handle due to its simple principles and structure. Vibration frequency and centrifugal force are freely adjustable via air pressure changes (air flow volume), and replacement of the internal ball. In order to achieve MRI compatibility, all parts were constructed from non-ferromagnetic materials. Vibration amplitudes (displacements) were measured optically by a laser displacement sensor. From a bench test of displacement, even though the vibration frequency increased, the amount of displacement did not decrease. An essential step in MRE is the generation of mechanical waves within tissue via an actuator, and MRE sequences are synchronized to several phase offsets of vibration. In this system, the phase offset was detected by a four-channel optical-fiber sensor, and it was used as an MRI trigger signal. In an agarose gel phantom experiment, this actuator was used to make an MR elastogram. This study shows that the use of a ball actuator for MRE is feasible. Copyright © 2013 Elsevier Inc. All rights reserved.
Theoretical study of the vibrational relaxation of the methyl radical in collisions with helium
NASA Astrophysics Data System (ADS)
Ma, Qianli; Dagdigian, Paul J.; Alexander, Millard H.
2013-03-01
We report a theoretical investigation of the relaxation of the umbrella vibrational mode (the ν2 mode) of the CH3 molecule in its ground tilde{X}^2A_2^' ' } electronic state in collisions with helium. We have calculated a four-dimensional potential energy surface (PES) for the interaction between CH3 with different umbrella displacements and a helium atom, using a restricted open-shell coupled-cluster method with inclusion of all single, double, and (perturbatively) triple excitations [RCCSD(T)]. With this PES we carried out full close-coupling scattering calculations including all CH3 umbrella-rotational levels with v2 ⩽ 3. To our knowledge, this work represents the first fully quantum calculations of ro-vibrational relaxation of a polyatomic. In more detail, we investigate propensities in the calculated ro-vibrational cross sections and the dependence on initial rotational excitation, as well as determining thermal rate constants. Overall, ro-vibrational relaxation is nearly two orders of magnitude less efficient than pure-rotational relaxation, with a noticeable dependence on the initial rotational level. We predict the room temperature v2 = 1 vibrational relaxation rate constant to be 5.4 × 10-12 cm3 molecule-1 s-1, compared to the rate constants for pure-rotational relaxation of the lower rotational levels (˜2.0 × 10-10 cm3 molecule-1 s-1).
Distributed measurement of acoustic vibration location with frequency multiplexed phase-OTDR
NASA Astrophysics Data System (ADS)
Iida, Daisuke; Toge, Kunihiro; Manabe, Tetsuya
2017-07-01
All-fiber distributed vibration sensing is attracting attention in relation to structural health monitoring because it is cost effective, offers high coverage of the monitored area and can detect various structural problems. And in particular the demand for high-speed vibration sensing operating at more than 10 kHz has increased because high frequency vibration indicates high energy and severe trouble in the monitored object. Optical fiber vibration sensing with phase-sensitive optical time domain reflectometry (phase-OTDR) has long been studied because it can be used for distributed vibration sensing in optical fiber. However, pulse reflectometry such as OTDR cannot measure high-frequency vibration whose cycle is shorter than the repetition time of the OTDR. That is, the maximum detectable frequency depends on fiber length. In this paper, we describe a vibration sensing technique with frequency-multiplexed OTDR that can detect the entire distribution of a high-frequency vibration thus allowing us to locate a high-speed vibration point. We can measure the position, frequency and dynamic change of a high-frequency vibration whose cycle is shorter than the repetition time. Both frequency and position are visualized simultaneously for a 5-km fiber with an 80-kHz frequency response and a 20-m spatial resolution.
NASA Astrophysics Data System (ADS)
Fatahi-Vajari, A.; Azimzadeh, Z.
2018-05-01
This paper investigates the nonlinear axial vibration of single-walled carbon nanotubes (SWCNTs) based on Homotopy perturbation method (HPM). A second order partial differential equation that governs the nonlinear axial vibration for such nanotubes is derived using doublet mechanics (DM) theory. To obtain the nonlinear natural frequency in axial vibration mode, this nonlinear equation is solved using HPM. The influences of some commonly used boundary conditions, amplitude of vibration, changes in vibration modes and variations of the nanotubes geometrical parameters on the nonlinear axial vibration characteristics of SWCNTs are discussed. It was shown that unlike the linear one, the nonlinear natural frequency is dependent to maximum vibration amplitude. Increasing the maximum vibration amplitude decreases the natural frequency of vibration compared to the predictions of the linear models. However, with increase in tube length, the effect of the amplitude on the natural frequency decreases. It was also shown that the amount and variation of nonlinear natural frequency is more apparent in higher mode vibration and two clamped boundary conditions. To show the accuracy and capability of this method, the results obtained herein were compared with the fourth order Runge-Kuta numerical results and good agreement was observed. It is notable that the results generated herein are new and can be served as a benchmark for future works.
Investigation of free vibration characteristics for skew multiphase magneto-electro-elastic plate
NASA Astrophysics Data System (ADS)
Kiran, M. C.; Kattimani, S.
2018-04-01
This article presents the investigation of skew multiphase magneto-electro-elastic (MMEE) plate to assess its free vibration characteristics. A finite element (FE) model is formulated considering the different couplings involved via coupled constitutive equations. The transformation matrices are derived to transform local degrees of freedom into the global degrees of freedom for the nodes lying on the skew edges. Effect of different volume fraction (Vf) on the free vibration behavior is explicitly studied. In addition, influence of width to thickness ratio, the aspect ratio, and the stacking arrangement on natural frequencies of skew multiphase MEE plate investigated. Particular attention has been paid to investigate the effect of skew angle on the non-dimensional Eigen frequencies of multiphase MEE plate with simply supported edges.
Reduction in finger blood flow induced by hand-transmitted vibration: effect of hand elevation.
Ye, Ying; Mauro, Marcella; Bovenzi, Massimo; Griffin, Michael J
2015-10-01
This study investigated the effect of hand elevation on reductions in finger blood flow (FBF) induced by hand-transmitted vibration. Fourteen males attended six sessions on six separate days, with a control sessions and a vibration session (125-Hz vibration at 44 ms(-2) rms) with the right hand supported at each of three elevations: 20 cm below heart level (HL), at HL, and 20 cm above HL. Finger blood flow on the left and right hand was measured every 30 s during each 25-min session comprised of five periods: (1) no force and no vibration (5 min), (2) 2-N force and no vibration (5 min), (3) 2-N force and vibration (5 min), (4) 2-N force and no vibration (5 min), and (5) no force and no vibration (5 min). Without vibration, FBF decreased with increasing elevation of the hand. During vibration of the right hand, FBF reduced on both hands. With elevation of the right hand, the percentage reduction in FBF due to vibration (relative to FBF on the same finger at the same elevation before exposure to vibration) was similar on the middle and little fingers of both hands. After cessation of vibration, there was delayed return of FBF with all three hand heights. Vibration of one hand reduces FBF on both exposed and unexposed hands, with the reduction dependent on the elevation of the hand. The mechanisms responsible for vibration-induced reductions in FBF seem to reduce blood flow as a percentage of the blood flow without vibration. Tasks requiring the elevation of the hands will be associated with lower FBF, and the FBF will be reduced further if there is exposure to hand-transmitted vibration.
Xu, Yupeng; Musser, Jordan; Li, Tingwen; ...
2017-07-22
It has been reported experimentally that granular particles can climb along a vertically vibrating tube partially inserted inside a granular silo. Here, we use the Discrete Element Method (DEM) available in the Multiphase Flow with Interphase eXchanges (MFIX) code to investigate this phenomenon. By tracking the movement of individual particles, the climbing mechanism was illustrated and analyzed. The numerical results show that a sufficiently high vibration strength is needed to form a low solids volume fraction region inside the lower end of the vibrating tube, a dense region in the middle of the tube, and to bring the particles outsidemore » from the top layers down to fill in the void. The results also show that particle compaction in the middle section of the tube is the main cause of the climbing. Consequently, varying parameters which influence the compacted region, such as the restitution coefficient, change the climbing height.« less
Dynamics of a grain-filled ball on a vibrating plate.
Pacheco-Vázquez, F; Ludewig, F; Dorbolo, S
2014-09-12
We study experimentally how the bouncing dynamics of a hollow ball on a vibrating plate is modified when it is partially filled with liquid or grains. Whereas empty and liquid-filled balls display a dominant chaotic dynamics, a ball with grains exhibits a rich variety of stationary states, determined by the grain size and filling volume. In the collisional regime, i.e., when the energy injected to the system is mainly dissipated by interparticle collisions, an unexpected period-1 orbit appears independently of the vibration conditions, over a wide range. This is a self-regulated state driven by the formation and collapse of a granular gas within the ball during one cycle. In the frictional regime (dissipation dominated by friction), the grains move collectively and generate different patterns and steady modes: oscillons, waves, period doubling, etc. From a phase diagram and a geometrical analysis, we deduce that these modes are the result of a coupling (synchronization) between the vibrating plate frequency and the trajectory followed by the particles inside the cavity.
Dynamics of a Grain-Filled Ball on a Vibrating Plate
NASA Astrophysics Data System (ADS)
Pacheco-Vázquez, F.; Ludewig, F.; Dorbolo, S.
2014-09-01
We study experimentally how the bouncing dynamics of a hollow ball on a vibrating plate is modified when it is partially filled with liquid or grains. Whereas empty and liquid-filled balls display a dominant chaotic dynamics, a ball with grains exhibits a rich variety of stationary states, determined by the grain size and filling volume. In the collisional regime, i.e., when the energy injected to the system is mainly dissipated by interparticle collisions, an unexpected period-1 orbit appears independently of the vibration conditions, over a wide range. This is a self-regulated state driven by the formation and collapse of a granular gas within the ball during one cycle. In the frictional regime (dissipation dominated by friction), the grains move collectively and generate different patterns and steady modes: oscillons, waves, period doubling, etc. From a phase diagram and a geometrical analysis, we deduce that these modes are the result of a coupling (synchronization) between the vibrating plate frequency and the trajectory followed by the particles inside the cavity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Yupeng; Musser, Jordan; Li, Tingwen
It has been reported experimentally that granular particles can climb along a vertically vibrating tube partially inserted inside a granular silo. Here, we use the Discrete Element Method (DEM) available in the Multiphase Flow with Interphase eXchanges (MFIX) code to investigate this phenomenon. By tracking the movement of individual particles, the climbing mechanism was illustrated and analyzed. The numerical results show that a sufficiently high vibration strength is needed to form a low solids volume fraction region inside the lower end of the vibrating tube, a dense region in the middle of the tube, and to bring the particles outsidemore » from the top layers down to fill in the void. The results also show that particle compaction in the middle section of the tube is the main cause of the climbing. Consequently, varying parameters which influence the compacted region, such as the restitution coefficient, change the climbing height.« less
Simulations of Bubble Motion in an Oscillating Liquid
NASA Astrophysics Data System (ADS)
Kraynik, A. M.; Romero, L. A.; Torczynski, J. R.
2010-11-01
Finite-element simulations are used to investigate the motion of a gas bubble in a liquid undergoing vertical vibration. The effect of bubble compressibility is studied by comparing "compressible" bubbles that obey the ideal gas law with "incompressible" bubbles that are taken to have constant volume. Compressible bubbles exhibit a net downward motion away from the free surface that does not exist for incompressible bubbles. Net (rectified) velocities are extracted from the simulations and compared with theoretical predictions. The dependence of the rectified velocity on ambient gas pressure, bubble diameter, and bubble depth are in agreement with the theory. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Ionization of NO at high temperature
NASA Technical Reports Server (NTRS)
Hansen, C. Frederick
1991-01-01
Space vehicles flying through the atmosphere at high speed are known to excite a complex set of chemical reactions in the atmospheric gases, ranging from simple vibrational excitation to dissociation, atom exchange, electronic excitation, ionization, and charge exchange. Simple arguments are developed for the temperature dependence of the reactions leading to ionization of NO, including the effect of vibrational electronic thermal nonequilibrium. NO ionization is the most important source of electrons at intermediate temperatures and at higher temperatures provides the trigger electrons that ionize atoms. Based on these arguments, recommendations are made for formulae which fit observed experimental results, and which include a dependence on both a heavy particle temperature and different vibration electron temperatures. In addition, these expressions will presumably provide the most reliable extrapolation of experimental results to much higher temperatures.
Electron-impact vibrational relaxation in high-temperature nitrogen
NASA Technical Reports Server (NTRS)
Lee, Jong-Hun
1992-01-01
Vibrational relaxation process of N2 molecules by electron-impact is examined for the future planetary entry environments. Multiple-quantum transitions from excited states to higher/lower states are considered for the electronic ground state of the nitrogen molecule N2 (X 1Sigma-g(+)). Vibrational excitation and deexcitation rate coefficients obtained by computational quantum chemistry are incorporated into the 'diffusion model' to evaluate the time variations of vibrational number densities of each energy state and total vibrational energy. Results show a non-Boltzmann distribution of number densities at the earlier stage of relaxation, which in turn suppresses the equilibrium process but affects little the time variation of total vibrational energy. An approximate rate equation and a corresponding relaxation time from the excited states, compatible with the system of flow conservation equations, are derived. The relaxation time from the excited states indicates the weak dependency of the initial vibrational temperature. The empirical curve-fit formula for the improved e-V relaxation time is obtained.
The vibration discomfort of standing people: evaluation of multi-axis vibration.
Thuong, Olivier; Griffin, Michael J
2015-01-01
Few studies have investigated discomfort caused by multi-axis vibration and none has explored methods of predicting the discomfort of standing people from simultaneous fore-and-aft, lateral and vertical vibration of a floor. Using the method of magnitude estimation, 16 subjects estimated their discomfort caused by dual-axis and tri-axial motions (octave-bands centred on either 1 or 4 Hz with various magnitudes in the fore-and-aft, lateral and vertical directions) and the discomfort caused by single-axis motions. The method of predicting discomfort assumed in current standards (square-root of the sums of squares of the three components weighted according to their individual contributions to discomfort) provided reasonable predictions of the discomfort caused by multi-axis vibration. Improved predictions can be obtained for specific stimuli, but no single simple method will provide accurate predictions for all stimuli because the rate of growth of discomfort with increasing magnitude of vibration depends on the frequency and direction of vibration.
Mode-selective vibrational modulation of charge transport in organic electronic devices
Bakulin, Artem A.; Lovrincic, Robert; Yu, Xi; Selig, Oleg; Bakker, Huib J.; Rezus, Yves L. A.; Nayak, Pabitra K.; Fonari, Alexandr; Coropceanu, Veaceslav; Brédas, Jean-Luc; Cahen, David
2015-01-01
The soft character of organic materials leads to strong coupling between molecular, nuclear and electronic dynamics. This coupling opens the way to influence charge transport in organic electronic devices by exciting molecular vibrational motions. However, despite encouraging theoretical predictions, experimental realization of such approach has remained elusive. Here we demonstrate experimentally that photoconductivity in a model organic optoelectronic device can be modulated by the selective excitation of molecular vibrations. Using an ultrafast infrared laser source to create a coherent superposition of vibrational motions in a pentacene/C60 photoresistor, we observe that excitation of certain modes in the 1,500–1,700 cm−1 region leads to photocurrent enhancement. Excited vibrations affect predominantly trapped carriers. The effect depends on the nature of the vibration and its mode-specific character can be well described by the vibrational modulation of intermolecular electronic couplings. This presents a new tool for studying electron–phonon coupling and charge dynamics in (bio)molecular materials. PMID:26246039
Mode-selective vibrational modulation of charge transport in organic electronic devices
NASA Astrophysics Data System (ADS)
Bakulin, Artem A.; Lovrincic, Robert; Yu, Xi; Selig, Oleg; Bakker, Huib J.; Rezus, Yves L. A.; Nayak, Pabitra K.; Fonari, Alexandr; Coropceanu, Veaceslav; Brédas, Jean-Luc; Cahen, David
2015-08-01
The soft character of organic materials leads to strong coupling between molecular, nuclear and electronic dynamics. This coupling opens the way to influence charge transport in organic electronic devices by exciting molecular vibrational motions. However, despite encouraging theoretical predictions, experimental realization of such approach has remained elusive. Here we demonstrate experimentally that photoconductivity in a model organic optoelectronic device can be modulated by the selective excitation of molecular vibrations. Using an ultrafast infrared laser source to create a coherent superposition of vibrational motions in a pentacene/C60 photoresistor, we observe that excitation of certain modes in the 1,500-1,700 cm-1 region leads to photocurrent enhancement. Excited vibrations affect predominantly trapped carriers. The effect depends on the nature of the vibration and its mode-specific character can be well described by the vibrational modulation of intermolecular electronic couplings. This presents a new tool for studying electron-phonon coupling and charge dynamics in (bio)molecular materials.
NASA Astrophysics Data System (ADS)
Liu, L. Z.; Wu, X. L.; Li, T. H.; Xiong, S. J.; Chen, H. T.; Chu, Paul K.
2011-12-01
Nanoscale spherical, cubic, and cuboid SnO2 nanocrystals (NCs) are used to investigate morphology-dependent low-frequency Raman scattering. A double-peak structure in which the linewidths and energy separation between two subpeaks decrease with increasing sizes of cuboid NCs is observed and attributed to the surface acoustic phonon modes confined in three dimensional directions and determined by the surface/interface compositions. The decrease in energy separation is due to weaker coupling between the acoustic modes in different vibration directions. Our experimental and theoretical studies clearly disclose the morphology-dependent surface vibrational behavior in self-assembled NCs.
Anomalous temperature dependence of the IR spectrum of polyalanine
NASA Astrophysics Data System (ADS)
Helenius, V.; Korppi-Tommola, J.; Kotila, S.; Nieminen, J.; Lohikoski, R.; Timonen, J.
1997-12-01
We have studied the temperature dependence of the infrared spectra of acetanilide (ACN), tryptophan-(alanine) 15, and tyrosine-(alanine) 15. No sidebands of the amide-I vibration were observed in the polypeptides, but two anomalous sidebands of the NH stretch with a similar temperature dependence as that of the anomalous amide-I vibrational mode at 1650 cm -1 of crystalline ACN were detected. Fermi resonance combined with the appearance of a red-shifted sideband of NH stretch through coupling to lattice modes seems to explain this band structure. Observations are indicative of excitons that may occur in polypeptides as well as in single crystals of ACN.
Stauffer, Hans U; Roy, Sukesh; Schmidt, Jacob B; Wrzesinski, Paul J; Gord, James R
2016-09-28
A resonantly enhanced, two-color, femtosecond time-resolved coherent anti-Stokes Raman scattering (CARS) approach is demonstrated and used to explore the nature of the frequency- and time-dependent signals produced by gas-phase nitric oxide (NO). Through careful selection of the input pulse wavelengths, this fully resonant electronically enhanced CARS (FREE-CARS) scheme allows rovibronic-state-resolved observation of time-dependent rovibrational wavepackets propagating on the vibrationally excited ground-state potential energy surface of this diatomic species. Despite the use of broadband, ultrafast time-resolved input pulses, high spectral resolution of gas-phase rovibronic transitions is observed in the FREE-CARS signal, dictated by the electronic dephasing timescales of these states. Analysis and computational simulation of the time-dependent spectra observed as a function of pump-Stokes and Stokes-probe delays provide insight into the rotationally resolved wavepacket motion observed on the excited-state and vibrationally excited ground-state potential energy surfaces of NO, respectively.
The Shock and Vibration Digest. Volume 12, Number 2,
1980-02-01
Malfunction Diagnosis Key Words: Design techniques, Equipment, Balancing tech- R.C. Eisenmann niques, Alignment Mech. Engrg. Services, North American...260 Edil, T.B ................. 362 Hignett, H.J.............. 379 Castro, G............... 409 Eisenmann , R.C ........... 395 Hill, R.C
NASA Astrophysics Data System (ADS)
Fujisaki, Hiroshi; Yagi, Kiyoshi; Kikuchi, Hiroto; Takami, Toshiya; Stock, Gerhard
2017-01-01
Performing comprehensive quantum-chemical calculations, a vibrational Hamiltonian of acetylbenzonitrile is constructed, on the basis of which a quantum-mechanical "tier model" is developed that describes the vibrational dynamics following excitation of the CN stretch mode. Taking into account 36 vibrational modes and cubic and quartic anharmonic couplings between up to three different modes, the tier model calculations are shown to qualitatively reproduce the main findings of the experiments of Rubtsov and coworkers (2011), including the energy relaxation of the initially excited CN mode and the structure-dependent vibrational transport. Moreover, the calculations suggest that the experimentally measured cross-peak among the CN and CO modes does not correspond to direct excitation of the CO normal mode but rather reflects excited low-frequency vibrations that anharmonically couple to the CO mode. Complementary quasiclassical trajectory calculations are found to be in good overall agreement with the quantum calculations.
Coherent vibrational climbing in carboxyhemoglobin
Ventalon, Cathie; Fraser, James M.; Vos, Marten H.; Alexandrou, Antigoni; Martin, Jean-Louis; Joffre, Manuel
2004-01-01
We demonstrate vibrational climbing in the CO stretch of carboxyhemoglobin pumped by midinfrared chirped ultrashort pulses. By use of spectrally resolved pump-probe measurements, we directly observed the induced absorption lines caused by excited vibrational populations up to v = 6. In some cases, we also observed stimulated emission, providing direct evidence of vibrational population inversion. This study provides important spectroscopic parameters on the CO stretch in the strong-field regime, such as transition frequencies and dephasing times up to the v = 6to v = 7 vibrational transition. We measured equally spaced vibrational transitions, in agreement with the energy levels of a Morse potential up to v = 6. It is interesting that the integral of the differential absorption spectra was observed to deviate far from zero, in contrast to what one would expect from a simple one-dimensional Morse model assuming a linear dependence of dipole moment with bond length. PMID:15319472
NASA Astrophysics Data System (ADS)
Kremer, Gilberto M.; Kunova, Olga V.; Kustova, Elena V.; Oblapenko, George P.
2018-01-01
A detailed kinetic-theory model for the vibrationally state-resolved transport coefficients is developed taking into account the dependence of the collision cross section on the size of vibrationally excited molecule. Algorithms for the calculation of shear and bulk viscosity, thermal conductivity, thermal diffusion and diffusion coefficients for vibrational states are proposed. The transport coefficients are evaluated for single-component diatomic gases N2, O2, NO, H2, Cl2 in the wide range of temperature, and the effects of molecular diameters and the number of accounted states are discussed. The developed model is applied to study wave propagation in diatomic gases. For the case of initial Boltzmann distribution, the influence of vibrational excitation on the phase velocity and attenuation coefficient is found to be weak. We expect more significant effect in the case of initial thermal non-equilibrium, for instance in gases with optically pumped selected vibrational states.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, C.F.; Light, J.C.
1986-02-01
The effective R-matrix model and the R-matrix propagative method applied earlier to elec- tron--diatomic-molecule scattering are extended to treat dissociative attachment of collinear triatomic molecules. To describe the vibrational excitation and dissociative attachment of CO/sub 2/ in the 4-eV region, the nuclear dynamics is solved on a Wall-Porter potential-energy surface. A hybrid approach is developed in which the L/sup 2/ and R-matrix propagation methods are combined to evaluate the global R matrix. Our calculations show that it is easier to excite the symmetric mode vibrations than the asymmetric mode vibrations. Our results also show that the observed structures in themore » energy dependence of the dissociative attachment cross sections are due to the vibrational states of the negative ion (CO/sub 2/ /sup -/) and not to the vibrational states of the CO fragment.« less
NASA Astrophysics Data System (ADS)
Schulze, Jan; Shibl, Mohamed F.; Al-Marri, Mohammed J.; Kühn, Oliver
2016-05-01
The coupled quantum dynamics of excitonic and vibrational degrees of freedom is investigated for high-dimensional models of the Fenna-Matthews-Olson complex. This includes a seven- and an eight-site model with 518 and 592 harmonic vibrational modes, respectively. The coupling between local electronic transitions and vibrations is described within the Huang-Rhys model using parameters that are obtained by discretization of an experimental spectral density. Different pathways of excitation energy flow are analyzed in terms of the reduced one-exciton density matrix, focussing on the role of vibrational and vibronic excitations. Distinct features due to both competing time scales of vibrational and exciton motion and vibronically assisted transfer are observed. The question of the effect of initial state preparation is addressed by comparing the case of an instantaneous Franck-Condon excitation at a single site with that of a laser field excitation.
Fluid-structure coupling in the guide vanes cascade of a pump-turbine scale model
NASA Astrophysics Data System (ADS)
Roth, S.; Hasmatuchi, V.; Botero, F.; Farhat, M.; Avellan, F.
2010-08-01
The present study concerns fluid-structure coupling phenomena occurring in a guide vane cascade of a pump-turbine scale model placed in the EPFL PF3 test rig. An advanced instrument set is used to monitor both vibrating structures and the surrounding flow. The paper highlights the interaction between vibrating guide vanes and the flow behavior. The pressure fluctuations in the stay vanes region are found to be strongly influenced by the amplitude of the vibrating guide vanes. Moreover, the flow induces different hydrodynamic damping on the vibrating guide vanes depending on the operating point of the pump-turbine.
Equilibrium structure and atomic vibrations of Nin clusters
NASA Astrophysics Data System (ADS)
Borisova, Svetlana D.; Rusina, Galina G.
2017-12-01
The equilibrium bond lengths and binding energy, second differences in energy and vibrational frequencies of free clusters Nin (2 ≤ n ≤ 20) were calculated with the use of the interaction potential obtained in the tight-binding approximation (TBA). The results show that the minimum vibration frequency plays a significant role in the evaluation of the dynamic stability of the clusters. A nonmonotonic dependence of the minimum vibration frequency of clusters on their size and the extreme values for the number of atoms in a cluster n = 4, 6, 13, and 19 are demonstrated. This result agrees with the theoretical and experimental data on stable structures of small metallic clusters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Brian B.; Kirkegaard, Marie C.; Miskowiec, Andrew J.
Uranyl fluoride (UO 2F 2) is a hygroscopic powder with two main structural phases: an anhydrous crystal and a partially hydrated crystal of the same R¯3m symmetry. The formally closed-shell electron structure of anhydrous UO 2F 2 is amenable to density functional theory calculations. We use density functional perturbation theory (DFPT) to calculate the vibrational frequencies of the anhydrous crystal structure and employ complementary inelastic neutron scattering and temperature-dependent Raman scattering to validate those frequencies. As a model closed-shell actinide, we investigated the effect of LDA, GGA, and non-local vdW functionals as well as the spherically-averaged Hubbard +U correction onmore » vibrational frequencies, electronic structure, and geometry of anhydrous UO 2F 2. A particular choice of U eff = 5.5 eV yields the correct U Oyl bond distance and vibrational frequencies for the characteristic Eg and A1g modes that are within the resolution of experiment. Inelastic neutron scattering and Raman scattering suggest a degree of water coupling to the lattice vibrations in the more experimentally accessible partially hydrated UO 2F 2 system, with the symmetric O-U-O stretching vibration shifted approximately 47 cm -1 lower in energy compared to the anhydrous structure. Evidence of water interaction with the uranyl ion is present from a two-peak decomposition of the uranyl stretching vibration in the Raman spectra and anion hydrogen stretching vibrations in the inelastic neutron scattering spectra. A first-order dehydration phase transition temperature is definitively identified to be 125 °C using temperature-dependent Raman scattering.« less
Electron-Molecule Col1isions: Quantitative Approaches, and the Legacy of Aaron Temkin
NASA Technical Reports Server (NTRS)
Schneider, B.I.
2007-01-01
This article, on electron-molecule collisions, is dedicated to the legacy of my good friend and sometime collaborator, Aaron Temkin on his retirement from the NASA-Goddard Space Flight Center after many years of work at the highest intellectual level in the theoretical treatment of electron-atom and electron-molecule scattering. Aaron's contributions to the manner in which we think about electron-molecule collisions is clear to all of us who have worked in this field. I doubt that the great progress that has occurred in the computational treatment of such complex collision problems could have happened without these contributions. For a brief historical account, see the discussion of Temkin's contribution to electron-molecule scattering in the first article of this volume by Dr. A. K. Bhatia. In this article, I will concentrate on the application of the so called, non-adiabatic R-matrix theory, to vibrational excitation and dissociative attachment, although I will also present some results applying the Linear Algebraic and Kohn-Variational methods to vibrational excitation. As a starting point for almost all computationally effective approaches to electron-molecule collisions, is the fixed nuclei approximation. That is, one recognizes, just as one does with molecular bound states, that there is a separation of electronic(fast) and nuclear(s1ow) degrees of freedom. This separation makes it possible to "freeze" the nuclei in space, calculate the collision parameters for the frozen molecule and then, somehow to add back the vibrations and rotations. The manner in which this is done, depends on the details of the collision problem. It is the work of Aaron and a number of other researchers that has provided the guidance necessary to resolve these issues.
Human mesenchymal stromal cells are mechanosensitive to vibration stimuli.
Kim, I S; Song, Y M; Lee, B; Hwang, S J
2012-12-01
Low-magnitude high-frequency (LMHF) vibrations have the ability to stimulate bone formation and reduce bone loss. However, the anabolic mechanisms that are mediated by vibration in human bone cells at the cellular level remain unclear. We hypothesized that human mesenchymal stromal cells (hMSCs) display direct osteoblastic responses to LMHF vibration signals. Daily exposure to vibrations increased the proliferation of hMSCs, with the highest efficiency occurring at a peak acceleration of 0.3 g and vibrations at 30 to 40 Hz. Specifically, these conditions promoted osteoblast differentiation through an increase in alkaline phosphatase activity and in vitro matrix mineralization. The effect of vibration on the expression of osteogenesis-related factors differed depending on culture method. hMSCs that underwent vibration in a monolayer culture did not exhibit any changes in the expressions of these genes, while cells in three-dimensional culture showed increased expression of type I collagen, osteoprotegerin, or VEGF, and VEGF induction appeared in 2 different hMSC lines. These results are among the first to demonstrate a dose-response effect upon LMHF stimulation, thereby demonstrating that hMSCs are mechanosensitive to LMHF vibration signals such that they could facilitate the osteogenic process.
NASA Astrophysics Data System (ADS)
Proskuryakov, K. N.
2017-11-01
Created new scientific direction: “Diagnosis, prognosis and prevention of vibration - acoustic resonances in the nuclear power plant (NPP) equipment. The possibility of using methods for calculating and analyzing electric oscillation systems in the study of the properties of acoustic systems with a two-phase medium is proved, based on the similarity of the differential equations describing the state of these systems. Is shown that the developed methods can be used to predict and prevent the occurrence of vibration - acoustic resonances in the NPP equipment. Is shown that the volume of pressurizer at NPPs with VVER and PWR as well as boiling water reactor that exploded at Japan’s NPP Fukushima Daiichi is a Helmholtz resonator, which contain water and steam volumes and able many times increases the impact on them of outside periodic oscillations. Paper presents most important results published long before the severe accidents at NPPs Three Mile Island (TMI), Chernobyl and Fukushima Daiichi that could be used for the prediction of a severe accident scenario, identification of measuring data and process control in order to minimize the damage. Worked out results also could be useful in another industrial technologies based on applications of single and two-phase flows.
NASA Astrophysics Data System (ADS)
Ishizeki, Keisuke; Sasaoka, Kenji; Konabe, Satoru; Souma, Satofumi; Yamamoto, Takahiro
2018-06-01
We theoretically investigate quantum decoherence in electronic currents flowing through metallic carbon nanotubes caused by thermal atomic vibrations using the time-dependent Schrödinger equation for an open system. We reveal that the quantum coherence of conduction electrons decays exponentially with tube length at a fixed temperature, and that the decay rate increases with temperature. We also find that the phase relaxation length due to the thermal atomic vibrations is inversely proportional to temperature.
Entropy in statistical energy analysis.
Le Bot, Alain
2009-03-01
In this paper, the second principle of thermodynamics is discussed in the framework of statistical energy analysis (SEA). It is shown that the "vibrational entropy" and the "vibrational temperature" of sub-systems only depend on the vibrational energy and the number of resonant modes. A SEA system can be described as a thermodynamic system slightly out of equilibrium. In steady-state condition, the entropy exchanged with exterior by sources and dissipation exactly balances the production of entropy by irreversible processes at interface between SEA sub-systems.
Stress-strain state of the structure in the service area of underground railway
NASA Astrophysics Data System (ADS)
Barabash, M.; Bashinsky, Y.; Korjakins, A.
2017-10-01
The paper focuses on numerical study how vibration due to underground trains influences the load-bearing building structures. Diagrams of vibration levels for monolithic floor slab depending on frequency are obtained. Levels of vibrations on floor slabs and columns are measured. The simulation of dynamic load from underground railway onto load-bearing building structures is presented as an example with account of load transmission through the soil. Recommendations for generation of design model in dynamic analysis of structure are provided.
The vibrational spectra and structure of 4-methyl oxaloacetate (carbomethoxypyruvic acid)
NASA Astrophysics Data System (ADS)
Schiering, David W.; Katon, J. E.
1986-04-01
The vibrational spectra of solid 4-methyl oxalocetate have been recorded. Infrared spectra were collected at ambient and liquid nitrogen temperatures; Raman spectra were collected at ambient temperature only. A tentative vibrational assignment of the solid is proposed based on a dimer structure composed of two enolic monomer units hydrogen bonded through the carboxylic acid group. 4-Methyl oxaloacetate was found to undergo keto—enol tautomerization in solution, and the solvent dependency of this equilibrium was demonstrated.
Vibration Isolation for a Pulse-Tube Research Cryostat
NASA Astrophysics Data System (ADS)
Boyd, S. T. P.
2007-03-01
Commercial pulse-tube refrigerators (PTRs) now provide base temperatures < 3K, low vibration, and long life. However, vibration levels are still often too large for LT and ULT measurements. One highly successful approach to vibration isolation in very small cryostats has been the use of 1-atm He exchange gas, in an envelope with a flexible element, interposed between the cold head and the cryostat. A design study to scale up this technique for a PTR research cryostat has previously been presented. However, some questions remained, given the violation of ``adiabaticity'' of the ``pulse tubes'' in the PTR and the potential for convective flow and Taconis oscillations of the exchange gas in the open geometry. We present experimental results obtained on the cryostat with a rigid exchange-gas volume, which permitted the variation of exchange-gas pressure. The news is all good so far: the heat exchangers perform well and in reasonable agreement with calculations, no evidence is seen of deleterious effects due to convection or Taconis oscillations or gas permeation, and the 2.8K PTR base temperature is only raised by 0.1K or less. Work to implement the fully-vibration-isolated cryostat is now underway.
In vivo imaging and vibration measurement of Guinea pig cochlea
NASA Astrophysics Data System (ADS)
Choudhury, Niloy; Chen, Fangyi; Zheng, Jiefu; Nuttall, Alfred L.; Jacques, Steven L.
2008-02-01
An optical coherence tomography (OCT) system was built to acquire in vivo, both images and vibration measurements of the organ of Corti of the guinea pig. The organ of Corti was viewed through a ~500-μm diameter hole in the bony wall of the scala tympani of the first cochlear turn. In imaging mode, the image was acquired as reflectance R(x,z). In vibration mode, the basilar membrane (BM) or reticular lamina (RL) was selected based on the image. Under software control, the system would move the scanning mirrors to bring the sensing volume of the measurement to the desired tissue location. To address the gain stability problem of the homodyne OCT system, arising from the system moving in and out of the quadrature point and also to resolve the 180 degree ambiguity in the phase measurement using an interferometer, a vibration calibration method is developed by adding a vibrating source to the reference arm to monitor the operating point of the interferometric system. Amplitude gain and phase of various cochlear membranes was measured for different sound pressure level (SPL) varying from 65dB SPL to 93 dB SPL.
A method of transmissibility design for dual-chamber pneumatic vibration isolator
NASA Astrophysics Data System (ADS)
Lee, Jeung-Hoon; Kim, Kwang-Joon
2009-06-01
Dual-chamber pneumatic vibration isolators have a wide range of applications for vibration isolation of vibration-sensitive equipment. Recent advances in precision machine tools and instruments such as medical devices and those related to nano-technology require better isolation performance, which can be efficiently achieved by precise modeling- and design- of the isolation system. This paper discusses an efficient transmissibility design method of a pneumatic vibration isolator wherein a complex stiffness model of a dual-chamber pneumatic spring developed in our previous study is employed. Three design parameters, the volume ratio between the two pneumatic chambers, the geometry of the capillary tube connecting the two pneumatic chambers, and, finally, the stiffness of the diaphragm employed for prevention of air leakage, were found to be important factors in transmissibility design. Based on a design technique that maximizes damping of the dual-chamber pneumatic spring, trade-offs among the resonance frequency of transmissibility, peak transmissibility, and transmissibility in high frequency range were found, which were not ever stated in previous researches. Furthermore, this paper discusses the negative role of the diaphragm in transmissibility design. The design method proposed in this paper is illustrated through experimental measurements.
Mechanisms of Coupled Vibrational Relaxation and Dissociation in Carbon Dioxide.
Armenise, Iole; Kustova, Elena
2018-05-21
A complete vibrational state-specific kinetic scheme describing dissociating carbon dioxide mixtures is proposed. CO 2 symmetric, bending and asymmetric vibrations and dissociation-recombination are strongly coupled through inter-mode vibrational energy transfers. Comparative study of state-resolved rate coefficients is carried out; the effect of different transitions may vary considerably with temperature. A non-equilibrium 1-D boundary layer flow typical to hypersonic planetary entry is studied in the state-to-state approach. To assess the sensitivity of fluid-dynamic variables and heat transfer to various vibrational transitions and chemical reactions, corresponding processes are successively included to the kinetic scheme. It is shown that vibrational-translational (VT) transitions in the symmetric and asymmetric modes do not alter the flow and can be neglected whereas the VT 2 exchange in the bending mode is the main channel of vibrational relaxation. Inter-mode vibrational exchanges affect the flow implicitly, through energy redistribution enhancing VT relaxation; the dominating role belongs to near-resonant transitions between symmetric and bending modes as well as between CO molecules and CO 2 asymmetric mode. Strong coupling between VT 2 relaxation and chemical reactions is emphasized. While vibrational distributions and average vibrational energy show strong dependence on the kinetic scheme, the heat flux is more sensitive to chemical reactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kita, Shota, E-mail: happiest3.7@gmail.com; Ueno, Toshiyuki; Yamada, Sotoshi
We develop high power magnetostrictive vibration power generator for battery-free wireless electronics. The generator is based on a cantilever of parallel beam structure consisting of coil-wound Galfenol and stainless plates with permanent magnet for bias. Oscillating force exerted on the tip bends the cantilever in vibration yields stress variation of Galfenol plate, which causes flux variation and generates voltage on coil due to the law of induction. This generator has advantages over conventional, such as piezoelectric or moving magnet types, in the point of high efficiency, highly robust, and low electrical impedance. Our concern is the improvement of energy conversionmore » efficiency dependent on the dimension. Especially, force factor, the conversion ratio of the electromotive force (voltage) on the tip velocity in vibration, has an important role in energy conversion process. First, the theoretical value of the force factor is formulated and then the validity was verified by experiments, where we compare four types of prototype with parameters of the dimension using 7.0 × 1.5 × 50 mm beams of Galfenol with 1606-turn wound coil. In addition, the energy conversion efficiency of the prototypes depending on load resistance was measured. The most efficient prototype exhibits the maximum instantaneous power of 0.73 W and energy of 4.7 mJ at a free vibration of frequency of 202 Hz in the case of applied force is 25 N. Further, it was found that energy conversion efficiency depends not only on the force factor but also on the damping (mechanical loss) of the vibration.« less
Padula, Daniele; Lee, Myeong H; Claridge, Kirsten; Troisi, Alessandro
2017-11-02
In this paper, we adopt an approach suitable for monitoring the time evolution of the intramolecular contribution to the spectral density of a set of identical chromophores embedded in their respective environments. We apply the proposed method to the Fenna-Matthews-Olson (FMO) complex, with the objective to quantify the differences among site-dependent spectral densities and the impact of such differences on the exciton dynamics of the system. Our approach takes advantage of the vertical gradient approximation to reduce the computational demands of the normal modes analysis. We show that the region of the spectral density that is believed to strongly influence the exciton dynamics changes significantly in the timescale of tens of nanoseconds. We then studied the impact of the intramolecular vibrations on the exciton dynamics by considering a model of FMO in a vibronic basis and neglecting the interaction with the environment to isolate the role of the intramolecular exciton-vibration coupling. In agreement with the assumptions in the literature, we demonstrate that high frequency modes at energy much larger than the excitonic energy splitting have negligible influence on exciton dynamics despite the large exciton-vibration coupling. We also find that the impact of including the site-dependent spectral densities on exciton dynamics is not very significant, indicating that it may be acceptable to apply the same spectral density on all sites. However, care needs to be taken for the description of the exciton-vibrational coupling in the low frequency part of intramolecular modes because exciton dynamics is more susceptible to low frequency modes despite their small Huang-Rhys factors.
Tool-specific performance of vibration-reducing gloves for attenuating fingers-transmitted vibration
Welcome, Daniel E.; Dong, Ren G.; Xu, Xueyan S.; Warren, Christopher; McDowell, Thomas W.
2016-01-01
BACKGROUND Fingers-transmitted vibration can cause vibration-induced white finger. The effectiveness of vibration-reducing (VR) gloves for reducing hand transmitted vibration to the fingers has not been sufficiently examined. OBJECTIVE The objective of this study is to examine tool-specific performance of VR gloves for reducing finger-transmitted vibrations in three orthogonal directions (3D) from powered hand tools. METHODS A transfer function method was used to estimate the tool-specific effectiveness of four typical VR gloves. The transfer functions of the VR glove fingers in three directions were either measured in this study or during a previous study using a 3D laser vibrometer. More than seventy vibration spectra of various tools or machines were used in the estimations. RESULTS When assessed based on frequency-weighted acceleration, the gloves provided little vibration reduction. In some cases, the gloves amplified the vibration by more than 10%, especially the neoprene glove. However, the neoprene glove did the best when the assessment was based on unweighted acceleration. The neoprene glove was able to reduce the vibration by 10% or more of the unweighted vibration for 27 out of the 79 tools. If the dominant vibration of a tool handle or workpiece was in the shear direction relative to the fingers, as observed in the operation of needle scalers, hammer chisels, and bucking bars, the gloves did not reduce the vibration but increased it. CONCLUSIONS This study confirmed that the effectiveness for reducing vibration varied with the gloves and the vibration reduction of each glove depended on tool, vibration direction to the fingers, and finger location. VR gloves, including certified anti-vibration gloves do not provide much vibration reduction when judged based on frequency-weighted acceleration. However, some of the VR gloves can provide more than 10% reduction of the unweighted vibration for some tools or workpieces. Tools and gloves can be matched for better effectiveness for protecting the fingers. PMID:27867313
Anomalous Temperature Dependence of the Band Gap in Black Phosphorus.
Villegas, Cesar E P; Rocha, A R; Marini, Andrea
2016-08-10
Black phosphorus (BP) has gained renewed attention due to its singular anisotropic electronic and optical properties that might be exploited for a wide range of technological applications. In this respect, the thermal properties are particularly important both to predict its room temperature operation and to determine its thermoelectric potential. From this point of view, one of the most spectacular and poorly understood phenomena is indeed the BP temperature-induced band gap opening; when temperature is increased, the fundamental band gap increases instead of decreases. This anomalous thermal dependence has also been observed recently in its monolayer counterpart. In this work, based on ab initio calculations, we present an explanation for this long known and yet not fully explained effect. We show that it arises from a combination of harmonic and lattice thermal expansion contributions, which are in fact highly interwined. We clearly narrow down the mechanisms that cause this gap opening by identifying the peculiar atomic vibrations that drive the anomaly. The final picture we give explains both the BP anomalous band gap opening and the frequency increase with increasing volume (tension effect).
DOT National Transportation Integrated Search
1982-04-01
A comprehensive review of existing basic diagnostic techniques applicable to the railcar roller bearing defect and failure problem was made. Of the potentially feasible diagnostic techniques identified, high frequency vibration was selected for exper...
A coin vibrational motor swimming at low Reynolds number
NASA Astrophysics Data System (ADS)
Quillen, Alice C.; Askari, Hesam; Kelley, Douglas H.; Friedmann, Tamar; Oakes, Patrick W.
2016-12-01
Low-cost coin vibrational motors, used in haptic feedback, exhibit rotational internal motion inside a rigid case. Because the motor case motion exhibits rotational symmetry, when placed into a fluid such as glycerin, the motor does not swim even though its oscillatory motions induce steady streaming in the fluid. However, a piece of rubber foam stuck to the curved case and giving the motor neutral buoyancy also breaks the rotational symmetry allowing it to swim. We measured a 1 cm diameter coin vibrational motor swimming in glycerin at a speed of a body length in 3 seconds or at 3 mm/s. The swim speed puts the vibrational motor in a low Reynolds number regime similar to bacterial motility, but because of the oscillations of the motor it is not analogous to biological organisms. Rather the swimming vibrational motor may inspire small inexpensive robotic swimmers that are robust as they contain no external moving parts. A time dependent Stokes equation planar sheet model suggests that the swim speed depends on a steady streaming velocity V stream Re s 1/2 U 0 where U 0 is the velocity of surface oscillations, and streaming Reynolds number Re s = U 0 2 /( ων) for motor angular frequency ω and fluid kinematic viscosity ν.
Lee, Norman; Schrode, Katrina M.; Johns, Anastasia R.; Christensen-Dalsgaard, Jakob; Bee, Mark A.
2014-01-01
Anuran ears function as pressure difference receivers, and the amplitude and phase of tympanum vibrations are inherently directional, varying with sound incident angle. We quantified the nature of this directionality for Cope’s gray treefrog, Hyla chrysoscelis. We presented subjects with pure tones, advertisement calls, and frequency-modulated sweeps to examine the influence of frequency, signal level, lung inflation, and sex on ear directionality. Interaural differences in the amplitude of tympanum vibrations were 1–4 dB greater than sound pressure differences adjacent to the two tympana, while interaural differences in the phase of tympanum vibration were similar to or smaller than those in sound phase. Directionality in the amplitude and phase of tympanum vibration were highly dependent on sound frequency, and directionality in amplitude varied slightly with signal level. Directionality in the amplitude and phase of tone- and call-evoked responses did not differ between sexes. Lung inflation strongly affected tympanum directionality over a narrow frequency range that, in females, included call frequencies. This study provides a foundation for further work on the biomechanics and neural mechanisms of spatial hearing in H. chrysoscelis, and lends valuable perspective to behavioral studies on the use of spatial information by this species and other frogs. PMID:24504183
Du, Yong; Xue, Jiadan; Cai, Qiang; Zhang, Qi
2018-02-15
Vibrational spectroscopic methods, including terahertz absorption and Raman scattering spectroscopy, were utilized for the characterization and analysis of gamma-aminobutyric acid (GABA), benzoic acid (BA), and the corresponding GABA-BA cocrystal formation under various pH values of aqueous solution. Vibrational spectroscopic results demonstrated that the solvent GABA-BA cocrystal, similar as grinding counterpart, possessed unique characteristic features compared with that of starting parent compounds. The change of vibrational modes for GABA-BA cocrystal comparing with starting components indicates there is strong inter-molecular interaction between GABA and BA molecules during its cocrystallization process. Formation of GABA-BA cocrystal under slow solvent evaporation is impacted by the pH value of aqueous solution. Vibrational spectra indicate that the GABA-BA cocrystal could be stably formed with the solvent condition of 2.00≤pH≤7.00. In contrast, such cocrystallization did not occur and the cocrystal would dissociate into its parent components when the pH value of solvent is lower than 2.00. This study provides experimental benchmark to discriminate and identify the structure of cocrystal and also pH-dependent cocrystallization effect with vibrational spectroscopic techniques in solid-state pharmaceutical fields. Copyright © 2017 Elsevier B.V. All rights reserved.
Caldwell, Michael S; Lee, Norman; Schrode, Katrina M; Johns, Anastasia R; Christensen-Dalsgaard, Jakob; Bee, Mark A
2014-04-01
Anuran ears function as pressure difference receivers, and the amplitude and phase of tympanum vibrations are inherently directional, varying with sound incident angle. We quantified the nature of this directionality for Cope's gray treefrog, Hyla chrysoscelis. We presented subjects with pure tones, advertisement calls, and frequency-modulated sweeps to examine the influence of frequency, signal level, lung inflation, and sex on ear directionality. Interaural differences in the amplitude of tympanum vibrations were 1-4 dB greater than sound pressure differences adjacent to the two tympana, while interaural differences in the phase of tympanum vibration were similar to or smaller than those in sound phase. Directionality in the amplitude and phase of tympanum vibration were highly dependent on sound frequency, and directionality in amplitude varied slightly with signal level. Directionality in the amplitude and phase of tone- and call-evoked responses did not differ between sexes. Lung inflation strongly affected tympanum directionality over a narrow frequency range that, in females, included call frequencies. This study provides a foundation for further work on the biomechanics and neural mechanisms of spatial hearing in H. chrysoscelis, and lends valuable perspective to behavioral studies on the use of spatial information by this species and other frogs.
Transmission of vibration through gloves: effects of contact area.
Md Rezali, Khairil Anas; Griffin, Michael J
2017-01-01
For three samples of material (12.5, 25.0 and 37.5 mm diameter) from each of three gloves, the dynamic stiffnesses and the vibration transmissibilities of the materials (to both the palm of the hand and the thenar eminence) were measured at frequencies from 10 to 300 Hz. Additional measurements showed the apparent masses of the hand at the palm and the thenar eminence were independent of contact area at frequencies less than about 40 Hz, but increased with increasing area at higher frequencies. The stiffness and damping of the glove materials increased with increasing area. These changes caused material transmissibilities to the hand to increase with increasing area. It is concluded that the size of the area of contact has a large influence on the transmission of vibration through a glove to the hand. The area of contact should be well-defined and controlled when evaluating the transmission of vibration through gloves. Practitioner Summary: The transmission of vibration through gloves depends on both the dynamic stiffness of glove material and the dynamic response of the hand. Both of these depend on the size of the contact area between a glove material and the hand, which should be taken into account when assessing glove transmissibility.
Detection and three-dimensional visualization of lesion models using sonoelastography
NASA Astrophysics Data System (ADS)
Taylor, Lawrence S.; Gaborski, Thomas R.; Strang, John G.; Rubens, Deborah; Parker, Kevin J.
2002-04-01
Sonoelastography is a vibration Doppler technique for imaging the relative elasticity of tissues. Detectability of hard lesions of various sizes has previously been demonstrated in tissue phantoms by our group. Because real tissue differs from phantom material, the injection of formaldehyde in fresh liver tissue is being used as an in-vitro lesion model. Pieces of fresh calf liver were embedded in an agar gel then injected with a bolus of 37% formaldehyde to create a stiff lesion. Two and three-dimensional sonoelastography and b-mode images were acquired. The lesions were visible in each sonoelastography image as a region of reduced vibration. After imaging, lesions were dissected and measured for size and volume. One 0.4 cc bolus injection of formaldehyde created a lesion with a volume of 10.3 cc in the sonoelastography image compared to 9.3 cc using fluid displacement of the dissected lesion. A 0.33 cc injection of formaldehyde lesion created a volume of 5 cc in the sonoelastography image compared to 4.4 cc using fluid displacement. Sonoelastography imaging techniques for imaging hard lesions in phantoms can be successfully extended to imaging formaldehyde induced lesions in real tissue.
Quantitative vibro-acoustography of tissue-like objects by measurement of resonant modes
NASA Astrophysics Data System (ADS)
Mazumder, Dibbyan; Umesh, Sharath; Mohan Vasu, Ram; Roy, Debasish; Kanhirodan, Rajan; Asokan, Sundarrajan
2017-01-01
We demonstrate a simple and computationally efficient method to recover the shear modulus pertaining to the focal volume of an ultrasound transducer from the measured vibro-acoustic spectral peaks. A model that explains the transport of local deformation information with the acoustic wave acting as a carrier is put forth. It is also shown that the peaks correspond to the natural frequencies of vibration of the focal volume, which may be readily computed by solving an eigenvalue problem associated with the vibrating region. Having measured the first natural frequency with a fibre Bragg grating sensor, and armed with an expedient means of computing the same, we demonstrate a simple procedure, based on the method of bisection, to recover the average shear modulus of the object in the ultrasound focal volume. We demonstrate this recovery for four homogeneous agarose slabs of different stiffness and verify the accuracy of the recovery using independent rheometer-based measurements. Extension of the method to anisotropic samples through the measurement of a more complete set of resonant modes and the recovery of an elasticity tensor distribution, as is done in resonant ultrasound spectroscopy, is suggested.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mátyus, Edit, E-mail: matyus@chem.elte.hu; Szidarovszky, Tamás; Császár, Attila G., E-mail: csaszar@chem.elte.hu
2014-10-21
Introducing different rotational and vibrational masses in the nuclear-motion Hamiltonian is a simple phenomenological way to model rovibrational non-adiabaticity. It is shown on the example of the molecular ion H{sub 3}{sup +}, for which a global adiabatic potential energy surface accurate to better than 0.1 cm{sup −1} exists [M. Pavanello, L. Adamowicz, A. Alijah, N. F. Zobov, I. I. Mizus, O. L. Polyansky, J. Tennyson, T. Szidarovszky, A. G. Császár, M. Berg et al., Phys. Rev. Lett. 108, 023002 (2012)], that the motion-dependent mass concept yields much more accurate rovibrational energy levels but, unusually, the results are dependent upon themore » choice of the embedding of the molecule-fixed frame. Correct degeneracies and an improved agreement with experimental data are obtained if an Eckart embedding corresponding to a reference structure of D{sub 3h} point-group symmetry is employed. The vibrational mass of the proton in H{sub 3}{sup +} is optimized by minimizing the root-mean-square (rms) deviation between the computed and recent high-accuracy experimental transitions. The best vibrational mass obtained is larger than the nuclear mass of the proton by approximately one third of an electron mass, m{sub opt,p}{sup (v)}=m{sub nuc,p}+0.31224 m{sub e}. This optimized vibrational mass, along with a nuclear rotational mass, reduces the rms deviation of the experimental and computed rovibrational transitions by an order of magnitude. Finally, it is shown that an extension of the algorithm allowing the use of motion-dependent masses can deal with coordinate-dependent mass surfaces in the rovibrational Hamiltonian, as well.« less
NASA Astrophysics Data System (ADS)
Mátyus, Edit; Szidarovszky, Tamás; Császár, Attila G.
2014-10-01
Introducing different rotational and vibrational masses in the nuclear-motion Hamiltonian is a simple phenomenological way to model rovibrational non-adiabaticity. It is shown on the example of the molecular ion H_3^+, for which a global adiabatic potential energy surface accurate to better than 0.1 cm-1 exists [M. Pavanello, L. Adamowicz, A. Alijah, N. F. Zobov, I. I. Mizus, O. L. Polyansky, J. Tennyson, T. Szidarovszky, A. G. Császár, M. Berg et al., Phys. Rev. Lett. 108, 023002 (2012)], that the motion-dependent mass concept yields much more accurate rovibrational energy levels but, unusually, the results are dependent upon the choice of the embedding of the molecule-fixed frame. Correct degeneracies and an improved agreement with experimental data are obtained if an Eckart embedding corresponding to a reference structure of D3h point-group symmetry is employed. The vibrational mass of the proton in H_3^+ is optimized by minimizing the root-mean-square (rms) deviation between the computed and recent high-accuracy experimental transitions. The best vibrational mass obtained is larger than the nuclear mass of the proton by approximately one third of an electron mass, m^(v)_opt,p=m_nuc,p+0.31224 m_e. This optimized vibrational mass, along with a nuclear rotational mass, reduces the rms deviation of the experimental and computed rovibrational transitions by an order of magnitude. Finally, it is shown that an extension of the algorithm allowing the use of motion-dependent masses can deal with coordinate-dependent mass surfaces in the rovibrational Hamiltonian, as well.
Martirosyan, Varsik; Ayrapetyan, Sinerik
2015-01-01
The aim of the present work is to study the time-dependent effects of mechanical vibration (MV) at infrasound (IS) frequency at 4 and 8 Hz on E. coli K-12 growth by investigating the cell proliferation, using radioactive [(3)H]-thymidine assay. In our previous work it was suggested that the aqua medium can serve as a target through which the biological effect of MV on microbes could be realized. At the same time it was shown that microbes have mechanosensors on the surface of the cells and can sense small changes of the external environment. The obtained results were shown that the time-dependent effects of MV at 4 and 8 Hz frequency could either stimulate or inhibit the growth of microbes depending from exposure time. It more particularly, the invention relates to a method for controlling biological functions through the application of mechanical vibration, thus making it possible to artificially control the functions of bacterial cells, which will allow us to develop method that can be used in agriculture, industry, medicine, biotechnology to control microbial growth.
Buckling and Vibration of Fiber Reinforced Composite Plates With Nanofiber Reinforced Matrices
NASA Technical Reports Server (NTRS)
Chamis, Christos C.; Murthy, Pappu L. N.
2011-01-01
Anisotropic composite plates were evaluated with nanofiber reinforced matrices (NFRM). The nanofiber reinforcement volumes ratio in the matrix was 0.01. The plate dimensions were 20 by 10 by 1.0 in. (508 by 254 by 25.4 mm). Seven different loading condition cases were evaluated for buckling: three for uniaxial loading, three for pairs of combined loading, and one with three combined loadings. The anisotropy arose from the unidirectional plates having been at 30 from the structural axis. The anisotropy had a full 6 by 6 rigidities matrix which were satisfied and solved by a Galerkin buckling algorithm. For vibration the same conditions were used with the applied cods about a small fraction of the buckling loads. The buckling and vibration results showed that the NFRM plates buckled at about twice those with conventional matrix.
NASA Astrophysics Data System (ADS)
Casali, R. A.; Lasave, J.; Caravaca, M. A.; Koval, S.; Ponce, C. A.; Migoni, R. L.
2013-04-01
The pressure dependences of the structural, thermoelastic and vibrational properties of SnO2 in its rutile phase are studied, as well as the pressure-induced transition to a CaCl2-type phase. These studies have been performed by means of ab initio (AI) density functional theory calculations using the localized basis code SIESTA. The results are employed to develop a shell model (SM) for application in future studies of nanostructured SnO2. A good agreement of the SM results for the pressure dependences of the above properties with the ones obtained from present and previous AI calculations as well as from experiments is achieved. The transition is characterized by a rotation of the Sn-centered oxygen octahedra around the tetragonal axis through the Sn. This rotation breaks the tetragonal symmetry of the lattice and an orthorhombic distortion appears above the critical pressure Pc. A zone-center phonon of B1g symmetry in the rutile phase involves such rotation and softens on approaching Pc. It becomes an Ag mode which stabilizes with increasing pressure in the CaCl2 phase. This behavior, together with the softening of the shear modulus (C11-C12)/2 related to the orthorhombic distortion, allows a precise determination of a value for Pc. An additional determination is provided by the splitting of the basal plane lattice parameters. Both the AI and the experimentally observed softening of the B1g mode are incomplete, indicating a small discontinuity at the transition. However, all results show continuous changes in volume and lattice parameters, indicating a second-order transition. All these results indicate that there should be sufficient confidence for the future employment of the shell model.
Angular Vibration of Aircraft. Volume 2. Prediction Methods for Angular Vibration
1979-04-01
LNOU=BEAM(L+2pK) IF (LNOD.NE,I) GO 10 160 CALL RLADMS(IN, BMAT ,17*17liFX(bEAM(1K))+NSHLTY) 336 UU ibU LL=Itb LLL=10M(LLoL) II (LLL,LU,U) Gj IU 150 uu...14u M=IP3 uu 130 MM:I,b MMM=IbM(MM,M) IF (MMM.LQ.O) GO I0 130 MNOU=bLAM(M+2pK) IBIG=bA(MNUD-I)+MM bIG(181G,LL)=blG(ibIG,LL)+ bMAT (LLLiMMM) 13U CUNTINUE
Social context-dependent modification of courtship behaviour in Drosophila prolongata
Setoguchi, Shiori; Kudo, Ayumi; Takanashi, Takuma; Ishikawa, Yukio; Matsuo, Takashi
2015-01-01
Induction of alternative mating tactics by surrounding conditions, such as the presence of conspecific males, is observed in many animal species. Satellite behaviour is a remarkable example in which parasitic males exploit the reproductive investment by other males. Despite the abundance of parasitic mating tactics, however, few examples are known in which males alter courtship behaviour as a counter tactic against parasitic rivals. The fruit fly Drosophila prolongata shows prominent sexual dimorphism in the forelegs. When courting females, males of D. prolongata perform ‘leg vibration’, in which a male vibrates the female's body with his enlarged forelegs. In this study, we found that leg vibration increased female receptivity, but it also raised a risk of interception of the female by rival males. Consequently, in the presence of rivals, males of D. prolongata shifted their courtship behaviour from leg vibration to ‘rubbing’, which was less vulnerable to interference by rival males. These results demonstrated that the males of D. prolongata adjust their courtship behaviour to circumvent the social context-dependent risk of leg vibration. PMID:26538591
Design optimization of PVDF-based piezoelectric energy harvesters.
Song, Jundong; Zhao, Guanxing; Li, Bo; Wang, Jin
2017-09-01
Energy harvesting is a promising technology that powers the electronic devices via scavenging the ambient energy. Piezoelectric energy harvesters have attracted considerable interest for their high conversion efficiency and easy fabrication in minimized sensors and transducers. To improve the output capability of energy harvesters, properties of piezoelectric materials is an influential factor, but the potential of the material is less likely to be fully exploited without an optimized configuration. In this paper, an optimization strategy for PVDF-based cantilever-type energy harvesters is proposed to achieve the highest output power density with the given frequency and acceleration of the vibration source. It is shown that the maximum power output density only depends on the maximum allowable stress of the beam and the working frequency of the device, and these two factors can be obtained by adjusting the geometry of piezoelectric layers. The strategy is validated by coupled finite-element-circuit simulation and a practical device. The fabricated device within a volume of 13.1 mm 3 shows an output power of 112.8 μW which is comparable to that of the best-performing piezoceramic-based energy harvesters within the similar volume reported so far.
NASA Astrophysics Data System (ADS)
Edwards, Matthew; Guggilla, Padmaja; Reedy, Angela; Ijaz, Quratulann; Janen, Afef; Uba, Samuel; Curley, Michael
2017-08-01
Previously, we have reported measurements of temperature-dependent surface resistivity of pure and multi-walled carbon nanotube (MWNCT) doped amorphous Polyvinyl Alcohol (PVA) thin films. In the temperature range from 22 °C to 40 °C with humidity-controlled environment, we found the surface resistivity to decrease initially, but to rise steadily as the temperature continued to increase. Moreover, electric surface current density (Js) was measured on the surface of pure and MWCNT doped PVA thin films. In this regard, the surface current density and electric field relationship follow Ohm's law at low electric fields. Unlike Ohmic conduction in metals where free electrons exist, selected captive electrons are freed or provided from impurities and dopants to become conduction electrons from increased thermal vibration of constituent atoms in amorphous thin films. Additionally, a mechanism exists that seemingly decreases the surface resistivity at higher temperatures, suggesting a blocking effect for conducting electrons. Volume resistivity measurements also follow Ohm's law at low voltages (low electric fields), and they continue to decrease as temperatures increase in this temperature range, differing from surface resistivity behavior. Moreover, we report measurements of dielectric constant and dielectric loss as a function of temperature and frequency. Both the dielectric constant and dielectric loss were observed to be highest for MWCNT doped PVA compared to pure PVA and commercial paper, and with frequency and temperature for all samples.
NASA Astrophysics Data System (ADS)
Kim, Hongjin; Park, Chan Il; Lee, Sun Ho; Kim, Yoon Young
2013-02-01
This work aims to investigate a possibility of non-contact vibration modal testing for bending and torsional motions of cylindrical bodies such as pipes. Here, a transducer operated by the electromagnetic acoustic coupling principle is newly devised. Depending on vibration modes, bending or torsional, different magnetic circuit configurations are employed to fabricate the transducer. The main characteristic of the proposed transducer is non-contact vibration generation in a test specimen without any mechanical movement of the actuating unit. It can be also used as a non-contact sensing unit if necessary. The validity and the performance of the proposed non-contact modal testing method are checked with several experiments.
Albert, Julian; Falge, Mirjam; Gomez, Sandra; Sola, Ignacio R; Hildenbrand, Heiko; Engel, Volker
2015-07-28
We theoretically investigate the photon-echo spectroscopy of coupled electron-nuclear quantum dynamics. Two situations are treated. In the first case, the Born-Oppenheimer (adiabatic) approximation holds. It is then possible to interpret the two-dimensional (2D) spectra in terms of vibrational motion taking place in different electronic states. In particular, pure vibrational coherences which are related to oscillations in the time-dependent third-order polarization can be identified. This concept fails in the second case, where strong non-adiabatic coupling leads to the breakdown of the Born-Oppenheimer-approximation. Then, the 2D-spectra reveal a complicated vibronic structure and vibrational coherences cannot be disentangled from the electronic motion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albert, Julian; Falge, Mirjam; Hildenbrand, Heiko
2015-07-28
We theoretically investigate the photon-echo spectroscopy of coupled electron-nuclear quantum dynamics. Two situations are treated. In the first case, the Born-Oppenheimer (adiabatic) approximation holds. It is then possible to interpret the two-dimensional (2D) spectra in terms of vibrational motion taking place in different electronic states. In particular, pure vibrational coherences which are related to oscillations in the time-dependent third-order polarization can be identified. This concept fails in the second case, where strong non-adiabatic coupling leads to the breakdown of the Born-Oppenheimer-approximation. Then, the 2D-spectra reveal a complicated vibronic structure and vibrational coherences cannot be disentangled from the electronic motion.
Lesnicki, Dominika; Sulpizi, Marialore
2018-06-13
What happens when extra vibrational energy is added to water? Using nonequilibrium molecular dynamics simulations, also including the full electronic structure, and novel descriptors, based on projected vibrational density of states, we are able to follow the flow of excess vibrational energy from the excited stretching and bending modes. We find that the energy relaxation, mostly mediated by a stretching-stretching coupling in the first solvation shell, is highly heterogeneous and strongly depends on the local environment, where a strong hydrogen bond network can transport energy with a time scale of 200 fs, whereas a weaker network can slow down the transport by a factor 2-3.
European Science Notes. Volume 40, Number 1.
1986-01-01
Mass Spectrometry mers and copolymers of polyacrylate salt series edited by Professor J.F.J. Todd latex) rather than an inorganic or or- (University...changes in the popu- cy with two potassium dihydrogen phos- lation of a vibrational manifold were phate (KDP) crystals. Following a fil- determined by...AD-A162 235 EUROPEAN SCIENCE NOTES VOLUME 48 NUMBER I(U) OFFICE OF i/1 NAVAL RESEARCH LONDON (ENGLAND) L E SHAFFER JAN 86 UNCLASSIFIED F/G 5/2
NASA Astrophysics Data System (ADS)
Pippard, A. B.
1989-11-01
The study of vibration in physical systems is an important part of almost all fields in physics and engineering. This work, originally published in two volumes, examines the classical aspects in Part I and the quantum oscillator in Part II. The classical linear vibrator is treated first and the underlying unity of all linear oscillations in electrical, mechanical and acoustic systems is emphasized. Following this the book turns to the treatment of nonlinear vibrations, a field with which engineers and physicists are generally less familiar. In Part II the emphasis turns to quantum systems, that is those systems which can only be adequately described by quantum mechanics. The treatment concentrates on vibrations in atoms and molecules and their interaction with electromagnetic radiation. The similarities of classical and quantum methods are stressed and the limits of the classical treatment are examined. Throughout the book, each phenomenon discussed is illustrated with many examples and theory and experiment are compared. Although the reader may find that the physics discussed is demanding and the concepts are subtle in places, all mathematics used is familiar to both engineers and experimental scientists. Although not a textbook this is a useful introduction to the more advanced mathematical treatment of vibrations as it bridges the gap between the basic principles and more specialized concepts. It will be of great interest to advanced undergraduates and postgraduates as well as applied mathematicians, physicists and engineers in university and industry.
NASA Technical Reports Server (NTRS)
Dompka, R. V.
1989-01-01
Under the NASA-sponsored DAMVIBS (Design Analysis Methods for VIBrationS) program, a series of ground vibration tests and NASTRAN finite element model (FEM) correlations were conducted on the Bell AH-1G helicopter gunship to investigate the effects of difficult components on the vibration response of the airframe. Previous correlations of the AG-1G showed good agreement between NASTRAN and tests through 15 to 20 Hz, but poor agreement in the higher frequency range of 20 to 30 Hz. Thus, this effort emphasized the higher frequency airframe vibration response correlations and identified areas that need further R and T work. To conduct the investigations, selected difficult components (main rotor pylon, secondary structure, nonstructural doors/panels, landing gear, engine, furl, etc.) were systematically removed to quantify their effects on overall vibratory response of the airframe. The entire effort was planned and documented, and the results reviewed by NASA and industry experts in order to ensure scientific control of the testing, analysis, and correlation exercise. In particular, secondary structure and damping had significant effects on the frequency response of the airframe above 15 Hz. Also, the nonlinear effects of thrust stiffening and elastomer mounts were significant on the low frequency pylon modes below main rotor 1p (5.4 Hz). The results of the NASTRAN FEM correlations are given.
NASA Astrophysics Data System (ADS)
Poojary, Umanath R.; Hegde, Sriharsha; Gangadharan, K. V.
2016-11-01
Magneto rheological elastomer (MRE) is a potential resilient element for the semi active vibration isolator. MRE based isolators adapt to different frequency of vibrations arising from the source to isolate the structure over wider frequency range. The performance of MRE isolator depends on the magnetic field and frequency dependent characteristics of MRE. Present study is focused on experimentally evaluating the dynamic stiffness and loss factor of MRE through dynamic blocked transfer stiffness method. The dynamic stiffness variations of MRE exhibit strong magnetic field and mild frequency dependency. Enhancements in dynamic stiffness saturate with the increase in magnetic field and the frequency. The inconsistent variations of loss factor with the magnetic field substantiate the inability of MRE to have independent control over its damping characteristics.
Wheel/Rail Noise and Vibration : Volume 1. Mechanics of Wheel Rail Noise Generation.
DOT National Transportation Integrated Search
1975-05-01
The final reports are reported of a project to develop a basic understanding of urban transit wheel/rail noise control measures. Analytical models of impedance, response, radiation efficiency, and directivity of wheels and rails are presented and com...
9th Annual Systems Engineering Conference: Volume 2 Tuesday
2006-10-26
Laboratory, Ben-Gurion University of the Negev Jacob Herscovitz Space systems Directorate RAFAEL jacobh@rafael.co.il A Pragmatic Focus in Managing...Maintainability Tests •Environmental Qualification Tests – Humidity, Salt Fog, Shock, Vibration, Rain UE, Rain CE, Solar Radiation , Icing, Fluid
The Shock and Vibration Digest. Volume 15, Number 5
1983-05-01
a stationary directional Placed Rotors and Bearings difference and a rotating directional difference of stiffness S K Patna k and ABK Mallik The...948,949 Pau lay, T . .............. 892 Solomos, G.P ............ 1027 Mallik , A.K .............. 877 Pavelescu, D . ........... 1024 Sonoda
NASA Astrophysics Data System (ADS)
Perry, David S.; Miller, Anthony; Amyay, Badr; Fayt, André; Herman, Michel
2010-04-01
The link between energy-resolved spectra and time-resolved dynamics is explored quantitatively for acetylene (12C2H2), ? with up to 8600 cm-1 of vibrational energy. This comparison is based on the extensive and reliable knowledge of the vibration-rotation energy levels and on the model Hamiltonian used to fit them to high precision [B. Amyay, S. Robert, M. Herman, A. Fayt, B. Raghavendra, A. Moudens, J. Thiévin, B. Rowe, and R. Georges, J. Chem. Phys. 131, 114301 (2009)]. Simulated intensity borrowing features in high resolution absorption spectra and predicted survival probabilities in intramolecular vibrational redistribution (IVR) are first investigated for the v 4 + v 5 and v 3 bright states, for J = 2, 30 and 100. The dependence of the results on the rotational quantum number and on the choice of vibrational bright state reflects the interplay of three kinds of off-diagonal resonances: anharmonic, rotational l-type, and Coriolis. The dynamical quantities used to characterize the calculated time-dependent dynamics are the dilution factor φ d, the IVR lifetime τ IVR , and the recurrence time τ rec. For the two bright states v 3 + 2v 4 and 7v 4, the collisionless dynamics for thermally averaged rotational distributions at T = 27, 270 and 500 K were calculated from the available spectroscopic data. For the 7v 4 bright state, an apparent irreversible decay of is found. In all cases, the model Hamiltonian allows a detailed calculation of the energy flow among all of the coupled zeroth-order vibration-rotation states.
NASA Astrophysics Data System (ADS)
Castillo, María V.; Iramain, Maximiliano A.; Davies, Lilian; Manzur, María E.; Brandán, Silvia Antonia
2018-02-01
Dieldrin was characterized by using Fourier Transform infrared (FT-IR) and Raman (FT-Raman), Ultraviolet-Visible (UV-Visible) spectroscopies. The structural and vibrational properties for dieldrin in gas phase and in aqueous solution were computed combining those experimental spectra with hybrids B3LYP and WB97XD calculations by using the 6-31G* and 6-311++G** basis sets. Here, the experimental available Hydrogen and Carbon Nuclear Magnetic Resonance (1H and 13C NMR) for dieldrin were also used and compared with those predicted by calculations. The B3LYP/6-311++G** method generates the most stable structures while the results have demonstrated certain dependence of the volume and dipole moment values with the method, size of the basis set and, with the studied media. The lower solvation energy for dieldrin (-32.94 kJ/mol) is observed for the higher contraction volume (-2.4 Å3) by using the B3LYP/6-31G* method. The NBO studies suggest a high stability of dieldrin in gas phase by using the WB97XD/6-31G* method due to the n→π* and n*→π* interactions while the AIM analyses support this high stability by the C18⋯H26 and C14⋯O7 contacts. The different topological properties observed in the R5 ring suggest that probably this ring plays a very important role in the toxics properties of dieldrin. The frontier orbitals show that when dieldrin is compared with other toxics substances the reactivity increases in the following order: CO < STX < dieldrin < C6Cl6
Krause, M; Popov, V N; Inakuma, M; Tagmatarchis, N; Shinohara, H; Georgi, P; Dunsch, L; Kuzmany, H
2004-01-22
Metal-carbon cage vibrations of crystalline endohedral D2d-M2@C84 (M=Sc,Y,Dy) dimetallofullerenes were analyzed by temperature dependent Raman scattering and a dynamical force field model. Three groups of metal-carbon cage modes were found at energies of 35-200 cm(-1) and assigned to metal-cage stretching and deformation vibrations. They exhibit a textbook example for the splitting of molecular vibrations in a crystal field. Induced dipole-dipole and quadrupole-quadrupole interactions account quantitatively for the observed mode splitting. Based on the metal-cage vibrational structure it is demonstrated that D2d-Y2@C84 dimetallofullerene retains a monoclinic crystal structure up to 550 K and undergoes a transition from a disordered to an ordered orientational state at a temperature of approximately 150 K.
Multilayer-MCTDH approach to the energy transfer dynamics in the LH2 antenna complex
NASA Astrophysics Data System (ADS)
Shibl, Mohamed F.; Schulze, Jan; Al-Marri, Mohammed J.; Kühn, Oliver
2017-09-01
The multilayer multiconfiguration time-dependent Hartree method is used to study the coupled exciton-vibrational dynamics in a high-dimensional nonameric model of the LH2 antenna complex of purple bacteria. The exciton-vibrational coupling is parametrized within the Huang-Rhys model according to phonon and intramolecular vibrational modes derived from an experimental bacteriochlorophyll spectral density. In contrast to reduced density matrix approaches, the Schrödinger equation is solved explicitly, giving access to the full wave function. This facilitates an unbiased analysis in terms of the coupled dynamics of excitonic and vibrational degrees of freedom. For the present system, we identify spectator modes for the B800 to B800 transfer and we find a non-additive effect of phonon and intramolecular vibrational modes on the B800 to B850 exciton transfer.
Free-vibration acoustic resonance of a nonlinear elastic bar
NASA Astrophysics Data System (ADS)
Tarumi, Ryuichi; Oshita, Yoshihito
2011-02-01
Free-vibration acoustic resonance of a one-dimensional nonlinear elastic bar was investigated by direct analysis in the calculus of variations. The Lagrangian density of the bar includes a cubic term of the deformation gradient, which is responsible for both geometric and constitutive nonlinearities. By expanding the deformation function into a complex Fourier series, we derived the action integral in an analytic form and evaluated its stationary conditions numerically with the Ritz method for the first three resonant vibration modes. This revealed that the bar shows the following prominent nonlinear features: (i) amplitude dependence of the resonance frequency; (ii) symmetry breaking in the vibration pattern; and (iii) excitation of the high-frequency mode around nodal-like points. Stability of the resonant vibrations was also addressed in terms of a convex condition on the strain energy density.
NASA Astrophysics Data System (ADS)
Yang, Wei; Zhou, Qianhong; Dong, Zhiwei
2017-01-01
We report a simulation study on nitrogen vibrational and translational temperature in 3 μs pulse 110 GHz microwave air breakdown at pressure from 1 Torr to 100 Torr. The one-dimensional model is based on a self-consistent solution to Helmholtz equation for microwave field, electron density equation, and the average energy equation for electrons, nitrogen vibrational, and translational degrees. The breakdown threshold is calculated from the transmitted microwave profile, and it agrees well with that from experiment. The spatio-temporal characteristics of vibrational and translational temperature are shown, and the peak values at the end of pulse are compared to the results fitted from optical emission spectroscopy. The dependences of vibrational and translational temperature on normalized microwave fields and gas pressure are investigated, and the underlying mechanisms are unveiled.
Shin, Jae Yoon; Shaloski, Michael A; Crim, F Fleming; Case, Amanda S
2017-03-23
We present evidence for vibrational enhancement of the rate of bimolecular reactions of Br atoms with dimethylsulfoxide (DMSO) and methanol (CH 3 OH) in the condensed phase. The abstraction of a hydrogen atom from either of these solvents by a Br atom is highly endoergic: 3269 cm -1 for DMSO and 1416 or 4414 cm -1 for CH 3 OH, depending on the hydrogen atom abstracted. Thus, there is no thermal abstraction reaction at room temperature. Broadband electronic transient absorption shows that following photolysis of bromine precursors Br atoms form van der Waals complexes with the solvent molecules in about 5 ps and this Br • -solvent complex undergoes recombination. To explore the influence of vibrational energy on the abstraction reactions, we introduce a near-infrared (NIR) pump pulse following the photolysis pulse to excite the first overtone of the C-H (or O-H) stretch of the solvent molecules. Using single-wavelength detection, we observe a loss of the Br • -solvent complex that requires the presence of both photolysis and NIR pump pulses. Moreover, the magnitude of this loss depends on the NIR wavelength. Although this loss of reactive Br supports the notion of vibrationally driven chemistry, it is not concrete evidence of the hydrogen-abstraction reaction. To verify that the loss of reactive Br results from the vibrationally driven bimolecular reaction, we examine the pH dependence of the solution (as a measure of the formation of the HBr product) following long-time irradiation of the sample with both photolysis and NIR pump beams. We observe that when the NIR beam is on-resonance, the hydronium ion concentration increases fourfold as compared to that when it is off-resonance, suggesting the formation of HBr via a vibrationally driven hydrogen-abstraction reaction in solution.
The Effect of Surface Wave Propagation on Neural Responses to Vibration in Primate Glabrous Skin
Manfredi, Louise R.; Baker, Andrew T.; Elias, Damian O.; Dammann, John F.; Zielinski, Mark C.; Polashock, Vicky S.; Bensmaia, Sliman J.
2012-01-01
Because tactile perception relies on the response of large populations of receptors distributed across the skin, we seek to characterize how a mechanical deformation of the skin at one location affects the skin at another. To this end, we introduce a novel non-contact method to characterize the surface waves produced in the skin under a variety of stimulation conditions. Specifically, we deliver vibrations to the fingertip using a vibratory actuator and measure, using a laser Doppler vibrometer, the surface waves at different distances from the locus of stimulation. First, we show that a vibration applied to the fingertip travels at least the length of the finger and that the rate at which it decays is dependent on stimulus frequency. Furthermore, the resonant frequency of the skin matches the frequency at which a subpopulation of afferents, namely Pacinian afferents, is most sensitive. We show that this skin resonance can lead to a two-fold increase in the strength of the response of a simulated afferent population. Second, the rate at which vibrations propagate across the skin is dependent on the stimulus frequency and plateaus at 7 m/s. The resulting delay in neural activation across locations does not substantially blur the temporal patterning in simulated populations of afferents for frequencies less than 200 Hz, which has important implications about how vibratory frequency is encoded in the responses of somatosensory neurons. Third, we show that, despite the dependence of decay rate and propagation speed on frequency, the waveform of a complex vibration is well preserved as it travels across the skin. Our results suggest, then, that the propagation of surface waves promotes the encoding of spectrally complex vibrations as the entire neural population is exposed to essentially the same stimulus. We also discuss the implications of our results for biomechanical models of the skin. PMID:22348055
The bio-response of osteocytes and its regulation on osteoblasts under vibration.
Wu, Xin-Tong; Sun, Lian-Wen; Qi, Hong-Yu; Shi, Hao; Fan, Yu-Bo
2016-04-01
Vibration, especially at low magnitude and high frequency (LMHF), was demonstrated to be anabolic for bone, but how the LMHF vibration signal is perceived by osteocytes is not fully studied. On the other hand, the mechanotransduction of osteocytes under shear stress has been scientists' primary focus for years. Due to the small strain caused by low-magnitude vibration, whether the previous explanation for shear stress will still work for LMHF vibration is unknown. In this study, a finite element method (FEM) model based on the real geometrical shape of an osteocyte was built to compare the mechanical behaviors of osteocytes under LMHF vibration and shear stress. The bio-response of osteocytes to vibration under different frequencies, including the secretion of soluble factors and the concentration of intracellular calcium, were studied. The regulating effect of the conditioned medium (CM) from vibrated osteocytes on osteoblasts was also studied. The FEM analysis result showed the cell membrane deformation under LMHF vibration was very small (with a peak value of 1.09%) as compared to the deformation caused by shear stress (with a peak value of 6.65%). The F-actin stress fibers of osteocytes were reorganized, especially on the nucleus periphery after LMHF vibration. The vibration at 30 Hz has a promoting effect on osteocytes and the osteogenesis of osteoblasts, whereas vibration at 90 Hz was suppressive. These results lead to a conclusion that the bio-response of osteocytes to LMHF vibration is frequency-dependent and is more related to the cytoskeleton on nuclear periphery rather than the membrane deformation. © 2016 International Federation for Cell Biology.
Vibration analysis of printed circuit boards: Effect of boundary condition
NASA Astrophysics Data System (ADS)
Prashanth, M. D.
2018-04-01
A spacecraft consists of a number of electronic packages to meet the functional requirements. An electronic package is generally an assembly of printed circuit boards placed in a mechanical housing. A number of electronic components are mounted on the printed circuit board (PCB). A spacecraft experiences various types of loads during its launch such as vibration, acoustic and shock loads. Prediction of response for printed circuit boards due to vibration loads is important for mechanical design and reliability of electronic packages. The modeling and analysis of printed circuit boards is required for accurate prediction of response due to vibration loads. The response of PCB is highly dependent on the mounting configuration of PCB. In addition, anti-vibration mounts or stiffeners are used to reduce the PCB response. Vibration analysis of printed circuit boards is carried out using finite element method. The objective of this paper is to determine the dynamic characteristics of a printed circuit board. Modeling and analysis of PCB shall be carried out to study the effect of boundary conditions on the vibration response. The modeling of stiffeners or ribs shall also be considered in detail. The analysis results shall be validated using vibration tests of PCB.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borysow, Jacek, E-mail: jborysow@mtu.edu; Rosso, Leonardo del; Celli, Milva
2014-04-28
We have measured the Raman Q-branch of hydrogen in a solution with water at a temperature of about 280 K and at pressures from 20 to 200 MPa. From a least-mean-square fitting analysis of the broad Raman Q-branch, we isolated the contributions from the four lowest individual roto-vibrational lines. The vibrational lines were narrower than the pure rotational Raman lines of hydrogen dissolved in water measured previously, but significantly larger than in the gas. The separations between these lines were found to be significantly smaller than in gaseous hydrogen and their widths were slightly increasing with pressure. The lines weremore » narrowing with increasing rotational quantum number. The Raman frequencies of all roto-vibrational lines were approaching the values of gas phase hydrogen with increasing pressure. Additionally, from the comparison of the integrated intensity signal of Q-branch of hydrogen to the integrated Raman signal of the water bending mode, we have obtained the concentration of hydrogen in a solution with water along the 280 K isotherm. Hydrogen solubility increases slowly with pressure, and no deviation from a smooth behaviour was observed, even reaching thermodynamic conditions very close to the transition to the stable hydrogen hydrate. The analysis of the relative hydrogen concentration in solution on the basis of a simple thermodynamic model has allowed us to obtain the molar volume for the hydrogen gas/water solution. Interestingly, the volume relative to one hydrogen molecule in solution does not decrease with pressure and, at high pressure, is larger than the volume pertinent to one molecule of water. This is in favour of the theory of hydrophobic solvation, for which a larger and more stable structure of the water molecules is expected around a solute molecule.« less
Borysow, Jacek; del Rosso, Leonardo; Celli, Milva; Moraldi, Massimo; Ulivi, Lorenzo
2014-04-28
We have measured the Raman Q-branch of hydrogen in a solution with water at a temperature of about 280 K and at pressures from 20 to 200 MPa. From a least-mean-square fitting analysis of the broad Raman Q-branch, we isolated the contributions from the four lowest individual roto-vibrational lines. The vibrational lines were narrower than the pure rotational Raman lines of hydrogen dissolved in water measured previously, but significantly larger than in the gas. The separations between these lines were found to be significantly smaller than in gaseous hydrogen and their widths were slightly increasing with pressure. The lines were narrowing with increasing rotational quantum number. The Raman frequencies of all roto-vibrational lines were approaching the values of gas phase hydrogen with increasing pressure. Additionally, from the comparison of the integrated intensity signal of Q-branch of hydrogen to the integrated Raman signal of the water bending mode, we have obtained the concentration of hydrogen in a solution with water along the 280 K isotherm. Hydrogen solubility increases slowly with pressure, and no deviation from a smooth behaviour was observed, even reaching thermodynamic conditions very close to the transition to the stable hydrogen hydrate. The analysis of the relative hydrogen concentration in solution on the basis of a simple thermodynamic model has allowed us to obtain the molar volume for the hydrogen gas/water solution. Interestingly, the volume relative to one hydrogen molecule in solution does not decrease with pressure and, at high pressure, is larger than the volume pertinent to one molecule of water. This is in favour of the theory of hydrophobic solvation, for which a larger and more stable structure of the water molecules is expected around a solute molecule.
NASA Astrophysics Data System (ADS)
Borysow, Jacek; del Rosso, Leonardo; Celli, Milva; Moraldi, Massimo; Ulivi, Lorenzo
2014-04-01
We have measured the Raman Q-branch of hydrogen in a solution with water at a temperature of about 280 K and at pressures from 20 to 200 MPa. From a least-mean-square fitting analysis of the broad Raman Q-branch, we isolated the contributions from the four lowest individual roto-vibrational lines. The vibrational lines were narrower than the pure rotational Raman lines of hydrogen dissolved in water measured previously, but significantly larger than in the gas. The separations between these lines were found to be significantly smaller than in gaseous hydrogen and their widths were slightly increasing with pressure. The lines were narrowing with increasing rotational quantum number. The Raman frequencies of all roto-vibrational lines were approaching the values of gas phase hydrogen with increasing pressure. Additionally, from the comparison of the integrated intensity signal of Q-branch of hydrogen to the integrated Raman signal of the water bending mode, we have obtained the concentration of hydrogen in a solution with water along the 280 K isotherm. Hydrogen solubility increases slowly with pressure, and no deviation from a smooth behaviour was observed, even reaching thermodynamic conditions very close to the transition to the stable hydrogen hydrate. The analysis of the relative hydrogen concentration in solution on the basis of a simple thermodynamic model has allowed us to obtain the molar volume for the hydrogen gas/water solution. Interestingly, the volume relative to one hydrogen molecule in solution does not decrease with pressure and, at high pressure, is larger than the volume pertinent to one molecule of water. This is in favour of the theory of hydrophobic solvation, for which a larger and more stable structure of the water molecules is expected around a solute molecule.
Hirahata, H
1984-01-01
There have been many studies of thermographic diagnosis of vibration disease, but few of them seem to have discussed tie-tamping machines as a cause. This study focuses on thermographic diagnosis of vibration disease in tie-tamper operators of the Japanese National Railways. In the diagnosis the subject's both hands were immersed in water at 10 degrees C for 3 minutes before being examined. Variables such as season, age, type of vibration tool used and total operating time were considered. These were selected as outside variables and thermographic results as dependent variables, in Quantification Method II. Season and confirmation of vibration disease were found to have a relationship to thermographic scaling, but no such relationship was found for age, type of vibration tool used, or total operating time. A cross-analysis of variables confirmed the relationship with season, and revealed that there were fewer confirmed cases of vibration disease in spring and summer than in fall and winter. It was finally concluded that thermographic analysis is more reliable in colder weather.
Vibrational Dynamics of Biological Molecules: Multi-quantum Contributions
Leu, Bogdan M.; Timothy Sage, J.; Zgierski, Marek Z.; Wyllie, Graeme R. A.; Ellison, Mary K.; Robert Scheidt, W.; Sturhahn, Wolfgang; Ercan Alp, E.; Durbin, Stephen M.
2006-01-01
High-resolution X-ray measurements near a nuclear resonance reveal the complete vibrational spectrum of the probe nucleus. Because of this, nuclear resonance vibrational spectroscopy (NRVS) is a uniquely quantitative probe of the vibrational dynamics of reactive iron sites in proteins and other complex molecules. Our measurements of vibrational fundamentals have revealed both frequencies and amplitudes of 57Fe vibrations in proteins and model compounds. Information on the direction of Fe motion has also been obtained from measurements on oriented single crystals, and provides an essential test of normal mode predictions. Here, we report the observation of weaker two-quantum vibrational excitations (overtones and combinations) for compounds that mimic the active site of heme proteins. The predicted intensities depend strongly on the direction of Fe motion. We compare the observed features with predictions based on the observed fundamentals, using information on the direction of Fe motion obtained either from DFT predictions or from single crystal measurements. Two-quantum excitations may become a useful tool to identify the directions of the Fe oscillations when single crystals are not available. PMID:16894397
Ma, Lin; Xu, Zhiwu; Zheng, Kun; Yan, Jiuchun; Yang, Shiqin
2014-03-01
The vibration characteristics of an aluminum surface subjected to ultrasonic waves were investigated with a combination of numerical simulation and experimental testing. The wetting behavior of solder droplets on the vibrating aluminum surface was also examined. The results show that the vibration pattern of the aluminum surface is inhomogeneous. The amplitude of the aluminum surface exceeds the excitation amplitude in some zones, while the amplitude decreases nearly to zero in other zones. The distribution of the zero-amplitude zones is much less dependent on the strength of the vibration than on the location of the vibration source. The surface of the liquid solder vibrates at an ultrasonic frequency that is higher than the vibration source, and the amplitude of the liquid solder is almost twice that of the aluminum surface. The vibration of the surface of the base metal (liquid solder) correlates with the oxide film removal effect. Significant removal of the oxide film can be achieved within 2s when the amplitude of the aluminum surface is higher than 5.4 μm or when the amplitude of the liquid solder surface is higher than 10.2 μm. Copyright © 2013 Elsevier B.V. All rights reserved.
An observational study of the effect of vibration on the caking of suspensions in oily vehicles.
Jain, Rohit; Bork, Olaf; Alawi, Fadil; Nanjan, Karthigeyan; Tucker, Ian G
2016-11-30
An oily suspension of penethamate (PNT) that was physically stable on storage, caked solidly during road/air transport. This paper reports on the caking behaviour of PNT oily suspension formulations exposed to vibrations in a lab-based test designed to simulate road/air transport. The lab-test was used to study the effects of container type (glass v PET) and formulation (oil, surfactant type and concentration) on the physical stability of suspension under vibration. Redispersibility of the sediment was lower at longer vibrations times and at higher intensity of vibration. Caking on vibration was strongly influenced by the type of container (caking in glass but not in PET) possibly due to tribo-charging of particles. Caking on vibration was dependent on the formulation: type and concentration of surfactant; type of oil. The physical stability of oily suspensions, and the effect of vibration are two areas which have been largely neglected in the pharmaceutical literature. This paper discusses some potential mechanisms for the observations but studies using fully characterised materials are required. Finally we conclude that static testing of physical stability of oily suspensions is not sufficient and that a vibrational stress test is required. Copyright © 2016 Elsevier B.V. All rights reserved.
The relative importance of noise and vibration from railways.
Howarth, H V; Griffin, M J
1990-06-01
An experiment was conducted to determine the subjective equivalence of railway noise and railway-induced building vibration, and hence the relative importance of the two stimuli. Six magnitudes of whole-body, vertical (z-axis) vibration and six levels of noise were presented simultaneously to each of 30 subjects in all 36 possible paired combinations. The stimuli were reproductions of the noise and vibration recorded inside a house during the passage of a train. The subjects were asked to indicate, after each presentation, which of the two stimuli (noise and vibration) they would prefer to be reduced. A seven-point scale was employed to indicate the total annoyance produced by the two stimuli. A subjective equivalence contour was determined from the levels at which 50% of the subjects preferred the reduction of noise and 50% preferred the reduction of vibration. The contour may be described by the relation L(AE) = 29.3 log10 VDV + 89.2, where L(AE) is the sound exposure level and VDV is the vibration dose value. This relation may be used to determine whether a reduction of noise or a reduction of vibration would be more beneficial to residents near railways. The total annoyance due to simultaneous noise and vibration was shown to depend on the magnitude of both stimuli.
Al-Harbi, L M; El-Mossalamy, E H; Obaid, A Y; Al-Jedaani, A H
2014-01-01
Charge transfer complexes of substituted aryl Schiff bases as donors with picric acid and m-dinitrobenzene as acceptors were investigated by using computational analysis calculated by Configuration Interaction Singles Hartree-Fock (CIS-HF) at standard 6-31G∗ basis set and Time-Dependent Density-Functional Theory (TD-DFT) levels of theory at standard 6-31G∗∗ basis set, infrared spectra, visible and nuclear magnetic resonance spectra are investigated. The optimized geometries and vibrational frequencies were evaluated. The energy and oscillator strength were calculated by Configuration Interaction Singles Hartree-Fock method (CIS-HF) and the Time-Dependent Density-Functional Theory (TD-DFT) results. Electronic properties, such as HOMO and LUMO energies and band gaps of CTCs set, were studied by the Time-Dependent density functional theory with Becke-Lee-Young-Parr (B3LYP) composite exchange correlation functional and by Configuration Interaction Singles Hartree-Fock method (CIS-HF). The ionization potential Ip and electron affinity EA were calculated by PM3, HF and DFT methods. The columbic force was calculated theoretically by using (CIS-HF and TD-DFT) methods. This study confirms that the theoretical calculation of vibrational frequencies for (aryl Schiff bases--(m-dinitrobenzene and picric acid)) complexes are quite useful for the vibrational assignment and for predicting new vibrational frequencies. Copyright © 2013 Elsevier B.V. All rights reserved.
On the role of vibrational excitation in dissociative recombination
NASA Technical Reports Server (NTRS)
Cunningham, A. J.; Omalley, T. F.; Hobson, R. M.
1981-01-01
An improved physical model of dissociative recombination is presented and applied to experimental data on the temperature dependence of rate coefficients for the rare-gas and atmospheric-gas ions. It is shown that in the charge neutralisation of the rare-gas dimer ions, autoionisation plays an important role (at least in comparison with the atmospheric-gas ions) and contributes to the fast fall-off in the rate coefficient with vibrational excitation observed in shock tube studies. Numerical estimates of the observed fall-off in rate coefficient with increasing vibrational excitation are also presented.
Development of a long-gauge vibration sensor
NASA Astrophysics Data System (ADS)
Kung, Peter; Comanici, Maria I.; Li, Qian; Zhang, Yiwei
2014-11-01
Recently, we found that by terminating a long length of fiber of up to 1 km with an in-fiber cavity structure, the entire structure can detect vibrations over a frequency range from 5 Hz to 100 Hz. We want to determine whether the structure (including packaging) can be optimized to detect vibrations at even higher frequencies. The structure can be used as a distributed vibration sensor mounted on large motors and other rotating machines to capture the entire frequency spectrum of the associated vibration signals, and therefore, replace the many accelerometers, which add to the maintenance cost. Similarly, it will help detect in-slot vibrations which cause intermittent contact leading to sparking under high voltages inside air-cooled generators. However, that will require the sensor to detect frequencies associated with vibration sparking, ranging from 6 kHz to 15 kHz. Then, at even higher frequencies, the structure can be useful to detect acoustic vibrations (30 kHz to 150 kHz) associated with partial discharge (PD) in generators and transformers. Detecting lower frequencies in the range 2 Hz to 200 Hz makes the sensor suitable for seismic studies and falls well into the vibrations associated with rotating machines. Another application of interest is corrosion detection in large reenforced concrete structures by inserting the sensor along a long hole drilled around structures showing signs of corrosion. The frequency response for the proposed long-gauge vibration sensor depends on packaging.
Development of a long-gauge vibration sensor
NASA Astrophysics Data System (ADS)
Kung, Peter; Comanici, Maria I.; Li, Qian; Zhang, Yiwei
2015-03-01
We have recently found that a long length of fiber of up to 1 km terminated with an in-fiber cavity structure can detect vibrations over a frequency range from 5 Hz to 2 kHz. We want to determine whether the sensor (including packaging) can be optimized to detect vibrations at even higher frequencies. The structure can be used as a distributed vibration sensor mounted on large motors and other rotating machines to capture the entire frequency spectrum of the associated vibration signals, and therefore, replace the many accelerometers, which add to maintenance cost. The sensor may also help detect in-slot vibrations which cause intermittent contact leading to sparking under high voltages inside air-cooled generators. However, that requires the sensor to detect frequencies associated with vibration sparking, ranging from 6 kHz to 15 kHz. Acoustic vibration monitoring may need sensing at even higher frequencies (30 kHz to 150 kHz) associated with partial discharge (PD) in generators and transformers. Detecting lower frequencies in the range 2 Hz to 200 Hz makes the sensor suitable for seismic studies and falls well into the vibrations associated with rotating machines. Another application of interest is corrosion detection in large re-enforced concrete structures by inserting the sensor along a long hole drilled around structures showing signs of corrosion. The frequency response for the proposed longgauge vibration sensor depends on packaging.
NASA Astrophysics Data System (ADS)
Kuyanov-Prozument, Kirill; Vasiliou, Angayle; Park, G. Barratt; Muenter, John S.; Stanton, John F.; Ellison, G. Barney; Field, Robert W.
2011-06-01
Knowing the vibrational population distribution of unimolecular fragmentation reaction products can reveal the reaction mechanism. Here, we applied Chirped Pulse Millimeter Wave (CPmmW) spectroscopy, invented by Brooks Pate and co-workers, to detect the vibrational population distribution of formaldehyde produced by pyrolysis of methyl nitrite (CH_3ONO) or ethyl nitrite (CH_3CH_2ONO). The pure rotational spectrum contains information about vibrational populations via the known vibration dependence of the rotational constants, which is easily observed in the millimeter-wave spectrum. Only two of six vibrational modes of formaldehyde are significantly populated in both pyrolysis decomposition reactions and in an expansion of pure formaldehyde, suggesting that it is the collisional energy transfer that primarily determines the vibrational population distribution. The non-Boltzmann population distribution among the observed vibrational modes demonstrates non-statistical vibrational energy transfer in formaldehyde. It is in sharp contrast with the equilibrated population distribution measured in OCS and the almost complete vibrational relaxation observed in acetaldehyde. This work is supported by grants from the US Department of Energy and the ACS Petroleum Research Fund, and the National Science Foundation grant "Organic Radicals in Biomass Decomposition: Mechanisms & Dynamics," (CHE-0848606) G. G. Brown, B. C. Dian, K. O. Douglass, S. M. Geyer, S. T. Shipman and B. H. Pate Rev. Sci. Instrum. 79, 053103 (1995).
Effect of shaft frequency on cavitation in a journal bearing for noncentered circular whirl
NASA Technical Reports Server (NTRS)
Brewe, David E.; Khonsari, M. M.
1987-01-01
The effect of shaft frequency on the performance of a submerged journal undergoing noncentered circular whirl is examined. The main emphasis of the paper is on the behavior of the vapor cavitation bubble and its effect on the bearing performance as a function of frequency. A cavitation algorithm due to Elrod was implemented in a computer program which solves a time-dependent Reynolds equation. This algorithm automatically handles the boundary conditions by using a switch function and a control volume approach which conserves mass throughout the entire flow. The shaft frequencies in this investigation ranged from 0 rad/s (squeeze-film damper) to -104 rad/s (a case in which oil-whip condition was produced momentarily). For the particular vibration amplitude chosen in this investigation it was observed that vapor cavitation had an effect on the load components for the full range of shaft frequencies investigated.
Scaling for hard-sphere colloidal glasses near jamming
NASA Astrophysics Data System (ADS)
Zargar, Rojman; DeGiuli, Eric; Bonn, Daniel
2016-12-01
Hard-sphere colloids are model systems in which to study the glass transition and universal properties of amorphous solids. Using covariance matrix analysis to determine the vibrational modes, we experimentally measure here the scaling behavior of the density of states, shear modulus, and mean-squared displacement (MSD) in a hard-sphere colloidal glass. Scaling the frequency with the boson-peak frequency, we find that the density of states at different volume fractions all collapse on a single master curve, which obeys a power law in terms of the scaled frequency. Below the boson peak, the exponent is consistent with theoretical results obtained by real-space and phase-space approaches to understanding amorphous solids. We find that the shear modulus and the MSD are nearly inversely proportional, and show a singular power-law dependence on the distance from random close packing. Our results are in very good agreement with the theoretical predictions.
New device to measure dynamic intrusion/extrusion cycles of lyophobic heterogeneous systems.
Guillemot, Ludivine; Galarneau, Anne; Vigier, Gérard; Abensur, Thierry; Charlaix, Élisabeth
2012-10-01
Lyophobic heterogeneous systems (LHS) are made of mesoporous materials immersed in a non-wetting liquid. One application of LHS is the nonlinear damping of high frequency vibrations. The behaviour of LHS is characterized by P - ΔV cycles, where P is the pressure applied to the system, and ΔV its volume change due to the intrusion of the liquid into the pores of the material, or its extrusion out of the pores. Very few dynamic studies of LHS have been performed until now. We describe here a new apparatus that allows us to carry out dynamic intrusion/extrusion cycles with various liquid/porous material systems, controlling the temperature from ambient to 120 °C and the frequency from 0.01 to 20 Hz. We show that for two LHS: water/MTS and Galinstan/CPG, the energy dissipated during one cycle depends very weakly on the cycle frequency, in strong contrast to conventional dampers.
NASA Astrophysics Data System (ADS)
Jagiełowicz-Ryznar, C.
2016-12-01
The numerical calculations results of torsional vibration of the multi-cylinder crankshaft in the serial combustion engine (MC), including a viscous damper (VD), at complex forcing, were shown. In fact, in the MC case the crankshaft rotation forcings spectrum is the sum of harmonic forcing whose amplitude can be compared with the amplitude of the 1st harmonic. A significant impact, in the engine operational velocity, on the vibration damping process of MC, may be the amplitude of the 2nd harmonic of a forcing moment. The calculations results of MC vibration, depending on the amplitude of the 2nd harmonic of the forcing moment, for the first form of the torsional vibration, were shown. Higher forms of torsional vibrations have no practical significance. The calculations assume the optimum damping coefficient VD, when the simple harmonic forcing is equal to the base critical velocity of the MC crankshaft.
Long-Range Vibrational Dynamics Are Directed by Watson-Crick Base Pairing in Duplex DNA.
Hithell, Gordon; Shaw, Daniel J; Donaldson, Paul M; Greetham, Gregory M; Towrie, Michael; Burley, Glenn A; Parker, Anthony W; Hunt, Neil T
2016-05-05
Ultrafast two-dimensional infrared (2D-IR) spectroscopy of a 15-mer A-T DNA duplex in solution has revealed structure-dependent vibrational coupling and energy transfer processes linking bases with the sugar-phosphate backbone. Duplex melting induces significant changes in the positions of off-diagonal peaks linking carbonyl and ring-stretching vibrational modes of the adenine and thymine bases with vibrations of the phosphate group and phosphodiester linkage. These indicate that Watson-Crick hydrogen bonding and helix formation lead to a unique vibrational coupling arrangement of base vibrational modes with those of the phosphate unit. On the basis of observations from time-resolved 2D-IR data, we conclude that rapid energy transfer processes occur between base and backbone, mediated by additional modes located on the deoxyribose moiety within the same nucleotide. These relaxation dynamics are insensitive to duplex melting, showing that efficient intramolecular energy relaxation to the solvent via the phosphate groups is the key to excess energy dissipation in both single- and double-stranded DNA.
NASA Technical Reports Server (NTRS)
Feonychev, Alexander I.; Kalachinskaya, Irina S.; Pokhilko, Victor I.
1996-01-01
The deformation of the fluid column by an action of a low-frequency vibration is considered. It is shown that behavior of the free fluid surface depends on the frequency of applied vibration and its amplitude. In the area of very low frequencies when fluid has time to comment on travel of bounding solid walls limiting column, the harmonical oscillations of free surface with given frequency are observed. With increase of vibration frequency the steady-state relief on free fluid surface is formed. If the amplitude of vibration is very small and the frequency corresponding to the first peak in the vibration spectrum on the Mir orbital station, the deformation of free surface tends to zero. Fluid flow induced thermocapillary effect on deformed free surface is more unstable as in the case of smooth cylindrical surface. It was shown that width of heating zone affects very essentially the flow pattern and transition to oscillatory regime of thermocapillary convection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Ling; Gan, Xueqi; Zhu, Zhuoli
Although many previous studies have shown that refractory period-dependent memory effect of vibration stress is anabolic for skeletal homeostasis, little is known about the rapid response of osteoblasts simply derived from vibration itself. In view of the potential role of reactive oxygen species (ROS) in mediating differentiated activity of osteoblasts, whether and how ROS regulates the rapid effect of vibration deserve to be demonstrated. Our findings indicated that MC3T3-E1 cells underwent decreased gene expression of Runx2, Col-I and ALP and impaired ALP activity accompanied by increased mitochondrial fission immediately after vibration loading. Moreover, we also revealed the involvement of ERK-Drp1more » signal transduction in ROS regulatory mechanisms responsible for the rapid effect of vibration stress. - Highlights: • ROS contributed to the rapid response of MC3T3-E1 cells for vibration stress. • Imbalance of mitochondrial dynamics were linked to the LMHFV-derived rapid response. • The role of ERK-Drp1 signal pathway in the LMHFV-derived osteoblast rapid response.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schulze, Jan; Kühn, Oliver, E-mail: oliver.kuehn@uni-rostock.de; Shibl, Mohamed F., E-mail: mfshibl@qu.edu.qa
2016-05-14
The coupled quantum dynamics of excitonic and vibrational degrees of freedom is investigated for high-dimensional models of the Fenna-Matthews-Olson complex. This includes a seven- and an eight-site model with 518 and 592 harmonic vibrational modes, respectively. The coupling between local electronic transitions and vibrations is described within the Huang-Rhys model using parameters that are obtained by discretization of an experimental spectral density. Different pathways of excitation energy flow are analyzed in terms of the reduced one-exciton density matrix, focussing on the role of vibrational and vibronic excitations. Distinct features due to both competing time scales of vibrational and exciton motionmore » and vibronically assisted transfer are observed. The question of the effect of initial state preparation is addressed by comparing the case of an instantaneous Franck-Condon excitation at a single site with that of a laser field excitation.« less
Analysis on Coupled Vibration of a Radially Polarized Piezoelectric Cylindrical Transducer
Xu, Jie; Lin, Shuyu; Ma, Yan; Tang, Yifan
2017-01-01
Coupled vibration of a radially polarized piezoelectric cylindrical transducer is analyzed with the mechanical coupling coefficient method. The method has been utilized to analyze the metal cylindrical transducer and the axially polarized piezoelectric cylindrical transducer. In this method, the mechanical coupling coefficient is introduced and defined as the stress ratio in different directions. Coupled vibration of the cylindrical transducer is regarded as the interaction of the plane radial vibration of a ring and the longitudinal vibration of a tube. For the radially polarized piezoelectric cylindrical transducer, the radial and longitudinal electric admittances as functions of mechanical coupling coefficients and angular frequencies are derived, respectively. The resonance frequency equations are obtained. The dependence of resonance frequency and mechanical coupling coefficient on aspect ratio is studied. Vibrational distributions on the surfaces of the cylindrical transducer are presented with experimental measurement. On the support of experiments, this work is verified and provides a theoretical foundation for the analysis and design of the radially polarized piezoelectric cylindrical transducer. PMID:29292785
The effects of vibration-reducing gloves on finger vibration
Welcome, Daniel E.; Dong, Ren G.; Xu, Xueyan S.; Warren, Christopher; McDowell, Thomas W.
2015-01-01
Vibration-reducing (VR) gloves have been used to reduce the hand-transmitted vibration exposures from machines and powered hand tools but their effectiveness remains unclear, especially for finger protection. The objectives of this study are to determine whether VR gloves can attenuate the vibration transmitted to the fingers and to enhance the understanding of the mechanisms of how these gloves work. Seven adult male subjects participated in the experiment. The fixed factors evaluated include hand force (four levels), glove condition (gel-filled, air bladder, no gloves), and location of the finger vibration measurement. A 3-D laser vibrometer was used to measure the vibrations on the fingers with and without wearing a glove on a 3-D hand-arm vibration test system. This study finds that the effect of VR gloves on the finger vibration depends on not only the gloves but also their influence on the distribution of the finger contact stiffness and the grip effort. As a result, the gloves increase the vibration in the fingertip area but marginally reduce the vibration in the proximal area at some frequencies below 100 Hz. On average, the gloves reduce the vibration of the entire fingers by less than 3% at frequencies below 80 Hz but increase at frequencies from 80 to 400 Hz. At higher frequencies, the gel-filled glove is more effective at reducing the finger vibration than the air bladder-filled glove. The implications of these findings are discussed. Relevance to industry Prolonged, intensive exposure to hand-transmitted vibration can cause hand-arm vibration syndrome. Vibration-reducing gloves have been used as an alternative approach to reduce the vibration exposure. However, their effectiveness for reducing finger-transmitted vibrations remains unclear. This study enhanced the understanding of the glove effects on finger vibration and provided useful information on the effectiveness of typical VR gloves at reducing the vibration transmitted to the fingers. The new results and knowledge can be used to help select appropriate gloves for the operations of powered hand tools, to help perform risk assessment of the vibration exposure, and to help design better VR gloves. PMID:26543297
Christensen-Dalsgaard, Jakob; Brandt, Christian; Willis, Katie L.; Christensen, Christian Bech; Ketten, Darlene; Edds-Walton, Peggy; Fay, Richard R.; Madsen, Peter T.; Carr, Catherine E.
2012-01-01
Turtles, like other amphibious animals, face a trade-off between terrestrial and aquatic hearing. We used laser vibrometry and auditory brainstem responses to measure their sensitivity to vibration stimuli and to airborne versus underwater sound. Turtles are most sensitive to sound underwater, and their sensitivity depends on the large middle ear, which has a compliant tympanic disc attached to the columella. Behind the disc, the middle ear is a large air-filled cavity with a volume of approximately 0.5 ml and a resonance frequency of approximately 500 Hz underwater. Laser vibrometry measurements underwater showed peak vibrations at 500–600 Hz with a maximum of 300 µm s−1 Pa−1, approximately 100 times more than the surrounding water. In air, the auditory brainstem response audiogram showed a best sensitivity to sound of 300–500 Hz. Audiograms before and after removing the skin covering reveal that the cartilaginous tympanic disc shows unchanged sensitivity, indicating that the tympanic disc, and not the overlying skin, is the key sound receiver. If air and water thresholds are compared in terms of sound intensity, thresholds in water are approximately 20–30 dB lower than in air. Therefore, this tympanic ear is specialized for underwater hearing, most probably because sound-induced pulsations of the air in the middle ear cavity drive the tympanic disc. PMID:22438494
Christensen-Dalsgaard, Jakob; Brandt, Christian; Willis, Katie L; Christensen, Christian Bech; Ketten, Darlene; Edds-Walton, Peggy; Fay, Richard R; Madsen, Peter T; Carr, Catherine E
2012-07-22
Turtles, like other amphibious animals, face a trade-off between terrestrial and aquatic hearing. We used laser vibrometry and auditory brainstem responses to measure their sensitivity to vibration stimuli and to airborne versus underwater sound. Turtles are most sensitive to sound underwater, and their sensitivity depends on the large middle ear, which has a compliant tympanic disc attached to the columella. Behind the disc, the middle ear is a large air-filled cavity with a volume of approximately 0.5 ml and a resonance frequency of approximately 500 Hz underwater. Laser vibrometry measurements underwater showed peak vibrations at 500-600 Hz with a maximum of 300 µm s(-1) Pa(-1), approximately 100 times more than the surrounding water. In air, the auditory brainstem response audiogram showed a best sensitivity to sound of 300-500 Hz. Audiograms before and after removing the skin covering reveal that the cartilaginous tympanic disc shows unchanged sensitivity, indicating that the tympanic disc, and not the overlying skin, is the key sound receiver. If air and water thresholds are compared in terms of sound intensity, thresholds in water are approximately 20-30 dB lower than in air. Therefore, this tympanic ear is specialized for underwater hearing, most probably because sound-induced pulsations of the air in the middle ear cavity drive the tympanic disc.
Wheel/Rail Noise and Vibration : Volume 2. Applications to Control of Wheel/Rail Noise.
DOT National Transportation Integrated Search
1975-05-01
The final reports are reported of a project to develop a basic understanding of urban transit wheel/rail noise control measures. Analytical models of impedance, response, radiation efficiency, and directivity of wheels and rails are presented and com...
The Shock and Vibration Digest. Volume 13, Number 11
1981-11-01
Beams with Unconstrained Damping Treatment G.R. Bhashyam and G. Prathap S. Narayanan, J.P. Verma, and A.K. Mallik Dept. of Aerospace and Mech. Engrg...2337 Sasaki, R ............... 2297 Mallik , A.K ............. 2384 Ookuma, M ............. 2463 Sasakura, Y ............. 2503 85 WaeskA
The Shock and Vibration Digest. Volume 13, Number 9
1981-09-01
namie Systems with Constrained Damping Treatment D.E. Beskos and B.A. Boley S. Narayanan and A.K. Mallik Dept. of Civil and Mineral Engrg., Univ. of...2032 Mallik , A.K .............. 1903 Ostrowski, P.P ............ 1981 Kapoor, P.............. 1933 Manolis, G.D............ 2024 Qusset
NASA Technical Reports Server (NTRS)
Calvin, M. (Editor); Gazenko, O. G. (Editor)
1975-01-01
Barometric pressure, gas composition, toxicity, and thermal exchange of spacecraft cabin atmospheres are discussed. Effects of gravitation, acceleration, weightlessness, noise, and vibration on human behavior and performance during space flight are also described.
The Shock and Vibration Digest. Volume 13. Number 7
1981-07-01
Richards, ISVR, University of Southampton Presidential Address "A Structural Dynamicist Looks at Statistical Energy Analysis " Professor B.L...excitation and for random and sine sweep mechanical excitation. Test data were used to assess prediction methods, in particular a statistical energy analysis method
NASA Astrophysics Data System (ADS)
Yang, Jubiao; Krane, Michael; Zhang, Lucy
2013-11-01
Vocal fold vibrations and the glottal jet are successfully simulated using the modified Immersed Finite Element method (mIFEM), a fully coupled dynamics approach to model fluid-structure interactions. A self-sustained and steady vocal fold vibration is captured given a constant pressure input at the glottal entrance. The flow rates at different axial locations in the glottis are calculated, showing small variations among them due to the vocal fold motion and deformation. To further facilitate the understanding of the phonation process, two control volume analyses, specifically with Bernoulli's equation and Newton's 2nd law, are carried out for the glottal flow based on the simulation results. A generalized Bernoulli's equation is derived to interpret the correlations between the velocity and pressure temporally and spatially along the center line which is a streamline using a half-space model with symmetry boundary condition. A specialized Newton's 2nd law equation is developed and divided into terms to help understand the driving mechanism of the glottal flow.
Noncontact measurement of vibration using airborne ultrasound.
Mater, O B; Remenieras, J P; Bruneel, C; Roncin, A; Patat, F
1998-01-01
A noncontact ultrasonic method for measuring the surface normal vibration of objects was studied. The instrument consists of a pair of 420 kHz ultrasonic air transducers. One is used to emit ultrasounds toward the moving surface, and the other receives the ultrasound reflected from the object under test. Two effects induce a phase modulation on the received signal. The first effect results from the variation of the round trip time interval tau required for the wavefront to go from the emitter to the moving surface and back to the receiver. This is the Doppler effect directly proportional to the surface displacement. The second effect results from the nonlinear parametric interactions of the ultrasonic beams (forward and backward) with the low frequency sound field emitted in the air by the vibrating surface. This latter phenomenon, which is a volume effect, is proportional to the velocity of the vibrating surface and increases with the distance between the transducers and the surface under test. The relative contribution of the Doppler and parametric effects are evaluated, and both have to be taken into account for ultrasonic interferometry in air.
NASA Technical Reports Server (NTRS)
Leyland, Jane Anne
2001-01-01
Given the predicted growth in air transportation, the potential exists for significant market niches for rotary wing subsonic vehicles. Technological advances which optimise rotorcraft aeromechanical behaviour can contribute significantly to both their commercial and military development, acceptance, and sales. Examples of the optimisation of rotorcraft aeromechanical behaviour which are of interest include the minimisation of vibration and/or loads. The reduction of rotorcraft vibration and loads is an important means to extend the useful life of the vehicle and to improve its ride quality. Although vibration reduction can be accomplished by using passive dampers and/or tuned masses, active closed-loop control has the potential to reduce vibration and loads throughout a.wider flight regime whilst requiring less additional weight to the aircraft man that obtained by using passive methads. It is ernphasised that the analysis described herein is applicable to all those rotorcraft aeromechanical behaviour optimisation problems for which the relationship between the harmonic control vector and the measurement vector can be adequately described by a neural-network model.
Franjic, Kresimir; Cowan, Michael L; Kraemer, Darren; Miller, R J Dwayne
2009-12-07
Mechanical and thermodynamic responses of biomaterials after impulsive heat deposition through vibrational excitations (IHDVE) are investigated and discussed. Specifically, we demonstrate highly efficient ablation of healthy tooth enamel using 55 ps infrared laser pulses tuned to the vibrational transition of interstitial water and hydroxyapatite around 2.95 microm. The peak intensity at 13 GW/cm(2) was well below the plasma generation threshold and the applied fluence 0.75 J/cm(2) was significantly smaller than the typical ablation thresholds observed with nanosecond and microsecond pulses from Er:YAG lasers operating at the same wavelength. The ablation was performed without adding any superficial water layer at the enamel surface. The total energy deposited per ablated volume was several times smaller than previously reported for non-resonant ultrafast plasma driven ablation with similar pulse durations. No micro-cracking of the ablated surface was observed with a scanning electron microscope. The highly efficient ablation is attributed to an enhanced photomechanical effect due to ultrafast vibrational relaxation into heat and the scattering of powerful ultrafast acoustic transients with random phases off the mesoscopic heterogeneous tissue structures.
NASA Astrophysics Data System (ADS)
Nakamura, K.; Naito, Y.; Onishi, K.; Kawakatsu, H.
2012-12-01
In industrial applications of a micromechanical silicon resonator as a physical sensor, a high-quality factor Q and a low-temperature coefficient of Q (TCQ) are required for high sensitivity in a wide temperature range. Although the newly developed thin film encapsulation technique enables a beam to operate with low viscous damping in a vacuum cavity, the Q of a flexural vibration mode is limited by thermo-elastic damping (TED). We proposed a torsional beam resonator which features both a high Q and a low TCQ because theoretically the torsional vibration mode does not suffer from TED. From experiments, Q of 267 000 and TCQ of 1.4 for the 20 MHz torsional vibration mode were observed which were superior to those of the flexural mode. The pressure of the residual gas in the cavity of only 20 pl volume, which is one of the energy loss factors limiting the Q, was successfully estimated to be 1-14 Pa. Finally, the possibilities of improving the Q and the difference of the measured TCQ from a theoretical value were discussed.
Zheng, Junrong; Fayer, Michael D.
2008-01-01
Weak π hydrogen bonded solute-solvent complexes are studied with ultrafast two dimensional infrared (2D-IR) vibrational echo chemical exchange spectroscopy, temperature dependent IR absorption spectroscopy, and density functional theory calculations. Eight solute-solvent complexes composed of a number of phenol derivatives and various benzene derivatives are investigated. The complexes are formed between the phenol derivative (solute) in a mixed solvent of the benzene derivative and CCl4. The time dependence of the 2D-IR vibrational echo spectra of the phenol hydroxyl stretch is used to directly determine the dissociation and formation rates of the hydrogen bonded complexes. The dissociation rates of the weak hydrogen bonds are found to be strongly correlated with their formation enthalpies. The correlation can be described with an equation similar to the Arrhenius equation. The results are discussed in terms of transition state theory. PMID:17373792
Removing function model and experiments on ultrasonic polishing molding die
NASA Astrophysics Data System (ADS)
Huang, Qitai; Ni, Ying; Yu, Jingchi
2010-10-01
Low temperature glass molding technology is the main method on volume-producing high precision middle and small diameter optical cells in the future. While the accuracy of the molding die will effect the cell precision, so the high precision molding die development is one of the most important part of the low temperature glass molding technology. The molding die is manufactured from high rigid and crisp metal alloy, with the ultrasonic vibration character of high vibration frequency and concentrative energy distribution; abrasive particles will impact the rigid metal alloy surface with very high speed that will remove the material from the work piece. Ultrasonic can make the rigid metal alloy molding die controllable polishing and reduce the roughness and surface error. Different from other ultrasonic fabrication method, untouched ultrasonic polishing is applied on polish the molding die, that means the tool does not touch the work piece in the process of polishing. The abrasive particles vibrate around the balance position with high speed and frequency under the drive of ultrasonic vibration in the liquid medium and impact the workspace surface, the energy of abrasive particles come from ultrasonic vibration, while not from the direct hammer blow of the tool. So a nummular vibrator simple harmonic vibrates on an infinity plane surface is considered as a model of ultrasonic polishing working condition. According to Huygens theory the sound field distribution on a plane surface is analyzed and calculated, the tool removing function is also deduced from this distribution. Then the simple point ultrasonic polishing experiment is proceeded to certificate the theory validity.
Proprioceptive illusions created by vibration of one arm are altered by vibrating the other arm.
Hakuta, Naoyuki; Izumizaki, Masahiko; Kigawa, Kazuyoshi; Murai, Norimitsu; Atsumi, Takashi; Homma, Ikuo
2014-07-01
There is some evidence that signals coming from both arms are used to determine the perceived position and movement of one arm. We examined whether the sense of position and movement of one (reference) arm is altered by increases in muscle spindle signals in the other (indicator) arm in blindfolded participants (n = 26). To increase muscle spindle discharge, we applied 70-80 Hz muscle vibration to the elbow flexors of the indicator arm. In a first experiment, proprioceptive illusions in the vibrated reference arm in a forearm position-matching task were compared between conditions in which the indicator arm elbow flexors were vibrated or not vibrated. We found that the vibration illusion of arm extension induced by vibration of reference arm elbow flexors was reduced in the presence of vibration of the indicator elbow flexors. In a second experiment, participants were asked to describe their perception of the illusion of forearm extension movements of the reference arm evoked by vibration of reference arm elbow flexors in response to on/off and off/on transitions of vibration of non-reference arm elbow flexors. When vibration of non-reference arm elbow flexors was turned on, they reported a sensation of slowing down of the illusion of the reference arm. When it was turned off, they reported a sensation of speeding up. To conclude, the present study shows that both the sense of limb position and the sense of limb movement of one arm are dependent to some extent on spindle signals coming from the other arm.
Improved compaction of dried tannery wastewater sludge.
Della Zassa, M; Zerlottin, M; Refosco, D; Santomaso, A C; Canu, P
2015-12-01
We quantitatively studied the advantages of improving the compaction of a powder waste by several techniques, including its pelletization. The goal is increasing the mass storage capacity in a given storage volume, and reducing the permeability of air and moisture, that may trigger exothermic spontaneous reactions in organic waste, particularly as powders. The study is based on dried sludges from a wastewater treatment, mainly from tanneries, but the indications are valid and useful for any waste in the form of powder, suitable to pelletization. Measurements of bulk density have been carried out at the industrial and laboratory scale, using different packing procedures, amenable to industrial processes. Waste as powder, pellets and their mixtures have been considered. The bulk density of waste as powder increases from 0.64 t/m(3) (simply poured) to 0.74 t/m(3) (tapped) and finally to 0.82 t/m(3) by a suitable, yet simple, packing procedure that we called dispersion filling, with a net gain of 28% in the compaction by simply modifying the collection procedure. Pelletization increases compaction by definition, but the packing of pellets is relatively coarse. Some increase in bulk density of pellets can be achieved by tapping; vibration and dispersion filling are not efficient with pellets. Mixtures of powder and pellets is the optimal packing policy. The best compaction result was achieved by controlled vibration of a 30/70 wt% mixture of powders and pellets, leading to a final bulk density of 1t/m(3), i.e. an improvement of compaction by more than 54% with respect to simply poured powders, but also larger than 35% compared to just pellets. That means increasing the mass storage capacity by a factor of 1.56. Interestingly, vibration can be the most or the least effective procedure to improve compaction of mixtures, depending on characteristics of vibration. The optimal packing (30/70 wt% powders/pellets) proved to effectively mitigate the onset of smouldering, leading to self-heating, according to standard tests, whereas the pure pelletization totally removes the self-heating hazard. Copyright © 2015 Elsevier Ltd. All rights reserved.
A computational study of systemic hydration in vocal fold collision.
Bhattacharya, Pinaki; Siegmund, Thomas
2014-01-01
Mechanical stresses develop within vocal fold (VF) soft tissues due to phonation-associated vibration and collision. These stresses in turn affect the hydration of VF tissue and thus influence voice health. In this paper, high-fidelity numerical computations are described, taking into account fully 3D geometry, realistic tissue and air properties, and high-amplitude vibration and collision. A segregated solver approach is employed, using sophisticated commercial solvers for both the VF tissue and glottal airflow domains. The tissue viscoelastic properties were derived from a biphasic formulation. Two cases were considered, whereby the tissue viscoelastic properties corresponded to two different volume fractions of the fluid phase of the VF tissue. For each case, hydrostatic stresses occurring as a result of vibration and collision were investigated. Assuming the VF tissue to be poroelastic, interstitial fluid movement within VF tissue was estimated from the hydrostatic stress gradient. Computed measures of overall VF dynamics (peak airflow velocity, magnitude of VF deformation, frequency of vibration and contact pressure) were well within the range of experimentally observed values. The VF motion leading to mechanical stresses within the VFs and their effect on the interstitial fluid flux is detailed. It is found that average deformation and vibration of VFs tend to increase the state of hydration of the VF tissue, whereas VF collision works to reduce hydration.
Impaired Vibration of Auditory Ossicles in Osteopetrotic Mice
Kanzaki, Sho; Takada, Yasunari; Niida, Shumpei; Takeda, Yoshihiro; Udagawa, Nobuyuki; Ogawa, Kaoru; Nango, Nobuhito; Momose, Atsushi; Matsuo, Koichi
2011-01-01
In the middle ear, a chain of three tiny bones (ie, malleus, incus, and stapes) vibrates to transmit sound from the tympanic membrane to the inner ear. Little is known about whether and how bone-resorbing osteoclasts play a role in the vibration of auditory ossicles. We analyzed hearing function and morphological features of auditory ossicles in osteopetrotic mice, which lack osteoclasts because of the deficiency of either cytokine RANKL or transcription factor c-Fos. The auditory brainstem response showed that mice of both genotypes experienced hearing loss, and laser Doppler vibrometry revealed that the malleus behind the tympanic membrane failed to vibrate. Histological analysis and X-ray tomographic microscopy using synchrotron radiation showed that auditory ossicles in osteopetrotic mice were thicker and more cartilaginous than those in control mice. Most interestingly, the malleal processus brevis touched the medial wall of the tympanic cavity in osteopetrotic mice, which was also the case for c-Src kinase–deficient mice (with normal numbers of nonresorbing osteoclasts). Osteopetrotic mice showed a smaller volume of the tympanic cavity but had larger auditory ossicles compared with controls. These data suggest that osteoclastic bone resorption is required for thinning of auditory ossicles and enlargement of the tympanic cavity so that auditory ossicles vibrate freely. PMID:21356377
Air injection test on a Kaplan turbine: prototype - model comparison
NASA Astrophysics Data System (ADS)
Angulo, M.; Rivetti, A.; Díaz, L.; Liscia, S.
2016-11-01
Air injection is a very well-known resource to reduce pressure pulsation magnitude in turbines, especially on Francis type. In the case of large Kaplan designs, even when not so usual, it could be a solution to mitigate vibrations arising when tip vortex cavitation phenomenon becomes erosive and induces structural vibrations. In order to study this alternative, aeration tests were performed on a Kaplan turbine at model and prototype scales. The research was focused on efficiency of different air flow rates injected in reducing vibrations, especially at the draft tube and the discharge ring and also in the efficiency drop magnitude. It was found that results on both scales presents the same trend in particular for vibration levels at the discharge ring. The efficiency drop was overestimated on model tests while on prototype were less than 0.2 % for all power output. On prototype, air has a beneficial effect in reducing pressure fluctuations up to 0.2 ‰ of air flow rate. On model high speed image computing helped to quantify the volume of tip vortex cavitation that is strongly correlated with the vibration level. The hydrophone measurements did not capture the cavitation intensity when air is injected, however on prototype, it was detected by a sonometer installed at the draft tube access gallery.
NASA Technical Reports Server (NTRS)
Horwath, T. G.
1992-01-01
The propagation of vibrational energy in bulk, torsional, and flexural modes, in electrically conducting media can undergo strong attenuation if subjected to high magnetic fields in certain spatial arrangements. The reasons for this are induced Eddy currents which are generated by the volume elements in the media moving transversally to the magnetic field at acoustic velocities. In magnetic fields achievable with superconductors, the non-conservative (dissipative) forces are compared to the elastic and inertial forces for most metals. Strong dissipation of vibrational energy in the form of heat takes place as a result. A simplified theory is presented based on engineering representations of electrodynamics, attenuation values for representative metals are calculated, and problems encountered in formulating a generalized theory based on electrodynamics of moving media are discussed. General applications as well as applications specific to maglev are discussed.
Vibration Therapy to Prevent Bone Loss and Falls: Mechanisms and Efficacy.
Beck, Belinda R
2015-12-01
A considerable volume of evidence has accumulated to suggest that whole-body vibration (WBV) may have a therapeutic role to play in the prevention of osteoporotic fracture, particularly for individuals who are unable to tolerate vigorous exercise interventions. There is moderate to strong evidence that WBV will prevent falls (likely due to enhanced neuromuscular function), but also some indication that the effects of WBV do not outstrip those of targeted exercise. Animal data indicates that WBV will also improve bone mass, including preventing loss due to hormone withdrawal, disuse and glucocorticoid exposure. Human trials, however, have produced equivocal outcomes for bone. Positive trends are apparent at the hip and spine, but shortcomings in study designs have limited statistical power. The mechanism of the vibration effect on bone tissue is likely to be mechanical coupling between an oscillating cell nucleus and the cytoskeleton. More robust dose-response human data are required before therapeutic guidelines can be developed.
The dynamic Casimir effect within a vibrating metal photonic crystal
NASA Astrophysics Data System (ADS)
Ueta, Tsuyoshi
2014-09-01
The lattice-vibrating metal photonic crystal is exactly a system of dynamical Casimir effect connected in series, and so we can expect that a dynamical Casimir effect is enhanced by the photonic band effect. In the present study, when an electromagnetic field between metal plates is in the ground state in a one-dimensional metal photonic crystal, the radiation of electromagnetic wave in excited states has been investigated by artificially introducing lattice vibration to the photonic crystal. In this case as well as a dynamical Casimir effect, it has been shown that the harmonics of a ground state are generated just by vibrating a photonic crystal even without an incident wave. The dependencies of the radiating power on the number of layers and on the wavenumber of the lattice vibration are remarkable. It has been found that the radiation amplitude on lower excited states is not necessarily large and radiation on specific excited levels is large.
NASA Astrophysics Data System (ADS)
Geza, N.; Yushin, V.
2007-12-01
Instant variations of the velocities and attenuation of seismic waves in a friable medium subjected to dynamic loading have been studied by new experimental techniques using a powerful seismic vibrator. The half-space below the operating vibrator baseplate was scanned by high-frequency elastic waves, and the recorded fluctuations were exposed to a stroboscopic analysis. It was found that the variations of seismic velocities and attenuation are synchronous with the external vibrational load but have phase shift from it. Instant variations of the seismic waves parameters depend on the magnitude and absolute value of deformation, which generally result in decreasing of the elastic-wave velocities. New experimental techniques have a high sensitivity to the dynamic disturbance in the medium and allow one to detect a weak seismic boundaries. The relaxation process after dynamic vibrational loading were investigated and the results of research are presented.
NASA Astrophysics Data System (ADS)
Gu, Bo; Chen, Yubin; Wang, Zefeng
2016-11-01
We report here the detailed characteristics of 1.9 μm laser emission from hydrogen-filled hollow-core fiber by stimulated Raman scattering. A 6.5 m hydrogen-filled Ice-cream negative curvature hollow-core fiber is pumped with a high peak power, narrow linewidth, liner polarized subnanosecond pulsed 1064 nm microchip laser, generating pulsed 1908.5 nm vibrational Stokes wave. The linewidth of the pump laser and the vibrational Stokes wave is about 1 GHz and 2 GHz respectively. And the maximum Raman conversion quantum efficiency is about 48%. We also studied the pulse shapes of the pump laser and the vibrational Stokes wave. The polarization dependence of the vibrational and the rotational stimulated Raman scattering is also investigated. In addition, the beam profile of vibrational Stokes wave shows good quality, which may be taken advantage of in many applications.
Bazewicz, Christopher G; Liskov, Melanie T; Hines, Kevin J; Brewer, Scott H
2013-08-01
We have synthesized the unnatural amino acid (UAA), 4-azidomethyl-L-phenylalanine (pN₃CH₂Phe), to serve as an effective vibrational reporter of local protein environments. The position, extinction coefficient, and sensitivity to local environment of the azide asymmetric stretch vibration of pN₃CH₂Phe are compared to the vibrational reporters: 4-cyano-L-phenylalanine (pCNPhe) and 4-azido-L-phenylalanine (pN₃Phe). This UAA was genetically incorporated in a site-specific manner utilizing an engineered, orthogonal aminoacyl-tRNA synthetase in response to an amber codon with high efficiency and fidelity into two distinct sites in superfolder green fluorescent protein (sfGFP). This allowed for the dependence of the azide asymmetric stretch vibration of pN₃CH₂Phe to different protein environments to be measured. The photostability of pN₃CH₂Phe was also measured relative to the photoreactive UAA, pN₃Phe.
[Effects of frame of reference on the judgments of whole-body vibration intensity].
Suzuki, H
1997-02-01
Although the concept of the term 'riding comfort' is ambiguous, in the present paper it means a perceptual experience derived from the vibrational factors of a running railway vehicle. When we regard riding comfort evaluation as a perceptual judgment process, we must consider that what is perceived is dependent not only on the physical properties of the stimuli, but also on the frame of reference. The purpose of the present study is to examine the effect of the frame on the judgments of vibration intensity in the anchoring effect paradigm. Using the four-axis vibration apparatus, we conducted experiments for eighty subjects, in which frequencies and lateral accelerations of vibrations were changed. As the result, we found a clear anchoring effect. This suggests that we must take into consideration effects of frame of reference in terms of riding comfort criterion of railway vehicles.
Vibrational-rotational deexcitation of HF in collision with He
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bieniek, R.J.
State-to-state cross sections are reported for vibrational-rotational transitions for HF in collisions with He, at collisional energies of 0.5 and 1.0 eV. These were computed within the infinite-order sudden (IOS) approximation using adiabatic, distorted-wave techniques. Values are tabulated for the vibrational-rotational deexcitation sequences (v, j) ..-->.. (v--1, 0), with v = 1, 2, 3, 4 and j = 0 -- 40. These quenching cross sections can be used in conjunction with IOS factorization formulas to compute VRT cross sections for final rotational states other than j/sub f/ = 0. In addition to IOS results, vibrational quenching cross sections were computedmore » using the much more simple breathing-sphere technique. The breathing-sphere results compare favorably to the more accurate IOS results, particularly as to energy dependence. This suggests a simple method of utilizing known quenching cross sections to predict values for different vibrational levels and/or collisional energies.« less
NASA Astrophysics Data System (ADS)
Ayyappan, S.; Sundaraganesan, N.; Aroulmoji, V.; Murano, E.; Sebastian, S.
2010-09-01
The FT-IR and FT-Raman spectral studies of the Methotrexate (MTX) were carried out. The equilibrium geometry, various bonding features and harmonic vibrational frequencies of MTX have been investigated with the help of B3LYP density functional theory (DFT) using 6-31G(d) as basis set. Detailed analysis of the vibrational spectra has been made with the aid of theoretically predicted vibrational frequencies. The vibrational analysis confirms the differently acting ring modes, steric repulsion, conjugation and back-donation. The energy and oscillator strength calculated by Time-Dependent Density Functional Theory (TD-DFT) results complement with the experimental findings. The calculated HOMO and LUMO energies show that charge transfer occur within the molecule. Good correlations between the experimental 1H and 13C NMR chemical shifts in DMSO solution and calculated GIAO shielding tensors were found.
Surface plasmon mediated Raman scattering in metal nanoparticles
NASA Astrophysics Data System (ADS)
Bachelier, G.; Mlayah, A.
2004-05-01
The Raman scattering due to confined acoustic vibrations in metal particles is studied theoretically. Various coupling mechanisms between the surface plasmon polaritons and the confined vibrations are investigated. Their relative contribution to the light scattering is discussed. We found that two mechanisms play an important role: (i) modulation of the interband dielectric susceptibility via deformation potential due to pure radial vibrations and (ii) modulation of the surface polarization charges by quadripolar vibrations. The dependence of the Raman spectra on the nanoparticles size and size distribution and on the excitation energy is studied in connection with the nature of the excited plasmon-polariton states. We found a good agreement between calculated line shapes and relatives intensities of the Raman bands and the experimental spectra reported in the literature.
Effects of experimentally measured pressure oscillations on the vibration of a solid rocket motor
NASA Technical Reports Server (NTRS)
Schoenster, J. A.; Pierce, H. B.
1972-01-01
Results are presented of firing a Nike rocket against a backstop for the purpose of obtaining pressure fluctuations in the rocket case and determining their relationship to structural vibrations of the case. Special care was required to obtain these pressure fluctuations because of the much higher static pressure generated in the rocket. Very small pressure fluctuations within the rocket case can cause significant vibration levels. A previously observed high frequency was shown to decrease with time before completely disappearing at about 1 second of burning time. The vibration of the case itself is probably related to the longitudinal structural modes at frequencies below 500 Hz and is dependent on local structural conditions at frequencies above this value.
NASA Astrophysics Data System (ADS)
Sekiguchi, K.; Shimojima, A.; Kajimoto, O.
2002-04-01
A pump-probe experiment was performed to examine vibrational population relaxation of diiodomethane (CH 2I 2) molecule dissolved in supercritical CO 2. Using an apparatus with femtosecond time resolution, we observed the contributions of intramolecular vibrational energy redistribution (IVR) and intermolecular vibrational energy transfer (VET) separately. IVR and VET rates were measured with varying solvent densities at a constant temperature. It is shown that the IVR rate is not density dependent while the VET rate increases with increasing density from 0.4 to 0.8 g cm-3. This observation suggests that the rate of the VET process is determined by solute-solvent collisions whereas the IVR rate is not much affected by solute-solvent interaction.
NASA Astrophysics Data System (ADS)
Shalit, Andrey; Perakis, Fivos; Hamm, Peter
2014-04-01
We apply two-dimensional infrared spectroscopy to differentiate between the two polyamorphous forms of glassy water, low-density (LDA) and high-density (HDA) amorphous ices, that were obtained by slow vapor deposition at 80 and 11 K, respectively. Both the vibrational lifetime and the bandwidth of the 1-2 transition of the isolated OD stretch vibration of HDO in H2O exhibit characteristic differences when comparing hexagonal (Ih), LDA, and HDA ices, which we attribute to the different local structures - in particular the presence of interstitial waters in HDA ice - that cause different delocalization lengths of intermolecular phonon degrees of freedom. Moreover, temperature dependent measurements show that the vibrational lifetime closely follows the structural transition between HDA and LDA phases.
A noninterference blade vibration measurement system for gas turbine engines
NASA Astrophysics Data System (ADS)
Watkins, William B.; Chi, Ray M.
1987-06-01
A noninterfering blade vibration system has been demonstrated in tests of a gas turbine first stage fan. Conceptual design of the system, including its theory, design of case mounted probes, and data acquisition and signal processing hardware was done in a previous effort. The current effort involved instrumentation of an engine fan stage with strain gages; data acquisition using shaft-mounted reference and case-mounted optical probes; recording of data on a wideband tape recorder; and posttest processing using off-line analysis in a facility computer and a minicomputer-based readout system designed for near- real-time readout. Results are presented in terms of true blade vibration frequencies, time and frequency dependent vibration amplitudes and comparison of the optical noninterference results with strain gage readings.
Feedback control of vibrations in a moving flexible robot arm with rotary and prismatic joints
NASA Technical Reports Server (NTRS)
Wang, P. K. C.; Wei, Jin-Duo
1987-01-01
A robot with a long extendible flexible arm which can also undergo both vertical translation and rotary motion is considered. First, A distributed-parameter model for the robot arm dynamics is developed. It is found that the extending motion could enhance the arm vibrations. Then, a Galerkin-type approximation based on an appropriate time-dependent basis for the solution space is used to obtain an approximate finite-dimensional model for simulation studies. A feedback control for damping the motion-induced vibrations is derived by considering the time rate-of-change of the total vibrational energy of the flexible arm. The authors conclude with some simulation results for a special case with the proposed control law.
Energy localization and frequency analysis in the locust ear.
Malkin, Robert; McDonagh, Thomas R; Mhatre, Natasha; Scott, Thomas S; Robert, Daniel
2014-01-06
Animal ears are exquisitely adapted to capture sound energy and perform signal analysis. Studying the ear of the locust, we show how frequency signal analysis can be performed solely by using the structural features of the tympanum. Incident sound waves generate mechanical vibrational waves that travel across the tympanum. These waves shoal in a tsunami-like fashion, resulting in energy localization that focuses vibrations onto the mechanosensory neurons in a frequency-dependent manner. Using finite element analysis, we demonstrate that two mechanical properties of the locust tympanum, distributed thickness and tension, are necessary and sufficient to generate frequency-dependent energy localization.
Vibration-rotation-tunneling dynamics in small water clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pugliano, Nick
The goal of this work is to characterize the intermolecular vibrations of small water clusters. Using tunable far infrared laser absorption spectroscopy, large amplitude vibration-rotation-tunneling (VRT) dynamics in vibrationally excited states of the water dimer and the water trimer are investigated. This study begins with the measurement of 12 VRT subbands, consisting of approximately 230 transitions, which are assigned to an 82.6 cm -1 intermolecular vibration of the water dimer-d 4. Each of the VRT subbands originate from K a''=0 and terminate in either K a'=0 or 1. These data provide a complete characterization of the tunneling dynamics in themore » vibrationally excited state as well as definitive symmetry labels for all VRT energy levels. Furthermore, an accurate value for the A' rotational constant is found to agree well with its corresponding ground state value. All other excited state rotational constants are fitted, and discussed in terms of the corresponding ground state constants. In this vibration, the quantum tunneling motions are determined to exhibit large dependencies with both the K a' quantum number and the vibrational coordinate, as is evidenced by the measured tunneling splittings. The generalized internal-axis-method treatment which has been developed to model the tunneling dynamics, is considered for the qualitative description of each tunneling pathway, however, the variation of tunneling splittings with vibrational excitation indicate that the high barrier approximation does not appear to be applicable for this vibrational coordinate. The data are consistent with a motion possessing a' symmetry, and the vibration is assigned as the v 12 acceptor bending coordinate. This assignment is in agreement with the vibrational symmetry, the resultsof high level ab initio calculations, and preliminary data assigned to the analogous vibration in the D 2O-DOH isotopomer.« less
NASA Astrophysics Data System (ADS)
Kenkre, V. M.; Ierides, A. A.
2018-06-01
This theoretical study of the vibrational relaxation of a molecule in interaction with a reservoir uncovers a noteworthy temperature (T) dependence of the time evolution of the relaxation. Its rate increases with T in one interval but decreases in another. The feature arises not for a weak molecule-reservoir interaction but only for coupling strong enough to require polaronic dressing transformations. Our treatment, based on a recent generalization of the well-known Montroll-Shuler equation for relaxation and an explicit calculation of bath correlations from the microscopically specified Hamiltonian, could provide an alternative explanation of an "inverted" T-dependence of relaxation in an experimental report by Fayer and collaborators on W(CO)6 dissolved in CHCl3.
The Shock and Vibration Digest. Volume 4. Number 7, July 1972.
1972-07-01
who are con- structural analysis program cerned with maximum reliability NASTRAN will be discussed, of missiles, aircraft, submarines, Contact...within a designated epsilon at the interface between air and the first fluid. Trial solutions are made until the desired solution is bracketed and then
The Shock and Vibration Digest. Volume 17. Number 6
1985-06-01
Australia 3032 Friction Intl. J. Impact Engrg., Z (2), pp 151-167 E. Marui , S. Kato (1984), 14 figs, I table, 17 refs Gifu Univ., 1-1, Yanagido, Gifu-shi 501...Martinez-Sanchez............... 1153 * Jensen, J.J ................. 1094 Marui , F ............... 1202 Jery, B........................ 1073 Marulo,F
Vanleene, Maximilien; Shefelbine, Sandra J.
2013-01-01
Osteogenesis imperfecta (OI) is characterized by extremely brittle bone. Currently, bisphosphonate drugs allow a decrease of fracture by inhibiting bone resorption and increasing bone mass but with possible long term side effects. Whole body mechanical vibrations (WBV) treatment may offer a promising route to stimulate bone formation in OI patients as it has exhibited health benefits on both muscle and bone mass in human and animal models. The present study has investigated the effects of WBV (45 Hz, 0.3 g, 15 minutes/days, 5 days/week) in young OI (oim) and wild type female mice from 3 to 8 weeks of age. Vibration therapy resulted in a significant increase in the cortical bone area and cortical thickness in the femur and tibia diaphysis of both vibrated oim and wild type mice compared to sham controls. Trabecular bone was not affected by vibration in the wild type mice; vibrated oim mice, however, exhibited significantly higher trabecular bone volume fraction in the proximal tibia. Femoral stiffness and yield load in three point bending were greater in the vibrated wild type mice than in sham controls, most likely attributed to the increase in femur cortical cross sectional area observed in the μCT morphology analyses. The vibrated oim mice showed a trend toward improved mechanical properties, but bending data had large standard deviations and there was no significant difference between vibrated and non-vibrated oim mice. No significant difference of the bone apposition was observed in the tibial metaphyseal trabecular bone for both the oim and wild type vibrated mice by histomorphometry analyses of calcein labels. At the mid diaphysis, the cortical bone apposition was not significantly influenced by the WBV treatment in both the endosteum and periosteum of the oim vibrated mice while a significant change is observed in the endosteum of the vibrated wild type mice. As only a weak impact in bone apposition between the vibrated and sham groups is observed in the histological sections, it is possible that WBV reduced bone resorption, resulting in a relative increase in cortical thickness. Whole body vibration appears as a potential effective and innocuous means for increasing bone formation and strength, which is particularly attractive for treating the growing skeleton of children suffering from brittle bone disease or low bone density pathologies without the long term disadvantages of current pharmacological therapies. PMID:23352925
NASA Astrophysics Data System (ADS)
Giri, Ashutosh; Hopkins, Patrick E.
2017-12-01
Fullerene condensed-matter solids can possess thermal conductivities below their minimum glassy limit while theorized to be stiffer than diamond when crystallized under pressure. These seemingly disparate extremes in thermal and mechanical properties raise questions into the pressure dependence on the thermal conductivity of C60 fullerite crystals, and how the spectral contributions to vibrational thermal conductivity changes under applied pressure. To answer these questions, we investigate the effect of strain on the thermal conductivity of C60 fullerite crystals via pressure-dependent molecular dynamics simulations under the Green-Kubo formalism. We show that the thermal conductivity increases rapidly with compressive strain, which demonstrates a power-law relationship similar to their stress-strain relationship for the C60 crystals. Calculations of the density of states for the crystals under compressive strains reveal that the librational modes characteristic in the unstrained case are diminished due to densification of the molecular crystal. Over a large compression range (0-20 GPa), the Leibfried-Schlömann equation is shown to adequately describe the pressure dependence of thermal conductivity, suggesting that low-frequency intermolecular vibrations dictate heat flow in the C60 crystals. A spectral decomposition of the thermal conductivity supports this hypothesis.
Noise amplification of plant gravisensing
NASA Astrophysics Data System (ADS)
Ma, Zhong; Hasenstein, Karl H.
A common problem in sensory physiology is the detection of weak signals, such as that produced by the repositioning of statoliths (amyloplasts) in gravisensing cells, from a noisy background. As in other studied biological mechanosensory systems, it is conceivable that the gravisensing process may be amplified by stochastic resonance and nonlinear noise-assisted effects. We therefore investigated the possible dependency of gravisensing on vibrational or thermodynamic noise by examining the effect of external oscillation and temperature on the rate of gravitropic curvature in flax (Linum usitatissimum L.) roots. Roots were oscillated for 15 min prior to or during gravistimulation, either parallel or perpendicular to the root axis. The effect of oscillation was dependent on its direction as well as frequency and amplitude. Initial curvature was most effectively enhanced by vertical oscillations of 5 Hz and 0.5 mm amplitude prior to reorientation. Vertically oscillated roots reached half-maximal curvature 32 min after reorientation, about 18 min earlier than non-oscillated roots. The enhancing effect of vibration on curvature subsided with a half-time of about 20 min. The temperature dependency of the graviresponse indicated that thermodynamic noise also impacted gravity perception. For vibrations and temperature studies, the presentation times decreased almost 6-fold. Our data indicate that gravisensing may depend on or be enhanced by thermodynamic or mechanical noise.
NASA Technical Reports Server (NTRS)
Cassarino, S.; Sopher, R.
1982-01-01
user instruction and software descriptions for the base program of the coupled rotor/airframe vibration analysis are provided. The functional capabilities and procedures for running the program are provided. Interfaces with external programs are discussed. The procedure of synthesizing a dynamic system and the various solution methods are described. Input data and output results are presented. Detailed information is provided on the program structure. Sample test case results for five representative dynamic configurations are provided and discussed. System response are plotted to demonstrate the plots capabilities available. Instructions to install and execute SIMVIB on the CDC computer system are provided.
NASA Astrophysics Data System (ADS)
Mercan, Kadir; Demir, Çiǧdem; Civalek, Ömer
2016-01-01
In the present manuscript, free vibration response of circular cylindrical shells with functionally graded material (FGM) is investigated. The method of discrete singular convolution (DSC) is used for numerical solution of the related governing equation of motion of FGM cylindrical shell. The constitutive relations are based on the Love's first approximation shell theory. The material properties are graded in the thickness direction according to a volume fraction power law indexes. Frequency values are calculated for different types of boundary conditions, material and geometric parameters. In general, close agreement between the obtained results and those of other researchers has been found.
NASA Technical Reports Server (NTRS)
Park, Junhong; Palumbo, Daniel L.
2004-01-01
The use of shunted piezoelectric patches in reducing vibration and sound radiation of structures has several advantages over passive viscoelastic elements, e.g., lower weight with increased controllability. The performance of the piezoelectric patches depends on the shunting electronics that are designed to dissipate vibration energy through a resistive element. In past efforts most of the proposed tuning methods were based on modal properties of the structure. In these cases, the tuning applies only to one mode of interest and maximum tuning is limited to invariant points when based on den Hartog's invariant points concept. In this study, a design method based on the wave propagation approach is proposed. Optimal tuning is investigated depending on the dynamic and geometric properties that include effects from boundary conditions and position of the shunted piezoelectric patch relative to the structure. Active filters are proposed as shunting electronics to implement the tuning criteria. The developed tuning methods resulted in superior capabilities in minimizing structural vibration and noise radiation compared to other tuning methods. The tuned circuits are relatively insensitive to changes in modal properties and boundary conditions, and can applied to frequency ranges in which multiple modes have effects.
Koner, Debasish; Barrios, Lizandra; González-Lezana, Tomás; Panda, Aditya N
2014-09-21
A real wave packet based time-dependent method and a statistical quantum method have been used to study the He + NeH(+) (v, j) reaction with the reactant in various ro-vibrational states, on a recently calculated ab initio ground state potential energy surface. Both the wave packet and statistical quantum calculations were carried out within the centrifugal sudden approximation as well as using the exact Hamiltonian. Quantum reaction probabilities exhibit dense oscillatory pattern for smaller total angular momentum values, which is a signature of resonances in a complex forming mechanism for the title reaction. Significant differences, found between exact and approximate quantum reaction cross sections, highlight the importance of inclusion of Coriolis coupling in the calculations. Statistical results are in fairly good agreement with the exact quantum results, for ground ro-vibrational states of the reactant. Vibrational excitation greatly enhances the reaction cross sections, whereas rotational excitation has relatively small effect on the reaction. The nature of the reaction cross section curves is dependent on the initial vibrational state of the reactant and is typical of a late barrier type potential energy profile.
Energy dissipation in fragmented geomaterials associated with impacting oscillators
NASA Astrophysics Data System (ADS)
Khudyakov, Maxim; Pasternak, Elena; Dyskin, Arcady
2016-04-01
In wave propagation through fragmented geomaterials forced by periodic loadings, the elements (fragments) strike against each other when passing through the neutral position (position with zero mutual rotation), quickly damping the oscillations. Essentially the impacts act as shock absorbers albeit localised at the neutral points. In order to analyse the vibrations of and wave propagation in such structures, a differential equation of a forced harmonic oscillator was investigated, where the each time the system passes through the neutral point the velocity gets reduced by multiplying it with the restitution coefficient which characterise the impact of the fragments. In forced vibrations the impact times depend on both the forced oscillations and the restitution coefficient and form an irregular sequence. Numerical solution of the differential equation was performed using Mathematica software. Along with vibration diagrams, the dependence of the energy dissipation on the ratio of the forcing frequency to the natural frequency was obtained. For small positive values of the restitution coefficient (less than 0.5), the asymmetric oscillations were found, and the phase of the forced vibrations determined the direction of the asymmetry. Also, at some values of the forcing frequencies and the restitution coefficient chaotic behaviour was found.
Rotational and vibrational nonequilibrium effects in rarefied, hypersonic flow
NASA Technical Reports Server (NTRS)
Boyd, Iain D.
1989-01-01
Results are reported for an investigation into the methods by which energy transfer is calculated in the Direct Simulation Monte Carlo method. Description is made of a recently developed energy exchange model that deals with the translational and rotational modes. A new model for simulating the transfer of energy between the translational and vibrational modes is also explained. This model allows the vibrational relaxation time to follow the temperature dependence predicted by the Landau-Teller theory at moderate temperatures. For temperatures in excess of about 8000K the vibrational model is extended to include an empirical result for the relaxation time. The effect of introducing these temperature dependent collision numbers into the DSMC technique is assessed by making calculations representative of the stagnation streamline of a hypersonic space vehicle. Both thermal and chemical nonequilibrium effects are included while the flow conditions have been chosen such that ionization and radiation may be neglected. The introduction of these new models is found to significantly affect the degree of thermal nonequilibrium observed in the flowfield. Larger, and more widely ranging, differences in the results obtained with the different energy exchange probabilities are found when a significant amount of internal energy is included in the calculation of chemical nonequilibrium.
Analytic calculations of anharmonic infrared and Raman vibrational spectra
Louant, Orian; Ruud, Kenneth
2016-01-01
Using a recently developed recursive scheme for the calculation of high-order geometric derivatives of frequency-dependent molecular properties [Ringholm et al., J. Comp. Chem., 2014, 35, 622], we present the first analytic calculations of anharmonic infrared (IR) and Raman spectra including anharmonicity both in the vibrational frequencies and in the IR and Raman intensities. In the case of anharmonic corrections to the Raman intensities, this involves the calculation of fifth-order energy derivatives—that is, the third-order geometric derivatives of the frequency-dependent polarizability. The approach is applicable to both Hartree–Fock and Kohn–Sham density functional theory. Using generalized vibrational perturbation theory to second order, we have calculated the anharmonic infrared and Raman spectra of the non- and partially deuterated isotopomers of nitromethane, where the inclusion of anharmonic effects introduces combination and overtone bands that are observed in the experimental spectra. For the major features of the spectra, the inclusion of anharmonicities in the calculation of the vibrational frequencies is more important than anharmonic effects in the calculated infrared and Raman intensities. Using methanimine as a trial system, we demonstrate that the analytic approach avoids errors in the calculated spectra that may arise if numerical differentiation schemes are used. PMID:26784673
NASA Astrophysics Data System (ADS)
Giannopoulos, Georgios I.; Kontoni, Denise-Penelope N.; Georgantzinos, Stylianos K.
2016-08-01
This paper describes the static and free vibration behavior of single walled boron nitride nanotubes using a structural mechanics based finite element method. First, depending on the type of nanotube under investigation, its three dimensional nanostructure is developed according to the well-known corresponding positions of boron and nitride atoms as well as boron nitride bonds. Then, appropriate point masses are assigned to the atomic positions of the developed space frame. Next, these point masses are suitably interconnected with two-noded, linear, spring-like, finite elements. In order to simulate effectively the interactions observed between boron and nitride atoms within the nanotube, appropriate potential energy functions are introduced for these finite elements. In this manner, various atomistic models for both armchair and zigzag nanotubes with different aspect ratios are numerically analyzed and their effective elastic modulus as well as their natural frequencies and corresponding mode shapes are obtained. Regarding the free vibration analysis, the computed results reveal bending, breathing and axial modes of vibration depending on the nanotube size and chirality as well as the applied boundary support conditions. The longitudinal stiffness of the boron nitride nanotubes is found also sensitive to their geometric characteristics.
Sound Power Minimization of Circular Plates Through Damping Layer Placement
NASA Astrophysics Data System (ADS)
Wodtke, H.-W.; Lamancusa, J. S.
1998-09-01
Damping layers, widely used for noise and vibration control of thin-walled structures, can be designed to provide an optimal trade-off between performance and weight which is of particular importance in the automotive and aircraft industry. The goal of the presented work is the minimization of sound power radiated from plates under broadband excitation by redistribution of unconstrained damping layers. The total radiated sound power is assumed to be represented by the sound power radiated at the structural resonances. Resonance tracking is performed by means of single-degree-of-freedom (SDOF)-approximations based on near-resonance responses and their frequency derivatives. Axisymmetric vibrations of circular plates under several boundary and forcing conditions are considered. Frequency dependent Young's modulus and loss factor of the damping material are taken into account. Vibration analysis is based on the finite element method (FEM) while acoustic radiation is treated by means of Rayleigh's integral formula. It is shown that, starting from a uniform damping layer distribution, substantial reduction in radiated sound power can be achieved through redistribution of the damping layers. Depending on the given situation, these reductions are not only due to amplitude reductions but also to changes in vibration shapes and frequencies.
NASA Astrophysics Data System (ADS)
Li, Shuai; Long, Jinyou; Ling, Fengzi; Wang, Yanmei; Song, Xinli; Zhang, Song; Zhang, Bing
2017-07-01
The vibrational wavepacket dynamics at the very early stages of the S1-T1 intersystem crossing in photoexcited pyrimidine is visualized in real time by femtosecond time-resolved photoelectron imaging and time-resolved mass spectroscopy. A coherent superposition of the vibrational states is prepared by the femtosecond pump pulse at 315.3 nm, resulting in a vibrational wavepacket. The composition of the prepared wavepacket is directly identified by a sustained quantum beat superimposed on the parent-ion transient, possessing a frequency in accord with the energy separation between the 6a1 and 6b2 states. The dephasing time of the vibrational wavepacket is determined to be 82 ps. More importantly, the variable Franck-Condon factors between the wavepacket components and the dispersed cation vibrational levels are experimentally illustrated to identify the dark state and follow the energy-flow dynamics on the femtosecond time scale. The time-dependent intensities of the photoelectron peaks originated from the 6a1 vibrational state exhibit a clear quantum beating pattern with similar periodicity but a phase shift of π rad with respect to those from the 6b2 state, offering an unambiguous picture of the restricted intramolecular vibrational energy redistribution dynamics in the 6a1/6b2 Fermi resonance.
Development of a long-gauge vibration sensor
NASA Astrophysics Data System (ADS)
Kung, Peter; Comanici, Maria I.
2014-06-01
Recently, we found that by terminating a long length of fiber of up to 2 km with an in-fiber cavity structure, the entire structure can detect vibrations over a frequency range from 5 Hz to 100 Hz. We want to determine whether the structure (including packaging) can be optimized to detect vibrations at even higher frequencies. The structure can be used as a distributed vibration sensor mounted on large motors and other rotating machines to capture the entire frequency spectrum of the associated vibration signals, and therefore, replace the many accelerometers, which add to the maintenance cost. Similarly, it will help detect in-slot vibrations which cause intermittent contact leading to sparking under high voltages inside air-cooled generators. However, that will require the sensor to detect frequencies associated with vibration sparking, ranging from 6 kHz to 15 kHz. Then, at even higher frequencies, the structure can be useful to detect acoustic vibrations (30 kHz to 150 kHz) associated with partial discharge (PD) in generators and transformers. Detecting lower frequencies in the range 2 Hz to 200 Hz makes the sensor suitable for seismic studies and falls well into the vibrations associated with rotating machines. Another application of interest is corrosion detection in large re-enforced concrete structures by inserting the sensor along a long hole drilled around structures showing signs of corrosion. The frequency response for the proposed long-gauge vibration sensor depends on packaging.
Dong, Ren G.; Welcome, Daniel E.; Peterson, Donald R.; Xu, Xueyan S.; McDowell, Thomas W.; Warren, Christopher; Asaki, Takafumi; Kudernatsch, Simon; Brammer, Antony
2015-01-01
Vibration-reducing (VR) gloves have been increasingly used to help reduce vibration exposure, but it remains unclear how effective these gloves are. The purpose of this study was to estimate tool-specific performances of VR gloves for reducing the vibrations transmitted to the palm of the hand in three orthogonal directions (3-D) in an attempt to assess glove effectiveness and aid in the appropriate selection of these gloves. Four typical VR gloves were considered in this study, two of which can be classified as anti-vibration (AV) gloves according to the current AV glove test standard. The average transmissibility spectrum of each glove in each direction was synthesized based on spectra measured in this study and other spectra collected from reported studies. More than seventy vibration spectra of various tools or machines were considered in the estimations, which were also measured in this study or collected from reported studies. The glove performance assessments were based on the percent reduction of frequency-weighted acceleration as is required in the current standard for assessing the risk of vibration exposures. The estimated tool-specific vibration reductions of the gloves indicate that the VR gloves could slightly reduce (<5%) or marginally amplify (<10%) the vibrations generated from low-frequency (<25 Hz) tools or those vibrating primarily along the axis of the tool handle. With other tools, the VR gloves could reduce palm-transmitted vibrations in the range of 5%–58%, primarily depending on the specific tool and its vibration spectra in the three directions. The two AV gloves were not more effective than the other gloves with some of the tools considered in this study. The implications of the results are discussed. Relevance to industry Hand-transmitted vibration exposure may cause hand-arm vibration syndrome. Vibration-reducing gloves are considered as an alternative approach to reduce the vibration exposure. This study provides useful information on the effectiveness of the gloves when used with many tools for reducing the vibration transmitted to the palm in three directions. The results can aid in the appropriate selection and use of these gloves. PMID:26726275
Apparatus and method for non-contact, acoustic resonance determination of intraocular pressure
Sinha, Dipen N.; Wray, William O.
1994-01-01
Apparatus and method for measuring intraocular pressure changes in an eye under investigation by detection of vibrational resonances therein. An ultrasonic transducer operating at its resonant frequency is amplitude modulated and swept over a range of audio frequencies in which human eyes will resonate. The output therefrom is focused onto the eye under investigation, and the resonant vibrations of the eye observed using a fiber-optic reflection vibration sensor. Since the resonant frequency of the eye is dependent on the pressure therein, changes in intraocular pressure may readily be determined after a baseline pressure is established.
NASA Astrophysics Data System (ADS)
Yoshida, Takashi
Combined-levitation-and-propulsion single-sided linear induction motor (SLIM) vehicle can be levitated without any additional levitation system. When the vehicle runs, the attractive-normal force varies depending on the phase of primary current because of the short primary end effect. The ripple of the attractive-normal force causes the vertical vibration of the vehicle. In this paper, instantaneous attractive-normal force is analyzed by using space harmonic analysis method. And based on the analysis, vertical vibration control is proposed. The validity of the proposed control method is verified by numerical simulation.
Apparatus and method for non-contact, acoustic resonance determination of intraocular pressure
Sinha, D.N.; Wray, W.O.
1994-12-27
The apparatus and method for measuring intraocular pressure changes in an eye under investigation by detection of vibrational resonances therein. An ultrasonic transducer operating at its resonant frequency is amplitude modulated and swept over a range of audio frequencies in which human eyes will resonate. The output therefrom is focused onto the eye under investigation, and the resonant vibrations of the eye observed using a fiber-optic reflection vibration sensor. Since the resonant frequency of the eye is dependent on the pressure therein, changes in intraocular pressure may readily be determined after a baseline pressure is established. 3 figures.
The vibrational spectrum and giant tunnelling effect of hydrogen dissolved in α-Mn
NASA Astrophysics Data System (ADS)
Kolesnikov, A. I.; Antonov, V. E.; Bennington, S. M.; Dorner, B.; Fedotov, V. K.; Grosse, G.; Li, J. C.; Parker, S. F.; Wagner, F. E.
1999-03-01
Vibrational spectra of α-MnH 0.07 and α-MnD 0.05 were studied by inelastic neutron scattering at temperatures from 1.7 to 200 K over a wide range of energy and momentum transfers. Together with the high-energy bands of the optical vibrations, pronounced peaks at 6.3 and 1.6 meV were observed in the spectra of the samples loaded with H and D, respectively. The study of the temperature, momentum-transfer and isotope dependence of the spectra demonstrated the tunnelling origin of these peaks.
Laser magnetic resonance in supersonic plasmas - The rotational spectrum of SH(+)
NASA Technical Reports Server (NTRS)
Hovde, David C.; Saykally, Richard J.
1987-01-01
The rotational spectrum of v = 0 and v = 1X3Sigma(-)SH(+) was measured by laser magnetic resonance. Rotationally cold (Tr = 30 K), vibrationally excited (Tv = 3000 K) ions were generated in a corona excited supersonic expansion. The use of this source to identify ion signals is described. Improved molecular parameters were obtained; term values are presented from which astrophysically important transitions may be calculated. Accurate hyperfine parameters for both vibrational levels were determined and the vibrational dependence of the Fermi contact interaction was resolved. The hyperfine parameters agree well with recent many-body perturbation theory calculations.
Guidelines for noise and vibration levels for the space station
NASA Technical Reports Server (NTRS)
1987-01-01
Human habitability noise and vibration guidelines for the Space Station are presented. These were developed by a working group of experts established by the Committee on Hearing, Bioacoustics, and Biomechanics (CHABA) of the National Research Council's Commission on Behavioral and Social Science and Education. Noise exposure limits are suggested that will permit adequate speech communication, sleep, and hearing safety. Vibration exposure limits are suggested which will provide adequate comfort and permit adequate task performance. These are provided for guidance only for setting criteria. The exact criteria will depend on Space Station design and duty cycles.
Dynamic Pressure Calibration Standard
NASA Technical Reports Server (NTRS)
Schutte, P. C.; Cate, K. H.; Young, S. D.
1986-01-01
Vibrating columns of fluid used to calibrate transducers. Dynamic pressure calibration standard developed for calibrating flush diaphragm-mounted pressure transducers. Pressures up to 20 kPa (3 psi) accurately generated over frequency range of 50 to 1,800 Hz. System includes two conically shaped aluminum columns one 5 cm (2 in.) high for low pressures and another 11 cm (4.3 in.) high for higher pressures, each filled with viscous fluid. Each column mounted on armature of vibration exciter, which imparts sinusoidally varying acceleration to fluid column. Signal noise low, and waveform highly dependent on quality of drive signal in vibration exciter.
Guidelines for noise and vibration levels for the space station
NASA Astrophysics Data System (ADS)
1987-06-01
Human habitability noise and vibration guidelines for the Space Station are presented. These were developed by a working group of experts established by the Committee on Hearing, Bioacoustics, and Biomechanics (CHABA) of the National Research Council's Commission on Behavioral and Social Science and Education. Noise exposure limits are suggested that will permit adequate speech communication, sleep, and hearing safety. Vibration exposure limits are suggested which will provide adequate comfort and permit adequate task performance. These are provided for guidance only for setting criteria. The exact criteria will depend on Space Station design and duty cycles.
Temple, David R; Lee, Beom-Chan; Layne, Charles S
2016-03-01
The sensory re-weighting theory suggests unreliable inputs may be down-weighted to favor more reliable sensory information and thus maintain proper postural control. This study investigated the effects of tibialis anterior (TA) vibration on center of pressure (COP) motion in healthy individuals exposed to support surface translations to further explore the concept of sensory re-weighting. Twenty healthy young adults stood with eyes closed and arms across their chest while exposed to randomized blocks of five trials. Each trial lasted 8 s, with TA vibration either on or off. After 2 s, a sudden backward or forward translation occurred. Anterior-posterior (A/P) COP data were evaluated during the preparatory (first 2 s), perturbation (next 3 s), and recovery (last 3 s) phases to assess the effect of vibration on perturbation response features. The knowledge of an impending perturbation resulted in reduced anterior COP motion with TA vibration in the preparatory phase relative to the magnitude of anterior motion typically observed during TA vibration. During the perturbation phase, vibration did not influence COP motion. However, during the recovery phase vibration induced greater anterior COP motion than during trials without vibration. The fact that TA vibration produced differing effects on COP motion depending upon the phase of the perturbation response may suggest that the immediate context during which postural control is being regulated affects A/P COP responses to TA vibration. This indicates that proprioceptive information is likely continuously re-weighted according to the context in order to maintain effective postural control.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schinke, R.; Dupuis, M.; Lester, W.A. Jr.
1980-04-01
A complete configuration interaction (CI) ground state surface for the H/sub 3//sup +/ system has been calculated using 5S and 3(P/sub x/,P/sub y/,P/sub x/) basis functions at each center. A total of 650 nuclear geometries has been considered which makes the new surface appropriate not only for scattering calculations, but also for the evaluation of the vibrational--rotational spectrum of the H/sub 3//sup +/ molecule. Significant deviations are found from the analytic Giese and Gentry potential used in many previous theoretical studies, especially for large and small nonequilibrium H--H separations which are important for vibrational excitation of the H/sub 2/ molecule.more » Vibrational--rotational excitation cross sections have been calculated in the rotational sudden approximation where the vibrational degree of freedom is treated exactly by solving seven vibrationally coupled radial equations. The use of the new surface leads to increased vibrational excitation compared to previous calculations utilizing the same scattering approximation and to excellent agreement at 10 eV with the angle-dependent measurements of Hermann, Schmidt, and Linder.« less
Mastikhin, Igor; Barnhill, Marie
2014-11-01
An NMR signal from a sample in a constant stray field of a portable NMR sensor is sensitized to vibrations. The CPMG sequence is synchronized to vibrations so that the constant gradient becomes an "effective" square-wave gradient, leading to the vibration-induced phase accumulation. The integrating nature of the spot measurement, combined with the phase distribution due to a non-uniform gradient and/or a wave field, leads to a destructive interference, the drop in the signal intensity and changes in the echo train shape. Vibrations with amplitudes as small as 140 nm were reliably detected with the permanent gradient of 12.4 T/m. The signal intensity depends on the phase offset between the vibrations and the pulse sequence. This approach opens the way for performing elastometry and micro-rheology measurements with portable NMR devices beyond the walls of a laboratory. Even without synchronization, if a vibration frequency is comparable to 1/2TE of the CPMG sequence, the signal can be severely affected, making it important for potential industrial applications of stray-field NMR. Copyright © 2014 Elsevier Inc. All rights reserved.
Statistical analysis of low frequency vibrations in variable speed wind turbines
NASA Astrophysics Data System (ADS)
Escaler, X.; Mebarki, T.
2013-12-01
The spectral content of the low frequency vibrations in the band from 0 to 10 Hz measured in full scale wind turbines has been statistically analyzed as a function of the whole range of steady operating conditions. Attention has been given to the amplitudes of the vibration peaks and their dependency on rotating speed and power output. Two different wind turbine models of 800 and 2000 kW have been compared. For each model, a sample of units located in the same wind farm and operating during a representative period of time have been considered. A condition monitoring system installed in each wind turbine has been used to register the axial acceleration on the gearbox casing between the intermediate and the high speed shafts. The average frequency spectrum has permitted to identify the vibration signature and the position of the first tower natural frequency in both models. The evolution of the vibration amplitudes at the rotor rotating frequency and its multiples has shown that the tower response is amplified by resonance conditions in one of the models. So, it is concluded that a continuous measurement and control of low frequency vibrations is required to protect the turbines against harmful vibrations of this nature.
NASA Astrophysics Data System (ADS)
Gu, Bo; Chen, Yubin; Wang, Zefeng
2016-12-01
We report here the characteristics of 1.9-μm laser emission from a gas-filled hollow-core fiber by stimulated Raman scattering (SRS). A 6.5-m hydrogen-filled ice-cream negative curvature hollow-core fiber is pumped with a high peak-power, narrow linewidth, linearly polarized subnanosecond pulsed 1064-nm microchip laser, generating a pulsed vibrational Stokes wave at 1908.5 nm. The maximum quantum efficiency of about 48% is obtained, which is mainly limited by the mode mismatch between the pump laser beam and the Stokes wave in the hollow-core fiber. The linewidths of the pump laser and the first-order vibrational Stokes wave are measured to be about 1 and 2 GHz, respectively, by a scanning Fabry-Perot interferometer. The pressure selection phenomenon of the vibrational anti-Stokes waves is also investigated. The pulse duration of the vibrational Stokes wave is recorded to be narrower than that of the pump laser. The polarization properties of the hollow-core fiber and the polarization dependence of the vibrational and the rotational SRS are also studied. The beam profile of the vibrational Stokes wave shows good quality.
Vibration responses of h-BN sheet to charge doping and external strain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Wei; Yang, Yu; Zheng, Fawei
2013-12-07
Based on density functional theory and density functional perturbation theory calculations, we systematically investigate the vibration responses of h-BN sheet to charge doping and external strains. It is found that under hole doping, the phonon frequencies of the ZO and TO branches at different wave vector q shift linearly with different slopes. Under electron doping, although the phonon frequencies shift irregularly, the shifting values are different at different phonon wave vectors. Interestingly, we find that external strain can restrain the irregular vibration responses of h-BN sheet to electron doping. The critical factor is revealed to be the relative position ofmore » the nearly free electron and boron p{sub z} states of h-BN sheet. Under external strains, the vibration responses of h-BN sheet are also found to be highly dependent on the phonon branches. Different vibration modes at different q points are revealed to be responsible for the vibration responses of h-BN sheet to charge doping and external strain. Our results point out a new way to detect the doping or strain status of h-BN sheet by measuring the vibration frequencies at different wave vector.« less
Energy transfer in mesoscopic vibrational systems enabled by eigenfrequency fluctuations
NASA Astrophysics Data System (ADS)
Atalaya, Juan
Energy transfer between low-frequency vibrational modes can be achieved by means of nonlinear coupling if their eigenfrequencies fulfill certain nonlinear resonance conditions. Because of the discreteness of the vibrational spectrum at low frequencies, such conditions may be difficult to satisfy for most low-frequency modes in typical mesoscopic vibrational systems. Fluctuations of the vibrational eigenfrequencies can also be relatively strong in such systems. We show that energy transfer between modes can occur in the absence of nonlinear resonance if frequency fluctuations are allowed. The case of three modes with cubic nonlinear coupling and no damping is particularly interesting. It is found that the system has a non-thermal equilibrium state which depends only on the initial conditions. The rate at which the system approaches to such state is determined by the parameters such as the noise strength and correlation time, the nonlinearity strength and the detuning from exact nonlinear resonance. We also discuss the case of many weakly coupled modes. Our results shed light on the problem of energy relaxation of low-frequency vibrational modes into the continuum of high-frequency vibrational modes. The results have been obtained with Mark Dykman. Alternative email: jatalaya2012@gmail.com.
Vibration and loads in hingeless rotors. Volume 2: Experimental data
NASA Technical Reports Server (NTRS)
Watts, G. A.; London, R. J.
1972-01-01
Descriptions, geometry, and technical data covering three rotor systems are presented. Tables of experimental data gathered during wind tunnel testing of two of the systems are included. Both analyzed experimental data, ready for comparison with theory, and the basic reduced data from which they were obtained are reported.
NASA Technical Reports Server (NTRS)
1980-01-01
Advanced rotorcraft technology and tilt rotor aircraft were discussed. Rotorcraft performance, acoustics, and vibrations were discussed, as was the use of composite materials in rotorcraft structures. Rotorcraft aerodynamics, specifically the aerodynamic phenomena of a rotating and the aerodynamics of fuselages, was discussed.
Soft-talker: a sound level monitor for the hard-of-hearing using an improved tactile transducer.
Walker, J R; Fenn, G; Smith, B Z
1987-04-01
We describe a small wearable device which enables deaf people to monitor the volume of their voices; it consists of a microphone, amplifier, signal rectifier, smoothing and a level detector connected to a wrist-worn vibrator, and provides vibrotactile feedback of voice level.
The Shock and Vibration Digest. Volume 18, Number 6
1986-06-01
linear, quadratic, or cubic. Bessel function Reed [124] reported a method for computing solutions were obtained for a truncated pyramid amplitudes of a...86-1198 A. Ragab, Chung C. Fu Seismic Analysis of a Large LMFBR with Flu- Cairo Univ., Giza , Egypt . . *. id-Structure Imteractions Computers Struc
An inventory of aeronautical ground research facilities. Volume 3: Structural
NASA Technical Reports Server (NTRS)
Pirrello, C. J.; Hardin, R. D.; Heckart, M. V.; Brown, K. R.
1971-01-01
An inventory of test facilities for conducting acceleration, environmental, impact, structural shock, load, heat, vibration, and noise tests is presented. The facility is identified with a description of the equipment, the testing capabilities, and cost of operation. Performance data for the facility are presented in charts and tables.
Communique: Resources for Practicing Counselors, Volume 2, Number 4.
ERIC Educational Resources Information Center
Walz, Garry; And Others, Eds.
In this issue of Communique a program to enhance communication skills in counseling is presented. The books reviewed are about transactional analysis and behavioral self-control. The vibrations column covers new developments in various areas of counseling as well as recent research and materials. Other research is reported on. (WS)
Shock and Vibration Symposium (59th) Held in Albuquerque, New Mexico on 18-20 October 1988. Volume 4
1988-12-01
program to support TOPEX spacecraft design, Statistical energy analysis modeling of nonstructural mass on lightweight equipment panels using VAPEPS...and Stress estimation and statistical energy analysis of the Magellan spacecraft solar array using VAPEPS; Dynamic measurement -- An automated
NASA Astrophysics Data System (ADS)
Kari, Leif
2017-09-01
The constitutive equations of chemically and physically ageing rubber in the audible frequency range are modelled as a function of ageing temperature, ageing time, actual temperature, time and frequency. The constitutive equations are derived by assuming nearly incompressible material with elastic spherical response and viscoelastic deviatoric response, using Mittag-Leffler relaxation function of fractional derivative type, the main advantage being the minimum material parameters needed to successfully fit experimental data over a broad frequency range. The material is furthermore assumed essentially entropic and thermo-mechanically simple while using a modified William-Landel-Ferry shift function to take into account temperature dependence and physical ageing, with fractional free volume evolution modelled by a nonlinear, fractional differential equation with relaxation time identical to that of the stress response and related to the fractional free volume by Doolittle equation. Physical ageing is a reversible ageing process, including trapping and freeing of polymer chain ends, polymer chain reorganizations and free volume changes. In contrast, chemical ageing is an irreversible process, mainly attributed to oxygen reaction with polymer network either damaging the network by scission or reformation of new polymer links. The chemical ageing is modelled by inner variables that are determined by inner fractional evolution equations. Finally, the model parameters are fitted to measurements results of natural rubber over a broad audible frequency range, and various parameter studies are performed including comparison with results obtained by ordinary, non-fractional ageing evolution differential equations.
Apparent mass matrix of standing subjects exposed to multi-axial whole-body vibration.
Tarabini, Marco; Solbiati, Stefano; Saggin, Bortolino; Scaccabarozzi, Diego
2016-08-01
This paper describes the experimental characterisation of the apparent mass matrix of eight male subjects in standing position and the identification of nonlinearities under both mono-axial and dual-axis whole-body vibration. The nonlinear behaviour of the response was studied using the conditioned response techniques considering models of increasing complexity. Results showed that the cross-axis terms are comparable to the diagonal terms. The contribution of the nonlinear effects are minor and can be endorsed to the change of modal parameters during the tests. The nonlinearity generated by the vibration magnitude is more evident in the subject response, since magnitude-dependent effects in the population are overlaid by the scatter in the subjects' biometric data. The biodynamic response is influenced by the addition of a secondary vibration axis and, in case of dual-axis vibrations, the overall magnitude has a marginal contribution. Practitioner Summary: We have measured both the diagonal and cross-axis elements of the apparent mass matrix. The effect of nonlinearities and the simultaneous presence of vibration along two axes are smaller than the inter-subject variability.
Si-H bond dynamics in hydrogenated amorphous silicon
NASA Astrophysics Data System (ADS)
Scharff, R. Jason; McGrane, Shawn D.
2007-08-01
The ultrafast structural dynamics of the Si-H bond in the rigid solvent environment of an amorphous silicon thin film is investigated using two-dimensional infrared four-wave mixing techniques. The two-dimensional infrared (2DIR) vibrational correlation spectrum resolves the homogeneous line shapes ( <2.5cm-1 linewidth) of the 0→1 and 1→2 vibrational transitions within the extensively inhomogeneously broadened ( 78cm-1 linewidth) Si-H vibrational band. There is no spectral diffusion evident in correlation spectra obtained at 0.2, 1, and 4ps waiting times. The Si-H stretching mode anharmonic shift is determined to be 84cm-1 and decreases slightly with vibrational frequency. The 1→2 linewidth increases with vibrational frequency. Frequency dependent vibrational population times measured by transient grating spectroscopy are also reported. The narrow homogeneous line shape, large inhomogeneous broadening, and lack of spectral diffusion reported here present the ideal backdrop for using a 2DIR probe following electronic pumping to measure the transient structural dynamics implicated in the Staebler-Wronski degradation [Appl. Phys. Lett. 31, 292 (1977)] in a-Si:H based solar cells.
Semi-active control of a sandwich beam partially filled with magnetorheological elastomer
NASA Astrophysics Data System (ADS)
Dyniewicz, Bartłomiej; Bajkowski, Jacek M.; Bajer, Czesław I.
2015-08-01
The paper deals with the semi-active control of vibrations of structural elements. Elastomer composites with ferromagnetic particles that act as magnetorheological fluids are used. The damping coefficient and the shear modulus of the elastomer increases when it is exposed to an electro-magnetic field. The control of this process in time allows us to reduce vibrations more effectively than if the elastomer is permanently exposed to a magnetic field. First the analytical solution for the vibrations of a sandwich beam filled with an elastomer is given. Then the control problem is defined and applied to the analytical formula. The numerical solution of the minimization problem results in a periodic, perfectly rectangular control function if free vibrations are considered. Such a temporarily acting magnetic field is more efficient than a constantly acting one. The surplus reaches 20-50% or more, depending on the filling ratio of the elastomer. The resulting control was verified experimentally in the vibrations of a cantilever sandwich beam. The proposed semi-active control can be directly applied to engineering vibrating structural elements, for example helicopter rotors, aircraft wings, pads under machines, and vehicles.
NASA Astrophysics Data System (ADS)
Jeong, I. S.; Scott, K.; Donovan, K. J.; Wilson, E. G.
2000-11-01
The tunneling rate of photocreated charge carriers between layers in Langmuir-Blodgett multilayer structures is measured indirectly using the novel technique of bimolecular recombination quenching. The tunneling rate is measured as a function of the applied electrostatic potential difference between the layers as the temperature is varied between 300 and 4 K. This dependence is examined in light of the Marcus theory of charge transfer where the electrostatic potential replaces the chemical potential as the driving potential. The expectations of the Marcus theory are not met and the rate is effectively temperature independent, contrary to expectation. Other mechanisms are explored that may explain the lack of temperature dependence including the role of high frequency vibrations and the role of the zero point energy of those vibrations. The temperature dependence of the exciton dissociation probability is also examined.
The Wireless Data Acquisition System for the Vibration Table
NASA Astrophysics Data System (ADS)
Teng, Y. T.; Hu, X.
2014-12-01
The vibration table is a large-scaled tool used for inspecting the performance of seismometers. The output from a seismometer on the table can be directly monitored when the vibration table moves in certain pattern. Compared with other inspection methods, inspecting seismometers' performance indicators (frequency response, degree of linearity, sensitivity, lateral inhibition and dynamic range etc). using vibration tables is more intuitive. Therefore, the vibration tables are an essential testing part in developing new seismometers and seismometer quality control. Whereas, in practice, a cable is needed to connect the seismometer to the ground equipments for its signal outputs and power supply, that means adding a time-varying nonlinear spring between the vibration table and ground. The cable adds nonlinear feature to the table, distorts the table-board movement and bring extra errors to the inspecting work and affected the testing accuracy and precision. In face of this problem, we developed a wireless acquiring system for the vibration table. The system is consisted of a three-channel analog-to-digital conversion, an acquisition control part, local data storage, network interface, wireless router and power management, etc. The analog-to-digital conversion part uses a 24-digit high-precision converter, which has a programmable amplifier at the front end of its artificial circuit, with the function of matching outputs with different amplifier from the vibration table. The acquisition control part uses a 32 bit ARM processor, with low-power dissipation, minute extension and high performance. The application software platform is written in Linux to make the system convenient for multitasking work. Large volume local digital storage is achieved by a 32G SD card, which is used for saving real time acquired data. Data transmission is achieved by network interface and wireless router, which can simplify the application software by the supported TCP/IP protocol. Besides, the acquisition system uses built-in power supply, which provides power to the system with Li-On rechargeable battery with high capacity, then all the cable link between the vibration table and the ground equipment have been removed. With all these changes, the whole system is immobilized on board of the vibration table after being packaged.
Stepwise Internal Energy Control for Protonated Methanol Clusters by Using the Inert Gas Tagging
NASA Astrophysics Data System (ADS)
Shimamori, Takuto; Kuo, Jer-Lai; Fujii, Asuka
2016-06-01
Preferred isomer structures of hydrogen-bonded clusters should depend on their temperature because of the entropy term in the free energy. To observe such temperature dependence, we propose a new approach to control the internal energy (vibrational temperature) of protonated clusters in the gas phase. We performed IR spectroscopy of protonated methanol clusters, H+ (CH{_3}OH) {_n}, n= 5 and 7, with the tagging by various inert gas species (Ar, CO{_2}, CO, CS{_2}, C{_2}H{_2}, and C{_6}H{_6}). We found that vibrational temperature of the tagged clusters raises with increase of the interaction energy with the tag species, and the observed cluster structures follow the theoretical prediction of the temperature dependence of the isomer population.
Eckart frame vibration-rotation Hamiltonians: Contravariant metric tensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pesonen, Janne, E-mail: janne.pesonen@helsinki.fi
2014-02-21
Eckart frame is a unique embedding in the theory of molecular vibrations and rotations. It is defined by the condition that the Coriolis coupling of the reference structure of the molecule is zero for every choice of the shape coordinates. It is far from trivial to set up Eckart kinetic energy operators (KEOs), when the shape of the molecule is described by curvilinear coordinates. In order to obtain the KEO, one needs to set up the corresponding contravariant metric tensor. Here, I derive explicitly the Eckart frame rotational measuring vectors. Their inner products with themselves give the rotational elements, andmore » their inner products with the vibrational measuring vectors (which, in the absence of constraints, are the mass-weighted gradients of the shape coordinates) give the Coriolis elements of the contravariant metric tensor. The vibrational elements are given as the inner products of the vibrational measuring vectors with themselves, and these elements do not depend on the choice of the body-frame. The present approach has the advantage that it does not depend on any particular choice of the shape coordinates, but it can be used in conjunction with all shape coordinates. Furthermore, it does not involve evaluation of covariant metric tensors, chain rules of derivation, or numerical differentiation, and it can be easily modified if there are constraints on the shape of the molecule. Both the planar and non-planar reference structures are accounted for. The present method is particular suitable for numerical work. Its computational implementation is outlined in an example, where I discuss how to evaluate vibration-rotation energies and eigenfunctions of a general N-atomic molecule, the shape of which is described by a set of local polyspherical coordinates.« less
NASA Astrophysics Data System (ADS)
Carini, Giovanni, Jr.; Carini, Giuseppe; D’Angelo, Giovanna; Federico, Mauro; Romano, Valentino
2018-05-01
Low and high frequency Raman scattering of B2O3 glasses, compacted under GPa pressures, has been performed to investigate structural changes due to increasing atomic packing. Compacted glasses, annealed at ambient temperature and pressure, experience a time-dependent decrease of the density to a smaller constant value over a period of few months, displaying a permanent plastic deformation. Increasing densification determines a parallel and progressive decrease of the intensity of the Boson peak and the main band at 808 cm‑1, both these modes arising from localized vibrations involving planar boroxol rings (B3O6), the glassy units formed from three basic BO3 triangles. The 808 cm‑1 mode preserves its frequency, while the BP evidences a well-defined frequency increase. The high-frequency multicomponent band between 1200 and 1600 cm‑1 also changes with increasing densification, disclosing a decreasing intensity of the 1260 cm‑1 mode due to oxygen vibrations of BO3 units bridging boroxol rings. This indicates the gradual vibrational collapse of groups formed from rings connected by more complex links than a single bridging oxygen. The observed behaviours suggest that glass compaction causes severe deformation of boroxol rings, determining a decrease of groups which preserve unaltered their vibrational activity. Growing glass densification stiffens the network and leads to a decrease of the excess heat capacity over the Debye prediction below 20 K, which is not accounted for by the hardening of the elastic continuum. By using the low-frequency Raman scattering to determine the temperature dependence of the heat capacity, it has been evaluated the density of low-frequency vibrational states which discloses a significant reduction of excess modes with increasing density.
NASA Astrophysics Data System (ADS)
Duchko, Andrey; Bykov, Alexandr
2015-06-01
Nowadays the task of spectra processing is as relevant as ever in molecular spectroscopy. Nevertheless, existing techniques of vibrational energy levels and wave functions computation often come to a dead-lock. Application of standard quantum-mechanical approaches often faces inextricable difficulties. Variational method requires unimaginable computational performance. On the other hand perturbational approaches beat against divergent series. That's why this problem faces an urgent need in application of specific resummation techniques. In this research Rayleigh-Schrödinger perturbation theory is applied to vibrational energy levels calculation of excited vibrational states of H_2CO. It is known that perturbation series diverge in the case of anharmonic resonance coupling between vibrational states [1]. Nevertheless, application of advanced divergent series summation techniques makes it possible to calculate the value of energy with high precision (more than 10 true digits) even for highly excited states of the molecule [2]. For this purposes we have applied several summation techniques based on high-order Pade-Hermite approximations. Our research shows that series behaviour completely depends on the singularities of complex energy function inside unit circle. That's why choosing an approximation function modelling this singularities allows to calculate the sum of divergent series. Our calculations for formaldehyde molecule show that the efficiency of each summation technique depends on the resonant type. REFERENCES 1. J. Cizek, V. Spirko, and O. Bludsky, ON THE USE OF DIVERGENT SERIES IN VIBRATIONAL SPECTROSCOPY. TWO- AND THREE-DIMENSIONAL OSCILLATORS, J. Chem. Phys. 99, 7331 (1993). 2. A. V. Sergeev and D. Z. Goodson, SINGULARITY ANALYSIS OF FOURTH-ORDER MöLLER-PLESSET PERTURBATION THEORY, J. Chem. Phys. 124, 4111 (2006).
NASA Astrophysics Data System (ADS)
Jiang, Z. H.; Liang, Z. J.; Wu, A. C.; Zheng, R. H.
2018-03-01
Experiments have been performed to study the chaotic dynamics of a ball bouncing on a vertically vibrating plate. The velocity dependence of collision duration and coefficient of restitution is determined, and phase portraits of chaotic structures for the flight time and the relative collision velocities are obtained. Numerical calculations are carried out to examine the effects of velocity-dependent collision duration on the ball dynamics. It is revealed that when the collision is instantaneous, sticking solutions are always observed, whereas when the collision duration is taken into account, sticking solutions are destroyed and thereby chaos behaviors are induced.
pH titration monitored by quantum cascade laser-based vibrational circular dichroism.
Rüther, Anja; Pfeifer, Marcel; Lórenz-Fonfría, Víctor A; Lüdeke, Steffen
2014-04-10
Vibrational circular dichroism (VCD) spectra of aqueous solutions of proline were recorded in the course of titrations from basic to acidic pH using a spectrometer equipped with a quantum cascade laser (QCL) as an infrared light source in the spectral range from 1320 to 1220 cm(-1). The pH-dependent spectra were analyzed by singular value decomposition and global fitting of a two-pK Henderson-Hasselbalch model. The analysis delivered relative fractions of the three different protonation species. Their agreement with the relative fractions obtained from performing the same analysis on pH-dependent Fourier transform infrared (FT-IR) and QCL-IR spectra validates the quantitative results from QCL-VCD. Global fitting of the pH-dependent VCD spectra of L-proline allowed for extraction of pure spectra corresponding to anionic, zwitterionic, and cationic L-proline. From a static experiment, only pure spectra of the zwitterion would be accessible in a straightforward way. A comparison to VCD spectra calculated for all three species led to assignment of vibrational modes that are characteristic for the respective protonation states. The study demonstrates the applicability of QCL-VCD both for quantitative evaluation and for qualitative interpretation of dynamic processes in aqueous solutions.
NASA Astrophysics Data System (ADS)
Toward, Martin G. R.; Griffin, Michael J.
2011-12-01
The transmission of vibration through a seat depends on the impedance of the seat and the apparent mass of the seat occupant. This study was designed to determine how factors affecting the apparent mass of the body (age, gender, physical characteristics, backrest contact, and magnitude of vibration) affect seat transmissibility. The transmission of vertical vibration through a car seat was measured with 80 adults (41 males and 39 females aged 18-65) at frequencies between 0.6 and 20 Hz with two backrest conditions (no backrest and backrest), and with three magnitudes of random vibration (0.5, 1.0, and 1.5 m s -2 rms). Linear regression models were used to study the effects of subject physical characteristics (age, gender, and anthropometry) and features of their apparent mass (resonance frequency, apparent mass at resonance and at 12 Hz) on the measured seat transmissibility. The strongest predictor of both the frequency of the principal resonance in seat transmissibility and the seat transmissibility at resonance was subject age, with other factors having only marginal effects. The transmissibility of the seat at 12 Hz depended on subject age, body mass index, and gender. Although subject weight was strongly associated with apparent mass, weight was not strongly associated with seat transmissibility. The resonance frequency of the seat decreased with increases in the magnitude of the vibration excitation and increased when subjects made contact with the backrest. Inter-subject variability in the resonance frequency and transmissibility at resonance was less with greater vibration excitation, but was largely unaffected by backrest contact. A lumped parameter seat-person model showed that changes in seat transmissibility with age can be predicted from changes in apparent mass with age, and that the dynamic stiffness of the seat appeared to increase with increased loading so as to compensate for increases in subject apparent mass associated with increased sitting weight.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benabbas, Abdelkrim; Salna, Bridget; Sage, J. Timothy
2015-03-21
Analytical models describing the temperature dependence of the deep tunneling rate, useful for proton, hydrogen, or hydride transfer in proteins, are developed and compared. Electronically adiabatic and non-adiabatic expressions are presented where the donor-acceptor (D-A) motion is treated either as a quantized vibration or as a classical “gating” distribution. We stress the importance of fitting experimental data on an absolute scale in the electronically adiabatic limit, which normally applies to these reactions, and find that vibrationally enhanced deep tunneling takes place on sub-ns timescales at room temperature for typical H-bonding distances. As noted previously, a small room temperature kinetic isotopemore » effect (KIE) does not eliminate deep tunneling as a major transport channel. The quantum approach focuses on the vibrational sub-space composed of the D-A and hydrogen atom motions, where hydrogen bonding and protein restoring forces quantize the D-A vibration. A Duschinsky rotation is mandated between the normal modes of the reactant and product states and the rotation angle depends on the tunneling particle mass. This tunnel-mass dependent rotation contributes substantially to the KIE and its temperature dependence. The effect of the Duschinsky rotation is solved exactly to find the rate in the electronically non-adiabatic limit and compared to the Born-Oppenheimer (B-O) approximation approach. The B-O approximation is employed to find the rate in the electronically adiabatic limit, where we explore both harmonic and quartic double-well potentials for the hydrogen atom bound states. Both the electronically adiabatic and non-adiabatic rates are found to diverge at high temperature unless the proton coupling includes the often neglected quadratic term in the D-A displacement from equilibrium. A new expression is presented for the electronically adiabatic tunnel rate in the classical limit for D-A motion that should be useful to experimentalists working near room temperature. This expression also holds when a broad protein conformational distribution of D-A equilibrium distances dominates the spread of the D-A vibrational wavefunction.« less
NASA Astrophysics Data System (ADS)
Puchkovska, G. O.; Danchuk, V. D.; Makarenko, S. P.; Kravchuk, A. P.; Kotelnikova, E. N.; Filatov, S. K.
2004-12-01
In the present paper, we report temperature dependent FTIR spectra studies of Davydov splitting value for CH 2 rocking vibrations of pure crystalline n-paraffins C nH 2 n+2 ( n is the number of carbon atoms) and some isomorphically substituted binary mixtures of n-paraffins C 22H 46:C 24H 50. Temperature dependencies of Davydov splitting value have been shown to be characterized by the amount of irregularities (sharp decreasing), which corresponds to the phase transitions into the high-temperature (hexagonal) state for pure n-paraffins or different rotator crystalline states for the mixtures. Statistic and dynamic models have been proposed, which provides an adequate description of the observed effect. In the framework of these models, two different mechanisms are responsible for the temperature behavior of the vibrational mode splitting value. Besides the thermal expansion of crystals at heating, the quenching of vibrational excitons on the orientational defects of different nature takes place, accompanied with the breakage of the crystal lattice translational symmetry. The creation of such defects is resulted from the excitation of librational and rotational molecular degrees of freedom at the crystal polymorphic transitions into different rotary crystalline states. The manifestation of the resonance dynamical intermolecular interaction in the spectra of intramolecular vibrations in these crystals has been theoretically analyzed in terms of stochastic equations, taking into consideration the above mentioned phase transition. We have obtained the explicit expression for the theoretically predicted dependence of Davydov splitting value on temperature. The absorption bands, corresponding to Davydov splitting components, have been shown to approach rapidly each other at the transition to the high-temperature (hexagonal) phase. Computer simulation of such dependence has been performed for some aliphatic compounds. Good agreement between the experimental and computer simulation results has been obtained. The theoretical approach developed in the present paper for the resonance dynamical intermolecular interaction near such transitions from the three-dimensional to one-dimensional phase of crystalline n-paraffins has a general character and can be applied to the description of some specific features observed in the vibrational spectra of rotary crystals.
Benabbas, Abdelkrim; Salna, Bridget; Sage, J Timothy; Champion, Paul M
2015-03-21
Analytical models describing the temperature dependence of the deep tunneling rate, useful for proton, hydrogen, or hydride transfer in proteins, are developed and compared. Electronically adiabatic and non-adiabatic expressions are presented where the donor-acceptor (D-A) motion is treated either as a quantized vibration or as a classical "gating" distribution. We stress the importance of fitting experimental data on an absolute scale in the electronically adiabatic limit, which normally applies to these reactions, and find that vibrationally enhanced deep tunneling takes place on sub-ns timescales at room temperature for typical H-bonding distances. As noted previously, a small room temperature kinetic isotope effect (KIE) does not eliminate deep tunneling as a major transport channel. The quantum approach focuses on the vibrational sub-space composed of the D-A and hydrogen atom motions, where hydrogen bonding and protein restoring forces quantize the D-A vibration. A Duschinsky rotation is mandated between the normal modes of the reactant and product states and the rotation angle depends on the tunneling particle mass. This tunnel-mass dependent rotation contributes substantially to the KIE and its temperature dependence. The effect of the Duschinsky rotation is solved exactly to find the rate in the electronically non-adiabatic limit and compared to the Born-Oppenheimer (B-O) approximation approach. The B-O approximation is employed to find the rate in the electronically adiabatic limit, where we explore both harmonic and quartic double-well potentials for the hydrogen atom bound states. Both the electronically adiabatic and non-adiabatic rates are found to diverge at high temperature unless the proton coupling includes the often neglected quadratic term in the D-A displacement from equilibrium. A new expression is presented for the electronically adiabatic tunnel rate in the classical limit for D-A motion that should be useful to experimentalists working near room temperature. This expression also holds when a broad protein conformational distribution of D-A equilibrium distances dominates the spread of the D-A vibrational wavefunction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahlawat, Navneet; Aghamkar, Praveen; Ahlawat, Neetu
Lithium lead silicate glasses with composition 30Li{sub 2}O{center_dot}(70-x)PbO{center_dot}xSiO{sub 2}(where, x = 10, 20, 30, 40, 50 mol %)(LPS glasses) were prepared by normal melt quench technique at 1373 K for half an hour in air to understand their structure. Compositional dependence of density, molar volume and glass transition temperature of these glasses indicates more compactness of the glass structure with increasing SiO{sub 2} content. Fourier transform infrared (FTIR) spectroscopic data obtained for these glasses was used to investigate the changes induced in the local structure of samples as the ratio between PbO and SiO{sub 2} content changes from 6.0 tomore » 0.4. The observed absorption band around 450-510 cm{sup -1} in IR spectra of these glasses indicates the presence of network forming PbO{sub 4} tetrahedral units in glass structure. The increase in intensity with increasing SiO{sub 2} content (upto x = 30 mol %) suggests superposition of Pb-O and Si-O bond vibrations in absorption band around 450-510 cm{sup -1}. The values of optical basicity in these glasses were found to be dependent directly on PbO/SiO{sub 2} ratio.« less
Room temperature ferromagnetism in Mn-doped NiO nanoparticles
NASA Astrophysics Data System (ADS)
Layek, Samar; Verma, H. C.
2016-01-01
Mn-doped NiO nanoparticles of the series Ni1-xMnxO (x=0.00, 0.02, 0.04 and 0.06) are successfully synthesized using a low temperature hydrothermal method. Samples up to 6% Mn-doping are single phase in nature as observed from powder x-ray diffraction (XRD) studies. Rietveld refinement of the XRD data shows that all the single phase samples crystallize in the NaCl like fcc structure with space group Fm-3m. Unit cell volume decreases with increasing Mn-doping. Pure NiO nanoparticles show weak ferromagnetism, may be due to nanosize nature. Introduction of Mn within NiO lattice improves the magnetic properties significantly. Room temperature ferromagnetism is found in all the doped samples whereas the magnetization is highest for 2% Mn-doping and then decreases with further doping. The ZFC and FC branches in the temperature dependent magnetization separate well above 350 K indicating transition temperature well above room temperature for 2% Mn-doped NiO Nanoparticle. The ferromagnetic Curie temperature is found to be 653 K for the same sample as measured by temperature dependent magnetization study using vibrating sample magnetometer (VSM) in high vacuum.
NASA Astrophysics Data System (ADS)
Phu, Do Xuan; Choi, Seung-Bok
2015-02-01
In this work, a new high-load magnetorheological (MR) fluid mount system is devised and applied to control vibration in a ship engine. In the investigation of vibration-control performance, a new modified indirect fuzzy sliding mode controller is formulated and realized. The design of the proposed MR mount is based on the flow mode of MR fluid, and it includes two separated coils for generating a magnetic field. An optimization process is carried out to achieve maximal damping force under certain design constraints, such as the allowable height of the mount. As an actuating smart fluid, a new plate-like iron-particle-based MR fluid is used, instead of the conventional spherical iron-particle-based MR fluid. After evaluating the field-dependent yield stress of the MR fluid, the field-dependent damping force required to control unwanted vibration in the ship engine is determined. Subsequently, an appropriate-sized MR mount is manufactured and its damping characteristics are evaluated. After confirming the sufficient damping force level of the manufactured MR mount, a medium-sized ship engine mount system consisting of eight MR mounts is established, and its dynamic governing equations are derived. A new modified indirect fuzzy sliding mode controller is then formulated and applied to the engine mount system. The displacement and velocity responses show that the unwanted vibrations of the ship engine system can be effectively controlled in both the axial and radial directions by applying the proposed control methodology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Marco, Luigi; Department of Chemistry, James Frank Institute, and The Institute for Biophysical Dynamics, The University of Chicago, 929 E 57th Street, Chicago, Illinois 60637; Fournier, Joseph A.
Water’s extended hydrogen-bond network results in rich and complex dynamics on the sub-picosecond time scale. In this paper, we present a comprehensive analysis of the two-dimensional infrared (2D IR) spectrum of O–H stretching vibrations in liquid H{sub 2}O and their interactions with bending and intermolecular vibrations. By exploring the dependence of the spectrum on waiting time, temperature, and laser polarization, we refine our molecular picture of water’s complex ultrafast dynamics. The spectral evolution following excitation of the O–H stretching resonance reveals vibrational dynamics on the 50–300 fs time scale that are dominated by intermolecular delocalization. These O–H stretch excitons aremore » a result of the anharmonicity of the nuclear potential energy surface that arises from the hydrogen-bonding interaction. The extent of O–H stretching excitons is characterized through 2D depolarization measurements that show spectrally dependent delocalization in agreement with theoretical predictions. Furthermore, we show that these dynamics are insensitive to temperature, indicating that the exciton dynamics alone set the important time scales in the system. Finally, we study the evolution of the O–H stretching mode, which shows highly non-adiabatic dynamics suggestive of vibrational conical intersections. We argue that the so-called heating, commonly observed within ∼1 ps in nonlinear IR spectroscopy of water, is a nonequilibrium state better described by a kinetic temperature rather than a Boltzmann distribution. Our conclusions imply that the collective nature of water vibrations should be considered in describing aqueous solvation.« less
NASA Astrophysics Data System (ADS)
Van Hoozen, Brian L.; Petersen, Poul B.
2018-04-01
Medium and strong hydrogen bonds give rise to broad vibrational features frequently spanning several hundred wavenumbers and oftentimes exhibiting unusual substructures. These broad vibrational features can be modeled from first principles, in a reduced dimensional calculation, that adiabatically separates low-frequency modes, which modulate the hydrogen bond length, from high-frequency OH stretch and bend modes that contribute to the vibrational structure. Previously this method was used to investigate the origin of an unusual vibrational feature frequently found in the spectra of dimers between carboxylic acids and nitrogen-containing aromatic bases that spans over 900 cm-1 and contains two broad peaks. It was found that the width of this feature largely originates from low-frequency modes modulating the hydrogen bond length and that the structure results from Fermi resonance interactions. In this report, we examine how these features change with the relative acid and base strength of the components as reflected by their aqueous pKA values. Dimers with large pKA differences are found to have features that can extend to frequencies below 1000 cm-1. The relationships between mean OH/NH frequency, aqueous pKA, and O-N distance are examined in order to obtain a more rigorous understanding of the origin and shape of the vibrational features. The mean OH/NH frequencies are found to correlate well with O-N distances. The lowest OH stretch frequencies are found in dimer geometries with O-N distances between 2.5 and 2.6 Å. At larger O-N distances, the hydrogen bonding interaction is not as strong, resulting in higher OH stretch frequencies. When the O-N distance is smaller than 2.5 Å, the limited space between the O and N determines the OH stretch frequency, which gives rise to frequencies that decrease with O-N distances. These two effects place a lower limit on the OH stretch frequency which is calculated to be near 700 cm-1. Understanding how the vibrational features of strongly hydrogen-bonded structures depend on the relative pKA and other structural parameters will guide studies of biological structures and analysis of proton transfer studies using photoacids.
Mechanical and electromagnetic induction of protection against oxidative stress.
Di Carlo, A L; White, N C; Litovitz, T A
2001-01-01
Cells and tissues can be protected against a potentially lethal stress by first exposing them to a brief dose of the same or different stress. This "pre-conditioning" phenomenon has been documented in many models of protection against oxidative stress, including ischemia/reperfusion and ultraviolet (UV) light exposure. Stimuli which induce this protective response include heat, chemicals, brief ischemia, and electromagnetic (EM) field exposures. We report here that constant mechanical vibration pre-conditions chick embryos, protecting them during subsequent stress from hypoxia or UV light exposure. Continuously mechanically vibrated embryos (60 Hz, 1 g (32 ft/s2), 20 min) exhibited nearly double the survival (67.5%, P < 0.001) after subsequent hypoxia as compared to non-vibrated controls (37.6%). As a second set of experiments, embryos were vibrated and then exposed to UV light stress. Those embryos that were vibrated prior to UV had nearly double the survival 3 h after UV exposure (66%, P < 0.001) as compared to controls (35%). The degree of protection, however, was dependent on the constancy of the vibration amplitude. When vibration was turned on and off at 1-s intervals throughout exposure, no increase in hypoxia protection was noted. For 50 s on/off vibration intervals, however, hypoxia protection comparable to continuous vibration was obtained. In contrast, random, inconstant mechanical vibration did not induce protection against subsequent UV exposure. These data suggest that to be an effective pre-conditioning agent, mechanical vibration must have a degree of temporally constancy (on/off intervals of greater than 1 s). Further experiments in both models (hypoxia and UV) indicated an interaction between vibration and EM field-induced protection. Vibration-induced hypoxia protection was inhibited by superposition of a random EM noise field (previously shown to inhibit EM field-induced protection). In addition, EM field-induced UV protection was inhibited by the superposition of random mechanical vibration. Thus, the superposition of either vibrational or EM noise during pre-conditioning virtually eliminated protection against hypoxia and UV. This link between EM field exposures and mechanical vibration is consistent with the hypothesis that cells sense these stimuli via a similar mechanism involving counter ion displacement.
Rovibrational hybrid fs/ps CARS using a volume Bragg grating for N₂ thermometry.
Scherman, M; Nafa, M; Schmid, T; Godard, A; Bresson, A; Attal-Tretout, B; Joubert, P
2016-02-01
Coherent anti-Stokes Raman scattering (CARS) spectra of N2 in the hybrid femtosecond/picosecond regime have been recorded with 0.7 cm(-1) resolution. The Q-branch rovibrational structure has been resolved, making it suitable for gas-phase simultaneous rotational and vibrational thermometry applications. Resolving this spectral structure requires synchronization of a narrowband picosecond probe pulse with a broadband femtosecond pair of pump and Stokes pulses. It is achieved using a single femtosecond ytterbium-laser source and a volume Bragg grating in a compact experimental arrangement.
Zhang, Lucy T.; Yang, Jubiao
2017-01-01
In this work we explore the aerodynamics flow characteristics of a coupled fluid-structure interaction system using a generalized Bernoulli equation derived directly from the Cauchy momentum equations. Unlike the conventional Bernoulli equation where incompressible, inviscid, and steady flow conditions are assumed, this generalized Bernoulli equation includes the contributions from compressibility, viscous, and unsteadiness, which could be essential in defining aerodynamic characteristics. The application of the derived Bernoulli’s principle is on a fully-coupled fluid-structure interaction simulation of the vocal folds vibration. The coupled system is simulated using the immersed finite element method where compressible Navier-Stokes equations are used to describe the air and an elastic pliable structure to describe the vocal fold. The vibration of the vocal fold works to open and close the glottal flow. The aerodynamics flow characteristics are evaluated using the derived Bernoulli’s principles for a vibration cycle in a carefully partitioned control volume based on the moving structure. The results agree very well to experimental observations, which validate the strategy and its use in other types of flow characteristics that involve coupled fluid-structure interactions. PMID:29527541
NASA Astrophysics Data System (ADS)
Pfister, T.; Büttner, L.; Czarske, J.; Krain, H.; Schodl, R.
2006-07-01
This paper presents a novel fibre optic laser Doppler position sensor for single blade tip clearance and vibration measurements at turbo machines, which offers high temporal resolution and high position resolution simultaneously. The sensor principle is based on the generation of a measurement volume consisting of two superposed fan-like interference fringe systems with contrary fringe spacing gradients using wavelength division multiplexing. A flexible and robust measurement system with an all-passive fibre coupled measurement head has been realized employing diffractive and refractive optics. Measurements of tip clearance and rotor vibrations at a transonic centrifugal compressor performed during operation at up to 50 000 rpm (833 Hz) corresponding to 21.7 kHz blade frequency and 586 m s-1 blade tip velocity are presented. The results are in excellent agreement with those of capacitive probes. The mean uncertainty of the position measurement was around 20 µm and, thus, considerably better than for conventional tip clearance probes. Consequently, this sensor is capable of fulfilling the requirements for future active clearance control systems and has great potential for in situ and online tip clearance and vibration measurements at metallic and non-metallic turbine blades with high precision.
Zhang, Lucy T; Yang, Jubiao
2016-12-01
In this work we explore the aerodynamics flow characteristics of a coupled fluid-structure interaction system using a generalized Bernoulli equation derived directly from the Cauchy momentum equations. Unlike the conventional Bernoulli equation where incompressible, inviscid, and steady flow conditions are assumed, this generalized Bernoulli equation includes the contributions from compressibility, viscous, and unsteadiness, which could be essential in defining aerodynamic characteristics. The application of the derived Bernoulli's principle is on a fully-coupled fluid-structure interaction simulation of the vocal folds vibration. The coupled system is simulated using the immersed finite element method where compressible Navier-Stokes equations are used to describe the air and an elastic pliable structure to describe the vocal fold. The vibration of the vocal fold works to open and close the glottal flow. The aerodynamics flow characteristics are evaluated using the derived Bernoulli's principles for a vibration cycle in a carefully partitioned control volume based on the moving structure. The results agree very well to experimental observations, which validate the strategy and its use in other types of flow characteristics that involve coupled fluid-structure interactions.
Vibration control of multiferroic fibrous composite plates using active constrained layer damping
NASA Astrophysics Data System (ADS)
Kattimani, S. C.; Ray, M. C.
2018-06-01
Geometrically nonlinear vibration control of fiber reinforced magneto-electro-elastic or multiferroic fibrous composite plates using active constrained layer damping treatment has been investigated. The piezoelectric (BaTiO3) fibers are embedded in the magnetostrictive (CoFe2O4) matrix forming magneto-electro-elastic or multiferroic smart composite. A three-dimensional finite element model of such fiber reinforced magneto-electro-elastic plates integrated with the active constrained layer damping patches is developed. Influence of electro-elastic, magneto-elastic and electromagnetic coupled fields on the vibration has been studied. The Golla-Hughes-McTavish method in time domain is employed for modeling a constrained viscoelastic layer of the active constrained layer damping treatment. The von Kármán type nonlinear strain-displacement relations are incorporated for developing a three-dimensional finite element model. Effect of fiber volume fraction, fiber orientation and boundary conditions on the control of geometrically nonlinear vibration of the fiber reinforced magneto-electro-elastic plates is investigated. The performance of the active constrained layer damping treatment due to the variation of piezoelectric fiber orientation angle in the 1-3 Piezoelectric constraining layer of the active constrained layer damping treatment has also been emphasized.
NASA Astrophysics Data System (ADS)
Matsumoto, Y.; Maeda, S.; Iwane, Y.; Iwata, Y.
2011-04-01
Some factors that may affect human perception thresholds of the vertical whole-body vibrations were investigated in two laboratory experiments with recumbent subjects. In the first experiment, the effects of gender and age of subjects on perception were investigated with three groups of 12 subjects, i.e., young males, young females and old males. For continuous sinusoidal vibrations at 2, 4, 8, 16, 31.5 and 63 Hz, there were no significant differences in the perception thresholds between male and female subjects, while the thresholds of young subjects tended to be significantly lower than the thresholds of old subjects. In the second experiment, the effect of vibration duration was investigated by using sinusoidal vibrations, at the same frequencies as above, modulated by the Hanning windows with different lengths (i.e., 0.5, 1.0, 2.0 and 4.0 s) for 12 subjects. It was found that the peak acceleration at the threshold tended to decrease with increasing duration of vibration. The perception thresholds were also evaluated by the running root-mean-square (rms) acceleration and the fourth power acceleration method defined in the current standards. The differences in the threshold of the transient vibrations for different durations were less with the fourth power acceleration method. Additionally, the effect of the integration time on the threshold was investigated for the running rms acceleration and the fourth power acceleration. It was found that the integration time that yielded less differences in the threshold of vibrations for different durations depended on the frequency of vibration.
A Computational Study of Systemic Hydration in Vocal Fold Collision
Bhattacharya, Pinaki; Siegmund, Thomas
2013-01-01
Mechanical stresses develop within vocal fold (VF) soft tissues, due to phonation-associated vibration and collision. These stresses in turn affect the hydration of VF tissue and thus influence voice health. In this paper, high-fidelty numerical computations are described taking into account fully three-dimensional geometry, realistic tissue and air properties, and high-amplitude vibration and collision. A segregated solver approach is employed, using sophisticated commercial solvers for both the VF tissue and glottal airflow domains. The tissue viscoelastic properties were derived from a biphasic formulation. Two cases were considered, whereby the tissue viscoelastic properties corresponded to two different volume fractions of the fluid phase of the VF tissue. For each case, hydrostatic stresses occurring as a result of vibration and collision were investigated. Assuming the VF tissue to be poroelastic, interstitial fluid movement within VF tissue was estimated from the hydrostatic stress gradient. Computed measures of overall VF dynamics (peak air-flow velocity, magnitude of VF deformation, frequency of vibration and contact pressure) were well within the range of experimentally observed values. The VF motion leading to mechanical stresses within the VFs and their effect on the interstitial fluid flux is detailed. It is found that average deformation and vibration of VFs tends to increase the state of hydration of the VF tissue whereas VF collision works to reduce hydration. PMID:23531170
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ueno, Toshiyuki, E-mail: ueno@ec.t.kanazawa-u.ac.jp
2015-05-07
Vibration based power generation technology is utilized effectively in various fields. Author has invented novel vibrational power generation device using magnetostrictive material. The device is based on parallel beam structure consisting of a rod of iron-gallium alloy wound with coil and yoke accompanied with permanent magnet. When bending force is applied on the tip of the device, the magnetization inside the rod varies with induced stress due to the inverse magnetostrictive effect. In vibration, the time variation of the magnetization generates voltage on the wound coil. The magnetostrictive type is advantageous over conventional such using piezoelectric or moving magnet typesmore » in high efficiency and high robustness, and low electrical impedance. Here, author has established device configuration, simple, rigid, and high power output endurable for practical applications. In addition, the improved device is lower cost using less volume of Fe-Ga and permanent magnet compared to our conventional, and its assembly by soldering is easy and fast suitable for mass production. Average power of 3 mW/cm{sup 3} under resonant vibration of 212 Hz and 1.2 G was obtained in miniature prototype using Fe-Ga rod of 2 × 0.5× 7 mm{sup 3}. Furthermore, the damping effect was observed, which demonstrates high energy conversion of the generator.« less
NASA Astrophysics Data System (ADS)
Sellami, Takwa; Jelassi, Sana; Darcherif, Abdel Moumen; Berriri, Hanen; Mimouni, Med Faouzi
2018-04-01
With the advancement of wind turbines towards complex structures, the requirement of trusty structural models has become more apparent. Hence, the vibration characteristics of the wind turbine components, like the blades and the tower, have to be extracted under vibration constraints. Although extracting the modal properties of blades is a simple task, calculating precise modal data for the whole wind turbine coupled to its tower/foundation is still a perplexing task. In this framework, this paper focuses on the investigation of the structural modeling approach of modern commercial micro-turbines. Thus, the structural model a complex designed wind turbine, which is Rutland 504, is established based on both experimental and numerical methods. A three-dimensional (3-D) numerical model of the structure was set up based on the finite volume method (FVM) using the academic finite element analysis software ANSYS. To validate the created model, experimental vibration tests were carried out using the vibration test system of TREVISE platform at ECAM-EPMI. The tests were based on the experimental modal analysis (EMA) technique, which is one of the most efficient techniques for identifying structures parameters. Indeed, the poles and residues of the frequency response functions (FRF), between input and output spectra, were calculated to extract the mode shapes and the natural frequencies of the structure. Based on the obtained modal parameters, the numerical designed model was up-dated.
Hand-transmitted vibration and biodynamic response of the human hand-arm: a critical review.
Dong, R G; Rakheja, S; Schopper, A W; Han, B; Smutz, W P
2001-01-01
Hand-arm vibration syndrome (HAVS) has been associated with prolonged exposure to vibration transmitted to the human hand-arm system from hand-held power tools, vibrating machines, or hand-held vibrating workpieces. The biodynamic response of the human hand and arm to hand transmitted vibration (HTV) forms an essential basis for effective evaluations of exposures, vibration-attenuation mechanisms, and potential injury mechanisms. The biodynamic response to HTV and its relationship to HAVS are critically reviewed and discussed to highlight the advances and the need for further research. In view of its strong dependence on the nature of HTV and the lack of general agreement on the characteristics of HTV, the reported studies are first reviewed to enhance an understanding of HTV and related issues. The characteristics of HTV and relevant unresolved issues are discussed on the basis of measured data, proposed standards, and measurement methods, while the need for further developments in measurement systems is emphasized. The studies on biodynamic response and their findings are grouped into four categories based on the methodology used and the objective. These include studies on (1) through-the-hand-arm response, expressed in terms of vibration transmissibility; (2) to-the-hand response, expressed in terms of the force-motion relationship of the hand-arm system; (3) to-the-hand biodynamic response function, expressed in terms of vibration energy absorption; and (4) computer modeling of the biodynamic response characteristics.
Vibration of mechanically-assembled 3D microstructures formed by compressive buckling
NASA Astrophysics Data System (ADS)
Wang, Heling; Ning, Xin; Li, Haibo; Luan, Haiwen; Xue, Yeguang; Yu, Xinge; Fan, Zhichao; Li, Luming; Rogers, John A.; Zhang, Yihui; Huang, Yonggang
2018-03-01
Micro-electromechanical systems (MEMS) that rely on structural vibrations have many important applications, ranging from oscillators and actuators, to energy harvesters and vehicles for measurement of mechanical properties. Conventional MEMS, however, mostly utilize two-dimensional (2D) vibrational modes, thereby imposing certain limitations that are not present in 3D designs (e.g., multi-directional energy harvesting). 3D vibrational micro-platforms assembled through the techniques of controlled compressive buckling are promising because of their complex 3D architectures and the ability to tune their vibrational behavior (e.g., natural frequencies and modes) by reversibly changing their dimensions by deforming their soft, elastomeric substrates. A clear understanding of such strain-dependent vibration behavior is essential for their practical applications. Here, we present a study on the linear and nonlinear vibration of such 3D mesostructures through analytical modeling, finite element analysis (FEA) and experiment. An analytical solution is obtained for the vibration mode and linear natural frequency of a buckled ribbon, indicating a mode change as the static deflection amplitude increases. The model also yields a scaling law for linear natural frequency that can be extended to general, complex 3D geometries, as validated by FEA and experiment. In the regime of nonlinear vibration, FEA suggests that an increase of amplitude of external loading represents an effective means to enhance the bandwidth. The results also uncover a reduced nonlinearity of vibration as the static deflection amplitude of the 3D structures increases. The developed analytical model can be used in the development of new 3D vibrational micro-platforms, for example, to enable simultaneous measurement of diverse mechanical properties (density, modulus, viscosity etc.) of thin films and biomaterials.
Fretting wear behaviors of a dual-cooled nuclear fuel rod under a simulated rod vibration
NASA Astrophysics Data System (ADS)
Lee, Young-Ho; Kim, Hyung-Kyu; Kang, Heung-Seok; Yoon, Kyung-Ho; Kim, Jae-Yong; Lee, Kang-Hee
2012-06-01
Recently, a dual-cooled fuel (i.e., annular fuel) that is compatible with current operating PWR plants has been proposed in order to realize both a considerable amount of power uprating and an increase of safety margins. As the design concept should be compatible with current operating PWR plants, however, it shows a narrow gap between the fuel rods when compared with current solid nuclear fuel arrays and needs to modify the spacer grid shapes and their positions. In this study, fretting wear tests have been performed to evaluate the wear resistance of a dual-cooled fuel by using a proposed spring and dimple of spacer grids that have a cantilever type and hemispherical shape, respectively. As a result, the wear volume of the spring specimen gradually increases as the contact condition is changed from a certain gap, just contact to positive force. However, in the dimple specimen, just contact condition shows a large wear volume. In addition, a circular rod motion at upper region of contact surface is gradually increased and its diametric size depends on the wear depth increase. Based on the test results, the fretting wear resistance of the proposed spring and dimple is analyzed by comparing the wear measurement results and rod motion in detail.
NASA Astrophysics Data System (ADS)
Park, Jongbin; Han, Jeongho; Lee, Seung-Joon; Yi, Kyoungdon; Kwon, Chelwoong; Lee, Young-Kook
2016-08-01
The objective of the present study was to investigate the inhomogeneity of microstructure and damping capacity of a FC25 disc-brake rotor made of gray cast iron (GCI) and their interrelationship. The rotor had inhomogeneous microstructure due to different cooling rates caused by the position of inlets in a mold during casting. The volume fraction and size of graphite decreased with increasing cooling rate. A maximum deviation of the volume fraction of graphite within the rotor was approximately 2 pct, whereas that of the total perimeter of graphite per unit area was approximately 33 pct. Damping capacities measured at the first vibrational mode of both the real rotor and cantilever specimens, which were taken from four different regions within the rotor, depended on the location within the rotor. This result indicates that the damping capacity of the rotor is influenced by the inhomogeneous microstructure; particularly, the damping capacity was proportional to the total perimeter of graphite per unit area. Therefore, it was concluded that the damping of the GCI rotor used in the present study occurs primarily by the viscous or plastic flow at the interphase boundaries between the pearlite matrix and graphite particles at least at the frequencies of below 1140 Hz.
Acoustic vibrations of metal nano-objects: Time-domain investigations
NASA Astrophysics Data System (ADS)
Crut, Aurélien; Maioli, Paolo; Del Fatti, Natalia; Vallée, Fabrice
2015-01-01
Theoretical and time-domain experimental investigations of the vibrational acoustic response of nano-objects are described focusing on metallic ones. Acoustic vibrations are modeled using a macroscopic-like approach based on continuum mechanics with the proper boundary conditions, a model which yields results in excellent agreement with the experimental ones and those of atomistic calculations, down to the nanometric scale. Vibrational mode excitation and detection mechanisms and the associated mode selection in ultrafast pump-probe spectroscopy are discussed, and the measured time-dependent signals in single and ensemble of nanoparticles modeled. The launched modes, their period and their damping rate are compared to experimental results obtained on ensembles of nano-objects with different composition, morphology and environment, and with size ranging from one to hundreds of nanometers. Recent extension of time-domain spectroscopy to individual nano-objects has shed new light on the vibrational responses of isolated nanoparticles, in particular on their damping, but also raises questions on the origin of its large particle to particle dispersion.
Magnetically induced rotor vibration in dual-stator permanent magnet motors
NASA Astrophysics Data System (ADS)
Xie, Bang; Wang, Shiyu; Wang, Yaoyao; Zhao, Zhifu; Xiu, Jie
2015-07-01
Magnetically induced vibration is a major concern in permanent magnet (PM) motors, which is especially true for dual-stator motors. This work develops a two-dimensional model of the rotor by using energy method, and employs this model to examine the rigid- and elastic-body vibrations induced by the inner stator tooth passage force and that by the outer. The analytical results imply that there exist three typical vibration modes. Their presence or absence depends on the combination of magnet/slot, force's frequency and amplitude, the relative position between two stators, and other structural parameters. The combination and relative position affect these modes via altering the force phase. The predicted results are verified by magnetic force wave analysis by finite element method (FEM) and comparison with the existing results. Potential directions are also given with the anticipation of bringing forth more interesting and useful findings. As an engineering application, the magnetically induced vibration can be first reduced via the combination and then a suitable relative position.
VCD Robustness of the Amide-I and Amide-II Vibrational Modes of Small Peptide Models.
Góbi, Sándor; Magyarfalvi, Gábor; Tarczay, György
2015-09-01
The rotational strengths and the robustness values of amide-I and amide-II vibrational modes of For(AA)n NHMe (where AA is Val, Asn, Asp, or Cys, n = 1-5 for Val and Asn; n = 1 for Asp and Cys) model peptides with α-helix and β-sheet backbone conformations were computed by density functional methods. The robustness results verify empirical rules drawn from experiments and from computed rotational strengths linking amide-I and amide-II patterns in the vibrational circular dichroism (VCD) spectra of peptides with their backbone structures. For peptides with at least three residues (n ≥ 3) these characteristic patterns from coupled amide vibrational modes have robust signatures. For shorter peptide models many vibrational modes are nonrobust, and the robust modes can be dependent on the residues or on their side chain conformations in addition to backbone conformations. These robust VCD bands, however, provide information for the detailed structural analysis of these smaller systems. © 2015 Wiley Periodicals, Inc.
Magnetoelectric gradiometer with enhanced vibration rejection efficiency under H-field modulation
NASA Astrophysics Data System (ADS)
Xu, Junran; Zhuang, Xin; Leung, Chung Ming; Staruch, Margo; Finkel, Peter; Li, Jiefang; Viehland, D.
2018-03-01
A magnetoelectric (ME) gradiometer consisting of two Metglas/Pb(Zr,Ti)O3 fiber-based sensors has been developed. The equivalent magnetic noise of both sensors was first determined to be about 60 pT/√Hz while using an H-field modulation technique. The common mode rejection ratio of a gradiometer based on these two sensors was determined to be 74. The gradiometer response curve was then measured, which provided the dependence of the gradiometer output as a function of the source-gradiometer-normalized distance. Investigations in the presence of vibration noise revealed that a ME gradiometer consisting of two ME magnetometers working under H-field modulation was capable of significant vibration rejection. The results were compared to similar studies of ME gradiometers operated in a passive working mode. Our findings demonstrate that this active gradiometer has a good vibration rejection capability in the presence of both magnetic signals and vibration noise/interferences by using two magnetoelectric sensors operated under H-field modulation.
NASA Astrophysics Data System (ADS)
Pitsevich, G.; Doroshenko, I.; Malevich, A..; Shalamberidze, E.; Sapeshko, V.; Pogorelov, V.; Pettersson, L. G. M.
2017-02-01
Using two sets of effective rotational constants for the ground (000) and the excited bending (010) vibrational states the calculation of frequencies and intensities of vibration-rotational transitions for J″ = 0 - 2; and J‧ = 0 - 3; was carried out in frame of the model of a rigid asymmetric top for temperatures from 0 to 40 K. The calculation of the intensities of vibration-rotational absorption bands of H2O in an Ar matrix was carried out both for thermodynamic equilibrium and for the case of non-equilibrium population of para- and ortho-states. For the analysis of possible interaction of vibration-rotational and translational motions of a water molecule in an Ar matrix by 3D Schrödinger equation solving using discrete variable representation (DVR) method, calculations of translational frequencies of H2O in a cage formed after one argon atom deleting were carried out. The results of theoretical calculations were compared to experimental data taken from literature.
Study on Influence of Tube Arrays on Fluid Elastic Instability
NASA Astrophysics Data System (ADS)
Ishihara, Kunihiko; Kitayama, Gen
The tube bank is used in boilers, heat exchangers in power plants and steam generators in nuclear plants. These tubes sometimes vibrate violently and come to the fatigue failure due to the flow induced vibration which is caused by the cross flow. This phenomenon is that the large vibrations arise at the critical flow velocity and it is called fluid elastic instability. However the relation between the onset velocity of fluid elastic instability and the tube array's geometry has not been clarified sufficiently. There is a few reference related to the relation between the pitch to diameter ratio and the onset velocity even in the lattice arrays. In this paper, the influence of tube arrays on fluid elastic instability is examined by experiments. As a result, it is clarified that the tube vibrations become large as T/D increases and L/D decreases, and the tube vibrations strongly depend on the dynamic characteristics of tubes such as the natural frequency and the damping ability.
Vibrational corrections to the second hyperpolarizabilities of Al{sub n}P{sub n} clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feitoza, Luan; Instituto Federal de Brasília–IFB, Campus Planaltina, 73380-900 Brasília, DF; Silveira, Orlando
2015-12-14
In this work, we report results of vibrational corrections to the second hyperpolarizabilities of Al{sub 2}P{sub 2}, Al{sub 3}P{sub 3}, Al{sub 4}P{sub 4}, Al{sub 6}P{sub 6}, and Al{sub 9}P{sub 9} clusters. The vibrational corrections were calculated through the perturbation theoretic method of Bishop and Kirtman and also using a variational methodology at the second order Møller-Plesset perturbation theory level with the aug-cc-pVDZ basis set. Results show that the vibrational corrections are important, accounting for more than half of the corresponding electronic second hyperpolarizabilities at the static limit. Comparisons between results obtained through both methods show very good agreements for themore » terms [α{sup 2}] and [μβ] but significant differences for the term [μ{sup 2}α]. Dynamic vibrational corrections to the second hyperpolarizabilities related to the dc-second harmonic generation, intensity dependent refractive index, and dc-Kerr nonlinear optical processes are also reported.« less
Bazewicz, Christopher G.; Liskov, Melanie T.; Hines, Kevin J.; Brewer, Scott H.
2013-01-01
We have synthesized the unnatural amino acid (UAA), 4-azidomethyl-Lphenylalanine (pN3CH2Phe), to serve as an effective vibrational reporter of local protein environments. The position, extinction coefficient, and sensitivity to local environment of the azide asymmetric stretch vibration of pN3CH2Phe are compared to the vibrational reporters: 4-cyano-L-phenylalanine (pCNPhe) and 4-azido-L-phenylalanine (pN3Phe). This UAA was genetically incorporated in a site-specific manner utilizing an engineered, orthogonal aminoacyl-tRNA synthetase in response to an amber codon with high efficiency and fidelity into two distinct sites in superfolder green fluorescent protein (sfGFP). This allowed for the dependence of the azide asymmetric stretch vibration of pN3CH2Phe to different protein environments to be measured. The photo-stability of pN3CH2Phe was also measured relative to the photoreactive UAA, pN3Phe. PMID:23865850
Research of rotating machinery vibration parameters - Shaft speed relationship
NASA Astrophysics Data System (ADS)
Kostyukov, V. N.; Kostyukov, A. V.; Zaytsev, A. V.; Teterin, A. O.
2017-08-01
The paper considers the relationship between the parameters of the vibration arising in rotating machinery during operation and the shaft speed. The goal of this paper is to determine the dependence of the vibration parameters on the shaft speed for solving applied engineering problems. To properly evaluate the technical condition of bearing assemblies, we should take into account the pattern of the rotating machinery vibration parameters-shaft speed relationship, which will allow creating new diagnostic features, the totality of which will ensure an increased reliability of diagnosis. We took the check for a correlation between the factor and resultative feature parameters as the correlation analysis method. A high pair linear correlation between the diagnostic features (acceleration, velocity, displacement) and the shaft speed was determined on the basis of the check for correlation between the vibration parameters and the shaft speed, and also the linear correlation coefficients can be used to solve the applied engineering problems of diagnosing the bearing assemblies of the rotating machinery.